Copyright
by
Anderson Daniel Trimm
2015

The Dissertation Committee for Anderson Daniel Trimm certifies that this is the approved version of the following dissertation:

Twisted and Exceptional Tinkertoys for Gaiotto Duality

Committee:

Jacques Distler, Supervisor

Vadim Kaplunovsky

Can Kilic

Andrew Neitzke

Sonia Paban

Twisted and Exceptional Tinkertoys for Gaiotto Duality

by

Anderson Daniel Trimm, B.S. PHY

DISSERTATION

Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

Dedicated to my family.

Acknowledgments

First, I would like to thank my advisor, Jacques Distler, for being an excellent teacher, and for collaboratoration on the work in this dissertation. I could not have envisioned a better grad school experience, and I am very grateful to be his student. I would also like to thank the other theory group faculty Willy Fischler, Vadim Kaplunovsky, Can Kilic, Sonia Paban, and Steven Weinberg, as well as Daniel Freed, Andy Neitzke, and David Ben-Zvi in the Geometry group, for being a constant source of knowledge and inspiration, and from whom I have learned a lot. I thank the theory group postdocs and students Aditya, Ali, Anindya, Aswin, Brandon, Bei, Cynthia, Dan, Dustin, Fei, Jacob, Juan, Matt, Oscar, Sandipan, Siva, Sohaib, Tom, Walter for their friendship and for countless discussions. I especially thank Oscar Chacaltana and Fei Yan for their collaboration. I also thank the theory group staff Jan Duffy, Abel Ephraim, and Josh Perlman for all of their help.

I owe a special thanks to Yu Nakayama and Yuji Tachikawa for making my EAPSI fellowship possible, and for helping to make my stay in Japan such a wonderful experience. I also thank Noppadol Mekareeya for his friendship and for many enjoyable discussions.

Most of all, I would like to thank my family for their constant love and support.

Twisted and Exceptional Tinkertoys for Gaiotto Duality

Anderson Daniel Trimm, Ph.D.
The University of Texas at Austin, 2015

Supervisor: Jacques Distler

A large class of $4 d \mathcal{N}=2$ superconformal field theories arise as compactifications of a $6 d(2,0)$ theory of type $\mathfrak{j}=A, D, E$ on a punctured Riemann surface, C. These theories can be classified by listing the allowed fixtures and cylinders which can occur in a pants decomposition of C, and giving the rules for gluing them together. Different pants decompositions of the same surface give different weakly-coupled presentations of the same underlying SCFT, related by S-duality. An even larger class of theories can be constructed in this way by including "twisted" punctures, which carry a non-trivial action of the outer-automorphism group of \mathfrak{j}. In this dissertation, we discuss the classification procedure for twisted theories of type D_{N}, as well as for twisted and untwisted theories of type E_{6}. Using these results, we write the Seiberg-Witten solutions for all $\operatorname{Spin}(n)$ gauge theories with matter in spinor representations which can be realized by compactifying the $(2,0)$ theory. We also study a family of SCFTs arising from the twisted $A_{2 N}$ series, whose twisted punctures are still not fully-understood.

Contents

Acknowledgments v
Abstract vi
Chapter 1. Introduction 1
1.1 Compactifying the $(2,0)$ theories 2
1.2 Relation to Hitchin systems 5
1.3 Local properties of codimension-2 defects of the $6 d(2,0)$ theories 8
1.3.1 Classification of punctures 9
1.3.2 Global symmetry and central charge $k_{4 d}$ 10
1.3.3 $\quad a$ and c central charges 12
1.3.4 Contributions to Higgs and Coulomb branch dimensions 14
Chapter 2. The \mathbb{Z}_{2}-Twisted D_{N} Series 26
2.1 \quad The \mathbb{Z}_{2}-twisted D_{N} Theory 27
2.1.1 Local Properties of Punctures 31
2.1.2 Collisions 41
2.1.3 Gauge Couplings 48
2.1.4 Very-even Punctures 51
2.1.5 Atypical Degenerations 54
2.1.6 Global Symmetries and the Superconformal Index 73
2.2 The \mathbb{Z}_{2}-twisted D_{4} Theory 82
2.2.1 Punctures and Cylinders 82
2.2.2 Fixtures 87
2.3 Applications 125
2.3.1 $\quad \operatorname{Spin}(2 N)$ and $\operatorname{Sp}(N-1)$ Gauge Theory 125
2.3.2 $\operatorname{Spin}(8), \operatorname{Spin}(7)$ and $\operatorname{Sp}(3)$ Gauge Theory 129
2.3.3 Higher Genus 140
Chapter 3. $\quad \operatorname{Spin}(n)$ Gauge Theories with Spinors 143
3.1 Introduction 143
3.2 Seiberg-Witten Geometry 144
3.2.1 Seiberg-Witten curve 144
3.2.2 Calabi-Yau geometry 146
3.2.3 Dependence on the gauge coupling 147
$3.3 \operatorname{Spin}(2 N)+(2 N-2)(V)$ and $\operatorname{Spin}(2 N-1)+(2 N-3)(V)$ 149
$3.4 \quad \operatorname{Spin}(9)$ and $\operatorname{Spin}(10)$ Gauge Theories 151
3.4.1 $\operatorname{Spin}(9)$ 151
3.4.2 $\operatorname{Spin}(10)$ 154
$3.5 \operatorname{Spin}(11)$ and $\operatorname{Spin}(12)$ Gauge Theories 160
3.5.1 $\operatorname{Spin}(11)$ 161
3.5.2 $\operatorname{Spin}(12)$ 165
$3.6 \quad \operatorname{Spin}(13)$ and $\operatorname{Spin}(14)$ Gauge Theories 178
$3.6 .1 \quad \operatorname{Spin}(13)+\frac{1}{2}(64)+7(13)$ 178
3.6.2 More Spinors 180
3.7 Higher N ? 181
Chapter 4. The E_{6} Theory 183
4.1 The E_{6} Theory 184
4.1.1 The Hitchin system 184
4.1.2 $\quad k$-differentials 185
4.1.3 ALE geometry 189
4.1.4 Puncture properties 191
4.1.5 Global symmetries and the superconformal index 199
4.1.6 Levels of enhanced global symmetry groups 204
4.2 Tinkertoys 206
4.2.1 Regular punctures 206
4.2.2 Free-field fixtures 211
$4.2 .3 \quad$ Interacting fixtures with one irregular puncture 213
4.2.4 Interacting fixtures with enhanced global symmetry 214
4.2.5 Mixed fixtures 223
4.3 A Detour Through the Twisted Sector 230
4.4 Applications 239
4.4.1 $\quad E_{6}$ and F_{4} gauge theory 239
4.4.2 Adding $\left(E_{8}\right)_{12}$ SCFTs 242
4.4.3 Connections with F-theory 246
4.5 Isomorphic Theories 249
Chapter 5. The \mathbb{Z}_{2}-Twisted E_{6} Theory 252
5.1 The twisted E_{6} theory 252
5.1.1 The Hitchin system 252
5.1.2 k-differentials 254
5.2 Tinkertoys 255
5.2.1 Twisted punctures 256
5.2.2 Free-field fixtures 259
5.2.3 Interacting fixtures with one irregular puncture 260
5.2.4 Interacting fixtures with enhanced global symmetry 261
5.2.5 Mixed fixtures 270
5.2.6 Gauge theory fixtures. 275
5.3 Global symmetries and the superconformal index 275
5.3.1 Superconformal index for twisted fixtures 276
5.3.2 Higher-order expansion of the index 277
5.4 Enhanced global symmetries: the Sommers-Achar group on the
Higgs branch 279
$5.5 \quad R_{2,5}$ 286
5.6 Product SCFTs 289
5.7 Instanton moduli spaces 295
5.7.1 $\quad M\left(E_{6}, 2\right) / / / S U(3) \simeq\left(M\left(E_{6}, 1\right) \times M\left(E_{6}, 1\right) \times \mathbb{H}^{7}\right) / / / G_{2}$ 298
5.7.2 $\left(M\left(E_{6}, 2\right) \times \mathbb{H}\right) / / / S U(2) \simeq M\left(E_{8}, 1\right) / / / S U(3)$ 299

5.7.3	$M\left(E_{7}, 3\right) / / / \operatorname{Spin}(8) \simeq\left(M\left(E_{7}, 1\right)^{3} \times \mathbb{H}^{26}\right) / / / F_{4}$		
and $\left(M\left(E_{7}, 2\right) \times M\left(E_{7}, 1\right)\right) / / / S p i n(8) \simeq\left(M\left(E_{7}, 1\right)^{3} \times\right.$			
\mathbb{H}^{9})///Spin (9). 305			
5.7.4 $\left(M\left(E_{8}, 2\right) \times \mathbb{H}^{32}\right) / / / \operatorname{Spin}(12) \simeq$			
$\left.\left(M\left(E_{8}, 1\right) \times M\left(E_{8}, 1\right) \times \mathbb{H}^{45}\right) / / / \operatorname{Spin}(13)\right] \ldots 307$			

5.7.5 Semi-simple quotients 309
5.7.6 More isomorphisms among hyperKähler quotients 311
5.8 Instanton moduli spaces as affine algebraic varieties 315
Chapter 6. A Family of Interacting SCFTs from the Twisted
$A_{2 N}$ Series 325
$6.1 \quad$ S-duality of $S U(2 N+1)+\wedge^{2}(\square)+\operatorname{Sym}^{2}(\square)$ 327
6.2 The Argyres-Wittig SCFT 329
6.2.1 Global symmetry enhancement 329
6.2.2 Argyres-Wittig duality 330
6.2 .3 Chiral ring 332
6.3 Higher N 333
Appendices 337
Appendix A. Tables of \mathbb{Z}_{2}-Twisted D_{N} Punctures 338
A. $1 \quad D_{5}$ Twisted Sector 338
A. $2 \quad D_{6}$ Twisted Sector 340
Appendix B. Bala-Carter Notation 344
B. 1 Bala-Carter Labels 344
Appendix C. Embeddings of $S U(2)$ in E_{6} 351
C. 1 Embeddings of $S U(2)$ in E_{6} 351
C. 2 Projection Matrices 354
Appendix D. Constraints for twisted E_{6} punctures 360
D. 1 Constraints 360
Appendix E. Embeddings of $S U(2)$ in F_{4} 363
E. 1 Appendix: Embeddings of $S U(2)$ in F_{4} 363
E. 2 Projection matrices 364
Bibliography 367

Chapter 1

Introduction

In [1], Gaiotto showed that the marginal deformations of a large class of four-dimensional $\mathcal{N}=2$ SCFTs can be identified with $\mathcal{M}_{g, n}$, the moduli space of a genus g Riemann surface, C, with n punctures. These theories can be seen to arise from the compactification of a six-dimensional $(2,0)$ theory on C. Different degeneration limits of C correspond to different weakly-coupled descriptions of the same SCFT, related by S-duality. This construction greatly generalizes the original examples of $\mathcal{N}=2$ S-dualities, first found in [2].

In a degeneration limit, C can be decomposed into a collection of 3 punctured spheres ("fixtures") and cylinders, corresponding to $4 d$ "matter" theories and $\mathcal{N}=2$ vector multiplets, respectively. One can classify the $4 d$ theories which arise in this way by listing the allowed fixtures and cylinders which can arise in a pants-decomposition of C, and giving the rules for gluing them together. For a given $(2,0)$ theory, this is a finite list. The classification procedure has been discussed for twisted and untwisted theories of type A in [3, 4] and untwisted theories of type D in [5]. In this dissertation, we will continue this classification procedure for the twisted D-series, as well as the twisted and untwisted E_{6} theory. We will also discuss a family of interacting

SCFTs which arise from compactifying the twisted $A_{2 N}(2,0)$ theory, whose general twisted punctures are not yet fully-understood.

We begin this chapter by discussing general aspects of the compacification of six-dimensional $(2,0)$ theories on C, following [6]. We then discuss in detail the "local" properties of the codimension-2 defects of the $(2,0)$ theory which live at the punctures, following [7].

1.1 Compactifying the $(2,0)$ theories

The six-dimensional $(2,0)$ superconformal theories enjoy $\operatorname{osp}(6,2 \mid 4)$ superconformal invariance, and can be constructed by taking a low-energy decoupling limit of type IIB string theory on $\mathbb{R}^{1,5} \times \mathbb{C}^{2} / \Gamma$, where Γ is a discrete subgroup of $S U(2)$ of type $\mathfrak{j}=A, D$, or E. There is a basis of operators transforming in short representations of $\operatorname{osp}(6,2 \mid 4)$, labeled by the Casimir operators of \mathfrak{j}. Within each short multiplet, there is a subspace V_{k} of operators with lowest conformal weight, given by twice the exponent d_{k} of \mathfrak{j}, which is an irreducible representation of the $\mathfrak{s o}(5)$ R-symmetry. The theory has a Coulomb branch parametrized by expectation values of these chiral operators, which is isomorphic to

$$
\begin{equation*}
\mathcal{M}=\frac{\left(\mathbb{R}^{5}\right)^{\mathrm{rank} \mathfrak{j}}}{\mathcal{W}_{\mathrm{j}}} \tag{1.1}
\end{equation*}
$$

where $\mathcal{W}_{\mathfrak{j}}$ is the Weyl group of \mathfrak{j}.
To compactify the $(2,0)$ theory on a Riemann surface C while preserving $4 d \mathcal{N}=2$ supersymmetry, we must perform a partial twisting. The super

Poincaré subalgebra of $\mathfrak{o s p}(6,2 \mid 4)$ has bosonic part $\mathfrak{s o}(5,1) \oplus \mathfrak{s o}(5)$, where the spinor representations of $\operatorname{Spin}(1,5)$ and $\operatorname{Spin}(5)$ are given by \mathbb{H}^{2}, where \mathbb{H} is the quaternions. The Poincaré supercharges therefore transform in the $\left(\mathbb{C}^{4} \otimes \mathbb{C}^{4}\right)_{+}$of $\mathfrak{s o}(5,1) \oplus \mathfrak{s o}(5)$, where the subscript + denotes a symplectic Majorana reality constraint. Compactifying on C breaks $\mathfrak{s o}(5,1) \oplus \mathfrak{s o}(5)$ to $\mathfrak{s o}(3,1) \oplus \mathfrak{s o}(2)_{C} \oplus \mathfrak{s o}(3) \oplus \mathfrak{s o}(2)_{R}$, under which the supercharges transform as

$$
\begin{equation*}
\left(\left((2,1)_{\frac{1}{2}} \oplus(1,2)_{-\frac{1}{2}}\right) \otimes\left(2_{\frac{1}{2}} \oplus 2_{-\frac{1}{2}}\right)\right)_{+} \tag{1.2}
\end{equation*}
$$

The twisting consists of identifying the diagonal $\mathfrak{s o}(2)$ of $\mathfrak{s o}(2)_{C} \oplus \mathfrak{s o}(2)_{R}$ with the holonomy algebra of C, leaving us with supercharges transforming under $\mathfrak{s o}(3,1) \oplus \mathfrak{s o}(3) \oplus \mathfrak{s o}(2)_{C}^{\prime}$ as

$$
\begin{equation*}
(2,1 ; 2)_{1} \oplus(2,1 ; 2)_{0} \oplus(1,2 ; 2)_{0} \oplus(1,2 ; 2)_{-1} \tag{1.3}
\end{equation*}
$$

The middle two summands of (1.3) are uncharged under $\mathfrak{s o}(2)_{C}^{\prime}$, and so are well-defined four dimensional supercharges, which we denote by $Q^{\alpha A}, \bar{Q}^{\dot{\alpha} A}$.

The moduli space of the four-dimensional theory is obtained essentially by dimensional reduction from the the Coulomb branch of the six-dimensional theory. More precisely, we choose a Cartan subalgebra $\mathfrak{s o}(2)_{R} \oplus \mathfrak{s o}(2)$ of the $\mathfrak{s o}(5)$ R-symmetry, and let \mathcal{O}_{k} be the operator in V_{k} of weight $\left(d_{k}, 0\right)$. This operator has the largest $\mathfrak{s o}(2)_{R}$ charge in the multiplet and hence it must be annihilated by any supercharge, such as $\bar{Q}^{\dot{\alpha} A}$, with positive $\mathfrak{s o}(2)_{R}$ charge. The $4 d$ Coulomb branch is parametrized by the vacuum expectation values of these chiral operators.

After the twisting, \mathcal{O}_{k} is a section of the bundle $K^{\otimes d_{k}}$ over C, which is also true of its vacuum expectation value $\left\langle\mathcal{O}_{k}\right\rangle$. Since \mathcal{O}_{k} is annihilated by $\bar{Q}^{\dot{\alpha} A}$, and since $\bar{Q}^{\dot{\alpha} A}$-exact operators have vanishing vev's, $\left\langle\mathcal{O}_{k}\right\rangle$ must be annihilated by $\bar{\partial}$. This is the only condition on $\left\langle\mathcal{O}_{k}\right\rangle$, so the $4 d$ Coulomb branch is simply

$$
\begin{equation*}
\mathcal{C}_{4 d}=\bigoplus_{k=1}^{r} H^{0}\left(C, K^{\otimes d_{k}}\right) \tag{1.4}
\end{equation*}
$$

The $(2,0)$ theory of type A_{N-1} can also be realized as the low-energy worldvolume theory on N coincident M5-branes. In this case, $\mathcal{C}_{4 d}$ has a nice geometric interpretation. The M5-branes are wrapped on a holomorphic cycle C inside a hyperkähler four-manifold Q. We go onto the Coulomb branch by separating the branes so that they wrap some other cycle Σ inside Q, where we take Σ to be a connected divisor inside Q. By viewing Q as a holomorphic symplectic manifold, we can identify a neighborhood of C with the holomorphic cotangent bundle $T^{*} C$ by picking holomorphic Darboux coordinates (x, z) for Q. A point of $\mathcal{C}_{4 d}$ corresponds to picking the coefficients $u_{k} \in H^{0}\left(C, K^{\otimes k}\right)$, of the equation

$$
\begin{equation*}
x^{N}+\sum_{k=2}^{N} u_{k}(z) x^{N-k}=0 \tag{1.5}
\end{equation*}
$$

defining $\Sigma \subset T^{*} C$.
Normalizing the coordinates so that the holomorphic symplectic form is

$$
\begin{equation*}
\Omega=\frac{\ell^{3}}{2 \pi^{2}} d x \wedge d z \tag{1.6}
\end{equation*}
$$

the projection map $T^{*} C \rightarrow C$ identifies Σ as an N-sheeted cover of C. The
distance between the i-th and j-th sheets is a one-form on C, which we denote $\lambda_{i j}$.

In [6], it was shown that Σ can be identified with the Seiberg-Witten curve of the $4 d$ theory, and the canonical one-form

$$
\begin{equation*}
\lambda=x d z \tag{1.7}
\end{equation*}
$$

restricted to Σ can be identified with the Seiberg-Witten differential.
For $(2,0)$ theories of type $\mathfrak{j} \neq A_{N-1}$, the anaylsis is similar, except that the coefficients in (1.5) are no longer just linear functions on the Coulomb branch, but, in general, are polynomial expressions when expressed in terms of the natural linear coordinates at the origin of the Coulomb branch. Additionally, the Coulomb branch can have graded components of degrees other than the expected d_{k}. In general, the Coulomb branch takes the form [5]

$$
\begin{equation*}
E \subset V \tag{1.8}
\end{equation*}
$$

where

$$
\begin{equation*}
V=\bigoplus_{k} H^{0}\left(C, K^{\otimes d_{k}}\right) \oplus \bigoplus_{k} W_{k} \tag{1.9}
\end{equation*}
$$

where the W_{k} are vector spaces of degree k and E is the subvariety satisfying the collection of polynomial constraints (linear in at least one variable, and of homogeneous degree).

1.2 Relation to Hitchin systems

It is well-known that the Seiberg-Witten solutions of many $\mathcal{N}=2$ theories can be understood in terms of complex integrable systems. We now
show that the relevant integrable system for this class of theories is a Hitchin system.

To do so, we consider the theory obtained by further dimensional reduction from $d=4$ to $d=3$ on S^{1}. On general field theory grounds, at low energies the $3 d$ effective theory is an $\mathcal{N}=4$ sigma model into a hyperkähler target space \mathcal{M}, where \mathcal{M} is a fibration over $\mathcal{C}_{4 d}$ with generic fiber a compact torus [8.

Now consider reversing the order of compactification. By first compactifying on S^{1} of radius R, we obtain at low energies $5 d \mathcal{N}=2$ super Yang-Mills theory. We are interested in this five-dimensional theory further compactified on C, with an appropraite topological twist. The moduli space of the resulting $3 d$ theory is the space of BPS configurations of the five-dimensional theory which are Poincaré invariant in $3 d$. Denote the adjoint scalars of the super Yang-Mills theory by $\Phi^{I}, I=1, \ldots, 5$, so that

$$
\begin{equation*}
\Phi \equiv \frac{1}{2}\left(\Phi^{1}+i \Phi^{2}\right) \tag{1.10}
\end{equation*}
$$

has $\mathfrak{s o}(2)_{R}$ charge +1 , and $\Phi^{3,4,5}$ have charge zero. In the twisted theory, $\Phi=\Phi_{z} d z$ is a $(1,0)$ form on C. Then the BPS equations are the Hitchin equations for the gauge field $A=A_{z} d z+A_{\bar{z}} d \bar{z}$ cotangent to C and the adjoint scalar field Φ :

$$
\begin{array}{r}
F+R^{2}[\Phi, \bar{\Phi}]=0 \\
\bar{\partial}_{A} \Phi \equiv d \bar{z}\left(\partial_{z} \Phi+\left[A_{\bar{z}}, \Phi\right]\right)=0 \tag{1.11}\\
\partial_{A} \bar{\Phi} \equiv d z\left(\partial_{z} \bar{\Phi}+\left[A_{z}, \bar{\Phi}\right]\right)=0 .
\end{array}
$$

Due to the partial topological twist, the BPS protected quantities we study do not depend on the conformal scale of the metric on C, so we do not expect any phase transition when we exchange the relative length scales of S^{1} and C. We therefore identify \mathcal{M} with the moduli space of solutions of Hitchin's equations on C. The map $\mathcal{M} \rightarrow \mathcal{C}_{4 d}$ given by

$$
\begin{equation*}
(A, \Phi) \mapsto\{\text { Casimirs of } \Phi\} \tag{1.12}
\end{equation*}
$$

is the well-known Hitchin fibration; its fiber over a generic $u \in \mathcal{C}_{4 d}$ is indeed an abelian variety, the Prym variety of the projection $\bar{\Sigma}_{u} \rightarrow C$, defined as the kernel of a corresponding map of Jacobians $J\left(\bar{\Sigma}_{u}\right) \rightarrow J(C)$.

As discussed above, the $\left\langle\mathcal{O}_{k}\right\rangle$ determine the Seiberg-Witten curve $\Sigma \subset$ $T^{*} C$. Since we have identified these with the Casimirs $\operatorname{Tr} \Phi^{k}, \Sigma$ given by 1.5 is the spectral curve determined by Φ,

$$
\begin{equation*}
\operatorname{det}(x d z-\Phi)=0 \tag{1.13}
\end{equation*}
$$

We see that the positions x_{i} of the sheets of Σ in the cotangent directions can be interpreted as the eigenvalues of the matrix-valued one-form Φ, thus the coefficients $u_{k}(z)$ are elementary symmetric functions of the eigenvalues, and can be written as polynomials in the $\left\langle\mathcal{O}_{k}\right\rangle$.

In the next subsection, we will discuss a class of codimension- 2 defects of the $6 d(2,0)$ theories, which wrap four-dimensional spacetime and live at a point on C. The presence of these defects will give rise to singular boundary conditions for Φ, which introduce extra parameters contributing to the dimension of the moduli space of the $4 d$ theory. We will discuss the classification of
the defects in detail, and show how to compute their contritutions to the $4 d$ Higgs and Coulomb branch dimensions, as well as to the central charges of the $4 d$ SCFT.

1.3 Local properties of codimension-2 defects of the $6 d$ $(2,0)$ theories

We now review the local properties of the half-BPS codimension-2 defects of the $6 d(2,0)$ theories which live at the punctures on C, following [7]. For a $(2,0)$ theory of type $J=A, D, E$, these defects are labeled by a homomorphism $\rho: \mathfrak{s u}(2) \rightarrow \mathfrak{j}$. For $J=A_{N-1}, D_{N}$, or E_{6}, we can further introduce a class of "twisted" defects, around which there is an action of a non-trivial outer-automorphism o of J. Twisted defects are labeled by homomorphisms $\rho: \mathfrak{s u}(2) \rightarrow \mathfrak{g}$, where \mathfrak{g}^{\vee} is the subalgebra of \mathfrak{j} invariant under o. The introduction of a defect of type ρ at a point on C will ${ }^{1}$;

- add a flavor symmetry group factor $F(\rho)$,
- increase the dimensions of the Higgs and Coulomb branches by, respectively, $\operatorname{dim}_{\mathbb{H}} \mathcal{H}(\rho)$ and $\operatorname{dim}_{\mathbb{C}} \mathcal{C}_{4 d}(\rho)$, and
- increase the effective number of vector and hypermultiplets n_{v} and n_{h} by $n_{v}(\rho)$ and $n_{h}(\rho)$. Accordingly, the central charges a and c, which are linear combinations of n_{h} and n_{v}, also get a contribution.

[^0]All of these quantities are local in the sense that they do not depend of the genus of C or on the properties of the other punctures.

1.3.1 Classification of punctures

As mentioned above, each puncture is labeled by a homomorphism $\rho: \mathfrak{s u}(2) \rightarrow \mathfrak{g}$. The adjoint orbit of an element $e \in \mathfrak{g}$, denoted O_{e}, is its $G_{\mathbb{C}}$ conjugacy class in \mathfrak{g},

$$
O_{e}=\left\{a d(g) \cdot e \in \mathfrak{g} \mid g \in G_{\mathbb{C}}\right\}
$$

The Jacobson-Morozov theorem states that the classification of such homomorphisms ρ, up to conjugacy, is equivalent to the classification of nilpotent elements in \mathfrak{g}, also up to conjugacy, through the correspondence $e=\rho\left(\sigma^{+}\right)$. Since e is nilpotent, the orbit O_{e} is called a nilpotent orbit. When \mathfrak{g} is of classical type, nilpotent orbits have a convenient classification in terms of partitions. When $\mathfrak{g}=\mathfrak{s u}(N)$, a nilpotent orbit O_{e} is specified by the decomposition of the N -dimensional fundamental representation into irreducible representations of $\mathfrak{s u}(2), N=N_{1}+\cdots+N_{k}$, or, equivalently, by a partition $p=\left[N_{i}\right]$ of N. The N_{i} are called the parts of the partition p.

When $\mathfrak{g}=\mathfrak{s o}(N)$, a nilpotent orbit O_{e} is specified by the decomposition of the N-dimensional vector representation into irreducible representations of $\mathfrak{s u}(2)$. This can again be specified by a partition $p=\left[N_{i}\right]$ of N, but with the requirement that any even part must appear an even number of times. Such partitions are caleed B - or D-partitions, when N is odd or even, respectively.

Given a partition $p=\left[N_{i}\right]$ satisfying this condition, there is a unique nilpotent orbit, except for the case when all the parts N_{i} are even and each even integer appears an even number of times. Such a partition is called a very even partition, and there are two distinct nilpotent orbits associated to it, exchanged by the outer-automorphism of $\mathfrak{s o}(N)$.

Similarly, for a nilpotent element e in $\mathfrak{g}=\mathfrak{s p}(N)$, the corresponding homomorphism $\rho: \mathfrak{s u}(2) \rightarrow \mathfrak{s p}(N)$ determines a partition $p=\left[N_{i}\right]$ of $2 N$, with the condition that any odd part in $p=\left[N_{i}\right]$ appears an even number of times. Such a partition is called a C-partition, and each such partition corresponds to a unique orbit.

Nilpotent orbits in exceptional \mathfrak{g} also have a conventient classification, though not in terms of partitions. The classification for $\mathfrak{g}=\mathfrak{e}_{6}$ and \mathfrak{f}_{4} will be discussed in chapters 4 and 5 , respectively.

1.3.2 Global symmetry and central charge $k_{4 d}$

Each puncture carries a flavor symmetry group, $F(\rho)$, given by the subgroup of G commuting with the image of ρ. For classical \mathfrak{g}, the Lie algebra $\mathfrak{f}(\rho)$ of $F(\rho)$ is given by

$$
\begin{array}{ll}
\mathfrak{s}\left[\oplus_{i} \mathfrak{u}\left(r_{i}\right)\right] & \text { when } \mathfrak{g}=\mathfrak{s u}(N), \\
\oplus_{i} \text { odd } \mathfrak{s o}\left(r_{i}\right) \oplus \oplus_{i} \text { even } \mathfrak{s p}\left(r_{i} / 2\right) & \text { when } \mathfrak{g}=\mathfrak{s o}(N), \\
\oplus_{i} \text { odd } \mathfrak{s p}\left(r_{i} / 2\right) \oplus \oplus_{i} \text { even } \mathfrak{s o}\left(r_{i}\right) & \text { when } \mathfrak{g}=\mathfrak{s p}(N),
\end{array}
$$

where r_{i} is the number of parts N_{k} in the partition $p=\left[N_{k}\right]$ equal to i.

The central charge $k_{4 d}$ of each non-abelian factor in $F(\rho)$, defined via the current algebra [2]

$$
J_{\mu}^{a}(x) J_{\nu}^{b}(0)=\frac{3 k_{4 d}}{4 \pi^{4}} \delta^{a b} \frac{g_{\mu \nu} x^{2}-2 x_{\mu} x_{\nu}}{\left(x^{2}\right)^{4}}+\frac{2}{\pi^{2}} f_{c}^{a b} \frac{x_{\mu} x_{\nu} x \cdot J^{c}}{\left(x^{2}\right)^{3}}
$$

can be determined as follows. Consider putting the $6 d$ theory and the defect on a general Riemann surface C, and perform Nekrasov's deformation on the $4 d$ side, with parameters $\epsilon_{1,2}$. This will lead to a $2 d$ theory on C, which is believed to have the W -symmetry $W(\mathfrak{g}, \rho)$ at the parameter $b^{2}=\frac{\epsilon_{2}}{\epsilon_{1}}$, obtained by quantum Drinfeld-Sokolov reduction of the affine \mathfrak{g} Lie algebra. Since we will make use of it shortly, we note that the $2 d$ central charge of $W(\mathfrak{g}, \rho)$ is given by

$$
\begin{equation*}
c_{2 d}=\operatorname{dim} \mathfrak{g}_{0}-\frac{1}{2} \operatorname{dim} \mathfrak{g}_{1 / 2}+\frac{24}{b^{2}} \rho_{\mathfrak{g}} \cdot \rho_{\mathfrak{g}}+12 \rho_{\mathfrak{g}} \cdot \frac{h}{2}+24 b^{2} \frac{h}{2} \cdot \frac{h}{2} \tag{1.14}
\end{equation*}
$$

where $\rho_{\mathfrak{g}}$ is the Weyl vector of $\mathfrak{g}, h=\rho\left(\sigma^{3}\right)$, and we have decomposed \mathfrak{g} into

$$
\mathfrak{g}=\bigoplus_{j \in \frac{1}{2} \mathbb{Z}} \mathfrak{g}_{j}
$$

where j is the eigenvalue of the action of $h / 2$.
For a defect of type ρ with flavor symmetry $F(\rho)$, the corresponding W-algebra $W(\mathfrak{g}, \rho)$ has the affine Lie subalgebra $\hat{f}(\rho)$. The current algebra level of $\hat{f}(\rho)$ was computed in [9]. Since $F(\rho)$ commutes with $\rho(\mathfrak{s u}(2))$, the adjoint representation \mathfrak{g} can be decomposed as

$$
\mathfrak{g}=\bigoplus_{j \in \frac{1}{2} \mathbb{Z}} R_{j} \otimes V_{j}
$$

where V_{j} is the irreducible representation of $\mathfrak{s u}(2)$ of $\operatorname{spin} j$, and R_{j} is the corresponding (reducible) representation of $f(\rho)$. Choose generators $T^{a, b}$ of a simple subalgebra $f^{\prime} \subset f(\rho)$ so that $\operatorname{tr}_{f^{\prime}} T^{a} T^{b}=h^{\vee}\left(f^{\prime}\right) \delta^{a b}$, where h^{\vee} is the dual Coxeter number. Denote by f the natural embedding $f: f(\rho) \rightarrow \mathfrak{g}$. The level of \hat{f}^{\prime} is then given by

$$
\begin{equation*}
k_{2 d}\left(f^{\prime}\right) \delta^{a b}=k_{2 d} \frac{1}{h^{\vee}(\mathfrak{g})} \operatorname{tr}_{\mathfrak{g}} f\left(T^{a}\right) f\left(T^{b}\right)+\sum_{j} 2 j t r_{R_{j}} T^{a} T^{b} \tag{1.15}
\end{equation*}
$$

where $k_{2 d}=-h^{\vee}(\mathfrak{g})+1 / b^{2}$ is the level of the affine \mathfrak{g} algebra before the Drinfeld-Sokolov reduction.

The relation between the level of the $2 d$ current subalgebra $\hat{f}(\rho)$ of $W(\mathfrak{g}, \rho)$ and the level of the $4 d$ flavor symmetry $f(\rho)$ was shown in 9 to be given by $k_{4 d}\left(f^{\prime}\right)=\left.2 k_{2 d}\left(f^{\prime}\right)\right|_{1 / b^{2}=0}$. Using (1.15), we find $k_{4 d}\left(f^{\prime}\right)$ is given by

$$
k_{4 d}\left(f^{\prime}\right) \delta^{a b}=-2 t r_{\mathfrak{g}} f\left(T^{a}\right) f\left(T^{b}\right)+2 \sum_{j} 2 j t r_{R_{j}} T^{a} T^{b}=2 \sum_{j} \operatorname{tr}_{R_{j}} T^{a} T^{b}
$$

1.3.3 $\quad a$ and c central charges

Four dimensional conformal field theories have two Weyl anomaly coefficients, a and c, defined via

$$
T_{\mu}{ }^{\mu}=\frac{c}{16 \pi^{2}}(\mathrm{Weyl})^{2}-\frac{a}{16 \pi^{2}}(\text { Euler })
$$

where

$$
\begin{aligned}
(\text { Weyl })^{2} & =R_{\mu \nu \lambda \rho}^{2}-2 R_{\mu \nu}^{2}+\frac{1}{3} R^{2} \\
(\text { Euler }) & =R_{\mu \nu \lambda \rho}^{2}-4 R_{\mu \nu}^{2}+R^{2}
\end{aligned}
$$

For $4 d \mathcal{N}=2$ theories, it is convenient to parametrize a and c by the "effective" numbers of vector and hypermultiplets

$$
n_{v}=4(2 a-c), \quad n_{h}=4(5 c-4 a),
$$

which are normalized so that, in a free theory, n_{v} counts the number of free vector multiplets and n_{h} counts the number of free hypermultiplets. Adding a defect of type ρ increases these central charges by $n_{v}(\rho)$ and $n_{h}(\rho)$. The total n_{v} and n_{h} of a $4 d \mathcal{N}=2$ SCFT take the following form

$$
\begin{align*}
& n_{v}=\sum_{i} n_{v}\left(\rho_{i}\right)+(g-1)\left(\frac{4}{3} h^{\vee}(J) \operatorname{dim} J+\operatorname{rank} J\right) \tag{1.16}\\
& n_{h}=\sum_{i} n_{h}\left(\rho_{i}\right)+(g-1)\left(\frac{4}{3} h^{\vee}(J) \operatorname{dim} J\right) .
\end{align*}
$$

The global terms, which are proportional to $(g-1)$, were calculated in [10] using the anomaly polynomials of the $6 d(2,0)$ theories. The $n_{v, h}(\rho)$, as well as the $2 d$ central charge $c_{2 d}$ should come from the anomaly polynomial of the defect of type ρ. On flat space, a codimension-2 defect has $a(\rho)$ and $c(\rho)$, and the $S O(2)$ rotation of the transverse space to the defect is a flavor symmetry, with central charge $k_{T}(\rho)$. The $n_{v, h}(\rho)$ are a certain linear combination of these three fundamental quantities, determined by the R-symmetry twist needed to preserve $4 d \mathcal{N}=2$ supersymmetry discussed above.

The central charge of the W-algebra $W(\mathfrak{g}, \rho)$ should have the same origin. Since the standard W-algebra $W(\mathfrak{j})=W\left(\mathfrak{j}, \rho_{\text {prin }}\right)$ corresponds to the absence of the defect when \mathfrak{g} is simply-laced, the contribution from the presence
of the defect of type ρ is

$$
\begin{aligned}
& \delta c_{2 d}(\mathfrak{g}, \rho)=c_{2 d}(\mathfrak{g}, \rho)-c_{2 d}\left(\mathfrak{j}, \rho_{\text {prin }}\right) \\
& \quad=\left(\operatorname{dim} \mathfrak{g}_{0}-\operatorname{rank} \mathfrak{j}\right)+\frac{1}{2} \operatorname{dim} \mathfrak{g}_{1 / 2}+12\left(\rho_{\mathfrak{g}} \cdot \frac{h}{2}-\rho_{\mathfrak{j}} \cdot \rho_{\mathfrak{j}}\right)+24 b^{2}\left(\frac{h}{2} \cdot \frac{h}{2}-\rho_{\mathfrak{j}} \cdot \rho_{\mathfrak{j}}\right),
\end{aligned}
$$

where the roots are normalized so that $\rho_{\mathfrak{g}} \cdot \rho_{\mathfrak{g}}=\rho_{\mathfrak{j}} \cdot \rho_{\mathfrak{j}}$. This suggests that $a(\rho), c(\rho)$ and $k_{T}(\rho)$, and therefore also $n_{v, h}(\rho)$, can be expressed as linear combinations of

$$
\operatorname{dim} \mathfrak{g}_{0}-\operatorname{rank} \mathfrak{j}, \quad \operatorname{dim} \mathfrak{g}_{1 / 2}, \quad \rho_{\mathfrak{g}} \cdot \frac{h}{2}-\rho_{\mathfrak{j}} \cdot \rho_{\mathfrak{j}}, \quad \frac{h}{2} \cdot \frac{h}{2}-\rho_{\mathfrak{j}} \cdot \rho_{\mathfrak{j}} .
$$

From the known results for $n_{h}(\rho)$ and $n_{v}(\rho)$ for type $J=A, D$ from the analysis of quiver gauge theories [1, 11], one finds that

$$
\begin{align*}
& n_{h}(\rho)=8\left(\rho_{\mathfrak{j}} \cdot \rho_{\mathfrak{j}}-\rho_{\mathfrak{g}} \cdot \frac{h}{2}\right)+\frac{1}{2} \operatorname{dim} \mathfrak{g}_{1 / 2}, \tag{1.17}\\
& n_{v}(\rho)=8\left(\rho_{\mathfrak{j}} \cdot \rho_{\mathfrak{j}}-\rho_{\mathfrak{g}} \cdot \frac{h}{2}\right)+\frac{1}{2}\left(\operatorname{rank} \mathfrak{j}-\operatorname{dim} \mathfrak{g}_{0}\right), \tag{1.18}
\end{align*}
$$

where we note that $\rho_{\mathrm{j}} \cdot \rho_{\mathrm{j}}=\frac{1}{12} h^{\vee}(J) \operatorname{dim} J$.

1.3.4 Contributions to Higgs and Coulomb branch dimensions

To determine the contributions of a defect of type ρ to the Higgs and Coulomb branch dimensions, we put the $6 d(2,0)$ theory of type J on $\mathbb{R}^{2,1} \times($ cigar $) \times \tilde{S}^{1}$, where "cigar" denotes a semi-infinite cigar geometry with the defect placed at the tip. We allow the fields on the cigar to undergo a monodromy by an outer-automorphism o of J upon circling the defect.

Upon reducing along the $U(1)$ isometry of the cigar, we get $5 d \mathcal{N}=2$ super Yang-Mills with gauge group G on $\mathbb{R}^{2,1} \times($ a half-line $) \times \tilde{S}^{1}$. The defect
becomes a boundary condition at the end of the half-line, producing a pole in three of the adjoint scalars. Letting s be the distance to the boundary, this is given by

$$
\Phi_{1,2,3}(s) \sim \frac{\rho\left(\tau_{1,2,3}\right)}{s}
$$

where ρ is a homomorphism $\rho: \mathfrak{s u}(2) \rightarrow \mathfrak{g}$, as discussed above. Further reducing on \tilde{S}^{1} gives $4 d \mathcal{N}=4$ super Yang-Mills with gauge group G on a half-space with essentially the same boundary condition, which is exactly the Nahm-type boundary conditions studied by Gaiotto and Witten in [12, 13]. The homomorphism ρ is therefore called the $N a h m$ pole.

Gaiotto and Witten also considered the S-dual of this boundary condition, which corresponds to inverting the order of reductions on the S^{1} of the cigar and \tilde{S}^{1}. They found that S-duality gives $4 d \mathcal{N}=4$ super Yang-Mills with gauge group G^{\vee}, with boundary condition given by coupling the bulk fields to a $3 d \mathcal{N}=4$ superconformal field theory $T^{\rho}[\mathfrak{g}]$ with G^{\vee} flavor symmetry, living at the $3 d$ boundary of the $4 d$ half-space.

If we now undo the reduction on S^{1}, the codimension-2 defect of $5 d$ super Yang-Mills on the cigar is given by coupling the fields to the $3 d$ theory $T^{\rho}[\mathfrak{g}]$, producing a pole in the adjoint scalar field

$$
\Phi(z) \equiv \Phi_{4}(z)+i \Phi_{5}(z) \sim \tilde{\rho}\left(\sigma^{+}\right) / z
$$

where z is a complex coordinate on the cirgar so that the tip is at $z=0$, and $\tilde{\rho}$ is a new homomorphism, $\tilde{\rho}: \mathfrak{s u}(2) \rightarrow \mathfrak{g}^{\vee}$, determined by the properties
of $T^{\rho}[\mathfrak{g}]$. Since $\Phi(z)$ will become the Higgs field of the Hitchin system which controls the $4 d$ Coulomb branch, so $\tilde{\rho}$ is called the Hitchin pole.

Unfortunately, we do not understand the $6 d(2,0)$ theory well enough to also undo the reduction on \tilde{S}^{1} and give a precise description of the defect in the $6 d$ theory. However, we will still be able to study how the worldvolume fields $\phi_{k}(z)$ of dimension k behave at the defect, by studying the behavior of $p_{k}(\Phi(z))$ where p_{k} is a degree- k invariant polynomial of \mathfrak{g}.

1.3.4.1 Contribution to $4 d$ Higgs branch

We now determine the local contributions of a defect of type ρ to the dimensions of the $4 d$ Higgs branch and Coulomb branch. Consider $5 d \mathcal{N}=2$ super Yang-Mills with gauge group J on $\mathbb{R}^{2,1} \times C$, coupled to the $3 d$ theory $T^{\rho_{i}}[\mathfrak{g}]$, which wraps $\mathbb{R}^{2,1}$ and lives at a point on C. In the setup above, this corresponds to reducing the $(2,0)$ theory of type J on \tilde{S}^{1}. This system was studied in 14 for $J=A, D$, but the arguments also hold for J of type E. After reducing on \tilde{S}^{1}, the dimension of the Coulomb branch doubles, while the dimension of the Higgs branch is preserved. The contribution of the defect to the Higgs branch quaternionic dimension is

$$
\operatorname{dim}_{\mathbb{H}} \mathcal{H}(\rho)=\operatorname{dim}_{\mathbb{H}} \mathcal{H}\left(T^{\rho}[\mathfrak{g}]\right)
$$

and the total quaternionic dimension of the Higgs branch is then given by

$$
\operatorname{dim}_{\mathbb{H}} \mathcal{H}=\sum_{i} \operatorname{dim}_{\mathbb{H}} \mathcal{H}\left(\rho_{i}\right)+\operatorname{rank} \mathfrak{g}^{\vee}
$$

We now determine $\operatorname{dim}_{\mathbb{H}} \mathcal{H}\left(T^{\rho}[\mathfrak{g}]\right)$ for arbitrary ρ. When $\rho=0$ (i.e., the trivial embedding), $T^{\rho}[\mathfrak{g}]$ is often denoted by $T[\mathfrak{g}]$. Its Coulomb branch is $\mathcal{N}_{\mathfrak{g}} \vee$ and its Higgs branch is $\mathcal{N}_{\mathfrak{g}}$, where $\mathcal{N}_{\mathfrak{g}}$ denotes the nilpotent cone of \mathfrak{g} - the subset of \mathfrak{g} consisting of its nilpotent elements. The dimension of $\mathcal{N}_{\mathfrak{g}}$ is given by

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{N}_{\mathfrak{g}}=\operatorname{dim} G-\operatorname{rank} G
$$

This complex dimension is always even, as $\mathcal{N}_{\mathfrak{g}}$ is a hyperkähler cone, which is expected since $T[\mathfrak{g}]$ has $3 d \mathcal{N}=4$ superconformal symmetry.

For a homomorphism $\rho: \mathfrak{s u}(2) \rightarrow \mathfrak{g}$, we can give a Higgs vev $e=\rho\left(\sigma^{+}\right)$ to the theory $T[\mathfrak{g}]$. The moduli directions inside $\mathcal{N}_{\mathfrak{g}}$ that are transverse to O_{e} are in general singular, while the directions along O_{e} are smooth. Thus, at low energies, the theory $T[\mathfrak{g}]$ becomes $\left(\operatorname{dim}_{\mathbb{C}} O_{e}\right) / 2$ free hypermultiplets plus the $3 d$ interacting SCFT $T^{\rho}[\mathfrak{g}]$. The quaternionic Higgs branch dimension of $T^{\rho}[\mathfrak{g}]$ is therefore

$$
\operatorname{dim}_{\mathbb{H}} \mathcal{H}\left(T^{\rho}[\mathfrak{g}]\right)=\frac{1}{2}\left(\operatorname{dim} G-\operatorname{rank} G-\operatorname{dim}_{\mathbb{C}} O_{e}\right)
$$

For a nilpotent orbit O_{e} in a classical Lie algebra, labeled by a partition $p=\left[N_{i}\right]$, its dimension is given by

$$
\operatorname{dim}_{\mathbb{C}} O_{\left[N_{i}\right]}= \begin{cases}N^{2}-\sum_{i} s_{i}^{2} & \mathfrak{g}=\mathfrak{s u}(N) \\ N(2 N+1)-\frac{1}{2} \sum_{i} s_{i}^{2}+\frac{1}{2} \sum_{i \text { odd }} r_{i} & \mathfrak{g}=\mathfrak{s o}(2 N+1) \\ N(2 N+1)-\frac{1}{2} \sum_{i} s_{i}^{2}-\frac{1}{2} \sum_{i \text { odd }} r_{i} & \mathfrak{g}=\mathfrak{s p}(N) \\ N(2 N-1)-\frac{1}{2} \sum_{i} s_{i}^{2}+\frac{1}{2} \sum_{i \text { odd }} r_{i} & \mathfrak{g}=\mathfrak{s o}(2 N)\end{cases}
$$

where $\left[s_{i}\right]$ is the transpose partition to $\left[N_{i}\right]$, and r_{k} is the number of times the part k appears in the partition $\left[N_{i}\right]$. The contributions of a defect of type
\mathfrak{e}_{6} and \mathfrak{f}_{4} to the $4 d$ Higgs and Coulomb branches will be given explicitly in chapters 4 and 5, respectively.

1.3.4.2 Contribution to $4 d$ Coulomb branch

The Coulomb branch of the $3 d$ theory is given by the moduli space of the Hitchin system of gauge group J, with an outer-automorphism twist o_{i} around the i-th puncture p_{i}, coupled to the Coulomb branch of $T^{\rho_{i}}[\mathfrak{g}]$. To compute the local contribution of a defect to the Coulomb branch, we need to understand the local boundary condition for the Hitchin system near the puncture on C.

The Coulomb branch of the $T^{\rho}[\mathfrak{g}]$ theory is a subset of the Coulomb branch of $T[\mathfrak{g}]$, which is the nilpotent cone $\mathcal{N}_{\mathfrak{g}} \vee$. When \mathfrak{g} is of classical type, the theories $T^{\rho}[\mathfrak{g}]$ can be constructed via an arrangement of branes. Let p be the partition corresponding to the nilpotent element $e=\rho\left(\sigma^{+}\right)$. When \mathfrak{g} is of type A, C, or D, the Coulomb branch is the closure of a single nilpotent orbit $O_{\tilde{e}}$, where \tilde{e} is a nilpotent element of \mathfrak{g}^{\vee} [14, 12], whose partition type is given by p^{t} when \mathfrak{g} is of type $A,\left(p^{+t}\right)_{B}$ when \mathfrak{g} is of type C, and $\left(p^{t}\right)_{D}$ when \mathfrak{g} is of type D. Here, the notation is that, for a partition $p=\left[N_{1}, \ldots, N_{k}\right]$, p^{t} is the transpose partition to p, p^{+}is the partition $\left[N_{1}, \ldots, N_{k}, 1\right]$, and $p_{B, D}$ stand for the B - and D-collapses, respectively, of p, and are defined to be the unique maximal B-, D-partition q satisfying $p \geq q$ (in the standard partial order on the partitions). This combinational operation agrees with the map $d: \mathcal{N}_{\mathfrak{g}} / G \rightarrow \mathcal{N}_{\mathfrak{g}} \vee G^{\vee}$, defined for any simple Lie algebra \mathfrak{g}, known as the

Spaltenstein map.

This implies that the Coulomb branch of $T^{\rho}[\mathfrak{g}]$ is given by the closure of the Spaltenstein dual orbit $d\left(O_{e}\right)$ to the orbit O_{e}, where $e=\rho\left(\sigma^{+}\right)$.

We are now in a position to compute the contribution to the $4 d$ Coulomb branch dimension for a defect of type ρ. Before doing so, we note that the outer-automorphism o introduces a grading for the Lie algebra \mathfrak{j}. The outerautomorphism can be trivial, of order 2 (for $\mathfrak{j}=A_{N-1}, D_{N}, E_{6}$), or of order 3 (for $\mathfrak{j}=D_{4}$). The Lie algebra \mathfrak{j} splits into a direct sum of eigenspaces under the action of o :

$$
\begin{array}{ll}
\mathfrak{j}=\mathfrak{j}_{1}+\mathfrak{j}_{-1} & \text { for } o \text { of order } 2, \tag{1.19}\\
\mathfrak{j}=\mathfrak{j}_{1}+\mathfrak{j}_{\omega}+\mathfrak{j}_{\omega^{2}} & \text { for } o \text { of order } 3,
\end{array}
$$

where the lower indices denote the eigenvalues under the action of o, e.g., $o\left(j_{\omega^{2}}\right)=\omega^{2} j_{\omega^{2}}$. By definition, $\mathfrak{j}_{1}=\mathfrak{g}^{\vee}$. The grading means that, e.g., $\left[\mathfrak{j}_{\omega}, \mathfrak{j}_{\omega^{2}}\right] \subset$ j_{1}.

