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A large class of 4d N' = 2 superconformal field theories arise as com-
pactifications of a 6d (2, 0) theory of type j = A, D, E on a punctured Riemann
surface, C'. These theories can be classified by listing the allowed fixtures and
cylinders which can occur in a pants decomposition of C', and giving the rules
for gluing them together. Different pants decompositions of the same surface
give different weakly-coupled presentations of the same underlying SCF'T, re-
lated by S-duality. An even larger class of theories can be constructed in this
way by including “twisted” punctures, which carry a non-trivial action of the
outer-automorphism group of j. In this dissertation, we discuss the classifi-
cation procedure for twisted theories of type Dy, as well as for twisted and
untwisted theories of type Fg. Using these results, we write the Seiberg-Witten
solutions for all Spin(n) gauge theories with matter in spinor representations
which can be realized by compactifying the (2,0) theory. We also study a
family of SCFTs arising from the twisted Asy series, whose twisted punctures

are still not fully-understood.
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Chapter 1

Introduction

In [I], Gaiotto showed that the marginal deformations of a large class
of four-dimensional ' = 2 SCFTs can be identified with M, ,, the moduli
space of a genus g Riemann surface, C'; with n punctures. These theories can
be seen to arise from the compactification of a six-dimensional (2, 0) theory on
C'. Different degeneration limits of C' correspond to different weakly-coupled
descriptions of the same SCFT, related by S-duality. This construction greatly

generalizes the original examples of N' = 2 S-dualities, first found in [2].

In a degeneration limit, C' can be decomposed into a collection of 3-
punctured spheres (“fixtures”) and cylinders, corresponding to 4d “matter”
theories and N' = 2 vector multiplets, respectively. One can classify the 4d
theories which arise in this way by listing the allowed fixtures and cylinders
which can arise in a pants-decomposition of C', and giving the rules for gluing
them together. For a given (2,0) theory, this is a finite list. The classification
procedure has been discussed for twisted and untwisted theories of type A in
[3, 4] and untwisted theories of type D in [5]. In this dissertation, we will
continue this classification procedure for the twisted D-series, as well as the

twisted and untwisted Eg theory. We will also discuss a family of interacting



SCFTs which arise from compactifying the twisted Aoy (2,0) theory, whose

general twisted punctures are not yet fully-understood.

We begin this chapter by discussing general aspects of the compacifica-
tion of six-dimensional (2,0) theories on C, following [6]. We then discuss in
detail the “local” properties of the codimension-2 defects of the (2,0) theory

which live at the punctures, following [7].

1.1 Compactifying the (2,0) theories

The six-dimensional (2, 0) superconformal theories enjoy osp(6,2|4) su-
perconformal invariance, and can be constructed by taking a low-energy de-
coupling limit of type IIB string theory on R x C?/T", where I is a discrete
subgroup of SU(2) of type j = A, D, or E. There is a basis of operators
transforming in short representations of osp(6,2|4), labeled by the Casimir
operators of j. Within each short multiplet, there is a subspace V), of opera-
tors with lowest conformal weight, given by twice the exponent dj. of j, which
is an irreducible representation of the s0(5) R-symmetry. The theory has a
Coulomb branch parametrized by expectation values of these chiral operators,
which is isomorphic to

(IR?)rank

M= (1.1)

where W, is the Weyl group of j.
To compactify the (2,0) theory on a Riemann surface C' while preserv-

ing 4d N' = 2 supersymmetry, we must perform a partial twisting. The super



Poincaré subalgebra of o0sp(6,2[4) has bosonic part so(5,1) @ so(5), where
the spinor representations of Spin(1,5) and Spin(5) are given by H?, where
H is the quaternions. The Poincaré supercharges therefore transform in the
(C* @ C*) 4 of s50(5,1) @ s0(5), where the subscript + denotes a symplectic
Majorana reality constraint. Compactifying on C' breaks so(5,1) @ so(5) to

50(3,1) ®s0(2)c ®s0(3) B so(2)g, under which the supercharges transform as

((enyew2,)e(202,)) (12)

The twisting consists of identifying the diagonal s0(2) of s0(2)c @ s0(2) g with
the holonomy algebra of C', leaving us with supercharges transforming under

50(3,1) B so(3) B so(2), as
(2,1,2)1 0 (2,1;2)0 @ (1,252)0 @ (1,2;2) (1.3)

The middle two summands of (1.3) are uncharged under s0(2);,, and so are

well-defined four dimensional supercharges, which we denote by QC“A,@M

The moduli space of the four-dimensional theory is obtained essentially
by dimensional reduction from the the Coulomb branch of the six-dimensional
theory. More precisely, we choose a Cartan subalgebra s0(2)r @ s0(2) of the
50(5) R-symmetry, and let Oy be the operator in Vj, of weight (dj,0). This
operator has the largest s0(2)g charge in the multiplet and hence it must be
annihilated by any supercharge, such as @dA, with positive s0(2) charge. The
4d Coulomb branch is parametrized by the vacuum expectation values of these

chiral operators.



After the twisting, O}, is a section of the bundle K®% over C, which is

also true of its vacuum expectation value (O). Since Oy, is annihilated by @d ,
. —aA C 1. .

and since Q" -exact operators have vanishing vev’s, (Ox) must be annihilated

by . This is the only condition on (O}), so the 4d Coulomb branch is simply
Caa = @ HO(C, K®%). (1.4)

The (2,0) theory of type Ay_; can also be realized as the low-energy
worldvolume theory on N coincident M5-branes. In this case, Cyy has a nice
geometric interpretation. The M5-branes are wrapped on a holomorphic cycle
C inside a hyperkahler four-manifold ). We go onto the Coulomb branch by
separating the branes so that they wrap some other cycle ¥ inside (), where
we take X to be a connected divisor inside (). By viewing () as a holomorphic
symplectic manifold, we can identify a neighborhood of C' with the holomor-
phic cotangent bundle T7*C' by picking holomorphic Darboux coordinates (z, 2)
for Q. A point of C4y corresponds to picking the coefficients u;, € H(C, K®*),

of the equation
N + Zuk(z)xN_k =0 (1.5)
defining > C T*C.

Normalizing the coordinates so that the holomorphic symplectic form

is
63

the projection map T*C — C identifies ¥ as an N-sheeted cover of C'. The



distance between the i-th and j-th sheets is a one-form on C'; which we denote
Nij-

In [6], it was shown that ¥ can be identified with the Seiberg-Witten

curve of the 4d theory, and the canonical one-form
A= xdz (1.7)
restricted to X can be identified with the Seiberg-Witten differential.

For (2,0) theories of type j # Ay_1, the anaylsis is similar, except that
the coefficients in are no longer just linear functions on the Coulomb
branch, but, in general, are polynomial expressions when expressed in terms
of the natural linear coordinates at the origin of the Coulomb branch. Ad-

ditionally, the Coulomb branch can have graded components of degrees other

than the expected dj. In general, the Coulomb branch takes the form [5]
EcCV (1.8)
where
V= H(C K)o P W (1.9)
k k

where the W} are vector spaces of degree k and E' is the subvariety satisfying
the collection of polynomial constraints (linear in at least one variable, and of

homogeneous degree).

1.2 Relation to Hitchin systems

It is well-known that the Seiberg-Witten solutions of many N = 2

theories can be understood in terms of complex integrable systems. We now



show that the relevant integrable system for this class of theories is a Hitchin

system.

To do so, we consider the theory obtained by further dimensional re-
duction from d = 4 to d = 3 on S*. On general field theory grounds, at low
energies the 3d effective theory is an N' = 4 sigma model into a hyperkéhler
target space M, where M is a fibration over Cyy with generic fiber a compact

torus [§].

Now consider reversing the order of compactification. By first compact-
ifying on S* of radius R, we obtain at low energies 5d N' = 2 super Yang-Mills
theory. We are interested in this five-dimensional theory further compactified
on C', with an appropraite topological twist. The moduli space of the result-
ing 3d theory is the space of BPS configurations of the five-dimensional theory
which are Poincaré invariant in 3d. Denote the adjoint scalars of the super

Yang-Mills theory by ®/, I =1,...,5, so that

d = (P +id?) (1.10)

DN —

has s0(2)z charge +1, and ®>%° have charge zero. In the twisted theory,
$ = &,dz is a (1,0) form on C. Then the BPS equations are the Hitchin
equations for the gauge field A = A,dz + A=dz cotangent to C' and the adjoint
scalar field ®:
F + R*[®,®] = 0,
04® = dz(0.® + [Az, ®]) = 0, (1.11)

04® = dz(0,P + [A,, ®]) = 0.



Due to the partial topological twist, the BPS protected quantities we study
do not depend on the conformal scale of the metric on C', so we do not expect
any phase transition when we exchange the relative length scales of S' and
C. We therefore identify M with the moduli space of solutions of Hitchin’s

equations on C'. The map M — C4y given by
(A, ®) — {Casimirs of ¢} (1.12)

is the well-known Hitchin fibration; its fiber over a generic u € Cyq is indeed
an abelian variety, the Prym variety of the projection 3, — C, defined as the

kernel of a corresponding map of Jacobians J(%,) — J(C).

As discussed above, the (Oy) determine the Seiberg-Witten curve ¥ C
T*C. Since we have identified these with the Casimirs Tr ®*, ¥ given by (1.5))

is the spectral curve determined by P,
det (zdz — ®) = 0. (1.13)

We see that the positions x; of the sheets of X in the cotangent directions can
be interpreted as the eigenvalues of the matrix-valued one-form @, thus the
coefficients u(z) are elementary symmetric functions of the eigenvalues, and

can be written as polynomials in the (O).

In the next subsection, we will discuss a class of codimension-2 defects
of the 6d (2,0) theories, which wrap four-dimensional spacetime and live at a
point on C. The presence of these defects will give rise to singular boundary
conditions for ®, which introduce extra parameters contributing to the dimen-

sion of the moduli space of the 4d theory. We will discuss the classification of



the defects in detail, and show how to compute their contritutions to the 4d

Higgs and Coulomb branch dimensions, as well as to the central charges of the

4d SCFT.

1.3 Local properties of codimension-2 defects of the 6d

(2,0) theories

We now review the local properties of the half-BPS codimension-2 de-
fects of the 6d (2,0) theories which live at the punctures on C, following [7].
For a (2,0) theory of type J = A, D, E, these defects are labeled by a homo-
morphism p : su(2) — j. For J = Ay_1, Dy, or Eg, we can further introduce
a class of “twisted” defects, around which there is an action of a non-trivial
outer-automorphism o of J. Twisted defects are labeled by homomorphisms
p : su(2) — g, where g¥ is the subalgebra of j invariant under o. The intro-

duction of a defect of type p at a point on C will [T}

e add a flavor symmetry group factor F(p),

e increase the dimensions of the Higgs and Coulomb branches by, respec-

tively, dimg#H(p) and dimcCyq(p), and

e increase the effective number of vector and hypermultiplets n, and n,
by n,(p) and n,(p). Accordingly, the central charges a and ¢, which are

linear combinations of ny and n,, also get a contribution.

!'We assume the number of punctures on C' is sufficient to get a 4d SCFT in the zero
area limit.



All of these quantities are local in the sense that they do not depend

of the genus of C' or on the properties of the other punctures.

1.3.1 Classification of punctures

As mentioned above, each puncture is labeled by a homomorphism
p : su(2) — g. The adjoint orbit of an element e € g, denoted O, is its G¢

conjugacy class in g,

O, = {ad(g) - e € glg € Gc}.

The Jacobson-Morozov theorem states that the classification of such ho-
momorphisms p, up to conjugacy, is equivalent to the classification of nilpotent
elements in g, also up to conjugacy, through the correspondence e = p(o™).
Since e is nilpotent, the orbit O, is called a nilpotent orbit. When g is of classi-
cal type, nilpotent orbits have a convenient classification in terms of partitions.
When g = su(N), a nilpotent orbit O, is specified by the decomposition of the
N-dimensional fundamental representation into irreducible representations of
su(2), N = Nj + .-+ 4+ Ny, or, equivalently, by a partition p = [N;] of N. The

N; are called the parts of the partition p.

When g = so(N), a nilpotent orbit O, is specified by the decomposition
of the N-dimensional vector representation into irreducible representations of
su(2). This can again be specified by a partition p = [V;] of N, but with the
requirement that any even part must appear an even number of times. Such

partitions are caleed B- or D-partitions, when N is odd or even, respectively.



Given a partition p = [N;] satisfying this condition, there is a unique nilpotent
orbit, except for the case when all the parts /N; are even and each even integer
appears an even number of times. Such a partition is called a very even
partition, and there are two distinct nilpotent orbits associated to it, exchanged
by the outer-automorphism of so(N).

Similarly, for a nilpotent element e in g = sp(/N), the corresponding
homomorphism p : su(2) — sp(V) determines a partition p = [V;] of 2V, with
the condition that any odd part in p = [IV;] appears an even number of times.

Such a partition is called a C-partition, and each such partition corresponds

to a unique orbit.

Nilpotent orbits in exceptional g also have a conventient classification,
though not in terms of partitions. The classification for g = ¢ and f4 will be

discussed in chapters 4 and 5, respectively.

1.3.2 Global symmetry and central charge k4

Each puncture carries a flavor symmetry group, F(p), given by the

subgroup of G commuting with the image of p. For classical g, the Lie algebra
f(p) of F(p) is given by

s[@u(r;)] when g = su(N),

Di odd 50(7;) D Dj evensP(1;/2)  when g = s0(N),

Di 0dd 5P(7i/2) B Di evens50(r;)  when g = sp(N),

where r; is the number of parts Ny in the partition p = [Ng] equal to i.

10



The central charge k44 of each non-abelian factor in F'(p), defined via

the current algebra [2]

B 3k4d5abgu,,x2 — 22,1, N Efabxux,,x - Je

JE(CU)JB(()) = (22) w2l e T (g2

can be determined as follows. Consider putting the 6d theory and the defect
on a general Riemann surface C, and perform Nekrasov’s deformation on the
4d side, with parameters €; 5. This will lead to a 2d theory on C, which is
believed to have the W-symmetry W (g, p) at the parameter b? = Z—f, obtained
by quantum Drinfeld-Sokolov reduction of the affine g Lie algebra. Since we
will make use of it shortly, we note that the 2d central charge of W (g, p) is
given by

. 1 24 h h h
Coq = dim go — 5 dim gq/2 + 2P P +12p, - 3 + 24625 '3 (1.14)

where p, is the Weyl vector of g, h = p(c?), and we have decomposed g into
g= @ 9;
JEIZ
where j is the eigenvalue of the action of h/2.
For a defect of type p with flavor symmetry F(p), the corresponding
W-algebra W (g, p) has the affine Lie subalgebra f(p). The current algebra

level of f(p) was computed in [9]. Since F(p) commutes with p(su(2)), the

adjoint representation g can be decomposed as

s=P RV

jesz

11



where V; is the irreducible representation of su(2) of spin j, and R; is the
corresponding (reducible) representation of f(p). Choose generators T%° of
a simple subalgebra f' C f(p) so that trpT*T = hV(f")§%, where h" is the
dual Coxeter number. Denote by f the natural embedding f : f(p) — g. The

level of f’ is then given by

Foa( f)5% = kgdh%(g)trg PN AT + 3 2jtrg ToT (115
J

where kog = —hV(g) + 1/b* is the level of the affine g algebra before the

Drinfeld-Sokolov reduction.

The relation between the level of the 2d current subalgebra f (p) of

W (g, p) and the level of the 4d flavor symmetry f(p) was shown in [9] to be
given by kuq(f") = 2kea(f)|1/p2=0. Using (L.13)), we find kyq(f’) is given by

haa([')0" = =2rg [(T*) [(T") +2 ) 2trg, T*T" =23 s, T*T".

J J

1.3.3 a and c central charges

Four dimensional conformal field theories have two Weyl anomaly co-

efficients, a and ¢, defined via

T =

C 2
W= Tomr(Werl)” =

672 (Euler)

where

1
(Weyl)? = R\, — 2R, + - R?,

HYAp

3
(Buler) = R2,,, — 4R’ + R*.

12



For 4d N = 2 theories, it is convenient to parametrize a and c by the “effective”

numbers of vector and hypermultiplets
ny, =4(2a —¢), np =4(5¢ — 4a),

which are normalized so that, in a free theory, n, counts the number of free
vector multiplets and n; counts the number of free hypermultiplets. Adding a
defect of type p increases these central charges by n,(p) and ny(p). The total
n, and ny of a 4d N' = 2 SCFT take the following form

n, = Zny(pi) + (g — 1)(§hv(J) dim J + rank J),
' (1.16)

= 3 (o) + (g - 1)(§hvu) dim J).

The global terms, which are proportional to (¢ — 1), were calculated in [10]
using the anomaly polynomials of the 6d (2,0) theories. The n,x(p), as well
as the 2d central charge coq should come from the anomaly polynomial of the
defect of type p. On flat space, a codimension-2 defect has a(p) and ¢(p), and
the SO(2) rotation of the transverse space to the defect is a flavor symmetry,
with central charge kr(p). The n, ,(p) are a certain linear combination of these
three fundamental quantities, determined by the R-symmetry twist needed to

preserve 4d N = 2 supersymmetry discussed above.

The central charge of the W-algebra W (g, p) should have the same
origin. Since the standard W-algebra W (j) = W (j, pprin) corresponds to the

absence of the defect when g is simply-laced, the contribution from the presence
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of the defect of type p is

dcaa(g, p) = c2a(g, p) — c2a(j, Pprin)

. L1 h h h
= (dim gy —rank j) + o dim gi/2 +12(p - 5 = - p1) + 2462(5 o T PP,

where the roots are normalized so that pg - pg = pj - p;. This suggests that
a(p),c(p) and kr(p), and therefore also n,(p), can be expressed as linear

combinations of

. . h h
dim go — rank], dim d1/2, pga_plpju 5

| S

=0 P

From the known results for ny(p) and n,(p) for type J = A, D from the analysis

of quiver gauge theories [II, [I1], one finds that

h 1 .

n(p) = 8(py - oy = pg- ) + 5 dim gupo, (1.17)
h 1 . .

no(p) = 8(p; - pj — pg - 5) + §(rank] — dim go), (1.18)

where we note that p; - pj = 552" (J) dim J.

1.3.4 Contributions to Higgs and Coulomb branch dimensions

To determine the contributions of a defect of type p to the Higgs
and Coulomb branch dimensions, we put the 6d (2,0) theory of type J on
R>! x (cigar) x S, where “cigar” denotes a semi-infinite cigar geometry with
the defect placed at the tip. We allow the fields on the cigar to undergo a

monodromy by an outer-automorphism o of J upon circling the defect.

Upon reducing along the U(1) isometry of the cigar, we get 5d N' = 2

super Yang-Mills with gauge group G on R*! x (a half-line) x S'. The defect
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becomes a boundary condition at the end of the half-line, producing a pole in
three of the adjoint scalars. Letting s be the distance to the boundary, this is

given by

Dy 93(s) ~ —p<2’2’3),

where p is a homomorphism p : su(2) — g, as discussed above. Further
reducing on St gives 4d N = 4 super Yang-Mills with gauge group G on a
half-space with essentially the same boundary condition, which is exactly the
Nahm-type boundary conditions studied by Gaiotto and Witten in [12] [13].

The homomorphism p is therefore called the Nahm pole.

Gaiotto and Witten also considered the S-dual of this boundary condi-
tion, which corresponds to inverting the order of reductions on the S! of the
cigar and S'. They found that S-duality gives 4d N” = 4 super Yang-Mills with
gauge group G, with boundary condition given by coupling the bulk fields to
a 3d N' = 4 superconformal field theory T7[g] with GV flavor symmetry, living
at the 3d boundary of the 4d half-space.

If we now undo the reduction on S*, the codimension-2 defect of 5d
super Yang-Mills on the cigar is given by coupling the fields to the 3d theory

T*[g|, producing a pole in the adjoint scalar field
B(2) = Dy(2) +iPs5(2) ~ plo™)/z,

where z is a complex coordinate on the cirgar so that the tip is at z = 0,

and p is a new homomorphism, p : su(2) — g", determined by the properties
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of T”[g]. Since ®(z) will become the Higgs field of the Hitchin system which

controls the 4d Coulomb branch, so p is called the Hitchin pole.

Unfortunately, we do not understand the 6d (2,0) theory well enough
to also undo the reduction on S* and give a precise description of the defect
in the 6d theory. However, we will still be able to study how the worldvolume
fields ¢ (z) of dimension k behave at the defect, by studying the behavior of

k(P (2)) where py, is a degree-k invariant polynomial of g.

1.3.4.1 Contribution to 4d Higgs branch

We now determine the local contributions of a defect of type p to the
dimensions of the 4d Higgs branch and Coulomb branch. Consider 5d N = 2
super Yang-Mills with gauge group J on R?! x C, coupled to the 3d theory
T?i[g], which wraps R*! and lives at a point on C. In the setup above, this
corresponds to reducing the (2,0) theory of type J on S'. This system was
studied in [I4] for J = A, D, but the arguments also hold for J of type E.
After reducing on S, the dimension of the Coulomb branch doubles, while the
dimension of the Higgs branch is preserved. The contribution of the defect to

the Higgs branch quaternionic dimension is
and the total quaternionic dimension of the Higgs branch is then given by

dimpgH = Z dimgH (p;) + rank g".
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We now determine dimygH (77[g]) for arbitrary p. When p = 0 (i.e., the trivial
embedding), T*[g] is often denoted by T'[g]. Its Coulomb branch is N, and
its Higgs branch is NV, where N denotes the nilpotent cone of g - the subset

of g consisting of its nilpotent elements. The dimension of N is given by
dim¢ Ny = dim G — rank G.

This complex dimension is always even, as N is a hyperkéhler cone, which is

expected since T'[g] has 3d N' = 4 superconformal symmetry.

For a homomorphism p : su(2) — g, we can give a Higgs vev e = p(c™)
to the theory T'[g]. The moduli directions inside N that are transverse to O,
are in general singular, while the directions along O, are smooth. Thus, at
low energies, the theory T[g] becomes (dim¢ O.)/2 free hypermultiplets plus
the 3d interacting SCFT T”[g]. The quaternionic Higgs branch dimension of

T*[g| is therefore

dimyg H(T"[g]) = %(dim G —rank G — dim¢ O,).

For a nilpotent orbit O, in a classical Lie algebra, labeled by a partition
p = [N;], its dimension is given by
N? — > 57 g = su(
N@N+1) =23 2+ 15 ari g=s0(2N + 1),
N@2N+1) =23 2 — 15 ari g =sp(
N@2N —1) = 33087+ 32 aa"i g==s

where [s;] is the transpose partition to [IV;], and 74 is the number of times

dim@ O[Ni} =

the part k appears in the partition [V;]. The contributions of a defect of type
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¢¢ and fy to the 4d Higgs and Coulomb branches will be given explicitly in

chapters 4 and 5, respectively.

1.3.4.2 Contribution to 4d Coulomb branch

The Coulomb branch of the 3d theory is given by the moduli space of
the Hitchin system of gauge group J, with an outer-automorphism twist o;
around the i-th puncture p;, coupled to the Coulomb branch of T%[g]. To
compute the local contribution of a defect to the Coulomb branch, we need
to understand the local boundary condition for the Hitchin system near the

puncture on C.

The Coulomb branch of the 7”[g] theory is a subset of the Coulomb
branch of T'[g], which is the nilpotent cone Myv. When g is of classical type,
the theories 7”[g| can be constructed via an arrangement of branes. Let p be
the partition corresponding to the nilpotent element e = p(ct). When g is
of type A,C, or D, the Coulomb branch is the closure of a single nilpotent
orbit Og, where € is a nilpotent element of gV [I4] [12], whose partition type is
given by p* when g is of type A, (p*")p when g is of type C, and (p*)p when
g is of type D. Here, the notation is that, for a partition p = [Ny, ..., Ng],
p' is the transpose partition to p, p* is the partition [Ny,..., Nk, 1], and pp p
stand for the B- and D-collapses, respectively, of p, and are defined to be the
unique maximal B-, D-partition ¢ satisfying p > ¢ (in the standard partial
order on the partitions). This combinational operation agrees with the map

d: N;/G — Nyv/GY, defined for any simple Lie algebra g, known as the
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Spaltenstein map.

This implies that the Coulomb branch of T%[g] is given by the closure

of the Spaltenstein dual orbit d(O,) to the orbit O, where e = p(c™).

We are now in a position to compute the contribution to the 4d Coulomb
branch dimension for a defect of type p. Before doing so, we note that the
outer-automorphism o introduces a grading for the Lie algebra j. The outer-
automorphism can be trivial, of order 2 (for j = Ay_1, Dy, Fg), or of order 3
(for j = Dy4). The Lie algebra j splits into a direct sum of eigenspaces under

the action of o:

j=j1+) for o of order 2,
(1.19)
J =1+ e+ for o of order 3,

where the lower indices denote the eigenvalues under the action of o, e.g.,
0(ju2) = w?j,2. By definition, j; = g¥. The grading means that, e.g., [ju,jw2] C
ji.

Let us now pick a defect of type p, and let z be a local coordinate on
C such that the defect is located at the origin. If the outer-automorphism o
associated to the defect is trivial, the defect is called untwisted, and is labeled
by a nilpotent orbit O, in j (since, for o trivial, j = g = g¥). In this case,
the Spaltenstein dual orbit d(O,) is also in j. The Higgs field ® of the Hitchin
system behaves as

B(z) = [%%—@o%—..l dz, (1.20)

where ®_; is an element in d(O,), and @, is a generic element in j. The

introduction of an untwisted defect of type p increases the dimension of the
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Coulomb branch by
: : L.
dime Cyq(p) = dimg Csq(p) = §d1m<c d(O,). (1.21)

When o is nontrivial, the defect is called twisted, and we impose
D(e*'2) = glo(®(2))]g™" (1.22)

where g parametrizes the coset J/GY. In particular, when o is of order 2, the
twisted defect is labeled by a nilpotent orbit in g, while the Spaltenstein dual
orbit lives in g¥ = j;. The boundary condition for the Higgs field in this case
is

Oy Pp

2 +W+q>0+~-- dz (1.23)

O(z) ~

where ®_; is an element of d(O,), ®_1/; is a generic element in j_;, and @ is

a generic element in j;.

When o is of order 3, the defect is again labeled by a nilpotent orbit
in g, and the Spaltenstein dual orbit is in g¥ = j;, but now the boundary
condition for the Higgs field is

O, Dy Doy

®(z2) ~ P 22/3 S1/3

+®g+ ... | dz, (1.24)

where ®_; is an element of d(O,), ®_/3 is a generic element in j,,, and ®_,/3

is a generic element in j,2.

Altogether, the introduction of a twisted defect of type p increases the
dimension of the Coulomb branch by
: 1. L. v
dime Cyq(p) = §d1m@ d(O,) + 5 dim J/G". (1.25)
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The second term in ([1.25)) may be a half-integer when o is of order 2, but this

is not a problem because the twisted punctures always come in pairs.

So, for a theory on a surface of genus g, the total Coulomb branch

dimension 1is

dimg Cyg = Y _ dime Cag(pi) + (9 — 1) dim G. (1.26)

1.3.4.3 Coulomb branch and Sommers-Achar group

We have computed in the local contribution of a defect of type
p to the complex dimension of the 4d Coulomb branch. The 4d NV = 2 theory
is superconformal, so its Coulomb branch actually has a finer structure. The
scaling symmetry sends ®(z) — ¢®(z), which preserves the form of the sin-
gularities because the nilpotent orbits are cones. The scaling symmetry also
makes C into a cone, and for all known cases C is a graded vector space. We
can therefore choose generators u; of the chiral ring of the 4d Coulomb branch,
which form a basis for C unambiguously. Letting nj be the total number of u;

whose scaling dimension is k, we should have
dime(C) = > m. (1.27)
k

The ny, receive a local contribution ng(p) from a defect of type p. The local
contribution ng(p) and the local contribution n,(p) to the effective number of

vector multiplets n,, are related by [15], [16]

nulp) = S22k = Dmalp). (1.28)

k
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Let PU)(®) (a = 1,...,rank J) be the degree-d, symmetric invariant
polynomial of j, so that P(%) generates all the invariant polynomials. Let
¢(9a)(2) be the invariant polynomials constructed from the Higgs field ®(z),
i.e. ¢l%)(z) = Pla)(®(z)). Then, ¢%)(z) and ¢\®)(2y), for any d,, dy, 21, 22,
Poisson-commute by construction, and they are expected to provide a complete

set of integrals of motion. The ¢(®)(z) are assigned a scaling dimension d,,.

Introducing punctures of type p; at z = z;, the singularities (2.2.1.2)),
(1.23)), (1.24)) give rise to a pole of order at most pg, (p) in the ¢%(2) at z = z;,

where py, may be fractional when p is a twisted puncture. The number of

degrees of freedom in the meromorphic d,-differential ¢(%)(2) is

D pa(pi) + (1= g)(2d, — 1). (1.29)

Considering the second term above to be the contribution from the bulk of the
Riemann surfacef, we see that a puncture of type p, inserted at z = 0, effec-
tively adds pg,(p) Coulomb branch operators of scaling dimension d,. More
concretely, these operators can be identified with the coefficients (b,(cda) of the
poles of order 27 in ¢(4)(z), where 0 < k < pg,. However, these coefficients
(b,gd“) are not always the most elementary Coulomb branch operators. Rather,
they are polynomials in the true generators of the Coulomb branch operators
introduced by p. Indeed, the coefficients qb,id“) usually satisfy rather intricate

constraints.

We now explain how to obtain the local Coulomb branch operators,

which was determined in [7]. Consider the untwisted boundary condition
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(2.2.1.2)) (the twisted cases can be treated similarly)

d(z) = ed?z + Oodz + . .. (1.30)

where e is a fixed element in the Spaltenstein dual orbit d(O,). The allowed

continuous gauge transformations are of the form

9g(z)=go+qz+..., go€ g ={x|le,x] =0}, 950 € 9. (1.31)

To find the local Coulomb branch operators, one first finds all functions of
®(2) (where ®(z) takes the form (1.30]) invariant under the connected part
of the gauge group, generated by . One then further imposes invariance
under a certain discrete group C(O,), to be described below. The resulting

invariant functions are the local Coulomb branch operators.

The discrete group C(O,) is known as the Sommers-Achar group. Be-
fore we identify C(O,), let us first return to an important property of the

Spaltenstein map
d : {nilpotent orbits in g} — {nilpotent orbits in g*}.

When g is of type A, d takes a nilpotent orbit defined by a partition p to the
nilpotent orbit defined by p’, the transpose partition to p. We see then that
d is an involution on nilpotent orbits in g = su(N). However, in general, for
g # An_1, d is not an involution, but satisfies d*> = d. It is possible then, that
two distinct nilpotent orbits O,, O, in g map to the same nilpotent orbit in

g, d(Op) = d(op/)-

23



If a nilpotent orbit O, is an image of d, i.e. O, = d(O.), the orbit O,
is called special. The Spaltenstein map is an involution d*> = 1 on the set of
special orbits. For a special O,, the set of orbits O such that d*(O) = O, is
called the special piece of O,; for such non-special O, O, is the unique smallest
special orbit larger than O. We note that, among nilpotent orbits in a fixed

g, there are usually more special orbits than non-special orbits.

We now describe the Sommers-Achar group C(O). Pick e € O, and
let F'(O) be the subgroup of G commuting with e, and F'(O)° the connected
component of F(O) that contains the identity. Let A(O) = F(O)/F(0O)°
denote the group of components of F(O). A(O) is trivial when g = Ay_1, is
(Zy)* for some k when g = By, Cly, or Dy , and is Sy, for some k when g is

exceptional. In particular, A(O) is a Coxeter group.

Sommers and Achar constructed amap f : O — (d(O), C(O)) assigning
to a nilpotent orbit in g a pair, consisting of the Spaltenstein dual orbit d(O)
in g¥ and a conjugacy class C(O) in A(d(O)), which is a certain quotient of

A(O) introduced by Lusztig. These maps have the properties
e f(O1) = f(Oy) if and only if O; = O,
e f(O)=(d(0),1) if and only if O is special.

Just as A(d(O)), A(d(O)) is also a Coxeter group. Using this fact,
Sommers and Achar assigned a subset of simple reflections 7y, . . ., 7, € A(d(O))

whose product lies in C'(O). If we let q,...,7, be the corresponding simple
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reflections in A(d(O)), then C(O) is the subgroup of A(d(O)) generated by

them.

For nilpotent orbits in classical g, there is a combinatorial procedure to
determine C'(O) from the partition labeling O, which is described in [7]. For
g exceptional, the C'(O) have also been determined, and can be found in [7].
The C(O) for nilpotent orbits in ¢s and f4 will be discussed in chapters 4 and
5.

We note that, so far, C(O) is purely a Coulomb branch concept. In
chapter 4, we will discover an explicit action on C(O) on the generators of the

Higgs branch chiral ring for certain 4d N'= 2 SCFTs.
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Chapter 2

The Zo-Twisted Dy Series

In this chapter, we consider the classification program of twisted theo-
ries of type Dy [} Preliminary studies of the twisted Dy series were made in

[14), [TT), [18].

The Dy Dynkin diagram is invariant under a Zs outer automorphism
group. Correspondingly, the possible twists are classified by giving an element
v € HY(C — {p;},Z,). The forgetful map, which “forgets” the puncture, p,

gives an inclusion

HI(C—{pl,...]’)\,...},Zg) %HI(C—{pl,p,},Zg)

Hl(C—{pla---Pa---}aZ2) then

If v descends to a nontrivial element of the quotient, - P 7a)

we say that the puncture at p is twisted (otherwise, untwisted). (For the D,
theory, the Z, enhances to a non-abelian S3 group. The study of the 4D N = 2

SCFTs that arise from such enhancement is work in progress.)

For a given puncture, we explain how to compute all the local proper-
ties that contribute to determining the 4D N' = 2 SCFT. Among these, are the

contribution to the graded Coulomb branch dimensions, the global symmetry

!This chapter is based on [17].
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group, flavour-current central charges, the conformal-anomaly central charges
(a,c), and the “pole structure” and “constraints”, which determine the con-
tribution to the Seiberg-Witten curve. From this information, it is possible
to determine gauge groups, hypermultiplet matter representations, and other

properties.

As an application of our results, we are able to find realizations of
Spin(8) gauge theory with matter in the 6(8,), or with matter in the 5(8,) +
1(85). These two cases, of vanishing f-function for Spin(8), were the ones
that were not captured by the untwisted sector of the Dy series. Similarly,
for Spin(7) gauge theory, we find the theory with matter in the 5(7), and in
the 1(8)+4(7); the other combinations with vanishing S-function were already
found in the untwisted sector of the Dy series. We also study various realiza-
tions of Sp(IN) gauge theory, including Sp(3) with matter in the 3 (6) + 1(14')
and in the 3(6) 4+ 1(14"), where the 14’ is the 3-index traceless antisymmetric

tensor representation.

2.1 The Zs,-twisted Dy Theory

The Coulomb branch geometry of the 4D N = 2 compactification [11 [6]
of the 6D N = (2,0) theories of type Dy is governed by the Hitchin equations
on C' with gauge algebra s0(2N). In particular, the Seiberg-Witten curve 3 is

a branched cover of C' described by the spectral curve [I1],
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N-1
S det(® — AT) = AV + > g AV 4 62 =0, (2.1)
j=1

where ® is the so(2N)-valued Higgs field, while the k-differentials ¢ (k =
2,4,6,...,2N — 2) and the Pfaffian N-differential ¢ are associated with the
Casimirs of the Dy Lie algebra. In the rest of the paper, N will always stand

for the rank of Dy.

Introducing punctures on C' corresponds to imposing local boundary
conditions on the Hitchin fields. We consider untwisted and twisted punctures
under the action of the Zy outer-automorphism group of the so(2N) Lie al-
gebra. Untwisted punctures are labeled by s[(2) embeddings in so(2N), or,
equivalently, by nilpotent orbits in so(2/N), or by D—partitionsﬂ of 2N. Instead
of a compact curve, C, consider a semi-infinite cigar, with the puncture at the
tip. Reducing along the circle action, we get 5D SYM on a half-space, with
a Nahm-type boundary condition of the sort studied by Gaiotto and Witten
in [12]. For that reason, we call the D-partition that labels the untwisted

puncture the Nahm pole.

To describe the local Hitchin boundary condition for an untwisted punc-

ture with Nahm-pole D-partition p, one must recall the Spaltenstein mapﬂ ,

2A D-partition of 2N is a partition of 2N where each even part appears with even
multiplicity. However, “very even” D-partitions — those where all of the parts are even —
correspond to not one, but two, nilpotent orbits. To distinguish between the two orbits, we
assign a red or blue colour to the very-even Young diagrams.

3This Spaltenstein map consists in taking the “D-collapse” of the transpose of the D-
partition. The D-collapse operation is explained in the untwisted D-series paper [5], as well
as in the book [19].
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which takes p into a new D-partition d(p), called the Hitchin pole of the punc-

tureﬁ . Then, the local boundary condition corresponding to p is

X
P(z) = — +s0(2N)
z
where X is an element of the nilpotent orbit’| associated to d(p), and so(2N)

above denotes a generic regular function in z valued in s0(2.V).

On the other hand, we have a sector of twisted punctures, with mon-
odromy given by the action of the nontrivial element o of the Zs outer auto-

morphism group of Dy. The action of o splits s0(2V) as

50(2N) =s0(2N — 1) ® o_1,

where s0(2N — 1) and o_; are the eigenspaces with eigenvalues +1 and -1,

respectively. The action of o on the k-differentials is also quite simple:

YWhen p is non-special (i.e., when it does not lie in the image of the Spaltenstein map),
the information encoded in d(p) must be supplemented by a nontrivial “Sommers-Achar”
finite group, C, whose definition can be found in [7]. This additional discrete information
encodes the disconnected part of the group of gauge transformations which we mod out by
in constructing the solutions to the Hitchin system. In particular, it determines the presence
(or absence) of the “a-type” constraints, on the gauge-invariant k-differentials. This, in turn
affects the local contributions to the graded Coulomb branch dimensions. In the Tables, we
denote the Hitchin pole for non-special punctures as a pair (d(p), C).

5Using a nilpotent element X in this equation amounts to writing the local boundary
condition in the absence of mass deformations. The mass-deformed boundary condition
involves semisimple (diagonalizable) elements of s0(2N), whose eigenvalues take values in
the Cartan subalgebra of the flavour Lie algebra for the puncture. For the untwisted A
series, a recipe for mass-deformed local boundary conditions was given in [20]. A general
prescription is given in Sec. 2.4 of [7].
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0 Gop > Gag (k=1,2,...,N—1)
(2.2)

¢ —0
Following [7], the twisted punctures of the Dy series are labeled by embeddings
of s[(2) in sp(N — 1) (the Langlands dual of s0(2N — 1)), or, equivalently, by

nilpotent orbits in sp(N — 1), or by C—partitionﬂ of 2N — 2.

To describe the local boundary condition for a twisted puncture, we
need to recall the relevant Spaltenstein mapﬂ . This is a map d that takes a
C-partition p of 2N — 2 into a B-partition d(p) of 2N — 1. A B-partition of
2N — 1 labels an sl[(2) embedding in so(2N — 1), or equivalently a nilpotent
orbit in s0(2N — 1). So, in our nomenclature, the Nahm pole p of a twisted
puncture is a C-partition of 2/N — 2, and its Hitchin poleﬂ is a B-partition d(p)
of 2N — 1. The local boundary condition for the Higgs field is then:

T _
O(z) = Z+21/2+5o(2N 1)

Here X is an element of the so(2/N — 1) nilpotent orbit d(p), while o_; and
$0(2N — 1) in the equation above denote generic regular functions in z valued

in these linear spaces, respectively.

6A C-partition of 2NV is a partition of 2N where each odd part appears with even multi-
plicity. A B-partition of 2N — 1 is a partition of 2N — 1 where each even part appears with
even multiplicity.

"This Spaltenstein map consists in adding a part “1” to a C-partition p, taking the
transpose, and then doing a B-collapse. The result is always a B-partition. The “B-collapse”
is discussed in [14} [7] and in [19].

8 Again, when the Nahm pole p is non-special, the complete Hitchin pole information is
not just d(p), but a pair (d(p),C), with C' the Sommers-Achar group [7].
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2.1.1 Local Properties of Punctures

2.1.1.1 Global Symmetry Group and Central Charges

The local properties of a puncture that we list in our tables are the
pole structure (with constraints), the flavour group (with flavour-current cen-
tral charges for each simple factor) and the contributions (dny,dn,) to, re-
spectively, the effective number of hypermultiplets and vector multiplets (or,

equivalently, to the conformal-anomaly central charges (a, c)). We will discuss

how to compute pole structures and constraints in §4.1.4.3|and §4.1.4.4] Here

we want to focus briefly on the other properties.

Given the Nahm partition, for every part [, let its multiplicity be n;.

Then, the flavour group of untwisted and twisted punctures are, respectively,

Goavour = H Sp (%) X H SO(ny) (untwisted )

| even ! odd

Gﬂavour = H SO(nl) X H Sp (%) (tw1sted)

| even [ odd

The flavour-current central charges for each simple factor above can be com-
puted using the formulas in Section 3 of [7]. In that reference, one can also
see how to compute dn;, and on,. Instead of reviewing the general formulas,

we find it more useful to discuss an example.

Consider the Dg twisted puncture with Nahm pole C-partition [32, 14].
The flavour group is Gaayouwr = Sp(2) X SU(2). To compute the central charges,
we need to know how the adjoint representation of Sp(5) decomposes under

the subgroup SU(2) X Gayour (the first factor being the embedding of SU(2),
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corresponding to this partition). The C-partition itself tells us that the fun-
damental of Sp(5) decomposes as 10 = (1;4,1) + (3;1,2). The embedding
indices of each factor of SU(2) X Gpavowr = SU(2) x Sp(2) x SU(2) in Sp(5)
are 8,1 and 3, respectively. With this information, it is not hard to see that

the adjoint representation of Sp(5) decomposes as

55 = (1;10,1) + (1;1,3) + (3;1,1) + (3;4,2) + (5; 1, 3). (2.3)

Now, to find dnp, and dn,, we use eq. (3.19) of [7]. In the notation of
that paper, we have j = s0(12), g = sp(5), and, in their respective usual
root bases, the Weyl vectors pspinai2) = (5,4,3,2,1,0,0,0,0,0,0,0), pspis) =
(5,4,3,2,1,0,0,0,0,0). We also find h/2 = (1,1,0,0,0,—1,—1,0,0,0) using,
say, the formulas of Section 5.3 of [I9]. Since the adjoint representation of
Sp(5) decomposes under the Nahm-pole SU(2) as 55 = 13(1) + 9(3) + 3(5),
we have dim gy = 13+ 9 + 3 = 25 and dim gy, = 0. Thus, eq. (3.19) of [7]

yields dn;, = 368 and on, = 72£

Finally, from (2.3 above as well as eq. (3.20) of [7], we compute the

flavour-current central charges for each simple factor of Gyayvour,

kspe) =1 X Isp2)(10) + 2 X Igp2)(4) = 8
/{ZSU(Q) =1x lSU(g)(?)) +1x lSU(g)(?)) +4 x lSU(Q)(Q) =12

where [y(R) denotes the index of the representation R of b.

32



2.1.1.2 Pole Structures

The pole structure of a puncture is the set of leading pole orders
{p2, P4, D6, --.,pan_2; P} in the expansion of the k-differentials ¢x(z) (k =
2,4,6,...,2N — 2) and the Pfaffian QNS(z) around the position of the punc-
ture on C. Knowing the pole structures of the various punctures allows us to
write down the Seiberg-Witten curve of a theory. The pole orders are
all integers, except for p in a twisted puncture, which must be a half-integer

because of the monodromy (2.2)).

We already saw in [5] how to read off the pole structure of an untwisted
puncture from its Hitchin-pole D-partition p. Basically, regard p as a partition
in the untwisted A-series, use the procedure to write down the pole structure
[3], and discard the pole orders that would correspond to ¢ with odd k.
Finally, divide the pole order pan of ¢on by two, to obtain the pole order p
of the Pfaffian é pon Will always be even, so that p will come out to be an

integer, as expected for an untwisted puncture.

To compute the pole structure of a twisted puncture, we use its Hitchin
B-partition p. Simply, add 1 to the first (i.e., the largest) part in p, and use
the same procedure to compute the pole structure as for an untwisted D-
series puncture. Notice that upon adding 1 to the largest part, the B-partition
becomes a partition of 2/N, and one can show that the pole order pon of ¢on
is always odd, so that the pole order p of the Pfaffian is a half-integer, as it
should be.
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For instance, consider the Dg twisted puncture with Nahm-pole C-
partition [4%,1%]. The Hitchin B-partition is [5, 22, 1%]. Following our prescrip-
tion, we add 1 to the largest part, so we get [6,22, 12], and read off the pole
structure as in the untwisted A-series. We thus get {1,2,3,4,5,5,6,6,7,7,7}
(corresponding to scaling dimensions 2,3,4,...,11,12). We discard the pole
orders at odd dimensions, and divide the pole order of ¢15 = ¢? by two, and

we are left with the correct pole structure, {1,3,5,6,7; % .

2.1.1.3 Constraints

In the untwisted D-series, punctures featured “constraints”, which are
cither: 1) relations among leading coefficients in the k-differentials
(“c-constraints”); or 2) expressions defining new parameters a® of scaling
dimension k as, roughly, the square roots of a leading coefficient ¢®*) of di-
mension 2k (“a-constraints”). Both kinds of constraints affect the counting
of graded Coulomb branch dimensions of the theory, as well as the Seiberg-
Witten curve. As expected, we find a-constraints and c-constraints also in the
twisted sector. The pole structure and the constraints provide a “fingerprint”
[21] that allows us to identify the puncture uniquely.

Let us briefly review our nomenclature. For a puncture at z = 0, we
consider the coefficients cl(%) and ¢; of the leading singularities in the expan-

sion in z of the 2k-differentials (2k = 2,4,...,2N — 2) and the Pfaffian o,

respectively,
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(20

QNS(Z) = % + ...
where ... denotes less singular terms. (The pole orders [ above are, of course,

the same as those in the pole structure, so we have [ = po. or [ = p, respec-
tively; in this subsection we just write [ to keep expressions simple.)

