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A large class of 4d N = 2 superconformal field theories arise as com-

pactifications of a 6d (2, 0) theory of type j = A,D,E on a punctured Riemann

surface, C. These theories can be classified by listing the allowed fixtures and

cylinders which can occur in a pants decomposition of C, and giving the rules

for gluing them together. Different pants decompositions of the same surface

give different weakly-coupled presentations of the same underlying SCFT, re-

lated by S-duality. An even larger class of theories can be constructed in this

way by including “twisted” punctures, which carry a non-trivial action of the

outer-automorphism group of j. In this dissertation, we discuss the classifi-

cation procedure for twisted theories of type DN , as well as for twisted and

untwisted theories of type E6. Using these results, we write the Seiberg-Witten

solutions for all Spin(n) gauge theories with matter in spinor representations

which can be realized by compactifying the (2, 0) theory. We also study a

family of SCFTs arising from the twisted A2N series, whose twisted punctures

are still not fully-understood.
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Chapter 1

Introduction

In [1], Gaiotto showed that the marginal deformations of a large class

of four-dimensional N = 2 SCFTs can be identified with Mg,n, the moduli

space of a genus g Riemann surface, C, with n punctures. These theories can

be seen to arise from the compactification of a six-dimensional (2, 0) theory on

C. Different degeneration limits of C correspond to different weakly-coupled

descriptions of the same SCFT, related by S-duality. This construction greatly

generalizes the original examples of N = 2 S-dualities, first found in [2].

In a degeneration limit, C can be decomposed into a collection of 3-

punctured spheres (“fixtures”) and cylinders, corresponding to 4d “matter”

theories and N = 2 vector multiplets, respectively. One can classify the 4d

theories which arise in this way by listing the allowed fixtures and cylinders

which can arise in a pants-decomposition of C, and giving the rules for gluing

them together. For a given (2, 0) theory, this is a finite list. The classification

procedure has been discussed for twisted and untwisted theories of type A in

[3, 4] and untwisted theories of type D in [5]. In this dissertation, we will

continue this classification procedure for the twisted D-series, as well as the

twisted and untwisted E6 theory. We will also discuss a family of interacting
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SCFTs which arise from compactifying the twisted A2N (2, 0) theory, whose

general twisted punctures are not yet fully-understood.

We begin this chapter by discussing general aspects of the compacifica-

tion of six-dimensional (2, 0) theories on C, following [6]. We then discuss in

detail the “local” properties of the codimension-2 defects of the (2, 0) theory

which live at the punctures, following [7].

1.1 Compactifying the (2, 0) theories

The six-dimensional (2, 0) superconformal theories enjoy osp(6, 2|4) su-

perconformal invariance, and can be constructed by taking a low-energy de-

coupling limit of type IIB string theory on R1,5 × C2/Γ, where Γ is a discrete

subgroup of SU(2) of type j = A,D, or E. There is a basis of operators

transforming in short representations of osp(6, 2|4), labeled by the Casimir

operators of j. Within each short multiplet, there is a subspace Vk of opera-

tors with lowest conformal weight, given by twice the exponent dk of j, which

is an irreducible representation of the so(5) R-symmetry. The theory has a

Coulomb branch parametrized by expectation values of these chiral operators,

which is isomorphic to

M =
(R5)rank j

Wj

(1.1)

where Wj is the Weyl group of j.

To compactify the (2, 0) theory on a Riemann surface C while preserv-

ing 4d N = 2 supersymmetry, we must perform a partial twisting. The super

2



Poincaré subalgebra of osp(6, 2|4) has bosonic part so(5, 1) ⊕ so(5), where

the spinor representations of Spin(1, 5) and Spin(5) are given by H2, where

H is the quaternions. The Poincaré supercharges therefore transform in the

(C4 ⊗ C4)+ of so(5, 1) ⊕ so(5), where the subscript + denotes a symplectic

Majorana reality constraint. Compactifying on C breaks so(5, 1) ⊕ so(5) to

so(3, 1)⊕ so(2)C ⊕ so(3)⊕ so(2)R, under which the supercharges transform as((
(2, 1) 1

2
⊕ (1, 2)− 1

2

)
⊗
(

2 1
2
⊕ 2− 1

2

))
+

(1.2)

The twisting consists of identifying the diagonal so(2) of so(2)C ⊕ so(2)R with

the holonomy algebra of C, leaving us with supercharges transforming under

so(3, 1)⊕ so(3)⊕ so(2)′C as

(2, 1; 2)1 ⊕ (2, 1; 2)0 ⊕ (1, 2; 2)0 ⊕ (1, 2; 2)−1 (1.3)

The middle two summands of (1.3) are uncharged under so(2)′C , and so are

well-defined four dimensional supercharges, which we denote by QαA, Q
α̇A

.

The moduli space of the four-dimensional theory is obtained essentially

by dimensional reduction from the the Coulomb branch of the six-dimensional

theory. More precisely, we choose a Cartan subalgebra so(2)R ⊕ so(2) of the

so(5) R-symmetry, and let Ok be the operator in Vk of weight (dk, 0). This

operator has the largest so(2)R charge in the multiplet and hence it must be

annihilated by any supercharge, such as Q
α̇A

, with positive so(2)R charge. The

4d Coulomb branch is parametrized by the vacuum expectation values of these

chiral operators.

3



After the twisting, Ok is a section of the bundle K⊗dk over C, which is

also true of its vacuum expectation value 〈Ok〉. SinceOk is annihilated by Q
α̇A

,

and since Q
α̇A

-exact operators have vanishing vev’s, 〈Ok〉 must be annihilated

by ∂. This is the only condition on 〈Ok〉, so the 4d Coulomb branch is simply

C4d =
r⊕

k=1

H0(C,K⊗dk). (1.4)

The (2, 0) theory of type AN−1 can also be realized as the low-energy

worldvolume theory on N coincident M5-branes. In this case, C4d has a nice

geometric interpretation. The M5-branes are wrapped on a holomorphic cycle

C inside a hyperkähler four-manifold Q. We go onto the Coulomb branch by

separating the branes so that they wrap some other cycle Σ inside Q, where

we take Σ to be a connected divisor inside Q. By viewing Q as a holomorphic

symplectic manifold, we can identify a neighborhood of C with the holomor-

phic cotangent bundle T ∗C by picking holomorphic Darboux coordinates (x, z)

for Q. A point of C4d corresponds to picking the coefficients uk ∈ H0(C,K⊗k),

of the equation

xN +
N∑
k=2

uk(z)xN−k = 0 (1.5)

defining Σ ⊂ T ∗C.

Normalizing the coordinates so that the holomorphic symplectic form

is

Ω =
`3

2π2
dx ∧ dz, (1.6)

the projection map T ∗C → C identifies Σ as an N -sheeted cover of C. The

4



distance between the i-th and j-th sheets is a one-form on C, which we denote

λij.

In [6], it was shown that Σ can be identified with the Seiberg-Witten

curve of the 4d theory, and the canonical one-form

λ = xdz (1.7)

restricted to Σ can be identified with the Seiberg-Witten differential.

For (2, 0) theories of type j 6= AN−1, the anaylsis is similar, except that

the coefficients in (1.5) are no longer just linear functions on the Coulomb

branch, but, in general, are polynomial expressions when expressed in terms

of the natural linear coordinates at the origin of the Coulomb branch. Ad-

ditionally, the Coulomb branch can have graded components of degrees other

than the expected dk. In general, the Coulomb branch takes the form [5]

E ⊂ V (1.8)

where

V =
⊕
k

H0(C,K⊗dk)⊕
⊕
k

Wk (1.9)

where the Wk are vector spaces of degree k and E is the subvariety satisfying

the collection of polynomial constraints (linear in at least one variable, and of

homogeneous degree).

1.2 Relation to Hitchin systems

It is well-known that the Seiberg-Witten solutions of many N = 2

theories can be understood in terms of complex integrable systems. We now

5



show that the relevant integrable system for this class of theories is a Hitchin

system.

To do so, we consider the theory obtained by further dimensional re-

duction from d = 4 to d = 3 on S1. On general field theory grounds, at low

energies the 3d effective theory is an N = 4 sigma model into a hyperkähler

target spaceM, whereM is a fibration over C4d with generic fiber a compact

torus [8].

Now consider reversing the order of compactification. By first compact-

ifying on S1 of radius R, we obtain at low energies 5d N = 2 super Yang-Mills

theory. We are interested in this five-dimensional theory further compactified

on C, with an appropraite topological twist. The moduli space of the result-

ing 3d theory is the space of BPS configurations of the five-dimensional theory

which are Poincaré invariant in 3d. Denote the adjoint scalars of the super

Yang-Mills theory by ΦI , I = 1, . . . , 5, so that

Φ ≡ 1

2
(Φ1 + iΦ2) (1.10)

has so(2)R charge +1, and Φ3,4,5 have charge zero. In the twisted theory,

Φ = Φzdz is a (1, 0) form on C. Then the BPS equations are the Hitchin

equations for the gauge field A = Azdz+Azdz cotangent to C and the adjoint

scalar field Φ:

F +R2[Φ,Φ] = 0,

∂AΦ ≡ dz(∂zΦ + [Az,Φ]) = 0,

∂AΦ ≡ dz(∂zΦ + [Az,Φ]) = 0.

(1.11)

6



Due to the partial topological twist, the BPS protected quantities we study

do not depend on the conformal scale of the metric on C, so we do not expect

any phase transition when we exchange the relative length scales of S1 and

C. We therefore identify M with the moduli space of solutions of Hitchin’s

equations on C. The map M→ C4d given by

(A,Φ) 7→ {Casimirs of Φ} (1.12)

is the well-known Hitchin fibration; its fiber over a generic u ∈ C4d is indeed

an abelian variety, the Prym variety of the projection Σu → C, defined as the

kernel of a corresponding map of Jacobians J(Σu)→ J(C).

As discussed above, the 〈Ok〉 determine the Seiberg-Witten curve Σ ⊂

T ∗C. Since we have identified these with the Casimirs Tr Φk, Σ given by (1.5)

is the spectral curve determined by Φ,

det (xdz − Φ) = 0. (1.13)

We see that the positions xi of the sheets of Σ in the cotangent directions can

be interpreted as the eigenvalues of the matrix-valued one-form Φ, thus the

coefficients uk(z) are elementary symmetric functions of the eigenvalues, and

can be written as polynomials in the 〈Ok〉.

In the next subsection, we will discuss a class of codimension-2 defects

of the 6d (2, 0) theories, which wrap four-dimensional spacetime and live at a

point on C. The presence of these defects will give rise to singular boundary

conditions for Φ, which introduce extra parameters contributing to the dimen-

sion of the moduli space of the 4d theory. We will discuss the classification of

7



the defects in detail, and show how to compute their contritutions to the 4d

Higgs and Coulomb branch dimensions, as well as to the central charges of the

4d SCFT.

1.3 Local properties of codimension-2 defects of the 6d
(2, 0) theories

We now review the local properties of the half-BPS codimension-2 de-

fects of the 6d (2, 0) theories which live at the punctures on C, following [7].

For a (2, 0) theory of type J = A,D,E, these defects are labeled by a homo-

morphism ρ : su(2) → j. For J = AN−1, DN , or E6, we can further introduce

a class of “twisted” defects, around which there is an action of a non-trivial

outer-automorphism o of J . Twisted defects are labeled by homomorphisms

ρ : su(2) → g, where g∨ is the subalgebra of j invariant under o. The intro-

duction of a defect of type ρ at a point on C will 1:

• add a flavor symmetry group factor F (ρ),

• increase the dimensions of the Higgs and Coulomb branches by, respec-

tively, dimHH(ρ) and dimCC4d(ρ), and

• increase the effective number of vector and hypermultiplets nv and nh

by nv(ρ) and nh(ρ). Accordingly, the central charges a and c, which are

linear combinations of nh and nv, also get a contribution.

1We assume the number of punctures on C is sufficient to get a 4d SCFT in the zero
area limit.
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All of these quantities are local in the sense that they do not depend

of the genus of C or on the properties of the other punctures.

1.3.1 Classification of punctures

As mentioned above, each puncture is labeled by a homomorphism

ρ : su(2) → g. The adjoint orbit of an element e ∈ g, denoted Oe, is its GC

conjugacy class in g,

Oe = {ad(g) · e ∈ g|g ∈ GC}.

The Jacobson-Morozov theorem states that the classification of such ho-

momorphisms ρ, up to conjugacy, is equivalent to the classification of nilpotent

elements in g, also up to conjugacy, through the correspondence e = ρ(σ+).

Since e is nilpotent, the orbit Oe is called a nilpotent orbit. When g is of classi-

cal type, nilpotent orbits have a convenient classification in terms of partitions.

When g = su(N), a nilpotent orbit Oe is specified by the decomposition of the

N -dimensional fundamental representation into irreducible representations of

su(2), N = N1 + · · ·+Nk, or, equivalently, by a partition p = [Ni] of N . The

Ni are called the parts of the partition p.

When g = so(N), a nilpotent orbit Oe is specified by the decomposition

of the N -dimensional vector representation into irreducible representations of

su(2). This can again be specified by a partition p = [Ni] of N , but with the

requirement that any even part must appear an even number of times. Such

partitions are caleed B- or D-partitions, when N is odd or even, respectively.
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Given a partition p = [Ni] satisfying this condition, there is a unique nilpotent

orbit, except for the case when all the parts Ni are even and each even integer

appears an even number of times. Such a partition is called a very even

partition, and there are two distinct nilpotent orbits associated to it, exchanged

by the outer-automorphism of so(N).

Similarly, for a nilpotent element e in g = sp(N), the corresponding

homomorphism ρ : su(2)→ sp(N) determines a partition p = [Ni] of 2N , with

the condition that any odd part in p = [Ni] appears an even number of times.

Such a partition is called a C-partition, and each such partition corresponds

to a unique orbit.

Nilpotent orbits in exceptional g also have a conventient classification,

though not in terms of partitions. The classification for g = e6 and f4 will be

discussed in chapters 4 and 5, respectively.

1.3.2 Global symmetry and central charge k4d

Each puncture carries a flavor symmetry group, F (ρ), given by the

subgroup of G commuting with the image of ρ. For classical g, the Lie algebra

f(ρ) of F (ρ) is given by

s[⊕iu(ri)] when g = su(N),

⊕i odd so(ri)⊕⊕i evensp(ri/2) when g = so(N),

⊕i odd sp(ri/2)⊕⊕i evenso(ri) when g = sp(N),

where ri is the number of parts Nk in the partition p = [Nk] equal to i.
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The central charge k4d of each non-abelian factor in F (ρ), defined via

the current algebra [2]

Jaµ(x)J bν(0) =
3k4d

4π4
δab

gµνx
2 − 2xµxν
(x2)4

+
2

π2
fabc

xµxνx · J c

(x2)3
,

can be determined as follows. Consider putting the 6d theory and the defect

on a general Riemann surface C, and perform Nekrasov’s deformation on the

4d side, with parameters ε1,2. This will lead to a 2d theory on C, which is

believed to have the W-symmetry W (g, ρ) at the parameter b2 = ε2
ε1

, obtained

by quantum Drinfeld-Sokolov reduction of the affine g Lie algebra. Since we

will make use of it shortly, we note that the 2d central charge of W (g, ρ) is

given by

c2d = dim g0 −
1

2
dim g1/2 +

24

b2
ρg · ρg + 12ρg ·

h

2
+ 24b2h

2
· h

2
(1.14)

where ρg is the Weyl vector of g, h = ρ(σ3), and we have decomposed g into

g =
⊕
j∈ 1

2
Z

gj

where j is the eigenvalue of the action of h/2.

For a defect of type ρ with flavor symmetry F (ρ), the corresponding

W-algebra W (g, ρ) has the affine Lie subalgebra f̂(ρ). The current algebra

level of f̂(ρ) was computed in [9]. Since F (ρ) commutes with ρ(su(2)), the

adjoint representation g can be decomposed as

g =
⊕
j∈ 1

2
Z

Rj ⊗ Vj
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where Vj is the irreducible representation of su(2) of spin j, and Rj is the

corresponding (reducible) representation of f(ρ). Choose generators T a,b of

a simple subalgebra f ′ ⊂ f(ρ) so that trf ′T
aT b = h∨(f ′)δab, where h∨ is the

dual Coxeter number. Denote by f the natural embedding f : f(ρ)→ g. The

level of f̂ ′ is then given by

k2d(f
′)δab = k2d

1

h∨(g)
trgf(T a)f(T b) +

∑
j

2jtrRj
T aT b (1.15)

where k2d = −h∨(g) + 1/b2 is the level of the affine g algebra before the

Drinfeld-Sokolov reduction.

The relation between the level of the 2d current subalgebra f̂(ρ) of

W (g, ρ) and the level of the 4d flavor symmetry f(ρ) was shown in [9] to be

given by k4d(f
′) = 2k2d(f

′)|1/b2=0. Using (1.15), we find k4d(f
′) is given by

k4d(f
′)δab = −2trgf(T a)f(T b) + 2

∑
j

2jtrRj
T aT b = 2

∑
j

trRj
T aT b.

1.3.3 a and c central charges

Four dimensional conformal field theories have two Weyl anomaly co-

efficients, a and c, defined via

T µ
µ =

c

16π2
(Weyl)2 − a

16π2
(Euler)

where

(Weyl)2 = R2
µνλρ − 2R2

µν +
1

3
R2,

(Euler) = R2
µνλρ − 4R2

µν +R2.
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For 4dN = 2 theories, it is convenient to parametrize a and c by the “effective”

numbers of vector and hypermultiplets

nv = 4(2a− c), nh = 4(5c− 4a),

which are normalized so that, in a free theory, nv counts the number of free

vector multiplets and nh counts the number of free hypermultiplets. Adding a

defect of type ρ increases these central charges by nv(ρ) and nh(ρ). The total

nv and nh of a 4d N = 2 SCFT take the following form

nv =
∑
i

nv(ρi) + (g − 1)(
4

3
h∨(J) dim J + rank J),

nh =
∑
i

nh(ρi) + (g − 1)(
4

3
h∨(J) dim J).

(1.16)

The global terms, which are proportional to (g − 1), were calculated in [10]

using the anomaly polynomials of the 6d (2, 0) theories. The nv,h(ρ), as well

as the 2d central charge c2d should come from the anomaly polynomial of the

defect of type ρ. On flat space, a codimension-2 defect has a(ρ) and c(ρ), and

the SO(2) rotation of the transverse space to the defect is a flavor symmetry,

with central charge kT (ρ). The nv,h(ρ) are a certain linear combination of these

three fundamental quantities, determined by the R-symmetry twist needed to

preserve 4d N = 2 supersymmetry discussed above.

The central charge of the W-algebra W (g, ρ) should have the same

origin. Since the standard W-algebra W (j) = W (j, ρprin) corresponds to the

absence of the defect when g is simply-laced, the contribution from the presence
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of the defect of type ρ is

δc2d(g, ρ) = c2d(g, ρ)− c2d(j, ρprin)

= (dim g0 − rank j) +
1

2
dim g1/2 + 12(ρg ·

h

2
− ρj · ρj) + 24b2(

h

2
· h

2
− ρj · ρj),

where the roots are normalized so that ρg · ρg = ρj · ρj. This suggests that

a(ρ), c(ρ) and kT (ρ), and therefore also nv,h(ρ), can be expressed as linear

combinations of

dim g0 − rank j, dim g1/2, ρg ·
h

2
− ρj · ρj,

h

2
· h

2
− ρj · ρj.

From the known results for nh(ρ) and nv(ρ) for type J = A,D from the analysis

of quiver gauge theories [1, 11], one finds that

nh(ρ) = 8(ρj · ρj − ρg ·
h

2
) +

1

2
dim g1/2, (1.17)

nv(ρ) = 8(ρj · ρj − ρg ·
h

2
) +

1

2
(rank j− dim g0), (1.18)

where we note that ρj · ρj = 1
12
h∨(J) dim J .

1.3.4 Contributions to Higgs and Coulomb branch dimensions

To determine the contributions of a defect of type ρ to the Higgs

and Coulomb branch dimensions, we put the 6d (2, 0) theory of type J on

R2,1 × (cigar)× S̃1, where “cigar” denotes a semi-infinite cigar geometry with

the defect placed at the tip. We allow the fields on the cigar to undergo a

monodromy by an outer-automorphism o of J upon circling the defect.

Upon reducing along the U(1) isometry of the cigar, we get 5d N = 2

super Yang-Mills with gauge group G on R2,1 × (a half-line)× S̃1. The defect
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becomes a boundary condition at the end of the half-line, producing a pole in

three of the adjoint scalars. Letting s be the distance to the boundary, this is

given by

Φ1,2,3(s) ∼ ρ(τ1,2,3)

s
,

where ρ is a homomorphism ρ : su(2) → g, as discussed above. Further

reducing on S̃1 gives 4d N = 4 super Yang-Mills with gauge group G on a

half-space with essentially the same boundary condition, which is exactly the

Nahm-type boundary conditions studied by Gaiotto and Witten in [12, 13].

The homomorphism ρ is therefore called the Nahm pole.

Gaiotto and Witten also considered the S-dual of this boundary condi-

tion, which corresponds to inverting the order of reductions on the S1 of the

cigar and S̃1. They found that S-duality gives 4d N = 4 super Yang-Mills with

gauge group G∨, with boundary condition given by coupling the bulk fields to

a 3d N = 4 superconformal field theory T ρ[g] with G∨ flavor symmetry, living

at the 3d boundary of the 4d half-space.

If we now undo the reduction on S1, the codimension-2 defect of 5d

super Yang-Mills on the cigar is given by coupling the fields to the 3d theory

T ρ[g], producing a pole in the adjoint scalar field

Φ(z) ≡ Φ4(z) + iΦ5(z) ∼ ρ̃(σ+)/z,

where z is a complex coordinate on the cirgar so that the tip is at z = 0,

and ρ̃ is a new homomorphism, ρ̃ : su(2) → g∨, determined by the properties
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of T ρ[g]. Since Φ(z) will become the Higgs field of the Hitchin system which

controls the 4d Coulomb branch, so ρ̃ is called the Hitchin pole.

Unfortunately, we do not understand the 6d (2, 0) theory well enough

to also undo the reduction on S̃1 and give a precise description of the defect

in the 6d theory. However, we will still be able to study how the worldvolume

fields φk(z) of dimension k behave at the defect, by studying the behavior of

pk(Φ(z)) where pk is a degree-k invariant polynomial of g.

1.3.4.1 Contribution to 4d Higgs branch

We now determine the local contributions of a defect of type ρ to the

dimensions of the 4d Higgs branch and Coulomb branch. Consider 5d N = 2

super Yang-Mills with gauge group J on R2,1 × C, coupled to the 3d theory

T ρi [g], which wraps R2,1 and lives at a point on C. In the setup above, this

corresponds to reducing the (2, 0) theory of type J on S̃1. This system was

studied in [14] for J = A,D, but the arguments also hold for J of type E.

After reducing on S̃1, the dimension of the Coulomb branch doubles, while the

dimension of the Higgs branch is preserved. The contribution of the defect to

the Higgs branch quaternionic dimension is

dimHH(ρ) = dimHH(T ρ[g])

and the total quaternionic dimension of the Higgs branch is then given by

dimHH =
∑
i

dimHH(ρi) + rank g∨.
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We now determine dimHH(T ρ[g]) for arbitrary ρ. When ρ = 0 (i.e., the trivial

embedding), T ρ[g] is often denoted by T [g]. Its Coulomb branch is Ng∨ and

its Higgs branch is Ng, where Ng denotes the nilpotent cone of g - the subset

of g consisting of its nilpotent elements. The dimension of Ng is given by

dimC Ng = dim G− rank G.

This complex dimension is always even, as Ng is a hyperkähler cone, which is

expected since T [g] has 3d N = 4 superconformal symmetry.

For a homomorphism ρ : su(2)→ g, we can give a Higgs vev e = ρ(σ+)

to the theory T [g]. The moduli directions inside Ng that are transverse to Oe

are in general singular, while the directions along Oe are smooth. Thus, at

low energies, the theory T [g] becomes (dimC Oe)/2 free hypermultiplets plus

the 3d interacting SCFT T ρ[g]. The quaternionic Higgs branch dimension of

T ρ[g] is therefore

dimH H(T ρ[g]) =
1

2
(dim G− rank G− dimC Oe).

For a nilpotent orbit Oe in a classical Lie algebra, labeled by a partition

p = [Ni], its dimension is given by

dimC O[Ni] =


N2 −

∑
i s

2
i g = su(N),

N(2N + 1)− 1
2

∑
i s

2
i + 1

2

∑
i odd ri g = so(2N + 1),

N(2N + 1)− 1
2

∑
i s

2
i − 1

2

∑
i odd ri g = sp(N),

N(2N − 1)− 1
2

∑
i s

2
i + 1

2

∑
i odd ri g = so(2N),

where [si] is the transpose partition to [Ni], and rk is the number of times

the part k appears in the partition [Ni]. The contributions of a defect of type

17



e6 and f4 to the 4d Higgs and Coulomb branches will be given explicitly in

chapters 4 and 5, respectively.

1.3.4.2 Contribution to 4d Coulomb branch

The Coulomb branch of the 3d theory is given by the moduli space of

the Hitchin system of gauge group J , with an outer-automorphism twist oi

around the i-th puncture pi, coupled to the Coulomb branch of T ρi [g]. To

compute the local contribution of a defect to the Coulomb branch, we need

to understand the local boundary condition for the Hitchin system near the

puncture on C.

The Coulomb branch of the T ρ[g] theory is a subset of the Coulomb

branch of T [g], which is the nilpotent cone Ng∨ . When g is of classical type,

the theories T ρ[g] can be constructed via an arrangement of branes. Let p be

the partition corresponding to the nilpotent element e = ρ(σ+). When g is

of type A,C, or D, the Coulomb branch is the closure of a single nilpotent

orbit Oẽ, where ẽ is a nilpotent element of g∨ [14, 12], whose partition type is

given by pt when g is of type A, (p+t)B when g is of type C, and (pt)D when

g is of type D. Here, the notation is that, for a partition p = [N1, . . . , Nk],

pt is the transpose partition to p, p+ is the partition [N1, . . . , Nk, 1], and pB,D

stand for the B- and D-collapses, respectively, of p, and are defined to be the

unique maximal B-, D-partition q satisfying p ≥ q (in the standard partial

order on the partitions). This combinational operation agrees with the map

d : Ng/G → Ng∨/G
∨, defined for any simple Lie algebra g, known as the
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Spaltenstein map.

This implies that the Coulomb branch of T ρ[g] is given by the closure

of the Spaltenstein dual orbit d(Oe) to the orbit Oe, where e = ρ(σ+).

We are now in a position to compute the contribution to the 4d Coulomb

branch dimension for a defect of type ρ. Before doing so, we note that the

outer-automorphism o introduces a grading for the Lie algebra j. The outer-

automorphism can be trivial, of order 2 (for j = AN−1, DN , E6), or of order 3

(for j = D4). The Lie algebra j splits into a direct sum of eigenspaces under

the action of o:

j = j1 + j−1 for o of order 2,

j = j1 + jω + jω2 for o of order 3,
(1.19)

where the lower indices denote the eigenvalues under the action of o, e.g.,

o(jω2) = ω2jω2 . By definition, j1 = g∨. The grading means that, e.g., [jω, jω2 ] ⊂

j1.

Let us now pick a defect of type ρ, and let z be a local coordinate on

C such that the defect is located at the origin. If the outer-automorphism o

associated to the defect is trivial, the defect is called untwisted, and is labeled

by a nilpotent orbit Oρ in j (since, for o trivial, j = g = g∨). In this case,

the Spaltenstein dual orbit d(Oρ) is also in j. The Higgs field Φ of the Hitchin

system behaves as

Φ(z) =

[
Φ−1

z
+ Φ0 + . . .

]
dz, (1.20)

where Φ−1 is an element in d(Oρ), and Φ0 is a generic element in j. The

introduction of an untwisted defect of type ρ increases the dimension of the
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Coulomb branch by

dimC C4d(ρ) = dimH C3d(ρ) =
1

2
dimC d(Oρ). (1.21)

When o is nontrivial, the defect is called twisted, and we impose

Φ(e2πiz) = g[o(Φ(z))]g−1 (1.22)

where g parametrizes the coset J/G∨. In particular, when o is of order 2, the

twisted defect is labeled by a nilpotent orbit in g, while the Spaltenstein dual

orbit lives in g∨ = j1. The boundary condition for the Higgs field in this case

is

Φ(z) ∼
[

Φ−1

z
+

Φ−1/2

z1/2
+ Φ0 + . . .

]
dz (1.23)

where Φ−1 is an element of d(Oρ), Φ−1/2 is a generic element in j−1, and Φ0 is

a generic element in j1.

When o is of order 3, the defect is again labeled by a nilpotent orbit

in g, and the Spaltenstein dual orbit is in g∨ = j1, but now the boundary

condition for the Higgs field is

Φ(z) ∼
[

Φ−1

z
+

Φ−2/3

z2/3
+

Φ−1/3

z1/3
+ Φ0 + . . .

]
dz, (1.24)

where Φ−1 is an element of d(Oρ), Φ−1/3 is a generic element in jω, and Φ−2/3

is a generic element in jω2 .

Altogether, the introduction of a twisted defect of type ρ increases the

dimension of the Coulomb branch by

dimC C4d(ρ) =
1

2
dimC d(Oρ) +

1

2
dim J/G∨. (1.25)
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The second term in (1.25) may be a half-integer when o is of order 2, but this

is not a problem because the twisted punctures always come in pairs.

So, for a theory on a surface of genus g, the total Coulomb branch

dimension is

dimC C4d =
∑
i

dimC C4d(ρi) + (g − 1) dim G. (1.26)

1.3.4.3 Coulomb branch and Sommers-Achar group

We have computed in (1.26) the local contribution of a defect of type

ρ to the complex dimension of the 4d Coulomb branch. The 4d N = 2 theory

is superconformal, so its Coulomb branch actually has a finer structure. The

scaling symmetry sends Φ(z) → tΦ(z), which preserves the form of the sin-

gularities because the nilpotent orbits are cones. The scaling symmetry also

makes C into a cone, and for all known cases C is a graded vector space. We

can therefore choose generators ui of the chiral ring of the 4d Coulomb branch,

which form a basis for C unambiguously. Letting nk be the total number of ui

whose scaling dimension is k, we should have

dimC(C) =
∑
k

nk. (1.27)

The nk receive a local contribution nk(ρ) from a defect of type ρ. The local

contribution nk(ρ) and the local contribution nv(ρ) to the effective number of

vector multiplets nv are related by [15, 16]

nv(ρ) =
∑
k

(2k − 1)nk(ρ). (1.28)
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Let P (da)(Φ) (a = 1, . . . , rank J) be the degree-da symmetric invariant

polynomial of j, so that P (da) generates all the invariant polynomials. Let

φ(da)(z) be the invariant polynomials constructed from the Higgs field Φ(z),

i.e. φ(da)(z) ≡ P (da)(Φ(z)). Then, φ(da)(z1) and φ(db)(z2), for any da, db, z1, z2,

Poisson-commute by construction, and they are expected to provide a complete

set of integrals of motion. The φ(da)(z) are assigned a scaling dimension da.

Introducing punctures of type ρi at z = zi, the singularities (2.2.1.2),

(1.23), (1.24) give rise to a pole of order at most pda(ρ) in the φda(z) at z = zi,

where pda may be fractional when ρ is a twisted puncture. The number of

degrees of freedom in the meromorphic da-differential φ(da)(z) is

∑
i

pda(ρi) + (1− g)(2da − 1). (1.29)

Considering the second term above to be the contribution from the bulk of the

Riemann surfacef, we see that a puncture of type ρ, inserted at z = 0, effec-

tively adds pda(ρ) Coulomb branch operators of scaling dimension da. More

concretely, these operators can be identified with the coefficients φ
(da)
k of the

poles of order z−k in φ(da)(z), where 0 < k ≤ pda . However, these coefficients

φ
(da)
k are not always the most elementary Coulomb branch operators. Rather,

they are polynomials in the true generators of the Coulomb branch operators

introduced by ρ. Indeed, the coefficients φ
(da)
k usually satisfy rather intricate

constraints.

We now explain how to obtain the local Coulomb branch operators,

which was determined in [7]. Consider the untwisted boundary condition
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(2.2.1.2) (the twisted cases can be treated similarly)

Φ(z) = e
dz

z
+ Φ0dz + . . . (1.30)

where e is a fixed element in the Spaltenstein dual orbit d(Oρ). The allowed

continuous gauge transformations are of the form

g(z) = g0 + g1z + . . . , g0 ∈ ge ≡ {x|[e, x] = 0}, gi>0 ∈ g. (1.31)

To find the local Coulomb branch operators, one first finds all functions of

Φ(z) (where Φ(z) takes the form (1.30)) invariant under the connected part

of the gauge group, generated by (1.31). One then further imposes invariance

under a certain discrete group C(Oρ), to be described below. The resulting

invariant functions are the local Coulomb branch operators.

The discrete group C(Oρ) is known as the Sommers-Achar group. Be-

fore we identify C(Oρ), let us first return to an important property of the

Spaltenstein map

d : {nilpotent orbits in g} → {nilpotent orbits in g∨}.

When g is of type A, d takes a nilpotent orbit defined by a partition p to the

nilpotent orbit defined by pt, the transpose partition to p. We see then that

d is an involution on nilpotent orbits in g = su(N). However, in general, for

g 6= AN−1, d is not an involution, but satisfies d3 = d. It is possible then, that

two distinct nilpotent orbits Oρ, Oρ′ in g map to the same nilpotent orbit in

g∨, d(Oρ) = d(Oρ′).
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If a nilpotent orbit Oe is an image of d, i.e. Oe = d(Oe′), the orbit Oe

is called special. The Spaltenstein map is an involution d2 = 1 on the set of

special orbits. For a special Oe, the set of orbits O such that d2(O) = Oe is

called the special piece of Oe; for such non-special O, Oe is the unique smallest

special orbit larger than O. We note that, among nilpotent orbits in a fixed

g, there are usually more special orbits than non-special orbits.

We now describe the Sommers-Achar group C(O). Pick e ∈ O, and

let F (O) be the subgroup of G commuting with e, and F (O)◦ the connected

component of F (O) that contains the identity. Let A(O) = F (O)/F (O)◦

denote the group of components of F (O). A(O) is trivial when g = AN−1, is

(Z2)k for some k when g = BN , CN , or DN , and is Sk for some k when g is

exceptional. In particular, A(O) is a Coxeter group.

Sommers and Achar constructed a map f : O 7→ (d(O), C(O)) assigning

to a nilpotent orbit in g a pair, consisting of the Spaltenstein dual orbit d(O)

in g∨ and a conjugacy class C(O) in A(d(O)), which is a certain quotient of

A(O) introduced by Lusztig. These maps have the properties

• f(O1) = f(O2) if and only if O1 = O2,

• f(O) = (d(O), 1) if and only if O is special.

Just as A(d(O)), A(d(O)) is also a Coxeter group. Using this fact,

Sommers and Achar assigned a subset of simple reflections r1, . . . , r` ∈ A(d(O))

whose product lies in C(O). If we let r1, . . . , r` be the corresponding simple
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reflections in A(d(O)), then C(O) is the subgroup of A(d(O)) generated by

them.

For nilpotent orbits in classical g, there is a combinatorial procedure to

determine C(O) from the partition labeling O, which is described in [7]. For

g exceptional, the C(O) have also been determined, and can be found in [7].

The C(O) for nilpotent orbits in e6 and f4 will be discussed in chapters 4 and

5.

We note that, so far, C(O) is purely a Coulomb branch concept. In

chapter 4, we will discover an explicit action on C(O) on the generators of the

Higgs branch chiral ring for certain 4d N = 2 SCFTs.
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Chapter 2

The Z2-Twisted DN Series

In this chapter, we consider the classification program of twisted theo-

ries of type DN
1. Preliminary studies of the twisted DN series were made in

[14, 11, 18].

The DN Dynkin diagram is invariant under a Z2 outer automorphism

group. Correspondingly, the possible twists are classified by giving an element

γ ∈ H1(C − {pi},Z2). The forgetful map, which “forgets” the puncture, p,

gives an inclusion

H1(C − {p1, . . . p̂, . . . },Z2) ↪→ H1(C − {p1, . . . p, . . . },Z2).

If γ descends to a nontrivial element of the quotient, H1(C−{p1,...p,... },Z2)
H1(C−{p1,...p̂,... },Z2)

, then

we say that the puncture at p is twisted (otherwise, untwisted). (For the D4

theory, the Z2 enhances to a non-abelian S3 group. The study of the 4D N = 2

SCFTs that arise from such enhancement is work in progress.)

For a given puncture, we explain how to compute all the local proper-

ties that contribute to determining the 4D N = 2 SCFT. Among these, are the

contribution to the graded Coulomb branch dimensions, the global symmetry

1This chapter is based on [17].

26



group, flavour-current central charges, the conformal-anomaly central charges

(a, c), and the “pole structure” and “constraints”, which determine the con-

tribution to the Seiberg-Witten curve. From this information, it is possible

to determine gauge groups, hypermultiplet matter representations, and other

properties.

As an application of our results, we are able to find realizations of

Spin(8) gauge theory with matter in the 6(8v), or with matter in the 5(8v) +

1(8s). These two cases, of vanishing β-function for Spin(8), were the ones

that were not captured by the untwisted sector of the DN series. Similarly,

for Spin(7) gauge theory, we find the theory with matter in the 5(7), and in

the 1(8)+4(7); the other combinations with vanishing β-function were already

found in the untwisted sector of the DN series. We also study various realiza-

tions of Sp(N) gauge theory, including Sp(3) with matter in the 11
2

(6)+ 1
2
(14′)

and in the 3(6) + 1(14′), where the 14′ is the 3-index traceless antisymmetric

tensor representation.

2.1 The Z2-twisted DN Theory

The Coulomb branch geometry of the 4D N = 2 compactification [1, 6]

of the 6D N = (2, 0) theories of type DN is governed by the Hitchin equations

on C with gauge algebra so(2N). In particular, the Seiberg-Witten curve Σ is

a branched cover of C described by the spectral curve [11],
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Σ : det(Φ− λI) = λ2N +
N−1∑
j=1

φ2jλ
2N−2j + φ̃2 = 0, (2.1)

where Φ is the so(2N)-valued Higgs field, while the k-differentials φk (k =

2, 4, 6, . . . , 2N − 2) and the Pfaffian N -differential φ̃ are associated with the

Casimirs of the DN Lie algebra. In the rest of the paper, N will always stand

for the rank of DN .

Introducing punctures on C corresponds to imposing local boundary

conditions on the Hitchin fields. We consider untwisted and twisted punctures

under the action of the Z2 outer-automorphism group of the so(2N) Lie al-

gebra. Untwisted punctures are labeled by sl(2) embeddings in so(2N), or,

equivalently, by nilpotent orbits in so(2N), or by D-partitions2 of 2N . Instead

of a compact curve, C, consider a semi-infinite cigar, with the puncture at the

tip. Reducing along the circle action, we get 5D SYM on a half-space, with

a Nahm-type boundary condition of the sort studied by Gaiotto and Witten

in [12]. For that reason, we call the D-partition that labels the untwisted

puncture the Nahm pole.

To describe the local Hitchin boundary condition for an untwisted punc-

ture with Nahm-pole D-partition p, one must recall the Spaltenstein map3 ,

2A D-partition of 2N is a partition of 2N where each even part appears with even
multiplicity. However, “very even” D-partitions — those where all of the parts are even —
correspond to not one, but two, nilpotent orbits. To distinguish between the two orbits, we
assign a red or blue colour to the very-even Young diagrams.

3This Spaltenstein map consists in taking the “D-collapse” of the transpose of the D-
partition. The D-collapse operation is explained in the untwisted D-series paper [5], as well
as in the book [19].
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which takes p into a new D-partition d(p), called the Hitchin pole of the punc-

ture4 . Then, the local boundary condition corresponding to p is

Φ(z) =
X

z
+ so(2N)

where X is an element of the nilpotent orbit5 associated to d(p), and so(2N)

above denotes a generic regular function in z valued in so(2N).

On the other hand, we have a sector of twisted punctures, with mon-

odromy given by the action of the nontrivial element o of the Z2 outer auto-

morphism group of DN . The action of o splits so(2N) as

so(2N) = so(2N − 1)⊕ o−1,

where so(2N − 1) and o−1 are the eigenspaces with eigenvalues +1 and -1,

respectively. The action of o on the k-differentials is also quite simple:

4When p is non-special (i.e., when it does not lie in the image of the Spaltenstein map),
the information encoded in d(p) must be supplemented by a nontrivial “Sommers-Achar”
finite group, C, whose definition can be found in [7]. This additional discrete information
encodes the disconnected part of the group of gauge transformations which we mod out by
in constructing the solutions to the Hitchin system. In particular, it determines the presence
(or absence) of the “a-type” constraints, on the gauge-invariant k-differentials. This, in turn
affects the local contributions to the graded Coulomb branch dimensions. In the Tables, we
denote the Hitchin pole for non-special punctures as a pair (d(p), C).

5Using a nilpotent element X in this equation amounts to writing the local boundary
condition in the absence of mass deformations. The mass-deformed boundary condition
involves semisimple (diagonalizable) elements of so(2N), whose eigenvalues take values in
the Cartan subalgebra of the flavour Lie algebra for the puncture. For the untwisted A
series, a recipe for mass-deformed local boundary conditions was given in [20]. A general
prescription is given in Sec. 2.4 of [7].
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o : φ2k 7→ φ2k (k = 1, 2, . . . , N − 1)

φ̃ 7→ −φ̃
(2.2)

Following [7], the twisted punctures of the DN series are labeled by embeddings

of sl(2) in sp(N − 1) (the Langlands dual of so(2N − 1)), or, equivalently, by

nilpotent orbits in sp(N − 1), or by C-partitions6 of 2N − 2.

To describe the local boundary condition for a twisted puncture, we

need to recall the relevant Spaltenstein map7 . This is a map d that takes a

C-partition p of 2N − 2 into a B-partition d(p) of 2N − 1. A B-partition of

2N − 1 labels an sl(2) embedding in so(2N − 1), or equivalently a nilpotent

orbit in so(2N − 1). So, in our nomenclature, the Nahm pole p of a twisted

puncture is a C-partition of 2N −2, and its Hitchin pole8 is a B-partition d(p)

of 2N − 1. The local boundary condition for the Higgs field is then:

Φ(z) =
X

z
+
o−1

z1/2
+ so(2N − 1)

Here X is an element of the so(2N − 1) nilpotent orbit d(p), while o−1 and

so(2N − 1) in the equation above denote generic regular functions in z valued

in these linear spaces, respectively.

6A C-partition of 2N is a partition of 2N where each odd part appears with even multi-
plicity. A B-partition of 2N − 1 is a partition of 2N − 1 where each even part appears with
even multiplicity.

7This Spaltenstein map consists in adding a part “1” to a C-partition p, taking the
transpose, and then doing a B-collapse. The result is always a B-partition. The “B-collapse”
is discussed in [14, 7] and in [19].

8Again, when the Nahm pole p is non-special, the complete Hitchin pole information is
not just d(p), but a pair (d(p), C), with C the Sommers-Achar group [7].
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2.1.1 Local Properties of Punctures

2.1.1.1 Global Symmetry Group and Central Charges

The local properties of a puncture that we list in our tables are the

pole structure (with constraints), the flavour group (with flavour-current cen-

tral charges for each simple factor) and the contributions (δnh, δnv) to, re-

spectively, the effective number of hypermultiplets and vector multiplets (or,

equivalently, to the conformal-anomaly central charges (a, c)). We will discuss

how to compute pole structures and constraints in §4.1.4.3 and §4.1.4.4. Here

we want to focus briefly on the other properties.

Given the Nahm partition, for every part l, let its multiplicity be nl.

Then, the flavour group of untwisted and twisted punctures are, respectively,

Gflavour =
∏
l even

Sp
(
nl

2

)
×
∏
l odd

SO(nl) (untwisted)

Gflavour =
∏
l even

SO(nl)×
∏
l odd

Sp
(
nl

2

)
(twisted)

The flavour-current central charges for each simple factor above can be com-

puted using the formulas in Section 3 of [7]. In that reference, one can also

see how to compute δnh and δnv. Instead of reviewing the general formulas,

we find it more useful to discuss an example.

Consider the D6 twisted puncture with Nahm pole C-partition [32, 14].

The flavour group is Gflavour = Sp(2)×SU(2). To compute the central charges,

we need to know how the adjoint representation of Sp(5) decomposes under

the subgroup SU(2)×Gflavour (the first factor being the embedding of SU(2),
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corresponding to this partition). The C-partition itself tells us that the fun-

damental of Sp(5) decomposes as 10 = (1; 4, 1) + (3; 1, 2). The embedding

indices of each factor of SU(2) × Gflavour = SU(2) × Sp(2) × SU(2) in Sp(5)

are 8,1 and 3, respectively. With this information, it is not hard to see that

the adjoint representation of Sp(5) decomposes as

55 = (1; 10, 1) + (1; 1, 3) + (3; 1, 1) + (3; 4, 2) + (5; 1, 3). (2.3)

Now, to find δnh and δnv, we use eq. (3.19) of [7]. In the notation of

that paper, we have j = so(12), g = sp(5), and, in their respective usual

root bases, the Weyl vectors ρSpin(12) = (5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0), ρSp(5) =

(5, 4, 3, 2, 1, 0, 0, 0, 0, 0). We also find h/2 = (1, 1, 0, 0, 0,−1,−1, 0, 0, 0) using,

say, the formulas of Section 5.3 of [19]. Since the adjoint representation of

Sp(5) decomposes under the Nahm-pole SU(2) as 55 = 13(1) + 9(3) + 3(5),

we have dim g0 = 13 + 9 + 3 = 25 and dim g1/2 = 0. Thus, eq. (3.19) of [7]

yields δnh = 368 and δnv = 717
2

.

Finally, from (2.3) above as well as eq. (3.20) of [7], we compute the

flavour-current central charges for each simple factor of Gflavour,

kSp(2) = 1× lSp(2)(10) + 2× lSp(2)(4) = 8

kSU(2) = 1× lSU(2)(3) + 1× lSU(2)(3) + 4× lSU(2)(2) = 12

where lh(R) denotes the index of the representation R of h.
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2.1.1.2 Pole Structures

The pole structure of a puncture is the set of leading pole orders

{p2, p4, p6, . . . , p2N−2; p̃} in the expansion of the k-differentials φk(z) (k =

2, 4, 6, . . . , 2N − 2) and the Pfaffian φ̃(z) around the position of the punc-

ture on C. Knowing the pole structures of the various punctures allows us to

write down the Seiberg-Witten curve (2.1) of a theory. The pole orders are

all integers, except for p̃ in a twisted puncture, which must be a half-integer

because of the monodromy (2.2).

We already saw in [5] how to read off the pole structure of an untwisted

puncture from its Hitchin-pole D-partition p. Basically, regard p as a partition

in the untwisted A-series, use the procedure to write down the pole structure

[3], and discard the pole orders that would correspond to φk with odd k.

Finally, divide the pole order p2N of φ2N by two, to obtain the pole order p̃

of the Pfaffian φ̃. p2N will always be even, so that p̃ will come out to be an

integer, as expected for an untwisted puncture.

To compute the pole structure of a twisted puncture, we use its Hitchin

B-partition p. Simply, add 1 to the first (i.e., the largest) part in p, and use

the same procedure to compute the pole structure as for an untwisted D-

series puncture. Notice that upon adding 1 to the largest part, the B-partition

becomes a partition of 2N , and one can show that the pole order p2N of φ2N

is always odd, so that the pole order p̃ of the Pfaffian is a half-integer, as it

should be.
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For instance, consider the D6 twisted puncture with Nahm-pole C-

partition [42, 12]. The Hitchin B-partition is [5, 22, 12]. Following our prescrip-

tion, we add 1 to the largest part, so we get [6, 22, 12], and read off the pole

structure as in the untwisted A-series. We thus get {1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 7}

(corresponding to scaling dimensions 2, 3, 4, . . . , 11, 12). We discard the pole

orders at odd dimensions, and divide the pole order of φ12 = φ̃2 by two, and

we are left with the correct pole structure, {1, 3, 5, 6, 7; 7
2
}.

2.1.1.3 Constraints

In the untwisted D-series, punctures featured “constraints”, which are

either: 1) relations among leading coefficients in the k-differentials

(“c-constraints”); or 2) expressions defining new parameters a(k) of scaling

dimension k as, roughly, the square roots of a leading coefficient c(2k) of di-

mension 2k (“a-constraints”). Both kinds of constraints affect the counting

of graded Coulomb branch dimensions of the theory, as well as the Seiberg-

Witten curve. As expected, we find a-constraints and c-constraints also in the

twisted sector. The pole structure and the constraints provide a “fingerprint”

[21] that allows us to identify the puncture uniquely.

Let us briefly review our nomenclature. For a puncture at z = 0, we

consider the coefficients c
(2k)
l and c̃l of the leading singularities in the expan-

sion in z of the 2k-differentials (2k = 2, 4, . . . , 2N − 2) and the Pfaffian φ̃,

respectively,
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φ2k(z) =
c
(2k)
l

zl
+ . . .

φ̃(z) = c̃l
zl

+ . . .

where . . . denotes less singular terms. (The pole orders l above are, of course,

the same as those in the pole structure, so we have l = p2k or l = p̃, respec-

tively; in this subsection we just write l to keep expressions simple.)

An a-constraint of scaling dimension 2k is an expression linear in c
(2k)
l

that defines (up to sign) a new parameter a
(k)
l/2 of dimension k,

c
(2k)
l =

(
a

(k)
l/2

)2

+ . . . ,

where . . . stands for a polynomial in leading coefficients (of dimension less than

2k) as well as new coefficients a
(j′)
l′ (which would themselves be defined by other

a-constraints). This polynomial is homogeneous in dimension and pole order,

i.e., in every term in the polynomial, the sum of the scaling dimensions of every

factor must be 2k, and the sum of pole orders must be l. The existence of an

a-constraint implies that, in counting graded Coulomb branch dimensions, a

parameter of scaling dimension 2k is to be replaced by one of dimension k.

A c-constraint of dimension 2k is an expression linear in c
(2k)
l , which

relates it to other leading coefficients, and perhaps also to new parameters ajl

defined by a-constraints,

c
(2k)
l = . . .
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where, again, the ellipsis denotes a homogeneous polynomial in leading co-

efficients and new parameters. For even N , if the puncture is very-even, a

“very-even” c-constraint, which is linear in the leading coefficients of both φN

and the Pfaffian, may appear,

c
(N)
l ± 2c̃l = . . .

Unlike an a-constraint, a c-constraint does not define any new parameters; it

simply tells us that c
(2k)
l (or, say, c(N) for a very-even c-constraint) is not inde-

pendent, and so it should not be considered when counting Coulomb branch

dimensions.

Finally, at every scaling dimension 2k, we find at most one constraint,

which can be either an a-constraint or a c-constraint.

Below, we present algorithms to compute the scaling dimensions 2k at

which a-constraints and c-constraints appear for a given puncture. This infor-

mation is enough to compute the local contribution to the graded Coulomb

branch dimensions.

Untwisted punctures Let p be the Nahm pole D-partition of an untwisted

puncture. Also, let q = {q1, q2, . . . } be the transpose partition, and s =

{s1, s2, . . . } the sequence of partial sums of q (si = q1 + q2 + · · ·+ qi). Below,

s1 denotes the first element of s, and plast, the last element of the D-partition

p. (By the conditions that define a D-partition, s1 is always an even number.)
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Then, an a-constraint of dimension 2k exists if the following conditions

are met:

1. 2k belongs to s, say, sj = 2k.

2. j is even.

3. If sj is a multiple of s1, say, sj = rs1, one has r ≥ 2
⌊
plast

2

⌋
+ 1.

4. sj is not the last element of s.

On the other hand, a c-constraint of scaling dimension 2k exists if the

following conditions are met:

1. 2k belongs to s, say, sj = 2k.

2. If j is even, one has that: a) sj is a multiple of s1, say, sj = rs1; b)⌊
plast

2

⌋
+ 1 ≤ r ≤ 2

⌊
plast

2

⌋
; c) sj is not the last element of s.

3. If j is odd, one has that: a) sj is neither the first nor the last element of

s; b) both sj−1 and sj+1 are even; c) sj =
sj−1+sj+1

2
; d) if sj is divisible

by s1, say, sj = rs1, one has r ≥
⌊
plast

2

⌋
+ 1.