Let us now pick a defect of type ρ, and let z be a local coordinate on C such that the defect is located at the origin. If the outer-automorphism o associated to the defect is trivial, the defect is called untwisted, and is labeled by a nilpotent orbit O_{ρ} in \mathfrak{j} (since, for o trivial, $\mathfrak{j}=\mathfrak{g}=\mathfrak{g}^{\vee}$). In this case, the Spaltenstein dual orbit $d\left(O_{\rho}\right)$ is also in \mathfrak{j}. The Higgs field Φ of the Hitchin system behaves as

$$
\begin{equation*}
\Phi(z)=\left[\frac{\Phi_{-1}}{z}+\Phi_{0}+\ldots\right] d z \tag{1.20}
\end{equation*}
$$

where Φ_{-1} is an element in $d\left(O_{\rho}\right)$, and Φ_{0} is a generic element in \mathfrak{j}. The introduction of an untwisted defect of type ρ increases the dimension of the

Coulomb branch by

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}} \mathcal{C}_{4 d}(\rho)=\operatorname{dim}_{\mathbb{H}} \mathcal{C}_{3 d}(\rho)=\frac{1}{2} \operatorname{dim}_{\mathbb{C}} d\left(O_{\rho}\right) \tag{1.21}
\end{equation*}
$$

When o is nontrivial, the defect is called twisted, and we impose

$$
\begin{equation*}
\Phi\left(e^{2 \pi i} z\right)=g[o(\Phi(z))] g^{-1} \tag{1.22}
\end{equation*}
$$

where g parametrizes the coset J / G^{\vee}. In particular, when o is of order 2 , the twisted defect is labeled by a nilpotent orbit in \mathfrak{g}, while the Spaltenstein dual orbit lives in $\mathfrak{g}^{\vee}=\mathfrak{j}_{1}$. The boundary condition for the Higgs field in this case is

$$
\begin{equation*}
\Phi(z) \sim\left[\frac{\Phi_{-1}}{z}+\frac{\Phi_{-1 / 2}}{z^{1 / 2}}+\Phi_{0}+\ldots\right] d z \tag{1.23}
\end{equation*}
$$

where Φ_{-1} is an element of $d\left(O_{\rho}\right), \Phi_{-1 / 2}$ is a generic element in \mathfrak{j}_{-1}, and Φ_{0} is a generic element in \mathfrak{j}_{1}.

When o is of order 3, the defect is again labeled by a nilpotent orbit in \mathfrak{g}, and the Spaltenstein dual orbit is in $\mathfrak{g}^{\vee}=\mathfrak{j}_{1}$, but now the boundary condition for the Higgs field is

$$
\begin{equation*}
\Phi(z) \sim\left[\frac{\Phi_{-1}}{z}+\frac{\Phi_{-2 / 3}}{z^{2 / 3}}+\frac{\Phi_{-1 / 3}}{z^{1 / 3}}+\Phi_{0}+\ldots\right] d z \tag{1.24}
\end{equation*}
$$

where Φ_{-1} is an element of $d\left(O_{\rho}\right), \Phi_{-1 / 3}$ is a generic element in \mathfrak{j}_{ω}, and $\Phi_{-2 / 3}$ is a generic element in $\mathfrak{j}_{\omega^{2}}$.

Altogether, the introduction of a twisted defect of type ρ increases the dimension of the Coulomb branch by

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}} \mathcal{C}_{4 d}(\rho)=\frac{1}{2} \operatorname{dim}_{\mathbb{C}} d\left(O_{\rho}\right)+\frac{1}{2} \operatorname{dim} J / G^{\vee} \tag{1.25}
\end{equation*}
$$

The second term in 1.25 may be a half-integer when o is of order 2, but this is not a problem because the twisted punctures always come in pairs.

So, for a theory on a surface of genus g, the total Coulomb branch dimension is

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}} \mathcal{C}_{4 d}=\sum_{i} \operatorname{dim}_{\mathbb{C}} \mathcal{C}_{4 d}\left(\rho_{i}\right)+(g-1) \operatorname{dim} G \tag{1.26}
\end{equation*}
$$

1.3.4.3 Coulomb branch and Sommers-Achar group

We have computed in (1.26) the local contribution of a defect of type ρ to the complex dimension of the $4 d$ Coulomb branch. The $4 d \mathcal{N}=2$ theory is superconformal, so its Coulomb branch actually has a finer structure. The scaling symmetry sends $\Phi(z) \rightarrow t \Phi(z)$, which preserves the form of the singularities because the nilpotent orbits are cones. The scaling symmetry also makes \mathcal{C} into a cone, and for all known cases \mathcal{C} is a graded vector space. We can therefore choose generators u_{i} of the chiral ring of the $4 d$ Coulomb branch, which form a basis for \mathcal{C} unambiguously. Letting n_{k} be the total number of u_{i} whose scaling dimension is k, we should have

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}}(\mathcal{C})=\sum_{k} n_{k} \tag{1.27}
\end{equation*}
$$

The n_{k} receive a local contribution $n_{k}(\rho)$ from a defect of type ρ. The local contribution $n_{k}(\rho)$ and the local contribution $n_{v}(\rho)$ to the effective number of vector multiplets n_{v} are related by [15, 16]

$$
\begin{equation*}
n_{v}(\rho)=\sum_{k}(2 k-1) n_{k}(\rho) . \tag{1.28}
\end{equation*}
$$

Let $P^{\left(d_{a}\right)}(\Phi)(a=1, \ldots$, rank $J)$ be the degree- d_{a} symmetric invariant polynomial of \mathfrak{j}, so that $P^{\left(d_{a}\right)}$ generates all the invariant polynomials. Let $\phi^{\left(d_{a}\right)}(z)$ be the invariant polynomials constructed from the Higgs field $\Phi(z)$, i.e. $\phi^{\left(d_{a}\right)}(z) \equiv P^{\left(d_{a}\right)}(\Phi(z))$. Then, $\phi^{\left(d_{a}\right)}\left(z_{1}\right)$ and $\phi^{\left(d_{b}\right)}\left(z_{2}\right)$, for any $d_{a}, d_{b}, z_{1}, z_{2}$, Poisson-commute by construction, and they are expected to provide a complete set of integrals of motion. The $\phi^{\left(d_{a}\right)}(z)$ are assigned a scaling dimension d_{a}.

Introducing punctures of type ρ_{i} at $z=z_{i}$, the singularities (2.2.1.2), (1.23), (1.24) give rise to a pole of order at most $p_{d_{a}}(\rho)$ in the $\phi^{d_{a}}(z)$ at $z=z_{i}$, where $p_{d_{a}}$ may be fractional when ρ is a twisted puncture. The number of degrees of freedom in the meromorphic d_{a}-differential $\phi^{\left(d_{a}\right)}(z)$ is

$$
\begin{equation*}
\sum_{i} p_{d_{a}}\left(\rho_{i}\right)+(1-g)\left(2 d_{a}-1\right) \tag{1.29}
\end{equation*}
$$

Considering the second term above to be the contribution from the bulk of the Riemann surfacef, we see that a puncture of type ρ, inserted at $z=0$, effectively adds $p_{d_{a}}(\rho)$ Coulomb branch operators of scaling dimension d_{a}. More concretely, these operators can be identified with the coefficients $\phi_{k}^{\left(d_{a}\right)}$ of the poles of order z^{-k} in $\phi^{\left(d_{a}\right)}(z)$, where $0<k \leq p_{d_{a}}$. However, these coefficients $\phi_{k}^{\left(d_{a}\right)}$ are not always the most elementary Coulomb branch operators. Rather, they are polynomials in the true generators of the Coulomb branch operators introduced by ρ. Indeed, the coefficients $\phi_{k}^{\left(d_{a}\right)}$ usually satisfy rather intricate constraints.

We now explain how to obtain the local Coulomb branch operators, which was determined in [7]. Consider the untwisted boundary condition
2.2.1.2 (the twisted cases can be treated similarly)

$$
\begin{equation*}
\Phi(z)=e \frac{d z}{z}+\Phi_{0} d z+\ldots \tag{1.30}
\end{equation*}
$$

where e is a fixed element in the Spaltenstein dual orbit $d\left(O_{\rho}\right)$. The allowed continuous gauge transformations are of the form

$$
\begin{equation*}
g(z)=g_{0}+g_{1} z+\ldots, \quad g_{0} \in \mathfrak{g}_{e} \equiv\{x \mid[e, x]=0\}, g_{i>0} \in \mathfrak{g} \tag{1.31}
\end{equation*}
$$

To find the local Coulomb branch operators, one first finds all functions of $\Phi(z)$ (where $\Phi(z)$ takes the form (1.30) invariant under the connected part of the gauge group, generated by (1.31). One then further imposes invariance under a certain discrete group $\mathcal{C}\left(O_{\rho}\right)$, to be described below. The resulting invariant functions are the local Coulomb branch operators.

The discrete group $\mathcal{C}\left(O_{\rho}\right)$ is known as the Sommers-Achar group. Before we identify $\mathcal{C}\left(O_{\rho}\right)$, let us first return to an important property of the Spaltenstein map
$d:\{$ nilpotent orbits in $\mathfrak{g}\} \rightarrow\left\{\right.$ nilpotent orbits in $\left.\mathfrak{g}^{\vee}\right\}$.

When \mathfrak{g} is of type A, d takes a nilpotent orbit defined by a partition p to the nilpotent orbit defined by p^{t}, the transpose partition to p. We see then that d is an involution on nilpotent orbits in $\mathfrak{g}=\mathfrak{s u}(N)$. However, in general, for $\mathfrak{g} \neq A_{N-1}, d$ is not an involution, but satisfies $d^{3}=d$. It is possible then, that two distinct nilpotent orbits $O_{\rho}, O_{\rho^{\prime}}$ in \mathfrak{g} map to the same nilpotent orbit in $\mathfrak{g}^{\vee}, d\left(O_{\rho}\right)=d\left(O_{\rho^{\prime}}\right)$.

If a nilpotent orbit O_{e} is an image of d, i.e. $O_{e}=d\left(O_{e^{\prime}}\right)$, the orbit O_{e} is called special. The Spaltenstein map is an involution $d^{2}=1$ on the set of special orbits. For a special O_{e}, the set of orbits O such that $d^{2}(O)=O_{e}$ is called the special piece of O_{e}; for such non-special O, O_{e} is the unique smallest special orbit larger than O. We note that, among nilpotent orbits in a fixed \mathfrak{g}, there are usually more special orbits than non-special orbits.

We now describe the Sommers-Achar group $\mathcal{C}(O)$. Pick $e \in O$, and let $F(O)$ be the subgroup of G commuting with e, and $F(O)^{\circ}$ the connected component of $F(O)$ that contains the identity. Let $A(O)=F(O) / F(O)^{\circ}$ denote the group of components of $F(O) . A(O)$ is trivial when $\mathfrak{g}=A_{N-1}$, is $\left(\mathbb{Z}_{2}\right)^{k}$ for some k when $\mathfrak{g}=B_{N}, C_{N}$, or D_{N}, and is S_{k} for some k when \mathfrak{g} is exceptional. In particular, $A(O)$ is a Coxeter group.

Sommers and Achar constructed a map $f: O \mapsto(d(O), C(O))$ assigning to a nilpotent orbit in \mathfrak{g} a pair, consisting of the Spaltenstein dual orbit $d(O)$ in \mathfrak{g}^{\vee} and a conjugacy class $C(O)$ in $\bar{A}(d(O))$, which is a certain quotient of $A(O)$ introduced by Lusztig. These maps have the properties

- $f\left(O_{1}\right)=f\left(O_{2}\right)$ if and only if $O_{1}=O_{2}$, - $f(O)=(d(O), 1)$ if and only if O is special.

Just as $A(d(O)), \bar{A}(d(O))$ is also a Coxeter group. Using this fact, Sommers and Achar assigned a subset of simple reflections $\bar{r}_{1}, \ldots, \bar{r}_{\ell} \in \bar{A}(d(O))$ whose product lies in $C(O)$. If we let r_{1}, \ldots, r_{ℓ} be the corresponding simple
reflections in $A(d(O))$, then $\mathcal{C}(O)$ is the subgroup of $A(d(O))$ generated by them.

For nilpotent orbits in classical \mathfrak{g}, there is a combinatorial procedure to determine $C(O)$ from the partition labeling O, which is described in [7]. For \mathfrak{g} exceptional, the $C(O)$ have also been determined, and can be found in [7]. The $\mathcal{C}(O)$ for nilpotent orbits in \mathfrak{e}_{6} and \mathfrak{f}_{4} will be discussed in chapters 4 and 5.

We note that, so far, $\mathcal{C}(O)$ is purely a Coulomb branch concept. In chapter 4 , we will discover an explicit action on $\mathcal{C}(O)$ on the generators of the Higgs branch chiral ring for certain $4 d \mathcal{N}=2$ SCFTs.

Chapter 2

The \mathbb{Z}_{2}-Twisted D_{N} Series

In this chapter, we consider the classification program of twisted theories of type $D_{N}{ }^{\dagger}$. Preliminary studies of the twisted D_{N} series were made in [14, 11, 18.

The D_{N} Dynkin diagram is invariant under a \mathbb{Z}_{2} outer automorphism group. Correspondingly, the possible twists are classified by giving an element $\gamma \in H^{1}\left(C-\left\{p_{i}\right\}, \mathbb{Z}_{2}\right)$. The forgetful map, which "forgets" the puncture, p, gives an inclusion

$$
H^{1}\left(C-\left\{p_{1}, \ldots \widehat{p}, \ldots\right\}, \mathbb{Z}_{2}\right) \hookrightarrow H^{1}\left(C-\left\{p_{1}, \ldots p, \ldots\right\}, \mathbb{Z}_{2}\right)
$$

If γ descends to a nontrivial element of the quotient, $\frac{H^{1}\left(C-\left\{p_{1}, \ldots p, \ldots\right\}, \mathbb{Z}_{2}\right)}{H^{1}\left(C-\left\{p_{1}, \ldots \widehat{p}, \ldots\right\}, \mathbb{Z}_{2}\right)}$, then we say that the puncture at p is twisted (otherwise, untwisted). (For the D_{4} theory, the \mathbb{Z}_{2} enhances to a non-abelian S_{3} group. The study of the $4 \mathrm{D} \mathcal{N}=2$ SCFTs that arise from such enhancement is work in progress.)

For a given puncture, we explain how to compute all the local properties that contribute to determining the $4 \mathrm{D} \mathcal{N}=2$ SCFT. Among these, are the contribution to the graded Coulomb branch dimensions, the global symmetry

[^1]group, flavour-current central charges, the conformal-anomaly central charges (a, c), and the "pole structure" and "constraints", which determine the contribution to the Seiberg-Witten curve. From this information, it is possible to determine gauge groups, hypermultiplet matter representations, and other properties.

As an application of our results, we are able to find realizations of $\operatorname{Spin}(8)$ gauge theory with matter in the $6\left(8_{v}\right)$, or with matter in the $5\left(8_{v}\right)+$ $1\left(8_{s}\right)$. These two cases, of vanishing β-function for $\operatorname{Spin}(8)$, were the ones that were not captured by the untwisted sector of the D_{N} series. Similarly, for $\operatorname{Spin}(7)$ gauge theory, we find the theory with matter in the $5(7)$, and in the $1(8)+4(7)$; the other combinations with vanishing β-function were already found in the untwisted sector of the D_{N} series. We also study various realizations of $S p(N)$ gauge theory, including $S p(3)$ with matter in the $\frac{11}{2}(6)+\frac{1}{2}\left(14^{\prime}\right)$ and in the $3(6)+1\left(14^{\prime}\right)$, where the 14^{\prime} is the 3 -index traceless antisymmetric tensor representation.

2.1 The \mathbb{Z}_{2}-twisted D_{N} Theory

The Coulomb branch geometry of the 4D $\mathcal{N}=2$ compactification [1, 6] of the $6 \mathrm{D} \mathcal{N}=(2,0)$ theories of type D_{N} is governed by the Hitchin equations on C with gauge algebra $\mathfrak{s o}(2 N)$. In particular, the Seiberg-Witten curve Σ is a branched cover of C described by the spectral curve [11],

$$
\begin{equation*}
\Sigma: \operatorname{det}(\Phi-\lambda I)=\lambda^{2 N}+\sum_{j=1}^{N-1} \phi_{2 j} \lambda^{2 N-2 j}+\tilde{\phi}^{2}=0 \tag{2.1}
\end{equation*}
$$

where Φ is the $\mathfrak{s o}(2 N)$-valued Higgs field, while the k-differentials $\phi_{k}(k=$ $2,4,6, \ldots, 2 N-2)$ and the Pfaffian N-differential $\tilde{\phi}$ are associated with the Casimirs of the D_{N} Lie algebra. In the rest of the paper, N will always stand for the rank of D_{N}.

Introducing punctures on C corresponds to imposing local boundary conditions on the Hitchin fields. We consider untwisted and twisted punctures under the action of the \mathbb{Z}_{2} outer-automorphism group of the $\mathfrak{s o}(2 N)$ Lie algebra. Untwisted punctures are labeled by $\mathfrak{s l}(2)$ embeddings in $\mathfrak{s o}(2 N)$, or, equivalently, by nilpotent orbits in $\mathfrak{s o}(2 N)$, or by D-partitions ${ }^{2}$ of $2 N$. Instead of a compact curve, C, consider a semi-infinite cigar, with the puncture at the tip. Reducing along the circle action, we get 5D SYM on a half-space, with a Nahm-type boundary condition of the sort studied by Gaiotto and Witten in [12]. For that reason, we call the D-partition that labels the untwisted puncture the Nahm pole.

To describe the local Hitchin boundary condition for an untwisted puncture with Nahm-pole D-partition p, one must recall the Spaltenstein mar ${ }^{3}$,

[^2]which takes p into a new D-partition $d(p)$, called the Hitchin pole of the puncture ${ }^{4}$. Then, the local boundary condition corresponding to p is
$$
\Phi(z)=\frac{X}{z}+\mathfrak{s o}(2 N)
$$
where X is an element of the nilpotent orbit ${ }^{[5}$ associated to $d(p)$, and $\mathfrak{s o}(2 N)$ above denotes a generic regular function in z valued in $\mathfrak{s o}(2 N)$.

On the other hand, we have a sector of twisted punctures, with monodromy given by the action of the nontrivial element o of the \mathbb{Z}_{2} outer automorphism group of D_{N}. The action of o splits $\mathfrak{s o}(2 N)$ as

$$
\mathfrak{s o}(2 N)=\mathfrak{s o}(2 N-1) \oplus o_{-1},
$$

where $\mathfrak{s o}(2 N-1)$ and o_{-1} are the eigenspaces with eigenvalues +1 and -1 , respectively. The action of o on the k-differentials is also quite simple:

[^3]\[

$$
\begin{align*}
o: \phi_{2 k} & \mapsto \phi_{2 k} \quad(k=1,2, \ldots, N-1) \\
\tilde{\phi} & \mapsto-\tilde{\phi} \tag{2.2}
\end{align*}
$$
\]

Following [7], the twisted punctures of the D_{N} series are labeled by embeddings of $\mathfrak{s l}(2)$ in $\mathfrak{s p}(N-1)$ (the Langlands dual of $\mathfrak{s o}(2 N-1)$), or, equivalently, by nilpotent orbits in $\mathfrak{s p}(N-1)$, or by C-partition $\left\{^{6}\right.$ of $2 N-2$.

To describe the local boundary condition for a twisted puncture, we need to recall the relevant Spaltenstein mar ${ }^{7}$. This is a map d that takes a C-partition p of $2 N-2$ into a B-partition $d(p)$ of $2 N-1$. A B-partition of $2 N-1$ labels an $\mathfrak{s l}(2)$ embedding in $\mathfrak{s o}(2 N-1)$, or equivalently a nilpotent orbit in $\mathfrak{s o}(2 N-1)$. So, in our nomenclature, the Nahm pole p of a twisted puncture is a C-partition of $2 N-2$, and its Hitchin pole ${ }^{8}$ is a B-partition $d(p)$ of $2 N-1$. The local boundary condition for the Higgs field is then:

$$
\Phi(z)=\frac{X}{z}+\frac{o_{-1}}{z^{1 / 2}}+\mathfrak{s o}(2 N-1)
$$

Here X is an element of the $\mathfrak{s o}(2 N-1)$ nilpotent orbit $d(p)$, while o_{-1} and $\mathfrak{s o}(2 N-1)$ in the equation above denote generic regular functions in z valued in these linear spaces, respectively.

[^4]
2.1.1 Local Properties of Punctures

2.1.1.1 Global Symmetry Group and Central Charges

The local properties of a puncture that we list in our tables are the pole structure (with constraints), the flavour group (with flavour-current central charges for each simple factor) and the contributions $\left(\delta n_{h}, \delta n_{v}\right)$ to, respectively, the effective number of hypermultiplets and vector multiplets (or, equivalently, to the conformal-anomaly central charges $(a, c))$. We will discuss how to compute pole structures and constraints in $\$ 4.1 .4 .3$ and $\$ 4.1 .4 .4$. Here we want to focus briefly on the other properties.

Given the Nahm partition, for every part l, let its multiplicity be n_{l}. Then, the flavour group of untwisted and twisted punctures are, respectively,

$$
\begin{aligned}
& G_{\text {flavour }}=\prod_{l \text { even }} S p\left(\frac{n_{l}}{2}\right) \times \prod_{l \text { odd }} S O\left(n_{l}\right) \quad \text { (untwisted) } \\
& G_{\text {flavour }}=\prod_{l \text { even }} S O\left(n_{l}\right) \times \prod_{l \text { odd }} S p\left(\frac{n_{l}}{2}\right) \quad \text { (twisted) }
\end{aligned}
$$

The flavour-current central charges for each simple factor above can be computed using the formulas in Section 3 of [7]. In that reference, one can also see how to compute δn_{h} and δn_{v}. Instead of reviewing the general formulas, we find it more useful to discuss an example.

Consider the D_{6} twisted puncture with Nahm pole C-partition $\left[3^{2}, 1^{4}\right]$. The flavour group is $G_{\text {flavour }}=S p(2) \times S U(2)$. To compute the central charges, we need to know how the adjoint representation of $S p(5)$ decomposes under the subgroup $S U(2) \times G_{\text {flavour }}$ (the first factor being the embedding of $S U(2)$,
corresponding to this partition). The C-partition itself tells us that the fundamental of $S p(5)$ decomposes as $10=(1 ; 4,1)+(3 ; 1,2)$. The embedding indices of each factor of $S U(2) \times G_{\text {flavour }}=S U(2) \times S p(2) \times S U(2)$ in $S p(5)$ are 8,1 and 3 , respectively. With this information, it is not hard to see that the adjoint representation of $S p(5)$ decomposes as

$$
\begin{equation*}
55=(1 ; 10,1)+(1 ; 1,3)+(3 ; 1,1)+(3 ; 4,2)+(5 ; 1,3) \tag{2.3}
\end{equation*}
$$

Now, to find δn_{h} and δn_{v}, we use eq. (3.19) of [7]. In the notation of that paper, we have $\mathfrak{j}=\mathfrak{s o}(12), \mathfrak{g}=\mathfrak{s p}(5)$, and, in their respective usual root bases, the Weyl vectors $\rho_{\operatorname{Spin}(12)}=(5,4,3,2,1,0,0,0,0,0,0,0), \rho_{S p(5)}=$ $(5,4,3,2,1,0,0,0,0,0)$. We also find $h / 2=(1,1,0,0,0,-1,-1,0,0,0)$ using, say, the formulas of Section 5.3 of [19]. Since the adjoint representation of $S p(5)$ decomposes under the Nahm-pole $S U(2)$ as $55=13(1)+9(3)+3(5)$, we have $\operatorname{dim} \mathfrak{g}_{0}=13+9+3=25$ and $\operatorname{dim} \mathfrak{g}_{1 / 2}=0$. Thus, eq. (3.19) of [7] yields $\delta n_{h}=368$ and $\delta n_{v}=\frac{717}{2}$.

Finally, from (2.3) above as well as eq. (3.20) of [7], we compute the flavour-current central charges for each simple factor of $G_{\text {flavour }}$,

$$
\begin{aligned}
& k_{S p(2)}=1 \times l_{S p(2)}(10)+2 \times l_{S p(2)}(4)=8 \\
& k_{S U(2)}=1 \times l_{S U(2)}(3)+1 \times l_{S U(2)}(3)+4 \times l_{S U(2)}(2)=12
\end{aligned}
$$

where $l_{\mathfrak{h}}(R)$ denotes the index of the representation R of \mathfrak{h}.

2.1.1.2 Pole Structures

The pole structure of a puncture is the set of leading pole orders $\left\{p_{2}, p_{4}, p_{6}, \ldots, p_{2 N-2} ; \tilde{p}\right\}$ in the expansion of the k-differentials $\phi_{k}(z)(k=$ $2,4,6, \ldots, 2 N-2)$ and the Pfaffian $\tilde{\phi}(z)$ around the position of the puncture on C. Knowing the pole structures of the various punctures allows us to write down the Seiberg-Witten curve (2.1) of a theory. The pole orders are all integers, except for \tilde{p} in a twisted puncture, which must be a half-integer because of the monodromy (2.2).

We already saw in [5] how to read off the pole structure of an untwisted puncture from its Hitchin-pole D-partition p. Basically, regard p as a partition in the untwisted A -series, use the procedure to write down the pole structure [3], and discard the pole orders that would correspond to ϕ_{k} with odd k. Finally, divide the pole order $p_{2 N}$ of $\phi_{2 N}$ by two, to obtain the pole order \tilde{p} of the Pfaffian $\tilde{\phi} . p_{2 N}$ will always be even, so that \tilde{p} will come out to be an integer, as expected for an untwisted puncture.

To compute the pole structure of a twisted puncture, we use its Hitchin B-partition p. Simply, add 1 to the first (i.e., the largest) part in p, and use the same procedure to compute the pole structure as for an untwisted Dseries puncture. Notice that upon adding 1 to the largest part, the B-partition becomes a partition of $2 N$, and one can show that the pole order $p_{2 N}$ of $\phi_{2 N}$ is always odd, so that the pole order \tilde{p} of the Pfaffian is a half-integer, as it should be.

For instance, consider the D_{6} twisted puncture with Nahm-pole Cpartition $\left[4^{2}, 1^{2}\right]$. The Hitchin B-partition is $\left[5,2^{2}, 1^{2}\right]$. Following our prescription, we add 1 to the largest part, so we get $\left[6,2^{2}, 1^{2}\right]$, and read off the pole structure as in the untwisted A-series. We thus get $\{1,2,3,4,5,5,6,6,7,7,7\}$ (corresponding to scaling dimensions $2,3,4, \ldots, 11,12$). We discard the pole orders at odd dimensions, and divide the pole order of $\phi_{12}=\tilde{\phi}^{2}$ by two, and we are left with the correct pole structure, $\left\{1,3,5,6,7 ; \frac{7}{2}\right\}$.

2.1.1.3 Constraints

In the untwisted D-series, punctures featured "constraints", which are either: 1) relations among leading coefficients in the k-differentials ("c-constraints"); or 2) expressions defining new parameters $a^{(k)}$ of scaling dimension k as, roughly, the square roots of a leading coefficient $c^{(2 k)}$ of dimension $2 k$ ("a-constraints"). Both kinds of constraints affect the counting of graded Coulomb branch dimensions of the theory, as well as the SeibergWitten curve. As expected, we find a-constraints and c-constraints also in the twisted sector. The pole structure and the constraints provide a "fingerprint" [21] that allows us to identify the puncture uniquely.

Let us briefly review our nomenclature. For a puncture at $z=0$, we consider the coefficients $c_{l}^{(2 k)}$ and \tilde{c}_{l} of the leading singularities in the expansion in z of the $2 k$-differentials $(2 k=2,4, \ldots, 2 N-2)$ and the Pfaffian $\tilde{\phi}$, respectively,

$$
\begin{aligned}
\phi_{2 k}(z) & =\frac{c_{l}^{(2 k)}}{z^{l}}+\ldots \\
\tilde{\phi}(z) & =\frac{\tilde{c}_{l}}{z^{l}}+\ldots
\end{aligned}
$$

where \ldots denotes less singular terms. (The pole orders l above are, of course, the same as those in the pole structure, so we have $l=p_{2 k}$ or $l=\tilde{p}$, respectively; in this subsection we just write l to keep expressions simple.)

An a-constraint of scaling dimension $2 k$ is an expression linear in $c_{l}^{(2 k)}$ that defines (up to sign) a new parameter $a_{l / 2}^{(k)}$ of dimension k,

$$
c_{l}^{(2 k)}=\left(a_{l / 2}^{(k)}\right)^{2}+\ldots,
$$

where ... stands for a polynomial in leading coefficients (of dimension less than $2 k$) as well as new coefficients $a_{l^{\prime}}^{\left(j^{\prime}\right)}$ (which would themselves be defined by other a-constraints). This polynomial is homogeneous in dimension and pole order, i.e., in every term in the polynomial, the sum of the scaling dimensions of every factor must be $2 k$, and the sum of pole orders must be l. The existence of an a-constraint implies that, in counting graded Coulomb branch dimensions, a parameter of scaling dimension $2 k$ is to be replaced by one of dimension k.

A c-constraint of dimension $2 k$ is an expression linear in $c_{l}^{(2 k)}$, which relates it to other leading coefficients, and perhaps also to new parameters a_{l}^{j} defined by a-constraints,

$$
c_{l}^{(2 k)}=\ldots
$$

where, again, the ellipsis denotes a homogeneous polynomial in leading coefficients and new parameters. For even N, if the puncture is very-even, a "very-even" c-constraint, which is linear in the leading coefficients of both ϕ_{N} and the Pfaffian, may appear,

$$
c_{l}^{(N)} \pm 2 \tilde{c}_{l}=\ldots
$$

Unlike an a-constraint, a c-constraint does not define any new parameters; it simply tells us that $c_{l}^{(2 k)}$ (or, say, $c^{(N)}$ for a very-even c-constraint) is not independent, and so it should not be considered when counting Coulomb branch dimensions.

Finally, at every scaling dimension $2 k$, we find at most one constraint, which can be either an a-constraint or a c-constraint.

Below, we present algorithms to compute the scaling dimensions $2 k$ at which a-constraints and c-constraints appear for a given puncture. This information is enough to compute the local contribution to the graded Coulomb branch dimensions.

Untwisted punctures Let p be the Nahm pole D-partition of an untwisted puncture. Also, let $q=\left\{q_{1}, q_{2}, \ldots\right\}$ be the transpose partition, and $s=$ $\left\{s_{1}, s_{2}, \ldots\right\}$ the sequence of partial sums of $q\left(s_{i}=q_{1}+q_{2}+\cdots+q_{i}\right)$. Below, s_{1} denotes the first element of s, and $p_{\text {last }}$, the last element of the D-partition p. (By the conditions that define a D-partition, s_{1} is always an even number.)

Then, an a-constraint of dimension $2 k$ exists if the following conditions are met:

1. $2 k$ belongs to s, say, $s_{j}=2 k$.
2. j is even.
3. If s_{j} is a multiple of s_{1}, say, $s_{j}=r s_{1}$, one has $r \geq 2\left\lfloor\frac{p_{\text {last }}}{2}\right\rfloor+1$.
4. s_{j} is not the last element of s.

On the other hand, a c-constraint of scaling dimension $2 k$ exists if the following conditions are met:

1. $2 k$ belongs to s, say, $s_{j}=2 k$.
2. If j is even, one has that: a) s_{j} is a multiple of s_{1}, say, $s_{j}=r s_{1} ;$ b) $\left\lfloor\left\lfloor\frac{p_{\text {last }}}{2}\right\rfloor+1 \leq r \leq 2\left\lfloor\frac{p_{\text {last }}}{2}\right\rfloor\right.$;c) s_{j} is not the last element of s.
3. If j is odd, one has that: a) s_{j} is neither the first nor the last element of s; b) both s_{j-1} and s_{j+1} are even; c) $s_{j}=\frac{s_{j-1}+s_{j+1}}{2}$; d) if s_{j} is divisible by s_{1}, say, $s_{j}=r s_{1}$, one has $r \geq\left\lfloor\frac{p_{\text {last }}}{2}\right\rfloor+1$.

Finally, if p is very even, an additional, "very-even", c-constraint exists at $2 k=N$ if N belongs to s and $N=\frac{s_{1} p_{\text {last }}}{2}$. As already mentioned, this very-even c-constraint is linear in both leading coefficients $c_{l}^{(N)}$ and \tilde{c}_{l}. (The pole orders of ϕ_{N} and $\tilde{\phi}$ are the same if the conditions just mentioned hold,
so such a linear constraint is possible.) A generic very-even puncture may or may not have this very-even c-constraint. In particular, a very-even puncture could have a c-constraint of dimension N which is not very even (in the sense that it is not linear in both $c_{l}^{(N)}$ and $\left.\tilde{c}_{l}\right)$.

Twisted punctures Suppose we have a twisted puncture labeled by the Nahm-pole C-partition p. Let q be the transpose partition, and s the sequence of partial sums of q. It is convenient to define another sequence s^{\prime}, obtained by adding 2 to every element in s. (As a check, the last element of s^{\prime} must be $2 N$.) Let $s^{\prime}=\left\{s_{1}^{\prime}, s_{2}^{\prime}, \ldots\right\}$.

Then, an a-constraint of scaling dimension $2 k$ exists if the following conditions are met:

1. $2 k$ belongs to s^{\prime}, say, $s_{j}^{\prime}=2 k$.
2. j is odd.
3. s_{j}^{\prime} is not the last element of s^{\prime}.

On the other hand, a c-constraint of scaling dimension $2 k$ exists if the following conditions are met:

1. $2 k$ belongs to s^{\prime}, say, $s_{j}^{\prime}=2 k$.
2. j is even.
3. s_{j}^{\prime} is not the last element of s^{\prime}
4. Both s_{j-1}^{\prime} and s_{j+1}^{\prime} are even, and $s_{j}^{\prime}=\frac{s_{j-1}^{\prime}+s_{j+1}^{\prime}}{2}$.

Constraint structure The constraints of twisted punctures are very simple. c-constraints are always "cross-terms" between a-constraints, or between an a-constraint and the Pfaffian (where $\phi_{2 N}=\tilde{\phi}^{2}$ is seen as another "aconstraint"). As a schematic example, $c^{(k+m)}$ below is a cross-term for the "squares" at dimensions $2 k$ and $2 m$:

$$
\begin{equation*}
c^{(2 k)}=\left(a^{(k)}\right)^{2}, \quad c^{(k+m)}=2 a^{(k)} a^{(m)}, \quad c^{(2 m)}=\left(a^{(k)}\right)^{2} \tag{2.4}
\end{equation*}
$$

(In an actual example, $k+m$ would always turn out to be even). a-constraints also generically contain cross-terms, in addition to the quadratic term in the new parameter. Many examples can be found in the Tables.

The constraints of untwisted punctures are slightly more complicated, but they resemble very much the constraints of twisted punctures in the $A_{2 N-1}$ series [4], so we refrain from repeating the details. To be brief, there is a sequence of c-constraints (illustrated below in an example), all related to each other, and which are associated to the first terms in the set of partial sums s. cconstraints outside this sequence are simply cross-terms between a-constraints and/or the Pfaffian, as in (2.4). For a very-even puncture, the very-even cconstraint, if it exists, becomes part of the sequence just mentioned. As usual, a-constraints can include cross-terms in addition to the quadratic term that defines the new parameter.

Let us discuss the constraints of a D_{6} very-even puncture, $\left[6^{2}\right]$. In this case, $q=\left[2^{6}\right]$ and $s=[2,4,6,8,10,12]$. Also, $p_{\text {last }}=6$ and $s_{1}=2$. So, there are c-constraints at $2 k=r s_{1}$ with $4 \leq r \leq 6$, that is, at $2 k=8,10$. There is also a very-even c-constraint (at $2 k=6$). All c-constraints in this case constitute the sequence mentioned in the previous paragraph. There are no a-constraints. We can also compute the pole structure to be $\{1,2,3,4,5 ; 6\}$. Let us see the structure of these c-constraints by writing:

$$
\begin{array}{rlrl}
c_{0}^{(0)} & =1, & c_{4}^{(8)} & =\frac{1}{4}\left(t_{2}^{(4)}\right)^{2}+\frac{1}{2} t_{3}^{(6)} t_{1}^{(2)}, \\
c_{1}^{(2)} & \equiv t_{1}^{(2)}, & c_{5}^{(10)}=t_{3}^{(6)} t_{2}^{(4)}, \\
c_{2}^{(4)} & \equiv \frac{1}{4}\left(t_{1}^{(2)}\right)^{2}+t_{2}^{(4)}, & c_{6}^{(12)} \equiv\left(\tilde{c}_{3}^{(6)}\right)^{2}=\frac{1}{4}\left(t_{3}^{(6)}\right)^{2} . \\
c_{3}^{(6)} & \equiv \frac{1}{2} t_{1}^{(2)} t_{2}^{(4)}+t_{3}^{(6)}, & &
\end{array}
$$

The first line above is trivial, but it facilitates the construction of the other expressions. Disregarding the very-even c-constraint at $2 k=6$ for a moment, the expressions at $2 k=2,4,6$ provide definitions for the quantities $t_{1}^{(2)}, t_{2}^{(4)}$ and $t_{3}^{(6)}$. Besides, each term in the equations above can be interpreted as either a cross-term or a square of $1, t_{1}^{(2)}, t_{2}^{(4)}$ and $t_{3}^{(6)}$. For example, the term $t_{1}^{(2)}$ is not a square, so it has to be a cross-term (for 1 and $\frac{1}{4}\left(t_{1}^{(2)}\right)^{2}$), which is why we include the term $\frac{1}{4}\left(t_{1}^{(2)}\right)^{2}$ in $c_{2}^{(4)}$. Since $c_{2}^{(4)}$ cannot be equal to $\frac{1}{4}\left(t_{1}^{(2)}\right)^{2}$ (since that would be a c-constraint at $k=4$), we introduce the new quantity $t_{2}^{(4)}$. Notice that we have also written $c_{6}^{(12)}$ as a square of $t_{3}^{(6)}$. Since ϕ_{12} is the square of the Pfaffian, we must have $t_{3}^{(6)}= \pm 2 \tilde{c}_{3}$, and we recover the very-even constraint at $2 k=6$. Solving for $t_{1}^{(2)}$ and $t_{2}^{(4)}$, we find our actual c-constraints:

$$
\begin{aligned}
c_{3}^{(6)} \mp 2 \tilde{c}_{3} & =\frac{1}{2} c_{1}^{(2)}\left(c_{2}^{(4)}-\frac{1}{4}\left(c_{1}^{(2)}\right)^{2}\right), \\
c_{4}^{(8)} & =\frac{1}{4}\left(c_{2}^{(4)}-\frac{1}{4}\left(c_{1}^{(2)}\right)^{2}\right)^{2} \pm \tilde{c}_{4} c_{1}^{(2)}, \\
c_{5}^{(10)} & = \pm \tilde{c}_{3}\left(c_{2}^{(4)}-\frac{1}{4}\left(c_{1}^{(2)}\right)^{2}\right) .
\end{aligned}
$$

Flipping the sign of \tilde{c}_{3} switches between the constraints for the red and the blue versions of this puncture.

2.1.2 Collisions

When two punctures collide, a new puncture appears. This process can be described at the level of the Higgs field, using the local boundary conditions discussed in $\$ 5.1$, or at the level of the k-differentials, using the pole structures and the constraints of $\$ 4.1 .4$ and $\AA 4.1$. 4.4 . Of course, both mechanisms are quite related, because the k-differentials are, essentially, the trace invariants of the Higgs field. These procedures are analogous to those for the twisted $A_{2 N-1}$ series described in [4].

Let us start by discussing collisions using the Higgs field. Consider two untwisted punctures at $z=0$ and $z=x$ on a plane. The respective local boundary conditions are:

$$
\begin{aligned}
& \Phi(z)=\frac{X_{1}}{z}+\mathfrak{s o}(2 N), \\
& \Phi(z)=\frac{X_{2}}{z-x}+\mathfrak{s o}(2 N),
\end{aligned}
$$

where X_{1} and X_{2} are representatives of the respective Hitchin-pole orbits for the punctures. Then, in the collision limit, $x \rightarrow 0$, a new untwisted puncture
appears at $z=0$,

$$
\Phi(z)=\frac{X_{1}+X_{2}}{z}+\mathfrak{s o}(2 N) .
$$

Here, $X_{1}+X_{2}$ is an element of the mass-deformed Hitchin-pole orbit for the new puncture, and the mass deformations correspond to the VEVs of the decoupled gauge group. Taking the mass deformations to vanish, $X_{1}+X_{2}$ becomes the Hitchin-pole nilpotent orbit for the new puncture. The fact that the new residue is $X_{1}+X_{2}$ also follows from the residue theorem applied to the three-punctured sphere that appears in the degeneration limit; another derivation ensues from an explicit ansatz for the Higgs field on the plane with two punctures [4], where the limit $x \rightarrow 0$ can be taken.

Now consider an untwisted and a twisted puncture, at $z=0$ and $z=x$, respectively. The respective local boundary conditions are:

$$
\begin{aligned}
& \Phi(z)=\frac{X}{z}+\mathfrak{s o}(2 N) \\
& \Phi(z)=\frac{Y}{z-x}+\frac{o_{-1}}{(z-x)^{1 / 2}}+\mathfrak{s o}(2 N-1) .
\end{aligned}
$$

Then, the local boundary condition for the new twisted puncture is:

$$
\Phi(z)=\frac{\left.X\right|_{\mathfrak{s o}(2 N-1)}+Y}{z}+\frac{o_{-1}}{z^{1 / 2}}+\mathfrak{s o}(2 N-1),
$$

where $\left.X\right|_{\mathfrak{s o}(2 N-1)}$ is the restriction of $X \in \mathfrak{s o}(2 N)$ to the subalgebra $\mathfrak{s o}(2 N-1)$.
Finally, consider two twisted punctures at $z=0$ and $z=x$,

$$
\begin{aligned}
& \Phi(z)=\frac{Y_{1}}{z}+\frac{o_{-1}}{z^{1 / 2}}+\mathfrak{s o}(2 N-1) \\
& \Phi(z)=\frac{Y_{2}}{z-x}+\frac{o_{-1}}{(z-x)^{1 / 2}}+\mathfrak{s o}(2 N-1) .
\end{aligned}
$$

Then, the local boundary condition for the new untwisted puncture is:

$$
\Phi(z)=\frac{Y_{1}+Y_{2}+o_{-1}}{z}+\mathfrak{s o}(2 N)
$$

where o_{-1} denotes a generic element in such space.
The procedure to collide punctures using k-differentials is explained in [4] for the case of the twisted $A_{2 N-1}$ series. The discussion is entirely analogous, so we leave the details to that paper. Here we will just give an example of how to use it.

Consider the collision of three punctures,

$$
[2(N-r)-1,2 r+1] \times[2(N-r)-1,2 r+1] \times[2(N-1)],
$$

which yields the $\left[2(N-2 r-1), 1^{4 r}\right]$ puncture with an $S p(r) \times S p(r)$ gauge group. We will use this result in $\S 2.1 .5 .4$. Let us show how to derive it for the particular case $r=3$.

The puncture $[2 N-7,7]$ has pole structure $\{1,2,3,4,5,6,6,6, \ldots, 6 ; 3\}$, no a-constraints, and three c-constraints at $2 k=8,10,12$:

$$
\begin{align*}
& c_{4}^{(8)}=\frac{1}{4}\left(c_{2}^{(4)}-\frac{1}{4}\left(c_{1}^{(2)}\right)^{2}\right)^{2}+\frac{1}{2} c_{1}^{(2)}\left(c_{3}^{(6)}-\frac{1}{2} c_{1}^{(2)}\left(c_{2}^{(4)}-\frac{1}{4}\left(c_{1}^{(2)}\right)^{2}\right)\right), \\
& c_{5}^{(10)}=\frac{1}{2}\left(c_{2}^{(4)}-\frac{1}{4}\left(c_{1}^{(2)}\right)^{2}\right)\left(c_{3}^{(6)}-\frac{1}{2} c_{1}^{(2)}\left(c_{2}^{(4)}-\frac{1}{4}\left(c_{1}^{(2)}\right)^{2}\right)\right), \tag{2.5}\\
& c_{6}^{(12)}=\frac{1}{4}\left(c_{3}^{(6)}-\frac{1}{2} c_{1}^{(2)}\left(c_{2}^{(4)}-\frac{1}{4}\left(c_{1}^{(2)}\right)^{2}\right)\right)^{2} .
\end{align*}
$$

On the other hand, the puncture $[2(N-1)]$, which is the "minimal" twisted puncture, has pole structure $\left\{1,1,1, \ldots, 1 ; \frac{1}{2}\right\}$, and no constraints.

First, consider two [2N-7,7] punctures on the plane, at positions $z=0$ and $z=x$, and write down the k-differentials:

$$
\begin{aligned}
\phi_{2 k}(z) & =\frac{u_{2 k}+v_{2 k} z+\ldots}{z^{k}(z-x)^{k}} \quad(2 k=2,4,6,8,10,12) \\
\phi_{2 k}(z) & =\frac{u_{2 k}+\ldots}{z^{6}(z-x)^{6}} \quad(2 k=14,16, \ldots, 2 N-2) \\
\tilde{\phi}(z) & =\frac{\tilde{u}+\ldots}{z^{3}(z-x)^{3}}
\end{aligned}
$$

Then, in the $x \rightarrow 0$ limit, which corresponds to the collision, we find the pole orders $\{2,4,6,8,10,12,12,12, \ldots, 12 ; 6\}$. So, at first sight, we would have gauge-group Casimirs at $2 k=2,4,6,8,10,12$. However, the c-constraints 2.5 from the two $[2 N-7,7]$ punctures imply that the leading and subleading coefficients $u_{2 k}$ and $v_{2 k}$ for $2 k=8,10,12$ are dependent on the coefficients u_{2}, u_{4}, u_{6}, and furthermore vanish when we take $u_{2}, u_{4}, u_{6} \rightarrow 0$. Thus, the only independent gauge-group Casimirs are u_{2}, u_{4}, u_{6}, and the massless puncture has pole structure $\{1,3,5,6,8,10,12,12, \ldots, 12 ; 6\}$, with no constraints. These
properties single out the puncture $\left[2 N-13,2^{6}, 1\right]$, which has $S p(3)$ flavour symmetry. Thus, the gauge group must be $S p(3)$.

Colliding the new puncture $\left[2 N-13,2^{6}, 1\right]$ with the minimal twisted puncture is much easier, because none is constrained. So all we need to do is add up pole orders, and identify gauge-group Casimirs. The sum of the pole structures is $\left\{2,4,6,7,9,11,13,13, \ldots, 13 ; \frac{13}{2}\right\}$. Hence, we have again a gauge group with Casimirs $2,4,6$, and a new puncture with pole structure $\left\{1,3,5,7,9,11,13,13, \ldots, 13 ; \frac{13}{2}\right\}$, with no constraints. These properties correspond to the puncture $\left[2 N-14,1^{12}\right]$, which has flavour symmetry $S p(6)$. Thus, we are gauging an $S p(3)$ gauge group out of the $S p(6)$. Actually, since the two new punctures we find in the subsequent collisions are not maximal, it must be that an $S p(3) \times S p(3)$ subgroup (each factor from each of the two cylinders) of $S p(6)$ is being gauged. (We saw multiple examples of this phenomenon in [5, 4].)

Let us derive the same result by doing the collisions in a different order: first, we collide a $[2 N-7,7]$ puncture (at $z=0$) with the minimal twisted puncture (at $z=x$). We use the k-differentials 9

[^5]\[

$$
\begin{aligned}
\phi_{2 k}(z) & =\frac{u_{2 k}+\ldots}{z^{k}(z-x)} \\
\phi_{2 k}(z) & =\frac{u_{2 k}+\ldots}{z^{6}(z-x)} \\
\tilde{\phi}(z) & =\frac{\tilde{u}+\ldots}{z^{3}(z-x)^{1 / 2}}
\end{aligned}
$$ \quad(2 k=2,4,6,8,10,12),
\]

This time, solving the c-constraints is less simple. The constraints are not solvable unless one introduces parameters r_{2}, r_{4}, r_{6} of dimension $2,4,6$ such that:

$$
u_{2}=r_{2} x^{1 / 2}, \quad u_{4}=-\frac{\left(r_{2}\right)^{2}}{4}+r_{4} x^{1 / 2}, \quad u_{6}=-r_{2} r_{4}+r_{6} x^{1 / 2}
$$

(See Sec. 4.1.3 of [4] for a similar example in more detail.) Then, the constraints imply:

$$
u_{8}=-\frac{1}{4}\left(\left(r_{4}\right)^{2}+2 r_{2} r_{6}\right), \quad u_{10}=-\frac{1}{2} r_{6} r_{4}, \quad u_{12}=-\frac{1}{4}\left(r_{6}\right)^{2}
$$

and in the limit $x \rightarrow 0$, we get a pole structure $\left\{1,3,4,5,6,7,7,7, \ldots, \frac{7}{2}\right\}$, with constraints

$$
\begin{array}{ll}
c_{3}^{(4)}=-\frac{\left(r_{2}\right)^{2}}{4}, & c_{6}^{(10)}=-\frac{r_{4} r_{6}}{2} \\
c_{4}^{(6)}=-r_{2} r_{4}, & c_{7}^{(12)}=-\frac{\left(r_{6}\right)^{2}}{4} \\
c_{5}^{(8)}=-\left(r_{4}\right)^{2}-\frac{r_{2} r_{6}}{2} &
\end{array}
$$

that is, we have a-constraints at $2 k=4,8,12$ and c-constraints at $2 k=6,10$. These properties uniquely identify the twisted puncture $[2 N-8,6]$. Notice that
there are no gauge-group Casimirs, so our interpretation is that the cylinder is "empty". This is an example of an "atypical degeneration", as we will recall in $\$ 2.1 .5 .4$.