An a-constraint of scaling dimension 2k is an expression linear in cl( )

that defines (up to sign) a new parameter al% of dimension k,

2
2k) _ ( (k)
c —(al/2> + ...,

where . .. stands for a polynomial in leading coefficients (of dimension less than
2k) as well as new coefficients al(/j ) (which would themselves be defined by other
a-constraints). This polynomial is homogeneous in dimension and pole order,
i.e., in every term in the polynomial, the sum of the scaling dimensions of every
factor must be 2k, and the sum of pole orders must be [. The existence of an
a-constraint implies that, in counting graded Coulomb branch dimensions, a

parameter of scaling dimension 2k is to be replaced by one of dimension k.

A c-constraint of dimension 2k is an expression linear in 01(%)7 which
relates it to other leading coefficients, and perhaps also to new parameters a{

defined by a-constraints,
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where, again, the ellipsis denotes a homogeneous polynomial in leading co-
efficients and new parameters. For even N, if the puncture is very-even, a
“very-even” c-constraint, which is linear in the leading coefficients of both ¢y

and the Pfaffian, may appear,

M tog =

Unlike an a-constraint, a c-constraint does not define any new parameters; it
simply tells us that cl(%) (or, say, c™¥) for a very-even c-constraint) is not inde-
pendent, and so it should not be considered when counting Coulomb branch

dimensions.

Finally, at every scaling dimension 2k, we find at most one constraint,

which can be either an a-constraint or a c-constraint.

Below, we present algorithms to compute the scaling dimensions 2k at
which a-constraints and c-constraints appear for a given puncture. This infor-
mation is enough to compute the local contribution to the graded Coulomb

branch dimensions.

Untwisted punctures Let p be the Nahm pole D-partition of an untwisted

puncture. Also, let ¢ = {q1,¢o,...} be the transpose partition, and s =
{s1, $2, ...} the sequence of partial sums of q (s; = q1 + g2 + -+ - + ¢;). Below,
s1 denotes the first element of s, and pi., the last element of the D-partition

p. (By the conditions that define a D-partition, s; is always an even number.)
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Then, an a-constraint of dimension 2k exists if the following conditions

are met:

1. 2k belongs to s, say, s; = 2k.

2. 7 is even.

3. If s is a multiple of s;, say, s; = rs1, one has r > 2 L’%J + 1.

4. s; is not the last element of s.

On the other hand, a c-constraint of scaling dimension 2k exists if the

following conditions are met:

1. 2k belongs to s, say, s; = 2k.

. If j is even, one has that: a) s; is a multiple of sy, say, s; = rs1; b)

[%J +1<r<2 L’%J; c) s; is not the last element of s.

. If j is odd, one has that: a) s; is neither the first nor the last element of

s; b) both s;_; and s;4; are even; c) s; = 2=2%%L ¢ ) if 5; is divisible

by si, say, s; = rs;, one has r > V%J + 1.

Finally, if p is very even, an additional, “very-even”, c-constraint exists

at 2k = N if N belongs to s and N = *Bet. As already mentioned, this

(

very-even c-constraint is linear in both leading coefficients clN) and ¢. (The

pole orders of ¢y and é are the same if the conditions just mentioned hold,
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so such a linear constraint is possible.) A generic very-even puncture may or
may not have this very-even c-constraint. In particular, a very-even puncture
could have a c-constraint of dimension N which is not very even (in the sense

that it is not linear in both cl(N) and ¢;).

Twisted punctures Suppose we have a twisted puncture labeled by the

Nahm-pole C-partition p. Let ¢ be the transpose partition, and s the sequence
of partial sums of ¢. It is convenient to define another sequence s’, obtained
by adding 2 to every element in s. (As a check, the last element of " must be

2N.) Let s’ = {s},s5,... }.

Then, an a-constraint of scaling dimension 2k exists if the following

conditions are met:

1. 2k belongs to &', say, s} = 2k.
2. 7 is odd.

3. 3;- is not the last element of s'.

On the other hand, a c-constraint of scaling dimension 2k exists if the

following conditions are met:

1. 2k belongs to &', say, s} = 2k.
2. j is even.

3. s;- is not the last element of s’
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Sj—1tSin

/ / /o
4. Both s}, and s}, are even, and s = 5

Constraint structure The constraints of twisted punctures are very sim-

ple. c-constraints are always “cross-terms” between a-constraints, or between
an a-constraint and the Pfaffian (where ¢on = ¢ is seen as another “a-

k+m

constraint”). As a schematic example, ¢**™ below is a cross-term for the

“squares” at dimensions 2k and 2m:

(2h) (a(k))Q’ cktm) — 9q (k) g (m), c2m) — (a(k))2 (2.4)

(In an actual example, k+m would always turn out to be even). a-constraints
also generically contain cross-terms, in addition to the quadratic term in the

new parameter. Many examples can be found in the Tables.

The constraints of untwisted punctures are slightly more complicated,
but they resemble very much the constraints of twisted punctures in the Aoy
series [4], so we refrain from repeating the details. To be brief, there is a
sequence of c-constraints (illustrated below in an example), all related to each
other, and which are associated to the first terms in the set of partial sums s. c-
constraints outside this sequence are simply cross-terms between a-constraints
and/or the Pfaffian, as in . For a very-even puncture, the very-even c-
constraint, if it exists, becomes part of the sequence just mentioned. As usual,
a-constraints can include cross-terms in addition to the quadratic term that

defines the new parameter.
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Let us discuss the constraints of a Dg very-even puncture, [6%]. In this
case, ¢ = [25] and s = [2,4,6,8,10,12]. Also, prss = 6 and s; = 2. So, there
are c-constraints at 2k = rs; with 4 < r < 6, that is, at 2k = 8,10. There
is also a very-even c-constraint (at 2k = 6). All c-constraints in this case
constitute the sequence mentioned in the previous paragraph. There are no
a-constraints. We can also compute the pole structure to be {1,2,3,4,5;6}.

Let us see the structure of these c-constraints by writing:

2
1, & = 1 (89) + 10,
) = 0 _ O,

=1 (1) = (@) =1 ()

49 = 19 149,
The first line above is trivial, but it facilitates the construction of the other
expressions. Disregarding the very-even c-constraint at 2k = 6 for a moment,
the expressions at 2k = 2,4,6 provide definitions for the quantities t§2), tgl)
and tgﬁ). Besides, each term in the equations above can be interpreted as either
a cross-term or a square of 1, th), tgl) and t:(,fj). For example, the term th) is
not a square, so it has to be a cross-term (for 1 and % <t§2)>2), which is why
we include the term ; (t?)f in c§4). Since cgl) cannot be equal to 1 (tf))Q
(since that would be a c-constraint at k = 4), we introduce the new quantity

tgl). Notice that we have also written cém) as a square of téﬁ). Since ¢ is the

square of the Pfaffian, we must have t:(f) = #+2¢3, and we recover the very-even

constraint at 2k = 6. Solving for t@ and tgl), we find our actual c-constraints:
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Flipping the sign of ¢3 switches between the constraints for the red and the

blue versions of this puncture.

2.1.2 Collisions

When two punctures collide, a new puncture appears. This process can
be described at the level of the Higgs field, using the local boundary conditions

discussed in §5.1} or at the level of the k-differentials, using the pole structures

and the constraints of §4.1.4.3| and §4.1.4.4] Of course, both mechanisms are

quite related, because the k-differentials are, essentially, the trace invariants
of the Higgs field. These procedures are analogous to those for the twisted

Asn—1 series described in [4].

Let us start by discussing collisions using the Higgs field. Consider two
untwisted punctures at z = 0 and z = x on a plane. The respective local

boundary conditions are:

D(z) = % +50(2N),

X5
P(z) = 2N
(:) = = +s0(2N),

where X; and X, are representatives of the respective Hitchin-pole orbits for

the punctures. Then, in the collision limit, + — 0, a new untwisted puncture
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appears at z = 0,

X+ X
N z

O (z) +50(2N).

Here, X7 4+ X5 is an element of the mass-deformed Hitchin-pole orbit for the
new puncture, and the mass deformations correspond to the VEVs of the
decoupled gauge group. Taking the mass deformations to vanish, X; + X,
becomes the Hitchin-pole nilpotent orbit for the new puncture. The fact that
the new residue is X; + X, also follows from the residue theorem applied to
the three-punctured sphere that appears in the degeneration limit; another
derivation ensues from an explicit ansatz for the Higgs field on the plane with

two punctures [4], where the limit x — 0 can be taken.

Now consider an untwisted and a twisted puncture, at z = 0 and z = z,

respectively. The respective local boundary conditions are:

D(z) = é + 50(2N),

Y 0_1
[0)) —
(2) z—:c+ (2 —x)1/2

+s50(2N —1).

Then, the local boundary condition for the new twisted puncture is:

X|so(2N—1) +Y 01
= . + +50(2N — 1),

D(2)

where X|so2n-1) is the restriction of X € s0(2V) to the subalgebra so(2N —1).

Finally, consider two twisted punctures at z =0 and z = z,
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Y, 01

=~ 1tz +50(2N — 1),

0_1
= 2N —1).
Z_x+(z_$)1/2+5o( )

Then, the local boundary condition for the new untwisted puncture is:

- Yi+Yato,
z

d(2) +50(2N),

where o0_; denotes a generic element in such space.

The procedure to collide punctures using k-differentials is explained in
[4] for the case of the twisted Ay series. The discussion is entirely analogous,
so we leave the details to that paper. Here we will just give an example of how

to use it.

Consider the collision of three punctures,
2(N —7r)—=1,2r+1] x 2(N —r) = 1,2r + 1] x [2(N —1)],

which yields the [2(N — 2r — 1), 1%] puncture with an Sp(r) x Sp(r) gauge
group. We will use this result in §2.1.5.4. Let us show how to derive it for the
particular case r = 3.

The puncture [2N —7, 7] has pole structure {1,2,3,4,5,6,6,6,...,6;3},

no a-constraints, and three c-constraints at 2k = 8,10, 12:
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12 6 2 4 2 2 ?
4 =4 () - 3 (& - 1)) -

On the other hand, the puncture [2(N — 1)], which is the “minimal” twisted

puncture, has pole structure {1,1,1,...,1; %}, and no constraints.

First, consider two [2N —7, 7] punctures on the plane, at positions z = 0

and z = x, and write down the k-differentials:

Uok + Vg2 + ...

Por(2) = T p——r: (2k = 2,4,6,8,10,12)
dope(2) = ;f(’;—tx)ﬁ (2k = 14,16,...,2N — 2)
~ U+ ...
¢(z) = h

Then, in the x — 0 limit, which corresponds to the collision, we find the
pole orders {2,4,6,8,10,12,12,12,...,12;6}. So, at first sight, we would have
gauge-group Casimirs at 2k = 2,4, 6, 8, 10, 12. However, the c-constraints
from the two [2N — 7,7] punctures imply that the leading and subleading
coefficients wuo, and vy, for 2k = 8,10,12 are dependent on the coefficients
Us, Uy, Ug, and furthermore vanish when we take us, ug, ug — 0. Thus, the only
independent gauge-group Casimirs are us, u4, ug, and the massless puncture

has pole structure {1, 3,5,6,8,10,12,12,...,12;6}, with no constraints. These
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properties single out the puncture [2N — 13,2% 1], which has Sp(3) flavour

symmetry. Thus, the gauge group must be Sp(3).

Colliding the new puncture [2N — 13,2 1] with the minimal twisted
puncture is much easier, because none is constrained. So all we need to do
is add up pole orders, and identify gauge-group Casimirs. The sum of the
pole structures is {2,4,6,7,9,11,13,13,...,13; %} Hence, we have again a
gauge group with Casimirs 2,4,6, and a new puncture with pole structure
{1,3,5,7,9,11,13,13,...,13; %}, with no constraints. These properties cor-
respond to the puncture [2N — 14,1'%], which has flavour symmetry Sp(6).
Thus, we are gauging an Sp(3) gauge group out of the Sp(6). Actually, since
the two new punctures we find in the subsequent collisions are not maximal,
it must be that an Sp(3) x Sp(3) subgroup (each factor from each of the
two cylinders) of Sp(6) is being gauged. (We saw multiple examples of this

phenomenon in [5], [].)

Let us derive the same result by doing the collisions in a different order:
first, we collide a [2N — 7,7] puncture (at z = 0) with the minimal twisted

puncture (at z = z). We use the k-differential{’

9In this subsection, we use generic names for Coulomb branch parameters such as
Usok, Va2k, Tk, €tc. They are understood to be different variables in different collisions.
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Uk + - - .
= — 2k =2,4,6,8,10,12
gbgk(Z) Zk(Z—Z') ( s Ey Uy Oy ) )7

. ng—f- . .
boi(2) = 1) (2k = 14,16,...,2N — 2),

U
¢(Z) - Z3<Z —.T>1/2

This time, solving the c-constraints is less simple. The constraints are not

solvable unless one introduces parameters 79,74, 76 of dimension 2,4,6 such

that:

1/2 r2)? 1/2 1/2
uy = ro7'/?, U4=—%+7‘4$/, Ug = —ToT4 + 67"

(See Sec. 4.1.3 of [] for a similar example in more detail.) Then, the con-

straints imply:

ug = —71;((7“4)2 + 2rar6), U0 = —%7”67‘4, Uiz = —i(TG)Q
and in the limit © — 0, we get a pole structure {1,3,4,5,6,7,7,7, ..., %}, with
constraints
C:(;L) _ _(TZ)Q’ céw) — _nre
0516) = —ToTy, 0(712) = —(TZ)Q
¢ = —(ra)” = 54

that is, we have a-constraints at 2k = 4, 8,12 and c-constraints at 2k = 6, 10.

These properties uniquely identify the twisted puncture 2N —8, 6]. Notice that
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there are no gauge-group Casimirs, so our interpretation is that the cylinder is

“empty”. This is an example of an “atypical degeneration”, as we will recall
in §2.1.5.4]
Let us now collide the new puncture [2N — 8,6] (at z = 0) with the re-

maining untwisted puncture 2N —7,7] (at z = x). We have the k-differentials

. UQ—|—
¢2(z) = 2(z —x)
TUok + Vop2 + ...
Po(2) = Sy T (2k = 4,6,8,10,12)
Uk + ...
= = 2k =14,16,18,...,2N — 2
¢2k<z) 27(2—I>6 ( k ) 67 87 ) )

) = e

Taking the collision limit x — 0, we get the pole orders

{2,4,6,8,10,12,13,13,...,13; 13} So, in principle, the gauge-group VEVs
are usg, Uy, Ug, Us, V10, V12. However, vg, v1g, v12 are polynomials in usg, vy, vg and
in three new parameters ro, 74, 76, of respective dimensions 2,4,6, which arise
from combining the a-/c-constraints of [2N — 8,6] with the c-constraints of
[2N — 7,7]. So the actual gauge-group VEVs are ug, vy, vg, 72,74, 76. These
VEV dimensions are consistent with an Sp(3) x Sp(3) gauge group, as be-
fore, except that now both Sp(3) factors are supported on a single cylin-
der. Setting to zero the gauge-group VEVs, we get the massless pole orders
{1,3,5,7,9,11,13,13,...,13; 2}, with no constraints, which, as before, corre-

spond to the 2N — 14, 112] puncture.
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2.1.3 Gauge Couplings

Consider an N/ = 2 supersymmetric gauge theory, with simple gauge
group, GG, and matter content chosen so that the S-function vanishes. This

gives rise to a family of SCFTs, parametrized by
0 8mi
+

A rich class of (though not all) such theories can be realized as compactifi-
cations of the (2,0) theory on a sphere with four untwisted punctures. If the
four puncture are distinct, then the S-duality group, I'(2) C PSL(2,7Z), is

generated by

T?: 71— 71742, ST?S: 7+
1-27

The fundamental domain for T'(2) is isomorphic to Mg 4 ~ CP'. In particular,

the coordinate on the complex plane, f, is given bylﬂ

0Qur #-function conventions are

02(0,7) =y g1/

nez
93(0’ T) _ Z qn2/2
nez
n n?
61(0.7) = 3 (=1)"¢" /2
nez

where g = €2™7.
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_63(0,7)
0= "%50,7)
= — (16¢"* + 128¢ + 704¢** + . ..)

Since I'(2) is index-6 in PSL(2,7Z), the generators of the latter group act on
M074 as

T:fH—f S:f|—>l

f=1 f

These generate an S3 action on My 4, as depicted in the figure

(1+i3)/2

(1-iV3)/2

The points, {0, 1,00}, of the compactification divisor, are fixed points with

stabilizer group Z,. The points {—1,1/2,2} are also fixed points with stabilizer

49



group Zs. Finally, the points (144v/3)/2 are fixed points with stabilizer group

Zs. The j-invariant (invariant under the action of PSL(2,7Z)) is

1—f+ 7>
=)

1
:E+744+196884q+...

j(1) =256

Of course, while the j-invariant is invariant under the full PSL(2,7Z), the

physics generically is not

If two of the punctures are identical, then 7 — —1/7 leaves the physics
unchanged. The S-duality group is I'g(2) C PSL(2,7Z), generated by T2 : 7
74+ 2and S: 7 +— —1/7, whose fundamental domain is the Z,; quotient of
Moy by f+— 1/f. The physics at f = 0 and at f = oo are both that of a
weakly-coupled G gauge theory. The other boundary point, f = 1, and the

interior point, f = —1 are fixed-points of the Z, action.

If three of the punctures (or all four) are identical, then the S-duality
group is the full PSL(2,7Z), the physics at all three boundary points is that
of a weakly-coupled G-gauge theory and the fundamental domain is just the

shaded region in the figure.

How this picture gets modified, in the presence of twisted punctures,

will be one of our main themes in this paper.
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2.1.4 Very-even Punctures

In the Asn_q series, the outer automorphism twists acted trivially on
the set of nilpotent orbits. So the identities of the untwisted punctures were
unaffected by the introduction of twisted punctures. By contrast, in the Dy
series (for NV even), the outer automorphism twists act by exchanging the “red”
and “blue” very-even punctures. Dragging an untwisted very-even puncture

around a twisted puncture turns it from red to blue, or vice-versa.

To illustrate the phenomenon, let us look at an example in the twisted

D, theory.

Here, it is useful to recall [5] that the very-even punctur - has only

one constraint, which is a very-even c-constraint,

AV + 265 =0,

1 As inf3] 5, 4], a Nahm-pole partition p is represented by a Young diagram such that

the column heights are equal to the parts of p. (So - is the puncture with Nahm pole
D-partition [24].) In this paper we do not use Young diagrams to represent Hitchin-pole
partitions.
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where the top (bottom) sign corresponds to a red (blue) puncture.

The Higgs field (with Coulomb branch parameters wusg, w4, @, ug) yields

the differentials

B u2212234(d2)2
P2(z) = (z—2z1)(z — 22) (2 — 2z3) (2 — 24)
palz) = e

(z—21)(2 — 2)° (2 — 23)° (2 — 20)°
X [ug(z — 2z3)(2 — 24) 212223

/2 + (Z — 24)213223)]

+ 2&(2’2 — Z)((Z — 23)(213223214224)1
U6212223224Z§4(d2)6
Po(2) = 3 1 1
(z—21)(z — 22)° (2 — 23) (2 — 24)
&224z§4(213223)1/2(dz)4
(2= 21)"2(z = 22)"%(2 = 28)°(z — )

The powers of z;; = z; —z; have been introduced to make the above expressions

o(z) =

Mébius—invarian@ , and hence well-defined on the moduli space. However, the
(unavoidable) square-roots mean that moduli space is, itself, a double-cover
(in fact, a 4-fold cover, but the SW geometry factors through a Z, quotient)

of the moduli space of the 4-punctured sphere.

Whether a very-even puncture is red or blue depends on the relative

sign of the residues of the cubic poles of ¢4(z) and ¢(z) at the location of

12To minimize the number of ensuing branch cuts, we have chosen not to preserve the
obvious z3 <> z4 symmetry. We can restore it by redefining the Coulomb branch parameter

1/2
2 ~(213224>
u=ul ——
212234

The resulting theory lives naturally on the 4-fold branched cover of Mg 4.
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the puncture. But the square-roots are such that if we drag the very-even
puncture (say, the one located at z3) around one of the twisted punctures (say,
the one located at z7), the relative sign changes, indicating that the puncture

has changed from red to blue, or vice versa.

Since the formulae are a little bit formidable-looking in their fully

Mobius-invariant form, it helps to fix the Mobius invariance by setting

(21,22,23724) — (070071027 1)

The expressions for ¢4(z), d(z) (which are all we need for the present discus-

sion) simplify to

(w? — 1) [ug(z — w?)(z — 1) + 2@ (w(z — w?) + w?(z — 1))] (d2)*

2(z —w?)’(z = 1)°

- aw(w?® —1)%(dz)*
o) = 22z —w?)?(z —1)3

Dragging the point z3 = w? around the origin changes the sign of w in the
above expressions. This changes the relative sign of the residues of ¢, and gz~5

at z = w?, whilst preserving the relative sign of the residues at z = 1.

Of course, the Seiberg-Witten geometry is invariant under the operation
of simultaneously flipping all of the colours of all of the very-even punctures.
This gives a Zy which acts freely on the gauge theory moduli space. We will
often find it useful to work on the quotient, fixing the colour of one of the

very-even punctures.
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Having seen the phenomenon is global example, let us recover the same
result, working locally on the plane, with the Higgs field itself (rather than
the gauge-invariant k-differentials). Consider a very-even Higgs-field residue
B € s0(2N), which belongs to a, say, red nilpotent orbit. We can write B =
Blso(2n-1) + Blo_,, corresponding to the splitting s0(2N) = s0(2N — 1) @ 0_.
Then, one can check that the map B|,_, — —B|,_, puts the residue B in the
other (blue) nilpotent orbit. This map defines an isomorphism between the

elements of the red and the blue nilpotent orbits.

Now suppose that the twisted puncture (with residue A € so(2N — 1)
is at z = 0 and the very-even puncture (with residue B € s0(2N)) is at z = x.

Then, the Higgs field for this system is:

_ (2=2)A+2Bls02n—-1) /2 Bl,_, +(z—x)D+...
O(2) = o) + Zl}Q(Z_x) + ...
where D is a generic element in o_;, and the ... denote regular terms. The

factor of z/? is necessary to make ® well-defined as a one-form. Then, z
parametrizes the distance between the very-even puncture and the twisted
puncture, and if x circles the origin, 2'/2 — —2'/2 it enforces B|, , — —Bl|,_,,

so our red puncture becomes blue, or vice versa.

2.1.5 Atypical Degenerations
2.1.5.1 Atypical Punctures

As an application of the formulas in §2.1.1] let us find the series of

punctures with contribution ny, = 2. We will call these “atypical punctures”,
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as they give rise to theories where the number of simple factors in the gauge
group is not equal to the dimension of the moduli space of the punctured
Riemann surface, C. We have seen this phenomenon already in the twisted

Agn—q series [4].

From our rules for a-constraints, it is easy to see that there are no
untwisted atypical punctures, and that for a twisted puncture to be atypical, its
Nahm pole C-partition must consist of exactly two parts. Hence, the atypical

punctures are

2(N—r—1),27] N —1
o | forrzl,?,...,{TJ

with the addition of

[N—1,N—1]
(@) if N is even.

These arise, respectively, as the coincident limit of

[2(N-1)] [2(N—r)—1,2r+1]
a) O and 0]
[2(N-1)] [N,N]

b) O and @  (for N even)

Normally, the OPE of two (regular) punctures, p and p’, yields a third (regular)

puncture, p”; coupled to a gauge theory, (X, H), where

e The gauge group, H, is a subgroup of the global symmetry group of p”.
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e In the coincident limit, the gauge coupling of H goes to zero.

Here, when p” is atypical, the would-be gauge theory is empty: (X, H) = (0, 0).
Instead, the theory with an insertion of p” has one more simple factor in the

gauge group than the “expected” 3g — 3 + n.

For a surface, C, with n punctures, m of which are atypical, the number
of simple factors in the gauge group is 3¢—3+n+m. “Resolving” each atypical
puncture by the pair of punctures, above, yields a surface with n-+m punctures
and the moduli space of the gauge theory is a branched cover of Mg, y,. In
contrast to the usual case, where each component of the boundary of the
moduli space corresponds to one simple factor in the gauge group becoming
weakly-coupled, the boundaries of My ,,1.,,, where an atypical puncture arises
in the OPE, do not typically correspond to any gauge coupling becoming weak
(that is, under the branched covering, they are the image of loci in the interior

of the gauge theory moduli space).

2.1.5.2 Gauge Theory Fixtures

In particular, for n = 3, m = 1 (or 2), we have a “gauge theory fixture.”
Resolving the atypical puncture yields a gauge theory moduli space which
is branched cover of Mg,. We may well ask, “Where, in the gauge theory
moduli space, have we landed, in the coincident limit which yields the atypical
puncture?” The answer is that we are at the interior point, “f(7) = —17,

though the mechanics of how this happens varies between the cases.
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Let us resolve

[2(N —r—1), 2r]
(0]

[(N = 1)?]
(@)

or

to

[2(N - D]
O

and
2N —r)—1,2r+1]

T
o
S
U
(@)
1

T
o
0
U
o)
1

respectively. We have parametrized M4 by z, but the gauge theory moduli

space is a branched cover, parametrized by w, with

we=ux
The gauge coupling
w—1
e 2.6
flr) =2 (26)

so that f = 0 and f = co both map to x = 1, while f = 1 maps to z = oo.
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Our gauge-theory fixture is whatever lies over the point x = 0. From (2.6)),

this is the interior point, f(7) = —1, of the gauge theory moduli space.

As an example, let us consider the D, gauge theory fixture

H

HR
-

whose resolution is

Actually, since we have two very-even punctures, the full moduli space is a
4-sheeted cover of My 4. The SW geometry is invariant under simultaneously
flipping the colours of both punctures, so we can consistently work on the

quotient by that Z,, and take the colour of the - puncture to be red.

SU(4) gauge theory, with matter in the 1(6) + 4(4) was studied in [3].

Near f(7) = 0, the weakly-coupled description is the Lagrangian field theory.
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Near f(7) = 1, the weakly-coupled description is an SU(2) gauging of the
SU(8)g x SU(2)s SCFT, Ry 4. Near f(7) = oo, the weakly-coupled description
is SU(3), with two hypermultiplets in the fundamental, coupled to the (Er)q
SCFT.

In the present case, the f — 1 theory arises as x — oo

empty SU8)g x SU(2)y SCFT
Over x = 1, we have two distinct degenerations, which are exchanged by

dragging the I puncture around the origin and returning it to its original

position: the Lagrangian field theory (f = 0)

y
v

and the theory at f = oo

59



Having fixed the behaviour of f over this two-sheeted cover of M4, by re-
producing the correct asymptotics as x — 1 and x — oo, we can now take

z—0

empty gauge theory fixture

and recover that the gauge theory fixture is the aforementioned SU(4) gauge

theory at f(7) = —1.

2.1.5.3 Gauge Theory Fixtures with Two Atypical Punctures

When we resolve the gauge theory fixtures with fwo atypical punctures,

we obtain a branched covering of M.
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The geometry of M5, and the relevant branched covering thereof,
were discussed in detail in section 5.1.2 of [4]. Here, we will simply borrow the

relevant results.

The (compactified) Mg is a rational surface. The boundary divisor
consists of ten (—1)-curves (CP's with normal bundle O(—1)). We label these
curves as D;;, corresponding to the locus where the punctures p; and p; collide.

The D;j;, in turn, intersect in 15 points.

The moduli space of the (2,0) compactification is a branched covering,

M — My 5, which is branched over the boundary divisor.

The D, gauge theory fixture

H
H

is an Sp(2) x SU(2) gauge theory, with matter in the 6(4,1) + 4(1,2), with
gauge couplings (fspe), fsu(2)) = (—1, —1). Resolving the atypical punctures,

we have a 5-punctured sphere,
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Since the resolution has two very-even punctures, M is an 8-sheeted branched
cover of My 5. However since the gauge couplings (and the rest of the physics)
are invariant under simultaneously flipping the colours of both very-even punc-
tures, we can pass to the quotient, X = M /Zs, and it is the geometry of

4-sheeted branched cover, X — M5, that was studied in detail in [4].

Meromorphic functions on M5 are rational functions of the cross-

ratios

213225 214725
51 = ) S =
215723 215724

X is a branched 4-fold cover of My 5, whose ring of meromorphic functions is

generated by rational functions of wq, we

2 __ 2 _

The gauge couplings are meromorphic functions on X, given by
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w1—1w2+1 f _w1—1w2—1
w1+1w2—1’ SU(2)—’U)1—|—1IU2+1

There is a natural action of the dihedral group, Dy, on X. The Zy X Zy

fsp(2) = (2.7)

subgroup is generated by the deck transformations,

o W — —Wy, Wy — Wa

B wp — wy, wy — —Ws

which act on the gauge couplings as

a: fspe) = 1/ fsu@), fsue) = 1/ fspe)

B fsp2) <+ fsu)

Both a and 8 change the relative colour of the two very-even punctures. The

additional generator of Dy,

YL, Wy < Wa

acts as S-duality for the Sp(2),

v fsp) = 1/ fsp)y fsue) = fsu)
At the boundary, various sheets come together, and the behaviour of the gauge

couplings is

-1 .
Fsp 71

e Over Dy5 and D5, both couplings go to f = 1, but the ratio Fova =T

arbitrary.
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e Over Dss, both couplings are weak (f = 0 or f = oo), but the ratio

fsp(2)

is arbitrary.
fsu(2) ¥

e Over Dys, both couplings are weak (fsp2) = 0, fsu(2) = 00 or vice-versa),

but the product fgp) - fsu(2) is arbitrary.
e Over D5, one coupling is weak (f = 0 or co), while the other is arbitrary.
e Over D3y, one coupling is f = 1, while the other is arbitrary.
o Over Dy and Dag, fsp2) = 1/ fsu(a)-

e Over Dy and Doy, fsp(z) = fSU(Q)'

Over the intersections of these divisors, we see the various S-duality frames of

the gauge theory.

Over D15 N D3y, we have

24, 1) 44, 1) +4(1, 2) empty

and
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empty (E7)8 SCFT +4(1, 2) empty

In the first case, fg,2) = 0 or co and fsy(2) = 1; in the latter, fg,2) = 1 and
fsvee) = 0 or co.

Over D15 N D35 and Dy N Dy, we have

24, 1) empty 44, 1) +4(1, 2)

and

44, 1)+4(1, 2)



In both cases, the underlined gauge group on the right-hand cylinder is «den-
tified with the gauge group on the left-hand cylinder. The notation, which
we introduced in [4], indicated that when the cylinder on the right pinches
off, both factors in the gauge group become weakly-coupled (f — 0 or co).
When the cylinder on the left pinches off, only one of the gauge group factors

becomes weakly-coupled.

Over D3y N Dy5 and D3y N Das, fsp) = fsue) = 1. So we have

(E7)g SCFT +4(1, 2)

and

empty empty (E7)8 SCET +4(1, 2)

These differ only very subtly, as to “which” SU(2) gauge coupling is controlled

by the cylinder on the left. In the first case, it is the SU(2) which couples to the
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(E7)g (ie., the one which becomes weakly-coupled at fg,2) = 1); in the second

case, it is the SU(2) which couples to the 4 fundamental hypermultiplets.

Over D13 N 1)457 D23 N D45, D14 N D35 and D24 N D35, we have

24, 1) 44, 1) +4(1, 2)

Over D13 N D257 D14 N D25, D23 N D15 and D24 N D15, we have fgp(Q) = ]_,

fsue) = 1:

E SU(2) x SU(2)

(EHIEEI SUQ2) x SU(2)

empty empty (E7)8 SCFT +4(1, 2)

Finally, over D3 N Doy and D14 N D3, we recover our gauge theory fixture,

and read off that its gauge theory couplings are fs,@2) = fsv@@) = —1
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empty

2.1.5.4 Atypical Degenerations and Ramification

Once we introduce outer-automorphism twists, the moduli space of the
gauge theory no longer coincides with M, ,, the moduli space of punctured
curves. As we saw, in §2.1.5.1] even the dimensions don’t agree, until we
“resolve” each atypical puncture, replacing Mg, by Mg, 1n (for m atypical
punctures). Even then, the moduli space of the gauge theory is a branched

covering of My 1., branched over various components of the boundary.

Over a generic point on “most” of the components of the boundary, the
covering is unramified, and the gauge couplings behave “normally”: one (and
only one) gauge coupling becomes weak at that irreducible component of the
boundary. Here, we would like to catalogue the exceptions: those components

of the boundary where

e the covering is ramified

e an “unexpected” (either 0 or 2, in the cases at hand) number of gauge

couplings become weak
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e both

Let us denote, by Dy, p,...,, the component of the boundary of M, ,,,, where
the punctures p1, pa, . .. p; collide, bubbling off an ({4 1)-punctured sphere. All

of our exceptional cases will involve either D, ,, or Dy, p, p,.

Dy The first source of ramification, as we saw in , is that the outer
automorphism changes the colour of a very even puncture from red to blue
and vice versa. In general, this changes the physics of the gauge theory. So,
for a theory with v very-even punctures, we get a 2V sheeted cover of the
moduli space of curves, ramified (with ramification index 2) over Dy where
“T" denotes any twisted-sector puncture and “V” represents any very-even.
As already noted, simultaneously changing the colour of all of the very-even
punctures leads to isomorphic physics so we can (and usually will) pass to the

Zs quotient.

Generically, the gauge couplings behave “normally,” with one gauge

coupling becoming weak at Dy .
Dia(nv—1y, vz When N is even, there is one such collision where, in addition

to ramification, no gauge coupling becomes weak. Instead, the two punctures

fuse (in non-singular fashion) into an atypical puncture.
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empty

Dpv_1),2(N=r)=1,2r41) Forr=1,2,..., L%J, we again obtain an atypical

puncture as the OPE. No gauge coupling become weak, but the moduli space

is ramified (with ramification index 2).

[2(NV — 1]
(@

[2(N —r—=1), 2r]
(0] 0]
[2(N—-r)—1, 2r+1]
(@)

empty

Dig(n-1)),2(N=1),2(N—r)=1,2r+1] The moduli space is unramified over this com-

ponent of the boundary. Nonetheless, two gauge couplings become weak.
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[2(N = D]
o
[2(N = D]
o
[2(N—-r)—1,2r+1]

SU(2) x SU(2) 2N -r)—=3,2r—1, 14
>0

empty

Dpyn—1y,2(v—1),v2) Here, again, an SU(2) x SU(2) gauge group becomes

weak, but now the moduli space is also ramified (with ramification index 2)

[2(N - D]
o

[2(N - D]

(0]

SUQ) x SUQR)/T(N —2)% 14
>0

[N?]
()

empty

Dy In all of the remaining cases, the moduli space is ramified (with ram-

ification index 2) and two gauge couplings become weak.

Over Dip(n—1y,[2(N—r)—1,2r+1],[2(N—r)—1,2r4+1] (With the same untwisted punc-

ture), we have an Sp(r) x Sp(r) gauge group becoming weak
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2N —r) 91, 2r+1
[2(N = 2r — 1), 1]
(@)

Sp(r) x Sp(r)

O[2(N — D]
[2(N—-r)—1,2r+1]
@)

3@2r, 1)+ (1, 2r)

and, for V even, the gauge group which becomes weak is Sp (%) x Sp (%)

p(%) 9 Sp(NT_Z) [12(N—l)]
>0

2(N, 1)

Over Dy ., with ', r =1,2,.. ., L%J (and, without loss of generality, " >

r)
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@)
2IN=-1r")—-1,2r'+1

O[2(N - 1)]

[2(N-r)—1,2r+1]
®)

Sp(r) X Sp(r) fi2(N = r'=r = 1), 2(r' =r), 1*]
>0

empty

and, for IV even,

[2(NV - D]

o
[2(N—=r)—1,2r+1]
) O

Sp(r) x Sp(r) [N =2r = 12, 1%
>0

[N?]
(]

empty

2.1.6 Global Symmetries and the Superconformal Index

2.1.6.1 Computing the Index in the Hall-Littlewood Limit

Each puncture has a “manifest” global symmetry associated to it. The
global symmetry group of the SCFT associated to a fixture contains the prod-
uct of the “manifest” global symmetry groups, associated to each of the punc-

tures, as a subgroup. But, in general, it is larger. Here, we will outline how to
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use the superconformal index [22] 23], 24] 25] to determine the global symmetry
group of the fixture and (in the case of a mixed fixture) the number of free

hypermultiplets that it contains.

The prescription to compute the superconformal index of an interacting
SCFT defined by a Dy-series fixture was given in [20]. For a Dy Zo-twisted
sector fixture with punctures (/~\1, Ao, A3), where A denotes a twisted puncture

and A an untwisted puncture, the index is given by E

Z(a,b,c) = A(T)K(a(A1))K(b(A2))K(c(As))

5 P& Pl B Pl (A7) (25)
Pgo()‘QIN)(l,T,TQ,...,TN HT) '

The various elements of this formula are summarized below. Detailed expla-

nations can be found in [26]:

e A(7) is the overall (fugacity-independent) normalization, given by

A(r) =

e P* are the Hall-Littlewood polynomials of type SO(2N) and Sp(N),

3In the following, we need only consider the “Hall-Littlewood” limit of the index, where
we restrict to the one-parameter slice in the space of superconformal fugacities given by
(p=0,q=0,t"/2=7) [24].
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given by

A —

Poen)(T1, ..., 2n) =
2,75 :i:S]
E § Z5AL L L pSNAN H 1 —7172; L
U(l o(N) 1 — oS +s;
TESN $1,.-sN=%1 1<j Z; z]
si=+1
PSp(N)(xla CTN) = (2.9)

o€SN S1,..,sny==%1 i<j 7 7
N
1— 72 x;
==
1 —ux; T

where

N

Wi(T) = Z 72(w)

weWw
WA=

with ¢(w) denoting the length of the Weyl group element w.

The prescription for writing the KC-factors can be found in [26]. Their

precise form will not be important here.

The sum runs over all partitions N = (A|,...,\y_;) corresponding
to the highest weight of a finite-dimensional irreducible representation
of Sp(N — 1) (in the standard orthonormal basis); “A = A" means

that we only sum over representations of SO(2N) of the form A =

(AN, 1, 0).

The fugacities a; dual to the Cartan subalgebra of the flavor symmetry

group of the puncture A; (/~\I) are assigned by setting the character of
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the fundamental representation of SO(2N) (Sp(N —1)) equal to the sum
of SU(2) characters corresponding to the decomposition determined by
the puncture, with SU(2) fugacity equal to 7. The multiplicity of each
SU(2) representation is then replaced by the character of the fundamen-
tal representation of the flavor symmetry determined by that multiplicity.

From this equation, one can simply read off the fugacities. E

For example, the D, twisted puncture E:D:D corresponds to the SU(2)
embedding under which the 6 of Sp(3) decomposes as 2 4 4(1). So setting

Xgp(S) (1,22, 23) =1 X%U(2) (1) + Xép(Q) (a1,a2) - 1
3

2
Z(mrl—xi_l) =74+71 —|—Z(ai+a[1)

i=1 =1

we can take fugacities x1 = 7, x5 = a1, x3 = as.

To determine the global symmetry, as well as any decoupled sector,
of an interacting SCF'T fixture from its superconformal index, we need only
compute (2.8)) to order 72: as explained in [27], the contribution at order T

2

is due to free hypermultiplets while the contribution at order 7 is due to

moment map operators of flavor symmetries.

Computing the index to order 72 while keeping only the term ) = 0 in

14Tf the puncture is not “very even”, different choices of fugacities are related by a Weyl
transformation, under which the Hall-Littlewood polynomials are invariant. For “very
even” punctures there are two inequivalent choices, which are permuted by the Z, outer-
automorphism, corresponding to the red and blue coloring. For examples, see [26].
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the sum over representations gives the contribution
adj adj adj
L+ (X&) + x5, + X ),
encoding the manifest global symmetry. The global symmetry of the SCFT is

enhanced if there are additional terms contributing at order 72 coming from

the sum over \ > 0.

As an example, consider the fixture

E:EEI:I

E:EEI:I

Letting (a1, az2), (b1, b2) be Sp(2) fugacities and ¢ an SU(2) fugacity, from ([2.8])
we find

IT=1+ X%U(z)(C)T + [QX:;U@)(C) + Xég(z)(ala az) + X}Gg@)(bh bs)+
Xop(2) (a1, a2) X §p(2) (b1, b2)
+ X%U(Q)(C)(Xgp@)(ah as) + Xé’p(Q)(bl’ bo))] T + . ..
=1+ X%U(Q)(C)T + [QXgéU(z)(C) + ng(4)(ala az, br, ba)+

X202 ()X Sp() (a1, a2, b1, ba)]7° + ...
The order 7 term signals the contribution of a free hypermultiplet in the

(1,1,2) of Sp(2) x Sp(2) x SU(2), the index of which is given by
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Tiree = PE[TXZU(Q)(CH =1+ XEU(Q)(C)T + XgU(z)(C)T2 +..

where PE denotes the plethystic exponential [26]. Removing the contribution

of the free hypermultiplet, the index of the interacting SCFT is given by

Zscrr = I/ Ziree
=1+ [XZue)(€) + x& (a1, a2, b1, ba) + X3p ) (€)X Spay (a1, @z, br, b2) )77
+ ...
=1+ ng(5)(a1, ag, by, by, )T+ ...

and hence this SCFT has an enhanced Sp(5) global symmetry.

We can also use the second order expansion of (2.8) as a check on our

identifications for the gauge theory fixtures. For example, the fixture

5
A

is an SU(2) x SU(2) gauge theory with 4 hypermultiplets in the (2, 1), 4 hyper-
multiplets in the (1,2), and 8 free hypermultiplets transforming in the %(2, 8,)
of the manifest SU(2)s x SO(8)12 global symmetry. Thus the manifest global

symmetry of this fixture should be enhanced to SO(8)% x Sp(8). Choosing
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(b; ¢1, 9, 3, c4) as fugacities for the manifest global symmetry, indeed we find

the expansion of the index is given by

I=1+ XEU(Q)(b)XgVO(S)(cl, C2,C3,Cq)T+
(2X50(s) (C15 €2, €3, €a) + X508 (b, €1, €2, 3, )T+
where
Xéﬁ&)(b? €1, Ca, €3, C4) = X?§U(2)(b) + X%‘SO(S)(CL C2,C3,Cq)+
XZU(2) (b)Xg%"(g) (c1,c2,C3,¢4).
We have used this technique to check the global symmetries and the number

of free hypermultiplets in our tables of fixtures for the Zso-twisted D, theory.

2.1.6.2 The Sp(4)s x SU(2)s SCFT

Here we use the superconformal index to argue that the D, interacting

fixture

gives rise to the Sp(4)g x SU(2)s SCFT. For this fixture, we cannot use any
S-dualities to study its properties as none of the flavor symmetries carried by

the punctures can be gauged.
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The Sp(4) x SU(2)s SCFET first appeared in [4] as the twisted-sector

fixture

in the A3 theory. It also appears, accompanied by six free hypermultiplets, as

(2.10)

in our list of twisted-sector mixed fixtures in the D, theory. In those cases,

we are able to use various S-dualities to study it.

Letting a and b be SU(2) fugacities and ¢2, ¢ U(1) fugacities, the ex-

pansion of the index of this fixture is given by
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T =1+ (XSue(@) + Xsue(®) + L+ + o)+
Xsu@ (@OXSue A +a+a?) + 1 +ag+6")m" +...
=1+ (XgU(Z) (a) + XgU(2)<b) + XgU(2)(Cl) + XgU(Q)(a)XgU(Q)(b)XgU(2)<C1)
+ ng(Q)(cg))7'2 +...

=1+ (ng(@ (CL, b7 Cl) + XgU(2)<CQ>)T2 + ...,
(2.11)

indicating that the manifest SU(2)3, x U(1)? global symmetry is enhanced to
Sp(4) x SU(2). This, along with the other numerical invariants of this fixture
agree with our previous results for the Sp(4)¢ x SU(2)s SCFT.

Since Az = D3, we can use ([2.8) to compute the index of the twisted As
fixture by appropriately identifying fugacities and replacing P§O(6)(P5Ap(2)) —
PgU(4)(Pg/0(5)) where p (p') is the highest weight of the SU(4) (SO(5)) rep-
resentation corresponding to A (\'). Letting a be an SU(2) fugacity and
(b1,02), (c1,c2) SO(5) fugacities, the expansion of the index of the twisted

Aj fixture is

i b c
T =1+ (@) + Xspe) (Vobs, b_;) + Xspe (Verea, \/ c_;)
/ bl C1
- Xé’p@)( b1bs, \/ b_Q))stl‘p(z)(\/ C1C2, 4 | 0—2)72 + ...
b c
=14 (X302 (@) + X350 (V/bibe, \/b—;, NCEY /Z:))TQ T

in agreement with (2.11)). We have checked further that the unrefined indices
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(obtained by setting all flavor fugacities to “1”) of these two fixtures agree to

tenth order in 7. The unrefined index of each fixture is given by

T =1+ 3972 + 8787 4+ 133967° + 15241278 4+ 137097571 4 . ...

We can also compare with the mixed fixture (2.10). After removing the con-
tribution to the index of a free hypermultiplet in the 6 of Sp(3), the index of

this fixture is given by

T =1+ (X5u)(a2) + X&) (b1, b2, b3) + X2 (a2) X Zp(a) (01, b2, bs)
+ XgU(Q)(c))7'2 +...
= 1+ (X84 (a2, b1, b2, bs) + X&p o) ()T + ...
Again, the numerical invariants of this fixture imply the SCFT is the Sp(4)g X
SU(2)g theory. We have computed the unrefined index of this fixture to fourth
order in 7; removing the contribution of the free hypermultiplet, we find agree-

ment with the fixtures above.

2.2 The Zs-twisted D, Theory

2.2.1 Punctures and Cylinders
2.2.1.1 Regular Punctures

The untwisted sector of regular punctures was discussed in [5]. The

Zo-twisted regular punctures are shown in the Table below.
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Table 2.1: Zs-twisted regular punctures

Flavour Hitchin Pole Flavour
Constraints (0np, ony)
C-partition| B-partition| structure group
o | (7] {1,353} - Sp(3)s | (112, %)

B ) | (55,17, 20) | {1.3,5:3}] — Sp(2); | (102,1%)

[5,12] {1,3,5; 3} ¥ = (a®)? | SU(2)4x | (94, 181)
U(1)

B
HH 32, 1] {1,3,4,3} — SU(2)y | (88,11

(ns) | ([3,19,Z2) | {1,3,3;3} — SU(2); | (69,%?)