Finally, if p is very even, an additional, “very-even”, c-constraint exists

at 2k = N if N belongs to s and N = s1plast

2
. As already mentioned, this

very-even c-constraint is linear in both leading coefficients c
(N)
l and c̃l. (The

pole orders of φN and φ̃ are the same if the conditions just mentioned hold,
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so such a linear constraint is possible.) A generic very-even puncture may or

may not have this very-even c-constraint. In particular, a very-even puncture

could have a c-constraint of dimension N which is not very even (in the sense

that it is not linear in both c
(N)
l and c̃l).

Twisted punctures Suppose we have a twisted puncture labeled by the

Nahm-pole C-partition p. Let q be the transpose partition, and s the sequence

of partial sums of q. It is convenient to define another sequence s′, obtained

by adding 2 to every element in s. (As a check, the last element of s′ must be

2N .) Let s′ = {s′1, s′2, . . . }.

Then, an a-constraint of scaling dimension 2k exists if the following

conditions are met:

1. 2k belongs to s′, say, s′j = 2k.

2. j is odd.

3. s′j is not the last element of s′.

On the other hand, a c-constraint of scaling dimension 2k exists if the

following conditions are met:

1. 2k belongs to s′, say, s′j = 2k.

2. j is even.

3. s′j is not the last element of s′
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4. Both s′j−1 and s′j+1 are even, and s′j =
s′j−1+s′j+1

2
.

Constraint structure The constraints of twisted punctures are very sim-

ple. c-constraints are always “cross-terms” between a-constraints, or between

an a-constraint and the Pfaffian (where φ2N = φ̃2 is seen as another “a-

constraint”). As a schematic example, c(k+m) below is a cross-term for the

“squares” at dimensions 2k and 2m:

c(2k) =
(
a(k)
)2
, c(k+m) = 2a(k)a(m), c(2m) =

(
a(k)
)2

(2.4)

(In an actual example, k+m would always turn out to be even). a-constraints

also generically contain cross-terms, in addition to the quadratic term in the

new parameter. Many examples can be found in the Tables.

The constraints of untwisted punctures are slightly more complicated,

but they resemble very much the constraints of twisted punctures in the A2N−1

series [4], so we refrain from repeating the details. To be brief, there is a

sequence of c-constraints (illustrated below in an example), all related to each

other, and which are associated to the first terms in the set of partial sums s. c-

constraints outside this sequence are simply cross-terms between a-constraints

and/or the Pfaffian, as in (2.4). For a very-even puncture, the very-even c-

constraint, if it exists, becomes part of the sequence just mentioned. As usual,

a-constraints can include cross-terms in addition to the quadratic term that

defines the new parameter.
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Let us discuss the constraints of a D6 very-even puncture, [62]. In this

case, q = [26] and s = [2, 4, 6, 8, 10, 12]. Also, plast = 6 and s1 = 2. So, there

are c-constraints at 2k = rs1 with 4 ≤ r ≤ 6, that is, at 2k = 8, 10. There

is also a very-even c-constraint (at 2k = 6). All c-constraints in this case

constitute the sequence mentioned in the previous paragraph. There are no

a-constraints. We can also compute the pole structure to be {1, 2, 3, 4, 5; 6}.

Let us see the structure of these c-constraints by writing:

c
(0)
0 = 1, c

(8)
4 = 1

4

(
t
(4)
2

)2

+ 1
2
t
(6)
3 t

(2)
1 ,

c
(2)
1 ≡ t

(2)
1 , c

(10)
5 = t

(6)
3 t

(4)
2 ,

c
(4)
2 ≡ 1

4

(
t
(2)
1

)2

+ t
(4)
2 , c

(12)
6 ≡

(
c̃

(6)
3

)2

= 1
4

(
t
(6)
3

)2

.

c
(6)
3 ≡ 1

2
t
(2)
1 t

(4)
2 + t

(6)
3 ,

The first line above is trivial, but it facilitates the construction of the other

expressions. Disregarding the very-even c-constraint at 2k = 6 for a moment,

the expressions at 2k = 2, 4, 6 provide definitions for the quantities t
(2)
1 , t

(4)
2

and t
(6)
3 . Besides, each term in the equations above can be interpreted as either

a cross-term or a square of 1, t
(2)
1 , t

(4)
2 and t

(6)
3 . For example, the term t

(2)
1 is

not a square, so it has to be a cross-term (for 1 and 1
4

(
t
(2)
1

)2

), which is why

we include the term 1
4

(
t
(2)
1

)2

in c
(4)
2 . Since c

(4)
2 cannot be equal to 1

4

(
t
(2)
1

)2

(since that would be a c-constraint at k = 4), we introduce the new quantity

t
(4)
2 . Notice that we have also written c

(12)
6 as a square of t

(6)
3 . Since φ12 is the

square of the Pfaffian, we must have t
(6)
3 = ±2c̃3, and we recover the very-even

constraint at 2k = 6. Solving for t
(2)
1 and t

(4)
2 , we find our actual c-constraints:
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c
(6)
3 ∓ 2c̃3 = 1

2
c

(2)
1

(
c

(4)
2 − 1

4

(
c

(2)
1

)2
)
,

c
(8)
4 = 1

4

(
c

(4)
2 − 1

4

(
c

(2)
1

)2
)2

± c̃4c
(2)
1 ,

c
(10)
5 = ±c̃3

(
c

(4)
2 − 1

4

(
c

(2)
1

)2
)
.

Flipping the sign of c̃3 switches between the constraints for the red and the

blue versions of this puncture.

2.1.2 Collisions

When two punctures collide, a new puncture appears. This process can

be described at the level of the Higgs field, using the local boundary conditions

discussed in §5.1, or at the level of the k-differentials, using the pole structures

and the constraints of §4.1.4.3 and §4.1.4.4. Of course, both mechanisms are

quite related, because the k-differentials are, essentially, the trace invariants

of the Higgs field. These procedures are analogous to those for the twisted

A2N−1 series described in [4].

Let us start by discussing collisions using the Higgs field. Consider two

untwisted punctures at z = 0 and z = x on a plane. The respective local

boundary conditions are:

Φ(z) =
X1

z
+ so(2N),

Φ(z) =
X2

z − x
+ so(2N),

where X1 and X2 are representatives of the respective Hitchin-pole orbits for

the punctures. Then, in the collision limit, x→ 0, a new untwisted puncture
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appears at z = 0,

Φ(z) =
X1 +X2

z
+ so(2N).

Here, X1 + X2 is an element of the mass-deformed Hitchin-pole orbit for the

new puncture, and the mass deformations correspond to the VEVs of the

decoupled gauge group. Taking the mass deformations to vanish, X1 + X2

becomes the Hitchin-pole nilpotent orbit for the new puncture. The fact that

the new residue is X1 + X2 also follows from the residue theorem applied to

the three-punctured sphere that appears in the degeneration limit; another

derivation ensues from an explicit ansatz for the Higgs field on the plane with

two punctures [4], where the limit x→ 0 can be taken.

Now consider an untwisted and a twisted puncture, at z = 0 and z = x,

respectively. The respective local boundary conditions are:

Φ(z) =
X

z
+ so(2N),

Φ(z) =
Y

z − x
+

o−1

(z − x)1/2
+ so(2N − 1).

Then, the local boundary condition for the new twisted puncture is:

Φ(z) =
X|so(2N−1) + Y

z
+
o−1

z1/2
+ so(2N − 1),

where X|so(2N−1) is the restriction of X ∈ so(2N) to the subalgebra so(2N−1).

Finally, consider two twisted punctures at z = 0 and z = x,

42



Φ(z) =
Y1

z
+
o−1

z1/2
+ so(2N − 1),

Φ(z) =
Y2

z − x
+

o−1

(z − x)1/2
+ so(2N − 1).

Then, the local boundary condition for the new untwisted puncture is:

Φ(z) =
Y1 + Y2 + o−1

z
+ so(2N),

where o−1 denotes a generic element in such space.

The procedure to collide punctures using k-differentials is explained in

[4] for the case of the twisted A2N−1 series. The discussion is entirely analogous,

so we leave the details to that paper. Here we will just give an example of how

to use it.

Consider the collision of three punctures,

[2(N − r)− 1, 2r + 1]× [2(N − r)− 1, 2r + 1]× [2(N − 1)],

which yields the [2(N − 2r − 1), 14r] puncture with an Sp(r) × Sp(r) gauge

group. We will use this result in §2.1.5.4. Let us show how to derive it for the

particular case r = 3.

The puncture [2N−7, 7] has pole structure {1, 2, 3, 4, 5, 6, 6, 6, . . . , 6; 3},

no a-constraints, and three c-constraints at 2k = 8, 10, 12:
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(2.5)

On the other hand, the puncture [2(N − 1)], which is the “minimal” twisted

puncture, has pole structure {1, 1, 1, . . . , 1; 1
2
}, and no constraints.

First, consider two [2N−7, 7] punctures on the plane, at positions z = 0

and z = x, and write down the k-differentials:

φ2k(z) =
u2k + v2kz + . . .

zk(z − x)k
(2k = 2, 4, 6, 8, 10, 12)

φ2k(z) =
u2k + . . .

z6(z − x)6
(2k = 14, 16, . . . , 2N − 2)

φ̃(z) =
ũ+ . . .

z3(z − x)3

Then, in the x → 0 limit, which corresponds to the collision, we find the

pole orders {2, 4, 6, 8, 10, 12, 12, 12, . . . , 12; 6}. So, at first sight, we would have

gauge-group Casimirs at 2k = 2, 4, 6, 8, 10, 12. However, the c-constraints (2.5)

from the two [2N − 7, 7] punctures imply that the leading and subleading

coefficients u2k and v2k for 2k = 8, 10, 12 are dependent on the coefficients

u2, u4, u6, and furthermore vanish when we take u2, u4, u6 → 0. Thus, the only

independent gauge-group Casimirs are u2, u4, u6, and the massless puncture

has pole structure {1, 3, 5, 6, 8, 10, 12, 12, . . . , 12; 6}, with no constraints. These
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properties single out the puncture [2N − 13, 26, 1], which has Sp(3) flavour

symmetry. Thus, the gauge group must be Sp(3).

Colliding the new puncture [2N − 13, 26, 1] with the minimal twisted

puncture is much easier, because none is constrained. So all we need to do

is add up pole orders, and identify gauge-group Casimirs. The sum of the

pole structures is {2, 4, 6, 7, 9, 11, 13, 13, . . . , 13; 13
2
}. Hence, we have again a

gauge group with Casimirs 2, 4, 6, and a new puncture with pole structure

{1, 3, 5, 7, 9, 11, 13, 13, . . . , 13; 13
2
}, with no constraints. These properties cor-

respond to the puncture [2N − 14, 112], which has flavour symmetry Sp(6).

Thus, we are gauging an Sp(3) gauge group out of the Sp(6). Actually, since

the two new punctures we find in the subsequent collisions are not maximal,

it must be that an Sp(3) × Sp(3) subgroup (each factor from each of the

two cylinders) of Sp(6) is being gauged. (We saw multiple examples of this

phenomenon in [5, 4].)

Let us derive the same result by doing the collisions in a different order:

first, we collide a [2N − 7, 7] puncture (at z = 0) with the minimal twisted

puncture (at z = x). We use the k-differentials9

9In this subsection, we use generic names for Coulomb branch parameters such as
u2k, v2k, rk, etc. They are understood to be different variables in different collisions.
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φ2k(z) =
u2k + . . .

zk(z − x)
(2k = 2, 4, 6, 8, 10, 12),

φ2k(z) =
u2k + . . .

z6(z − x)
(2k = 14, 16, . . . , 2N − 2),

φ̃(z) =
ũ+ . . .

z3(z − x)1/2

This time, solving the c-constraints is less simple. The constraints are not

solvable unless one introduces parameters r2, r4, r6 of dimension 2,4,6 such

that:

u2 = r2x
1/2, u4 = − (r2)2

4
+ r4x

1/2, u6 = −r2r4 + r6x
1/2

(See Sec. 4.1.3 of [4] for a similar example in more detail.) Then, the con-

straints imply:

u8 = −1
4
((r4)2 + 2r2r6), u10 = −1

2
r6r4, u12 = −1

4
(r6)2

and in the limit x→ 0, we get a pole structure {1, 3, 4, 5, 6, 7, 7, 7, . . . , 7
2
}, with

constraints

c
(4)
3 = − (r2)2

4
, c

(10)
6 = − r4r6

2

c
(6)
4 = −r2r4, c

(12)
7 = − (r6)2

4

c
(8)
5 = −(r4)2 − r2r6

2

that is, we have a-constraints at 2k = 4, 8, 12 and c-constraints at 2k = 6, 10.

These properties uniquely identify the twisted puncture [2N−8, 6]. Notice that
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there are no gauge-group Casimirs, so our interpretation is that the cylinder is

“empty”. This is an example of an “atypical degeneration”, as we will recall

in §2.1.5.4.

Let us now collide the new puncture [2N − 8, 6] (at z = 0) with the re-

maining untwisted puncture [2N−7, 7] (at z = x). We have the k-differentials

φ2(z) =
u2 + . . .

z(z − x)

φ2k(z) =
xu2k + v2kz + . . .

zk+1(z − x)k
(2k = 4, 6, 8, 10, 12)

φ2k(z) =
u2k + . . .

z7(z − x)6
(2k = 14, 16, 18, . . . , 2N − 2)

φ̃(z) =
ũ+ . . .

z7/2(z − x)3

Taking the collision limit x→ 0, we get the pole orders

{2, 4, 6, 8, 10, 12, 13, 13, . . . , 13; 13
2
}. So, in principle, the gauge-group VEVs

are u2, v4, v6, v8, v10, v12. However, v8, v10, v12 are polynomials in u2, v4, v6 and

in three new parameters r2, r4, r6, of respective dimensions 2,4,6, which arise

from combining the a-/c-constraints of [2N − 8, 6] with the c-constraints of

[2N − 7, 7]. So the actual gauge-group VEVs are u2, v4, v6, r2, r4, r6. These

VEV dimensions are consistent with an Sp(3) × Sp(3) gauge group, as be-

fore, except that now both Sp(3) factors are supported on a single cylin-

der. Setting to zero the gauge-group VEVs, we get the massless pole orders

{1, 3, 5, 7, 9, 11, 13, 13, . . . , 13; 13
2
}, with no constraints, which, as before, corre-

spond to the [2N − 14, 112] puncture.
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2.1.3 Gauge Couplings

Consider an N = 2 supersymmetric gauge theory, with simple gauge

group, G, and matter content chosen so that the β-function vanishes. This

gives rise to a family of SCFTs, parametrized by

τ =
θ

π
+

8πi

g2

A rich class of (though not all) such theories can be realized as compactifi-

cations of the (2, 0) theory on a sphere with four untwisted punctures. If the

four puncture are distinct, then the S-duality group, Γ(2) ⊂ PSL(2,Z), is

generated by

T 2 : τ 7→ τ + 2, ST 2S : τ 7→ τ

1− 2τ

The fundamental domain for Γ(2) is isomorphic toM0,4 ' CP1. In particular,

the coordinate on the complex plane, f , is given by10

10Our θ-function conventions are

θ2(0, τ) =
∑
n∈Z

q(n+1/2)2/2

θ3(0, τ) =
∑
n∈Z

qn
2/2

θ4(0, τ) =
∑
n∈Z

(−1)
n
qn

2/2

where q = e2πiτ .
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f(τ) = −θ
4
2(0, τ)

θ4
4(0, τ)

= −
(
16q1/2 + 128q + 704q3/2 + . . .

)
Since Γ(2) is index-6 in PSL(2,Z), the generators of the latter group act on

M0,4 as

T : f 7→ f

f − 1
, S : f 7→ 1

f

These generate an S3 action on M0,4, as depicted in the figure

−1 0 1 / 2 1 2

(1 + i 3) / 2

(1 − i 3) / 2

The points, {0, 1,∞}, of the compactification divisor, are fixed points with

stabilizer group Z2. The points {−1, 1/2, 2} are also fixed points with stabilizer
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group Z2. Finally, the points (1± i
√

3)/2 are fixed points with stabilizer group

Z3. The j-invariant (invariant under the action of PSL(2,Z)) is

j(τ) = 256
(1− f + f 2)

3

f 2(1− f)2

=
1

q
+ 744 + 196884q + . . .

Of course, while the j-invariant is invariant under the full PSL(2,Z), the

physics generically is not

If two of the punctures are identical, then τ 7→ −1/τ leaves the physics

unchanged. The S-duality group is Γ0(2) ⊂ PSL(2,Z), generated by T 2 : τ 7→

τ + 2 and S : τ 7→ −1/τ , whose fundamental domain is the Z2 quotient of

M0,4 by f 7→ 1/f . The physics at f = 0 and at f = ∞ are both that of a

weakly-coupled G gauge theory. The other boundary point, f = 1, and the

interior point, f = −1 are fixed-points of the Z2 action.

If three of the punctures (or all four) are identical, then the S-duality

group is the full PSL(2,Z), the physics at all three boundary points is that

of a weakly-coupled G-gauge theory and the fundamental domain is just the

shaded region in the figure.

How this picture gets modified, in the presence of twisted punctures,

will be one of our main themes in this paper.
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2.1.4 Very-even Punctures

In the A2N−1 series, the outer automorphism twists acted trivially on

the set of nilpotent orbits. So the identities of the untwisted punctures were

unaffected by the introduction of twisted punctures. By contrast, in the DN

series (for N even), the outer automorphism twists act by exchanging the “red”

and “blue” very-even punctures. Dragging an untwisted very-even puncture

around a twisted puncture turns it from red to blue, or vice-versa.

To illustrate the phenomenon, let us look at an example in the twisted

D4 theory.

z1

z2

z3

z4

Here, it is useful to recall [5] that the very-even puncture11 has only

one constraint, which is a very-even c-constraint,

c
(4)
3 ± 2c̃3 = 0,

11As in[3, 5, 4], a Nahm-pole partition p is represented by a Young diagram such that

the column heights are equal to the parts of p. (So is the puncture with Nahm pole
D-partition [24].) In this paper we do not use Young diagrams to represent Hitchin-pole
partitions.
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where the top (bottom) sign corresponds to a red (blue) puncture.

The Higgs field (with Coulomb branch parameters u2, u4, ũ, u6) yields

the differentials

φ2(z) =
u2z12z34(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ4(z) =
z24z34(dz)4

(z − z1)(z − z2)3(z − z3)3(z − z4)3

× [u4(z − z3)(z − z4)z12z23

+ 2ũ(z2 − z)((z − z3)(z13z23z14z24)1/2 + (z − z4)z13z23)]

φ6(z) =
u6z12z23z24z

3
34(dz)6

(z − z1)(z − z2)3(z − z3)4(z − z4)4

φ̃(z) =
ũz24z

2
34(z13z23)1/2(dz)4

(z − z1)1/2(z − z2)3/2(z − z3)3(z − z4)3

The powers of zij ≡ zi−zj have been introduced to make the above expressions

Möbius-invariant12 , and hence well-defined on the moduli space. However, the

(unavoidable) square-roots mean that moduli space is, itself, a double-cover

(in fact, a 4-fold cover, but the SW geometry factors through a Z2 quotient)

of the moduli space of the 4-punctured sphere.

Whether a very-even puncture is red or blue depends on the relative

sign of the residues of the cubic poles of φ4(z) and φ̃(z) at the location of

12To minimize the number of ensuing branch cuts, we have chosen not to preserve the
obvious z3 ↔ z4 symmetry. We can restore it by redefining the Coulomb branch parameter

ˆ̃u = ũ

(
z13z24
z12z34

)1/2

The resulting theory lives naturally on the 4-fold branched cover of M0,4.
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the puncture. But the square-roots are such that if we drag the very-even

puncture (say, the one located at z3) around one of the twisted punctures (say,

the one located at z1), the relative sign changes, indicating that the puncture

has changed from red to blue, or vice versa.

Since the formulae are a little bit formidable-looking in their fully

Möbius-invariant form, it helps to fix the Möbius invariance by setting

(z1, z2, z3, z4)→ (0,∞, w2, 1)

The expressions for φ4(z), φ̃(z) (which are all we need for the present discus-

sion) simplify to

φ4(z) =
(w2 − 1) [u4(z − w2)(z − 1) + 2ũ (w(z − w2) + w2(z − 1))] (dz)4

z(z − w2)3(z − 1)3

φ̃(z) =
ũw(w2 − 1)

2
(dz)4

z1/2(z − w2)3(z − 1)3

Dragging the point z3 = w2 around the origin changes the sign of w in the

above expressions. This changes the relative sign of the residues of φ4 and φ̃

at z = w2, whilst preserving the relative sign of the residues at z = 1.

Of course, the Seiberg-Witten geometry is invariant under the operation

of simultaneously flipping all of the colours of all of the very-even punctures.

This gives a Z2 which acts freely on the gauge theory moduli space. We will

often find it useful to work on the quotient, fixing the colour of one of the

very-even punctures.
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Having seen the phenomenon is global example, let us recover the same

result, working locally on the plane, with the Higgs field itself (rather than

the gauge-invariant k-differentials). Consider a very-even Higgs-field residue

B ∈ so(2N), which belongs to a, say, red nilpotent orbit. We can write B =

B|so(2N−1) +B|o−1 , corresponding to the splitting so(2N) = so(2N − 1)⊕ o−1.

Then, one can check that the map B|o−1 7→ −B|o−1 puts the residue B in the

other (blue) nilpotent orbit. This map defines an isomorphism between the

elements of the red and the blue nilpotent orbits.

Now suppose that the twisted puncture (with residue A ∈ so(2N − 1)

is at z = 0 and the very-even puncture (with residue B ∈ so(2N)) is at z = x.

Then, the Higgs field for this system is:

Φ(z) =
(z−x)A+zB|so(2N−1)

z(z−x)
+

x1/2B|o−1+(z−x)D+...

z1/2(z−x)
+ . . .

where D is a generic element in o−1, and the . . . denote regular terms. The

factor of x1/2 is necessary to make Φ well-defined as a one-form. Then, x

parametrizes the distance between the very-even puncture and the twisted

puncture, and if x circles the origin, x1/2 → −x1/2, it enforces B|o−1 → −B|o−1 ,

so our red puncture becomes blue, or vice versa.

2.1.5 Atypical Degenerations

2.1.5.1 Atypical Punctures

As an application of the formulas in §2.1.1, let us find the series of

punctures with contribution n2 = 2. We will call these “atypical punctures”,
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as they give rise to theories where the number of simple factors in the gauge

group is not equal to the dimension of the moduli space of the punctured

Riemann surface, C. We have seen this phenomenon already in the twisted

A2N−1 series [4].

From our rules for a-constraints, it is easy to see that there are no

untwisted atypical punctures, and that for a twisted puncture to be atypical, its

Nahm pole C-partition must consist of exactly two parts. Hence, the atypical

punctures are

[2(N−r−1),2r]

, for r = 1, 2, . . . ,

⌊
N − 1

2

⌋
with the addition of

[N−1,N−1]

if N is even.

These arise, respectively, as the coincident limit of

a)
[2(N−1)]

and
[2(N−r)−1,2r+1]

b)
[2(N−1)]

and
[N,N ]

(for N even)

Normally, the OPE of two (regular) punctures, p and p′, yields a third (regular)

puncture, p′′, coupled to a gauge theory, (X,H), where

• The gauge group, H, is a subgroup of the global symmetry group of p′′.
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• In the coincident limit, the gauge coupling of H goes to zero.

Here, when p′′ is atypical, the would-be gauge theory is empty : (X,H) = (∅, ∅).

Instead, the theory with an insertion of p′′ has one more simple factor in the

gauge group than the “expected” 3g − 3 + n.

For a surface, C, with n punctures, m of which are atypical, the number

of simple factors in the gauge group is 3g−3+n+m. “Resolving” each atypical

puncture by the pair of punctures, above, yields a surface with n+m punctures

and the moduli space of the gauge theory is a branched cover of Mg,n+m. In

contrast to the usual case, where each component of the boundary of the

moduli space corresponds to one simple factor in the gauge group becoming

weakly-coupled, the boundaries ofMg,n+m, where an atypical puncture arises

in the OPE, do not typically correspond to any gauge coupling becoming weak

(that is, under the branched covering, they are the image of loci in the interior

of the gauge theory moduli space).

2.1.5.2 Gauge Theory Fixtures

In particular, for n = 3, m = 1 (or 2), we have a “gauge theory fixture.”

Resolving the atypical puncture yields a gauge theory moduli space which

is branched cover of M0,4. We may well ask, “Where, in the gauge theory

moduli space, have we landed, in the coincident limit which yields the atypical

puncture?” The answer is that we are at the interior point, “f(τ) = −1”,

though the mechanics of how this happens varies between the cases.
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Let us resolve

[2(N − r − 1), 2r]

T

U

or
[(N − 1)2]

T

U

to

[2(N − 1)]

0

T

∞

[2(N − r) − 1, 2r + 1]

x

U

1

and

U

1
[N2]

x

[2(N − 1)]

0

T

∞

respectively. We have parametrized M0,4 by x, but the gauge theory moduli

space is a branched cover, parametrized by w, with

w2 = x

The gauge coupling

f(τ) =
w − 1

w + 1
(2.6)

so that f = 0 and f = ∞ both map to x = 1, while f = 1 maps to x = ∞.
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Our gauge-theory fixture is whatever lies over the point x = 0. From (2.6),

this is the interior point, f(τ) = −1, of the gauge theory moduli space.

As an example, let us consider the D4 gauge theory fixture

whose resolution is

1x

∞
0

Actually, since we have two very-even punctures, the full moduli space is a

4-sheeted cover of M0,4. The SW geometry is invariant under simultaneously

flipping the colours of both punctures, so we can consistently work on the

quotient by that Z2, and take the colour of the puncture to be red.

SU(4) gauge theory, with matter in the 1(6) + 4(4) was studied in [3].

Near f(τ) = 0, the weakly-coupled description is the Lagrangian field theory.
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Near f(τ) = 1, the weakly-coupled description is an SU(2) gauging of the

SU(8)8×SU(2)6 SCFT, R0,4. Near f(τ) =∞, the weakly-coupled description

is SU(3), with two hypermultiplets in the fundamental, coupled to the (E7)8

SCFT.

In the present case, the f → 1 theory arises as x→∞

SU(2)
, SU(2))(

SU(8)8 × SU(2)6 SCFTempty

Over x = 1, we have two distinct degenerations, which are exchanged by

dragging the puncture around the origin and returning it to its original

position: the Lagrangian field theory (f = 0)

SU(4)

6(4)

, SU(4))(

1(6)

and the theory at f =∞
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SU(3)

(E7)8 SCFT

, SU(4))(

2(3)

, Spin(7))(

Having fixed the behaviour of f over this two-sheeted cover of M0,4, by re-

producing the correct asymptotics as x → 1 and x → ∞, we can now take

x→ 0

∅
, ∅ )(

gauge theory fixtureempty

and recover that the gauge theory fixture is the aforementioned SU(4) gauge

theory at f(τ) = −1.

2.1.5.3 Gauge Theory Fixtures with Two Atypical Punctures

When we resolve the gauge theory fixtures with two atypical punctures,

we obtain a branched covering of M0,5.
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The geometry of M0,5, and the relevant branched covering thereof,

were discussed in detail in section 5.1.2 of [4]. Here, we will simply borrow the

relevant results.

The (compactified) M0,5 is a rational surface. The boundary divisor

consists of ten (−1)-curves (CP1s with normal bundle O(−1)). We label these

curves as Dij, corresponding to the locus where the punctures pi and pj collide.

The Dij, in turn, intersect in 15 points.

The moduli space of the (2, 0) compactification is a branched covering,

M̃ →M0,5, which is branched over the boundary divisor.

The D4 gauge theory fixture

is an Sp(2) × SU(2) gauge theory, with matter in the 6(4, 1) + 4(1, 2), with

gauge couplings (fSp(2), fSU(2)) = (−1,−1). Resolving the atypical punctures,

we have a 5-punctured sphere,
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z1 z2

z3

z5

z4

Since the resolution has two very-even punctures, M̃ is an 8-sheeted branched

cover ofM0,5. However since the gauge couplings (and the rest of the physics)

are invariant under simultaneously flipping the colours of both very-even punc-

tures, we can pass to the quotient, X = M̃/Z2, and it is the geometry of

4-sheeted branched cover, X →M0,5, that was studied in detail in [4].

Meromorphic functions on M0,5 are rational functions of the cross-

ratios

s1 =
z13z25

z15z23

, s2 =
z14z25

z15z24

X is a branched 4-fold cover of M0,5, whose ring of meromorphic functions is

generated by rational functions of w1, w2

w2
1 = s1, w2

2 = s2

The gauge couplings are meromorphic functions on X, given by

62



fSp(2) =
w1 − 1

w1 + 1

w2 + 1

w2 − 1
, fSU(2) =

w1 − 1

w1 + 1

w2 − 1

w2 + 1
(2.7)

There is a natural action of the dihedral group, D4, on X. The Z2 × Z2

subgroup is generated by the deck transformations,

α : w1 → −w1, w2 → w2

β : w1 → w1, w2 → −w2

which act on the gauge couplings as

α : fSp(2) → 1/fSU(2), fSU(2) → 1/fSp(2)

β : fSp(2) ↔ fSU(2)

Both α and β change the relative colour of the two very-even punctures. The

additional generator of D4,

γ :, w1 ↔ w2

acts as S-duality for the Sp(2),

γ : fSp(2) → 1/fSp(2), fSU(2) → fSU(2)

At the boundary, various sheets come together, and the behaviour of the gauge

couplings is

• Over D15 and D25, both couplings go to f = 1, but the ratio
fSp(2)−1

fSU(2)−1
is

arbitrary.
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• Over D35, both couplings are weak (f = 0 or f = ∞), but the ratio

fSp(2)

fSU(2)
is arbitrary.

• Over D45, both couplings are weak (fSp(2) = 0, fSU(2) =∞ or vice-versa),

but the product fSp(2) · fSU(2) is arbitrary.

• Over D12, one coupling is weak (f = 0 or∞), while the other is arbitrary.

• Over D34, one coupling is f = 1, while the other is arbitrary.

• Over D13 and D23, fSp(2) = 1/fSU(2).

• Over D14 and D24, fSp(2) = fSU(2).

Over the intersections of these divisors, we see the various S-duality frames of

the gauge theory.

Over D12 ∩D34, we have

, Sp(2))( Sp(2)
, SU(2))(SU(2)

2(4, 1) 4(4, 1) + 4(1, 2) empty

and
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SU(2)
, SU(2))(SU(2)

(E7)8 SCFT + 4(1, 2) empty

, SU(2))(

empty

In the first case, fSp(2) = 0 or ∞ and fSU(2) = 1; in the latter, fSp(2) = 1 and

fSU(2) = 0 or ∞.

Over D12 ∩D35 and D12 ∩D45, we have

, Sp(2))( Sp(2)

2(4, 1) 4(4, 1) + 4(1, 2)empty

, Sp(2)̲ × SU(2))(
Sp(2)̲ × SU(2)

and

2(4, 1) 4(4, 1) + 4(1, 2)

Sp(2) × SU(2)̲

empty

SU(2), Sp(2))( , Sp(2) × SU(2)̲)(
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In both cases, the underlined gauge group on the right-hand cylinder is iden-

tified with the gauge group on the left-hand cylinder. The notation, which

we introduced in [4], indicated that when the cylinder on the right pinches

off, both factors in the gauge group become weakly-coupled (f → 0 or ∞).

When the cylinder on the left pinches off, only one of the gauge group factors

becomes weakly-coupled.

Over D34 ∩D15 and D34 ∩D25, fSp(2) = fSU(2) = 1. So we have

SU(2)

(E7)8 SCFT + 4(1, 2)empty

SU(2)̲ × SU(2)
, SU(2))( , SU(2)̲ × SU(2))(

empty

and

SU(2)

(E7)8 SCFT + 4(1, 2)empty

SU(2) × SU(2)̲
, SU(2))( , SU(2) × SU(2)̲)(

empty

These differ only very subtly, as to “which” SU(2) gauge coupling is controlled

by the cylinder on the left. In the first case, it is the SU(2) which couples to the

66



(E7)8 (i.e., the one which becomes weakly-coupled at fSp(2) = 1); in the second

case, it is the SU(2) which couples to the 4 fundamental hypermultiplets.

Over D13 ∩D45, D23 ∩D45, D14 ∩D35 and D24 ∩D35, we have

∅

4(4, 1) + 4(1, 2)empty

Sp(2) × SU(2)
, Sp(2) × SU(2))(, ∅ )(

2(4, 1)

Over D13 ∩ D25, D14 ∩ D25, D23 ∩ D15 and D24 ∩ D15, we have fSp(2) = 1,

fSU(2) = 1:

∅

(E7)8 SCFT + 4(1, 2)empty

SU(2) × SU(2), ∅ )( , SU(2) × SU(2))(

empty

Finally, over D13 ∩ D24 and D14 ∩ D23, we recover our gauge theory fixture,

and read off that its gauge theory couplings are fSp(2) = fSU(2) = −1
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empty

, ∅ )( , ∅ )(∅ ∅

empty

2.1.5.4 Atypical Degenerations and Ramification

Once we introduce outer-automorphism twists, the moduli space of the

gauge theory no longer coincides with Mg,n, the moduli space of punctured

curves. As we saw, in §2.1.5.1, even the dimensions don’t agree, until we

“resolve” each atypical puncture, replacing Mg,n by Mg,n+m (for m atypical

punctures). Even then, the moduli space of the gauge theory is a branched

covering of Mg,n+m, branched over various components of the boundary.

Over a generic point on “most” of the components of the boundary, the

covering is unramified, and the gauge couplings behave “normally”: one (and

only one) gauge coupling becomes weak at that irreducible component of the

boundary. Here, we would like to catalogue the exceptions: those components

of the boundary where

• the covering is ramified

• an “unexpected” (either 0 or 2, in the cases at hand) number of gauge

couplings become weak
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• both

Let us denote, by Dp1,p2,...pl , the component of the boundary ofMg,n+m where

the punctures p1, p2, . . . pl collide, bubbling off an (l+1)-punctured sphere. All

of our exceptional cases will involve either Dp1,p2 or Dp1,p2,p3 .

DT,V The first source of ramification, as we saw in §2.1.4, is that the outer

automorphism changes the colour of a very even puncture from red to blue

and vice versa. In general, this changes the physics of the gauge theory. So,

for a theory with v very-even punctures, we get a 2v sheeted cover of the

moduli space of curves, ramified (with ramification index 2) over DT,V where

“T” denotes any twisted-sector puncture and “V ” represents any very-even.

As already noted, simultaneously changing the colour of all of the very-even

punctures leads to isomorphic physics so we can (and usually will) pass to the

Z2 quotient.

Generically, the gauge couplings behave “normally,” with one gauge

coupling becoming weak at DT,V .

D[2(N−1)],[N2] When N is even, there is one such collision where, in addition

to ramification, no gauge coupling becomes weak. Instead, the two punctures

fuse (in non-singular fashion) into an atypical puncture.
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[2(N − 1)]

[N2]
[(N − 1)2]∅

empty

D[2(N−1)],[2(N−r)−1,2r+1] For r = 1, 2, . . . ,
⌊
N−1

2

⌋
, we again obtain an atypical

puncture as the OPE. No gauge coupling become weak, but the moduli space

is ramified (with ramification index 2).

[2(N − 1)]
[2(N − r − 1), 2r]∅

empty

[2(N − r) − 1, 2r + 1]

D[2(N−1)],[2(N−1)],[2(N−r)−1,2r+1] The moduli space is unramified over this com-

ponent of the boundary. Nonetheless, two gauge couplings become weak.
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[2(N − 1)]

[2(N − r) − 1, 2r + 1]

[2(N − r) − 3, 2r − 1, 14]SU(2) × SU(2)

empty

[2(N − 1)]

D[2(N−1)],[2(N−1)],[N2] Here, again, an SU(2) × SU(2) gauge group becomes

weak, but now the moduli space is also ramified (with ramification index 2)

[2(N − 1)]

[N2]

[(N − 2)2, 14]SU(2) × SU(2)

empty

[2(N − 1)]

Dt,u,u′ In all of the remaining cases, the moduli space is ramified (with ram-

ification index 2) and two gauge couplings become weak.

OverD[2(N−1)],[2(N−r)−1,2r+1],[2(N−r)−1,2r+1] (with the same untwisted punc-

ture), we have an Sp(r)× Sp(r) gauge group becoming weak
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[2(N − 1)]
[2(N − 2r − 1), 14r]Sp(r) × Sp(r)

[2(N − r) − 1, 2r + 1]

[2(N − r) − 1, 2r + 1]

1
2(2r, 1) + 1

2(1, 2r)

and, for N even, the gauge group which becomes weak is Sp
(
N
2

)
× Sp

(
N−2

2

)

[2(N − 1)]

[N2]

[12(N−1)]Sp( N
2 ) × Sp( N − 2

2 )[N2]

2(N, 1)

Over Dt,u,u′ , with r′, r = 1, 2, . . . ,
⌊
N−1

2

⌋
(and, without loss of generality, r′ >

r)
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[2(N − 1)]
[2(N − r ′−r − 1), 2(r ′−r), 14r]Sp(r) × Sp(r)

[2(N − r) − 1, 2r + 1]

[2(N − r ′) − 1, 2r ′+1]

empty

and, for N even,

[2(N − 1)]

[N2]

[(N − 2r − 1)2, 14r]Sp(r) × Sp(r)

empty

[2(N − r) − 1, 2r + 1]

2.1.6 Global Symmetries and the Superconformal Index

2.1.6.1 Computing the Index in the Hall-Littlewood Limit

Each puncture has a “manifest” global symmetry associated to it. The

global symmetry group of the SCFT associated to a fixture contains the prod-

uct of the “manifest” global symmetry groups, associated to each of the punc-

tures, as a subgroup. But, in general, it is larger. Here, we will outline how to
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use the superconformal index [22, 23, 24, 25] to determine the global symmetry

group of the fixture and (in the case of a mixed fixture) the number of free

hypermultiplets that it contains.

The prescription to compute the superconformal index of an interacting

SCFT defined by a DN -series fixture was given in [26]. For a DN Z2-twisted

sector fixture with punctures (Λ̃1, Λ̃2,Λ3), where Λ̃ denotes a twisted puncture

and Λ an untwisted puncture, the index is given by 13

I(a,b, c) = A(τ)K(a(Λ̃1))K(b(Λ̃2))K(c(Λ3))

×
∑
λ′

P λ′

Sp(N−1)(a(Λ̃1)|τ)P λ′

Sp(N−1)(b(Λ̃2)|τ)P λ=λ′

SO(2N)(c(Λ3)|τ)

P λ=λ′
SO(2N)(1, τ, τ

2, . . . , τN−1|τ)
.

(2.8)

The various elements of this formula are summarized below. Detailed expla-

nations can be found in [26]:

• A(τ) is the overall (fugacity-independent) normalization, given by

A(τ) =
(1− τ 2N)

(1− τ 2)
N
2

N−1∏
j=1

(1− τ 4j).

• P λ are the Hall-Littlewood polynomials of type SO(2N) and Sp(N),

13In the following, we need only consider the “Hall-Littlewood” limit of the index, where
we restrict to the one-parameter slice in the space of superconformal fugacities given by
(p = 0, q = 0, t1/2 ≡ τ) [24].
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given by

P λ
SO(2N)(x1, . . . , xN) =

Wλ(τ)−1
∑
σ∈SN

∑
s1,...,sN=±1∏

si=+1

xs1λ1

σ(1) · · · x
sNλN
σ(N)

∏
i<j

1− τ 2x−sii x
±sj
j

1− x−sii x
±sj
j

,

P λ
Sp(N)(x1, . . . , xN) =

Wλ(τ)−1
∑
σ∈SN

∑
s1,...,sN=±1

xs1λ1

σ(1) · · ·x
sNλN
σ(N)

∏
i<j

1− τ 2x−sii x
±sj
j

1− x−sii x
±sj
j

×
N∏
i=1

1− τ 2x−2si
i

1− x−2si
i

,

(2.9)

where

Wλ(τ) =

∑
w∈W
wλ=λ

τ 2`(w)


1
2

with `(w) denoting the length of the Weyl group element w.

• The prescription for writing the K-factors can be found in [26]. Their

precise form will not be important here.

• The sum runs over all partitions λ′ = (λ′1, . . . , λ
′
N−1) corresponding

to the highest weight of a finite-dimensional irreducible representation

of Sp(N − 1) (in the standard orthonormal basis); “λ = λ′” means

that we only sum over representations of SO(2N) of the form λ =

(λ′1, . . . , λ
′
N−1, 0).

• The fugacities aI dual to the Cartan subalgebra of the flavor symmetry

group of the puncture ΛI (Λ̃I) are assigned by setting the character of
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the fundamental representation of SO(2N) (Sp(N−1)) equal to the sum

of SU(2) characters corresponding to the decomposition determined by

the puncture, with SU(2) fugacity equal to τ . The multiplicity of each

SU(2) representation is then replaced by the character of the fundamen-

tal representation of the flavor symmetry determined by that multiplicity.

From this equation, one can simply read off the fugacities. 14

For example, theD4 twisted puncture corresponds to the SU(2)

embedding under which the 6 of Sp(3) decomposes as 2 + 4(1). So setting

χ6
Sp(3)(x1, x2, x3) = 1 · χ2

SU(2)(τ) + χ4
Sp(2)(a1, a2) · 1

3∑
i=1

(xi + x−1
i ) = τ + τ−1 +

2∑
i=1

(ai + a−1
i )

we can take fugacities x1 = τ, x2 = a1, x3 = a2.

To determine the global symmetry, as well as any decoupled sector,

of an interacting SCFT fixture from its superconformal index, we need only

compute (2.8) to order τ 2: as explained in [27], the contribution at order τ

is due to free hypermultiplets while the contribution at order τ 2 is due to

moment map operators of flavor symmetries.

Computing the index to order τ 2 while keeping only the term λ′ = 0 in

14If the puncture is not “very even”, different choices of fugacities are related by a Weyl
transformation, under which the Hall-Littlewood polynomials are invariant. For “very
even” punctures there are two inequivalent choices, which are permuted by the Z2 outer-
automorphism, corresponding to the red and blue coloring. For examples, see [26].
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the sum over representations gives the contribution

1 + (χadj
G1

+ χadj
G2

+ χadj
G3

)τ 2,

encoding the manifest global symmetry. The global symmetry of the SCFT is

enhanced if there are additional terms contributing at order τ 2 coming from

the sum over λ′ > 0.

As an example, consider the fixture

.

Letting (a1, a2), (b1, b2) be Sp(2) fugacities and c an SU(2) fugacity, from (2.8)

we find

I = 1 + χ2
SU(2)(c)τ + [2χ3

SU(2)(c) + χ10
Sp(2)(a1, a2) + χ10

Sp(2)(b1, b2)+

χ4
Sp(2)(a1, a2)χ4

Sp(2)(b1, b2)

+ χ2
SU(2)(c)(χ

4
Sp(2)(a1, a2) + χ4

Sp(2)(b1, b2))]τ 2 + . . .

= 1 + χ2
SU(2)(c)τ + [2χ3

SU(2)(c) + χ36
Sp(4)(a1, a2, b1, b2)+

χ2
SU(2)(c)χ

8
Sp(4)(a1, a2, b1, b2)]τ 2 + . . .

The order τ term signals the contribution of a free hypermultiplet in the

1
2
(1, 1, 2) of Sp(2)× Sp(2)× SU(2), the index of which is given by

77



Ifree = PE[τχ2
SU(2)(c)] = 1 + χ2

SU(2)(c)τ + χ3
SU(2)(c)τ

2 + . . . ,

where PE denotes the plethystic exponential [26]. Removing the contribution

of the free hypermultiplet, the index of the interacting SCFT is given by

ISCFT = I/Ifree

= 1 + [χ3
SU(2)(c) + χ36

Sp(4)(a1, a2, b1, b2) + χ2
SU(2)(c)χ

8
Sp(4)(a1, a2, b1, b2)]τ 2

+ . . .

= 1 + χ55
Sp(5)(a1, a2, b1, b2, c)τ

2 + . . .

and hence this SCFT has an enhanced Sp(5) global symmetry.

We can also use the second order expansion of (2.8) as a check on our

identifications for the gauge theory fixtures. For example, the fixture

is an SU(2)×SU(2) gauge theory with 4 hypermultiplets in the (2, 1), 4 hyper-

multiplets in the (1, 2), and 8 free hypermultiplets transforming in the 1
2
(2, 8v)

of the manifest SU(2)8 × SO(8)12 global symmetry. Thus the manifest global

symmetry of this fixture should be enhanced to SO(8)2 × Sp(8). Choosing
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(b; c1, c2, c3, c4) as fugacities for the manifest global symmetry, indeed we find

the expansion of the index is given by

I = 1 + χ2
SU(2)(b)χ

8v

SO(8)(c1, c2, c3, c4)τ+

(2χ28
SO(8)(c1, c2, c3, c4) + χ136

Sp(8)(b, c1, c2, c3, c4))τ 2 + . . .

where

χ136
Sp(8)(b, c1, c2, c3, c4) = χ3

SU(2)(b) + χ28
SO(8)(c1, c2, c3, c4)+

χ3
SU(2)(b)χ

35v

SO(8)(c1, c2, c3, c4).

We have used this technique to check the global symmetries and the number

of free hypermultiplets in our tables of fixtures for the Z2-twisted D4 theory.

2.1.6.2 The Sp(4)6 × SU(2)8 SCFT

Here we use the superconformal index to argue that the D4 interacting

fixture

gives rise to the Sp(4)6 × SU(2)8 SCFT. For this fixture, we cannot use any

S-dualities to study its properties as none of the flavor symmetries carried by

the punctures can be gauged.
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The Sp(4)6 × SU(2)8 SCFT first appeared in [4] as the twisted-sector

fixture

in the A3 theory. It also appears, accompanied by six free hypermultiplets, as

(2.10)

in our list of twisted-sector mixed fixtures in the D4 theory. In those cases,

we are able to use various S-dualities to study it.

Letting a and b be SU(2) fugacities and c2
1, c

2
2 U(1) fugacities, the ex-

pansion of the index of this fixture is given by

80



I = 1 + (χ3
SU(2)(a) + χ3

SU(2)(b) + (1 + c2
1 + c−2

1 )+

χ3
SU(2)(a)χ3

SU(2)(b)(1 + c2
1 + c−2

1 ) + (1 + c2
2 + c−2

2 ))τ 2 + . . .

= 1 + (χ3
SU(2)(a) + χ3

SU(2)(b) + χ3
SU(2)(c1) + χ3

SU(2)(a)χ3
SU(2)(b)χ

3
SU(2)(c1)

+ χ3
SU(2)(c2))τ 2 + . . .

= 1 + (χ36
Sp(4)(a, b, c1) + χ3

SU(2)(c2))τ 2 + . . . ,

(2.11)

indicating that the manifest SU(2)2
24×U(1)2 global symmetry is enhanced to

Sp(4)×SU(2). This, along with the other numerical invariants of this fixture

agree with our previous results for the Sp(4)6 × SU(2)8 SCFT.

Since A3
∼= D3, we can use (2.8) to compute the index of the twisted A3

fixture by appropriately identifying fugacities and replacing P λ
SO(6)(P

λ′

Sp(2)) →

P µ
SU(4)(P

µ′

SO(5)) where µ (µ′) is the highest weight of the SU(4) (SO(5)) rep-

resentation corresponding to λ (λ′). Letting a be an SU(2) fugacity and

(b1, b2), (c1, c2) SO(5) fugacities, the expansion of the index of the twisted

A3 fixture is

I = 1 + (χ3
SU(2)(a) + χ10

Sp(2)(
√
b1b2,

√
b1

b2

) + χ10
Sp(2)(

√
c1c2,

√
c1

c2

)

+ χ4
Sp(2)(

√
b1b2,

√
b1

b2

))χ4
Sp(2)(

√
c1c2,

√
c1

c2

)τ 2 + . . .

= 1 + (χ3
SU(2)(a) + χ36

Sp(4)(
√
b1b2,

√
b1

b2

,
√
c1c2,

√
c1

c2

))τ 2 + . . . ,

in agreement with (2.11). We have checked further that the unrefined indices
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(obtained by setting all flavor fugacities to “1”) of these two fixtures agree to

tenth order in τ . The unrefined index of each fixture is given by

I = 1 + 39τ 2 + 878τ 4 + 13396τ 6 + 152412τ 8 + 1370975τ 10 + . . . .

We can also compare with the mixed fixture (2.10). After removing the con-

tribution to the index of a free hypermultiplet in the 6 of Sp(3), the index of

this fixture is given by

I = 1 + (χ3
SU(2)(a2) + χ21

Sp(3)(b1, b2, b3) + χ2
SU(2)(a2)χ6

Sp(3)(b1, b2, b3)

+ χ3
SU(2)(c))τ

2 + . . .

= 1 + (χ36
Sp(4)(a2, b1, b2, b3) + χ3

SU(2)(c))τ
2 + . . . .

Again, the numerical invariants of this fixture imply the SCFT is the Sp(4)6×

SU(2)8 theory. We have computed the unrefined index of this fixture to fourth

order in τ ; removing the contribution of the free hypermultiplet, we find agree-

ment with the fixtures above.

2.2 The Z2-twisted D4 Theory

2.2.1 Punctures and Cylinders

2.2.1.1 Regular Punctures

The untwisted sector of regular punctures was discussed in [5]. The

Z2-twisted regular punctures are shown in the Table below.
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Table 2.1: Z2-twisted regular punctures

Flavour

C-partition

Hitchin

B-partition

Pole

structure
Constraints

Flavour

group
(δnh, δnv)

[7] {1, 3, 5; 7
2
} − Sp(3)8 (112, 207

2
)

(ns) ([5, 12],Z2) {1, 3, 5; 5
2
} − Sp(2)7 (102, 193

2
)

[5, 12] {1, 3, 5; 5
2
} c

(6)
5 = (a(3))2 SU(2)6×

U(1)
(94, 181

2
)

[32, 1] {1, 3, 4; 5
2
} − SU(2)24 (88, 171

2
)

[3, 22] {1, 3, 4; 5
2
}

c
(4)
3 = (a(2))2

c
(6)
4 = 2a(2)c̃5/2

SU(2)8 (72, 141
2

)

(ns) ([3, 14],Z2) {1, 3, 3; 3
2
} − SU(2)5 (69, 135

2
)

[3, 14] {1, 3, 3; 3
2
} c

(4)
3 = (a(2))2 none (64, 127

2
)

[17] {1, 1, 1; 1
2
} − none (24, 49

2
)

2.2.1.2 Irregular Punctures

A fairly lengthy list of irregular untwisted punctures, arising from the

OPE of untwisted punctures, was discussed in [5]. Additional ones arise from

considering the OPE of two Z2-twisted punctures. Moreover, twisted-sector

irregular twisted punctures arise from the OPE of an untwisted puncture and
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a Z2-twisted puncture. These two sets of new irregular punctures are listed in

the Tables below.

Untwisted

Table 2.2: Untwisted irregular punctures

Irregular puncture (nh, nv) Flavour Symmetry(
, Sp(2)

)
(112, 118) Sp(2)0(

, SU(2)× SU(2)
)

(128, 133) SU(2)0 × SU(2)0(
, SU(2)× SU(2)

)
(136, 140) SU(2)0 × SU(2)0(

, SU(2)

)
(176, 179) SU(2)0

As was the case in [5], there are three inequivalent embeddings of

Sp(2) ↪→ Spin(8), exchanged by triality, under which one of the 8-dimensional

representations decomposes as 5+3(1) while the other two decompose as 2(4).

To indicate which we mean, we assign a green/red/blue colour to .

The same remark applies to the three index-1 embeddings of SU(2)× SU(2)

in the SU(2)3 of which are exchanged by triality.

