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Mitigation of the Radioxenon Memory Effect in Beta-Gamma 
Detector Systems by Deposition of Thin Film Diffusion 

Barriers on Plastic Scintillator 

 

 

Alexander Gary Fay, MSE 

The University of Texas at Austin, 2010 

 

Supervisor:  Steven R.F. Biegalski 

 

The significance of the radioxenon memory effect in the context of the 

International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty 

is introduced as motivation for the project. Existing work regarding xenon 

memory effect reduction and thin film diffusion barriers is surveyed. 

Experimental techniques for radioxenon production and exposure, as well as for 

thin film deposition on plastic by plasma enhanced chemical vapor deposition 

(PECVD), are detailed. A deposition rate of 76.5 nm min-1 of SiO2 is measured 

for specific PECVD parameters. Relative activity calculations show agreement 

within 5% between identically exposed samples counted on parallel detectors. 

Memory effect reductions of up to 59±1.8% for 900 nm SiO2 films produced by 

plasma enhanced chemical vapor deposition and of up to 77±3.7% for 50 nm 

Al2O3 films produced by atomic layer deposition are shown. Future work is 

suggested for production of more effective diffusion barriers and expansion to 

testing in operational monitoring stations. 
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Chapter 1:  Introduction 

1.1 BACKGROUND 

The efforts in support of nuclear nonproliferation began with the advent 

of nuclear weapons development in the United States. Although initial 

development of applications of nuclear power occurred primarily in the United 

States and Russia, both countries promptly exported peaceful nuclear technology 

to allies around the world. With the rapid growth of nuclear technology and the 

propagation of nuclear materials throughout the world, the concern that such 

technology and materials could be misused also spread. Born out of this concern 

was the Nonproliferation Treaty (NPT) of 1968. The NPT distinguished 

weapons states, the five countries that had nuclear weapons programs, from 

non-weapons states, countries party to the NPT that had not developed nuclear 

weapons. The purpose of the NPT was to discourage the further development 

and spread of nuclear weapons programs by non-weapons states in return for 

assistance, from the weapons states, in developing peaceful nuclear technology. 

However, concerns about the development of a nuclear weapon via diversion of 

fissile materials by states or theft of fissile materials by non-states persisted. 

Although the NPT encourages progress towards disarmament, it does not 

specifically address the use of nuclear weapons [1]. 

The 1974 weapons test by India, a non-NPT country, reignited fears 

about continued development of nuclear weapons. Concurrent weapons testing 

moratoriums in the United States, Russia, and the United Kingdom, along with 

a series of committee and working group meetings, provided the necessary 
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groundwork to begin official negotiations on a weapons test treaty. In 1996, the 

Comprehensive Nuclear-Test-Ban Treaty (CTBT) was opened for signature. 

The CTBT prohibits the use of nuclear weapons in all applications, 

civilian and militaristic. The treaty does not distinguish between underground, 

underwater, or atmospheric detonations, thus nuclear weapons tests are 

comprehensively prohibited as well. The treaty further prohibits any 

“encouragement of or participation in” a nuclear explosion and outlines the 

procedure for addressing violations [2]. As of October 2010, 165 states have 

signed the treaty and 97 have ratified it. Of the five NPT weapons states, 

France, Russia, and the United Kingdom have signed and ratified the treaty, 

while the United States and China are signatories but have not ratified [3]. 

In order for the treaty to enter into force, a satisfactory verification 

regime must be established. This regime for the CTBT consists of the 

International Monitoring System (IMS), the International Data Center (IDC), 

and a variety of direct inspection measures. The IMS stands as a network of 

monitoring stations that report data to the IDC. The IDC collects the IMS data 

and makes it available to any CTBT state. Member states are then responsible 

for data analysis. 

The IMS is composed of four monitoring technologies: seismic, 

hydroacoustic, infrasound, and radionuclide. Seismic stations monitor the seismic 

waves produced in an underground nuclear explosion. This seismic information 

can be used to determine the strength of an event and the distributed network 

of monitoring stations is capable of identifying the location of an event. The fast 

seismic response from an underground or atmospheric explosion allows this type 
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of monitoring to provide information to the IDC within seconds of an explosion 

[4]. Hydroacoustic monitoring stations are able to detect the acoustic response of 

a nuclear explosion as the acoustic wave travels through the ocean. Similar to 

seismic monitoring techniques, hydroacoustic monitoring is capable of locating 

the source of the signal as well as distinguishing between explosions and 

earthquakes [4]. Infrasound stations monitor for changes in atmospheric pressure 

in order to identify atmospheric nuclear explosions. These pressure changes are 

produced occasionally in underground explosions as well and are detected as 

acoustic signals at lower frequency than detectable by the hydroacoustic 

network. The infrasound network further supplements the capabilities of the 

seismic and hydroacoustic networks to locate the source of the explosion. 

The only IMS monitoring technique not based on waveform analysis is 

radionuclide monitoring. Radionuclide stations detect radioactive fission products 

created in a nuclear explosion. Many of these fission products will escape into the 

atmosphere as a result of the venting of the explosion. The response time of 

radionuclide signals from an explosion is longer than that of seismic or acoustic 

signals and the source location is more difficult to determine considering the 

atmospheric transport of the fission products [4]. However, proper containment 

of an explosion is difficult, even underground, thus radionuclide monitoring can 

achieve low detection thresholds.  

The radionuclide network consists of 80 radionuclide monitoring stations. 

Of these 80 stations, 40 have been developed with additional monitoring 

capabilities as part of the International Noble Gas Experiment [5]. The location 

of these stations is indicated in Figure 1.1. 
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Figure 1.1. Distribution of deployed and planned IMS radionuclide stations with 
radioxenon monitoring capabilities [5]. 

The International Noble Gas Experiment (INGE) was created as a means 

of secondary detection of radionuclide signals from nuclear weapons detonations. 

The INGE stations continuously collect radioactive xenon from the atmosphere 

and monitor isotopic ratios of 131mXe, 133Xe, 133mXe, and 135Xe. The ratios of these 

isotopes can be used to distinguish radioxenon produced in a weapons 

detonation from radioxenon produced from the other major sources: medical 

isotope production facilities, nuclear reprocessing plants and nuclear power 

reactors [7].  

Station designs from four countries have been developed for use in the 

INGE network. The Automated Radioxenon Sampler-Analyzer (ARSA) was 

developed by Pacific Northwest National Laboratory in the United States. The 

Systeme de Prelevement d’Air Automatique en Ligne avec l’Analyse Radioxenon 
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Atmospheriques (SPALAX) was developed by the Departement Analyse, 

Surveillance, Environnement du CEA in France. The Automatic Radioanalyzer 

for Isotopic Xenon (ARIX) was developed by the Khlopin Radium Institute in 

Russia. The Swedish Automated Unit for Noble Gas Acquisition (SAUNA) was 

developed by the Totalförsvarets Forskningsinstitut (FOI) in Sweden [6]. 

 

1.2 LITERATURE REVIEW 

1.2.1 Xenon Monitoring 

Shortly after the signing of the CTBT in 1996, work began to establish 

the verification regime for the treaty. Radioactive isotopes of xenon were 

identified as fission products of interest for monitoring purposes and the 

requirements for a viable network of radioxenon monitoring stations were 

outlined [7]. Specifically, stations would have to be autonomous with only 

intermittent maintenance requirements, capable of twice-a-day measurements of 

the isotopes of interest, able to achieve sensitivity many times higher than 

current technology, and capable of transmitting data back to the then-proposed 

IDC. Subsequently, four organizations began development of radioxenon 

monitoring station designs, as outlined in the introduction to this chapter. 

Testing of the four radioxenon monitoring station designs has been 

conducted both on an individual basis and as a comparison between systems. 

Development and testing of the Automated Radioxenon Sampler/Analyzer 

(ARSA) was initially reported in 1998 [8]. The ARSA station extracts xenon 

from intake air via a series of molecular sieves and charcoal traps. The xenon is 

fed into a plastic scintillator cell for beta-gamma coincidence counting, measured 
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in a residual gas analyzer, then stored in an archiving bottle. Prototypes of the 

ARSA detector achieved sensitivities of 0.1 mBq m-3  [9]. Sensitivities are given in 

units of detectable activity per unit volume air collected. 

Initial testing of the Systeme de Prelevement Automatique en Ligne avec 

L’Analyse du Xenon (SPALAX) was reported in 2004 [10]. The SPALAX station 

purifies xenon from the atmosphere by use of activated charcoal and diffusion 

membranes. Quantification of the radioxenon is conducted on a high-purity 

germanium (HPGe) detector, thus the minimum detectable activity (MDA) is 

calculated solely from X-ray and gamma ray signals. Initial incarnations of the 

SPALAX achieved an MDA of 0.7 mBq m-3 for 131mXe and 0.9 mBq m-3 for 133mXe 

[10]. 

The Russian ARIX detector was presented with initial measurements in 

2005 [11]. Molecular sieves and activated charcoal traps were utilized for xenon 

purification and radioxenon measurement was accomplished using beta-gamma 

coincidence counting with a plastic scintillator cell. The initial MDA for the 

ARIX was reported at 0.5 mBq m-3. 

Testing of the Swedish Automated Unit for Noble Gas Acquisition 

(SAUNA) was initially reported in 2003 [12]. Xenon purification was achieved at 

room temperature using activated charcoal then initial quantification of the 

purified xenon was done using a gas chromatograph. Beta-gamma coincidence 

measurements of radioxenon activity were conducted in a plastic scintillator cell 

similar to those used in the ARSA and ARIX. MDA from 0.57 mBq m-3 to 0.93 

mBq m-3 were achieved in the initials tests, leaving all four detector designs in 
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compliance with the IMS mandated MDA as reported by the designing 

organizations. 

It is important to note that station designs varied amongst each other 

with respect to counting techniques, purification processes, and cycle times. In 

order to ensure the capability of each design to meet the requirements of the 

IMS and identify potential issues, an intercomparison of the four systems was 

conducted and reported in 2004 [6]. The single-site, 400 day comparison of the 

four systems was conducted in 2000 - 2001. Independent radioxenon 

measurements were conducted at the site in Freiburg, Germany. In addition to 

ongoing atmospheric monitoring and analysis of archived samples by all 

detectors, known activities of xenon isotopes were introduced to the system in a 

series of “spike tests.” 