Eﬂ 3,14 {1,3,3; 3} ¢V = (a®)? | none (64, 127)

[17] {1,1,1; 1} - none (24,2)

2.2.1.2 TIrregular Punctures

A fairly lengthy list of irregular untwisted punctures, arising from the
OPE of untwisted punctures, was discussed in [5]. Additional ones arise from
considering the OPE of two Z,-twisted punctures. Moreover, twisted-sector

irregular twisted punctures arise from the OPE of an untwisted puncture and
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a Zso-twisted puncture. These two sets of new irregular punctures are listed in

the Tables below.

Untwisted
Table 2.2: Untwisted irregular punctures
Irregular puncture (np,n,) | Flavour Symmetry
(CEEEEEE , Sp(2)) (112,118) Sp(2),
(B, sU(2) x SU(2)> (128,133) | SU(2), x SU(2),
1111
(- ,SU(2) x SU(Q)) (136,140) | SU(2), x SU(2),
1]
(I ,SU(2)> (176,179) SU(2),

As was the case in [5], there are three inequivalent embeddings of
Sp(2) — Spin(8), exchanged by triality, under which one of the 8-dimensional
representations decomposes as 5+ 3(1) while the other two decompose as 2(4).
To indicate which we mean, we assign a green/red /blue colour to CTTTTT].
The same remark applies to the three index-1 embeddings of SU(2) x SU(2)
in the SU(2)” of E:D:D which are exchanged by triality.

Twisted
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Table 2.3: Zo-twisted irregular punctures

Irregular puncture

(np,ny) | Flavour Symmetry

(E60)

(., Sp(2) x SU(2)) | (112,22) | Sp(2), x SU(2),
(o, Sp(2)) (112, %7) Sp(2),
(I, SU(2) x SU(2)) | (112, 57) | SU(2), x SU(2),
(e, SU(2)) (112, 232) SU(2),
(B sp2) (122, %) Sp(2),
(B su2) x SU(2)> (122,21) | SU(2), x SU(2),
(B su) (122, 27) SU(2),
(B su) (130.2) | sU@),

( )

none

( | I, SU(2)>

(155, 315) SU(2),

N
LLL1

D

(155, %) none

2.2.1.3 Cylinders

In addition to the untwisted cylinders of [5], we have
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), o

O (O Spin(7))
O (S pin (7))
SU(2)xSU(2)

SU(2)xSU(2) F

SU(2)

I

and the twisted sector adds the cylinders
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OTT1T1T1

(O, Sp(2) x SU(2))

(0, Sp(2))

(0@, SU(2) x SU(2))
(O, SU(2)

)
)
=
)
)
( D
) —
£

2.2.2 Fixtures
2.2.2.1 Free-field Fixtures

87

Sp(3)

Sp2)xSU)

SU@)xSU2)

I
[T

RN o
I

, LTI

SU(2)

Sp(2)

E:EEEI
2)x SU(2) E:D:D

E:EEEI

EEF':'

SU(2)

SU(2)

<—>

%)



Table 2.4: Zo-twisted free field fixtures

Fixture Number of hypers Representation
0 empty
0 empty
5 3(2,5)
(E}.:s%?z) x SU(2) 0 empty
H
E
(CEEEEEEm. Sp(2) 0 empty
(EEEEEEEm. SUW) 6 (2,6)
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Table 2.4: Zo-twisted free field fixtures

# Fixture Number of hypers Representation
E

7 | (o, spin) 14 2(4,7)

8 24 £(6,8,)

9 0 empty

10 3 5(3,2)

11 0 empty

12 2 1(2)
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Table 2.4: Zo-twisted free field fixtures

# Fixture Number of hypers Representation
13 1 5(1,2)

14 10 5(5,4)

15 0 empty

16 8 %(1, 2,2;4)
17 2 $(2,1) 4+ 3(1,2)
18 0 empty
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Table 2.4: Zo-twisted free field fixtures

# Fixture Number of hypers Representation
‘il
19 (EFE sv) 7 1(2,5) + 1(1,4)
i
‘il
20 (T Sp2) 5 £(2,1,5)
21 0 empty
22 8 %(2, 2;4,1)
23 14 1(3,4,1) + 3(1,5,2) + (3, 1,2)
24 16 1(1,14') + 1(3,6)
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2.2.2.2 Interacting Fixtures

Table 2.5: Zo-twisted interacting fixtures

# | Fixture (do,ds, dy, ds, dg)| (ng, 1) Gglobal
1 (0,0,2,0,0) (26,14) Spin(7)g X
SU(2):
2 o) | (0,0,2,0,1) (45,25) Spin(11)1,  x
SU(2
ae (2)s
3 o) | (0,1,2,0,1) (51, 30) Spin(10)12 X
SU(2)6 X
- SU(2);
4 o) | (0,0, 2,0, 2) (59, 36) Spin(9), X
Sp(2)7x SU(2
EIIII p( )7 ( )5
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Table 2.5: Zo-twisted interacting fixtures

Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal

aas (0,0,2,0,1) (45, 25) Sp(5)s x SU(2)s

| | (0,0,3,0,1) (53,32) Sp(4)s X
o SU(2)3 X
SU(2)s

0,0,3,0,2) (69, 43) Spin(8)1s X
Sp(?))g X SU(2)5
(0,0,1,0,0) (15,7) Sp(3)s % SU(2)s
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Table 2.5: Zo-twisted interacting fixtures

# Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal
HH
9 (0,1,1,0,0) | (24,12) Sp(4)gx SU(2);
HH
HH
10 (0,0,1,0,1) (31,18) SU(4) 19 x
HH
11 ™| | (0,0,2,0,1) (40, 25) SU(4) 15 X
FH Sp(2)8
HH
12 (O, 0,2,0, 1) (40,25) SU(2)34 X
SP(Q)S
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Table 2.5: Zo-twisted interacting fixtures

# Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal
HH

13 B | | (0,0,3,0,1) (48, 32) SU(2)3, X
FH SU(2)3
HH

14 o) | (0,0, 3,0, 2) (64, 43) Spin(8)1 X
E (SU(2>24)2
HH

15 - (0,2,1,0,0) (30, 17) Sp(2)? X
o SU(2)g x U(1)
HH

16 e (0,1,1,0,1) (37,23) Sp(2)12 x

SU(2) X

= SU),
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Table 2.5: Zo-twisted interacting fixtures

# Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal
HH
17 ) | (0,1,2,0,1) (46, 30) Sp(2)12 X
eees Sp(2)sx SU(2)g
HH
18 Eans (0,1,2,0,1) (46, 30) Sp(2)s x
SU(Q)Q X
E:D SU(2>64X U(l)
HH
19 B (0,1,3,0,1) (54,37) SU(2)24 X
SU(2)3 X
G SU(Q)z x U(1)
HH
20 oo | (0, 1,3, 0, 2) (70, 48) Spin(8)s X
SU(2) X
& SU(2)24>< U(1)
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Table 2.5: Zo-twisted interacting fixtures

# Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal
HH
21 - (0,1,1,0,1) (38,23) Sp(2)12 X
amazal Sp(2)7 x U(1)
HH
22 e (0,0,1,0,2) (45, 29) Sp(2)s X
SU(2) X
— SURR,
HH
23 ™| | (0,0,2,0,2) (54, 36) Sp(2)s X
Sp(2)7 X
T (SU 2122
HH
24 Eans (0,0,2,0,2) (54, 36) Sp(2)s X
Sp(2) X
B:D:D SU(2724
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Table 2.5: Zo-twisted interacting fixtures

# Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal
HH
25 B | | (0,0,3,0,2) (62,43) Sp(2)7 X
Em SU(2)24 X
SU(2);
HH
26 o) | (0,0, 3,0, 3) (78, 54) Spin(8)y X
mu=as Sp(2)7 X
SU(2)94
HH
27 l (0,0,1,0,0) (24,7) (Er)s
ooaTm
HH
28 ™ (0,1,2,0,1) (48, 30) Sp(3)s x
o SU(2)24><U(1)2
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Table 2.5: Zo-twisted interacting fixtures

# Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal
HH
29 B ) | 00202 | (5306 Sp(3)s
o SU(2)24
SU(2)7
HH
30 ] |(0,0,3,0,2) (64, 43) Sp(3)s
Emaman Sp(2)s
SU(2 24
HH
31 aas (0,0,3,0,2) (64,43) 5p(3)s
o Sp(2)s
SU(Q 24
HH
32 = | | (0,0,4,0,2) (72, 50) Sp(3)s
oo SU(2)24
SU(2)3
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Table 2.5: Zo-twisted interacting fixtures

# Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal
HH
33 o) | (0,0, 4,0, 3) (88,61) Spin(8)1 X
o Sp(3)s X
SU(2)a
B
34 ™ (0,3,1,0,0) (36, 22) SU(2)8 x U(1)
B
™
35 Esa3 (0,2,1,0,1) (43,28) SU(2)2, x
SU(2)2 X
& SUQ);
B
36 ] | (0,2,2,0,1) (52, 35) Sp(2)s x
SU(2)3, X
ol SU(2)2
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Table 2.5: Zo-twisted interacting fixtures

# Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal
B
37 aas (0,2,2,0,1) (52, 35) Sp(2)s x
g SU(2)2 x U(1)?
e
38 = (0,2,3,0,1) (60, 42) SU(2)3 X
o SU(2) x U(1)?
B
39 o) | (0,2, 3,0, 2) (76, 53) Spin(8)1
oo SU2)2 x U(1)?
e
40 ™ (0,2,1,0,1) (44, 28) Sp(2)s x
SU(2)3, X
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Table 2.5: Zo-twisted interacting fixtures

# Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal
B
41 Sean (0,1,1,0,2) (51,34) Sp(2)7 X
SU(2)24 X
Hm SU(2)7 X
SU(2)s
B
42 ™) | (0,1,2,0,2) (60, 41) Sp(2)s x
Sp(2) X
Hm SU(2;24 X
SU(2)e
B
43 5aa| (0,1,2,0,2) (60, 41) Sp(2)s x
Sp(2) X
B
44 B (0,1,3,0,2) (68, 48) Sp(2)7 X
SU(2)3 X
== SU(Q)z x U(1)
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Table 2.5: Zo-twisted interacting fixtures

# Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal
[
45 o) | (0,1, 3,0, 3) (84, 59) Spin(8)1
Sp(2) X
B
46 l (0,1,1,0,0) (30, 12) SU(2) X
=
47 B ) | 02201 | (5435 Sp(3)s x
mannns) SU(2)s x U(1)?
B
48 e (0,1,2,0,2) (61,41) Sp(3)s x
o SU(2)7 X
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Table 2.5: Zo-twisted interacting fixtures

# Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal
55
49 F™ ) | 0.1.3,02) | (70,48 Sp(3)s x
o Sp(2)s X
SU(2)s x U(1)
B
50 Eans (0,1,3,0,2) (70, 48) Sp(3)s x
I Sp(2)8 X
B
ol E:D:D (07 1747072) (78755) Sp(3)8 X
o SU(2)3 X
SU(2)s x U(1)
-
52 o) | (0, 1, 4,0, 3) (94, 66) Spin(8)s X
oI Sp(?))s X
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Table 2.5: Zo-twisted interacting fixtures

# Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal
E:EEEI

53 - (0,1,1,0,2) (52,34) Sp(2)?2 x
Em SU(2)24 X U(].)
E:EEEI

54 e (0,0,1,0,3) (59, 40) Sp(2)2 x
gmamal SU(2)7 x U(1)
E:EEEI

55 ™| | (0,0,2,0,3) (68, 47) Sp(2)s X
amana) Sp(2); x U(1)
B:EEEI

56 e (0,0,2,0,3) (68, 47) Sp(2)s x Sp(2)2
B:EEEI
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Table 2.5: Zo-twisted interacting fixtures

# Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal
E:EEEI

57 B | | (0,0,3,0,3) (76, 54) Sp(2)2x SU(2)3
E:EEEI
B:EEEI

58 o) | (0,0, 3,0, 4) (92, 65) Spin(8)
gmamal Sp(2)3
E:EEEI

5 B ) oooy @ Sp(4)s x Sp(2);
ooaTm
B:EI:I:I

60 ™ (0,1,2,0,2) (62,41) Sp(3)s x
S Sp(2)7 x U(1)?

106




Table 2.5: Zo-twisted interacting fixtures

# Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal
E:EEEI

61 Eaa (0,0,2,0,3) (69, 47) Sp(3)s x
Sauuus) Sp(2)7xSU(2)7
E:EEEI

62 | | (0,0,3,0,3) (78, 54) Sp(3)s x
o Sp(2)8 X Sp(2)7
E:EEEI

63 B ) | 00303 (78,54) Sp(3)s X
o Sp(2)s x Sp(2)7
B:I:EEI

64 T | | (0,0,4,0,3) (86,61) Sp(3)s x
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Table 2.5: Zo-twisted interacting fixtures

# Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal
E:EEEI

65 ) | (0,0, 4,0, 4) (102, 72) Spin(8)1s X
Eaunss Sp(3)s x Sp(2)7
oOorTTm

66 (0,0,1,0,1) (40, 18) Sp(6)s
oOorTTm

67 (0,0,2,0,1) (48, 25) Sp(6)s x SU(2)s
[

68 (0,0,2,0,1) (48, 25) Sp(3)2x SU(2)s
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Table 2.5: Zo-twisted interacting fixtures

=
"
=
o
=
@

(d27 d37 d47 d57 d6)

(nh7 nv)

G global

69

(0,1,3,0,2)

(72, 48)

Sp(3)s x U(1)?

70

(0,0,3,0,3)

(79, 54)

Sp(3)§x SU(2)7

71

(0,0,4,0,3)

(88,61)

Sp(3)8 x Sp(2)s

72

(0,0,4,0,3)

(88,61)

Sp(3)8 x Sp(2)s
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Table 2.5: Zo-twisted interacting fixtures

# Fixture (d27 d37 d47 d57 dﬁ) (nh7 n'u) Gglobal
ooaT

73 H | | (0,0,5,0,3) (96, 68) Sp(3)2x SU(2)3
ooaT
oD

74 o) | (0,0,5,0,4) (112, 79) Spin(8)1, X
o Sp(3)§

2.2.2.3 Mixed Fixtures

Three new SCFTs make their appearance in the list of “mixed” fixtures

accompanied by some number of free hypermultiplets).
p

e The Sp(4);xSU(2)5 SCFT has Coulomb branch dimensions (ds, ..., ds) =
(0,0,1,0,1) and (ny, ny) = (33, 18).

e The Sp(5);xSU(2)s SCFT has Coulomb branch dimensions (ds, ..., dg) =
(0,0,1,0,1) and (ny, n,) = (35,18).

e The Sp(3)7 x Sp(2)s x SU(2)5 SCFT has Coulomb branch dimensions
(da, ...,ds) = (0,0,2,0,1) and (np,n,) = (42, 25).
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The remaining SCFTs in our list of mixed fixtures include the venerable (Eg)g
theory, the Sp(5), theory (which appeared in the untwisted D4 theory [5]),
two theories (Sp(3), x SU(2) and Spin(7)s x SU(2)2) which appear above
(see also [4]) and three more which appeared in the twisted Az theory [4].

Table 2.6: Zo-twisted mixed fixtures

# Fixture Theory

1(1,3,4) + Sp(3)s x SU(2)s

$(1,3;2,1,1) + SU(2)2 x Spin(7)s

(1,1,4) + SU(2)5 x Sp(3)s x U(1)

(1,1;2,1,1) + SU(2)5 x SU(4)s x Sp(2)s

%(17 174) + Sp(4)7 X SU(2)5
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Table 2.6: Zy-twisted mixed fixtures

# Fixture Theory

6 B )| 2(1,1;2,1,1) + Sp(3), x Sp(2)g x SU(2)5
HIIII

7 - (1,6) + SU(2)s x Sp(3)s x U(1)
oo

8 nan 1(1,6,1) + Sp(4)7 x SU(2)s
oo

9 ™ )| 1(1,6,1) + Sp(3)r x Sp(2)s x SU(2);
oD

10 1(3,6,1) + Sp(3)5 x SU(2)s

11 (1,1,2) + 3(1,4,1) + (Eg)s

112




Table 2.6: Zy-twisted mixed fixtures

# Fixture Theory
-

12 ? (1,6) + (Es)e
oITT

13 (1,6,1) + Sp(4)s x SU(2)s
14 3(1,6) 4+ Sp(5)7
15 2(1,6,1) + Sp(5)7 x SU(2)s
16 1(1,1,2) + Sp(5)7

2.2.2.4 Gauge Theory Fixtures

For each gauge theory fixture, we list the gauge group, G, and the

representation content of the hypermultiplets, (Rg,, Rg,, Rp,; Rg). Here, Rg
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is the representation of the gauge group and Rp, is the representation of the

semisimple part of the flavour symmetry of the i*" puncture (where we work

counterclockwise from the upper-left, and omit F; if it is abelian or empty).

Table 2.7: Zo-twisted gauge theory fixtures

# | Fixture (day...,ds)| G # Hypers | Representation
1 (1,0,1,0,0)| Sp(2) | 21 1(1,8;4) +
5(2,1;5)
%(Rla 27 1)
+5(R2;1,2
2 (2,0,0,0,0)| SU(2)x | 16 (A2 1,2)
SU(2) where R; = 8
orl—+7
5(2,8,;1,1)
3 ) (2,0,0,0,0)] SU(2)x | 24 +2(1,8;2,1)
SU(2) +1(1,8;1,2)
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Table 2.7: Zo-twisted gauge theory fixtures

Fixture (day....ds)| G 4 Hypers Representation
Eﬂ 1(1,5;2)
Eaa +2(1,4;1
(1,0,0,0,0)| SU(2) |16 §< )
+5(3,4;1)
& + %(3, 1;2)
E 5(2,1,2,1;4)
o +1(2:1,1,2,4
(1,0,1,0,0)| Sp(2) | 24 §< )
+3(1;2,1,1;5)
= +3(3:2,1,1;1)
E|:|:|:|:|:|:|:D %(17836)
i +1(1,1;14')
E . (2,1;3)
& + (1,4;1)
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Table 2.7: Zo-twisted gauge theory fixtures

# | Fixture (da,...,dg)| G # Hypers Representation
%(2; 1,1,1;6)
Eﬂ +1(1;2,1,1;6)
8 B | (1,1,1,0,0)] SU4) |30 +(1;2,1,1;1)
BT +(1;1,2,1;4)
+(1;1,1,2;4)
Eﬂ 5(1,8;6)
9 o (1,1,1,0, 1) Sp(3) 46 +(1,1;6)
B + (E¢)e
Eﬂ 5(4,1;7)
10 B ) 10001 6 30 +1(1,4;7)
auaax + 2(1,4;1)
$(4,1,1,1;7)
Eﬂ +2(1;2,1,1;7)
11 HF | (1,0,1,0,1)| Spin(7) | 38 +1(1;1,2,1;8)
amaza +3(1;1,1,2;8)
+2(1;2,1,1;1)
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Table 2.7: Zo-twisted gauge theory fixtures

# | Fixture (doy...,ds)| G # Hypers | Representation
Eﬂ 14,1,7
12 ) (1,0, 1,0,2) Spin(7) | 54 ) )
+ (Es)12
E:I:I:I:I
E (6;3)
13 B | (1.1,0,0,0) su@) |24
+ (65 1)
oo
Eﬂ $(1,2;7)
14 | (1,0,0,0,1) G, 31 +1(6,1;7)
Samss] +3(6,1;1)
E 5(6,1;7)
15 - (1,0,1,0,1)| Spin(7) | 40 +1(1,4;8)
mmmmnn +1(6,1;1)
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Table 2.7: Zo-twisted gauge theory fixtures

# | Fixture (doy...,ds)| G # Hypers | Representation
Eﬂ 1(6,1;8
16 B ) 1.0,1,0,1) Spin(7) | 40 ) X )
+§(1,4;8)
? 3(6:1,1,1;8,)
+1(1;2,1,1:8,
17 HF ) (1,0,2,0,1)| Spin(8) | 48 §< )
+§(1;1a271;85)
+2(151,1,2;8,)
E 1(6,1;8
18 )| (1,0, 2,0,2)] Spin(8) | 64 ) )
+ (Es)12
oD
1(2,4;2
19 (1,0,0,0,0)| SU(2) | 10 2(1 )
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Table 2.7: Zo-twisted gauge theory fixtures

# | Fixture (doy...,ds)| G # Hypers | Representation
3(1,2,4;2)
20 (1,0,0,0,0)| SU(2) |8 o
R 11,1,52)
+35(1,3,1;2)
E:n 5(2,1,1;5)
21 o) (1,0, 1,0,0)) Sp(2) 29 +1(1,1,8;4)
H +1(1,2,8,:1)
i 5(2,2,1;4,1)
22 o) (2,0, 1,0,0) Sp(2) x | 32 +2(1,1,8,;4,1)
H SU(2) +1(1,1,8,1,2)
1(2,1,2;2)
H +3(1,3,1;2)
+1(1,1,1;2)
23 1,0,0,0,0)| SU(2 15 i
@] ( 3 ) 9 Y ) ( ) +%(2’3’1,1)
HH 1
+ 3( )
+ 5 )
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Table 2.7: Zo-twisted gauge theory fixtures

# | Fixture (doy...,ds)| G # Hypers | Representation
H 1(1,2,4;4)
24 B ) (1,0,1,0,0) Sp(2) 24 +1(2,1,1;5)
EH +3(2,3,1;1)
1(2,2,1;4
25 B ) 101,00 5p02) |2 2(1’ 1i4)
3(1,151,2,2;4)
26 HF™ || (1,0,2,0,0) Sp(2) 32 ()
7)8
e
1(1,1,8;6
27 ) (1,0,2,0,1) Sp(3) 48 24§(E) )
7)8
A
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Table 2.7: Zo-twisted gauge theory fixtures

# | Fixture (doy...,ds)| G # Hypers | Representation
(2,1,1;3)
i +(1,2,1;3)
28 ) (1,1,0,0,0) sU@3) |21 +(1,1,2:3)
maua +(2,1,1;1)
+1(1,1,2;1)
H %(1 2,1;6)
+2(2,1,1;6)
29 ™ ) (1,1,1,0,0) su@) |30 2
(1,1,1,0,0)) SU(4) +(2,1,1;1)
™ +(1,1,4;4)
i 5(1,2,1;6)
30 B ) 111,00 sU4) |30 +(2,1,1;4)
B +(1,1,4;4)
[ (2,1;1,1,1;4)+
31 B | (1,1,2,0,0)] SU4) |38 1(1,2;1,1,1;6)
e + (En)s
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Table 2.7: Zo-twisted gauge theory fixtures

# | Fixture (doy...,ds)| G # Hypers | Representation
1(1,1,8;6)+
32 o) (1,1,2,0,1)) Sp(3 54 2V
( )y Ty S M ) p() SU(Q)(;XSU(S)E;
-
H (2,1;3)
+(1,4;3
33 ™ | (1.1,0,0,0) su@) |22 (1,4;3)
+(2,1;1)
== +2(1,4;1)
H (1L L2:7)
+ 1(1,4,1;7)
34 1,0,0,0,1)| G 29 a7
@: (7 s Uy ) 2 _‘_%(2’1’1,7)
B +3(2,1,1;1)
H (2, L17)
+11,4,1;7
35 - (1,0,1,0,1)| Spin(7) | 38 §< )
= +3(2,1,1;1)
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Table 2.7: Zo-twisted gauge theory fixtures

# | Fixture (doy...,ds)| G # Hypers | Representation
H 1(2,1,1;8)
36 B ) 101,01 Spin(7) | 38 +1(1,1,4;8)
amazal +1(1,4,1;7)
@ $(2,1;1,1,1;8)+
37 HF ) (1,0,2,0,1)| Spin(7) | 46 11,4;1,1,157)
manza + (E7)s
i 3(L4, 17+
38 )| (1,0, 2,0,2)| Spin(7) | 62 Spin(16)12
mauzs x SU(2)s
(2,1;4)
39 1,1,1,0,0)| SU4) |32
@:D ( Pt ] ) ( ) + (17 6, 4)
oD
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Table 2.7: Zo-twisted gauge theory fixtures

# | Fixture (doy...,ds)| G # Hypers | Representation
H 5(2,1,1;8)
40 B ) (1,0,1,0,1) Spin(7) | 39 +1(1,6,1;8)
o +3(1,1,2;7)
@ 5(2,1,1;8,)
41 - (1,0,2,0,1)| Spin(8) | 48 +1(1,6,1;8,)
m +1(1,1,4;85,)
@ %(27 17 1780/5)
42 B ) 10201) Spin®s) |48 +1(1,6,1;8,)
rm +3(1,1,4;8,c)
H 3(2,1,1,1,1; 84,
+
43 HF™ || (1,0,3,0,1)| Spin(8) | 56 )
5(17 67 17 17 17 811)
OITTm
+ (Er)s
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Table 2.7: Zo-twisted gauge theory fixtures

# | Fixture (doy...,ds)| G # Hypers | Representation

i 5(1,6,1;8,)
44 ) (1,0,3,0,2) Spin(8) | 72 + Spin(16)12
O x SU(2)s

2.3 Applications
2.3.1 Spin(2N) and Sp(N — 1) Gauge Theory

For general N, SO(2N) gauge theory with 2(N —1) fundamental hyper-
multiplets, and Sp(N — 1) gauge theory with 2N fundamentals, are supercon-
formal. Their construction is well-understood from the orientifold perspective
[28, 29, 30, BT, B2]. In particular, the (2,0) theory of type Dy is the theory
on 2N coincident Mb-branes at an orientifold singularity and, in that real-
ization of these theories [11], the key building block is the fixture consisting
of a twisted-sector minimal puncture, a twisted-sector full puncture and an

untwisted-sector full puncture,
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2V = 1]
O

F(2(N - 1), 2N)

which is a free-field fixture transforming as a bifundamental half-hypermultiplet

of Sp(N —1) x SO(2N). Taking two of these fixtures and connecting them

[12N] SO(QN) [12N]
witha O O cylinder yields the aformentioned SO(2N) gauge

[12(N—1)} 12(N—1)}

l
theory. Connecting them, instead, witha O SpN) O cylinder yields

the Sp(N — 1) gauge theory.

Here, we read off the S-dual strong-coupling descriptions. In the SO(2N)

case,

2V = 1)]
o

([2N =3, 1], SU(2))O

2V = 1]
@)

empty SU(2)g X Sp(2(N — 1))2N SCFT
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we have an SU(2) gauging of the SU(2)s x Sp(2(N — 1)),, SCFT. In the
Sp(2(N — 1)) case,

[2(N = D]
o

(2N -3, 1], SUQ) O

[2(N = D]
0)

empty SU(2)g X Spin(4N)4(N_l) SCFT

we have an SU(2) gauging of the SU(2)s x Spin(4N)yn-1) SCFT.

For completeness, let us note that the other Sp(NN) gauge theory which
is superconformal for arbitrary N > 1, namely the one with one hypermultiplet
in the traceless antisymmetric tensor and four hypermultiplets in the funda-
mental representation, was already realized (with the addition of a single free

hypermultiplet) in the untwisted sector of the Ay theory [3]
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1(H)+ 10 +2(o)

For this theory, by contrast, all the degeneration limits are (isomorphic) weakly-
coupled Lagrangian field theories. The flavour symmetry group for this family
of field theories is F' = SU(2)yp2_ y_1 X Spin(8)yy. As is the case for SU(2),
Ny = 4, the S-duality, which acts as an S5 symmetry on M 4, acts as outer au-
tomorphisms of the Spin(8) flavour symmetry. Moreover, the Seiberg-Witten

curve takes the absurdly simple form

N
0= )\2N + Z Usp le:/\2(ka)
k=1

where the quadratic differential

213224(d2)2

z—21)(z — 29)(2 — 23)(2 — 24)

n(z) = (
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2.3.2  Spin(8), Spin(7) and Sp(3) Gauge Theory
2.3.2.1 Spin(8) Gauge Theory

Spin(8) gauge theory, with matter in the n,(8,) + ns(8s) + n(8.), is
superconformal for n, + ns, + n. = 6. Up to permutations, related to triality,
the list of possible values for n,, ng, n. is quite short and we discussed most of
them in [5]. There were, however, two cases which were not realizable with

only untwisted sector punctures.

One is n, = 6, which is a special case of the construction in §4.4.1] The
other case is n, = 5, ny = 1 (which, as we shall presently see, lies in the same

moduli space as n, =5, n, = 1).

Consider the 4-punctured sphere

3(8,) 2(8,) + 1(8,,)

This is a weakly-coupled Spin(8) gauge theory with matter in either the 5(8,)+

1(8;) or the 5(8,) +1(8.). The two realizations are exchanged by dragging the
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- puncture around one of the twisted-sector punctures and returning it

to its original location.

The strong coupling limits are SU(2) gauge theories

empty Sp(6)g X SU(2); SCFT

(where we gauge an SU(2) subgroup of Sp(6)s) and

32) Sp(5)g x SU(2)5 SCFT

where the SU(2), is gauged.
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2.3.2.2 Spin(7) Gauge Theory

Similar to the case of Spin(8) gauge theory, realizations of most cases
of conformally-invariant Spin(7) gauge theory were already discussed in [5].

Here we show realizations of the missing two cases.

5(7)

With the addition of three free hypermultiplets, we have a realization

of the theory with 5 hypermultiplets in the vector representation as

(CEEEEEE, Spin(7)

E:EEEI

2(7) 3(7) +3(1)

The S-dual theory is an SU(2) gauging of the Sp(5); x SU(2)s SCFT, plus 3

free hypermultiplets.
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empty Sp(5), x SU(2)g SCFT + 3(1)

1(8) +4(7)

The Spin(7) gauge theory, with one spinor and four vectors, can be
realized in a couple of different ways. With the addition of three free hyper-

multiplets, we have

(O, Spin(7))

3(7) + 3(1) 1(8) + 1(7)

There are two S-dual descriptions. Both are SU(2) gauge theories; one with
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a half-hypermultiplet in the fundamental, gauging an SU(2) subgroup of the
Sp(5) symmetry of the Sp(5)7 x SU(2)s SCFT,

Sp(5), x SU(2)g SCFT + 3(1)

the other with three half-hypermultiplets in the fundamental, gauging the
SU(2) of the Sp(4), x SU(2), SCFT

32) Sp(4), x SU(2); SCFT +3(1)

Another realization, with the addition of only two free hypermultiplets, is
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2(7) 1(8) +2(7) + 2(1)

where the S-dual theories are
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and

%(2) Sp4), x SU(2)5 SCFT + 2(1)

2.3.2.3 Sp(3) Gauge Theory

In this section, we will consider various cases of Sp(3) gauge theory,
with vanished S-function. We have already discussed the theory with 8(6) and
the theory with 1(14) + 4(6) (special cases of the discussion of §4.4.1]).

The 14, the traceless 3-index antisymmetric tensor representation, is
pseudoreal and has index ¢ = 5. So we can replace five fundamental (half-

Yhypermultiplets with a 14" (half-)hypermultiplet.

2(6) + 3(14')  With one half-hypermultiplet in the 14’, we have
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3 114’
4(6) 5(6) + 5(147) (2.12)

At strong coupling, we have an Sp(2) gauging of the (Es),, SCFT

The third boundary point involves a gauge-theory fixture
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Sp(3) + L(6) + $(14")

3(6) + 1(14') With two half- or one full-hypermultiplet in the 14, we have

5(6) + 3(14") 36) + 114"

(2.13)

whose S-dual is an SU(2) gauging of the SU(4),, x SU(2), x U(1) SCFT, with

an additional half-hypermultiplet in the fundamental:
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12) SU@),, x SU(2), x U(1) SCFT

Because, to our knowledge, the Seiberg-Witten solution to this theory has not

been studied in the literature, let us present some of the details, here. Setting
the locations of the punctures on C' = CP! as in (2.13)), the Seiberg-Witten

curve is the locus in T*C given by the equation

2

0=X°+ ) N *0u(2) + (4(2)) (2.14)

where A\ = ydz is the Seiberg-Witten differential. In the case at hand,

B u22’142’23(d2)2
Pa(2) = (z—21)(z — 22) (2 — 23)(2 — 24)
2) — 214793 Eu%(z — 21)(2 — 22) 214203 + wa(2 — 23) (2 — 24)2%2] (dz)4
P4(2) (2 — Zl)S(z — 22)3(2 — 23)2(2 - 24)2
z) = uﬁzf4z§3,z%2(dz)6
(bf( P P e P
¢(z) =0

Setting (21, 22, 23, 24) — (0,00, x,1), (2.14]) simplifies to
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U2

(z—1)(z —2)

0=y {y6+y4z

1 T2 u4> Ug
42 4 +—= )+ 2.15
Y 2(z—=1)(z — x) ((z—l)(z—x) 22 Az =13z —2) (2.15)
The S-duality group of this theory is I'(2), and we have f(7) = z.
Repeating the analysis for (2.12), we find the Seiberg-Witten curve for
Sp(3) with 11(6) + 1(14') to be

(z—1)(z — )
5 1 1,2 (x —1) . ug(z — 1)
i 2(z—1)(z —x)° (4 (z—1) - 4) - 2(z—1)%(z —z)°

In this case, the moduli space is the branched double-cover of M, 4, parametrized

0=y y6+y4z

(2.16)

by w? = . The gauge coupling is

2w

f(T):H—w

In particular, the S-duality group is the I'g(2), generated by

T:7—714+1, ST?S:7+—
1—-27

Here, T acts as the deck transformation, w + —w, and ST?S acts trivially
on the w-plane. The theory at f(7) = 0 is the Lagrangian field theory; at
f(7) = 1,00 (which project to x = 1) we have the Sp(2) gauging of the (Es),,
SCFT. The gauge theory fixture, at x = 0o, is the theory at the Zs-invariant

interior point of the moduli space, f(7) = 2.
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Other cases The remaining cases of Sp(3) with vanishing S-function have

matter in the
° 2(14)
e 3(6)+1(14) + 1(14)

(6) + 5(14)

N[ =

Unfortunately, we don’t know how to realize these theories as compactifications
from 6 dimensions. Presumably, the methods of [33] can be applied, to recover

these cases as well.

2.3.3 Higher Genus

In almost all of the discussion in this paper, we have taken C to be
genus-zero. We should close with at least one example of higher-genus, so that

we can see the effect of twists around handles of C.

Consider a genus-one curve, with one minimal puncture, in the Dy

theory.
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i

HY(T?—p,Zy) = (Z3)*. Under the action of the modular group, H'(T%—p, Z,)
breaks up into two orbits: the zero orbit (the “untwisted theory”) and the

nonzero orbit (“the twisted theory”).

The untwisted theory is a Spin(8) gauging of the (Es),, SCFT. There
are three inequivalent index-2 embeddings of Spin(8) in Egs. They can be char-

acterized by how the 248 decomposes (up to outer automorphisms of Spin(8)).

Either
248 = 3(1) 4+ 5(28) + 35, + 35 + 35, (2.17a)
or
248 = 1+ 2(8,) + 3(28) + 35, + 2(56,) (2.17b)
or
248 = 8, + 8, + 8. + 2(28) + 56, + 565 + 56, (2.17¢)

The untwisted theory corresponds to (2.17a). The twisted theory, de-

pending on the S-duality frame chosen, corresponds either to a Spin(8) gauging
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of the (Eg),, SCFT using the embedding (2.17h)), or to an Sp(3) gauging of
the Sp(6)g SCFT.

For the untwisted theory, the gauge theory moduli space is the funda-
mental domain for PSL(2,7Z) in the UHP, and 7 is the modular parameter of
the torus. For the twisted theory, the moduli space of the gauge theory is the
moduli space of pairs (C,v), where 7 is a nonzero element of H'(C,Z,). This

is the fundamental domain of I'y(2), as discussed in §2.1.3
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Chapter 3

Spin(n) Gauge Theories with Spinors

3.1 Introduction

N = 2 supersymmetric Spin(n) gauge theory, with n — 2 hypermulti-
plets in the vector representation, is superconformal for any n > 2, and the
Seiberg-Witten solutions are known from the mid 1990’s [34] 35]. Replacing
some number of vectors by hypermultiplets in spinor representations is only
possible for sufficiently low n. The corresponding Seiberg-Witten solutions
do not seem to be known['| For Spin(5) ~ Sp(2) and Spin(6) ~ SU(4), the
solutions were presented in [3] [4]. The solutions to Spin(7), Spin(8) appeared
in our previous papers [5, [I7] (see [33] for an alternative formulation). As
a further application of [5, [I7], we will discuss Spin(n) gauge theories for
n =9,10,...,14, with matter content such that 8 = 0. These are all of the
remaining cases where one can have matter in the spinor representation. For

n > 14, only matter in the vector representation is compatible with g < 0 ﬂ

These 4D gauge theories can be obtained by compactifying [1I, 6] a 6D

!The solutions (with arbitrary masses for the vector and spinor hypermultiplets) of the
asymptotically-free theories for n = 8,10, 12 were constructed in [36]. The status of Seiberg-
Witten solutions, to various N/ = 2 supersymmetric gauge theories, was recently reviewed
in [37].

2This chapter is based on [38].
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(2,0) theory of type Dy on a 4-punctured sphere, where the punctures are
labeled by nilpotent orbits in 9y (or in c¢y_; for twisted-sector punctures)
[5, 7, 17, 11, 18]. When the 4-punctured sphere degenerates into a pair of
3-punctured spheres (“fixtures”), connected by a long thin cylinder, the gauge
theory description is weakly-coupled. Fixtures with only hypermultiplets in
the vector representation are, necessarily, twisted. With at least one (half-
Yhypermultiplet in the spinor representation, we can find an untwisted fixture

and — wherever possible — we prefer to work in the untwisted theory.

From these realizations as 4-punctured spheres, we construct the cor-
responding Seiberg-Witten geometries, and discuss the strong-coupling S-dual

realizations [2] of the gauge theories.

3.2 Seiberg-Witten Geometry
3.2.1 Seiberg-Witten curve

In the Dy theory, the Seiberg-Witten curve, ¥ C tot(K¢), is the spec-
tral curve (in the vector representation) for Dy. In other words, it can be

written as the locus
0= )\QN + ¢2(Z))\2N_2 + ¢4(Z))\2N_4 + -+ ¢2N_2(Z))\2 + Q;(Z)Q (31)

where the Seiberg-Witten differential, A = ydz, is the tautological 1-form on
K. Y is a branched cover of C, of rather high genus. But it admits an obvious

involution ¢: A — —A. The quotient by this involution is a curve C, also a
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branched cover of C. One ﬁnd that g(%) — g(C) = N. The SW solution is
obtained by computing the periods of A over the cycles which are anti-invariant
under ¢. Said differently, the fibers of the Hitchin integrable system are the

Prym variety for © — C.

For the Spin(2N) gauge theories considered below, the above descrip-
tion is completely adequate, as q?)(z) is nowhere-vanishing on C'. For the

Spin(2N — 1) gauge theories, ¢(z) vanishes identically. So ¥ is reducible
0= N2+ gy ()N Ga ()N -+ Pana(2))
Let Xy be the component
0= NN72 4 o (2)NV 7+ 9u(2) AN T0 -+ Py o(2)

As before, ¥y admits an involution ¢: A — —\, with quotient Co = Yo/t
and the SW solution, for the Spin(2N — 1) gauge theory, is given by the
periods of A on the anti-invariant cycles. There is one subtlety which did not
occur in the previous case: ¢on_o(z) typically does have zeroes on C, which
means that 3, is slightly singular. It has ordinary double-points over the

zeroes of ¢an_o(z). As in Hitchin’s original paper [42], we actually work over

3For many purposes, it’s convenient to replace ¥ by the compact curve
0= 0V 4 Gy ()N 212 1 ()Nt o o (N2 4 (22

in tot(P(K¢ @ O)). Away from the punctures, p # 0 and we can scale it to 1. At the
punctures, p = 0, and the SW curve has interesting ramification over the punctures. The
An_1 case [39, [40] is explained in detail in [4I]. The generalization to Dy has a few
subtleties, which we won’t attempt to explicate here.
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the resolution, S — Cy, whose Prym variety has the desired dimension,

9(20) - g(éo) =N-1

3.2.2 Calabi-Yau geometry

An alternative formulation [43, [44], more directly related to the Type-
I1B description of these 4D theories is as follows. Consider a family of non-

compact Calabi-Yau 3-folds, Xz, realized as the hypersurface

0=w?+yz? — gV — da(2)yV 2 — Gu(2)y"N P — - — Pan_a(2) — 20(2)x

in the total space of the bundle V' = (K(CNfl) D K(CN%) & K(QJ) — C. Here, u

are the Coulomb branch parameters, on which the ¢x(z) depend, and
w=w(d)""" w=3d2)"V 7y =g(dz)?

are the tautological differentials on V. The g; — 0 limit of Type IIB on
R3! x X is the 4D N = 2 field theory (decoupled from the bulk gravity).

Xz has a collection of 3-cycles of the form of an S? in the fiber over a
curve on C. The Seiberg-Witten solutions to the Spin(2N) theories below are
constructed from the periods of the holomorphic 3-form,

Q:da?:/\d?/\dz
w

over a (rational) symplectic basis of these 3-cycles. For the Spin(2N — 1)

theories, ¢(z) = 0, and Xz has an involution ¢: (w,z) — (—w,—z), under

4In the D, theory, there are examples of Spin(8) gauge theory, with matter in the
ns(8s) +1ne(8c) + (6 —ns —nc)(8y), where ¢(z) has isolated zeroes on C. Over those points,
> has ordinary double points and, similarly, we work on the resolution, .
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which € is invariant. ¢ acts by exchanging two of the S%s in the fiber (fixing
the rest). Integrating {2 over the invariant cycles yields the 2(N — 1) periods

which comprise the solution for the Spin(2/N — 1) theories.

3.2.3 Dependence on the gauge coupling

The Seiberg-Witten solutions to the § = 0 gauge theories, which are our
focus, have elaborate (but holomorphic) dependence [45] on the complexified
gauge coupling

0 8mi

= — 4 —
T - g2

In particular, any such theory, which can be realized by compactifying the
(2,0) theory on a 4-punctured sphere, automatically has a symmetry under

I'(2) ¢ PSL(2,Z), generated by

T?: 771742, ST?S:7+—

1-27
That is, the dependence on the gauge coupling is through the function

05(0,7)
T)=—
0= "%50,7)
= — (16¢"* + 128¢ + 704¢** + . ..)

where ¢ = ™7,

In the untwisted theory, f(7) is simply identified with the cross-ratio

of the 4-punctured sphere:

flr)=a= 820 (3.2)
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The limit x — 0 is the usual weak-coupling limit.  — 1 and * — oo are
limits which admit an alternative (physically-distinct) S-dual description as a

weakly coupled gauge theory.

When the punctures at z; and 25 are identical, then the theory has a
larger symmetry under I'o(2) D I'(2), where the extra generator acts on the
z-plane as

S:x— 1

x
The theories, below, with two (one full and one minimal) twisted punctures
and two untwisted punctures, have a similar story, except that the relation
between f(7) (which parametrizes the gauge theory moduli space) and the

cross-ratio is more complicated. The gauge theory moduli space is a branched

double-cover [I7] of the moduli space of the 4-punctured sphere, M, 4. Instead

of @2,

w? = g = B (3.3)
214223
and the gauge coupling
w—1
= — 3.4
fr) =2 (3.4)

In particular, this means that  — 0 corresponds to f(7) — —1 (i.e. 7 — 1),
which is an interior point of the gauge theory moduli space and intrinsically
strongly coupled. As in our previous works on the twisted sector [4, [17],
we denote these peculiar degenerations as involving a “gauge theory fixture.”
The other degeneration limits have more prosaic interpretations. The limit
f(r) — 1 projects to x — oo and the limits f(7) — 0 and f(7) — oo (which

have isomorphic physics) both project to = — 1.
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In presenting the solutions, below, we write the dependence on the
positions of the four punctures in a manifestly PSL(2, C)-invariant form. For
calculational purposes, it is invariably easier to fix the PSL(2,C) symmetry

by Setting (21, 22, %3, 24) = (07 o0, T, 1)

3.3 Spin(2N)+ (2N —2)(V) and Spin(2N —1)+ (2N —3)(V)

Just as Spin(2N) gauge theory with 2(N — 1) fundamentals is realized

as the compactification of the Dy theory with four Zs-twisted punctures

[12(N—])] [12(N—])]

o)
& [P \spinem (11T 2

o

2(N-1
[(o )

2

2(N-1
[(o )

91

(N =D(V) (N =1D(V)

there is a universal realization of Spin(2N —1) with 2N — 3 fundamentals plus
(N — 1) free hypermultiplets as a four-punctured sphere in the (twisted) Dy

theory

(3.6)

2(N -1 2(N -1
[(Zo ) [(o )
2

(N =2)(V) N =DV)+ W = D(D)
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The Seiberg-Witten curve corresponding to (3.5)) takes the form of (3.1)) where

the invariant k-differentials are

bop(2) = Usk, z14z23z§ik71)(dz)2k
2 = - -
(2 —21)(z — 22)(2 — 2’3)% 1(2 - 24)% '
- 1/2_1/2 _N— N
qg(z) _ UZV( Zzé Zé\zfl 1(d2)

(z — z1)1/2(z B 22)1/2(2 _ Z3)(2N—1)/2(z _ 24)(21\/—1)/2

The Seiberg-Witten curve for (3.6]) takes the same form, but with »=0.

This pattern will repeat, in many of the examples below. The Spin(2N —
1) theory, with the same number of hypermultiplets in the spinor, but one
fewer in the vector representation, is obtained by replacing the puncture at
z4, with one where the last box in the Young diagram is shifted to a new
row. Physically, this corresponds to using one of the vector hypermultiplets
to Higgs Spin(2N) — Spin(2N — 1). The “surprise” is that integrating out

the massive modes has such a simple effect on the Coulomb branch geometry.

The strong-coupling dual of (3.6)) is an SU(2) gauging of the Sp(2N —
3)an—1 X SU(2)s SCFT, with N — 1 additional free hypermultiplets

2N — 1 (121
25 1)

(12N -3, 1%], SUQ)o ol2N -3, 7]

2N -1 [2, 12V
[2( s )l 5

empty (N =11+
SP2N = 3),y_, X SU(2); SCFT

These theories have vanishing g-function for any N.
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Including hypermultiplets in spinor representations will follow a similar
pattern, where we will realize Spin(2N — 1) and Spin(2N) gauge theories as
4-punctured spheres in the Dy theory. The Seiberg-Witten curve for each of
these theories takes the form . We list the invariant k-differentials for

each theory below.