Twisted
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Table 2.3: Z2-twisted irregular punctures

Irregular puncture (nh, nv) Flavour Symmetry(
, Sp(2)× SU(2)

) (
112, 223

2

)
Sp(2)4 × SU(2)0(

, Sp(2)
) (

112, 229
2

)
Sp(2)4(

, SU(2)× SU(2)
) (

112, 237
2

)
SU(2)0 × SU(2)0(

, SU(2)
) (

112, 243
2

)
SU(2)0(

, Sp(2)
) (

122, 243
2

)
Sp(2)5(

, SU(2)× SU(2)
) (

122, 251
2

)
SU(2)1 × SU(2)1(

, SU(2)
) (

122, 257
2

)
SU(2)1(

, SU(2)
) (

130, 269
2

)
SU(2)2(

, ∅
) (

152, 315
2

)
none(

, SU(2)

) (
155, 315

2

)
SU(2)3(

, ∅

) (
155, 315

2

)
none

2.2.1.3 Cylinders

In addition to the untwisted cylinders of [5], we have
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(
, Sp(2)

) Sp(2)←−−−−−−−−→(
, Sp(2)

) SU(2)←−−−−−−−−−→
(

, Spin(7)
)

(
, Sp(2)

) SU(2)←−−−−−−−−−→
(

, Spin(7)
)

(
, SU(2)× SU(2)

)
SU(2)×SU(2)←−−−−−−−−−−→(

, SU(2)× SU(2)

)
SU(2)×SU(2)←−−−−−−−−−−→(

, SU(2)

)
SU(2)←−−−−−−−−−→

and the twisted sector adds the cylinders
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Sp(3)←−−−−−−−−→(
, Sp(2)× SU(2)

) Sp(2)×SU(2)←−−−−−−−−−→(
, Sp(2)

) Sp(2)←−−−−−−−−→(
, SU(2)× SU(2)

) SU(2)×SU(2)←−−−−−−−−−−→(
, SU(2)

) SU(2)←−−−−−−−−−→(
, Sp(2)

)
Sp(2)←−−−−−−−−→(

, SU(2)× SU(2)
)

SU(2)×SU(2)←−−−−−−−−−−→(
, SU(2)

)
SU(2)←−−−−−−−−−→(

, SU(2)
)

SU(2)←−−−−−−−−−→(
, ∅
)

∅←−−−−−−→(
, SU(2)

)
SU(2)←−−−−−−−−−→(

, ∅

)
∅←−−−−−−→

2.2.2 Fixtures

2.2.2.1 Free-field Fixtures
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Table 2.4: Z2-twisted free field fixtures

# Fixture Number of hypers Representation

1 , SU(2))( 0 empty

2 ( , SU(2) × SU(2)) 0 empty

3 ( , Sp(2)) 5 1
2
(2, 5)

4 ( , SU(2) × SU(2)) 0 empty

5 ( , Sp(2)) 0 empty

6 ( , SU(4)) 6 1
2
(2, 6)
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Table 2.4: Z2-twisted free field fixtures

# Fixture Number of hypers Representation

7 ( , Spin(7)) 14 1
2
(4, 7)

8 24 1
2
(6, 8v)

9 , ∅ )( 0 empty

10
, SU(2))( 3 1

2
(3, 2)

11 , ∅ )( 0 empty

12 , SU(2))( 2 1(2)
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Table 2.4: Z2-twisted free field fixtures

# Fixture Number of hypers Representation

13 , SU(2))( 1 1
2
(1, 2)

14 , Sp(2))( 10 1
2
(5, 4)

15 , SU(2))( 0 empty

16 , Sp(2))( 8 1
2
(1, 2, 2; 4)

17 , SU(2) × SU(2))( 2 1
2
(2, 1) + 1

2
(1, 2)

18 , SU(2) × SU(2))( 0 empty
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Table 2.4: Z2-twisted free field fixtures

# Fixture Number of hypers Representation

19 , Sp(2))( 7 1
2
(2, 5) + 1

2
(1, 4)

20 , Sp(2))( 5 1
2
(2, 1, 5)

21 , SU(2) × SU(2))( 0 empty

22 , Sp(2) × SU(2))( 8 1
2
(2, 2; 4, 1)

23 14 1
2
(3, 4, 1) + 1

2
(1, 5, 2) + 1

2
(3, 1, 2)

24 16 1
2
(1, 14′) + 1

2
(3, 6)
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2.2.2.2 Interacting Fixtures

Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

1 ( , Spin(7)) (0, 0, 2, 0, 0) (26, 14) Spin(7)8 ×
SU(2)2

5

2 (0, 0, 2, 0, 1) (45, 25) Spin(11)12 ×
SU(2)5

3 (0, 1, 2, 0, 1) (51, 30) Spin(10)12 ×
SU(2)6 ×
SU(2)5

4 (0, 0, 2, 0, 2) (59, 36) Spin(9)12 ×
Sp(2)7×SU(2)5
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

5 (0, 0, 2, 0, 1) (45, 25) Sp(5)8×SU(2)5

6 (0, 0, 3, 0, 1) (53, 32) Sp(4)8 ×
SU(2)2

8 ×
SU(2)5

7 (0, 0, 3, 0, 2) (69, 43) Spin(8)12 ×
Sp(3)8×SU(2)5

8 ( , Sp(2)) (0, 0, 1, 0, 0) (15,7) Sp(3)5×SU(2)8
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

9 (0, 1, 1, 0, 0) (24, 12) Sp(4)6×SU(2)8

10 (0, 0, 1, 0, 1) (31, 18) SU(4)12 ×
SU(2)7 × U(1)

11 (0, 0, 2, 0, 1) (40, 25) SU(4)12 ×
Sp(2)8

12 (0, 0, 2, 0, 1) (40, 25) SU(2)2
24 ×

Sp(2)8
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

13 (0, 0, 3, 0, 1) (48, 32) SU(2)2
24 ×

SU(2)3
8

14 (0, 0, 3, 0, 2) (64, 43) Spin(8)12 ×
(SU(2)24)2

15 (0, 2, 1, 0, 0) (30, 17) Sp(2)2
6 ×

SU(2)6 × U(1)

16 (0, 1, 1, 0, 1) (37, 23) Sp(2)12 ×
SU(2)7 ×
SU(2)6
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

17 (0, 1, 2, 0, 1) (46, 30) Sp(2)12 ×
Sp(2)8×SU(2)6

18 (0, 1, 2, 0, 1) (46, 30) Sp(2)8 ×
SU(2)24 ×
SU(2)6 × U(1)

19 (0, 1, 3, 0, 1) (54, 37) SU(2)24 ×
SU(2)3

8 ×
SU(2)6 × U(1)

20 (0, 1, 3, 0, 2) (70, 48) Spin(8)12 ×
SU(2)24 ×
SU(2)6 × U(1)
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

21 (0, 1, 1, 0, 1) (38, 23) Sp(2)12 ×
Sp(2)7 × U(1)

22 (0, 0, 1, 0, 2) (45, 29) Sp(2)7 ×
SU(2)7 ×
SU(2)2

12

23 (0, 0, 2, 0, 2) (54, 36) Sp(2)8 ×
Sp(2)7 ×
(SU(2)12)2

24 (0, 0, 2, 0, 2) (54, 36) Sp(2)8 ×
Sp(2)7 ×
SU(2)24
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

25 (0, 0, 3, 0, 2) (62, 43) Sp(2)7 ×
SU(2)24 ×
SU(2)3

8

26 (0, 0, 3, 0, 3) (78, 54) Spin(8)12 ×
Sp(2)7 ×
SU(2)24

27 (0, 0, 1, 0, 0) (24, 7) (E7)8

28 (0, 1, 2, 0, 1) (48, 30) Sp(3)8 ×
SU(2)24×U(1)2
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

29 (0, 0, 2, 0, 2) (55, 36) Sp(3)8 ×
SU(2)24 ×
SU(2)7

30 (0, 0, 3, 0, 2) (64, 43) Sp(3)8 ×
Sp(2)8 ×
SU(2)24

31 (0, 0, 3, 0, 2) (64, 43) Sp(3)8 ×
Sp(2)8 ×
SU(2)24

32 (0, 0, 4, 0, 2) (72, 50) Sp(3)8 ×
SU(2)24 ×
SU(2)3

8
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

33 (0, 0, 4, 0, 3) (88, 61) Spin(8)12 ×
Sp(3)8 ×
SU(2)24

34 (0, 3, 1, 0, 0) (36, 22) SU(2)6
6 × U(1)

35 (0, 2, 1, 0, 1) (43, 28) SU(2)2
12 ×

SU(2)2
6 ×

SU(2)7

36 (0, 2, 2, 0, 1) (52, 35) Sp(2)8 ×
SU(2)2

12 ×
SU(2)2

6
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

37 (0, 2, 2, 0, 1) (52, 35) Sp(2)8 ×
SU(2)2

6 × U(1)2

38 (0, 2, 3, 0, 1) (60, 42) SU(2)3
8 ×

SU(2)2
6 × U(1)2

39 (0, 2, 3, 0, 2) (76, 53) Spin(8)12 ×
SU(2)2

6 × U(1)2

40 (0, 2, 1, 0, 1) (44, 28) Sp(2)7 ×
SU(2)2

12 ×
SU(2)6 × U(1)
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

41 (0, 1, 1, 0, 2) (51, 34) Sp(2)7 ×
SU(2)24 ×
SU(2)7 ×
SU(2)6

42 (0, 1, 2, 0, 2) (60, 41) Sp(2)8 ×
Sp(2)7 ×
SU(2)24 ×
SU(2)6

43 (0, 1, 2, 0, 2) (60, 41) Sp(2)8 ×
Sp(2)7 ×
SU(2)6 × U(1)

44 (0, 1, 3, 0, 2) (68, 48) Sp(2)7 ×
SU(2)3

8 ×
SU(2)6 × U(1)
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

45 (0, 1, 3, 0, 3) (84, 59) Spin(8)12 ×
Sp(2)7 ×
SU(2)6 × U(1)

46 (0, 1, 1, 0, 0) (30, 12) SU(2)6 ×
SU(8)8

47 (0, 2, 2, 0, 1) (54, 35) Sp(3)8 ×
SU(2)6 × U(1)3

48 (0, 1, 2, 0, 2) (61, 41) Sp(3)8 ×
SU(2)7 ×
SU(2)6 × U(1)
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

49 (0, 1, 3, 0, 2) (70, 48) Sp(3)8 ×
Sp(2)8 ×
SU(2)6 × U(1)

50 (0, 1, 3, 0, 2) (70, 48) Sp(3)8 ×
Sp(2)8 ×
SU(2)6 × U(1)

51 (0, 1, 4, 0, 2) (78, 55) Sp(3)8 ×
SU(2)3

8 ×
SU(2)6 × U(1)

52 (0, 1, 4, 0, 3) (94, 66) Spin(8)12 ×
Sp(3)8 ×
SU(2)6 × U(1)
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

53 (0, 1, 1, 0, 2) (52, 34) Sp(2)2
7 ×

SU(2)24 × U(1)

54 (0, 0, 1, 0, 3) (59, 40) Sp(2)2
7 ×

SU(2)7 × U(1)

55 (0, 0, 2, 0, 3) (68, 47) Sp(2)8 ×
Sp(2)2

7 × U(1)

56 (0, 0, 2, 0, 3) (68, 47) Sp(2)8×Sp(2)2
7
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

57 (0, 0, 3, 0, 3) (76, 54) Sp(2)2
7×SU(2)3

8

58 (0, 0, 3, 0, 4) (92, 65) Spin(8)12 ×
Sp(2)2

7

59 (0, 0, 1, 0, 1) (38, 18) Sp(4)8×Sp(2)7

60 (0, 1, 2, 0, 2) (62, 41) Sp(3)8 ×
Sp(2)7 × U(1)2
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

61 (0, 0, 2, 0, 3) (69, 47) Sp(3)8 ×
Sp(2)7×SU(2)7

62 (0, 0, 3, 0, 3) (78, 54) Sp(3)8 ×
Sp(2)8×Sp(2)7

63 (0, 0, 3, 0, 3) (78, 54) Sp(3)8 ×
Sp(2)8×Sp(2)7

64 (0, 0, 4, 0, 3) (86, 61) Sp(3)8 ×
Sp(2)7×SU(2)3

8
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

65 (0, 0, 4, 0, 4) (102, 72) Spin(8)12 ×
Sp(3)8×Sp(2)7

66 (0, 0, 1, 0, 1) (40, 18) Sp(6)8

67 (0, 0, 2, 0, 1) (48, 25) Sp(6)8×SU(2)8

68 (0, 0, 2, 0, 1) (48, 25) Sp(3)2
8×SU(2)8
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

69 (0, 1, 3, 0, 2) (72, 48) Sp(3)2
8 × U(1)2

70 (0, 0, 3, 0, 3) (79, 54) Sp(3)2
8×SU(2)7

71 (0, 0, 4, 0, 3) (88, 61) Sp(3)2
8×Sp(2)8

72 (0, 0, 4, 0, 3) (88, 61) Sp(3)2
8×Sp(2)8
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Table 2.5: Z2-twisted interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

73 (0, 0, 5, 0, 3) (96, 68) Sp(3)2
8×SU(2)3

8

74 (0, 0, 5, 0, 4) (112, 79) Spin(8)12 ×
Sp(3)2

8

2.2.2.3 Mixed Fixtures

Three new SCFTs make their appearance in the list of “mixed” fixtures

(accompanied by some number of free hypermultiplets).

• The Sp(4)7×SU(2)5 SCFT has Coulomb branch dimensions (d2, ..., d6) =

(0, 0, 1, 0, 1) and (nh, nv) = (33, 18).

• The Sp(5)7×SU(2)8 SCFT has Coulomb branch dimensions (d2, ..., d6) =

(0, 0, 1, 0, 1) and (nh, nv) = (35, 18).

• The Sp(3)7 × Sp(2)8 × SU(2)5 SCFT has Coulomb branch dimensions

(d2, ..., d6) = (0, 0, 2, 0, 1) and (nh, nv) = (42, 25).
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The remaining SCFTs in our list of mixed fixtures include the venerable (E6)6

theory, the Sp(5)7 theory (which appeared in the untwisted D4 theory [5]),

two theories (Sp(3)5 × SU(2)8 and Spin(7)8 × SU(2)2
5) which appear above

(see also [4]) and three more which appeared in the twisted A3 theory [4].

Table 2.6: Z2-twisted mixed fixtures

# Fixture Theory

1 1
2
(1, 3, 4) + Sp(3)5 × SU(2)8

2 1
2
(1, 3; 2, 1, 1) + SU(2)2

5 × Spin(7)8

3 (1, 1, 4) + SU(2)5 × Sp(3)6 × U(1)

4 (1, 1; 2, 1, 1) + SU(2)5 × SU(4)8 × Sp(2)6

5 1
2
(1, 1, 4) + Sp(4)7 × SU(2)5
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Table 2.6: Z2-twisted mixed fixtures

# Fixture Theory

6 1
2
(1, 1; 2, 1, 1) + Sp(3)7 × Sp(2)8 × SU(2)5

7 (1, 6) + SU(2)5 × Sp(3)6 × U(1)

8 1
2
(1, 6, 1) + Sp(4)7 × SU(2)5

9 1
2
(1, 6, 1) + Sp(3)7 × Sp(2)8 × SU(2)5

10 1
2
(3, 6, 1) + Sp(3)5 × SU(2)8

11 (1, 1, 2) + 1
2
(1, 4, 1) + (E6)6
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Table 2.6: Z2-twisted mixed fixtures

# Fixture Theory

12 (1, 6) + (E6)6

13 (1, 6, 1) + Sp(4)6 × SU(2)8

14 1
2
(1, 6) + Sp(5)7

15 1
2
(1, 6, 1) + Sp(5)7 × SU(2)8

16 1
2
(1, 1, 2) + Sp(5)7

2.2.2.4 Gauge Theory Fixtures

For each gauge theory fixture, we list the gauge group, G, and the

representation content of the hypermultiplets, (RF1 , RF2 , RF3 ;RG). Here, RG

113



is the representation of the gauge group and RFi
is the representation of the

semisimple part of the flavour symmetry of the ith puncture (where we work

counterclockwise from the upper-left, and omit Fi if it is abelian or empty).

Table 2.7: Z2-twisted gauge theory fixtures

# Fixture (d2, . . . , d6) G # Hypers Representation

1 ( , Spin(7)) (1, 0, 1, 0, 0) Sp(2) 21 1
2
(1, 8; 4) +

1
2
(2, 1; 5)

2 ( , Spin(7)) (2, 0, 0, 0, 0) SU(2)×
SU(2)

16

1
2
(R1; 2, 1)

+1
2
(R2; 1, 2)

whereRi = 8

or 1 + 7

3 (2, 0, 0, 0, 0) SU(2)×
SU(2)

24

1
2
(2, 8v; 1, 1)

+ 1
2
(1, 8; 2, 1)

+ 1
2
(1, 8; 1, 2)
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Table 2.7: Z2-twisted gauge theory fixtures

# Fixture (d2, . . . , d6) G # Hypers Representation

4 (1, 0, 0, 0, 0) SU(2) 16

1
2
(1, 5; 2)

+ 1
2
(1, 4; 1)

+ 1
2
(3, 4; 1)

+ 1
2
(3, 1; 2)

5 (1, 0, 1, 0, 0) Sp(2) 24

1
2
(2; 1, 2, 1; 4)

+ 1
2
(2; 1, 1, 2; 4)

+ 1
2
(1; 2, 1, 1; 5)

+ 1
2
(3; 2, 1, 1; 1)

6 (1, 0, 1, 0, 1) Sp(3) 40

1
2
(1, 8; 6)

+ 1
2
(3, 1; 6)

+ 1
2
(1, 1; 14′)

7 (1, 1, 0, 0, 0) SU(3) 22

(2, 1; 3)

+ (1, 4; 3)

+ (1, 4; 1)
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Table 2.7: Z2-twisted gauge theory fixtures

# Fixture (d2, . . . , d6) G # Hypers Representation

8 (1, 1, 1, 0, 0) SU(4) 30

1
2
(2; 1, 1, 1; 6)

+ 1
2
(1; 2, 1, 1; 6)

+ (1; 2, 1, 1; 1)

+ (1; 1, 2, 1; 4)

+ (1; 1, 1, 2; 4)

9 (1, 1, 1, 0, 1) Sp(3) 46

1
2
(1, 8; 6)

+ (1, 1; 6)

+ (E6)6

10 (1, 0, 0, 0, 1) G2 30

1
2
(4, 1; 7)

+ 1
2
(1, 4; 7)

+ 1
2
(1, 4; 1)

11 (1, 0, 1, 0, 1) Spin(7) 38

1
2
(4; 1, 1, 1; 7)

+ 1
2
(1; 2, 1, 1; 7)

+ 1
2
(1; 1, 2, 1; 8)

+ 1
2
(1; 1, 1, 2; 8)

+ 1
2
(1; 2, 1, 1; 1)
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Table 2.7: Z2-twisted gauge theory fixtures

# Fixture (d2, . . . , d6) G # Hypers Representation

12 (1, 0, 1, 0, 2) Spin(7) 54
1
2
(4, 1; 7)

+ (E8)12

13 (1, 1, 0, 0, 0) SU(3) 24
(6; 3)

+ (6; 1)

14 (1, 0, 0, 0, 1) G2 31

1
2
(1, 2; 7)

+ 1
2
(6, 1; 7)

+ 1
2
(6, 1; 1)

15 (1, 0, 1, 0, 1) Spin(7) 40

1
2
(6, 1; 7)

+ 1
2
(1, 4; 8)

+ 1
2
(6, 1; 1)
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Table 2.7: Z2-twisted gauge theory fixtures

# Fixture (d2, . . . , d6) G # Hypers Representation

16 (1, 0, 1, 0, 1) Spin(7) 40
1
2
(6, 1; 8)

+ 1
2
(1, 4; 8)

17 (1, 0, 2, 0, 1) Spin(8) 48

1
2
(6; 1, 1, 1; 8v)

+ 1
2
(1; 2, 1, 1; 8v)

+ 1
2
(1; 1, 2, 1; 8s)

+ 1
2
(1; 1, 1, 2; 8c)

18 (1, 0, 2, 0, 2) Spin(8) 64
1
2
(6, 1; 8)

+ (E8)12

19
, Sp(2))(

(1, 0, 0, 0, 0) SU(2) 10
1
2
(2, 4; 2)

+ 1
2
(1, 4; 1)
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Table 2.7: Z2-twisted gauge theory fixtures

# Fixture (d2, . . . , d6) G # Hypers Representation

20
, Sp(2))( (1, 0, 0, 0, 0) SU(2) 8

1
2
(1, 2, 4; 2)

or
1
2
(1, 1, 5; 2)

+1
2
(1, 3, 1; 2)

21 (1, 0, 1, 0, 0) Sp(2) 29

1
2
(2, 1, 1; 5)

+ 1
2
(1, 1, 8; 4)

+ 1
2
(1, 2, 8v; 1)

22 (2, 0, 1, 0, 0) Sp(2) ×
SU(2)

32

1
2
(2, 2, 1; 4, 1)

+ 1
2
(1, 1, 8v; 4, 1)

+ 1
2
(1, 1, 8v; 1, 2)

23 (1, 0, 0, 0, 0) SU(2) 15

1
2
(2, 1, 2; 2)

+ 1
2
(1, 3, 1; 2)

+ 1
2
(1, 1, 1; 2)

+ 1
2
(2, 3, 1; 1)

+ 1
2
(1, 3, 2; 1)

+ 1
2
(2, 1, 1; 1)

119



Table 2.7: Z2-twisted gauge theory fixtures

# Fixture (d2, . . . , d6) G # Hypers Representation

24 (1, 0, 1, 0, 0) Sp(2) 24

1
2
(1, 2, 4; 4)

+ 1
2
(2, 1, 1; 5)

+ 1
2
(2, 3, 1; 1)

25 (1, 0, 1, 0, 0) Sp(2) 24
1
2
(2, 2, 1; 4)

+ 1
2
(1, 2, 4; 4)

26 (1, 0, 2, 0, 0) Sp(2) 32
1
2
(1, 1; 1, 2, 2; 4)

+ (E7)8

27 (1, 0, 2, 0, 1) Sp(3) 48
1
2
(1, 1, 8; 6)

+ (E7)8
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Table 2.7: Z2-twisted gauge theory fixtures

# Fixture (d2, . . . , d6) G # Hypers Representation

28 (1, 1, 0, 0, 0) SU(3) 21

(2, 1, 1; 3)

+ (1, 2, 1; 3)

+ (1, 1, 2; 3)

+ (2, 1, 1; 1)

+ 1
2
(1, 1, 2; 1)

29 (1, 1, 1, 0, 0) SU(4) 30

1
2
(1, 2, 1; 6)

+ 1
2
(2, 1, 1; 6)

+ (2, 1, 1; 1)

+ (1, 1, 4; 4)

30 (1, 1, 1, 0, 0) SU(4) 30

1
2
(1, 2, 1; 6)

+ (2, 1, 1; 4)

+ (1, 1, 4; 4)

31 (1, 1, 2, 0, 0) SU(4) 38

(2, 1; 1, 1, 1; 4)+
1
2
(1, 2; 1, 1, 1; 6)

+ (E7)8
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Table 2.7: Z2-twisted gauge theory fixtures

# Fixture (d2, . . . , d6) G # Hypers Representation

32 (1, 1, 2, 0, 1) Sp(3) 54
1
2
(1, 1, 8; 6)+

SU(2)6 × SU(8)8

33 (1, 1, 0, 0, 0) SU(3) 22

(2, 1; 3)

+ (1, 4; 3)

+ (2, 1; 1)

+ 1
2
(1, 4; 1)

34 (1, 0, 0, 0, 1) G2 29

1
2
(1, 1, 2; 7)

+ 1
2
(1, 4, 1; 7)

+ 1
2
(2, 1, 1; 7)

+ 1
2
(2, 1, 1; 1)

35 (1, 0, 1, 0, 1) Spin(7) 38

1
2
(2, 1, 1; 7)

+ 1
2
(1, 4, 1; 7)

+ 1
2
(1, 1, 4; 8)

+ 1
2
(2, 1, 1; 1)
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Table 2.7: Z2-twisted gauge theory fixtures

# Fixture (d2, . . . , d6) G # Hypers Representation

36 (1, 0, 1, 0, 1) Spin(7) 38

1
2
(2, 1, 1; 8)

+ 1
2
(1, 1, 4; 8)

+ 1
2
(1, 4, 1; 7)

37 (1, 0, 2, 0, 1) Spin(7) 46

1
2
(2, 1; 1, 1, 1; 8)+

1
2
(1, 4; 1, 1, 1; 7)

+ (E7)8

38 (1, 0, 2, 0, 2) Spin(7) 62

1
2
(1, 4, 1; 7)+

Spin(16)12

× SU(2)8

39 (1, 1, 1, 0, 0) SU(4) 32
(2, 1; 4)

+ (1, 6; 4)
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Table 2.7: Z2-twisted gauge theory fixtures

# Fixture (d2, . . . , d6) G # Hypers Representation

40 (1, 0, 1, 0, 1) Spin(7) 39

1
2
(2, 1, 1; 8)

+ 1
2
(1, 6, 1; 8)

+ 1
2
(1, 1, 2; 7)

41 (1, 0, 2, 0, 1) Spin(8) 48

1
2
(2, 1, 1; 8v)

+ 1
2
(1, 6, 1; 8v)

+ 1
2
(1, 1, 4; 8s/c)

42 (1, 0, 2, 0, 1) Spin(8) 48

1
2
(2, 1, 1; 8c/s)

+ 1
2
(1, 6, 1; 8v)

+ 1
2
(1, 1, 4; 8s/c)

43 (1, 0, 3, 0, 1) Spin(8) 56

1
2
(2, 1; 1, 1, 1; 8s/c)

+
1
2
(1, 6; 1, 1, 1; 8v)

+ (E7)8
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Table 2.7: Z2-twisted gauge theory fixtures

# Fixture (d2, . . . , d6) G # Hypers Representation

44 (1, 0, 3, 0, 2) Spin(8) 72

1
2
(1, 6, 1; 8v)

+ Spin(16)12

× SU(2)8

2.3 Applications

2.3.1 Spin(2N) and Sp(N − 1) Gauge Theory

For general N , SO(2N) gauge theory with 2(N−1) fundamental hyper-

multiplets, and Sp(N − 1) gauge theory with 2N fundamentals, are supercon-

formal. Their construction is well-understood from the orientifold perspective

[28, 29, 30, 31, 32]. In particular, the (2,0) theory of type DN is the theory

on 2N coincident M5-branes at an orientifold singularity and, in that real-

ization of these theories [11], the key building block is the fixture consisting

of a twisted-sector minimal puncture, a twisted-sector full puncture and an

untwisted-sector full puncture,
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[12N][12(N−1)]

1
2(2(N − 1), 2N)

[2(N − 1)]

which is a free-field fixture transforming as a bifundamental half-hypermultiplet

of Sp(N − 1)× SO(2N). Taking two of these fixtures and connecting them

with a
[12N ]

SO(2N)←−−−−−−→
[12N ]

cylinder yields the aformentioned SO(2N) gauge

theory. Connecting them, instead, with a
[12(N−1)]

Sp(N−1)←−−−−−−−→
[12(N−1)]

cylinder yields

the Sp(N − 1) gauge theory.

Here, we read off the S-dual strong-coupling descriptions. In the SO(2N)

case,

[2(N − 1)]

[2(N − 1)]

([2N − 3, 13], SU(2)) [2N − 3, 13]

[12(N−1)]

[12(N−1)]

SU(2)

empty SU(2)8 × Sp(2(N − 1))2N SCFT
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we have an SU(2) gauging of the SU(2)8 × Sp
(
2(N − 1)

)
2N

SCFT. In the

Sp
(
2(N − 1)

)
case,

[2(N − 1)]

[2(N − 1)]

([2N − 3, 13], SU(2)) [2N − 3, 13]

[12N]

[12N]

SU(2)

empty SU(2)8 × Spin(4N)4(N−1) SCFT

we have an SU(2) gauging of the SU(2)8 × Spin(4N)4(N−1) SCFT.

For completeness, let us note that the other Sp(N) gauge theory which

is superconformal for arbitrary N > 1, namely the one with one hypermultiplet

in the traceless antisymmetric tensor and four hypermultiplets in the funda-

mental representation, was already realized (with the addition of a single free

hypermultiplet) in the untwisted sector of the A2N−1 theory [3]
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[N2]

[N2] [N2]

[N, N − 1, 1]

[12N]([12N], Sp(N)) Sp(N)

2( ) ) + 1(1) + 2( )1(
For this theory, by contrast, all the degeneration limits are (isomorphic) weakly-

coupled Lagrangian field theories. The flavour symmetry group for this family

of field theories is F = SU(2)2N2−N−1 × Spin(8)2N . As is the case for SU(2),

Nf = 4, the S-duality, which acts as an S3 symmetry onM0,4, acts as outer au-

tomorphisms of the Spin(8) flavour symmetry. Moreover, the Seiberg-Witten

curve takes the absurdly simple form

0 = λ2N +
N∑
k=1

u2k η
kλ2(N−k)

where the quadratic differential

η(z) =
z13z24(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)
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2.3.2 Spin(8), Spin(7) and Sp(3) Gauge Theory

2.3.2.1 Spin(8) Gauge Theory

Spin(8) gauge theory, with matter in the nv(8v) + ns(8s) + nc(8c), is

superconformal for nv + ns + nc = 6. Up to permutations, related to triality,

the list of possible values for nv, ns, nc is quite short and we discussed most of

them in [5]. There were, however, two cases which were not realizable with

only untwisted sector punctures.

One is nv = 6, which is a special case of the construction in §4.4.1. The

other case is nv = 5, ns = 1 (which, as we shall presently see, lies in the same

moduli space as nv = 5, nc = 1).

Consider the 4-punctured sphere

Spin(8)

3(8v) 2(8v) + 1(8s/c)

This is a weakly-coupled Spin(8) gauge theory with matter in either the 5(8v)+

1(8s) or the 5(8v) + 1(8c). The two realizations are exchanged by dragging the
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puncture around one of the twisted-sector punctures and returning it

to its original location.

The strong coupling limits are SU(2) gauge theories

SU(2)

Sp(6)8 × SU(2)8 SCFT

, SU(2))(

empty

(where we gauge an SU(2) subgroup of Sp(6)8) and

SU(2)

3
2(2) Sp(5)8 × SU(2)5 SCFT

, SU(2))(

where the SU(2)5 is gauged.
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2.3.2.2 Spin(7) Gauge Theory

Similar to the case of Spin(8) gauge theory, realizations of most cases

of conformally-invariant Spin(7) gauge theory were already discussed in [5].

Here we show realizations of the missing two cases.

5(7)

With the addition of three free hypermultiplets, we have a realization

of the theory with 5 hypermultiplets in the vector representation as

, Spin(7))( Spin(7)

2(7) 3(7) + 3(1)

The S-dual theory is an SU(2) gauging of the Sp(5)7 × SU(2)8 SCFT, plus 3

free hypermultiplets.
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SU(2)

Sp(5)7 × SU(2)8 SCFT + 3(1)

, SU(2))(

empty

1(8) + 4(7)

The Spin(7) gauge theory, with one spinor and four vectors, can be

realized in a couple of different ways. With the addition of three free hyper-

multiplets, we have

, Spin(7))(Spin(7)

1(8) + 1(7)3(7) + 3(1)

There are two S-dual descriptions. Both are SU(2) gauge theories; one with
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a half-hypermultiplet in the fundamental, gauging an SU(2) subgroup of the

Sp(5) symmetry of the Sp(5)7 × SU(2)8 SCFT,

SU(2)

Sp(5)7 × SU(2)8 SCFT + 3(1)1
2(2)

, SU(2))(

the other with three half-hypermultiplets in the fundamental, gauging the

SU(2)5 of the Sp(4)7 × SU(2)5 SCFT

SU(2)

Sp(4)7 × SU(2)5 SCFT + 3(1)3
2(2)

, SU(2))(

Another realization, with the addition of only two free hypermultiplets, is
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Spin(7)

2(7) 1(8) + 2(7) + 2(1)

, Spin(7))(

where the S-dual theories are

SU(2)

Sp(5)7 × SU(2)8 SCFT + 1
2(2) + 2(1)

, SU(2))(

empty
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and

SU(2)

Sp(4)7 × SU(2)5 SCFT + 2(1)3
2(2)

, SU(2))(

2.3.2.3 Sp(3) Gauge Theory

In this section, we will consider various cases of Sp(3) gauge theory,

with vanished β-function. We have already discussed the theory with 8(6) and

the theory with 1(14) + 4(6) (special cases of the discussion of §4.4.1).

The 14′, the traceless 3-index antisymmetric tensor representation, is

pseudoreal and has index ` = 5. So we can replace five fundamental (half-

)hypermultiplets with a 14′ (half-)hypermultiplet.

11
2

(6) + 1
2
(14′) With one half-hypermultiplet in the 14′, we have
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Sp(3)

3
2(6) + 1

2(14′)4(6)

z1

z2

z3 z4

(2.12)

At strong coupling, we have an Sp(2) gauging of the (E8)12 SCFT

Sp(2)

(E8)12

, Sp(2))(

empty

The third boundary point involves a gauge-theory fixture
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∅

Sp(3) + 11
2 (6) + 1

2(14′)empty

, ∅ )(

3(6) + 1(14′) With two half- or one full-hypermultiplet in the 14′, we have

Sp(3)

3
2(6) + 1

2(14′)3
2(6) + 1

2(14′)

z1 z2

z3 z4

(2.13)

whose S-dual is an SU(2) gauging of the SU(4)12×SU(2)7×U(1) SCFT, with

an additional half-hypermultiplet in the fundamental:
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SU(2)

SU(4)12 × SU(2)7 × U(1) SCFT1
2(2)

, SU(2))(

Because, to our knowledge, the Seiberg-Witten solution to this theory has not

been studied in the literature, let us present some of the details, here. Setting

the locations of the punctures on C = CP1 as in (2.13), the Seiberg-Witten

curve is the locus in T ∗C given by the equation

0 = λ8 +
3∑

k=1

λ8−2kφ2k(z) + (φ̃(z))
2

(2.14)

where λ = ydz is the Seiberg-Witten differential. In the case at hand,

φ2(z) =
u2z14z23(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ4(z) =
z14z23

[
1
4
u2

2(z − z1)(z − z2)z14z23 + u4(z − z3)(z − z4)z2
12

]
(dz)4

(z − z1)3(z − z2)3(z − z3)2(z − z4)2

φ6(z) =
u6z

2
14z

2
23z

2
12(dz)6

(z − z1)4(z − z2)4(z − z3)2(z − z4)2

φ̃(z) = 0

Setting (z1, z2, z3, z4)→ (0,∞, x, 1), (2.14) simplifies to
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0 = y2

[
y6 + y4 u2

z(z − 1)(z − x)

+y2 1

z(z − 1)(z − x)

( 1
4
u2

2

(z − 1)(z − x)
+
u4

z2

)
+

u6

z4(z − 1)2(z − x)2

]
(2.15)

The S-duality group of this theory is Γ(2), and we have f(τ) = x.

Repeating the analysis for (2.12), we find the Seiberg-Witten curve for

Sp(3) with 11
2

(6) + 1
2
(14′) to be

0 = y2

[
y6 + y4 u2

z(z − 1)(z − x)

+y2 1

z(z − 1)(z − x)3

(
1
4
u2

2

(x− 1)

(z − 1)
+ u4

)
+

u6(x− 1)

z(z − 1)2(z − x)5

]
(2.16)

In this case, the moduli space is the branched double-cover ofM0,4, parametrized

by w2 = x. The gauge coupling is

f(τ) =
2w

1 + w

In particular, the S-duality group is the Γ0(2), generated by

T : τ 7→ τ + 1, ST 2S : τ 7→ τ

1− 2τ
.

Here, T acts as the deck transformation, w 7→ −w, and ST 2S acts trivially

on the w-plane. The theory at f(τ) = 0 is the Lagrangian field theory; at

f(τ) = 1,∞ (which project to x = 1) we have the Sp(2) gauging of the (E8)12

SCFT. The gauge theory fixture, at x =∞, is the theory at the Z2-invariant

interior point of the moduli space, f(τ) = 2.
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Other cases The remaining cases of Sp(3) with vanishing β-function have

matter in the

• 2(14)

• 3
2
(6) + 1(14) + 1

2
(14′)

• 1
2
(6) + 3

2
(14′)

Unfortunately, we don’t know how to realize these theories as compactifications

from 6 dimensions. Presumably, the methods of [33] can be applied, to recover

these cases as well.

2.3.3 Higher Genus

In almost all of the discussion in this paper, we have taken C to be

genus-zero. We should close with at least one example of higher-genus, so that

we can see the effect of twists around handles of C.

Consider a genus-one curve, with one minimal puncture, in the D4

theory.
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H1(T 2−p,Z2) = (Z2)2. Under the action of the modular group, H1(T 2−p,Z2)

breaks up into two orbits: the zero orbit (the “untwisted theory”) and the

nonzero orbit (“the twisted theory”).

The untwisted theory is a Spin(8) gauging of the (E8)12 SCFT. There

are three inequivalent index-2 embeddings of Spin(8) in E8. They can be char-

acterized by how the 248 decomposes (up to outer automorphisms of Spin(8)).

Either

248 = 3(1) + 5(28) + 35v + 35s + 35c (2.17a)

or

248 = 1 + 2(8v) + 3(28) + 35v + 2(56v) (2.17b)

or

248 = 8v + 8s + 8c + 2(28) + 56v + 56s + 56c (2.17c)

The untwisted theory corresponds to (2.17a). The twisted theory, de-

pending on the S-duality frame chosen, corresponds either to a Spin(8) gauging
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of the (E8)12 SCFT using the embedding (2.17b), or to an Sp(3) gauging of

the Sp(6)8 SCFT.

For the untwisted theory, the gauge theory moduli space is the funda-

mental domain for PSL(2,Z) in the UHP, and τ is the modular parameter of

the torus. For the twisted theory, the moduli space of the gauge theory is the

moduli space of pairs (C, γ), where γ is a nonzero element of H1(C,Z2). This

is the fundamental domain of Γ0(2), as discussed in §2.1.3.
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Chapter 3

Spin(n) Gauge Theories with Spinors

3.1 Introduction

N = 2 supersymmetric Spin(n) gauge theory, with n − 2 hypermulti-

plets in the vector representation, is superconformal for any n > 2, and the

Seiberg-Witten solutions are known from the mid 1990’s [34, 35]. Replacing

some number of vectors by hypermultiplets in spinor representations is only

possible for sufficiently low n. The corresponding Seiberg-Witten solutions

do not seem to be known1. For Spin(5) ' Sp(2) and Spin(6) ' SU(4), the

solutions were presented in [3, 4]. The solutions to Spin(7), Spin(8) appeared

in our previous papers [5, 17] (see [33] for an alternative formulation). As

a further application of [5, 17], we will discuss Spin(n) gauge theories for

n = 9, 10, . . . , 14, with matter content such that β = 0. These are all of the

remaining cases where one can have matter in the spinor representation. For

n > 14, only matter in the vector representation is compatible with β ≤ 0 2.

These 4D gauge theories can be obtained by compactifying [1, 6] a 6D

1The solutions (with arbitrary masses for the vector and spinor hypermultiplets) of the
asymptotically-free theories for n = 8, 10, 12 were constructed in [36]. The status of Seiberg-
Witten solutions, to various N = 2 supersymmetric gauge theories, was recently reviewed
in [37].

2This chapter is based on [38].
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(2,0) theory of type DN on a 4-punctured sphere, where the punctures are

labeled by nilpotent orbits in dN (or in cN−1 for twisted-sector punctures)

[5, 7, 17, 11, 18]. When the 4-punctured sphere degenerates into a pair of

3-punctured spheres (“fixtures”), connected by a long thin cylinder, the gauge

theory description is weakly-coupled. Fixtures with only hypermultiplets in

the vector representation are, necessarily, twisted. With at least one (half-

)hypermultiplet in the spinor representation, we can find an untwisted fixture

and — wherever possible — we prefer to work in the untwisted theory.

From these realizations as 4-punctured spheres, we construct the cor-

responding Seiberg-Witten geometries, and discuss the strong-coupling S-dual

realizations [2] of the gauge theories.

3.2 Seiberg-Witten Geometry

3.2.1 Seiberg-Witten curve

In the DN theory, the Seiberg-Witten curve, Σ ⊂ tot(KC), is the spec-

tral curve (in the vector representation) for DN . In other words, it can be

written as the locus

0 = λ2N + φ2(z)λ2N−2 + φ4(z)λ2N−4 + · · ·+ φ2N−2(z)λ2 + φ̃(z)2 (3.1)

where the Seiberg-Witten differential, λ = ydz, is the tautological 1-form on

KC . Σ is a branched cover of C, of rather high genus. But it admits an obvious

involution ι : λ → −λ. The quotient by this involution is a curve C̃, also a
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branched cover of C. One finds3 that g(Σ) − g(C̃) = N . The SW solution is

obtained by computing the periods of λ over the cycles which are anti-invariant

under ι. Said differently, the fibers of the Hitchin integrable system are the

Prym variety for Σ→ C̃.

For the Spin(2N) gauge theories considered below, the above descrip-

tion is completely adequate, as φ̃(z) is nowhere-vanishing on C. For the

Spin(2N − 1) gauge theories, φ̃(z) vanishes identically. So Σ is reducible

0 = λ2(λ2N−2 + φ2(z)λ2N−4 + φ4(z)λ2N−6 + · · ·+ φ2N−2(z)) .

Let Σ0 be the component

0 = λ2N−2 + φ2(z)λ2N−4 + φ4(z)λ2N−6 + · · ·+ φ2N−2(z) .

As before, Σ0 admits an involution ι : λ → −λ, with quotient C̃0 = Σ0/ι,

and the SW solution, for the Spin(2N − 1) gauge theory, is given by the

periods of λ on the anti-invariant cycles. There is one subtlety which did not

occur in the previous case: φ2N−2(z) typically does have zeroes on C, which

means that Σ0 is slightly singular. It has ordinary double-points over the

zeroes of φ2N−2(z). As in Hitchin’s original paper [42], we actually work over

3For many purposes, it’s convenient to replace Σ by the compact curve

0 = λ2N + φ2(z)λ2N−2µ2 + φ4(z)λ2N−4µ4 + · · ·+ φ2N−2(z)λ2µ2N−2 + φ̃(z)2µ2N

in tot(P (KC ⊕ O)). Away from the punctures, µ 6= 0 and we can scale it to 1. At the
punctures, µ = 0, and the SW curve has interesting ramification over the punctures. The
AN−1 case [39, 40] is explained in detail in [41]. The generalization to DN has a few
subtleties, which we won’t attempt to explicate here.
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the resolutions4, Σ̂0 → C̃0, whose Prym variety has the desired dimension,

g(Σ̂0)− g(C̃0) = N − 1.

3.2.2 Calabi-Yau geometry

An alternative formulation [43, 44], more directly related to the Type-

IIB description of these 4D theories is as follows. Consider a family of non-

compact Calabi-Yau 3-folds, X~u, realized as the hypersurface

0 = w2 + yx2 − yN−1 − φ2(z)yN−2 − φ4(z)yN−3 − · · · − φ2N−2(z)− 2φ̃(z)x

in the total space of the bundle V =
(
K

(N−1)
C ⊕K(N−2)

C ⊕K2
C

)
→ C. Here, ~u

are the Coulomb branch parameters, on which the φk(z) depend, and

w = w̃(dz)N−1, x = x̃(dz)N−2, y = ỹ(dz)2

are the tautological differentials on V . The gs → 0 limit of Type IIB on

R3,1 ×X~u is the 4D N = 2 field theory (decoupled from the bulk gravity).

X~u has a collection of 3-cycles of the form of an S2 in the fiber over a

curve on C. The Seiberg-Witten solutions to the Spin(2N) theories below are

constructed from the periods of the holomorphic 3-form,

Ω =
dx̃ ∧ dỹ ∧ dz

w̃

over a (rational) symplectic basis of these 3-cycles. For the Spin(2N − 1)

theories, φ̃(z) ≡ 0, and X~u has an involution ι : (w, x) → (−w,−x), under

4In the D4 theory, there are examples of Spin(8) gauge theory, with matter in the
ns(8s) +nc(8c) + (6−ns−nc)(8v), where φ̃(z) has isolated zeroes on C. Over those points,
Σ has ordinary double points and, similarly, we work on the resolution, Σ̂.
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which Ω is invariant. ι acts by exchanging two of the S2s in the fiber (fixing

the rest). Integrating Ω over the invariant cycles yields the 2(N − 1) periods

which comprise the solution for the Spin(2N − 1) theories.

3.2.3 Dependence on the gauge coupling

The Seiberg-Witten solutions to the β = 0 gauge theories, which are our

focus, have elaborate (but holomorphic) dependence [45] on the complexified

gauge coupling

τ =
θ

π
+

8πi

g2
.

In particular, any such theory, which can be realized by compactifying the

(2,0) theory on a 4-punctured sphere, automatically has a symmetry under

Γ(2) ⊂ PSL(2,Z), generated by

T 2 : τ 7→ τ + 2, ST 2S : τ 7→ τ

1− 2τ
.

That is, the dependence on the gauge coupling is through the function

f(τ) ≡ −θ
4
2(0, τ)

θ4
4(0, τ)

= −
(
16q1/2 + 128q + 704q3/2 + . . .

)
where q = e2πiτ .

In the untwisted theory, f(τ) is simply identified with the cross-ratio

of the 4-punctured sphere:

f(τ) = x ≡ z13z24

z14z23

. (3.2)
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The limit x → 0 is the usual weak-coupling limit. x → 1 and x → ∞ are

limits which admit an alternative (physically-distinct) S-dual description as a

weakly coupled gauge theory.

When the punctures at z1 and z2 are identical, then the theory has a

larger symmetry under Γ0(2) ⊃ Γ(2), where the extra generator acts on the

x-plane as

S : x 7→ 1

x
.

The theories, below, with two (one full and one minimal) twisted punctures

and two untwisted punctures, have a similar story, except that the relation

between f(τ) (which parametrizes the gauge theory moduli space) and the

cross-ratio is more complicated. The gauge theory moduli space is a branched

double-cover [17] of the moduli space of the 4-punctured sphere,M0,4. Instead

of (3.2),

w2 = x ≡ z13z24

z14z23

(3.3)

and the gauge coupling

f(τ) =
w − 1

w + 1
. (3.4)

In particular, this means that x → 0 corresponds to f(τ) → −1 (i.e. τ → i),

which is an interior point of the gauge theory moduli space and intrinsically

strongly coupled. As in our previous works on the twisted sector [4, 17],

we denote these peculiar degenerations as involving a “gauge theory fixture.”

The other degeneration limits have more prosaic interpretations. The limit

f(τ) → 1 projects to x → ∞ and the limits f(τ) → 0 and f(τ) → ∞ (which

have isomorphic physics) both project to x→ 1.
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In presenting the solutions, below, we write the dependence on the

positions of the four punctures in a manifestly PSL(2,C)-invariant form. For

calculational purposes, it is invariably easier to fix the PSL(2,C) symmetry

by setting (z1, z2, z3, z4) = (0,∞, x, 1).

3.3 Spin(2N) + (2N −2)(V ) and Spin(2N −1) + (2N −3)(V )

Just as Spin(2N) gauge theory with 2(N − 1) fundamentals is realized

as the compactification of the DN theory with four Z2-twisted punctures

[12N] Spin(2N) [12N]

(N − 1)(V) (N − 1)(V)

[2(N − 1)]
z2

[12(N−1)]
z4

[12(N−1)]
z3

[2(N − 1)]
z1

, (3.5)

there is a universal realization of Spin(2N−1) with 2N−3 fundamentals plus

(N − 1) free hypermultiplets as a four-punctured sphere in the (twisted) DN

theory

Spin(2N − 1) [12N]

(N − 2)(V) (N − 1)(V) + (N − 1)(1)

([12N], Spin(2N − 1))
[2(N − 1)]

z1

[2(N − 1)]
z2

[12(N−1)]
z3

[2, 12(N−2)]
z4

. (3.6)
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The Seiberg-Witten curve corresponding to (3.5) takes the form of (3.1) where

the invariant k-differentials are

φ2k(z) =
u2k z14z23z

2(k−1)
34 (dz)2k

(z − z1)(z − z2)(z − z3)2k−1(z − z4)2k−1

φ̃(z) =
ũ z

1/2
14 z

1/2
23 z

N−1
34 (dz)N

(z − z1)1/2(z − z2)1/2(z − z3)(2N−1)/2(z − z4)(2N−1)/2
.

The Seiberg-Witten curve for (3.6) takes the same form, but with φ̃ ≡ 0.

This pattern will repeat, in many of the examples below. The Spin(2N−

1) theory, with the same number of hypermultiplets in the spinor, but one

fewer in the vector representation, is obtained by replacing the puncture at

z4, with one where the last box in the Young diagram is shifted to a new

row. Physically, this corresponds to using one of the vector hypermultiplets

to Higgs Spin(2N) → Spin(2N − 1). The “surprise” is that integrating out

the massive modes has such a simple effect on the Coulomb branch geometry.

The strong-coupling dual of (3.6) is an SU(2) gauging of the Sp(2N −

3)2N−1 × SU(2)8 SCFT, with N − 1 additional free hypermultiplets

[2(N − 1)]

SU(2)
[12(N−1)][2(N − 1)]

Sp(2N − 3)2N−1 × SU(2)8 SCFT

[2, 12(N−2)]

([2N − 3, 13], SU(2)) [2N − 3, 13]

empty (N − 1)(1) +
.

These theories have vanishing β-function for any N .
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Including hypermultiplets in spinor representations will follow a similar

pattern, where we will realize Spin(2N − 1) and Spin(2N) gauge theories as

4-punctured spheres in the DN theory. The Seiberg-Witten curve for each of

these theories takes the form (3.1). We list the invariant k-differentials for

each theory below.

As we saw above, the solutions for Spin(2N − 1) is obtained from

the corresponding Spin(2N) theory (i.e, the theory with the same number of

spinors (ignoring their chirality, for N even) and one more vector) by setting

ũ = 0.

3.4 Spin(9) and Spin(10) Gauge Theories

All of the following arise in the D5 theory, possibly with Z2-twisted

punctures.

3.4.1 Spin(9)

3.4.1.1 Spin(9) + 1(16) + 5(9)

, Spin(9))( Spin(9)

1(16) + 1(9) 4(9) + 4(1)

z2

z1

z4

z3
. (3.7)

The other degeneration limits yield a gauge theory fixture
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∅

empty

, ∅ )(

and an Sp(2) gauging of the Sp(7)9 SCFT + 3
2
(4) + 4(1)

Sp(2), Sp(2))(

3
2(4) 4(1) +

Sp(7)9 SCFT

.

3.4.1.2 Spin(9) + 2(16) + 3(9)

, Spin(9))( Spin(9)

1(16) + 1(9) 1(16) + 2(9) + 2(1)

z1z2

z3z4

. (3.8)
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The S-dual theory is an SU(2) gauging of the Sp(3)16×Sp(2)9×SU(2)7SCFT+

1
2
(2) + 2(1)

SU(2)

1
2(2)

, SU(2))(
Sp(3)16 × Sp(2)9 × SU(2)7 + 1

2(4, 1, 1, 1)

.

3.4.1.3 Spin(9) + 3(16) + 1(9)

, Spin(9))( Spin(9)

1(16) + 1(9) 2(16)

z1

z3
z4

z2

. (3.9)

The S-dual theories are an SU(2) gauging of the Sp(3)16 × SU(2)8 × SU(2)9

SCFT

SU(2)
, SU(2))(

empty Sp(3)16 × SU(2)8 × SU(2)9
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and a G2 gauging of the (E7)16 × SU(2)9 SCFT5

G2

empty

, G2)(

(E7)16 × SU(2)9

.

3.4.2 Spin(10)

3.4.2.1 Spin(10) + 1(16) + 6(10)

Spin(10)

1(16) + 2(10) 4(10)

z2

z1

z4

z3
. (3.10)

5This interacting fixture is another realization of the (E7)8n × SU(2)(n−1)(4n+1) SCFT,

which arises on the world volume of n D3-branes probing a III∗ singularity in F-theory (see
[46, 47, 48] and §5.3 of [49]).
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The other degenerations involve a gauge theory fixture

∅
, ∅ )(

empty

and an Sp(2) gauging of the Sp(8)10 SCFT + 1(4)

Sp(2), Sp(2))(

1(4) Sp(8)10 SCFT

.

The invariant k-differentials for (3.10) are given by

φ2(z) =
u2 z13z24(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ4(z) =

[
u4 (z − z3)z24 − 1

4
u2

2 (z − z2)z34

]
z13z

2
24(dz)4

(z − z1)(z − z2)3(z − z3)2(z − z4)3

φ6(z) =
u6 z13z23z

4
24(dz)6

(z − z1)(z − z2)5(z − z3)2(z − z4)4 (3.11)

φ8(z) =
u8 z13z23z

6
24(dz)8

(z − z1)(z − z2)7(z − z3)2(z − z4)6

φ̃(z) =
ũ z

1/2
13 z

1/2
23 z

4
24(dz)5

(z − z1)1/2(z − z2)9/2(z − z3)(z − z4)4
.

155



The gauge theory moduli space is a branched double-cover of M0,4 and the

gauge couplings are given by (3.4).

The invariant k-differentials for (3.7) are as above, but with φ̃ ≡ 0.