Let us now collide the new puncture $[2 N-8,6]$ (at $z=0$) with the remaining untwisted puncture $[2 N-7,7]$ (at $z=x)$. We have the k-differentials

$$
\begin{array}{rlrl}
\phi_{2}(z) & =\frac{u_{2}+\ldots}{z(z-x)} \\
\phi_{2 k}(z) & =\frac{x u_{2 k}+v_{2 k} z+\ldots}{z^{k+1}(z-x)^{k}} \\
\phi_{2 k}(z) & =\frac{u_{2 k}+\ldots}{z^{7}(z-x)^{6}} & (2 k=4,6,8,10,12) \\
\tilde{\phi}(z) & =\frac{\tilde{u}+\ldots}{z^{7 / 2}(z-x)^{3}} & (2 k=14,16,18, \ldots, 2 N-2) \\
\end{array}
$$

Taking the collision limit $x \rightarrow 0$, we get the pole orders $\left\{2,4,6,8,10,12,13,13, \ldots, 13 ; \frac{13}{2}\right\}$. So, in principle, the gauge-group VEVs are $u_{2}, v_{4}, v_{6}, v_{8}, v_{10}, v_{12}$. However, v_{8}, v_{10}, v_{12} are polynomials in u_{2}, v_{4}, v_{6} and in three new parameters r_{2}, r_{4}, r_{6}, of respective dimensions $2,4,6$, which arise from combining the a-/c-constraints of $[2 N-8,6]$ with the c-constraints of $[2 N-7,7]$. So the actual gauge-group VEVs are $u_{2}, v_{4}, v_{6}, r_{2}, r_{4}, r_{6}$. These VEV dimensions are consistent with an $S p(3) \times S p(3)$ gauge group, as before, except that now both $S p(3)$ factors are supported on a single cylinder. Setting to zero the gauge-group VEVs, we get the massless pole orders $\left\{1,3,5,7,9,11,13,13, \ldots, 13 ; \frac{13}{2}\right\}$, with no constraints, which, as before, correspond to the $\left[2 N-14,1^{12}\right]$ puncture.

2.1.3 Gauge Couplings

Consider an $\mathcal{N}=2$ supersymmetric gauge theory, with simple gauge group, G, and matter content chosen so that the β-function vanishes. This gives rise to a family of SCFTs, parametrized by

$$
\tau=\frac{\theta}{\pi}+\frac{8 \pi i}{g^{2}}
$$

A rich class of (though not all) such theories can be realized as compactifications of the $(2,0)$ theory on a sphere with four untwisted punctures. If the four puncture are distinct, then the S-duality group, $\Gamma(2) \subset \operatorname{PSL}(2, \mathbb{Z})$, is generated by

$$
T^{2}: \tau \mapsto \tau+2, \quad S T^{2} S: \tau \mapsto \frac{\tau}{1-2 \tau}
$$

The fundamental domain for $\Gamma(2)$ is isomorphic to $\mathcal{M}_{0,4} \simeq \mathbb{C P}^{1}$. In particular, the coordinate on the complex plane, f, is given by ${ }^{10}$
${ }^{10}$ Our θ-function conventions are

$$
\begin{aligned}
& \theta_{2}(0, \tau)=\sum_{n \in \mathbb{Z}} q^{(n+1 / 2)^{2} / 2} \\
& \theta_{3}(0, \tau)=\sum_{n \in \mathbb{Z}} q^{n^{2} / 2} \\
& \theta_{4}(0, \tau)=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{n^{2} / 2}
\end{aligned}
$$

where $q=e^{2 \pi i \tau}$.

$$
\begin{aligned}
f(\tau) & =-\frac{\theta_{2}^{4}(0, \tau)}{\theta_{4}^{4}(0, \tau)} \\
& =-\left(16 q^{1 / 2}+128 q+704 q^{3 / 2}+\ldots\right)
\end{aligned}
$$

Since $\Gamma(2)$ is index-6 in $\operatorname{PSL}(2, \mathbb{Z})$, the generators of the latter group act on $\mathcal{M}_{0,4}$ as

$$
T: f \mapsto \frac{f}{f-1}, \quad S: f \mapsto \frac{1}{f}
$$

These generate an S_{3} action on $\mathcal{M}_{0,4}$, as depicted in the figure

The points, $\{0,1, \infty\}$, of the compactification divisor, are fixed points with stabilizer group \mathbb{Z}_{2}. The points $\{-1,1 / 2,2\}$ are also fixed points with stabilizer
group \mathbb{Z}_{2}. Finally, the points $(1 \pm i \sqrt{3}) / 2$ are fixed points with stabilizer group \mathbb{Z}_{3}. The j-invariant (invariant under the action of $\operatorname{PSL}(2, \mathbb{Z})$) is

$$
\begin{aligned}
j(\tau) & =256 \frac{\left(1-f+f^{2}\right)^{3}}{f^{2}(1-f)^{2}} \\
& =\frac{1}{q}+744+196884 q+\ldots
\end{aligned}
$$

Of course, while the j-invariant is invariant under the full $\operatorname{PSL}(2, \mathbb{Z})$, the physics generically is not

If two of the punctures are identical, then $\tau \mapsto-1 / \tau$ leaves the physics unchanged. The S-duality group is $\Gamma_{0}(2) \subset P S L(2, \mathbb{Z})$, generated by $T^{2}: \tau \mapsto$ $\tau+2$ and $S: \tau \mapsto-1 / \tau$, whose fundamental domain is the \mathbb{Z}_{2} quotient of $\mathcal{M}_{0,4}$ by $f \mapsto 1 / f$. The physics at $f=0$ and at $f=\infty$ are both that of a weakly-coupled G gauge theory. The other boundary point, $f=1$, and the interior point, $f=-1$ are fixed-points of the \mathbb{Z}_{2} action.

If three of the punctures (or all four) are identical, then the S-duality group is the full $P S L(2, \mathbb{Z})$, the physics at all three boundary points is that of a weakly-coupled G-gauge theory and the fundamental domain is just the shaded region in the figure.

How this picture gets modified, in the presence of twisted punctures, will be one of our main themes in this paper.

2.1.4 Very-even Punctures

In the $A_{2 N-1}$ series, the outer automorphism twists acted trivially on the set of nilpotent orbits. So the identities of the untwisted punctures were unaffected by the introduction of twisted punctures. By contrast, in the D_{N} series (for N even), the outer automorphism twists act by exchanging the "red" and "blue" very-even punctures. Dragging an untwisted very-even puncture around a twisted puncture turns it from red to blue, or vice-versa.

To illustrate the phenomenon, let us look at an example in the twisted D_{4} theory.

Here, it is useful to recall [5] that the very-even puncture ${ }^{11} \square$ has only one constraint, which is a very-even c-constraint,

$$
c_{3}^{(4)} \pm 2 \tilde{c}_{3}=0
$$

[^6]where the top (bottom) sign corresponds to a red (blue) puncture.
The Higgs field (with Coulomb branch parameters $u_{2}, u_{4}, \tilde{u}, u_{6}$) yields the differentials
\[

$$
\begin{aligned}
\phi_{2}(z) & =\frac{u_{2} z_{12} z_{34}(d z)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
\phi_{4}(z) & =\frac{z_{24} z_{34}(d z)^{4}}{\left(z-z_{1}\right)\left(z-z_{2}\right)^{3}\left(z-z_{3}\right)^{3}\left(z-z_{4}\right)^{3}} \\
& \times\left[u_{4}\left(z-z_{3}\right)\left(z-z_{4}\right) z_{12} z_{23}\right. \\
& \left.+2 \tilde{u}\left(z_{2}-z\right)\left(\left(z-z_{3}\right)\left(z_{13} z_{23} z_{14} z_{24}\right)^{1 / 2}+\left(z-z_{4}\right) z_{13} z_{23}\right)\right] \\
\phi_{6}(z) & =\frac{u_{6} z_{12} z_{23} z_{24} z_{34}^{3}(d z)^{6}}{\left(z-z_{1}\right)\left(z-z_{2}\right)^{3}\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{4}} \\
\tilde{\phi}(z) & =\frac{\tilde{u} z_{24} z_{34}^{2}\left(z_{13} z_{23}\right)^{1 / 2}(d z)^{4}}{\left(z-z_{1}\right)^{1 / 2}\left(z-z_{2}\right)^{3 / 2}\left(z-z_{3}\right)^{3}\left(z-z_{4}\right)^{3}}
\end{aligned}
$$
\]

The powers of $z_{i j} \equiv z_{i}-z_{j}$ have been introduced to make the above expressions Möbius-invariant ${ }^{[12}$, and hence well-defined on the moduli space. However, the (unavoidable) square-roots mean that moduli space is, itself, a double-cover (in fact, a 4-fold cover, but the SW geometry factors through a \mathbb{Z}_{2} quotient) of the moduli space of the 4 -punctured sphere.

Whether a very-even puncture is red or blue depends on the relative sign of the residues of the cubic poles of $\phi_{4}(z)$ and $\tilde{\phi}(z)$ at the location of

[^7]the puncture. But the square-roots are such that if we drag the very-even puncture (say, the one located at z_{3}) around one of the twisted punctures (say, the one located at z_{1}), the relative sign changes, indicating that the puncture has changed from red to blue, or vice versa.

Since the formulae are a little bit formidable-looking in their fully Möbius-invariant form, it helps to fix the Möbius invariance by setting

$$
\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \rightarrow\left(0, \infty, w^{2}, 1\right)
$$

The expressions for $\phi_{4}(z), \tilde{\phi}(z)$ (which are all we need for the present discussion) simplify to

$$
\begin{aligned}
\phi_{4}(z) & =\frac{\left(w^{2}-1\right)\left[u_{4}\left(z-w^{2}\right)(z-1)+2 \tilde{u}\left(w\left(z-w^{2}\right)+w^{2}(z-1)\right)\right](d z)^{4}}{z\left(z-w^{2}\right)^{3}(z-1)^{3}} \\
\tilde{\phi}(z) & =\frac{\tilde{u} w\left(w^{2}-1\right)^{2}(d z)^{4}}{z^{1 / 2}\left(z-w^{2}\right)^{3}(z-1)^{3}}
\end{aligned}
$$

Dragging the point $z_{3}=w^{2}$ around the origin changes the sign of w in the above expressions. This changes the relative sign of the residues of ϕ_{4} and $\tilde{\phi}$ at $z=w^{2}$, whilst preserving the relative sign of the residues at $z=1$.

Of course, the Seiberg-Witten geometry is invariant under the operation of simultaneously flipping all of the colours of all of the very-even punctures. This gives a \mathbb{Z}_{2} which acts freely on the gauge theory moduli space. We will often find it useful to work on the quotient, fixing the colour of one of the very-even punctures.

Having seen the phenomenon is global example, let us recover the same result, working locally on the plane, with the Higgs field itself (rather than the gauge-invariant k-differentials). Consider a very-even Higgs-field residue $B \in \mathfrak{s o}(2 N)$, which belongs to a, say, red nilpotent orbit. We can write $B=$ $\left.B\right|_{\mathfrak{s o}(2 N-1)}+\left.B\right|_{o_{-1}}$, corresponding to the splitting $\mathfrak{s o}(2 N)=\mathfrak{s o}(2 N-1) \oplus o_{-1}$. Then, one can check that the map $\left.B\right|_{o_{-1}} \mapsto-\left.B\right|_{o_{-1}}$ puts the residue B in the other (blue) nilpotent orbit. This map defines an isomorphism between the elements of the red and the blue nilpotent orbits.

Now suppose that the twisted puncture (with residue $A \in \mathfrak{s o}(2 N-1)$ is at $z=0$ and the very-even puncture (with residue $B \in \mathfrak{s o}(2 N)$) is at $z=x$. Then, the Higgs field for this system is:

$$
\Phi(z)=\frac{\left.(z-x) A+\left.z B\right|_{\mathbf{s o}^{(2 N-1}}\right)}{z(z-x)}+\frac{\left.x^{1 / 2} B\right|_{o-1}+(z-x) D+\ldots}{z^{1 / 2}(z-x)}+\ldots
$$

where D is a generic element in o_{-1}, and the ... denote regular terms. The factor of $x^{1 / 2}$ is necessary to make Φ well-defined as a one-form. Then, x parametrizes the distance between the very-even puncture and the twisted puncture, and if x circles the origin, $x^{1 / 2} \rightarrow-x^{1 / 2}$, it enforces $\left.B\right|_{o_{-1}} \rightarrow-\left.B\right|_{o_{-1}}$, so our red puncture becomes blue, or vice versa.

2.1.5 Atypical Degenerations

2.1.5.1 Atypical Punctures

As an application of the formulas in 92.1 .1 , let us find the series of punctures with contribution $n_{2}=2$. We will call these "atypical punctures",
as they give rise to theories where the number of simple factors in the gauge group is not equal to the dimension of the moduli space of the punctured Riemann surface, C. We have seen this phenomenon already in the twisted $A_{2 N-1}$ series [4].

From our rules for a-constraints, it is easy to see that there are no untwisted atypical punctures, and that for a twisted puncture to be atypical, its Nahm pole C-partition must consist of exactly two parts. Hence, the atypical punctures are

$$
\stackrel{[2(N-r-1), 2 r]}{\mathbf{O}}, \quad \text { for } r=1,2, \ldots,\left\lfloor\frac{N-1}{2}\right\rfloor
$$

with the addition of

$$
\stackrel{[N-1, N-1]}{\mathbf{O}} \text { if } N \text { is even. }
$$

These arise, respectively, as the coincident limit of
a) $\mathrm{O}^{[2(N-1)]}$ and $\stackrel{[2(N-r)-1,2 r+1]}{\mathbf{O}}$
b) $\stackrel{O}{0}_{[2(N-1)]}$ and $\stackrel{[N, N]}{\boldsymbol{O}}$ (for N even)

Normally, the OPE of two (regular) punctures, p and p^{\prime}, yields a third (regular) puncture, $p^{\prime \prime}$, coupled to a gauge theory, (X, H), where

- The gauge group, H, is a subgroup of the global symmetry group of $p^{\prime \prime}$.
- In the coincident limit, the gauge coupling of H goes to zero.

Here, when $p^{\prime \prime}$ is atypical, the would-be gauge theory is empty: $(X, H)=(\emptyset, \emptyset)$. Instead, the theory with an insertion of $p^{\prime \prime}$ has one more simple factor in the gauge group than the "expected" $3 g-3+n$.

For a surface, C, with n punctures, m of which are atypical, the number of simple factors in the gauge group is $3 g-3+n+m$. "Resolving" each atypical puncture by the pair of punctures, above, yields a surface with $n+m$ punctures and the moduli space of the gauge theory is a branched cover of $\mathcal{M}_{g, n+m}$. In contrast to the usual case, where each component of the boundary of the moduli space corresponds to one simple factor in the gauge group becoming weakly-coupled, the boundaries of $\mathcal{M}_{g, n+m}$, where an atypical puncture arises in the OPE, do not typically correspond to any gauge coupling becoming weak (that is, under the branched covering, they are the image of loci in the interior of the gauge theory moduli space).

2.1.5.2 Gauge Theory Fixtures

In particular, for $n=3, m=1$ (or 2), we have a "gauge theory fixture." Resolving the atypical puncture yields a gauge theory moduli space which is branched cover of $\mathcal{M}_{0,4}$. We may well ask, "Where, in the gauge theory moduli space, have we landed, in the coincident limit which yields the atypical puncture?" The answer is that we are at the interior point, " $f(\tau)=-1$ ", though the mechanics of how this happens varies between the cases.

Let us resolve

to

respectively. We have parametrized $\mathcal{M}_{0,4}$ by x, but the gauge theory moduli space is a branched cover, parametrized by w, with

$$
w^{2}=x
$$

The gauge coupling

$$
\begin{equation*}
f(\tau)=\frac{w-1}{w+1} \tag{2.6}
\end{equation*}
$$

so that $f=0$ and $f=\infty$ both map to $x=1$, while $f=1$ maps to $x=\infty$.

Our gauge-theory fixture is whatever lies over the point $x=0$. From (2.6), this is the interior point, $f(\tau)=-1$, of the gauge theory moduli space.

As an example, let us consider the D_{4} gauge theory fixture

whose resolution is

Actually, since we have two very-even punctures, the full moduli space is a 4-sheeted cover of $\mathcal{M}_{0,4}$. The SW geometry is invariant under simultaneously flipping the colours of both punctures, so we can consistently work on the quotient by that \mathbb{Z}_{2}, and take the colour of the $ص$ puncture to be red.
$S U(4)$ gauge theory, with matter in the $1(6)+4(4)$ was studied in [3]. Near $f(\tau)=0$, the weakly-coupled description is the Lagrangian field theory.

Near $f(\tau)=1$, the weakly-coupled description is an $S U(2)$ gauging of the $S U(8)_{8} \times S U(2)_{6}$ SCFT, $R_{0,4}$. Near $f(\tau)=\infty$, the weakly-coupled description is $S U(3)$, with two hypermultiplets in the fundamental, coupled to the $\left(E_{7}\right)_{8}$ SCFT.

In the present case, the $f \rightarrow 1$ theory arises as $x \rightarrow \infty$

Over $x=1$, we have two distinct degenerations, which are exchanged by dragging the puncture around the origin and returning it to its original position: the Lagrangian field theory $(f=0)$

and the theory at $f=\infty$

Having fixed the behaviour of f over this two-sheeted cover of $\mathcal{M}_{0,4}$, by reproducing the correct asymptotics as $x \rightarrow 1$ and $x \rightarrow \infty$, we can now take $x \rightarrow 0$

and recover that the gauge theory fixture is the aforementioned $S U(4)$ gauge theory at $f(\tau)=-1$.

2.1.5.3 Gauge Theory Fixtures with Two Atypical Punctures

When we resolve the gauge theory fixtures with two atypical punctures, we obtain a branched covering of $\mathcal{M}_{0,5}$.

The geometry of $\mathcal{M}_{0,5}$, and the relevant branched covering thereof, were discussed in detail in section 5.1.2 of [4]. Here, we will simply borrow the relevant results.

The (compactified) $\mathcal{M}_{0,5}$ is a rational surface. The boundary divisor consists of ten (-1)-curves $\left(\mathbb{C P}^{1}\right.$ s with normal bundle $\left.\mathcal{O}(-1)\right)$. We label these curves as $D_{i j}$, corresponding to the locus where the punctures p_{i} and p_{j} collide. The $D_{i j}$, in turn, intersect in 15 points.

The moduli space of the $(2,0)$ compactification is a branched covering, $\tilde{\mathcal{M}} \rightarrow \mathcal{M}_{0,5}$, which is branched over the boundary divisor.

The D_{4} gauge theory fixture

is an $S p(2) \times S U(2)$ gauge theory, with matter in the $6(4,1)+4(1,2)$, with gauge couplings $\left(f_{S p(2)}, f_{S U(2)}\right)=(-1,-1)$. Resolving the atypical punctures, we have a 5 -punctured sphere,

Since the resolution has two very-even punctures, $\tilde{\mathcal{M}}$ is an 8 -sheeted branched cover of $\mathcal{M}_{0,5}$. However since the gauge couplings (and the rest of the physics) are invariant under simultaneously flipping the colours of both very-even punctures, we can pass to the quotient, $X=\tilde{\mathcal{M}} / \mathbb{Z}_{2}$, and it is the geometry of 4-sheeted branched cover, $X \rightarrow \mathcal{M}_{0,5}$, that was studied in detail in [4].

Meromorphic functions on $\mathcal{M}_{0,5}$ are rational functions of the crossratios

$$
s_{1}=\frac{z_{13} z_{25}}{z_{15} z_{23}}, \quad s_{2}=\frac{z_{14} z_{25}}{z_{15} z_{24}}
$$

X is a branched 4 -fold cover of $\mathcal{M}_{0,5}$, whose ring of meromorphic functions is generated by rational functions of w_{1}, w_{2}

$$
w_{1}^{2}=s_{1}, \quad w_{2}^{2}=s_{2}
$$

The gauge couplings are meromorphic functions on X, given by

$$
\begin{equation*}
f_{S p(2)}=\frac{w_{1}-1}{w_{1}+1} \frac{w_{2}+1}{w_{2}-1}, \quad f_{S U(2)}=\frac{w_{1}-1}{w_{1}+1} \frac{w_{2}-1}{w_{2}+1} \tag{2.7}
\end{equation*}
$$

There is a natural action of the dihedral group, D_{4}, on X. The $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ subgroup is generated by the deck transformations,

$$
\begin{aligned}
& \alpha: w_{1} \rightarrow-w_{1}, w_{2} \rightarrow w_{2} \\
& \beta: w_{1} \rightarrow w_{1}, w_{2} \rightarrow-w_{2}
\end{aligned}
$$

which act on the gauge couplings as

$$
\begin{aligned}
& \alpha: f_{S p(2)} \rightarrow 1 / f_{S U(2)}, f_{S U(2)} \rightarrow 1 / f_{S p(2)} \\
& \beta: f_{S p(2)} \leftrightarrow f_{S U(2)}
\end{aligned}
$$

Both α and β change the relative colour of the two very-even punctures. The additional generator of D_{4},

$$
\gamma:, w_{1} \leftrightarrow w_{2}
$$

acts as S-duality for the $S p(2)$,

$$
\gamma: f_{S p(2)} \rightarrow 1 / f_{S p(2)}, f_{S U(2)} \rightarrow f_{S U(2)}
$$

At the boundary, various sheets come together, and the behaviour of the gauge couplings is

- Over D_{15} and D_{25}, both couplings go to $f=1$, but the ratio $\frac{f_{S_{P(2)}-1}}{f_{S U(2)}-1}$ is arbitrary.
- Over D_{35}, both couplings are weak $(f=0$ or $f=\infty)$, but the ratio $\frac{f_{S p(2)}}{f_{S U(2)}}$ is arbitrary.
- Over D_{45}, both couplings are weak $\left(f_{S p(2)}=0, f_{S U(2)}=\infty\right.$ or vice-versa $)$, but the product $f_{S p(2)} \cdot f_{S U(2)}$ is arbitrary.
- Over D_{12}, one coupling is weak $(f=0$ or $\infty)$, while the other is arbitrary.
- Over D_{34}, one coupling is $f=1$, while the other is arbitrary.
- Over D_{13} and $D_{23}, f_{S p(2)}=1 / f_{S U(2)}$.
- Over D_{14} and $D_{24}, f_{S p(2)}=f_{S U(2)}$.

Over the intersections of these divisors, we see the various S-duality frames of the gauge theory.

Over $D_{12} \cap D_{34}$, we have

and

In the first case, $f_{S p(2)}=0$ or ∞ and $f_{S U(2)}=1$; in the latter, $f_{S p(2)}=1$ and $f_{S U(2)}=0$ or ∞.

Over $D_{12} \cap D_{35}$ and $D_{12} \cap D_{45}$, we have

and

In both cases, the underlined gauge group on the right-hand cylinder is identified with the gauge group on the left-hand cylinder. The notation, which we introduced in [4], indicated that when the cylinder on the right pinches off, both factors in the gauge group become weakly-coupled $(f \rightarrow 0$ or $\infty)$. When the cylinder on the left pinches off, only one of the gauge group factors becomes weakly-coupled.

Over $D_{34} \cap D_{15}$ and $D_{34} \cap D_{25}, f_{S p(2)}=f_{S U(2)}=1$. So we have

and

These differ only very subtly, as to "which" $S U(2)$ gauge coupling is controlled by the cylinder on the left. In the first case, it is the $S U(2)$ which couples to the
$\left(E_{7}\right)_{8}$ (i.e., the one which becomes weakly-coupled at $f_{S p(2)}=1$); in the second case, it is the $S U(2)$ which couples to the 4 fundamental hypermultiplets.

Over $D_{13} \cap D_{45}, D_{23} \cap D_{45}, D_{14} \cap D_{35}$ and $D_{24} \cap D_{35}$, we have

Over $D_{13} \cap D_{25}, D_{14} \cap D_{25}, D_{23} \cap D_{15}$ and $D_{24} \cap D_{15}$, we have $f_{S p(2)}=1$, $f_{S U(2)}=1:$

Finally, over $D_{13} \cap D_{24}$ and $D_{14} \cap D_{23}$, we recover our gauge theory fixture, and read off that its gauge theory couplings are $f_{S p(2)}=f_{S U(2)}=-1$

2.1.5.4 Atypical Degenerations and Ramification

Once we introduce outer-automorphism twists, the moduli space of the gauge theory no longer coincides with $\mathcal{M}_{g, n}$, the moduli space of punctured curves. As we saw, in 2.1.5.1, even the dimensions don't agree, until we "resolve" each atypical puncture, replacing $\mathcal{M}_{g, n}$ by $\mathcal{M}_{g, n+m}$ (for m atypical punctures). Even then, the moduli space of the gauge theory is a branched covering of $\mathcal{M}_{g, n+m}$, branched over various components of the boundary.

Over a generic point on "most" of the components of the boundary, the covering is unramified, and the gauge couplings behave "normally": one (and only one) gauge coupling becomes weak at that irreducible component of the boundary. Here, we would like to catalogue the exceptions: those components of the boundary where

- the covering is ramified
- an "unexpected" (either 0 or 2, in the cases at hand) number of gauge couplings become weak
- both

Let us denote, by $D_{p_{1}, p_{2}, \ldots p_{l}}$, the component of the boundary of $\mathcal{M}_{g, n+m}$ where the punctures $p_{1}, p_{2}, \ldots p_{l}$ collide, bubbling off an $(l+1)$-punctured sphere. All of our exceptional cases will involve either $D_{p_{1}, p_{2}}$ or $D_{p_{1}, p_{2}, p_{3}}$.
$\underline{D_{T, V}}$ The first source of ramification, as we saw in 2.1.4, is that the outer automorphism changes the colour of a very even puncture from red to blue and vice versa. In general, this changes the physics of the gauge theory. So, for a theory with v very-even punctures, we get a 2^{v} sheeted cover of the moduli space of curves, ramified (with ramification index 2) over $D_{T, V}$ where " T " denotes any twisted-sector puncture and " V " represents any very-even. As already noted, simultaneously changing the colour of all of the very-even punctures leads to isomorphic physics so we can (and usually will) pass to the \mathbb{Z}_{2} quotient.

Generically, the gauge couplings behave "normally," with one gauge coupling becoming weak at $D_{T, V}$.
$\underline{D_{[2(N-1)],\left[N^{2}\right]}}$ When N is even, there is one such collision where, in addition to ramification, no gauge coupling becomes weak. Instead, the two punctures fuse (in non-singular fashion) into an atypical puncture.

$\underline{D_{[2(N-1)],[2(N-r)-1,2 r+1]}}$ For $r=1,2, \ldots,\left\lfloor\frac{N-1}{2}\right\rfloor$, we again obtain an atypical puncture as the OPE. No gauge coupling become weak, but the moduli space is ramified (with ramification index 2).

$\underline{D_{[2(N-1)],[2(N-1)],[2(N-r)-1,2 r+1]}}$ The moduli space is unramified over this component of the boundary. Nonetheless, two gauge couplings become weak.

$\underline{D_{[2(N-1)],[2(N-1)],\left[N^{2}\right]}}$ Here, again, an $S U(2) \times S U(2)$ gauge group becomes weak, but now the moduli space is also ramified (with ramification index 2)

$\underline{D_{t, u, u^{\prime}}}$ In all of the remaining cases, the moduli space is ramified (with ramification index 2) and two gauge couplings become weak.

Over $D_{[2(N-1)],[2(N-r)-1,2 r+1],[2(N-r)-1,2 r+1]}$ (with the same untwisted puncture), we have an $S p(r) \times S p(r)$ gauge group becoming weak

and, for N even, the gauge group which becomes weak is $S p\left(\frac{N}{2}\right) \times S p\left(\frac{N-2}{2}\right)$

Over $D_{t, u, u^{\prime}}$, with $r^{\prime}, r=1,2, \ldots,\left\lfloor\frac{N-1}{2}\right\rfloor$ (and, without loss of generality, $r^{\prime}>$ r)

and, for N even,

2.1.6 Global Symmetries and the Superconformal Index

2.1.6.1 Computing the Index in the Hall-Littlewood Limit

Each puncture has a "manifest" global symmetry associated to it. The global symmetry group of the SCFT associated to a fixture contains the product of the "manifest" global symmetry groups, associated to each of the punctures, as a subgroup. But, in general, it is larger. Here, we will outline how to
use the superconformal index [22, 23, 24, 25] to determine the global symmetry group of the fixture and (in the case of a mixed fixture) the number of free hypermultiplets that it contains.

The prescription to compute the superconformal index of an interacting SCFT defined by a D_{N}-series fixture was given in [26]. For a $D_{N} \mathbb{Z}_{2}$-twisted sector fixture with punctures $\left(\tilde{\Lambda}_{1}, \tilde{\Lambda}_{2}, \Lambda_{3}\right)$, where $\tilde{\Lambda}$ denotes a twisted puncture and Λ an untwisted puncture, the index is given by ${ }^{13}$

$$
\begin{align*}
\mathcal{I}(\mathbf{a}, \mathbf{b}, \mathbf{c}) & =\mathcal{A}(\tau) \mathcal{K}\left(\mathbf{a}\left(\tilde{\Lambda}_{1}\right)\right) \mathcal{K}\left(\mathbf{b}\left(\tilde{\Lambda}_{2}\right)\right) \mathcal{K}\left(\mathbf{c}\left(\Lambda_{3}\right)\right) \\
& \times \sum_{\lambda^{\prime}} \frac{P_{S p(N-1)}^{\lambda^{\prime}}\left(\mathbf{a}\left(\tilde{\Lambda}_{1}\right) \mid \tau\right) P_{S p(N-1)}^{\lambda^{\prime}}\left(\mathbf{b}\left(\tilde{\Lambda}_{2}\right) \mid \tau\right) P_{S O(2 N)}^{\lambda=\lambda^{\prime}}\left(\mathbf{c}\left(\Lambda_{3}\right) \mid \tau\right)}{P_{S O(2 N)}^{\lambda=\lambda^{\prime}}\left(1, \tau, \tau^{2}, \ldots, \tau^{N-1} \mid \tau\right)} . \tag{2.8}
\end{align*}
$$

The various elements of this formula are summarized below. Detailed explanations can be found in [26]:

- $\mathcal{A}(\tau)$ is the overall (fugacity-independent) normalization, given by

$$
\mathcal{A}(\tau)=\frac{\left(1-\tau^{2 N}\right)}{\left(1-\tau^{2}\right)^{\frac{N}{2}}} \prod_{j=1}^{N-1}\left(1-\tau^{4 j}\right)
$$

- P^{λ} are the Hall-Littlewood polynomials of type $S O(2 N)$ and $S p(N)$,

[^8]given by
\[

$$
\begin{align*}
& P_{S O(2 N)}^{\lambda}\left(x_{1}, \ldots, x_{N}\right)= \\
& \quad W_{\lambda}(\tau)^{-1} \sum_{\sigma \in S_{N}} \sum_{\substack{s_{1}, \ldots, s_{N}= \pm 1 \\
\prod s_{i}=+1}} x_{\sigma(1)}^{s_{1} \lambda_{1}} \cdots x_{\sigma(N)}^{s_{N} \lambda_{N}} \prod_{i<j} \frac{1-\tau^{2} x_{i}^{-s_{i}} x_{j}^{ \pm s_{j}}}{1-x_{i}^{-s_{i}} x_{j}^{ \pm s_{j}}} \\
& P_{S p(N)}^{\lambda}\left(x_{1}, \ldots, x_{N}\right)= \tag{2.9}\\
& \quad W_{\lambda}(\tau)^{-1} \sum_{\sigma \in S_{N}} \sum_{s_{1}, \ldots, s_{N}= \pm 1} x_{\sigma(1)}^{s_{1} \lambda_{1}} \cdots x_{\sigma(N)}^{s_{N} \lambda_{N}} \prod_{i<j} \frac{1-\tau^{2} x_{i}^{-s_{i}} x_{j}^{ \pm s_{j}}}{1-x_{i}^{-s_{i}} x_{j}^{ \pm s_{j}}} \\
& \quad \times \prod_{i=1}^{N} \frac{1-\tau^{2} x_{i}^{-2 s_{i}}}{1-x_{i}^{-2 s_{i}}},
\end{align*}
$$
\]

where

$$
W_{\lambda}(\tau)=\left(\sum_{\substack{w \in W \\ w \lambda=\lambda}} \tau^{2 \ell(w)}\right)^{\frac{1}{2}}
$$

with $\ell(w)$ denoting the length of the Weyl group element w.

- The prescription for writing the \mathcal{K}-factors can be found in [26]. Their precise form will not be important here.
- The sum runs over all partitions $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{N-1}^{\prime}\right)$ corresponding to the highest weight of a finite-dimensional irreducible representation of $\operatorname{Sp}(N-1)$ (in the standard orthonormal basis); " $\lambda=\lambda^{\prime \prime}$ means that we only sum over representations of $S O(2 N)$ of the form $\lambda=$ $\left(\lambda_{1}^{\prime}, \ldots, \lambda_{N-1}^{\prime}, 0\right)$.
- The fugacities \mathbf{a}_{I} dual to the Cartan subalgebra of the flavor symmetry group of the puncture $\Lambda_{I}\left(\tilde{\Lambda}_{I}\right)$ are assigned by setting the character of
the fundamental representation of $S O(2 N)(S p(N-1))$ equal to the sum of $S U(2)$ characters corresponding to the decomposition determined by the puncture, with $S U(2)$ fugacity equal to τ. The multiplicity of each $S U(2)$ representation is then replaced by the character of the fundamental representation of the flavor symmetry determined by that multiplicity. From this equation, one can simply read off the fugacities. ${ }^{14}$

For example, the D_{4} twisted puncture \square^{\square} corresponds to the $S U(2)$ embedding under which the 6 of $S p(3)$ decomposes as $2+4(1)$. So setting

$$
\begin{aligned}
\chi_{S p(3)}^{6}\left(x_{1}, x_{2}, x_{3}\right) & =1 \cdot \chi_{S U(2)}^{2}(\tau)+\chi_{S p(2)}^{4}\left(a_{1}, a_{2}\right) \cdot 1 \\
\sum_{i=1}^{3}\left(x_{i}+x_{i}^{-1}\right) & =\tau+\tau^{-1}+\sum_{i=1}^{2}\left(a_{i}+a_{i}^{-1}\right)
\end{aligned}
$$

we can take fugacities $x_{1}=\tau, x_{2}=a_{1}, x_{3}=a_{2}$.
To determine the global symmetry, as well as any decoupled sector, of an interacting SCFT fixture from its superconformal index, we need only compute (2.8) to order τ^{2} : as explained in [27], the contribution at order τ is due to free hypermultiplets while the contribution at order τ^{2} is due to moment map operators of flavor symmetries.

Computing the index to order τ^{2} while keeping only the term $\lambda^{\prime}=0$ in

[^9]the sum over representations gives the contribution
$$
1+\left(\chi_{G_{1}}^{\mathrm{adj}}+\chi_{G_{2}}^{\mathrm{adj}}+\chi_{G_{3}}^{\mathrm{adj}}\right) \tau^{2}
$$
encoding the manifest global symmetry. The global symmetry of the SCFT is enhanced if there are additional terms contributing at order τ^{2} coming from the sum over $\lambda^{\prime}>0$.

As an example, consider the fixture

Letting $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ be $S p(2)$ fugacities and c an $S U(2)$ fugacity, from 2.8) we find

$$
\begin{aligned}
\mathcal{I} & =1+\chi_{S U(2)}^{2}(c) \tau+\left[2 \chi_{S U(2)}^{3}(c)+\chi_{S p(2)}^{10}\left(a_{1}, a_{2}\right)+\chi_{S p(2)}^{10}\left(b_{1}, b_{2}\right)+\right. \\
& \chi_{S p(2)}^{4}\left(a_{1}, a_{2}\right) \chi_{S p(2)}^{4}\left(b_{1}, b_{2}\right) \\
& \left.+\chi_{S U(2)}^{2}(c)\left(\chi_{S p(2)}^{4}\left(a_{1}, a_{2}\right)+\chi_{S p(2)}^{4}\left(b_{1}, b_{2}\right)\right)\right] \tau^{2}+\ldots \\
& =1+\chi_{S U(2)}^{2}(c) \tau+\left[2 \chi_{S U(2)}^{3}(c)+\chi_{S p(4)}^{36}\left(a_{1}, a_{2}, b_{1}, b_{2}\right)+\right. \\
& \left.\chi_{S U(2)}^{2}(c) \chi_{S p(4)}^{8}\left(a_{1}, a_{2}, b_{1}, b_{2}\right)\right] \tau^{2}+\ldots
\end{aligned}
$$

The order τ term signals the contribution of a free hypermultiplet in the $\frac{1}{2}(1,1,2)$ of $S p(2) \times S p(2) \times S U(2)$, the index of which is given by

$$
\mathcal{I}_{\text {free }}=P E\left[\tau \chi_{S U(2)}^{2}(c)\right]=1+\chi_{S U(2)}^{2}(c) \tau+\chi_{S U(2)}^{3}(c) \tau^{2}+\ldots,
$$

where $P E$ denotes the plethystic exponential [26]. Removing the contribution of the free hypermultiplet, the index of the interacting SCFT is given by

$$
\begin{aligned}
\mathcal{I}_{S C F T} & =\mathcal{I} / \mathcal{I}_{\text {free }} \\
& =1+\left[\chi_{S U(2)}^{3}(c)+\chi_{S p(4)}^{36}\left(a_{1}, a_{2}, b_{1}, b_{2}\right)+\chi_{S U(2)}^{2}(c) \chi_{S p(4)}^{8}\left(a_{1}, a_{2}, b_{1}, b_{2}\right)\right] \tau^{2} \\
& +\ldots \\
& =1+\chi_{S p(5)}^{55}\left(a_{1}, a_{2}, b_{1}, b_{2}, c\right) \tau^{2}+\ldots
\end{aligned}
$$

and hence this SCFT has an enhanced $S p(5)$ global symmetry.
We can also use the second order expansion of (2.8) as a check on our identifications for the gauge theory fixtures. For example, the fixture

is an $S U(2) \times S U(2)$ gauge theory with 4 hypermultiplets in the $(2,1), 4$ hypermultiplets in the $(1,2)$, and 8 free hypermultiplets transforming in the $\frac{1}{2}\left(2,8_{v}\right)$ of the manifest $S U(2)_{8} \times S O(8)_{12}$ global symmetry. Thus the manifest global symmetry of this fixture should be enhanced to $S O(8)^{2} \times S p(8)$. Choosing
$\left(b ; c_{1}, c_{2}, c_{3}, c_{4}\right)$ as fugacities for the manifest global symmetry, indeed we find the expansion of the index is given by

$$
\begin{aligned}
& \mathcal{I}=1+\chi_{S U(2)}^{2}(b) \chi_{S O(8)}^{\boldsymbol{8}_{\mathrm{v}}}\left(c_{1}, c_{2}, c_{3}, c_{4}\right) \tau+ \\
& \\
& \quad\left(2 \chi_{S O(8)}^{28}\left(c_{1}, c_{2}, c_{3}, c_{4}\right)+\chi_{S p(8)}^{136}\left(b, c_{1}, c_{2}, c_{3}, c_{4}\right)\right) \tau^{2}+\ldots
\end{aligned}
$$

where

$$
\begin{gathered}
\chi_{S p(8)}^{136}\left(b, c_{1}, c_{2}, c_{3}, c_{4}\right)=\chi_{S U(2)}^{3}(b)+\chi_{S O(8)}^{28}\left(c_{1}, c_{2}, c_{3}, c_{4}\right)+ \\
\chi_{S U(2)}^{3}(b) \chi_{S O(8)}^{\mathbf{3 5} \mathbf{v}}\left(c_{1}, c_{2}, c_{3}, c_{4}\right) .
\end{gathered}
$$

We have used this technique to check the global symmetries and the number of free hypermultiplets in our tables of fixtures for the \mathbb{Z}_{2}-twisted D_{4} theory.

2.1.6.2 The $S p(4)_{6} \times S U(2)_{8}$ SCFT

Here we use the superconformal index to argue that the D_{4} interacting fixture

gives rise to the $S p(4)_{6} \times S U(2)_{8}$ SCFT. For this fixture, we cannot use any S-dualities to study its properties as none of the flavor symmetries carried by the punctures can be gauged.

The $S p(4)_{6} \times S U(2)_{8}$ SCFT first appeared in [4] as the twisted-sector fixture

in the A_{3} theory. It also appears, accompanied by six free hypermultiplets, as

in our list of twisted-sector mixed fixtures in the D_{4} theory. In those cases, we are able to use various S-dualities to study it.

Letting a and b be $S U(2)$ fugacities and $c_{1}^{2}, c_{2}^{2} U(1)$ fugacities, the expansion of the index of this fixture is given by

$$
\begin{align*}
\mathcal{I} & =1+\left(\chi_{S U(2)}^{\mathbf{3}}(a)+\chi_{S U(2)}^{\mathbf{3}}(b)+\left(1+c_{1}^{2}+c_{1}^{-2}\right)+\right. \\
& \left.\chi_{S U(2)}^{\mathbf{3}}(a) \chi_{S U(2)}^{\mathbf{3}}(b)\left(1+c_{1}^{2}+c_{1}^{-2}\right)+\left(1+c_{2}^{2}+c_{2}^{-2}\right)\right) \tau^{2}+\ldots \\
& =1+\left(\chi_{S U(2)}^{\mathbf{3}}(a)+\chi_{S U(2)}^{\mathbf{3}}(b)+\chi_{S U(2)}^{\mathbf{3}}\left(c_{1}\right)+\chi_{S U(2)}^{3}(a) \chi_{S U(2)}^{\mathbf{3}}(b) \chi_{S U(2)}^{3}\left(c_{1}\right)\right. \\
& \left.+\chi_{S U(2)}^{\mathbf{3}}\left(c_{2}\right)\right) \tau^{2}+\ldots \\
& =1+\left(\chi_{S p(4)}^{36}\left(a, b, c_{1}\right)+\chi_{S U(2)}^{\mathbf{3}}\left(c_{2}\right)\right) \tau^{2}+\ldots, \tag{2.11}
\end{align*}
$$

indicating that the manifest $S U(2)_{24}^{2} \times U(1)^{2}$ global symmetry is enhanced to $S p(4) \times S U(2)$. This, along with the other numerical invariants of this fixture agree with our previous results for the $S p(4)_{6} \times S U(2)_{8}$ SCFT.

Since $A_{3} \cong D_{3}$, we can use 2.8 to compute the index of the twisted A_{3} fixture by appropriately identifying fugacities and replacing $P_{S O(6)}^{\lambda}\left(P_{S p(2)}^{\lambda^{\prime}}\right) \rightarrow$ $P_{S U(4)}^{\mu}\left(P_{S O(5)}^{\mu^{\prime}}\right)$ where $\mu\left(\mu^{\prime}\right)$ is the highest weight of the $S U(4)(S O(5))$ representation corresponding to $\lambda\left(\lambda^{\prime}\right)$. Letting a be an $S U(2)$ fugacity and $\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right) S O(5)$ fugacities, the expansion of the index of the twisted A_{3} fixture is

$$
\begin{aligned}
\mathcal{I} & =1+\left(\chi_{S U(2)}^{3}(a)+\chi_{S p(2)}^{10}\left(\sqrt{b_{1} b_{2}}, \sqrt{\frac{b_{1}}{b_{2}}}\right)+\chi_{S p(2)}^{10}\left(\sqrt{c_{1} c_{2}}, \sqrt{\frac{c_{1}}{c_{2}}}\right)\right. \\
& \left.+\chi_{S p(2)}^{4}\left(\sqrt{b_{1} b_{2}}, \sqrt{\frac{b_{1}}{b_{2}}}\right)\right) \chi_{S p(2)}^{4}\left(\sqrt{c_{1} c_{2}}, \sqrt{\frac{c_{1}}{c_{2}}}\right) \tau^{2}+\ldots \\
& =1+\left(\chi_{S U(2)}^{3}(a)+\chi_{S p(4)}^{36}\left(\sqrt{b_{1} b_{2}}, \sqrt{\frac{b_{1}}{b_{2}}}, \sqrt{c_{1} c_{2}}, \sqrt{\frac{c_{1}}{c_{2}}}\right)\right) \tau^{2}+\ldots,
\end{aligned}
$$

in agreement with 2.11. We have checked further that the unrefined indices
(obtained by setting all flavor fugacities to "1") of these two fixtures agree to tenth order in τ. The unrefined index of each fixture is given by

$$
\mathcal{I}=1+39 \tau^{2}+878 \tau^{4}+13396 \tau^{6}+152412 \tau^{8}+1370975 \tau^{10}+\ldots
$$

We can also compare with the mixed fixture (2.10). After removing the contribution to the index of a free hypermultiplet in the 6 of $S p(3)$, the index of this fixture is given by

$$
\begin{aligned}
\mathcal{I} & =1+\left(\chi_{S U(2)}^{3}\left(a_{2}\right)+\chi_{S p(3)}^{21}\left(b_{1}, b_{2}, b_{3}\right)+\chi_{S U(2)}^{2}\left(a_{2}\right) \chi_{S p(3)}^{\mathbf{6}}\left(b_{1}, b_{2}, b_{3}\right)\right. \\
& \left.+\chi_{S U(2)}^{3}(c)\right) \tau^{2}+\ldots \\
& =1+\left(\chi_{S p(4)}^{36}\left(a_{2}, b_{1}, b_{2}, b_{3}\right)+\chi_{S U(2)}^{3}(c)\right) \tau^{2}+\ldots
\end{aligned}
$$

Again, the numerical invariants of this fixture imply the SCFT is the $S p(4)_{6} \times$ $S U(2)_{8}$ theory. We have computed the unrefined index of this fixture to fourth order in τ; removing the contribution of the free hypermultiplet, we find agreement with the fixtures above.

2.2 The \mathbb{Z}_{2}-twisted D_{4} Theory

2.2.1 Punctures and Cylinders

2.2.1.1 Regular Punctures

The untwisted sector of regular punctures was discussed in [5]. The \mathbb{Z}_{2}-twisted regular punctures are shown in the Table below.

Table 2.1: \mathbb{Z}_{2}-twisted regular punctures

Flavour C-partition	Hitchin B-partition	Pole structure	Constraints	Flavour group	$\left(\delta n_{h}, \delta n_{v}\right)$
[1110	[7]	$\left\{1,3,5 ; \frac{7}{2}\right\}$	-	$S p(3)_{8}$	(112, $\frac{207}{2}$)
$\square \square_{(n s)}$	$\left(\left[5,1^{2}\right], \mathbb{Z}_{2}\right)$	$\left\{1,3,5 ; \frac{5}{2}\right\}$	-	$S p(2)_{7}$	(102, $\frac{193}{2}$)
$\square \square^{\square}$	$\left[5,1^{2}\right]$	$\left\{1,3,5 ; \frac{5}{2}\right\}$	$c_{5}^{(6)}=\left(a^{(3)}\right)^{2}$	$\begin{aligned} & S U(2)_{6} \times \\ & U(1) \\ & \hline \end{aligned}$	(94, $\frac{181}{2}$)
\square	$\left[3^{2}, 1\right]$	$\left\{1,3,4 ; \frac{5}{2}\right\}$	-	$S U(2){ }_{24}$	(88, $\frac{171}{2}$)
	$\left[3,2^{2}\right]$	$\left\{1,3,4 ; \frac{5}{2}\right\}$	$\begin{gathered} c_{3}^{(4)}=\left(a^{(2)}\right)^{2} \\ c_{4}^{(6)}=2 a^{(2)} \tilde{c}_{5 / 2} \end{gathered}$	$S U(2)_{8}$	($72, \frac{141}{2}$)
	$\left(\left[3,1^{4}\right], \mathbb{Z}_{2}\right)$	$\left\{1,3,3 ; \frac{3}{2}\right\}$	-	$S U(2)_{5}$	(69, $\frac{135}{2}$)
	$\left[3,1^{4}\right]$	$\left\{1,3,3 ; \frac{3}{2}\right\}$	$c_{3}^{(4)}=\left(a^{(2)}\right)^{2}$	none	($64, \frac{127}{2}$)
日	[17]	$\left\{1,1,1 ; \frac{1}{2}\right\}$	-	none	$\left(24, \frac{49}{2}\right)$

2.2.1.2 Irregular Punctures

A fairly lengthy list of irregular untwisted punctures, arising from the OPE of untwisted punctures, was discussed in [5]. Additional ones arise from considering the OPE of two \mathbb{Z}_{2}-twisted punctures. Moreover, twisted-sector irregular twisted punctures arise from the OPE of an untwisted puncture and
a \mathbb{Z}_{2}-twisted puncture. These two sets of new irregular punctures are listed in the Tables below.

Untwisted

Table 2.2: Untwisted irregular punctures

Irregular puncture	$\left(n_{h}, n_{v}\right)$	Flavour Symmetry
	$(112,118)$	$S p(2){ }_{0}$
$(\square \square \square, S U(2) \times S U(2))$	$(128,133)$	$S U(2)_{0} \times S U(2)_{0}$
$\left(\square \square \square \square{ }^{\square}\right.$	$(136,140)$	$S U(2)_{0} \times S U(2)_{0}$
$\left(\theta^{\square \square} \quad, S U(2)\right)$	$(176,179)$	$S U(2){ }_{0}$

As was the case in [5], there are three inequivalent embeddings of $S p(2) \hookrightarrow \operatorname{Spin}(8)$, exchanged by triality, under which one of the 8-dimensional representations decomposes as $5+3(1)$ while the other two decompose as $2(4)$. To indicate which we mean, we assign a green/red/blue colour to $\begin{aligned} & \square \\ & \square\end{aligned}$. The same remark applies to the three index-1 embeddings of $S U(2) \times S U(2)$ in the $S U(2)^{3}$ of \square which are exchanged by triality.