As we saw above, the solutions for Spin(2N — 1) is obtained from
the corresponding Spin(2N) theory (i.e, the theory with the same number of
spinors (ignoring their chirality, for N even) and one more vector) by setting

u=0.

3.4 Spin(9) and Spin(10) Gauge Theories
All of the following arise in the Ds theory, possibly with Z,-twisted

punctures.

3.4.1 Spin(9)
3.4.1.1  Spin(9) + 1(16) + 5(9)

(3.7)

1(16) + 1(9) 4(9) +4(1)

The other degeneration limits yield a gauge theory fixture
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1(16) + 1(9)

152

4+
Sp(7)y SCFT

1(16) +2(9) + 2(1)

(3.8)



The S-dual theory is an SU(2) gauging of the Sp(3)16xSp(2)gx SU(2)7SCFT+
5(2) +2(1)

1(16) + 1(9) 2(16)

The S-dual theories are an SU(2) gauging of the Sp(3)16 x SU(2)s x SU(2)9
SCFT

empty Sp(3);6 X SU2)g X SU(2),
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and a G, gauging of the (E;),s x SU(2)g SCFIJ]

empty (E716 % SU2),

3.4.2  Spin(10)
3.4.2.1  Spin(10) + 1(16) + 6(10)

(3.10)

1(16) + 2(10) 4(10)

°This interacting fixture is another realization of the (E7)g, X SU(2)(—1)(an+1) SCFT,

which arises on the world volume of n D3-branes probing a III* singularity in F-theory (see
[46, [47, [48] and §5.3 of [49]).
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The other degenerations involve a gauge theory fixture

1(4) Sp(8),, SCFT

The invariant k-differentials for (3.10)) are given by

U2 213224<d2)2

P2(2) = (z—21)(z — 22) (2 — 23)(2 — 24)
2) = [U4 (2 — 23)224 — i“% (z — 22)234} 213’2%4(0“’2)4
Pa(2) (z—zl)(z—22)3(2_33)2(z_24)3
4o(2) = e e T (.11)

)
(z —21)(z — ,22) (z — 23)2(2 — z4)
)

us 213223224(d2 8
Ps(z) = 5

(z—2z1)(z — z2)7(z — 23)2(2 — 24)

5 1/2,1/2 4
5 — UZ13 %3 % (dz)
M) = T = e — ) )
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The gauge theory moduli space is a branched double-cover of M4 and the
gauge couplings are given by ((3.4)).

The invariant k-differentials for (3.7) are as above, but with b =0.

3.4.2.2  Spin(10) 4 2(16) + 4(10)

(3.12)

1(16) + 2(10) 1(16) + 2(10)

The S-dual is an SU(2) gauging of the Sp(4)19xSU(2)16xSU(2)7;xU (1) SCFT+
2(2)

Sp(4),, X SU(2), X SUQR), X U(1)
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The invariant k-differentials for (3.12]) are given by

Us z12234(dz)2
(z = 21)(z — 22) (2 — 23) (2 — 24)
[ua (z — 21) (2 — 22) 230 + U3 ((z — 22) (2 — 23) 214
(= — 21)2(2’ - 22)2(2 - 23)3(2 - 24)3

—(z — 21)(2 — 24)723)] 21223, (d2)"

P2(2) =

G4(2) =

us 275244 (d2)"
6(2) -2 ) (3.13)
ug 2%22§4(d2)8
(2 — 21)2(Z - 22)2(2 - 23)6(2 - 2’4)6
Ui 21978, (dz)°

(z—21)(z — 22)(2 — 23)4(z — z4)4

The k-differentials for (3.8)) are as above, but with »=0.

Since we are in the untwisted theory, the gauge theory moduli space is

M4 (or more precisely, in this case, its Zy quotient), and the gauge coupling

is given by (3.2]).

3.4.2.3  Spin(10) + 3(16) + 2(10)

(3.14)

1(16) + 2(10) 2(16)

The S-dual theories are an SU(2) gauging of the SU(3)32 x Sp(2)19 x SU(2)g X
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U(1) SCFT

empty SU@)s, X Sp(2);5 X SUQR)g X U(1)

and a Gy gauging of the (Eg)is X Sp(2)10 x U(1) SCFT

empty (Eg) e X Sp(2),5 X U(1)

The invariant k-differentials for (3.14)) are given by

U9 212234 (dZ)Q

%) = TG - zz)(zl—;g)(z — ) o

N N

e e

o= (Z<; - )><+ Z—u;(;(z ,2_4335](?i21§4<dz>
3(z) = i 21421223 (dz)°

(z — z1)2(z — 2)(z — 23)3(2 — z4)4

The k-differentials for (3.9) are as above, but with gz~5 = 0.
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3.4.2.4 Spin(10) + 4(16)

(3.16)

2(16) 2(16)

The S-dual theory is an Sp(2) gauging of the SU(4)s5 x Sp(2)10 SCFT + 1(4)

1(4) SU@);, X Sp(2),

159



For this theory, the k-differentials characterizing the Seiberg-Witten curve are

U9 2122’34(d2)2

Pa(2) = (z—2z1)(z — 22) (2 — 23) (2 — 24)
= Uy 2%2232,4(61'2)4
ba(2) (z — 21)2(Z — zQ)Q(z — 23)2(2 - 24)2
bo(z) = o (2= 2)(z = )7 — qua(ua = qup)((z = 2) (= — 20) 7

(z — z1)3(2 — 2’2)3(2 — z3)4(z — 24)4

—(2 — 2)(2 — 24)213)|2 23, (d2)°

[us (2 — 21)(z — 22) 234 — }1(“4 - iugf((z —21)(z — 23)2

(z — 21)4(2 — z2)4(z — 23)5(2 — z4)5

—(2 = ) (2 — 24) 213)] 23,244 (d2)°

Ps(2) =

6(z) = v 100 . (3.17)

(z — zl)z(z — 22)2(2 — 23)3(2 — 24)3

In this case, there are no hypermultiplets in the vector, which one could use
to Higgs Spin(10) — Spin(9). Equivalently, it’s not possible to move the last
box, in the Young diagram at z4, to a new row while keeping it a D-partition.

So there is no corresponding Spin(9) gauge theory.

3.5 Spin(11) and Spin(12) Gauge Theories

These arise in the compactification of the Dg theory, possibly with Zs-

twisted punctures.
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3.5.1 Spin(11)
3.5.1.1 Spin(11) + 1(32) + 7(11)

(3.18)

$(32) +2(11) 5(11) +5(1)

The other degenerations involve a gauge theory fixture

empty
and an Sp(2) gauging of the Sp(9),, SCFT + 5(4) + 5(1)

%(4) 5(1) +
Sp(9),, SCFT
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3.5.1.2  Spin(11) + 1(32) + 5(11)

(COIIIIIIIIITd Spin(l1)

)

(3.19)

%) Z;

1(32) +2(11) $(32) + 3(11) + 3(1)

The S-dual theory is an SU(2) gauging of the Sp(5)11 x SU(2)7; x U (1) SCFT +
5(2) +3(1),

Sp(5),, X SUR), x U(1) +1(6, 1, 1)
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3.5.1.3  Spin(11) + 3(32) + 3(11)

2

3

O
2

(COIIIIIIIIITd Spin(l1)

)

(3.20)

)

3(32) +2(11)

132) + 1(1D) + 1(1)

The S-dual theories are an SU(2) gauging of the
Sp(?))n X SU(2)8 X SU(2)128 SCFT + 1(1)

SUQ)

empty

Sp(3),; X SUQ)g X SU2) 05 + 12, 1, 1)
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and a Gy gauging®| of the Sp(3)1; x (Fy)16 SCFT + 1(1)

Sp3)y; X (F) 6+ 5(1, 2, 1)

3.5.1.4 Spin(11) +2(32) + 1(11)

24

23

(COIIIIIITIIITl Spin(l1)

)

2

(3.21)

9|

1(32)

132) + 1(1D) + 1(1)

The S-dual theory is an Sp(2) gauging of the Sp(3)1; x SU(2)3, SCFT + s(4)+
1(1)

SNote that, here, we use the Lie algebra embedding, (f4)x D (g2)r X 5u(2)sk-
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+ %(2, 1)
2

2)32

)1y X SU(

3 1

Sp(

2)
8(1
2) +
e +3(3

Spm. .

: pin

5. '

3. 1

2.

5.

3.

%

2

(3.22)

4}
23

5(12)
)

3(12

+

132)

2
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The other degenerations involve an gauge theory fixture

empty Sp(10),, SCFT
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The invariant k-differentials for (3.22]) are given by

U9 213224(d2)2

$2(2) = (z— 21)(z — 22)(z — 23)(2 — 21)
o= i gl
o) = el 2
R e e o
$10(2) = - Zl)?;_zij)zs(zj{(i:>)2(z - 2)
For (3.18), they are as above, but with @ = 0.
3.5.2.2  Spin(12) + 1(32) + 6(12)
B - “HHHH
EEsmEEEEEEEE) MEREEREEEERE (3.24)

2 2

132)¥3(12) 132 +3(12)

The S-dual theory is an SU(2) gauging of the Sp(6)12 x SU(2); x U(1) SCFT +

3(2)
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Sp(6),, X SU2), X U(1)

3.5.2.3  Spin(12) + 1(32) + 3(32') + 6(12)

1
2

(3.25)

3(32) +3(12) 7(32)+3(12)
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The S-dual is an SU(2) gauging of the Sp(6)12 x SU(2)7 SCFT + £(2)

The invariant k-differentials for (3.24]) and (3.25)) are

U9 212234(d2)2

$2(2) = (z—21)(2 — 22)(2 — 23)(2 — 24)

s (z = 21)(2 = z2) 230 + jus (2 — 22)(2 — 23) 214
balz) = (z — 21)2(2 — 22)2(2’ — 23)3(2 — 24)3

—(z — 21) (2 — 21)203))21273, (d2)"
bo(2) = [ug (z — 23)(2 — 2z4) 212 + 20((2 — 21) (2 — 24) 223

(z — 21)2(2 — 22)2(2 — z3)5(z — z4)5

F(z = 22) (2 — 23)214)] 210284 (d2)°

us 27,754 (d2)°

Pelz) = (2 — 21)*(z — 22)° (2 — 23)°(2 — 24)° o
z) = U10 21222348(dz)10
$10(2) (2 —21)%(z — 20) (2 — 23)° (2 — 24)°
gz;(z) _ U 212234°(d2)

(z—2z1)(z — 22) (2 — Z3)5(z — 24)5

where the upper/lower sign in the expression for ¢g is for (3.24))/(3.25)), respec-

tively. The invariant k-differentials for (3.19)) are as above, but with u = 0.
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3.5.2.4  Spin(12) + 3(32) + 4(12)

FEH

(3.27)

2

%(32) +3(12) 1(32) + 1(12)

The S-dual theories are an SU(2) gauging of the Sp(4)12 X SU(2)g x SU(2)12s
SCFT

Sp(4),, X SU2)g X SU(2),54

and a G gauging of the (Fy)16 X Sp(4)12 SCFT
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(F 16 % Sp@)y,
empty

The invariant k-differentials for (3.27)) are given by

B u2212234(d2)2
P2(2) = (z—21)(z — 22)(2 — 23)(2 — 24)

[ua(z — 2) 21+ ua?(z — 2a)20) 2107842 (d2)
0a(2) = (2 —21)%(z — 2)°(2 —~Z3)2(Z — 1)’
o) — L8z =20 = 22 = 20z — )z — )

(z — zl)?’(z — 22)2(2 — z3)4(z — 24)5

+(2’1~L + %UQUAO(Z — 23)(2 — 24)212]2122142343(d21)6

[ug(z — 21) 234 + ( ws® + Uus) (z — 24)213]21421222344(d2)8
?s(2) (z — 21)4(2 - 22)2(z - 23)5(2 — z4)6 (3.28)
[ut0(z — 21) 234 + g (2 — 24)213) 71222142 234° (d2) ™
(z—2z)° (z — ) (2 — 23)%(2 — 20)®
U212214° 234 (dz)6

(z — z1)3(z — 2z)(z — 23)3(z — 24)5

P10(2) =

o(2) =

For (3.20)), they are as above, but with @ = 0.
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3.5.2.5  Spin(12) 4+ 1(32) + 1(32') + 4(12)

1
2

FEH - 2

(3.29)

2

132)+3(12) 1(32)+1(32) +1(12)

The S-dual theories are an SU(2) gauging of the Sp(4)12 x SU(2)s x U(1)
SCFT

Sp(4);, X SU@2)g x U(1)
empty

and a Go gauging of the Sp(4);2 x Spin(9);s SCFT

empty Sp(4),, X Spin(9),¢
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The invariant k-differentials for (3.29)) are given by

U9 2’122’34(d2)2

P2(2) = (z—21)(z — 22) (2 — 23) (2 — 24)

2) = [U4 (2 — 22)214 + iu% (2 - 24)312} 212z§4(dz)4
9a(2) = (2 —21)%(z — 2)%(2 —~Z3)2<Z — 1)’
Pe(z) = [ue(z — 21) (2 — 2a) 203 — 20(z — 21)(2 — 2)23

(z — 21)3(7: — 22)2(2 - 23)4(2 - 24)5

+1ugus(z — 2z3)(z — 1) 212) 712214 234° (d2)°

[us (2 — 21) 234 + 2ul (2 — 21) 213] 210230204 (d2)°

e ' d . ’ 3.30
Ps(2) (z—21) (2 — 22)" (2 — 23)° (2 — 24) ( )
z) = u102’12221422346(dz)10
$10(2) (2 — z1)4(2’ — 22)2(2 — 23)6(2 - 2’4)8
45(2) _ Uz12214234" (d2)

(z — 21)2(2 — 2)(z — z3)4(z — 24)5

For (3.20)), they are as above, but with @ = 0 (note that (3.30) and (3.28])

become equal at @ = 0).

3.5.2.6 Spin(12) + 2(32) + 2(12)

Spin(12)

(3.31)

132) + 1(12) 132) + 1(12)
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The S-dual theory is an Sp(3) gauging of the Sp(3)1; x SU(2)3, SCFT + 2(6)

Sp(3)

2(6) Sp(3),; X SU2)3, + 1(6)

The invariant k-differentials for (3.31]) are given by

B u2212234(d2)2
P2(2) = (z—21)(z — 22) (2 — 23)(2 — 24)
z) = U4Z1222342(d2)4
P4(2) (2 — 21)2(z — 2)%(2 — 23)2(~Z — 24)°
so() L8z =) = )z — Qi+ Jualus = Ju?))(z = 20) (= = 20)2mg

(z—21)%(z — ) (2 — 23) (2 — 2)*
+(20 + Lus(us — Jus?))(z — 22) (2 — 23)714) 2122 2343 (d2)°

[us(z — 21) (2 — 22) 230 — (5 (ug — %luf)z + Gug)(z — 21)(2 — 24) 223

(z — 21)4(2 — 22)4(2 — z3)5(z — z4)5

Ps(2) =
(3.32)

+(%(u4 — %U22)2 + tug)(z — 29)(2 — 23)214]»2’1232344(d2)8

[ui0(z — 21)(2 — 22) 234 — U(uyg — —uf)(z —21)(2 — 24) 203
(z—21)"(z — 2)°(z — 23)° (2 — )

+a(us — Jus?)(z — 22) (2 — 23)214) 212% 234 (dz2)"

$10(2) =

~ u212 234 (dZ)

) = o e — =)

174



3.5.2.7 Spin(12) + 3(32) + 3(32) + 2(12)

23

(3.33)

2

1(32) + 1(12) 132)+4(32) + 1(12)

The S-dual theories are an Sp(2) gauging of the Sp(4)15 x SU(2)128 SCFT

empty Sp();, X SU(2), 4

and a Spin(11) gauging of the (Eg);2 SCFT + £(32)

1(32) (Eg), +4(1,32, 1)
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The invariant k-differentials for (3.33]) are given by

- U2212234(d2)2
¢2(Z) = (z _ zl)(z — 22)(2 — z3)(z — Z4)
2) = u42122z342(dz)4
P4(2) (z — Z1)2(Z _ 22)2(2 . 23)2(2 _ 2,4)2
2) = [ug(z — 21) (2 — 20) 234 + (20 — Jua(us — Jus®)) (2 — 21) (2 — 24) 203
o(2) (z — z1)3(z — z2)3(z — z3)4(2 - 24)4
s (s — Lus) (2 = 20) (2 = 2) ] 212234 (d2)°
2) = [Us(z —21)(2 — 29)234 — (}L(U4 - }lu22)2 — Uug)(z — 21) (2 — 24) 223
9s(2) (z—21)'(z — 22) (2 — 23)° (2 — 20)°
(3.34)
+1(us — Tus?)?(z — 29) (2 — 23)214] 219° 2344 (d2)°
 [uio(z — 22)234 + G(us — %u%)(z _ 24)223]21242345(dz)10
¢10( ) - (Z _ 21>4(2 — ;;2)5(2 — 2’3)6(2 - 24)6
&(z) _ UZ23212" 234 (dZ)

(z — z1)2(z — 22)3(2 — 23)4(2 — 24)3

3.5.2.8  Spin(12) 4+ 1(32) + 1(32') + 2(12)

2y 23

(3.35)

Z, 4

$(32) + £(32) + 1(12) $(32) +1(32") + 1(12)

The S-dual theory is an Sp(2) gauging of the Sp(2)12x Sp(2)11 x U(1)?SCFT +
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14 Sp(2);, X Sp2)y; x U1y’
The invariant k-differentials for (3.35)) are given by

U2 212234(d2)2

$2(2) = (z—21)(z — 22)(2 — 23)(2 — 24)
5) — Uyq 2%2292,4((12')4
¢a(2) (z — 21)2(2 — 22)2(2 — 23)2(,2 — 24)2
fue (2 — 21) (2 — 20) 230 — %uz(wl — iu%)((z —21)(2 — 23)204
bo(2) = (z — 21)3(2 — 22)3(z - 23)4(2 - 24)4
—(z — 2)(z — 2)213) |22 (d2)°
 us(z = 21)(2 — 22) 230 — glua — iug)Q((Z —21)(2 — 23)2m
Psl(2) = (z—2) 'z — 2) (2 — 23)°(z — 2)°
—(2 = 22) (2 — 24) 213)] 28y 28, (d2)°
5 — U102124Z346(d2)10
P10(2) (z — 21)4(2 — 22)4(z — 23)6(2 — z4)6 (3:36)
q@(z) _ Uz12° 234" (d2)

(z — 21)2(2 — 22)2(2 — 23)4(2 — 24)4

For (3.21)), they are as above, but with & = 0. As before, (3.32)),(3.34) and
(3.36) become identical when you set @ = 0.
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3.5.2.9 More Spinors

We cannot obtain

o Spin(12) + 2(32)
e Spin(12) +2(32) + 5(32)

o Spin(12) + 2(32) + 1(32')

from compactifying the Dg theory.

3.6 Spin(13) and Spin(14) Gauge Theories

Here, we work in the D; theory.

3.6.1 Spin(13) + 1(64) + 7(13)

(COOIIIIIIIIIT. Spin(13))

23

L64) +1(13) 6(13) +6(1)
(3.37)

Over the other degenerations, we have a gauge theory fixture
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1
2

2)
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Sp(7),3 X SUQ), + 2(12, 1, 1)



The invariant k-differentials for (3.37)) are given by

U9 213224(d2)2

$2(2) = (z—2z1)(z — 22) (2 — 23) (2 — 24)
5 — Uy 2132’232242(d2)4
¢a(z) (z—21)(z — 22)3(2 — 23)2(2 — 24)2
. [UG(Z - 23)2’12 - %U2(U4 - iU22)(2 - 2’2)213]2232342243((12’)6
bo(2) = (z —21)(z — 22)5(2 - 23)3(2 — Z4)4
 [us(z — 23)z12 — Hua — 2up?)?(2 — 2)213] 2312057 2044 (d2)°
ds(z) = (z —21)(2 — 22)7(2 — 23)4(2 — z4)5
) — U10 21322422332245(d2)10
P10(2) (z—21)(z — 22)9(2 — z3)4(z — 24)6
) — U12 2132242’2332247(612)12
912(2) (z —21)(2 — 22)11(2 — z3)4(z — z4)8
and
9(2) =0

3.6.2 More Spinors

We cannot obtain

o Spin(13) + 1(64) + 3(13)

o Spin(14) + 1(64) + 4(14)

from compactifying the D; theory.
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3.7 Higher N?

For the “missing” theories of §3.5.2.9] and §3.6.2] we might hope to

find realizations in the higher Dy or Asy_; theories. It is easy to see that
is no help. The key realization is that we need a candidate free-field fixture,
consisting of three regular punctures. One of these punctures must be a full

puncture.

In the Dy theory, the full puncture, [1*], has a Spin(2N)sn_1) flavour
symmetry. The free fields transform as some representation of Spin(2/N) which
reproduce the level & = 4(N — 1). If the representation should happen to
decompose correctly under a Spin(12) (mutatis mutandis for a Spin(13) or
Spin(14)) subgroup, then we would have a chance to build a realization of one

of our missing gauge theories.

e For the Spin(12) theories of §3.5.2.9, we could note that the 64 of
Spin(14) decomposes as 1(32) +1(32"). But getting the right level would
require a puncture with level £ = 32, whereas the full puncture of the

D7 theory has only k = 24.

e For the Spin(13) and Spin(14) theories of §3.6.2] going to higher Dy
could only produce the 64 with multiplicity > 1, which also does not
help.

In the twisted sector of the Ay theory, the full puncture has Spin(2N+

1)a2n—1) flavour symmetry.
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e For the Spin(12) theories of §3.5.2.9) we need k to be a multiple of 8, so

none of these are satisfactory.

e For the Spin(13) and Spin(14) theories of §3.6.2, we need k to be a

multiple of 4, which also does not work.

What about the exceptional (2,0) theories? FE; and FEg contain our
desired gauge groups as subgroups. But neither the 56 of E7, nor the 248 of
Egs decompose correctly to provide candidate free field fixtures with one full

puncture (and two other regular punctures).

So it appears that the missing theories of §3.5.2.9| and §3.6.2 are not

realizable as compactifications of the (2,0) theory.
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Chapter 4

The E; Theory

In this chapter, we extend our classification program to the (2,0) theory
of type Eg[[] There is no known construction of the Fg theory as a low-energy
theory of a stack of M5 branes, as was the case for the A- and D-series. Rather,
the only known construction is as a compactification of IIB string theory on a
K3 manifold at an Fg singularity [50]. Still, computations are possible because
the the 4D N = 2 compactification of the Eg theory is controlled by a Hitchin

system [6] with gauge group Fg.

As a byproduct, we realize Fg gauge theory with matter in the 4(27),
as well as Fy gauge theory with matter in the 3(26), as compactifications of
the Eg (2,0) theory on a 4-punctured sphere. The Seiberg-Witten solution to
the Eg gauge theory, with Ny < 3 27s, appeared first in [51]. Our solution to

the superconformal F) gauge theory is new.

!This chapter is based on [49].
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4.1 The Egz Theory
4.1.1 The Hitchin system

The Coulomb branch of the 4D N = 2 theories obtained from the
compactification of the 6D (2,0) theory of type Eg on a Riemann surface C' is
described by the Hitchin equations on C' with complexified gauge group Fg [6].
We may also include codimension-two defects of the (2,0) theory localized at
points on C'; we refer to these as “punctures”. A class of punctures is classified
by nilpotent orbits (or, equivalently, by embeddings of s[(2)) in the complex-
ified Lie algebra eg [7]. One of the main points of the construction is that
a number of physical properties of the 4D theories can be computed directly
from geometric properties of the nilpotent orbits that label the punctures on

C', without any detailed knowledge of the (2,0) theory.

A puncture labeled by a nilpotent orbit O, and located at z =0 on C,

corresponds to a local boundary condition for the Higgs field,

B(2) == +... (4.1)

X
z
where @ is a holomorphic 1-form on C' that takes values in ¢ and transforms
in the adjoint representation of the gauge group, X is a representative of
the nilpotent orbit d(O) in ¢, and ... represents a generic regular function
of z taking values in eg. Here, d(O) is the image of O under the Lusztig-

Spaltenstein map d [14], 5, [7]. Representatives of all nilpotent orbits in eg

can be found in [52], and a diagram specifying the action of d, as well as
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other properties of the e orbits, are collected in Appendix C of [7] (taken
from [53], 54]) When d is not injective, we distinguish different punctures with
the same d(O) by their Sommers-Achar group C(O) [7], which is a discrete

subgroup of Eg, imposing gauge invariance of ® under the action of C(O).

As in our previous papers, we call O, which labels the puncture, the
Nahm pole, and d(Q), which appears in the Hitchin system boundary condi-
tion, the Hitchin pole. The physical properties of a puncture labeled by O will
be directly related to geometric properties of the orbits O and d(Q), and the

discrete group C(O).

Unlike classical Lie algebras, there is no natural parameterization of
the nilpotent orbits of exceptional Lie algebras in terms of partitions or Young
diagrams. Instead, the notation due to Bala and Carter is standard in the
representation theory literature. This notation has been briefly discussed in
previous works [7, 21, 33], but, for completeness, we review it in Appendix

[B.1] and discuss how to extract relevant information from it.

4.1.2 k-differentials

The low-energy solution of the 4D N = 2 theory is encoded in the
Seiberg-Witten curve, which is given by the spectral curve of the Hitchin
system, i.e., by the characteristic polynomial for the Higgs field ®, in repre-

sentation R of eq:
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Ygdetp(® — M) = A+ X255 + A9 B55 4o £ 55 =0,

where d = dim R and the A\?~! is zero because Tr(®) = 0. Different choices
of R will yield different curves 3. However, as discussed in [55], the physical

information that one can extract from them is the same.

For a choice of R, let s; be the coefficient of Nk for
kE=0,1,2,...,dim(R). (so and s; are trivial — they are 1 and 0, respectively.)
The si(2) are holomorphic k-differentials on C' (with poles at the punctures),
and can be expressed as polynomials in the trace invariants P, = Tr(®F).

Notice that both the s, and the P, are dependent on the representation .

On the other hand, we are actually interested in the Casimirs of ®,
which are the independent k-differentials providing the gauge-invariant infor-
mation contained in ®. For a Lie algebra g, the number of Casimirs is equal
to the rank of g, and their scaling dimensions are the exponents (minus 1)
of g. Unlike the s, or the Py, the Casimirs encode the non-redundant gauge-

invariant information in ®.

In our previous papers [3] 5, 4, [I7], the Lie algebra was of classical type,
and R was always chosen to be the smallest non-trivial representation (the fun-
damental for Ay_y, or the vector for Dy). In such cases, the coefficients sy
directly provide a basis for the Casimirs of . For example, for g = Ay_1, we
have N — 1 Casimirs, of dimensions 2,3,4,..., N. These dimensions match

precisely those of the non-trivial coefficients s if R is chosen to be the funda-
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mental representation. Thus, the s, can be taken to be the Casimirs of Ay_.
Similarly, for g = Dy, the N Casimirs have degrees 2,4,6,...,2N — 2; N. If
R is the vector representation, the s, with £ odd vanish, and the non-trivial
coefficients are sg, S4,...,San_2,Son. Here, son is the square of the Pfaffian,
sony = 52, and so 5 has dimension N. Thus, as before, the s, 54,. .., San_2; 3

provide a basis of Casimirs of Dy.

But if for Ay_; and Dy we had chosen R to be, say, the adjoint repre-
sentation, then, for large enough N, the s, would not have given directly the
Casimirs, but instead a lot of redundant information. For example, for As,
there are five Casimirs, with dimensions 2, 3,4, 5, 6. However, we have 34 non-
trivial coefficients sy, with dimensions 2, 3,4, ...,35. These s are polynomials

in the five Casimirs.

For j = ¢g, the Casimirs have degrees 2,5,6,8,9,12. In our computations,
we have chosen R to be the adjoint representation of eg, as it is readily available
in the form of structure constants; we used those from the computer algebra
system GAP 4 [56]. Instead of trying to compute the 78 coefficients si, we
focus directly on the trace invariants Py for values of k only as large as needed
to extract the Casimirs. For the adjoint representation of eg, the P, vanish
for k odd, and are non-trivial for k even, except for P, = 3—12(P2)2. Also, as we
will see below, to extract the Casimirs, we only need to consider the P, for

k=2,6,8,10,12,14. From the P, one can construct a less-redundant basis,
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b2 =55 Ps

P :i (P6 4608(P2) )

Ps :% (P8 - 'PGP? + 661355552<P2)4)

P10 =~ 105 (P1o PSP? + 6912P (P2) 63700992(P2> )

P12 = 155(P12 504P10P2 + 32256P8(P2) - 108(P6) 492;)6564P6<P2>
— grrsonem (F2)°)

P14 = 4389 (P14 14880P12P2 + 3214080P10(P2) - 2160P8P6 - 617103360P <P2)

165781 2p 3488947 4 19596907 7
+4821120 (Pﬁ) P 44431441920 Pﬁ(P2> + 409480168734720<P2) )

This basis was constructed so that it reduces the constraints in our
punctures to a minimum. In particular, the pole coefficients for the minimal
puncture have no redundancies; that is, the ¢, are such that it not be possible
to reduce their pole orders in z further by a change of basis, for z a local co-
ordinate centered at the minimal puncture. The ¢, basis also makes apparent

how the Casimirs of degree 5 and 9 appear. Specifically, ¢19 and ¢4 factor,

P10 = (¢5)27

P14 = 509
These relations define the odd-degree differentials ¢5 and ¢g (up to a sign,

which flips under the Z, outer automorphism of Es). So, we can declare the

k-differentials {¢a, 5, dg, @3, d9, P12} to be our basis of e¢g Casimirs. In the
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following, by the ¢, we will refer to the Casimirs, and ignore the auxiliary

differentials ¢19 and ¢4.

As for the Seiberg-Witten curve, to write it explicitly, we need to know
how the 78 coefficients s, depend on the six Casimirs ¢,. Instead, it is much
simpler to write down the (representation independent) Seiberg-Witten geom-
etry, given by an ALE fibration over C, and which equivalently describes the
low-energy solution of 4D N = 2 theories, but directly using the Casimirs

[44. [57]. Let us briefly review that construction.

4.1.3 ALE geometry

The 4D N = 2 SCFT constructed from the compactification of a 6D
(2,0) theory of type J (where J is of A-D-E type) on the Riemann surface
C' can also be obtained, in a dual manner, from IIB string theory on a non-
compact Calabi-Yau threefold, locally given by an ALE fibration over C' of

type J [44], 57]. For eg, the threefold is realized as the hypersurface

Xi 2{0 = w? + 2%+ + () 1y’ 4 65(2)2y + €6(2)y? + es(2)r + €9(2)y
+ e12(2) } C tot(KG & Kb o KQ)
where the €;(z) are k-differentials on C' [33] (in the “Katz-Morrison basis”

[58]), related to our ¢y (z) by
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€2 = §¢2
€5 = %¢5
_ 1 3
€6 = 7_2(_3% + 29256)
€8 = ﬁ(—?@g + 4o — ¢s)
€9 = %(—Cb%% + 4y)
€12 = 5157 (4012 + 605 — 120506 + 4 + 3¢30s)
The ¢x(z), in turn, depend on the Coulomb branch parameters, @, as we

determine below.

The Seiberg-Witten solution is obtained by computing the periods of
the holomorphic 3-form, €, over a symplectic basis of (rational) 3-cycles on
Xz which are locally of the form of a 2-sphere in the fiber times a curve on C.
In the conformal case (which will be our focus in this paper), many of these
cycles will necessarily be noncompact (the curve on C' being a open curve,
stretching between punctures). But, precisely for the parabolic case (where
the Higgs field ®(z) has simple poles at the punctures, with nilpotent residues),

the singularity is integrable, and the requisite periods of {2 are finite.

In our realization of F; gauge theory in §4.4.1.2] the differentials ¢5(z)
and ¢g(z) vanish identically. In this case, the Calabi-Yau, X3, has a holomor-
phic involution, y — —y, under which  — —Q. The 3-cycles which give the
Seiberg-Witten solution are the anti-invariant cycles and the periods of €2 over

those cycles are finite, despite the slightly singular nature of Xz itself.
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4.1.4 Puncture properties

We describe below how to compute the properties of a puncture. There
is a systematic way to compute every property of the puncture, except for the
constraints, so it is easiest to compute the other properties first, and use them
to guess the constraints. Below, let O be the Nahm nilpotent orbit that labels

a given puncture, and su(2)p the associated su(2) embedding in es.

4.1.4.1 Flavour groups

The Lie algebra f of the flavour group F' = Fp is the centralizer of
su(2)p in eg. A list of the centralizers for each O can be found in Table 14 of

[7], taken originally from [59).

The levels of the simple, nonabelian factors f; in  follow from the
decomposition of the adjoint of eg under su(2) x f. These decompositions can

be deduced from the Bala-Carter label for O, and are summarized in
in Appendix [B.1]

Let the decomposition of the 78 be

Cg — @Vn & Rn,i

where V,, is the n-dimensional irrep of su(2) (denoted by “n” in|[the table) and
R, is the corresponding (reducible) representation of f;. Let [,,; be the index

of R, ;. Then, the level of f; is k; =) 1.

For example, consider the 34; puncture, which has f = su(3) x su(2).
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From in Appendix [B.1] we have, for f; = su(3),
Ri=8+3(1), Ro=2(08), Ry=8+1, Ry=2(1),
and so the level is kgy3) = 4ls = 24. Similarly, for f, = su(2), we have
Ri=3+8(1), Ro=8(2), Rs=9(1), Ri=2,

and thus the level is kgy2) = 3+ 9l =4+ 9 x 1 = 13.

4.1.4.2 ony and on,

The effective number of hyper- and vector multiplets, dn; and dn,, can
be computed using the formulas in eq. (3.19) of [7]. Basically, given O, one
needs to know how eg decomposes into eigenspaces of the Cartan element of

su(2)o.

Here, let us recast those formulas in terms of the weighted Dynkin
diagram for O, which can be found in Table 14 of [7]. Let Z be the six-
dimensional vector consisting of the labels of the weighted Dynkin diagram
for O. Now, for each root a of Eg, let k be a six-dimensional vector consisting

of the (integer) components of « in any basis of simple roots. The “Weyl

-

vector” is W = %Zﬁzo E, where the sum is over positive roots. Let ng and
n1/2 be the number of roots a that satisfy (7/2) - k=0and (2/2) -k = 1/2,

respectively. (The dot product is Euclidean.) In this notation, the formulas
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in eq. (3.19) of [7] are:

- : 1 - 1
ny(7) =8 (%hv(EG) dim(Fg) — §W : :E) + v
1 1 (4.2)

where hY(Eg) = 12 denotes the dual Coxeter number of Fj.

For example, for # = 0, corresponding to the maximal puncture, one has
that the adjoint of Eg decomposes trivially into singlets of su(2), 78 — 78(1),
SO no(ﬁ) = dim(FEs) — rank(Es), and n1/2(6) = 0. Thus,

n1,(0) = 2hY(Es) dim(Es) = 624

1

n,(0) = 20" (Es) dim(Ey) 5 (dim(Eg) — rank(E)) = 588

As a self-consistency check, recall that the complex dimension dim¢(O) of
the orbit O (seen as a manifold) is related linearly to the difference n;, — n,.
Specifically, nj, —n, = C'— 1 dim¢(0O), where C' = n,(0) —n, (0) = +(dim(Eg) —

rank(Fs)). In other words,
dim¢(O) = dim(Es) — rank(£s) — (n1/2 + no), (4.3)

The dimensions of the nilpotent orbits of Fg are listed in Table 14 of [7].

For a non-trivial example, consider the puncture 2A4;, which has weighted

Dynkin diagram

0
1 0001
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that is, # = (1,0,0,0,1;0). One finds W = (8,15,21,15,8;11), ny,, = 16,
ng = 24. Thus, n,(24;) = 568 and n,(2A4;) = 548, and one indeed checks
(4.3) for dimc(24,) = 32.

4.1.4.3 Pole structures

The “pole structure” is the set of leading pole orders {p2, ps, Ps, Ds, Po, P12}
in the expansion of the Casimirs ¢, in a coordinate z centered at the puncture,
Or(z) ~ 1/2P*.

To compute the pole structure, we need a representative of the Hitchin
nilpotent orbit d(O). A table of representatives of all nilpotent orbits of Fg
can be found in Table 2 of [52]. In this table, a nilpotent representative is given
by a sum of weighted Dynkin diagrams, and each weighted Dynkin diagram
represents an element in the root vector space of eg for a positive root «, where
« is such that its components in a basis of simple roots are given by the labels
of the Dynkin diagram. The nilpotent representative is the sum of these root-
vector space elements. This procedure is most easily understood in terms of

an example.

Take, for instance, O = Dy4(ay). The Hitchin orbit, given by the Spal-
tenstein dual, is the same, d(O) = O = Dy(a;). This orbit has a nilpotent

representative X given by a sum of five elements [52],
0 1 0 1 0

o—o—i—o—o+o—o—i—o—o+o—o—i—o—o+o—o—i—o—o+o—o—i—o—o

01000 00100 00110 00O0O0O 0001O0
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The five summands above represent arbitrary non-zero elements X,, (i =

1,...,5) in the root vector spaces for the positive roots
) = Sg, Q4 = Se,
Qg = 53 + Sg, Q5 = Sy,

Qi3 = 83 + Sy,
respectively, where {s1,...,s5; S} is a basis of simple roots of Fg. So, X =
X, ++ -+ X,,. Fortunately, GAP4 provides a Chevalley basis for the adjoint
representation of eg, so it is trivial to find elements X,.. Once we know X, we
compute ®(z) using X as the residue in (4.1)), then the Casimir k-differentials
¢ as in §5.1.2 and we finally find the pole structure {1,3,4,6,6,9} for the
Dy(ay) puncture. (Actually, there are three orbits, Dy(a1), As+ Ay and 24, +
A, that map under Spaltenstein to Dy(a;), so we have three punctures with
the same pole structure. However, the other properties of these punctures are

different.)

4.1.4.4 Constraints

The constraints for some Fg punctures are, in some cases, much less
obvious than those in the Ay_; and Dy series. The guiding quantities to
find constraints are dn,, and the (complex) dimension of the Hitchin nilpotent
orbit, d. These are, respectively, the graded and ungraded local contributions

to the Coulomb branch.

Let us be specific. Let z be a local coordinate on C' centered at the

puncture, and let cl(k) be the coefficient of 2! in the expansion of ¢, = ¢p(2)
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in z. Recall that, in the notation of our previous papers, a “c-constraint” is a
polynomial relation among coefficients cl(k) (of homogeneous bi-degree in both
k and [). On the other hand, an “a-constraint” is a relation that defines a new
quantity, al(k), of dimension k, in terms of the cl(k). Only the cl(k) with [ > 0
parameterize the Hitchin nilpotent orbit [21]. In the absence of constraints, all
the cl(k) with 0 < [ < py are independent, so their total number, > pg, should
be equal to the dimension of the Hitchin nilpotent orbit. Thus, if there are no
constraints, Y pr = d. A c-constraint reduces the total number of independent

parameters by one, whereas an a-constraint does not affect this number. So,

one should have:

Z pr — (number of c-constraints) = d

Hence, d tells us how many c-constraints exist. On the other hand, the graded
sum of the parameters, that is, the result of adding (2k —1) for each parameter
of degree k (in the presence of “a”-constraints, k is not restricted to the degrees
of the Casimirs), should be equal to n,. An a-constraint replaces a parameter
of a certain degree k by another one of a different degree k' < k. So, to get

precisely n,,, one must take into account all a-constraints and c-constraints.

4.1.4.5 Puncture collisions

Suppose we have two punctures on a plane, so the Higgs field has two
simple poles with residues X; and X,. Near each puncture, the Higgs field ®
looks like eq. (4.1). In the limit where the two punctures collide, the Higgs
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field has one simple pole with residue X = X + X, (by the residue theorem
applied to the sphere that bubbles off), which corresponds to a new puncture.
Generically, X will be mass deformed. The mass deformations are interpreted
as VEVs of the scalars in the gauge multiplet associate to the factor in the
gauge group which becomes weakly coupled in the collision limit. One can
also study this degeneration by computing the Casimirs ¢, from the Higgs

field before taking the collision limit.

Alternatively, one can bypass the Higgs field, and study the collision
directly with the ¢, by writing a generic k-differential with poles at the po-
sitions of the two punctures (given by their pole structures), and imposing
at each pole the constraints of the corresponding puncture. Then, taking the
collision limit, the pole structure and constraints of the resulting puncture on

the plane arise naturally.

As an example, let us see that the collision of two Ds punctures on a
plane produces an Sp(2) gauge group, gauged off an A3 puncture. Let us write
generic Casimirs for the collision, taking the Dy punctures to be at z = 0 and

Z =T
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Us + 209 + 2(2 — x) Py(2)

02(2) = 2(z — o)

us + 2vs + 2(2 — x)ws + 2%(2 — x) P5(2)
¢5(2) = 20, _ 2

ug + 206 + 2(2 — T)we + 2%(2 — 1) Pg(2)
96(2) = 23(z — x)3

ug + 2vs + 2(2 — )ws + 2%(2 — x)ys + 2%(2 — 2)? Fy(2)
9s(2) = 24z —x)t

ug + 2vg + 2(2 — T)wg + 2%(2 — 1) Py(2)
Po(2) = i, _ )4

24(z — x)

Urg + 2012 + 2(2 — 2)wie + 2%3(2 — 2)y1o + 2%(2 — 2)? Ppa(2)

P12(2) = 6(» — )6 ’
28(z — x)
where Py(z), Ps(2),. .., P1a(z) denote regular functions in z. To solve the con-

straints at each Dj puncture, we introduce new parameters s; and t; of di-

mension four, and write:

Ug = 1 Ug :§(t4U2 + 54U2 + tyv),
ug =353, vy =3(284ty + t3T),
Uy = — 844&; Vg = — Z(t4u5 + 8405 + t4v57),
U1o :3782, V1o :%54(38?L + 3sutqx + taz?),
W1a 22(3547@21 + sqwg + 2t51), Yo = — Z(ti — tywsg — Sq4Ys — t4YsT)
In the collision limit, z — 0, the new puncture appears at z = 0. The

expansion in z of the Casimirs in this limit is:

198



22 z
Us
_3$4u2 3(t4’d2 -+ 84U2) We
%6(2) = 226 225 24 te
352 Gsyty  ws
A=
. S4Us (t4U5 + 841}5) Wq
Cbg(Z) = 18 17 + 6 +...
(b ( ) 352 QSZt4 3(384ti + S4w8) 3(15?1 — t4w8 — s4y8) n
z) = — .
12 2212 ° 211 4210 429 ’

where the ... indicate less singular terms in z. So, us and s4 can be interpreted
as the VEVs of Coulomb branch parameters (of degree two and four) of the
gauge group (which, with a little more work, can be checked to be Sp(2)). In
the limit us, s4 — 0, we obtain the Casimirs for the massless puncture, with
pole orders {1,4,4,6,7,9}, and with constraints

9 1.

Cg ) :§t4U5

3 -
0512) :67??1 — —w8t4,
2
where #; = —t,/2. Thus, we get precisely the pole structure and constraints

of the Az puncture.

4.1.5 Global symmetries and the superconformal index

4.1.5.1 Cataloguing fixtures using the superconformal index

For the Eg theory, we find 880 fixtures with three regular punctures

which correspond to interacting SCFTs, possibly with additional decoupled
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hypermultiplets. Each of these SCFTs has a manifest global symmetry group,
which is given by the product of the flavor symmetry groups of the three
punctures. This global symmetry group may, in general, become enhanced to

a larger group.

To determine the global symmetry group and number of free hypermul-
tiplets for each of these fixtures, we use the superconformal index [22| 23] 24]
25, 26]. The superconformal index of E-type class S theories has not yet been
systematically studied. However, since the methods used for A- and D-type
theories generalize to any root system, we assume the superconformal indexE|

for a fixture in the Eg theory takes the usual form

o) = )Y I (2P Mailr) )

atrlv |7—)

where

e The sum is over A labeling the highest weights of finite-dimensional ir-

reducible representations of eg.

e The P*(a;|7) are Hall-Littlewood polynomials, defined for a general root

system by

2In what follows we will consider the Hall-Littlewood limit of the index [24], which
depends on one superconformal fugacity, 7
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where R denotes the set of positive roots, W the Weyl group, and ¢(w) the

length of the Weyl group element w.

e a; = {e*},er+ denotes a set of flavor fugacities dual to the Cartan
subalgebra of the flavor symmetry of the i*® puncture. ay;, denotes the
set of fugacities dual to the Cartan of the embedded su(2) of the trivial

puncture.

e The K-factors are discussed in [24] [60], 27, 26]. We will not need their

detailed form for our purposes.

e A(7) is an overall, flavor fugacity independent normalization.

Consider a fixture corresponding to an interacting SCF'T, with global symme-
try Ggiobal, Plus free hypermultiplets transforming in a representation R of a
flavor symmetry F. Let Gaxy = Gglobal X F' denote the global symmetry of the
fixture. As discussed in [27], the number of free hypers in the fixture and the
global symmetry of the fixture can be read off from the first two non-trivial

terms in the Taylor expansion of the index. Schematically, this is given by

IT=1+xfr+xed 77+ (4.5)
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where Y is the Weyl character of R and Xaaijxt is the character of the ad-

joint representation of Gy, where both of these representations are viewed
as reducible representations of the manifest symmetry algebra. By Taylor ex-
panding Zge. = PE[Tx%] (where PE denotes the Plethystic exponential) and

removing the contribution of the free hypermultiplets in (4.5)), we arrive at

Iscrr = Z/Tsree

adj
Gglobal

=1+ 4.

from which we can read off the global symmetry of the interacting SCF'T.

4.1.5.2 Computing the expansion of the index

In (5.2) the term in the sum coming from the trivial representation of

¢g gives, to second order in 7, [27]

I:]_—I—Xadj 72+"'

Gmanifest
encoding the manifest global symmetry group. The global symmetry group
of the fixture is enhanced if there are terms contributing at order 72 coming

from the sum over A > 0.