Large variations in atmospheric radioxenon activity (two orders of 

magnitude) were seen over the course of the test. These variations were 

attributed to local emission sources, primarily nuclear power facilities. 

Discrepancies in activity measurements between detectors in the atmospheric 

monitoring tests and spike tests were also seen, however the magnitude of these 

discrepancies was shown to be significantly lower than the expected signal from a 

nuclear detonation. 

Collectively, the MDA of a network composed of the four tested designs 

was shown to be viable over a range of activities from 1 mBq m-3 to 100 mBq m-3, 

which was the maximum activity seen in the intercomparison. The MDA for the 

network was shown to be 0.1 - 1 mBq m-3 and in compliance with the IMS 

requirements as reported by an independent organization [6]. 
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Deployment and field testing was conducted following the results of the 

INGE station intercomparison. Commercial versions of the ARIX, SPALAX, and 

SAUNA were manufactured and deployed as a network of 16 INGE stations. 

Uptime of the network was 74.1% of cumulative system hours over the course of 

the 48-month test [13]. Primary causes of downtime were HPGe cooling system 

maintenance, software malfunction, and gas processing equipment malfunction. 

The atmospheric radioxenon MDA had been reduced to 0.2 - 0.6 mBq m-3 on the 

SPALAX system, 0.2 - 0.4 mBq m-3 on the ARIX system, and 0.2 - 0.3 mBq m-3 

on the SAUNA system. 

The 16 radioxenon monitoring stations tested at this time [13] serve as 

the foundation for the planned network of 40 stations. 

 

1.2.2 Xenon Memory Effect in Application 

The radioxenon memory effect incurs difficulties in a variety of 

applications. It is identified as an issue in discussion of detector design and 

performance [14,15]. Models of beta-gamma coincidence systems have been 

designed to account for the memory effect [16,17]. Development of new detector 

designs focuses on minimizing the impact of the memory effect [18,19]. 

Additionally, the memory effect has been discussed in the context of the INGE 

detector designs [13,20,21], with initial measurements suggesting 5% memory for 

an 8-hour background following evacuation after a 24-hour count [22]. Stable 

xenon memory effect issues have been identified in mass spectrometry 

applications as well [23,24]. 
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1.2.3 Previous Memory Effect Work 

Previous efforts to mitigate the radioxenon memory effect in counting 

applications are limited. Metallization of the plastic scintillator and use of 

inorganic scintillator materials have been explored [25]. Chrome and copper were 

identified as unviable materials for metallization due to low reflectivity and poor 

mechanical properties when coated onto the scintillator surface. Aluminum was 

shown to reduce the memory effect by 80-86%. The inorganic scintillator was 

shown to have very low susceptibility to xenon permeation. Further work 

suggested by this reference includes optimization of the inorganic scintillator cell 

geometry and further quantification of aluminized cell performance.   

 

1.2.4 PECVD on Plastic 

Initial research on the use of plasma enhanced chemical vapor deposition 

(PECVD) for SiO2 deposition was reported in 1981 [26,27] and low-temperature 

deposition (as low as 275C) research began shortly thereafter [28]. Room 

temperature PECVD techniques, with a focus on achieving high quality films by 

varying PECVD parameters to account for the very low temperatures, were 

reported in 1996 [29]. The deposition rate of SiO2 was shown to increase as 

substrate temperature decreased, however a higher abundance of reaction 

precursors and products in the film was observed for silicon reactant gas flow 

rates comparable to high temperature PECVD processes. Reduction of this flow 

rate with respect to the carrier gas flow rate allowed for film qualities 

approaching those manufactured as higher temperatures. 
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The chemical processes relevant to the production of SiO2 in PECVD 

reactors have been reviewed [30]. A more specialized investigation of the 

mechanical properties of SiO2 films deposited on polymers was conducted in 1999 

[31]. Diffusion barrier performance as a function of various PECVD parameters 

(pressure, power, gas flow rates) has been previously explored [32,33]. Research 

on the effects of PECVD power variations on substrate temperature, an 

important consideration in temperature sensitive applications, was conducted in 

these references as well. Research regarding SiO2 manufacturing at low 

temperatures with a variety of gas mixtures is widely available in the literature. 

An overview of plasma dynamics in deposition applications, reactor architecture, 

thin film properties, and plasma effects on polymers is given in the reference by 

D’Agostino [34]. 

 

1.2.5 Inert Gas Transport 

Observation of gas transport through polymers was recorded as early as 

1829 when Graham observed the inflation of a rubber balloon in the presence of 

CO2 [35]. Development of a wide array of polymers for commercial and industrial 

applications, including polyvinyltoluene (PVT), has led to research into the gas 

permeability of such materials. 

Initial identification and quantification of the permeability of 

polyvinyltoluene with regards to inert gases was conducted as early as 1960. 

Permeability values for N2, He, O2, expressed in units of mL cm-2 cm-1 s-1 cmHg-1 

were calculated as an initial means of quantification [36]. 
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The diffusion of noble gas molecules in a polymer matrix has been 

previously simulated in a molecular dynamics (MD) model as a series of hops by 

gas molecules between polymer sites, or traps [37]. Temperature dependency of 

the polymer in the model has been further explored by Takeuchi in 1991 [38,39], 

however most relevant to plastic scintillator application in beta-gamma systems 

is the modeling of diffusion in glassy polymers, or polymers below glass transition 

temperature [40]. The hop and trap model has since been shown to be in 

agreement with experimental results [41-43]. 

A general treatment of the physics of diffusion through polymers, 

including diffusion coefficient calculation techniques for comparison with 

experimental values, was given in 1994 [44]. A more exhaustive review of the 

various mathematical diffusion models, including development of diffusion theory 

derived from Fick’s Law, was conducted in 2001 [45]. Of note in this reference is 

the observation:  

The transport mechanisms in polymers at a molecular level are not 
completely understood when T < Tg [where Tg is the glass transition 
temperature of the polymer]. All the models proposed in the literature are 
phenomenological and contain one or several adjustable parameters which 
should be determined experimentally and are suitable only to a limited 
number of systems. 

A corresponding experimental treatment of the discussion in this reference 

was provided [46]. Published experimental work on xenon diffusion in engineering 

applications is limited. Xenon diffusion through porous media has been explored 

using magnetic resonance imaging techniques [47]. Radioxenon diffusion through 

polycarbonates has also been tested [48]. This reference includes solutions for the 
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time-dependent activity of radioactive noble gas concentrations diffusing through 

a variety of polymer geometries. 

Further discussion of general models for gas transport in polymers, 

transport models in specific industry-relevant polymers, and physical 

dependencies of the diffusion coefficient is widely available in the literature. 

 

1.2.6 Gas Diffusion Barriers 

Gas diffusion barrier technology, specifically technology based on materials 

and techniques explored in this thesis, is abundant in a variety of industries. 

Thus the literature regarding barrier properties and performance is extensive. 

Relevant applications include plasma deposited SiO barriers on polyester bottles 

[49] and the use of Al2O3-SiO2 bilayer barriers [50] for plastic wrapping material. 

The properties of Al2O3-SiO2 bilayers have been further explored [51]. 

Monolayers of both SiO2 and Al2O3 have been utilized as gas diffusion 

barriers as well. Substantial reductions (10x - 150x) in O2 diffusion were shown 

for SiO2 films [32], along with reporting of morphological studies of high 

performing barriers. Exploration of the critical thickness of SiO2 barriers, as well 

as the thickness dependence of the refractive index, has been conducted [33].  

Initial investigations of the barrier properties of low temperature ALD 

produced Al2O3 barriers were conducted in 2004 [52]. Since then, Al2O3 barriers 

have been characterized for applications such as liquid crystal display coating 

and food packaging [53]. Deposition on polymers has also been specifically 

investigated [54]. 
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Appreciable work has been done regarding xenon, and even radioxenon, 

barrier properties of biological materials relevant to the medical industry. 

Unfortunately the literature focused on the interaction of aforementioned 

diffusion barriers with xenon or other noble gases in engineering applications 

appears to be limited. 

 

1.3 PROBLEM STATEMENT 

The establishment of a rigorous verification regime is necessary for the 

Comprehensive Nuclear-Test-Ban Treaty to enter into force. A crucial element of 

this regime, the International Monitoring System, utilizes radioxenon monitoring 

technology as a means of verifying nuclear weapons detonation. In order to 

produce trustworthy data on atmospheric radioxenon concentration, the IMS 

requires monitoring stations be capable of autonomous operation and low 

minimum detectable activity. 

The radioxenon memory effect inhibits compliance with both of these IMS 

requirements. Although background spectra collection integrated with the 

radioxenon measurement process currently accounts for the effect to an extent, 

the minimum detectable activity is still reduced. Thus, a solution to passively 

mitigate the radioxenon memory effect is optimal. 
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1.4 PROJECT GOALS 

There were three primary goals for this project: 

 

1. Develop an experimental procedure for radioxenon exposure and construct 

a suitable apparatus. 

2. Investigate viable thin film deposition technologies and establish a 

procedure for deposition on a plastic scintillator substrate. 

3. Quantify the mitigation of the radioxenon memory effect in plastic 

scintillator samples coated by techniques established in item 2. 
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Chapter 2:  Theory 

2.1 RADIOXENON PRODUCTION 

There are a number of physical processes vital to production of 

radioxenon, whether the xenon is produced by activation in a reactor or as a 

fission product in a nuclear weapon detonation. One of these processes, and the 

one that defines radioactivity, is decay. 