3.4.2.2 Spin(10) + 2(16) + 4(10)

Spin(10)

1(16) + 2(10)1(16) + 2(10)

z1z2

z3z4

(3.12)

The S-dual is an SU(2) gauging of the Sp(4)10×SU(2)16×SU(2)7×U(1) SCFT+

1
2
(2)

SU(2)

1
2(2)

, SU(2))(

Sp(4)10 × SU(2)16 × SU(2)7 × U(1)

.
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The invariant k-differentials for (3.12) are given by

φ2(z) =
u2 z12z34(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ4(z) =
[u4 (z − z1)(z − z2)z34 + 1

4
u2

2 ((z − z2)(z − z3)z14

(z − z1)2(z − z2)2(z − z3)3(z − z4)3

−(z − z1)(z − z4)z23)]z12z
2
34(dz)4

φ6(z) =
u6 z

2
12z

4
34(dz)6

(z − z1)2(z − z2)2(z − z3)4(z − z4)4 (3.13)

φ8(z) =
u8 z

2
12z

6
34(dz)8

(z − z1)2(z − z2)2(z − z3)6(z − z4)6

φ̃(z) =
ũ z12z

4
34(dz)5

(z − z1)(z − z2)(z − z3)4(z − z4)4 .

The k-differentials for (3.8) are as above, but with φ̃ ≡ 0.

Since we are in the untwisted theory, the gauge theory moduli space is

M0,4 (or more precisely, in this case, its Z2 quotient), and the gauge coupling

is given by (3.2).

3.4.2.3 Spin(10) + 3(16) + 2(10)

Spin(10)

2(16)1(16) + 2(10)

z1

z3
z4

z2

. (3.14)

The S-dual theories are an SU(2) gauging of the SU(3)32×Sp(2)10×SU(2)8×
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U(1) SCFT

SU(2)
, SU(2))(

empty SU(3)32 × Sp(2)10 × SU(2)8 × U(1)

and a G2 gauging of the (E6)16 × Sp(2)10 × U(1) SCFT

G2

empty

, G2)(

(E6)16 × Sp(2)10 × U(1) .

The invariant k-differentials for (3.14) are given by

φ2(z) =
u2 z12z34(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ4(z) =

[
u4 (z − z2)z14 + 1

4
u2

2 (z − z4)z12

]
z12z

2
34(dz)4

(z − z1)2(z − z2)2(z − z3)2(z − z4)3

φ6(z) =

[
u6 (z − z1)z34 + 1

2
u2u4 (z − z4)z13

]
z2

12z
3
34(dz)6

(z − z1)3(z − z2)2(z − z3)4(z − z4)4 (3.15)

φ8(z) =

[
u8 (z − z1)z34 + 1

4
u2

4 (z − z4)z13

]
z14z

2
12z

4
34(dz)8

(z − z1)4(z − z2)2(z − z3)5(z − z4)6

φ̃(z) =
ũ z14z12z

3
34(dz)5

(z − z1)2(z − z2)(z − z3)3(z − z4)4 .

The k-differentials for (3.9) are as above, but with φ̃ ≡ 0.
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3.4.2.4 Spin(10) + 4(16)

Spin(10)

2(16)2(16)

z1z2

z3z4

. (3.16)

The S-dual theory is an Sp(2) gauging of the SU(4)32 × Sp(2)10 SCFT + 1(4)

Sp(2)

1(4)

, Sp(2))(

SU(4)32 × Sp(2)10

.
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For this theory, the k-differentials characterizing the Seiberg-Witten curve are

φ2(z) =
u2 z12z34(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ4(z) =
u4 z

2
12z

2
34(dz)4

(z − z1)2(z − z2)2(z − z3)2(z − z4)2

φ6(z) =
[u6 (z − z1)(z − z2)z34 − 1

2
u2(u4 − 1

4
u2

2)((z − z1)(z − z3)z24

(z − z1)3(z − z2)3(z − z3)4(z − z4)4

−(z − z2)(z − z4)z13)]z2
12z

3
34(dz)6

φ8(z) =
[u8 (z − z1)(z − z2)z34 − 1

4
(u4 − 1

4
u2

2)
2
((z − z1)(z − z3)z24

(z − z1)4(z − z2)4(z − z3)5(z − z4)5

−(z − z2)(z − z4)z13)]z3
12z

4
34(dz)8

φ̃(z) =
ũ z2

12z
3
34(dz)5

(z − z1)2(z − z2)2(z − z3)3(z − z4)3 . (3.17)

In this case, there are no hypermultiplets in the vector, which one could use

to Higgs Spin(10)→ Spin(9). Equivalently, it’s not possible to move the last

box, in the Young diagram at z4, to a new row while keeping it a D-partition.

So there is no corresponding Spin(9) gauge theory.

3.5 Spin(11) and Spin(12) Gauge Theories

These arise in the compactification of the D6 theory, possibly with Z2-

twisted punctures.
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3.5.1 Spin(11)

3.5.1.1 Spin(11) + 1
2
(32) + 7(11)

Spin(11)

1
2(32) + 2(11) 5(11) + 5(1)

, Spin(11))(

z1

z2

z3

z4

. (3.18)

The other degenerations involve a gauge theory fixture

∅
, ∅ )(

empty

and an Sp(2) gauging of the Sp(9)11 SCFT + 1
2
(4) + 5(1)

Sp(2)

1
2(4)

, Sp(2))(

5(1) +
Sp(9)11 SCFT

.
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3.5.1.2 Spin(11) + 1(32) + 5(11)

Spin(11)

1
2(32) + 2(11) 1

2(32) + 3(11) + 3(1)

, Spin(11))(
z1

z3
z4

z2
. (3.19)

The S-dual theory is an SU(2) gauging of the Sp(5)11×SU(2)7×U(1) SCFT +

1
2
(2) + 3(1),

SU(2)

1
2(2)

, SU(2))(

Sp(5)11 × SU(2)7 × U(1) + 1
2(6, 1, 1)

.
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3.5.1.3 Spin(11) + 3
2
(32) + 3(11)

Spin(11)

1
2(32) + 2(11) 1(32) + 1(11) + 1(1)

, Spin(11))(
z1

z3z4

z2
. (3.20)

The S-dual theories are an SU(2) gauging of the

Sp(3)11 × SU(2)8 × SU(2)128 SCFT + 1(1)

SU(2)
, SU(2))(

empty Sp(3)11 × SU(2)8 × SU(2)128 + 1
2(2, 1, 1)
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and a G2 gauging6 of the Sp(3)11 × (F4)16 SCFT + 1(1)

G2, G2)(

empty Sp(3)11 × (F4)16 + 1
2(1, 2, 1)

.

3.5.1.4 Spin(11) + 2(32) + 1(11)

Spin(11)

1(32) 1(32) + 1(11) + 1(1)

, Spin(11))(
z1

z3

z2

z4

. (3.21)

The S-dual theory is an Sp(2) gauging of the Sp(3)11×SU(2)2
32 SCFT+ 1

2
(4)+

1(1)

6Note that, here, we use the Lie algebra embedding, (f4)k ⊃ (g2)k × su(2)8k.
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Sp(2)

1
2(4)

, Sp(2))(

Sp(3)11 × SU(2)32
2 + 1

2(2, 1)

.

3.5.2 Spin(12)

3.5.2.1 Spin(12) + 1
2
(32) + 8(12)

Spin(12)

5(12)1
2(32) + 3(12)

z1

z2

z3

z4

. (3.22)
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The other degenerations involve an gauge theory fixture

∅
, ∅ )(

empty

and an Sp(2) gauging of the Sp(10)12 SCFT

Sp(2)

Sp(10)12 SCFTempty

, Sp(2))(
.
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The invariant k-differentials for (3.22) are given by

φ2(z) =
u2 z13z24(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ4(z) =

[
u4 (z − z3)z24 − 1

4
u2

2 (z − z2)z34

]
z13z

2
24(dz)4

(z − z1)(z − z2)3(z − z3)2(z − z4)3

φ6(z) =
[u6 (z − z4)z13 + 2ũ(z − z3)z14]z23z24

4(dz)6

(z − z1)(z − z2)5(z − z3)2(z − z4)5

φ8(z) =
u8 z13z23z

6
24(dz)8

(z − z1)(z − z2)7(z − z3)2(z − z4)6 (3.23)

φ10(z) =
u10 z13z23z24

8(dz)10

(z − z1)(z − z2)9(z − z3)2(z − z4)8

φ̃(z) =
ũz14

1/2z24
9/2z23(dz)6

(z − z1)1/2(z − z2)11/2(z − z3)(z − z4)5
.

For (3.18), they are as above, but with ũ ≡ 0.

3.5.2.2 Spin(12) + 1(32) + 6(12)

Spin(12)

1
2(32) + 3(12) 1

2(32) + 3(12)

z1

z3

z2

z4

. (3.24)

The S-dual theory is an SU(2) gauging of the Sp(6)12×SU(2)7×U(1) SCFT +

1
2
(2)
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SU(2)

1
2(2)

, SU(2))(

Sp(6)12 × SU(2)7 × U(1)

.

3.5.2.3 Spin(12) + 1
2
(32) + 1

2
(32′) + 6(12)

Spin(12)

1
2(32) + 3(12) 1

2(32′) + 3(12)

z1

z3z4

z2
. (3.25)
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The S-dual is an SU(2) gauging of the Sp(6)12 × SU(2)7 SCFT + 1
2
(2)

SU(2)

1
2(2)

, SU(2))(

Sp(6)12 × SU(2)7

.

The invariant k-differentials for (3.24) and (3.25) are

φ2(z) =
u2 z12z34(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ4(z) =
[u4 (z − z1)(z − z2)z34 + 1

4
u2

2 ((z − z2)(z − z3)z14

(z − z1)2(z − z2)2(z − z3)3(z − z4)3

−(z − z1)(z − z4)z23)]z12z
2
34(dz)4

φ6(z) =
[u6 (z − z3)(z − z4)z12 + 2ũ((z − z1)(z − z4)z23

(z − z1)2(z − z2)2(z − z3)5(z − z4)5

∓(z − z2)(z − z3)z14)]z12z34
4(dz)6

φ8(z) =
u8 z

2
12z

6
34(dz)8

(z − z1)2(z − z2)2(z − z3)6(z − z4)6 (3.26)

φ10(z) =
u10 z12

2z34
8(dz)10

(z − z1)2(z − z2)2(z − z3)8(z − z4)8

φ̃(z) =
ũ z12z34

5(dz)6

(z − z1)(z − z2)(z − z3)5(z − z4)5 .

where the upper/lower sign in the expression for φ6 is for (3.24)/(3.25), respec-

tively. The invariant k-differentials for (3.19) are as above, but with ũ ≡ 0.
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3.5.2.4 Spin(12) + 3
2
(32) + 4(12)

Spin(12)

1
2(32) + 3(12) 1(32) + 1(12)

z1

z3

z2

z4

. (3.27)

The S-dual theories are an SU(2) gauging of the Sp(4)12×SU(2)8×SU(2)128

SCFT

SU(2)
, SU(2))(

empty
Sp(4)12 × SU(2)8 × SU(2)128

and a G2 gauging of the (F4)16 × Sp(4)12 SCFT
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G2

empty

, G2)(

(F4)16 × Sp(4)12

.

The invariant k-differentials for (3.27) are given by

φ2(z) =
u2z12z34(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ4(z) =
[u4(z − z2)z14 + 1

4
u2

2(z − z4)z12]z12z34
2(dz)4

(z − z1)2(z − z2)2(z − z3)2(z − z4)3

φ6(z) =
[u6(z − z1)(z − z4)z23 − 2ũ(z − z1)(z − z2)z34

(z − z1)3(z − z2)2(z − z3)4(z − z4)5

+(2ũ+ 1
4
u2u4)(z − z3)(z − z4)z12]z12z14z34

3(dz)6

φ8(z) =
[u8(z − z1)z34 + (1

4
u4

2 + ũu2)(z − z4)z13]z14z12
2z34

4(dz)8

(z − z1)4(z − z2)2(z − z3)5(z − z4)6 (3.28)

φ10(z) =
[u10(z − z1)z34 + ũu4(z − z4)z13]z12

2z14
2z34

5(dz)10

(z − z1)5(z − z2)2(z − z3)6(z − z4)8

φ̃(z) =
ũz12z14

2z34
3(dz)6

(z − z1)3(z − z2)(z − z3)3(z − z4)5 .

For (3.20), they are as above, but with ũ ≡ 0.
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3.5.2.5 Spin(12) + 1(32) + 1
2
(32′) + 4(12)

Spin(12)

1
2(32) + 3(12) 1

2(32) + 1
2(32′) + 1(12)

z1

z3

z2

z4

. (3.29)

The S-dual theories are an SU(2) gauging of the Sp(4)12 × SU(2)8 × U(1)

SCFT

SU(2)
, SU(2))(

empty
Sp(4)12 × SU(2)8 × U(1)

and a G2 gauging of the Sp(4)12 × Spin(9)16 SCFT

G2

empty

, G2)(

Sp(4)12 × Spin(9)16

.
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The invariant k-differentials for (3.29) are given by

φ2(z) =
u2 z12z34(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ4(z) =

[
u4 (z − z2)z14 + 1

4
u2

2 (z − z4)z12

]
z12z

2
34(dz)4

(z − z1)2(z − z2)2(z − z3)2(z − z4)3

φ6(z) =
[u6(z − z1)(z − z4)z23 − 2ũ(z − z1)(z − z2)z34

(z − z1)3(z − z2)2(z − z3)4(z − z4)5

+1
4
u2u4(z − z3)(z − z4)z12]z12z14z34

3(dz)6

φ8(z) =

[
u8 (z − z1)z34 + 1

4
u2

4 (z − z4)z13

]
z14z

2
12z

4
34(dz)8

(z − z1)4(z − z2)2(z − z3)5(z − z4)6 (3.30)

φ10(z) =
u10z12

2z14
2z34

6(dz)10

(z − z1)4(z − z2)2(z − z3)6(z − z4)8

φ̃(z) =
ũz12z14z34

4(dz)6

(z − z1)2(z − z2)(z − z3)4(z − z4)5 .

For (3.20), they are as above, but with ũ ≡ 0 (note that (3.30) and (3.28)

become equal at ũ = 0).

3.5.2.6 Spin(12) + 2(32) + 2(12)

Spin(12)

1(32) + 1(12)1(32) + 1(12)

z1z2

z3z4

. (3.31)
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The S-dual theory is an Sp(3) gauging of the Sp(3)11 × SU(2)2
32 SCFT + 5

2
(6)

Sp(3)

2(6)

, Sp(3))(

Sp(3)11 × SU(2)32
2 + 1

2(6)

.

The invariant k-differentials for (3.31) are given by

φ2(z) =
u2z12z34(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ4(z) =
u4z12

2z34
2(dz)4

(z − z1)2(z − z2)2(z − z3)2(z − z4)2

φ6(z) =
[u6(z − z1)(z − z2)z34 − (2ũ+ 1

2
u2(u4 − 1

4
u2

2))(z − z1)(z − z4)z23

(z − z1)3(z − z2)3(z − z3)4(z − z4)4

+(2ũ+ 1
2
u2(u4 − 1

4
u2

2))(z − z2)(z − z3)z14]z12
2z34

3(dz)6

φ8(z) =
[u8(z − z1)(z − z2)z34 − (1

4
(u4 − 1

4
u2

2)
2

+ ũu2)(z − z1)(z − z4)z23

(z − z1)4(z − z2)4(z − z3)5(z − z4)5

(3.32)

+(1
4
(u4 − 1

4
u2

2)
2

+ ũu2)(z − z2)(z − z3)z14]z12
3z34

4(dz)8

φ10(z) =
[u10(z − z1)(z − z2)z34 − ũ(u4 − 1

4
u2

2)(z − z1)(z − z4)z23

(z − z1)5(z − z2)5(z − z3)6(z − z4)6

+ũ(u4 − 1
4
u2

2)(z − z2)(z − z3)z14]z12
4z34

5(dz)10

φ̃(z) =
ũz12

3z34
3(dz)6

(z − z1)3(z − z2)3(z − z3)3(z − z4)3 .
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3.5.2.7 Spin(12) + 3
2
(32) + 1

2
(32′) + 2(12)

Spin(12)

1(32) + 1(12) 1
2(32) + 1

2(32′) + 1(12)

z1

z3

z2

z4

. (3.33)

The S-dual theories are an Sp(2) gauging of the Sp(4)12 × SU(2)128 SCFT

Sp(2), Sp(2))(

empty Sp(4)12 × SU(2)128

and a Spin(11) gauging of the (E8)12 SCFT + 3
2
(32)

Spin(11)

1(32)

, Spin(11))(

(E8)12 + 1
2(1, 32, 1)

.
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The invariant k-differentials for (3.33) are given by

φ2(z) =
u2z12z34(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ4(z) =
u4z12

2z34
2(dz)4

(z − z1)2(z − z2)2(z − z3)2(z − z4)2

φ6(z) =

[
u6(z − z1)(z − z2)z34 + (2ũ− 1

2
u2(u4 − 1

4
u2

2))(z − z1)(z − z4)z23

(z − z1)3(z − z2)3(z − z3)4(z − z4)4

+1
2
u2(u4 − 1

4
u2

2)(z − z2)(z − z3)z14

]
z12

2z34
3(dz)6

φ8(z) =

[
u8(z − z1)(z − z2)z34 − (1

4
(u4 − 1

4
u2

2)
2 − ũu2)(z − z1)(z − z4)z23

(z − z1)4(z − z2)4(z − z3)5(z − z4)5

(3.34)

+1
4
(u4 − 1

4
u2

2)2(z − z2)(z − z3)z14

]
z12

3z34
4(dz)8

φ10(z) =
[u10(z − z2)z34 + ũ(u4 − 1

4
u2

2)(z − z4)z23]z12
4z34

5(dz)10

(z − z1)4(z − z2)5(z − z3)6(z − z4)6

φ̃(z) =
ũz23z12

2z34
3(dz)6

(z − z1)2(z − z2)3(z − z3)4(z − z4)3 .

3.5.2.8 Spin(12) + 1(32) + 1(32′) + 2(12)

Spin(12)

1
2(32) + 1

2(32′) + 1(12)1
2(32) + 1

2(32′) + 1(12)

z1z2

z3z4

. (3.35)

The S-dual theory is an Sp(2) gauging of the Sp(2)12×Sp(2)11×U(1)2 SCFT +
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1
2
(4)

Sp(2)

1
2(4)

, Sp(2))(

Sp(2)12 × Sp(2)11 × U(1)2

.

The invariant k-differentials for (3.35) are given by

φ2(z) =
u2 z12z34(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ4(z) =
u4 z

2
12z

2
34(dz)4

(z − z1)2(z − z2)2(z − z3)2(z − z4)2

φ6(z) =
[u6 (z − z1)(z − z2)z34 − 1

2
u2(u4 − 1

4
u2

2)((z − z1)(z − z3)z24

(z − z1)3(z − z2)3(z − z3)4(z − z4)4

−(z − z2)(z − z4)z13)]z2
12z

3
34(dz)6

φ8(z) =
[u8 (z − z1)(z − z2)z34 − 1

4
(u4 − 1

4
u2

2)
2
((z − z1)(z − z3)z24

(z − z1)4(z − z2)4(z − z3)5(z − z4)5

−(z − z2)(z − z4)z13)]z3
12z

4
34(dz)8

φ10(z) =
u10z12

4z34
6(dz)10

(z − z1)4(z − z2)4(z − z3)6(z − z4)6 (3.36)

φ̃(z) =
ũz12

2z34
4(dz)6

(z − z1)2(z − z2)2(z − z3)4(z − z4)4 .

For (3.21), they are as above, but with ũ ≡ 0. As before, (3.32),(3.34) and

(3.36) become identical when you set ũ = 0.

177



3.5.2.9 More Spinors

We cannot obtain

• Spin(12) + 5
2
(32)

• Spin(12) + 2(32) + 1
2
(32′)

• Spin(12) + 3
2
(32) + 1(32′)

from compactifying the D6 theory.

3.6 Spin(13) and Spin(14) Gauge Theories

Here, we work in the D7 theory.

3.6.1 Spin(13) + 1
2
(64) + 7(13)

Spin(13)

1
2(64) + 1(13) 6(13) + 6(1)

, Spin(13))(

z1

z2

z3

z4

.

(3.37)

Over the other degenerations, we have a gauge theory fixture
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∅

empty

, ∅ )(

and an SU(2) gauging of the Sp(7)13 × SU(2)7SCFT + 1
2
(2) + 6(1)

SU(2)

1
2(2)

, SU(2))(

Sp(7)13 × SU(2)7 + 1
2(12, 1, 1)

.
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The invariant k-differentials for (3.37) are given by

φ2(z) =
u2 z13z24(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ4(z) =
u4 z13z23z24

2(dz)4

(z − z1)(z − z2)3(z − z3)2(z − z4)2

φ6(z) =
[u6(z − z3)z12 − 1

2
u2(u4 − 1

4
u2

2)(z − z2)z13]z23z34z24
3(dz)6

(z − z1)(z − z2)5(z − z3)3(z − z4)4

φ8(z) =
[u8(z − z3)z12 − 1

4
(u4 − 1

4
u2

2)2(z − z2)z13]z34z23
2z24

4(dz)8

(z − z1)(z − z2)7(z − z3)4(z − z4)5 (3.38)

φ10(z) =
u10 z13z24z23

3z24
5(dz)10

(z − z1)(z − z2)9(z − z3)4(z − z4)6

φ12(z) =
u12 z13z24z23

3z24
7(dz)12

(z − z1)(z − z2)11(z − z3)4(z − z4)8

and

φ̃(z) = 0 .

3.6.2 More Spinors

We cannot obtain

• Spin(13) + 1(64) + 3(13)

• Spin(14) + 1(64) + 4(14)

from compactifying the D7 theory.
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3.7 Higher N?

For the “missing” theories of §3.5.2.9 and §3.6.2, we might hope to

find realizations in the higher DN or A2N−1 theories. It is easy to see that

is no help. The key realization is that we need a candidate free-field fixture,

consisting of three regular punctures. One of these punctures must be a full

puncture.

In the DN theory, the full puncture, [12N ], has a Spin(2N)4(N−1) flavour

symmetry. The free fields transform as some representation of Spin(2N) which

reproduce the level k = 4(N − 1). If the representation should happen to

decompose correctly under a Spin(12) (mutatis mutandis for a Spin(13) or

Spin(14)) subgroup, then we would have a chance to build a realization of one

of our missing gauge theories.

• For the Spin(12) theories of §3.5.2.9, we could note that the 64 of

Spin(14) decomposes as 1(32)+1(32′). But getting the right level would

require a puncture with level k = 32, whereas the full puncture of the

D7 theory has only k = 24.

• For the Spin(13) and Spin(14) theories of §3.6.2, going to higher DN

could only produce the 64 with multiplicity > 1, which also does not

help.

In the twisted sector of theA2N−1 theory, the full puncture has Spin(2N+

1)2(2N−1) flavour symmetry.
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• For the Spin(12) theories of §3.5.2.9, we need k to be a multiple of 8, so

none of these are satisfactory.

• For the Spin(13) and Spin(14) theories of §3.6.2, we need k to be a

multiple of 4, which also does not work.

What about the exceptional (2,0) theories? E7 and E8 contain our

desired gauge groups as subgroups. But neither the 56 of E7, nor the 248 of

E8 decompose correctly to provide candidate free field fixtures with one full

puncture (and two other regular punctures).

So it appears that the missing theories of §3.5.2.9 and §3.6.2, are not

realizable as compactifications of the (2, 0) theory.
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Chapter 4

The E6 Theory

In this chapter, we extend our classification program to the (2,0) theory

of type E6
1. There is no known construction of the E6 theory as a low-energy

theory of a stack of M5 branes, as was the case for the A- and D-series. Rather,

the only known construction is as a compactification of IIB string theory on a

K3 manifold at an E6 singularity [50]. Still, computations are possible because

the the 4D N = 2 compactification of the E6 theory is controlled by a Hitchin

system [6] with gauge group E6.

As a byproduct, we realize E6 gauge theory with matter in the 4(27),

as well as F4 gauge theory with matter in the 3(26), as compactifications of

the E6 (2,0) theory on a 4-punctured sphere. The Seiberg-Witten solution to

the E6 gauge theory, with Nf ≤ 3 27s, appeared first in [51]. Our solution to

the superconformal F4 gauge theory is new.

1This chapter is based on [49].
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4.1 The E6 Theory

4.1.1 The Hitchin system

The Coulomb branch of the 4D N = 2 theories obtained from the

compactification of the 6D (2,0) theory of type E6 on a Riemann surface C is

described by the Hitchin equations on C with complexified gauge group E6 [6].

We may also include codimension-two defects of the (2,0) theory localized at

points on C; we refer to these as “punctures”. A class of punctures is classified

by nilpotent orbits (or, equivalently, by embeddings of sl(2)) in the complex-

ified Lie algebra e6 [7]. One of the main points of the construction is that

a number of physical properties of the 4D theories can be computed directly

from geometric properties of the nilpotent orbits that label the punctures on

C, without any detailed knowledge of the (2,0) theory.

A puncture labeled by a nilpotent orbit O, and located at z = 0 on C,

corresponds to a local boundary condition for the Higgs field,

Φ(z) =
X

z
+ . . . (4.1)

where Φ is a holomorphic 1-form on C that takes values in e6 and transforms

in the adjoint representation of the gauge group, X is a representative of

the nilpotent orbit d(O) in e6, and . . . represents a generic regular function

of z taking values in e6. Here, d(O) is the image of O under the Lusztig-

Spaltenstein map d [14, 5, 7]. Representatives of all nilpotent orbits in e6

can be found in [52], and a diagram specifying the action of d, as well as
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other properties of the e6 orbits, are collected in Appendix C of [7] (taken

from [53, 54]) When d is not injective, we distinguish different punctures with

the same d(O) by their Sommers-Achar group C(O) [7], which is a discrete

subgroup of E6, imposing gauge invariance of Φ under the action of C(O).

As in our previous papers, we call O, which labels the puncture, the

Nahm pole, and d(O), which appears in the Hitchin system boundary condi-

tion, the Hitchin pole. The physical properties of a puncture labeled by O will

be directly related to geometric properties of the orbits O and d(O), and the

discrete group C(O).

Unlike classical Lie algebras, there is no natural parameterization of

the nilpotent orbits of exceptional Lie algebras in terms of partitions or Young

diagrams. Instead, the notation due to Bala and Carter is standard in the

representation theory literature. This notation has been briefly discussed in

previous works [7, 21, 33], but, for completeness, we review it in Appendix

B.1, and discuss how to extract relevant information from it.

4.1.2 k-differentials

The low-energy solution of the 4D N = 2 theory is encoded in the

Seiberg-Witten curve, which is given by the spectral curve of the Hitchin

system, i.e., by the characteristic polynomial for the Higgs field Φ, in repre-

sentation R of e6:
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ΣR : detR(Φ− λI) = λd + λd−2s2 + λd−3s3 + · · ·+ sd = 0,

where d = dimR and the λd−1 is zero because Tr(Φ) = 0. Different choices

of R will yield different curves ΣR. However, as discussed in [55], the physical

information that one can extract from them is the same.

For a choice of R, let sk be the coefficient of λdim(R)−k, for

k = 0, 1, 2, . . . , dim(R). (s0 and s1 are trivial – they are 1 and 0, respectively.)

The sk(z) are holomorphic k-differentials on C (with poles at the punctures),

and can be expressed as polynomials in the trace invariants Pk = Tr(Φk).

Notice that both the sk and the Pk are dependent on the representation R.

On the other hand, we are actually interested in the Casimirs of Φ,

which are the independent k-differentials providing the gauge-invariant infor-

mation contained in Φ. For a Lie algebra g, the number of Casimirs is equal

to the rank of g, and their scaling dimensions are the exponents (minus 1)

of g. Unlike the sk or the Pk, the Casimirs encode the non-redundant gauge-

invariant information in Φ.

In our previous papers [3, 5, 4, 17], the Lie algebra was of classical type,

and R was always chosen to be the smallest non-trivial representation (the fun-

damental for AN−1, or the vector for DN). In such cases, the coefficients sk

directly provide a basis for the Casimirs of Φ. For example, for g = AN−1, we

have N − 1 Casimirs, of dimensions 2, 3, 4, . . . , N . These dimensions match

precisely those of the non-trivial coefficients sk if R is chosen to be the funda-
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mental representation. Thus, the sk can be taken to be the Casimirs of AN−1.

Similarly, for g = DN , the N Casimirs have degrees 2, 4, 6, . . . , 2N − 2;N . If

R is the vector representation, the sk with k odd vanish, and the non-trivial

coefficients are s2, s4, . . . , s2N−2, s2N . Here, s2N is the square of the Pfaffian,

s2N = s̃2, and so s̃ has dimension N . Thus, as before, the s2, s4, . . . , s2N−2; s̃

provide a basis of Casimirs of DN .

But if for AN−1 and DN we had chosen R to be, say, the adjoint repre-

sentation, then, for large enough N , the sk would not have given directly the

Casimirs, but instead a lot of redundant information. For example, for A5,

there are five Casimirs, with dimensions 2, 3, 4, 5, 6. However, we have 34 non-

trivial coefficients sk, with dimensions 2, 3, 4, . . . , 35. These sk are polynomials

in the five Casimirs.

For j = e6, the Casimirs have degrees 2,5,6,8,9,12. In our computations,

we have chosen R to be the adjoint representation of e6, as it is readily available

in the form of structure constants; we used those from the computer algebra

system GAP 4 [56]. Instead of trying to compute the 78 coefficients sk, we

focus directly on the trace invariants Pk for values of k only as large as needed

to extract the Casimirs. For the adjoint representation of e6, the Pk vanish

for k odd, and are non-trivial for k even, except for P4 = 1
32

(P2)2. Also, as we

will see below, to extract the Casimirs, we only need to consider the Pk for

k = 2, 6, 8, 10, 12, 14. From the Pk, one can construct a less-redundant basis,
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φ2 = 1
48
P2

φ6 = 1
24

(
P6 − 7

4608
(P2)3

)
φ8 = 1

30

(
P8 − 2

9
P6P2 + 155

663552
(P2)4

)
φ10 =− 1

105

(
P10 − 17

96
P8P2 + 77

6912
P6(P2)2 − 427

63700992
(P2)5

)
φ12 = 1

155
(P12 − 107

504
P10P2 + 515

32256
P8(P2)2 − 41

108
(P6)2 + 295

497664
P6(P2)3

− 5669
9172942848

(P2)6)

φ14 = 1
4389

(
P14 − 3479

14880
P12P2 + 61391

3214080
P10(P2)2 − 539

2160
P8P6 − 139733

617103360
P8(P2)3

+ 165781
4821120

(P6)2P2 − 3488947
44431441920

P6(P2)4 + 19596907
409480168734720

(P2)7
)

This basis was constructed so that it reduces the constraints in our

punctures to a minimum. In particular, the pole coefficients for the minimal

puncture have no redundancies; that is, the φk are such that it not be possible

to reduce their pole orders in z further by a change of basis, for z a local co-

ordinate centered at the minimal puncture. The φk basis also makes apparent

how the Casimirs of degree 5 and 9 appear. Specifically, φ10 and φ14 factor,

φ10 ≡ (φ5)2,

φ14 ≡ φ5φ9

These relations define the odd-degree differentials φ5 and φ9 (up to a sign,

which flips under the Z2 outer automorphism of E6). So, we can declare the

k-differentials {φ2, φ5, φ6, φ8, φ9, φ12} to be our basis of e6 Casimirs. In the
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following, by the φk, we will refer to the Casimirs, and ignore the auxiliary

differentials φ10 and φ14.

As for the Seiberg-Witten curve, to write it explicitly, we need to know

how the 78 coefficients sk depend on the six Casimirs φk. Instead, it is much

simpler to write down the (representation independent) Seiberg-Witten geom-

etry, given by an ALE fibration over C, and which equivalently describes the

low-energy solution of 4D N = 2 theories, but directly using the Casimirs

[44, 57]. Let us briefly review that construction.

4.1.3 ALE geometry

The 4D N = 2 SCFT constructed from the compactification of a 6D

(2,0) theory of type J (where J is of A-D-E type) on the Riemann surface

C can also be obtained, in a dual manner, from IIB string theory on a non-

compact Calabi-Yau threefold, locally given by an ALE fibration over C of

type J [44, 57]. For e6, the threefold is realized as the hypersurface

X~u =
{

0 = w2 + x3 + y4 + ε2(z)xy2 + ε5(z)xy + ε6(z)y2 + ε8(z)x+ ε9(z)y

+ ε12(z)
}
⊂ tot(K6

C ⊕K4
C ⊕K3

C)

where the εk(z) are k-differentials on C [33] (in the “Katz-Morrison basis”

[58]), related to our φk(z) by
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ε2 = 1
2
φ2

ε5 = 1
6
φ5

ε6 = 1
72

(−3φ3
2 + 2φ6)

ε8 = 1
144

(−3φ4
2 + 4φ2φ6 − φ8)

ε9 = 1
72

(−φ2
2φ5 + 4φ9)

ε12 = 1
5184

(4φ12 + 6φ6
2 − 12φ3

2φ6 + 4φ2
6 + 3φ2

2φ8)

The φk(z), in turn, depend on the Coulomb branch parameters, ~u, as we

determine below.

The Seiberg-Witten solution is obtained by computing the periods of

the holomorphic 3-form, Ω, over a symplectic basis of (rational) 3-cycles on

X~u which are locally of the form of a 2-sphere in the fiber times a curve on C.

In the conformal case (which will be our focus in this paper), many of these

cycles will necessarily be noncompact (the curve on C being a open curve,

stretching between punctures). But, precisely for the parabolic case (where

the Higgs field Φ(z) has simple poles at the punctures, with nilpotent residues),

the singularity is integrable, and the requisite periods of Ω are finite.

In our realization of F4 gauge theory in §4.4.1.2, the differentials φ5(z)

and φ9(z) vanish identically. In this case, the Calabi-Yau, X~u, has a holomor-

phic involution, y → −y, under which Ω → −Ω. The 3-cycles which give the

Seiberg-Witten solution are the anti-invariant cycles and the periods of Ω over

those cycles are finite, despite the slightly singular nature of X~u itself.
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4.1.4 Puncture properties

We describe below how to compute the properties of a puncture. There

is a systematic way to compute every property of the puncture, except for the

constraints, so it is easiest to compute the other properties first, and use them

to guess the constraints. Below, let O be the Nahm nilpotent orbit that labels

a given puncture, and su(2)O the associated su(2) embedding in e6.

4.1.4.1 Flavour groups

The Lie algebra f of the flavour group F = FO is the centralizer of

su(2)O in e6. A list of the centralizers for each O can be found in Table 14 of

[7], taken originally from [59].

The levels of the simple, nonabelian factors fi in f follow from the

decomposition of the adjoint of e6 under su(2)× f. These decompositions can

be deduced from the Bala-Carter label for O, and are summarized in the table

in Appendix B.1.

Let the decomposition of the 78 be

e6 =
⊕
n

Vn ⊗Rn,i

where Vn is the n-dimensional irrep of su(2) (denoted by “n” in the table) and

Rn,i is the corresponding (reducible) representation of fi. Let ln,i be the index

of Rn,i. Then, the level of fi is ki =
∑

n ln,i.

For example, consider the 3A1 puncture, which has f = su(3) × su(2).
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From the table in Appendix B.1, we have, for f1 = su(3),

R1 = 8 + 3(1), R2 = 2(8), R3 = 8 + 1, R4 = 2(1),

and so the level is ksu(3) = 4l8 = 24. Similarly, for f2 = su(2), we have

R1 = 3 + 8(1), R2 = 8(2), R3 = 9(1), R4 = 2,

and thus the level is ksu(2) = l3 + 9l2 = 4 + 9× 1 = 13.

4.1.4.2 δnh and δnv

The effective number of hyper- and vector multiplets, δnh and δnv, can

be computed using the formulas in eq. (3.19) of [7]. Basically, given O, one

needs to know how e6 decomposes into eigenspaces of the Cartan element of

su(2)O.

Here, let us recast those formulas in terms of the weighted Dynkin

diagram for O, which can be found in Table 14 of [7]. Let ~x be the six-

dimensional vector consisting of the labels of the weighted Dynkin diagram

for O. Now, for each root α of E6, let ~k be a six-dimensional vector consisting

of the (integer) components of α in any basis of simple roots. The “Weyl

vector” is ~W = 1
2

∑
~k≥0

~k, where the sum is over positive roots. Let n0 and

n1/2 be the number of roots α that satisfy (~x/2) · ~k = 0 and (~x/2) · ~k = 1/2,

respectively. (The dot product is Euclidean.) In this notation, the formulas
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in eq. (3.19) of [7] are:

nh(~x) = 8

(
1
12
h∨(E6) dim(E6)− 1

2
~W · ~x

)
+

1

2
n1/2

nv(~x) = 8

(
1
12
h∨(E6) dim(E6)− 1

2
~W · ~x

)
− 1

2
n0

(4.2)

where h∨(E6) = 12 denotes the dual Coxeter number of E6.

For example, for ~x = ~0, corresponding to the maximal puncture, one has

that the adjoint of E6 decomposes trivially into singlets of su(2), 78→ 78(1),

so n0(~0) = dim(E6)− rank(E6), and n1/2(~0) = 0. Thus,

nh(~0) = 2
3
h∨(E6) dim(E6) = 624

nv(~0) = 2
3
h∨(E6) dim(E6)− 1

2
(dim(E6)− rank(E6)) = 588

As a self-consistency check, recall that the complex dimension dimC(O) of

the orbit O (seen as a manifold) is related linearly to the difference nh − nv.

Specifically, nh−nv = C− 1
2

dimC(O), where C = nh(~0)−nv(~0) = 1
2
(dim(E6)−

rank(E6)). In other words,

dimC(O) = dim(E6)− rank(E6)− (n1/2 + n0), (4.3)

The dimensions of the nilpotent orbits of E6 are listed in Table 14 of [7].

For a non-trivial example, consider the puncture 2A1, which has weighted

Dynkin diagram

1 10 0 0

0
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that is, ~x = (1, 0, 0, 0, 1; 0). One finds ~W = (8, 15, 21, 15, 8; 11), n1/2 = 16,

n0 = 24. Thus, nh(2A1) = 568 and nv(2A1) = 548, and one indeed checks

(4.3) for dimC(2A1) = 32.

4.1.4.3 Pole structures

The “pole structure” is the set of leading pole orders {p2, p5, p6, p8, p9, p12}

in the expansion of the Casimirs φk in a coordinate z centered at the puncture,

φk(z) ∼ 1/zpk .

To compute the pole structure, we need a representative of the Hitchin

nilpotent orbit d(O). A table of representatives of all nilpotent orbits of E6

can be found in Table 2 of [52]. In this table, a nilpotent representative is given

by a sum of weighted Dynkin diagrams, and each weighted Dynkin diagram

represents an element in the root vector space of e6 for a positive root α, where

α is such that its components in a basis of simple roots are given by the labels

of the Dynkin diagram. The nilpotent representative is the sum of these root-

vector space elements. This procedure is most easily understood in terms of

an example.

Take, for instance, O = D4(a1). The Hitchin orbit, given by the Spal-

tenstein dual, is the same, d(O) = O = D4(a1). This orbit has a nilpotent

representative X given by a sum of five elements [52],

+ + + +
0 0

1

0 000 1

0

0 00 0 0

1

0 01 0 0

0

1 01 0 0

0

1 00
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The five summands above represent arbitrary non-zero elements Xαi
(i =

1, . . . , 5) in the root vector spaces for the positive roots

α1 = s2, α4 = s6,

α2 = s3 + s6, α5 = s4,

α3 = s3 + s4,

respectively, where {s1, . . . , s5; s6} is a basis of simple roots of E6. So, X =

Xα1 + · · ·+Xα5 . Fortunately, GAP4 provides a Chevalley basis for the adjoint

representation of e6, so it is trivial to find elements Xαi
. Once we know X, we

compute Φ(z) using X as the residue in (4.1), then the Casimir k-differentials

φk as in §5.1.2, and we finally find the pole structure {1, 3, 4, 6, 6, 9} for the

D4(a1) puncture. (Actually, there are three orbits, D4(a1), A3 +A1 and 2A2 +

A1, that map under Spaltenstein to D4(a1), so we have three punctures with

the same pole structure. However, the other properties of these punctures are

different.)

4.1.4.4 Constraints

The constraints for some E6 punctures are, in some cases, much less

obvious than those in the AN−1 and DN series. The guiding quantities to

find constraints are δnv and the (complex) dimension of the Hitchin nilpotent

orbit, d. These are, respectively, the graded and ungraded local contributions

to the Coulomb branch.

Let us be specific. Let z be a local coordinate on C centered at the

puncture, and let c
(k)
l be the coefficient of z−l in the expansion of φk = φk(z)
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in z. Recall that, in the notation of our previous papers, a “c-constraint” is a

polynomial relation among coefficients c
(k)
l (of homogeneous bi-degree in both

k and l). On the other hand, an “a-constraint” is a relation that defines a new

quantity, a
(k)
l , of dimension k, in terms of the c

(k)
l . Only the c

(k)
l with l > 0

parameterize the Hitchin nilpotent orbit [21]. In the absence of constraints, all

the c
(k)
l with 0 < l ≤ pk are independent, so their total number,

∑
pk, should

be equal to the dimension of the Hitchin nilpotent orbit. Thus, if there are no

constraints,
∑
pk = d. A c-constraint reduces the total number of independent

parameters by one, whereas an a-constraint does not affect this number. So,

one should have:

∑
pk − (number of c-constraints) = d

Hence, d tells us how many c-constraints exist. On the other hand, the graded

sum of the parameters, that is, the result of adding (2k−1) for each parameter

of degree k (in the presence of “a”-constraints, k is not restricted to the degrees

of the Casimirs), should be equal to nv. An a-constraint replaces a parameter

of a certain degree k by another one of a different degree k′ < k. So, to get

precisely nv, one must take into account all a-constraints and c-constraints.

4.1.4.5 Puncture collisions

Suppose we have two punctures on a plane, so the Higgs field has two

simple poles with residues X1 and X2. Near each puncture, the Higgs field Φ

looks like eq. (4.1). In the limit where the two punctures collide, the Higgs
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field has one simple pole with residue X = X1 + X2 (by the residue theorem

applied to the sphere that bubbles off), which corresponds to a new puncture.

Generically, X will be mass deformed. The mass deformations are interpreted

as VEVs of the scalars in the gauge multiplet associate to the factor in the

gauge group which becomes weakly coupled in the collision limit. One can

also study this degeneration by computing the Casimirs φk from the Higgs

field before taking the collision limit.

Alternatively, one can bypass the Higgs field, and study the collision

directly with the φk, by writing a generic k-differential with poles at the po-

sitions of the two punctures (given by their pole structures), and imposing

at each pole the constraints of the corresponding puncture. Then, taking the

collision limit, the pole structure and constraints of the resulting puncture on

the plane arise naturally.

As an example, let us see that the collision of two D5 punctures on a

plane produces an Sp(2) gauge group, gauged off an A3 puncture. Let us write

generic Casimirs for the collision, taking the D5 punctures to be at z = 0 and

z = x:
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φ2(z) =
u2 + zv2 + z(z − x)P2(z)

z(z − x)

φ5(z) =
u5 + zv5 + z(z − x)w5 + z2(z − x)P5(z)

z2(z − x)2

φ6(z) =
u6 + zv6 + z(z − x)w6 + z2(z − x)P6(z)

z3(z − x)3

φ8(z) =
u8 + zv8 + z(z − x)w8 + z2(z − x)y8 + z2(z − x)2P8(z)

z4(z − x)4

φ9(z) =
u9 + zv9 + z(z − x)w9 + z2(z − x)P9(z)

z4(z − x)4

φ12(z) =
u12 + zv12 + z(z − x)w12 + z2(z − x)y12 + z2(z − x)2P12(z)

z6(z − x)6
,

where P2(z), P5(z), . . . , P12(z) denote regular functions in z. To solve the con-

straints at each D5 puncture, we introduce new parameters s4 and t4 of di-

mension four, and write:

u6 =
3s4u2

4
, v6 =

3

2
(t4u2 + s4v2 + t4v2x),

u8 =3s2
4, v8 =3(2s4t4 + t24x),

u9 =− s4u5

4
, v9 =− 1

4
(t4u5 + s4v5 + t4v5x),

u12 =
3s3

4

2
, v12 =

3

2
t4(3s2

4 + 3s4t4x+ t24x
2),

w12 =
3

4
(3s4t

2
4 + s4w8 + 2t34x), y12 =− 3

4
(t34 − t4w8 − s4y8 − t4y8x)

In the collision limit, x → 0, the new puncture appears at z = 0. The

expansion in z of the Casimirs in this limit is:
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φ2(z) =
u2

z2
+
v2

z
+ . . .

φ5(z) =
u5

z4
+ . . .

φ6(z) =
3s4u2

2z6
+

3(t4u2 + s4v2)

2z5
+
w6

z4
+ . . .

φ8(z) =
3s2

4

z8
+

6s4t4
z7

+
w8

z6
+ . . .

φ9(z) =− s4u5

4z8
− (t4u5 + s4v5)

4z7
+
w9

z6
+ . . .

φ12(z) =
3s3

4

2z12
+

9s2
4t4

2z11
+

3(3s4t
2
4 + s4w8)

4z10
− 3(t34 − t4w8 − s4y8)

4z9
+ . . . ,

where the . . . indicate less singular terms in z. So, u2 and s4 can be interpreted

as the VEVs of Coulomb branch parameters (of degree two and four) of the

gauge group (which, with a little more work, can be checked to be Sp(2)). In

the limit u2, s4 → 0, we obtain the Casimirs for the massless puncture, with

pole orders {1, 4, 4, 6, 7, 9}, and with constraints

c
(9)
7 =

1

2
t̃4u5

c
(12)
9 =6t̃34 −

3

2
w8t̃4,

where t̃4 ≡ −t4/2. Thus, we get precisely the pole structure and constraints

of the A3 puncture.

4.1.5 Global symmetries and the superconformal index

4.1.5.1 Cataloguing fixtures using the superconformal index

For the E6 theory, we find 880 fixtures with three regular punctures

which correspond to interacting SCFTs, possibly with additional decoupled
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hypermultiplets. Each of these SCFTs has a manifest global symmetry group,

which is given by the product of the flavor symmetry groups of the three

punctures. This global symmetry group may, in general, become enhanced to

a larger group.

To determine the global symmetry group and number of free hypermul-

tiplets for each of these fixtures, we use the superconformal index [22, 23, 24,

25, 26]. The superconformal index of E-type class S theories has not yet been

systematically studied. However, since the methods used for A- and D-type

theories generalize to any root system, we assume the superconformal index2

for a fixture in the E6 theory takes the usual form

I(ai, τ) = A(τ)
∑
λ

∏3
i=1K(ai)P

λ(ai|τ)

P λ(atriv|τ)
(4.4)

where

• The sum is over λ labeling the highest weights of finite-dimensional ir-

reducible representations of e6.

• The P λ(ai|τ) are Hall-Littlewood polynomials, defined for a general root

system by

2In what follows we will consider the Hall-Littlewood limit of the index [24], which
depends on one superconformal fugacity, τ .
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P λ = W−1(τ)
∑
w∈W

w

(
eλ
∏
α∈R+

1− τ 2e−α

1− e−α

)
,

W (τ) =

√√√√∑
w∈W
wλ=λ

τ 2`(w)

where R+ denotes the set of positive roots, W the Weyl group, and `(w) the

length of the Weyl group element w.

• ai ≡ {eα}α∈R+ denotes a set of flavor fugacities dual to the Cartan

subalgebra of the flavor symmetry of the ith puncture. atriv denotes the

set of fugacities dual to the Cartan of the embedded su(2) of the trivial

puncture.

• The K-factors are discussed in [24, 60, 27, 26]. We will not need their

detailed form for our purposes.

• A(τ) is an overall, flavor fugacity independent normalization.

Consider a fixture corresponding to an interacting SCFT, with global symme-

try Gglobal, plus free hypermultiplets transforming in a representation R of a

flavor symmetry F . Let Gfixt ≡ Gglobal×F denote the global symmetry of the

fixture. As discussed in [27], the number of free hypers in the fixture and the

global symmetry of the fixture can be read off from the first two non-trivial

terms in the Taylor expansion of the index. Schematically, this is given by

I = 1 + χRFτ + χadjGfixt
τ 2 + . . . (4.5)
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where χRF is the Weyl character of R and χadjGfixt
is the character of the ad-

joint representation of Gfixt, where both of these representations are viewed

as reducible representations of the manifest symmetry algebra. By Taylor ex-

panding Ifree = PE[τχRF ] (where PE denotes the Plethystic exponential) and

removing the contribution of the free hypermultiplets in (4.5), we arrive at

ISCFT = I/Ifree

= 1 + χadjGglobal
τ 2 + . . .

from which we can read off the global symmetry of the interacting SCFT.

4.1.5.2 Computing the expansion of the index

In (5.2) the term in the sum coming from the trivial representation of

e6 gives, to second order in τ , [27]

I = 1 + χadjGmanifest
τ 2 + · · ·

encoding the manifest global symmetry group. The global symmetry group

of the fixture is enhanced if there are terms contributing at order τ 2 coming

from the sum over λ > 0.

To order τ 2, (5.2) simplifies to 3

3Since the theories considered here are all “good” or “ugly” (in the sense of [61]), the
lowest possible contribution from the sum over λ > 0 is at order τ (see [27] for a discussion
of the superconformal index in the context of the good/ugly/bad trichotomy of 4d N = 2
theories). From (4.6), we see that A(τ) and K(ai) are both 1 + O(τ2), so we can set them
both to one in the order τ2 approximation. We have also used the fact that Pλ = χλ+O(τ2).
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I = 1 + χadjGmanifest
τ 2 + [

∑
λ>0

∏3
i=1 χ

λ(ai|τ)

χλ(atriv|τ)
]O(τ2) (4.6)

To compute (4.6), we consider each e6 representation in the sum to be a re-

ducible representation of su(2) × f and plug in the corresponding character

expansion, where the embedded su(2) has fugacity τ . The decomposition of

any e6 representation in terms of su(2) × f representations can be obtained

using the projection matrices listed in Appendix E.2.

Of the 881 fixtures involving three regular punctures, we find that 1

is a free-field fixture, 60 are mixed fixtures and another 134 are interacting

fixtures with an enhanced global symmetry group. We list these in the tables

below. For the remaining 686 interacting fixtures, the global symmetry group

is the manifest one.

As an example, consider the fixture

0

A2 + A1

E6(a1)

.

The manifest global symmetry is (E6)24 × SU(3)12 ×U(1). The contributions

at order τ 2 come from the sum over the 27, 27, 78, 351, 351, 351′, 351
′
, and

650 of e6. The expansion of the superconformal index is given by 4

4For simplicity, we write the dimension to stand for the character of the corresponding
representation. The subscript is the U(1) weight.
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I = 1 + {(27, 1)1 + (27, 1)−1}τ + {(1, 1)0 + (78, 1)0+

(650, 1)0 + (27, 1)−2 + (351′, 1)−2 + (27, 1)2+

(351
′
, 1)2 + (78, 1)0 + (1, 8)0 + (27, 3)0 + (27, 3)0}τ 2 + . . .

Due to the order τ term, this is a mixed fixture, with 27 free hypermultiplets

transforming in the fundamental representation of E6. The index of these free

hypers is given by

Ifree = PE[τ{(27, 1)1 + (27, 1)−1}]

= 1 + {(27, 1)1 + (27, 1)−1}τ+

{(1, 1)0 + (78, 1)0 + (650, 1)0 + (27, 1)−2 + (351′, 1)−2 + (27, 1)2

+ (351
′
, 1)2}τ 2 + . . .

The index of the underlying SCFT is then

ISCFT = I/Ifree

= 1 + {(78, 1)0 + (1, 8)0 + (27, 3)0 + (27, 3)0}τ 2

We recognize the coefficient of τ 2 as the character of the adjoint representation

of E8. Computing the other numerical invariants of the fixture, we find that

this is the (E8)12 theory of Minahan and Nemeschansky [62] with 27 additional

free hypermultiplets.

4.1.6 Levels of enhanced global symmetry groups

Since the superconformal index gives the branching rule for the ad-

joint representation of Gglobal under the subgroup Gmanifest, it most cases it is
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straightforward to determine the level of each factor in Gglobal from those of

Gmanifest: If Hk′ is a subgroup of Gk, then k is given by [2]

k =
k′

IH↪→G

where IH↪→G is the index of the embedding of H in G.

There are two cases which require a little more work. The first is when

a manifest U(1) becomes enhanced to SU(2). Since we do not know how

to assign a level to a U(1) flavor symmetry (which would require a precise

understanding of how the generator is normalized), we cannot immediately

determine the level of the enhanced SU(2) from the index.

The second case is when some factor Hk in Gmanifest is embedded diag-

onally as

Hk ↪→ Hk1 ×Hk2 .

Since the only embedding of H in itself has index one, in this case, all we know

is that k1 + k2 = k.