To order 72, (5.2)) simplifies to [

3Since the theories considered here are all “good” or “ugly” (in the sense of [61]), the
lowest possible contribution from the sum over A > 0 is at order 7 (see [27] for a discussion
of the superconformal index in the context of the good/ugly/bad trichotomy of 4d N = 2
theories). From (4.6)), we see that A(7) and K(a;) are both 1 + O(72), so we can set them
both to one in the order 72 approximation. We have also used the fact that P = x*+0O(72).
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adi i alT
I:1+de ZH IX | )]0(72) (46)

Gmanifcst a |7—
A>0 triv
To compute (4.6)), we consider each eg representation in the sum to be a re-
ducible representation of su(2) x § and plug in the corresponding character
expansion, where the embedded su(2) has fugacity 7. The decomposition of
any eg representation in terms of su(2) x f representations can be obtained

using the projection matrices listed in Appendix

Of the 881 fixtures involving three regular punctures, we find that 1
is a free-field fixture, 60 are mixed fixtures and another 134 are interacting
fixtures with an enhanced global symmetry group. We list these in the tables
below. For the remaining 686 interacting fixtures, the global symmetry group

is the manifest one.

As an example, consider the fixture

The manifest global symmetry is (Fg)as X SU(3)12 X U(1). The contributions
at order 72 come from the sum over the 27, 27, 78, 351, 351, 351/, 351, and

650 of ¢s. The expansion of the superconformal index is given by [f

4For simplicity, we write the dimension to stand for the character of the corresponding
representation. The subscript is the U(1) weight.
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I = ]. + {(27, ].)1 + (T, 1)_1}’7' —f- {(]_, ]_)0 —|— (78, 1)0+
(650, 1) + (27,1)_5 + (351", 1) _5 + (27, 1)o+

(351, 1) + (78,1) + (1,8)0 + (27,3)0 + (27, 3)o} 72 + . ...

Due to the order 7 term, this is a mixed fixture, with 27 free hypermultiplets
transforming in the fundamental representation of Eg. The index of these free

hypers is given by

Three = PE[T{(Q,?’ 1)1 + (2_7’ 1)—1}]
L {27, D + (T 1))t
{(L, 1) + (78, 1)0 + (650, 1)o + (27, 1)y + (351, 1)y + (27, 1)

+ (35T, 1)} 7% + ...
The index of the underlying SCFT is then

ISCFT = I/Ifree

— 14 {(78,1)0 + (1,8)0 + (27,3)0 + (27, 3)o} 72

We recognize the coefficient of 72 as the character of the adjoint representation
of Eg. Computing the other numerical invariants of the fixture, we find that
this is the (Es)12 theory of Minahan and Nemeschansky [62] with 27 additional

free hypermultiplets.

4.1.6 Levels of enhanced global symmetry groups

Since the superconformal index gives the branching rule for the ad-

joint representation of Gglopa under the subgroup Ganifest, it most cases it is
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straightforward to determine the level of each factor in Gyiopar from those of

Gmanifest: 1f Hys is a subgroup of Gy, then k is given by [2]

/
k= h
[Hc—>G

where Iy, is the index of the embedding of H in G.

There are two cases which require a little more work. The first is when
a manifest U(1) becomes enhanced to SU(2). Since we do not know how
to assign a level to a U(1) flavor symmetry (which would require a precise
understanding of how the generator is normalized), we cannot immediately

determine the level of the enhanced SU(2) from the index.

The second case is when some factor Hy in Ganifest 1 embedded diag-

onally as

H, — Hkl X HkQ.

Since the only embedding of H in itself has index one, in this case, all we know

is that kl + ]ﬂg =k.

If any of these remain as factors in Ggopa (that is, if they do not
combine with some other factor, with known level, to enhance Ggiopal), We
cannot determine their levels from the index, and must determine them using
an S-duality. To do so, we look for a 4-punctured sphere for which the SCF'T
appears in some degeneration, with Hy, in the centralizer of subgroup of Giopal

being weakly gauged.
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Unfortunately, there are a few such fixtures for which no puncture can
be gauged (some of these can still be gauged in the twisted sector, which will be
discussed in . For these, we do not have a way to determine the levels. In
the end, there are two interacting fixtures whose levels we cannot completely

determine.

4.2 Tinkertoys
4.2.1 Regular punctures

The pole structure {ps, ps, ps, Ps, P9, P12} of a puncture at z = 0 will be
the leading pole orders in z of the differentials ¢ (z) for £ = 2,5,6,8,9,12.
Notice that in some cases there are constraints, not just on the coefficient of
this leading singularity, but also on subleading terms in the Laurent expansion

of the k-differentials.

Table 4.1: Untwisted regular punctures

Nahm [ Hitchin

B-C B-C

label label Pole structure | Constraints Flavour (6np, dIny)

group
0 Es {1,4,5,7,8,11}] - (E6)qy4 (624, 588)
Aq Eg(a1) | {1,4,5,7,8,10}| - SU(6),5 (590, 565)
244 Ds {1,4,5,7,7,10}| - Spin(7),4 | (568,548)
xU(1)

3A1 (Eﬁ(afﬁ)’ {1547576a 7a 10} - SU(3)24 (549a533)
(ns) Zs) xSU(2),3
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Table 4.1: Untwisted regular punctures

Nahm [ Hitchin
B-C B-C
label label Pole structure | Constraints Flavour (6np, dny)
group

(12) (6)2 (6)2 2
Ay | Bslas) | {1.4,5,6,7,10} 12— ()2 4 (@) | SUB)Y, | (536,521)
Ay + | Ds(ar) | {1,4,5,6,7,9} | - SU(3),,x | (523,510)
Ay u@)
24, Dy {1,3,5,6,6,9} | - (G2)19 (496, 484)
Ay + | Ag+ A, | {1,4,4,6,7,9} | - SU(2),,% | (510,499)
24, u()

9 — 10515)a§4)

(12) _ (4)\3
Az | A {1,4,4,6,7,9} | ¢~ = 6(a5") Sp(2)19 % | (476,466)

U(l
el

245+ | (Da(ar),| {1,3,4,6,6,9} | - SU(2),s | (482,473)
Ay (ns)  gy)

12 4 4)\2

o = afh (1 af)
As + | (D4(a1),| {1,3,4,6,6,9} SU(2)g x | (465,457)

_ 8

Aq (ns) Zs) Ce U(1)
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Table 4.1: Untwisted regular punctures

Nahm [ Hitchin
B-C B-C
label label Pole structure | Constraints Flavour (6np, dny)
group
8 4))2
i =4 (")
+3(a)?)
2
D4(Cl1) D4(6L1) {1537476a6a9} (12) 4 (4) (412 U(l) (456a449)
cg sas ((ag’)
—9(ag(4))2)
2
49 = 3(af)
9 1.0 ,(4)
Ay As {1,3,4,6,6,9} (162) 1% (Z) , SU(2)g x | (408,402)
9 %(% ) U(1)
12 4) (8
4 = 30l
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Table 4.1: Untwisted regular punctures

Nahm [ Hitchin
B-C B-C
label label Pole structure | Constraints Flavour (6np, dny)
group
cés) = — 404(16)c§2)
+4cé5)aég)
()l
9 3)( (6
4 =~ 3al® (e
3)32
+1(af”)?)
A2 (c(6>
Dy 24, {1,3,4,5,6,8} 4 SU(3),, | (368,362)
3)y 2
+1(a”)?)
(&
- 3 2
~3(a")")
0(712) = —12cég)a§3)
—20516)cg6)
6) [ (3))2
el (o)
Ay + | Ay + | {1,3,4,5,5,7} | - U(1) (400, 395)
Ay 24
2
0516) _ _é (aé@)
Ds(a)| Az+Ar | {1,3,4,5,5.7F | (8 _ 9.5, U(1) (355,351)
0(712) = —GCég)a(Qg)
As (ns)| (Az2,Z2) | {1,2,4,4,4,6} | - SU(2), (335,331)
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Table 4.1: Untwisted regular punctures

Nahm [ Hitchin
B-C B-C
label label Pole structure | Constraints Flavour (6np, dny)
group
2
Eg(as)| As {1,2,4,4,4,6} | {9 = (ag?’)) none (328,325)
cz()’G) %c?)agl)
8 4)32
CEL ) = 3(aé ))
D5 2A1 {172,3747436} 04(19) = iag@c?) U(l) (2403238)
12 4)\3
A = 30L)
12 8) (4
o = 0l
Eg(ay)| Ay {1,1,2,2,2,3} | - none (168,167)

Note that there is a special piece, consisting of three punctures: 24, +

Ay, A3+ A, and the special puncture Dy(ay). For 245+ A;, the Sommers-Achar

group is the nonabelian group, Ss. It acts on a®,a’¥ as

for

o) h):

al

1) o®
ad@ ) 77 g

N
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For A3z + Ay, the Sommers-Achar group is the Zs subgroup of Sz, generated
by a'® — —a/™®. For D4(a;), the Sommers-Achar group is of course trivial,

so that both a®, a’® survive as Coulomb branch parameters.

4.2.2 Free-field fixtures

We denote a 3-punctured sphere, in the tables below, by listing the
Bala-Carter labels of the three punctures. For the free-field fixtures, one of
the punctures is an irregular puncturﬂ (in the sense used in our previous
papers), which we denoteﬂ by the pair, (O, Gy), where O is the regular punc-
ture obtained as the OPE of the two regular punctures which collide, and this

fixture is attached to the rest of the surface via a cylinder

(0,Gy) 250

with gauge group G C F' C Eg. Here, F' is the flavour symmetry group of the

puncture, O, and the levels are such that G has vanishing g-function.

Table 4.2: Free field fixtures

# | Fixture ny | Representation
E6(CL1>
1 (A5, SU(2),) 1|12
B (CL1) 5 1 2
E,
2 (@) (A4, SU(2),) 0 | empty
5

50r, in the case of fixture 13, a full puncture, corresponding to the trivial orbit, 0.
8For brevity, we will often omit the level, k, when denoting an irregular puncture.
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Table 4.2: Free field fixtures

# | Fixture ny | Representation
E

5 | Bolar) (24s, SU(3),) 0 | empty
Eﬁ(ag)

FEg(a
AR NCY AN 7 | 1@,

5

E

5 o(a1) (Ay+ A1, SU(3),) | 0 | empty
D5(a1)

E6(Cl1)

6 24;, (G 0 t
A+ A (244, ( 2)0) empty
E

7 | Bl 4, sus)) 0 | empty

4
E
s | B oa spinmy) | s 1(2,8)
4
Eﬁ(a1) .

9 0, Spin(8 0 | empt
D4(a1) ( p ()0) pty
Es(a )

10 A:J(riil (0, Spin(9),) 9 | 12,9
FEg(a

11 2A§(+lf>h (0, (Fy)y) 26 | 1(2,26)
E

12 i(lal) (0, Spin(10),) 20 | 1(4,10)

3

13| Eolar) 54 | (2,27)
Ay + 24,

Ds

14 (A3, Sp(2),) 41 1(4)
5

15 Do (24, SU(4),) 0 t

, em
EG(CLB) 1 0 pty
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Table 4.2: Free field fixtures

# | Fixture ny | Representation
D
16 | 7 (244, Spin(7),) 7| 12,7
5
Ds
17 (A1, SU(5),) 5 | 1(5)
D5((11) ! 2
s | P (0, Spin(10),) 16 | 1(16)
, o
A+ A PR s
Ds
19 (A, SU(6),) 18 | 3(6)
4

4.2.3 Interacting fixtures with one irregular puncture

In the tables below, ng is the number of Coulomb branch parameters

of degree d. The total Coulomb branch dimension is ) ,n4 and the effective

number of vector multiplets is n, = >_,(2d — 1)nq.

Table 4.3: Interacting fixtures with one irregular punc-

ture
FiXture (n2,n3,n4,n5,n6,n8,M9,Nn12) (nh, nv) Theory
E2654al) (07 <F4)12) (07070707 1707070) (407 11) (E8)12 SCFT
2

125 (0, Spin(10),) | (0,0,1,0,0,0,0,0) (24,7) (E7)g SCFT

4
E(as) (0, (Fy);,) | (0,2,0,0,0,0,0,0) (32,10) | [(Eg), SCFT]?
Eﬁ(ag) ) 4)12 y 4y Jy Uy Uy Uy Uy ) 6/)6
Ei(lag) (07 (F4>12) (07 17 07 07 ]-7 07 07 0) (397 16) (E6)12 X SU(2)7
- b SCET
j45 (0, (Fy)yy) (0,0,0,0,2,0,0,0) (46,22) | (F1),, x SU(2)

> SCET
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The (Fg),,x SU(2), and (Fy),, x SU(2)? first appeared in [5], as fixtures

in the untwisted D, theory.

4.2.4 Interacting fixtures with enhanced global symmetry

Table 4.4: Interacting fixtures with enhanced global symmetry

# Fixture (n2,n3,n4,n5,n6,n8,M9,N12) (nh7 nv) Gy,
E,
1 ‘";(1“1) 0 (0,0,0,0,2,0,0,0) (80,22) | [(Es)i2 SCFT]?
2
E,
2 ;i{“l) 0 (0,0,0,0,1,0,0,1) (93,34) | (Eg)2a x SU(2)13
1
E,
3 ;E:l) 0 (0,0,0,0,1,1,0,1) (112,49) | (E7)2a x Spin(7)16
1
E,
4 ‘j‘“) A (0,0,0,0,1,1,1,0) (100,43) | SU(12)1s
1
Ds ;
5 0 (0,0,3,0,0,0,0,0) (72,21) | [(E7)s SCFT]
Dy(aq)
D [(E7)g SCFT]
6|, j N (0,0,2,0,0,1,0,0) (81,29) < [(Br)y
s x SU(2), SCFT]
Ds
7 0,0,1,0,0,1,0,1 98, 45 Er)os x SU(2
24y + A ( ) ( ) | (B7)aa (2)26
D [(E7)g SCFT]
8 A5 0 (Oa05271707 1,0,0) (92738) X[(Eﬁ)IG X Sp(2)10
s xU (1) SCFT]
D
9 0 (0,0,1,0,1,1,0,1) (112,56) | (E7)2q x (Go2)12
24,
Ds
10 (0,0,1,1,0,1,1,0) (92,48) | SU(8)1s x SU(2)s6 x
D
11 A (0,0,1,1,1,1,1,0) (105,59) | SU(7)1s x SU(3)12 x
Ay + Ay U(1)2
D
12 A5 24, (0,0,1,1,2,1,0,0) (96,53) | Spin(8)1s x SU(4)7, x
2

U(1)
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Table 4.4: Interacting fixtures with enhanced global symmetry

# | Fixture (n2,n3,m4,n5,n6,n8,n9,m12) | (N, M) | Gi
D

1377 A (0,0,1,1,2,1,1,0) (118,70) | SU(6)15 x SU(3)3, x
A2 U(1)2
D

14 3,45 34, (0,0,1,1,1,0,0,1) (90,50) | SU(6)as x Sp(2)13

1

Ds )

15 24, (0,0,1,1,1,1,0,1) (109,65) | Spin(7)16 x SU(4)as X
341 SU(2)1s x U(1)
D

16| 7° 24 (0,0,1,1,1,2,0,1) (128,80) | Spin(7)2¢ x SU(2)as x
2A, U(1)2
Eg(a3)

17 0,1,0,0,1,1,0,1 104,54) | (B
Ao+ A, ( ) ( ) | (E7)24
E

18 | Pelas) (0,2,0,0,1,0,0,0) (72,21) | [(Es)12 SCFT] x

Da [(E)s SCFT]?

E(;((lg)

1970 %0 (0,1,1,0,1,1,0,1) (112,61) | (E1)2q x SU(2)s

4

Eg(a3) o2 9

20 A, (0,1,2,0,2,0,0,0) (72,41) | Spin(8)%, x U(1)
D4(a1)
E

o1 | Folas) 54 (0,1,2,0,1,0,0,1) (85,53) | Spin(8)as x SU(2)13
Dy(aq)
Eg(as3) . 3

22 24, (0,1,2,0,1,1,0,1) (104,68) | Spin(T)16 x SU(2)3,
Dy(ay)
E

23 6(as) A (0,1,1,0,2,1,0,0) (81,49) | Spin(7)2, x SU(2)g x
Az + A U(1)
Eg(a3) )

24 34, (0,1,1,0,1,1,0,1) (94,61) | Spin(T)as x SU(2)13 x
At A SU(2)g
E

o5 | Folas) o4 (0,1,1,0,1,2,0,1) (113,76) | Spin(T)1s x SU(2)ss X
Az + Ay SU(2)94 x SU(2)9
FEg(as) 9

26 0,1,0,0,2,1,0,1 98,65 G2)?, x SU(2
oAy 4 A4, 2 ( ) ( ) | (G2)1, (2)26

o7 | Folas) 34, (0,1,0,0,1,1,0,2) (111,77) | (G2)os x SU(2)ag x
245+ Ay

SU(2)13
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Table 4.4: Interacting fixtures with enhanced global symmetry

# | Fixture (n2,n3,m4,n5,n6,n8,n9,m12) | (N, M) | Gi
E,

28 6(as) 24, (0,1,0,0,1,2,0,2) (130,92) | Spin(7)16 x SU(2)26 X

24+ A SU(2)72
Eg(as) 2

29 A, (0,1,1,1,2,1,0,0) (92,58) | SU(4)2, x Sp(2)0 x

A3 U()
E

30 | Folas) 34, (0,1,1,1,1,1,0,1) (105,70) | SU(4)24 x Sp(2)10 X

As SU(2)13
EG(GS) .
31 24, (0,1,1,1,1,2,0,1) (124,85) | Spin(T)1s x Sp(2)10 x
A3 SU(2)0s x U(1)
Eg(a3)
32 Ay +24, | (0,1,0,1,0,1,1,1 100,69) | SU(4)s4 x U(1
Ay +o4, 2 1| ( ) ( ) (4)54 x U(1)
Eg(as)

33 Ay + Ay (0,1,0,171,1,1,1) (113,80) SU(3)54 X SU(3>12 X
E

34 | Folas) Ay (0,1,0,0,3,1,0,1) (112,76) | (G2)2,
24,
E

35 | Folas) 34, (0,1,0,0,2,1,0,2) (125,88) | (Ga)os x (Ga)ia x
242 SU(2)13

FEs(as) )

36 24, (0,1,0,0,2,2,0,2) (144,103)] Spin(T)1s x (Ga)1z x
24 SU(2)7
E

37 | Polas) Ay + Ay (0,1,0,1,2,1,1,1) (126,91) | SU(3)%, x SU(2)as x

Ay + Ay U(1)
As
38 0,0,0,0,2,1,0,1 111,60) | (Eq)aq x SU(2
Ay + A ( ) ( ) | (E7)24 (2)7
A
39 % 0 (0,1,0,0,2,0,0,0) (79,27) | [(Es)12 SCFT] x
D, [(E6)12 x
SU(2)7 SCFT]
A
01177 0 (0,0,1,0,2,1,0,1) (119,67) | (E7)ss x SU(2)s x
As SU(2);
A
41 g ) (0,0,2,0,3,0,0,0) (79,47) | Spin(8)%, x SU(2)-
Dy(ar)
A
42 >34, (0,0,2,0,2,0,0,1) (92,59) | Spin(8)as x SU(2)15 x
Dy(aq)

SU(2)7
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Table 4.4: Interacting fixtures with enhanced global symmetry

# | Fixture (n2,n3,m4,n5,n6,n8,n9,m12) | (N, M) | Gi
A
43 Y'Y (0,0,2,0,2,1,0,1) (111,74) | Spin(T)1s x SU(2)3, x
Da(a1) SU(2)z
A
44 A (0,0,1,0,3,1,0,0) (88,55) | Spin(7)2, x SU(2)e x
Az + Ay SU(2)7
A
45 o34 (0,0,1,0,2,1,0,1) (101,67) | Spin(T)as x SU(2)15 x
Az + A SU(2)g x SU(2)7
6| M a4 (0,0,1,0,2,2,0,1) (120, 82) Spin(T)16 x SU(2)as
Ag+ 4, 1 e ’ X SU(2)24 x SU(2)g
xSU(2)7
A
47 b A, (0,0,0,0,3,1,0,1) (105,71) | (G2)?, x SU(2)2 x
242 4 SU(2);
A
48 5 34, (0,0,0,0,2,1,0,2) (118,83) | (Ga)as x SU(2)2 x
2A2 + Al SU 2)13 X SU(2)7
A
49 b 24, (0,0,0,0,2,2,0,2) (137,98) | Spin(7)1s x SU(2)7s x
242 + Ay SU(2)26 x SU(2);
A
50 | ©° A, (0,0,1,1,3,1,0,0) (99,64) | SU(4)2, x Sp(2)10 X
As SU(2)7
A
51177 34 (0,0,1,1,2,1,0,1) (112,76) | SU(4)2s x Sp(2)10 X
As SU(2)15 x SU(2)s
A5 szn(?)lﬁ X Sp(2)10
52 2A 0,0,1,1,2,2,0,1 131,91
A3 ! ( ) ( ) XSU(2)24 X SU(2)7
xU(1)
A
53 ° Ay +2A; | (0,0,0,1,1,1,1,1) (107,75) | SU(4)s4a x SU(2)7 x
A2 + 2A1 U(l)
A
54 > As+ A, | (0,0,0,1,2,1,1,1) (120,86) | SU(3)54 x SU(3)12 x
A + 24, SU(2)7 x U(1)
A
55 2,45 A, (0,0,0,0,4,1,0,1) (119,82) | (Go)?, x SU(2)7
2
A
5|, A5 34, (0,0,0,0,3,1,0,2) (132,94) | (G2)2a % (Ga)i2 X
2

SU(2)13 X SU(2)7

217




Table 4.4: Interacting fixtures with enhanced global symmetry

# | Fixture (n2,n3,m4,n5,n6,n8,n9,m12) | (N, M) | Gi
A
57 77 24, (0,0,0,0,3,2,0,2) (151,109)] Spin(7)15 x (Ga)ia x
24, SU(2)72 x SU(2)7
A
58 A+ A; |(0,00,1,3,1,1,1) (133,97) | SU(3)2, x SU(2)as x
Az + 4 SU(2)7 x U(1)
Ds(ay)
59 (0,2,0,1,0,0,1,0) (86,36) | (E7).g x (Eg)g x U(1)
Ds(ay)
6o | Do) (0,1,0,1,1,1,1,0) (97,57) | SU(7)1s x U(1)?
As+ Ay
D
o | o) 0,20,1,1,0,,0) | (99.47) | (Be)ly x (Eo)g
Dy SU(3)15 x U(1)
D
62 | Do(ar) A (0,1,1,1,1,1,1,0) (105,64) | SU(T)1s x SU(2)s x
A4 U(1)2
D
63 | Dolar) Ay +24; | (0,1,2,1,0,0,1,0) (73,45) | SU(3)54——ir x
Da(ax) SU@3), x SU@B)w x
U
D
6a | Do) Ay + Ay (0,1,2,1,1,0,1,0) (86,56) | SU(3)12 x SU(2)%, x
D4(a1) U(1)3
D
65 | Do) Ay (0,1,2,1,2,0,1,0) (99,67) | SU(3)2, x U(1)
D4(a1)
D
66 | 22 o | (0.1,1,1,0.1,1,0) (82,53) | SU(3)s4_p x SU(3)) x
Az + Ay SU(2)g x U(1)
Ds(al) SU(3)12 X SU(2)36
67 Ay + A 0,1,1,1,1,1,1,0 95, 64
A3 +A1 ? ! ( ) ( ) XSU(2)18 X SU(?)Q
xU(1)?
D
6s | Ds(a) A, (0,1,1,1,2,1,1,0) (108,75) | SU(3)2, x SU(2)e x
As + Ay U(1)3
D
69 5(a1) Ay +24; | (0,1,0,1,0,1,1,1) (99,69) | SU(3)s4 x SU(2)2g x
245 + Ay U(1)
D
70 s(a1) As+ A, | (0,1,0,1,1,1,1,1) (112,80) | SU(3)12 x SU(2)54
242 + A SU(2)26 x U(1)
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Table 4.4: Interacting fixtures with enhanced global symmetry

# | Fixture (n2,n3,m4,n5,n6,n8,n9,m12) | (N, M) | Gi
D
71| Do) o, (0,1,1,2,0,1,1,0) (93,62) | SU@3)1s x SU(2)36 x
As Sp(2)10 x U(1)?
D
72 | Polr) Ay + A4 (0,1,1,2,1,1,1,0) (106,73) | SU(3)12 x Sp(2)10 x
As SU(2)1s x U1)?
D
73 | Polar) A, (0,1,1,2,2,1,1,0) (119,84) | SU(3)%, x Sp(2)10 x
A3 U(1)3
D5(CL1)
74 24 0,1,0,1,1,1,1,1 113,80) | (Ga)19xSU(3)54 x U(1
Ay + 24, 2 ( ) ( ) | (G2)12 (3)5axU(1)
D
75 | Poln) Ay + A (0,1,0,1,2,1,1,1) (126,91) | (G2)12 x SU(3)1a x
24, SU(2)54 x U(1)
A+ A
76| 4T 4, (0,0,0,1,3,1,0,0) (88,57) | SU(4)%, x U(1)
As+ A
A+ A
77| A ey (0,0,0,1,2,1,0,1) (101,69) | SU(4)2s x SU(2)15 x
As+ A U(1)
A+ A
78| AL gy, (0,0,0,1,2,2,0,1) (120,84) | Spin(7)1 x SU(2)as x
A4+A1 U(1)2
A+ A
79 | T 9y (0,1,0,1,2,1,0,0) (88,51) | Spin(8)1s x SU(4)12 x
D4 U(1)2
A+ A
g0 | A 4 (0,1,0,1,2,1,1,0) (110,68) | SU(6)1s x SU(3)12 x
D4 U(1)2
A+ A
g1 | Mty (0,0,1,1,3,1,0,0) (96,64) | SU(4)2, x SU(2)s x
As uQ)
A+ A
gy | 4T gy (0,0,1,1,2,1,0,1) | (109,76) | SU(4)ss x SU(2)15 x
Ay SU(2)s x U(1)
A+ A
g3 | MM gy, (0,0,1,1,2,2,0,1) (128,91) | Spin(T)1s x SU(2)s x
As SU(2)04 x U(1)?
A+ A
gq | H4t AL Dy(ay) (0,0,4,0,1,0,0,0) (64,39) | SU(2)3
Dy(aq)
A+ A
85 5? )1 Az + Ay (0,0,3,0,1,1,0,0) (73,47) | SU(2)%, x SU(2), x
401

SU(2);
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Table 4.4: Interacting fixtures with enhanced global symmetry

# | Fixture (n2,n3,m4,n5,n6,n8,n9,m12) | (N, M) | Gi
Ag+ A
86 | T 94,14, (0,0,2,0,1,1,0,1) (90,63) | SU(2)y x SU(2)3,
Dy(ay)
Aj+ A
g7 | “4tTAL 4 (0,0,3,1,1,1,0,0) (84,56) | Sp(2)10 x SU(2)3 x
D4(a1) U(1)3
Ag+ A
gg | A oy, (0,0,2,0,2,1,0,1) (104,74) | (G2)12 x SU(2)3,
Dy(aq)
Ag+ A
89 A4+A1 As+A; | (0,0,2,0,1,2,0,0) (82,55) | SU(2), x SU(2)3, x
3t A1 SU(2)% x SU(2)2
A+ A,
90 24, + A, | (0,0,1,0,1,2,0,1) (99,71) | SU(2),5 x SU(2)yq X
Az + A SU(2),, x SU(2),
Ay + Ay Sp(2)19 x SU(2)4
91 A 0,0,2,1,1,2,0,0 93, 64
Ag+ Ay ° ( ) (93,64) X SU(2)g x SU(2)s
xU(1)?
Ag+ A
92 | T 9y, (0,0,1,0,2,2,0,1) (113,82) | (G2)12 x SU(2)us x
A3 + Al SU(2)24 X SU(Q)Q
Ay + A 2
93 245+ A, | (0,0,0,0,1,2,0,2) (116,87) | SU(2),, x SU(2)2
245 + Ay
A+ A
g1 | ety (0,0,1,1,1,2,0,1) (110,80) | Sp(2);, X SU(2)ys X
242 + 4 SU(2),, x U(1)
Ag+ A
95 414 24, (0,0,0,0,2,2,0,2) (130,98) | (G2)i12 x SU(2)72 x
245 + Ay SU(2)26
Ag+ A
T (0,0,2,2,1,2,0,0) (104,73) | Sp(2)3, x SU(2)s x
A3 U(l)S
Ag+ A
o | AT 9y, (0,0,1,1,2,2,0,1) | (124,91) | (Ga)1z x Sp(20 x
As SU(2)94 x U(1)
Ag+ A
98 42; ' o24, (0,0,0,0,3,2,0,2) (144,109) (G2)2, x SU(2)72
2
D
99 | 7t 0 (0,2,0,1,2,0,1,0) (112,58) | (Ee);s x (Fe)g X
D SU(3)%,
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Table 4.4: Interacting fixtures with enhanced global symmetry

# | Fixture (n2,n3,m4,n5,n6,n8,n9,m12) | (N, M) | Gi
D
100t 24, (0,1,1,1,2,1,0,0) (96,58) | Spin(8)1s x SU(4)12 x
Ay SU(2)s x U(1)?
D
101 A (0,1,1,1,2,1,1,0) (118,75) | SU(6)1s x SU(3)12 x
Ay SU(2)s x U(1)?
D
102 Y Ay 24, (0,1,2,1,1,0,1,0) (86,56) | SU(3)12 x SU(2)%, x
D4(a1) U(1)3
D
103 ' 24, (0,1,2,0,2,0,0,0) (72,41) | Spin(8)%, x U(1)2
D4(a1)
D
104 ' Ao+ A (0,1,2,1,2,0,1,0) (99,67) | SU(3)2, x U(1)?
Dy(ar)
D
105 7t A, (0,1,2,1,3,0,1,0) (112,78) | SU(3)3, x U(1)*
Dy(ay)
D4 SU(3)12 X SU(2)36
106 Ay + 24 0,1,1,1,1,1,1,0 95,64
As+ A, 0 | ) ( ) xSU(2)1s x SU(2)g
xU(1)2
D
107 24, (0,1,1,0,2,1,0,0) (81,49) | Spin(7)2, x SU(2)y x
As + Ay U(1)
D
108 A A (0,1,1,1,2,1,1,0) (108,75) | SU(3)%, x SU(2)y x
A3 + A1 U(1)3
D ,
109 YA (0,1,1,1,3,1,1,0) (121,86) | SU(3)%, x SU(2)e x
As + Ay U(1)2
Dy
110 245+ A; | (0,1,0,0,1,1,0,1 84,54) | (Ga),, x Sp(2
94, + Ay 2 1| ( ) ( ) (G2) 19 P(2) 96
Dy 2
111 24 0,1,0,0,2,1,0, 1 98,65) | (Ga)2, x SU(2
oAyt a4, 2 ( ) ( ) | (G2)1s (2)26
Dy Sp(2)10 x SU(3)12
112 Ay +24 0,1,1,2,1,1,1,0 106,73
A3 2 ! ( ) ( ) XSU(2)36 X SU(2)18
xU(1)?
D
113 A4 24, (0,1,1,1,2,1,0,0) (92,58) | Spin(7)12 x SU(4)12 x
3

Sp(2)10 x U(1)
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Table 4.4: Interacting fixtures with enhanced global symmetry

# | Fixture (n2,n3,m4,n5,n6,n8,n9,m12) | (N, M) | Gi
D
114 ~* Ayt A (0,1,1,2,2,1,1,0) (119,84) | SU(3)2, x Sp(2)10
3 U?
D ,
15| 1 A (0,1,1,2,3,1,1,0) (132,95) | SU3)2, x Sp(2)10
A3 U(1)2
D
116 1 24, (0,1,0,0,3,1,0,1) (112,76) | (Go)2,
24,
Ay 2 2
117 A, (0,0,2,1,3,1,0,0) (104,71) | SU4)2, x SU(2)2
As UQ)
A
18] o34, (0,0,2,1,2,1,0,1) (117,83) | SU(4)2s x SU(2)13
A SU(2)2 x U(1)
A
119 °* 24, (0,0,2,1,2,2,0,1) (136,98) | Spin(T)1s x SU(2)2
As SU(2)0s x U(1)?
A
120 Y Dylay) (0,0,5,0,1,0,0,0) (72,46) | SU(2)%°
D4(a1)
A
121 YA+ A (0,0,4,0,1,1,0,0) (81,54) | SU2)%, x SU(2),
Dater) SU(2);
A
122 YA+ A (0,0,3,0,1,1,0,1) (98,70) | SU(2)y, x SU(2)3,
Dafar) SU(2)s
A
123 T4, (0,0,4,1,1,1,0,0) (92,63) | Sp(2)10 x SU(2)s
D4(CL1) U(l)?’
A
124 7 24, (0,0,3,0,2,1,0,1) (112,81) | (G2)12 x SU(2)s
Da(ar) SU),
A
125 4A As+A; | (0,0,3,0,1,2,0,0) (90,62) | SU(2)4, x SU(2)%,
3t/ SU(2)2 x SU(2)2
A SU(2) . x SU(2
126 Y 24,4+ 4, |(0,0,2,0,1,2,0,1) (107,78) (2)ss (2)36
A+ Ay X SU(2),, x SU(2),

XSU(Q)g

222




Table 4.4: Interacting fixtures with enhanced global symmetry

# | Fixture (n2,n3,m4,n5,n6,n8,n9,m12) | (N, M) | Gi
A Sp(2)19 x SU(2)
127 S (0,0,3,1,1,2,0,0) (101,71) 10 '
Az + A xSU(2)g x SU(2)8
xU(1)?
A G SU(2
128 Y94, (0,0,2,0,2,2,0,1) (121,89) (G2)1z x SU(2)as
Az + Aq XSU(2)24 X SU(2)9
XSU(2)8
A
129 * 2454 Ay | (0,0,1,0,1,2,0,2) (124,94) | SU(2)., x SU(2)3 X
2A2+A1 SU(2)8
A Sp(2 SU(2
130 4 As (0,0,2,1,1,2,0,1) (118, 87) P(2)10 X SU2)s5
245 + Ay X SU(2),, x SU(2),
xU(1)
A
131 * 24, (0,0,1,0,2,2,0,2) (138,105) (G2)12 x SU(2)7s x
2A2 + Al SU(2)26 X SU(Q)g
A
132 7t A (0,0,3,2,1,2,0,0) (112,80) | Sp(2)7, x SU(2): x
A G x Sp(2
133 7 24, (0,0,2,1,2,2,0,1) (132,98) (G2)12 > Sp(21o
A3 XSU(2)24 X SU(Q)g
xU(1)
A
134 7 24, (0,0,1,0,3,2,0,2) (152,116) (G2)?, x SU(2)72 x
24 SU(2)s

We were unable to determine the SU(3) levels in fixtures 63 and 66.

4.2.5 Mixed fixtures

We find many “new” SCFTs in our list of mixed fixtures. For each fix-

ture in the table below, we list the global symmetry group, the graded Coulomb
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branch dimensions, and the effective number of vector and hypermultiplets of
the SCFT. The effective number of hypermultiplets, for the fixture as a whole,
is the sum of the n; listed in the table and the number of free hypermul-
tiplets in the last column. When the hypermultiplets transform under the

¢

nonabelian part of the “manifest” global symmetry of the fixture, we list that

representation. Otherwise, we just give their number.

All SCFTs in the list below are “new”, except for the (Eg)s SCFT, the
(E¢)12 x SU(2)7 SCFT, the SU(4)3 SCFT, and the (Eg);2 SCFT, which have
previously appeared in the classification of the A- and D-series fixtures, and

the (E7),q x SU(2), and (G3);5 X Sp(2),6 SCFTs, which appeared above.

Table 4.5: Mixed fixtures

# | Fixture (n2,m3,n4,n5,n6,n8,m9,m12) | (Np,Ny) | Theory
Eg(a1)
1 0 (0,0,0,0,1,0,0,0) (40,11) | (Eg)12 SCFT + 1(1,27)
As + Ay
Eg(ay) |
2 A, (0,0,0,0,1,0,0,0) (40,11) | (Es)12 SCFT + 1(1,2,1) +
341 1(3,1,6)
FEg(a1) .
3 A, (0,0,0,0,1,1,0,0) (72,26) | Spin(20)15SCFT + 1(6,1)
24,
Ds
4 Al (07071a070717070) (57a 22) (E7)16XSU(2)9+%(271)+
245 + Ay 1(1,6)
Ds
5 34, (0,0,1,1,0,0,0,0) (42,16) | SU8)10 x SU(3)12 +
Ds
6 24, (0,0,1,1,0,1,0,0) (68,31) | (Eo)is x Sp(2)10 x U(1) +
Ay + 24, 1(2,1)
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Table 4.5: Mixed fixtures

# FiXture (n27n3,n4,n57n5,n87n9,n12) (nh, nv) Theory
Dy )
7 A, (0,0,1,0,1,1,0,0) (72,33) | Spin(7)12 X
24, Spin(12)16 SCFT + 1(1,6)
Dy
8 34, (0,0,1,1,1,0,0,0) (60,27) | SU(8)12 x SU(4)o +
A + Ay $(1;1,2) +1(1;3,1)
D Spin(10)16 x SU(4
9 ° 94, (0,0,1,1,1,1,0,0) (82.42) | P o (12
A2+A1 XSU(2)10 XU(].)
+1 free hyper
Ds ,
10 34, (0,0,1,1,2,0,0,0) (76,38) | SU(6)%, x SU(2)12 +
Az 5(1,1;1,2)
FEs(a
| Folaz) (0,2,0,0,0,0,0,0) (32,10 | [(Es)s) SCET]? +1(27)
D5(a1)
Eﬁ(a?)) .
12 Ay (0,1,0,0,1,1,0,0) (64,31) | Spin(13)16 x U(1) + 1(6)
A+ Ay
EG((Z?)) .
13 Ay (0,1,1,0,1,1,0,0) (72,38) | Spin(12)16 x SU(2)s x
Ay U(1)SCFT + 1(1, 6)
E@((Ig) 3
14 Ay +24; | (0,1,2,0,0,0,0,0) (40,19) | SU(4)2SCFT + 3(2)
D4(a1)
FEs(a3
15| Foled) Ay + A | (0,1,2,0,1,0,0,0) (56,30) | Spin(8)12 x SU(2)% x
Dy(al) U(1)? + 3 free hypers
FEs(a3
16| Fol3) Ay +24, | (0,1,1,0,0,1,0,0) (51,27) | Sp(3)e x SU(4)16 + 2(1,2)
Az + A
Eg(a3 Spin(7)12 x Sp(2
17| P A, (0,1,1,0,1,1,0,0) (66,38) | SPT2 X Sp(2)o
A3 + Al XSU(2)32 X U(l)

+2 free hypers
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Table 4.5: Mixed fixtures

# | Fixture (n2,n3,n4,15,n6,M8,M19,112) (nm nv) Theory
FEg(a3
18 6(a3) 2 (0,1,0,0,0,1,0,1) (70,43) | Sp(3)26 + 1(1,2)
2A5 + Ay
24,
EG((I?))
19 As + Ay (0, 1,0,0,1,1,0, 1) (84, 54) (G2)12 X Sp(2)26 +
2A5 + Ay 1 free hyper
Fg(a3
20 6(a3) Ay + 244 (0,1,1,1,0,1,0,0) (64,36) | Sp(4)10 X S'U(Qﬁ6 X
As U(1)? +1(1,2)
Eg(a3)
21 Ay + A (0,17 1,1, 1,1,0,0) (78,47) SU(4)12 X Sp(3)10 X
Az U(l)2 + 1 free hyper
FEg(a3
22 6(a3) 245 (0,1,0,0,1,1,0,1) (84,54) | (G2)12 x Sp(2)26 + 1(2,1)
Ay + 24
FEg(ad
23 6(a3) A+ Ay (0,1,0,0,2,1,0,1) (98,65) (GQ)?Z x SU(2) +
24, 1 free hyper
As
24 0 (0,1,0,0,1,0,0,0) (39,16) | (Eg)12 x SU(2)7SCFT +
Ds(a1) 1(1,27)
As )
25 A (0,0,0,0,2,1,0,0) (71,37) | Spin(13)15 x SU(2); +
Ag+ Ay 1(1, 6)
A5 Spin(12)16 X SU(2)8
2 A 0,0,1,0,2,1,0,0 79,44
6 1 (7 5 Ly Uy &y Ly Yy ) ( ) XSU(2)7SCFT
Ay
+1(1,1,6)
As 3
27 Ay 4244 (0,0,2,0,1,0,0,0) (47,25) | Sp(2)5 x SU(2)7 +3(1,2)
D4(a1)
A in(8)12 x SU(2)]
28| 0 A+ A, | (0,0,2,0,2,0,0,0) (63,36) Spin(8)12 x SU(2)g
Dy(al) xSU(2)7

+3 free hypers
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Table 4.5: Mixed fixtures

# | Fixture (n2,n3,n4,15,n6,M8,M19,112) (nh7n’u) Theory
As
29 Ay +24; | (0,0,1,0,1,1,0,0) (58,33) | Sp(3)s x Sp(2is X
As+ Ay SU(2)7 +2(1,1,2)
Spin(7)12 X Sp(2
30 Ayt A | (0,0,1,0,2,1,0,0) (73,44) | 77 (M12 X 5p(2)o
A3 +A1 XSU(2)32 X SU(2)7
+2 free hypers
As
31 As  +(0,0,0,0,1,1,0,1) (77,49) | Sp(3)as x  SU2)r +
242+ Ax 1(1,1,2)
24,
As
32 Ay + A1 | (0,0,0,0,2,1,0,1) (91,60) | (Go)12 x  Sp(2)as X
242+ A SU(2)7 + 1 free hyper
A5 Sp(4)10 X SU(2)32
33 Ay + 24 0,0,1,1,1,1,0,0 71,42
4 2TA ( b A sr@) x U
+1(1,1,2)
A5 SU(4)12 X Sp(3)10
34 Ay + A 0,0,1,1,2,1,0,0 85,53
A A ( ) (85,53) xSU(2)7 x U(1)
+1 free hyper
As
35 245 (0,0,0,0,2,1,0,1) (91,60) | (Go)iz x  Sp(2)as
Ay + 24, SU(2)7 +1(1,2,1)
As 9
36 Ao + Ay (0,0,0,0,3,1,0,1) (105,71)| (G2)2, x  SU(2)2s  x
245 SU(2)7 + 1 free hyper
Ds(al) .
37 . (0,1,0,1,1,0,0,0) (52,25) | SU6)12 x Spin(T) +
Ag+ Ay 1(1,2) +1(3,1)
Ds(al Spin(10)16 x SU(2
35| Do) 24, (0,1,0,1,1,1,0,0) (74,40 | 7 (10)16 (210
A4—‘,—A1 XSU(2)32 X U(l)

+1 free hyper
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Table 4.5: Mixed fixtures

# | Fixture (n2,n3,n4,15,n6,M8,M19,112) (nh7n’u) Theory
D5(a1) SU(5)12 X SU(4)10

B 7 s (0,1,1,1,1,0,0,0) (60.32) | wSU(2)s x U(1)

4
1

Jri(l; 1,2) +1(1;3,1)

Ds(al Spin(10)16 x SU(2
40 P50 24, (0,1,1,1,1,1,0,0) (82,47) | 7" (10)16 ( 2)8

A, xSU(2)10 x U(1)

+1 free hyper
D5(a1) 3

41 24, + A1 | (0,1,2,0,0,0,0,0) (40,19) | SU(4)2SCFT + 1(2) +
Dy(al) 3 free hypers
Ds(al Spin(8)12 x SU(2);

4 Dol 24, (0,1,2,0,1,0,0,0) (56, 30) pin(8)iz ; (23
Dy(al) xU(1)

+3 free hypers
D5(a1)

43 245+ A1 | (0,1,1,0,0,1,0,0) (51,27) | SU)is % Sp(3)e +
As + Ay 1(2,1) + 2 free hypers
Ds(al Spin(7)12 x Sp(2

gal P2y (0,1,1,0,1,1,0,0) (66,38) | SPTh2 X Sp(2)o
A3 +A1 XSU(2)32 X U(l)

+2 free hypers
Ds(al)

45 24, (0,1,0,0,0,1,0,1) (70,43) | Sp(3)26 + 1 free hyper
245 + A
A

Ds(al) Sp(3)10 x SU(3)16

46 3 (0717171a0717070) (63736) XSU(2)9 X U(l)

245 + Aq 1
—1—5(2, 1) + 1 free hyper
Ds(al)

47 2 (07170a07 171707 1) (84a 54) (G2)12 X Sp(2)26 +

245 + Ay 1 free hyper
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Table 4.5: Mixed fixtures

# | Fixture (n2,n3,n4,15,n6,M8,M19,112) (nh7n’u) Theory
Ds(al) .
48 2142 (0, 1,1,1,1,1,0, O) (78, 47) Spm(?)12 X Sp(3)1o X
Az U(l)2 + 1 free hyper
Ds5(al
49 s(al) 924, (0,1,0,0,2,1,0,1) (98,65) | (G2)?, x SU(2)2s +
24, 1 free hyper
Ay + Ay
50 Ay +24; | (0,0,0,1,1,1,0,0) (60,35) | SU(3)32 x Sp(3)10 + 1(2)
Ag+ A
As+ A
51 70770 A, A, | (0,0,0,1,2,1,0,0) (74,46) | SUA)12 x  SU2)10
Ay + Ay SU(2)32% + 1 free hyper
As+ A
520 TN Ay 424, | (0,0,1,1,1,1,0,0) (68,42) | SU(3)32 x  Sp(2)10 X
Ay SU(2)s x U(1) + 1(1,2)
SU(4)12 x SU(2
A+ Ay (4)12 (2)32
53 As+A; | (0,0,1,1,2,1,0,0) (82, 53) % SU(2)10
A % SU(2)s x U(1)
+1 free hyper
D4 2
54 3A; (0,1,0,1,2,0,0,0) (68,36) | SU(6)12 x SU(3)}, +
A+ Ay 1(1;1,2)
D4 SU(6)12 X SU(3)12
55 , 34, (0,1,1,1,2,0,0,0) (76,43) | xSU(2)s x U(1)
4
1)
2
56 * 245 + Ay (0,1,2,0,1,0,0,0) (56,30) | Spin(8)12 x SU(2)3 +
Dy(al) 1(1,2)
" Spin(?)lg X Sp(?)g
57 2A2+A1 (071717()’1717070) (66738) XSU(2)16 X U(l)
Az + Ay 1
+§(1, ]-7 2)
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Table 4.5: Mixed fixtures

# | Fixture (n2,n3,n4,n5,m6,n8,m9,m12) | (A, M) | Theory
SU(4)12 x Sp(2)10
D
58 * A3 (0,1717131,1’070) (77’ 47) XSU(2)16
245 + Ay XSU2)e x UML)
1
+§(1727 1)
A Sp(2)19 x SU(2
59| 1 Ay 424, (0,0,2,1,1,1,0,0) (76,49) P2 . ( )322
A ><SU(2)8 x U(1)
+1(1,1,2)
A SU(4)10 x SU(2
60 * A2+A1 (0707271a2717070) (90760) ( )12 2 ( );0
A ><SU(2)8 x U(1)
+1 free hyper

4.3 A Detour Through the Twisted Sector

There are several fixtures on our list, where the levels of the enhanced
flavour symmetry group cannot be determined by considerations from the un-

twisted sector alone. For instance, consider the pair of fixtures,

D, Dy(a))
o 0 o} 0
o) o)
D4 and D4
o) o)
(Eg), X (Eg), X SUB)T, SCFT (Eg) s X (Eg)g X SU(3),, X U(1) SCFT

In each case, only the diagonal (Eg)y, C (E6)ey p X (E6), is manifest. More-

over, the only gaugings, available in the untwisted sector, have Abelian cen-
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tralizers in (Eg)y, , X (Es),, which makes determining the individual levels

(as opposed to their sum) difficult.