Unstable isotopes have a nuclear arrangement that is not sustainable 

indefinitely due to a deficit or excess of neutrons in the nucleus. This parent 

nucleus will go through a characteristic decay that will create a daughter 

nucleus. The time dependence of this decay is described by the half-life of the 

parent nucleus. The half-life, conventionally written as T1/2, is a physical 

property of each isotope that describes the time it takes for half of the nuclei of 

that isotope to decay. Half-lives can range from less than milliseconds for some 

isotopes to millions of years or more for others. It is useful to re-express the half-

life in terms of the decay constant, denoted by λ , where we define 

 

       

€ 

λ =
ln2
T1/ 2

     (2.1) 

For an initial collection of no nuclei of an isotope with half-life T1/2, we can 

then write the number of nuclei as a function of time as 

 

   

€ 

n(t) = noe
−λt

       (2.2) 

where t is the time between measurement of n0 and n(t). Similarly, the 

activity of a sample of a single isotope can be written as 
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€ 

a(t) = aoe
−λt

                  (2.3) 

where a(t) is the measured activity and a0 is the initial activity. 

Every radioactive isotope has a set of possible daughter nuclei and, for 

each decay, the decay mode determines which daughter is produced. Although 

decay can occur with the emission of a neutron, by spontaneous fission, or a 

number of other processes, the most common decays occur with the emission of 

an alpha particle, a beta particle, or a gamma ray. Alpha emission is rare among 

isotopes lighter than lead, thus beta emission and gamma emission are the most 

significant processes in consideration of radioxenon decay [55]. 

Beta decay occurs when an unstable nucleus emits an electron or positron, 

conventionally known as a β- particle or β+ particle, respectively. The general 

equations for these decay modes are written as 

 

   

€ 

Z
A X→Z −1

A X + β+ +υe    (2.4) 

 

  

€ 

Z
A X→Z +1

A X + β− +υ e      (2.5) 

where X identifies the chemical symbol of the isotope, the superscript 

describes the number of nucleons in the atom and the subscript describes the 

number of protons. The emission of the beta particle distinguishes the decay as 

the β+ mode or the β- mode. The emission of the electron neutrino or 

antineutrino is necessary to conserve lepton number. 

Nuclei can also decay by interacting with one of the innermost electrons in 

the atom in a process called electron capture. A neutron is formed from the 
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interaction of a proton and the captured electron, thus producing a daughter 

nucleus identical to that produced in β+ decay. An X-ray is emitted in this 

process as an electron de-excites to the energy state previously held by the 

captured electron. 

In many cases, the daughter product of a decay event is left in an excited 

nuclear state. Similar to the de-excitation of an electron and subsequent emission 

of an X-ray, nuclei can decay from excited states and emit a gamma ray. Often 

this decay happens quickly after the beta decay of the atom and the gamma 

emission is considered to be coincident with the initial decay. These gamma rays 

have characteristic energies that, if measured, can be used to identify the parent 

nucleus. However, it is possible for nuclei to remain in this excited state for some 

time after beta decay and the excited nucleus can be considered to be in a 

metastable state. These metastable states are denoted by the letter m following 

the mass number in nuclear notation, such as in 133mXe, and have characteristic 

gamma emissions [55]. 

In addition to simple emission of a gamma ray, these metastable states 

can decay to a stable nuclear state by emission of an orbital electron in a process 

called internal conversion. Unlike beta decay, this process does not change the 

number of neutrons or protons in a nucleus. A characteristic X-ray is emitted 

when the electron vacancy is filled. Both 131mXe and 133mXe decay by this process. 

All of the processes discussed thus far are based solely on the properties 

of an individual nucleus and require no interaction with external particles or 

atoms. However, neutron interactions are relevant to radioxenon production via 

activation in a reactor and production in a nuclear weapon. 
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When a free neutron is incident on a nucleus, there are a number of 

interactions that can occur. The neutron can scatter elastically or inelastically, be 

captured with re-emission of a gamma ray, charged particle or another neutron, 

or it can induce fission in the nucleus. Each of these interactions occurs with 

some probability described by the cross-section of the interaction. Cross sections 

are given in units of barns, equivalent to 10-24 cm2, and are dependent on the 

isotope involved in the interaction and the energy of the incident neutron. Of 

interest for xenon production are the processes of neutron capture and fission. 

Neutron capture is generally the process by which activation is possible. 

When a neutron is incident on a nucleus, the nucleus can absorb the neutron 

according to the reaction 

 

       

€ 

n+Z
AX → Z

A +1X +γ     (2.6) 

Activation is the production of an isotope by subjecting it to a neutron 

source in order to cause neutron capture events.  

Table 2.1 Naturally occurring isotopes of xenon and their abundance. 

Isotope Abundance (%) 
124Xe 0.1 
126Xe 0.09 
128Xe 1.91 
129Xe 26.4 
130Xe 4.1 
131Xe 21.2 
132Xe 26.9 
134Xe 10.4 
136Xe 8.9 



 19 

 

In many cases, including the activation of xenon for the purposes of this 

project, a stable isotope is activated to produce a radioactive isotope. Xenon has 

nine stable isotopes, listed in Table 2.1, subject to activation when natural xenon 

is irradiated in a reactor. The relative yield of the activated isotopes is dependent 

on many parameters: the natural abundances and cross section of each xenon 

isotope, the neutron energy profile of the irradiation facility, the half-lives of the 

various xenon isotopes, the irradiation time and the decay time. Calculations 

have been conducted to determine the expected yield for specific sets of 

parameters [56].  

Figure 2.1 Neutron capture cross section as a function of neutron energy for 
124Xe, 132Xe, 134Xe in red, green, and blue, respectively [57]. 
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The very high cross section resonance in the epithermal range for 124Xe, as 

seen in Figure 2.1, leads to dominance of 125Xe (T1/2 = 16.9h) in spectra collected 

within days of the irradiation. The long half-life of 133Xe (T1/2 = 5.243d) allows 

that isotope to dominate spectra collected long after the irradiation. The 

relatively high cross section of 134Xe and appreciable half-life of 135Xe also leads to 
135Xe signals detectable in post-irradiation spectra. For the nominal parameters 

used for xenon activation in this project, 125Xe, 133Xe, and 135Xe produce the 

dominant post-irradiation signals. 

The other important neutron interaction for xenon production is that of 

fission. Although fission can happen spontaneously, as radioactive decay does, 

fission can also be induced from the interaction of a neutron and a fissionable 

nucleus. The fission process involves the absorption of a neutron by a large 

nucleus, the formation of an unstable nucleus, and the prompt fragmenting of 

the nucleus into two or more fission products. Each fission event has a 

probability of releasing a number of free neutrons that can then induce further 

fission events. This chain reaction, when self-sustaining, is the basis for heat 

production in nuclear power plants and energy release in nuclear weapons. 
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Figure 2.2 Pathways for the production of 135Xe from a fission event [58]. 

The yield of a fission product in a weapons detonation or nuclear power 

reactor is determined by a number of processes. Each fissionable isotope has a 

characteristic probability distribution for production of each fission product. The 

independent yield, or initial yield, is dependent on this probability distribution, 

as well as the energy of the incident neutron. The cumulative yield of a specific 

fission product is determined by the independent yield and the decay chain 

leading to the fission product. These dependencies are illustrated in Figure 2.2. 

 

2.2 RADIOXENON MONITORING 

Xenon becomes a relevant element for weapons detonations and nuclear 

reactors because it is produced in relatively high quantities in fission events, as 

indicated by Figure 2.3. Nuclear reactors, reprocessing facilities, medical isotope 

production facilities, and nuclear weapons detonations have been identified as 

the major sources of radioxenon [7]. In the course of atmospheric monitoring, 
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emission from all of these sources will be detected. It then becomes important to 

develop means to distinguish an explosion source from the other three sources.  

 

 

Figure 2.3 Fission product spectrum for 235U. For xenon isotopes of interest, 
mass numbers range from 131 to 135 [64]. 

Although many xenon isotopes are part of the fission product spectrum 

for fissile materials, some isotopes have half-lives on the order of seconds (139Xe 
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and higher and many of the metastable states) [57] and will not be detectable by 

remote monitoring stations. Other xenon isotopes are too low yield to be 

detected. INGE stations monitor four xenon isotopes: 131mXe, 133mXe, 133Xe, and 
135Xe. The half-lives and respective yields for these isotopes are given on Table 

2.2. 

Table 2.2 Half-life and yield per 100 fissions for the four xenon isotopes 
monitored in the IMS. Yield is given for fast neutrons [59]. 

Isotope Half-Life Ind. Yield Cum. Yield 
131mXe 11.9 d 2.41E-07 0.0451 
133mXe 2.1 d 4.23E-03 0.192 
133Xe 5.2 d 1.46E-03 6.72 
135Xe 9.1 h 0.12 6.6 

 

The expected ratio of these four isotopes with respect to each other will 

vary based on the processes by which they are produced [56], thus they will vary 

between sources. Of primary significance is the irradiation time difference 

between the sources [57]. Irradiations at medical isotope facilities are on the order 

of days and irradiation at power reactors can last for months, however the 

effective irradiation time in a nuclear weapon detonation is much less than a 

second. This difference in irradiation time, among other, less significant effects, 

can lead to order of magnitude or larger differences between the expected ratios 

from an explosion and the other three sources [56]. The measurement of these 

ratios then makes the radioxenon monitoring process a viable option for 

verification of a nuclear explosion.  
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Figure 2.5 Beta-gamma coincidence spectrum of 133Xe [56]. 

As mentioned in the discussion of radioactive decay in this chapter, the 

decay of excited nuclear states often happens immediately following the emission 

of a beta particle. If the half-life of the excited nuclear state is sufficiently small 

compared to the half-life of the beta decay mode, it is possible to associate the 

detection of the gamma ray with the detection of the beta particle. This 

counting technique is known as beta-gamma coincidence and is the basis for 

radioxenon measurements in the ARIX, ARSA, and SAUNA monitoring 

stations. The advantage of coincidence counting is the substantial reduction of 

 



 25 

background in which many events will not occur simultaneously. Beta-gamma 

counting, in the context of the aforementioned radioxenon monitoring stations, 

relies on two fundamental detection technologies: NaI crystals for gamma ray 

detection and plastic scintillator for beta detection. A beta-gamma coincidence 

spectrum of 133Xe is given in Figure 2.5. 