If any of these remain as factors in Gglobal (that is, if they do not

combine with some other factor, with known level, to enhance Gglobal), we

cannot determine their levels from the index, and must determine them using

an S-duality. To do so, we look for a 4-punctured sphere for which the SCFT

appears in some degeneration, with Hki in the centralizer of subgroup of Gglobal

being weakly gauged.
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Unfortunately, there are a few such fixtures for which no puncture can

be gauged (some of these can still be gauged in the twisted sector, which will be

discussed in §4.3). For these, we do not have a way to determine the levels. In

the end, there are two interacting fixtures whose levels we cannot completely

determine.

4.2 Tinkertoys

4.2.1 Regular punctures

The pole structure {p2, p5, p6, p8, p9, p12} of a puncture at z = 0 will be

the leading pole orders in z of the differentials φk(z) for k = 2, 5, 6, 8, 9, 12.

Notice that in some cases there are constraints, not just on the coefficient of

this leading singularity, but also on subleading terms in the Laurent expansion

of the k-differentials.

Table 4.1: Untwisted regular punctures

Nahm
B-C
label

Hitchin
B-C
label Pole structure Constraints Flavour

group
(δnh, δnv)

0 E6 {1, 4, 5, 7, 8, 11} - (E6)24 (624, 588)

A1 E6(a1) {1, 4, 5, 7, 8, 10} - SU(6)18 (590, 565)

2A1 D5 {1, 4, 5, 7, 7, 10} - Spin(7)16
×U(1)

(568, 548)

3A1

(ns)

(E6(a3),

Z2)

{1, 4, 5, 6, 7, 10} - SU(3)24
×SU(2)13

(549, 533)
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Table 4.1: Untwisted regular punctures

Nahm
B-C
label

Hitchin
B-C
label Pole structure Constraints Flavour

group
(δnh, δnv)

A2 E6(a3) {1, 4, 5, 6, 7, 10} c
(12)
10 = −

(
c
(6)
5

)2
+
(
a
(6)
5

)2 SU(3)
2
12 (536, 521)

A2 +
A1

D5(a1) {1, 4, 5, 6, 7, 9} - SU(3)12×
U(1)

(523, 510)

2A2 D4 {1, 3, 5, 6, 6, 9} - (G2)12 (496, 484)

A2 +
2A1

A4 +A1 {1, 4, 4, 6, 7, 9} - SU(2)54×
U(1)

(510, 499)

A3 A4 {1, 4, 4, 6, 7, 9}

c
(9)
7 = 1

2c
(5)
4 a

(4)
3

c
(12)
9 = 6

(
a
(4)
3

)3
− 3

2c
(8)
6 a

(4)
3

Sp(2)10×
U(1)

(476, 466)

2A2 +
A1 (ns)

(D4(a1),

S3)

{1, 3, 4, 6, 6, 9} - SU(2)26 (482, 473)

A3 +
A1 (ns)

(D4(a1),

Z2)

{1, 3, 4, 6, 6, 9}
c
(12)
9 = a

(4)
3

(
16
9

(
a
(4)
3

)2
−c(8)6

) SU(2)9 ×
U(1)

(465, 457)
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Table 4.1: Untwisted regular punctures

Nahm
B-C
label

Hitchin
B-C
label Pole structure Constraints Flavour

group
(δnh, δnv)

D4(a1) D4(a1) {1, 3, 4, 6, 6, 9}

c
(8)
6 = 4

3

((
a
(4)
3

)2
+3
(
a
′(4)
3

)2)
c
(12)
9 = 4

9a
(4)
3

((
a
(4)
3

)2
−9
(
a
′(4)
3

)2)
U(1)2 (456, 449)

A4 A3 {1, 3, 4, 6, 6, 9}

c
(8)
6 = 3

(
a
(4)
3

)2
c
(9)
6 = 1

4c
(5)
3 a

(4)
3

c
(12)
9 = − 3

2

(
a
(4)
3

)3
c
(12)
8 = − 3

4a
(4)
3 c

(8)
5

SU(2)8 ×
U(1)

(408, 402)
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Table 4.1: Untwisted regular punctures

Nahm
B-C
label

Hitchin
B-C
label Pole structure Constraints Flavour

group
(δnh, δnv)

D4 2A2 {1, 3, 4, 5, 6, 8}

c
(8)
5 = − 4c

(6)
4 c

(2)
1

+4c
(5)
3 a

(3)
2

−2
(
a
(3)
2

)2
c
(2)
1

c
(9)
6 = − 1

12a
(3)
2

(
c
(6)
4

+ 1
2

(
a
(3)
2

)2)
c
(12)
8 = −

(
c
(6)
4

+ 1
2

(
a
(3)
2

)2)·
·
(
c
(6)
4

− 3
2

(
a
(3)
2

)2)
c
(12)
7 = −12c

(9)
5 a

(3)
2

−2c
(6)
4 c

(6)
3

−c(6)3

(
a
(3)
2

)2

SU(3)12 (368, 362)

A4 +
A1

A2 +
2A1

{1, 3, 4, 5, 5, 7} - U(1) (400, 395)

D5(a1) A2 +A1 {1, 3, 4, 5, 5, 7}
c
(6)
4 = − 1

8

(
a
(3)
2

)2
c
(8)
5 = 2c

(5)
3 a

(3)
2

c
(12)
7 = −6c

(9)
5 a

(3)
2

U(1) (355, 351)

A5 (ns) (A2,Z2) {1, 2, 4, 4, 4, 6} - SU(2)7 (335, 331)
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Table 4.1: Untwisted regular punctures

Nahm
B-C
label

Hitchin
B-C
label Pole structure Constraints Flavour

group
(δnh, δnv)

E6(a3) A2 {1, 2, 4, 4, 4, 6} c
(6)
4 =

(
a
(3)
2

)2
none (328, 325)

D5 2A1 {1, 2, 3, 4, 4, 6}

c
(6)
3 = 3

2c
(2)
1 a

(4)
2

c
(8)
4 = 3

(
a
(4)
2

)2
c
(9)
4 = − 1

4a
(4)
2 c

(5)
2

c
(12)
6 = 3

2

(
a
(4)
2

)3
c
(12)
5 = 3

4c
(8)
3 a

(4)
2

U(1) (240, 238)

E6(a1) A1 {1, 1, 2, 2, 2, 3} - none (168, 167)

Note that there is a special piece, consisting of three punctures: 2A2 +

A1, A3+A1 and the special puncture D4(a1). For 2A2+A1, the Sommers-Achar

group is the nonabelian group, S3. It acts on a(4), a′(4) as

(
a(4)

a′(4)

)
→ γ

(
a(4)

a′(4)

)
for

γ ∈ {
(

1 0
0 1

)
,

(
1 0
0 −1

)
, 1

2

(
−1 −3
1 −1

)
, 1

2

(
−1 3
−1 −1

)
, 1

2

(
−1 −3
−1 1

)
,

1
2

(
−1 3
1 1

)
}
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For A3 + A1, the Sommers-Achar group is the Z2 subgroup of S3, generated

by a′(4) → −a′(4). For D4(a1), the Sommers-Achar group is of course trivial,

so that both a(4), a′(4) survive as Coulomb branch parameters.

4.2.2 Free-field fixtures

We denote a 3-punctured sphere, in the tables below, by listing the

Bala-Carter labels of the three punctures. For the free-field fixtures, one of

the punctures is an irregular puncture5 (in the sense used in our previous

papers), which we denote6 by the pair, (O, Gk), where O is the regular punc-

ture obtained as the OPE of the two regular punctures which collide, and this

fixture is attached to the rest of the surface via a cylinder

(O, Gk)
G←−−−→ O

with gauge group G ⊂ F ⊂ E6. Here, F is the flavour symmetry group of the

puncture, O, and the levels are such that G has vanishing β-function.

Table 4.2: Free field fixtures

# Fixture nh Representation

1
E6(a1)

E6(a1)
(A5, SU(2)1) 1 1

2
(2)

2
E6(a1)

D5

(A4, SU(2)0) 0 empty

5Or, in the case of fixture 13, a full puncture, corresponding to the trivial orbit, 0.
6For brevity, we will often omit the level, k, when denoting an irregular puncture.
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Table 4.2: Free field fixtures

# Fixture nh Representation

3
E6(a1)

E6(a3)
(2A2, SU(3)0) 0 empty

4
E6(a1)

A5

(2A2, (G2)4) 7 1
2
(2, 7)

5
E6(a1)

D5(a1)
(A2 + A1, SU(3)0) 0 empty

6
E6(a1)

A4 + A1

(2A1, (G2)0) 0 empty

7
E6(a1)

D4

(A2, SU(3)0) 0 empty

8
E6(a1)

A4

(2A1, Spin(7)4) 8 1
2
(2, 8)

9
E6(a1)

D4(a1)
(0, Spin(8)0) 0 empty

10
E6(a1)

A3 + A1

(0, Spin(9)4) 9 1
2
(2, 9)

11
E6(a1)

2A2 + A1

(0, (F4)12) 26 1
2
(2, 26)

12
E6(a1)

A3

(0, Spin(10)8) 20 1
2
(4, 10)

13
E6(a1)

A2 + 2A1

0 54 (2, 27)

14
D5

D5

(A3, Sp(2)2) 4 1(4)

15
D5

E6(a3)
(2A1, SU(4)0) 0 empty
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Table 4.2: Free field fixtures

# Fixture nh Representation

16
D5

A5

(2A1, Spin(7)4) 7 1
2
(2, 7)

17
D5

D5(a1)
(A1, SU(5)2) 5 1(5)

18
D5

A4 + A1

(0, Spin(10)8) 16 1(16)

19
D5

D4

(A1, SU(6)6) 18 3(6)

4.2.3 Interacting fixtures with one irregular puncture

In the tables below, nd is the number of Coulomb branch parameters

of degree d. The total Coulomb branch dimension is
∑

d nd and the effective

number of vector multiplets is nv =
∑

d(2d− 1)nd.

Table 4.3: Interacting fixtures with one irregular punc-
ture

Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Theory
E6(a1)

2A2
(0, (F4)12) (0, 0, 0, 0, 1, 0, 0, 0) (40, 11) (E8)12 SCFT

D5

A4
(0, Spin(10)8) (0, 0, 1, 0, 0, 0, 0, 0) (24, 7) (E7)8 SCFT

E6(a3)
E6(a3)

(0, (F4)12) (0, 2, 0, 0, 0, 0, 0, 0) (32, 10) [(E6)6 SCFT]2

E6(a3)
A5

(0, (F4)12) (0, 1, 0, 0, 1, 0, 0, 0) (39, 16) (E6)12 × SU(2)7

SCFT
A5

A5
(0, (F4)12) (0, 0, 0, 0, 2, 0, 0, 0) (46, 22) (F4)12 × SU(2)2

7

SCFT
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The (E6)12×SU(2)7 and (F4)12×SU(2)2
7 first appeared in [5], as fixtures

in the untwisted D4 theory.

4.2.4 Interacting fixtures with enhanced global symmetry

Table 4.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Gk

1
E6(a1)

A2

0 (0, 0, 0, 0, 2, 0, 0, 0) (80, 22) [(E8)12 SCFT]2

2
E6(a1)

3A1

0 (0, 0, 0, 0, 1, 0, 0, 1) (93, 34) (E8)24 × SU(2)13

3
E6(a1)

2A1

0 (0, 0, 0, 0, 1, 1, 0, 1) (112, 49) (E7)24 × Spin(7)16

4
E6(a1)

A1

A1 (0, 0, 0, 0, 1, 1, 1, 0) (100, 43) SU(12)18

5
D5

D4(a1)
0 (0, 0, 3, 0, 0, 0, 0, 0) (72, 21) [(E7)8 SCFT]3

6
D5

A3 +A1

0 (0, 0, 2, 0, 0, 1, 0, 0) (81, 29)

[(E7)8 SCFT]

×[(E7)16
×SU(2)9 SCFT]

7
D5

2A2 +A1

0 (0, 0, 1, 0, 0, 1, 0, 1) (98, 45) (E7)24 × SU(2)26

8
D5

A3

0 (0, 0, 2, 1, 0, 1, 0, 0) (92, 38)

[(E7)8 SCFT]

×[(E6)16 × Sp(2)10

×U(1) SCFT]

9
D5

2A2

0 (0, 0, 1, 0, 1, 1, 0, 1) (112, 56) (E7)24 × (G2)12

10
D5

A2 + 2A1

A1 (0, 0, 1, 1, 0, 1, 1, 0) (92, 48) SU(8)18 × SU(2)36 ×
U(1)

11
D5

A2 +A1

A1 (0, 0, 1, 1, 1, 1, 1, 0) (105, 59) SU(7)18 × SU(3)12 ×
U(1)2

12
D5

A2

2A1 (0, 0, 1, 1, 2, 1, 0, 0) (96, 53) Spin(8)16 × SU(4)
2
12 ×

U(1)
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Table 4.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Gk

13
D5

A2

A1 (0, 0, 1, 1, 2, 1, 1, 0) (118, 70) SU(6)18 × SU(3)
2
12 ×

U(1)2

14
D5

3A1

3A1 (0, 0, 1, 1, 1, 0, 0, 1) (90, 50) SU(6)24 × Sp(2)13

15
D5

3A1

2A1 (0, 0, 1, 1, 1, 1, 0, 1) (109, 65) Spin(7)16 × SU(4)24 ×
SU(2)13 × U(1)

16
D5

2A1

2A1 (0, 0, 1, 1, 1, 2, 0, 1) (128, 80) Spin(7)
2
16 × SU(2)24 ×

U(1)2

17
E6(a3)

A4 +A1

0 (0, 1, 0, 0, 1, 1, 0, 1) (104, 54) (E7)24

18
E6(a3)

D4

0 (0, 2, 0, 0, 1, 0, 0, 0) (72, 21) [(E8)12 SCFT] ×
[(E6)6 SCFT]2

19
E6(a3)

A4

0 (0, 1, 1, 0, 1, 1, 0, 1) (112, 61) (E7)24 × SU(2)8

20
E6(a3)

D4(a1)
A2 (0, 1, 2, 0, 2, 0, 0, 0) (72, 41) Spin(8)

2
12 × U(1)2

21
E6(a3)

D4(a1)
3A1 (0, 1, 2, 0, 1, 0, 0, 1) (85, 53) Spin(8)24 × SU(2)13

22
E6(a3)

D4(a1)
2A1 (0, 1, 2, 0, 1, 1, 0, 1) (104, 68) Spin(7)16 × SU(2)

3
24

23
E6(a3)

A3 +A1

A2 (0, 1, 1, 0, 2, 1, 0, 0) (81, 49) Spin(7)
2
12 × SU(2)9 ×

U(1)

24
E6(a3)

A3 +A1

3A1 (0, 1, 1, 0, 1, 1, 0, 1) (94, 61) Spin(7)24 × SU(2)13 ×
SU(2)9

25
E6(a3)

A3 +A1

2A1 (0, 1, 1, 0, 1, 2, 0, 1) (113, 76) Spin(7)16 × SU(2)48 ×
SU(2)24 × SU(2)9

26
E6(a3)

2A2 +A1

A2 (0, 1, 0, 0, 2, 1, 0, 1) (98, 65) (G2)
2
12 × SU(2)26

27
E6(a3)

2A2 +A1

3A1 (0, 1, 0, 0, 1, 1, 0, 2) (111, 77) (G2)24 × SU(2)26 ×
SU(2)13
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Table 4.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Gk

28
E6(a3)

2A2 +A1

2A1 (0, 1, 0, 0, 1, 2, 0, 2) (130, 92) Spin(7)16 × SU(2)26 ×
SU(2)72

29
E6(a3)

A3

A2 (0, 1, 1, 1, 2, 1, 0, 0) (92, 58) SU(4)
2
12 × Sp(2)10 ×

U(1)

30
E6(a3)

A3

3A1 (0, 1, 1, 1, 1, 1, 0, 1) (105, 70) SU(4)24 × Sp(2)10 ×
SU(2)13

31
E6(a3)

A3

2A1 (0, 1, 1, 1, 1, 2, 0, 1) (124, 85) Spin(7)16 × Sp(2)10 ×
SU(2)24 × U(1)

32
E6(a3)

A2 + 2A1

A2 + 2A1 (0, 1, 0, 1, 0, 1, 1, 1) (100, 69) SU(4)54 × U(1)

33
E6(a3)

A2 + 2A1

A2 +A1 (0, 1, 0, 1, 1, 1, 1, 1) (113, 80) SU(3)54 × SU(3)12 ×
U(1)

34
E6(a3)

2A2

A2 (0, 1, 0, 0, 3, 1, 0, 1) (112, 76) (G2)
3
12

35
E6(a3)

2A2

3A1 (0, 1, 0, 0, 2, 1, 0, 2) (125, 88) (G2)24 × (G2)12 ×
SU(2)13

36
E6(a3)

2A2

2A1 (0, 1, 0, 0, 2, 2, 0, 2) (144, 103) Spin(7)16 × (G2)12 ×
SU(2)72

37
E6(a3)

A2 +A1

A2 +A1 (0, 1, 0, 1, 2, 1, 1, 1) (126, 91) SU(3)
2
12 × SU(2)24 ×

U(1)

38
A5

A4 +A1

0 (0, 0, 0, 0, 2, 1, 0, 1) (111, 60) (E7)24 × SU(2)7

39
A5

D4

0 (0, 1, 0, 0, 2, 0, 0, 0) (79, 27) [(E8)12 SCFT] ×
[(E6)12 ×
SU(2)7 SCFT]

40
A5

A4

0 (0, 0, 1, 0, 2, 1, 0, 1) (119, 67) (E7)24 × SU(2)8 ×
SU(2)7

41
A5

D4(a1)
A2 (0, 0, 2, 0, 3, 0, 0, 0) (79, 47) Spin(8)

2
12 × SU(2)7

42
A5

D4(a1)
3A1 (0, 0, 2, 0, 2, 0, 0, 1) (92, 59) Spin(8)24 × SU(2)13 ×

SU(2)7
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Table 4.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Gk

43
A5

D4(a1)
2A1 (0, 0, 2, 0, 2, 1, 0, 1) (111, 74) Spin(7)16 × SU(2)

3
24 ×

SU(2)7

44
A5

A3 +A1

A2 (0, 0, 1, 0, 3, 1, 0, 0) (88, 55) Spin(7)
2
12 × SU(2)9 ×

SU(2)7

45
A5

A3 +A1

3A1 (0, 0, 1, 0, 2, 1, 0, 1) (101, 67) Spin(7)24 × SU(2)13 ×
SU(2)9 × SU(2)7

46
A5

A3 +A1

2A1 (0, 0, 1, 0, 2, 2, 0, 1) (120, 82)
Spin(7)16 × SU(2)48

×SU(2)24 × SU(2)9

×SU(2)7

47
A5

2A2 +A1

A2 (0, 0, 0, 0, 3, 1, 0, 1) (105, 71) (G2)
2
12 × SU(2)26 ×

SU(2)7

48
A5

2A2 +A1

3A1 (0, 0, 0, 0, 2, 1, 0, 2) (118, 83) (G2)24 × SU(2)26 ×
SU(2)13 × SU(2)7

49
A5

2A2 +A1

2A1 (0, 0, 0, 0, 2, 2, 0, 2) (137, 98) Spin(7)16 × SU(2)72 ×
SU(2)26 × SU(2)7

50
A5

A3

A2 (0, 0, 1, 1, 3, 1, 0, 0) (99, 64) SU(4)
2
12 × Sp(2)10 ×

SU(2)7

51
A5

A3

3A1 (0, 0, 1, 1, 2, 1, 0, 1) (112, 76) SU(4)24 × Sp(2)10 ×
SU(2)13 × SU(2)7

52
A5

A3

2A1 (0, 0, 1, 1, 2, 2, 0, 1) (131, 91)
Spin(7)16 × Sp(2)10

×SU(2)24 × SU(2)7

×U(1)

53
A5

A2 + 2A1

A2 + 2A1 (0, 0, 0, 1, 1, 1, 1, 1) (107, 75) SU(4)54 × SU(2)7 ×
U(1)

54
A5

A2 + 2A1

A2 +A1 (0, 0, 0, 1, 2, 1, 1, 1) (120, 86) SU(3)54 × SU(3)12 ×
SU(2)7 × U(1)

55
A5

2A2

A2 (0, 0, 0, 0, 4, 1, 0, 1) (119, 82) (G2)
3
12 × SU(2)7

56
A5

2A2

3A1 (0, 0, 0, 0, 3, 1, 0, 2) (132, 94) (G2)24 × (G2)12 ×
SU(2)13 × SU(2)7
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Table 4.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Gk

57
A5

2A2

2A1 (0, 0, 0, 0, 3, 2, 0, 2) (151, 109) Spin(7)16 × (G2)12 ×
SU(2)72 × SU(2)7

58
A5

A2 +A1

A2 +A1 (0, 0, 0, 1, 3, 1, 1, 1) (133, 97) SU(3)
2
12 × SU(2)24 ×

SU(2)7 × U(1)

59
D5(a1)

D5(a1)
0 (0, 2, 0, 1, 0, 0, 1, 0) (86, 36) (E7)18 × (E6)6 × U(1)

60
D5(a1)

A4 +A1

A1 (0, 1, 0, 1, 1, 1, 1, 0) (97, 57) SU(7)18 × U(1)2

61
D5(a1)

D4

0 (0, 2, 0, 1, 1, 0, 1, 0) (99, 47) (E6)18 × (E6)6 ×
SU(3)12 × U(1)

62
D5(a1)

A4

A1 (0, 1, 1, 1, 1, 1, 1, 0) (105, 64) SU(7)18 × SU(2)8 ×
U(1)2

63
D5(a1)

D4(a1)
A2 + 2A1 (0, 1, 2, 1, 0, 0, 1, 0) (73, 45) SU(3)54−k−k′ ×

SU(3)k × SU(3)k′ ×
U(1)

64
D5(a1)

D4(a1)
A2 +A1 (0, 1, 2, 1, 1, 0, 1, 0) (86, 56) SU(3)12 × SU(2)

3
18 ×

U(1)3

65
D5(a1)

D4(a1)
A2 (0, 1, 2, 1, 2, 0, 1, 0) (99, 67) SU(3)

2
12 × U(1)5

66
D5(a1)

A3 +A1

A2 + 2A1 (0, 1, 1, 1, 0, 1, 1, 0) (82, 53) SU(3)54−k × SU(3)k ×
SU(2)9 × U(1)

67
D5(a1)

A3 +A1

A2 +A1 (0, 1, 1, 1, 1, 1, 1, 0) (95, 64)
SU(3)12 × SU(2)36

×SU(2)18 × SU(2)9

×U(1)2

68
D5(a1)

A3 +A1

A2 (0, 1, 1, 1, 2, 1, 1, 0) (108, 75) SU(3)
2
12 × SU(2)9 ×

U(1)3

69
D5(a1)

2A2 +A1

A2 + 2A1 (0, 1, 0, 1, 0, 1, 1, 1) (99, 69) SU(3)54 × SU(2)26 ×
U(1)

70
D5(a1)

2A2 +A1

A2 +A1 (0, 1, 0, 1, 1, 1, 1, 1) (112, 80) SU(3)12 × SU(2)54 ×
SU(2)26 × U(1)
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Table 4.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Gk

71
D5(a1)

A3

A2 + 2A1 (0, 1, 1, 2, 0, 1, 1, 0) (93, 62) SU(3)18 × SU(2)36 ×
Sp(2)10 × U(1)2

72
D5(a1)

A3

A2 +A1 (0, 1, 1, 2, 1, 1, 1, 0) (106, 73) SU(3)12 × Sp(2)10 ×
SU(2)18 × U(1)3

73
D5(a1)

A3

A2 (0, 1, 1, 2, 2, 1, 1, 0) (119, 84) SU(3)
2
12 × Sp(2)10 ×

U(1)3

74
D5(a1)

A2 + 2A1

2A2 (0, 1, 0, 1, 1, 1, 1, 1) (113, 80) (G2)12×SU(3)54×U(1)

75
D5(a1)

2A2

A2 +A1 (0, 1, 0, 1, 2, 1, 1, 1) (126, 91) (G2)12 × SU(3)12 ×
SU(2)54 × U(1)

76
A4 +A1

A4 +A1

A2 (0, 0, 0, 1, 3, 1, 0, 0) (88, 57) SU(4)
2
12 × U(1)

77
A4 +A1

A4 +A1

3A1 (0, 0, 0, 1, 2, 1, 0, 1) (101, 69) SU(4)24 × SU(2)13 ×
U(1)

78
A4 +A1

A4 +A1

2A1 (0, 0, 0, 1, 2, 2, 0, 1) (120, 84) Spin(7)16 × SU(2)24 ×
U(1)2

79
A4 +A1

D4

2A1 (0, 1, 0, 1, 2, 1, 0, 0) (88, 51) Spin(8)16 × SU(4)12 ×
U(1)2

80
A4 +A1

D4

A1 (0, 1, 0, 1, 2, 1, 1, 0) (110, 68) SU(6)18 × SU(3)12 ×
U(1)2

81
A4 +A1

A4

A2 (0, 0, 1, 1, 3, 1, 0, 0) (96, 64) SU(4)
2
12 × SU(2)8 ×

U(1)

82
A4 +A1

A4

3A1 (0, 0, 1, 1, 2, 1, 0, 1) (109, 76) SU(4)24 × SU(2)13 ×
SU(2)8 × U(1)

83
A4 +A1

A4

2A1 (0, 0, 1, 1, 2, 2, 0, 1) (128, 91) Spin(7)16 × SU(2)8 ×
SU(2)24 × U(1)2

84
A4 +A1

D4(a1)
D4(a1) (0, 0, 4, 0, 1, 0, 0, 0) (64, 39) SU(2)

9
8

85
A4 +A1

D4(a1)
A3 +A1 (0, 0, 3, 0, 1, 1, 0, 0) (73, 47) SU(2)

3
16 × SU(2)9 ×

SU(2)
3
8
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Table 4.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Gk

86
A4 +A1

D4(a1)
2A2 +A1 (0, 0, 2, 0, 1, 1, 0, 1) (90, 63) SU(2)26 × SU(2)

3
24

87
A4 +A1

D4(a1)
A3 (0, 0, 3, 1, 1, 1, 0, 0) (84, 56) Sp(2)10 × SU(2)

3
8 ×

U(1)3

88
A4 +A1

D4(a1)
2A2 (0, 0, 2, 0, 2, 1, 0, 1) (104, 74) (G2)12 × SU(2)324

89
A4 +A1

A3 +A1

A3 +A1 (0, 0, 2, 0, 1, 2, 0, 0) (82, 55) SU(2)32 × SU(2)
2
16 ×

SU(2)
2
9 × SU(2)

2
8

90
A4 +A1

A3 +A1

2A2 +A1 (0, 0, 1, 0, 1, 2, 0, 1) (99, 71) SU(2)48 × SU(2)26 ×
SU(2)24 × SU(2)9

91
A4 +A1

A3 +A1

A3 (0, 0, 2, 1, 1, 2, 0, 0) (93, 64)
Sp(2)10 × SU(2)16
×SU(2)9 × SU(2)8

×U(1)2

92
A4 +A1

A3 +A1

2A2 (0, 0, 1, 0, 2, 2, 0, 1) (113, 82) (G2)12 × SU(2)48 ×
SU(2)24 × SU(2)9

93
A4 +A1

2A2 +A1

2A2 +A1 (0, 0, 0, 0, 1, 2, 0, 2) (116, 87) SU(2)72 × SU(2)
2
26

94
A4 +A1

2A2 +A1

A3 (0, 0, 1, 1, 1, 2, 0, 1) (110, 80) Sp(2)10 × SU(2)26 ×
SU(2)24 × U(1)

95
A4 +A1

2A2 +A1

2A2 (0, 0, 0, 0, 2, 2, 0, 2) (130, 98) (G2)12 × SU(2)72 ×
SU(2)26

96
A4 +A1

A3

A3 (0, 0, 2, 2, 1, 2, 0, 0) (104, 73) Sp(2)
2
10 × SU(2)8 ×

U(1)3

97
A4 +A1

A3

2A2 (0, 0, 1, 1, 2, 2, 0, 1) (124, 91) (G2)12 × Sp(2)10 ×
SU(2)24 × U(1)

98
A4 +A1

2A2

2A2 (0, 0, 0, 0, 3, 2, 0, 2) (144, 109) (G2)
2
12 × SU(2)72

99
D4

D4

0 (0, 2, 0, 1, 2, 0, 1, 0) (112, 58) (E6)18 × (E6)6 ×
SU(3)

2
12
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Table 4.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Gk

100
D4

A4

2A1 (0, 1, 1, 1, 2, 1, 0, 0) (96, 58) Spin(8)16 × SU(4)12 ×
SU(2)8 × U(1)2

101
D4

A4

A1 (0, 1, 1, 1, 2, 1, 1, 0) (118, 75) SU(6)18 × SU(3)12 ×
SU(2)8 × U(1)2

102
D4

D4(a1)
A2 + 2A1 (0, 1, 2, 1, 1, 0, 1, 0) (86, 56) SU(3)12 × SU(2)

3
18 ×

U(1)3

103
D4

D4(a1)
2A2 (0, 1, 2, 0, 2, 0, 0, 0) (72, 41) Spin(8)

2
12 × U(1)2

104
D4

D4(a1)
A2 +A1 (0, 1, 2, 1, 2, 0, 1, 0) (99, 67) SU(3)

2
12 × U(1)5

105
D4

D4(a1)
A2 (0, 1, 2, 1, 3, 0, 1, 0) (112, 78) SU(3)

3
12 × U(1)4

106
D4

A3 +A1

A2 + 2A1 (0, 1, 1, 1, 1, 1, 1, 0) (95, 64)
SU(3)12 × SU(2)36

×SU(2)18 × SU(2)9

×U(1)2

107
D4

A3 +A1

2A2 (0, 1, 1, 0, 2, 1, 0, 0) (81, 49) Spin(7)
2
12 × SU(2)9 ×

U(1)

108
D4

A3 +A1

A2 +A1 (0, 1, 1, 1, 2, 1, 1, 0) (108, 75) SU(3)
2
12 × SU(2)9 ×

U(1)3

109
D4

A3 +A1

A2 (0, 1, 1, 1, 3, 1, 1, 0) (121, 86) SU(3)
3
12 × SU(2)9 ×

U(1)2

110
D4

2A2 +A1

2A2 +A1 (0, 1, 0, 0, 1, 1, 0, 1) (84, 54) (G2)12 × Sp(2)26

111
D4

2A2 +A1

2A2 (0, 1, 0, 0, 2, 1, 0, 1) (98, 65) (G2)
2
12 × SU(2)26

112
D4

A3

A2 + 2A1 (0, 1, 1, 2, 1, 1, 1, 0) (106, 73)
Sp(2)10 × SU(3)12

×SU(2)36 × SU(2)18

×U(1)2

113
D4

A3

2A2 (0, 1, 1, 1, 2, 1, 0, 0) (92, 58) Spin(7)12 × SU(4)12 ×
Sp(2)10 × U(1)
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Table 4.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Gk

114
D4

A3

A2 +A1 (0, 1, 1, 2, 2, 1, 1, 0) (119, 84) SU(3)
2
12 × Sp(2)10 ×

U(1)3

115
D4

A3

A2 (0, 1, 1, 2, 3, 1, 1, 0) (132, 95) SU(3)
3
12 × Sp(2)10 ×

U(1)2

116
D4

2A2

2A2 (0, 1, 0, 0, 3, 1, 0, 1) (112, 76) (G2)
3
12

117
A4

A4

A2 (0, 0, 2, 1, 3, 1, 0, 0) (104, 71) SU(4)
2
12 × SU(2)

2
8 ×

U(1)

118
A4

A4

3A1 (0, 0, 2, 1, 2, 1, 0, 1) (117, 83) SU(4)24 × SU(2)13 ×
SU(2)

2
8 × U(1)

119
A4

A4

2A1 (0, 0, 2, 1, 2, 2, 0, 1) (136, 98) Spin(7)16 × SU(2)
2
8 ×

SU(2)24 × U(1)2

120
A4

D4(a1)
D4(a1) (0, 0, 5, 0, 1, 0, 0, 0) (72, 46) SU(2)

10
8

121
A4

D4(a1)
A3 +A1 (0, 0, 4, 0, 1, 1, 0, 0) (81, 54) SU(2)

3
16 × SU(2)9 ×

SU(2)
4
8

122
A4

D4(a1)
2A2 +A1 (0, 0, 3, 0, 1, 1, 0, 1) (98, 70) SU(2)26 × SU(2)

3
24 ×

SU(2)8

123
A4

D4(a1)
A3 (0, 0, 4, 1, 1, 1, 0, 0) (92, 63) Sp(2)10 × SU(2)

4
8 ×

U(1)3

124
A4

D4(a1)
2A2 (0, 0, 3, 0, 2, 1, 0, 1) (112, 81) (G2)12 × SU(2)8 ×

SU(2)
3
24

125
A4

A3 +A1

A3 +A1 (0, 0, 3, 0, 1, 2, 0, 0) (90, 62) SU(2)32 × SU(2)
2
16 ×

SU(2)
2
9 × SU(2)

2
8

126
A4

A3 +A1

2A2 +A1 (0, 0, 2, 0, 1, 2, 0, 1) (107, 78)
SU(2)48 × SU(2)26
×SU(2)24 × SU(2)9

×SU(2)8

222



Table 4.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Gk

127
A4

A3 +A1

A3 (0, 0, 3, 1, 1, 2, 0, 0) (101, 71)
Sp(2)10 × SU(2)16

×SU(2)9 × SU(2)
2
8

×U(1)2

128
A4

A3 +A1

2A2 (0, 0, 2, 0, 2, 2, 0, 1) (121, 89)
(G2)12 × SU(2)48

×SU(2)24 × SU(2)9

×SU(2)8

129
A4

2A2 +A1

2A2 +A1 (0, 0, 1, 0, 1, 2, 0, 2) (124, 94) SU(2)72 × SU(2)
2
26 ×

SU(2)8

130
A4

2A2 +A1

A3 (0, 0, 2, 1, 1, 2, 0, 1) (118, 87)
Sp(2)10 × SU(2)26
×SU(2)24 × SU(2)8

×U(1)

131
A4

2A2 +A1

2A2 (0, 0, 1, 0, 2, 2, 0, 2) (138, 105) (G2)12 × SU(2)72 ×
SU(2)26 × SU(2)8

132
A4

A3

A3 (0, 0, 3, 2, 1, 2, 0, 0) (112, 80) Sp(2)
2
10 × SU(2)

2
8 ×

U(1)3

133
A4

A3

2A2 (0, 0, 2, 1, 2, 2, 0, 1) (132, 98)
(G2)12 × Sp(2)10

×SU(2)24 × SU(2)8

×U(1)

134
A4

2A2

2A2 (0, 0, 1, 0, 3, 2, 0, 2) (152, 116) (G2)
2
12 × SU(2)72 ×

SU(2)8

We were unable to determine the SU(3) levels in fixtures 63 and 66.

4.2.5 Mixed fixtures

We find many “new” SCFTs in our list of mixed fixtures. For each fix-

ture in the table below, we list the global symmetry group, the graded Coulomb
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branch dimensions, and the effective number of vector and hypermultiplets of

the SCFT. The effective number of hypermultiplets, for the fixture as a whole,

is the sum of the nh listed in the table and the number of free hypermul-

tiplets in the last column. When the hypermultiplets transform under the

nonabelian part of the “manifest” global symmetry of the fixture, we list that

representation. Otherwise, we just give their number.

All SCFTs in the list below are “new”, except for the (E6)6 SCFT, the

(E6)12 × SU(2)7 SCFT, the SU(4)3
8 SCFT, and the (E8)12 SCFT, which have

previously appeared in the classification of the A- and D-series fixtures, and

the (E7)16 × SU(2)9 and (G2)12 × Sp(2)26 SCFTs, which appeared above.

Table 4.5: Mixed fixtures

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Theory

1
E6(a1)

A2 +A1

0 (0, 0, 0, 0, 1, 0, 0, 0) (40, 11) (E8)12 SCFT + 1(1, 27)

2
E6(a1)

3A1

A1 (0, 0, 0, 0, 1, 0, 0, 0) (40, 11) (E8)12 SCFT + 1
2 (1, 2, 1) +

1(3, 1, 6)

3
E6(a1)

2A1

A1 (0, 0, 0, 0, 1, 1, 0, 0) (72, 26) Spin(20)16 SCFT + 1(6, 1)

4
D5

2A2 +A1

A1 (0, 0, 1, 0, 0, 1, 0, 0) (57, 22) (E7)16×SU(2)9+ 1
2 (2, 1)+

1(1, 6)

5
D5

A2 + 2A1

3A1 (0, 0, 1, 1, 0, 0, 0, 0) (42, 16) SU(8)10 × SU(3)12 +
1(2; 3, 1) + 1

2 (3; 1, 2)

6
D5

A2 + 2A1

2A1 (0, 0, 1, 1, 0, 1, 0, 0) (68, 31) (E6)16 × Sp(2)10 × U(1) +
1(2, 1)
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Table 4.5: Mixed fixtures

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Theory

7
D5

2A2

A1 (0, 0, 1, 0, 1, 1, 0, 0) (72, 33) Spin(7)12 ×
Spin(12)16 SCFT + 1(1, 6)

8
D5

A2 +A1

3A1 (0, 0, 1, 1, 1, 0, 0, 0) (60, 27) SU(8)12 × SU(4)10 +
1
2 (1; 1, 2) + 1(1; 3, 1)

9
D5

A2 +A1

2A1 (0, 0, 1, 1, 1, 1, 0, 0) (82, 42)
Spin(10)16 × SU(4)12

×SU(2)10 × U(1)

+1 free hyper

10
D5

A2

3A1 (0, 0, 1, 1, 2, 0, 0, 0) (76, 38) SU(6)
2
12 × SU(2)12 +

1
2 (1, 1; 1, 2)

11
E6(a3)

D5(a1)
0 (0, 2, 0, 0, 0, 0, 0, 0) (32, 10) [(E6)6) SCFT]

2
+ 1(27)

12
E6(a3)

A4 +A1

A1 (0, 1, 0, 0, 1, 1, 0, 0) (64, 31) Spin(13)16 × U(1) + 1(6)

13
E6(a3)

A4

A1 (0, 1, 1, 0, 1, 1, 0, 0) (72, 38) Spin(12)16 × SU(2)8 ×
U(1) SCFT + 1(1, 6)

14
E6(a3)

D4(a1)
A2 + 2A1 (0, 1, 2, 0, 0, 0, 0, 0) (40, 19) SU(4)

3
8 SCFT + 3(2)

15
E6(a3)

D4(a1)
A2 +A1 (0, 1, 2, 0, 1, 0, 0, 0) (56, 30) Spin(8)12 × SU(2)

3
8 ×

U(1)2 + 3 free hypers

16
E6(a3)

A3 +A1

A2 + 2A1 (0, 1, 1, 0, 0, 1, 0, 0) (51, 27) Sp(3)9 × SU(4)16 + 2(1, 2)

17
E6(a3)

A3 +A1

A2 +A1 (0, 1, 1, 0, 1, 1, 0, 0) (66, 38)
Spin(7)12 × Sp(2)9

×SU(2)32 × U(1)

+2 free hypers
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Table 4.5: Mixed fixtures

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Theory

18
E6(a3)

2A2 +A1

A2 +

2A1

(0, 1, 0, 0, 0, 1, 0, 1) (70, 43) Sp(3)26 + 1(1, 2)

19
E6(a3)

2A2 +A1

A2 +A1 (0, 1, 0, 0, 1, 1, 0, 1) (84, 54) (G2)12 × Sp(2)26 +
1 free hyper

20
E6(a3)

A3

A2 + 2A1 (0, 1, 1, 1, 0, 1, 0, 0) (64, 36) Sp(4)10 × SU(2)
2
16 ×

U(1)2 + 1(1, 2)

21
E6(a3)

A3

A2 +A1 (0, 1, 1, 1, 1, 1, 0, 0) (78, 47) SU(4)12 × Sp(3)10 ×
U(1)

2
+ 1 free hyper

22
E6(a3)

A2 + 2A1

2A2 (0, 1, 0, 0, 1, 1, 0, 1) (84, 54) (G2)12 × Sp(2)26 + 1(2, 1)

23
E6(a3)

2A2

A2 +A1 (0, 1, 0, 0, 2, 1, 0, 1) (98, 65) (G2)
2
12 × SU(2)26 +

1 free hyper

24
A5

D5(a1)
0 (0, 1, 0, 0, 1, 0, 0, 0) (39, 16) (E6)12 × SU(2)7 SCFT +

1(1, 27)

25
A5

A4 +A1

A1 (0, 0, 0, 0, 2, 1, 0, 0) (71, 37) Spin(13)16 × SU(2)7 +
1(1, 6)

26
A5

A4

A1 (0, 0, 1, 0, 2, 1, 0, 0) (79, 44)
Spin(12)16 × SU(2)8

×SU(2)7 SCFT

+1(1, 1, 6)

27
A5

D4(a1)
A2 + 2A1 (0, 0, 2, 0, 1, 0, 0, 0) (47, 25) Sp(2)

3
8 × SU(2)7 + 3(1, 2)

28
A5

D4(a1)
A2 +A1 (0, 0, 2, 0, 2, 0, 0, 0) (63, 36)

Spin(8)12 × SU(2)
3
8

×SU(2)7

+3 free hypers
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Table 4.5: Mixed fixtures

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Theory

29
A5

A3 +A1

A2 + 2A1 (0, 0, 1, 0, 1, 1, 0, 0) (58, 33) Sp(3)9 × Sp(2)16 ×
SU(2)7 + 2(1, 1, 2)

30
A5

A3 +A1

A2 +A1 (0, 0, 1, 0, 2, 1, 0, 0) (73, 44)
Spin(7)12 × Sp(2)9

×SU(2)32 × SU(2)7

+2 free hypers

31
A5

2A2 +A1

A2 +

2A1

(0, 0, 0, 0, 1, 1, 0, 1) (77, 49) Sp(3)26 × SU(2)7 +
1(1, 1, 2)

32
A5

2A2 +A1

A2 +A1 (0, 0, 0, 0, 2, 1, 0, 1) (91, 60) (G2)12 × Sp(2)26 ×
SU(2)7 + 1 free hyper

33
A5

A3

A2 + 2A1 (0, 0, 1, 1, 1, 1, 0, 0) (71, 42)
Sp(4)10 × SU(2)32

×SU(2)7 × U(1)

+1(1, 1, 2)

34
A5

A3

A2 +A1 (0, 0, 1, 1, 2, 1, 0, 0) (85, 53)
SU(4)12 × Sp(3)10

×SU(2)7 × U(1)

+1 free hyper

35
A5

A2 + 2A1

2A2 (0, 0, 0, 0, 2, 1, 0, 1) (91, 60) (G2)12 × Sp(2)26 ×
SU(2)7 + 1(1, 2, 1)

36
A5

2A2

A2 +A1 (0, 0, 0, 0, 3, 1, 0, 1) (105, 71) (G2)
2
12 × SU(2)26 ×

SU(2)7 + 1 free hyper

37
D5(a1)

A4 +A1

3A1 (0, 1, 0, 1, 1, 0, 0, 0) (52, 25) SU(6)12 × Spin(7)10 +
1
2 (1, 2) + 1(3, 1)

38
D5(a1)

A4 +A1

2A1 (0, 1, 0, 1, 1, 1, 0, 0) (74, 40)
Spin(10)16 × SU(2)10

×SU(2)32 × U(1)

+1 free hyper
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Table 4.5: Mixed fixtures

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Theory

39
D5(a1)

A4

3A1 (0, 1, 1, 1, 1, 0, 0, 0) (60, 32)
SU(5)12 × SU(4)10

×SU(2)8 × U(1)

+
1

2
(1; 1, 2) + 1(1; 3, 1)

40
D5(a1)

A4

2A1 (0, 1, 1, 1, 1, 1, 0, 0) (82, 47)
Spin(10)16 × SU(2)8

×SU(2)10 × U(1)2

+1 free hyper

41
D5(a1)

D4(a1)
2A2 +A1 (0, 1, 2, 0, 0, 0, 0, 0) (40, 19) SU(4)

3
8 SCFT + 1(2) +

3 free hypers

42
D5(a1)

D4(a1)
2A2 (0, 1, 2, 0, 1, 0, 0, 0) (56, 30)

Spin(8)12 × SU(2)
3
8

×U(1)2

+3 free hypers

43
D5(a1)

A3 +A1

2A2 +A1 (0, 1, 1, 0, 0, 1, 0, 0) (51, 27) SU(4)16 × Sp(3)9 +
1
2 (2, 1) + 2 free hypers

44
D5(a1)

A3 +A1

2A2 (0, 1, 1, 0, 1, 1, 0, 0) (66, 38)
Spin(7)12 × Sp(2)9

×SU(2)32 × U(1)

+2 free hypers

45
D5(a1)

2A2 +A1

2A2 +

A1

(0, 1, 0, 0, 0, 1, 0, 1) (70, 43) Sp(3)26 + 1 free hyper

46
D5(a1)

2A2 +A1

A3 (0, 1, 1, 1, 0, 1, 0, 0) (63, 36)
Sp(3)10 × SU(3)16

×SU(2)9 × U(1)

+
1

2
(2, 1) + 1 free hyper

47
D5(a1)

2A2 +A1

2A2 (0, 1, 0, 0, 1, 1, 0, 1) (84, 54) (G2)12 × Sp(2)26 +
1 free hyper
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Table 4.5: Mixed fixtures

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Theory

48
D5(a1)

A3

2A2 (0, 1, 1, 1, 1, 1, 0, 0) (78, 47) Spin(7)12 × Sp(3)10 ×
U(1)

2
+ 1 free hyper

49
D5(a1)

2A2

2A2 (0, 1, 0, 0, 2, 1, 0, 1) (98, 65) (G2)
2
12 × SU(2)26 +

1 free hyper

50
A4 +A1

A4 +A1

A2 + 2A1 (0, 0, 0, 1, 1, 1, 0, 0) (60, 35) SU(3)32 × Sp(3)10 + 1(2)

51
A4 +A1

A4 +A1

A2 +A1 (0, 0, 0, 1, 2, 1, 0, 0) (74, 46) SU(4)12 × SU(2)10 ×
SU(2)32

2
+ 1 free hyper

52
A4 +A1

A4

A2 + 2A1 (0, 0, 1, 1, 1, 1, 0, 0) (68, 42) SU(3)32 × Sp(2)10 ×
SU(2)8 × U(1) + 1(1, 2)

53
A4 +A1

A4

A2 +A1 (0, 0, 1, 1, 2, 1, 0, 0) (82, 53)

SU(4)12 × SU(2)32

×SU(2)10

×SU(2)8 × U(1)

+1 free hyper

54
D4

A4 +A1

3A1 (0, 1, 0, 1, 2, 0, 0, 0) (68, 36) SU(6)12 × SU(3)
2
12 +

1
2 (1; 1, 2)

55
D4

A4

3A1 (0, 1, 1, 1, 2, 0, 0, 0) (76, 43)
SU(6)12 × SU(3)12

×SU(2)8 × U(1)

+
1

2
(1, 1; 1, 2)

56
D4

D4(a1)
2A2 +A1 (0, 1, 2, 0, 1, 0, 0, 0) (56, 30) Spin(8)12 × SU(2)38 +

1(1, 2)

57
D4

A3 +A1

2A2 +A1 (0, 1, 1, 0, 1, 1, 0, 0) (66, 38)
Spin(7)12 × Sp(2)9

×SU(2)16 × U(1)

+
1

2
(1, 1, 2)
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Table 4.5: Mixed fixtures

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Theory

58
D4

2A2 +A1

A3 (0, 1, 1, 1, 1, 1, 0, 0) (77, 47)

SU(4)12 × Sp(2)10

×SU(2)16

×SU(2)9 × U(1)

+
1

2
(1, 2, 1)

59
A4

A4

A2 + 2A1 (0, 0, 2, 1, 1, 1, 0, 0) (76, 49)
Sp(2)10 × SU(2)32

×SU(2)
2
8 × U(1)2

+1(1, 1, 2)

60
A4

A4

A2 +A1 (0, 0, 2, 1, 2, 1, 0, 0) (90, 60)
SU(4)12 × SU(2)10

×SU(2)
2
8 × U(1)2

+1 free hyper

4.3 A Detour Through the Twisted Sector

There are several fixtures on our list, where the levels of the enhanced

flavour symmetry group cannot be determined by considerations from the un-

twisted sector alone. For instance, consider the pair of fixtures,

D4

0
D4

(E6)18 × (E6)6 × SU(3)12
2 SCFT

and D4

0

(E6)18 × (E6)6 × SU(3)12 × U(1) SCFT

D5(a1)

In each case, only the diagonal (E6)24 ⊂ (E6)24−k × (E6)k is manifest. More-

over, the only gaugings, available in the untwisted sector, have Abelian cen-
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tralizers in (E6)24−k × (E6)k, which makes determining the individual levels

(as opposed to their sum) difficult.

To fix the ambiguity, we need to make recourse to the Z2-twisted sector.

While a full discussion of the Z2-twisted sector is beyond the scope of this

paper, we will borrow a few results of that analysis, deferring a full discussion

to a future paper.

The twisted punctures are labeled by nilpotent orbits in F4. We will

denote them by their Bala-Carter labels, and colour them grey. The empty

fixture

B3

F4

(0, SU(6))

empty

will allow us to gauge an SU(6)24 ⊂ (E6)24−k × (E6)k. The centralizer is

SU(2)24−k × SU(2)k, from which we can read off the “missing” information

about the levels.

We will also need the free-field fixture
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F4

D5(a1)

(Ã2, SU(3))

3 of SU(3)

and the interacting fixture

F4

(E6)6 SCFT

D4

(Ã2, G2)

which is a realization of the (E6)6 SCFT. Finally, we will also need two “new”

interacting fixtures
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Table 4.6: Twisted interacting SCFTs

Fixture (n2, n3, n4, n5, n6, n8, n9, n12) (nh, nv) Global Symmetry

Ã2

D5(a1)

B3

(0, 2, 1, 2, 1, 0, 1, 0) (83, 63) (G2)10 × SU(2)18 ×
SU(2)6 × U(1)

D4

Ã2
B3

(0, 2, 1, 2, 2, 0, 1, 0) (96, 74) (G2)10 × SU(3)12 ×
SU(2)18 × SU(2)6

In both cases, all of the global symmetry except the SU(2)18 is manifest

(in particular, the SU(2)6 is manifest). The 4-punctured sphere

D4

D4

0(0, SU(6))
F4

B3

SU(6)

(E6)24−k × (E6)k × SU(3)12
2 SCFTempty

has global symmetry
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F = SU(3)2
12 × SU(2)24−k × SU(2)k

The S-dual

D4

F4 B3

G2

(G2)10 × SU(3)12 × SU(2)18 × SU(2)6 SCFT

D4

Ã2

(E6)6 SCFT

(Ã2, G2)

manifestly has one of the SU(2) levels as k = 6, which determines the other

level to be 18.

Similarly, for

D4

0(0, SU(6))
F4

B3

SU(6)

(E6)18 × (E6)6 × SU(3)12 × U(1) SCFTempty

D5(a1)

the global symmetry group is

F = SU(3)12 × SU(2)24−k × SU(2)k × U(1)

Now there are two S-dual presentations of the theory:
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F4 B3

G2

(G2)10 × SU(2)18 × SU(2)6 × U(1) SCFT

D4

Ã2

(E6)6 SCFT

(Ã2, G2)
D5(a1)

and

D4

F4 B3

SU(3)

(G2)10 × SU(3)12 × SU(2)18 × SU(2)6 SCFT

Ã2

3

(Ã2, SU(3))
D5(a1)

Again, the fact that one of the SU(2) levels is manifest suffices to determine

the other.

As another example, consider the pair of fixtures

D4

SU(3)12 × SU(2)54−k−k′ × SU(2)k × SU(2)k′ × U(1)3 SCFT

A2 + 2A1

D4(a1) (4.7)

and
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D4

SU(3)12 × SU(2)54−k × SU(2)k × SU(2)9 × U(1)2 SCFT

A2 + 2A1

A3 + A1

(4.8)

In each case, only the diagonal SU(2)54 subgroup, of the indicated SU(2)s,

is manifest. Moreover, these fixtures are not gaugeable within the untwisted

theory. So there is no obvious way to determine the individual SU(2) levels.