To fix the ambiguity, we need to make recourse to the Zs-twisted sector.
While a full discussion of the Zo-twisted sector is beyond the scope of this
paper, we will borrow a few results of that analysis, deferring a full discussion

to a future paper.

The twisted punctures are labeled by nilpotent orbits in Fy. We will
denote them by their Bala-Carter labels, and colour them grey. The empty

fixture

empty

will allow us to gauge an SU(6),, C (Eg)yy p X (E6),. The centralizer is
SU(2)y, , x SU(2),, from which we can read off the “missing” information

about the levels.

We will also need the free-field fixture
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3 of SU(3)

and the interacting fixture

(Eg), SCFT

which is a realization of the (E£s); SCFT. Finally, we will also need two “new”

interacting fixtures
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Table 4.6: Twisted interacting SCFTs

Fixture (ng, n3, N4, N5, N6, N, N9, N12)| (nh, Ny)| Global Symmetry

(0,2,1,2,1,0,1,0) (83,63)| (Ga)yy % SU(2),5 %
SU(2)s x U(1)

(0,2,1,2,2,0,1,0) (96,74)| (Ga),y x SU(3),, x
SU(2)15 x SU(2)g

In both cases, all of the global symmetry exzcept the SU(2),4 is manifest

(in particular, the SU(2)4 is manifest). The 4-punctured sphere

empty (Eg)yy_ X (Eg), X SU(?))%2 SCFT

has global symmetry
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F= SU<3)?2 X SU(2)24—k X SU(2)k

The S-dual

(Eg)g SCFT  (G,),, X SUB3),, X SU(2),4 X SU(2); SCFT

manifestly has one of the SU(2) levels as k = 6, which determines the other
level to be 18.

Similarly, for

0, SU(6)
( S )

empty (Eg) g X (Eg), X SU3),, x U(1) SCFT

the global symmetry group is

F =SU(3)y x SU(2)y, , x SU(2), x U(1)

Now there are two S-dual presentations of the theory:
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(Eg)g SCFT  (G,),, % SU(2),4 X SU2)¢ x U(1) SCFT

and

3 (G,),, X SUB),, X SU(2),4 X SU(2)¢ SCFT

Again, the fact that one of the SU(2) levels is manifest suffices to determine

the other.

As another example, consider the pair of fixtures

SUB),, X SUQ)s,_,_ X SUQ), X SU2),. x U(1)* SCFT

and
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SUQB),, X SUQ)s,_, x SU), x SU(2), x U(1)* SCFT (48)

In each case, only the diagonal SU(2),, subgroup, of the indicated SU(2)s,
is manifest. Moreover, these fixtures are not gaugeable within the untwisted
theory. So there is no obvious way to determine the individual SU(2) levels.

Fortunately, the twisted sector provides the empty fixture

empty

which allows us to gauge the SU(3),, symmetry of each of these fixtures:

o
(D,, SU3)
O

and
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From the S-duals

(E;), X U(1) SCFT (E), SCFT

and

(E;),, X U(1) SCFT 19) + (E), SCFT

and the Lie-algebra embeddings
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(e7)), D (Fa)y ® 5u(2)g,
(e7), D 50(9); © 5u(2),), @ su(2),
(e7), D s0(8), ®su(2), @ su(2), ®su(2),

we determine the levels in (4.7)) and (4.8]) to be k = k&’ = 18.

Finally, let us turn to the mixed fixture

1(1, 2) +
Spin(8),, X SU(2),,; ;X SUQ), x SU(2),_ SCFT
Only the diagonal SU(2),, C SU(2)y,_;, 4, X SU(2),, x SU(2),, is manifest.
Gauging the SU(3),, symmetry of the D, puncture, as before, we find that the
S-dual is a Spin(8) gauge theory, with matter in the 1(8,)+1(85)+1(8.)+2(1),
coupled to two copies of the (£s); SCFT.

Fy

(Eg), SCFT 1(26) + (Eg), SCFT
From this, we read off the levels of the three SU(2)s: k1 = ko = 24—k —ko = 8.
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4.4 Applications

4.4.1 FE5 and F, gauge theory
4.4.1.1 Eg+4(27)

E¢ gauge theory, with four fundamental hypermultiplets, is supercon-

formal. It is realized as the 4-punctured sphere

2(27)

The S-dual theory is an SU(2) gauging of the SU(4)s4 x SU(2)7 x U(1) SCFT,

with an additional half-hypermultiplet in the fundamental.

1) SU#)s, x SU(2), x U(1) SCFT

The k-differentials, which determine the Seiberg-Witten solution, are
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U9 212234 (dZ)2

P2(2) = (z—21)(z — 22) (2 — 2z3)(2 — 24)
z) = Us 21223, (d2)5
¢s5(2) (Z_Zl)(z_ZQ)(z—z3)4(z—Z4)4
e Ug 27923, (dZ)G
¢6(2) (z—21)(z — 2)° (2 — 23)" (2 — 2)"* (4.9)
ba(2) = Us 23525, (dz)s
(2= 2)"( = 2)°(2 = 20)°(s — =)'
N Ug 27523 (dz)g
Pal2) (2 —21)%(2 — 22)*(z — 23)" (2 — 20)”
¢12(2) = e izt (dZ) 9

(z — 21)3(2 — z2)3(z — 23)9(2 — 24)

The gauge coupling, 7 = £ + %, is determined by the SL(2,C)-invariant

cross-ratio

_93(0,7’) _ 213224
93(0, ’7') 2142923

flr) = (4.10)

and, for calculational purposes, it is usually convenient to use SL(2,C) to fix

(217 22, 23, Z4) - (0, oo, f(T), 1) n 49 .

The solution to Eg gauge theory with Ny < 3 fundamental hypermul-

tiplets was first found in [51].
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4.4.1.2  F,+ 3(26)

F4 gauge theory, with three fundamentals, is also superconformal. It is

realized as

1(26) 2(26) +2(1)

The S-dual theory is an SU(2) gauging of the Sp(3)ss x SU(2); SCFT, with
additional matter in the 1(2) 4+ 2(1).

(A5, SU2))O

Eﬁ(a])
0]

3(2) Sp(3),6 X SU(2), SCFT + 2(1)

The nonzero k-differentials, which determine the Seiberg-Witten solution, are
the same as in (4.9) but with ¢5(z) =0 = ¢9(z). The gauge coupling is again
given by (5.17)). Physically, this theory is obtained by Higgsing Eg — Fy,
using one of the hypermultiplets in the 27.

In practice, given the solution to Fg+4(27), the solution to F;+3(26)+

2(1) is obtained by noting that
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e There is a Zy symmetry, o : (us,ug) — (—us, —ug), acting on the

Coulomb branch of the Eg + 4(27).

e The Coulomb branch geometry of Fy + 3(26) 4+ 2(1) is the geometry of

the fixed-locus of o.

4.4.2 Adding (Es),, SCFTs

Starting with the Eg + 4(27) Lagrangian field theory, we can start re-
placing hypermultiplets in the 27 with copies of the (Eg),, SCFT. For n 27s
and 4—n copies of the (Eg),, SCFT, the flavour symmetry group of the theory
is

F=258U@3)15"xU(n)s
In each of these cases, the S-dual theory is an SU(2) gauging of the SU(3){," x
SU(n)sy x SU(2)7 x U(1) SCFT, with an additional half-hypermultiplet in the

fundamental (the U(1) is absent for n = 0).

4.4.2.1 n=3

With one copy of the (Eg),, SCFT,

2(27) 1(27) + (Eg),, SCFT
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is dual to

1) SU3)s, X SU@3),, X SU(2), x U(1) SCFT

4.4.2.2 n=2

With two copies of the (Es),, SCFT, there are two possible realizations.
Either

1(27) + (Eg),, SCFT 127) + (Ey),, SCFT

dual to

Eg(a,)
@)

(A5, SUQ2))

Eg(a,)
o

) SUB)%, X SU(2)5, X SU(2), x U(1) SCFT
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or

dual to

Eg(a,)
(@)

(A5, SUQ2))

E(a,)
o

) SU@3)%, x SUQ)s, X SUQR), x U(1) SCFT

These give two, apparently distinct, realizations of the SU (3)?2 x SU(2),, X
SU(2), x U(1) SCFT.

4423 n=1

With three copies of the (Eg),, SCFT, we have

127) + (Ey),, SCFT [(Ey),, SCFT |
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dual to

(A5 SUQ2)0

E6(a])
0]

1) SU3)7}, x SU(2), x U(1) SCFT

4424 n=0

Finally, the Es gauging of four copies of the (Ej),, SCFT,

[(Eg),, SCFT ]

is dual to

(A5 SUQ2)0

Eﬁ(a])
0]

1) SU@3)}, x SU(2), SCFT
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4.4.3 Connections with F-theory

Placing n D3-branes at a IV*, IIT* or II* singularity in F-Theory yields
an N = 2 superconformal field theory on the world-volume of the D3-branes
[47, 148]. For n = 1 these are, respectively, the (Es)s, (F7)s and (Eg)i2 su-
perconformal field theories of Minahan and Nemenschansky [62]. For higher
n, the properties of these SCFTs were computed in [46]. The results may be

summarized as follows

Table 4.7: Properties
Nemeschansky SCFTs

of higher-rank Minahan-

Graded Coulomb

F-Theory branch

singularity Flavour symme- dimensions (np, ny)
try

v+ (E6)6n x|nyg =1, 1 =] (3n® + ldn —
SU2)mn-1)@3n+1) | 1,2,...,n 1,n(3n + 2))

I1r* <E7)8n X 1Ny = 1, [ = (477,2 + 2In —
SU(Q)(n—l)(4n+1) 1,2,...,n 1,n(4n+3))

IT* (Es)12n X |ng =1, | =] (6n + 351 —
SU(Q)(H,l)(gnJrl) 1,2,...n 1, n(6n + 5))

In [27], Gaiotto and Razamat proposed a realization of these (n > 2)
SCFTs as a mixed fixture, with one free hypermultiplet, in the Ay_; theory,

for N = 3n,4n and 6n, respectively.
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Table 4.8:  Realization of higher-rank Minahan-
Nemeschansky SCFTs in Ay _; series

Theory Fixture Manifest flavour | Enhanced to
symmetry
Iv: SU( )271 X (EG)Gn X
SU(2), x U(1)? | SU(2), + 3(2)
IT* SU(2)g, X | (Er)g, X
SUMWG x| SUR), + 3(2)
SU(?))Sn X U<1)2
[Gn)’] [2n)]
1T ® ® SU(2)12H X (E8)12n X
[, n—1, 1] SU(3)19, x | SU(2), + 3(2)
SU(5)19, x U(1)?

For n = 2, the SU(2) flavour symmetry is manifest, and one readily
verifies that it has the predicted level (given that the hypermultiplet transforms
as £(2) under the SU(2)). But, for n > 3, only the U(1) Cartan is manifest

and it is not easy to determine the level of the SU(2).
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We have, of course, numerous realizations of the n = 1 theories. But

we also find examples of the higher-n theories

We find the n = 2 IV* SCFT as one of our fixtures in §5.2.3| and as
part of a product SCFT in [fixture 39| of §5.2.4] It also appeared as an

interacting fixture in the D, theory in [5].

We find the n = 2 IITI* SCFT as mixed [fixture 4jin §5.2.5 and as part of
a product SCFT in [fixture 6| of §5.2.4]

We find the n = 2 II* SCFT as interacting |[fixture 2| in §5.2.4!

We find the n = 3 III* SCFT as interacting [fixture 7] in §5.2.4]

In particular, the latter gives a nice check of the SU(2) level for n = 3.

Further examples can be found in the Zs-twisted sector. Notably, the

fixtures

provide realizations, respectively, of the n = 3,4 IV* SCFTs. Again, the SU(2)
levels agree with the predictions of [46]. Together with the above examples,
these exhaust all the IV*, III* and II* theories with nonzero graded Coulomb

branch dimensions in degrees < 12.
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4.5 Isomorphic Theories

In our table of interacting fixtures with enhanced global symmetry in
35.2.4 we find several SCFTs which seem to be realized in more than one
way. Most of these isomorphisms can be checked by various dualities. Some,

however, cannot and we list them below.
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12

12

12

12

12

12

250

Spin(8)3, x U(1)>SCFT

Spin(7)3, x SU(2)y x U(1) SCFT

(G3)?, x SU(2),, SCFT

(G)3, SCFT

SU(3),, x SU(2)%, x U(1)* SCFT

SU(3)3, x U(1)° SCET



12

SU(3)15 x SU(2)45 x SU(2) 4

xSU(2), x U(1)? SCFT

12

SU(3)%, x SU(2), x U(1)>SCFT

12

SU(3)%, x Sp(2),, x U(1)>SCFT

It would be nice to check these conjectured isomorphisms by comparing
the expansions of the superconformal indices for these pairs of fixtures to higher

order in 7.
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Chapter 5

The Z,-Twisted Es Theory

We now turn our attention to the theories obtained by compactifying
the (2,0) theory of type Eg in the presence of punctures twisted by a Z,
outer-automorphism E] The twisted punctures are in 1-1 correspondence with
embeddings p : su(2) < f4, and we label them by the Bala-Carter label of the
corresponding nilpotent orbit. For a given puncture, we compute all the local
properties which contribute to determining the 4D N = 2 SCFT and record
them in Table [5.2.1 We also determine a projection matrix implementing the
branching rule under each embedding, which we use to compute the expansion

of the superconformal index. These can be found in Appendix [E.2]

5.1 The twisted E; theory
5.1.1 The Hitchin system

For a choice of Riemann surface C', the compactification of the 6D (2,0)
theory of type Eg on R*! x C yields a 4D N = 2 theory on R*!. The (2,0)
theory of type Fg has an outer-automorphism group which is isomorphic to

Zso. This allows us to introduce a class of “twisted” punctures, around which

!This chapter is based on [63].
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the fields on C' undergo a monodromy by a non-trivial element of the outer-

automorphism groulﬂ. The properties of these punctures are listed in table

b.21l

In [49] we studied the theories that arise from compactifying the Fg
(2,0) on a Riemann surface with untwisted punctures. These punctures are
classified by nilpotent orbits in the complexified Lie algebra ¢, and obey a

Hitchin boundary condition of the form

A
q)(z) = ; + ¢

where ® is the Higgs field, z is a local coordinate on C' such that the puncture
is at z = 0, A is a nilpotent element in e¢g, and ¢g in the boundary condition
above denotes a generic element of ¢g (or a regular function of z taking values

in 26).

By contrast, twisted punctures are classified by nilpotent orbits in the

complexified Lie algebra f;, and obey a twisted boundary condition,

A o
B(z) = =+ 2

St et

Here, we have split eg into eigenspaces under the action of the Z, outer-

automorphism, as ¢s = f4 @ o_1, where f4 (0_1) is the even (odd) eigenspace.

2We also allow for the fields on C' to undergo a monodromy upon traversing a homolog-
ically non-trivial cycle.
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Also, A is a nilpotent element in f;, and o_; and f, above represent generic

elements in the respective spaces.

5.1.2 k-differentials

We use the basis of Eg Casimir k-differentials {¢a, 5, ¢6, @5, ¢9, P12} of
our previous paper [49]. For the reader’s convenience, we repeat here how to
construct this basis in terms of the trace invariants P, = T'r(®*) for ® in the

adjoint representation of Ej.

$2 =3P

b6 :i (Pﬁ 4608(P2) )

b8 :% <P8 - %P(ip? + 661355552(P2)4)

d10 = — 155 (Pro — 56 PPy + 5515 Ps (Pp)* = samooos (12)°)

P12 155(P12 504P10P2 + 32256P8(P2) - 108 (Pﬁ) + 49236564P6(P2)

5669 (PZ)G)

T 9172942848

P14 = 4389 (P14 14880P12P2 + 3214080P10(P2) 2160P8P6 - 617103360P <P2)

165781 2 3488947 4 19596907 7
+4821120(P6) Py — 44431441920P6(P2) + 409480168734720(P2) )

These relations define all the Casimirs except ¢5 and ¢9. These can be com-

puted from ¢19 and ¢14, which factorize as

¢10 - Qﬁ?
P14 = P509.
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Notice that the choice of sign of ¢5; determines also the sign of ¢g. This is
precisely the action of the Z, outer-automorphism of Eg on the Casimir k-

differentials,

P5 = — @5

P9 = — g

Ok — Ok, k=26,8,12
So, we can expect that the leading pole orders of the ¢, for twisted punctures
will be half-integer for £ = 5,9, and integer for £k = 2,6, 8,12, corresponding

to the orders of the Casimirs of Fj.

5.2 Tinkertoys

We find 2078 fixtures with 3 regular punctures, two twisted and one
untwisted, which correspond to either an interacting SCFT, a mix of an in-
teracting SCF'T and free hypers, or a gauge theory. Of these, we find 1757
SCFTs without global symmetry enhancement, 122 SCFTs with enhanced

global symmetry, 32 mixed fixtures, and 167 gauge theory fixtures.

Additionally, there are 23 fixtures with one irregular puncture: 15 free-

field fixtures, 6 interacting fixtures, 1 mixed fixture, and 1 gauge theory fixture.

Below, we give tables of the twisted punctures and their properties, as
well as tables of the twisted fixtures. For the mixed fixtures, we list {d}} and
(np, ny) of the interacting SCF'T, and the representation of the free hypermul-

tiplets. We do not list the fixtures without global symmetry enhancement, as
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their properties can be readily computed from the tables of punctures. Tables
of untwisted punctures and fixtures can be found in our previous paper [49)].
Following the conventions of that paper, in the tables we denote the Bala-
Carter labels of twisted punctures by underlining them; in the figures, twisted

punctures are denoted in gray.

5.2.1 Twisted punctures

Twisted punctures in the Eg theory are labeled by nilpotent orbits in fy,
which we denote by the corresponding Bala-Carter label. As discussed in [49],
the Bala-Carter notation provides a systematic way to label nilpotent orbits
in any exceptional semisimple Lie algebra, and a concise review can be found
in appendix A of [49]. Here we merely add that for the f; nilpotent orbits,
components of the Levi subalgebra in the Bala-Carter label with (without) a
tilde are constructed from the short (long) roots of §4. (So, e.g., A» + A; and

Ay + A, represent different orbits.)

The pole structure of the k-differentials is denoted by
{p2, s, D6, Ps, Po, P12}, and, for twisted punctures, ps are py are half-integer.
The contributions to the graded Coulomb branch dimensions are denoted by
{ds, ds, dy,ds, dg, dg, dg, d12}, allowing for new Coulomb branch parameters (in-
troduced by a-constraints) of dimensions 3 and 4, which are not degrees of Eg

Casimirs. The constraints are shown separately in Appendix
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Table 5.1: Twisted regular punctures

Nahm Hitchin Coulomb branch
orbit orbit | Pole structure contributions Flavour (onp, ony)
group

0 Fy {1a%a5a 77%711} {1707()’%’55 77ga11} (F4)18 (6247601)

Ay (Fy(ar),| {1,%2,5,7,22,11} | {1,0,0,3,5,7, 22,11} Sp(3)13 (599, 584)
Zs)

& F4(al) {17%75a 77%711} {1707()3%3& 7’%710} SU(4)12 (5847572)

A+ Ar| Fy(an) | {1,2,5,7,2,10} | {1,0,0,2,5,7,22,10} SU(2)s4 (570,561)

SU(2)10

A Bs {1,%,5,7,22,10} | {1,0,0,%,5,7,42, 10} SU(3):s (560, 552)

Ay Cs {1,9,5,7,22,10} | {1,1,0,3,5,6,3,9} | (G2)10 (536,528)

Ao+ Ay | (Fulas), {1,2,5,6,1,10} | {1,0,0,%,5,6,32,10} SU(2)s (543,537)
S4)

By (Fiy(as)| {1,2,5,6,%2,10} | {1,1,0,2,6,6,1%,9} | SU(2)? (518, 513)

ZQ X ZQ

Ay + Ay | (Fu(as),| {1,1,5,6,%2,10} | {1,1,0,%,5,6,22,9} | SU(2)20 (524, 519)
Ss3)

Cs(ar) | (Fu(as),| {1,%,5,6,%2,10} | {1,2,0,%,5,6,%2,9} | SU(2); (511, 507)
Zy)

Fy(as) | Fa(as) | {1,1,5,6,%3,10} | {1,3,0,%,4,6,12 9} | — (504, 501)

B; Ay {1,2.4,6,22,9} | {1,0,1,2,4,5, 11,8} | SU(2)24 (440, 438)

@ ZQ {13575367%710} {171713%34357%77} SU(2)6 (4227420)

Fi(az) | A1+A, | {1, 7,4,6,13, 9} {1,0,1,%2,4,5, L. 7} | — (416, 415)
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Table 5.1: Twisted regular punctures

Nahm Hitchin Coulomb branch

orbit orbit | Pole structure contributions Flavour (onp, ony)
group

Fi(ay) | A {1,7,4,6,2,9} | {2,1,0,3,4,4,5,6} | - (352,352)

& 0 {17%73347%a6} {1717033722»%,3} - (1847 185)

There is a special piece consisting of five nilpotent orbits,
Ay+ A, A+ A, B, Cs(a1), Fi(as).

The corresponding Hitchin boundary conditions are (Fy(as3),I'), where the

Sommers-Achar group, I'; is a subgroup of S;. The leading pole coefficients,

9 = — (6@2 +3d” + a”2>

Cg?/z =i(a+d) ((2@ —d) - a”2> (5.1)
2
A2 = 30 (da + /) + 2(8a2 — 12ad’ + '*)a"” + Lo — %(C?))

are invariant under the S action, (;’/) =y ( a’/ ), generated by
a

a
a/

1 -1 2 0 1 2 0 0 10 0
0'12:§ 4 1 0 5 023—5 0 -1 1 s O34 — 01 0 s
0 0 3 0 3 1 00 -1

e For the special orbit, Fj(as3), the Sommers-Achar group is trivial, and

a, a’, a” are invariants.
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e For C3(ay), the Sommers-Achar group is the Zy generated by o34 and

. : 2
the invariants are a, a’, a’*.

e For B,, the Sommers-Achar group is the Zs X Zs generated by oia, 034

. . 2 2
and the invariants are a + 2a’, a”~, 2a% + o',

e For A, + Ay, the Sommers-Achar group is the S3 generated by o3, 034

n2  (9)

and the invariants are a, 3a’? + a”~, Cls/a-

e Finally, for A; + A;, the Sommers-Achar group is the full Sy, and the

: : ©) .9 (12
mvariants are c;=, €y, Cig -

In we will discover an action of this Sy group on the Higgs branch
of certain fixtures obtained by varying one of the punctures over this special

piece.

5.2.2 Free-field fixtures

Table 5.2: Free-field fixtures

# | Fixture ny, | Representation
F,

1| = (Dy, SU3)0) 0 | empty
£y
F.

2 = (Ag, SU(3)2) 0 | empty
Fy(ay)
Fy 1

3| =t (A,SU®)) | 10| (20)
F4(CL2)
F.

4| = (0,SU(6)) 0 | empty
Bs
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Table 5.2: Free-field fixtures

# | Fixture n, | Representation
| ey (o) 0 | cmpty

| ey (@l sun | 1|

7| (BaSU@) L)

8 DB—; (Ay, SU(3)2) 1| 1(3)

9 ;‘; (Cs, SU(2),) 2 | 1(2)

10 A4:4A1 (A, SU(3)o) | 0 | empty

11 —‘; (A, SU(4),) 8 | (2,4)

12 g‘;iiii (Ba, SU(2)%) 2 | 1(2,1) + 1(1,2)
| Qs 0| ey

14 Eﬁ(—;) (Ay, SU(4)4) 6 | £(2,6)

15 Eil (A1, Sp(3)3) 9 | 1(3,6)

5.2.3 Interacting fixtures with one irregular puncture
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Table 5.3: Interacting fixtures with one irregular punc-

ture
# Fixture (ng, n3, N4, N5, N, Ng, (np, ny)| Theory
ng,n12)
o~
1 E (Ag, Go) (0,1,0,0,0,0,0,0) (16,5) | (Es)g SCFT
4
9| = (0, Spin(8)) (0,1,0,0,0,0,0,0) (16,5) | (Es)g SCFT
D4<6L1
Fy
3 g (A1, SU(6)g) (0,1,0,0,0,0,0,0) (16,5) | (Es)g SCFT
C3
F
41 — (0,Spin(9)) (0,1,0,1,0,0,0,0) (36,14)| Spin(14)1p X
As U(1) SCFT
C
51 = (0, Spin(9)) (0,1,1,1,0,0,0,0) (38,21)| Spin(9)10 X
Ds SU(2)s x U(1)
Fy(az) : .
6 (0, Spin(9))| (0,0,1,1,0,0,0,0) (32,16)| Spin(9)10 X
Ds U()
5.2.4 Interacting fixtures with enhanced global symmetry
Table 5.4: Interacting fixtures with enhanced global symmetry
# | Fixture (no, ng, ng,ns, (np,ny) | Gg
N, N8, N9, N12)
1 I;‘* Fy(as) (0,4,0,0,0,0,0,0) | (64,20) | [(Es)s SCFTI4
) | I Cs(ay) (0,3,0,0,1,0,0,0) | (71,26) | [(Es)s SCFT]?2 x [(Eg)i2 x
0 SU(2)7 SCFT]
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Table 5.4: Interacting fixtures with enhanced global symmetry

# | Fixture (n2,n3, 14,5, (nh,nw) | Gk
ng, N8, N, N12)
F ~
3 | = Ay 4+ A (0,2,0,0,1,0,1,0) | (84,38) [(Eg)e SCFT] x [(Fs)1s X
0 SU(2)s0 SCFT]
F
4 34 B, (0,2,0,0,2,0,0,0) | (78,32) [(Eg)12 x SU(2)7 SCFT]?
F -~
5 T A2 (05 27 07 1a la 0; 17 0) (967 47) [(EG)G SCFT] X [(E6)18 X
0 (G2)10 SCFT]
F,
6 | =& A, (0,1,0,0,1,1,0,0) | (64,31) | Spin(13)16 x U(1)
24,
Fy
7 ; Ay (0,1,0,0,1,1,1,0) | (86,48) (G2)16 x SU(6)18
1
Fy ~ .
8 | = A+ A (0,1,0,1,1,1,0,0) | (74,40) | Spin(10)1s x SU(2)ip x
24, SU(2)3 x U(1)
F ~
9 = A1 +A1 (0,1,071,1,1,1,0) (96,57) SU(6)18 X SU(2)64_k X
Ay SU(2), x SU(2)10
F ~
10 j Ay (0,1,0,1,2,1,0,0) | (88,51) | Spin(8)16 x SU(4)12 X U(l)2
24
F, -~
11 m A, (0,1,0,1,2,1,1,0) | (110,68) | SU(6)1s x SU(4)12 x U(1)
1
£y
12 - A1 (0,1,071,1,0,0,1) (84,48) Sp(4)13 X SU(3)24
3A,
Fy
13 — 0 (0,1,0,1,0,0,1,0) | (70,31) (E7)1s x U(1)
Az + 24,
F,
14 j (0,1,0,0,1,0,0,0) | (56,16) [(Es)12 SCFT] x [(Eg)s SCFT)
243
Iy
15 — (0,1,0,1,1,0,1,0) | (83,42) (Eg)1s X SU(3)12 x U(1)
As+ A
£y 2
16 1L (0,1,0,1,2,0,1,0) | (96,53) (Es)1s x SU(3)15
2
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Table 5.4: Interacting fixtures with enhanced global symmetry

# | Fixture (na, ng, ng,ns, (np,ny) | Gg
ng, N8, N9, N12)
F4(a2)
17 Fy(as)| (0,0,2,2,1,1,1,0)| (94,75) | SU(2)s4—r x SU(2)s x U(1)
Az + 24,4
F.
18 ;ﬁ“"‘) Fy(as) | (0,0,2,1,2,1,0,0)| (80,60) | Spin(7)1s x U(1)
2
Fy(az) 2
19 Fy(az) | (0,0,2,2,2,1,1,0) | (107,86) | SU(3)12 x U(1)
Ay + A
Fy(az) 2
20| = Fy(az) | (0,0,2,2,3,1,1,0)| (120,97) | SU(3)%, x U(1)
2
F4(a2)
21 Cy (0,1,2,2,1,1,1,0) | (100,80) | SU(2)s6 x SU(2)15 x SU(2)g x
Fy(az) .
2| = C (0,1,2,1,2,1,0,0) | (86,65) | Spin(7)12 x SU(2)s x U(1)
24,
F,
gy | Fala) (0,1,2,2,2,1,1,0) | (113,91) | SU(3)12 x SU(2)g x U(1)*
Ay + A
Fy(az) 2
2| = G (0,1,2,2,3,1,1,0) | (126,102)| SU(3)%, x SU(2)g x U(1)
2
F
g5 | Fala2) X (0,0,4,1,1,0,0,0) | (64,48) | SU(2)2 x U(1)?
D4(a1)
F,
o6 | Fala2) Bs (0,0,3,1,1,1,0,0) | (73,56) | SU(2)16 x SU(2)s x SU(2)y x
As+ Ay U(1)
F4(a2)
27 5 (0,0,3,2,1,1,0,0) | (84,65) | SU(2)16 x SU(2)s x Sp(2)10 x
As U(1)
F
gy | Fala2) Cs(a1) | (0,2,1,1,2,1,0,0) | (79,63) | SU(2)7 x U(1)°
Ay + A
Fy(a2) 3
2| = Cs(ar) | (0,2,2,1,2,1,0,0)| (87,70) | SU(2)s x SU(2)7 x U(1)
4
F.
30 | Falaz) Ay + Ayl (0,1,1,1,2,1,1,0) | (92,75) | SU(2)a0 x U(1)?
Ay + Ay
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Table 5.4: Interacting fixtures with enhanced global symmetry

Fixture (nz, ng, N4, Ns, (nm nv) G

ne,ns,m,nm)

F ~

4;1“2) Ay + Ay | (0,1,2,1,2,1,1,0) | (100,82) | SU(2)20 x SU(2)s x U(1)?
4

F

a(az) B, (0,1,1,1,3,1,0,0) | (86,69) | SU(2)2 x U(1)?

As+ A

F

4/(1@2) B, (0,1,2,1,3,1,0,0) | (94,76) | SU(2)s x SU(2)2 x U(1)?
4

F ~

a(az) A, (0,1,1,2,2,1,1,0) | (104,84) | (G2)10 x U(1)*

Ag+A

F ~

4/(1“2) A, (0,1,2,2,2,1,1,0) | (112,91) | (G2)10 x SU(2)s x U(1)?
4

F

1(a2) Ay (0,1,1,0,1,1,0,0) | (56,38) | Spin(7)is x U(1)

Eg(a3)

F

iaz) Ay (0,0,1,0,2,1,0,0) | (63,44) | (Ga)is x SU(2)7 x U(1)>
5

F

1(a2) Ay (0,1,1,1,1,1,1,0) | (83,64) | (G2)16 x U(1)

D5(a1)

F

41(7“2) Ay 0,1,1,1,2,1,1,0) | (96,75) | (Ga)16 x SU(3)12
4

Fy(az) SU(2)64—ky—ky X SU(2)y,

A+ Ay | (0,1,1,1,1,1,0,0) | (66,47)

Eﬁ(a,g) XSU(2)k2 X SU(2)10
Fy(az) ~ 2
A A+ Ay | (0,0,1,1,2,1,0,0)| (73,53) | SU(2)%, x SU(2)10 x SU(2)7
5
F ~
1(az) A+ Ay | (0,1,1,2,1,1,1,0)| (93,73) | SU2)a—r x SUQ2)k  x
D5(a1) SU(2)10 X U(].)
F ~
1(az) A+ A | (0,1,1,2,2,1,1,0)| (106,84) | SUB)12  x  SU2)es—r  x
Dy SU(2)k X SU(2)10
F ~
a(a) A, (0,1,1,1,2,1,0,0) | (80,58) | SU(4)12 x U(1)?
Eg(a3)
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Table 5.4: Interacting fixtures with enhanced global symmetry

# | Fixture (n2,n3, 14,5, (nh,nw) | Gk
ne,ns,m,nm)
F4(0,2) ~
45 A A (0,0,1,1,3,1,0,0) | (87,64) | SU(4)12 x SU(2)7 x U(1)
5
F ~
46 | Falaz) A (0,1,1,2,2,1,1,0) | (107,84) | SU(4)15 x U(1)?
Ds(aq)
Fy(az) ~
47 P A (0,1,1,2,3,1,1,0) | (120,95) | SU(4)12 x SU(3)12 x U(1)
4
C
48 = (0,2,2,2,1,1,1,0) | (106,85) | SU(2)s6 x SU(2)15 x SU(2)Z x
As 424, UQ)
C
49 Qj‘ Cy (0,2,2,1,2,1,0,0) | (92,70) | Spin(7)12 x SU(2)2 x U(1)
2
@ 2 2
50 (0,2,2,2,2,1,1,0) | (119,96) | SU(3)15 x SU(2)2 x U(1)
A+ A, —
C
51 f Cs (0,2,2,2,3,1,1,0) | (132,107)| SU(3)3, x SU(2)z x U(1)
2
g 3 2
52 Bs (0,1,4,1,1,0,0,0) | (70,53) | SU(2)2 x SU(2)s x U(1)
Dy(aq)
C SU(2)g x SU(2)16x
53] =2 (0,1,3,1,1,1,0,0) | (79,61) )9 ()16
A+ A, — SU(2)s x SU(2)6 x U(1)
Cg Sp(2)10 X SU(2)16X
54| = B 0,1,3,2,1,1,0,0) | (90,70
, ( )| (90,70) SU(2)s x SU(2) x U(1)
C
55| =2 Oy(ay) | (0,3,1,1,2,1,0,0)| (85,68) | SU(2)r x SU(2)g x U(1)*
Ay + A
C
56 | =2 Cs(ar) (0,3,2,1,2,1,0,0) | (93,75) | SU(2)s x SU(2)7 x SU(2)s x
. U’
C
570 =2 A+ Ay (0,2,1,1,2,1,1,0)| (98,80) | SU(2)a0 x SU(2)g x U(1)?
As+ A
58| =2 Ao+ Ay (0,2,2,1,2,1,1,0) | (106,87) | SU(2)20 x SU(2)s x SU(2)g x

U?
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Table 5.4: Interacting fixtures with enhanced global symmetry

# | Fixture (n2,n3, 14,5, (nh,nw) | Gk
nGa”Sa”Qa”lQ)
C
59 = 5 (0,2,1,1,3,1,0,0) | (92,74) | SU(2)2 x SU(2)6 x U(1)*
A+ A
60 & By (0,2,2,1,3,1,0,0) | (100,81) | SU(2)s x SU(2)2 x SU(2)s x
A4 U(1)2
C ~
61 = A, (0,2,1,2,2,1,1,0) | (110,89) | (G2)10 x SU(2)g x U(1)*
Ag+ A
Cs ~
62| = Ay (0,2,2,2,2,1,1,0) | (118,96) | (G2)10 x SU(2)s x SU(2)g x
As U
C
63| == A, (0,2,1,0,1,1,0,0) | (62,43) | Spin(7)16 x SU(2)s
Eg(az) —
C.
64 f Ay (0,1,1,0,2,1,0,0) | (69,49) | (G2)16xSU(2)7xSU(2)xU(1)
5
C.
65 | — ) (0,2,1,1,1,1,1,0) | (89,69) | (G2)1 x SU(2)s x U(1)
Ds(a1) —
Cs
66 | — & (0,2, 1, 1,2, 1, 1,0) (102,80) (G2)16 X SU(3)12 X SU(2)6
Dy
C -
67| —>  Ai+A | (0,2,1,1,1,1,0,0)| (72,52) | SU(2)s2 x SU(2)%, x SU(2)10 X
Eg(as) SU(2)6
68 | == A, + A (0,1,1,1,2,1,0,0) | (79,58) | SU(2)2, x SU(2)10 x SU(2)7 x
5 SU(2)6
SU(2)ea—1r X SU(2)r %
60| = Ay +4; |(0,2,1,2,1,1,1,0)| (99,78) (2)o4- s
D5(a1) SU(2)10 X SU(2)6 X U(l)
3 ~ SU(3)12 X SUv(2)64,;C X SU(Q)k
00— A+ A 0,2,1,2,2,1,1,0) | (112,89
, a4 © i ) < SU(2)10 % SU(2)s
C _
| =2 (0,2,1,1,2,1,0,0) | (86,63) | SU(4)12 x SU(2)g x U(1)*
Eg(a3)
C. -~
2| A4 (0,1,1,1,3,1,0,0) | (93,69) | SU(4)12 x SU(2)7 x SU(2)g x
4 U(1)
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Table 5.4: Interacting fixtures with enhanced global symmetry

# | Fixture (na, ng, ng,ns, (np,ny) | Gg
ng, N8, N9, N12)
C _
3 = A4 (0,2,1,2,2,1,1,0) | (113,89) | SU(4)15 x SU(2) x U(1)?
Ds(a1)
C.  ~
M| = A (0,2,1,2,3,1,1,0) | (126,100)| SU(4)12 x SU(3)12 x SU(2)s x
Da U(1)
B
75| 72 Fyas) | (0,4,1,1,0,0,0,0)| (51,36) | SU(2) x U(1)*
D5(a1)
B
76 | = Fy(as) (0,4,1,1,1,0,0,0) | (64,47) | SU(3)12 x SU(2)s
4
B-
77| =% Cs(ar) | (0,3,1,1,1,0,0,0)| (58,42) | SU(2)12 x SU(2)? x SU(2)7 x
Dslar) U’
B
78 | =2 Cs(ar) (0,3,1,1,2,0,0,0) | (71,53) | SU(3)12 x SU(2)12 x SU(2)g x
4 SU(2)7
79 - A2+A1 (0,2,1,1,1,0,170) (71,54) SU(2)20 X SU(2)18 X SU(2)6 X
Ds(ax) U(1)
80 = AVQ—FAl (0,2,1,1,2,0,1,0) (84,65) SU(3)12XSU(2)20XSU(2)18X
4 SU(2)¢
B
81| = B (0,2,1,1,2,0,0,0) | (65,48) | SU(2)Z x SU(2)7, x U(1)*
Ds(ay)
B-
82| = B, (0,2,1,1,3,0,0,0) | (78,59) | SU(3)12 x SU(2)? x SU(2)3,
Dy, —
83| =2 Ay+A; | (0,1,1,0,1,0,0,1)| (63,46) | SU(2) x SU(2)39—x x SU(2)a4
Eg(a3)
84 | =2 A+ Ay (0,0,1,0,2,0,0,1) | (70,52) | SU(2)7 x SU(2)26 x SU(2)13 x
5 SU(2)24
B ~
8| > A (0,2,1,1,1,0,0,0) | (56,37) | Spin(7)1o x SU(2)12 x SU(2)2
FEg(as)
B ~
86 j’ 5 (0,1,1,1,2,0,0,0) | (63,43) | Spin(7)10 x SU(2)7 x SU(2)3,
5
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Table 5.4: Interacting fixtures with enhanced global symmetry

# | Fixture (n2,n3, 14,5, (nh,nw) | Gk
TLG,?’LS,?’LQ,?’L]Q)
B -
87| = A (0,2,1,2,1,0,1,0) | (83,63) | (G2)i0 x SU(2)15 x SU(2)g x
Ds(ay) U(1)
B ~
88 | = A, (0,2,1,2,2,0,1,0) | (96,74) | (G2)10 x SU(3)12 x SU(2)15 x
D4 SU(Q)@
B
89| % Ay (0,1,1,0,1,1,0,1) | (80,61) | SU(3)16 x SU(2)24 x U(1)
Eg(a3)
B
90 | = A4, (0,0,1,0,2,1,0,1) | (87,67) | SU(3)15 x SU(2)7 x SU(2)a4 x
As U()
B3
91 ; Q (0a0,27170a0a0,0) (56723) (E7)8X(F4)1OXU(]‘)
5
F,
o2 | D) gy | 0,81,1,1,1,0,0)| (72,57) | o)t
Ay + Ay
F,
03 ‘;(1“3) Fias) | (0.3,2.1,1,1,0,0)| (80,64) | SU(2)s x U(1)"
4
F
oa| D)o 041,111,000 (78,62) | SU@) x U
Ag+ A
Fy(as) 4
95 A Cs (0,4,2,1,1,1,0,0) | (86,69) | SU(2)s x SU(2)g x U(1)
4
F,
96 41(7“3) A (0,3,1,0,0,1,0,0) | (56,37) | Spin(8)1s x U(1)
F4((L3) ~ 4
o7 | =% A Ay | (0,3,1,1,0,1,0,0) | (66,46) SU2)%y x SU(2)10 x U(1)
5
F ~
98 gag) é (0;37 1,1,1, 15070) (80757) SU(4)12 X U(1)4
5
F,
g9 | Falas) (0,3,0,0,0,0,0,0) | (48,15) | [(Fy)s SCFTJ?
Es(a1)
Cg(al) .
100 = Ay (0,2,1,0,1,1,0,0) | (63,43) | Spin(7)1s x SU(2)7 x U(1)
5
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Table 5.4: Interacting fixtures with enhanced global symmetry
Fixture (n2,n3, N4, 05, (nh,ny) | G
nGa”Sa”Qa”lQ)
C ~ SU(2 SU(2)?
o1 ) 4 A | 021111000 | (73.52) (2)32 > SU 215
Dy SU(2)10 X SU(2)7 X U(l)
Cila1) ~ 3
102 = A, (0,2,1,1,2,1,0,0) | (87,63) | SU(4)12 x SU(2)7 x U(1)
5
C.
103 Calan) 0 (0,2,0,0,1,0,0,0) | (55,21) | [(Es)s SCFT] x [(E¢)iz x
Eg(a1) SU(2)7 SCFT]
g2 +4
L Ay (0,1,1,0,1,1,1,0) | (76,55) | (G2)1g x SU(2)20 x U(1)
5
Ay + A . SU(2)4s x SU(2)16x
108 225 4 LA (0,1,1,1,1,1,1,0)| (86, 64) (2)as )16
Dy SU(2)10 X SU(2)20 X U(l)
A+ Ay ~
106 % A, (0,1,1,1,2,1,1,0) | (100,75) | SU(4)12 x SU(2)20 x U(1)?
5
Ay + A
107 = 0 (0,1,0,0,1,0,1,0) | (68,33) | (Eg)is x SU(2)20 SCFT
FEs(a1)
& 2 2
L Ay (0,1,1,0,2,1,0,0) | (70,49) | (Ga)1s x SU(2)2 x U(1)
5
B ~
109 =2 A, + 4, (0,1,1,1,2,1,0,0) | (80,58) | SU(2)3, x SU(2)10 x SU(2)3 x
Dy U(1)
B ~
110 ;2 A (0,1,1,1,3,1,0,0) | (94,69) | SU(4)15 x SU(2)2 x U(1)?
5
By
| =2 o (0,1,0,0,2,0,0,0) | (62,27) | [(Es)s SCFT] x [(Fi)iz x
Eg(a1) SU(2)? SCFT]
Ay + A .
112 2D L Ay + Ay (0,0,1,0,1,0,1,1) | (78,58) | Sp(2)s3e x U(1)
5
Ay + A
113 224 (0,0,0,0,1,0,0,1) | (62,34) | Sp(4)15 x SU(2)26
Eg(al)
Ay
114 E & (0,1,1,1,1,1,1,0) (88,64) (G2)16 X (GQ)lO X U(l)
5
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Table 5.4: Interacting fixtures with enhanced global symmetry

# | Fixture (n2,n3, 14,5, (nh,nw) | Gk
N6, N8, N9, N12)
112 ~ (Gg)lo X SU(2)64_k X SU(?)k
115 — A, + A 0,1,1,2,1,1,1,0)| (98,73
Ds Ath ( )| ) xSU(2)10 x U(1)
A, -~
116 52 A, (0,1,1,2,2,1,1,0) | (112,84) | SU(4)12 x (G2)10 x U(1)?
5
A,
17 ¢ (0,1,0,1,1,0,1,0) | (80,42) | (Eg)1s x (G2)10 SCFT
Eg(al)
Ao ~ .
118 T a1 (Oa0,07072a 1a0,0) (64737) szn(’?)lQ X (G2)16 X U(l)
Es(a1)
A
119 — 1 (0,0,0,0,1,1,0,1) | (79,49) | Sp(3)13 x SU(3)16 x U(1)
Es(aq)
A+ A -
120 2L 4 4 AL (0,0,0,1,1,1,0,0) | (60,35) | SU(4)32 x Sp(2)10
Eg(al)
A+ A~
197 SLEAL A (0,0,0,1,2,1,0,0) | (74,46) | SU(4)12 x SU(2)2, x SU(2)10
Es(a1)
A _
129 & A4 (0,0,0,1,3,1,0,0) | (88,57) | SU(4)%, x U(1)
Eﬁ(al)

5.2.5 Mixed fixtures

Table 5.5: Mixed fixtures

# | Fixture (no, ng, ng,ns, (np,ny) | Theory
n67n87n97n12)
1] T (0,8pin(9))] (0,1,0,0,0,0,0,0) (16,5) | (Es)s SCFT +1(9)
As + Ag
Fy ~ 1
2 As + Aq (0,1,0,0,1,0,0,0) (38, 16) (EG)lQ X SU(2)7 + 5(1,2) +
24, 1(7,2)
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Table 5.5: Mixed fixtures

# | Fixture (na, ng, ng,ns, (np,ny) | Theory
N6, N8, N9, N12)
3 Ay + A (0,1,0,0,1,0,1,0) (68,33) | (Eg)1s x SU(2)20 + 3(1,2)
Ay
Fy
4 = 4 (0,1,0,0,1,0,0,0) (39,16) | (Eg)12 x SU(2)7 + (1,2,3)
3A;
Fy ~
50 7 A+ A (0,1,0,1,1,0,0,0) (52,25) | SU6)12 x  Spin(T)o -+
34, 3(1,2,3,1)
Q - 2 1
6 A, (0,1,0,1,2,0,0,0) (68,36) | SU(6)12 x SU(3)%,+ 3(1,2,1)
3A;
Iy
7 — Ay (0,1,0,1,0,0,0,0) (36,14) | Spin(14)10 x U(1) + %(3,6)
Ay + 24,
Fy
s — A (0,1,0,1,1,0,0,0) (55,25) | SU(9)12 x U(1) + 1(1,6)
Ay + Ay
& 2 1
9 A (0,1,0,1,2,0,0,0) (68,36) | SU(6)12 x SU(3)%,+ 3(1,1,6)
Az
Fy 1
10 0 (0,1,0,0,0,0,0,0) (16,5) | (Eg)s SCFT + (26,2)
245+ Ay
Fy(az)
11 F4((12) (0,0,2,1,1,1,0,0) (65,49) SUv(2)25,]C ><SU(2)]C XU(].)"‘
242 + A4 3(2)
Fy(az) SU(2)16 x SU(2)o
12 Cs (0,1,2,1,1,1,0,0) (71,54) | »SU(2)g x U(1)
2142 + Al 1
+§(2a 1)
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Table 5.5: Mixed fixtures

# | Fixture (na, ng, ng,ns, (np,ny) | Theory
N6, Mg, M9, N12)
F4((12) ~
13 Ay + Ay (0,1,1,0,1,0,0,0) (37,23) | Sp(2)12 x SU(2)7 x SU(2)6+2
Ee(as3)
F4((12) ~ 2
14 Ay + A, (0,0,1,0,2,0,0,0) (45,29) | Sp(2)7 x SU(2)7 x SU(2)%, +
As 3(1,2)
F4(a2) ~
15 A2+A1 (071,171,1,0,1,0) (65,49) SU(2)387I€ XSU(?)k XU(1)+
Ds(a1) 3(2)
F4((12) ~
16 Ay + A (0,1,1,1,2,0,1,0) (78,60) | SU(3)12xSU(2)20x SU(2)15+
D, 3(1,2)
CB SU(2)16 X SU(2)9
7| = Cy (0.2,2,1,1,1,0,0) (77,59) | gr7(2)% x /(1)
245+ Ay 1
+§(27 ]-v 1)
18 Ay + Ay (0,2,1,0,1,0,0,0) (43,28) | SU(2)7, x SU(2)2 x SU(2)7 +
Eg(as) (2,1)
03 N Sp(2)7 X SU(2)24 X SU(2)7
19 = Ay + A, (0,1,1,0,2,0,0,0) (51,34) 1
As - XSU(2)6+§(1,2,1)
_ SU(2)20 X SU(2)18
20 A2+A1 (0727171’1707170) (71754> XSU(Q)G X U(l)
D5(a1) 1
+§(2a ]-)
. SU(3)12 X SU(2)20 X SU(2)18
21 As + A (0,2,1,1,2,0,1,0) (84,65) 1
D, xSU(2)s + 5(1,2,1)
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Table 5.5: Mixed fixtures

# | Fixture (na, ng, ng,ns, (np,ny) | Theory
N6, N8, N9, N12)
22 Ay + A (0,2,1,0,1,0,0,0) (43,28) ?U(Q)fg x SU(2)a x SU(2)7 +
FEg(a3) 3(2,1
By - ,
23| = Ayt Ay (0,1,1,0,2,0,0,0) (50,34) | SU(2)7 x SU(2)%, x SU(2)7 +
A5 %(1a27 1)
Fy(as) ~ 6 5
24 Ay + A, (0,3,1,0,0,0,0,0) (36,22) | SU(2)S x U(1) + 3(2)
Ds
Cs(a ~ 2
g5 C2lan) Ay + A, (0,2,1,0,1,0,0,0) (44,28) | SP(2)7 x SUR),
Dy xSU(2)g x U(1)
+(2,1)
A2 + A1 ~
26 A2 +A1 (0,1,1,0,1,0,1,0) (58,40) Sp(2)20 X SU(2)18 X U(l) +
D5 %(2a 1)
Ay + Ay
27 é (07 1,0,0, 13070’0) (39’ 16) (E6)12 X SU(2)7 + 2(67 1) +
Eg(a1) 3(1,2)
B :
28 As + Ay (0,1,1,0,2,0,0,0) (52,34) | Sp(2); x SU(2)24 x U(1) +
Ds 3(2,1,1)
Azt Ay Ay ¥ 1 1
29 A+ A, | (0,0,0,0,1,0,0,0) (27,11) | Sp(5)7 + £(3,1,2) + 3(1,2,3)
Eg(a1)
As + A 2,1
30 Ay (0,0,0,0,2,0,0,0) (46,22) | (Fu)i12 x SU(2); + 5(1, 2)
Eg(a1)
Y » SU(2)20 X SU(2)18
31 — A+ A (0,1,1,1,1,0,1,0) (70,49) x(Ga)10 x U(1)
Dy 1
—(2,1
+52.1)
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Table 5.5: Mixed fixtures
# | Fixture (na, ng, ng,ns, (np,ny) | Theory
N6, N8, N9, N12)
A : !
32 Ay (0,1,0,1,1,0,0,0) (52,25) | SU(6)12 x Spin(7)10 + 5(6,1)
Eeg(a1)
Ay ~
33 T A+ A (0,0,0,0,1,1,0,0) (49,26) | SU(6)16 x SU(2)g + 3(1,2,1)
Eg(ay)

We note that for mixed fixture 22 on our list, the order ¢ (equivalently,
72) term in the expansion of its superconformal index implies that the global

symmetry is enhanced to SU(2)19_ X SU(2)x X SU(2)24—g,—k, X SU(2)g, X
Since we are not able to gauge any of the punctures, we cannot

SU(2)g,-
determine the levels k, kq, ks using an S-duality.