Sodium iodide (NaI) crystal detectors are inorganic scintillators used in 

gamma spectroscopy. If an incident gamma ray deposits its energy into the 

crystal, an electron can be elevated into the conduction band of the crystal’s 

energy band structure. In a normal material, this free electron would de-excite 

with the emission of a photon with energy too high to be collected in a 

photomultiplier tube. However, if the crystal is doped in such a way that there 

are available energy states within the forbidden gap, the de-excitation energy of 

the conduction electron can be conserved by emission of a series of photons in 

the visible spectrum [60]. These photons can then be collected by a 

photomultiplier to be read as an electrical signal. In the case of a NaI detector, 

the dopant is commonly thallium, leading to the convention NaI(Tl). The high 

light yield and adaptability of NaI crystal makes it a suitable material for gamma 

detection in radioxenon monitoring stations. 

Beta particle detection is achieved by a process similar to gamma detection 

in a NaI(Tl) crystal. Organic scintillator fluoresces by the same basic mechanism 

as inorganic scintillator, however absorption of incident energy leads to the 

excitation of individual molecules rather than atoms in a crystal structure [60]. 

The spacing between energy states in a scintillating molecule is generally between 

1 and 4 eV, thus de-excitation of the molecule produces visible spectrum photons 
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that can be collected in a photomultiplier. Anthracene is one of the most 

common organic scintillators, and it is used in all the radioxenon monitoring 

station designs discussed in this paper [61]. 

Just as a NaI(Tl) detector is designed with the maximum gamma energy 

absorption in mind, a scintillator for beta detection must be designed to 

maximize the efficient absorption of incident electron energy. 

The charge and low mass of the electron prevent it from being highly 

penetrating when emitted from a decay event. The range of a beta particle in an 

absorbing medium is described by a system of empirical formulas, given as 

equations (2.7) and (2.8) [55], 

 

€ 

Rmaxρ = 0.412Emax
(1.265−0.0954 ln Emax ), Emax < 2.5MeV           (2.7) 

 

 

€ 

Rmaxρ = 0.530Emax − 0.106, Emax > 2.5MeV   (2.8) 

 

where Rmax is the range of the beta particle, ρ is the density of the 

absorbing material, and Emax is the maximum energy of the beta particle energy 

distribution in MeV. Beta particle energies for xenon decay are below 2.5 MeV, 

thus calculations relevant to xenon will use equation (2.7). The range for beta 

particles in PVT, calculated with this equation, is given in Figure 2.6. 
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Figure 2.6 Beta particle range in polyvinyltoluene based on equation (2.7). 

An additional, and vital, consideration for beta detection is the geometry 

of the coincidence detector system. The radioxenon is entirely contained in the 

plastic scintillator cell, which is entirely contained in the NaI(Tl) crystal, as 

indicated in Figure 2.7, thus the plastic scintillator must have minimal 

interactions with gamma rays so as not to impact the efficiency of the gamma 

counting system.  
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Figure 2.7 Detector arrangement in the SAUNA [12]. 

High photon transparency, even at low energies, and the ease of 

manufacturing plastic in various geometries makes plastic an apt material for 

beta measurement. Organic scintillator can be polymerized to produce a plastic 

scintillator that satisfies the need for high beta efficiency and extremely low 

gamma efficiency. The material used for beta counting in the radioxenon stations 

discussed elsewhere in the thesis is polyvinyltoluene doped with anthracene [61]. 

 

2.3 INERT GAS DIFFUSION 

The change in concentration of some substance as a function of position is 

given by Fick’s Law: 

   

€ 

J = −D∇n             (2.9) 

where J is the flux of the substance, D is the diffusion coefficient of the 

substance in the medium, and n is the concentration of the substance. It is 

important to note that Fick’s Law describes the flux as a function of position 
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and is time independent. The concentration is described as a function of time by 

Fick’s Second Law 

 

   

€ 

∂n
∂t

= D∇2n
             (2.10)

 

For radioactive species, the decrease in concentration as a result of 

radioactive decay is described by 

 

    

€ 

∂n
∂t

= −λn
          (2.11)

 

which, when solved, gives equation (2.2). The concentration of a 

radioactive material undergoing diffusion is then most generally described by 

 

        

€ 

∂n
∂t

= D∇2n − λn
     (2.12)

 

When the del operator is expressed explicitly in Cartesian coordinates, 

equation (2.12) becomes 

 

  

€ 

∂n
∂t

= D ∂ 2n
∂x 2

+
∂ 2n
∂y 2

+
∂ 2n
∂z2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − λn

   (2.13)
 

For the geometry considered in this project, we can estimate the thickness 

of the sample to be small relative to the other dimensions such that we estimate 

thin plate geometry and simplify equation (2.13) to  

 

    

€ 

∂n
∂t

= D∂
2n
∂x 2

− λn
    (2.14)
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where the x-direction is defined by the axis perpendicular to the surface of 

the sample exposed to xenon. When applied to this project’s experimental setup, 

a thin plate of plastic of thickness L exposed to a concentration c of radioxenon 

for time T, then measured for activity some time after the exposure, (2.14) has 

to be solved as two initial-boundary value problems. The first set of initial-

boundary conditions describes the concentration of xenon in the sample during 

the exposure. The second set describes the concentration of xenon in the sample 

after exposure. The primary difference between these two sets of conditions is 

the presence of a time-dependent concentration of xenon outside the source in 

the first set that is absent for the second set. 

The first set of initial-boundary conditions can be solved [48] to give 

 

€ 

n(x, t) =
4Dc
L

(2k +1)π
L

λ2k+1 − λk=0

∞

∑ e−λt − e−λ2k+1t( ) sin (2k +1)π
L

x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   (2.15) 

while the second set of conditions is solved by 

 

€ 

n(x, t) =
4Dc
L

(2k +1)π
L

λ2k+1 − λk=0

∞

∑ e−λT − e−λ2k+1T( ) e−λ2k+1t ⋅ sin (2k +1)π
L

x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    

(2.16) 

where  

€ 

λn = λ +
nπ
L

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

D     (2.17) 

Equation 2.16 can then be integrated over the volume of the thin plastic 

plate to give the total activity as a function of time as 
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€ 

a(t) =
8λ2ScLD

2

L
e−λT − e−λ2k+1T

λ2k+1 − λ
e−λ2k+1t

k=0

∞

∑   (2.18) 

where S is the surface area of the plastic and LD is the diffusion length of 

xenon in the plastic, defined as 

€ 

D /λ . Further simplification of (2.18) requires 

the empirical calculation of LD. Measurements of the activity in the plastic at 

large values of t can be used to calculate λ1, from which LD can be determined 

using (2.17). 

 

 

Figure 2.8 Desorption of 133Xe in polycarbonate. The points indicate empirical 
data, the solid line represents theoretical values from equation (2.18), 
the dashed line represents radioactive decay [48]. 

Much of this mathematical treatment follows the theory presented in the 

reference by Pressyanov [48]. Beyond this simplification, this reference empirically 

calculated the diffusion length for xenon in the material and geometry relevant 
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to their experiment then fit equation (2.18) to experimental data using a scale 

factor. This fitting equation agreed with empirical results that showed, for a 0.3 

mm polycarbonate plate after a 383 hour 133Xe sorption period, desorption of 

80% of the original 133Xe activity over roughly 100 hours as indicated in Figure 

2.8. 

 

2.4 PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION 

There are a number of designs for PECVD reactors and, in most cases, 

the design determines the kinetics and chemistry of the reaction and thin film 

deposition. Deposition in this project was conducted on a PlasmaTherm 790 

parallel plate reactor and the kinetics and chemistry for this reactor architecture 

are discussed below. 

The bottom plate of the parallel plate electrode also serves as the 

substrate platform. Temperatures given for PECVD processes indicate the 

temperature to which this platform is heated, though it is commonly assumed 

that this is the substrate temperature as well. An RF generator drives a 13.56 

MHz frequency signal across the plates. The high electric field produced by the 

RF produces a number of species within the newly formed plasma [34].  

Charged particles both induce chemical reactivity in the plasma and are 

the basis for the formation of the thin film. Negatively charged free electrons 

within the plasma collide with other species, fragmenting the original reactant 

gas molecule or exciting an atom to increase the likelihood of a chemical 

interaction. Additionally, the high electron mobility of the plasma leaves the 

substrate at negative potential with respect to the plasma. Thus positively 
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charged ions in the plasma will bombard the surface of the substrate and form 

the thin film. 

Beyond charged particle interactions, radicals within the plasma are 

formed as molecules fragment and chemical reactions create new species. 

Continuous reactions between radicals can form the desired thin film 

composition, however in many cases these radicals are deposited onto the surface 

of the substrate before the desired composition is produced, thus forming a 

source of impurity in the film. 

For the formation of SiO2 films, the reactant gases are silane and nitrous 

oxide. The fundamental reaction for the production of SiO2 with these reagents 

is 

 

      

€ 

SiH4 + 2N2O→SiO2 + 2H2 + 2N2  (2.19) 

However species such as N-H, Si-H, Si-O-H are also produced as a result of 

other reactions [30]. Dilution of the reagent gases with a carrier such as He or N2 

can reduce the production of these species and thus reduce the impurities in the 

thin film. 
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Chapter 3:  Experiment 

3.1 XENON ACTIVATION 

Figure 3.1 Core of the NETL TRIGA reactor. 

Xenon production for this experiment took place at the University of 

Texas TRIGA Mark II reactor at the Nuclear Engineering Teaching Laboratory 

(NETL), pictured in Figure 3.1. The 1.1 MW NETL-TRIGA reactor facilities 

include in-core and ex-core irradiation locations, tangential and perpendicular 

beam ports, a rotating specimen rack (RSR), and pneumatic sample transfer 

systems. The facility of interest for this work was the tri-element (3L) facility, 

which is an in-core irradiation site and is pictured in Figure 3.2.  
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Figure 3.2 Exploded view of 3L facilities in the NETL TRIGA core [63]. 

At the 3L site three fuel pin receptacles are cut out to allow the insertion 

of a support structure for an aluminum sample vessel. The schematics of the 

vessel are given in Figure 3.3. The vessel is a hollow outer cylinder with outer 

diameter of 1.875” and a hollow inner cylinder with inner diameter of 1.527”. 