Twisted

Table 2．3： \mathbb{Z}_{2}－twisted irregular punctures

Irregular puncture	$\left(n_{h}, n_{v}\right)$	Flavour Symmetry
	（112，$\frac{223}{2}$ ）	$S p(2)_{4} \times S U(2)_{0}$
（口1］）$S p(2)$ ）	（112，$\frac{229}{2}$ ）	$S p(2){ }_{4}$
（■1口，$S U(2) \times S U(2)$ ）	（112，$\frac{237}{2}$ ）	$S U(2)_{0} \times S U(2)_{0}$
（■■ロ，$S U(2)$ ）	（112，$\frac{243}{2}$ ）	$S U(2){ }_{0}$
$(\square \square \square, S p(2)$ ）	（122，$\frac{243}{2}$ ）	$S p(2){ }_{5}$
$\left(\square^{\square \square}, S U(2) \times S U(2)\right)$	（122，$\frac{251}{2}$ ）	$S U(2)_{1} \times S U(2)_{1}$
$(\square \square \square, S U(2)$ ）	（122，$\frac{257}{2}$ ）	$S U(2){ }_{1}$
$\left(\square^{\square}, S U(2)\right)$	（130，$\frac{269}{2}$ ）	$S U(2){ }_{2}$
$(\#, \emptyset)$	（152，$\frac{315}{2}$ ）	none
$\left(\square^{\square}, S U(2)\right)$	$\left(155, \frac{315}{2}\right)$	$S U(2){ }_{3}$
(\boxminus, \emptyset)	$\left(155, \frac{315}{2}\right)$	none

2．2．1．3 Cylinders

In addition to the untwisted cylinders of［5］，we have

and the twisted sector adds the cylinders

2.2.2 Fixtures

2.2.2.1 Free-field Fixtures

Table 2.4: \mathbb{Z}_{2}-twisted free field fixtures

\#	Fixture	Number of hypers	Representation
1		0	empty
2		0	empty
3		5	$\frac{1}{2}(2,5)$
4		0	empty
5		0	empty
6		6	$\frac{1}{2}(2,6)$

Table 2.4: \mathbb{Z}_{2}-twisted free field fixtures

\#	Fixture	Number of hypers	Representation
7		14	$\frac{1}{2}(4,7)$
8		24	$\frac{1}{2}\left(6,8_{v}\right)$
9		0	empty
10		3	$\frac{1}{2}(3,2)$
11		0	empty
12		2	1 (2)

Table 2.4: \mathbb{Z}_{2}-twisted free field fixtures

\#	Fixture	Number of hypers	Representation
13		1	$\frac{1}{2}(1,2)$
14		10	$\frac{1}{2}(5,4)$
15		0	empty
16		8	$\frac{1}{2}(1,2,2 ; 4)$
17		2	$\frac{1}{2}(2,1)+\frac{1}{2}(1,2)$
18		0	empty

Table 2.4: \mathbb{Z}_{2}-twisted free field fixtures

\#	Fixture	Number of hypers	Representation
19		7	$\frac{1}{2}(2,5)+\frac{1}{2}(1,4)$
20		5	$\frac{1}{2}(2,1,5)$
21		0	empty
22		8	$\frac{1}{2}(2,2 ; 4,1)$
23		14	$\frac{1}{2}(3,4,1)+\frac{1}{2}(1,5,2)+\frac{1}{2}(3,1,2)$
24		16	$\frac{1}{2}\left(1,14^{\prime}\right)+\frac{1}{2}(3,6)$

2.2.2.2 Interacting Fixtures

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

\#	Fixture	$\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$	$\left(n_{h}, n_{v}\right)$	$G_{\text {global }}$
1		(0, 0, 2, 0, 0)	$(26,14)$	$\begin{aligned} & \operatorname{Spin}(7)_{8} \\ & \operatorname{SU}(2)_{5}^{2} \end{aligned} \quad \times$
2		(0, 0, 2, 0, 1)	$(45,25)$	$\begin{aligned} & \operatorname{Spin}(11)_{12} \quad \times \\ & \operatorname{SU}(2)_{5} \end{aligned}$
3		(0, 1, 2, 0, 1)	$(51,30)$	$\begin{array}{ll} \operatorname{Spin}(10)_{12} & \times \\ S U(2)_{6} & \times \\ S U(2)_{5} & \end{array}$
4		(0, 0, 2, 0, 2)	$(59,36)$	$\begin{aligned} & \operatorname{Spin}(9)_{12} \quad \times \\ & \operatorname{Sp}(2)_{7} \times \operatorname{SU}(2)_{5} \end{aligned}$

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

$\#$	Fixture	$\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$	$\left(n_{h}, n_{v}\right)$	$G_{\text {global }}$

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

\#	Fixture	$\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$	$\left(n_{h}, n_{v}\right)$	$G_{\text {global }}$
9	$\left(\begin{array}{c}\text { 丑 } \\ \text { 田 } \\ \#\end{array}\right)$	$(0,1,1,0,0)$	$(24,12)$	$S p(4){ }_{6} \times S U(2){ }_{8}$
10		(0, 0, 1, 0, 1)	$(31,18)$	$\begin{aligned} & S U(4)_{12} \\ & S U(2)_{7} \times U(1) \end{aligned}$
11		(0, 0, 2, 0, 1)	$(40,25)$	$\begin{array}{ll} S U(4)_{12} & \times \\ S p(2)_{8} \end{array}$
12		(0, 0, 2, 0, 1)	$(40,25)$	$\begin{aligned} & S U(2)_{24}^{2} \quad \times \\ & S p(2)_{8} \end{aligned}$

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

\#	Fixture	$\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$	$\left(n_{h}, n_{v}\right)$	$G_{\text {global }}$
13	田 (1) 田	(0, 0, 3, 0, 1)	$(48,32)$	$\begin{aligned} & S U(2)_{24}^{2} \\ & S U(2)_{8}^{3} \end{aligned}$
14		(0, 0, 3, 0, 2)	$(64,43)$	$\begin{aligned} & \operatorname{Spin}(8)_{12} \\ & \left(S U(2)_{24}\right)^{2} \end{aligned}$
15		(0, 2, 1, 0, 0)	$(30,17)$	$\begin{aligned} & S p(2)_{6}^{2} \\ & S U(2)_{6} \times U(1) \end{aligned}$
16		(0, 1, 1, 0, 1)	$(37,23)$	$\begin{array}{ll} S p(2)_{12} & \text { × } \\ S U(2)_{7} & \text { × } \\ S U(2)_{6} & \\ \hline \end{array}$

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

\#	Fixture	$\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$	$\left(n_{h}, n_{v}\right)$	$G_{\text {global }}$
17		(0, 1, 2, 0, 1)	$(46,30)$	$\begin{array}{lr} S p(2)_{12} & \times \\ S p(2)_{8} \times S U(2)_{6} \end{array}$
18		(0, 1, 2, 0, 1)	$(46,30)$	$\begin{aligned} & S p(2)_{8} \\ & S U(2)_{24} \\ & S U(2)_{6} \times U(1) \end{aligned}$
19		(0, 1, 3, 0, 1)	$(54,37)$	$\begin{aligned} & S U(2)_{24} \\ & S U(2)_{8}^{3} \\ & S U(2)_{6} \times U(1) \end{aligned}$
20		(0, 1, 3, 0, 2)	$(70,48)$	$\begin{aligned} & \operatorname{Spin}(8)_{12} \\ & S U(2)_{24} \\ & S U(2)_{6} \times U(1) \end{aligned}$

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

$\#$	Fixture	$\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$	$\left(n_{h}, n_{v}\right)$	$G_{\text {global }}$

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

\#	Fixture	$\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$	$\left(n_{h}, n_{v}\right)$	$G_{\text {global }}$
25	田 $\begin{gathered}\text { 田 } \\ \text { \# }\end{gathered}$	$(0,0,3,0,2)$	$(62,43)$	$\begin{array}{ll} S p(2)_{7} & \times \\ S U(2)_{24} & \times \\ S U(2)_{8}^{3} & \end{array}$
26		(0, 0, 3, 0, 3)	$(78,54)$	$\begin{array}{ll} \operatorname{Spin}(8)_{12} & \times \\ \operatorname{Sp}(2)_{7} & \times \\ \operatorname{SU}(2)_{24} & \end{array}$
27		$(0,0,1,0,0)$	$(24,7)$	$\left(E_{7}\right)_{8}$
28		(0, 1, 2, 0, 1)	$(48,30)$	$\begin{array}{lr} S p(3)_{8} & \times \\ S U(2)_{24} \times U(1)^{2} \end{array}$

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

| $\#$ | Fixture | $\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$ | $\left(n_{h}, n_{v}\right)$ | $G_{\text {global }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

\#	Fixture	$\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$	$\left(n_{h}, n_{v}\right)$	$G_{\text {global }}$
33	(田	(0, $0,4,0,3)$	$(88,61)$	$\begin{array}{ll} \operatorname{Spin}(8)_{12} & \times \\ \operatorname{Sp}(3)_{8} & \times \\ \operatorname{SU}(2)_{24} & \end{array}$
34		($0,3,1,0,0)$	$(36,22)$	$S U(2){ }_{6}^{6} \times U(1)$
35		(0, 2, 1, 0, 1)	$(43,28)$	$\begin{array}{ll} S U(2)_{12}^{2} & \times \\ S U(2)_{6}^{2} & \times \\ S U(2)_{7} & \end{array}$
36		(0, 2, 2, 0, 1)	$(52,35)$	$\begin{array}{ll} S p(2)_{8} & \times \\ S U(2)_{12}^{2} & \times \\ S U(2)_{6}^{2} & \end{array}$

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

\#	Fixture	$\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$	$\left(n_{h}, n_{v}\right)$	$G_{\text {global }}$
37		(0, 2, 2, 0, 1)	$(52,35)$	$\begin{array}{lr} S p(2)_{8} \quad \times \\ S U(2)_{6}^{2} \times U(1)^{2} \end{array}$
38		(0, 2, 3, 0, 1)	$(60,42)$	$\begin{array}{lr} S U(2)_{8}^{3} & \times \\ S U(2)_{6}^{2} \times U(1)^{2} \end{array}$
39		(0, 2, 3, 0, 2)	$(76,53)$	$\begin{aligned} & \operatorname{Spin}(8)_{12} \quad \times \\ & \operatorname{SU}(2)_{6}^{2} \times U(1)^{2} \end{aligned}$
40		(0, 2, 1, 0, 1)	$(44,28)$	$\begin{aligned} & S p(2)_{7} \\ & S U(2)_{12}^{2} \\ & S U(2)_{6} \times U(1) \\ & \hline \end{aligned}$

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

| $\#$ | Fixture | $\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$ | $\left(n_{h}, n_{v}\right)$ | $G_{\text {global }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

\#	Fixture	$\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$	$\left(n_{h}, n_{v}\right)$	$G_{\text {global }}$
45		(0, 1, 3, 0, 3)	$(84,59)$	$\begin{aligned} & \operatorname{Spin}(8)_{12} \\ & S p(2)_{7} \\ & S U(2)_{6} \times U(1) \end{aligned}$
46		(0, 1, 1, 0, 0)	$(30,12)$	$\begin{array}{ll} S U(2)_{6} & \times \\ S U(8)_{8} \end{array}$
47		(0, 2, 2, 0, 1)	$(54,35)$	$\begin{array}{lr} S p(3)_{8} & \times \\ S U(2)_{6} \times U(1)^{3} \end{array}$
48		(0, 1, 2, 0, 2)	$(61,41)$	$\begin{array}{lr} S p(3)_{8} & \times \\ S U(2)_{7} & \times \\ S U(2)_{6} \times U(1) \end{array}$

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

| $\#$ | Fixture | $\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$ | $\left(n_{h}, n_{v}\right)$ | $G_{\text {global }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

$\#$	Fixture	$\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$	$\left(n_{h}, n_{v}\right)$	$G_{\text {global }}$

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

\#	Fixture	$\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$	$\left(n_{h}, n_{v}\right)$	$G_{\text {global }}$
57		(0, $0,3,0,3)$	$(76,54)$	$S p(2){ }_{7}^{2} \times S U(2)_{8}^{3}$
58		(0, 0, 3, 0, 4)	$(92,65)$	$\begin{aligned} & \operatorname{Spin}(8)_{12} \\ & \operatorname{Sp}(2)_{7}^{2} \end{aligned}$
59		(0, 0, 1, 0, 1)	$(38,18)$	$S p(4)_{8} \times S p(2)_{7}$
60		(0, 1, 2, 0, 2)	$(62,41)$	$\begin{array}{lr} \operatorname{Sp}(3)_{8} & \times \\ {S p p(2)_{7}} \times U(1)^{2} \end{array}$

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

\#	Fixture	$\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$	$\left(n_{h}, n_{v}\right)$	$G_{\text {global }}$
61		(0, 0, 2, 0, 3)	$(69,47)$	$\begin{array}{lr} S p(3)_{8} & \times \\ S p(2)_{7} \times S U(2)_{7} \end{array}$
62		(0, 0, 3, 0, 3)	$(78,54)$	$\begin{array}{lc} S p(3)_{8} & \times \\ S p(2)_{8} \times & \times p(2)_{7} \end{array}$
63		(0, 0, 3, 0, 3)	$(78,54)$	$\begin{array}{lc} S p(3)_{8} & \times \\ S p(2)_{8} \times S p(2)_{7} \end{array}$
64		(0, 0, 4, 0, 3)	$(86,61)$	$\begin{array}{lc} S p(3)_{8} & \times \\ S p(2)_{7} \times S U(2)_{8}^{3} \end{array}$

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

\#	Fixture	$\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$	$\left(n_{h}, n_{v}\right)$	$G_{\text {global }}$
65		(0, 0, 4, 0, 4)	$(102,72)$	$\begin{aligned} & \operatorname{Spin}(8)_{12} \\ & S p(3)_{8} \times S p(2)_{7} \end{aligned}$
66		(0, 0, 1, 0, 1)	$(40,18)$	$S p(6)_{8}$
67		(0, 0, 2, 0, 1)	$(48,25)$	$S p(6)_{8} \times S U(2)_{8}$
68		(0, 0, 2, 0, 1)	$(48,25)$	$S p(3){ }_{8}^{2} \times S U(2)_{8}$

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

\#	Fixture	$\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$	$\left(n_{h}, n_{v}\right)$	$G_{\text {global }}$
69		(0, 1, 3, 0, 2)	$(72,48)$	$S p(3)_{8}^{2} \times U(1)^{2}$
70		(0, 0, 3, 0, 3)	$(79,54)$	$S p(3){ }_{8}^{2} \times S U(2)_{7}$
71		(0, 0, 4, 0, 3)	$(88,61)$	$S p(3)_{8}^{2} \times S p(2){ }_{8}$
72		(0, 0, 4, 0, 3)	$(88,61)$	$S p(3)_{8}^{2} \times S p(2)_{8}$

Table 2.5: \mathbb{Z}_{2}-twisted interacting fixtures

\#	Fixture	$\left(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)$	$\left(n_{h}, n_{v}\right)$	$G_{\text {global }}$
73		(0, 0, 5, 0, 3)	$(96,68)$	$S p(3){ }_{8}^{2} \times S U(2)_{8}^{3}$
74		(0, 0, 5, 0, 4)	$(112,79)$	$\begin{aligned} & \operatorname{Spin}(8)_{12} \quad \times \\ & \operatorname{Sp}(3)_{8}^{2} \end{aligned}$

2.2.2.3 Mixed Fixtures

Three new SCFTs make their appearance in the list of "mixed" fixtures (accompanied by some number of free hypermultiplets).

- The $S p(4)_{7} \times S U(2)_{5}$ SCFT has Coulomb branch dimensions $\left(d_{2}, \ldots, d_{6}\right)=$ $(0,0,1,0,1)$ and $\left(n_{h}, n_{v}\right)=(33,18)$.
- The $S p(5)_{7} \times S U(2)_{8}$ SCFT has Coulomb branch dimensions $\left(d_{2}, \ldots, d_{6}\right)=$ $(0,0,1,0,1)$ and $\left(n_{h}, n_{v}\right)=(35,18)$.
- The $S p(3)_{7} \times S p(2)_{8} \times S U(2)_{5}$ SCFT has Coulomb branch dimensions $\left(d_{2}, \ldots, d_{6}\right)=(0,0,2,0,1)$ and $\left(n_{h}, n_{v}\right)=(42,25)$.

The remaining SCFTs in our list of mixed fixtures include the venerable $\left(E_{6}\right)_{6}$ theory, the $S p(5)_{7}$ theory (which appeared in the untwisted D_{4} theory [5]), two theories $\left(S p(3)_{5} \times S U(2)_{8}\right.$ and $\left.\operatorname{Spin}(7)_{8} \times S U(2)_{5}^{2}\right)$ which appear above (see also [4]) and three more which appeared in the twisted A_{3} theory [4].

Table 2.6: \mathbb{Z}_{2}-twisted mixed fixtures

\#	Fixture	Theory
1		$\frac{1}{2}(1,3,4)+S p(3)_{5} \times S U(2)_{8}$
2		$\frac{1}{2}(1,3 ; 2,1,1)+S U(2)_{5}^{2} \times \operatorname{Spin}(7)_{8}$
3		$(1,1,4)+S U(2)_{5} \times S p(3)_{6} \times U(1)$
4		$(1,1 ; 2,1,1)+S U(2)_{5} \times S U(4)_{8} \times S p(2)_{6}$
5		$\frac{1}{2}(1,1,4)+S p(4)_{7} \times S U(2)_{5}$

Table 2.6: \mathbb{Z}_{2}-twisted mixed fixtures

\#	Fixture	Theory
6		$\frac{1}{2}(1,1 ; 2,1,1)+S p(3)_{7} \times S p(2)_{8} \times S U(2)_{5}$
7		$(1,6)+S U(2)_{5} \times S p(3)_{6} \times U(1)$
8		$\frac{1}{2}(1,6,1)+S p(4)_{7} \times S U(2)_{5}$
9		$\frac{1}{2}(1,6,1)+S p(3)_{7} \times S p(2)_{8} \times S U(2)_{5}$
10		$\frac{1}{2}(3,6,1)+S p(3)_{5} \times S U(2)_{8}$
11		$(1,1,2)+\frac{1}{2}(1,4,1)+\left(E_{6}\right)_{6}$

Table 2.6: \mathbb{Z}_{2}-twisted mixed fixtures

\#	Fixture	Theory
12		$(1,6)+\left(E_{6}\right)_{6}$
13		$(1,6,1)+S p(4)_{6} \times S U(2)_{8}$
14		$\frac{1}{2}(1,6)+S p(5)_{7}$
15		$\frac{1}{2}(1,6,1)+S p(5)_{7} \times S U(2)_{8}$
16		$\frac{1}{2}(1,1,2)+S p(5)_{7}$

2.2.2.4 Gauge Theory Fixtures

For each gauge theory fixture, we list the gauge group, G, and the representation content of the hypermultiplets, $\left(R_{F_{1}}, R_{F_{2}}, R_{F_{3}} ; R_{G}\right)$. Here, R_{G}
is the representation of the gauge group and $R_{F_{i}}$ is the representation of the semisimple part of the flavour symmetry of the $i^{\text {th }}$ puncture (where we work counterclockwise from the upper-left, and omit F_{i} if it is abelian or empty).

Table 2.7: \mathbb{Z}_{2}-twisted gauge theory fixtures

$\#$	Fixture	$\left(d_{2}, \ldots, d_{6}\right)$	G	\# Hypers	Representation

Table 2.7: \mathbb{Z}_{2}-twisted gauge theory fixtures

$\#$	Fixture	$\left(d_{2}, \ldots, d_{6}\right)$	G	\# Hypers	Representation

Table 2.7: \mathbb{Z}_{2}-twisted gauge theory fixtures

$\#$	Fixture	$\left(d_{2}, \ldots, d_{6}\right)$	G	\# Hypers	Representation

Table 2.7: \mathbb{Z}_{2}-twisted gauge theory fixtures

\#	Fixture	$\left(d_{2}, \ldots, d_{6}\right)$	G	\# Hypers	Representation
12		(1, 0, 1, 0, 2)	$\operatorname{Spin}(7)$	54	$\begin{aligned} & \frac{1}{2}(4,1 ; 7) \\ & +\left(E_{8}\right)_{12} \end{aligned}$
13		(1, 1, 0, 0, 0)	$S U(3)$	24	$\begin{aligned} & (6 ; 3) \\ & +(6 ; 1) \end{aligned}$
14		(1, 0, 0, 0, 1)	G_{2}	31	$\begin{aligned} & \frac{1}{2}(1,2 ; 7) \\ & \quad+\frac{1}{2}(6,1 ; 7) \\ & +\frac{1}{2}(6,1 ; 1) \end{aligned}$
15		(1, 0, 1, 0, 1)	$\operatorname{Spin}(7)$	40	$\begin{aligned} & \frac{1}{2}(6,1 ; 7) \\ & \quad+\frac{1}{2}(1,4 ; 8) \\ & +\frac{1}{2}(6,1 ; 1) \end{aligned}$

Table 2.7: \mathbb{Z}_{2}-twisted gauge theory fixtures

\#	Fixture	$\left(d_{2}, \ldots, d_{6}\right)$	G	\# Hypers	Representation
16		(1, 0, 1, 0, 1)	$\operatorname{Spin}(7)$	40	$\begin{aligned} & \frac{1}{2}(6,1 ; 8) \\ & +\frac{1}{2}(1,4 ; 8) \end{aligned}$
17		(1, 0, 2, 0, 1)	$\operatorname{Spin}(8)$	48	$\begin{aligned} & \frac{1}{2}\left(6 ; 1,1,1 ; 8_{v}\right) \\ & +\frac{1}{2}\left(1 ; 2,1,1 ; 8_{v}\right) \\ & +\frac{1}{2}\left(1 ; 1,2,1 ; 8_{s}\right) \\ & +\frac{1}{2}\left(1 ; 1,1,2 ; 8_{c}\right) \end{aligned}$
18		(1, $0,2,0,2)$	$\operatorname{Spin}(8)$	64	$\begin{aligned} & \frac{1}{2}(6,1 ; 8) \\ & +\left(E_{8}\right)_{12} \end{aligned}$
19		(1, 0, 0, 0, 0)	$S U(2)$	10	$\begin{aligned} & \frac{1}{2}(2,4 ; 2) \\ & \quad+\frac{1}{2}(1,4 ; 1) \end{aligned}$

Table 2.7: \mathbb{Z}_{2}-twisted gauge theory fixtures

$\#$	Fixture	$\left(d_{2}, \ldots, d_{6}\right)$	G	\# Hypers	Representation

Table 2.7: \mathbb{Z}_{2}-twisted gauge theory fixtures

$\#$	Fixture	$\left(d_{2}, \ldots, d_{6}\right)$	G	\# Hypers	Representation

Table 2.7: \mathbb{Z}_{2}-twisted gauge theory fixtures

$\#$	Fixture	$\left(d_{2}, \ldots, d_{6}\right)$	G	\# Hypers	Representation

Table 2.7: \mathbb{Z}_{2}-twisted gauge theory fixtures

$\#$	Fixture	$\left(d_{2}, \ldots, d_{6}\right)$	G	\# Hypers	Representation

Table 2.7: \mathbb{Z}_{2}-twisted gauge theory fixtures

$\#$	Fixture	$\left(d_{2}, \ldots, d_{6}\right)$	G	\# Hypers	Representation

Table 2.7: \mathbb{Z}_{2}-twisted gauge theory fixtures

$\#$	Fixture	$\left(d_{2}, \ldots, d_{6}\right)$	G	\# Hypers	Representation

Table 2.7: \mathbb{Z}_{2}-twisted gauge theory fixtures

\#	Fixture	$\left(d_{2}, \ldots, d_{6}\right)$	G	\# Hypers	Representation
44		(1, $0,3,0,2)$	$\operatorname{Spin}(8)$	72	$\begin{aligned} & \frac{1}{2}\left(1,6,1 ; 8_{v}\right) \\ & +\operatorname{Spin}(16)_{12} \\ & \times S U(2)_{8} \end{aligned}$

2.3 Applications

2.3.1 $\operatorname{Spin}(2 N)$ and $\operatorname{Sp}(N-1)$ Gauge Theory

For general $N, S O(2 N)$ gauge theory with $2(N-1)$ fundamental hypermultiplets, and $S p(N-1)$ gauge theory with $2 N$ fundamentals, are superconformal. Their construction is well-understood from the orientifold perspective [28, 229, 30, 31, 32]. In particular, the (2,0) theory of type D_{N} is the theory on $2 N$ coincident M5-branes at an orientifold singularity and, in that realization of these theories [11], the key building block is the fixture consisting of a twisted-sector minimal puncture, a twisted-sector full puncture and an untwisted-sector full puncture,

which is a free-field fixture transforming as a bifundamental half-hypermultiplet of $S p(N-1) \times S O(2 N)$. Taking two of these fixtures and connecting them with a $\stackrel{\left[2^{2 N}\right]}{\longleftrightarrow} \stackrel{S O(2 N)}{ } \mathbf{O}^{\left[12^{2 N}\right]}$ cylinder yields the aformentioned $S O(2 N)$ gauge theory. Connecting them, instead, with a $\stackrel{\left[1^{2(N-1)]}\right.}{\longleftrightarrow} S p(N-1)^{\left[1^{2(N-1)}\right]} \mathbf{O}$ cylinder yields the $S p(N-1)$ gauge theory.

Here, we read off the S-dual strong-coupling descriptions. In the $S O(2 N)$ case,

we have an $S U(2)$ gauging of the $S U(2)_{8} \times S p(2(N-1))_{2 N}$ SCFT. In the $S p(2(N-1))$ case,

we have an $S U(2)$ gauging of the $S U(2)_{8} \times \operatorname{Spin}(4 N)_{4(N-1)}$ SCFT.
For completeness, let us note that the other $S p(N)$ gauge theory which is superconformal for arbitrary $N>1$, namely the one with one hypermultiplet in the traceless antisymmetric tensor and four hypermultiplets in the fundamental representation, was already realized (with the addition of a single free hypermultiplet) in the untwisted sector of the $A_{2 N-1}$ theory [3]

For this theory, by contrast, all the degeneration limits are (isomorphic) weaklycoupled Lagrangian field theories. The flavour symmetry group for this family of field theories is $F=S U(2)_{2 N^{2}-N-1} \times \operatorname{Spin}(8)_{2 N}$. As is the case for $S U(2)$, $N_{f}=4$, the S-duality, which acts as an S_{3} symmetry on $\mathcal{M}_{0,4}$, acts as outer automorphisms of the $\operatorname{Spin}(8)$ flavour symmetry. Moreover, the Seiberg-Witten curve takes the absurdly simple form

$$
0=\lambda^{2 N}+\sum_{k=1}^{N} u_{2 k} \eta^{k} \lambda^{2(N-k)}
$$

where the quadratic differential

$$
\eta(z)=\frac{z_{13} z_{24}(d z)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)}
$$

2.3.2 $\operatorname{Spin}(8), \operatorname{Spin}(7)$ and $S p(3)$ Gauge Theory

2.3.2.1 $\operatorname{Spin}(8)$ Gauge Theory

$\operatorname{Spin}(8)$ gauge theory, with matter in the $n_{v}\left(8_{v}\right)+n_{s}\left(8_{s}\right)+n_{c}\left(8_{c}\right)$, is superconformal for $n_{v}+n_{s}+n_{c}=6$. Up to permutations, related to triality, the list of possible values for n_{v}, n_{s}, n_{c} is quite short and we discussed most of them in [5]. There were, however, two cases which were not realizable with only untwisted sector punctures.

One is $n_{v}=6$, which is a special case of the construction in 4.4.1. The other case is $n_{v}=5, n_{s}=1$ (which, as we shall presently see, lies in the same moduli space as $n_{v}=5, n_{c}=1$).

Consider the 4-punctured sphere

This is a weakly-coupled $\operatorname{Spin}(8)$ gauge theory with matter in either the $5\left(8_{v}\right)+$ $1\left(8_{s}\right)$ or the $5\left(8_{v}\right)+1\left(8_{c}\right)$. The two realizations are exchanged by dragging the

Puncture around one of the twisted-sector punctures and returning it to its original location.

The strong coupling limits are $S U(2)$ gauge theories

(where we gauge an $S U(2)$ subgroup of $S p(6)_{8}$) and

where the $S U(2)_{5}$ is gauged.

2.3.2.2 $\operatorname{Spin}(7)$ Gauge Theory

Similar to the case of $\operatorname{Spin}(8)$ gauge theory, realizations of most cases of conformally-invariant $\operatorname{Spin}(7)$ gauge theory were already discussed in [5]. Here we show realizations of the missing two cases.

5(7)
With the addition of three free hypermultiplets, we have a realization of the theory with 5 hypermultiplets in the vector representation as

The S-dual theory is an $S U(2)$ gauging of the $S p(5)_{7} \times S U(2)_{8}$ SCFT, plus 3 free hypermultiplets.

$$
1(8)+4(7)
$$

The $\operatorname{Spin}(7)$ gauge theory, with one spinor and four vectors, can be realized in a couple of different ways. With the addition of three free hypermultiplets, we have

There are two S-dual descriptions. Both are $S U(2)$ gauge theories; one with
a half-hypermultiplet in the fundamental, gauging an $S U(2)$ subgroup of the $S p(5)$ symmetry of the $S p(5)_{7} \times S U(2)_{8}$ SCFT,

the other with three half-hypermultiplets in the fundamental, gauging the $S U(2)_{5}$ of the $S p(4)_{7} \times S U(2)_{5}$ SCFT

Another realization, with the addition of only two free hypermultiplets, is

where the S-dual theories are

and

2.3.2.3 $S p(3)$ Gauge Theory

In this section, we will consider various cases of $S p(3)$ gauge theory, with vanished β-function. We have already discussed the theory with $8(6)$ and the theory with $1(14)+4(6)$ (special cases of the discussion of 4.4.1).

The 14^{\prime}, the traceless 3 -index antisymmetric tensor representation, is pseudoreal and has index $\ell=5$. So we can replace five fundamental (half)hypermultiplets with a 14^{\prime} (half-)hypermultiplet.
$\underline{\frac{11}{2}(6)+\frac{1}{2}\left(14^{\prime}\right)}$ With one half-hypermultiplet in the 14^{\prime}, we have

At strong coupling, we have an $S p(2)$ gauging of the $\left(E_{8}\right)_{12}$ SCFT

The third boundary point involves a gauge-theory fixture

$3(6)+1\left(14^{\prime}\right)$ With two half- or one full-hypermultiplet in the 14^{\prime}, we have

whose S-dual is an $S U(2)$ gauging of the $S U(4)_{12} \times S U(2)_{7} \times U(1)$ SCFT, with an additional half-hypermultiplet in the fundamental:

Because, to our knowledge, the Seiberg-Witten solution to this theory has not been studied in the literature, let us present some of the details, here. Setting the locations of the punctures on $C=\mathbb{C P}^{1}$ as in 2.13), the Seiberg-Witten curve is the locus in $T^{*} C$ given by the equation

$$
\begin{equation*}
0=\lambda^{8}+\sum_{k=1}^{3} \lambda^{8-2 k} \phi_{2 k}(z)+(\tilde{\phi}(z))^{2} \tag{2.14}
\end{equation*}
$$

where $\lambda=y d z$ is the Seiberg-Witten differential. In the case at hand,

$$
\begin{aligned}
\phi_{2}(z) & =\frac{u_{2} z_{14} z_{23}(d z)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
\phi_{4}(z) & =\frac{z_{14} z_{23}\left[\frac{1}{4} u_{2}^{2}\left(z-z_{1}\right)\left(z-z_{2}\right) z_{14} z_{23}+u_{4}\left(z-z_{3}\right)\left(z-z_{4}\right) z_{12}^{2}\right](d z)^{4}}{\left(z-z_{1}\right)^{3}\left(z-z_{2}\right)^{3}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{2}} \\
\phi_{6}(z) & =\frac{u_{6} z_{14}^{2} z_{23}^{2} z_{12}^{2}(d z)^{6}}{\left(z-z_{1}\right)^{4}\left(z-z_{2}\right)^{4}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{2}} \\
\tilde{\phi}(z) & =0
\end{aligned}
$$

Setting $\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \rightarrow(0, \infty, x, 1)$, 2.14) simplifies to

$$
\begin{align*}
0 & =y^{2}\left[y^{6}+y^{4} \frac{u_{2}}{z(z-1)(z-x)}\right. \\
& \left.+y^{2} \frac{1}{z(z-1)(z-x)}\left(\frac{\frac{1}{4} u_{2}^{2}}{(z-1)(z-x)}+\frac{u_{4}}{z^{2}}\right)+\frac{u_{6}}{z^{4}(z-1)^{2}(z-x)^{2}}\right] \tag{2.15}
\end{align*}
$$

The S-duality group of this theory is $\Gamma(2)$, and we have $f(\tau)=x$.
Repeating the analysis for 2.12 , we find the Seiberg-Witten curve for $S p(3)$ with $\frac{11}{2}(6)+\frac{1}{2}\left(14^{\prime}\right)$ to be

$$
\begin{align*}
0=y^{2} & {\left[y^{6}+y^{4} \frac{u_{2}}{z(z-1)(z-x)}\right.} \\
& \left.+y^{2} \frac{1}{z(z-1)(z-x)^{3}}\left(\frac{1}{4} u_{2}^{2} \frac{(x-1)}{(z-1)}+u_{4}\right)+\frac{u_{6}(x-1)}{z(z-1)^{2}(z-x)^{5}}\right] \tag{2.16}
\end{align*}
$$

In this case, the moduli space is the branched double-cover of $\mathcal{M}_{0,4}$, parametrized by $w^{2}=x$. The gauge coupling is

$$
f(\tau)=\frac{2 w}{1+w}
$$

In particular, the S-duality group is the $\Gamma_{0}(2)$, generated by

$$
T: \tau \mapsto \tau+1, \quad S T^{2} S: \tau \mapsto \frac{\tau}{1-2 \tau}
$$

Here, T acts as the deck transformation, $w \mapsto-w$, and $S T^{2} S$ acts trivially on the w-plane. The theory at $f(\tau)=0$ is the Lagrangian field theory; at $f(\tau)=1, \infty$ (which project to $x=1$) we have the $S p(2)$ gauging of the $\left(E_{8}\right)_{12}$ SCFT. The gauge theory fixture, at $x=\infty$, is the theory at the \mathbb{Z}_{2}-invariant interior point of the moduli space, $f(\tau)=2$.

Other cases The remaining cases of $S p(3)$ with vanishing β-function have matter in the

- 2(14)
- $\frac{3}{2}(6)+1(14)+\frac{1}{2}\left(14^{\prime}\right)$
- $\frac{1}{2}(6)+\frac{3}{2}\left(14^{\prime}\right)$

Unfortunately, we don't know how to realize these theories as compactifications from 6 dimensions. Presumably, the methods of [33] can be applied, to recover these cases as well.

2.3.3 Higher Genus

In almost all of the discussion in this paper, we have taken C to be genus-zero. We should close with at least one example of higher-genus, so that we can see the effect of twists around handles of C.

Consider a genus-one curve, with one minimal puncture, in the D_{4} theory.

$H^{1}\left(T^{2}-p, \mathbb{Z}_{2}\right)=\left(\mathbb{Z}_{2}\right)^{2}$. Under the action of the modular group, $H^{1}\left(T^{2}-p, \mathbb{Z}_{2}\right)$ breaks up into two orbits: the zero orbit (the "untwisted theory") and the nonzero orbit ("the twisted theory").

The untwisted theory is a $\operatorname{Spin}(8)$ gauging of the $\left(E_{8}\right)_{12}$ SCFT. There are three inequivalent index-2 embeddings of $\operatorname{Spin}(8)$ in E_{8}. They can be characterized by how the 248 decomposes (up to outer automorphisms of $\operatorname{Spin}(8)$). Either

$$
\begin{equation*}
248=3(1)+5(28)+35_{v}+35_{s}+35_{c} \tag{2.17a}
\end{equation*}
$$

or

$$
\begin{equation*}
248=1+2\left(8_{v}\right)+3(28)+35_{v}+2\left(56_{v}\right) \tag{2.17b}
\end{equation*}
$$

or

$$
\begin{equation*}
248=8_{v}+8_{s}+8_{c}+2(28)+56_{v}+56_{s}+56_{c} \tag{2.17c}
\end{equation*}
$$

The untwisted theory corresponds to (2.17a). The twisted theory, depending on the S-duality frame chosen, corresponds either to a Spin(8) gauging
of the $\left(E_{8}\right)_{12}$ SCFT using the embedding 2.17b, or to an $S p(3)$ gauging of the $S p(6)_{8}$ SCFT.

For the untwisted theory, the gauge theory moduli space is the fundamental domain for $\operatorname{PSL}(2, \mathbb{Z})$ in the UHP, and τ is the modular parameter of the torus. For the twisted theory, the moduli space of the gauge theory is the moduli space of pairs (C, γ), where γ is a nonzero element of $H^{1}\left(C, \mathbb{Z}_{2}\right)$. This is the fundamental domain of $\Gamma_{0}(2)$, as discussed in $\$ 2.1 .3$.

Chapter 3

$\operatorname{Spin}(n)$ Gauge Theories with Spinors

3.1 Introduction

$\mathcal{N}=2$ supersymmetric $\operatorname{Spin}(n)$ gauge theory, with $n-2$ hypermultiplets in the vector representation, is superconformal for any $n>2$, and the Seiberg-Witten solutions are known from the mid 1990's [34, 35]. Replacing some number of vectors by hypermultiplets in spinor representations is only possible for sufficiently low n. The corresponding Seiberg-Witten solutions do not seem to be known ${ }^{1}$. For $S \operatorname{pin}(5) \simeq S p(2)$ and $\operatorname{Spin}(6) \simeq S U(4)$, the solutions were presented in [3, 4]. The solutions to $\operatorname{Spin}(7), \operatorname{Spin}(8)$ appeared in our previous papers [5, 17] (see [33] for an alternative formulation). As a further application of [5, 17], we will discuss $\operatorname{Spin}(n)$ gauge theories for $n=9,10, \ldots, 14$, with matter content such that $\beta=0$. These are all of the remaining cases where one can have matter in the spinor representation. For $n>14$, only matter in the vector representation is compatible with $\beta \leq 0{ }^{2}$.

These 4D gauge theories can be obtained by compactifying [1, 6] a 6D

[^10]$(2,0)$ theory of type D_{N} on a 4-punctured sphere, where the punctures are labeled by nilpotent orbits in \mathfrak{d}_{N} (or in \mathfrak{c}_{N-1} for twisted-sector punctures) [5, 7, 17, 11, 18]. When the 4 -punctured sphere degenerates into a pair of 3 -punctured spheres ("fixtures"), connected by a long thin cylinder, the gauge theory description is weakly-coupled. Fixtures with only hypermultiplets in the vector representation are, necessarily, twisted. With at least one (half)hypermultiplet in the spinor representation, we can find an untwisted fixture and - wherever possible - we prefer to work in the untwisted theory.

From these realizations as 4-punctured spheres, we construct the corresponding Seiberg-Witten geometries, and discuss the strong-coupling S-dual realizations [2] of the gauge theories.

3.2 Seiberg-Witten Geometry

3.2.1 Seiberg-Witten curve

In the D_{N} theory, the Seiberg-Witten curve, $\Sigma \subset \operatorname{tot}\left(K_{C}\right)$, is the spectral curve (in the vector representation) for D_{N}. In other words, it can be written as the locus

$$
\begin{equation*}
0=\lambda^{2 N}+\phi_{2}(z) \lambda^{2 N-2}+\phi_{4}(z) \lambda^{2 N-4}+\cdots+\phi_{2 N-2}(z) \lambda^{2}+\tilde{\phi}(z)^{2} \tag{3.1}
\end{equation*}
$$

where the Seiberg-Witten differential, $\lambda=y d z$, is the tautological 1-form on $K_{C} . \Sigma$ is a branched cover of C, of rather high genus. But it admits an obvious involution $\iota: \lambda \rightarrow-\lambda$. The quotient by this involution is a curve \tilde{C}, also a
branched cover of C. One find s^{3} that $g(\Sigma)-g(\tilde{C})=N$. The SW solution is obtained by computing the periods of λ over the cycles which are anti-invariant under ι. Said differently, the fibers of the Hitchin integrable system are the Prym variety for $\Sigma \rightarrow \tilde{C}$.

For the $\operatorname{Spin}(2 N)$ gauge theories considered below, the above description is completely adequate, as $\tilde{\phi}(z)$ is nowhere-vanishing on C. For the $\operatorname{Spin}(2 N-1)$ gauge theories, $\tilde{\phi}(z)$ vanishes identically. So Σ is reducible

$$
0=\lambda^{2}\left(\lambda^{2 N-2}+\phi_{2}(z) \lambda^{2 N-4}+\phi_{4}(z) \lambda^{2 N-6}+\cdots+\phi_{2 N-2}(z)\right) .
$$

Let Σ_{0} be the component

$$
0=\lambda^{2 N-2}+\phi_{2}(z) \lambda^{2 N-4}+\phi_{4}(z) \lambda^{2 N-6}+\cdots+\phi_{2 N-2}(z) .
$$

As before, Σ_{0} admits an involution $\iota: \lambda \rightarrow-\lambda$, with quotient $\tilde{C}_{0}=\Sigma_{0} / \iota$, and the SW solution, for the $\operatorname{Spin}(2 N-1)$ gauge theory, is given by the periods of λ on the anti-invariant cycles. There is one subtlety which did not occur in the previous case: $\phi_{2 N-2}(z)$ typically does have zeroes on C, which means that Σ_{0} is slightly singular. It has ordinary double-points over the zeroes of $\phi_{2 N-2}(z)$. As in Hitchin's original paper [42], we actually work over

[^11]the resolutions $\sqrt{4}^{4}, \hat{\Sigma}_{0} \rightarrow \tilde{C}_{0}$, whose Prym variety has the desired dimension, $g\left(\hat{\Sigma}_{0}\right)-g\left(\tilde{C}_{0}\right)=N-1$.

3.2.2 Calabi-Yau geometry

An alternative formulation [43, 44], more directly related to the TypeIIB description of these 4D theories is as follows. Consider a family of noncompact Calabi-Yau 3-folds, $X_{\vec{u}}$, realized as the hypersurface

$$
0=w^{2}+y x^{2}-y^{N-1}-\phi_{2}(z) y^{N-2}-\phi_{4}(z) y^{N-3}-\cdots-\phi_{2 N-2}(z)-2 \tilde{\phi}(z) x
$$

in the total space of the bundle $V=\left(K_{C}^{(N-1)} \oplus K_{C}^{(N-2)} \oplus K_{C}^{2}\right) \rightarrow C$. Here, \vec{u} are the Coulomb branch parameters, on which the $\phi_{k}(z)$ depend, and

$$
w=\tilde{w}(d z)^{N-1}, \quad x=\tilde{x}(d z)^{N-2}, \quad y=\tilde{y}(d z)^{2}
$$

are the tautological differentials on V. The $g_{s} \rightarrow 0$ limit of Type IIB on $\mathbb{R}^{3,1} \times X_{\vec{u}}$ is the $4 D \mathcal{N}=2$ field theory (decoupled from the bulk gravity).
$X_{\vec{u}}$ has a collection of 3 -cycles of the form of an S^{2} in the fiber over a curve on C. The Seiberg-Witten solutions to the $\operatorname{Spin}(2 N)$ theories below are constructed from the periods of the holomorphic 3-form,

$$
\Omega=\frac{d \tilde{x} \wedge d \tilde{y} \wedge d z}{\tilde{w}}
$$

over a (rational) symplectic basis of these 3 -cycles. For the $\operatorname{Spin}(2 N-1)$ theories, $\tilde{\phi}(z) \equiv 0$, and $X_{\vec{u}}$ has an involution $\iota:(w, x) \rightarrow(-w,-x)$, under

[^12]which Ω is invariant. ι acts by exchanging two of the S^{2} s in the fiber (fixing the rest). Integrating Ω over the invariant cycles yields the $2(N-1)$ periods which comprise the solution for the $\operatorname{Spin}(2 N-1)$ theories.

3.2.3 Dependence on the gauge coupling

The Seiberg-Witten solutions to the $\beta=0$ gauge theories, which are our focus, have elaborate (but holomorphic) dependence [45] on the complexified gauge coupling

$$
\tau=\frac{\theta}{\pi}+\frac{8 \pi i}{g^{2}}
$$

In particular, any such theory, which can be realized by compactifying the $(2,0)$ theory on a 4-punctured sphere, automatically has a symmetry under $\Gamma(2) \subset P S L(2, \mathbb{Z})$, generated by

$$
T^{2}: \tau \mapsto \tau+2, \quad S T^{2} S: \tau \mapsto \frac{\tau}{1-2 \tau}
$$

That is, the dependence on the gauge coupling is through the function

$$
\begin{aligned}
f(\tau) & \equiv-\frac{\theta_{2}^{4}(0, \tau)}{\theta_{4}^{4}(0, \tau)} \\
& =-\left(16 q^{1 / 2}+128 q+704 q^{3 / 2}+\ldots\right)
\end{aligned}
$$

where $q=e^{2 \pi i \tau}$.
In the untwisted theory, $f(\tau)$ is simply identified with the cross-ratio of the 4 -punctured sphere:

$$
\begin{equation*}
f(\tau)=x \equiv \frac{z_{13} z_{24}}{z_{14} z_{23}} \tag{3.2}
\end{equation*}
$$

The limit $x \rightarrow 0$ is the usual weak-coupling limit. $x \rightarrow 1$ and $x \rightarrow \infty$ are limits which admit an alternative (physically-distinct) S-dual description as a weakly coupled gauge theory.

When the punctures at z_{1} and z_{2} are identical, then the theory has a larger symmetry under $\Gamma_{0}(2) \supset \Gamma(2)$, where the extra generator acts on the x-plane as

$$
S: x \mapsto \frac{1}{x}
$$

The theories, below, with two (one full and one minimal) twisted punctures and two untwisted punctures, have a similar story, except that the relation between $f(\tau)$ (which parametrizes the gauge theory moduli space) and the cross-ratio is more complicated. The gauge theory moduli space is a branched double-cover [17] of the moduli space of the 4 -punctured sphere, $\mathcal{M}_{0,4}$. Instead of (3.2),

$$
\begin{equation*}
w^{2}=x \equiv \frac{z_{13} z_{24}}{z_{14} z_{23}} \tag{3.3}
\end{equation*}
$$

and the gauge coupling

$$
\begin{equation*}
f(\tau)=\frac{w-1}{w+1} \tag{3.4}
\end{equation*}
$$

In particular, this means that $x \rightarrow 0$ corresponds to $f(\tau) \rightarrow-1$ (i.e. $\tau \rightarrow i$), which is an interior point of the gauge theory moduli space and intrinsically strongly coupled. As in our previous works on the twisted sector [4, 17], we denote these peculiar degenerations as involving a "gauge theory fixture." The other degeneration limits have more prosaic interpretations. The limit $f(\tau) \rightarrow 1$ projects to $x \rightarrow \infty$ and the limits $f(\tau) \rightarrow 0$ and $f(\tau) \rightarrow \infty$ (which have isomorphic physics) both project to $x \rightarrow 1$.

In presenting the solutions, below, we write the dependence on the positions of the four punctures in a manifestly $\operatorname{PSL}(2, \mathbb{C})$-invariant form. For calculational purposes, it is invariably easier to fix the $\operatorname{PSL}(2, \mathbb{C})$ symmetry by setting $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=(0, \infty, x, 1)$.

$3.3 \operatorname{Spin}(2 N)+(2 N-2)(V)$ and $\operatorname{Spin}(2 N-1)+(2 N-3)(V)$

Just as $\operatorname{Spin}(2 N)$ gauge theory with $2(N-1)$ fundamentals is realized as the compactification of the D_{N} theory with four \mathbb{Z}_{2}-twisted punctures

there is a universal realization of $\operatorname{Spin}(2 N-1)$ with $2 N-3$ fundamentals plus $(N-1)$ free hypermultiplets as a four-punctured sphere in the (twisted) D_{N} theory

The Seiberg-Witten curve corresponding to (3.5) takes the form of (3.1) where the invariant k-differentials are

$$
\begin{aligned}
\phi_{2 k}(z) & =\frac{u_{2 k} z_{14} z_{23} z_{34}^{2(k-1)}(d z)^{2 k}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)^{2 k-1}\left(z-z_{4}\right)^{2 k-1}} \\
\tilde{\phi}(z) & =\frac{\tilde{u} z_{14}^{1 / 2} z_{23}^{1 / 2} z_{34}^{N-1}(d z)^{N}}{\left(z-z_{1}\right)^{1 / 2}\left(z-z_{2}\right)^{1 / 2}\left(z-z_{3}\right)^{(2 N-1) / 2}\left(z-z_{4}\right)^{(2 N-1) / 2}} .
\end{aligned}
$$

The Seiberg-Witten curve for (3.6) takes the same form, but with $\tilde{\phi} \equiv 0$.
This pattern will repeat, in many of the examples below. The $\operatorname{Spin}(2 N-$ 1) theory, with the same number of hypermultiplets in the spinor, but one fewer in the vector representation, is obtained by replacing the puncture at z_{4}, with one where the last box in the Young diagram is shifted to a new row. Physically, this corresponds to using one of the vector hypermultiplets to Higgs $\operatorname{Spin}(2 N) \rightarrow \operatorname{Spin}(2 N-1)$. The "surprise" is that integrating out the massive modes has such a simple effect on the Coulomb branch geometry.

The strong-coupling dual of (3.6) is an $S U(2)$ gauging of the $S p(2 N-$ $3)_{2 N-1} \times S U(2)_{8}$ SCFT, with $N-1$ additional free hypermultiplets

These theories have vanishing β-function for any N.

Including hypermultiplets in spinor representations will follow a similar pattern, where we will realize $\operatorname{Spin}(2 N-1)$ and $\operatorname{Spin}(2 N)$ gauge theories as 4-punctured spheres in the D_{N} theory. The Seiberg-Witten curve for each of these theories takes the form (3.1). We list the invariant k-differentials for each theory below.

As we saw above, the solutions for $\operatorname{Spin}(2 N-1)$ is obtained from the corresponding $\operatorname{Spin}(2 N)$ theory (i.e, the theory with the same number of spinors (ignoring their chirality, for N even) and one more vector) by setting $\tilde{u}=0$.

$3.4 \operatorname{Spin}(9)$ and $\operatorname{Spin}(10)$ Gauge Theories

All of the following arise in the D_{5} theory, possibly with \mathbb{Z}_{2}-twisted punctures.