However, by setting k = 7,k = ko = 6, its properties agree with that

of mixed fixture 18, up to the addition of a half-hypermultiplet. As further

evidence, we have checked that the next non-trivial term in the expansion of

the superconformal index is the same for each theory:

Luig = Lyoo X Liree
= (1+2¢2 + 18¢+66¢2 +...)(1+2¢% + 3¢ + 6¢% +...)

= 1+4q2 +25¢ + 114q° + . ..
Thus we conjecture that the SCF'T realized by fixture 22 is the same as that

of 18, and fill in the levels in the table above.
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5.2.6 Gauge theory fixtures

Gauge theory fixtures are 3-punctured spheres with 1 or 2 insertions
of Fy(ay). There are 167 such 3-punctured spheres involving three regular
punctures and 1 involving an irregular puncture. Of the 167, all but 1 are
resolved by replacing the Fy(a;) by the pair Fy, Eg(ai); that is, they can be
thought-of as 4-punctured spheres in disguise. The remaining case involves
two Fy(ap) punctures and is really a 5-punctured sphere in disguise. The two
exceptional cases are listed in the table below. Note that the latter involves

two decoupled copies of a theory to be discussed at greater length in §5.7.2

Table 5.6: Gauge theory fixtures

# Fixture (ng, n3, g, N5, Theory

g, Ng, Ny, n12>

)| Fate) (A, SU(4)4)| (1,0,0,0,0,0,0,0) | SU(2) + 4(2)
Ds
Fu(ar) [SU(3) + (Bs)y,)”
2 F4(CL1) (2727()’072707070) — [ ( ) l( )
0

+(Es)1, X SU(2)]"

5.3 Global symmetries and the superconformal index

To determine the global symmetry of each SCFT and the number of
free hypermultiplets for each fixture, we use the superconformal index [22] 23]

241,25, 26]. This analysis was carried out for the untwisted Eg fixtures in [49).
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We leave many of the details to that paper, and the references therein.

5.3.1 Superconformal index for twisted fixtures

Following [17, 26], [64], we assume that the superconformal index for an

Eg fixture with a two twisted punctures and one untwisted puncture takes the

usual form:

I(a;T) =

.A(T) Z /C(al§ T)Pb(?il’a27a3’a2’al’a4)(al; 7_) H?:z IC(a,-; T)P}Zhaz,ag,azx)(ai; 7_)
(@102 mm.a0) Pg;l,az,ag,,az,m,m) (atriv; 7_)

(5.2)
where the sum runs over finite-dimensional irreducible representations of Fj,
and the Dynkin labels of each Ej representation are determined by those of

the corresponding F) representation, as indicated.

To obtain this formula, one can use the fact that, when C' has genus
zero, the Hall-Littlewood limit of the superconformal index coincides with the
Coulomb branch Hilbert series of the 3d mirror of the (2,0) theory on C x S*.
For a fixture of type Eg with twisted punctures, the 3d mirror is obtained
by assigning the 3d N' = 4 SCFT Tj;(F}) to each twisted puncture j and the
SCFT T,(Es) to the untwisted puncture p, and gauging the common centerless
flavor symmetry F,/Z(F,) |14, 12]. The Coulomb branch Hilbert series can
then be computed following [65] 66], giving (5.2).

The Taylor expansion of the superconformal index is given by [27]
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T(ai;7) = 1+ 7xfree(@) + T (XL (@1) + Xelpr(ai)) + - .-

allowing us to read off the number of free hypermultiplets and the global
symmetry group of the interacting SCFT for a given fixture. Examples of this

type of calculation can be found in [17], 49, 27].

5.3.2 Higher-order expansion of the index

Computing the expansion of to higher-order becomes very tedious
due to the sum over the Weyl group in the definition of the Hall-Littlewood
polynomials. We will therefore also be interested in the Schur limit of the
superconformal index, where the Hall-Littlewood polynomials are replaced by
characters of the corresponding representationsﬂ. For a twisted fixture, this is

given by

Z(as;q) =
2 ai,a2,a3,a a1,a2,a3,a2,a1,a
[ o 3 DK@ e ay

(al7a2,a3,a2,a1,a4)(a . )
Jj=2,5,6,8,9,12 (a1,a2,a3,a4) Es triv

(5.3)

where (a;q) = [[72,(1 — a¢’) is the g-Pochhammer symbol. We expand each

character x* in (5.3) in terms of su(2) x § characters as determined by the

3This limit corresponds to the (0, q,t = q) slice in the space of superconformal fugacities
[24].
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su(2) embedding which defines the puncture, where the su(2) fugacity is set

equal to q%. Decomposing the adjoint representation as

s=Pv.®R,

where V}, is the n-dimensional irrep of su(2) and R, is the corresponding

representation of f, (a) is defined by

n+

K(a) = PE[Y>q" x{"(a)),

where PE denotes the plethystic exponential. By their definitions, one can
easily see that the coefficient of 7 (72) in the Hall-Littlewood index is the
same as that of ¢2 (¢) in the Schur index (though the higher-order terms are
different). However, while the Schur index removes the difficulty of explicitly
summing over the Weyl group, we find that the number of terms in the sum
in grows very quickly at each order in q% and begins to involve large-
dimensional representations of Fg, also making the calculation very tedious.
Therefore, in most of the calculations that follow, we compute only the next

1-2 terms in the expansion of the Schur index. It would be very useful to find

a more efficient way to explicitly calculate (/5.2)), (5.3)).
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5.4 Enhanced global symmetries: the Sommers-Achar
group on the Higgs branch
Consider a family of fixtures where we keep two of the punctures fixed,
and vary the third puncture over a special piece, {O}. Let O, be the special
puncture in this special piece. The Sommers-Achar group C(O), for each
of the punctures O in the special piece, is a subgroup of Lusztig’s canonical

quotient group, A(d(O)) ~ S,. Let O,, be the puncture with the maximal

Sommers-Achar group, i.e, the one whose Hitchin pole is (d(O), S,,).

It frequently happens that, when O = Oy, a simple factor (associated
to one of the other punctures, which we are holding fixed) in the manifest

global symmetry of the fixture is enhanced as

F]m — (F]c)n

(There may, in addition, be further enhancements of the global symmetry but,
by examining the fugacity-dependence of the superconformal index, we know
unambiguously which ones are associated to the enhancement of Fy,.) When
this enhancement takes place, for O = Oy, then, for O = O,,, the F}, is
unenhanced and, as O varies over the special piece, the enhancement is the
subgroup of (Fy)" which is invariant under C(O) acting by permutations of

the n copies of Fj.

In particular, this gives an explicit action of the Sommers-Achar group

on the holomorphic moment map operators, which are generators of the Higgs
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branch chiral ring. Heretofore, the Sommers-Achar group was purely a Coulomb-

branch concept.

We found numerous examples of this in [49] and were able to verify,
using various S-dualities (see, e.g., Section 4 of [49]) that the levels of the
factors of F' in the global symmetry behave as predicted by this permutation

action.

One example eluded us there. We were unable to verify, using S-duality,

the levels of the SU(3)s in the first two fixtures in
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SUQB)s, X SUQ),, X U(1)

This example has an additional enhancement. As above, the manifest symme-

try of the Ay 4+ 2A; puncture is enhanced

SU(2),, x U(1) — SU(2)3, x U(1)

with the further enhancement

SU(2)3, x U(1)* — SU(3)3,
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Otherwise, this example fits the same pattern: the Sommers-Achar group,
C(0), acts by permutations on the SU (3)‘;’87 and the global symmetry group

of the fixture is the subgroup invariant under C'(O). That is, k = k' = 18.

The twisted sector of the Fg theory provides further examples of this

phenomenon. Perhaps the most striking example is the fixture

with an untwisted full puncture, a twisted simple puncture and a twisted
puncture, ). As we let the puncture, (), vary over the special piece of Fy(as3),
the (L),, symmetry of the 0 puncture is enhanced to (the C(O)-invariant
subgroup of) (EG)é The resulting SCFTs are products of the generalized Fg
Minahan-Nemeschansky SCFTs whose Higgs branches are the moduli space
of | Eg instantons, M (Es, [)f] .

Table 5.7: Fixtures obtained by varying over special piece of Fy(a3)

# C(0) Theory Higgs Branch dimy Higgs | (np, ny)

1 | Fy(a3) 1 [(Eg)s SCFT|* M (Eg,1)* 44 (64, 20)

4These SCFTs are realized in F-theory as the theory on I D3-branes coincident with a
IV* singularity.
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Table 5.7: Fixtures obtained by varying over special piece of Fy(a3)

# C(0) Theory Higgs Branch dimy Higgs | (np, ny)

2 Cg(al) ZQ [(E@)@ SCFT]2 X M(EG, 1)2 X 45 (71, 26)
[(E6)12 x | M(Eg,2)
SU(2)7 SCFT]

3| Ag+ Ay | S [(E¢)s SCFT] x | M(Eg,1) x| 46 (84, 38)
[(E@)lg X M(E67 3)
SU(2)29 SCFT]

4 & ZQ X ZQ [(E6)12 X M(EG, 2)2 46 (78, 32)
SU(2); SCFT)]?

As + :4: Sy [(E6)24 X M(E6, 4) 47 (1037 56)

SU(2)39 SCET]

Here the (Eg)g, global symmetry is realized as the Es global symmetry
of M(Eg,1). More subtle relations between instanton moduli spaces will be

discussed below in §5.7

In this example, the global symmetry groups and the levels were all
determined by S-duality. In other examples, S-duality determines some, but
not all of the levels of the enhanced global symmetries, and we can use the

action of the Sommers-Achar group on the Higgs branch to fill in the missing

leveld]

Two more sequences of fixtures, which have one puncture running over
the special piece of Fy(a3), have global symmetry groups which are enhanced

in this fashion, but levels we could not completely determine using S—dualityﬂ

5The action of C'(O) on the Higgs branch of mixed fixtures is not so transparent.
6Interacting fixture 83 in the table above contains the puncture A; + A;, which is in the
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In the case of

as () varies over the special piece of Fj(as), the SU(2),, global symmetry of

Bj is enhanced.

Table 5.8: More fixtures obtained by varying over the
special piece of Fy(as)

# 10 C(0) Global Symmetry
pe 1|
77| Cs(ay) | Zy SU(2)12 x SU(2)% x SU(2); x U(1)*
79| Ay+ A, | Sy SU(2)aap, X SU(2), x SU(2)a0 x U(1)
81| By Zo x Ty | SU(2)7, x SU(2)2 x U(1)

Ay + A | Sy SU(2)as x SU(2)39 x U(1)

Filling in the missing levels, we find ky = ky = k3 = k = 6.

special piece of Fy(as). However, three of the other four fixtures related by varying over the
special piece are bad (the other good fixture is mixed fixture 22). In particular, the fixture
with the special puncture Fy(a3) is bad, so there is no enhancement of the form discussed
above. Thus we don’t know how to use this method to determine the levels for fixture 83.
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Similarly, as O in

varies over the special piece of Fy(a3), the SU(2)gs x SU(2),, global symmetry
of A, + Avl is enhanced.

Table 5.9: More fixtures obtained by varying over the
special piece of Fy(as)

# | O C(0) Global Symmetry
SU(2)64—y —kg—ts X SU(2)p, X SU(2),

97 F4(a3) 1 ( )r4 ki —ko—ks X ( )k X ( )k

><S(](2);€3 X SU(2)10 X U(l)

101 | Cs(ay) L SU(2)s9 x SU(2)7, x SU(2)10 x SU(2)- x
U(1)

105 | Ay + A4, | S SU(2)6a—r X SU(2)x x SU(2)10 X SU(2),, X
U1

109 | By Zox Ty | SU(2)3, x SU(2),, x SU(2)7 x U(1)

Ay+ A | S, SU(2)es x SU(2)10 x SU(2)50 x U(1)

Again, we can fill in the missing levels: k; = ko = k3 = k = 16.

Additionally, we find the following three fixture by varying over special
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piece of the untwisted puncture Dy(ay):

Fy(a,)
© o
@)
B,
O
As O varies over the special piece of Dy(ay), the SU(2)s4 global symmetry of

Bs is enhanced.

Table 5.10: Fixtures obtained by varying over the special
piece of Dy(ay)

# O C(0) Global Symmetry

25 | Dy(as) 1| SU(2)au—y—ky X SU(2)p, X SU(2)s, x U(1)?

2% | Az + A, | Zs SU ()4 x SU(2), x SU(2)g x U(1)

2A2 —+ Al 53 SU(2)24 x S '(2)-_)(;

We fill in the missing levels ky = ko = k = 8.

5.5 Rys

In [3], we introduced a series of N' = 2 SCFTs, which we dubbed
Ryon—1. Rog,—1 has a (Spin(4n+ 2) 4o X U(].))/Zg global symmetry (en-

hanced to (Eg)q for n = 2), central charges (ny,n,) = (4n% (n — 1)(2n + 1))
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and graded Coulomb branch dimensions no,_1 =1, for k =2,... n.

These play an important role in the strong-coupling duals of various

familiar gauge theories. Specifically
SU@2n —1) +4(0) + 2(E> ~ Sp(n — 1)+ 1(0) + Rozns
suen) +4(@) +2(H) = sp(n) +3(0) + Rzz01 (5.4)
SU2n) + 1 (EI) +1(00) ~ Spin(2n +1) + Ry

The realizations of the Ry, are:

Ry Ry, + 1D Ry

in the As, o, As,_1 and the twisted sector of the As,_; theory, respectively.
These different realizations expose different manifest subalgebra{] (respec-
tively, su(2n — 1),,_,xsu(2)7 _,xu(1)? su(2n), _,xu(1)* and so(2n +1)3

u(1)) of the full global symmetry algebra of the R 4,1 SCFT.

The twisted sector of the Eg theory provides two new realizations of

R275I

"As symmetry groups, they are, respectively, S(U(2n — 1) x U(2)?), S(U(2n) x U(1)3)
and (Spin(2n + 1) x Spin(2n + 1) x U(1))/Zs.
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F
o
0, Spin(9)
( plno)
A
o

R, s+ £(3, 6) R, s

which expose a manifest sp(3)19 X s1(2)30 X u(1) or s0(9),5 % 5p(2)19 x u(1)
subalgebra, respectively, of the so(14),, x u(1) global symmetry algebra of
Ry 5.

The latter realization will be useful to us in §5.7.6, The former provides,

among other things, another realization of the aforementioned duality

SU(6) + 4(6) + 2(15) ~ Sp(3) + 3(6) + Ra5

via the 4-punctured sphere

0
(0. 5U6) s |

empty 4(6) + 2(15)

Here, the gauge coupling,
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C0;00,7)  w—1
040,7) w41

f(r) =

is a function on the double-cover of M, 4, where

2 213724
we=ux

214223

so that f(7) =1 at the degeneration

empty gauge theory fixture

corresponds to the interior point of the gauge theory moduli space, f(7) = —1.
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5.6 Product SCFTs

The (Eg),5 % (G2);9 SCFT occurs twice on our list of interacting fixtures:

once, by itself, in

(Eg)g X (Gy),, SCFT (5.5)

(interacting fixture 117) and once — we claim — as part of a product SCFT

[(Eg)g SCFT] X [(Eg) ¢ X (Gy),, SCFT] (5.6)

(interacting fixture 5). We can check the latter claim, explicitly, by comparing
the SCI for (5.6) with the SCI for (5.5) and the (known) SCI for the (Eg);
SCFT.

Indeed, we find that, to second order in ¢, we have

Tys =1+ 170q + 14601¢° + . ..
= (1+92¢ 4 4916¢> + ... )(1 + 78q + 2509¢* + .. .)

= (Zy117 X L(ge)escrr)|e
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Having established that (5.6]) is a product SCFT, we can apply that knowledge
to deduce that other fixtures are also product SCFTs. For instance, consider

the 4-punctured sphere

13)  [(Eg), SCFT] X [(Eg),s X (G,),, SCFT]

The SU(3) gauges a subgroup of the (G3),, symmetry of the (Eg),5 X (G2)q
SCFT, leaving the (Es)s SCFT decoupled. Taking the S-dual,

empty [, SCFT] X [(Eg),, X SUB),, X U(1) SCFT]

we conclude that fixture on the right also contains a decoupled (Egs); SCFT

and, hence, that

291



(o=

[(Eg), SCFT] X [(E),q X SU(B3),, x U(1) SCFT] (5.7)

(interacting fixture 61 of [49]) is also a product SCFT.

Similarly, in

(Eg)y SCFT  [(Eg), SCFT] X [(E),, X (Gy),, SCFT]

the gauging of the G5 symmetry leaves the (Eg)s SCFT decoupled. Hence, in
the S-dual,

empty [(E¢)g SCFT] X [(Eg),, X SUB)], SCFT]

the fixture
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D,
D,
(@)

0
@)

[(Eg)g SCFT] X [(Eg), x SUB3);, SCFT] (5.8)

(interacting fixture 99 of [49]) is, again, a product SCFT.

As a further check of these identifications, we can compare the SCIs
for and with those of interacting fixtures 15 and 16 above, which
directly realize, respectively, the (Eg),g X SU(3),, x U(1) and (Eg),g X SU(3)3,
SCFTs.

Indeed, we find that

T = 1+ 165¢ + 164¢2 + 13451¢% + . ..

= (14 87q + 164q% + 4156¢% + ... )(1 + 78q + 2509¢* + ... )
= (Zy1s X L(Eg)s scrT) g2

and

Tygo = 1+ 172q + 14886¢° + . ..

= (1 +94q 4 5045¢% + ... )(1 + T8¢ + 2509¢* + .. .)

= (Tw16 X L(pg)s scrr)|e

Similarly, we can check that interacting fixture 59 of [49)
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[(E¢)¢SCFT] X [(E;),g X U(1) SCFT ]

is a product SCFT by comparing the expansion of its SCI with that of in-
teracting fixture 13 above, which directly realizes the (F7);s x U(1) SCFT.
Indeed, one finds that

Tuso =1+ 212¢ + 112¢2 + 22273¢% + . ..
— (1+78¢ + 2509¢2 + ... )(1 + 134q + 112¢% + 9312¢> +...)

= (Z(gs)s scrT X Ly1a)] g2
Finally, we claim that interacting fixture 111 above is the product of the (Fs)g
SCFT and the (F})1s x SU(2)? SCFT. The latter previously appeared in our
list of interacting fixtures for the D, theory [5] and appears in mixed fixture

30 above.

We find the expansion of the SCI for fixture 111 is given by

Tu111 = 1+ 136 + 104¢? + 9036¢> + . ..

That of mixed fixture 30 reads
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Ty =1+ 22 + 61q + 22602 + 2394¢> + . ..

= (14 2¢% + 3¢ + 6% + 9¢% + ... )(1 + 53¢ + 104¢® + 2003¢* + ... )

= (Tgree ¥ I(F4)12st(2)§SCFT)|q2

Extracting the order ¢? expansion of the index of the (Fj)ip X SU(?)? SCFT

from the above, we see that

L(Be)sSCFT X I(F4)12st(2)$SCFT

= (1478 + 2509¢> + ... )(1 + 58¢ + 104¢? + 2003¢> +...)
= 1+ 136¢ + 104q? + 903642 + . . .

= Tyl

5.7 Instanton moduli spaces

Let M(G, k) denote the moduli space of k instantons on R*, for gauge

group Gﬁ . M(G, k) is a hyperKéahler space of dimension

dimy (M (G, k)) = kek — 1
where k¢ is the dual Coxeter number and the “—1” is present because we have

removed the overall translational degree of freedom.

For £k = 1, M(G, k) has hyperKéhler isometry group G. In fact,

M (G, 1) is the minimal nilpotent orbit in gc. For k 1, the hyperKéahler isom-

8Equivalently, the moduli space of framed instantons on S*.
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etry group of M(G,k) is G x SU(2). The origin of the additional SU(2)
is as followsﬂ . While we've removed the translational symmetry of R*, the
SO(4) = (SU(2)x SU(2)) /Z rotational symmetry still acts on the space of in-
stanton solutions. One of the SU(2)s acts by rotating the complex structures
of M(G, k) among themselves. The other SU(2) preserves the quaternionic
structure. For k = 1, it is easy to see that it acts trivially, whereas for £ > 1

it acts nontrivially.

For the classical groups G, the ADHM construction [67] provides a
realization of M (G, k) as a hyperKéhler quotient of a quaternionic vector
space. When G is exceptional, no such construction exists. But (at least
for low k) something almost as nice exists. Namely: the hyperKéhler quotient
M(G,k)///H, for H some subgroup of the isometry group of M(G,k), has
an alternative realization as a hyperKéahler quotient either of a quaternionic

vector space or of some other well-known hyperKéahler space.

The first examples of this phenomenon come from the classic paper of

Argyres-Seiberg [2]

(M (s, 1) x B2) )/ SU(2) = H'///SU (3) 59
5.9

M(E7,1)///SU(2) ~H*///Sp(2)
They established something much stronger: the S-duality of a pair of N' = 2

supersymmetric quantum field theories. The Higgs branch of one theory is the

9We thank Andrew Neitzke for a discussion of this point.
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LHS; the Higgs branch of the other is the RHS. Because the Higgs branch ge-
ometry is independent of the gauge coupling, the S-duality of the two theories
implies that the two Higgs branches are isomorphic. An independent, non-
trivial check on the first of these isomorphisms was performed in [68]. At the
holomorphic-symplectic level, an axiomatization of this general construction

is given in [69].

Further examples of such isomorphisms of hyperKéhler quotients of
instanton moduli spaces (implied, again, by the S-duality of the corresponding

QFTs) appeared in our previous papers. In section 4.2.3 of [17], we found

M (Es, 1)///Sp(2) = H"///Sp(3) (5.10)

Here, the defining 6-dimensional representation and the 14-dimensional trace-
less 3-index antisymmetric tensor representation of Sp(3) are both pseudo-real
(have quaternionic structures) and hence induce, respectively, linear actions
on H* and H". On the RHS of (5.10), we decompose H*® as 11 copies of the
former and 1 copy of the latter. In the usual physics notation, we denote
this by H* ~ 11(6) & £(14’) (“11 half-hypermultiplets in the fundamental and
1 half-hypermultiplet in the 14’ representation of Sp(3)”). Similarly, on the
RHS of (5.9)), we have H** ~ 6(4) (“6 full hypermultiplets in the fundamental

representation of Sp(2)”).

In section 4.1.3 of [38], we found
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M(Er,2))Ga = HY ) Spin(0) (5.11)
where, on the RHS, H*" decomposes as the 3(16) + 1(9) of Spin(9).

In this section, we will demonstrate five new identities of this sort.

<M(E6, 2) x H) //SU(2) ~ M(Es, 1)///SU(3) (5.12)
M(Eg, 2)/J/SU(3) = (M(Eq, 1) x M(Eq, 1) x H') /G (5.13)
M(E~,3)///Spin(8) ~ (M(E7, 1) x M(E7,1) x M(E;, 1) x H*®) ///Fy (5.14)

(M(E7, 2) x M(E, 1)) /1) Spin(8) ~

(5.15)
(M(E7, 1) x M(E7, 1) x M(E:, 1) x H) ///Spin(9)

and

(M(Es,2) x H*) ///Spin(12) ~ <M(E8, 1) x M(Es, 1) x H*) ///Spin(13)
(5.16)
where, on the LHS, the two irreducible spinor representations of Spin(12)
are pseudoreal (H*? ~ 1(32) @ 3(32')) and, on the RHS, we have H* ~
$(64) 4 1(13).

5.7.1 M(Es2)///SU(3) ~ (M(EG, 1) x M(Eg,1) x HT) ///Gy

(5.13)) is realized in the untwisted D, theory by the 4-punctured sphere
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(Eg),, X SU(2), SCFT

empty

which is an SU(3) gauging of the (£),, x SU(2), SCFT (whose Higgs branch
is M(Fs,2)). The S-dual theory

[(Eg), SCFT)? 1(7)

is a G5 gauge theory coupled to two copies of the (Eg), SCFT (whose Higgs

branch is M (FEg, 1)) and one hypermultiplet in the 7.

5.7.2 (M(E6, 2) x H) /)/SU(2) =~ M (Es, 1)///SU(3)

Recall that, for k& > 1, M(E,, k) has an E,, x SU(2) isometry group.
(5.12)) is unique among the examples listed here, in that on the LHS we use
the SU(2) action on M (Eg,2), which commutes with Fg action, to perform

the hyperKahler quotient.
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A realization in the D, theory is

(Eg),, % SU(2); SCFT

which is S-dual to

(Eg),, SCFT

It is also realized in the untwisted Eg theory as

A o)
SLUD)|(As gU(z))

[(Eg) 1o SCFT] 3(2)

X
[(Eg),,xSU(2); SCFT)
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where the SU(2) gauges the SU(2), of the (Eg),, x SU(2), SCFT and the
(Es),5 SCET is decoupled. The S-dual theory is

[(Eg),, SCFT]® empty

where we gauge an SU(3) subgroup of one of the Egs while the other (Eg),,
SCF'T is decoupled.

Another realization of (5.12)) appears in the twisted sector of the Fjg

theory. In

o
B)\su©)((B,. (S)U(Z))

o

[(Eq),, X SU(2); SCFT}? 12)

the SU(2) gauges the SU(2), of one of the (Eg),, x SU(2), SCFTs, while the
other (Es),, x SU(2), SCFT is decoupled. In the S-dual theory,
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X
[(E xSU(2), SCFT]

612
the SU(3) gauges a subgroup of the Es, while the (Eg),, x SU(2), SCFT is
decoupled.

A third realization, in which an (Es)s SCFT is decoupled throughout,

is given by

(0]
Cz(cg) SU@)[(C5(a)), SUQ2))

[(Eg)g SCFT] o)

X
[(Eg),,xSU(2); SCFT]

and has S-duals given by
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o)
24,\su@3) (2Azb SU(3))

0]

[(Eg)g SCFT empty

X
[(F)1, 5CFT]

and the gauge-theory fixture

gives a realization of two decoupled copies of this theory. The gauge theory
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moduli space is a 4-fold branched cover of My 4, with coordinates (y,w) given

in terms of the cross-ratios as

2 213225 2 214295
Yy =851 = s w = SS9 =

215223 215724

The gauge couplings are
Cy—lw+1 Cy—lw-1

where

fir) = ~20.7) (517

T)= ——F7——= .
01(0,7)

and 7= £ + %. In the limits f(7) — 0, 00, the SU(3) + [(Es),,]| description
is weakly-coupled. For f(r) — 1, the SU(2) + 3(2) + [(Es);, x SU(2),]

description is weakly-coupled. Over the degeneration

F4

O (Fya). )\ o

Ed(a,)
(@]

Fya)) Fa))
46’1 4611

empty gauge theory fixture empty

we have (f(m1), f(m2)) — (—1,—1) and both descriptions are strongly-coupled.
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5.7.3  M(Ex,3)///Spin(8) ~ (M(E7, 1)* x H2) /// Fy
and (M(E7, 2) x M(E, 1)) 1/Spin(8) ~ (M(E7, 1)* x H°) /// Spin(9)

(5.14) and (5.15) both have realizations in the untwisted Eg theory.

The former is given by the duality between

(0, Spin(8))
o}

(E7)24 X SU(2)26 SCFT empty

and

(B2, SCFT]3 1(26)

The latter is given by the duality between
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[(E7)16><SU(2)9 SCFT]

X
[(E7)8 SCFT]

and

(B, SCFT]3 19

In both cases, unlike our previous examples, there is a third S-duality frame,

respectively
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D4(()al)

Ag\ SUQ) (A4 SUR)
o) o

24, +A,
o)

SU(2), X SU2), X SUQ)s SCFT  empty

and

SU(2)} x SUQ), x SU(2)s SCFT empty

which are SU(2) gaugings of some new non-Lagrangian SCFTs. Alas, since
we don’t have an independent construction of the Higgs branches of the lat-
ter theories, these isomorphisms don’t shed much additional light on these

instanton moduli spaces.

5.7.4 (M(Eg,2) x H%) ///Spin(12) ~
(M(Eg, 1) x M(Es, 1) x H") ///Spin(13)

Turning to ((5.16)), there is a realization in the D7 theory
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(CCCCOOOOOIITD, Spin(13))

[(58)12 SCFT] 2

2(64) + 1(13)

which has one S-dual presentation as

Spin(13)

[(ES)lzsCFT]2 2(64) + 1(13)

realizing the isomorphism of Higgs branches stated in ([5.16)).
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This theory also has a third S-duality frame,

Sp(2),, X SU(2)2, X SU(2),5 SCFT

empty

Alas, as in §5.7.3] we have no alternative construction of the Higgs
branch of the Sp(2)12 x SU(2)3, x SU(2)13 SCFT, so we don’t learn anything

new from this duality.

5.7.5 Semi-simple quotients

In we considered isomorphisms of hyperKahler quotients of the

form

where G is a simple subgroup of the group of hyperKahler isometries of X;.
Let H be the residual group of hyperKahler isometries of the quotient. Of
course, we can further quotient both sides of (5.18)) by a subgroup of H, but
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this would typically not yield anything new; all it would do is lose some of the

information contained in ([5.18)).

There are, however, exceptions. For instance, we can combine ((5.10))
with the first isomorphism in ((5.9)) to obtain

M(Es,1)///SU(3) x Sp(2) =~ H"///SU(3) x Sp(3)
~ (M(Eg, 1) x H*) ///SU(2) x Sp(3)

where

HY* = 3(1,6) + 2(1,14') + (3,6) of SU(3) x Sp(3)
H* = 3(1,6) + 2(1,14') + (2,1)  of SU(2) x Sp(3)

These isomorphisms are realized in the twisted D, theory, as the 5-punctured

sphere

(Eg),, SCFT

has, among its various other S-duality frames,
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3, 6)+ (1, 6) 31, 6) +3(1, 14")

and

| SpG)

HH

3(1, 6) + 3(1, 14")

(Eg)g SCFT + (1, 6)

5.7.6 More isomorphisms among hyperKahler quotients

If we are are willing to venture a little further afield, we can find ad-
ditional hyperKéahler quotient identities satisfied by the M (G, k). In §5.5] we
recalled the Ry 5,1 series of SCF'Ts. Let us denote the Higgs branch of R 9,1
as My on—1. Ms o, has hyperKahler isometry group Spin(4n+2) x U(1) and

dimension

dimH(MQ’anl) = 2712 +n+1
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From the S-dualities in (5.4)), certain hyperKéhler quotients of My, are

isomorphic to hyperKahler quotients of quaternionic vector spaces

(Moot x HX"V) ///Sp(n — 1) & HEmDE2) /ST (20 — 1)
(Magaos x H™) /j/Sp(n) = H*C+9 [}/ SU (2n)
My o1 ///Spin(2n + 1) ~ H* ///SU(2n)
where, in the first two, the quaternionic vector space on the RHS transforms

as 4(0) + 2(E> and, in the third, it transforms as 1 (E> +1(0O).

This isn’t quite enough information to reconstruct Mss,—1. But, with
a certain poetic license, we can proceed as if we understand that hyperKahler

space.

Using the realization of M5 given in §5.5) we have the new isomor-

phisms

(M(Eg, 1)* x H) ///Spin(10) ~ (M(Es,1)* x Mys) ///Spin(9)
(M(Es,2) x M(Eg,1)* x H?) ///Spin(10) ~ (M(Es,2) x M(Eg, 1)
X MQ:,)///SPZTL(Q)

(M(Es,3) x M(Eg, 1) x H*) ///Spin(10) ~ (M(Egs,3) x Mays) ///sz'n((9) |
5.19

from studying the 4-punctured spheres
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[(Eé) 1,XSUQ), SCFT] 2(10)

[(Eg)g SCET ]2

and

[(E6)18><SU(2)20 SCFT] 2(10)

X
[(E6)6 SCFT]
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which are, respectively, S-dual to

[(Eg)XSUQ); SCFT] R,

X
[(E6)6 SCFT]

and

[(E6)18 X SU(2),, SCFT]
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Note that:

e The three examples are related by allowing the twisted puncture in the
upper left corner to vary over the special piece of Fy(asz). (As discussed
above, this special piece consists of five nilpotent orbits. The other two

involve theories whose Higgs branches are “new” hyperKéhler spaces.)

e In each case, there’s a third S-duality frame, which we won’t write down,

which is a gauge theory fixture.

5.8 Instanton moduli spaces as affine algebraic varieties

As mentioned above, M (G, 1) admits a uniform description as the min-
imal nilpotent orbit in g¢. For classical groups, G, the ADHM construction
[67] gives a description of M(G, k), for higher k, as a hyperKéhler quotient.
For exceptional G, a concrete description of the M (G, k) for higher k is not
known. However, in a series of papers [0, 71, [72], it was shown that the
Hilbert series of M(G, k) for k > 1 and classical G' can be written in terms of
the root data of G alone. This provides a natural conjecture for the Hilbert

series of M (G, k) for exceptional G, which has been shown to pass many tests.

The Hilbert series contains all information about the ring of holomor-
phic functions on M (G, k). From this information, in [72] the authors ex-
tracted the representations of the generators of M (G, k) at each scaling di-

mension, and their lowest order chiral ring relations.
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They conjectured that M(G, k), as a complex variety, can be realized

as an affine algebraic variety whose ring of functions has generators

M € (1; Adj)
M, € (p; Adj)
Pe(p+1;1)
transforming in the indicated representationﬂ of SU2) x G, forp=2,...,k.

These generators are subject to a set of polynomial relations. For k =1,
the M, and P, are absent, and the only non-trivial relations are the celebrated

Joseph relations

(M & M)z, =0 (5.20)

where the reducible representation, Z,, is defined through

Sym?(Adj) = V(2a) @ I,

Here, V(2a) is the representation whose highest weight is twice the highest

root. (5.20]) gives a realization of M (G, 1) as an affine algebraic variety.

For k = 2,3, the lowest-order relations are given in [72].

10We label irreducible representations of SU(2) by their dimension. In what follows,
it is convenient to realize the n-dimensional irrep as a rank-(n — 1) symmetric tensor,

(I)(oclozg...an_l)-
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The isomorphisms discussed in provide a strong test of this con-
jectured description of M (G, k). Following [68], one can explicitly take the
hyperKahler quotient on each side, and compare the gauge-invariant genera-

tors and relations.

As an illustrative example, we consider
(M(E;, 1) x H?*®)///Fy ~ M(FE7,3)///Spin(8). We will not give a precise
mapping of the generators, as the methods of [72] do not determine the con-
stants appearing in the relations defining M (FE7, 3) but, up to a few unknown
constants, we will be able to determine the form of the correspondence. The
generators transform in representations of the SU(2), x SU(2)? global sym-
metry. Moreover, there is an action of S3 permuting the SU(2)3. On the LHS,
it acts by permuting the three M (FE7, 1)s; on the RHS, it is the S3 subgroup
of E; which acts as triality on the Spin(8) C F;. The generators of the ring

of functions arrange themselves into representations of this S3 action.

We first consider the proposed description of M (E;,3) above. Decom-
posing the 133 of E; under SU(2)? x Spin(8):

E; D SU(2)* x Spin(8)
133=(3, L, 1)+ (1,3, 1)+ (1,1,3;1) + (1,1, 1;28)
+(2,2,1;8:) +(2,1,2;8,) + (1,2,2;8,)

we have operators
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Table 5.11: Generators of M (E;,3)

Order Operator Representation of SU(2), x SU(2)? x Spin(8)
2 Y (ap) (3;1,1,1;1)
J, K, L (1;3,1,1;1),(1;1,3,1; 1), (1; 1,1, 3; 1)
M,N,O (1;2,2,1;8,),(1;2,1,2;8,),(1;1,2,2;8,)
P (1;1,1,1;28)
3 D (g (4;1,1,1;1)
Qo) Ray Sa (2;3,1,1;1),(2;1,3,1;1),(2; 1,1, 3;1)
Ty, Uy, Vi (2;2,2,1;8,),(2;2,1,2;8,),(2;1,2,2;8,)
W (2;1,1,1;28)
4 X(ap)s Y(ap), Z(aB) (3;3,1,1;1),(3;1,3,1;1),(3; 1, 1,3; 1)
Atas); Blas) Clop) (3;2,2,1;8.),(3;2,1,2;8,),(3;1,2,2;8,)
Diup) (3;1,1,1;28)

The lowest-order relation is at order 5, given by [72]

(JQa + alKRa + CLQLSa + agMTa + CL4NUa + CL5OVa + (ZGPWQ)’(Q;LLl;l) = 0,

where the q; are constants.

Let us now take the hyperKahler quotient by Spin(8). The F-term

constraint is simply



So, the gauge-invariant operators are given by

Table 5.12: Generators of M (FE7,3)///Spin(8)

Order Operator Representation of SU(2), x SU(2)?
2 Y (ap) (3;1,1,1)
J K, L (1;3,1,1),(1;1,3,1),(1;1,1,3)
3 Dasy) (41,1,1)
Qa, Ra, Sa (2;3,1,1),(2;1,3,1),(2;1,1,3)
4 X(ap)s Y(ap), Z(aB) (3;3,1,1),(3;1,3,1),(3;1,1,3)
M? N2 0O? (1;1,1,1) + (1;3,3,1),(1;1,1,1) +
(1;3,1,3),(1;1,1,1) + (1; 1, 3,3)
subject to

(JQa + alKRa + (IQLSa + agMTa + CL4NUa + CL5OVQ)|(2;17171;1) = 0. (521)

Let’s see how this structure is reproduced on the M(FE7,1)? side. We first

decompose the (E7)* global symmetry under SU(2)* x (F})giag. Using the
description of M (FE7, 1) as the minimal nilpotent orbit in e;, we have operators
at order 2 in the 133, subject to the Joseph relations at order 4 in the Z, =

1 + 1539. These representations decompose under SU(2) x Fy as

E; D SU(Q) x Fy
133 = (3,1) + (3,26) + (1,52)

1539 = (1,1) + (1,26) + (1,324) + (3,26) + (3,273) + (3,52) + (5,1) + (5, 26)
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Additionally, we have the generator of H?® at order 1. In total, we have the

following generators of M (Fy,1)% x H?:

Table 5.13: Generators of M(E;,1)3 x H?

Order | Operator | Representation of SU(2)s x SU(2)? X (F})diag
1 Vg (2;1,1,1;26)
2 | ABC (1;3,1,1;1), (1;1,3,1; 1), (1; 1,1,3; 1)
D, E,F (1;3,1,1;26), (1;1,3,1; 26), (1,1, 1, 3; 26)
G H,I (1;1,1,1;52), (1;1,1,1;52), (1:1,1, 1; 52)

subject to the Joseph relations at order 4.

To describe the hyperKéahler quotient by (Fy)diag, We impose the F-term
constraints

G+ H 41+ (vaus)a,1,152) = 0

and form gauge-invariant generators. To order 4, these are given by:
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Table 5.14: (M (Er, 1) x H2)///F,

((UaUﬁ’)(3;1,171;26)F)(3;1,1,3;1)

(DZ)(1;1+5,1,1;1)7 <E2)(1;1,1+5,1;1)7
(F?) (1111451

(Gz)(1;1,1,1;1)7 (H2)(1;1,1,1;1)a
(12)(1;1,1,1;1)

(DE)(l;S,S,l;l)J (DF)(1;3,1,3;1)7
(EF) 1331

(GH)(lgl,l,l;l)a (G[)(1;1,1,1;1)7
(HI)@,1,11)

Order | Operator Representation of SU(2)s X
SU(2)3
2 (Vav8) (3:1,1,151) (3;1,1,1)
A B, C (1;3,1,1;1),(1;1,3,1; 1),
(1;1,1,3;1)
3 (Vavgy) (1,1,10) (4:1,1,1)
(Dva)(2;3,1,1;1)7 (Eva)(2;1,2,1;1)7 (27 37 17 1)7 (27 17 37 1)7 (27 17 17 3)
(FUQ)(2;1,1,3;1)
((Uavﬁ)(3;1,1,1;26)D)(3;3,1,1;1),
4 ((Uavﬁ)(3;1,1,1;26)E)(3;1,3,1;1)7 (37 37 ]-7 1)7 (37 ]-7 37 1)? (3a 17 ]-7 3)

(L;1+5,1,1),
(1:1,1+5,1),
(1;1,1,145)

(1;1,1,1),(1;1,1,1),(1;1,1,1)

(1;3,3,1),(1;3,1,3),(1;1,3,3)

(1;1,1,1),(1;1,1,1),(1;1,1,1)

The gauge-invariant relations at order 4 are given by
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(A2 + 61D2 + CQG2)|(1;171’1) =0 (522)

(B2 + ¢ E? + & H?)| 100y = 0 (5.23)
(C*+ a1 F? + coI?)| 1111 = 0 (5.24)
(A% 4+ e3D%)|a5,1,0) = 0 (5.25)
(B* + C3E2)|(1;1,5,1) =0 (5.26)
(C*+ C3F2)|(1;1,1,5) =0 (5.27)

where the ¢; are constants which can be fixed by evaluating a few points on

the nilpotent orbit [6§].