Between the cylinders is a 0.04” sheet of either lead or cadmium. The cylinders 

are 48.125” long with a plug welded to the bottom and a removable threaded cap 

on top. Pressure relief valves built into the cap maintain a constant pressure 

within the vessel during irradiation. The cap, plug, and cylinders were machined 

from 6061 aluminum. 
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Figure 3.3 3L sample vessel schematic. 

The lead lining serves to counterweight the sample vessel against 

buoyancy while the cadmium lining serves to shield the sample chamber within 

the vessel from thermal neutrons. Thus the lead lined vessel is used as a full 

spectrum facility and the cadmium lined vessel is used as an epithermal 

irradiation facility, where the cadmium cutoff, or the energy below which a 

majority of neutrons are absorbed, is roughly 0.5 eV [60]. 

In order to produce radioxenon, purified xenon at natural isotopic levels 

was transferred to a perfluoroalkoxy (PFA) valve, pictured in Figure 3.4, which 

was then inserted into the Cd-lined sample vessel in the 3L facility. The gas is 

contained within the 2 mL chamber in the rotating portion of the valve, as well 

as the endcap. 
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Figure 3.4 PFA valve used for natural xenon irradiation in NETL-TRIGA 
reactor. 

Transfer of the natural xenon from a compressed gas cylinder to the PFA 

valve was accomplished using the gas transfer manifold, developed at Pacific 

Northwest National Laboratory (PNNL) and pictured in Figure 3.5. A two-stage 

CGA-580 regulator was attached to the compressed gas cylinder then connected 

to the manifold. The PFA valve was set to the open position and connected to 

the manifold. The entire manifold, including the valve and tubing to the 

regulator, was evacuated then flushed with N2. This “pump and flush” process 

was repeated to ensure minimal contamination of the xenon within the valve. 

Following the final evacuation of the entire system, the manifold was set up to 

allow flow from the regulator to the valve. The compressed gas cylinder was 
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opened, as well as the needle valve between the regulator and manifold. The 

regulator was used to bring the pressure of the entire system to roughly 1.3 bar, 

at which point the PFA valve was isolated from the manifold, closed, then 

removed from the manifold. The operation of the relevant valves on the transfer 

manifold is shown for the entire process in Appendix A. 

After irradiation, the PFA valve was counted for 20 minutes to verify the 

presence of 125Xe, 133Xe, and 135Xe. 

 

Figure 3.5 Gas transfer manifold used for preparation of xenon samples and the 
evacuation of exposure manifold. 
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3.2 SAMPLE PREPARATION AND EXPOSURE 

In order to expose the BC-404 samples to the radioxenon contained in the 

PFA valve, the samples were affixed to stainless steel hex nuts that were then 

attached to the exposure manifold. Optical cement from Eljen Technology (EJ-

500) and Saint Gobain (BC-600) was used to adhere the plastic scintillator to 

the stainless steel. These products were chosen because of their viability with 

both stainless steel and plastic, as well as their resistance to outgassing. Both 

products came with resin and hardener. The epoxy was created by mixing 4 

parts by weight resin with 1 part by weight hardener in a plastic petri dish. The 

mixture was left to settle for 30 minutes to allow bubbles to rise to the surface 

then was applied to the contact surface of the hex nut. The BC-404 sample was 

pressed onto the contact surface and centered. Care was taken to minimize the 

coverage of the cement on the inner surface area of the plastic so as not to 

change the effective exposure area. All samples were left to dry 48 hours before 

use.  

Two BC-404 geometries were tested: a cylindrical geometry of 0.1” height 

and 0.6” diameter as well as a 1” x 1” x 0.1” geometry. The cylindrical, or “endcap” 

geometry was cemented to a 0.5” hex nut that provided 0.196 in2 of exposed 

surface area. The 1” x 1” x 0.1”, or “square”, sample was cemented to a 0.75” 

diameter hex nut, pictured in Figure 3.6, that provided 0.442 in2 of exposed 

surface area. The use of the larger nut required a 0.5” to 0.75” stainless steel 

adapter. 
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Figure 3.6 Square geometry sample cemented to a 0.75” stainless steel hex nut. 

To avoid the introduction of radioactive gas to the transfer manifold, a 

separate exposure manifold was constructed. The exposure manifold, pictured in 

Figure 3.7, consisted of fittings to connect the exposure manifold to the transfer 

manifold and the PFA valve, as well as a mixing chamber and attachments for 

two testing chambers. Quarter turn valves were installed to allow for isolation of 

each test chamber, the manifold connection and the PFA valve connection. A 

schematic of the exposure manifold can be found in Appendix B. 
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Figure 3.7 Xenon exposure manifold. 

After the BC-404 samples were affixed to the stainless steel hex caps, the 

caps were tightened to the test chambers. Each test chamber was evacuated on 

the transfer manifold, then isolated from the vacuum and monitored to ensure 

the epoxy seal held vacuum. The test chambers were attached to the exposure 

manifold then, with the PFA valve connection isolated, the entire exposure 

manifold was connected to the transfer manifold and evacuated. The exposure 

manifold was subsequently flushed with N2 then evacuated again. Several “pump 

and flush” cycles were conducted to remove contaminants from the exposure 

manifold. After the final evacuation the exposure manifold was backfilled with N2 

to 0.9 bar, then the transfer manifold connection was isolated and the exposure 

manifold was disconnected from the transfer manifold. 
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With both test chamber valves open, the transfer manifold attachment 

valve closed and the PFA valve attachment closed, the PFA valve containing the 

radioxenon was threaded onto the exposure manifold. The quarter turn valve on 

the exposure manifold was opened and the gauges on the manifold were 

monitored to ensure the system remained sealed while attached to the PFA 

valve. Finally, the PFA valve was opened to release the radioxenon into the 

manifold. Exposures ranged from 18 to 24 hours, after which the PFA valve 

attachment was closed, both test chambers were disconnected from the exposure 

manifold, and the hex nuts with the BC-404 samples were removed from the test 

chamber for counting. 

The operation of the relevant valves on the exposure manifold is detailed 

in Appendix B. 

 

3.3 ACTIVITY MEASUREMENT 

Normal counting techniques would allow for serial counting of two 

samples. Post-processing of the spectra with decay and count time corrections 

would normalize the second count to the first, and activity levels could be 

compared. However, for the purposes of this experiment, the activity in the BC-

404 sample as a function of time is determined both by the decay of xenon 

isotopes and the diffusion of the gas in the scintillator. In the absence of a 

quantitative model of xenon diffusion in polyvinyltoluene, counting must be done 

in parallel to eliminate diffusion as a parameter. 

The intricacy introduced by simultaneous counting on different detectors 

is that of relative efficiency. With the intention of comparing data collected on 
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different detectors, we must determine the value of a count on one detector 

relative to the other. Discrepancies in counting geometry, absolute efficiency, and 

electronic instrumentation can account for these differences between detectors. 

 The Eckert & Ziegler Analytics Model 7603 mixed gamma emitter liquid 

check source was used in order to produce a relative efficiency curve as a function 

of gamma energy. The initial check source was 19 mL of the 4M HCl. This liquid 

was counted in a 2” diameter plastic petri dish. In order to better replicate the 

geometries of the BC-404 samples, two new check sources were produced. 

Whatman #1 filter paper was cut into 1” squares, then 80 µL of the 4M HCl 

mixed gamma source was deposited onto the filter paper and the filter paper was 

left to dry. Twenty of these dried 1” squares were stacked and sealed in plastic 

wrap. Final dimensions of the check source were 1” x 1” x 0.16” with the mixed 

gamma source distributed throughout each layer of filter paper. 

A similar procedure was followed to replicate the endcap sample geometry. 

Whatman #4 filter paper was cut into identical 0.5” squares then 20 µL of the 

4M HCl was deposited onto each square. After drying, 20 squares were stacked 

and sealed. Final dimensions of the source were 0.5” x 0.5” x 0.15” with the 

multigamma emitter distributed in the layers of the filter paper. These check 

sources were counted on each detector used for sample counting. 

 

3.4 PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION 

Thin film deposition and characterization was conducted at the University 

of Texas Microelectronics Research Center (MRC). The MRC has facilities for 

chemical vapor deposition, reactive ion etching, lithography, various metrology 



 44 

techniques, and chemical processing. The PlasmaTherm RIE/PECVD #1, 

pictured in Figure 3.8, was used for PECVD deposition in this experiment. 

 

 

Figure 3.8 PlasmaTherm parallel plate PECVD reactor. 

All BC-404 samples put into the PECVD reactor were placed in a Pyrex 

petri dish to protect from contaminants on the reactor place surface as well as to 

serve as a container in the case of the BC-404 melting. The bottom of each 

sample was marked to distinguish between the side sitting on the petri dish and 

the side fully exposed to the reactor. 
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SiO2 deposition was conducted at 800 mTorr and 100W of RF power. The 

temperature of the reactor was maintained at 60C. 

Deposition in the PlasmaTherm was done in a number of steps. First, the 

reactor was initialized to the preset temperature and pressure for the deposition. 

Then the reactor was flushed with N2 for 1 minute at 500 mTorr. Following the 

flush, the reactor was evacuated for 2 minutes. The reagent gases were then 

pumped into the reactor for 1 minute at 800 mTorr, followed by application of 

the RF power at 100W to induce the plasma in the reactor. The deposition times 

listed in the results section of this thesis describe the time that this RF power 

source was on. The flow rates for both steps requiring gas reagents were 160 

sccm N20 and 35 sccm SiH4. At the conclusion of the plasma step, the reactor 

was again evacuated for 2 minutes then flushed with N2 for 1 minute. The 

coated samples were retrieved from the reactor after it was pumped back to 

atmospheric pressure. 

A list of PECVD parameters for each step is given in Appendix C. 