3.4.1 $\operatorname{Spin}(9)$

3.4.1.1 $\operatorname{Spin}(9)+1(16)+5(9)$

The other degeneration limits yield a gauge theory fixture

and an $S p(2)$ gauging of the $S p(7)_{9} \operatorname{SCFT}+\frac{3}{2}(4)+4(1)$

3.4.1.2 $\operatorname{Spin}(9)+2(16)+3(9)$

The S-dual theory is an $S U(2)$ gauging of the $S p(3)_{16} \times S p(2)_{9} \times S U(2)_{7}$ SCFT + $\frac{1}{2}(2)+2(1)$

3.4.1.3 $\operatorname{Spin}(9)+3(16)+1(9)$

The S-dual theories are an $S U(2)$ gauging of the $S p(3)_{16} \times S U(2)_{8} \times S U(2)_{9}$ SCFT

and a G_{2} gauging of the $\left(E_{7}\right)_{16} \times S U(2)_{9} \operatorname{SCFT}^{5}$

3.4.2 $\operatorname{Spin}(10)$

3.4.2.1 $\operatorname{Spin}(10)+1(16)+6(10)$

[^13]The other degenerations involve a gauge theory fixture

and an $S p(2)$ gauging of the $S p(8)_{10} \mathrm{SCFT}+1(4)$

The invariant k-differentials for (3.10) are given by

$$
\begin{align*}
\phi_{2}(z) & =\frac{u_{2} z_{13} z_{24}(d z)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
\phi_{4}(z) & =\frac{\left[u_{4}\left(z-z_{3}\right) z_{24}-\frac{1}{4} u_{2}^{2}\left(z-z_{2}\right) z_{34}\right] z_{13} z_{24}^{2}(d z)^{4}}{\left(z-z_{1}\right)\left(z-z_{2}\right)^{3}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{3}} \\
\phi_{6}(z) & =\frac{u_{6} z_{13} z_{23} z_{24}^{4}(d z)^{6}}{\left(z-z_{1}\right)\left(z-z_{2}\right)^{5}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{4}} \tag{3.11}\\
\phi_{8}(z) & =\frac{u_{8} z_{13} z_{23} z_{24}^{6}(d z)^{8}}{\left(z-z_{1}\right)\left(z-z_{2}\right)^{7}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{6}} \\
\tilde{\phi}(z) & =\frac{\tilde{u} z_{13}^{1 / 2} z_{23}^{1 / 2} z_{24}^{4}(d z)^{5}}{\left(z-z_{1}\right)^{1 / 2}\left(z-z_{2}\right)^{9 / 2}\left(z-z_{3}\right)\left(z-z_{4}\right)^{4}} .
\end{align*}
$$

The gauge theory moduli space is a branched double-cover of $\mathcal{M}_{0,4}$ and the gauge couplings are given by (3.4).

The invariant k-differentials for (3.7) are as above, but with $\tilde{\phi} \equiv 0$.

3.4.2.2 $\operatorname{Spin}(10)+2(16)+4(10)$

The S-dual is an $S U(2)$ gauging of the $S p(4)_{10} \times S U(2)_{16} \times S U(2)_{7} \times U(1) \mathrm{SCFT}+$ $\frac{1}{2}(2)$

The invariant k-differentials for 3.12 are given by

$$
\begin{align*}
\phi_{2}(z) & =\frac{u_{2} z_{12} z_{34}(d z)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
\phi_{4}(z) & =\frac{\left[u_{4}\left(z-z_{1}\right)\left(z-z_{2}\right) z_{34}+\frac{1}{4} u_{2}^{2}\left(\left(z-z_{2}\right)\left(z-z_{3}\right) z_{14}\right.\right.}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{3}\left(z-z_{4}\right)^{3}} \\
& \frac{\left.\left.-\left(z-z_{1}\right)\left(z-z_{4}\right) z_{23}\right)\right] z_{12} z_{34}^{2}(d z)^{4}}{} \\
\phi_{6}(z) & =\frac{u_{6} z_{12}^{2} z_{34}^{4}(d z)^{6}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{4}} \tag{3.13}\\
\phi_{8}(z) & =\frac{u_{8} z_{12}^{2} z_{34}^{6}(d z)^{8}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{6}\left(z-z_{4}\right)^{6}} \\
\tilde{\phi}(z) & =\frac{\tilde{u} z_{12} z_{34}^{4}(d z)^{5}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{4}} .
\end{align*}
$$

The k-differentials for (3.8) are as above, but with $\tilde{\phi} \equiv 0$.
Since we are in the untwisted theory, the gauge theory moduli space is $\mathcal{M}_{0,4}$ (or more precisely, in this case, its \mathbb{Z}_{2} quotient), and the gauge coupling is given by (3.2).
3.4.2.3 $\operatorname{Spin}(10)+3(16)+2(10)$

The S-dual theories are an $S U(2)$ gauging of the $S U(3)_{32} \times S p(2)_{10} \times S U(2)_{8} \times$

$U(1)$ SCFT

and a G_{2} gauging of the $\left(E_{6}\right)_{16} \times S p(2)_{10} \times U(1)$ SCFT

The invariant k-differentials for (3.14) are given by

$$
\begin{align*}
\phi_{2}(z) & =\frac{u_{2} z_{12} z_{34}(d z)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
\phi_{4}(z) & =\frac{\left[u_{4}\left(z-z_{2}\right) z_{14}+\frac{1}{4} u_{2}^{2}\left(z-z_{4}\right) z_{12}\right] z_{12} z_{34}^{2}(d z)^{4}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{3}} \\
\phi_{6}(z) & =\frac{\left[u_{6}\left(z-z_{1}\right) z_{34}+\frac{1}{2} u_{2} u_{4}\left(z-z_{4}\right) z_{13}\right] z_{12}^{2} z_{34}^{3}(d z)^{6}}{\left(z-z_{1}\right)^{3}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{4}} \tag{3.15}\\
\phi_{8}(z) & =\frac{\left[u_{8}\left(z-z_{1}\right) z_{34}+\frac{1}{4} u_{4}^{2}\left(z-z_{4}\right) z_{13}\right] z_{14} z_{12}^{2} z_{34}^{4}(d z)^{8}}{\left(z-z_{1}\right)^{4}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{5}\left(z-z_{4}\right)^{6}} \\
\tilde{\phi}(z) & =\frac{\tilde{u} z_{14} z_{12} z_{34}^{3}(d z)^{5}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)\left(z-z_{3}\right)^{3}\left(z-z_{4}\right)^{4}} .
\end{align*}
$$

The k-differentials for (3.9) are as above, but with $\tilde{\phi} \equiv 0$.

3.4.2.4 $\operatorname{Spin}(10)+4(16)$

The S-dual theory is an $S p(2)$ gauging of the $S U(4)_{32} \times S p(2)_{10} \mathrm{SCFT}+1(4)$

For this theory, the k-differentials characterizing the Seiberg-Witten curve are

$$
\begin{align*}
\phi_{2}(z) & =\frac{u_{2} z_{12} z_{34}(d z)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
\phi_{4}(z) & =\frac{u_{4} z_{12}^{2} z_{34}^{2}(d z)^{4}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{2}} \\
\phi_{6}(z) & =\frac{\left[u_{6}\left(z-z_{1}\right)\left(z-z_{2}\right) z_{34}-\frac{1}{2} u_{2}\left(u_{4}-\frac{1}{4} u_{2}^{2}\right)\left(\left(z-z_{1}\right)\left(z-z_{3}\right) z_{24}\right.\right.}{\left(z-z_{1}\right)^{3}\left(z-z_{2}\right)^{3}\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{4}} \\
& \frac{\left.\left.-\left(z-z_{2}\right)\left(z-z_{4}\right) z_{13}\right)\right] z_{12}^{2} z_{34}^{3}(d z)^{6}}{\left(z-z_{1}\right)^{4}\left(z-z_{2}\right)^{4}\left(z-z_{3}\right)^{5}\left(z-z_{4}\right)^{5}} \\
\phi_{8}(z) & =\frac{\left[u_{8}\left(z-z_{1}\right)\left(z-z_{2}\right) z_{34}-\frac{1}{4}\left(u_{4}-\frac{1}{4} u_{2}^{2}\right)^{2}\left(\left(z-z_{1}\right)\left(z-z_{3}\right) z_{24}\right.\right.}{(z} \\
& \left.\left.-\left(z-z_{2}\right)\left(z-z_{4}\right) z_{13}\right)\right] z_{12}^{3} z_{34}^{4}(d z)^{8} \\
\tilde{\phi}(z) & =\frac{\tilde{u} z_{12}^{2} z_{34}^{3}(d z)^{5}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{3}\left(z-z_{4}\right)^{3}} \tag{3.17}
\end{align*}
$$

In this case, there are no hypermultiplets in the vector, which one could use to Higgs $\operatorname{Spin}(10) \rightarrow \operatorname{Spin}(9)$. Equivalently, it's not possible to move the last box, in the Young diagram at z_{4}, to a new row while keeping it a D-partition. So there is no corresponding $\operatorname{Spin}(9)$ gauge theory.

3.5 $\operatorname{Spin}(11)$ and $\operatorname{Spin}(12)$ Gauge Theories

These arise in the compactification of the D_{6} theory, possibly with $\mathbb{Z}_{2^{-}}$ twisted punctures.

3.5.1 $\operatorname{Spin}(11)$

3.5.1.1 $\operatorname{Spin}(11)+\frac{1}{2}(32)+7(11)$

The other degenerations involve a gauge theory fixture

and an $S p(2)$ gauging of the $S p(9)_{11}$ SCFT $+\frac{1}{2}(4)+5(1)$

3.5.1.2 $\operatorname{Spin}(11)+1(32)+5(11)$

The S-dual theory is an $S U(2)$ gauging of the $S p(5)_{11} \times S U(2)_{7} \times U(1)$ SCFT + $\frac{1}{2}(2)+3(1)$,

3.5.1.3 $\operatorname{Spin}(11)+\frac{3}{2}(32)+3(11)$

The S-dual theories are an $S U(2)$ gauging of the
$S p(3)_{11} \times S U(2)_{8} \times S U(2)_{128} \mathrm{SCFT}+1(1)$

and a G_{2} gauging ${ }^{6}$ of the $S p(3)_{11} \times\left(F_{4}\right)_{16} \mathrm{SCFT}+1(1)$

3.5.1.4 $\operatorname{Spin}(11)+2(32)+1(11)$

The S-dual theory is an $S p(2)$ gauging of the $S p(3)_{11} \times S U(2)_{32}^{2} \mathrm{SCFT}+\frac{1}{2}(4)+$ 1(1)

[^14]

3.5.2 $\operatorname{Spin}(12)$

3.5.2.1 $\operatorname{Spin}(12)+\frac{1}{2}(32)+8(12)$

The other degenerations involve an gauge theory fixture

and an $S p(2)$ gauging of the $S p(10)_{12}$ SCFT

The invariant k-differentials for 3.22 are given by

$$
\begin{align*}
\phi_{2}(z) & =\frac{u_{2} z_{13} z_{24}(d z)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
\phi_{4}(z) & =\frac{\left[u_{4}\left(z-z_{3}\right) z_{24}-\frac{1}{4} u_{2}^{2}\left(z-z_{2}\right) z_{34}\right] z_{13} z_{24}^{2}(d z)^{4}}{\left(z-z_{1}\right)\left(z-z_{2}\right)^{3}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{3}} \\
\phi_{6}(z) & =\frac{\left[u_{6}\left(z-z_{4}\right) z_{13}+2 \tilde{u}\left(z-z_{3}\right) z_{14}\right] z_{23} z_{24}^{4}(d z)^{6}}{\left(z-z_{1}\right)\left(z-z_{2}\right)^{5}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{5}} \\
\phi_{8}(z) & =\frac{u_{8} z_{13} z_{23} z_{24}^{6}(d z)^{8}}{\left(z-z_{1}\right)\left(z-z_{2}\right)^{7}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{6}} \tag{3.23}\\
\phi_{10}(z) & =\frac{u_{10} z_{13} z_{23} z_{24}^{8}(d z)^{10}}{\left(z-z_{1}\right)\left(z-z_{2}\right)^{9}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{8}} \\
\tilde{\phi}(z) & =\frac{\tilde{u} z_{14}^{1 / 2} z_{24}^{9 / 2} z_{23}(d z)^{6}}{\left(z-z_{1}\right)^{1 / 2}\left(z-z_{2}\right)^{11 / 2}\left(z-z_{3}\right)\left(z-z_{4}\right)^{5}}
\end{align*}
$$

For (3.18), they are as above, but with $\tilde{u} \equiv 0$.
3.5.2.2 $\operatorname{Spin}(12)+1(32)+6(12)$

The S-dual theory is an $S U(2)$ gauging of the $S p(6)_{12} \times S U(2)_{7} \times U(1)$ SCFT + $\frac{1}{2}(2)$

3.5.2.3 $\operatorname{Spin}(12)+\frac{1}{2}(32)+\frac{1}{2}\left(32^{\prime}\right)+6(12)$

The S-dual is an $S U(2)$ gauging of the $S p(6)_{12} \times S U(2)_{7} \mathrm{SCFT}+\frac{1}{2}(2)$

The invariant k-differentials for (3.24) and (3.25) are

$$
\begin{align*}
\phi_{2}(z) & =\frac{u_{2} z_{12} z_{34}(d z)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
\phi_{4}(z) & =\frac{\left[u_{4}\left(z-z_{1}\right)\left(z-z_{2}\right) z_{34}+\frac{1}{4} u_{2}^{2}\left(\left(z-z_{2}\right)\left(z-z_{3}\right) z_{14}\right.\right.}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{3}\left(z-z_{4}\right)^{3}} \\
& \frac{\left.\left.-\left(z-z_{1}\right)\left(z-z_{4}\right) z_{23}\right)\right] z_{12} z_{34}^{2}(d z)^{4}}{\left(u_{6}\right.} \\
\phi_{6}(z) & =\frac{\left[u_{6}\left(z-z_{3}\right)\left(z-z_{4}\right) z_{12}+2 \tilde{u}\left(\left(z-z_{1}\right)\left(z-z_{4}\right) z_{23}\right.\right.}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{5}\left(z-z_{4}\right)^{5}} \\
& \left.\left.\mp\left(z-z_{2}\right)\left(z-z_{3}\right) z_{14}\right)\right] z_{12} z_{34}^{4}(d z)^{6} \\
\phi_{8}(z) & =\frac{u_{8} z_{12}^{2} z_{34}^{6}(d z)^{8}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{6}\left(z-z_{4}\right)^{6}} \tag{3.26}\\
\phi_{10}(z) & =\frac{u_{10} z_{12}^{2} z_{34}^{8}(d z)^{10}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{8}\left(z-z_{4}\right)^{8}} \\
\tilde{\phi}(z) & =\frac{\tilde{u} z_{12} z_{34}{ }^{5}(d z)^{6}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)^{5}\left(z-z_{4}\right)^{5}} .
\end{align*}
$$

where the upper/lower sign in the expression for ϕ_{6} is for $(3.24) /(3.25)$, respectively. The invariant k-differentials for (3.19) are as above, but with $\tilde{u} \equiv 0$.
3.5.2.4 $\operatorname{Spin}(12)+\frac{3}{2}(32)+4(12)$

The S-dual theories are an $S U(2)$ gauging of the $S p(4)_{12} \times S U(2)_{8} \times S U(2)_{128}$ SCFT

and a G_{2} gauging of the $\left(F_{4}\right)_{16} \times S p(4)_{12}$ SCFT

The invariant k-differentials for (3.27) are given by

$$
\begin{align*}
\phi_{2}(z) & =\frac{u_{2} z_{12} z_{34}(d z)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
\phi_{4}(z) & =\frac{\left[u_{4}\left(z-z_{2}\right) z_{14}+\frac{1}{4} u_{2}{ }^{2}\left(z-z_{4}\right) z_{12}\right] z_{12} z_{34}{ }^{2}(d z)^{4}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{3}} \\
\phi_{6}(z) & =\frac{\left[u_{6}\left(z-z_{1}\right)\left(z-z_{4}\right) z_{23}-2 \tilde{u}\left(z-z_{1}\right)\left(z-z_{2}\right) z_{34}\right.}{\left(z-z_{1}\right)^{3}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{5}} \\
& \left.+\left(2 \tilde{u}+\frac{1}{4} u_{2} u_{4}\right)\left(z-z_{3}\right)\left(z-z_{4}\right) z_{12}\right] z_{12} z_{14} z_{34}{ }^{3}(d z)^{6} \\
\phi_{8}(z) & =\frac{\left[u_{8}\left(z-z_{1}\right) z_{34}+\left(\frac{1}{4} u_{4}{ }^{2}+\tilde{u} u_{2}\right)\left(z-z_{4}\right) z_{13}\right] z_{14} z_{12}{ }^{2} z_{34}^{4}(d z)^{8}}{\left(z-z_{1}\right)^{4}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{5}\left(z-z_{4}\right)^{6}} \tag{3.28}\\
\phi_{10}(z) & =\frac{\left[u_{10}\left(z-z_{1}\right) z_{34}+\tilde{u} u_{4}\left(z-z_{4}\right) z_{13}\right] z_{12}{ }^{2} z_{14}{ }^{2} z_{34}^{5}(d z)^{10}}{\left(z-z_{1}\right)^{5}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{6}\left(z-z_{4}\right)^{8}} \\
\tilde{\phi}(z) & =\frac{\tilde{u} z_{12} z_{14}{ }^{2} z_{34}{ }^{3}(d z)^{6}}{\left(z-z_{1}\right)^{3}\left(z-z_{2}\right)\left(z-z_{3}\right)^{3}\left(z-z_{4}\right)^{5}} .
\end{align*}
$$

For (3.20), they are as above, but with $\tilde{u} \equiv 0$.
3.5.2.5 $\operatorname{Spin}(12)+1(32)+\frac{1}{2}\left(32^{\prime}\right)+4(12)$

The S-dual theories are an $S U(2)$ gauging of the $S p(4)_{12} \times S U(2)_{8} \times U(1)$ SCFT

and a G_{2} gauging of the $S p(4)_{12} \times \operatorname{Spin}(9)_{16} \mathrm{SCFT}$

The invariant k-differentials for 3.29 are given by

$$
\begin{align*}
\phi_{2}(z) & =\frac{u_{2} z_{12} z_{34}(d z)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
\phi_{4}(z) & =\frac{\left[u_{4}\left(z-z_{2}\right) z_{14}+\frac{1}{4} u_{2}^{2}\left(z-z_{4}\right) z_{12}\right] z_{12} z_{34}^{2}(d z)^{4}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{3}} \\
\phi_{6}(z) & =\frac{\left[u_{6}\left(z-z_{1}\right)\left(z-z_{4}\right) z_{23}-2 \tilde{u}\left(z-z_{1}\right)\left(z-z_{2}\right) z_{34}\right.}{\left(z-z_{1}\right)^{3}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{5}} \\
& \left.+\frac{1}{4} u_{2} u_{4}\left(z-z_{3}\right)\left(z-z_{4}\right) z_{12}\right] z_{12} z_{14} z_{34}^{3}(d z)^{6} \\
\phi_{8}(z) & =\frac{\left[u_{8}\left(z-z_{1}\right) z_{34}+\frac{1}{4} u_{4}^{2}\left(z-z_{4}\right) z_{13}\right] z_{14} z_{12}^{2} z_{34}^{4}(d z)^{8}}{\left(z-z_{1}\right)^{4}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{5}\left(z-z_{4}\right)^{6}} \tag{3.30}\\
\phi_{10}(z) & =\frac{u_{10} z_{12}^{2} z_{14}^{2} z_{34}{ }^{6}(d z)^{10}}{\left(z-z_{1}\right)^{4}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{6}\left(z-z_{4}\right)^{8}} \\
\tilde{\phi}(z) & =\frac{\tilde{u} z_{12} z_{14} z_{34}^{4}(d z)^{6}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{5}}
\end{align*}
$$

For (3.20), they are as above, but with $\tilde{u} \equiv 0$ (note that (3.30) and (3.28) become equal at $\tilde{u}=0$).

3.5.2.6 $\operatorname{Spin}(12)+2(32)+2(12)$

The S-dual theory is an $S p(3)$ gauging of the $S p(3)_{11} \times S U(2)_{32}^{2} \mathrm{SCFT}+\frac{5}{2}(6)$

The invariant k-differentials for (3.31) are given by

$$
\begin{align*}
& \phi_{2}(z)=\frac{u_{2} z_{12} z_{34}(d z)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
& \phi_{4}(z)=\frac{u_{4} z_{12}{ }^{2} z_{34}{ }^{2}(d z)^{4}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{2}} \\
& \phi_{6}(z)=\frac{\left[u_{6}\left(z-z_{1}\right)\left(z-z_{2}\right) z_{34}-\left(2 \tilde{u}+\frac{1}{2} u_{2}\left(u_{4}-\frac{1}{4} u_{2}^{2}\right)\right)\left(z-z_{1}\right)\left(z-z_{4}\right) z_{23}\right.}{\left(z-z_{1}\right)^{3}\left(z-z_{2}\right)^{3}\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{4}} \\
&\left.+\left(2 \tilde{u}+\frac{1}{2} u_{2}\left(u_{4}-\frac{1}{4} u_{2}^{2}\right)\right)\left(z-z_{2}\right)\left(z-z_{3}\right) z_{14}\right] z_{12}{ }^{2} z_{34}^{3}(d z)^{6} \\
& \phi_{8}(z)=\frac{\left[u_{8}\left(z-z_{1}\right)\left(z-z_{2}\right) z_{34}-\left(\frac{1}{4}\left(u_{4}-\frac{1}{4} u_{2}^{2}\right)^{2}+\tilde{u} u_{2}\right)\left(z-z_{1}\right)\left(z-z_{4}\right) z_{23}\right.}{\left(z-z_{1}\right)^{4}\left(z-z_{2}\right)^{4}\left(z-z_{3}\right)^{5}\left(z-z_{4}\right)^{5}} \tag{3.32}\\
& \frac{\left.+\left(\frac{1}{4}\left(u_{4}-\frac{1}{4} u_{2}^{2}\right)^{2}+\tilde{u} u_{2}\right)\left(z-z_{2}\right)\left(z-z_{3}\right) z_{14}\right] z_{12}^{3} z_{34}{ }^{4}(d z)^{8}}{(3.32} \\
& \phi_{10}(z)=\frac{\left[u_{10}\left(z-z_{1}\right)\left(z-z_{2}\right) z_{34}-\tilde{u}\left(u_{4}-\frac{1}{4} u_{2}^{2}\right)\left(z-z_{1}\right)\left(z-z_{4}\right) z_{23}\right.}{\left(z-z_{1}\right)^{5}\left(z-z_{2}\right)^{5}\left(z-z_{3}\right)^{6}\left(z-z_{4}\right)^{6}} \\
&\left.+\tilde{u}\left(u_{4}-\frac{1}{4} u_{2}^{2}\right)\left(z-z_{2}\right)\left(z-z_{3}\right) z_{14}\right] z_{12}^{4} z_{34}^{5}(d z)^{10} \\
& \tilde{u} z_{12}^{3} z_{34}^{3}(d z)^{6} \\
& \tilde{\phi}(z)=\frac{\left(z-z_{1}\right)^{3}\left(z-z_{2}\right)^{3}\left(z-z_{3}\right)^{3}\left(z-z_{4}\right)^{3}}{(z}
\end{align*}
$$

3.5.2.7 $\operatorname{Spin}(12)+\frac{3}{2}(32)+\frac{1}{2}\left(32^{\prime}\right)+2(12)$

The S-dual theories are an $S p(2)$ gauging of the $S p(4)_{12} \times S U(2)_{128}$ SCFT

and a $\operatorname{Spin}(11)$ gauging of the $\left(E_{8}\right)_{12} \operatorname{SCFT}+\frac{3}{2}(32)$

The invariant k-differentials for (3.33) are given by

$$
\begin{align*}
& \phi_{2}(z)=\frac{u_{2} z_{12} z_{34}(d z)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
& \phi_{4}(z)=\frac{u_{4} z_{12}{ }^{2} z_{34}{ }^{2}(d z)^{4}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{2}} \\
& \phi_{6}(z)=\frac{\left[u_{6}\left(z-z_{1}\right)\left(z-z_{2}\right) z_{34}+\left(2 \tilde{u}-\frac{1}{2} u_{2}\left(u_{4}-\frac{1}{4} u_{2}{ }^{2}\right)\right)\left(z-z_{1}\right)\left(z-z_{4}\right) z_{23}\right.}{\left(z-z_{1}\right)^{3}\left(z-z_{2}\right)^{3}\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{4}} \\
& +\underline{\left.\frac{1}{2} u_{2}\left(u_{4}-\frac{1}{4} u_{2}{ }^{2}\right)\left(z-z_{2}\right)\left(z-z_{3}\right) z_{14}\right] z_{12}{ }^{2} z_{34}{ }^{3}(d z)^{6}} \\
& \phi_{8}(z)=\frac{\left[u_{8}\left(z-z_{1}\right)\left(z-z_{2}\right) z_{34}-\left(\frac{1}{4}\left(u_{4}-\frac{1}{4} u_{2}^{2}\right)^{2}-\tilde{u} u_{2}\right)\left(z-z_{1}\right)\left(z-z_{4}\right) z_{23}\right.}{\left(z-z_{1}\right)^{4}\left(z-z_{2}\right)^{4}\left(z-z_{3}\right)^{5}\left(z-z_{4}\right)^{5}} \tag{3.34}\\
& \left.+\underline{\frac{1}{4}}\left(u_{4}-\frac{1}{4} u_{2}{ }^{2}\right)^{2}\left(z-z_{2}\right)\left(z-z_{3}\right) z_{14}\right] z_{12}{ }^{3} z_{34}{ }^{4}(d z)^{8} \\
& \phi_{10}(z)=\frac{\left[u_{10}\left(z-z_{2}\right) z_{34}+\tilde{u}\left(u_{4}-\frac{1}{4} u_{2}^{2}\right)\left(z-z_{4}\right) z_{23}\right] z_{12}{ }^{4} z_{34}{ }^{5}(d z)^{10}}{\left(z-z_{1}\right)^{4}\left(z-z_{2}\right)^{5}\left(z-z_{3}\right)^{6}\left(z-z_{4}\right)^{6}} \\
& \tilde{\phi}(z)=\frac{\tilde{u} z_{23} z_{12}{ }^{2} z_{34}{ }^{3}(d z)^{6}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{3}\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{3}} .
\end{align*}
$$

3.5.2.8 $\operatorname{Spin}(12)+1(32)+1\left(32^{\prime}\right)+2(12)$

The S-dual theory is an $S p(2)$ gauging of the $S p(2)_{12} \times S p(2)_{11} \times U(1)^{2}$ SCFT +
$\frac{1}{2}(4)$

The invariant k-differentials for (3.35) are given by

$$
\begin{align*}
\phi_{2}(z) & =\frac{u_{2} z_{12} z_{34}(d z)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
\phi_{4}(z) & =\frac{u_{4} z_{12}^{2} z_{34}^{2}(d z)^{4}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{2}} \\
\phi_{6}(z) & =\frac{\left[u_{6}\left(z-z_{1}\right)\left(z-z_{2}\right) z_{34}-\frac{1}{2} u_{2}\left(u_{4}-\frac{1}{4} u_{2}^{2}\right)\left(\left(z-z_{1}\right)\left(z-z_{3}\right) z_{24}\right.\right.}{\left(z-z_{1}\right)^{3}\left(z-z_{2}\right)^{3}\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{4}} \\
& \left.\left.-\left(z-z_{2}\right)\left(z-z_{4}\right) z_{13}\right)\right] z_{12}^{2} z_{34}^{3}(d z)^{6} \\
\phi_{8}(z) & =\frac{\left[u_{8}\left(z-z_{1}\right)\left(z-z_{2}\right) z_{34}-\frac{1}{4}\left(u_{4}-\frac{1}{4} u_{2}^{2}\right)^{2}\left(\left(z-z_{1}\right)\left(z-z_{3}\right) z_{24}\right.\right.}{\left(z-z_{1}\right)^{4}\left(z-z_{2}\right)^{4}\left(z-z_{3}\right)^{5}\left(z-z_{4}\right)^{5}} \\
& \frac{\left.\left.-\left(z-z_{2}\right)\left(z-z_{4}\right) z_{13}\right)\right] z_{12}^{3} z_{34}^{4}(d z)^{8}}{(3} \\
\phi_{10}(z) & =\frac{u_{10} z_{12}^{4} z_{34}{ }^{6}(d z)^{10}}{\left(z-z_{1}\right)^{4}\left(z-z_{2}\right)^{4}\left(z-z_{3}\right)^{6}\left(z-z_{4}\right)^{6}} \tag{3.36}\\
\tilde{\phi}(z) & =\frac{\tilde{u} z_{12}^{2} z_{34}^{4}(d z)^{6}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{4}}
\end{align*}
$$

For (3.21), they are as above, but with $\tilde{u} \equiv 0$. As before, (3.32), (3.34) and (3.36) become identical when you set $\tilde{u}=0$.

3.5.2.9 More Spinors

We cannot obtain

- $\operatorname{Spin}(12)+\frac{5}{2}(32)$
- $\operatorname{Spin}(12)+2(32)+\frac{1}{2}\left(32^{\prime}\right)$
- $\operatorname{Spin}(12)+\frac{3}{2}(32)+1\left(32^{\prime}\right)$
from compactifying the D_{6} theory.

3.6 $\operatorname{Spin}(13)$ and $\operatorname{Spin}(14)$ Gauge Theories

Here, we work in the D_{7} theory.
3.6.1 $\operatorname{Spin}(13)+\frac{1}{2}(64)+7(13)$

Over the other degenerations, we have a gauge theory fixture

and an $S U(2)$ gauging of the $S p(7)_{13} \times S U(2)_{7} \mathrm{SCFT}+\frac{1}{2}(2)+6(1)$

The invariant k-differentials for (3.37) are given by

$$
\begin{aligned}
& \phi_{2}(z)=\frac{u_{2} z_{13} z_{24}(d z)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
& \phi_{4}(z)=\frac{u_{4} z_{13} z_{23} z_{24}{ }^{2}(d z)^{4}}{\left(z-z_{1}\right)\left(z-z_{2}\right)^{3}\left(z-z_{3}\right)^{2}\left(z-z_{4}\right)^{2}} \\
& \phi_{6}(z)=\frac{\left[u_{6}\left(z-z_{3}\right) z_{12}-\frac{1}{2} u_{2}\left(u_{4}-\frac{1}{4} u_{2}^{2}\right)\left(z-z_{2}\right) z_{13}\right] z_{23} z_{34} z_{24}{ }^{3}(d z)^{6}}{\left(z-z_{1}\right)\left(z-z_{2}\right)^{5}\left(z-z_{3}\right)^{3}\left(z-z_{4}\right)^{4}} \\
& \phi_{8}(z)=\frac{\left[u_{8}\left(z-z_{3}\right) z_{12}-\frac{1}{4}\left(u_{4}-\frac{1}{4} u_{2}^{2}\right)^{2}\left(z-z_{2}\right) z_{13}\right] z_{34} z_{23}{ }^{2} z_{24}{ }^{4}(d z)^{8}}{\left(z-z_{1}\right)\left(z-z_{2}\right)^{7}\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{5}} \\
& \phi_{10}(z)=\frac{u_{10} z_{13} z_{24} z_{23}{ }^{3} z_{24}{ }^{5}(d z)^{10}}{\left(z-z_{1}\right)\left(z-z_{2}\right)^{9}\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{6}} \\
& \phi_{12}(z)=\frac{u_{12} z_{13} z_{24} z_{23}{ }^{3} z_{24}{ }^{7}(d z)^{12}}{\left(z-z_{1}\right)\left(z-z_{2}\right)^{11}\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{8}} \\
& \text { and } \\
& \tilde{\phi}(z)=0
\end{aligned}
$$

3.6.2 More Spinors

We cannot obtain

- $\operatorname{Spin}(13)+1(64)+3(13)$
- $\operatorname{Spin}(14)+1(64)+4(14)$
from compactifying the D_{7} theory.

3.7 Higher N ?

For the "missing" theories of $\S 3.5 .2 .9$ and $\$ 3.6 .2$, we might hope to find realizations in the higher D_{N} or $A_{2 N-1}$ theories. It is easy to see that is no help. The key realization is that we need a candidate free-field fixture, consisting of three regular punctures. One of these punctures must be a full puncture.

In the D_{N} theory, the full puncture, $\left[1^{2 N}\right]$, has a $\operatorname{Spin}(2 N)_{4(N-1)}$ flavour symmetry. The free fields transform as some representation of $\operatorname{Spin}(2 N)$ which reproduce the level $k=4(N-1)$. If the representation should happen to decompose correctly under a $\operatorname{Spin}(12)$ (mutatis mutandis for a $\operatorname{Spin}(13)$ or $\operatorname{Spin}(14))$ subgroup, then we would have a chance to build a realization of one of our missing gauge theories.

- For the $\operatorname{Spin}(12)$ theories of 3 3.5.2.9, we could note that the 64 of $\operatorname{Spin}(14)$ decomposes as $1(32)+1\left(32^{\prime}\right)$. But getting the right level would require a puncture with level $k=32$, whereas the full puncture of the D_{7} theory has only $k=24$.
- For the $\operatorname{Spin}(13)$ and $\operatorname{Spin}(14)$ theories of $\S 3.6 .2$, going to higher D_{N} could only produce the 64 with multiplicity >1, which also does not help.

In the twisted sector of the $A_{2 N-1}$ theory, the full puncture has $\operatorname{Spin}(2 N+$ 1) $2_{2(2 N-1)}$ flavour symmetry.

- For the $\operatorname{Spin}(12)$ theories of $\$ 3.5 .2 .9$, we need k to be a multiple of 8 , so none of these are satisfactory.
- For the $\operatorname{Spin}(13)$ and $\operatorname{Spin}(14)$ theories of $\S 3.6 .2$, we need k to be a multiple of 4 , which also does not work.

What about the exceptional $(2,0)$ theories? E_{7} and E_{8} contain our desired gauge groups as subgroups. But neither the 56 of E_{7}, nor the 248 of E_{8} decompose correctly to provide candidate free field fixtures with one full puncture (and two other regular punctures).

So it appears that the missing theories of $\$ 3.5 .2 .9$ and $\S 33.6$, are not realizable as compactifications of the $(2,0)$ theory.

Chapter 4

The E_{6} Theory

In this chapter, we extend our classification program to the $(2,0)$ theory of type $E_{6}{ }^{1}$. There is no known construction of the E_{6} theory as a low-energy theory of a stack of M5 branes, as was the case for the A- and D-series. Rather, the only known construction is as a compactification of IIB string theory on a K3 manifold at an E_{6} singularity [50. Still, computations are possible because the the $4 \mathrm{D} \mathcal{N}=2$ compactification of the E_{6} theory is controlled by a Hitchin system [6] with gauge group E_{6}.

As a byproduct, we realize E_{6} gauge theory with matter in the $4(27)$, as well as F_{4} gauge theory with matter in the $3(26)$, as compactifications of the $E_{6}(2,0)$ theory on a 4-punctured sphere. The Seiberg-Witten solution to the E_{6} gauge theory, with $N_{f} \leq 327 \mathrm{~s}$, appeared first in [51]. Our solution to the superconformal F_{4} gauge theory is new.

[^15]
4.1 The E_{6} Theory

4.1.1 The Hitchin system

The Coulomb branch of the $4 \mathrm{D} \mathcal{N}=2$ theories obtained from the compactification of the $6 \mathrm{D}(2,0)$ theory of type E_{6} on a Riemann surface C is described by the Hitchin equations on C with complexified gauge group E_{6} 6]. We may also include codimension-two defects of the $(2,0)$ theory localized at points on C; we refer to these as "punctures". A class of punctures is classified by nilpotent orbits (or, equivalently, by embeddings of $\mathfrak{s l}(2)$) in the complexified Lie algebra \mathfrak{e}_{6} [7]. One of the main points of the construction is that a number of physical properties of the 4D theories can be computed directly from geometric properties of the nilpotent orbits that label the punctures on C, without any detailed knowledge of the $(2,0)$ theory.

A puncture labeled by a nilpotent orbit \mathcal{O}, and located at $z=0$ on C, corresponds to a local boundary condition for the Higgs field,

$$
\begin{equation*}
\Phi(z)=\frac{X}{z}+\ldots \tag{4.1}
\end{equation*}
$$

where Φ is a holomorphic 1-form on C that takes values in \mathfrak{e}_{6} and transforms in the adjoint representation of the gauge group, X is a representative of the nilpotent orbit $d(\mathcal{O})$ in \mathfrak{e}_{6}, and \ldots represents a generic regular function of z taking values in \mathfrak{e}_{6}. Here, $d(\mathcal{O})$ is the image of \mathcal{O} under the LusztigSpaltenstein map d [14, 5, 7]. Representatives of all nilpotent orbits in \mathfrak{e}_{6} can be found in [52], and a diagram specifying the action of d, as well as
other properties of the \mathfrak{e}_{6} orbits, are collected in Appendix C of [7] (taken from [53, 54]) When d is not injective, we distinguish different punctures with the same $d(\mathcal{O})$ by their Sommers-Achar group $\mathcal{C}(\mathcal{O})$ [7], which is a discrete subgroup of E_{6}, imposing gauge invariance of Φ under the action of $\mathcal{C}(\mathcal{O})$.

As in our previous papers, we call \mathcal{O}, which labels the puncture, the Nahm pole, and $d(\mathcal{O})$, which appears in the Hitchin system boundary condition, the Hitchin pole. The physical properties of a puncture labeled by \mathcal{O} will be directly related to geometric properties of the orbits \mathcal{O} and $d(\mathcal{O})$, and the discrete group $\mathcal{C}(\mathcal{O})$.

Unlike classical Lie algebras, there is no natural parameterization of the nilpotent orbits of exceptional Lie algebras in terms of partitions or Young diagrams. Instead, the notation due to Bala and Carter is standard in the representation theory literature. This notation has been briefly discussed in previous works [7, 21, 33, but, for completeness, we review it in Appendix B.1, and discuss how to extract relevant information from it.

4.1.2 k-differentials

The low-energy solution of the $4 \mathrm{D} \mathcal{N}=2$ theory is encoded in the Seiberg-Witten curve, which is given by the spectral curve of the Hitchin system, i.e., by the characteristic polynomial for the Higgs field Φ, in representation R of \mathfrak{e}_{6} :

$$
\Sigma_{R}: \operatorname{det}_{R}(\Phi-\lambda I)=\lambda^{d}+\lambda^{d-2} s_{2}+\lambda^{d-3} s_{3}+\cdots+s_{d}=0
$$

where $d=\operatorname{dim} R$ and the λ^{d-1} is zero because $\operatorname{Tr}(\Phi)=0$. Different choices of R will yield different curves Σ_{R}. However, as discussed in [55], the physical information that one can extract from them is the same.

For a choice of R, let s_{k} be the coefficient of $\lambda^{\operatorname{dim}(R)-k}$, for $k=0,1,2, \ldots, \operatorname{dim}(R) .\left(s_{0}\right.$ and s_{1} are trivial - they are 1 and 0 , respectively.) The $s_{k}(z)$ are holomorphic k-differentials on C (with poles at the punctures), and can be expressed as polynomials in the trace invariants $P_{k}=\operatorname{Tr}\left(\Phi^{k}\right)$. Notice that both the s_{k} and the P_{k} are dependent on the representation R.

On the other hand, we are actually interested in the Casimirs of Φ, which are the independent k-differentials providing the gauge-invariant information contained in Φ. For a Lie algebra \mathfrak{g}, the number of Casimirs is equal to the rank of \mathfrak{g}, and their scaling dimensions are the exponents (minus 1) of \mathfrak{g}. Unlike the s_{k} or the P_{k}, the Casimirs encode the non-redundant gaugeinvariant information in Φ.

In our previous papers [3, 5, 4, 17], the Lie algebra was of classical type, and R was always chosen to be the smallest non-trivial representation (the fundamental for A_{N-1}, or the vector for D_{N}). In such cases, the coefficients s_{k} directly provide a basis for the Casimirs of Φ. For example, for $\mathfrak{g}=A_{N-1}$, we have $N-1$ Casimirs, of dimensions $2,3,4, \ldots, N$. These dimensions match precisely those of the non-trivial coefficients s_{k} if R is chosen to be the funda-
mental representation. Thus, the s_{k} can be taken to be the Casimirs of A_{N-1}. Similarly, for $\mathfrak{g}=D_{N}$, the N Casimirs have degrees $2,4,6, \ldots, 2 N-2 ; N$. If R is the vector representation, the s_{k} with k odd vanish, and the non-trivial coefficients are $s_{2}, s_{4}, \ldots, s_{2 N-2}, s_{2 N}$. Here, $s_{2 N}$ is the square of the Pfaffian, $s_{2 N}=\tilde{s}^{2}$, and so \tilde{s} has dimension N. Thus, as before, the $s_{2}, s_{4}, \ldots, s_{2 N-2} ; \tilde{s}$ provide a basis of Casimirs of D_{N}.

But if for A_{N-1} and D_{N} we had chosen R to be, say, the adjoint representation, then, for large enough N, the s_{k} would not have given directly the Casimirs, but instead a lot of redundant information. For example, for A_{5}, there are five Casimirs, with dimensions $2,3,4,5,6$. However, we have 34 nontrivial coefficients s_{k}, with dimensions $2,3,4, \ldots, 35$. These s_{k} are polynomials in the five Casimirs.

For $\mathfrak{j}=\mathfrak{e}_{6}$, the Casimirs have degrees $2,5,6,8,9,12$. In our computations, we have chosen R to be the adjoint representation of \mathfrak{e}_{6}, as it is readily available in the form of structure constants; we used those from the computer algebra system GAP 4 [56]. Instead of trying to compute the 78 coefficients s_{k}, we focus directly on the trace invariants P_{k} for values of k only as large as needed to extract the Casimirs. For the adjoint representation of \mathfrak{e}_{6}, the P_{k} vanish for k odd, and are non-trivial for k even, except for $P_{4}=\frac{1}{32}\left(P_{2}\right)^{2}$. Also, as we will see below, to extract the Casimirs, we only need to consider the P_{k} for $k=2,6,8,10,12,14$. From the P_{k}, one can construct a less-redundant basis,

$$
\begin{aligned}
\phi_{2}= & \frac{1}{48} P_{2} \\
\phi_{6}= & \frac{1}{24}\left(P_{6}-\frac{7}{4608}\left(P_{2}\right)^{3}\right) \\
\phi_{8}= & \frac{1}{30}\left(P_{8}-\frac{2}{9} P_{6} P_{2}+\frac{155}{663552}\left(P_{2}\right)^{4}\right) \\
\phi_{10}= & -\frac{1}{105}\left(P_{10}-\frac{17}{96} P_{8} P_{2}+\frac{77}{6912} P_{6}\left(P_{2}\right)^{2}-\frac{427}{63700992}\left(P_{2}\right)^{5}\right) \\
\phi_{12}= & \frac{1}{155}\left(P_{12}-\frac{107}{504} P_{10} P_{2}+\frac{515}{32256} P_{8}\left(P_{2}\right)^{2}-\frac{41}{108}\left(P_{6}\right)^{2}+\frac{295}{497664} P_{6}\left(P_{2}\right)^{3}\right. \\
& \left.-\frac{5669}{9172942848}\left(P_{2}\right)^{6}\right) \\
\phi_{14}= & \frac{1}{4389}\left(P_{14}-\frac{3479}{14880} P_{12} P_{2}+\frac{61391}{3214080} P_{10}\left(P_{2}\right)^{2}-\frac{5399}{2160} P_{8} P_{6}-\frac{139733}{617103360} P_{8}\left(P_{2}\right)^{3}\right. \\
& \left.+\frac{165781}{4821120}\left(P_{6}\right)^{2} P_{2}-\frac{3488947}{44431441920} P_{6}\left(P_{2}\right)^{4}+\frac{19596907}{409480168734720}\left(P_{2}\right)^{7}\right)
\end{aligned}
$$

This basis was constructed so that it reduces the constraints in our punctures to a minimum. In particular, the pole coefficients for the minimal puncture have no redundancies; that is, the ϕ_{k} are such that it not be possible to reduce their pole orders in z further by a change of basis, for z a local coordinate centered at the minimal puncture. The ϕ_{k} basis also makes apparent how the Casimirs of degree 5 and 9 appear. Specifically, ϕ_{10} and ϕ_{14} factor,

$$
\begin{aligned}
\phi_{10} & \equiv\left(\phi_{5}\right)^{2}, \\
\phi_{14} & \equiv \phi_{5} \phi_{9}
\end{aligned}
$$

These relations define the odd-degree differentials ϕ_{5} and ϕ_{9} (up to a sign, which flips under the \mathbb{Z}_{2} outer automorphism of E_{6}). So, we can declare the k-differentials $\left\{\phi_{2}, \phi_{5}, \phi_{6}, \phi_{8}, \phi_{9}, \phi_{12}\right\}$ to be our basis of \mathfrak{e}_{6} Casimirs. In the
following, by the ϕ_{k}, we will refer to the Casimirs, and ignore the auxiliary differentials ϕ_{10} and ϕ_{14}.

As for the Seiberg-Witten curve, to write it explicitly, we need to know how the 78 coefficients s_{k} depend on the six Casimirs ϕ_{k}. Instead, it is much simpler to write down the (representation independent) Seiberg-Witten geometry, given by an ALE fibration over C, and which equivalently describes the low-energy solution of $4 \mathrm{D} \mathcal{N}=2$ theories, but directly using the Casimirs [44, 57]. Let us briefly review that construction.

4.1.3 ALE geometry

The 4D $\mathcal{N}=2$ SCFT constructed from the compactification of a 6 D $(2,0)$ theory of type J (where J is of A-D-E type) on the Riemann surface C can also be obtained, in a dual manner, from IIB string theory on a noncompact Calabi-Yau threefold, locally given by an ALE fibration over C of type J [44, 57]. For \mathfrak{e}_{6}, the threefold is realized as the hypersurface

$$
\begin{aligned}
X_{\vec{u}}= & \left\{0=w^{2}+x^{3}+y^{4}+\epsilon_{2}(z) x y^{2}+\epsilon_{5}(z) x y+\epsilon_{6}(z) y^{2}+\epsilon_{8}(z) x+\epsilon_{9}(z) y\right. \\
& \left.+\epsilon_{12}(z)\right\} \subset \operatorname{tot}\left(K_{C}^{6} \oplus K_{C}^{4} \oplus K_{C}^{3}\right)
\end{aligned}
$$

where the $\epsilon_{k}(z)$ are k-differentials on C [33] (in the "Katz-Morrison basis" [58]), related to our $\phi_{k}(z)$ by

$$
\begin{aligned}
\epsilon_{2} & =\frac{1}{2} \phi_{2} \\
\epsilon_{5} & =\frac{1}{6} \phi_{5} \\
\epsilon_{6} & =\frac{1}{72}\left(-3 \phi_{2}^{3}+2 \phi_{6}\right) \\
\epsilon_{8} & =\frac{1}{144}\left(-3 \phi_{2}^{4}+4 \phi_{2} \phi_{6}-\phi_{8}\right) \\
\epsilon_{9} & =\frac{1}{72}\left(-\phi_{2}^{2} \phi_{5}+4 \phi_{9}\right) \\
\epsilon_{12} & =\frac{1}{5184}\left(4 \phi_{12}+6 \phi_{2}^{6}-12 \phi_{2}^{3} \phi_{6}+4 \phi_{6}^{2}+3 \phi_{2}^{2} \phi_{8}\right)
\end{aligned}
$$

The $\phi_{k}(z)$, in turn, depend on the Coulomb branch parameters, \vec{u}, as we determine below.

The Seiberg-Witten solution is obtained by computing the periods of the holomorphic 3 -form, Ω, over a symplectic basis of (rational) 3 -cycles on $X_{\vec{u}}$ which are locally of the form of a 2-sphere in the fiber times a curve on C. In the conformal case (which will be our focus in this paper), many of these cycles will necessarily be noncompact (the curve on C being a open curve, stretching between punctures). But, precisely for the parabolic case (where the Higgs field $\Phi(z)$ has simple poles at the punctures, with nilpotent residues), the singularity is integrable, and the requisite periods of Ω are finite.

In our realization of F_{4} gauge theory in $\$ 4.4 .1 .2$, the differentials $\phi_{5}(z)$ and $\phi_{9}(z)$ vanish identically. In this case, the Calabi-Yau, $X_{\vec{u}}$, has a holomorphic involution, $y \rightarrow-y$, under which $\Omega \rightarrow-\Omega$. The 3-cycles which give the Seiberg-Witten solution are the anti-invariant cycles and the periods of Ω over those cycles are finite, despite the slightly singular nature of $X_{\vec{u}}$ itself.

4.1.4 Puncture properties

We describe below how to compute the properties of a puncture. There is a systematic way to compute every property of the puncture, except for the constraints, so it is easiest to compute the other properties first, and use them to guess the constraints. Below, let \mathcal{O} be the Nahm nilpotent orbit that labels a given puncture, and $\mathfrak{s u}(2)_{\mathcal{O}}$ the associated $\mathfrak{s u}(2)$ embedding in \mathfrak{e}_{6}.

4.1.4.1 Flavour groups

The Lie algebra \mathfrak{f} of the flavour group $F=F_{\mathcal{O}}$ is the centralizer of $\mathfrak{s u}(2)_{\mathcal{O}}$ in \mathfrak{e}_{6}. A list of the centralizers for each \mathcal{O} can be found in Table 14 of [7], taken originally from [59].

The levels of the simple, nonabelian factors \mathfrak{f}_{i} in \mathfrak{f} follow from the decomposition of the adjoint of \mathfrak{e}_{6} under $\mathfrak{s u}(2) \times \mathfrak{f}$. These decompositions can be deduced from the Bala-Carter label for \mathcal{O}, and are summarized in the table in Appendix B.1.

Let the decomposition of the 78 be

$$
\mathfrak{e}_{6}=\bigoplus_{n} V_{n} \otimes R_{n, i}
$$

where V_{n} is the n-dimensional irrep of $\mathfrak{s u}(2)$ (denoted by " n " in the table) and $R_{n, i}$ is the corresponding (reducible) representation of \mathfrak{f}_{i}. Let $l_{n, i}$ be the index of $R_{n, i}$. Then, the level of \mathfrak{f}_{i} is $k_{i}=\sum_{n} l_{n, i}$.

For example, consider the $3 A_{1}$ puncture, which has $\mathfrak{f}=\mathfrak{s u}(3) \times \mathfrak{s u}(2)$.

From the table in Appendix B.1, we have, for $\mathfrak{f}_{1}=\mathfrak{s u}(3)$,

$$
R_{1}=8+3(1), \quad R_{2}=2(8), \quad R_{3}=8+1, \quad R_{4}=2(1)
$$

and so the level is $k_{\mathfrak{s u}(3)}=4 l_{8}=24$. Similarly, for $\mathfrak{f}_{2}=\mathfrak{s u}(2)$, we have

$$
R_{1}=3+8(1), \quad R_{2}=8(2), \quad R_{3}=9(1), \quad R_{4}=2
$$

and thus the level is $k_{\mathfrak{s u}(2)}=l_{3}+9 l_{2}=4+9 \times 1=13$.

4.1.4.2 δn_{h} and δn_{v}

The effective number of hyper- and vector multiplets, δn_{h} and δn_{v}, can be computed using the formulas in eq. (3.19) of [7]. Basically, given \mathcal{O}, one needs to know how \mathfrak{e}_{6} decomposes into eigenspaces of the Cartan element of $\mathfrak{s u}(2)_{\mathcal{O}}$.