We see that the correspondence between the generators is given byE

Table 5.15: Correspondence between generators

(M(E7,1)° x H*) [}/ Fy M(Ez,3)///Spin(8)
(Va¥B)(3:1,1,151) Vap)
A B, C J, K, L
(VavBvy ) (451,1,151) Dapy)
((vaD)@3.1,11), (Val)@1,3,11) (Vak)(2:1,1,31) Qa, Ra, Sa

1\We have multiple generators with the same quantum numbers, so, without knowing the
constants a;, the correspondence between these generators is only up to a permutation (or
linear combination).
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Table 5.15: Correspondence between generators

(M(E7,1)° x H*) /// Fy M(E7,3)///Spin(8)

((vav8)(3:1,1,1:26) D)(33111),

((vav8) (3:1,1,1:26) E) (3:1,3,1,1) X(ag): Yiap), Z(ap)

((Uavﬁ)( 3;1,1 126)F) 3;1,1,3;1)
(GH)1;1,1,150), M(21;1,1,1;1);
(DE)(1;3,371;1) M(21;3,3,1;1)
(GT)@1,1,11), N(21;1,1,1;1)7
(DF) 3,131 Niisa30)
(HI)@1,1,150) 021 J1,1,151)
(EF)a5,330) 0(11331)

The “extra” generators at order 4, (D?)1;145.1,1:1), (E?)(1:1,145,1:1)
(FQ)(1;1,1,1+5;1) and (Gz)(1;1,1,1;1)7 (HQ)(1;1,1,1;1), (12)(1;1,1,1;1)7 are removed from
the chiral ring by the Joseph relations ([5.22)-(/5.27).

We find the order 5 relation (5.21)) on the M (FE7,1)3 side by adding the

order 4 Joseph relations

(AD) 3,126 + €a(DG)(13,1,1526) = 0 (5.28)
(BE)@1,31526) + ca(EH)(1,1,3,1,26) = 0 (5.29)
(CF)@,1,326) + calFI) 111,326 = 0 (5.30)

and contracting with v,:
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(UAD +vBE + vCF + C4(’UDG + vEH + UFI))(Z;l,l,l;l) = 0.

Following [72], one can extract the higher-order relations for M(E7,3) and
compare them with those on the M (F7, 1) side obtained from the remaining
Joseph relations. It would be interesting to carry out this analysis for the

other examples in as well.
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Chapter 6

A Family of Interacting SCFTs from the
Twisted A,y Series

In this chapter, we consider the strong-coupling limit of SU(2N + 1)
gauge theory with hypermultiplets in the 1 (E) + 1(|:|:|) . We find the fol-

lowing S-duality for this theory

SUEN + 1)+ 1(H) + 1) = Sp(V) + Roaw (6.1)

where Ryon, N > 1, belongs to a family of interacting SCFTs with the follow-
ing graded Coulomb branch dimensions, trace anomaly coefficients, and global

symmetry:

Table 6.1: Ry oy family of interacting SCFTs

{d27 d37 d47 d57 ey (CL, C) Gglobal

d2N7 d2N+1}

Roon | {0,1,0,1,...,0,1} | (LHIONHIANZ IRIONABNZ) | Gy, O N )y y X

!This chapter is based on [73].
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The proposed duality (6.1]) is analogous to the duality
SU(2N) +1 <E|) +1(00) ~ Spin(2N + 1) + Ryan—y

discussedﬂ in §3.5.4 of [7]. However the Ry oy series of SCETSs is new.

The strong-coupling limit of SU(3) + 1(3) + 1(6) was considered by
Argyres and Wittig in [I5]. They conjectured that this theory is dual to an
SU(2) gauge theory with n < 3 fundamental hypermultiplets, coupled to a
new rank 1 interacting SCFT. This S-duality alone does not fix n, and the
properties of this theory have remained only partially-known. In [4], we gave
a 6D realization of this S-duality, which is given by taking N = 1 in the figure
below. From this construction, the properties of the holomorphic moment
map operators for the flavor symmetry of the two twisted punctures imply
that n = 0 [4, 61I]. In the following, we will provide independent evidence
that n = 0 using the superconformal index. In addition, we will use the index
to determine the enhanced global symmetry of the SCFT, and generalize this

duality to arbitrary N.

The main tool in our analysis is the Hall-Littlewood limit of the su-

perconformal index [24], 25, [74]. In this limit, the superconformal index is

2The Rgon-—1 series of SCFTs, which have global symmetry Spin(4N + 2)4n72 x U(1)
also play a role in the dualities [3]

SU(2N — 1) +4(00) + 2(E) ~ Sp(N — 1)+ 1(0) + Roon 1

sUEN) +4(0) +2(H) ~ $p(V) +3(0) + Roan
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equivalent to the Coulomb branch Hilbert series of the 3D mirror of the (2,0)
theory on C' x S' [14, 27]. The 3D interpretation allows us to easily obtain

the formula for the index of a fixture with twisted Ay punctures, following
[65], 166]. The result is (6.6)).

To construct the Ry oy theories, we consider compactifications of the
Aoy (2,0) theory in the presence of Z, outer-automorphism twists. As dis-
cussed in [75], these twists are particularly subtle, and we do not yet under-
stand them well enough to attempt a systematic classification of the 4D the-
ories which arise in this way. Nevertheless, our current level of understanding

is sufficient to use them for our purposes here.

6.1 S-duality of SU(2N + 1) + A?(0) 4+ Sym?*(0)

The 4D N = 2 SU(2N + 1) gauge theory with hypermultiplets in
the 1(E> + 1(3) can be constructed as follows [4]. The Asy (2,0) theory
compactified on a fixture with two full punctures and one minimal puncture
gives rise to a free bifundamental hypermultiplet of SU(2N + 1). One can
gauge the diagonal SU(2N + 1) flavor symmetry of the two full punctures
by connecting them by a cylinder with a Zs twist line around it, to obtain a
one-punctured torus, with a twist line around the a-cycle. This is shown on
the left in the figure below. The Zs-twist line acts as complex conjugation on
one of the SU(2N + 1) factors, giving rise to hypermultiplets in the tensor
product representation [1® [ = E +0.

The S-dual theory is obtained by exchanging the a- and b-cycles of the
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torus. The resulting theory can be seen to arise by compactifying the Asy
theory on a fixture with a minimal untwisted puncture and two full twisted
punctures, and connecting the two twisted punctures by a cylinder with a
twist line running along it. This is shown on the right in the figure below. We
expect this to give rise to an Sp(N) gauge theory coupled to an interacting

SCF'T, possibly with n additional hypermultiplets.

O SUQN + 1)
@

In the following, we will use the superconformal index to show that n = 0,

Sp(N)

and that the manifest Sp(N)ani2 X SP(IN)ani2 X U(1) global symmetry of the
interacting SCFT is enhanced to Sp(2N)an12 X U(1). The graded Coulomb
branch dimensions and trace anomaly coefficients of the SCFT then follow

from S-duality.
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6.2 The Argyres-Wittig SCFT

6.2.1 Global symmetry enhancement

We begin by considering the case of N = 1. The fixture on the right
in the figure above then has a manifest SU(2), x SU(2)4 x U(1) subgroup of
its global symmetry group, which could be enhanced. We will now use the
superconformal index to show that this fixture contains an interacting SCF'T
with no additional free hypermultiplets, and that the global symmetry of the
SCFT is enhanced to Sp(2)4 x U(1).

We assume that the superconformal index for this fixture has the same

general structure one always finds for a 3-punctured sphere, namelyﬁ

T = N [T K (@) Py (a5 7K (23) Py (a5: 7)
(@) = Z i pAA

(6.2)
A=0 ptsU(3) (ay;7)

Assigning fugacities to each puncture, this becomes

I(a;T) = (1-7)A-7H(1-7°) x
T =P - a1 - ) (- e (1 - )
> —1. —1. 2X,) 1 2
<1 +0 ) Pl (a1, ar ' 7) Py o (a2, a5 7) Py (asm, a3 ag?; T>>

B2 .
A=1 PSU(g))(TQv Lr=2%7)

=1+ (14 xsp (a1, a2))72 + ...

where

3The various parts of this formula have been explained many times in the references
above. See, e.g., [64].
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xé‘;(m (a1,az) = XgU(Z)(al) + XgU(Z)(GQ) + X%U(Q) (a1>X§U(2)<a2)' (6.3)

The coefficient of 7 is zero, indicating that the fixture contains no additional
free hypermultiplets. The coefficient of 72 is therefore the character of the
adjoint representation of the global symmetry group of the SCFT, which is
enhanced to Sp(2) x U(1). Since the embedding has index 1, the level of
Sp(2) is k = 4.

Setting a; = as = a3 = 1, we can sum ([6.2)) to obtain

7T =

1+ 27 + 872 + 2073 + 417* + 627° + 877° + 9677 + - - - (palindrome) - - - + 714
(1—=7)8(1+7)5(1 + 7+ 72)* '

This expression takes the expected form (see, e.g., [T1]), and the order of the

pole at 7 = 1 gives the complex dimension of the 4D Higgs branch, which

agrees with the answer obtained from S-duality [3] [7]

_ 19 17
dimcH = 48(c — a) = 48 (E - E) =8

6.2.2 Argyres-Wittig duality

As a further check on the validity of our computation, we compare the

index on both sides of the S-duality
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The SU(3) theory is a Lagrangian theory, so its index is computed by the

matrix integral [1

1= j{[dZ]SU(:S)PE[—TQXgU(g)(Zh22)]PE[TX30(3)(217Zz)]PE[TXZU(g)(Zh22)]
X PE[TXgU(s)(ZhZz)]PE[TXgU(g)(ZhZz)]

1 dzdz
= 51§ B (/0 =0 )
(1 =721 — 72(21/22)F) (1 — 7225225 (1 — 722§ 2572)

(1 —72F)2(1 — 725)2(1 — 7(2122)%)2(1 — 7255 (1 — 7252) (1 — 7(2122)%2)

Summing the residues at the poles inside the unit circle (taking |z1| = |z2| =

1,7 < 1), we arrive at

2 3 4
- I+7m 42+ 7 . (6.4)
(1=7)3(1+7)(1 47+ 72)2

On the SU(2) side of the duality, the index is given by

B 1 da
21 | 27ia

(]— - ai2>I¥U(2) (a)IRQ,z (aa a'_la 1)7

where IXU@)(a) is the index of a free SU(2) vector multiplet. The integrand
has poles inside the unit circle at a = 0, &7, £7%/2. Summing the residues, we
reproduce . This gives strong evidence that indeed gives the index
of the Argyres-Wittig SCFT.

4For simplicity, we set the fugacities of the U(1)? flavor symmetry to 1.
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6.2.3 Chiral ring

We can study the Hall-Littlewood chiral ring [76] of the Argyres-Wittig
SCFT by taking the plethystic log of (6.2)):

PL[Z] = 7*(x 8y (a1, a2) + 1) + 7 (xZp0 (a1, a2)a3 + X%y (a1, az)as”)
— T (X&p2) (a1, a2) + 1) = 77 ((Xpge) (@1, a2) + XFp2 (a1, a2)) a3
+ (xé?é(z)(al, a2) + X3p(2) (a1, a))az®) — ...
where x*(a1,az) = 1+ X@U(z)(%)X%U@)(az)-
From this expression, we see that the chiral ring has generators at
order 2 in the 10y 4+ 1y of Sp(2) x U(1) (which are the holomorphic moment
map operators for the global symmetry), as well as order 3 generators in the

53 + 5_3. These generators are subject to relations at order 4 in the 59 + 1o,

as well as higher order relations.

We can understand the two relations at order 4 as follows. In [76, [77], it
was shown that any 4D N = 2 SCFT contains families of protected operators
whose correlation functions possess the structure of a 2D chiral algebra. The
existence of the chiral algebra structure leads to additional unitarity bounds
on central charges in the 4D theory, and saturation of these bounds was shown
to follow from Higgs branch chiral ring relations. The operators counted by
the Hall-Littlewood superconformal index fall into this class of protected op-
erators, and from table 3 in [77], we see that the level of the Sp(2) factor in

the global symmetry group saturates the unitarity bound, which follows from
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an order 4 relation in the 5. It was also shown in [77] that an order 4 relation
in the 1 implies that the 2D chiral algebra has a stress tensor given by the

Sugawara construction, with central charge:

. kdeim GF

= 6.5

C2D keap + BV (6.5)

where the 2D central charges are related to those in 4D by cop = —12¢4p,
kQD == —MTD.

Indeed, we find that

B 112 (MH):”

“p =719\ "o 12

6.3 Higher N

We now consider the compactification of the 6D (2,0) theory of type

Ayy on

and use the superconformal index to argue that these fixtures describe the

Ry on family of interacting SCFTs, with no additional hypermultiplets.

333



The Hall-Littlewood index is given by

2 ALy (M)
TTo, K Pyt ™ (i K (x3) Pyl sed) (¢33 7)
I(xi;7) = Z )

(N )
MZAo> 2 Ay 20 KoPsyan 1) (%0: 7)

(6.6)
where the sum runs over integers \; labeling Sp(N) irreps, and the corre-
sponding SU(2N + 1) representations are given by (\},..., Ny) = (2A1, A\ +
Aoy A AN AL AL = Axs e AL — o).

We can characterize these fixtures by the leading power of 7 in the ex-
pansion of (6.6)), as follows [27]: The term coming from taking (A, ..., Ay) =

(0,...,0) in the sum is

L+ 72 (g (1) + Xy (%2) + 1) + O(rY),

encoding the manifest Sp(N)an12 X Sp(N)an12 X U(1) global symmetry. This
global symmetry is enhanced if there are additional terms at order 72 coming
from the sum over non-trivial representations. If there are also terms at order

7, then the fixture contains free hypermultiplets along with the interacting

SCFT.
Following [27], we give the leading behavior of in terms of a vector

v, with components

3
vi=(@N+2-2)+Y d (6.7)

(=1
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where the first term is the leading power of 7 from the denominator in (6.6)),
and the second term is the leading power of 7 from the punctures. For the full
twisted punctures, dy) = 0 for all 7, while for the minimal untwisted puncture

we have

2i—2N -1, 1<i<N,
d¥ =< o, i=N+1,
2i—2N -3, N+2<i<2N.

Equation (/6.7)) then gives

1, 1<i<N,
v =< 0, i=N+1,
~1, N+2<i<2N.

The leading power in 7 of is therefore given by

v N=(N+DM+X+ -+ Anv+0—(N—=DA + X+ -+ Ay
(6.8)
:2(/\1+/\2++)\N)
This is minimized by taking (A1, Aa, ..., Ax) = (1,0,...,0), which gives v-\ =
2. Thus, the fixture contains no free hypermultiplets. It is easy to check

that the global symmetry is enhanced to Sp(2N)an42 X U(1) by the index 1

embedding

Sp(2N) D Sp(N) x Sp(N)

Adj = (Adj,1) + (1,Adj) + (2N, 2N)
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and the level of Sp(2NV) therefore saturates the unitarity bound in [77].

With n = 0, the S-duality is then given by (/6.1)), which implies that
this SCFT has an effective number of vector and hypermultiplets given by
(np,ny,) = (2N +1)%, (2N +1)2 — 1 — N(2N + 1)), which encode the trace

np+on, np+2n.\ _ (1+19N+14N2 14+10N+8N?
s ) = ( 21 ) 12 ). We

anomaly coefficients (a,c) = (

see that the 4D central charge is given by the Sugawara construction:

1 [(—(N+1)2N(4N +1)
C4D:_ﬁ(—(N+1)+2N+1 1)
~ 1+ 10N +8N?
B 12 '

(6.9)

It is easy to check that the saturation of these unitarity bounds follows from
chiral ring relations at order 7* in the 154 (1(4N + 1)(4N — 2))g of Sp(2N) x
U(1) by taking the plethystic log of (6.6]).

A similar analysis can be carried-through for the Ry on_1 theories. As
already pointed out in [77], the level of the Spin(4N +2)4y_2 saturates the uni-

tarity bound and the stress tensor of the 2D chiral algebra takes the Sugawara
form, (/6.5)).
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Appendix A

Tables of Z,-Twisted Dy Punctures

A.1 Dy Twisted Sector

Table A.1: D5 Twisted Sector

Hitchin
Nahm B-
C-partition partition Pole struc- | Constraints Flavour | (0ny, dn,
ture group
OIIrrm | [9] {1,3,5,7:3} - Sp(4)y0 | (240,%57)
11111 ) . 131
L (DS) ([7? 1 ]7 {1? 37 9, 77 2 — Sp(3)9 (227, T)
Zs)
E:EED 2 .7 (8) _ ( (4)\2 415
[7,17] {1,3,5, 73} cr” = (ag)5) Sp(2)gx| (216, 52)
v()
SU(2
B 0 | (5.3.1) {1.3.5.6:7) - i)” (207, 401)
Z
) SU),
HH 5.3,1) | {1,3,5,6, 1) ¥ = (a®)2 | sU2)%] (200,2)
y 9y »9y Yy Yy o 5 5/2 16 72
(6) (3)\2
[ ¢ = (a5)" | SU(2
1 5,22 | {1,3,5,6;1 (85) (2)/2(5) (o (184, 332)
o Ce " — 2a5/267/2 X
SU(),
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Table A.1: D5 Twisted Sector

Hitchin
Nahm B-
C-partition partition Pole struc- | Constraints Flavour | (0ng, 0n,
ture group
111
q () | (5,17, | {13,553} - Sp(2),; | (182,%8)
] Zo)
|
=y 5,1 | {13,552} V) = (ah)? | SU2), | (174, 21)
]
AR [3%] {1,3,4,5; 7} — SU(2),,| (178, 222)
H
8 3%, 1°] | {13,453} - U1) | (168,58
¢y = (ayy)’
E 325,17 {13,453} oY = 2005 U(1) | (144,2)
o = (a5)y)”
|
H (1) (13.1°, | {1,3.3,3; 8} — SU(2); | (117, %)
] Zs)
3,1 | {1,3,3,3; 3} ¢ = (af})? |mone | (112,22)
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Table A.1: D5 Twisted Sector

Hitchin
Nahm B-
C-partition partition Pole struc- | Constraints Flavour | (0ng, 0n,
ture group
[1°] {1,1,1,1; 3} — none | (40,%)
A.2 Dg Twisted Sector
Table A.2: D¢ Twisted Sector
Nahm Hitchin
C- B- Pole
partition partition| structure Constraints | Flavour | (dnp,dn,)
group
oo | (1] {1,3,5,7,9; 5 }| — Sp(5), | (440, %3F)
T () ([9,17, | {1,3,5,7,9; 2} | — Sp(4),, | (424,%2)
Zs)
B 0,07 | {135,795 A = | Sp3)0x| (410, 52)
(agn)” U
B (ns) | ([7.3,1], {1,3,5,7.8; 5} | - Sp(2)yx | (398, T
Zs) SU(2) 49
9 (8) SU(2>30 755
HHE 7,3,1] | {1,3,5,7,8;35 07(4) = y (388, 5°)
(az/5)°
” SU(2)s
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Table A.2: Dg Twisted Sector

Nahm Hitchin
C- B- Pole
partition partition| structure Constraints | Flavour | (dnp, dn,)
group
FEEEE 5,1 | {1,3,5,6,8,2} | — Sp(2)y, | (380,34
) =
= 7,22) | {1,3,5,7,8,2} | (aih)? Sp(2)gx | (368, A7)
CE(;O) _ SU(2)y,
4) ~(6
24l
SU(2
B wms) | (5,34, | {1.3,5.6,7:2} | — i)” (359, 102
7Z
2 SU),
SU(2
FHHH 5,34 | {1,3,5,6,7:2} | = | Uz | (35 o
a(3))2 X
o ()
E (ms) | (7.1, | {1,3,5,7.7: 2} | — Sp(3)y | (367, 51)
Zs)
5 7,14 | {1,3,5,7,7; 1} | &Y = | Sp(2); | (356, 5%)
(a(4))2
7/2
- (ns) | ([5,3,1%), {1,3,5,6,7;1} | — SU(2),x| (347,%4)
Zs) U(1)
[5,3,1%] | {1,3,5,6,7; 1} | ¥ = | SU(2)4, | (340, 652)
(a(3))2
5/2
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Table A.2: Dg Twisted Sector

Nahm Hitchin
C- B- Pole
partition partition| structure Constraints | Flavour | (dny,on,)
group
Fop
3
(ag)h)’
B o4
i 5,2, {1,3,5,6, 75} | 5 o | SU@x| (314,%)
2a5/2a7/2 U(1)
10
0 _
5
(af}h)’
Flos | @00 usasmh| - SU),, | (319,%2)
Zs)
e (35,17 | {1,3,4,5,7:3 0(712) =|U@) ] (308,%2)
(a7 2)2
1
7=
2
(a7h)?
6
4
(2) (4
2a3/2a5/2
@ 3,27 {1’3’4’5’635 CéS)— SU(2), (256,%)
4
(ag7p)?
(2) ~(6)
+2a3/207/2
10
o
(4) ~(6)
205 /5Cq /s
E (s) | (5.1°), | {135,553} | - Sp(2); | (282, %)
5 Z)
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Table A.2: Dg Twisted Sector

Nahm Hitchin
C- B- Pole
partition partition| structure Constraints | Flavour | (dny,on,)
group
: 5,1 | {1,3,5,5,55}| = | SU@2)s | (274,%)
- (0
5/2
? [32,15] | {1,3,4,5,5; % — U(1) (268, %)
1
=
2
(a57)°
(6)
ey =
E 3,22,1%]] {1,3,4,5,5;2 0@ () none (244, £2)
3/2%5/2
8
i =
4
(a5y»)’
Em(ns) (3.2, | {1.3.3.3.3:5} | - SU(2); | (177, %)
Zs)
E 3.1 | {133,333} & = |none | (172, %)
2
(a5}’
E [11] {1,1,1,1,1;%} — none (60, 131)
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Appendix B

Bala-Carter Notation

B.1 Bala-Carter Labels

In the twisted and untwisted sectors of the A and D series, punctures
were in one-to-one correspondence with certain classes of partitions [4, [7, 1], T1].
The partition denotes how the fundamental representation (vector represen-
tation, in the case of s0(N)) of g [[] decomposes into representations of the
corresponding (Nahm) su(2). Moreover, one can also read off the centralizer,
f, of su(2) inside g, as well as the decomposition of the fundamental rep-
resentation of g under su(2) x f, from the partition (see (2.7) in [7]). The
decomposition under su(2) x f for each puncture is precisely the information
needed to compute the flavour group levels in as well as the expansion
of the superconformal index in §5.3] In what follows, we will explain how these

decompositions are obtained for the punctures in the eg theory.

In contrast to classical g, nilpotent orbits in the exceptional Lie alge-
bras, which label our punctures, are not naturally classified by partitions. The

theorem of Bala and Carter states that there is a one-to-one correspondence

'For untwisted (twisted) punctures in the A and D series, g is of type A (B) and D (C),
respectively.
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between nilpotent orbits in g and (conjugacy classes of) pairs ([, O") where I
is a Levi subalgebra [ of g and O' is a distinguished )| nilpotent orbit in [.
By the Jacobson-Morozov theorem, any representative X of O' embeds in a
standard triplelﬂ {H,X,Y} C [, where H € h. [ then has a decomposition into
adg-eigenspaces
(=P
kEZ

where [, = {x € [ | [H,z] = kx}. Let I' = [y and ' = @gcpezly. Then,
p = '+ is a parabolic subalgebra of [, with explicit Levi decomposition into
a Levi subalgebra I' and the nilradical u’ of p. (Notice that the Cartan of [ is

contained in I, so rank(l') = rank(I).)

A nilpotent orbit in g is then given the label Xy (a;), called the Bala-
Carter label, where X is the Cartan type of the semisimple part of [, and ¢ is
the number of simple roots in . The case i = 0 is denoted just by Xy, and

corresponds to the principal orbit in [, which is always distinguished.

There are 16 conjugacy classes of Levi subalgebras of Eg. These are
specified by their semisimple parts: 0, Ay, 241, 34y, Ay, Ay + Ay, 245, Ao,
Ay + 2A1, A3 + Ay, Dy, Ay, Ay + A1, As, Ds, and Eg. Here, kAy denotes

the direct sum of k£ copies of Ay. The label 0 denotes the Cartan subalgebra,

2A Levi subalgebra h C [ C g is a reductive subalgebra, [, containing the Cartan subal-
gebra, b, of g. See section 3.8 of [?] for an introduction.

3A nilpotent orbit, O, in g is distinguished if and only if the only Levi subalgebra of g,
containing O, is g itself.

4Any su(2) subalgebra of g is spanned by a standard triple {H, X,Y } of nonzero elements
of g satisfying the bracket relations [H, X| = 2X,[H,Y]| = —-2Y, and [X,Y] = H.
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for which the only distinguished orbit is the zero orbit. For [ of classical type,
distinguished orbits in [ are easily specified in terms of their partition: for [ of
type A, the only distinguished orbit is the principal orbit (which, for Ay_4,
has partition [N] ), while for [ of type B, C, D, distinguished orbits are those
for which the partition has no repeated parts. It was found by Bala and
Carter that, for [ of type Gs, Fy, Fg, E7, and FEg, there are 2,4,3,6, and 11

distinguished orbits, respectively.

The distinguished orbits in the Levi subalgebras listed above give rise

to 21 nilpotent orbits in eg. We list these in the table below] along with the

centralizer, f, and the decomposition of the 27 and 78 of ¢ under su(2) x fﬂ
But, before that, let us give a few examples of how to obtain the decomposition

of the 27 for various embeddings.

First, consider [ = D,. In this case there are two distinguished orbits,
with partitions [7,1] and [5,3], corresponding to nilpotent orbits D and Dy4(a;),
respectively, in e¢g. The first has centralizer su(3) and the second, u(1)2. We
can obtain the decomposition of the 27 for each of these by embedding su(2) in

the s0(8) factor in s0(8) x u(1)? C 50(10) x u(1) C . The 27 of ¢ decomposes

5The decomposition of the 27 determines a projection matrix, which can be used to obtain
the decompositions of higher-dimensional representations. We list a projection matrix for
each puncture in Appendix The decomposition of the 78 determines the levels of the

flavor groups, as described in @
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under s0(10) x u(1) as

¢ D 50(10) x u(1)

27 =1_4+ 102 +16_,
The 10 and 16 of s0(10) decompose under s0(8) x u(1) as

s0(10) D s0(8) x u(1)
10 = 1o+ 15 + (8)o

16 = (85)1 + (8:)_1
so we have

e6 DO 50(8) x u(l) x u(1)

27T =1p_a+Lloo+1 95+ (8,)o2+ (8s)1,-1 + (8)-1-1
For Dy(ay), we embed su(2) in so(8) by taking

50(8) D su(2)

8p,s,c =0+ 3

which gives

eg D su(2) x u(l) x u(1)

27 =1p 4+ 1op+1 299+ 302+ 31,1 +3-1,-1+902+51,-1+5-1,1
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For D,, we embed su(2) in so(8) by taking

50(8) D su(2)

Spse=1+1

which gives
eg D su(2) x u(l) x u(1)
27T=1o 4+ lopg+1 oo+ Top+11 1 +19 1 +To2+71,1+7_11

For this embedding, the u(1)? centralizer enhances to su(3). To see this, we
can make a change of basis so that the two u(1) charges are given in terms of

the old ones by

1
Q= 5(611 + ¢2)

1
/ e — —
qy = 2((11 q2)

Then the decomposition becomes
eg O su(2) x u(l) x u(l)
27 = 1_2,2 + 12’0 + 107_2 + 117_1 + 1071 + 1_170 + 71,_1 + 70,1 + 7_170

where we recognize these u(1)? charges as the weights (in the Dynkin basis)

of the 6 and 3 of su(3). Thus, the decomposition of the 27 is given by
e D su(2) x su(3)

27 = (1,6) + (7,3)
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Now, consider [ = Ejg. There are three distinguished orbits in eg, giving
rise to nilpotent orbits Eg, Eg(a;), and Eg(as). The decomposition of the 27
for each of these can be obtained by taking the principal embedding of su(2)
inside the maximal subalgebras fy, sp(4), and su(3) of e[| respectively. We
work out the decomposition for Fg (the principal nilpotent orbit in eg); the

decompositions for Fg(a;) and Fg(as) follow the same steps.

The 27 of ¢g decomposes under f4 as

e O fa

27T=1+26
The principal embedding of su(2) in 4 is given by taking

f1 D su(2)

26=9+17
so the decomposition of the 27 for Ej is given by
¢ D su(2)

21=1+9+17

To see which distinguished orbit corresponds to which Fg(a;), we need
to count the number of simple roots in . To do that, we make recourse to the

decomposition of the 78.

60ne might wonder about the other maximal subalgebras of ¢s. One finds that the
principal embedding of su(2) in su(2) x su(6) or su(3) x g2 again gives Eg(as), in go gives
Eg(ay), in s0(10) x u(1) gives D5, and in su(3)? gives Dy.
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e For the first case (embedding via f4), the 78 decomposes as 3 + 9 +
11 4+ 154 17 4+ 23. So dim(l') = dim(gg) = 6, which is also equal to
rank(l") = rank(eg). Thus [ is just the Cartan subalgebra and this is the

principal embedding, Fj.

e For the embedding via sp(4), the 78 decomposes as 3+5+7+9+2(11)+
15+ 17, so we have dim(I') = 8 and I must contain precisely one positive

(hence, simple) root. Thus, this is Eg(ay).

e Finally, for the embedding via su(3), the 78 decomposes as 3(3) 4 3(5) +
2(7) +2(9) 4+ 2(11), so dim(l') = 12 and I' contains three simple roots.

Hence, this is Eg(as).
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C.1 Embeddings of SU(2) in Ej

Appendix C

Embeddings of SU(2) in FEj

Here we give the decompositions of the 27 and the 78 under su(2) x f

for the nilpotent orbits in eg.

Table C.1: Embeddings of SU(2) in Eg

Bala- f 27 78
Carter
0 e (1;27) (1:78)
Ay su(6) (1;15) + (2;6) (1;35) + (2;20) + (3; 1)
(179 4+ 1_4) (1; 1 + 219)
24 iog) 1 @280+ (Bi1a) | (285 +85) + (370 + 1o)
e ‘ (1;8,1) + (1;1,3) + (2;8,2)

. iﬁg " (1’6;12;3(21’)3’ & +H(3;1,1) + (3;8,1) + (4;1,2)
Ay su(3) x | (1;3,3) +(3;1,3) (1;8,1) +(1;1,8) +_(_ D

su(3) £3:3,1) +(83,3) +(3,3,3)

- +(5:1,1)
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Table C.1: Embeddings of SU(2) in Eg

Bala- f 27 78
Carter
(1:3) + (2,31 + 1)+ (180 + o)+
Ay + Ay | su(3) x = (2:314+ 31 +13+ 13)
u(1) (330 + 1) + (45 1n) +(3:35+ 324 1o+ 1o)
+(4;31 +3_1) + (5; 1o)
249 g2 (1) +(37)+(5;1) | (1;14) +(3,7+ 1)+ (5;7+1)
(Lly+1_0) + (2:4,) (1;10 +30) + (2;43 +4_3)+
Ay + | su(2) X _ , (3; 1o + 30 + 50)
24, u(1) +(3:32) + (421) +(4;23 +2_3)
+(5;30)
A, op(2) (1;5_0 4+ 14) + (4;41) (1;100 + 1¢) + (3; 1p)
u(1) +(5;1-2) (4545 +4_3) + (5;50)
+(7; 1o)
1)+ @2)+ (33 | BB
24, + | su(2) (3;3+14+1)
& tEA+EY (424 2)+
(5;34+1) + (6;2)
(Lilo +30) + (2:2)0
(L1y+19) +(2;2) + 3513+ 15+ 19+ 1)
Az+A; | su(2) x +(3;11) + (4;2y) 4,23+ 23+ 2)
u(1) + (511 +1_y)

+ (
+ (5; 13+ 19+ 1_3)
+ (6;2)0 + (7; 1p)
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Table C.1: Embeddings of SU(2) in Eg

Bala- f 27 78
Carter
Lo, + loo + 30,0
3 3 31— 3
Daal) |u(1) x| +31 14 300+31 1 20+ 31,3+ 313+ 300
u(1) + 51,01+ B2 + 5 T 520 518+ 513 + Do
L1 F 002 F o] 5 20+ 51 5515
+ 70’0 + 7070
T30+ 1)+ 3.2+ 2511
(1:2-5) + (3 1-2) ( j(5- i) +(1 +31 ) e
A4 511(2) X + (5, 21 + 14) ' 6 0 -6
1 +(7;25 +2_3 + 1o)
u( ) + (7, 1_2)
D, su(3) (1;6) + (7;3) (1;8) +(3;1) +(7;8) + (11;1)
To+ 2 + 23 + 30 + 30 + 4ot
2.54+3_9+4 4_3+55+59+5_¢+6_
Ait Ay | u(1) 5 2 +44 3+ 96 + Do 6 3
+ 54+ 61+ 7_9 4+ 634+ 7o+ 8_3 + 83
+ 9
lo+23+2_3+3+3+5
L t2 43 o+ 23 3+ 30 + 30 + Do
D5(a1) u(l) L6 4Tyt 8 +63+673+70+70
SR 1848 s+ 9y + 1
(1;3) + (3;1) + (4:2) + (5;1)
As su(2) (LD +(5;1)4+(6;2)+ | +(6;2)+ (7;1) 4+ (9;1)
(9;1) +(10;2) + (11;1)
3+3+3+5+5+5
FEs(a3 — 1+454+5+74+9
o(a3) S TETH9+ 9411+ 11
lo+30+535+5_3+ 70+ 9
D u(1 To+1_4+5_149+11_
b (1) S Yoty 11+ 115+ 15
E@((Il) — 54+9+13 34+5+74+9+11+114+15+17
FEk — 1+9+17 3+9+11+15+ 17+ 23
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C.2 Projection Matrices

Our classification of interacting and mixed fixtures using the supercon-
formal index, carried out in section required that we know the decompo-
sition of a number of higher-dimensional ¢ representations (and not just the
27 and the 78) under su(2) x §. These are trivial to obtain using LieART [7§],

provided we know a projection matrix for each embedding 79, [78].

From the decomposition of the 27, listed in the table above, one obtains
a projection matrix simply by defining a 6 x rk (su(2) x f) matrix, M, such

that the LieART command

In[1]= Project[M,WeightSystem[Irrep[E6][1,0,0,0,0,0]]1]

gives the corresponding su(2) x § weights. This projection matrix can then be

used to obtain the decomposition of any eg irrep under su(2) x f.

Below, we list a projection matrix for each embedding, following the
conventions of LieART.

Table C.2: Projection Matrices

Bala-Carter f Projection Matrix

-1 -2 -3 -2 -1 -2

S o oo
o O O~ O
OO = OO
SO = OO O
_ o O O O
S OO OO
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Table C.2: Projection Matrices

N
—
—
— 301_
— ~ 10_
N — o oo
—— mnoo T
™ PR
e 20004 — =~ o <o ! < — O
.-
e N O . 5101_. <+ o o
< moo —~ S <
= _ MmO N - © —H o
—
(=] a1 ~ o —
8 + o — oo < — — SES _ 0 O —
m Mmoo~ MmN O 0 O — © — O
= OO‘I_A
o N oo™ N — O O n oo~ <+ o o
N~N—— N~—— N~N— N~——— SN—
[al
— —~
\l/ @] o —~
=1 = = Z
3 8 g 3
4 X X X X ﬁnM
> D D ®
~—~ S~— SN~— =
2 = 3 7
—
5}
)
vnm —
o <
1
2 < < e <
o [aN]
M N o < < ~
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Table C.2: Projection Matrices

|

oo © o o
~ _ /-~
PR © oo o 0 — O
+ N o N © O ™
<+ © ©O ™ <+ © o _
o — YO 002
Yol — _
= <+ <f N oo__
= - < o - N )
= © o o - e =< =~ o - S =
O© A 100
] [aN| — — o —
+~
15 © ™
)
= o= + oo <+ o { < - oo o
P N——
= = = — =
S~— S~— N~— ~ N~—
= 3 — 3 = =
— X X (M\ X % X
~N ~ & ~ - ~
S~— S~— N~— ~ N~—
= on = = =
n [0} n n
—
5,
+—
= < < ~
<
O N + < -
1
2 t <& p =
[N} [ap) [7pl <t
e < < ~ < Q <

356



Table C.2: Projection Matrices

Bala-Carter f Projection Matrix

6 10 16 10 6 10
Dy su(3) 00 1 2 10

1 2 1 000

6 10 12 10 6 7
Ast A u(1) (—2 4 =6 -2 2 —3)

7 12 18 12 7 10
Ds(al) u(l) (—1 2 0 2 1 0)

8 14 19 14 8 10
s su(2) <o 0 1 0 0 o>
Eg(a3) - (8 14 18 14 8 8)

10 18 24 18 10 10
Ds u(l) (-1 2 0 2 1 0)
Eg(al) — (12 22 30 22 12 16)
Eg — (16 30 42 30 16 22)
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As an example, let’s work out the decomposition of the 51975 for the

orbit 2A4,. Running LieART, we obtain the decomposition with the following

two lines of code:

4 6 8 6 4 4
In[1]= ProjectionMatrix[E6,ProductAlgebra[SU2,G2]]=({0 1 0 1 0 1
001000

In[2]= Decomposelrrep[Irrep[E6][1,0,1,0,0,0],ProductAlgebralSU2,G2]]

Out [2]=

(1,1) + 14(3,1) + 10(5, 1) + 13(1,7) + 13(7, 1)+
25(3,7) +5(9,1) + 34(5,7) + 4(11, 1)+
25(7,7) + 9(1, 14) 4+ 17(9, 7) + 16(3,14) + 6(11,7)+
22(5,14) + 2(13,7) + 15(7, 14) + 10(9, 14) + 3(11, 14)+
(13,14) + 6(1, 27) + 25(3,27) + 23(5, 27) + 21(7, 27)+
9(9,27) + 4(11,27) + 5(1, 64) + 12(3, 64) + 13(5, 64)+
9(7,64) + 4(9,64) + (11,64) + 4(1,77) + 6(3,77)+
2(3,77') + 8(5,77) + (5,77 + 4(7,77) + (7, 77")+
2(9,77) + (3,182) + (1, 189) + 2(3,189) + 2(5, 189)+

(7,189)

This works for all of the orbits above, except for Dy(a;), as the LieART
command “Decomposelrrep” does not seem to work when the target subal-

gebra has more than one u(1) factor. In this case, getting the decomposition
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is only slightly more complicated. For example, we obtain the decomposition

of the 27 of Ejg as follows:

In[1]= ProjectionMatrix[D5,ProductAlgebra[D4,U1]]=

S OO O
O OO = O
O = = O O
_ o = O O
_ =0 O O

In[2]= ProjectionMatrix[D4,ProductAlgebra [Al]]=(4 6 4 4)

In[3]= Decomposelrrep[ Decomposelrrep[ Decomposelrrepl|
Irrep(E6][1,0,0,0,0,0], ProductAlgebra[D5, U1]],
ProductAlgebra[D4, U1], 1], ProductAlgebralAl], 1]

Out [3]= (1) (2) (2)+(1) (0) (-4)+(1) (-2) (2)+(3) (1) (-1)+(3) (0) (2)

+(3) (1) (-1 +(5) (1) (-1)+(5) (0) (2)+(5) (-1) (-1)
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D.1 Constraints

Appendix D

Table D.1: Constraints

Constraints for twisted s punctures

Bala- New Constraints
Carter | parameters
. RO
Ay hﬁE% ¢12—h(2;’\’%
1
- o® ¢s — Pshy ~ —
Ay hs = 2?3 &
) b+ 02 + = Gohd + 3ohy + ——hd ~ —
2T T 0 T T 402478 29
aé% 1 9 1
5, hsy = T P9 — Eh3(h3+h6+2¢6) ~ i
(6) 2/1.2 L.y 2 1
_a — hz(h; — hg) — = (hs — hg — 2 ~ —
he = LB D12 3( 3 6) 1 ( 3 6 ¢6) s
= ME)
Ay + | hg= ZE?E P12 — 24¢ghs + (6 + 2h§)2 ~ Z%
A
9 | |
_ 7’5/2 2 12
hs = /2 ¢9_Eh3<h3+h3+2¢6)’\“ SE)
Cs(a1) /(3) 1 2 1
h2 h2 h/2 h2 h/? 9
no= 22 $12 — ha(hs — 3)_1 53— h3—206) ~—
3 5/2 z
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Table D.1: Constraints

Bala- New Constraints
Carter | parameters
) 1
hs = =5 G + 205 + W5 — 3N ~ —
Fyas) | 1 _ @5 L (2 4 317
alas h3525/2 ¢9—§ 3(h's + 3)Nm
2 1
b WS | G SIS —35) + (W 305 ~
3= .5/2
1
@—@ﬁN;
_ 1
Bs h4:Z_3 ¢9_¢5h4’\’m
1
$12 + 96h3 ~ —
1
1
_ag 05 — 160215 — 8shy — 48hi ~ —
25/ 1 2 1
Cs a@ P9 + §¢6h3 + ¢sha — 2¢2hahs + ghg ~ iz
hy = =5 2 y 2
23 P12 + @5 + 24Pghs — 3dshy — 12¢6pahy + ddshs
1
+24¢shyhs + 364507 — 24¢shsh + 4hy + 48h7 ~ —
I
pg — 48h3 ~ =
@ 1
Fy(as) | ha =5 P9 + Pshy ~ ISTV]

1 1
P12 + g — 12h4(1¢8 — 3¢5hy + Pepr — 4h3) ~ —
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Table D.1: Constraints

Bala- New Constraints
Carter | parameters
T
¢5 — 2hzhy ~ 52
e <
B = 32 2 42 L
2= 32 ¢ — 62y — hy ~ 23
as? 2 3 1
F4(a1) h3 = % ng + 4¢2h3 + 48h2<h6 — h2) ~ ;
(6) 1
— $o + Pshs — hehg ~ ~o72
6 — 7/2 z )
G2 — 3¢sh3 + 2¢6hs — 12¢oh3h3 — 36hg — by ~ —
T
¢5 — Pahg ~ 32
3 3 1
¢6+§¢3+§h§“’§
1
) 05 + 40602 + 30, — 465hs + 2okl ~ —
Fa hs = 2% 1 1, 5 14 1 4 1
P9 + 6¢6h3 — 1 %hat Z¢2h3 + Eh3 ~ R
3
$12 + 9f + 12¢9h3 + dehs + §¢g + 30605

3 3 1 1
+5 0803 — 3sdihs + DSOS + hi ~
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Appendix E

Embeddings of SU(2) in F}

E.1 Appendix: Embeddings of SU(2) in F}

Table E.1: Embeddings of SU(2) in F}

Bala- i 2% 52
Carter
A, sp(3) (2,6) + (1,14) (3,1) + (2,14') + (1,21)
I n 2,4+ (2,4) + (1,6) (3,1) + (3,6)
' o +(3,1) + (1,1 H(2,4) + (2,9) + (1, 15)
(1:3,1) + (1,1, 3)+
AL+ Ay [ su(2) x| (1:5,1)4(2:3,2)4+(3:3,1) | (25,2)+ (3;1,1)+
su(2) (3;5,1) + (4;1,2)
_ (5,1) + (3,6) + (3,6)
Ay su(3) (3,3)+(3,3) + (1,8) 3.1) + (L8)
Ay 9 (3,7) + (5,1) (5,7) + (3,1) + (1, 14)
~ (4,2) + (3,3)+ (5,3)+ (4,2) + (3,5)
A+ Ay | su(2) (2,4) + (1,1) H(3,1) + (2,4) + (1,3)
(5,1,1) + (4,2, 1)+ (7 1,1) +(5,2,2)+
B, su(2) x| (4,1,2) +(1,2,2)+ (4,2,1) +(41,2)
511(2) (1 1 1) +<3, 1, 1) + (1, 3, 1)
o +(1,1,3)
— (5, 1) + (4,2)+ (6,2) + (5,3) + (4, 2)+
At | su(2) (3,3) + (2,2) 2(3,1) + (2,4) + (1,3)
- ) 2(5,1) + (4,2) + (3, 1) (7,1) + (6,2) + (5, 1)+
s(a) | su(2) +(2,2) + (1,1) 2(4,2) +3(3,1) + (1,3)




Table E.1: Embeddings of SU(2) in F}

Bala- | j 26 b2

;j(r;:; _ 3(5) +3(3) +2(1) 2(7) +4(5) +6(3)

By |su(2 | (15)+(7.3) (( ’3)) (<11 )S

o Jae |eusenay | CLDEIIDEED
o |- (9) + (7) + 205) . 2)(11)( j)t (9)?3)

Fi(a) | - )+ ) +6) + 1) <(71)5) +( 2><1123)

F _ (17) + (9) (23) + (15) + (11) + (3)

E.2 Projection matrices

Table E.2: Projection Matrices

Bala-Carter f Projection Matrix
1000
0010
A Sp(3)13
0001
1 210
0210
~ 1110
Ay SU(4)12
01 11
1100
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Table E.2: Projection Matrices

Bala-Carter f Projection Matrix
1 3 3 2
A1 +Z1 SU(2)64 X SU(2)10 4 8 4 2
1 110
4 6 4 2
Ay SU(3)16 0 011
0210
4 8 6 4
Ay (G2)10 1010
01 00
- 2 6 5 3
Ag + Ay SU(2)39
4 6 3 1
4 10 7 4
B, SU(2)? 1 100
1 1 10
~ 4 9 7 4
Ay + Ay SU(2)20
2310
5 11 8 4
C3(CL1) SU(2)7
1 1 00
Fy(as) - <6 12 8 4)
6 16 12 6
B3 SU(2)24
4 4 2 2
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Table E.2: Projection Matrices

Bala-Carter f Projection Matrix
9 19 14 8
Ol SU(2)e
T 1 1 0 0
Fy(as) - (10 20 14 8)
Fy(ay) - (14 26 18 10)
Fy — (22 42 30 16)
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