Fortunately, the twisted sector provides the empty fixture

F4

F4

(D4, SU(3))

empty

which allows us to gauge the SU(3)12 symmetry of each of these fixtures:

F4

SU(3)
F4

(D4, SU(3)) D4

D4(a1)

A2 + 2A1

and
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F4

SU(3)
F4

(D4, SU(3)) D4

A2 + 2A1

A3 + A1

From the S-duals

F4

Spin(8)

F4

D4(a1)A2 + 2A1

(0, Spin(8))0

(E7)18 × U(1) SCFT (E6)6 SCFT

and

F4

Spin(9)

F4

A3 + A1A2 + 2A1

0

(E7)18 × U(1) SCFT 1(9) + (E6)6 SCFT

(0, Spin(9))

and the Lie-algebra embeddings
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(e7)k ⊃ (f4)k ⊕ su(2)3k

(e7)k ⊃ so(9)k ⊕ su(2)2k ⊕ su(2)k

(e7)k ⊃ so(8)k ⊕ su(2)k ⊕ su(2)k ⊕ su(2)k

we determine the levels in (4.7) and (4.8) to be k = k′ = 18.

Finally, let us turn to the mixed fixture

D4

D4(a1)
2A2 + A1

Spin(8)12 × SU(2)24−k1−k2
× SU(2)k1

× SU(2)k2
SCFT

1(1, 2) +

Only the diagonal SU(2)24 ⊂ SU(2)24−k1−k2
× SU(2)k2

× SU(2)k2
is manifest.

Gauging the SU(3)12 symmetry of the D4 puncture, as before, we find that the

S-dual is a Spin(8) gauge theory, with matter in the 1(8v)+1(8s)+1(8c)+2(1),

coupled to two copies of the (E6)6 SCFT.

Spin(8)

F4 F4

0(0, Spin(8))
D4(a1) 2A2 + A1

(E6)6 SCFT 1(26) + (E6)6 SCFT

From this, we read off the levels of the three SU(2)s: k1 = k2 = 24−k1−k2 = 8.
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4.4 Applications

4.4.1 E6 and F4 gauge theory

4.4.1.1 E6 + 4(27)

E6 gauge theory, with four fundamental hypermultiplets, is supercon-

formal. It is realized as the 4-punctured sphere

E6(a1) E6(a1)

A2 + 2A1

0 0

A2 + 2A1

E6

2(27) 2(27)

z1 z2

z3 z4

The S-dual theory is an SU(2) gauging of the SU(4)54×SU(2)7×U(1) SCFT,

with an additional half-hypermultiplet in the fundamental.

E6(a1)

E6(a1) A2 + 2A1

A5

A2 + 2A1

SU(2)

1
2(2) SU(4)54 × SU(2)7 × U(1) SCFT

(A5, SU(2))

The k-differentials, which determine the Seiberg-Witten solution, are
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φ2(z) =
u2 z12z34 (dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ5(z) =
u5 z12z

4
34 (dz)5

(z − z1)(z − z2)(z − z3)4(z − z4)4

φ6(z) =
u6 z

2
12z

4
34 (dz)6

(z − z1)2(z − z2)2(z − z3)4(z − z4)4

φ8(z) =
u8 z

2
12z

6
34 (dz)8

(z − z1)2(z − z2)2(z − z3)6(z − z4)6

φ9(z) =
u9 z

2
12z

7
34 (dz)9

(z − z1)2(z − z2)2(z − z3)7(z − z4)7

φ12(z) =
u12 z

3
12z

9
34 (dz)12

(z − z1)3(z − z2)3(z − z3)9(z − z4)9

(4.9)

The gauge coupling, τ = θ
π

+ 8πi
g2 , is determined by the SL(2,C)-invariant

cross-ratio

f(τ) ≡ −θ
4
2(0, τ)

θ4
4(0, τ)

=
z13z24

z14z23

(4.10)

and, for calculational purposes, it is usually convenient to use SL(2,C) to fix

(z1, z2, z3, z4) = (0,∞, f(τ), 1) in (4.9).

The solution to E6 gauge theory with Nf ≤ 3 fundamental hypermul-

tiplets was first found in [51].
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4.4.1.2 F4 + 3(26)

F4 gauge theory, with three fundamentals, is also superconformal. It is

realized as

E6(a1) E6(a1)

A2 + 2A1

(0, F4)
0

2A2 + A1

F4

1(26) 2(26) + 2(1)

z1 z2

z3 z4

The S-dual theory is an SU(2) gauging of the Sp(3)26 × SU(2)7 SCFT, with

additional matter in the 1
2
(2) + 2(1).

E6(a1)

E6(a1) 2A2 + A1

A5

A2 + 2A1

SU(2)

1
2(2) Sp(3)26 × SU(2)7 SCFT + 2(1)

(A5, SU(2))

The nonzero k-differentials, which determine the Seiberg-Witten solution, are

the same as in (4.9) but with φ5(z) ≡ 0 ≡ φ9(z). The gauge coupling is again

given by (5.17). Physically, this theory is obtained by Higgsing E6 → F4,

using one of the hypermultiplets in the 27.

In practice, given the solution to E6 +4(27), the solution to F4 +3(26)+

2(1) is obtained by noting that
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• There is a Z2 symmetry, σ : (u5, u9) 7→ (−u5,−u9), acting on the

Coulomb branch of the E6 + 4(27).

• The Coulomb branch geometry of F4 + 3(26) + 2(1) is the geometry of

the fixed-locus of σ.

4.4.2 Adding (E8)12 SCFTs

Starting with the E6 + 4(27) Lagrangian field theory, we can start re-

placing hypermultiplets in the 27 with copies of the (E8)12 SCFT. For n 27s

and 4−n copies of the (E8)12 SCFT, the flavour symmetry group of the theory

is

F = SU(3)4−n
12 × U(n)54

In each of these cases, the S-dual theory is an SU(2) gauging of the SU(3)4−n
12 ×

SU(n)54×SU(2)7×U(1) SCFT, with an additional half-hypermultiplet in the

fundamental (the U(1) is absent for n = 0).

4.4.2.1 n = 3

With one copy of the (E8)12 SCFT,

E6(a1) E6(a1)

A2 + A1

0 0

A2 + 2A1

E6

2(27) 1(27) + (E8)12 SCFT
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is dual to

E6(a1)

E6(a1) A2 + 2A1

A5

A2 + A1

SU(2)

1
2(2) SU(3)54 × SU(3)12 × SU(2)7 × U(1) SCFT

(A5, SU(2))

4.4.2.2 n = 2

With two copies of the (E8)12 SCFT, there are two possible realizations.

Either

E6(a1) E6(a1)

A2 + A1

0 0

A2 + A1

E6

1(27) + (E8)12 SCFT 1(27) + (E8)12 SCFT

dual to

E6(a1)

E6(a1) A2 + A1

A5

A2 + A1

SU(2)

1
2(2) SU(3)12

2 × SU(2)54 × SU(2)7 × U(1) SCFT

(A5, SU(2))

243



or

E6(a1) E6(a1)

A2

0 0

A2 + 2A1

E6

2(27) [(E8)12 SCFT ]2

dual to

E6(a1)

E6(a1) A2

A5

A2 + 2A1

SU(2)

1
2(2) SU(3)12

2 × SU(2)54 × SU(2)7 × U(1) SCFT

(A5, SU(2))

These give two, apparently distinct, realizations of the SU(3)2
12 × SU(2)54 ×

SU(2)7 × U(1) SCFT.

4.4.2.3 n = 1

With three copies of the (E8)12 SCFT, we have

E6(a1) E6(a1)

A2

0 0

A2 + A1

E6

1(27) + (E8)12 SCFT [(E8)12 SCFT ]2
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dual to

E6(a1)

E6(a1) A2

A5

A2 + A1

SU(2)

1
2(2) SU(3)12

3 × SU(2)7 × U(1) SCFT

(A5, SU(2))

4.4.2.4 n = 0

Finally, the E6 gauging of four copies of the (E8)12 SCFT,

E6(a1) E6(a1)

A2

0 0

A2

E6

[(E8)12 SCFT ]2 [(E8)12 SCFT ]2

is dual to

E6(a1)

E6(a1) A2

A5

A2

SU(2)

1
2(2) SU(3)12

4 × SU(2)7 SCFT

(A5, SU(2))
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4.4.3 Connections with F-theory

Placing n D3-branes at a IV∗, III∗ or II∗ singularity in F-Theory yields

an N = 2 superconformal field theory on the world-volume of the D3-branes

[47, 48]. For n = 1 these are, respectively, the (E6)6, (E7)8 and (E8)12 su-

perconformal field theories of Minahan and Nemenschansky [62]. For higher

n, the properties of these SCFTs were computed in [46]. The results may be

summarized as follows

Table 4.7: Properties of higher-rank Minahan-
Nemeschansky SCFTs

F-Theory
singularity Flavour symme-

try

Graded Coulomb
branch

dimensions (nh, nv)

IV∗ (E6)6n ×
SU(2)(n−1)(3n+1)

n3l = 1, l =
1, 2, ..., n

(
3n2 + 14n −

1, n(3n+ 2)
)

III∗ (E7)8n ×
SU(2)(n−1)(4n+1)

n4l = 1, l =
1, 2, ..., n

(
4n2 + 21n −

1, n(4n+ 3)
)

II∗ (E8)12n ×
SU(2)(n−1)(6n+1)

n6l = 1, l =
1, 2, ..., n

(
6n2 + 35n −

1, n(6n+ 5)
)

In [27], Gaiotto and Razamat proposed a realization of these (n ≥ 2)

SCFTs as a mixed fixture, with one free hypermultiplet, in the AN−1 theory,

for N = 3n, 4n and 6n, respectively.
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Table 4.8: Realization of higher-rank Minahan-
Nemeschansky SCFTs in AN−1 series

Theory Fixture Manifest flavour
symmetry

Enhanced to

IV∗

[n3] [n3]

[n2, n − 1, 1]
SU(3)2

6n ×
SU(2)6n × U(1)2

(E6)6n ×
SU(2)k + 1

2
(2)

III∗
[(2n)2] [n4]

[n3, n − 1, 1]
SU(2)8n ×
SU(4)8n ×
SU(3)8n × U(1)2

(E7)8n ×
SU(2)k + 1

2
(2)

II∗
[(3n)2] [(2n)3]

[n5, n − 1, 1]
SU(2)12n ×
SU(3)12n ×
SU(5)12n×U(1)2

(E8)12n ×
SU(2)k + 1

2
(2)

For n = 2, the SU(2) flavour symmetry is manifest, and one readily

verifies that it has the predicted level (given that the hypermultiplet transforms

as 1
2
(2) under the SU(2)). But, for n ≥ 3, only the U(1) Cartan is manifest

and it is not easy to determine the level of the SU(2).

247



We have, of course, numerous realizations of the n = 1 theories. But

we also find examples of the higher-n theories

• We find the n = 2 IV∗ SCFT as one of our fixtures in §5.2.3 and as

part of a product SCFT in fixture 39 of §5.2.4. It also appeared as an

interacting fixture in the D4 theory in [5].

• We find the n = 2 III∗ SCFT as mixed fixture 4 in §5.2.5 and as part of

a product SCFT in fixture 6 of §5.2.4.

• We find the n = 2 II∗ SCFT as interacting fixture 2 in §5.2.4.

• We find the n = 3 III∗ SCFT as interacting fixture 7 in §5.2.4.

In particular, the latter gives a nice check of the SU(2) level for n = 3.

Further examples can be found in the Z2-twisted sector. Notably, the

fixtures

E6(a1)

Ã2 + A1

0
and

F4

A2 + Ã1

0

provide realizations, respectively, of the n = 3, 4 IV∗ SCFTs. Again, the SU(2)

levels agree with the predictions of [46]. Together with the above examples,

these exhaust all the IV∗, III∗ and II∗ theories with nonzero graded Coulomb

branch dimensions in degrees ≤ 12.
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4.5 Isomorphic Theories

In our table of interacting fixtures with enhanced global symmetry in

§5.2.4, we find several SCFTs which seem to be realized in more than one

way. Most of these isomorphisms can be checked by various dualities. Some,

however, cannot and we list them below.
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E6(a3)

D4(a1)

A2
'

D4(a1)

2A2

D4

' Spin(8)2
12 × U(1)2 SCFT

E6(a3)

A3 + A1

A2
'

A3 + A1

2A2

D4

' Spin(7)2
12 × SU(2)9 × U(1) SCFT

E6(a3)

2A2 + A1

A2
'

2A2 + A1

2A2

D4

' (G2)2
12 × SU(2)26 SCFT

E6(a3)

2A2

A2
'

2A2

2A2

D4

' (G2)3
12 SCFT

D5(a1)

D4(a1)
A2 + A1 '

D4(a1)
A2 + 2A1

D4

' SU(3)12 × SU(2)3
18 × U(1)3 SCFT

D5(a1)

D4(a1)

A2
'

D4(a1)
A2 + A1

D4

' SU(3)2
12 × U(1)5 SCFT
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D5(a1)

A3 + A1

A2 + A1 '
A3 + A1

A2 + 2A1

D4

' SU(3)12 × SU(2)36 × SU(2)18

×SU(2)9 × U(1)2 SCFT

D5(a1)

A3 + A1

A2
'

A3 + A1

A2 + A1

D4

' SU(3)2
12 × SU(2)9 × U(1)3 SCFT

D5(a1)
A2

A3

' A2 + A1

D4

A3

' SU(3)2
12 × Sp(2)10 × U(1)3 SCFT

It would be nice to check these conjectured isomorphisms by comparing

the expansions of the superconformal indices for these pairs of fixtures to higher

order in τ .
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Chapter 5

The Z2-Twisted E6 Theory

We now turn our attention to the theories obtained by compactifying

the (2, 0) theory of type E6 in the presence of punctures twisted by a Z2

outer-automorphism 1. The twisted punctures are in 1-1 correspondence with

embeddings ρ : su(2) ↪→ f4, and we label them by the Bala-Carter label of the

corresponding nilpotent orbit. For a given puncture, we compute all the local

properties which contribute to determining the 4D N = 2 SCFT and record

them in Table 5.2.1. We also determine a projection matrix implementing the

branching rule under each embedding, which we use to compute the expansion

of the superconformal index. These can be found in Appendix E.2.

5.1 The twisted E6 theory

5.1.1 The Hitchin system

For a choice of Riemann surface C, the compactification of the 6D (2,0)

theory of type E6 on R3,1 × C yields a 4D N = 2 theory on R3,1. The (2, 0)

theory of type E6 has an outer-automorphism group which is isomorphic to

Z2. This allows us to introduce a class of “twisted” punctures, around which

1This chapter is based on [63].

252



the fields on C undergo a monodromy by a non-trivial element of the outer-

automorphism group2. The properties of these punctures are listed in table

5.2.1.

In [49] we studied the theories that arise from compactifying the E6

(2, 0) on a Riemann surface with untwisted punctures. These punctures are

classified by nilpotent orbits in the complexified Lie algebra e6, and obey a

Hitchin boundary condition of the form

Φ(z) =
A

z
+ e6

where Φ is the Higgs field, z is a local coordinate on C such that the puncture

is at z = 0, A is a nilpotent element in e6, and e6 in the boundary condition

above denotes a generic element of e6 (or a regular function of z taking values

in e6).

By contrast, twisted punctures are classified by nilpotent orbits in the

complexified Lie algebra f4, and obey a twisted boundary condition,

Φ(z) =
A

z
+
o−1

z1/2
+ f4

Here, we have split e6 into eigenspaces under the action of the Z2 outer-

automorphism, as e6 = f4 ⊕ o−1, where f4 (o−1) is the even (odd) eigenspace.

2We also allow for the fields on C to undergo a monodromy upon traversing a homolog-
ically non-trivial cycle.
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Also, A is a nilpotent element in f4, and o−1 and f4 above represent generic

elements in the respective spaces.

5.1.2 k-differentials

We use the basis of E6 Casimir k-differentials {φ2, φ5, φ6, φ8, φ9, φ12} of

our previous paper [49]. For the reader’s convenience, we repeat here how to

construct this basis in terms of the trace invariants Pk = Tr(Φk) for Φ in the

adjoint representation of E6.

φ2 = 1
48
P2

φ6 = 1
24

(
P6 − 7

4608
(P2)3

)
φ8 = 1

30

(
P8 − 2

9
P6P2 + 155

663552
(P2)4

)
φ10 =− 1

105

(
P10 − 17

96
P8P2 + 77

6912
P6(P2)2 − 427

63700992
(P2)5

)
φ12 = 1

155
(P12 − 107

504
P10P2 + 515

32256
P8(P2)2 − 41

108
(P6)2 + 295

497664
P6(P2)3

− 5669
9172942848

(P2)6)

φ14 = 1
4389

(
P14 − 3479

14880
P12P2 + 61391

3214080
P10(P2)2 − 539

2160
P8P6 − 139733

617103360
P8(P2)3

+ 165781
4821120

(P6)2P2 − 3488947
44431441920

P6(P2)4 + 19596907
409480168734720

(P2)7
)

These relations define all the Casimirs except φ5 and φ9. These can be com-

puted from φ10 and φ14, which factorize as

φ10 = φ2
5,

φ14 = φ5φ9.
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Notice that the choice of sign of φ5 determines also the sign of φ9. This is

precisely the action of the Z2 outer-automorphism of E6 on the Casimir k-

differentials,

φ5 7→ −φ5

φ9 7→ −φ9

φk 7→ φk, k = 2, 6, 8, 12

So, we can expect that the leading pole orders of the φk for twisted punctures

will be half-integer for k = 5, 9, and integer for k = 2, 6, 8, 12, corresponding

to the orders of the Casimirs of F4.

5.2 Tinkertoys

We find 2078 fixtures with 3 regular punctures, two twisted and one

untwisted, which correspond to either an interacting SCFT, a mix of an in-

teracting SCFT and free hypers, or a gauge theory. Of these, we find 1757

SCFTs without global symmetry enhancement, 122 SCFTs with enhanced

global symmetry, 32 mixed fixtures, and 167 gauge theory fixtures.

Additionally, there are 23 fixtures with one irregular puncture: 15 free-

field fixtures, 6 interacting fixtures, 1 mixed fixture, and 1 gauge theory fixture.

Below, we give tables of the twisted punctures and their properties, as

well as tables of the twisted fixtures. For the mixed fixtures, we list {dk} and

(nh, nv) of the interacting SCFT, and the representation of the free hypermul-

tiplets. We do not list the fixtures without global symmetry enhancement, as
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their properties can be readily computed from the tables of punctures. Tables

of untwisted punctures and fixtures can be found in our previous paper [49].

Following the conventions of that paper, in the tables we denote the Bala-

Carter labels of twisted punctures by underlining them; in the figures, twisted

punctures are denoted in gray.

5.2.1 Twisted punctures

Twisted punctures in the E6 theory are labeled by nilpotent orbits in f4,

which we denote by the corresponding Bala-Carter label. As discussed in [49],

the Bala-Carter notation provides a systematic way to label nilpotent orbits

in any exceptional semisimple Lie algebra, and a concise review can be found

in appendix A of [49]. Here we merely add that for the f4 nilpotent orbits,

components of the Levi subalgebra in the Bala-Carter label with (without) a

tilde are constructed from the short (long) roots of f4. (So, e.g., A2 + Ã1 and

Ã2 + A1 represent different orbits.)

The pole structure of the k-differentials is denoted by

{p2, p5, p6, p8, p9, p12}, and, for twisted punctures, p5 are p9 are half-integer.

The contributions to the graded Coulomb branch dimensions are denoted by

{d2, d3, d4, d5, d6, d8, d9, d12}, allowing for new Coulomb branch parameters (in-

troduced by a-constraints) of dimensions 3 and 4, which are not degrees of E6

Casimirs. The constraints are shown separately in Appendix D.1.
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Table 5.1: Twisted regular punctures

Nahm
orbit

Hitchin
orbit Pole structure

Coulomb branch
contributions Flavour

group
(δnh, δnv)

0 F4 {1, 92 , 5, 7,
17
2 , 11} {1, 0, 0, 92 , 5, 7,

17
2 , 11} (F4)18 (624, 601)

A1 (F4(a1),

Z2)

{1, 92 , 5, 7,
15
2 , 11} {1, 0, 0, 92 , 5, 7,

15
2 , 11} Sp(3)13 (599, 584)

Ã1 F4(a1) {1, 92 , 5, 7,
15
2 , 11} {1, 0, 0, 92 , 6, 7,

15
2 , 10} SU(4)12 (584, 572)

A1 + Ã1 F4(a2) {1, 92 , 5, 7,
15
2 , 10} {1, 0, 0, 92 , 5, 7,

15
2 , 10} SU(2)64 ×

SU(2)10

(570, 561)

A2 B3 {1, 72 , 5, 7,
15
2 , 10} {1, 0, 0, 72 , 5, 7,

15
2 , 10} SU(3)16 (560, 552)

Ã2 C3 {1, 92 , 5, 7,
15
2 , 10} {1, 1, 0, 92 , 5, 6,

15
2 , 9} (G2)10 (536, 528)

A2 + Ã1 (F4(a3),

S4)

{1, 72 , 5, 6,
15
2 , 10} {1, 0, 0, 72 , 5, 6,

15
2 , 10} SU(2)39 (543, 537)

B2 (F4(a3),

Z2 × Z2)

{1, 72 , 5, 6,
15
2 , 10} {1, 1, 0, 72 , 6, 6,

13
2 , 9} SU(2)

2
7 (518, 513)

Ã2 +A1 (F4(a3),

S3)

{1, 72 , 5, 6,
15
2 , 10} {1, 1, 0, 72 , 5, 6,

15
2 , 9} SU(2)20 (524, 519)

C3(a1) (F4(a3),

Z2)

{1, 72 , 5, 6,
15
2 , 10} {1, 2, 0, 72 , 5, 6,

13
2 , 9} SU(2)7 (511, 507)

F4(a3) F4(a3) {1, 72 , 5, 6,
15
2 , 10} {1, 3, 0, 72 , 4, 6,

13
2 , 9} − (504, 501)

B3 A2 {1, 72 , 4, 6,
13
2 , 9} {1, 0, 1, 72 , 4, 5,

11
2 , 8} SU(2)24 (440, 438)

C3 Ã2 {1, 72 , 5, 6,
15
2 , 10} {1, 1, 1, 72 , 4, 5,

11
2 , 7} SU(2)6 (422, 420)

F4(a2) A1+Ã1 {1, 72 , 4, 6,
13
2 , 9} {1, 0, 1, 72 , 4, 5,

11
2 , 7} − (416, 415)
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Table 5.1: Twisted regular punctures

Nahm
orbit

Hitchin
orbit Pole structure

Coulomb branch
contributions Flavour

group
(δnh, δnv)

F4(a1) Ã1 {1, 72 , 4, 6,
13
2 , 9} {2, 1, 0, 52 , 4, 4,

9
2 , 6} − (352, 352)

F4 0 {1, 52 , 3, 4,
9
2 , 6} {1, 1, 0, 32 , 2, 2,

5
2 , 3} − (184, 185)

There is a special piece consisting of five nilpotent orbits,

A2 + Ã1, Ã2 + A1, B2, C3(a1), F4(a3).

The corresponding Hitchin boundary conditions are (F4(a3),Γ), where the

Sommers-Achar group, Γ, is a subgroup of S4. The leading pole coefficients,

c
(6)
5 = −

(
6a2 + 3a′

2
+ a′′

2
)

c
(9)
15/2 = 1

3
(a+ a′)

(
(2a− a′)2 − a′′2

)
c

(12)
10 = 3a′

2
(4a+ a′)

2
+ 2(8a2 − 12aa′ + a′

2
)a′′

2
+ 1

3
a′′

4 − 4
3

(
c

(6)
5

)2

(5.1)

are invariant under the S4 action,
(

a
a′

a′′

)
7→ γ

(
a
a′

a′′

)
, generated by

σ12 =
1

3

−1 2 0
4 1 0
0 0 3

 , σ23 =
1

2

2 0 0
0 −1 1
0 3 1

 , σ34 =

1 0 0
0 1 0
0 0 −1

 ,

• For the special orbit, F4(a3), the Sommers-Achar group is trivial, and

a, a′, a′′ are invariants.

258



• For C3(a1), the Sommers-Achar group is the Z2 generated by σ34 and

the invariants are a, a′, a′′2.

• For B2, the Sommers-Achar group is the Z2 × Z2 generated by σ12, σ34

and the invariants are a+ 2a′, a′′2, 2a2 + a′2.

• For Ã2 + A1, the Sommers-Achar group is the S3 generated by σ23, σ34

and the invariants are a, 3a′2 + a′′2, c
(9)
15/2.

• Finally, for A2 + Ã1, the Sommers-Achar group is the full S4, and the

invariants are c
(6)
5 , c

(9)
15/2, c

(12)
10 .

In §5.4, we will discover an action of this S4 group on the Higgs branch

of certain fixtures obtained by varying one of the punctures over this special

piece.

5.2.2 Free-field fixtures

Table 5.2: Free-field fixtures

# Fixture nh Representation

1
F4

F4

(D4, SU(3)0) 0 empty

2
F4

F4(a1)
(A2, SU(3)2

0) 0 empty

3
F4

F4(a2)
(A1, SU(6)6) 10 1

2
(20)

4
F4

B3

(0, SU(6)0) 0 empty
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Table 5.2: Free-field fixtures

# Fixture nh Representation

5
F4

E6(a1)
(F4(a1), ) 0 empty

6
F4

E6(a3)
(C3(a1), SU(2)1) 1 1

2
(2)

7
F4

A5

(B2, SU(2)1) 1 1
2
(2)

8
F4

D5(a1)
(Ã2, SU(3)2) 1 1(3)

9
F4

D5

(C3, SU(2)2) 2 1(2)

10
F4

A4 + A1

(Ã1, SU(3)0) 0 empty

11
F4

A4

(Ã1, SU(4)4) 8 (2, 4)

12
F4(a1)

E6(a1)
(B2, SU(2)2

1) 2 1
2
(2, 1) + 1

2
(1, 2)

13
F4(a2)

E6(a1)
(Ã1, Sp(2)0) 0 empty

14
C3

E6(a1)
(Ã1, SU(4)4) 6 1

2
(2, 6)

15
B3

E6(a1)
(A1, Sp(3)3) 9 1

2
(3, 6)

5.2.3 Interacting fixtures with one irregular puncture
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Table 5.3: Interacting fixtures with one irregular punc-
ture

# Fixture (n2, n3, n4, n5, n6, n8,

n9, n12)

(nh, nv) Theory

1
F4

D4

(Ã2, G2) (0, 1, 0, 0, 0, 0, 0, 0) (16, 5) (E6)6 SCFT

2
F4

D4(a1)
(0, Spin(8)) (0, 1, 0, 0, 0, 0, 0, 0) (16, 5) (E6)6 SCFT

3
F4

C3

(A1, SU(6)6) (0, 1, 0, 0, 0, 0, 0, 0) (16, 5) (E6)6 SCFT

4
F4

A3

(0, Spin(9)) (0, 1, 0, 1, 0, 0, 0, 0) (36, 14) Spin(14)10 ×
U(1) SCFT

5
C3

D5

(0, Spin(9)) (0, 1, 1, 1, 0, 0, 0, 0) (38, 21) Spin(9)10 ×
SU(2)6 × U(1)

6
F4(a2)

D5

(0, Spin(9)) (0, 0, 1, 1, 0, 0, 0, 0) (32, 16) Spin(9)10 ×
U(1)

5.2.4 Interacting fixtures with enhanced global symmetry

Table 5.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2, n3, n4, n5,

n6, n8, n9, n12)

(nh, nv) Gk

1
F4

0
F4(a3) (0, 4, 0, 0, 0, 0, 0, 0) (64, 20) [(E6)6 SCFT]4

2
F4

0
C3(a1) (0, 3, 0, 0, 1, 0, 0, 0) (71, 26) [(E6)6 SCFT]2 × [(E6)12 ×

SU(2)7 SCFT]
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Table 5.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2, n3, n4, n5,

n6, n8, n9, n12)

(nh, nv) Gk

3
F4

0
Ã2 +A1 (0, 2, 0, 0, 1, 0, 1, 0) (84, 38) [(E6)6 SCFT] × [(E6)18 ×

SU(2)20 SCFT]

4
F4

0
B2 (0, 2, 0, 0, 2, 0, 0, 0) (78, 32) [(E6)12 × SU(2)7 SCFT]2

5
F4

0
Ã2 (0, 2, 0, 1, 1, 0, 1, 0) (96, 47) [(E6)6 SCFT] × [(E6)18 ×

(G2)10 SCFT]

6
F4

2A1

A2 (0, 1, 0, 0, 1, 1, 0, 0) (64, 31) Spin(13)16 × U(1)

7
F4

A1

A2 (0, 1, 0, 0, 1, 1, 1, 0) (86, 48) (G2)16 × SU(6)18

8
F4

2A1

A1 + Ã1 (0, 1, 0, 1, 1, 1, 0, 0) (74, 40) Spin(10)16 × SU(2)10 ×
SU(2)32 × U(1)

9
F4

A1

A1 + Ã1 (0, 1, 0, 1, 1, 1, 1, 0) (96, 57) SU(6)18 × SU(2)64−k ×
SU(2)k × SU(2)10

10
F4

2A1

Ã1 (0, 1, 0, 1, 2, 1, 0, 0) (88, 51) Spin(8)16 × SU(4)12 × U(1)
2

11
F4

A1

Ã1 (0, 1, 0, 1, 2, 1, 1, 0) (110, 68) SU(6)18 × SU(4)12 × U(1)

12
F4

3A1

A1 (0, 1, 0, 1, 1, 0, 0, 1) (84, 48) Sp(4)13 × SU(3)24

13
F4

A2 + 2A1

0 (0, 1, 0, 1, 0, 0, 1, 0) (70, 31) (E7)18 × U(1)

14
F4

2A2

0 (0, 1, 0, 0, 1, 0, 0, 0) (56, 16) [(E8)12 SCFT]× [(E6)6 SCFT]

15
F4

A2 +A1

0 (0, 1, 0, 1, 1, 0, 1, 0) (83, 42) (E6)18 × SU(3)12 × U(1)

16
F4

A2

0 (0, 1, 0, 1, 2, 0, 1, 0) (96, 53) (E6)18 × SU(3)
2
12
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Table 5.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2, n3, n4, n5,

n6, n8, n9, n12)

(nh, nv) Gk

17
F4(a2)

A2 + 2A1

F4(a2) (0, 0, 2, 2, 1, 1, 1, 0) (94, 75) SU(2)54−k × SU(2)k × U(1)

18
F4(a2)

2A2

F4(a2) (0, 0, 2, 1, 2, 1, 0, 0) (80, 60) Spin(7)12 × U(1)

19
F4(a2)

A2 +A1

F4(a2) (0, 0, 2, 2, 2, 1, 1, 0) (107, 86) SU(3)12 × U(1)
2

20
F4(a2)

A2

F4(a2) (0, 0, 2, 2, 3, 1, 1, 0) (120, 97) SU(3)
2
12 × U(1)

21
F4(a2)

A2 + 2A1

C3 (0, 1, 2, 2, 1, 1, 1, 0) (100, 80) SU(2)36 × SU(2)18 × SU(2)6 ×
U(1)

22
F4(a2)

2A2

C3 (0, 1, 2, 1, 2, 1, 0, 0) (86, 65) Spin(7)12 × SU(2)6 × U(1)

23
F4(a2)

A2 +A1

C3 (0, 1, 2, 2, 2, 1, 1, 0) (113, 91) SU(3)12 × SU(2)6 × U(1)
2

24
F4(a2)

A2

C3 (0, 1, 2, 2, 3, 1, 1, 0) (126, 102) SU(3)
2
12 × SU(2)6 × U(1)

25
F4(a2)

D4(a1)
B3 (0, 0, 4, 1, 1, 0, 0, 0) (64, 48) SU(2)

3
8 × U(1)

2

26
F4(a2)

A3 +A1

B3 (0, 0, 3, 1, 1, 1, 0, 0) (73, 56) SU(2)16 × SU(2)8 × SU(2)9 ×
U(1)

27
F4(a2)

A3

B3 (0, 0, 3, 2, 1, 1, 0, 0) (84, 65) SU(2)16 × SU(2)8 × Sp(2)10 ×
U(1)

28
F4(a2)

A4 +A1

C3(a1) (0, 2, 1, 1, 2, 1, 0, 0) (79, 63) SU(2)7 × U(1)
3

29
F4(a2)

A4

C3(a1) (0, 2, 2, 1, 2, 1, 0, 0) (87, 70) SU(2)8 × SU(2)7 × U(1)
3

30
F4(a2)

A4 +A1

Ã2 +A1 (0, 1, 1, 1, 2, 1, 1, 0) (92, 75) SU(2)20 × U(1)
2
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Table 5.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2, n3, n4, n5,

n6, n8, n9, n12)

(nh, nv) Gk

31
F4(a2)

A4

Ã2 +A1 (0, 1, 2, 1, 2, 1, 1, 0) (100, 82) SU(2)20 × SU(2)8 × U(1)
2

32
F4(a2)

A4 +A1

B2 (0, 1, 1, 1, 3, 1, 0, 0) (86, 69) SU(2)
2
7 × U(1)

2

33
F4(a2)

A4

B2 (0, 1, 2, 1, 3, 1, 0, 0) (94, 76) SU(2)8 × SU(2)
2
7 × U(1)

2

34
F4(a2)

A4 +A1

Ã2 (0, 1, 1, 2, 2, 1, 1, 0) (104, 84) (G2)10 × U(1)
2

35
F4(a2)

A4

Ã2 (0, 1, 2, 2, 2, 1, 1, 0) (112, 91) (G2)10 × SU(2)8 × U(1)
2

36
F4(a2)

E6(a3)
A2 (0, 1, 1, 0, 1, 1, 0, 0) (56, 38) Spin(7)16 × U(1)

37
F4(a2)

A5

A2 (0, 0, 1, 0, 2, 1, 0, 0) (63, 44) (G2)16 × SU(2)7 × U(1)
2

38
F4(a2)

D5(a1)
A2 (0, 1, 1, 1, 1, 1, 1, 0) (83, 64) (G2)16 × U(1)

39
F4(a2)

D4

A2 (0, 1, 1, 1, 2, 1, 1, 0) (96, 75) (G2)16 × SU(3)12

40
F4(a2)

E6(a3)
A1 + Ã1 (0, 1, 1, 1, 1, 1, 0, 0) (66, 47)

SU(2)64−k1−k2 × SU(2)k1
×SU(2)k2 × SU(2)10

41
F4(a2)

A5

A1 + Ã1 (0, 0, 1, 1, 2, 1, 0, 0) (73, 53) SU(2)
2
32 × SU(2)10 × SU(2)7

42
F4(a2)

D5(a1)
A1 + Ã1 (0, 1, 1, 2, 1, 1, 1, 0) (93, 73) SU(2)64−k × SU(2)k ×

SU(2)10 × U(1)

43
F4(a2)

D4

A1 + Ã1 (0, 1, 1, 2, 2, 1, 1, 0) (106, 84) SU(3)12 × SU(2)64−k ×
SU(2)k × SU(2)10

44
F4(a2)

E6(a3)
Ã1 (0, 1, 1, 1, 2, 1, 0, 0) (80, 58) SU(4)12 × U(1)

2
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Table 5.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2, n3, n4, n5,

n6, n8, n9, n12)

(nh, nv) Gk

45
F4(a2)

A5

Ã1 (0, 0, 1, 1, 3, 1, 0, 0) (87, 64) SU(4)12 × SU(2)7 × U(1)

46
F4(a2)

D5(a1)
Ã1 (0, 1, 1, 2, 2, 1, 1, 0) (107, 84) SU(4)12 × U(1)

2

47
F4(a2)

D4

Ã1 (0, 1, 1, 2, 3, 1, 1, 0) (120, 95) SU(4)12 × SU(3)12 × U(1)

48
C3

A2 + 2A1

C3 (0, 2, 2, 2, 1, 1, 1, 0) (106, 85) SU(2)36 × SU(2)18 × SU(2)
2
6 ×

U(1)

49
C3

2A2

C3 (0, 2, 2, 1, 2, 1, 0, 0) (92, 70) Spin(7)12 × SU(2)
2
6 × U(1)

50
C3

A2 +A1

C3 (0, 2, 2, 2, 2, 1, 1, 0) (119, 96) SU(3)12 × SU(2)
2
6 × U(1)

2

51
C3

A2

C3 (0, 2, 2, 2, 3, 1, 1, 0) (132, 107) SU(3)
2
12 × SU(2)

2
6 × U(1)

52
C3

D4(a1)
B3 (0, 1, 4, 1, 1, 0, 0, 0) (70, 53) SU(2)

3
8 × SU(2)6 × U(1)

2

53
C3

A3 +A1

B3 (0, 1, 3, 1, 1, 1, 0, 0) (79, 61)
SU(2)9 × SU(2)16×

SU(2)8 × SU(2)6 × U(1)

54
C3

A3

B3 (0, 1, 3, 2, 1, 1, 0, 0) (90, 70)
Sp(2)10 × SU(2)16×

SU(2)8 × SU(2)6 × U(1)

55
C3

A4 +A1

C3(a1) (0, 3, 1, 1, 2, 1, 0, 0) (85, 68) SU(2)7 × SU(2)6 × U(1)
3

56
C3

A4

C3(a1) (0, 3, 2, 1, 2, 1, 0, 0) (93, 75) SU(2)8 × SU(2)7 × SU(2)6 ×
U(1)

3

57
C3

A4 +A1

Ã2 +A1 (0, 2, 1, 1, 2, 1, 1, 0) (98, 80) SU(2)20 × SU(2)6 × U(1)
2

58
C3

A4

Ã2 +A1 (0, 2, 2, 1, 2, 1, 1, 0) (106, 87) SU(2)20 × SU(2)8 × SU(2)6 ×
U(1)

2
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Table 5.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2, n3, n4, n5,

n6, n8, n9, n12)

(nh, nv) Gk

59
C3

A4 +A1

B2 (0, 2, 1, 1, 3, 1, 0, 0) (92, 74) SU(2)
2
7 × SU(2)6 × U(1)

2

60
C3

A4

B2 (0, 2, 2, 1, 3, 1, 0, 0) (100, 81) SU(2)8 × SU(2)
2
7 × SU(2)6 ×

U(1)
2

61
C3

A4 +A1

Ã2 (0, 2, 1, 2, 2, 1, 1, 0) (110, 89) (G2)10 × SU(2)6 × U(1)
2

62
C3

A4

Ã2 (0, 2, 2, 2, 2, 1, 1, 0) (118, 96) (G2)10 × SU(2)8 × SU(2)6 ×
U(1)

2

63
C3

E6(a3)
A2 (0, 2, 1, 0, 1, 1, 0, 0) (62, 43) Spin(7)16 × SU(2)6

64
C3

A5

A2 (0, 1, 1, 0, 2, 1, 0, 0) (69, 49) (G2)16×SU(2)7×SU(2)6×U(1)

65
C3

D5(a1)
A2 (0, 2, 1, 1, 1, 1, 1, 0) (89, 69) (G2)16 × SU(2)6 × U(1)

66
C3

D4

A2 (0, 2, 1, 1, 2, 1, 1, 0) (102, 80) (G2)16 × SU(3)12 × SU(2)6

67
C3

E6(a3)
A1 + Ã1 (0, 2, 1, 1, 1, 1, 0, 0) (72, 52) SU(2)32×SU(2)

2
16×SU(2)10×

SU(2)6

68
C3

A5

A1 + Ã1 (0, 1, 1, 1, 2, 1, 0, 0) (79, 58) SU(2)
2
32 × SU(2)10 × SU(2)7 ×

SU(2)6

69
C3

D5(a1)
A1 + Ã1 (0, 2, 1, 2, 1, 1, 1, 0) (99, 78)

SU(2)64−k × SU(2)k×
SU(2)10 × SU(2)6 × U(1)

70
C3

D4

A1 + Ã1 (0, 2, 1, 2, 2, 1, 1, 0) (112, 89)
SU(3)12 × SU(2)64−k × SU(2)k

×SU(2)10 × SU(2)6

71
C3

E6(a3)
Ã1 (0, 2, 1, 1, 2, 1, 0, 0) (86, 63) SU(4)12 × SU(2)6 × U(1)

2

72
C3

A5

Ã1 (0, 1, 1, 1, 3, 1, 0, 0) (93, 69) SU(4)12 × SU(2)7 × SU(2)6 ×
U(1)
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Table 5.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2, n3, n4, n5,

n6, n8, n9, n12)

(nh, nv) Gk

73
C3

D5(a1)
Ã1 (0, 2, 1, 2, 2, 1, 1, 0) (113, 89) SU(4)12 × SU(2)6 × U(1)

2

74
C3

D4

Ã1 (0, 2, 1, 2, 3, 1, 1, 0) (126, 100) SU(4)12 × SU(3)12 × SU(2)6 ×
U(1)

75
B3

D5(a1)
F4(a3) (0, 4, 1, 1, 0, 0, 0, 0) (51, 36) SU(2)

4
6 × U(1)

3

76
B3

D4

F4(a3) (0, 4, 1, 1, 1, 0, 0, 0) (64, 47) SU(3)12 × SU(2)
4
6

77
B3

D5(a1)
C3(a1) (0, 3, 1, 1, 1, 0, 0, 0) (58, 42) SU(2)12 × SU(2)

2
6 × SU(2)7 ×

U(1)
2

78
B3

D4

C3(a1) (0, 3, 1, 1, 2, 0, 0, 0) (71, 53) SU(3)12 × SU(2)12 × SU(2)
2
6 ×

SU(2)7

79
B3

D5(a1)
Ã2 +A1 (0, 2, 1, 1, 1, 0, 1, 0) (71, 54) SU(2)20 × SU(2)18 × SU(2)6 ×

U(1)

80
B3

D4

Ã2 +A1 (0, 2, 1, 1, 2, 0, 1, 0) (84, 65) SU(3)12×SU(2)20×SU(2)18×
SU(2)6

81
B3

D5(a1)
B2 (0, 2, 1, 1, 2, 0, 0, 0) (65, 48) SU(2)

2
7 × SU(2)

2
12 × U(1)

2

82
B3

D4

B2 (0, 2, 1, 1, 3, 0, 0, 0) (78, 59) SU(3)12 × SU(2)
2
7 × SU(2)

2
12

83
B3

E6(a3)
A2 + Ã1 (0, 1, 1, 0, 1, 0, 0, 1) (63, 46) SU(2)k ×SU(2)39−k ×SU(2)24

84
B3

A5

A2 + Ã1 (0, 0, 1, 0, 2, 0, 0, 1) (70, 52) SU(2)7 × SU(2)26 × SU(2)13 ×
SU(2)24

85
B3

E6(a3)
Ã2 (0, 2, 1, 1, 1, 0, 0, 0) (56, 37) Spin(7)10 × SU(2)12 × SU(2)

2
6

86
B3

A5

Ã2 (0, 1, 1, 1, 2, 0, 0, 0) (63, 43) Spin(7)10 × SU(2)7 × SU(2)
2
12
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Table 5.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2, n3, n4, n5,

n6, n8, n9, n12)

(nh, nv) Gk

87
B3

D5(a1)
Ã2 (0, 2, 1, 2, 1, 0, 1, 0) (83, 63) (G2)10 × SU(2)18 × SU(2)6 ×

U(1)

88
B3

D4

Ã2 (0, 2, 1, 2, 2, 0, 1, 0) (96, 74) (G2)10 × SU(3)12 × SU(2)18 ×
SU(2)6

89
B3

E6(a3)
A2 (0, 1, 1, 0, 1, 1, 0, 1) (80, 61) SU(3)16 × SU(2)24 × U(1)

90
B3

A5

A2 (0, 0, 1, 0, 2, 1, 0, 1) (87, 67) SU(3)16 × SU(2)7 × SU(2)24 ×
U(1)

91
B3

D5

0 (0, 0, 2, 1, 0, 0, 0, 0) (56, 23) (E7)8 × (F4)10 × U(1)

92
F4(a3)

A4 +A1

F4(a2) (0, 3, 1, 1, 1, 1, 0, 0) (72, 57) U(1)
4

93
F4(a3)

A4

F4(a2) (0, 3, 2, 1, 1, 1, 0, 0) (80, 64) SU(2)8 × U(1)
4

94
F4(a3)

A4 +A1

C3 (0, 4, 1, 1, 1, 1, 0, 0) (78, 62) SU(2)6 × U(1)
4

95
F4(a3)

A4

C3 (0, 4, 2, 1, 1, 1, 0, 0) (86, 69) SU(2)8 × SU(2)6 × U(1)
4

96
F4(a3)

D5

A2 (0, 3, 1, 0, 0, 1, 0, 0) (56, 37) Spin(8)16 × U(1)

97
F4(a3)

D5

A1 + Ã1 (0, 3, 1, 1, 0, 1, 0, 0) (66, 46) SU(2)
4
16 × SU(2)10 × U(1)

98
F4(a3)

D5

Ã1 (0, 3, 1, 1, 1, 1, 0, 0) (80, 57) SU(4)12 × U(1)
4

99
F4(a3)

E6(a1)
0 (0, 3, 0, 0, 0, 0, 0, 0) (48, 15) [(E6)6 SCFT]3

100
C3(a1)

D5

A2 (0, 2, 1, 0, 1, 1, 0, 0) (63, 43) Spin(7)16 × SU(2)7 × U(1)
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Table 5.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2, n3, n4, n5,

n6, n8, n9, n12)

(nh, nv) Gk

101
C3(a1)

D5

A1 + Ã1 (0, 2, 1, 1, 1, 1, 0, 0) (73, 52)
SU(2)32 × SU(2)

2
16×

SU(2)10 × SU(2)7 × U(1)

102
C3(a1)

D5

Ã1 (0, 2, 1, 1, 2, 1, 0, 0) (87, 63) SU(4)12 × SU(2)7 × U(1)
3

103
C3(a1)

E6(a1)
0 (0, 2, 0, 0, 1, 0, 0, 0) (55, 21) [(E6)6 SCFT] × [(E6)12 ×

SU(2)7 SCFT]

104
Ã2 +A1

D5

A2 (0, 1, 1, 0, 1, 1, 1, 0) (76, 55) (G2)16 × SU(2)20 × U(1)

105
Ã2 +A1

D5

A1 + Ã1 (0, 1, 1, 1, 1, 1, 1, 0) (86, 64)
SU(2)48 × SU(2)16×

SU(2)10 × SU(2)20 × U(1)

106
Ã2 +A1

D5

Ã1 (0, 1, 1, 1, 2, 1, 1, 0) (100, 75) SU(4)12 × SU(2)20 × U(1)
2

107
Ã2 +A1

E6(a1)
0 (0, 1, 0, 0, 1, 0, 1, 0) (68, 33) (E6)18 × SU(2)20 SCFT

108
B2

D5

A2 (0, 1, 1, 0, 2, 1, 0, 0) (70, 49) (G2)16 × SU(2)
2
7 × U(1)

2

109
B2

D5

A1 + Ã1 (0, 1, 1, 1, 2, 1, 0, 0) (80, 58) SU(2)
2
32 × SU(2)10 × SU(2)

2
7 ×

U(1)

110
B2

D5

Ã1 (0, 1, 1, 1, 3, 1, 0, 0) (94, 69) SU(4)12 × SU(2)
2
7 × U(1)

2

111
B2

E6(a1)
0 (0, 1, 0, 0, 2, 0, 0, 0) (62, 27) [(E6)6 SCFT] × [(F4)12 ×

SU(2)
2
7 SCFT]

112
A2 + Ã1

D5

A2 + Ã1 (0, 0, 1, 0, 1, 0, 1, 1) (78, 58) Sp(2)39 × U(1)

113
A2 + Ã1

E6(a1)
A1 (0, 0, 0, 0, 1, 0, 0, 1) (62, 34) Sp(4)13 × SU(2)26

114
Ã2

D5

A2 (0, 1, 1, 1, 1, 1, 1, 0) (88, 64) (G2)16 × (G2)10 × U(1)
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Table 5.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2, n3, n4, n5,

n6, n8, n9, n12)

(nh, nv) Gk

115
Ã2

D5

A1 + Ã1 (0, 1, 1, 2, 1, 1, 1, 0) (98, 73)
(G2)10 × SU(2)64−k × SU(2)k

×SU(2)10 × U(1)

116
Ã2

D5

Ã1 (0, 1, 1, 2, 2, 1, 1, 0) (112, 84) SU(4)12 × (G2)10 × U(1)
2

117
Ã2

E6(a1)
0 (0, 1, 0, 1, 1, 0, 1, 0) (80, 42) (E6)18 × (G2)10 SCFT

118
A2

E6(a1)
Ã1 (0, 0, 0, 0, 2, 1, 0, 0) (64, 37) Spin(7)12 × (G2)16 × U(1)

119
A2

E6(a1)
A1 (0, 0, 0, 0, 1, 1, 0, 1) (79, 49) Sp(3)13 × SU(3)16 × U(1)

120
A1 + Ã1

E6(a1)
A1 + Ã1 (0, 0, 0, 1, 1, 1, 0, 0) (60, 35) SU(4)32 × Sp(2)10

121
A1 + Ã1

E6(a1)
Ã1 (0, 0, 0, 1, 2, 1, 0, 0) (74, 46) SU(4)12 × SU(2)

2
32 × SU(2)10

122
Ã1

E6(a1)
Ã1 (0, 0, 0, 1, 3, 1, 0, 0) (88, 57) SU(4)

2
12 × U(1)

5.2.5 Mixed fixtures

Table 5.5: Mixed fixtures

# Fixture (n2, n3, n4, n5,

n6, n8, n9, n12)

(nh, nv) Theory

1
F4

A3 +A1

(0, Spin(9)) (0, 1, 0, 0, 0, 0, 0, 0) (16, 5) (E6)6 SCFT + 1(9)

2
F4

2A1

A2 + Ã1 (0, 1, 0, 0, 1, 0, 0, 0) (38, 16) (E6)12 × SU(2)7 + 1
2 (1, 2) +

1
2 (7, 2)
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Table 5.5: Mixed fixtures

# Fixture (n2, n3, n4, n5,

n6, n8, n9, n12)

(nh, nv) Theory

3
F4

A1

A2 + Ã1 (0, 1, 0, 0, 1, 0, 1, 0) (68, 33) (E6)18 × SU(2)20 + 1
2 (1, 2)

4
F4

3A1

A2 (0, 1, 0, 0, 1, 0, 0, 0) (39, 16) (E6)12 × SU(2)7 + (1, 2, 3)

5
F4

3A1

A1 + Ã1 (0, 1, 0, 1, 1, 0, 0, 0) (52, 25) SU(6)12 × Spin(7)10 +
1
2 (1, 2, 3, 1)

6
F4

3A1

Ã1 (0, 1, 0, 1, 2, 0, 0, 0) (68, 36) SU(6)12×SU(3)
2
12 + 1

2 (1, 2, 1)

7
F4

A2 + 2A1

A1 (0, 1, 0, 1, 0, 0, 0, 0) (36, 14) Spin(14)10 × U(1) + 1
2 (3, 6)

8
F4

A2 +A1

A1 (0, 1, 0, 1, 1, 0, 0, 0) (55, 25) SU(9)12 × U(1) + 1
2 (1, 6)

9
F4

A2

A1 (0, 1, 0, 1, 2, 0, 0, 0) (68, 36) SU(6)12×SU(3)
2
12 + 1

2 (1, 1, 6)

10
F4

2A2 +A1

0 (0, 1, 0, 0, 0, 0, 0, 0) (16, 5) (E6)6 SCFT + 1
2 (26, 2)

11
F4(a2)

2A2 +A1

F4(a2) (0, 0, 2, 1, 1, 1, 0, 0) (65, 49) SU(2)25−k ×SU(2)k ×U(1) +
1
2 (2)

12
F4(a2)

2A2 +A1

C3 (0, 1, 2, 1, 1, 1, 0, 0) (71, 54)
SU(2)16 × SU(2)9

×SU(2)6 × U(1)

+
1

2
(2, 1)
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Table 5.5: Mixed fixtures

# Fixture (n2, n3, n4, n5,

n6, n8, n9, n12)

(nh, nv) Theory

13
F4(a2)

E6(a3)
A2 + Ã1 (0, 1, 1, 0, 1, 0, 0, 0) (37, 23) Sp(2)12×SU(2)7×SU(2)6+2

14
F4(a2)

A5

A2 + Ã1 (0, 0, 1, 0, 2, 0, 0, 0) (45, 29) Sp(2)7 × SU(2)7 × SU(2)
2
12 +

1
2 (1, 2)

15
F4(a2)

D5(a1)
A2 + Ã1 (0, 1, 1, 1, 1, 0, 1, 0) (65, 49) SU(2)38−k ×SU(2)k ×U(1) +

1
2 (2)

16
F4(a2)

D4

A2 + Ã1 (0, 1, 1, 1, 2, 0, 1, 0) (78, 60) SU(3)12×SU(2)20×SU(2)18+
1
2 (1, 2)

17
C3

2A2 +A1

C3 (0, 2, 2, 1, 1, 1, 0, 0) (77, 59)

SU(2)16 × SU(2)9

×SU(2)
2
6 × U(1)

+
1

2
(2, 1, 1)

18
C3

E6(a3)
A2 + Ã1 (0, 2, 1, 0, 1, 0, 0, 0) (43, 28) SU(2)

2
12×SU(2)

2
6×SU(2)7 +

(2, 1)

19
C3

A5

A2 + Ã1 (0, 1, 1, 0, 2, 0, 0, 0) (51, 34)
Sp(2)7 × SU(2)24 × SU(2)7

×SU(2)6 +
1

2
(1, 2, 1)

20
C3

D5(a1)
A2 + Ã1 (0, 2, 1, 1, 1, 0, 1, 0) (71, 54)

SU(2)20 × SU(2)18

×SU(2)6 × U(1)

+
1

2
(2, 1)

21
C3

D4

A2 + Ã1 (0, 2, 1, 1, 2, 0, 1, 0) (84, 65)
SU(3)12 × SU(2)20 × SU(2)18

×SU(2)6 +
1

2
(1, 2, 1)
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Table 5.5: Mixed fixtures

# Fixture (n2, n3, n4, n5,

n6, n8, n9, n12)

(nh, nv) Theory

22
B3

E6(a3)
Ã2 +A1 (0, 2, 1, 0, 1, 0, 0, 0) (43, 28) SU(2)

2
12×SU(2)

2
6×SU(2)7 +

1
2 (2, 1)

23
B3

A5

Ã2 +A1 (0, 1, 1, 0, 2, 0, 0, 0) (50, 34) SU(2)7×SU(2)
3
12×SU(2)7 +

1
2 (1, 2, 1)

24
F4(a3)

D5

A2 + Ã1 (0, 3, 1, 0, 0, 0, 0, 0) (36, 22) SU(2)
6
6 × U(1) + 3

2 (2)

25
C3(a1)

D5

A2 + Ã1 (0, 2, 1, 0, 1, 0, 0, 0) (44, 28)
Sp(2)7 × SU(2)

2
12

×SU(2)6 × U(1)

+(2, 1)

26
Ã2 +A1

D5

A2 + Ã1 (0, 1, 1, 0, 1, 0, 1, 0) (58, 40) Sp(2)20 × SU(2)18 × U(1) +
1
2 (2, 1)

27
Ã2 +A1

E6(a1)
A1 (0, 1, 0, 0, 1, 0, 0, 0) (39, 16) (E6)12 × SU(2)7 + 1

2 (6, 1) +
1
2 (1, 2)

28
B2

D5

A2 + Ã1 (0, 1, 1, 0, 2, 0, 0, 0) (52, 34) Sp(2)
2
7 × SU(2)24 × U(1) +

1
2 (2, 1, 1)

29
A2 + Ã1

E6(a1)
A1 + Ã1 (0, 0, 0, 0, 1, 0, 0, 0) (27, 11) Sp(5)7 + 1

2 (3, 1, 2) + 1
2 (1, 2, 3)

30
A2 + Ã1

E6(a1)
Ã1 (0, 0, 0, 0, 2, 0, 0, 0) (46, 22) (F4)12 × SU(2)

2
7 + 1

2 (1, 2)

31
Ã2

D5

A2 + Ã1 (0, 1, 1, 1, 1, 0, 1, 0) (70, 49)
SU(2)20 × SU(2)18

×(G2)10 × U(1)

+
1

2
(2, 1)
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Table 5.5: Mixed fixtures

# Fixture (n2, n3, n4, n5,

n6, n8, n9, n12)

(nh, nv) Theory

32
Ã2

E6(a1)
A1 (0, 1, 0, 1, 1, 0, 0, 0) (52, 25) SU(6)12 × Spin(7)10 + 1

2 (6, 1)

33
A2

E6(a1)
A1 + Ã1 (0, 0, 0, 0, 1, 1, 0, 0) (49, 26) SU(6)16 × SU(2)9 + 1

2 (1, 2, 1)

We note that for mixed fixture 22 on our list, the order q (equivalently,

τ 2) term in the expansion of its superconformal index implies that the global

symmetry is enhanced to SU(2)19−k × SU(2)k × SU(2)24−k1−k2 × SU(2)k1 ×

SU(2)k2 . Since we are not able to gauge any of the punctures, we cannot

determine the levels k, k1, k2 using an S-duality.