Here, let us recast those formulas in terms of the weighted Dynkin diagram for \mathcal{O}, which can be found in Table 14 of [7]. Let \vec{x} be the sixdimensional vector consisting of the labels of the weighted Dynkin diagram for \mathcal{O}. Now, for each root α of E_{6}, let \vec{k} be a six-dimensional vector consisting of the (integer) components of α in any basis of simple roots. The "Weyl vector" is $\vec{W}=\frac{1}{2} \sum_{\vec{k} \geq 0} \vec{k}$, where the sum is over positive roots. Let n_{0} and $n_{1 / 2}$ be the number of roots α that satisfy $(\vec{x} / 2) \cdot \vec{k}=0$ and $(\vec{x} / 2) \cdot \vec{k}=1 / 2$, respectively. (The dot product is Euclidean.) In this notation, the formulas
in eq. (3.19) of [7] are:

$$
\begin{align*}
& n_{h}(\vec{x})=8\left(\frac{1}{12} h^{\vee}\left(E_{6}\right) \operatorname{dim}\left(E_{6}\right)-\frac{1}{2} \vec{W} \cdot \vec{x}\right)+\frac{1}{2} n_{1 / 2} \tag{4.2}\\
& n_{v}(\vec{x})=8\left(\frac{1}{12} h^{\vee}\left(E_{6}\right) \operatorname{dim}\left(E_{6}\right)-\frac{1}{2} \vec{W} \cdot \vec{x}\right)-\frac{1}{2} n_{0}
\end{align*}
$$

where $h^{\vee}\left(E_{6}\right)=12$ denotes the dual Coxeter number of E_{6}.
For example, for $\vec{x}=\overrightarrow{0}$, corresponding to the maximal puncture, one has that the adjoint of E_{6} decomposes trivially into singlets of $\mathfrak{s u}(2), 78 \rightarrow 78(1)$, so $n_{0}(\overrightarrow{0})=\operatorname{dim}\left(E_{6}\right)-\operatorname{rank}\left(E_{6}\right)$, and $n_{1 / 2}(\overrightarrow{0})=0$. Thus,

$$
\begin{aligned}
& n_{h}(\overrightarrow{0})=\frac{2}{3} h^{\vee}\left(E_{6}\right) \operatorname{dim}\left(E_{6}\right)=624 \\
& n_{v}(\overrightarrow{0})=\frac{2}{3} h^{\vee}\left(E_{6}\right) \operatorname{dim}\left(E_{6}\right)-\frac{1}{2}\left(\operatorname{dim}\left(E_{6}\right)-\operatorname{rank}\left(E_{6}\right)\right)=588
\end{aligned}
$$

As a self-consistency check, recall that the complex dimension $\operatorname{dim}_{\mathbb{C}}(\mathcal{O})$ of the orbit \mathcal{O} (seen as a manifold) is related linearly to the difference $n_{h}-n_{v}$. Specifically, $n_{h}-n_{v}=C-\frac{1}{2} \operatorname{dim}_{\mathbb{C}}(\mathcal{O})$, where $C=n_{h}(\overrightarrow{0})-n_{v}(\overrightarrow{0})=\frac{1}{2}\left(\operatorname{dim}\left(E_{6}\right)-\right.$ $\left.\operatorname{rank}\left(E_{6}\right)\right)$. In other words,

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}}(\mathcal{O})=\operatorname{dim}\left(E_{6}\right)-\operatorname{rank}\left(E_{6}\right)-\left(n_{1 / 2}+n_{0}\right) \tag{4.3}
\end{equation*}
$$

The dimensions of the nilpotent orbits of E_{6} are listed in Table 14 of [7].
For a non-trivial example, consider the puncture $2 A_{1}$, which has weighted Dynkin diagram

that is, $\vec{x}=(1,0,0,0,1 ; 0)$. One finds $\vec{W}=(8,15,21,15,8 ; 11), n_{1 / 2}=16$, $n_{0}=24$. Thus, $n_{h}\left(2 A_{1}\right)=568$ and $n_{v}\left(2 A_{1}\right)=548$, and one indeed checks (4.3) for $\operatorname{dim}_{\mathbb{C}}\left(2 A_{1}\right)=32$.

4.1.4.3 Pole structures

The "pole structure" is the set of leading pole orders $\left\{p_{2}, p_{5}, p_{6}, p_{8}, p_{9}, p_{12}\right\}$ in the expansion of the Casimirs ϕ_{k} in a coordinate z centered at the puncture, $\phi_{k}(z) \sim 1 / z^{p_{k}}$.

To compute the pole structure, we need a representative of the Hitchin nilpotent orbit $d(\mathcal{O})$. A table of representatives of all nilpotent orbits of E_{6} can be found in Table 2 of [52]. In this table, a nilpotent representative is given by a sum of weighted Dynkin diagrams, and each weighted Dynkin diagram represents an element in the root vector space of \mathfrak{e}_{6} for a positive root α, where α is such that its components in a basis of simple roots are given by the labels of the Dynkin diagram. The nilpotent representative is the sum of these rootvector space elements. This procedure is most easily understood in terms of an example.

Take, for instance, $\mathcal{O}=D_{4}\left(a_{1}\right)$. The Hitchin orbit, given by the Spaltenstein dual, is the same, $d(\mathcal{O})=\mathcal{O}=D_{4}\left(a_{1}\right)$. This orbit has a nilpotent representative X given by a sum of five elements [52],

The five summands above represent arbitrary non-zero elements $X_{\alpha_{i}}(i=$ $1, \ldots, 5)$ in the root vector spaces for the positive roots

$$
\begin{array}{ll}
\alpha_{1}=s_{2}, & \alpha_{4}=s_{6}, \\
\alpha_{2}=s_{3}+s_{6}, & \alpha_{5}=s_{4}, \\
\alpha_{3}=s_{3}+s_{4}, &
\end{array}
$$

respectively, where $\left\{s_{1}, \ldots, s_{5} ; s_{6}\right\}$ is a basis of simple roots of E_{6}. So, $X=$ $X_{\alpha_{1}}+\cdots+X_{\alpha_{5}}$. Fortunately, GAP4 provides a Chevalley basis for the adjoint representation of \mathfrak{e}_{6}, so it is trivial to find elements $X_{\alpha_{i}}$. Once we know X, we compute $\Phi(z)$ using X as the residue in (4.1), then the Casimir k-differentials ϕ_{k} as in $\$ 5.1 .2$, and we finally find the pole structure $\{1,3,4,6,6,9\}$ for the $D_{4}\left(a_{1}\right)$ puncture. (Actually, there are three orbits, $D_{4}\left(a_{1}\right), A_{3}+A_{1}$ and $2 A_{2}+$ A_{1}, that map under Spaltenstein to $D_{4}\left(a_{1}\right)$, so we have three punctures with the same pole structure. However, the other properties of these punctures are different.)

4.1.4.4 Constraints

The constraints for some E_{6} punctures are, in some cases, much less obvious than those in the A_{N-1} and D_{N} series. The guiding quantities to find constraints are δn_{v} and the (complex) dimension of the Hitchin nilpotent orbit, d. These are, respectively, the graded and ungraded local contributions to the Coulomb branch.

Let us be specific. Let z be a local coordinate on C centered at the puncture, and let $c_{l}^{(k)}$ be the coefficient of z^{-l} in the expansion of $\phi_{k}=\phi_{k}(z)$
in z. Recall that, in the notation of our previous papers, a "c-constraint" is a polynomial relation among coefficients $c_{l}^{(k)}$ (of homogeneous bi-degree in both k and l). On the other hand, an "a-constraint" is a relation that defines a new quantity, $a_{l}^{(k)}$, of dimension k, in terms of the $c_{l}^{(k)}$. Only the $c_{l}^{(k)}$ with $l>0$ parameterize the Hitchin nilpotent orbit [21]. In the absence of constraints, all the $c_{l}^{(k)}$ with $0<l \leq p_{k}$ are independent, so their total number, $\sum p_{k}$, should be equal to the dimension of the Hitchin nilpotent orbit. Thus, if there are no constraints, $\sum p_{k}=d$. A c-constraint reduces the total number of independent parameters by one, whereas an a-constraint does not affect this number. So, one should have:

$$
\sum p_{k}-(\text { number of c-constraints })=d
$$

Hence, d tells us how many c-constraints exist. On the other hand, the graded sum of the parameters, that is, the result of adding $(2 k-1)$ for each parameter of degree k (in the presence of "a"-constraints, k is not restricted to the degrees of the Casimirs), should be equal to n_{v}. An a-constraint replaces a parameter of a certain degree k by another one of a different degree $k^{\prime}<k$. So, to get precisely n_{v}, one must take into account all a-constraints and c-constraints.

4.1.4.5 Puncture collisions

Suppose we have two punctures on a plane, so the Higgs field has two simple poles with residues X_{1} and X_{2}. Near each puncture, the Higgs field Φ looks like eq. 4.1). In the limit where the two punctures collide, the Higgs
field has one simple pole with residue $X=X_{1}+X_{2}$ (by the residue theorem applied to the sphere that bubbles off), which corresponds to a new puncture. Generically, X will be mass deformed. The mass deformations are interpreted as VEVs of the scalars in the gauge multiplet associate to the factor in the gauge group which becomes weakly coupled in the collision limit. One can also study this degeneration by computing the Casimirs ϕ_{k} from the Higgs field before taking the collision limit.

Alternatively, one can bypass the Higgs field, and study the collision directly with the ϕ_{k}, by writing a generic k-differential with poles at the positions of the two punctures (given by their pole structures), and imposing at each pole the constraints of the corresponding puncture. Then, taking the collision limit, the pole structure and constraints of the resulting puncture on the plane arise naturally.

As an example, let us see that the collision of two D_{5} punctures on a plane produces an $S p(2)$ gauge group, gauged off an A_{3} puncture. Let us write generic Casimirs for the collision, taking the D_{5} punctures to be at $z=0$ and $z=x:$

$$
\begin{aligned}
& \phi_{2}(z)=\frac{u_{2}+z v_{2}+z(z-x) P_{2}(z)}{z(z-x)} \\
& \phi_{5}(z)=\frac{u_{5}+z v_{5}+z(z-x) w_{5}+z^{2}(z-x) P_{5}(z)}{z^{2}(z-x)^{2}} \\
& \phi_{6}(z)=\frac{u_{6}+z v_{6}+z(z-x) w_{6}+z^{2}(z-x) P_{6}(z)}{z^{3}(z-x)^{3}} \\
& \phi_{8}(z)=\frac{u_{8}+z v_{8}+z(z-x) w_{8}+z^{2}(z-x) y_{8}+z^{2}(z-x)^{2} P_{8}(z)}{z^{4}(z-x)^{4}} \\
& \phi_{9}(z)=\frac{u_{9}+z v_{9}+z(z-x) w_{9}+z^{2}(z-x) P_{9}(z)}{z^{4}(z-x)^{4}} \\
& \phi_{12}(z)=\frac{u_{12}+z v_{12}+z(z-x) w_{12}+z^{2}(z-x) y_{12}+z^{2}(z-x)^{2} P_{12}(z)}{z^{6}(z-x)^{6}},
\end{aligned}
$$

where $P_{2}(z), P_{5}(z), \ldots, P_{12}(z)$ denote regular functions in z. To solve the constraints at each D_{5} puncture, we introduce new parameters s_{4} and t_{4} of dimension four, and write:

$$
\begin{aligned}
u_{6} & =\frac{3 s_{4} u_{2}}{4}, & v_{6} & =\frac{3}{2}\left(t_{4} u_{2}+s_{4} v_{2}+t_{4} v_{2} x\right), \\
u_{8} & =3 s_{4}^{2}, & v_{8} & =3\left(2 s_{4} t_{4}+t_{4}^{2} x\right), \\
u_{9} & =-\frac{s_{4} u_{5}}{4}, & v_{9} & =-\frac{1}{4}\left(t_{4} u_{5}+s_{4} v_{5}+t_{4} v_{5} x\right), \\
u_{12} & =\frac{3 s_{4}^{3}}{2}, & v_{12} & =\frac{3}{2} t_{4}\left(3 s_{4}^{2}+3 s_{4} t_{4} x+t_{4}^{2} x^{2}\right), \\
w_{12} & =\frac{3}{4}\left(3 s_{4} t_{4}^{2}+s_{4} w_{8}+2 t_{4}^{3} x\right), & y_{12} & =-\frac{3}{4}\left(t_{4}^{3}-t_{4} w_{8}-s_{4} y_{8}-t_{4} y_{8} x\right)
\end{aligned}
$$

In the collision limit, $x \rightarrow 0$, the new puncture appears at $z=0$. The expansion in z of the Casimirs in this limit is:

$$
\begin{aligned}
& \phi_{2}(z)=\frac{u_{2}}{z^{2}}+\frac{v_{2}}{z}+\ldots \\
& \phi_{5}(z)=\frac{u_{5}}{z^{4}}+\ldots \\
& \phi_{6}(z)=\frac{3 s_{4} u_{2}}{2 z^{6}}+\frac{3\left(t_{4} u_{2}+s_{4} v_{2}\right)}{2 z^{5}}+\frac{w_{6}}{z^{4}}+\ldots \\
& \phi_{8}(z)=\frac{3 s_{4}^{2}}{z^{8}}+\frac{6 s_{4} t_{4}}{z^{7}}+\frac{w_{8}}{z^{6}}+\ldots \\
& \phi_{9}(z)=-\frac{s_{4} u_{5}}{4 z^{8}}-\frac{\left(t_{4} u_{5}+s_{4} v_{5}\right)}{4 z^{7}}+\frac{w_{9}}{z^{6}}+\ldots \\
& \phi_{12}(z)=\frac{3 s_{4}^{3}}{2 z^{12}}+\frac{9 s_{4}^{2} t_{4}}{2 z^{11}}+\frac{3\left(3 s_{4} t_{4}^{2}+s_{4} w_{8}\right)}{4 z^{10}}-\frac{3\left(t_{4}^{3}-t_{4} w_{8}-s_{4} y_{8}\right)}{4 z^{9}}+\ldots,
\end{aligned}
$$

where the \ldots indicate less singular terms in z. So, u_{2} and s_{4} can be interpreted as the VEVs of Coulomb branch parameters (of degree two and four) of the gauge group (which, with a little more work, can be checked to be $S p(2)$). In the limit $u_{2}, s_{4} \rightarrow 0$, we obtain the Casimirs for the massless puncture, with pole orders $\{1,4,4,6,7,9\}$, and with constraints

$$
\begin{aligned}
c_{7}^{(9)} & =\frac{1}{2} \tilde{t}_{4} u_{5} \\
c_{9}^{(12)} & =6 \tilde{t}_{4}^{3}-\frac{3}{2} w_{8} \tilde{t}_{4},
\end{aligned}
$$

where $\tilde{t}_{4} \equiv-t_{4} / 2$. Thus, we get precisely the pole structure and constraints of the A_{3} puncture.

4.1.5 Global symmetries and the superconformal index

4.1.5.1 Cataloguing fixtures using the superconformal index

For the E_{6} theory, we find 880 fixtures with three regular punctures which correspond to interacting SCFTs, possibly with additional decoupled
hypermultiplets. Each of these SCFTs has a manifest global symmetry group, which is given by the product of the flavor symmetry groups of the three punctures. This global symmetry group may, in general, become enhanced to a larger group.

To determine the global symmetry group and number of free hypermultiplets for each of these fixtures, we use the superconformal index [22, 23, 24, [25, 26]. The superconformal index of E-type class \mathcal{S} theories has not yet been systematically studied. However, since the methods used for A - and D-type theories generalize to any root system, we assume the superconformal index ${ }^{2}$ for a fixture in the E_{6} theory takes the usual form

$$
\begin{equation*}
\mathcal{I}\left(\mathbf{a}_{i}, \tau\right)=\mathcal{A}(\tau) \sum_{\lambda} \frac{\prod_{i=1}^{3} \mathcal{K}\left(\mathbf{a}_{i}\right) P^{\lambda}\left(\mathbf{a}_{i} \mid \tau\right)}{P^{\lambda}\left(\mathbf{a}_{\text {triv }} \mid \tau\right)} \tag{4.4}
\end{equation*}
$$

where

- The sum is over λ labeling the highest weights of finite-dimensional irreducible representations of \mathfrak{e}_{6}.
- The $P^{\lambda}\left(\mathbf{a}_{i} \mid \tau\right)$ are Hall-Littlewood polynomials, defined for a general root system by

[^16]\[

$$
\begin{aligned}
P^{\lambda} & =W^{-1}(\tau) \sum_{w \in W} w\left(e^{\lambda} \prod_{\alpha \in R^{+}} \frac{1-\tau^{2} e^{-\alpha}}{1-e^{-\alpha}}\right) \\
W(\tau) & =\sqrt{\sum_{\substack{w \in W \\
w \lambda=\lambda}} \tau^{2 \ell(w)}}
\end{aligned}
$$
\]

where R^{+}denotes the set of positive roots, W the Weyl group, and $\ell(w)$ the length of the Weyl group element w.

- $\mathbf{a}_{i} \equiv\left\{e^{\alpha}\right\}_{\alpha \in R^{+}}$denotes a set of flavor fugacities dual to the Cartan subalgebra of the flavor symmetry of the $i^{\text {th }}$ puncture. $\mathbf{a}_{\text {triv }}$ denotes the set of fugacities dual to the Cartan of the embedded $\mathfrak{s u}(2)$ of the trivial puncture.
- The \mathcal{K}-factors are discussed in [24, 60, 27, 26]. We will not need their detailed form for our purposes.
- $\mathcal{A}(\tau)$ is an overall, flavor fugacity independent normalization.

Consider a fixture corresponding to an interacting SCFT, with global symmetry $G_{\text {global }}$, plus free hypermultiplets transforming in a representation R of a flavor symmetry F. Let $G_{\text {fixt }} \equiv G_{\text {global }} \times F$ denote the global symmetry of the fixture. As discussed in [27], the number of free hypers in the fixture and the global symmetry of the fixture can be read off from the first two non-trivial terms in the Taylor expansion of the index. Schematically, this is given by

$$
\begin{equation*}
\mathcal{I}=1+\chi_{\mathrm{F}}^{R} \tau+\chi_{G_{\mathrm{fxx}}}^{a d j} \tau^{2}+\ldots \tag{4.5}
\end{equation*}
$$

where χ_{F}^{R} is the Weyl character of R and $\chi_{G_{\text {fixt }}}^{a d j}$ is the character of the adjoint representation of $G_{\text {fixt }}$, where both of these representations are viewed as reducible representations of the manifest symmetry algebra. By Taylor expanding $\mathcal{I}_{\text {free }}=P E\left[\tau \chi_{F}^{R}\right]$ (where $P E$ denotes the Plethystic exponential) and removing the contribution of the free hypermultiplets in (4.5), we arrive at

$$
\begin{aligned}
\mathcal{I}_{\text {SCFT }} & =\mathcal{I} / \mathcal{I}_{\text {free }} \\
& =1+\chi_{G_{\text {global }}}^{\text {adj }} \tau^{2}+\ldots
\end{aligned}
$$

from which we can read off the global symmetry of the interacting SCFT.

4.1.5.2 Computing the expansion of the index

In (5.2) the term in the sum coming from the trivial representation of \mathfrak{e}_{6} gives, to second order in $\tau,[27]$

$$
\mathcal{I}=1+\chi_{G_{\text {manifest }}}^{a d j} \tau^{2}+\cdots
$$

encoding the manifest global symmetry group. The global symmetry group of the fixture is enhanced if there are terms contributing at order τ^{2} coming from the sum over $\lambda>0$.

To order τ^{2}, 5.2 simplifies to ${ }^{3}$

[^17]\[

$$
\begin{equation*}
\mathcal{I}=1+\chi_{G_{\text {manifest }}}^{a d j} \tau^{2}+\left[\sum_{\lambda>0} \frac{\prod_{i=1}^{3} \chi^{\lambda}\left(\mathbf{a}_{\mathbf{i}} \mid \tau\right)}{\chi^{\lambda}\left(\mathbf{a}_{\text {triv }} \mid \tau\right)}\right]_{\mathcal{O}\left(\tau^{2}\right)} \tag{4.6}
\end{equation*}
$$

\]

To compute (4.6), we consider each \mathfrak{e}_{6} representation in the sum to be a reducible representation of $\mathfrak{s u}(2) \times \mathfrak{f}$ and plug in the corresponding character expansion, where the embedded $\mathfrak{s u}(2)$ has fugacity τ. The decomposition of any \mathfrak{e}_{6} representation in terms of $\mathfrak{s u}(2) \times \mathfrak{f}$ representations can be obtained using the projection matrices listed in Appendix E. 2 .

Of the 881 fixtures involving three regular punctures, we find that 1 is a free-field fixture, 60 are mixed fixtures and another 134 are interacting fixtures with an enhanced global symmetry group. We list these in the tables below. For the remaining 686 interacting fixtures, the global symmetry group is the manifest one.

As an example, consider the fixture

The manifest global symmetry is $\left(E_{6}\right)_{24} \times S U(3)_{12} \times U(1)$. The contributions at order τ^{2} come from the sum over the $27, \overline{27}, 78,351, \overline{351}, 351^{\prime}, \overline{351}^{\prime}$, and 650 of \mathfrak{e}_{6}. The expansion of the superconformal index is given by ${ }_{4}^{4}$

[^18]\[

$$
\begin{aligned}
& \mathcal{I}=1+\left\{(27,1)_{1}+(\overline{27}, 1)_{-1}\right\} \tau+\left\{(1,1)_{0}+(78,1)_{0}+\right. \\
& \quad(650,1)_{0}+(27,1)_{-2}+\left(351^{\prime}, 1\right)_{-2}+(\overline{27}, 1)_{2}+ \\
& \\
& \left.\left(\overline{351}^{\prime}, 1\right)_{2}+(78,1)_{0}+(1,8)_{0}+(27, \overline{3})_{0}+(\overline{27}, 3)_{0}\right\} \tau^{2}+\ldots
\end{aligned}
$$
\]

Due to the order τ term, this is a mixed fixture, with 27 free hypermultiplets transforming in the fundamental representation of E_{6}. The index of these free hypers is given by

$$
\begin{aligned}
\mathcal{I}_{\text {free }} & =P E\left[\tau\left\{(27,1)_{1}+(\overline{27}, 1)_{-1}\right\}\right] \\
& =1+\left\{(27,1)_{1}+(\overline{27}, 1)_{-1}\right\} \tau+ \\
& \left\{(1,1)_{0}+(78,1)_{0}+(650,1)_{0}+(27,1)_{-2}+\left(351^{\prime}, 1\right)_{-2}+(\overline{27}, 1)_{2}\right. \\
& \left.+\left(\overline{351}^{\prime}, 1\right)_{2}\right\} \tau^{2}+\ldots
\end{aligned}
$$

The index of the underlying SCFT is then

$$
\begin{aligned}
\mathcal{I}_{\text {SCFT }} & =\mathcal{I} / \mathcal{I}_{\text {free }} \\
& =1+\left\{(78,1)_{0}+(1,8)_{0}+(27, \overline{3})_{0}+(\overline{27}, 3)_{0}\right\} \tau^{2}
\end{aligned}
$$

We recognize the coefficient of τ^{2} as the character of the adjoint representation of E_{8}. Computing the other numerical invariants of the fixture, we find that this is the $\left(E_{8}\right)_{12}$ theory of Minahan and Nemeschansky [62] with 27 additional free hypermultiplets.

4.1.6 Levels of enhanced global symmetry groups

Since the superconformal index gives the branching rule for the adjoint representation of $G_{\text {global }}$ under the subgroup $G_{\text {manifest }}$, it most cases it is
straightforward to determine the level of each factor in $G_{\text {global }}$ from those of $G_{\text {manifest }}$: If $H_{k^{\prime}}$ is a subgroup of G_{k}, then k is given by [2]

$$
k=\frac{k^{\prime}}{I_{H \hookrightarrow G}}
$$

where $I_{H \hookrightarrow G}$ is the index of the embedding of H in G.
There are two cases which require a little more work. The first is when a manifest $U(1)$ becomes enhanced to $S U(2)$. Since we do not know how to assign a level to a $U(1)$ flavor symmetry (which would require a precise understanding of how the generator is normalized), we cannot immediately determine the level of the enhanced $S U(2)$ from the index.

The second case is when some factor H_{k} in $G_{\text {manifest }}$ is embedded diagonally as

$$
H_{k} \hookrightarrow H_{k_{1}} \times H_{k_{2}} .
$$

Since the only embedding of H in itself has index one, in this case, all we know is that $k_{1}+k_{2}=k$.

If any of these remain as factors in $G_{\text {global }}$ (that is, if they do not combine with some other factor, with known level, to enhance $G_{\text {global }}$), we cannot determine their levels from the index, and must determine them using an S-duality. To do so, we look for a 4 -punctured sphere for which the SCFT appears in some degeneration, with $H_{k_{i}}$ in the centralizer of subgroup of $G_{\text {global }}$ being weakly gauged.

Unfortunately, there are a few such fixtures for which no puncture can be gauged (some of these can still be gauged in the twisted sector, which will be discussed in $\$ 4.3$). For these, we do not have a way to determine the levels. In the end, there are two interacting fixtures whose levels we cannot completely determine.

4.2 Tinkertoys

4.2.1 Regular punctures

The pole structure $\left\{p_{2}, p_{5}, p_{6}, p_{8}, p_{9}, p_{12}\right\}$ of a puncture at $z=0$ will be the leading pole orders in z of the differentials $\phi_{k}(z)$ for $k=2,5,6,8,9,12$. Notice that in some cases there are constraints, not just on the coefficient of this leading singularity, but also on subleading terms in the Laurent expansion of the k-differentials.

Table 4.1: Untwisted regular punctures

Nahm B-C label	Hitchin B-C label	Pole structure	Constraints	Flavour group	$\left(\delta n_{h}, \delta n_{v}\right)$
0	E_{6}	$\{1,4,5,7,8,11\}$	-	$\left(E_{6}\right)_{24}$	$(624,588)$
A_{1}	$E_{6}\left(a_{1}\right)$	$\{1,4,5,7,8,10\}$	-	$S U(6)_{18}$	$(590,565)$
$2 A_{1}$	D_{5}	$\{1,4,5,7,7,10\}$	-	$\operatorname{Spin}(7)_{16}$ $\times U(1)$	$(568,548)$
$3 A_{1}$	$\left(E_{6}\left(a_{3}\right)\right.$, $\left.\mathbb{Z}_{2}\right)$	$\{1,4,5,6,7,10\}$	-	$S U(3)_{24}$ $(n s)$	$(549,533)$

Table 4.1: Untwisted regular punctures

$\begin{gathered} \text { Nahm } \\ \text { B-C } \\ \text { label } \end{gathered}$	Hitchin B-C label	Pole structure	Constraints	Flavour group	$\left(\delta n_{h}, \delta n_{v}\right)$
A_{2}	$E_{6}\left(a_{3}\right)$	$\{1,4,5,6,7,10\}$	$c_{10}^{(12)}=-\left(c_{5}^{(6)}\right)^{2}+\left(a_{5}^{(6)}\right)^{2}$	$S U(3)_{12}^{2}$	$(536,521)$
$\begin{aligned} & A_{2}+ \\ & A_{1} \\ & \hline \end{aligned}$	$D_{5}\left(a_{1}\right)$	$\{1,4,5,6,7,9\}$	-	$\begin{aligned} & S U(3)_{12} \times \\ & U(1) \end{aligned}$	$(523,510)$
$2 A_{2}$	D_{4}	$\{1,3,5,6,6,9\}$	-	$\left(G_{2}\right)_{12}$	$(496,484)$
$\begin{aligned} & A_{2}+ \\ & 2 A_{1} \\ & \hline \end{aligned}$	$A_{4}+A_{1}$	$\{1,4,4,6,7,9\}$	-	$\begin{aligned} & S U(2)_{54} \times \\ & U(1) \end{aligned}$	$(510,499)$
A_{3}	A_{4}	$\{1,4,4,6,7,9\}$	$\begin{aligned} c_{7}^{(9)}= & \frac{1}{2} c_{4}^{(5)} a_{3}^{(4)} \\ c_{9}^{(12)}= & 6\left(a_{3}^{(4)}\right)^{3} \\ & -\frac{3}{2} c_{6}^{(8)} a_{3}^{(4)} \end{aligned}$	$\begin{aligned} & S p(2)_{10} \times \\ & U(1) \end{aligned}$	$(476,466)$
$\begin{aligned} & 2 A_{2}+ \\ & A_{1}(\underline{n s}) \end{aligned}$	$\begin{gathered} \left(D_{4}\left(a_{1}\right),\right. \\ \left.S_{3}\right) \\ \hline \end{gathered}$	$\{1,3,4,6,6,9\}$	-	$S U(2){ }_{26}$	$(482,473)$
$\begin{aligned} & A_{3}+ \\ & A_{1}(\underline{n s}) \end{aligned}$	$\begin{gathered} \left(D_{4}\left(a_{1}\right)\right. \\ \left.\mathbb{Z}_{2}\right) \end{gathered}$	$\{1,3,4,6,6,9\}$	$\begin{aligned} c_{9}^{(12)}= & a_{3}^{(4)}\left(\frac{16}{9}\left(a_{3}^{(4)}\right)^{2}\right. \\ & \left.-c_{6}^{(8)}\right) \end{aligned}$	$\begin{aligned} & S U(2)_{9} \times \\ & U(1) \end{aligned}$	$(465,457)$

Table 4.1: Untwisted regular punctures

$\begin{gathered} \text { Nahm } \\ \text { B-C } \\ \text { label } \end{gathered}$	Hitchin B-C label	Pole structure	Constraints	Flavour group	$\left(\delta n_{h}, \delta n_{v}\right)$
$D_{4}\left(a_{1}\right)$	$D_{4}\left(a_{1}\right)$	$\{1,3,4,6,6,9\}$	$\begin{gathered} c_{6}^{(8)}=\frac{4}{3}\left(\left(a_{3}^{(4)}\right)^{2}\right. \\ \left.+3\left(a_{3}^{(4)}\right)^{2}\right) \\ c_{9}^{(12)}=\frac{4}{9} a_{3}^{(4)}\left(\left(a_{3}^{(4)}\right)^{2}\right. \\ \left.-9\left(a_{3}^{\prime(4)}\right)^{2}\right) \end{gathered}$	$U(1)^{2}$	$(456,449)$
A_{4}	A_{3}	$\{1,3,4,6,6,9\}$	$\begin{aligned} c_{6}^{(8)} & =3\left(a_{3}^{(4)}\right)^{2} \\ c_{6}^{(9)} & =\frac{1}{4} c_{3}^{(5)} a_{3}^{(4)} \\ c_{9}^{(12)} & =-\frac{3}{2}\left(a_{3}^{(4)}\right)^{3} \\ c_{8}^{(12)} & =-\frac{3}{4} a_{3}^{(4)} c_{5}^{(8)} \end{aligned}$	$\begin{aligned} & S U(2)_{8} \times \\ & U(1) \end{aligned}$	$(408,402)$

Table 4.1: Untwisted regular punctures

$\begin{gathered} \text { Nahm } \\ \text { B-C } \\ \text { label } \end{gathered}$	$\begin{gathered} \text { Hitchin } \\ \text { B-C } \\ \text { label } \end{gathered}$	Pole structure	Constraints	Flavour group	$\left(\delta n_{h}, \delta n_{v}\right)$
D_{4}	$2 A_{2}$	$\{1,3,4,5,6,8\}$	$\begin{gathered} c_{5}^{(8)}=-4 c_{4}^{(6)} c_{1}^{(2)} \\ +4 c_{3}^{(5)} a_{2}^{(3)} \\ \\ -2\left(a_{2}^{(3)}\right)^{2} c_{1}^{(2)} \\ c_{6}^{(9)}=-\frac{1}{12} a_{2}^{(3)}\left(c_{4}^{(6)}\right. \\ \left.+\frac{1}{2}\left(a_{2}^{(3)}\right)^{2}\right) \\ c_{8}^{(12)}=-\left(c_{4}^{(6)}\right. \\ \\ \left.+\frac{1}{2}\left(a_{2}^{(3)}\right)^{2}\right) . \\ \cdot\left(c_{4}^{(6)}\right. \\ \left.\quad-\frac{3}{2}\left(a_{2}^{(3)}\right)^{2}\right) \\ c_{7}^{(12)}=-12 c_{5}^{(9)} a_{2}^{(3)} \\ -2 c_{4}^{(6)} c_{3}^{(6)} \\ -c_{3}^{(6)}\left(a_{2}^{(3)}\right)^{2} \end{gathered}$	$S U(3)_{12}$	$(368,362)$
$\begin{aligned} & A_{4}+ \\ & A_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & A_{2} \\ & 2 A_{1} \end{aligned}+$	$\{1,3,4,5,5,7\}$	-	$U(1)$	$(400,395)$
$D_{5}\left(a_{1}\right)$	$A_{2}+A_{1}$	$\{1,3,4,5,5,7\}$	$\begin{gathered} c_{4}^{(6)}=-\frac{1}{8}\left(a_{2}^{(3)}\right)^{2} \\ c_{5}^{(8)}=2 c_{3}^{(5)} a_{2}^{(3)} \\ c_{7}^{(12)}=-6 c_{5}^{(9)} a_{2}^{(3)} \end{gathered}$	$U(1)$	$(355,351)$
$A_{5}(\underline{n s})$	$\left(A_{2}, \mathbb{Z}_{2}\right)$	$\{1,2,4,4,4,6\}$	-	$S U(2)_{7}$	$(335,331)$

Table 4.1: Untwisted regular punctures

$\begin{gathered} \text { Nahm } \\ \text { B-C } \\ \text { label } \end{gathered}$	Hitchin B-C label	Pole structure	Constraints	Flavour group	$\left(\delta n_{h}, \delta n_{v}\right)$
$E_{6}\left(a_{3}\right)$	A_{2}	$\{1,2,4,4,4,6\}$	$c_{4}^{(6)}=\left(a_{2}^{(3)}\right)^{2}$	none	$(328,325)$
D_{5}	$2 A_{1}$	$\{1,2,3,4,4,6\}$	$\begin{gathered} c_{3}^{(6)}=\frac{3}{2} c_{1}^{(2)} a_{2}^{(4)} \\ c_{4}^{(8)}=3\left(a_{2}^{(4)}\right)^{2} \\ c_{4}^{(9)}=-\frac{1}{4} a_{2}^{(4)} c_{2}^{(5)} \\ c_{6}^{(12)}=\frac{3}{2}\left(a_{2}^{(4)}\right)^{3} \\ c_{5}^{(12)}=\frac{3}{4} c_{3}^{(8)} a_{2}^{(4)} \end{gathered}$	$U(1)$	$(240,238)$
$E_{6}\left(a_{1}\right)$	A_{1}	$\{1,1,2,2,2,3\}$	-	none	$(168,167)$

Note that there is a special piece, consisting of three punctures: $2 A_{2}+$ $A_{1}, A_{3}+A_{1}$ and the special puncture $D_{4}\left(a_{1}\right)$. For $2 A_{2}+A_{1}$, the Sommers-Achar group is the nonabelian group, S_{3}. It acts on $a^{(4)}, a^{(4)}$ as

$$
\binom{a^{(4)}}{a^{\prime(4)}} \rightarrow \gamma\binom{a^{(4)}}{a^{\prime(4)}}
$$

for

$$
\begin{aligned}
& \gamma \in\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \frac{1}{2}\left(\begin{array}{cc}
-1 & -3 \\
1 & -1
\end{array}\right), \frac{1}{2}\left(\begin{array}{cc}
-1 & 3 \\
-1 & -1
\end{array}\right), \frac{1}{2}\left(\begin{array}{cc}
-1 & -3 \\
-1 & 1
\end{array}\right),\right. \\
& \left.\frac{1}{2}\left(\begin{array}{cc}
-1 & 3 \\
1 & 1
\end{array}\right)\right\}
\end{aligned}
$$

For $A_{3}+A_{1}$, the Sommers-Achar group is the \mathbb{Z}_{2} subgroup of S_{3}, generated by $a^{\prime(4)} \rightarrow-a^{\prime(4)}$. For $D_{4}\left(a_{1}\right)$, the Sommers-Achar group is of course trivial, so that both $a^{(4)}, a^{(4)}$ survive as Coulomb branch parameters.

4.2.2 Free-field fixtures

We denote a 3 -punctured sphere, in the tables below, by listing the Bala-Carter labels of the three punctures. For the free-field fixtures, one of the punctures is an irregular punctur ${ }^{5}$ (in the sense used in our previous papers), which we denote $]^{6}$ by the pair, $\left(\mathcal{O}, G_{k}\right)$, where \mathcal{O} is the regular puncture obtained as the OPE of the two regular punctures which collide, and this fixture is attached to the rest of the surface via a cylinder

$$
\left(\mathcal{O}, G_{k}\right) \stackrel{G}{\longleftrightarrow} \mathcal{O}
$$

with gauge group $G \subset F \subset E_{6}$. Here, F is the flavour symmetry group of the puncture, \mathcal{O}, and the levels are such that G has vanishing β-function.

Table 4.2: Free field fixtures

| $\#$ | Fixture | n_{h} | Representation |
| :---: | :--- | :--- | :--- | :--- |
| 1 | $E_{6}\left(a_{1}\right)$
 $E_{6}\left(a_{1}\right)$$\quad\left(A_{5}, S U(2)_{1}\right)$ | 1 | $\frac{1}{2}(2)$ |
| 2 | $E_{6}\left(a_{1}\right)$
 $D_{5}$$\quad\left(A_{4}, S U(2)_{0}\right)$ | 0 | empty |

[^19]Table 4.2: Free field fixtures

\#	Fixture	n_{h}	Representation
3	$\begin{aligned} & E_{6}\left(a_{1}\right) \\ & E_{6}\left(a_{3}\right) \end{aligned} \quad\left(2 A_{2}, S U(3)_{0}\right)$	0	empty
4	$\begin{gathered} \hline E_{6}\left(a_{1}\right) \quad\left(2 A_{2},\left(G_{2}\right)_{4}\right) \\ A_{5} \end{gathered}$	7	$\frac{1}{2}(2,7)$
5	$\begin{aligned} & E_{6}\left(a_{1}\right) \\ & D_{5}\left(a_{1}\right) \end{aligned} \quad\left(A_{2}+A_{1}, S U(3)_{0}\right)$	0	empty
6	$\begin{gathered} E_{6}\left(a_{1}\right) \\ A_{4}+A_{1} \end{gathered} \quad\left(2 A_{1},\left(G_{2}\right)_{0}\right)$	0	empty
7	$\begin{gathered} E_{6}\left(a_{1}\right) \\ D_{4} \end{gathered} \quad\left(A_{2}, S U(3)_{0}\right)$	0	empty
8	$\begin{gathered} E_{6}\left(a_{1}\right) \\ A_{4} \end{gathered} \quad\left(2 A_{1}, \operatorname{Spin}(7)_{4}\right)$	8	$\frac{1}{2}(2,8)$
9	$\begin{aligned} & E_{6}\left(a_{1}\right) \\ & D_{4}\left(a_{1}\right) \end{aligned} \quad\left(0, \operatorname{Spin}(8)_{0}\right)$	0	empty
10	$\begin{gathered} E_{6}\left(a_{1}\right) \\ A_{3}+A_{1} \end{gathered} \quad\left(0, \operatorname{Spin}(9)_{4}\right)$	9	$\frac{1}{2}(2,9)$
11	$\begin{array}{cc} E_{6}\left(a_{1}\right) \\ 2 A_{2}+A_{1} \end{array} \quad\left(0,\left(F_{4}\right)_{12}\right)$	26	$\frac{1}{2}(2,26)$
12	$\begin{gathered} E_{6}\left(a_{1}\right) \quad\left(0, \operatorname{Spin}(10)_{8}\right) \\ A_{3} \end{gathered}$	20	$\frac{1}{2}(4,10)$
13	$\begin{gathered} E_{6}\left(a_{1}\right) \\ A_{2}+2 A_{1} \end{gathered}$	54	$(2,27)$
14	$\begin{aligned} & D_{5} \\ & D_{5} \end{aligned} \quad\left(A_{3}, S p(2)_{2}\right)$	4	1(4)
15	$\begin{array}{cc} D_{5} \\ E_{6}(a 3) \end{array} \quad\left(2 A_{1}, S U(4)_{0}\right)$	0	empty

Table 4.2: Free field fixtures

$\#$	Fixture	n_{h}	Representation
16	$D_{5} \quad\left(2 A_{1}, \operatorname{Spin}(7)_{4}\right)$ A_{5}	7	$\frac{1}{2}(2,7)$
17	D_{5} $D_{5}\left(a_{1}\right)$$\quad\left(A_{1}, S U(5)_{2}\right)$	5	$1(5)$
18	$D_{5} \quad\left(0, \operatorname{Spin}(10)_{8}\right)$ $A_{4}+A_{1}$	16	$1(16)$
19	$D_{5} \quad\left(A_{1}, S U(6)_{6}\right)$ D_{4}	18	$3(6)$

4.2.3 Interacting fixtures with one irregular puncture

In the tables below, n_{d} is the number of Coulomb branch parameters of degree d. The total Coulomb branch dimension is $\sum_{d} n_{d}$ and the effective number of vector multiplets is $n_{v}=\sum_{d}(2 d-1) n_{d}$.

Table 4.3: Interacting fixtures with one irregular puncture

Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	Theory
$\begin{array}{cc} E_{6}\left(a_{1}\right) & \\ 2 A_{2} & \left(0,\left(F_{4}\right)_{12}\right) \\ \hline \end{array}$	$(0,0,0,0,1,0,0,0)$	$(40,11)$	$\left(E_{8}\right)_{12} \mathrm{SCFT}$
D_{5} $A_{4}$$\left(0, S p i n(10)_{8}\right)$	$(0,0,1,0,0,0,0,0)$	$(24,7)$	$\left(E_{7}\right)_{8} \mathrm{SCFT}$
$\begin{array}{ll} E_{6}\left(a_{3}\right) \\ E_{6}\left(a_{3}\right) & \left(0,\left(F_{4}\right)_{12}\right) \end{array}$	$(0,2,0,0,0,0,0,0)$	$(32,10)$	$\left[\left(E_{6}\right)_{6} \mathrm{SCFT}\right]^{2}$
$\begin{array}{cc} E_{6}\left(a_{3}\right) \\ A_{5} & \left(0,\left(F_{4}\right)_{12}\right) \end{array}$	$(0,1,0,0,1,0,0,0)$	$(39,16)$	$\begin{aligned} & \left(E_{6}\right)_{12} \times S U(2)_{7} \\ & \text { SCFT } \end{aligned}$
$\begin{array}{ll}A_{5} & \left(0,\left(F_{4}\right)_{12}\right) \\ A_{5}\end{array}$	$(0,0,0,0,2,0,0,0)$	$(46,22)$	$\begin{aligned} & \left(F_{4}\right)_{12} \times S U(2)_{7}^{2} \\ & \text { SCFT } \end{aligned}$

The $\left(E_{6}\right)_{12} \times S U(2)_{7}$ and $\left(F_{4}\right)_{12} \times S U(2)_{7}^{2}$ first appeared in [5], as fixtures in the untwisted D_{4} theory.

4.2.4 Interacting fixtures with enhanced global symmetry

Table 4.4: Interacting fixtures with enhanced global symmetry

\#	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	G_{k}
1	$\begin{array}{cc} \hline E_{6}\left(a_{1}\right) & 0 \\ A_{2} & 0 \end{array}$	($0,0,0,0,2,0,0,0$)	$(80,22)$	$\left[\left(E_{8}\right)_{12} \mathrm{SCFT}\right]^{2}$
2	$\begin{array}{cc} \hline E_{6}\left(a_{1}\right) & \\ 3 A_{1} & 0 \end{array}$	(0, 0, 0, 0, 1, 0, 0, 1)	$(93,34)$	$\left(E_{8}\right)_{24} \times S U(2)_{13}$
3	$\begin{array}{cc} E_{6}\left(a_{1}\right) & \\ 2 A_{1} & 0 \end{array}$	$(0,0,0,0,1,1,0,1)$	$(112,49)$	$\left(E_{7}\right)_{24} \times \operatorname{Spin}(7)_{16}$
4	$\begin{array}{cc} E_{6}\left(a_{1}\right) & \\ A_{1} & A_{1} \\ \hline \end{array}$	($0,0,0,0,1,1,1,0)$	$(100,43)$	$S U(12)_{18}$
5	$\begin{array}{cc} D_{5} & \\ D_{4}\left(a_{1}\right) \end{array}$	(0, $0,3,0,0,0,0,0)$	(72, 21)	$\left[\left(E_{7}\right)_{8} \mathrm{SCFT}\right]^{3}$
6	$\begin{array}{cc} D_{5} & 0 \\ A_{3}+A_{1} \end{array}$	(0, $0,2,0,0,1,0,0)$	$(81,29)$	$\begin{gathered} {\left[\left(E_{7}\right)_{8} \mathrm{SCFT}\right]} \\ \times\left[\left(E_{7}\right)_{16}\right. \\ \left.\times S U(2)_{9} \mathrm{SCFT}\right] \end{gathered}$
7	$\begin{array}{cc} D_{5} & 0 \\ 2 A_{2}+A_{1} & \end{array}$	(0, $0,1,0,0,1,0,1)$	$(98,45)$	$\left(E_{7}\right)_{24} \times S U(2)_{26}$
8	$\begin{array}{ll} D_{5} & 0 \\ A_{3} & 0 \end{array}$	(0, 0, 2, 1, 0, 1, 0, 0)	$(92,38)$	$\begin{gathered} {\left[\left(E_{7}\right)_{8} \mathrm{SCFT}\right]} \\ \times\left[\left(E_{6}\right)_{16} \times S p(2)_{10}\right. \\ \times U(1) \mathrm{SCFT}] \end{gathered}$
9	$\begin{array}{cc} D_{5} & 0 \\ 2 A_{2} & 0 \end{array}$	(0,0,1, $0,1,1,0,1)$	$(112,56)$	$\left(E_{7}\right)_{24} \times\left(G_{2}\right)_{12}$
10	$\begin{array}{cc} D_{5} & \\ A_{2}+2 A_{1} \end{array}$	(0,0, 1, 1, 0, 1, 1, 0)	$(92,48)$	$\begin{aligned} & S U(8)_{18} \times S U(2)_{36} \times \\ & U(1) \end{aligned}$
11	$\begin{array}{cc} D_{5} & \\ A_{2}+A_{1} & A_{1} \end{array}$	(0, 0, 1, 1, 1, 1, 1, 0)	$(105,59)$	$\begin{aligned} & S U(7)_{18} \times S U(3)_{12} \times \\ & U(1)^{2} \end{aligned}$
12	$\begin{array}{ll} D_{5} & \\ A_{2} & 2 A_{1} \end{array}$	(0, 0, 1, 1, 2, 1, 0, 0)	$(96,53)$	$\begin{aligned} & \operatorname{Spin}(8)_{16} \times \operatorname{SU}(4)_{12}^{2} \times \\ & U(1) \end{aligned}$

Table 4.4: Interacting fixtures with enhanced global symmetry

\#	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	G_{k}
13	$\begin{array}{ll} D_{5} & \\ A_{2} & A_{1} \end{array}$	$(0,0,1,1,2,1,1,0)$	$(118,70)$	$\begin{aligned} & S U(6)_{18} \times S U(3)_{12}^{2} \times \\ & U(1)^{2} \end{aligned}$
14	$\begin{array}{cc} \hline D_{5} & \\ 3 A_{1} & \\ \hline \end{array}$	$(0,0,1,1,1,0,0,1)$	$(90,50)$	$S U(6)_{24} \times S p(2)_{13}$
15	$\begin{array}{cc} \hline D_{5} & \\ 3 A_{1} & 2 A_{1} \end{array}$	$(0,0,1,1,1,1,0,1)$	$(109,65)$	$\begin{aligned} & \operatorname{Spin}(7)_{16} \times S U(4)_{24} \times \\ & S U(2)_{13} \times U(1) \\ & \hline \end{aligned}$
16	$\begin{array}{cc} \hline D_{5} & 2 A_{1} \\ 2 A_{1} & \end{array}$	$(0,0,1,1,1,2,0,1)$	$(128,80)$	$\begin{aligned} & \operatorname{Spin}(7)_{16}^{2} \times S U(2)_{24} \times \\ & U(1)^{2} \end{aligned}$
17	$\begin{array}{cc} E_{6}\left(a_{3}\right) & \\ A_{4}+A_{1} & 0 \end{array}$	$(0,1,0,0,1,1,0,1)$	$(104,54)$	$\left(E_{7}\right)_{24}$
18	$\begin{array}{cc} E_{6}\left(a_{3}\right) & 0 \\ D_{4} & 0 \end{array}$	$(0,2,0,0,1,0,0,0)$	$(72,21)$	$\begin{aligned} & {\left[\left(E_{8}\right)_{12} \mathrm{SCFT}\right]} \\ & {\left[\left(E_{6}\right)_{6} \mathrm{SCFT}\right]^{2}} \end{aligned}$
19	$\begin{gathered} E_{6}\left(a_{3}\right) \\ A_{4} \end{gathered}$	$(0,1,1,0,1,1,0,1)$	$(112,61)$	$\left(E_{7}\right)_{24} \times S U(2)_{8}$
20	$\begin{array}{ll} E_{6}\left(a_{3}\right) \\ D_{4}\left(a_{1}\right) \end{array} \quad A_{2}$	$(0,1,2,0,2,0,0,0)$	$(72,41)$	$\operatorname{Spin}(8)_{12}^{2} \times U(1)^{2}$
21	$\begin{array}{ll} E_{6}\left(a_{3}\right) & \\ D_{4}\left(a_{1}\right) & \\ \hline \end{array}$	$(0,1,2,0,1,0,0,1)$	$(85,53)$	$S p i n(8){ }_{24} \times S U(2)_{13}$
22	$\begin{array}{ll} \hline E_{6}\left(a_{3}\right) & \\ D_{4}\left(a_{1}\right) & \\ \hline \end{array}$	$(0,1,2,0,1,1,0,1)$	$(104,68)$	$\operatorname{Spin}(7){ }_{16} \times \operatorname{SU}(2)_{24}^{3}$
23	$\begin{array}{cc} \hline E_{6}\left(a_{3}\right) & \\ A_{3}+A_{1} & \end{array}$	$(0,1,1,0,2,1,0,0)$	$(81,49)$	$\begin{aligned} & \operatorname{Spin}(7)_{12}^{2} \times S U(2)_{9} \times \\ & U(1) \end{aligned}$
24	$\begin{array}{cc} E_{6}\left(a_{3}\right) & \\ A_{3}+A_{1} & \\ \hline \end{array}$	$(0,1,1,0,1,1,0,1)$	$(94,61)$	$\begin{aligned} & \operatorname{Spin}(7)_{24} \times S U(2)_{13} \times \\ & S U(2)_{9} \end{aligned}$
25	$\begin{array}{cc} E_{6}\left(a_{3}\right) & \\ A_{3}+A_{1} & 2 A_{1} \end{array}$	$(0,1,1,0,1,2,0,1)$	$(113,76)$	$\begin{aligned} & \operatorname{Spin}(7)_{16} \times S U(2)_{48} \times \\ & S U(2)_{24} \times S U(2)_{9} \end{aligned}$
26	$\begin{array}{cc} E_{6}\left(a_{3}\right) & \\ 2 A_{2}+A_{1} & A_{2} \end{array}$	$(0,1,0,0,2,1,0,1)$	$(98,65)$	$\left(G_{2}\right)_{12}^{2} \times S U(2)_{26}$
27	$\begin{array}{cc} E_{6}\left(a_{3}\right) \\ 2 A_{2}+A_{1} & \\ & 3 A_{1} \end{array}$	$(0,1,0,0,1,1,0,2)$	$(111,77)$	$\begin{aligned} & \left(G_{2}\right)_{24} \times S U(2)_{26} \times \\ & S U(2)_{13} \end{aligned}$