 

3.5 THIN FILM CHARACTERIZATION 

Although plasma enhanced chemical vapor deposition can be conducted at 

low temperatures in silicon wafer applications, the temperatures required for 

deposition on plastic are sufficiently lower to suspect that deposition may be 

much different than at high temperatures on silicon. It then becomes important 

to do in situ characterization of the SiO2 film, as opposed to characterization of 

SiO2 on a proxy substrate. Two analytical techniques were employed for this 

characterization. 
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3.5.1 Neutron Activation Analysis 

Neutron activation analysis was conducted at the NETL-TRIGA reactor 

to determine the deposition rate of the SiO2. Two square geometry BC-404 

samples were cut in half to produce four 1” x 0.5” samples. Two of these samples 

were covered with Kapton tape on all but one face, leaving the exposed surface 

area as 0.5 in2. These two samples were simultaneously coated by PECVD for 6 

minutes following the procedure from Section 3.4. Additionally, a silicon 

standard was created by depositing 0.03 mL of Inorganic Ventures CGSi10-1 

silicon standard onto a 1” x 0.5” piece of Whatman #2 filter paper. This 

geometry was chosen to replicate that of the BC-404 samples. Each sample (the 

silicon standard on filter paper, two blank BC-404 samples and two SiO2 coated 

BC-404 samples) was heat sealed in a 2.15” height by 0.65” diameter plastic vial. 

Each vial was placed in the NETL pneumatic sample system then irradiated in 

the NETL-TRIGA for 300 seconds. When the sample returned from the 

pneumatic system, it was placed on an HPGe detector to determine the count 

rate. The count rate was then used to determine the coating thickness by 

calculating the total mass of silicon on the sample and accounting for the known 

surface area that was coated. 

 

3.5.2 Contact Profilometry 

Contact profilometry is a technique similar to atomic force microscopy. In 

both analytical methods, a stylus is dragged across a surface and the variations 

of the force on the stylus are measured as variations in the height of the sample. 
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Profilometry data is given as a plot of stylus deflection as a function of 

horizontal position. 

 

 

Figure 3.9 Deposition regions for characterization using profilometry. 

In order to determine the deposition rate on the BC-404 using 

profilometry, a standard sample was created using the “square” geometry 

described in Section 3.2. This sample was coated according to the procedure 

described in Section 3.4, however the procedure was repeated with the uncovered 

surface area of the sample increasing with each iteration. The upper surface of 

the sample was considered as six regions, illustrated in Figure 3.9. Region 0 was 

first taped as a reference region. Then regions 1 to 4 were covered, in order, with 
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overlapping tape. Region 5 was left uncovered. With only region 5 uncovered, the 

sample was exposed for 3 minutes in the PECVD reactor. The sample was taken 

from the PECVD reactor then the tape on region 4 was removed. The sample 

was exposed for 3 minutes with regions 4 and 5 uncovered. The sample was 

again taken from the PECVD reactor and the tape from region 3 was removed. 

This procedure was repeated until region 1 was uncovered and exposed for 3 

minutes. Region 0 was never exposed in the PECVD reactor. 

Ultimately, the standard sample produced had five deposition regions: 

region 1 with a 3 minute exposure, region 2 with a 6 minute exposure, region 3 

with 9 minute exposure, region 4 with a 12 minute exposure and region 5 with a 

15 minute exposure. The profilometer was then scanned across the boundary 

between region 0 and each of the exposed regions to determine the step height 

and thus the thickness of the SiO2 film for each exposure time. 
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Chapter 4:  Results 

4.1 EXPOSURE MANIFOLD 

As part of the verification of the integrity of the exposure manifold, 

measurements of the leakage rate out of the manifold were planned. Evacuation 

of the manifold followed by measurements of the pressure in the manifold as a 

function of time would indicate whether there was considerable leakage that 

would lead to the venting of xenon during exposure. However no discernable 

change in pressure was seen in the manifold for measurements over a 72 hour 

period. Similarly, no measureable pressure change was seen over a 72 hour period 

for the manifold backfilled with N2 to pressure of 0.9 bar, which replicates the 

state of the manifold during exposure. Exposure times were 18 +/- 2 hours, thus 

the performance of the manifold was deemed satisfactory. This leakage check was 

conducted intermittently throughout the course of the project to ensure no 

adjustments needed to be made. 

 

4.2 THIN FILM CHARACTERIZATION 

Measurements of the SiO2 deposition rate were conducted on the 

Alphastep Tencor profilometer as outlined in Chapter 3. Data produced on the 

Alphastep cannot be exported as a chart thus all measurements were taken 

within the software. Data is displayed as a plot of stylus deflection as a function 

of lateral position on the sample while the stylus is dragged across step between 

the uncoated and coated regions of the sample. Two cursors can be placed on 

the surface profile and the height difference between those points is given. The 
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methodology for determining the coating was subject to surface roughness 

variations for the uncoated and coated regions. The data presented hereafter 

was produced by a software-managed average of ten 1000 µm scans across the 

step between the uncoated region and the various coated regions. Figure 4.1 is 

given without units as a sample surface profile for the purposes of clarifying the 

measurement methodology. The low region represents the uncoated surface, the 

upper region represents the coated surface, and the red lines indicate the 

reference points for film thickness measurements. 

Figure 4.1 Example surface profile across the uncoated/coated step. 
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Surface variations on the uncoated region of the BC-404 sample were 

regularly spaced valleys with a depth of 150 +/- 20 nm. Due to their regular 

spacing, it is likely that these variations are an artifact of the milling process to 

manufacture the samples in the square geometry. Surface variations on the 

coated regions were 250 +/- 50 nm (peak to valley) and appeared to be 

independent of coating thickness. Regularity similar to that of the uncoated 

surface was not seen for the roughness on the coated regions. 

Consistent measurements of the step height were difficult in light of the 

surface variations. The first cursor was maintained on the plateaus between 

valleys on the uncoated part of the profile. Step height measurements were 

extremely sensitive to the placement of the second cursor on the coated side of 

the profile. Variations of 250 nm, commensurate with the surface roughness of 

the coating, could be achieved based on the placement of the cursor. In order to 

take consistent, though potentially imprecise, measurements the second cursor 

was placed at the midpoint of the maximum peak-to-valley surface variation. 

This data is represented in Figure 4.2. 

 



 52 

 

Figure 4.2 Film thickness as a function of deposition time for SiO2 on a BC-404 
substrate. 

A linear least squares fit of this data, with a forced intercept at the origin, 

results in the equation  

€ 

X(t) = 76.47t          (4.1) 

 

where X(t) is the film thickness in nanometers and t is the deposition 

time in minutes. In contrast, this recipe was determined by other users to 

produce a deposition rate of 16 nm min-1 on a silicon wafer substrate. The R2 for 

this fit is 0.98781. Data for the 3 minute deposition region is not given because 

magnitude of the surface variations was large compared to the expected coating 

thickness, thus the 3 minute coating was effectively irresolvable. Based on 

equation (4.1), the expected thickness for a 3 minute deposition is 230 nm. 
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Table 4.1 SiO2 film thickness as a function of deposition time for PECVD 
deposition on BC-404 substrate. 

Deposition Time (min) Film Thickness (nm) 

6 422 

9 665 

12 901 

15 1189 

 

It is also important to recognize that this deposition rate data is 

presented without an associated uncertainty. Measurement uncertainties on the 

Alphastep Tencor are unknown, however it must be conceded that the total 

uncertainty, based on the data acquisition constraints of the profilometer 

system, are likely substantial, especially at smaller thicknesses. Based on 

experimentation with the placement of the cursors, this uncertainty is estimated 

as 15-20% of the film thickness. Coated samples will hereafter be referred to by 

the film thicknesses presented in Table 4.1. 

Data from the neutron activation analysis discussed in Chapter 3 are 

limited to the two samples tested. Both samples were coated for 6 minutes. 

Comparison of Tables 4.1 and 4.2 shows poor agreement between film thickness 

measurements from profilometry and neutron activation analysis. 
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Table 4.2 SiO2 film thicknesses for identically coated BC-404 samples. 

Sample NAA ID Thickness (nm) 

L0831 703 

L0832 821 

 

The systematic errors inherent to the NAA process were known before the 

experiment was conducted: even samples taped rigorously to isolate one face of 

the sample showed evidence of coating on other surfaces. This increased exposure 

would lead to a larger measured mass of silicon on the sample and inflate the 

calculated thickness. Additional considerations include variations in the exposed 

surface area due to non-identical sample geometries and high uncertainties 

associated with low count totals for both samples. 

 

4.3 RELATIVE EFFICIENCY 

Calculation of the absolute efficiency of each detector at each of the mixed 

gamma source energies allowed for the determination of the relative efficiency of 

the two detectors for a given sample geometry. Check sources were created, 

according to the procedure outlined in Chapter 3, to best replicate the 

geometries of the BC-404 and EJ-204 samples coated by SiO2/Al2O3 and exposed 

to radioxenon. An example curve for the absolute efficiency of a detector is given 

in Figure 4.3. 
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Figure 4.3 Absolute efficiency of the short right angle detector for the 1” square 
check source. 

The data point size in Figure 4.3 has been reduced to make the error bars 

visible. Similar data sets were produced for the other detector used for sample 

counting, as well as for the 0.5” check source. It is important to note that the 

efficiency curve is steepest in the region 0-400 keV and associated uncertainty is 

largest in this region. We expect that fitting equations for this data will then be 

the least accurate in this region. The photopeaks of interest for this project are 

81 keV, 188 keV, and 243 keV. 

This data was mapped to a log-log graph then fit to a 4th order 

polynomial. Manipulation of this polynomial led to an equation to describe the 

absolute efficiency as a function of energy with the form 
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EffAbs.(E) = exp C1 ln(E)
4 +C2 ln(E)

3 +C3 ln(E)
2 +C4 ln(E) +C5[ ]  (4.2) 
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where Cn are the coefficients produced in the polynomial fit and E is the 

energy in keV. 

 

 

Figure 4.4 Relative efficiency data for detectors using the 1” square check source. 