However, by setting k = 7, k1 = k2 = 6, its properties agree with that

of mixed fixture 18, up to the addition of a half-hypermultiplet. As further

evidence, we have checked that the next non-trivial term in the expansion of

the superconformal index is the same for each theory:

I#18 = I#22 × Ifree

= (1 + 2q
1
2 + 18q + 66q

3
2 + . . . )(1 + 2q

1
2 + 3q + 6q

3
2 + . . . )

= 1 + 4q
1
2 + 25q + 114q

3
2 + . . .

Thus we conjecture that the SCFT realized by fixture 22 is the same as that

of 18, and fill in the levels in the table above.
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5.2.6 Gauge theory fixtures

Gauge theory fixtures are 3-punctured spheres with 1 or 2 insertions

of F4(a1). There are 167 such 3-punctured spheres involving three regular

punctures and 1 involving an irregular puncture. Of the 167, all but 1 are

resolved by replacing the F4(a1) by the pair F4, E6(a1); that is, they can be

thought-of as 4-punctured spheres in disguise. The remaining case involves

two F4(a1) punctures and is really a 5-punctured sphere in disguise. The two

exceptional cases are listed in the table below. Note that the latter involves

two decoupled copies of a theory to be discussed at greater length in §5.7.2.

Table 5.6: Gauge theory fixtures

# Fixture (n2, n3, n4, n5,

n6, n8, n9, n12)

Theory

1
F4(a1)

D5

(Ã1, SU(4)4) (1, 0, 0, 0, 0, 0, 0, 0) SU(2) + 4(2)

2
F4(a1)

0
F4(a1) (2, 2, 0, 0, 2, 0, 0, 0)

[
SU(3) + (E8)12

]2
' [SU(2) + 1

2
(2)

+(E6)12 × SU(2)7]2

5.3 Global symmetries and the superconformal index

To determine the global symmetry of each SCFT and the number of

free hypermultiplets for each fixture, we use the superconformal index [22, 23,

24, 25, 26]. This analysis was carried out for the untwisted E6 fixtures in [49].
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We leave many of the details to that paper, and the references therein.

5.3.1 Superconformal index for twisted fixtures

Following [17, 26, 64], we assume that the superconformal index for an

E6 fixture with a two twisted punctures and one untwisted puncture takes the

usual form:

I(ai; τ) =

A(τ)
∑

(a1,a2,a3,a4)

K(a1; τ)P
(a1,a2,a3,a2,a1,a4)
E6

(a1; τ)
∏3

i=2K(ai; τ)P
(a1,a2,a3,a4)
F4

(ai; τ)

P
(a1,a2,a3,a2,a1,a4)
E6

(atriv; τ)

(5.2)

where the sum runs over finite-dimensional irreducible representations of F4,

and the Dynkin labels of each E6 representation are determined by those of

the corresponding F4 representation, as indicated.

To obtain this formula, one can use the fact that, when C has genus

zero, the Hall-Littlewood limit of the superconformal index coincides with the

Coulomb branch Hilbert series of the 3d mirror of the (2, 0) theory on C ×S1.

For a fixture of type E6 with twisted punctures, the 3d mirror is obtained

by assigning the 3d N = 4 SCFT Tρ̃(F4) to each twisted puncture ρ̃ and the

SCFT Tρ(E6) to the untwisted puncture ρ, and gauging the common centerless

flavor symmetry F4/Z(F4) [14, 12]. The Coulomb branch Hilbert series can

then be computed following [65, 66], giving (5.2).

The Taylor expansion of the superconformal index is given by [27]
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I(ai; τ) = 1 + τχRfree(ai) + τ 2(χadjfree(ai) + χadjSCFT (ai)) + . . .

allowing us to read off the number of free hypermultiplets and the global

symmetry group of the interacting SCFT for a given fixture. Examples of this

type of calculation can be found in [17, 49, 27].

5.3.2 Higher-order expansion of the index

Computing the expansion of (5.2) to higher-order becomes very tedious

due to the sum over the Weyl group in the definition of the Hall-Littlewood

polynomials. We will therefore also be interested in the Schur limit of the

superconformal index, where the Hall-Littlewood polynomials are replaced by

characters of the corresponding representations3. For a twisted fixture, this is

given by

I(ai; q) =∏
j=2,5,6,8,9,12

(qj; q)
∑

(a1,a2,a3,a4)

∏2
i=1K(ai)χ

(a1,a2,a3,a4)
F4

(ai)K(a3)χ
(a1,a2,a3,a2,a1,a4)
E6

(a3)

χ
(a1,a2,a3,a2,a1,a4)
E6

(atriv)

(5.3)

where (a; q) ≡
∏∞

j=0(1 − aqj) is the q-Pochhammer symbol. We expand each

character χλ in (5.3) in terms of su(2) × f characters as determined by the

3This limit corresponds to the (0, q, t = q) slice in the space of superconformal fugacities
[24].
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su(2) embedding which defines the puncture, where the su(2) fugacity is set

equal to q
1
2 . Decomposing the adjoint representation as

g =
⊕
n

Vn ⊗Rn

where Vn is the n-dimensional irrep of su(2) and Rn is the corresponding

representation of f, K(a) is defined by

K(a) = PE[
∑
n

q
n+1

2 χRn
f (a)],

where PE denotes the plethystic exponential. By their definitions, one can

easily see that the coefficient of τ (τ 2) in the Hall-Littlewood index is the

same as that of q
1
2 (q) in the Schur index (though the higher-order terms are

different). However, while the Schur index removes the difficulty of explicitly

summing over the Weyl group, we find that the number of terms in the sum

in (5.3) grows very quickly at each order in q
1
2 and begins to involve large-

dimensional representations of E6, also making the calculation very tedious.

Therefore, in most of the calculations that follow, we compute only the next

1-2 terms in the expansion of the Schur index. It would be very useful to find

a more efficient way to explicitly calculate (5.2), (5.3).
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5.4 Enhanced global symmetries: the Sommers-Achar
group on the Higgs branch

Consider a family of fixtures where we keep two of the punctures fixed,

and vary the third puncture over a special piece, {O}. Let Os be the special

puncture in this special piece. The Sommers-Achar group C(O), for each

of the punctures O in the special piece, is a subgroup of Lusztig’s canonical

quotient group, A(d(O)) ' Sn. Let Om be the puncture with the maximal

Sommers-Achar group, i.e, the one whose Hitchin pole is (d(O), Sn).

It frequently happens that, when O = Os, a simple factor (associated

to one of the other punctures, which we are holding fixed) in the manifest

global symmetry of the fixture is enhanced as

Fkn → (Fk)
n

(There may, in addition, be further enhancements of the global symmetry but,

by examining the fugacity-dependence of the superconformal index, we know

unambiguously which ones are associated to the enhancement of Fkn.) When

this enhancement takes place, for O = Os, then, for O = Om, the Fkn is

unenhanced and, as O varies over the special piece, the enhancement is the

subgroup of (Fk)
n which is invariant under C(O) acting by permutations of

the n copies of Fk.

In particular, this gives an explicit action of the Sommers-Achar group

on the holomorphic moment map operators, which are generators of the Higgs
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branch chiral ring. Heretofore, the Sommers-Achar group was purely a Coulomb-

branch concept.

We found numerous examples of this in [49] and were able to verify,

using various S-dualities (see, e.g., Section 4 of [49]) that the levels of the

factors of F in the global symmetry behave as predicted by this permutation

action.

One example eluded us there. We were unable to verify, using S-duality,

the levels of the SU(3)s in the first two fixtures in
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SU(3)54−k−k′ × SU(3)k × SU(3)k′ × U(1)

SU(3)54−k × SU(3)k × SU(2)9 × U(1)

SU(3)54 × SU(2)26 × U(1)

D5(a1)

A2 + 2A1

A3 + A1

D5(a1)

A2 + 2A1

2A2 + A1

D5(a1)

A2 + 2A1

D4(a1) C(D4(a1)) = 1

C(A3 + A1) = ℤ2

C(2A2 + A1) = S3

This example has an additional enhancement. As above, the manifest symme-

try of the A2 + 2A1 puncture is enhanced

SU(2)54 × U(1)→ SU(2)3
18 × U(1)

with the further enhancement

SU(2)3
18 × U(1)3 → SU(3)3

18
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Otherwise, this example fits the same pattern: the Sommers-Achar group,

C(O), acts by permutations on the SU(3)3
18, and the global symmetry group

of the fixture is the subgroup invariant under C(O). That is, k = k′ = 18.

The twisted sector of the E6 theory provides further examples of this

phenomenon. Perhaps the most striking example is the fixture

F4

O

0

with an untwisted full puncture, a twisted simple puncture and a twisted

puncture, O. As we let the puncture, O, vary over the special piece of F4(a3),

the (E6)24 symmetry of the 0 puncture is enhanced to (the C(O)-invariant

subgroup of) (E6)4
6. The resulting SCFTs are products of the generalized E6

Minahan-Nemeschansky SCFTs whose Higgs branches are the moduli space

of l E6 instantons, M(E6, l)
4 .

Table 5.7: Fixtures obtained by varying over special piece of F4(a3)

# O C(O) Theory Higgs Branch dimH Higgs (nh, nv)

1 F4(a3) 1 [(E6)6 SCFT]4 M(E6, 1)4 44 (64, 20)

4These SCFTs are realized in F-theory as the theory on l D3-branes coincident with a
IV∗ singularity.
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Table 5.7: Fixtures obtained by varying over special piece of F4(a3)

# O C(O) Theory Higgs Branch dimH Higgs (nh, nv)

2 C3(a1) Z2 [(E6)6 SCFT]2 ×
[(E6)12 ×
SU(2)7 SCFT]

M(E6, 1)2 ×
M(E6, 2)

45 (71, 26)

3 Ã2 +A1 S3 [(E6)6 SCFT] ×
[(E6)18 ×
SU(2)20 SCFT]

M(E6, 1) ×
M(E6, 3)

46 (84, 38)

4 B2 Z2 × Z2 [(E6)12 ×
SU(2)7 SCFT]2

M(E6, 2)2 46 (78, 32)

A2 + Ã1 S4 [(E6)24 ×
SU(2)39 SCFT]

M(E6, 4) 47 (103, 56)

Here the (E6)6l global symmetry is realized as the E6 global symmetry

of M(E6, l). More subtle relations between instanton moduli spaces will be

discussed below in §5.7.

In this example, the global symmetry groups and the levels were all

determined by S-duality. In other examples, S-duality determines some, but

not all of the levels of the enhanced global symmetries, and we can use the

action of the Sommers-Achar group on the Higgs branch to fill in the missing

levels5.

Two more sequences of fixtures, which have one puncture running over

the special piece of F4(a3), have global symmetry groups which are enhanced

in this fashion, but levels we could not completely determine using S-duality6:

5The action of C(O) on the Higgs branch of mixed fixtures is not so transparent.
6Interacting fixture 83 in the table above contains the puncture A2 + Ã1, which is in the
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In the case of

D5(a1)

B3

O

as O varies over the special piece of F4(a3), the SU(2)24 global symmetry of

B3 is enhanced.

Table 5.8: More fixtures obtained by varying over the
special piece of F4(a3)

# O C(O) Global Symmetry

75 F4(a3) 1
SU(2)24−k1−k2−k3 × SU(2)k1 × SU(2)k2

×SU(2)k3 × U(1)3

77 C3(a1) Z2 SU(2)12 × SU(2)2
6 × SU(2)7 × U(1)2

79 Ã2 + A1 S3 SU(2)24−k × SU(2)k × SU(2)20 × U(1)

81 B2 Z2 × Z2 SU(2)2
12 × SU(2)2

7 × U(1)

A2 + Ã1 S4 SU(2)24 × SU(2)39 × U(1)

Filling in the missing levels, we find k1 = k2 = k3 = k = 6.

special piece of F4(a3). However, three of the other four fixtures related by varying over the
special piece are bad (the other good fixture is mixed fixture 22). In particular, the fixture
with the special puncture F4(a3) is bad, so there is no enhancement of the form discussed
above. Thus we don’t know how to use this method to determine the levels for fixture 83.
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Similarly, as O in

A1 + Ã1

O
D5

varies over the special piece of F4(a3), the SU(2)64×SU(2)10 global symmetry

of A1 + Ã1 is enhanced.

Table 5.9: More fixtures obtained by varying over the
special piece of F4(a3)

# O C(O) Global Symmetry

97 F4(a3) 1
SU(2)64−k1−k2−k3 × SU(2)k1 × SU(2)k2

×SU(2)k3 × SU(2)10 × U(1)

101 C3(a1) Z2 SU(2)32 × SU(2)2
16 × SU(2)10 × SU(2)7 ×

U(1)

105 Ã2 + A1 S3 SU(2)64−k × SU(2)k×SU(2)10×SU(2)20×
U(1)

109 B2 Z2 × Z2 SU(2)2
32 × SU(2)10 × SU(2)2

7 × U(1)

A2 + Ã1 S4 SU(2)64 × SU(2)10 × SU(2)39 × U(1)

Again, we can fill in the missing levels: k1 = k2 = k3 = k = 16.

Additionally, we find the following three fixture by varying over special
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piece of the untwisted puncture D4(a1):

O
F4(a2)

B3

As O varies over the special piece of D4(a1), the SU(2)24 global symmetry of

B3 is enhanced.

Table 5.10: Fixtures obtained by varying over the special
piece of D4(a1)

# O C(O) Global Symmetry

25 D4(a1) 1 SU(2)24−k1−k2 × SU(2)k1 × SU(2)k2 × U(1)2

26 A3 + A1 Z2 SU(2)24−k × SU(2)k × SU(2)9 × U(1)

2A2 + A1 S3 SU(2)24 × SU(2)26

We fill in the missing levels k1 = k2 = k = 8.

5.5 R2,5

In [3], we introduced a series of N = 2 SCFTs, which we dubbed

R2,2n−1. R2,2n−1 has a
(
Spin(4n+ 2)4n−2 × U(1)

)
/Z2 global symmetry (en-

hanced to (E6)6 for n = 2), central charges (nh, nv) =
(
4n2, (n − 1)(2n + 1)

)
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and graded Coulomb branch dimensions n2k−1 = 1, for k = 2, . . . , n.

These play an important role in the strong-coupling duals of various

familiar gauge theories. Specifically

SU(2n− 1) + 4
( )

+ 2
( )

' Sp(n− 1) + 1
( )

+R2,2n−1

SU(2n) + 4
( )

+ 2
( )

' Sp(n) + 3
( )

+R2,2n−1

SU(2n) + 1
( )

+ 1
( )

' Spin(2n+ 1) +R2,2n−1

(5.4)

The realizations of the R2,2n−1 are:

[12n−1]
[(n − 1)2, 1]

[(n − 1)2, 1]

R2,2n−1

[12n]
[n, n − 1, 1]

R2,2n−1 + 1(□)

[n, n − 1, 1]

[2n − 1, 1]

R2,2n−1

[2n + 1]

[2n + 1]

in the A2n−2, A2n−1 and the twisted sector of the A2n−1 theory, respectively.

These different realizations expose different manifest subalgebras7 (respec-

tively, su(2n− 1)4n−2×su(2)2
4n−2×u(1)2, su(2n)4n−2×u(1)4 and so(2n+ 1)2

4n−2×

u(1)) of the full global symmetry algebra of the R2,2n−1 SCFT.

The twisted sector of the E6 theory provides two new realizations of

R2,5:

7As symmetry groups, they are, respectively, S
(
U(2n− 1)× U(2)2

)
, S
(
U(2n)× U(1)

3)
and

(
Spin(2n+ 1)× Spin(2n+ 1)× U(1)

)
/Z2.
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A1

F4

R2,5 + 1
2(3, 6)

A2 + 2A1

(0, Spin(9))

F4

R2,5

A3

which expose a manifest sp(3)10 × su(2)30 × u(1) or so(9)10 × sp(2)10 × u(1)

subalgebra, respectively, of the so(14)10 × u(1) global symmetry algebra of

R2,5.

The latter realization will be useful to us in §5.7.6. The former provides,

among other things, another realization of the aforementioned duality

SU(6) + 4(6) + 2(15) ' Sp(3) + 3(6) +R2,5

via the 4-punctured sphere

F4

B3

E6(a1)

A2 + 2A1

(0, SU(6)) 0SU(6)
z1

z2

z3

z4

4(6) + 2(15)empty

Here, the gauge coupling,
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f(τ) ≡ −θ
4
2(0, τ)

θ4
4(0, τ)

=
w − 1

w + 1

is a function on the double-cover of M0,4, where

w2 = x ≡ z13z24

z14z23

so that f(τ) = 1 at the degeneration

F4

B3

E6(a1)

A2 + 2A1

(A1, Sp(3))Sp(3)

3
2(6)

A1

R2,5 + 3
2(6)

and the degeneration

F4 B3

E6(a1) A2 + 2A1

(F4(a1), ∅ ) F4(a1)∅

empty gauge theory fixture

corresponds to the interior point of the gauge theory moduli space, f(τ) = −1.
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5.6 Product SCFTs

The (E6)18×(G2)10 SCFT occurs twice on our list of interacting fixtures:

once, by itself, in

Ã2

0

E6(a1)

(E6)18 × (G2)10 SCFT
(5.5)

(interacting fixture 117) and once — we claim — as part of a product SCFT

Ã2

[(E6)6 SCFT ] × [(E6)18 × (G2)10 SCFT ]

F4

0

(5.6)

(interacting fixture 5). We can check the latter claim, explicitly, by comparing

the SCI for (5.6) with the SCI for (5.5) and the (known) SCI for the (E6)6

SCFT.

Indeed, we find that, to second order in q, we have

I#5 = 1 + 170q + 14601q2 + . . .

= (1 + 92q + 4916q2 + . . . )(1 + 78q + 2509q2 + . . . )

= (I#117 × I(E6)6SCFT )|q2
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Having established that (5.6) is a product SCFT, we can apply that knowledge

to deduce that other fixtures are also product SCFTs. For instance, consider

the 4-punctured sphere

F4 F4
Ã2(Ã2, SU(3))

D5(a1)
0

SU(3)

[(E6)6 SCFT ] × [(E6)18 × (G2)10 SCFT ]1(3)

The SU(3) gauges a subgroup of the (G2)10 symmetry of the (E6)18 × (G2)10

SCFT, leaving the (E6)6 SCFT decoupled. Taking the S-dual,

F4

F4

D5(a1)

0
SU(3)

[(E6)6 SCFT ] × [(E6)18 × SU(3)12 × U(1) SCFT ]empty

(D4, SU(3)) D4

we conclude that fixture on the right also contains a decoupled (E6)6 SCFT

and, hence, that
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[(E6)6 SCFT ] × [(E6)18 × SU(3)12 × U(1) SCFT ]

D5(a1)
D4

0

(5.7)

(interacting fixture 61 of [49]) is also a product SCFT.

Similarly, in

F4 F4
Ã2

0
G2

[(E6)6 SCFT ] × [(E6)18 × (G2)10 SCFT ]

(Ã2, G2)

D4

(E6)6 SCFT

the gauging of the G2 symmetry leaves the (E6)6 SCFT decoupled. Hence, in

the S-dual,

F4

F4
0

SU(3)

[(E6)6 SCFT ] × [(E6)18 × SU(3)12
2 SCFT ]

D4
D4(D4, SU(3))

empty

the fixture
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[(E6)6 SCFT ] × [(E6)18 × SU(3)12
2 SCFT ]

D4

0

D4

(5.8)

(interacting fixture 99 of [49]) is, again, a product SCFT.

As a further check of these identifications, we can compare the SCIs

for (5.7) and (5.8) with those of interacting fixtures 15 and 16 above, which

directly realize, respectively, the (E6)18×SU(3)12×U(1) and (E6)18×SU(3)2
12

SCFTs.

Indeed, we find that

I#61 = 1 + 165q + 164q
3
2 + 13451q2 + . . .

= (1 + 87q + 164q
3
2 + 4156q2 + . . . )(1 + 78q + 2509q2 + . . . )

= (I#15 × I(E6)6 SCFT)|q2

and

I#99 = 1 + 172q + 14886q2 + . . .

= (1 + 94q + 5045q2 + . . . )(1 + 78q + 2509q2 + . . . )

= (I#16 × I(E6)6 SCFT)|q2

Similarly, we can check that interacting fixture 59 of [49]
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D5(a1)

D5(a1)
0

[(E6)6 SCFT ] × [(E7)18 × U(1) SCFT ]

is a product SCFT by comparing the expansion of its SCI with that of in-

teracting fixture 13 above, which directly realizes the (E7)18 × U(1) SCFT.

Indeed, one finds that

I#59 = 1 + 212q + 112q
3
2 + 22273q2 + . . .

= (1 + 78q + 2509q2 + . . . )(1 + 134q + 112q
3
2 + 9312q2 + . . . )

= (I(E6)6 SCFT × I#13)|q2 .

Finally, we claim that interacting fixture 111 above is the product of the (E6)6

SCFT and the (F4)12 × SU(2)2
7 SCFT. The latter previously appeared in our

list of interacting fixtures for the D4 theory [5] and appears in mixed fixture

30 above.

We find the expansion of the SCI for fixture 111 is given by

I#111 = 1 + 136q + 104q
3
2 + 9036q2 + . . .

That of mixed fixture 30 reads
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I#30 = 1 + 2q
1
2 + 61q + 226q

3
2 + 2394q2 + . . .

= (1 + 2q
1
2 + 3q + 6q

3
2 + 9q2 + . . . )(1 + 58q + 104q

3
2 + 2003q2 + . . . )

= (Ifree × I(F4)12×SU(2)2
7SCFT

)|q2

Extracting the order q2 expansion of the index of the (F4)12 × SU(2)2
7 SCFT

from the above, we see that

I(E6)6SCFT × I(F4)12×SU(2)2
7SCFT

= (1 + 78q + 2509q2 + . . . )(1 + 58q + 104q
3
2 + 2003q2 + . . . )

= 1 + 136q + 104q
3
2 + 9036q2 + . . .

= I#111|q2

5.7 Instanton moduli spaces

Let M(G, k) denote the moduli space of k instantons on R4, for gauge

group G8 . M(G, k) is a hyperKähler space of dimension

dimH
(
M(G, k)

)
= κGk − 1

where κG is the dual Coxeter number and the “−1” is present because we have

removed the overall translational degree of freedom.

For k = 1, M(G, k) has hyperKähler isometry group G. In fact,

M(G, 1) is the minimal nilpotent orbit in gC. For k 1, the hyperKähler isom-

8Equivalently, the moduli space of framed instantons on S4.
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etry group of M(G, k) is G × SU(2). The origin of the additional SU(2)

is as follows9 . While we’ve removed the translational symmetry of R4, the

SO(4) =
(
SU(2)×SU(2)

)
/Z2 rotational symmetry still acts on the space of in-

stanton solutions. One of the SU(2)s acts by rotating the complex structures

of M(G, k) among themselves. The other SU(2) preserves the quaternionic

structure. For k = 1, it is easy to see that it acts trivially, whereas for k > 1

it acts nontrivially.

For the classical groups G, the ADHM construction [67] provides a

realization of M(G, k) as a hyperKähler quotient of a quaternionic vector

space. When G is exceptional, no such construction exists. But (at least

for low k) something almost as nice exists. Namely: the hyperKähler quotient

M(G, k)///H, for H some subgroup of the isometry group of M(G, k), has

an alternative realization as a hyperKähler quotient either of a quaternionic

vector space or of some other well-known hyperKähler space.

The first examples of this phenomenon come from the classic paper of

Argyres-Seiberg [2]

(
M(E6, 1)×H2

)
///SU(2) ' H18///SU(3)

M(E7, 1)///SU(2) ' H24///Sp(2)
(5.9)

They established something much stronger: the S-duality of a pair of N = 2

supersymmetric quantum field theories. The Higgs branch of one theory is the

9We thank Andrew Neitzke for a discussion of this point.

296



LHS; the Higgs branch of the other is the RHS. Because the Higgs branch ge-

ometry is independent of the gauge coupling, the S-duality of the two theories

implies that the two Higgs branches are isomorphic. An independent, non-

trivial check on the first of these isomorphisms was performed in [68]. At the

holomorphic-symplectic level, an axiomatization of this general construction

is given in [69].

Further examples of such isomorphisms of hyperKähler quotients of

instanton moduli spaces (implied, again, by the S-duality of the corresponding

QFTs) appeared in our previous papers. In section 4.2.3 of [17], we found

M(E8, 1)///Sp(2) ' H40///Sp(3) (5.10)

Here, the defining 6-dimensional representation and the 14-dimensional trace-

less 3-index antisymmetric tensor representation of Sp(3) are both pseudo-real

(have quaternionic structures) and hence induce, respectively, linear actions

on H3 and H7. On the RHS of (5.10), we decompose H40 as 11 copies of the

former and 1 copy of the latter. In the usual physics notation, we denote

this by H40 ' 11
2

(6)⊕ 1
2
(14′) (“11 half-hypermultiplets in the fundamental and

1 half-hypermultiplet in the 14′ representation of Sp(3)”). Similarly, on the

RHS of (5.9), we have H24 ' 6(4) (“6 full hypermultiplets in the fundamental

representation of Sp(2)”).

In section 4.1.3 of [38], we found
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M(E7, 2)///G2 ' H57///Spin(9) (5.11)

where, on the RHS, H57 decomposes as the 3(16) + 1(9) of Spin(9).

In this section, we will demonstrate five new identities of this sort.

(
M(E6, 2)×H

)
///SU(2) 'M(E8, 1)///SU(3) (5.12)

M(E6, 2)///SU(3) '
(
M(E6, 1)×M(E6, 1)×H7

)
///G2 (5.13)

M(E7, 3)///Spin(8) '
(
M(E7, 1)×M(E7, 1)×M(E7, 1)×H26

)
///F4 (5.14)(

M(E7, 2)×M(E7, 1)
)
///Spin(8) '(

M(E7, 1)×M(E7, 1)×M(E7, 1)×H9
)
///Spin(9)

(5.15)

and

(
M(E8, 2)×H32

)
///Spin(12) '

(
M(E8, 1)×M(E8, 1)×H45

)
///Spin(13)

(5.16)

where, on the LHS, the two irreducible spinor representations of Spin(12)

are pseudoreal (H32 ' 1
2
(32) ⊕ 1

2
(32′)) and, on the RHS, we have H45 '

1
2
(64) + 1(13).

5.7.1 M(E6, 2)///SU(3) '
(
M(E6, 1)×M(E6, 1)×H7

)
///G2

(5.13) is realized in the untwisted D4 theory by the 4-punctured sphere
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SU(3)

(E6)12 × SU(2)7 SCFT empty

, SU(3))(

which is an SU(3) gauging of the (E6)12×SU(2)7 SCFT (whose Higgs branch

is M(E6, 2)). The S-dual theory

G2

[(E6)6 SCFT]2

, G2)(

1(7)

is a G2 gauge theory coupled to two copies of the (E6)6 SCFT (whose Higgs

branch is M(E6, 1)) and one hypermultiplet in the 7.

5.7.2
(
M(E6, 2)×H

)
///SU(2) 'M(E8, 1)///SU(3)

Recall that, for k > 1, M(En, k) has an En × SU(2) isometry group.

(5.12) is unique among the examples listed here, in that on the LHS we use

the SU(2) action on M(E6, 2), which commutes with E6 action, to perform

the hyperKähler quotient.
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A realization in the D4 theory is

SU(2)

(E6)12 × SU(2)7 SCFT 1
2(2)

, SU(2))(

which is S-dual to

SU(3)

(E8)12 SCFT

, SU(3))(

empty

It is also realized in the untwisted E6 theory as

E6(a1)

E6(a1)0
A5

D4

(A5, SU(2))SU(2)

×
[(E6)12×SU(2)7 SCFT]

[(E8)12 SCFT] 1
2(2)
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where the SU(2) gauges the SU(2)7 of the (E6)12 × SU(2)7 SCFT and the

(E8)12 SCFT is decoupled. The S-dual theory is

E6(a1)

0D4

SU(3)

[(E8)12 SCFT]2 empty

E6(a1)
A2 (A2, SU(3))

where we gauge an SU(3) subgroup of one of the E8s while the other (E8)12

SCFT is decoupled.

Another realization of (5.12) appears in the twisted sector of the E6

theory. In

SU(2)

[(E6)12 × SU(2)7 SCFT]2 1
2(2)

F4F4

A50

B2 (B2, SU(2))

the SU(2) gauges the SU(2)7 of one of the (E6)12× SU(2)7 SCFTs, while the

other (E6)12 × SU(2)7 SCFT is decoupled. In the S-dual theory,
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SU(3)

×
[(E6)12×SU(2)7 SCFT]

[(E8)12 SCFT]

F4

F4

A5

0

(D4, SU(3))D4

empty

the SU(3) gauges a subgroup of the E8, while the (E6)12 × SU(2)7 SCFT is

decoupled.

A third realization, in which an (E6)6 SCFT is decoupled throughout,

is given by

SU(2)

×
[(E6)12×SU(2)7 SCFT]

[(E6)6 SCFT] 1
2(2)

F40
C3(a1) (C3(a1), SU(2))

E6(a3)E6(a1)

and has S-duals given by
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SU(3)

×
[(E8)12 SCFT]

[(E6)6 SCFT]

F4

0 E6(a3)

E6(a1)

empty

2A2 (2A2, SU(3))

and the gauge-theory fixture

∅

F40
F4(a1)

E6(a3) E6(a1)

(F4(a1), ∅ )

emptygauge theory fixture

Finally, the 5-punctured sphere

F4

z1

F4

z2

E6(a1)
z3

E6(a1)
z4

0
z5

gives a realization of two decoupled copies of this theory. The gauge theory
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moduli space is a 4-fold branched cover ofM0,4, with coordinates (y, w) given

in terms of the cross-ratios as

y2 = s1 =
z13z25

z15z23

, w2 = s2 =
z14z25

z15z24

The gauge couplings are

f(τ1) =
y − 1

y + 1

w + 1

w − 1
, f(τ2) =

y − 1

y + 1

w − 1

w + 1

where

f(τ) ≡ −θ
4
2(0, τ)

θ4
4(0, τ)

(5.17)

and τ = θ
π

+ 8πi
g2 . In the limits f(τ)→ 0,∞, the SU(3) +

[
(E8)12

]
description

is weakly-coupled. For f(τ) → 1, the SU(2) + 1
2
(2) +

[
(E6)12 × SU(2)7

]
description is weakly-coupled. Over the degeneration

(F4(a1), ∅ ) (F4(a1), ∅ )
F4 F4

E6(a1) E6(a1)
F4(a1)F4(a1)

0

∅ ∅

empty emptygauge theory fixture

we have (f(τ1), f(τ2))→ (−1,−1) and both descriptions are strongly-coupled.
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5.7.3 M(E7, 3)///Spin(8) '
(
M(E7, 1)3 ×H26

)
///F4

and
(
M(E7, 2)×M(E7, 1)

)
///Spin(8) '

(
M(E7, 1)3×H9

)
///Spin(9)

(5.14) and (5.15) both have realizations in the untwisted E6 theory.

The former is given by the duality between

(E7)24 × SU(2)26 SCFT

D5

2A2 + A1

E6(a1)

D4(a1)

0 0, Spin(8))(Spin(8)

empty

and

[(E7)8 SCFT ]3

D5

2A2 + A1

E6(a1)

D4(a1)

0 F4

1(26)

(0, F4)

The latter is given by the duality between
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×
[(E7)8 SCFT ]

[(E7)16×SU(2)9 SCFT ]

D5
E6(a1)

D4(a1)

0 0, Spin(8))(Spin(8)

empty

A3 + A1

and

[(E7)8 SCFT ]3

D5
E6(a1)

D4(a1)

0 (0, Spin(9))Spin(9)

A3 + A1

1(9)

In both cases, unlike our previous examples, there is a third S-duality frame,

respectively
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SU(2)26 × SU(2)24
3 × SU(2)8 SCFT

D5

E6(a1)D4(a1)
(A4, SU(2))SU(2)

empty

2A2 + A1

A4

and

SU(2)16
3 × SU(2)9 × SU(2)8

4 SCFT

D5

E6(a1)D4(a1)
SU(2)

empty

A3 + A1

A4 (A4, SU(2))

which are SU(2) gaugings of some new non-Lagrangian SCFTs. Alas, since

we don’t have an independent construction of the Higgs branches of the lat-

ter theories, these isomorphisms don’t shed much additional light on these

instanton moduli spaces.

5.7.4 (M(E8, 2)×H32) ///Spin(12) '(
M(E8, 1)×M(E8, 1)×H45

)
///Spin(13)

Turning to (5.16), there is a realization in the D7 theory
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which has one S-dual presentation as

Spin(13)

[(E8)12 SCFT]2
1
2(64) + 1(13)

, Spin(13))(

realizing the isomorphism of Higgs branches stated in (5.16).
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This theory also has a third S-duality frame,

Sp(2)

Sp(2)12 × SU(2)24
2 × SU(2)13 SCFT

, Sp(2))(

empty

Alas, as in §5.7.3, we have no alternative construction of the Higgs

branch of the Sp(2)12× SU(2)2
24× SU(2)13 SCFT, so we don’t learn anything

new from this duality.

5.7.5 Semi-simple quotients

In §5.7 we considered isomorphisms of hyperKähler quotients of the

form

X1///G1 ' X2///G2 (5.18)

where Gi is a simple subgroup of the group of hyperKähler isometries of Xi.

Let H be the residual group of hyperKähler isometries of the quotient. Of

course, we can further quotient both sides of (5.18) by a subgroup of H, but
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this would typically not yield anything new; all it would do is lose some of the

information contained in (5.18).

There are, however, exceptions. For instance, we can combine (5.10)

with the first isomorphism in (5.9) to obtain

M(E8, 1)///SU(3)× Sp(2) ' H40///SU(3)× Sp(3)

'
(
M(E6, 1)×H24

)
///SU(2)× Sp(3)

where

H40 = 5
2
(1, 6) + 1

2
(1, 14′) + (3, 6) ofSU(3)× Sp(3)

H24 = 5
2
(1, 6) + 1

2
(1, 14′) + (2, 1) ofSU(2)× Sp(3)

These isomorphisms are realized in the twisted D4 theory, as the 5-punctured

sphere

, Sp(2))(Sp(2)SU(3)

(E8)12 SCFT emptyempty

, SU(3))(

has, among its various other S-duality frames,
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Sp(3)SU(3)

(3, 6) + (1, 6)empty
3
2(1, 6) + 1

2(1, 14′)

, SU(3))(

and

Sp(3)SU(2)

(E6)6 SCFT + (1, 6) 3
2(1, 6) + 1

2(1, 14′)

, SU(2))(

(2, 1)

5.7.6 More isomorphisms among hyperKähler quotients

If we are are willing to venture a little further afield, we can find ad-

ditional hyperKähler quotient identities satisfied by the M(G, k). In §5.5, we

recalled the R2,2n−1 series of SCFTs. Let us denote the Higgs branch of R2,2n−1

as M2,2n−1. M2,2n−1 has hyperKähler isometry group Spin(4n+ 2)×U(1) and

dimension

dimH(M2,2n−1) = 2n2 + n+ 1
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From the S-dualities in (5.4), certain hyperKähler quotients of M2,2n−1 are

isomorphic to hyperKähler quotients of quaternionic vector spaces

(
M2,2n−1 ×H2(n−1)

)
///Sp(n− 1) ' H(2n−1)(2n+2)///SU(2n− 1)(

M2,2n−1 ×H6n
)
///Sp(n) ' H2n(2n+3)///SU(2n)

M2,2n−1///Spin(2n+ 1) ' H4n2

///SU(2n)

where, in the first two, the quaternionic vector space on the RHS transforms

as 4
( )

+ 2
( )

and, in the third, it transforms as 1
( )

+ 1
( )

.

This isn’t quite enough information to reconstruct M2,2n−1. But, with

a certain poetic license, we can proceed as if we understand that hyperKähler

space.

Using the realization of M2,5 given in §5.5, we have the new isomor-

phisms

(
M(E6, 1)4 ×H20

)
///Spin(10) '

(
M(E6, 1)3 ×M2,5

)
///Spin(9)(

M(E6, 2)×M(E6, 1)2 ×H20
)
///Spin(10) ' (M(E6, 2)×M(E6, 1)

×M2,5)///Spin(9)(
M(E6, 3)×M(E6, 1)×H20

)
///Spin(10) ' (M(E6, 3)×M2,5) ///Spin(9)

(5.19)

from studying the 4-punctured spheres
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F4

F4(a3)

0 (0, Spin(10))
E6(a1)

A3

Spin(10)

[(E6)6 SCFT ]4 2(10)

F4

0 (0, Spin(10))
E6(a1)

A3

Spin(10)

×
[(E6)6 SCFT ]2

[(E6)12×SU(2)7 SCFT ] 2(10)

C3(a1)

and

F4

0 (0, Spin(10))
E6(a1)

A3

Spin(10)

×
[(E6)6 SCFT ]

[(E6)18×SU(2)20 SCFT ] 2(10)

Ã2 + A1
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which are, respectively, S-dual to

F4F4(a3)

E6(a1) A3

Spin(9)

[(E6)6 SCFT ]3 R2,5

(0, Spin(9))0

F4

E6(a1) A3

Spin(9)

×
[(E6)6 SCFT ]

[(E6)12×SU(2)7 SCFT ] R2,5

C3(a1)

(0, Spin(9))0

and

F4

E6(a1) A3

Spin(9)

[(E6)18 × SU(2)20 SCFT ] R2,5

(0, Spin(9))0

Ã2 + A1
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Note that:

• The three examples are related by allowing the twisted puncture in the

upper left corner to vary over the special piece of F4(a3). (As discussed

above, this special piece consists of five nilpotent orbits. The other two

involve theories whose Higgs branches are “new” hyperKähler spaces.)

• In each case, there’s a third S-duality frame, which we won’t write down,

which is a gauge theory fixture.

5.8 Instanton moduli spaces as affine algebraic varieties

As mentioned above, M(G, 1) admits a uniform description as the min-

imal nilpotent orbit in gC. For classical groups, G, the ADHM construction

[67] gives a description of M(G, k), for higher k, as a hyperKähler quotient.

For exceptional G, a concrete description of the M(G, k) for higher k is not

known. However, in a series of papers [70, 71, 72], it was shown that the

Hilbert series of M(G, k) for k > 1 and classical G can be written in terms of

the root data of G alone. This provides a natural conjecture for the Hilbert

series of M(G, k) for exceptional G, which has been shown to pass many tests.

The Hilbert series contains all information about the ring of holomor-

phic functions on M(G, k). From this information, in [72] the authors ex-

tracted the representations of the generators of M(G, k) at each scaling di-

mension, and their lowest order chiral ring relations.
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They conjectured that M(G, k), as a complex variety, can be realized

as an affine algebraic variety whose ring of functions has generators

M ∈ (1; Adj)

Mp ∈ (p; Adj)

Pp ∈ (p+ 1; 1)

transforming in the indicated representations10 of SU(2)×G, for p = 2, . . . , k.

These generators are subject to a set of polynomial relations. For k = 1,

the Mp and Pp are absent, and the only non-trivial relations are the celebrated

Joseph relations

(M ⊗M)|I2 = 0 (5.20)

where the reducible representation, I2, is defined through

Sym2(Adj) = V (2α)⊕ I2

Here, V (2α) is the representation whose highest weight is twice the highest

root. (5.20) gives a realization of M(G, 1) as an affine algebraic variety.

For k = 2, 3, the lowest-order relations are given in [72].

10We label irreducible representations of SU(2) by their dimension. In what follows,
it is convenient to realize the n-dimensional irrep as a rank-(n − 1) symmetric tensor,
Φ(α1α2...αn−1).
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The isomorphisms discussed in §5.7 provide a strong test of this con-

jectured description of M(G, k). Following [68], one can explicitly take the

hyperKähler quotient on each side, and compare the gauge-invariant genera-

tors and relations.

As an illustrative example, we consider

(M(E7, 1)3 × H26)///F4 ' M(E7, 3)///Spin(8). We will not give a precise

mapping of the generators, as the methods of [72] do not determine the con-

stants appearing in the relations defining M(E7, 3) but, up to a few unknown

constants, we will be able to determine the form of the correspondence. The

generators transform in representations of the SU(2)s × SU(2)3 global sym-

metry. Moreover, there is an action of S3 permuting the SU(2)3. On the LHS,

it acts by permuting the three M(E7, 1)s; on the RHS, it is the S3 subgroup

of E7 which acts as triality on the Spin(8) ⊂ E7. The generators of the ring

of functions arrange themselves into representations of this S3 action.

We first consider the proposed description of M(E7, 3) above. Decom-

posing the 133 of E7 under SU(2)3 × Spin(8):

E7 ⊃ SU(2)3 × Spin(8)

133 = (3, 1, 1; 1) + (1, 3, 1; 1) + (1, 1, 3; 1) + (1, 1, 1; 28)

+ (2, 2, 1; 8c) + (2, 1, 2; 8s) + (1, 2, 2; 8v)

we have operators
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Table 5.11: Generators of M(E7, 3)

Order Operator Representation of SU(2)s × SU(2)3 × Spin(8)

2 Ψ(αβ) (3; 1, 1, 1; 1)

J,K, L (1; 3, 1, 1; 1), (1; 1, 3, 1; 1), (1; 1, 1, 3; 1)

M,N,O (1; 2, 2, 1; 8c), (1; 2, 1, 2; 8s), (1; 1, 2, 2; 8v)

P (1; 1, 1, 1; 28)

3 Φ(αβγ) (4; 1, 1, 1; 1)

Qα, Rα, Sα (2; 3, 1, 1; 1), (2; 1, 3, 1; 1), (2; 1, 1, 3; 1)

Tα, Uα, Vα (2; 2, 2, 1; 8c), (2; 2, 1, 2; 8s), (2; 1, 2, 2; 8v)

Wα (2; 1, 1, 1; 28)

4 X(αβ), Y(αβ), Z(αβ) (3; 3, 1, 1; 1), (3; 1, 3, 1; 1), (3; 1, 1, 3; 1)

Ã(αβ), B̃(αβ), C̃(αβ) (3; 2, 2, 1; 8c), (3; 2, 1, 2; 8s), (3; 1, 2, 2; 8v)

D̃(αβ) (3; 1, 1, 1; 28)

The lowest-order relation is at order 5, given by [72]

(JQα + a1KRα + a2LSα + a3MTα + a4NUα + a5OVα + a6PWα)|(2;1,1,1;1) = 0,

where the ai are constants.

Let us now take the hyperKähler quotient by Spin(8). The F-term

constraint is simply

P = 0.
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So, the gauge-invariant operators are given by

Table 5.12: Generators of M(E7, 3)///Spin(8)

Order Operator Representation of SU(2)s×SU(2)3

2 Ψ(αβ) (3; 1, 1, 1)

J,K, L (1; 3, 1, 1), (1; 1, 3, 1), (1; 1, 1, 3)

3 Φ(αβγ) (4; 1, 1, 1)

Qα, Rα, Sα (2; 3, 1, 1), (2; 1, 3, 1), (2; 1, 1, 3)

4 X(αβ), Y(αβ), Z(αβ) (3; 3, 1, 1), (3; 1, 3, 1), (3; 1, 1, 3)

M2, N2, O2 (1; 1, 1, 1) + (1; 3, 3, 1), (1; 1, 1, 1) +
(1; 3, 1, 3), (1; 1, 1, 1) + (1; 1, 3, 3)

subject to

(JQα + a1KRα + a2LSα + a3MTα + a4NUα + a5OVα)|(2;1,1,1;1) = 0. (5.21)

Let’s see how this structure is reproduced on the M(E7, 1)3 side. We first

decompose the (E7)3 global symmetry under SU(2)3 × (F4)diag. Using the

description of M(E7, 1) as the minimal nilpotent orbit in e7, we have operators

at order 2 in the 133, subject to the Joseph relations at order 4 in the I2 =

1 + 1539. These representations decompose under SU(2)× F4 as

E7 ⊃ SU(2)× F4

133 = (3, 1) + (3, 26) + (1, 52)

1539 = (1, 1) + (1, 26) + (1, 324) + (3, 26) + (3, 273) + (3, 52) + (5, 1) + (5, 26)
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Additionally, we have the generator of H26 at order 1. In total, we have the

following generators of M(E7, 1)3 ×H26:

Table 5.13: Generators of M(E7, 1)3 ×H26

Order Operator Representation of SU(2)s × SU(2)3 × (F4)diag

1 vα (2; 1, 1, 1; 26)

2 A,B,C (1; 3, 1, 1; 1), (1; 1, 3, 1; 1), (1; 1, 1, 3; 1)

D,E, F (1; 3, 1, 1; 26), (1; 1, 3, 1; 26), (1; 1, 1, 3; 26)

G,H, I (1; 1, 1, 1; 52), (1; 1, 1, 1; 52), (1; 1, 1, 1; 52)

subject to the Joseph relations at order 4.

To describe the hyperKähler quotient by (F4)diag, we impose the F-term

constraints

G+H + I + (vαvβ)(1;1,1,1;52) = 0

and form gauge-invariant generators. To order 4, these are given by:
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Table 5.14: (M(E7, 1)3 ×H26)///F4

Order Operator Representation of SU(2)s ×
SU(2)3

2 (vαvβ)(3;1,1,1;1) (3; 1, 1, 1)

A,B,C (1; 3, 1, 1; 1), (1; 1, 3, 1; 1),

(1; 1, 1, 3; 1)

3 (vαvβvγ)(4;1,1,1;1) (4; 1, 1, 1)

(Dvα)(2;3,1,1;1), (Evα)(2;1,2,1;1),

(Fvα)(2;1,1,3;1)

(2; 3, 1, 1), (2; 1, 3, 1), (2; 1, 1, 3)

4

((vαvβ)(3;1,1,1;26)D)(3;3,1,1;1),

((vαvβ)(3;1,1,1;26)E)(3;1,3,1;1),

((vαvβ)(3;1,1,1;26)F )(3;1,1,3;1)

(3; 3, 1, 1), (3; 1, 3, 1), (3; 1, 1, 3)

(D2)(1;1+5,1,1;1), (E
2)(1;1,1+5,1;1),

(F 2)(1;1,1,1+5;1)

(1; 1 + 5, 1, 1),

(1; 1, 1 + 5, 1),

(1; 1, 1, 1 + 5)

(G2)(1;1,1,1;1), (H
2)(1;1,1,1;1),

(I2)(1;1,1,1;1)

(1; 1, 1, 1), (1; 1, 1, 1), (1; 1, 1, 1)

(DE)(1;3,3,1;1), (DF )(1;3,1,3;1),

(EF )(1;1,3,3;1)

(1; 3, 3, 1), (1; 3, 1, 3), (1; 1, 3, 3)

(GH)(1;1,1,1;1), (GI)(1;1,1,1;1),

(HI)(1;1,1,1;1)

(1; 1, 1, 1), (1; 1, 1, 1), (1; 1, 1, 1)

The gauge-invariant relations at order 4 are given by
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(A2 + c1D
2 + c2G

2)|(1;1,1,1) = 0 (5.22)

(B2 + c1E
2 + c2H

2)|(1;1,1,1) = 0 (5.23)

(C2 + c1F
2 + c2I

2)|(1;1,1,1) = 0 (5.24)

(A2 + c3D
2)|(1;5,1,1) = 0 (5.25)

(B2 + c3E
2)|(1;1,5,1) = 0 (5.26)

(C2 + c3F
2)|(1;1,1,5) = 0 (5.27)

where the ci are constants which can be fixed by evaluating a few points on

the nilpotent orbit [68].

We see that the correspondence between the generators is given by11

Table 5.15: Correspondence between generators

(M(E7, 1)3 ×H26)///F4 M(E7, 3)///Spin(8)

(vαvβ)(3;1,1,1;1) Ψ(αβ)

A,B,C J,K,L

(vαvβvγ)(4;1,1,1;1) Φ(αβγ)

((vαD)(2;3,1,1;1), (vαE)(2;1,3,1;1), (vαF )(2;1,1,3;1) Qα, Rα, Sα

11We have multiple generators with the same quantum numbers, so, without knowing the
constants ai, the correspondence between these generators is only up to a permutation (or
linear combination).
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Table 5.15: Correspondence between generators

(M(E7, 1)3 ×H26)///F4 M(E7, 3)///Spin(8)

((vαvβ)(3;1,1,1;26)D)(3;3,1,1;1),

((vαvβ)(3;1,1,1;26)E)(3;1,3,1;1),

((vαvβ)(3;1,1,1;26)F )(3;1,1,3;1)

X(αβ), Y(αβ), Z(αβ)

(GH)(1;1,1,1;1),

(DE)(1;3,3,1;1)

M2
(1;1,1,1;1),

M2
(1;3,3,1;1)

(GI)(1;1,1,1;1),

(DF )(1;3,1,3;1)

N2
(1;1,1,1;1),

N2
(1;3,1,3;1)

(HI)(1;1,1,1;1),

(EF )(1;1,3,3;1)

O2
(1;1,1,1;1),

O2
(1;1,3,3;1)

The “extra” generators at order 4, (D2)(1;1+5,1,1;1), (E2)(1;1,1+5,1;1),

(F 2)(1;1,1,1+5;1) and (G2)(1;1,1,1;1), (H2)(1;1,1,1;1), (I2)(1;1,1,1;1), are removed from

the chiral ring by the Joseph relations (5.22)-(5.27).