Table 4.4: Interacting fixtures with enhanced global symmetry

\#	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	G_{k}
28	$\begin{array}{cc} E_{6}\left(a_{3}\right) & \\ 2 A_{2}+A_{1} & \\ \hline \end{array}$	$(0,1,0,0,1,2,0,2)$	$(130,92)$	$\begin{aligned} & \operatorname{Spin}(7)_{16} \times S U(2)_{26} \times \\ & S U(2)_{72} \end{aligned}$
29	$\begin{array}{cc} E_{6}\left(a_{3}\right) & \\ A_{3} & A_{2} \end{array}$	$(0,1,1,1,2,1,0,0)$	$(92,58)$	$\begin{aligned} & S U(4)_{12}^{2} \times S p(2)_{10} \times \\ & U(1) \end{aligned}$
30	$\begin{array}{cc} \hline E_{6}\left(a_{3}\right) & \\ A_{3} & 3 A_{1} \\ \hline \end{array}$	$(0,1,1,1,1,1,0,1)$	$(105,70)$	$\begin{aligned} & S U(4)_{24} \times S p(2)_{10} \times \\ & S U(2)_{13} \end{aligned}$
31	$\begin{gathered} E_{6}\left(a_{3}\right) \\ A_{3} \end{gathered}$	$(0,1,1,1,1,2,0,1)$	$(124,85)$	$\begin{aligned} & \operatorname{Spin}(7)_{16} \times S p(2)_{10} \times \\ & S U(2)_{24} \times U(1) \\ & \hline \end{aligned}$
32	$\begin{array}{cc} E_{6}\left(a_{3}\right) & \\ A_{2}+2 A_{1} & \\ & \\ \hline \end{array}$	$(0,1,0,1,0,1,1,1)$	$(100,69)$	$S U(4)_{54} \times U(1)$
33	$\begin{array}{cc} E_{6}\left(a_{3}\right) & \\ A_{2}+2 A_{1} & A_{2}+A_{1} \end{array}$	$(0,1,0,1,1,1,1,1)$	$(113,80)$	$\begin{aligned} & S U(3)_{54} \times S U(3)_{12} \times \\ & U(1) \end{aligned}$
34	$\begin{gathered} E_{6}\left(a_{3}\right) \quad \\ 2 A_{2} \end{gathered}$	$(0,1,0,0,3,1,0,1)$	$(112,76)$	$\left(G_{2}\right)_{12}^{3}$
35	$\begin{gathered} E_{6}\left(a_{3}\right) \\ 2 A_{2} \end{gathered}$	$(0,1,0,0,2,1,0,2)$	$(125,88)$	$\begin{aligned} & \left(G_{2}\right)_{24} \times\left(G_{2}\right)_{12} \times \\ & S U(2)_{13} \end{aligned}$
36	$\begin{gathered} E_{6}\left(a_{3}\right) \quad \\ 2 A_{2} \end{gathered}$	$(0,1,0,0,2,2,0,2)$	$(144,103)$	$\begin{aligned} & \operatorname{Spin}(7)_{16} \times\left(G_{2}\right)_{12} \times \\ & \operatorname{SU}(2)_{72} \end{aligned}$
37	$\begin{array}{cc} E_{6}\left(a_{3}\right) & \\ A_{2}+A_{1} & \\ 2 \end{array}$	$(0,1,0,1,2,1,1,1)$	$(126,91)$	$\begin{aligned} & S U(3)_{12}^{2} \times S U(2)_{24} \times \\ & U(1) \end{aligned}$
38	$\begin{array}{cc} A_{5} & \\ A_{4}+A_{1} & 0 \end{array}$	$(0,0,0,0,2,1,0,1)$	$(111,60)$	$\left(E_{7}\right)_{24} \times S U(2)_{7}$
39	$\begin{array}{ll} \hline A_{5} & 0 \\ D_{4} & 0 \end{array}$	$(0,1,0,0,2,0,0,0)$	$(79,27)$	$\begin{array}{ll} {\left[\left(E_{8}\right)_{12} \mathrm{SCFT}\right]} & \times \\ {\left[\left(E_{6}\right)_{12}\right.} & \times \\ \left.S U(2)_{7} \mathrm{SCFT}\right] & \\ \hline \end{array}$
40	$\begin{array}{ll} \hline A_{5} & 0 \\ A_{4} & \\ \hline \end{array}$	$(0,0,1,0,2,1,0,1)$	$(119,67)$	$\begin{aligned} & \left(E_{7}\right)_{24} \times S U(2)_{8} \times \\ & S U(2)_{7} \end{aligned}$
41	$\begin{array}{cc} A_{5} & \\ D_{4}\left(a_{1}\right) \end{array}$	$(0,0,2,0,3,0,0,0)$	$(79,47)$	$\operatorname{Spin}(8)_{12}^{2} \times S U(2)_{7}$
42	$\begin{array}{cc} A_{5} & 3 A_{1} \\ D_{4}\left(a_{1}\right) & \end{array}$	$(0,0,2,0,2,0,0,1)$	$(92,59)$	$\begin{aligned} & \operatorname{Spin}(8)_{24} \times \operatorname{SU}(2)_{13} \times \\ & S U(2)_{7} \end{aligned}$

Table 4.4: Interacting fixtures with enhanced global symmetry

\#	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	G_{k}
43	$\begin{array}{cc} A_{5} & \\ D_{4}\left(a_{1}\right) & 2 A_{1} \\ \hline \end{array}$	$(0,0,2,0,2,1,0,1)$	$(111,74)$	$\begin{aligned} & \operatorname{Spin}(7)_{16} \times \operatorname{SU}(2)_{24}^{3} \times \\ & \operatorname{SU(2)_{7}} \end{aligned}$
44	$\begin{array}{cc} A_{5} & A_{2} \\ A_{3}+A_{1} & \\ \hline \end{array}$	$(0,0,1,0,3,1,0,0)$	$(88,55)$	$\begin{aligned} & \operatorname{Spin}(7)_{12}^{2} \times S U(2)_{9} \times \\ & S U(2)_{7} \end{aligned}$
45	$\begin{array}{cc} A_{5} & \\ A_{3}+A_{1} & 3 A_{1} \\ \hline \end{array}$	$(0,0,1,0,2,1,0,1)$	$(101,67)$	$\begin{aligned} & \operatorname{Spin}(7)_{24} \times S U(2)_{13} \times \\ & S U(2)_{9} \times S U(2)_{7} \\ & \hline \end{aligned}$
46	$\begin{array}{cc} A_{5} & 2 A_{1} \\ A_{3}+A_{1} & \end{array}$	$(0,0,1,0,2,2,0,1)$	$(120,82)$	$\begin{gathered} S p i n(7)_{16} \times S U(2)_{48} \\ \times S U(2)_{24} \times S U(2)_{9} \\ \times S U(2)_{7} \end{gathered}$
47	$\begin{array}{cc} A_{5} & \\ 2 A_{2}+A_{1} & A_{2} \end{array}$	$(0,0,0,0,3,1,0,1)$	$(105,71)$	$\begin{aligned} & \left(G_{2}\right)_{12}^{2} \times S U(2)_{26} \times \\ & S U(2)_{7} \end{aligned}$
48	$\begin{array}{cc} A_{5} & \\ 2 A_{2}+A_{1} & \\ \hline \end{array}$	$(0,0,0,0,2,1,0,2)$	$(118,83)$	$\begin{aligned} & \left(G_{2}\right)_{24} \times S U(2)_{26} \times \\ & S U(2)_{13} \times S U(2)_{7} \end{aligned}$
49	$\begin{array}{cc} \hline A_{5} & \\ 2 A_{2}+A_{1} & \\ \hline \end{array}$	$(0,0,0,0,2,2,0,2)$	$(137,98)$	$\begin{aligned} & S p i n(7)_{16} \times S U(2)_{72} \times \\ & S U(2)_{26} \times S U(2)_{7} \\ & \hline \end{aligned}$
50	$\begin{array}{ll} A_{5} & \\ A_{3} & A_{2} \end{array}$	$(0,0,1,1,3,1,0,0)$	$(99,64)$	$\begin{aligned} & S U(4)_{12}^{2} \times S p(2)_{10} \times \\ & S U(2)_{7} \end{aligned}$
51	$\begin{array}{ll} \hline A_{5} & \\ A_{3} & \\ \hline \end{array}$	$(0,0,1,1,2,1,0,1)$	$(112,76)$	$\begin{aligned} & S U(4)_{24} \times S p(2)_{10} \times \\ & S U(2)_{13} \times S U(2)_{7} \end{aligned}$
52	$\begin{array}{ll} A_{5} & 2 A_{1} \\ A_{3} & \end{array}$	$(0,0,1,1,2,2,0,1)$	$(131,91)$	$\begin{gathered} S p i n(7)_{16} \times S p(2)_{10} \\ \times S U(2)_{24} \times S U(2)_{7} \\ \times U(1) \end{gathered}$
53	$\begin{array}{cc} A_{5} & \\ A_{2}+2 A_{1} \end{array} \quad \begin{aligned} & 2 \\ & 2 \end{aligned}$	$(0,0,0,1,1,1,1,1)$	$(107,75)$	$\begin{aligned} & S U(4)_{54} \times S U(2)_{7} \times \\ & U(1) \end{aligned}$
54	$\begin{array}{cc} A_{5} & \\ A_{2}+2 A_{1} & \\ A_{2}+A_{1} \end{array}$	$(0,0,0,1,2,1,1,1)$	$(120,86)$	$\begin{aligned} & S U(3)_{54} \times S U(3)_{12} \times \\ & S U(2)_{7} \times U(1) \end{aligned}$
55	$\begin{array}{cc} A_{5} & \\ 2 A_{2} & A_{2} \end{array}$	$(0,0,0,0,4,1,0,1)$	$(119,82)$	$\left(G_{2}\right)_{12}^{3} \times S U(2)_{7}$
56	$\begin{array}{cc} A_{5} & \\ 2 A_{2} & 3 A_{1} \end{array}$	$(0,0,0,0,3,1,0,2)$	$(132,94)$	$\begin{aligned} & \left(G_{2}\right)_{24} \times\left(G_{2}\right)_{12} \times \\ & S U(2)_{13} \times S U(2)_{7} \\ & \hline \end{aligned}$

Table 4.4: Interacting fixtures with enhanced global symmetry

\#	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	G_{k}
57	$\begin{array}{cc} A_{5} & 2 A_{1} \\ 2 A_{2} & \end{array}$	$(0,0,0,0,3,2,0,2)$	$(151,109)$	$\begin{aligned} & \operatorname{Spin}(7)_{16} \times\left(G_{2}\right)_{12} \times \\ & S U(2)_{72} \times S U(2)_{7} \\ & \hline \end{aligned}$
58	$\begin{array}{cc} A_{5} & \\ A_{2}+A_{1} & A_{2}+A_{1} \end{array}$	$(0,0,0,1,3,1,1,1)$	$(133,97)$	$\begin{aligned} & S U(3)_{12}^{2} \times S U(2)_{24} \times \\ & S U(2)_{7} \times U(1) \end{aligned}$
59	$\begin{array}{ll} \hline D_{5}\left(a_{1}\right) & \\ D_{5}\left(a_{1}\right) \end{array}$	$(0,2,0,1,0,0,1,0)$	$(86,36)$	$\left(E_{7}\right)_{18} \times\left(E_{6}\right)_{6} \times U(1)$
60	$\begin{array}{cc} D_{5}\left(a_{1}\right) \\ A_{4}+A_{1} & A_{1} \end{array}$	$(0,1,0,1,1,1,1,0)$	$(97,57)$	$S U(7)_{18} \times U(1)^{2}$
61	$\begin{array}{cc} \hline D_{5}\left(a_{1}\right) & 0 \\ D_{4} & 0 \end{array}$	$(0,2,0,1,1,0,1,0)$	$(99,47)$	$\begin{aligned} & \left(E_{6}\right)_{18} \times\left(E_{6}\right)_{6} \times \\ & S U(3)_{12} \times U(1) \end{aligned}$
62	$\begin{gathered} D_{5}\left(a_{1}\right) \quad A_{1} \\ A_{4} \end{gathered}$	$(0,1,1,1,1,1,1,0)$	$(105,64)$	$\begin{aligned} & S U(7)_{18} \times S U(2)_{8} \times \\ & U(1)^{2} \end{aligned}$
63	$\begin{aligned} & D_{5}\left(a_{1}\right) \\ & D_{4}\left(a_{1}\right) \end{aligned} \quad A_{2}+2 A_{1}$	$(0,1,2,1,0,0,1,0)$	$(73,45)$	$\begin{array}{ll} S U(3)_{54-k-k^{\prime}} & \times \\ S U(3)_{k} \times S U(3)_{k^{\prime}} & \times \\ U(1) & \\ \hline \end{array}$
64	$\begin{array}{ll} D_{5}\left(a_{1}\right) & A_{2}+A_{1} \\ D_{4}\left(a_{1}\right) & \\ \hline \end{array}$	$(0,1,2,1,1,0,1,0)$	$(86,56)$	$\begin{aligned} & S U(3)_{12} \times S U(2)_{18}^{3} \times \\ & U(1)^{3} \end{aligned}$
65	$\begin{array}{ll} \hline D_{5}\left(a_{1}\right) \\ D_{4}\left(a_{1}\right) & \\ \hline \end{array}$	$(0,1,2,1,2,0,1,0)$	$(99,67)$	$S U(3)_{12}^{2} \times U(1)^{5}$
66	$\begin{array}{cc} D_{5}\left(a_{1}\right) \\ A_{3}+A_{1} \end{array} \quad A_{2}+2 A_{1}$	$(0,1,1,1,0,1,1,0)$	$(82,53)$	$\begin{aligned} & S U(3)_{54-k} \times S U(3)_{k} \times \\ & S U(2)_{9} \times U(1) \end{aligned}$
67	$\begin{array}{cc} D_{5}\left(a_{1}\right) \\ A_{3}+A_{1} \end{array} \quad A_{2}+A_{1}$	$(0,1,1,1,1,1,1,0)$	$(95,64)$	$\begin{gathered} S U(3)_{12} \times S U(2)_{36} \\ \times S U(2)_{18} \times S U(2)_{9} \\ \times U(1)^{2} \end{gathered}$
68	$\begin{array}{cc} \hline D_{5}\left(a_{1}\right) & \\ A_{3}+A_{1} & \\ \hline \end{array}$	$(0,1,1,1,2,1,1,0)$	$(108,75)$	$\begin{aligned} & S U(3)_{12}^{2} \times S U(2)_{9} \times \\ & U(1)^{3} \end{aligned}$
69	$\begin{array}{cc} D_{5}\left(a_{1}\right) & \\ 2 A_{2}+A_{1} \end{array} \quad A_{2}+2 A_{1}$	$(0,1,0,1,0,1,1,1)$	$(99,69)$	$\begin{aligned} & S U(3)_{54} \times S U(2)_{26} \times \\ & U(1) \end{aligned}$
70	$\begin{array}{cc} D_{5}\left(a_{1}\right) \\ 2 A_{2}+A_{1} & \\ \end{array}$	$(0,1,0,1,1,1,1,1)$	$(112,80)$	$\begin{aligned} & S U(3)_{12} \times S U(2)_{54} \times \\ & S U(2)_{26} \times U(1) \end{aligned}$

Table 4.4: Interacting fixtures with enhanced global symmetry

\#	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	G_{k}
71	$\begin{gathered} D_{5}\left(a_{1}\right) \\ A_{3} \end{gathered} A_{2}+2 A_{1}$	$(0,1,1,2,0,1,1,0)$	$(93,62)$	$\begin{aligned} & S U(3)_{18} \times S U(2)_{36} \times \\ & S p(2)_{10} \times U(1)^{2} \end{aligned}$
72	$\begin{array}{cc} \hline D_{5}\left(a_{1}\right) & \\ A_{3} & A_{2}+A_{1} \end{array}$	$(0,1,1,2,1,1,1,0)$	$(106,73)$	$\begin{aligned} & S U(3)_{12} \times S p(2)_{10} \times \\ & S U(2)_{18} \times U(1)^{3} \end{aligned}$
73	$\begin{array}{cl} D_{5}\left(a_{1}\right) & \\ A_{3} & A_{2} \\ \hline \end{array}$	$(0,1,1,2,2,1,1,0)$	$(119,84)$	$\begin{aligned} & S U(3)_{12}^{2} \times S p(2)_{10} \times \\ & U(1)^{3} \end{aligned}$
74	$\begin{array}{cc} D_{5}\left(a_{1}\right) & \\ A_{2}+2 A_{1} & \\ \hline \end{array}$	$(0,1,0,1,1,1,1,1)$	$(113,80)$	$\left(G_{2}\right)_{12} \times S U(3)_{54} \times U(1)$
75	$\begin{array}{cc} \hline D_{5}\left(a_{1}\right) & \\ 2 A_{2} & A_{2}+A_{1} \end{array}$	$(0,1,0,1,2,1,1,1)$	$(126,91)$	$\begin{aligned} & \left(G_{2}\right)_{12} \times S U(3)_{12} \times \\ & S U(2)_{54} \times U(1) \end{aligned}$
76	$\begin{array}{ll} A_{4}+A_{1} & \\ A_{4}+A_{1} & A_{2} \end{array}$	$(0,0,0,1,3,1,0,0)$	$(88,57)$	$S U(4)_{12}^{2} \times U(1)$
77	$\begin{array}{ll} A_{4}+A_{1} & \\ A_{4}+A_{1} & \\ \hline \end{array}$	$(0,0,0,1,2,1,0,1)$	$(101,69)$	$\begin{aligned} & S U(4)_{24} \times S U(2)_{13} \times \\ & U(1) \end{aligned}$
78	$\begin{array}{ll} A_{4}+A_{1} & \\ A_{4}+A_{1} \end{array} \quad 2 A_{1}$	$(0,0,0,1,2,2,0,1)$	$(120,84)$	$\begin{aligned} & \operatorname{Spin}(7)_{16} \times S U(2)_{24} \times \\ & U(1)^{2} \end{aligned}$
79	$\begin{array}{cc} A_{4}+A_{1} & \\ D_{4} & 2 A_{1} \end{array}$	$(0,1,0,1,2,1,0,0)$	$(88,51)$	$\begin{aligned} & \operatorname{Spin}(8)_{16} \times S U(4)_{12} \times \\ & U(1)^{2} \end{aligned}$
80	$\begin{array}{cc} A_{4}+A_{1} & \\ D_{4} & \\ \hline \end{array}$	$(0,1,0,1,2,1,1,0)$	$(110,68)$	$\begin{aligned} & S U(6)_{18} \times S U(3)_{12} \times \\ & U(1)^{2} \end{aligned}$
81	$\begin{array}{cc} A_{4}+A_{1} & A_{2} \\ A_{4} & \\ \hline \end{array}$	$(0,0,1,1,3,1,0,0)$	$(96,64)$	$\begin{aligned} & S U(4)_{12}^{2} \times S U(2)_{8} \times \\ & U(1) \end{aligned}$
82	$\begin{array}{cc} A_{4}+A_{1} & \\ A_{4} & 3 A_{1} \end{array}$	$(0,0,1,1,2,1,0,1)$	$(109,76)$	$\begin{aligned} & S U(4)_{24} \times S U(2)_{13} \times \\ & S U(2)_{8} \times U(1) \end{aligned}$
83	$\begin{array}{cc} A_{4}+A_{1} & \\ A_{4} & 2 A_{1} \end{array}$	$(0,0,1,1,2,2,0,1)$	$(128,91)$	$\begin{aligned} & {\operatorname{Spin}(7)_{16} \times S U(2)_{8} \times}^{S U(2)_{24} \times U(1)^{2}} \\ & \hline \end{aligned}$
84	$\begin{array}{cc} \hline A_{4}+A_{1} & \\ D_{4}\left(a_{1}\right) & D_{4}\left(a_{1}\right) \\ \hline \end{array}$	$(0,0,4,0,1,0,0,0)$	$(64,39)$	$S U(2)_{8}^{9}$
85	$\begin{array}{cc} A_{4}+A_{1} & \\ D_{4}\left(a_{1}\right) & \\ \hline \end{array}$	$(0,0,3,0,1,1,0,0)$	$(73,47)$	$\begin{aligned} & S U(2)_{16}^{3} \times S U(2)_{9} \times \\ & S U(2)_{8}^{3} \end{aligned}$

Table 4.4: Interacting fixtures with enhanced global symmetry

\#	Fixture		$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	G_{k}	
86	$\begin{gathered} A_{4}+A_{1} \\ D_{4}\left(a_{1}\right) \\ \hline \end{gathered}$	$2 A_{2}+A_{1}$	$(0,0,2,0,1,1,0,1)$	$(90,63)$	$S U(2){ }_{26} \times S U(2)_{24}^{3}$	
87	$\begin{gathered} \hline A_{4}+A_{1} \\ D_{4}\left(a_{1}\right) \end{gathered}$	A_{3}	$(0,0,3,1,1,1,0,0)$	$(84,56)$	$\begin{aligned} & S p(2)_{10} \times S U(2)_{8}^{3} \\ & U(1)^{3} \end{aligned}$	
88	$\begin{gathered} A_{4}+A_{1} \\ D_{4}\left(a_{1}\right) \end{gathered}$	$2 A_{2}$	$(0,0,2,0,2,1,0,1)$	$(104,74)$	$\left(G_{2}\right)_{12} \times S U(2)_{24}^{3}$	
89	$\begin{aligned} & A_{4}+A_{1} \\ & A_{3}+A_{1} \end{aligned}$	$A_{3}+A_{1}$	$(0,0,2,0,1,2,0,0)$	$(82,55)$	$\begin{aligned} & S U(2)_{32} \times S U(2)_{16}^{2} \\ & S U(2)_{9}^{2} \times S U(2)_{8}^{2} \\ & \hline \end{aligned}$	
90	$\begin{aligned} & A_{4}+A_{1} \\ & A_{3}+A_{1} \end{aligned}$	$2 A_{2}+A_{1}$	$(0,0,1,0,1,2,0,1)$	$(99,71)$	$\begin{aligned} & S U(2)_{48} \times S U(2)_{26} \\ & S U(2)_{24} \times S U(2)_{9} \\ & \hline \end{aligned}$	\times
91	$\begin{aligned} & A_{4}+A_{1} \\ & A_{3}+A_{1} \end{aligned}$	A_{3}	$(0,0,2,1,1,2,0,0)$	$(93,64)$	$\begin{aligned} & S p(2)_{10} \times S U(2)_{16} \\ & \times S U(2)_{9} \times S U(2)_{8} \\ & \times U(1)^{2} \end{aligned}$	
92	$\begin{aligned} & A_{4}+A_{1} \\ & A_{3}+A_{1} \end{aligned}$	$2 A_{2}$	$(0,0,1,0,2,2,0,1)$	$(113,82)$	$\begin{aligned} & \left(G_{2}\right)_{12} \times S U(2)_{48} \\ & S U(2)_{24} \times S U(2)_{9} \\ & \hline \end{aligned}$	\times
93	$\begin{gathered} A_{4}+A_{1} \\ 2 A_{2}+A_{1} \\ \hline \end{gathered}$	$2 A_{2}+A_{1}$	$(0,0,0,0,1,2,0,2)$	$(116,87)$	$S U(2)_{72} \times S U(2)_{26}^{2}$	
94	$\begin{gathered} A_{4}+A_{1} \\ 2 A_{2}+A_{1} \end{gathered}$		$(0,0,1,1,1,2,0,1)$	$(110,80)$	$\begin{aligned} & S p(2)_{10} \times S U(2)_{26} \\ & S U(2)_{24} \times U(1) \\ & \hline \end{aligned}$	\times
95	$\begin{gathered} A_{4}+A_{1} \\ 2 A_{2}+A_{1} \end{gathered}$	$2 A_{2}$	$(0,0,0,0,2,2,0,2)$	$(130,98)$	$\begin{aligned} & \left(G_{2}\right)_{12} \times S U(2)_{72} \\ & S U(2)_{26} \\ & \hline \end{aligned}$	\times
96	$\begin{gathered} A_{4}+A_{1} \\ A_{3} \end{gathered}$	A_{3}	$(0,0,2,2,1,2,0,0)$	$(104,73)$	$\begin{aligned} & S p(2)_{10}^{2} \times S U(2)_{8} \\ & U(1)^{3} \end{aligned}$	\times
97	$\begin{gathered} A_{4}+A_{1} \\ A_{3} \end{gathered}$	$2 A_{2}$	$(0,0,1,1,2,2,0,1)$	$(124,91)$	$\begin{aligned} & \left(G_{2}\right)_{12} \times S p(2)_{10} \\ & S U(2)_{24} \times U(1) \end{aligned}$	\times
98	$\begin{gathered} A_{4}+A_{1} \\ 2 A_{2} \end{gathered}$	$2 A_{2}$	$(0,0,0,0,3,2,0,2)$	$(144,109)$	$\left(G_{2}\right)_{12}^{2} \times S U(2)_{72}$	
99	$\begin{array}{ll} D_{4} & \\ D_{4} & 0 \end{array}$		$(0,2,0,1,2,0,1,0)$	$(112,58)$	$\begin{aligned} & \left(E_{6}\right)_{18} \times\left(E_{6}\right)_{6} \\ & S U(3)_{12}^{2} \end{aligned}$	\times

Table 4.4: Interacting fixtures with enhanced global symmetry

\#	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	G_{k}
100	$\begin{array}{ll} D_{4} & \\ A_{4} & 2 A_{1} \end{array}$	$(0,1,1,1,2,1,0,0)$	$(96,58)$	$\begin{aligned} & \operatorname{Spin}(8)_{16} \times S U(4)_{12} \times \\ & S U(2)_{8} \times U(1)^{2} \\ & \hline \end{aligned}$
101	$\begin{array}{ll} \hline D_{4} & \\ A_{4} & A_{1} \end{array}$	$(0,1,1,1,2,1,1,0)$	$(118,75)$	$\begin{aligned} & S U(6)_{18} \times S U(3)_{12} \times \\ & S U(2)_{8} \times U(1)^{2} \end{aligned}$
102	$\begin{array}{cc} D_{4} & \\ D_{4}\left(a_{1}\right) & A_{2}+2 A_{1} \end{array}$	$(0,1,2,1,1,0,1,0)$	$(86,56)$	$\begin{aligned} & S U(3)_{12} \times S U(2)_{18}^{3} \times \\ & U(1)^{3} \end{aligned}$
103	$\begin{array}{cc} D_{4} & 2 A_{2} \\ D_{4}\left(a_{1}\right) & \end{array}$	$(0,1,2,0,2,0,0,0)$	$(72,41)$	$\operatorname{Spin}(8)_{12}^{2} \times U(1)^{2}$
104	$\begin{array}{cc} \hline D_{4} & \\ D_{4}\left(a_{1}\right) & A_{2}+A_{1} \end{array}$	$(0,1,2,1,2,0,1,0)$	$(99,67)$	$S U(3)_{12}^{2} \times U(1)^{5}$
105	$\begin{array}{cc} D_{4} & \\ D_{4}\left(a_{1}\right) & A_{2} \end{array}$	$(0,1,2,1,3,0,1,0)$	$(112,78)$	$S U(3)_{12}^{3} \times U(1)^{4}$
106	$\begin{array}{cc} D_{4} & A_{2}+2 A_{1} \\ A_{3}+A_{1} \end{array}$	$(0,1,1,1,1,1,1,0)$	$(95,64)$	$\begin{gathered} S U(3)_{12} \times S U(2)_{36} \\ \times S U(2)_{18} \times S U(2)_{9} \\ \times U(1)^{2} \end{gathered}$
107	$\begin{array}{cc} D_{4} & 2 A_{2} \\ A_{3}+A_{1} & \end{array}$	$(0,1,1,0,2,1,0,0)$	$(81,49)$	$\begin{aligned} & \operatorname{Spin}(7)_{12}^{2} \times S U(2)_{9} \times \\ & U(1) \end{aligned}$
108	$\begin{array}{cc} D_{4} & A_{2}+A_{1} \\ A_{3}+A_{1} \end{array}$	$(0,1,1,1,2,1,1,0)$	$(108,75)$	$\begin{aligned} & S U(3)_{12}^{2} \times S U(2)_{9} \times \\ & U(1)^{3} \end{aligned}$
109	$\begin{array}{cc} D_{4} & A_{2} \\ A_{3}+A_{1} & \end{array}$	$(0,1,1,1,3,1,1,0)$	$(121,86)$	$\begin{aligned} & S U(3)_{12}^{3} \times S U(2)_{9} \times \\ & U(1)^{2} \end{aligned}$
110	$\begin{array}{cc} D_{4} & 2 A_{2}+A_{1} \\ 2 A_{2}+A_{1} & \end{array}$	$(0,1,0,0,1,1,0,1)$	$(84,54)$	$\left(G_{2}\right)_{12} \times S p(2)_{26}$
111	$\begin{array}{cc} D_{4} & \\ 2 A_{2}+A_{1} & 2 A_{2} \end{array}$	$(0,1,0,0,2,1,0,1)$	$(98,65)$	$\left(G_{2}\right)_{12}^{2} \times S U(2)_{26}$
112	$\begin{array}{ll} D_{4} \\ A_{3} \end{array} \quad A_{2}+2 A_{1}$	$(0,1,1,2,1,1,1,0)$	$(106,73)$	$\begin{gathered} S p(2)_{10} \times S U(3)_{12} \\ \times S U(2)_{36} \times S U(2)_{18} \\ \times U(1)^{2} \end{gathered}$
113	$\begin{array}{ll} \hline D_{4} & \\ A_{3} & 2 A_{2} \end{array}$	$(0,1,1,1,2,1,0,0)$	$(92,58)$	$\begin{aligned} & \operatorname{Spin}(7)_{12} \times S U(4)_{12} \times \\ & S p(2)_{10} \times U(1) \end{aligned}$

Table 4.4: Interacting fixtures with enhanced global symmetry

\#	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	G_{k}
114	$\begin{array}{ll} D_{4} & \\ A_{3} & A_{2}+A_{1} \end{array}$	(0, 1, 1, 2, 2, 1, 1, 0)	$(119,84)$	$\begin{aligned} & S U(3)_{12}^{2} \times S p(2)_{10} \times \\ & U(1)^{3} \end{aligned}$
115	$\begin{array}{ll} & D_{4} \\ & \\ A_{3} & \\ \hline \end{array}$	(0, 1, 1, 2, 3, 1, 1, 0)	$(132,95)$	$\begin{aligned} & S U(3)_{12}^{3} \times S p(2)_{10} \times \\ & U(1)^{2} \end{aligned}$
116	$\begin{array}{cc} \hline D_{4} & \\ 2 A_{2} & \\ \hline \end{array}$	(0, 1, 0, 0, 3, 1, 0, 1)	$(112,76)$	$\left(G_{2}\right)_{12}^{3}$
117	$\begin{array}{ll} \hline A_{4} & \\ A_{4} & \\ \hline \end{array}$	(0, 0, 2, 1, 3, 1, 0, 0)	$(104,71)$	$\begin{aligned} & S U(4)_{12}^{2} \times S U(2)_{8}^{2} \times \\ & U(1) \end{aligned}$
118	$\begin{array}{ll} \hline A_{4} & \\ A_{4} & 3 A_{1} \end{array}$	(0,0,2, 1, 2, 1, 0, 1)	$(117,83)$	$\begin{aligned} & S U(4)_{24} \times S U(2)_{13} \times \\ & S U(2)_{8}^{2} \times U(1) \end{aligned}$
119	$\begin{array}{ll} A_{4} & 2 A_{1} \\ A_{4} & \\ \hline \end{array}$	(0, 0, 2, 1, 2, 2, 0, 1)	$(136,98)$	$\begin{aligned} & \operatorname{Spin}(7)_{16} \times \operatorname{SU}(2)_{8}^{2} \times \\ & S U(2)_{24} \times U(1)^{2} \end{aligned}$
120	$\begin{array}{cc} A_{4} & \\ D_{4}\left(a_{1}\right) & D_{4}\left(a_{1}\right) \\ \hline \end{array}$	($0,0,5,0,1,0,0,0$)	$(72,46)$	$S U(2)_{8}^{10}$
121	$\begin{array}{cc} A_{4} & \\ D_{4}\left(a_{1}\right) & A_{3}+A_{1} \end{array}$	(0, $0,4,0,1,1,0,0)$	$(81,54)$	$\begin{aligned} & S U(2)_{16}^{3} \times S U(2)_{9} \times \\ & S U(2)_{8}^{4} \end{aligned}$
122	$\begin{array}{cc} A_{4} & \\ D_{4}\left(a_{1}\right) & 2 A_{2}+A_{1} \end{array}$	(0, 0, 3, 0, 1, 1, 0, 1)	$(98,70)$	$\begin{aligned} & S U(2)_{26} \times S U(2)_{24}^{3} \times \\ & S U(2)_{8} \end{aligned}$
123	$\begin{array}{cc} A_{4} & A_{3} \\ D_{4}\left(a_{1}\right) & \\ \hline \end{array}$	(0, 0, 4, 1, 1, 1, 0, 0)	$(92,63)$	$\underset{U(1)^{3}}{S p(2)_{10}} \times S U(2)_{8}^{4} \times$
124	$\begin{array}{cc} A_{4} & \\ D_{4}\left(a_{1}\right) & 2 A_{2} \end{array}$	(0, 0, 3, 0, 2, 1, 0, 1)	$(112,81)$	$\begin{aligned} & \left(G_{2}\right)_{12} \times S U(2)_{8} \times \\ & S U(2)_{24}^{3} \end{aligned}$
125	$\begin{array}{cc} A_{4} & \\ A_{3}+A_{1} & A_{3}+A_{1} \end{array}$	(0, 0, 3, 0, 1, 2, 0, 0)	$(90,62)$	$\begin{aligned} & S U(2)_{32} \times S U(2)_{16}^{2} \times \\ & S U(2)_{9}^{2} \times S U(2)_{8}^{2} \end{aligned}$
126	$\begin{array}{cc} A_{4} & 2 A_{2}+A_{1} \\ A_{3}+A_{1} \end{array}$	(0, 0, 2, 0, 1, 2, 0, 1)	$(107,78)$	$\begin{gathered} S U(2)_{48} \times S U(2)_{26} \\ \times S U(2)_{24} \times S U(2)_{9} \\ \times S U(2)_{8} \\ \hline \end{gathered}$

Table 4.4: Interacting fixtures with enhanced global symmetry

\#	Fixture		$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$$(0,0,3,1,1,2,0,0)$	$\begin{aligned} & \left(n_{h}, n_{v}\right) \\ & (101,71) \end{aligned}$	$G_{k}$$\begin{gathered} S p(2)_{10} \times S U(2)_{16} \\ \times S U(2)_{9} \times S U(2)_{8}^{2} \\ \times U(1)^{2} \\ \hline \end{gathered}$	
127	$\begin{gathered} A_{4} \\ A_{3}+A_{1} \end{gathered}$	A_{3}				
128	$\begin{gathered} A_{4} \\ A_{3}+A_{1} \end{gathered}$	$2 A_{2}$	$(0,0,2,0,2,2,0,1)$	$(121,89)$	$\begin{gathered} \left(G_{2}\right)_{12} \times S U(2)_{48} \\ \times S U(2)_{24} \times S U(2)_{9} \\ \times S U(2)_{8} \end{gathered}$	
129	$\begin{gathered} A_{4} \\ 2 A_{2}+A_{1} \end{gathered}$	$2 A_{2}+A_{1}$	$(0,0,1,0,1,2,0,2)$	$(124,94)$	$\begin{aligned} & S U(2)_{72} \times S U(2)_{26}^{2} \\ & S U(2)_{8} \end{aligned}$	
130	$\begin{gathered} A_{4} \\ 2 A_{2}+A_{1} \end{gathered}$		$(0,0,2,1,1,2,0,1)$	$(118,87)$	$\begin{aligned} & S p(2)_{10} \times S U(2)_{26} \\ & \times S U(2)_{24} \times S U(2)_{8} \\ & \times U(1) \end{aligned}$	
131	$\begin{gathered} A_{4} \\ 2 A_{2}+A_{1} \end{gathered}$	$2 A_{2}$	$(0,0,1,0,2,2,0,2)$	$(138,105)$	$\begin{aligned} & \left(G_{2}\right)_{12} \times S U(2)_{72} \\ & S U(2)_{26} \times S U(2)_{8} \end{aligned}$	\times
132	$\begin{array}{ll} A_{4} & \\ A_{3} \end{array} \quad \begin{aligned} & 1 \\ & \hline \end{aligned}$		$(0,0,3,2,1,2,0,0)$	$(112,80)$	$\begin{aligned} & S p(2)_{10}^{2} \times S U(2)_{8}^{2} \\ & U(1)^{3} \end{aligned}$	\times
133	$\begin{array}{ll} A_{4} & 2 A_{2} \\ A_{3} & \end{array}$		$(0,0,2,1,2,2,0,1)$	$(132,98)$	$\begin{gathered} \left(G_{2}\right)_{12} \times S p(2)_{10} \\ \times S U(2)_{24} \times S U(2)_{8} \\ \times U(1) \end{gathered}$	
134	$\begin{array}{cc} \hline A_{4} & \\ 2 A_{2} & 2 A_{2} \end{array}$		$(0,0,1,0,3,2,0,2)$	$(152,116)$	$\begin{aligned} & \left(G_{2}\right)_{12}^{2} \times S U(2)_{72} \\ & S U(2)_{8} \end{aligned}$	\times

We were unable to determine the $S U(3)$ levels in fixtures 63 and 66 .

4.2.5 Mixed fixtures

We find many "new" SCFTs in our list of mixed fixtures. For each fixture in the table below, we list the global symmetry group, the graded Coulomb
branch dimensions, and the effective number of vector and hypermultiplets of the SCFT. The effective number of hypermultiplets, for the fixture as a whole, is the sum of the n_{h} listed in the table and the number of free hypermultiplets in the last column. When the hypermultiplets transform under the nonabelian part of the "manifest" global symmetry of the fixture, we list that representation. Otherwise, we just give their number.

All SCFTs in the list below are "new", except for the $\left(E_{6}\right)_{6}$ SCFT, the $\left(E_{6}\right)_{12} \times S U(2)_{7}$ SCFT, the $S U(4)_{8}^{3}$ SCFT, and the $\left(E_{8}\right)_{12}$ SCFT, which have previously appeared in the classification of the A- and D-series fixtures, and the $\left(E_{7}\right)_{16} \times S U(2)_{9}$ and $\left(G_{2}\right)_{12} \times S p(2)_{26}$ SCFTs, which appeared above.

Table 4.5: Mixed fixtures

\#	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	Theory
1	$\begin{array}{cc} E_{6}\left(a_{1}\right) \\ A_{2}+A_{1} \end{array}$	$(0,0,0,0,1,0,0,0)$	$(40,11)$	$\left(E_{8}\right)_{12} \mathrm{SCFT}+1(1,27)$
2	$\begin{array}{cc} E_{6}\left(a_{1}\right) & \\ 3 A_{1} & \end{array}$	$(0,0,0,0,1,0,0,0)$	$(40,11)$	$\begin{aligned} & \left(E_{8}\right)_{12} \mathrm{SCFT}+\frac{1}{2}(1,2,1)+ \\ & 1(3,1,6) \end{aligned}$
3	$\begin{gathered} E_{6}\left(a_{1}\right) \\ 2 A_{1} \end{gathered}$	$(0,0,0,0,1,1,0,0)$	$(72,26)$	$\operatorname{Spin}(20)_{16} \mathrm{SCFT}+1(6,1)$
4	$\begin{array}{cc} D_{5} & A_{1} \\ 2 A_{2}+A_{1} \end{array}$	$(0,0,1,0,0,1,0,0)$	$(57,22)$	$\begin{aligned} & \left(E_{7}\right)_{16} \times S U(2)_{9}+\frac{1}{2}(2,1)+ \\ & 1(1,6) \end{aligned}$
5	$\begin{gathered} D_{5} \\ A_{2}+2 A_{1} \end{gathered}$	$(0,0,1,1,0,0,0,0)$	$(42,16)$	$\begin{aligned} & S U(8)_{10} \times S U(3)_{12}+ \\ & 1(2 ; 3,1)+\frac{1}{2}(3 ; 1,2) \end{aligned}$
6	$\begin{gathered} D_{5} \\ A_{2}+2 A_{1} \end{gathered}$	$(0,0,1,1,0,1,0,0)$	$(68,31)$	$\begin{aligned} & \left(E_{6}\right)_{16} \times S p(2)_{10} \times U(1)+ \\ & 1(2,1) \end{aligned}$

Table 4.5: Mixed fixtures

\#	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	Theory
7	$\begin{array}{cc} D_{5} & \\ 2 A_{2} & A_{1} \end{array}$	$(0,0,1,0,1,1,0,0)$	$(72,33)$	$\begin{aligned} & \operatorname{Spin}(7)_{12} \\ & \operatorname{Spin}(12)_{16} \text { SCFT }+1(1,6) \end{aligned}$
8	$\begin{gathered} D_{5} \\ A_{2}+A_{1} \end{gathered}$	$(0,0,1,1,1,0,0,0)$	$(60,27)$	$\begin{aligned} & S U(8)_{12} \times S U(4)_{10} \quad+ \\ & \frac{1}{2}(1 ; 1,2)+1(1 ; 3,1) \\ & \hline \end{aligned}$
9	$\begin{array}{cc} D_{5} & 2 A_{1} \\ A_{2}+A_{1} \end{array}$	$(0,0,1,1,1,1,0,0)$	$(82,42)$	$\begin{gathered} S p i n(10)_{16} \times S U(4)_{12} \\ \times S U(2)_{10} \times U(1) \\ +1 \text { free hyper } \end{gathered}$
10	$\begin{array}{ll} D_{5} & 3 A_{1} \\ A_{2} & \end{array}$	$(0,0,1,1,2,0,0,0)$	$(76,38)$	$\begin{aligned} & S U(6)_{12}^{2} \quad \times \quad S U(2)_{12} \quad+ \\ & \frac{1}{2}(1,1 ; 1,2) \end{aligned}$
11	$\begin{aligned} & E_{6}\left(a_{3}\right) \\ & D_{5}(a 1) \end{aligned}$	$(0,2,0,0,0,0,0,0)$	$(32,10)$	$\left.\left[\left(E_{6}\right)_{6}\right) \mathrm{SCFT}\right]^{2}+1(27)$
12	$\begin{array}{cc} E_{6}(a 3) \\ A_{4}+A_{1} \end{array} \quad \begin{aligned} & \\ & \hline \end{aligned}$	$(0,1,0,0,1,1,0,0)$	$(64,31)$	$\operatorname{Spin}(13)_{16} \times U(1)+1(6)$
13	$\begin{array}{cc} E_{6}(a 3) & A_{1} \\ A_{4} \end{array}$	$(0,1,1,0,1,1,0,0)$	$(72,38)$	$\begin{aligned} & \operatorname{Spin}(12)_{16} \times S U(2)_{8} \times \\ & U(1) \text { SCFT }+1(1,6) \end{aligned}$
14	$\begin{aligned} & E_{6}(a 3) \\ & D_{4}(a 1) \end{aligned} \quad A_{2}+2 A_{1}$	$(0,1,2,0,0,0,0,0)$	$(40,19)$	$S U(4)_{8}^{3} \mathrm{SCFT}+3(2)$
15	$\begin{aligned} & E_{6}(a 3) \\ & D_{4}(a 1) \end{aligned} \quad A_{2}+A_{1}$	$(0,1,2,0,1,0,0,0)$	$(56,30)$	$\operatorname{Spin}(8)_{12} \times S U(2)_{8}^{3} \times$ $U(1)^{2}+3$ free hypers
16	$\begin{array}{ll} E_{6}(a 3) \\ A_{3}+A_{1} \end{array} \quad A_{2}+2 A_{1}$	$(0,1,1,0,0,1,0,0)$	$(51,27)$	$S p(3)_{9} \times S U(4)_{16}+2(1,2)$
17	$\begin{aligned} & E_{6}(a 3) \\ & A_{3}+A_{1} \end{aligned} \quad A_{2}+A_{1}$	$(0,1,1,0,1,1,0,0)$	$(66,38)$	$\begin{gathered} \operatorname{Spin}(7)_{12} \times S p(2)_{9} \\ \times S U(2)_{32} \times U(1) \\ +2 \text { free hypers } \end{gathered}$

Table 4.5: Mixed fixtures

\#	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	Theory
18	$\begin{array}{cl} E_{6}(a 3) \\ 2 A_{2}+A_{1} & \\ 2 A_{1} & \\ \end{array}$	$(0,1,0,0,0,1,0,1)$	$(70,43)$	$S p(3){ }_{26}+1(1,2)$
19	$\begin{array}{cc} E_{6}(a 3) \\ 2 A_{2}+A_{1} \end{array} \quad A_{2}+A_{1}$	$(0,1,0,0,1,1,0,1)$	$(84,54)$	$\begin{array}{lll} \left(G_{2}\right)_{12} & \times & S p(2)_{26} \\ 1 \text { free hyper } \end{array}$
20	$\begin{array}{cc} E_{6}(a 3) & \\ A_{3} & \end{array}$	$(0,1,1,1,0,1,0,0)$	$(64,36)$	$\begin{aligned} & S p(4)_{10} \times \quad \text { } S U(2)_{16}^{2} \quad \times \\ & U(1)^{2}+1(1,2) \end{aligned}$
21	$\begin{array}{cc} E_{6}(a 3) & A_{2}+A_{1} \\ A_{3} & \end{array}$	$(0,1,1,1,1,1,0,0)$	$(78,47)$	$S U(4)_{12} \times S p(3)_{10} \times$ $U(1)^{2}+1$ free hyper
22	$\begin{array}{cc} E_{6}(a 3) & 2 A_{2} \\ A_{2}+2 A_{1} \end{array}$	$(0,1,0,0,1,1,0,1)$	$(84,54)$	$\left(G_{2}\right)_{12} \times S p(2)_{26}+1(2,1)$
23	$\begin{gathered} E_{6}(a 3) \\ 2 A_{2} \end{gathered} \quad A_{2}+A_{1}$	$(0,1,0,0,2,1,0,1)$	$(98,65)$	$\left(G_{2}\right)_{12}^{2} \quad \times \quad S U(2)_{26} \quad+$ 1 free hyper
24	$\begin{array}{cc} A_{5} \\ D_{5}\left(a_{1}\right) \end{array}$	$(0,1,0,0,1,0,0,0)$	$(39,16)$	$\begin{aligned} & \left(E_{6}\right)_{12} \times S U(2)_{7} \mathrm{SCFT}+ \\ & 1(1,27) \end{aligned}$
25	$\begin{gathered} A_{5} \\ A_{4}+A_{1} \end{gathered}$	$(0,0,0,0,2,1,0,0)$	$(71,37)$	$\begin{aligned} & \operatorname{Spin}(13)_{16} \times S U(2)_{7}+ \\ & 1(1,6) \end{aligned}$
26	$\begin{array}{ll} A_{5} \\ A_{4} \end{array} \quad A_{1}$	$(0,0,1,0,2,1,0,0)$	$(79,44)$	$\begin{gathered} S p i n(12)_{16} \times S U(2)_{8} \\ \times S U(2)_{7} \mathrm{SCFT} \\ +1(1,1,6) \end{gathered}$
27	$\begin{array}{cc} A_{5} & A_{2}+2 A_{1} \\ D_{4}(a 1) \end{array}$	$(0,0,2,0,1,0,0,0)$	$(47,25)$	$S p(2)_{8}^{3} \times S U(2)_{7}+3(1,2)$
28	$\begin{array}{cc} A_{5} \\ D_{4}(a 1) \end{array} \quad \begin{aligned} & \\ & A_{2}+A_{1} \end{aligned}$	$(0,0,2,0,2,0,0,0)$	$(63,36)$	$\begin{gathered} S p i n(8)_{12} \times S U(2)_{8}^{3} \\ \times S U(2)_{7} \\ +3 \text { free hypers } \end{gathered}$