Figure 4.4 is given for the efficiency of the short right angle detector (d4) 

relative to the green clamshell shield detector (d1) using the 1” square check 

source. Both detectors are HPGe detectors in the NETL gamma spectroscopy 

lab. This data set was produced by comparison of the absolute efficiency, such as 

that given in Figure 4.3, of each detector at the energies used in the check source. 
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Figure 4.5 Relative efficiency data for detectors using 0.5” check source. 

A similar set of data, given in Figure 4.5, was produced for the 0.5” check 

source. Of note is the fact that the relative efficiency for this check source differs 

substantially from that of the 1” check source, especially at very low and very 

high energies. This variation in relative efficiency as a function of check source 

geometry illuminates the importance of calculating the relative efficiency of a pair 

of detectors for geometry representative of the experimental sample geometry. 

The uncertainty at each energy is shown by vertical error bars in the two 

previous figures. This uncertainty accounts for counting statistics in all the 

spectra used to calculate the relative efficiencies as well as uncertainty in the 

activity of the gamma emitters in the mixed gamma source used to produce the 

check sources. Variations in activity uncertainty were minimal relative to 

variations in the uncertainty from counting statistics. The larger uncertainties, 

such as those at 391 keV for 113Sn and 898 keV for 88Y, were a result of low 

count rates in the check source. Uncertainties for the 0.5” check source are larger, 
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relative to the 1” check source, as a result of lower count rates. This is 

attributable to the smaller volume of the mixed gamma solution deposited in the 

0.5” check source, as detailed in Chapter 3 of this thesis. 

 

4.4 RELATIVE ACTIVITY 

In order to verify the experiment, an exposure was run with two uncoated 

samples. For identical samples, the ratio of the count rates in each sample would 

provide an indication of inaccuracies in the relative efficiency curve or problems 

in the exposure process of the experiment.  

 

 

Figure 4.6 Relative activity of two uncoated square BC-404 samples. 

For the 81 keV 133Xe photopeak and the 188 keV 125Xe photopeak, the 

relative activity ratio of the identically exposed uncoated samples is within σ of a 

ratio of 1, where σ describes the uncertainty associated with the relative activity 
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at each energy. The 243 keV 125Xe photopeak is within 2σ of a ratio of 1. These 

results show good agreement with the expected ratio of count rates between the 

two detectors used for simultaneous measurement.  

If the values of the relative activity for identical uncoated samples, given 

in Figure 4.6, are to be considered trending below the expected value of 1, it can 

be inferred that corrected efficiency of one detector is reliably lower than the 

efficiency of the other. The arrangement of samples was kept consistent 

throughout the experiments such that coated samples were always counted on 

the same detector. Based on this trend and the arrangement of samples, the 

additional correction would increase all the relative activities presented in this 

section. 

Two exposures were conducted using coated EJ-204 square samples. One 

was coated for 3 minutes to produce a 230 nm SiO2 film; the other was coated 

for 12 min to produce a 901 nm SiO2 film.  
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Figure 4.7 Relative activities for a 230 nm coated SiO2 sample (square) and 901 
nm coated SiO2 sample (circle). 

The 230 nm sample was exposed to radioxenon 2 days after coating while 

the 901 nm sample was exposed 7 days after coating. Both thicknesses show 

good agreement between the isotopes. The reduction in the memory effect is 

roughly 10% greater in the 901 nm sample than in the 230 nm sample. This 

suggests that the critical thickness for a SiO2 diffusion barrier of xenon is larger 

than 230 nm. Relative activities and associated uncertainties are given in Table 

4.4. 

Two exposures were conducted using BC-404 endcap samples. One was 

coated with 20 nm Al2O3; the other was coated with 50nm Al2O3. 
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Figure 4.8 Relative activities for a 20 nm Al2O3 coated sample (square) and a 50 
nm Al2O3 coated sample (circle). 

The 20 nm sample was exposed to radioxenon approximately 150 days 

after coating. The 50nm sample was exposed to radioxenon approximately 30 

days after coating. The 50nm sample reduced the memory effect by an additional 

10-15% relative to the 20nm sample, suggesting that the critical thickness for an 

Al2O3 diffusion barrier for xenon is larger than 20 nm. Both samples showed 

good agreement between photopeaks. The count rate for the 81 keV 133Xe 

photopeak was below the critical limit for one of the detectors used in the 

experiment, thus relative activity data is not available for that energy. Relative 

activity values and the associated uncertainties for the Al2O3 coated samples are 

given in Table 4.3. 

One SiO2 coated endcap was tested as well. The BC-404 cap was coated 

for 6 minutes to produce a 422 nm film. 
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Figure 4.9 Relative activity of a 422 nm SiO2 coated sample. 

 

The 422 nm SiO2 coated endcap was exposed to radioxenon approximately 

130 days after coating. Relative to the other coated samples, the reduction in 

memory effect for this sample was much less pronounced. Relative activities are 

in agreement across the photopeaks, however values from 85% to 93% indicate 

that this SiO2 film was not as effective in preventing diffusion as the other 

samples. Larger reductions were seen for thinner and thicker films of the same 

material and for films on the same geometry sample. The other SiO2 coated 

samples were exposed and counted relatively quickly after the thin film was 

manufactured in the PECVD reactor, whereas this sample was left for over 4 

months before exposure and measurement. This could indicate degradation of 

the film over time. It is important to note that comparable signs of degradation 

did not appear on Al2O3 coated samples that were counted within a similar 

timeframe as this SiO2 sample. 
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Table 4.3 Relative activities and associated uncertainty (given in %) for 20 nm 
and 50 nm Al2O3 coated BC-404 endcaps. 

 81keV 133Xe 188keV 125Xe 243keV 125Xe 

20 nm n/a 35.8 +/- 3.4 40.0 +/- 5.3 

50 nm n/a 27.2 +/- 3.1 22.7 +/- 3.7 

 

The data in Tables 4.3 and 4.4 indicate that thicker coatings are more 

effective at mitigating the memory effect. This result is expected for coating 

thicknesses below the critical thickness where thicker coatings are not 

increasingly effective. The 422 nm SiO2 does not support this conclusion, however 

it is likely that the minimal reduction in memory effect seen for this sample is 

attributable to film degradation or another unforeseen effect. 

 

Table 4.4 Relative activities and associated uncertainty (given in %) for 230 nm, 
422 nm, and 901 nm SiO2 coated samples. 

 81keV 133Xe 188keV 125Xe 243keV 125Xe 

230 nm 54.7 +/- 3.5 54.4 +/- 2.3 55.4 +/- 2.6 

422 nm 88.9 +/- 8.5 84.7 +/- 6.2 93.6 +/- 7.7 

901 nm 46.5 +/- 3.3 40.9 +/- 1.8 41.8 +/- 2.0 

 

 



 64 

It is also important to note that in all cases, the relative activities of each 

sample are in agreement across the 133Xe and 125Xe photopeaks. The result 

suggests that isotopic fractionation is not a significant mechanic in the diffusion 

of radioxenon through polymer. 

Although agreement between isotopes was consistent and the relative 

activity for two uncoated samples was close to 1, quantitative uncertainty for the 

results was appreciable. In some cases the uncertainty exceeded 10% of the 

calculated relative efficiency. Sources of uncertainty included in calculation of the 

final values included: 

- Published uncertainty in count rates for various isotopes in the 

mixed gamma source used for absolute efficiency calculations. 

- Statistical uncertainty in the count rates for the background 

spectrum of each detector. 

- Statistical uncertainty in the count rates for the 1” and 0.5” 

check sources used for relative efficiency calculations. 

- Statistical uncertainty in the count rates for exposed samples. 

Of these sources, the largest contribution towards the final uncertainty 

was the convolution of uncertainties calculated for the relative efficiency between 

detectors. 

Additional systematic errors may have contributed to variation in the 

results, however these errors were not included in calculations of the 

uncertainties provided in Tables 4.3 and 4.4. Such errors could include variation 

in the position of the sample on each detector between experiments, differing 

concentrations of xenon between the test chambers as a result of differential 
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leakage out of one chamber, or reductions in the effective exposed surface area of 

samples as a result of optical cement spreading onto the surface. These sources 

of error were considered prior to the collection of data and, as a result, it is 

unlikely that the cumulative error from these systematic sources is substantial 

relative to the total statistical uncertainty presented with the final results. 
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Chapter 5:  Conclusions 

5.1 SUMMARY 

In Chapter 1, background material was presented to describe the 

development and significance of radioxenon monitoring as a method of 

verification for the Comprehensive Nuclear Test-Ban-Treaty. As part of the 

review of the literature, the radioxenon memory effect was identified as a 

problem in monitoring operations. Further review of diffusion barrier 

effectiveness and plasma enhanced chemical vapor deposition of thin films led to 

the conclusion that manufacture of thin film diffusion barriers by PECVD could 

serve as a means of mitigating the memory effect. The goals for the project were 

then outlined: to develop an apparatus capable of comparing the xenon activity 

in two plastic samples, to investigate deposition of thin films on plastic 

scintillator, and to quantify to ability of these thin films to mitigate the memory 

effect. 

In Chapter 2, theory pertaining to the production of radioxenon was 

presented along with more detailed description of radioxenon monitoring 

equipment and techniques. A mathematical treatment of gas diffusion through a 

polymer, following the work done by Pressyanov [48], was provided in Section 

2.3, followed by a description of PECVD reactor kinetics and SiO2 film formation 

in Section 2.4. 

Chapter 3 described the irradiation facilities at the University of Texas at 

Austin’s NETL TRIGA reactor as well as procedures for producing radioxenon 

in the reactor. As part of the radioxenon production process, the use of the 

xenon transfer manifold was reviewed. The procedure for preparing a plastic 
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scintillator sample for exposure, as well as the use of the exposure manifold, was 

then outlined. Techniques for the measurement of relative efficiencies for a pair 

of detectors was given, including the process for creating check sources to 

replicate the sample geometry. The use of the PlasmaTherm 790 PECVD reactor 

at the University of Texas Microelectronics Research Center and the recipe for 

SiO2 film production was described. Finally, steps were given to calculate the 

thickness of the PECVD deposited film using neutron activation analysis and 

contact profilometry. 

Chapter 4 provided the results for the experiments detailed in Chapter 3. 