We find the order 5 relation (5.21) on the M(E7, 1)3 side by adding the

order 4 Joseph relations

(AD)(1;3,1,1;26) + c4(DG)(1;3,1,1;26) = 0 (5.28)

(BE)(1;1,3,1;26) + c4(EH)(1;1,3,1;26) = 0 (5.29)

(CF )(1;1,1,3;26) + c4(FI)(1;1,1,3;26) = 0 (5.30)

and contracting with vα:
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(vAD + vBE + vCF + c4(vDG+ vEH + vFI))(2;1,1,1;1) = 0.

Following [72], one can extract the higher-order relations for M(E7, 3) and

compare them with those on the M(E7, 1)3 side obtained from the remaining

Joseph relations. It would be interesting to carry out this analysis for the

other examples in §5.7 as well.
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Chapter 6

A Family of Interacting SCFTs from the

Twisted A2N Series

In this chapter, we consider the strong-coupling limit of SU(2N + 1)

gauge theory with hypermultiplets in the 1
( )

+ 1
( )

1. We find the fol-

lowing S-duality for this theory

SU(2N + 1) + 1
( )

+ 1
( )

' Sp(N) +R2,2N (6.1)

where R2,2N , N ≥ 1, belongs to a family of interacting SCFTs with the follow-

ing graded Coulomb branch dimensions, trace anomaly coefficients, and global

symmetry:

Table 6.1: R2,2N family of interacting SCFTs

{d2, d3, d4, d5, . . . ,

d2N , d2N+1}
(a, c) Gglobal

R2,2N {0, 1, 0, 1, . . . , 0, 1} (1+19N+14N2

24
, 1+10N+8N2

12
) Sp(2N)2N+2 ×

U(1)

1This chapter is based on [73].
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The proposed duality (6.1) is analogous to the duality

SU(2N) + 1
( )

+ 1
( )

' Spin(2N + 1) +R2,2N−1

discussed2 in §3.5.4 of [7]. However the R2,2N series of SCFTs is new.

The strong-coupling limit of SU(3) + 1(3) + 1(6) was considered by

Argyres and Wittig in [15]. They conjectured that this theory is dual to an

SU(2) gauge theory with n ≤ 3 fundamental hypermultiplets, coupled to a

new rank 1 interacting SCFT. This S-duality alone does not fix n, and the

properties of this theory have remained only partially-known. In [4], we gave

a 6D realization of this S-duality, which is given by taking N = 1 in the figure

below. From this construction, the properties of the holomorphic moment

map operators for the flavor symmetry of the two twisted punctures imply

that n = 0 [4, 61]. In the following, we will provide independent evidence

that n = 0 using the superconformal index. In addition, we will use the index

to determine the enhanced global symmetry of the SCFT, and generalize this

duality to arbitrary N .

The main tool in our analysis is the Hall-Littlewood limit of the su-

perconformal index [24, 25, 74]. In this limit, the superconformal index is

2The R2,2N−1 series of SCFTs, which have global symmetry Spin(4N + 2)4N?2 × U(1)
also play a role in the dualities [3]

SU(2N − 1) + 4
(
�
)

+ 2
( )

' Sp(N − 1) + 1
(
�
)

+R2,2N−1

SU(2N) + 4
(
�
)

+ 2
( )

' Sp(N) + 3
(
�
)

+R2,2N−1
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equivalent to the Coulomb branch Hilbert series of the 3D mirror of the (2, 0)

theory on C × S1 [14, 27]. The 3D interpretation allows us to easily obtain

the formula for the index of a fixture with twisted A2N punctures, following

[65, 66]. The result is (6.6).

To construct the R2,2N theories, we consider compactifications of the

A2N (2, 0) theory in the presence of Z2 outer-automorphism twists. As dis-

cussed in [75], these twists are particularly subtle, and we do not yet under-

stand them well enough to attempt a systematic classification of the 4D the-

ories which arise in this way. Nevertheless, our current level of understanding

is sufficient to use them for our purposes here.

6.1 S-duality of SU(2N + 1) + ∧2(�) + Sym2(�)

The 4D N = 2 SU(2N + 1) gauge theory with hypermultiplets in

the 1
( )

+ 1
( )

can be constructed as follows [4]. The A2N (2, 0) theory

compactified on a fixture with two full punctures and one minimal puncture

gives rise to a free bifundamental hypermultiplet of SU(2N + 1). One can

gauge the diagonal SU(2N + 1) flavor symmetry of the two full punctures

by connecting them by a cylinder with a Z2 twist line around it, to obtain a

one-punctured torus, with a twist line around the a-cycle. This is shown on

the left in the figure below. The Z2-twist line acts as complex conjugation on

one of the SU(2N + 1) factors, giving rise to hypermultiplets in the tensor

product representation �⊗� = + .

The S-dual theory is obtained by exchanging the a- and b-cycles of the
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torus. The resulting theory can be seen to arise by compactifying the A2N

theory on a fixture with a minimal untwisted puncture and two full twisted

punctures, and connecting the two twisted punctures by a cylinder with a

twist line running along it. This is shown on the right in the figure below. We

expect this to give rise to an Sp(N) gauge theory coupled to an interacting

SCFT, possibly with n additional hypermultiplets.

SU(2N + 1)
Sp(N)

[2N, 1][2N, 1]

[2N, 1] [2N, 1]

[12N]

[12N+1]

[12N+1]

[12N]

In the following, we will use the superconformal index to show that n = 0,

and that the manifest Sp(N)2N+2×Sp(N)2N+2×U(1) global symmetry of the

interacting SCFT is enhanced to Sp(2N)2N+2 × U(1). The graded Coulomb

branch dimensions and trace anomaly coefficients of the SCFT then follow

from S-duality.
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6.2 The Argyres-Wittig SCFT

6.2.1 Global symmetry enhancement

We begin by considering the case of N = 1. The fixture on the right

in the figure above then has a manifest SU(2)4 × SU(2)4 × U(1) subgroup of

its global symmetry group, which could be enhanced. We will now use the

superconformal index to show that this fixture contains an interacting SCFT

with no additional free hypermultiplets, and that the global symmetry of the

SCFT is enhanced to Sp(2)4 × U(1).

We assume that the superconformal index for this fixture has the same

general structure one always finds for a 3-punctured sphere, namely3

I(ai; τ) =
∞∑
λ=0

∏2
i=1K(ai)P

λ
SU(2)(ai; τ)K(a3)P

(2λ,λ)
SU(3) (a3; τ)

KρP (2λ,λ)
SU(3) (aρ; τ)

(6.2)

Assigning fugacities to each puncture, this becomes

I(ai; τ) =
(1− τ 2)(1− τ 4)(1− τ 6)

(1− τ 2)3(1− τ 2a±2
1 )(1− τ 2a±2

2 )(1− τ 3a±3
3 )(1− τ 4)

×(
1 + τ 2 +

∞∑
λ=1

P λ
SU(2)(a1, a

−1
1 ; τ)P λ

SU(2)(a2, a
−1
2 ; τ)P

(2λ,λ)
SU(3) (a3τ, a3τ

−1, a−2
3 ; τ)

P
(2λ,λ)
SU(3) (τ 2, 1, τ−2; τ)

)
= 1 + (1 + χ10

Sp(2)(a1, a2))τ 2 + . . .

where

3The various parts of this formula have been explained many times in the references
above. See, e.g., [64].
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χ10
Sp(2)(a1, a2) = χ3

SU(2)(a1) + χ3
SU(2)(a2) + χ2

SU(2)(a1)χ2
SU(2)(a2). (6.3)

The coefficient of τ is zero, indicating that the fixture contains no additional

free hypermultiplets. The coefficient of τ 2 is therefore the character of the

adjoint representation of the global symmetry group of the SCFT, which is

enhanced to Sp(2)×U(1). Since the embedding (6.3) has index 1, the level of

Sp(2) is k = 4.

Setting a1 = a2 = a3 = 1, we can sum (6.2) to obtain

I =

1 + 2τ + 8τ 2 + 20τ 3 + 41τ 4 + 62τ 5 + 87τ 6 + 96τ 7 + · · · (palindrome) · · ·+ τ 14

(1− τ)8(1 + τ)6(1 + τ + τ 2)4
.

This expression takes the expected form (see, e.g., [71]), and the order of the

pole at τ = 1 gives the complex dimension of the 4D Higgs branch, which

agrees with the answer obtained from S-duality [3, 7]

dimCH = 48(c− a) = 48

(
19

12
− 17

12

)
= 8.

6.2.2 Argyres-Wittig duality

As a further check on the validity of our computation, we compare the

index on both sides of the S-duality

SU(3) + 1(3) + 1(6) ' SU(2) +R2,2
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The SU(3) theory is a Lagrangian theory, so its index is computed by the

matrix integral 4

I =

∮
[dz]SU(3)PE[−τ 2χ8

SU(3)(z1, z2)]PE[τχ3
SU(3)(z1, z2)]PE[τχ3

SU(3)(z1, z2)]

× PE[τχ6
SU(3)(z1, z2)]PE[τχ6

SU(3)(z1, z2)]

=
1

3!

∮
dz1dz2

(2πi)2z1z2

(1− (z1/z2)±)(1− z±2
1 z±2 )(1− z±1 z±2

2 )

× (1− τ 2)2(1− τ 2(z1/z2)±)(1− τ 2z±2
1 z±2 )(1− τ 2z±1 z

±2
2 )

(1− τz±1 )2(1− τz±2 )2(1− τ(z1z2)±)2(1− τz±2
1 )(1− τz±2

2 )(1− τ(z1z2)±2)
.

Summing the residues at the poles inside the unit circle (taking |z1| = |z2| =

1, τ < 1), we arrive at

I =
1 + τ 2 + 2τ 3 + τ 4

(1− τ)3(1 + τ)(1 + τ + τ 2)2
. (6.4)

On the SU(2) side of the duality, the index is given by

I =
1

2!

∮
da

2πia
(1− a±2)IVSU(2)(a)IR2,2(a, a−1, 1),

where IVSU(2)(a) is the index of a free SU(2) vector multiplet. The integrand

has poles inside the unit circle at a = 0,±τ,±τ 3/2. Summing the residues, we

reproduce (6.4). This gives strong evidence that (6.2) indeed gives the index

of the Argyres-Wittig SCFT.

4For simplicity, we set the fugacities of the U(1)2 flavor symmetry to 1.
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6.2.3 Chiral ring

We can study the Hall-Littlewood chiral ring [76] of the Argyres-Wittig

SCFT by taking the plethystic log of (6.2):

PL[I] = τ 2(χ10
Sp(2)(a1, a2) + 1) + τ 3(χ5

Sp(2)(a1, a2)a3
3 + χ5

Sp(2)(a1, a2)a−3
3 )

− τ 4(χ5
Sp(2)(a1, a2) + 1)− τ 5((χ10

Sp(2)(a1, a2) + χ5
Sp(2)(a1, a2))a3

3

+ (χ10
Sp(2)(a1, a2) + χ5

Sp(2)(a1, a2))a−3
3 )− . . .

where χ5(a1, a2) = 1 + χ2
SU(2)(a1)χ2

SU(2)(a2).

From this expression, we see that the chiral ring has generators at

order 2 in the 100 + 10 of Sp(2) × U(1) (which are the holomorphic moment

map operators for the global symmetry), as well as order 3 generators in the

53 + 5−3. These generators are subject to relations at order 4 in the 50 + 10,

as well as higher order relations.

We can understand the two relations at order 4 as follows. In [76, 77], it

was shown that any 4D N = 2 SCFT contains families of protected operators

whose correlation functions possess the structure of a 2D chiral algebra. The

existence of the chiral algebra structure leads to additional unitarity bounds

on central charges in the 4D theory, and saturation of these bounds was shown

to follow from Higgs branch chiral ring relations. The operators counted by

the Hall-Littlewood superconformal index fall into this class of protected op-

erators, and from table 3 in [77], we see that the level of the Sp(2) factor in

the global symmetry group saturates the unitarity bound, which follows from
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an order 4 relation in the 5. It was also shown in [77] that an order 4 relation

in the 1 implies that the 2D chiral algebra has a stress tensor given by the

Sugawara construction, with central charge:

c2D =
k2Ddim GF

k2D + h∨
(6.5)

where the 2D central charges are related to those in 4D by c2D = −12c4D,

k2D = −k4D

2
.

Indeed, we find that

c4D = − 1

12

(
(−2)(10)

−2 + 1
+ 1

)
=

19

12
.

6.3 Higher N

We now consider the compactification of the 6D (2, 0) theory of type

A2N on

[2N, 1]
[12N]

[12N]

and use the superconformal index to argue that these fixtures describe the

R2,2N family of interacting SCFTs, with no additional hypermultiplets.
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The Hall-Littlewood index is given by

I(xi; τ) =
∑

λ1≥λ2≥···≥λN≥0

∏2
i=1K(xi)P

(λ1,...,λN )
Sp(N) (xi; τ)K(x3)P

(λ′1,...,λ
′
N )

SU(2N+1)(x3; τ)

KρP
(λ′1,...,λ

′
N )

SU(2N+1)(xρ; τ)

(6.6)

where the sum runs over integers λi labeling Sp(N) irreps, and the corre-

sponding SU(2N + 1) representations are given by (λ′1, . . . , λ
′
N) = (2λ1, λ1 +

λ2, . . . , λ1 + λN , λ1, λ1 − λN , . . . , λ1 − λ2).

We can characterize these fixtures by the leading power of τ in the ex-

pansion of (6.6), as follows [27]: The term coming from taking (λ1, . . . , λN) =

(0, . . . , 0) in the sum is

1 + τ 2(χ
N(2N+1)
Sp(N) (x1) + χ

N(2N+1)
Sp(N) (x2) + 1) +O(τ 4),

encoding the manifest Sp(N)2N+2×Sp(N)2N+2×U(1) global symmetry. This

global symmetry is enhanced if there are additional terms at order τ 2 coming

from the sum over non-trivial representations. If there are also terms at order

τ , then the fixture contains free hypermultiplets along with the interacting

SCFT.

Following [27], we give the leading behavior of (6.6) in terms of a vector

v, with components

vi = (2N + 2− 2i) +
3∑
`=1

d
(`)
i (6.7)
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where the first term is the leading power of τ from the denominator in (6.6),

and the second term is the leading power of τ from the punctures. For the full

twisted punctures, d
(`)
i = 0 for all i, while for the minimal untwisted puncture

we have

d
(3)
i =


2i− 2N − 1, 1 ≤ i ≤ N,

0, i = N + 1,

2i− 2N − 3, N + 2 ≤ i ≤ 2N.

Equation (6.7) then gives

vi =


1, 1 ≤ i ≤ N,

0, i = N + 1,

−1, N + 2 ≤ i ≤ 2N.

The leading power in τ of (6.6) is therefore given by

v · λ′ = (N + 1)λ1 + λ2 + · · ·+ λN + 0− (N − 1)λ1 + λ2 + · · ·+ λN

= 2(λ1 + λ2 + · · ·+ λN)
(6.8)

This is minimized by taking (λ1, λ2, . . . , λN) = (1, 0, . . . , 0), which gives v ·λ′ =

2. Thus, the fixture contains no free hypermultiplets. It is easy to check

that the global symmetry is enhanced to Sp(2N)2N+2 × U(1) by the index 1

embedding

Sp(2N) ⊃ Sp(N)× Sp(N)

Adj = (Adj,1) + (1,Adj) + (2N,2N)
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and the level of Sp(2N) therefore saturates the unitarity bound in [77].

With n = 0, the S-duality is then given by (6.1), which implies that

this SCFT has an effective number of vector and hypermultiplets given by

(nh, nv) = ((2N + 1)2, (2N + 1)2 − 1 − N(2N + 1)), which encode the trace

anomaly coefficients (a, c) = (nh+5nv

24
, nh+2nv

12
) = (1+19N+14N2

24
, 1+10N+8N2

12
). We

see that the 4D central charge is given by the Sugawara construction:

c4D = − 1

12

(
−(N + 1)2N(4N + 1)

−(N + 1) + 2N + 1
+ 1

)
=

1 + 10N + 8N2

12
.

(6.9)

It is easy to check that the saturation of these unitarity bounds follows from

chiral ring relations at order τ 4 in the 10 +(1
2
(4N + 1)(4N− 2))0 of Sp(2N)×

U(1) by taking the plethystic log of (6.6).

A similar analysis can be carried-through for the R2,2N−1 theories. As

already pointed out in [77], the level of the Spin(4N+2)4N−2 saturates the uni-

tarity bound and the stress tensor of the 2D chiral algebra takes the Sugawara

form, (6.5).
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Appendix A

Tables of Z2-Twisted DN Punctures

A.1 D5 Twisted Sector

Table A.1: D5 Twisted Sector

Nahm
C-partition

Hitchin
B-

partition Pole struc-
ture

Constraints Flavour
group

(δnh, δnv)

[9] {1, 3, 5, 7; 9
2
} − Sp(4)10 (240, 449

2
)

(ns) ([7, 12],

Z2)

{1, 3, 5, 7; 7
2
} − Sp(3)9 (227, 431

2
)

[7, 12] {1, 3, 5, 7; 7
2
} c(8)

7 = (a
(4)
7/2)2 Sp(2)8×

U(1)
(216, 415

2
)

(ns) ([5, 3, 1],

Z2)

{1, 3, 5, 6; 7
2
} −

SU(2)32

×
SU(2)7

(207, 401
2

)

[5, 3, 1] {1, 3, 5, 6; 7
2
} c(6)

5 = (a
(3)
5/2)2 SU(2)2

16 (200, 389
2

)

[5, 22] {1, 3, 5, 6; 7
2
}

c
(6)
5 = (a

(3)
5/2)2

c
(8)
6 = 2a

(3)
5/2c̃

(5)
7/2

SU(2)10

×
SU(2)6

(184, 359
2

)
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Table A.1: D5 Twisted Sector

Nahm
C-partition

Hitchin
B-

partition Pole struc-
ture

Constraints Flavour
group

(δnh, δnv)

(ns) ([5, 14],

Z2)

{1, 3, 5, 5; 5
2
} − Sp(2)7 (182, 353

2
)

[5, 14] {1, 3, 5, 5; 5
2
} c(6)

5 = (a
(3)
5/2)2 SU(2)6 (174, 341

2
)

[33] {1, 3, 4, 5; 7
2
} − SU(2)10 (178, 349

2
)

[32, 13] {1, 3, 4, 5; 5
2
} − U(1) (168, 331

2
)

[3, 22, 12] {1, 3, 4, 5; 5
2
}

c
(4)
3 = (a

(2)
3/2)2

c
(6)
4 = 2a

(2)
3/2a

(4)
5/2

c
(8)
5 = (a

(4)
5/2)2

U(1) (144, 285
2

)

(ns) ([3, 16],

Z2)

{1, 3, 3, 3; 3
2
} − SU(2)5 (117, 231

2
)

[3, 16] {1, 3, 3, 3; 3
2
} c(4)

3 = (a
(2)
3/2)2 none (112, 223

2
)
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Table A.1: D5 Twisted Sector

Nahm
C-partition

Hitchin
B-

partition Pole struc-
ture

Constraints Flavour
group

(δnh, δnv)

[19] {1, 1, 1, 1; 1
2
} − none (40, 81

2
)

A.2 D6 Twisted Sector

Table A.2: D6 Twisted Sector

Nahm
C-

partition

Hitchin
B-

partition
Pole

structure Constraints Flavour
group

(δnh, δnv)

[11] {1, 3, 5, 7, 9; 11
2
} − Sp(5)12 (440, 831

2
)

(ns) ([9, 12],

Z2)

{1, 3, 5, 7, 9; 9
2
} − Sp(4)11 (424, 809

2
)

[9, 12] {1, 3, 5, 7, 9; 9
2
} c

(10)
9 =

(a
(5)
9/2)2

Sp(3)10×
U(1)

(410, 789
2

)

(ns) ([7, 3, 1],

Z2)

{1, 3, 5, 7, 8; 9
2
} − Sp(2)9×

SU(2)40

(398, 771
2

)

[7, 3, 1] {1, 3, 5, 7, 8; 9
2
} c

(8)
7 =

(a
(4)
7/2)2

SU(2)2
20

×
SU(2)8

(388, 755
2

)
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Table A.2: D6 Twisted Sector

Nahm
C-

partition

Hitchin
B-

partition
Pole

structure Constraints Flavour
group

(δnh, δnv)

[52, 1] {1, 3, 5, 6, 8; 9
2
} − Sp(2)12 (380, 741

2
)

[7, 22] {1, 3, 5, 7, 8; 9
2
}

c
(8)
7 =

(a
(4)
7/2)2

c
(10)
8 =

2a
(4)
7/2c̃

(6)
9/2

Sp(2)8×
SU(2)12

(368, 717
2

)

(ns) ([5, 32],

Z2)

{1, 3, 5, 6, 7; 9
2
} −

SU(2)12

×
SU(2)7

(359, 703
2

)

[5, 32] {1, 3, 5, 6, 7; 9
2
} c

(6)
5 =

(a
(3)
5/2)2

SU(2)12

×
U(1)

(352, 691
2

)

(ns) ([7, 14],

Z2)

{1, 3, 5, 7, 7; 7
2
} − Sp(3)9 (367, 711

2
)

[7, 14] {1, 3, 5, 7, 7; 7
2
} c

(8)
7 =

(a
(4)
7/2)2

Sp(2)8 (356, 695
2

)

(ns) ([5, 3, 13],

Z2)

{1, 3, 5, 6, 7; 7
2
} − SU(2)7×

U(1)
(347, 681

2
)

[5, 3, 13] {1, 3, 5, 6, 7; 7
2
} c

(6)
5 =

(a
(3)
5/2)2

SU(2)32 (340, 669
2

)
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Table A.2: D6 Twisted Sector

Nahm
C-

partition

Hitchin
B-

partition
Pole

structure Constraints Flavour
group

(δnh, δnv)

[5, 22, 12] {1, 3, 5, 6, 7; 7
2
}

c
(6)
5 =

(a
(3)
5/2)2

c
(8)
6 =

2a
(3)
5/2a

(5)
7/2

c
(10)
7 =

(a
(5)
7/2)2

SU(2)6×
U(1)

(314, 619
2

)

(ns) ([33, 12],

Z2)

{1, 3, 4, 5, 7; 7
2
} − SU(2)11 (319, 629

2
)

[33, 12] {1, 3, 4, 5, 7; 7
2
} c

(10)
7 =

(a
(5)
7/2)2

U(1) (308, 609
2

)

[3, 24] {1, 3, 4, 5, 6; 7
2
}

c
(4)
3 =

(a
(2)
3/2)2

c
(6)
4 =

2a
(2)
3/2a

(4)
5/2

c
(8)
5 =

(a
(4)
5/2)2

+2a
(2)
3/2c̃

(6)
7/2

c
(10)
6 =

2a
(4)
5/2c̃

(6)
7/2

SU(2)12 (256, 507
2

)

(ns) ([5, 16],

Z2)

{1, 3, 5, 5, 5; 5
2
} − Sp(2)7 (282, 553

2
)
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Table A.2: D6 Twisted Sector

Nahm
C-

partition

Hitchin
B-

partition
Pole

structure Constraints Flavour
group

(δnh, δnv)

[5, 16] {1, 3, 5, 5, 5; 5
2
} c

(6)
5 =

(a
(3)
5/2)2

SU(2)6 (274, 541
2

)

[32, 15] {1, 3, 4, 5, 5; 5
2
} − U(1) (268, 531

2
)

[3, 22, 14] {1, 3, 4, 5, 5; 5
2
}

c
(4)
3 =

(a
(2)
3/2)2

c
(6)
4 =

2a
(2)
3/2a

(4)
5/2

c
(8)
5 =

(a
(4)
5/2)2

none (244, 485
2

)

(ns) ([3, 18],

Z2)

{1, 3, 3, 3, 3; 3
2
} − SU(2)5 (177, 351

2
)

[3, 18] {1, 3, 3, 3, 3; 3
2
} c

(4)
3 =

(a
(2)
3/2)2

none (172, 343
2

)

[111] {1, 1, 1, 1, 1; 1
2
} − none (60, 121

2
)
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Appendix B

Bala-Carter Notation

B.1 Bala-Carter Labels

In the twisted and untwisted sectors of the A and D series, punctures

were in one-to-one correspondence with certain classes of partitions [4, 7, 1, 11].

The partition denotes how the fundamental representation (vector represen-

tation, in the case of so(N)) of g 1 decomposes into representations of the

corresponding (Nahm) su(2). Moreover, one can also read off the centralizer,

f, of su(2) inside g, as well as the decomposition of the fundamental rep-

resentation of g under su(2) × f, from the partition (see (2.7) in [7]). The

decomposition under su(2) × f for each puncture is precisely the information

needed to compute the flavour group levels in §4.1.4.1, as well as the expansion

of the superconformal index in §5.3. In what follows, we will explain how these

decompositions are obtained for the punctures in the e6 theory.

In contrast to classical g, nilpotent orbits in the exceptional Lie alge-

bras, which label our punctures, are not naturally classified by partitions. The

theorem of Bala and Carter states that there is a one-to-one correspondence

1For untwisted (twisted) punctures in the A and D series, g is of type A (B) and D (C),
respectively.
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between nilpotent orbits in g and (conjugacy classes of) pairs (l, Ol) where l

is a Levi subalgebra 2 of g and Ol is a distinguished 3 nilpotent orbit in l.

By the Jacobson-Morozov theorem, any representative X of Ol embeds in a

standard triple 4 {H,X, Y } ⊂ l, where H ∈ h. l then has a decomposition into

adH-eigenspaces

l =
⊕
k∈Z

lk

where lk = {x ∈ l | [H, x] = kx}. Let l′ ≡ l0 and u′ ≡ ⊕0<k∈Zlk. Then,

p = l′+ u′ is a parabolic subalgebra of l, with explicit Levi decomposition into

a Levi subalgebra l′ and the nilradical u′ of p. (Notice that the Cartan of l is

contained in l′, so rank(l′) = rank(l).)

A nilpotent orbit in g is then given the label XN(ai), called the Bala-

Carter label, where XN is the Cartan type of the semisimple part of l, and i is

the number of simple roots in l′. The case i = 0 is denoted just by XN , and

corresponds to the principal orbit in l, which is always distinguished.

There are 16 conjugacy classes of Levi subalgebras of E6. These are

specified by their semisimple parts: 0, A1, 2A1, 3A1, A2, A2 + A1, 2A2, A2,

A2 + 2A1, A3 + A1, D4, A4, A4 + A1, A5, D5, and E6. Here, kAN denotes

the direct sum of k copies of AN . The label 0 denotes the Cartan subalgebra,

2A Levi subalgebra h ⊂ l ⊂ g is a reductive subalgebra, l, containing the Cartan subal-
gebra, h, of g. See section 3.8 of [?] for an introduction.

3A nilpotent orbit, O, in g is distinguished if and only if the only Levi subalgebra of g,
containing O, is g itself.

4Any su(2) subalgebra of g is spanned by a standard triple {H,X, Y } of nonzero elements
of g satisfying the bracket relations [H,X] = 2X, [H,Y ] = −2Y , and [X,Y ] = H.
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for which the only distinguished orbit is the zero orbit. For l of classical type,

distinguished orbits in l are easily specified in terms of their partition: for l of

type A, the only distinguished orbit is the principal orbit (which, for AN−1,

has partition [N ] ), while for l of type B,C,D, distinguished orbits are those

for which the partition has no repeated parts. It was found by Bala and

Carter that, for l of type G2, F4, E6, E7, and E8, there are 2, 4, 3, 6, and 11

distinguished orbits, respectively.

The distinguished orbits in the Levi subalgebras listed above give rise

to 21 nilpotent orbits in e6. We list these in the table below, along with the

centralizer, f, and the decomposition of the 27 and 78 of e6 under su(2)× f 5.

But, before that, let us give a few examples of how to obtain the decomposition

of the 27 for various embeddings.

First, consider l = D4. In this case there are two distinguished orbits,

with partitions [7,1] and [5,3], corresponding to nilpotent orbits D4 and D4(a1),

respectively, in e6. The first has centralizer su(3) and the second, u(1)2. We

can obtain the decomposition of the 27 for each of these by embedding su(2) in

the so(8) factor in so(8)×u(1)2 ⊂ so(10)×u(1) ⊂ e6. The 27 of e6 decomposes

5The decomposition of the 27 determines a projection matrix, which can be used to obtain
the decompositions of higher-dimensional representations. We list a projection matrix for
each puncture in Appendix E.2. The decomposition of the 78 determines the levels of the
flavor groups, as described in §4.1.4.1.
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under so(10)× u(1) as

e6 ⊃ so(10)× u(1)

27 = 1−4 + 102 + 16−1

The 10 and 16 of so(10) decompose under so(8)× u(1) as

so(10) ⊃ so(8)× u(1)

10 = 12 + 1−2 + (8v)0

16 = (8s)1 + (8c)−1

so we have

e6 ⊃ so(8)× u(1)× u(1)

27 = 10,−4 + 12,2 + 1−2,2 + (8v)0,2 + (8s)1,−1 + (8c)−1,−1

For D4(a1), we embed su(2) in so(8) by taking

so(8) ⊃ su(2)

8v,s,c = 5 + 3

which gives

e6 ⊃ su(2)× u(1)× u(1)

27 = 10,−4 + 12,2 + 1−2,2 + 30,2 + 31,−1 + 3−1,−1 + 50,2 + 51,−1 + 5−1,−1

347



For D4, we embed su(2) in so(8) by taking

so(8) ⊃ su(2)

8v,s,c = 7 + 1

which gives

e6 ⊃ su(2)× u(1)× u(1)

27 = 10,−4 + 12,2 + 1−2,2 + 10,2 + 11,−1 + 1−1,−1 + 70,2 + 71,−1 + 7−1,−1

For this embedding, the u(1)2 centralizer enhances to su(3). To see this, we

can make a change of basis so that the two u(1) charges are given in terms of

the old ones by

q′1 =
1

2
(q1 + q2)

q′2 =
1

2
(q1 − q2)

Then the decomposition becomes

e6 ⊃ su(2)× u(1)× u(1)

27 = 1−2,2 + 12,0 + 10,−2 + 11,−1 + 10,1 + 1−1,0 + 71,−1 + 70,1 + 7−1,0

where we recognize these u(1)2 charges as the weights (in the Dynkin basis)

of the 6 and 3 of su(3). Thus, the decomposition of the 27 is given by

e6 ⊃ su(2)× su(3)

27 = (1, 6) + (7, 3)
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Now, consider l = E6. There are three distinguished orbits in e6, giving

rise to nilpotent orbits E6, E6(a1), and E6(a3). The decomposition of the 27

for each of these can be obtained by taking the principal embedding of su(2)

inside the maximal subalgebras f4, sp(4), and su(3) of e6
6, respectively. We

work out the decomposition for E6 (the principal nilpotent orbit in e6); the

decompositions for E6(a1) and E6(a3) follow the same steps.

The 27 of e6 decomposes under f4 as

e6 ⊃ f4

27 = 1 + 26

The principal embedding of su(2) in f4 is given by taking

f4 ⊃ su(2)

26 = 9 + 17

so the decomposition of the 27 for E6 is given by

e6 ⊃ su(2)

27 = 1 + 9 + 17

To see which distinguished orbit corresponds to which E6(ai), we need

to count the number of simple roots in l′. To do that, we make recourse to the

decomposition of the 78.

6One might wonder about the other maximal subalgebras of e6. One finds that the
principal embedding of su(2) in su(2) × su(6) or su(3) × g2 again gives E6(a3), in g2 gives
E6(a1), in so(10)× u(1) gives D5, and in su(3)3 gives D4.
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• For the first case (embedding via f4), the 78 decomposes as 3 + 9 +

11 + 15 + 17 + 23. So dim(l′) = dim(g0) = 6, which is also equal to

rank(l′) = rank(e6). Thus l′ is just the Cartan subalgebra and this is the

principal embedding, E6.

• For the embedding via sp(4), the 78 decomposes as 3+5+7+9+2(11)+

15+17, so we have dim(l′) = 8 and l′ must contain precisely one positive

(hence, simple) root. Thus, this is E6(a1).

• Finally, for the embedding via su(3), the 78 decomposes as 3(3) + 3(5) +

2(7) + 2(9) + 2(11), so dim(l′) = 12 and l′ contains three simple roots.

Hence, this is E6(a3).
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Appendix C

Embeddings of SU(2) in E6

C.1 Embeddings of SU(2) in E6

Here we give the decompositions of the 27 and the 78 under su(2) × f

for the nilpotent orbits in e6.

Table C.1: Embeddings of SU(2) in E6

Bala-
Carter

f 27 78

0 e6 (1; 27) (1; 78)

A1 su(6) (1; 15) + (2; 6) (1; 35) + (2; 20) + (3; 1)

2A1 so(7) ×
u(1)

(1;72 + 1−4)

+ (2; 8−1) + (3; 12)

(1; 10 + 210)

+(2; 83 + 8−3) + (3; 70 + 10)

3A1 su(3)×
su(2)

(1; 6, 1) + (2; 3, 2)

+(3; 3, 1)

(1; 8, 1) + (1; 1, 3) + (2; 8, 2)

+(3; 1, 1) + (3; 8, 1) + (4; 1, 2)

A2 su(3)×
su(3)

(1; 3, 3) + (3; 1, 3)

+(3; 3, 1)

(1; 8, 1) + (1; 1, 8) + (3; 1, 1)

+(3; 3, 3) + (3; 3, 3)

+(5; 1, 1)
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Table C.1: Embeddings of SU(2) in E6

Bala-
Carter

f 27 78

A2 +A1 su(3)×
u(1)

(1; 32) + (2; 3−1 + 11)+

(3; 30 + 1−2) + (4; 11)

(1; 80 + 10)+

(2; 31 + 3−1 + 1−3 + 13)

+(3; 3−2 + 32 + 10 + 10)

+(4; 31 + 3−1) + (5; 10)

2A2 g2 (1; 1) + (3; 7) + (5; 1) (1; 14) + (3; 7 + 1) + (5; 7 + 1)

A2 +
2A1

su(2)×
u(1)

(1;12 + 1−4) + (2; 4−1)

+ (3; 32) + (4; 2−1)

(1; 10 + 30) + (2; 43 + 4−3)+

(3; 10 + 30 + 50)

+(4; 23 + 2−3)

+(5; 30)

A3 sp(2) ×
u(1)

(1;5−2 + 14) + (4; 41)

+ (5; 1−2)

(1; 100 + 10) + (3; 10)

+(4; 43 + 4−3) + (5; 50)

+(7; 10)

2A2 +
A1

su(2)
(1; 1) + (2; 2) + (3; 3)

+ (4; 2) + (5; 1)

(1; 3) + (2; 4 + 2)+

(3; 3 + 1 + 1)

+(4; 2 + 2)+

(5; 3 + 1) + (6; 2)

A3 +A1 su(2)×
u(1)

(1;14 + 1−2) + (2; 2−2)

+ (3; 11) + (4; 21)

+ (5; 11 + 1−2)

(1;10 + 30) + (2; 2)0

+ (3; 13 + 1−3 + 10 + 10)

+ (4; 23 + 2−3 + 20)

+ (5; 13 + 10 + 1−3)

+ (6; 2)0 + (7; 10)
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Table C.1: Embeddings of SU(2) in E6

Bala-
Carter

f 27 78

D4(a1) u(1) ×
u(1)

12,2 + 10,−4 + 1−2,2

+ 31,−1 + 30,2 + 3−1,−1

+ 51,−1 + 50,2 + 5−1,−1

10,0 + 10,0 + 30,0

+ 32,0 + 31,3 + 31,−3 + 30,0

+ 3−2,0 + 3−1,−3 + 3−1,3 + 30,0

+ 52,0 + 51,3 + 51,−3 + 50,0

+ 5−2,0 + 5−1,−3 + 5−1,3

+ 70,0 + 70,0

A4 su(2)×
u(1)

(1;2−5) + (3; 1−2)

+ (5; 21 + 14)

+ (7; 1−2)

(1;30 + 10) + (3; 23 + 2−3 + 10)

+ (5; 16 + 10 + 1−6)

+ (7; 23 + 2−3 + 10)

+ (9; 10)

D4 su(3) (1; 6) + (7; 3) (1; 8) + (3; 1) + (7; 8) + (11; 1)

A4 +A1 u(1)
2−5 + 3−2 + 41

+ 54 + 61 + 7−2

10 + 23 + 2−3 + 30 + 30 + 43+

4−3 + 56 + 50 + 5−6 + 6−3

+ 63 + 70 + 8−3 + 83

+ 90

D5(a1) u(1)
1−4 + 2−1 + 32

+ 6−1 + 72 + 8−1

10 + 23 + 2−3 + 30 + 30 + 50

+ 63 + 6−3 + 70 + 70

+ 83 + 8−3 + 90 + 110

A5 su(2) (1; 1) + (5; 1) + (6; 2) +
(9; 1)

(1; 3) + (3; 1) + (4; 2) + (5; 1)

+ (6; 2) + (7; 1) + (9; 1)

+ (10; 2) + (11; 1)

E6(a3) − 1 + 5 + 5 + 7 + 9
3 + 3 + 3 + 5 + 5 + 5

+ 7 + 7 + 9 + 9 + 11 + 11

D5 u(1) 12+1−4+5−1+92+11−1

10 + 30 + 53 + 5−3 + 70 + 90

+ 113 + 110 + 11−3 + 150

E6(a1) − 5 + 9 + 13 3+5+7+9+11+11+15+17

E6 − 1 + 9 + 17 3 + 9 + 11 + 15 + 17 + 23
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C.2 Projection Matrices

Our classification of interacting and mixed fixtures using the supercon-

formal index, carried out in section 5.3, required that we know the decompo-

sition of a number of higher-dimensional e6 representations (and not just the

27 and the 78) under su(2)× f. These are trivial to obtain using LieART [78],

provided we know a projection matrix for each embedding [79, 78].

From the decomposition of the 27, listed in the table above, one obtains

a projection matrix simply by defining a 6 × rk (su(2) × f) matrix, M , such

that the LieART command

In[1]= Project[M,WeightSystem[Irrep[E6][1,0,0,0,0,0]]]

gives the corresponding su(2)× f weights. This projection matrix can then be

used to obtain the decomposition of any e6 irrep under su(2)× f.

Below, we list a projection matrix for each embedding, following the

conventions of LieART.

Table C.2: Projection Matrices

Bala-Carter f Projection Matrix

A1 su(6)


−1 −2 −3 −2 −1 −2
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


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Table C.2: Projection Matrices

Bala-Carter f Projection Matrix

2A1 so(7)× u(1)


2 3 4 3 2 2
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 1 0 0
2 1 0 −1 −2 0



3A1 su(3)× su(2)


2 3 4 3 2 1
1 2 1 0 0 1
0 0 1 2 1 1
0 1 2 1 0 1



A2 su(3)× su(3)


2 2 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 −2 −3 −2 −1 −2



A2 + A1 su(3)× u(1)


3 5 7 5 3 3
0 0 0 1 0 0
0 1 1 0 0 1
1 1 −1 −1 −1 −1



2A2 g2

4 6 8 6 4 4
0 1 0 1 0 1
0 0 1 0 0 0


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Table C.2: Projection Matrices

Bala-Carter f Projection Matrix

A2 + 2A1 su(2)× u(1)

 3 4 6 4 3 4
1 4 6 4 1 2
−1 −2 0 2 1 0



A3 sp(2)× u(1)


4 7 10 7 4 6
0 1 0 1 0 0
0 0 1 0 0 0
−2 −1 0 1 2 0



2A2 + A1 su(2)

(
4 6 9 6 4 5
0 2 3 2 0 1

)

A3 + A1 su(2)× u(1)

 4 8 11 8 4 5
0 0 1 0 0 1
−2 −1 0 1 2 0



D4(a1) u(1)× u(1)

 4 8 10 8 4 6
1 1 0 −1 −1 0
−1 1 0 −1 1 0



A4 su(2)× u(1)

 6 10 12 10 6 6
0 1 1 0 0 0
−2 −1 −3 −2 2 0


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Table C.2: Projection Matrices

Bala-Carter f Projection Matrix

D4 su(3)

6 10 16 10 6 10
0 0 1 2 1 0
1 2 1 0 0 0



A4 + A1 u(1)

(
6 10 12 10 6 7
−2 −4 −6 −2 2 −3

)

D5(a1) u(1)

(
7 12 18 12 7 10
−1 −2 0 2 1 0

)

A5 su(2)

(
8 14 19 14 8 10
0 0 1 0 0 0

)

E6(a3) −
(
8 14 18 14 8 8

)

D5 u(1)

(
10 18 24 18 10 10
−1 −2 0 2 1 0

)

E6(a1) −
(
12 22 30 22 12 16

)

E6 −
(
16 30 42 30 16 22

)
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As an example, let’s work out the decomposition of the 51975 for the

orbit 2A2. Running LieART, we obtain the decomposition with the following

two lines of code:

In[1]= ProjectionMatrix[E6,ProductAlgebra[SU2,G2]]=

4 6 8 6 4 4
0 1 0 1 0 1
0 0 1 0 0 0


In[2]= DecomposeIrrep[Irrep[E6][1,0,1,0,0,0],ProductAlgebra[SU2,G2]]

Out[2]=

(1, 1) + 14(3, 1) + 10(5, 1) + 13(1, 7) + 13(7, 1)+

25(3, 7) + 5(9, 1) + 34(5, 7) + 4(11, 1)+

25(7, 7) + 9(1, 14) + 17(9, 7) + 16(3, 14) + 6(11, 7)+

22(5, 14) + 2(13, 7) + 15(7, 14) + 10(9, 14) + 3(11, 14)+

(13, 14) + 6(1, 27) + 25(3, 27) + 23(5, 27) + 21(7, 27)+

9(9, 27) + 4(11, 27) + 5(1, 64) + 12(3, 64) + 13(5, 64)+

9(7, 64) + 4(9, 64) + (11, 64) + 4(1, 77) + 6(3, 77)+

2(3, 77′) + 8(5, 77) + (5, 77′) + 4(7, 77) + (7, 77′)+

2(9, 77) + (3, 182) + (1, 189) + 2(3, 189) + 2(5, 189)+

(7, 189)

This works for all of the orbits above, except for D4(a1), as the LieART

command “DecomposeIrrep” does not seem to work when the target subal-

gebra has more than one u(1) factor. In this case, getting the decomposition
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is only slightly more complicated. For example, we obtain the decomposition

of the 27 of E6 as follows:

In[1]= ProjectionMatrix[D5,ProductAlgebra[D4,U1]]=


1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1


In[2]= ProjectionMatrix[D4,ProductAlgebra[A1]]=

(
4 6 4 4

)
In[3]= DecomposeIrrep[ DecomposeIrrep[ DecomposeIrrep[

Irrep[E6][1, 0, 0, 0, 0, 0], ProductAlgebra[D5, U1]],

ProductAlgebra[D4, U1], 1], ProductAlgebra[A1], 1]

Out[3]= (1)(2)(2)+(1)(0)(-4)+(1)(-2)(2)+(3)(1)(-1)+(3)(0)(2)

+(3)(-1)(-1)+(5)(1)(-1)+(5)(0)(2)+(5)(-1)(-1)
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Appendix D

Constraints for twisted E6 punctures

D.1 Constraints

Table D.1: Constraints

Bala-

Carter

New

parameters

Constraints

Ã1 h6 ≡
a

(6)
11/2

z11/2 φ12 − h2
6 ∼ 1

z10

Ã2 h3 ≡
a

(3)
5/2

z5/2

φ8 − φ5h3 ∼
1

z6

φ12 + φ2
6 +

1

16
φ6h

2
3 + 3φ9h3 +

1

1024
h4

3 ∼
1

z9

B2

h3 ≡
a

(3)
5/2

z5/2

h6 ≡
a

(6)
5

z5

φ9 −
1

12
h3(h2

3 + h6 + 2φ6) ∼ 1

z13/2

φ12 − h2
3(h2

3 − h6)− 1

4

(
h2

3 − h6 − 2φ6

)2 ∼ 1

z9

Ã2 +
A1

h3 ≡
a

(3)
5/2

z5/2 φ12 − 24φ9h3 + (φ6 + 2h2
3)

2 ∼ 1
z9

C3(a1)
h3 ≡

a
(3)
5/2

z5/2

h′3 ≡
a
′(3)
5/2

z5/2

φ9 −
1

12
h3(h2

3 + h′
2
3 + 2φ6) ∼ 1

z13/2

φ12 − h2
3(h2

3 − h′
2
3)− 1

4

(
h2

3 − h′
2
3 − 2φ6

)2

∼ 1

z9
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Table D.1: Constraints

Bala-

Carter

New

parameters

Constraints

F4(a3)

h3 ≡
a

(3)
5/2

z5/2

h′3 ≡
a′

(3)
5/2

z5/2

h′′3 ≡
a′′

(3)
5/2

z5/2

φ6 + 2h2
3 + h′

2
3 − 3h′′

2
3 ∼

1

z4

φ9 −
1

3
h3(h′

2
3 + 3h′′

2
3) ∼ 1

z13/2

φ12 + 8h2
3(h′

2
3 − 3h′′

2
3) +

(
h′

2
3 + 3h′′

2
3

)2

∼ 1

z9

B3 h4 ≡ a
(4)
3

z3

φ8 − 48h2
4 ∼

1

z5

φ9 − φ5h4 ∼
1

z11/2

φ12 + 96h3
4 ∼

1

z8

C3

h3 ≡
a

(3)
5/2

z5/2

h4 ≡
a

(4)
3

z3

φ6 + 6h2
3 ∼

1

z4

φ8 − 16φ2h
2
3 − 8φ5h3 − 48h2

4 ∼
1

z5

φ9 +
1

3
φ6h3 + φ5h4 − 2φ2h4h3 +

2

3
h3

3 ∼
1

z11/2

φ12 + φ2
6 + 24φ9h3 − 3φ8h4 − 12φ6φ2h4 + 4φ6h

2
3

+24φ5h4h3 + 36φ2
2h

2
4 − 24φ2h4h

2
3 + 4h4

3 + 48h3
4 ∼

1

z7

F4(a2) h4 ≡ a
(4)
3

z3

φ8 − 48h2
4 ∼

1

z5

φ9 + φ5h4 ∼
1

z11/2

φ12 + φ2
6 − 12h4(

1

4
φ8 − 3φ2

2h4 + φ6φ2 − 4h2
4) ∼ 1

z7
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Table D.1: Constraints

Bala-

Carter

New

parameters

Constraints

F4(a1)

h2 ≡
a

(2)
3/2

z3/2

h3 ≡
a

(3)
2

z2

h6 ≡
a

(6)
7/2

z7/2

φ5 − 2h3h2 ∼
1

z5/2

φ6 − 6φ2h
2
2 − h2

3 ∼
1

z3

φ8 + 4φ2h
2
3 + 48h2(h6 − h3

2) ∼ 1

z4

φ9 + φ5h
2
2 − h6h3 ∼

1

z9/2

φ12 − 3φ8h
2
2 + 2φ6h

2
3 − 12φ2h

2
3h

2
2 − 36h2

6 − h4
3 ∼

1

z6

F4 h3 ≡
a

(3)
3/2

z3/2

φ5 − φ2h3 ∼
1

z3/2

φ6 +
3

2
φ3

2 +
3

2
h2

3 ∼
1

z2

φ8 + 4φ6φ2 + 3φ4
2 − 4φ5h3 + 2φ2h

2
3 ∼

1

z2

φ9 +
1

6
φ6h3 −

1

4
φ5φ

2
2 +

1

4
φ3

2h3 +
1

12
h3

3 ∼
1

z5/2

φ12 + φ2
6 + 12φ9h3 + φ6h

2
3 +

3

2
φ6

2 + 3φ6φ
3
2

+
3

4
φ8φ

2
2 − 3φ5φ

2
2h3 +

3

2
φ3

2h
2
3 +

1

4
h4

3 ∼
1

z3
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Appendix E

Embeddings of SU(2) in F4

E.1 Appendix: Embeddings of SU(2) in F4

Table E.1: Embeddings of SU(2) in F4

Bala-
Carter

f 26 52

A1 sp(3) (2, 6) + (1, 14) (3, 1) + (2, 14′) + (1, 21)

Ã1 su(4)
(2, 4) + (2, 4) + (1, 6)

+(3, 1) + (1, 1)

(3, 1) + (3, 6)

+(2, 4) + (2, 4) + (1, 15)

A1 + Ã1 su(2) ×
su(2)

(1; 5, 1)+(2; 3, 2)+(3; 3, 1)

(1; 3, 1) + (1; 1, 3)+

(2; 5, 2) + (3; 1, 1)+

(3; 5, 1) + (4; 1, 2)

A2 su(3) (3, 3) + (3, 3) + (1, 8)
(5, 1) + (3, 6) + (3, 6)

+(3, 1) + (1, 8)

Ã2 g2 (3, 7) + (5, 1) (5, 7) + (3, 1) + (1, 14)

A2 + Ã1 su(2)
(4, 2) + (3, 3)+

(2, 4) + (1, 1)

(5, 3) + (4, 2) + (3, 5)

+(3, 1) + (2, 4) + (1, 3)

B2 su(2) ×
su(2)

(5, 1, 1) + (4, 2, 1)+

(4, 1, 2) + (1, 2, 2)+

(1, 1, 1)

(7, 1, 1) + (5, 2, 2)+

(4, 2, 1) + (4, 1, 2)

+(3, 1, 1) + (1, 3, 1)

+(1, 1, 3)

Ã2 + A1 su(2)
(5, 1) + (4, 2)+

(3, 3) + (2, 2)

(6, 2) + (5, 3) + (4, 2)+

2(3, 1) + (2, 4) + (1, 3)

C3(a1) su(2)
2(5, 1) + (4, 2) + (3, 1)

+(2, 2) + (1, 1)

(7, 1) + (6, 2) + (5, 1)+

2(4, 2) + 3(3, 1) + (1, 3)
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Table E.1: Embeddings of SU(2) in F4

Bala-
Carter

f 26 52

F4(a3) − 3(5) + 3(3) + 2(1) 2(7) + 4(5) + 6(3)

B3 su(2) (1; 5) + (7, 3)
(1; 3) + (3; 1)+

(7; 5) + (11; 1)

C3 su(2) (9, 1) + (6, 2) + (5, 1)
(11, 1) + (10, 2) + (7, 1)

+(4, 2) + (3, 1) + (1, 3)

F4(a2) − (9) + (7) + 2(5)
2(11) + (9)+

(7) + (5) + 3(3)

F4(a1) − (11) + (9) + (5) + (1)
(15) + 2(11)+

(7) + (5) + (3)

F4 − (17) + (9) (23) + (15) + (11) + (3)

E.2 Projection matrices

Table E.2: Projection Matrices

Bala-Carter f Projection Matrix

A1 Sp(3)13


1 0 0 0

0 0 1 0

0 0 0 1

1 2 1 0



Ã1 SU(4)12


0 2 1 0

1 1 1 0

0 1 1 1

1 1 0 0


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Table E.2: Projection Matrices

Bala-Carter f Projection Matrix

A1 + Ã1 SU(2)64 × SU(2)10


1 3 3 2

4 8 4 2

1 1 1 0



A2 SU(3)16


4 6 4 2

0 0 1 1

0 2 1 0



Ã2 (G2)10


4 8 6 4

1 0 1 0

0 1 0 0


A2 + Ã1 SU(2)39

2 6 5 3

4 6 3 1



B2 SU(2)2
7


4 10 7 4

1 1 0 0

1 1 1 0


Ã2 + A1 SU(2)20

4 9 7 4

2 3 1 0


C3(a1) SU(2)7

5 11 8 4

1 1 0 0


F4(a3) −

(
6 12 8 4

)
B3 SU(2)24

6 16 12 6

4 4 2 2


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Table E.2: Projection Matrices

Bala-Carter f Projection Matrix

C3 SU(2)6

9 19 14 8

1 1 0 0


F4(a2) −

(
10 20 14 8

)
F4(a1) −

(
14 26 18 10

)
F4 −

(
22 42 30 16

)
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