The performance of the exposure manifold was discussed along with results of 

the thin film characterization measurements using NAA and profilometry. Data 

was given for the absolute and relative efficiencies of the detectors for the two 

check source geometries. Finally, the relative activity of radioxenon for the coated 

samples was given to quantify the mitigation of the memory effect by each film. 

Sources of uncertainty in the final data were also described. 

Chapter 5 gives a summary of the work done and describes how the goals 

of the project, given in Chapter 1, were met. Observations regarding the project 

and recommendations for future research conclude the work. 
 

5.2 PROJECT GOALS 

The initial goal for this project was to develop an experiment that would 

allow measurement of the radioxenon memory effect. The construction and high 

performance of the exposure manifold fulfilled the aspect of the goal regarding a 

suitable apparatus for the experiment. The procedures for radioxenon 
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production, sample preparation, and sample exposure, along with the results of 

the experiments given in Chapter 4, indicate that the development of an 

experiment was also successful, thus the first goal was comprehensively achieved. 

The second goal was to investigate thin film deposition techniques and 

establish a procedure for thin film manufacture on plastic scintillator. PECVD 

was identified as a viable deposition technique based on initial testing. A 

procedure was developed to produce films on BC-404, however attempts at high 

precision characterization of the film were unsuccessful. Despite the inability to 

reliably quantify the SiO2 films, relative activity results given in Chapter 4 clearly 

indicate that films that reduced the memory effect were being deposited. In this 

sense the rule of the second goal was met, though the spirit of the goal may not 

have been fully met in light characterization difficulties. 

The third goal was to quantify the ability of the thin film diffusion 

barriers to mitigate the memory effect. Although the performance of each film 

was not entirely predictable, the diagnostic experiment conducted with identical 

uncoated samples indicated that the experimental techniques and data analysis 

methodology were effective in producing data with reasonable precision. In 

consideration of this diagnostic and the subsequent results for a variety of film 

thicknesses and materials, the third goal was achieved. 

 

5.3 OBSERVATIONS AND RECOMMENDATIONS 

The first and foremost observation regards the results presented in 

Section 4.4. The Al2O3 barriers and SiO2 barriers tested for this project were 

shown to be effective at reducing the memory effect by 45-65%, however it is 
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unlikely this reduction is substantial enough to make additional background 

counting in the INGE detectors unnecessary. In order to maintain the sensitivity 

required for the IMS, reductions in excess of 90% are likely required. In light of 

this, the results of this project certainly stand as progress towards the goal of 

fully mitigating the memory effect, however further work needs to be done. 

It would be useful to produce a more extensive data set for both SiO2 

barriers and Al2O3 barriers. Both materials will have some critical thickness 

beyond which more material will not further reduce the memory effect. A larger 

distribution of film thicknesses would provide insight on these critical 

thicknesses. It has been seen in other studies [31] that the mechanical stress and 

likelihood of cracking increases as film thickness is increased. Even if >90% 

reductions are possible for either barrier, the requisite thicknesses may be so 

large that the films are not viable as a reliable, long-term solution to the memory 

effect problem. The results given in Figure 4.9 may indicate that unsustainable 

film thickness has already been reached, although it is entirely possible that this 

mitigation failure was the result of some other, unknown mechanic. An 

additional consideration in developing thicker films is the effect of the dead layer. 

Any material between the xenon gas and the plastic scintillator will absorb beta 

energy before the beta particles reach the scintillator without producing 

scintillation that can be detected in the PM tubes. The optimal film thickness 

may have to balance of the critical thickness with the effects of the dead layer. In 

all of these cases, a more comprehensive data set would be illuminating. With the 

procedures for barrier production and xenon exposure already described and 

tested, expansion of this data set can be considered an extremely reasonable goal. 
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Other data of interest would be relevant to the diffusion theory presented 

at the end of Section 2.3. Measurements of the radioxenon activity in samples for 

large decay times would allow the empirical calculation of the diffusion length of 

radioxenon in polyvinyltoluene. The model of radioxenon activity in the sample 

could then be used to estimate saturation and desorption timeframes, an 

especially useful calculation considering the automated measurement process in 

the INGE stations. 

A final observation regarding the physics of radioxenon interacting with a 

polymer regards the assumption that diffusion is the sole mechanic driving the 

memory effect. This assumption is made for the purposes of this project. It is 

possible that intermolecular surface forces, capillary action, or other physical 

processes are also contributing to the memory effect in which case a simple 

monolayer diffusion barrier may not be sufficient for thoroughly reducing the 

memory effect. Calculations of the diffusion length using experimental data, as 

described in Section 2.3 and the previous paragraph, would absorb any other 

effects rather than identify them. In the absence of a diffusion barrier that 

sufficiently mitigates the memory effect, it may be worthwhile to investigate 

other contributions to the memory effect. 

After the procedure for the PECVD deposition of SiO2, it was discovered 

that previous work had shown that carrier gases improved the purity of films by 

decreasing the production of other species in the plasma [30]. As indicated by the 

PECVD recipe in Appendix C, a carrier gas was not used in the production of 

the films in this project. Development of a PECVD recipe for higher quality films 

may improve the effectiveness of the diffusion barriers. 
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Degradation of films over time was observed in the reference by Dameron 

et al [51]. An Al2O3-SiO2 bilayer was produced in this reference and reductions in 

gas permeability by a factor of 10-150x were seen. Considering the ability of the 

MRC and collaborating Swedish facilities to produce monolayers of both of these 

materials, it may be of interest to investigate the effectiveness of such a bilayer in 

a xenon diffusion barrier application. 

  Considering the effects of film degradation observed in other references, 

as well as the implications such degradation would have regarding the usefulness 

of these films as a long term solution to the memory effect, it would certainly be 

necessary to investigate the ability of these films to reduce the memory effect 

over long periods of time. Intermittent exposure of the same coated sample, with 

sufficient time between exposures for the radioxenon to diffuse out and decay 

away, would be a simple way to produce this data. Characterization techniques 

may also be useful in exploring film degradation. More accurate profilometry, or 

the similar technique of atomic force microscopy, could detect substantial 

cracking. Other microscopy techniques, such as SEM, have been used [31] to 

qualify the mechanical integrity and overall quality of SiO2 films. Similar 

characterization could be used to better tailor the manufacture process to the 

needs of this project. 

Of all aspects of the project, the measurement of film thickness is likely 

the one that requires the most significant improvements. Neutron activation 

analysis stands as a unique method for verifying film thickness, however better 

control over the exposed surface area in the PECVD reactor is almost certainly 

necessary. Profilometry is likely the simplest technique for measuring thickness, 
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however the equipment available at the MRC is inadequate for high precision 

measurements. Higher quality profilometry equipment surely exists and the use 

of other facilities for this work may be necessary to improve the quality of the 

data. 

 A third characterization technique, ellipsometry, is not mentioned 

elsewhere in this thesis, however it was briefly explored as a means of measuring 

film thickness. An ellipsometer measures the change in polarization of light 

incident on a thin film and can calculate a number of optical properties of the 

film as a result. SiO2 and polyvinyltoluene have indices of refraction that 

sufficiently similar that the ellipsometer was unable to resolve the film. It is not 

clear whether modifications to the sample or film, or use of an opaque proxy 

substrate, would enable the use of ellipsometry. 

Considering the cylindrical geometry of the beta scintillator cells used in 

the INGE stations, even if a film is produced that shows sufficiently large 

reduction in the memory effect, the coating techniques that are currently used 

for small, flat samples would have be viable for the cylindrical geometries as well. 

Primarily, coating uniformity on the inner surface of the cylinder would have to 

be verified, presenting a new challenge for thickness verification. Field testing 

would also be required to ensure the integrity of the film over long periods of 

time so as to maintain the autonomous nature of the INGE stations. 

It seems likely, in light of these initial experiments and data, that a 

diffusion barrier can be developed to sufficiently mitigate the memory effect such 

that background counting to account for the memory effect will no longer be 

necessary. Further work is required to prove this claim, however, and other 
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challenges would then need to be overcome before coated cells could be deployed 

in operating stations.
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Appendix A 

 V1 V2 V4 V5 V7 PFA NV Reg XC 
Attach PFA valve to V5 0 0 0 0 0 0 0 0 0 
Evacuate manifold 1 1 0 1 1 1 0 0 0 
N2 flush 0 1 1 1 1 1 0 0 0 
Evacuate manifold 1 1 0 1 1 1 0 0 0 
Isolate vacuum and N2 0 1 0 1 1 1 0 0 0 
Release Xe to regulator inlet 0 1 0 1 1 1 0 0 1 
Slowly feed xenon to regulator outlet 0 1 0 1 1 1 0 1 1 
Set manifold at 1.3 bar Xe 0 1 0 1 1 1 1 1 1 
Close Xe and isolate PFA valve 0 1 0 0 1 0 1 1 0 
Isolate regulator 0 1 0 0 1 0 0 0 0 
Return manifold to vacuum 1 1 0 0 1 0 0 0 0 
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Appendix B 

 

 V1 V2 V3 V4 PFA From V1 
Evacuate manifold 1 1 1 0 0 Vacuum 
N2 flush 1 1 1 0 0 N2 
Evacuate manifold 1 1 1 0 0 Vacuum 
N2 backfill to 0.9 bar 1 1 1 0 0 N2 
Isolate from transfer manifold 0 1 1 0 0 n/a 
Open to PFA valve to verify seal 0 1 1 1 0 n/a 
Open PFA valve to release Xe 0 1 1 1 1 n/a 
Exposure 0 1 1 1 1 n/a 
Test chamber removal 0 0 0 0 0 n/a 
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Appendix C 

1. Initialize PECVD reactor at 60C and 800mTorr (1 minute) 

2.  N2 flush at 500 mTorr (1 minute) 

3.  Evacuation (2 minutes) 

4. N2O – 160 sccm 

   SiH4 – 35 sccm 

   1 minute 800 mTorr 

5. N2O – 160 sccm 

   SiH4 – 35 sccm 

6. Evacuation (2 minutes) 

7. N2 flush at 500 mTorr (1 minute) 
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