Table 4.5: Mixed fixtures

\#	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	Theory	
29	$\begin{array}{cc} A_{5} & A_{2}+2 A_{1} \\ A_{3}+A_{1} & \end{array}$	$(0,0,1,0,1,1,0,0)$	$(58,33)$	$\begin{aligned} & S p(3)_{9} \quad \times \quad S p(2)_{16} \\ & S U(2)_{7}+2(1,1,2) \end{aligned}$	\times
30	$\begin{array}{cc} A_{5} & A_{2}+A_{1} \\ A_{3}+A_{1} & \end{array}$	$(0,0,1,0,2,1,0,0)$	$(73,44)$	$\begin{gathered} S p i n(7)_{12} \times S p(2)_{9} \\ \times S U(2)_{32} \times S U(2)_{7} \\ +2 \text { free hypers } \end{gathered}$	
31	$\begin{array}{cll} A_{5} & A_{2} & + \\ 2 A_{2}+A_{1} & & \\ 2 A_{1} & & \\ \hline \end{array}$	$(0,0,0,0,1,1,0,1)$	$(77,49)$	$\begin{aligned} & S p(3)_{26} \quad \times \quad S U(2)_{7} \\ & 1(1,1,2) \end{aligned}$	$+$
32	$\begin{array}{cc} A_{5} & A_{2}+A_{1} \\ 2 A_{2}+A_{1} \end{array}$	$(0,0,0,0,2,1,0,1)$	$(91,60)$	$\begin{aligned} & \left(G_{2}\right)_{12} \quad \times \quad S p(2)_{26} \\ & S U(2)_{7}+1 \text { free hyper } \end{aligned}$	\times
33	$\begin{array}{ll} A_{5} & A_{2}+2 A_{1} \\ A_{3} \end{array}$	$(0,0,1,1,1,1,0,0)$	$(71,42)$	$\begin{gathered} S p(4)_{10} \times S U(2)_{32} \\ \times S U(2)_{7} \times U(1) \\ +1(1,1,2) \\ \hline \end{gathered}$	
34	$\begin{array}{ll} A_{5} & \\ A_{3} & A_{2}+A_{1} \end{array}$	$(0,0,1,1,2,1,0,0)$	$(85,53)$	$\begin{gathered} S U(4)_{12} \times S p(3)_{10} \\ \times S U(2)_{7} \times U(1) \\ +1 \text { free hyper } \end{gathered}$	
35	$\begin{gathered} A_{5} \\ A_{2}+2 A_{1} \end{gathered}$	$(0,0,0,0,2,1,0,1)$	$(91,60)$	$\begin{aligned} & \left(G_{2}\right)_{12} \times S p(2)_{26} \\ & S U(2)_{7}+1(1,2,1) \end{aligned}$	\times
36	$\begin{gathered} A_{5} \\ 2 A_{2} \end{gathered} \quad A_{2}+A_{1}$	$(0,0,0,0,3,1,0,1)$	$(105,71)$	$\begin{aligned} & \left(G_{2}\right)_{12}^{2} \times \quad \times \quad S U(2)_{26} \\ & S U(2)_{7}+1 \text { free hyper } \end{aligned}$	\times
37	$\begin{aligned} & D_{5}(a 1) \\ & A_{4}+A_{1} \end{aligned} \quad 3 A_{1}$	$(0,1,0,1,1,0,0,0)$	$(52,25)$	$\begin{aligned} & S U(6)_{12} \times \operatorname{Spin}(7)_{10} \\ & \frac{1}{2}(1,2)+1(3,1) \end{aligned}$	$+$
38	$\begin{array}{ll} D_{5}(a 1) \\ A_{4}+A_{1} \end{array} \quad 2 A_{1}$	$(0,1,0,1,1,1,0,0)$	$(74,40)$	$\begin{gathered} \operatorname{Spin}(10)_{16} \times S U(2)_{10} \\ \times S U(2)_{32} \times U(1) \\ \quad+1 \text { free hyper } \end{gathered}$	

Table 4.5: Mixed fixtures

\#	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	Theory
39	$\begin{gathered} D_{5}(a 1) \\ A_{4} \end{gathered}$	$(0,1,1,1,1,0,0,0)$	$(60,32)$	$\begin{gathered} S U(5)_{12} \times S U(4)_{10} \\ \times S U(2)_{8} \times U(1) \\ +\frac{1}{2}(1 ; 1,2)+1(1 ; 3,1) \end{gathered}$
40	$\begin{gathered} D_{5}(a 1) \quad 2 A_{1} \\ A_{4} \end{gathered}$	$(0,1,1,1,1,1,0,0)$	$(82,47)$	$\begin{gathered} S p i n(10)_{16} \times S U(2)_{8} \\ \times S U(2)_{10} \times U(1)^{2} \\ +1 \text { free hyper } \end{gathered}$
41	$\begin{aligned} & D_{5}(a 1) \\ & D_{4}(a 1) \end{aligned} \quad 2 A_{2}+A_{1}$	$(0,1,2,0,0,0,0,0)$	$(40,19)$	$\begin{aligned} & S U(4)_{8}^{3} \mathrm{SCFT}+1(2) \\ & 3 \text { free hypers } \end{aligned}$
42	$\begin{aligned} & D_{5}(a 1) \\ & D_{4}(a 1) \end{aligned}$	$(0,1,2,0,1,0,0,0)$	$(56,30)$	$\begin{gathered} \operatorname{Spin}(8)_{12} \times S U(2)_{8}^{3} \\ \times U(1)^{2} \\ +3 \text { free hypers } \end{gathered}$
43	$\begin{array}{ll} D_{5}(a 1) \\ A_{3}+A_{1} & 2 A_{2}+A_{1} \end{array}$	$(0,1,1,0,0,1,0,0)$	$(51,27)$	$S U(4)_{16} \quad \times \quad S p(3)_{9}$ $\frac{1}{2}(2,1)+2 \text { free hypers }$
44	$\begin{array}{ll} D_{5}(a 1) \\ A_{3}+A_{1} \end{array} \quad 2 A_{2}$	$(0,1,1,0,1,1,0,0)$	$(66,38)$	$\begin{aligned} & \operatorname{Spin}(7)_{12} \times S p(2)_{9} \\ & \times S U(2)_{32} \times U(1) \\ & \quad+2 \text { free hypers } \end{aligned}$
45	$\begin{array}{lll} D_{5}(a 1) & 2 A_{2} & + \\ 2 A_{2}+A_{1} & \\ A_{1} & \\ \hline \end{array}$	$(0,1,0,0,0,1,0,1)$	$(70,43)$	$S p(3)_{26}+1$ free hyper
46	$\begin{gathered} D_{5}(a 1) \\ 2 A_{2}+A_{1} \end{gathered} \quad A_{3}$	$(0,1,1,1,0,1,0,0)$	$(63,36)$	$\begin{gathered} S p(3)_{10} \times S U(3)_{16} \\ \times S U(2)_{9} \times U(1) \\ +\frac{1}{2}(2,1)+1 \text { free hyper } \end{gathered}$
47	$\begin{array}{cc} D_{5}(a 1) & 2 A_{2} \\ 2 A_{2}+A_{1} & \end{array}$	$(0,1,0,0,1,1,0,1)$	$(84,54)$	$\begin{aligned} & \left(G_{2}\right)_{12} \quad \times \quad S p(2)_{26} \\ & 1 \text { free hyper } \end{aligned}$

Table 4.5: Mixed fixtures

\#	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	Theory
48	$\begin{gathered} D_{5}(a 1) \\ A_{3} \end{gathered}$	$(0,1,1,1,1,1,0,0)$	$(78,47)$	$\operatorname{Spin}(7)_{12} \times \operatorname{Sp}(3)_{10} \times$ $U(1)^{2}+1$ free hyper
49	$\begin{gathered} D_{5}(a 1) \\ 2 A_{2} \end{gathered}$	$(0,1,0,0,2,1,0,1)$	$(98,65)$	$\left(G_{2}\right)_{12}^{2} \quad \times \quad S U(2)_{26} \quad+$ 1 free hyper
50	$\begin{array}{ll} A_{4}+A_{1} \\ A_{4}+A_{1} & A_{2}+2 A_{1} \end{array}$	$(0,0,0,1,1,1,0,0)$	$(60,35)$	$S U(3)_{32} \times S p(3)_{10}+1(2)$
51	$\begin{array}{ll} A_{4}+A_{1} \\ A_{4}+A_{1} \end{array} \quad A_{2}+A_{1}$	$(0,0,0,1,2,1,0,0)$	$(74,46)$	$\begin{aligned} & S U(4)_{12} \times S U(2)_{10} \times \\ & S U(2)_{32}{ }^{2}+1 \text { free hyper } \end{aligned}$
52	$\begin{array}{cc} A_{4}+A_{1} & A_{2}+2 A_{1} \\ A_{4} & \end{array}$	$(0,0,1,1,1,1,0,0)$	$(68,42)$	$\begin{aligned} & S U(3)_{32} \quad \times \quad S p(2)_{10} \quad \times \\ & S U(2)_{8} \times U(1)+1(1,2) \end{aligned}$
53	$\begin{gathered} A_{4}+A_{1} \\ A_{4} \end{gathered}$	$(0,0,1,1,2,1,0,0)$	$(82,53)$	$\begin{gathered} S U(4)_{12} \times S U(2)_{32} \\ \times S U(2)_{10} \\ \times S U(2)_{8} \times U(1) \\ +1 \text { free hyper } \end{gathered}$
54	$\begin{array}{cc} D_{4} & \\ A_{4}+A_{1} & \\ \hline \end{array}$	$(0,1,0,1,2,0,0,0)$	$(68,36)$	$\begin{aligned} & S U(6)_{12} \quad \times \quad S U(3)_{12}^{2} \quad+ \\ & \frac{1}{2}(1 ; 1,2) \end{aligned}$
55	$\begin{array}{cc} D_{4} & 3 A_{1} \\ A_{4} & \end{array}$	$(0,1,1,1,2,0,0,0)$	$(76,43)$	$\begin{gathered} S U(6)_{12} \times S U(3)_{12} \\ \times S U(2)_{8} \times U(1) \\ \quad+\frac{1}{2}(1,1 ; 1,2) \end{gathered}$
56	$\begin{gathered} D_{4} \\ D_{4}(a 1) \end{gathered} \quad 2 A_{2}+A_{1}$	$(0,1,2,0,1,0,0,0)$	$(56,30)$	$\begin{aligned} & \operatorname{Spin}(8)_{12} \times S U(2)_{8}^{3}+ \\ & 1(1,2) \end{aligned}$
57	$\begin{array}{cc} D_{4} & 2 A_{2}+A_{1} \\ A_{3}+A_{1} & \end{array}$	$(0,1,1,0,1,1,0,0)$	$(66,38)$	$\begin{aligned} & \operatorname{Spin}(7)_{12} \times S p(2)_{9} \\ & \times S U(2)_{16} \times U(1) \\ & \quad+\frac{1}{2}(1,1,2) \end{aligned}$

Table 4.5: Mixed fixtures

\#	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	Theory
58	$\begin{gathered} D_{4} \\ 2 A_{2}+A_{1} \end{gathered} \begin{gathered} \\ A_{3} \end{gathered}$	$(0,1,1,1,1,1,0,0)$	$(77,47)$	$\begin{gathered} S U(4)_{12} \times S p(2)_{10} \\ \times S U(2)_{16} \\ \times S U(2)_{9} \times U(1) \\ \quad+\frac{1}{2}(1,2,1) \end{gathered}$
59	$\begin{array}{ll} A_{4} \\ A_{4} \end{array} \quad A_{2}+2 A_{1}$	$(0,0,2,1,1,1,0,0)$	$(76,49)$	$\begin{gathered} S p(2)_{10} \times S U(2)_{32} \\ \times S U(2)_{8}^{2} \times U(1)^{2} \\ +1(1,1,2) \end{gathered}$
60	$\begin{array}{ll} A_{4} & \\ A_{4} \end{array} \quad \begin{aligned} & \\ & \hline \end{aligned}$	$(0,0,2,1,2,1,0,0)$	$(90,60)$	$\begin{aligned} & S U(4)_{12} \times S U(2)_{10} \\ & \times S U(2)_{8}^{2} \times U(1)^{2} \\ & \quad+1 \text { free hyper } \end{aligned}$

4.3 A Detour Through the Twisted Sector

There are several fixtures on our list, where the levels of the enhanced flavour symmetry group cannot be determined by considerations from the untwisted sector alone. For instance, consider the pair of fixtures,

In each case, only the diagonal $\left(E_{6}\right)_{24} \subset\left(E_{6}\right)_{24-k} \times\left(E_{6}\right)_{k}$ is manifest. Moreover, the only gaugings, available in the untwisted sector, have Abelian cen-
tralizers in $\left(E_{6}\right)_{24-k} \times\left(E_{6}\right)_{k}$, which makes determining the individual levels (as opposed to their sum) difficult.

To fix the ambiguity, we need to make recourse to the \mathbb{Z}_{2}-twisted sector. While a full discussion of the \mathbb{Z}_{2}-twisted sector is beyond the scope of this paper, we will borrow a few results of that analysis, deferring a full discussion to a future paper.

The twisted punctures are labeled by nilpotent orbits in F_{4}. We will denote them by their Bala-Carter labels, and colour them grey. The empty fixture

will allow us to gauge an $S U(6)_{24} \subset\left(E_{6}\right)_{24-k} \times\left(E_{6}\right)_{k}$. The centralizer is $S U(2)_{24-k} \times S U(2)_{k}$, from which we can read off the "missing" information about the levels.

We will also need the free-field fixture

and the interacting fixture

which is a realization of the $\left(E_{6}\right)_{6}$ SCFT. Finally, we will also need two "new" interacting fixtures

Table 4.6: Twisted interacting SCFTs

Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	Global Symmetry
	$(0,2,1,2,1,0,1,0)$	$(83,63)$	$\begin{aligned} & \left(G_{2}\right)_{10} \times S U(2)_{18} \times \\ & S U(2)_{6} \times U(1) \end{aligned}$
	$(0,2,1,2,2,0,1,0)$	$(96,74)$	$\begin{aligned} & \left(G_{2}\right)_{10} \times S U(3)_{12} \times \\ & S U(2)_{18} \times S U(2)_{6} \end{aligned}$

In both cases, all of the global symmetry except the $S U(2)_{18}$ is manifest (in particular, the $S U(2)_{6}$ is manifest). The 4 -punctured sphere

has global symmetry

$$
F=S U(3)_{12}^{2} \times S U(2)_{24-k} \times S U(2)_{k}
$$

The S-dual

manifestly has one of the $S U(2)$ levels as $k=6$, which determines the other level to be 18 .

Similarly, for

the global symmetry group is

$$
F=S U(3)_{12} \times S U(2)_{24-k} \times S U(2)_{k} \times U(1)
$$

Now there are two S-dual presentations of the theory:

and

Again, the fact that one of the $S U(2)$ levels is manifest suffices to determine the other.

As another example, consider the pair of fixtures

and

In each case, only the diagonal $S U(2)_{54}$ subgroup, of the indicated $S U(2) \mathrm{s}$, is manifest. Moreover, these fixtures are not gaugeable within the untwisted theory. So there is no obvious way to determine the individual $S U(2)$ levels. Fortunately, the twisted sector provides the empty fixture

which allows us to gauge the $S U(3)_{12}$ symmetry of each of these fixtures:

and

From the S-duals

and

and the Lie-algebra embeddings

$$
\begin{aligned}
& \left(\mathfrak{e}_{7}\right)_{k} \supset\left(\mathfrak{f}_{4}\right)_{k} \oplus \mathfrak{s u}(2)_{3 k} \\
& \left(\mathfrak{e}_{7}\right)_{k} \supset \mathfrak{s o}(9)_{k} \oplus \mathfrak{s u}(2)_{2 k} \oplus \mathfrak{s u}(2)_{k} \\
& \left(\mathfrak{e}_{7}\right)_{k} \supset \mathfrak{s o}(8)_{k} \oplus \mathfrak{s u}(2)_{k} \oplus \mathfrak{s u}(2)_{k} \oplus \mathfrak{s u}(2)_{k}
\end{aligned}
$$

we determine the levels in (4.7) and (4.8) to be $k=k^{\prime}=18$.
Finally, let us turn to the mixed fixture

$1(1,2)+$
$\operatorname{Spin}(8)_{12} \times \mathrm{SU}(2)_{24-k_{1}-k_{2}} \times \mathrm{SU}(2)_{k_{1}} \times \mathrm{SU}(2)_{k_{2}} \mathrm{SCFT}$

Only the diagonal $S U(2)_{24} \subset S U(2)_{24-k_{1}-k_{2}} \times S U(2)_{k_{2}} \times S U(2)_{k_{2}}$ is manifest. Gauging the $S U(3)_{12}$ symmetry of the D_{4} puncture, as before, we find that the S-dual is a $\operatorname{Spin}(8)$ gauge theory, with matter in the $1\left(8_{v}\right)+1\left(8_{s}\right)+1\left(8_{c}\right)+2(1)$, coupled to two copies of the $\left(E_{6}\right)_{6}$ SCFT.

From this, we read off the levels of the three $S U(2) \mathrm{s}: k_{1}=k_{2}=24-k_{1}-k_{2}=8$.

4.4 Applications

4.4.1 $\quad E_{6}$ and F_{4} gauge theory

4.4.1.1 $\quad E_{6}+4(27)$

E_{6} gauge theory, with four fundamental hypermultiplets, is superconformal. It is realized as the 4-punctured sphere

The S-dual theory is an $S U(2)$ gauging of the $S U(4)_{54} \times S U(2)_{7} \times U(1)$ SCFT, with an additional half-hypermultiplet in the fundamental.

The k-differentials, which determine the Seiberg-Witten solution, are

$$
\begin{align*}
\phi_{2}(z) & =\frac{u_{2} z_{12} z_{34}(d z)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
\phi_{5}(z) & =\frac{u_{5} z_{12} z_{34}^{4}(d z)^{5}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{4}} \\
\phi_{6}(z) & =\frac{u_{6} z_{12}^{2} z_{34}^{4}(d z)^{6}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{4}\left(z-z_{4}\right)^{4}} \\
\phi_{8}(z) & =\frac{u_{8} z_{12}^{2} z_{34}^{6}(d z)^{8}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{6}\left(z-z_{4}\right)^{6}} \tag{4.9}\\
\phi_{9}(z) & =\frac{u_{9} z_{12}^{2} z_{34}^{7}(d z)^{9}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{7}\left(z-z_{4}\right)^{7}} \\
\phi_{12}(z) & =\frac{u_{12}^{3} z_{12}^{3} z_{34}^{9}(d z)^{12}}{\left(z-z_{1}\right)^{3}\left(z-z_{2}\right)^{3}\left(z-z_{3}\right)^{9}\left(z-z_{4}\right)^{9}}
\end{align*}
$$

The gauge coupling, $\tau=\frac{\theta}{\pi}+\frac{8 \pi i}{g^{2}}$, is determined by the $S L(2, \mathbb{C})$-invariant cross-ratio

$$
\begin{equation*}
f(\tau) \equiv-\frac{\theta_{2}^{4}(0, \tau)}{\theta_{4}^{4}(0, \tau)}=\frac{z_{13} z_{24}}{z_{14} z_{23}} \tag{4.10}
\end{equation*}
$$

and, for calculational purposes, it is usually convenient to use $S L(2, \mathbb{C})$ to fix $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=(0, \infty, f(\tau), 1)$ in (4.9).

The solution to E_{6} gauge theory with $N_{f} \leq 3$ fundamental hypermultiplets was first found in [51].

4.4.1.2 $F_{4}+3(26)$

F_{4} gauge theory, with three fundamentals, is also superconformal. It is realized as

The S-dual theory is an $S U(2)$ gauging of the $S p(3)_{26} \times S U(2)_{7}$ SCFT, with additional matter in the $\frac{1}{2}(2)+2(1)$.

The nonzero k-differentials, which determine the Seiberg-Witten solution, are the same as in (4.9) but with $\phi_{5}(z) \equiv 0 \equiv \phi_{9}(z)$. The gauge coupling is again given by (5.17). Physically, this theory is obtained by Higgsing $E_{6} \rightarrow F_{4}$, using one of the hypermultiplets in the 27 .

In practice, given the solution to $E_{6}+4(27)$, the solution to $F_{4}+3(26)+$ $2(1)$ is obtained by noting that

- There is a \mathbb{Z}_{2} symmetry, $\sigma:\left(u_{5}, u_{9}\right) \mapsto\left(-u_{5},-u_{9}\right)$, acting on the Coulomb branch of the $E_{6}+4(27)$.
- The Coulomb branch geometry of $F_{4}+3(26)+2(1)$ is the geometry of the fixed-locus of σ.

4.4.2 Adding $\left(E_{8}\right)_{12}$ SCFTs

Starting with the $E_{6}+4(27)$ Lagrangian field theory, we can start replacing hypermultiplets in the 27 with copies of the $\left(E_{8}\right)_{12}$ SCFT. For $n 27 \mathrm{~s}$ and $4-n$ copies of the $\left(E_{8}\right)_{12}$ SCFT, the flavour symmetry group of the theory is

$$
F=S U(3)_{12}^{4-n} \times U(n)_{54}
$$

In each of these cases, the S-dual theory is an $S U(2)$ gauging of the $S U(3)_{12}^{4-n} \times$ $S U(n)_{54} \times S U(2)_{7} \times U(1)$ SCFT, with an additional half-hypermultiplet in the fundamental (the $U(1)$ is absent for $n=0$).

4.4.2.1 $n=3$

With one copy of the $\left(E_{8}\right)_{12}$ SCFT,

is dual to

4.4.2.2 $n=2$

With two copies of the $\left(E_{8}\right)_{12}$ SCFT, there are two possible realizations.
Either

dual to

or

dual to

These give two, apparently distinct, realizations of the $S U(3)_{12}^{2} \times S U(2)_{54} \times$ $S U(2)_{7} \times U(1)$ SCFT.

4.4.2.3 $n=1$

With three copies of the $\left(E_{8}\right)_{12}$ SCFT, we have

dual to

4.4.2.4 $n=0$

Finally, the E_{6} gauging of four copies of the $\left(E_{8}\right)_{12}$ SCFT,

is dual to

4.4.3 Connections with F-theory

Placing n D3-branes at a IV^{*}, III^{*} or II^{*} singularity in F-Theory yields an $\mathcal{N}=2$ superconformal field theory on the world-volume of the D3-branes [47, 48]. For $n=1$ these are, respectively, the $\left(E_{6}\right)_{6},\left(E_{7}\right)_{8}$ and $\left(E_{8}\right)_{12}$ superconformal field theories of Minahan and Nemenschansky [62]. For higher n, the properties of these SCFTs were computed in 46]. The results may be summarized as follows

Table 4.7: Properties of higher-rank MinahanNemeschansky SCFTs

F-Theory singularity	Flavour symmetry	Graded Coulomb branch dimensions	$\left(n_{h}, n_{v}\right)$
IV*	$\begin{aligned} & \left(E_{6}\right)_{6 n} \times \\ & S U(2)_{(n-1)(3 n+1)} \end{aligned}$	$\begin{aligned} & n_{3 l}=1, \quad l= \\ & 1,2, \ldots, n \end{aligned}$	$\begin{aligned} & \left(3 n^{2}+14 n-\right. \\ & 1, n(3 n+2)) \end{aligned}$
III*	$\begin{aligned} & \left(E_{7}\right)_{8 n} \times \\ & S U(2)_{(n-1)(4 n+1)} \end{aligned}$	$\begin{aligned} & n_{4 l}=1, \quad l= \\ & 1,2, \ldots, n \end{aligned}$	$\begin{aligned} & \left(4 n^{2}+21 n-\right. \\ & 1, n(4 n+3)) \end{aligned}$
II*	$\begin{aligned} & \hline\left(E_{8}\right)_{12 n} \times \\ & S U(2)_{(n-1)(6 n+1)} \end{aligned}$	$\begin{aligned} & n_{6 l}=1, \quad l= \\ & 1,2, \ldots, n \end{aligned}$	$\begin{aligned} & \left(6 n^{2}+35 n-\right. \\ & 1, n(6 n+5)) \end{aligned}$

In [27], Gaiotto and Razamat proposed a realization of these $(n \geq 2)$ SCFTs as a mixed fixture, with one free hypermultiplet, in the A_{N-1} theory, for $N=3 n, 4 n$ and $6 n$, respectively.

Table 4.8: Realization of higher-rank MinahanNemeschansky SCFTs in A_{N-1} series

Theory	Fixture	Manifest flavour symmetry	Enhanced to
IV*		$\begin{aligned} & S U(3)_{6 n}^{2} \\ & S U(2)_{6 n} \times U(1)^{2} \end{aligned}$	$\begin{aligned} & \left(E_{6}\right)_{6 n} \\ & S U(2)_{k}+\frac{1}{2}(2) \end{aligned} \times$
III*	$\begin{gathered} {\left[(2 n)^{2}\right]} \\ 0 \\ {\left[n^{4}\right]} \\ {\left[n^{3}, n-1,1\right]} \\ 0 \end{gathered}$	$\begin{array}{lr} S U(2)_{8 n} & \times \\ S U(4)_{8 n} & \times \\ S U(3)_{8 n} \times U(1)^{2} \end{array}$	$\begin{aligned} & \left(E_{7}\right)_{8 n} \\ & S U(2)_{k}+\frac{1}{2}(2) \end{aligned} \times$
II*	$\begin{gathered} {\left[(3 n)^{2}\right]\left[(2 n)^{3}\right]} \\ 0 \\ 0 \\ {\left[n^{5}, n-1,1\right]} \\ 0 \end{gathered}$	$\begin{array}{lr} S U(2)_{12 n} & \times \\ S U(3)_{12 n} & \times \\ S U(5)_{12 n} \times U(1)^{2} \end{array}$	$\begin{aligned} & \left(E_{8}\right)_{12 n} \\ & S U(2)_{k}+\frac{1}{2}(2) \end{aligned} \times$

For $n=2$, the $S U(2)$ flavour symmetry is manifest, and one readily verifies that it has the predicted level (given that the hypermultiplet transforms as $\frac{1}{2}(2)$ under the $\left.S U(2)\right)$. But, for $n \geq 3$, only the $U(1)$ Cartan is manifest and it is not easy to determine the level of the $S U(2)$.

We have, of course, numerous realizations of the $n=1$ theories. But we also find examples of the higher- n theories

- We find the $n=2 \mathrm{IV}^{*}$ SCFT as one of our fixtures in $\$ 5.2 .3$ and as part of a product SCFT in fixture 39 of $\$ 5.2 .4$. It also appeared as an interacting fixture in the D_{4} theory in [5].
- We find the $n=2$ III* * SCFT as mixed fixture $4 \mathrm{n} \$ 5.2 .5$ and as part of a product SCFT in fixture 6 of $\$ 5.2 .4$.
- We find the $n=2 \mathrm{II}^{*}$ SCFT as interacting fixture 2 in $\$ 5.2 .4$.
- We find the $n=3$ III* SCFT as interacting fixture 7 in $\$ 5.2 .4$.

In particular, the latter gives a nice check of the $S U(2)$ level for $n=3$.
Further examples can be found in the \mathbb{Z}_{2}-twisted sector. Notably, the fixtures

provide realizations, respectively, of the $n=3,4 \mathrm{IV}^{*}$ SCFTs. Again, the $S U(2)$ levels agree with the predictions of [46. Together with the above examples, these exhaust all the IV^{*}, III^{*} and II^{*} theories with nonzero graded Coulomb branch dimensions in degrees ≤ 12.

4.5 Isomorphic Theories

In our table of interacting fixtures with enhanced global symmetry in $\$ 5.2 .4$, we find several SCFTs which seem to be realized in more than one way. Most of these isomorphisms can be checked by various dualities. Some, however, cannot and we list them below.

It would be nice to check these conjectured isomorphisms by comparing the expansions of the superconformal indices for these pairs of fixtures to higher order in τ.

Chapter 5

The \mathbb{Z}_{2}-Twisted E_{6} Theory

We now turn our attention to the theories obtained by compactifying the $(2,0)$ theory of type E_{6} in the presence of punctures twisted by a \mathbb{Z}_{2} outer-automorphism ${ }^{1}$. The twisted punctures are in 1-1 correspondence with embeddings $\rho: \mathfrak{s u}(2) \hookrightarrow \mathfrak{f}_{4}$, and we label them by the Bala-Carter label of the corresponding nilpotent orbit. For a given puncture, we compute all the local properties which contribute to determining the $4 D \mathcal{N}=2$ SCFT and record them in Table 5.2.1. We also determine a projection matrix implementing the branching rule under each embedding, which we use to compute the expansion of the superconformal index. These can be found in Appendix E.2.

5.1 The twisted E_{6} theory

5.1.1 The Hitchin system

For a choice of Riemann surface C, the compactification of the $6 \mathrm{D}(2,0)$ theory of type E_{6} on $\mathbb{R}^{3,1} \times C$ yields a $4 \mathrm{D} \mathcal{N}=2$ theory on $\mathbb{R}^{3,1}$. The $(2,0)$ theory of type E_{6} has an outer-automorphism group which is isomorphic to \mathbb{Z}_{2}. This allows us to introduce a class of "twisted" punctures, around which

[^20]the fields on C undergo a monodromy by a non-trivial element of the outerautomorphism grour ${ }^{2}$. The properties of these punctures are listed in table 5.2.1.

In [49] we studied the theories that arise from compactifying the E_{6} $(2,0)$ on a Riemann surface with untwisted punctures. These punctures are classified by nilpotent orbits in the complexified Lie algebra \mathfrak{e}_{6}, and obey a Hitchin boundary condition of the form

$$
\Phi(z)=\frac{A}{z}+\mathfrak{e}_{6}
$$

where Φ is the Higgs field, z is a local coordinate on C such that the puncture is at $z=0, A$ is a nilpotent element in \mathfrak{e}_{6}, and \mathfrak{e}_{6} in the boundary condition above denotes a generic element of \mathfrak{e}_{6} (or a regular function of z taking values in \mathfrak{e}_{6}).

By contrast, twisted punctures are classified by nilpotent orbits in the complexified Lie algebra \mathfrak{f}_{4}, and obey a twisted boundary condition,

$$
\Phi(z)=\frac{A}{z}+\frac{o_{-1}}{z^{1 / 2}}+\mathfrak{f}_{4}
$$

Here, we have split \mathfrak{e}_{6} into eigenspaces under the action of the \mathbb{Z}_{2} outerautomorphism, as $\mathfrak{e}_{6}=\mathfrak{f}_{4} \oplus o_{-1}$, where $\mathfrak{f}_{4}\left(o_{-1}\right)$ is the even (odd) eigenspace.

[^21]Also, A is a nilpotent element in \mathfrak{f}_{4}, and o_{-1} and \mathfrak{f}_{4} above represent generic elements in the respective spaces.

5.1.2 k-differentials

We use the basis of E_{6} Casimir k-differentials $\left\{\phi_{2}, \phi_{5}, \phi_{6}, \phi_{8}, \phi_{9}, \phi_{12}\right\}$ of our previous paper [49]. For the reader's convenience, we repeat here how to construct this basis in terms of the trace invariants $P_{k}=\operatorname{Tr}\left(\Phi^{k}\right)$ for Φ in the adjoint representation of E_{6}.

$$
\begin{aligned}
\phi_{2}= & \frac{1}{48} P_{2} \\
\phi_{6}= & \frac{1}{24}\left(P_{6}-\frac{7}{4608}\left(P_{2}\right)^{3}\right) \\
\phi_{8}= & \frac{1}{30}\left(P_{8}-\frac{2}{9} P_{6} P_{2}+\frac{155}{663552}\left(P_{2}\right)^{4}\right) \\
\phi_{10}= & -\frac{1}{105}\left(P_{10}-\frac{17}{96} P_{8} P_{2}+\frac{77}{6912} P_{6}\left(P_{2}\right)^{2}-\frac{427}{63700992}\left(P_{2}\right)^{5}\right) \\
\phi_{12}= & \frac{1}{155}\left(P_{12}-\frac{107}{504} P_{10} P_{2}+\frac{515}{32256} P_{8}\left(P_{2}\right)^{2}-\frac{41}{108}\left(P_{6}\right)^{2}+\frac{295}{497664} P_{6}\left(P_{2}\right)^{3}\right. \\
& \left.-\frac{5669}{9172942848}\left(P_{2}\right)^{6}\right) \\
\phi_{14}= & \frac{1}{4389}\left(P_{14}-\frac{3479}{14880} P_{12} P_{2}+\frac{61391}{3214080} P_{10}\left(P_{2}\right)^{2}-\frac{539}{2160} P_{8} P_{6}-\frac{139733}{617103360} P_{8}\left(P_{2}\right)^{3}\right. \\
& \left.+\frac{165781}{4821120}\left(P_{6}\right)^{2} P_{2}-\frac{3488947}{44431411920} P_{6}\left(P_{2}\right)^{4}+\frac{19596907}{409480168734720}\left(P_{2}\right)^{7}\right)
\end{aligned}
$$

These relations define all the Casimirs except ϕ_{5} and ϕ_{9}. These can be computed from ϕ_{10} and ϕ_{14}, which factorize as

$$
\begin{aligned}
& \phi_{10}=\phi_{5}^{2} \\
& \phi_{14}=\phi_{5} \phi_{9} .
\end{aligned}
$$

Notice that the choice of sign of ϕ_{5} determines also the sign of ϕ_{9}. This is precisely the action of the \mathbb{Z}_{2} outer-automorphism of E_{6} on the Casimir k differentials,

$$
\begin{aligned}
& \phi_{5} \mapsto-\phi_{5} \\
& \phi_{9} \mapsto-\phi_{9} \\
& \phi_{k} \mapsto \phi_{k}, \quad k=2,6,8,12
\end{aligned}
$$

So, we can expect that the leading pole orders of the ϕ_{k} for twisted punctures will be half-integer for $k=5,9$, and integer for $k=2,6,8,12$, corresponding to the orders of the Casimirs of F_{4}.

5.2 Tinkertoys

We find 2078 fixtures with 3 regular punctures, two twisted and one untwisted, which correspond to either an interacting SCFT, a mix of an interacting SCFT and free hypers, or a gauge theory. Of these, we find 1757 SCFTs without global symmetry enhancement, 122 SCFTs with enhanced global symmetry, 32 mixed fixtures, and 167 gauge theory fixtures.

Additionally, there are 23 fixtures with one irregular puncture: 15 freefield fixtures, 6 interacting fixtures, 1 mixed fixture, and 1 gauge theory fixture.

Below, we give tables of the twisted punctures and their properties, as well as tables of the twisted fixtures. For the mixed fixtures, we list $\left\{d_{k}\right\}$ and $\left(n_{h}, n_{v}\right)$ of the interacting SCFT, and the representation of the free hypermultiplets. We do not list the fixtures without global symmetry enhancement, as
their properties can be readily computed from the tables of punctures. Tables of untwisted punctures and fixtures can be found in our previous paper 49. Following the conventions of that paper, in the tables we denote the BalaCarter labels of twisted punctures by underlining them; in the figures, twisted punctures are denoted in gray.

5.2.1 Twisted punctures

Twisted punctures in the E_{6} theory are labeled by nilpotent orbits in \mathfrak{f}_{4}, which we denote by the corresponding Bala-Carter label. As discussed in 49], the Bala-Carter notation provides a systematic way to label nilpotent orbits in any exceptional semisimple Lie algebra, and a concise review can be found in appendix A of 49]. Here we merely add that for the \mathfrak{f}_{4} nilpotent orbits, components of the Levi subalgebra in the Bala-Carter label with (without) a tilde are constructed from the short (long) roots of \mathfrak{f}_{4}. (So, e.g., $A_{2}+\widetilde{A}_{1}$ and $\widetilde{A}_{2}+A_{1}$ represent different orbits.)

The pole structure of the k-differentials is denoted by $\left\{p_{2}, p_{5}, p_{6}, p_{8}, p_{9}, p_{12}\right\}$, and, for twisted punctures, p_{5} are p_{9} are half-integer. The contributions to the graded Coulomb branch dimensions are denoted by $\left\{d_{2}, d_{3}, d_{4}, d_{5}, d_{6}, d_{8}, d_{9}, d_{12}\right\}$, allowing for new Coulomb branch parameters (introduced by a-constraints) of dimensions 3 and 4 , which are not degrees of E_{6} Casimirs. The constraints are shown separately in Appendix D.1.

Table 5.1: Twisted regular punctures

Nahm orbit	Hitchin orbit	Pole structure	Coulomb branch contributions	Flavour group	$\left(\delta n_{h}, \delta n_{v}\right)$
$\underline{0}$	F_{4}	$\left\{1, \frac{9}{2}, 5,7, \frac{17}{2}, 11\right\}$	$\left\{1,0,0, \frac{9}{2}, 5,7, \frac{17}{2}, 11\right\}$	$\left(F_{4}\right)_{18}$	$(624,601)$
$\underline{A_{1}}$	$\begin{gathered} \left(F_{4}\left(a_{1}\right)\right. \\ \left.\mathbb{Z}_{2}\right) \\ \hline \end{gathered}$	$\left\{1, \frac{9}{2}, 5,7, \frac{15}{2}, 11\right\}$	$\left\{1,0,0, \frac{9}{2}, 5,7, \frac{15}{2}, 11\right\}$	$S p(3)_{13}$	$(599,584)$
$\underline{\widetilde{A}_{1}}$	$F_{4}\left(a_{1}\right)$	$\left\{1, \frac{9}{2}, 5,7, \frac{15}{2}, 11\right\}$	$\left\{1,0,0, \frac{9}{2}, 6,7, \frac{15}{2}, 10\right\}$	$S U(4)_{12}$	$(584,572)$
$\underline{A_{1}+\widetilde{A}_{1}}$	$F_{4}\left(a_{2}\right)$	$\left\{1, \frac{9}{2}, 5,7, \frac{15}{2}, 10\right\}$	$\left\{1,0,0, \frac{9}{2}, 5,7, \frac{15}{2}, 10\right\}$	$\begin{aligned} & S U(2)_{64} \\ & S U(2)_{10} \\ & \hline \end{aligned}$	$(570,561)$
$\underline{A_{2}}$	B_{3}	$\left\{1, \frac{7}{2}, 5,7, \frac{15}{2}, 10\right\}$	$\left\{1,0,0, \frac{7}{2}, 5,7, \frac{15}{2}, 10\right\}$	$S U(3){ }_{16}$	$(560,552)$
$\underline{\widetilde{A}_{2}}$	C_{3}	$\left\{1, \frac{9}{2}, 5,7, \frac{15}{2}, 10\right\}$	$\left\{1,1,0, \frac{9}{2}, 5,6, \frac{15}{2}, 9\right\}$	$\left(G_{2}\right)_{10}$	$(536,528)$
$\underline{A_{2}+\widetilde{A}_{1}}$	$\begin{gathered} \left(F_{4}\left(a_{3}\right)\right. \\ \left.S_{4}\right) \\ \hline \end{gathered}$	$\left\{1, \frac{7}{2}, 5,6, \frac{15}{2}, 10\right\}$	$\left\{1,0,0, \frac{7}{2}, 5,6, \frac{15}{2}, 10\right\}$	$S U(2){ }_{39}$	$(543,537)$
$\underline{B_{2}}$	$\begin{aligned} & \left(F_{4}\left(a_{3}\right),\right. \\ & \left.\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \end{aligned}$	$\left\{1, \frac{7}{2}, 5,6, \frac{15}{2}, 10\right\}$	$\left\{1,1,0, \frac{7}{2}, 6,6, \frac{13}{2}, 9\right\}$	$S U(2)_{7}^{2}$	$(518,513)$
$\underline{\widetilde{A}_{2}+A_{1}}$	$\begin{gathered} \left(F_{4}\left(a_{3}\right),\right. \\ \left.S_{3}\right) \end{gathered}$	$\left\{1, \frac{7}{2}, 5,6, \frac{15}{2}, 10\right\}$	$\left\{1,1,0, \frac{7}{2}, 5,6, \frac{15}{2}, 9\right\}$	$S U(2){ }_{20}$	$(524,519)$
$\underline{C_{3}\left(a_{1}\right)}$	$\begin{gathered} \left(F_{4}\left(a_{3}\right)\right. \\ \left.\mathbb{Z}_{2}\right) \\ \hline \end{gathered}$	$\left\{1, \frac{7}{2}, 5,6, \frac{15}{2}, 10\right\}$	$\left\{1,2,0, \frac{7}{2}, 5,6, \frac{13}{2}, 9\right\}$	$S U(2)_{7}$	$(511,507)$
$\underline{F_{4}\left(a_{3}\right)}$	$F_{4}\left(a_{3}\right)$	$\left\{1, \frac{7}{2}, 5,6, \frac{15}{2}, 10\right\}$	$\left\{1,3,0, \frac{7}{2}, 4,6, \frac{13}{2}, 9\right\}$	-	$(504,501)$
$\underline{B_{3}}$	A_{2}	$\left\{1, \frac{7}{2}, 4,6, \frac{13}{2}, 9\right\}$	$\left\{1,0,1, \frac{7}{2}, 4,5, \frac{11}{2}, 8\right\}$	$S U(2){ }_{24}$	$(440,438)$
$\underline{C_{3}}$	\widetilde{A}_{2}	$\left\{1, \frac{7}{2}, 5,6, \frac{15}{2}, 10\right\}$	$\left\{1,1,1, \frac{7}{2}, 4,5, \frac{11}{2}, 7\right\}$	$S U(2){ }_{6}$	$(422,420)$
$\underline{F_{4}\left(a_{2}\right)}$	$A_{1}+\widetilde{A}_{1}$	$\left\{1, \frac{7}{2}, 4,6, \frac{13}{2}, 9\right\}$	$\left\{1,0,1, \frac{7}{2}, 4,5, \frac{11}{2}, 7\right\}$	-	$(416,415)$

Table 5.1: Twisted regular punctures

Nahm orbit	Hitchin orbit	Pole structure	Coulomb branch contributions	Flavour group	$\left(\delta n_{h}, \delta n_{v}\right)$
$\underline{F_{4}\left(a_{1}\right)}$	\widetilde{A}_{1}	$\left\{1, \frac{7}{2}, 4,6, \frac{13}{2}, 9\right\}$	$\left\{2,1,0, \frac{5}{2}, 4,4, \frac{9}{2}, 6\right\}$	-	$(352,352)$
$\underline{F_{4}}$	0	$\left\{1, \frac{5}{2}, 3,4, \frac{9}{2}, 6\right\}$	$\left\{1,1,0, \frac{3}{2}, 2,2, \frac{5}{2}, 3\right\}$	-	$(184,185)$

There is a special piece consisting of five nilpotent orbits,

$$
A_{2}+\tilde{A}_{1}, \quad \tilde{A}_{2}+A_{1}, \quad B_{2}, \quad C_{3}\left(a_{1}\right), \quad F_{4}\left(a_{3}\right)
$$

The corresponding Hitchin boundary conditions are $\left(F_{4}\left(a_{3}\right), \Gamma\right)$, where the Sommers-Achar group, Γ, is a subgroup of S_{4}. The leading pole coefficients,

$$
\begin{align*}
c_{5}^{(6)} & =-\left(6 a^{2}+3 a^{\prime 2}+a^{\prime \prime 2}\right) \\
c_{15 / 2}^{(9)} & =\frac{1}{3}\left(a+a^{\prime}\right)\left(\left(2 a-a^{\prime}\right)^{2}-a^{\prime \prime 2}\right) \tag{5.1}\\
c_{10}^{(12)} & =3 a^{\prime 2}\left(4 a+a^{\prime}\right)^{2}+2\left(8 a^{2}-12 a a^{\prime}+a^{\prime 2}\right) a^{\prime \prime 2}+\frac{1}{3} a^{\prime \prime 4}-\frac{4}{3}\left(c_{5}^{(6)}\right)^{2}
\end{align*}
$$

are invariant under the S_{4} action, $\left(\begin{array}{c}a \\ a^{\prime} \\ a^{\prime \prime}\end{array}\right) \mapsto \gamma\left(\begin{array}{c}a \\ a^{\prime} \\ a^{\prime \prime}\end{array}\right)$, generated by

$$
\sigma_{12}=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 0 \\
4 & 1 & 0 \\
0 & 0 & 3
\end{array}\right), \quad \sigma_{23}=\frac{1}{2}\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 1 \\
0 & 3 & 1
\end{array}\right), \quad \sigma_{34}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

- For the special orbit, $F_{4}\left(a_{3}\right)$, the Sommers-Achar group is trivial, and $a, a^{\prime}, a^{\prime \prime}$ are invariants.
- For $C_{3}\left(a_{1}\right)$, the Sommers-Achar group is the \mathbb{Z}_{2} generated by σ_{34} and the invariants are $a, a^{\prime}, a^{\prime \prime 2}$.
- For B_{2}, the Sommers-Achar group is the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ generated by σ_{12}, σ_{34} and the invariants are $a+2 a^{\prime}, a^{\prime \prime 2}, 2 a^{2}+a^{\prime 2}$.
- For $\tilde{A}_{2}+A_{1}$, the Sommers-Achar group is the S_{3} generated by σ_{23}, σ_{34} and the invariants are $a, 3 a^{\prime 2}+a^{\prime \prime 2}, c_{15 / 2}^{(9)}$.
- Finally, for $A_{2}+\tilde{A}_{1}$, the Sommers-Achar group is the full S_{4}, and the invariants are $c_{5}^{(6)}, c_{15 / 2}^{(9)}, c_{10}^{(12)}$.

In $\S 5.4$, we will discover an action of this S_{4} group on the Higgs branch of certain fixtures obtained by varying one of the punctures over this special piece.

5.2.2 Free-field fixtures

Table 5.2: Free-field fixtures

\#	Fixture	n_{h}	Representation
1	$\frac{F_{4}}{\underline{F_{4}}} \quad\left(D_{4}, S U(3)_{0}\right)$	0	empty
2	$\underline{\underline{F_{4}}} \quad\left(A_{2}, S U(3)_{0}^{2}\right)$	0	empty
3	$\begin{gathered} \underline{F_{4}} \\ \underline{F_{4}\left(a_{2}\right)} \end{gathered} \quad\left(A_{1}, S U(6)_{6}\right)$	10	$\frac{1}{2}(20)$
4	$\begin{array}{ll} \underline{F_{4}} \\ \underline{B_{3}} & \left(0, S U(6)_{0}\right) \end{array}$	0	empty

Table 5.2: Free-field fixtures

\#	Fixture	n_{h}	Representation
5	$\left.\frac{\underline{F_{4}}}{E_{6}\left(a_{1}\right)} \quad \underline{\left(F_{4}\left(a_{1}\right),\right.}\right)$	0	empty
6	$\frac{\underline{F_{4}}}{E_{6}\left(a_{3}\right)} \quad\left(\underline{C_{3}\left(a_{1}\right)}, S U(2)_{1}\right)$	1	$\frac{1}{2}(2)$
7	$\frac{\underline{F_{4}}}{A_{5}} \quad\left(\underline{B_{2}}, S U(2)_{1}\right)$	1	$\frac{1}{2}(2)$
8	$\frac{\underline{F_{4}}}{D_{5}\left(a_{1}\right)} \quad\left(\underline{\widetilde{A}_{2}}, S U(3)_{2}\right)$	1	1(3)
9	$\frac{F_{4}}{D_{5}} \quad\left(\underline{C_{3}}, S U(2)_{2}\right)$	2	1(2)
10	$\begin{gathered} \underline{F_{4}} \\ A_{4}+A_{1} \end{gathered} \quad\left(\underline{\widetilde{A}_{1}}, S U(3)_{0}\right)$	0	empty
11	$\frac{\underline{F_{4}}}{A_{4}} \quad\left(\underline{\widetilde{A}_{1}}, S U(4)_{4}\right)$	8	$(2,4)$
12	$\frac{F_{4}\left(a_{1}\right)}{E_{6}\left(a_{1}\right)} \quad\left(\underline{B_{2}}, S U(2)_{1}^{2}\right)$	2	$\frac{1}{2}(2,1)+\frac{1}{2}(1,2)$
13	$\frac{F_{4}\left(a_{2}\right)}{E_{6}\left(a_{1}\right)} \quad\left(\underline{\tilde{A}_{1}}, S p(2)_{0}\right)$	0	empty
14	$\underset{E_{6}\left(a_{1}\right)}{\underline{C_{3}}} \quad\left(\underline{\widetilde{A}_{1}}, S U(4)_{4}\right)$	6	$\frac{1}{2}(2,6)$
15	$\frac{B_{3}}{E_{6}\left(a_{1}\right)} \quad\left(\underline{A_{1}}, S p(3)_{3}\right)$	9	$\frac{1}{2}(3,6)$

5.2.3 Interacting fixtures with one irregular puncture

Table 5.3: Interacting fixtures with one irregular puncture

\#	Fixture	$\begin{gathered} \left(n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{8}\right. \\ \left.n_{9}, n_{12}\right) \end{gathered}$	$\left(n_{h}, n_{v}\right)$	Theory
1	$\frac{F_{4}}{D_{4}} \quad\left(\underline{\widetilde{A}_{2}}, G_{2}\right)$	$(0,1,0,0,0,0,0,0)$	$(16,5)$	$\left(E_{6}\right)_{6} \mathrm{SCFT}$
2	$\frac{\underline{F_{4}}}{D_{4}\left(a_{1}\right)} \quad(\underline{0}, \operatorname{Spin}(8))$	$(0,1,0,0,0,0,0,0)$	$(16,5)$	$\left(E_{6}\right)_{6} \mathrm{SCFT}$
3	$\frac{F_{4}}{\underline{C_{3}}} \quad\left(A_{1}, S U(6)_{6}\right)$	$(0,1,0,0,0,0,0,0)$	$(16,5)$	$\left(E_{6}\right)_{6} \mathrm{SCFT}$
4	$\frac{F_{4}}{A_{3}} \quad(\underline{0}, \operatorname{Spin}(9))$	$(0,1,0,1,0,0,0,0)$	$(36,14)$	$\begin{aligned} & \operatorname{Spin}(14)_{10} \quad \times \\ & U(1) \text { SCFT } \end{aligned}$
5	$\frac{C_{3}}{D_{5}} \quad(\underline{0}, \operatorname{Spin}(9))$	$(0,1,1,1,0,0,0,0)$	$(38,21)$	$\begin{aligned} & \operatorname{Spin}(9)_{10} \times \\ & S U(2)_{6} \times U(1) \end{aligned}$
6	$\frac{F_{4}\left(a_{2}\right)}{D_{5}} \quad(\underline{0}, \operatorname{Spin}(9))$	$(0,0,1,1,0,0,0,0)$	$(32,16)$	$\begin{aligned} & \operatorname{Spin}(9)_{10} \quad \times \\ & U(1) \\ & \hline \end{aligned}$

5.2.4 Interacting fixtures with enhanced global symmetry

Table 5.4: Interacting fixtures with enhanced global symmetry

$\#$	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}\right.$, $\left.n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	G_{k}		
1	$\frac{F_{4}}{0}$	$\underline{F_{4}\left(a_{3}\right)}$	$(0,4,0,0,0,0,0,0)$	$(64,20)$	$\left[\left(E_{6}\right)_{6} \mathrm{SCFT}\right]^{4}$	
2	$\frac{\underline{F_{4}}}{}$	$\underline{C_{3}\left(a_{1}\right)}$	$(0,3,0,0,1,0,0,0)$	$(71,26)$	$\left[\left(E_{6}\right)_{6} \mathrm{SCFT}\right]^{2}$ \times $\left[\left(E_{6}\right)_{12}\right.$ \times $\left.S U(2)_{7} \mathrm{SCFT}\right]$	

Table 5.4: Interacting fixtures with enhanced global symmetry

\#	Fixture	$\begin{gathered} \left(n_{2}, n_{3}, n_{4}, n_{5},\right. \\ \left.n_{6}, n_{8}, n_{9}, n_{12}\right) \end{gathered}$	$\left(n_{h}, n_{v}\right)$	G_{k}
3	$\begin{array}{cc} \underline{F_{4}} \\ 0 & \underline{\widetilde{A}_{2}}+A_{1} \\ \hline \end{array}$	(0, 2, 0, 0, 1, 0, 1, 0)	$(84,38)$	$\begin{aligned} & {\left[\left(E_{6}\right)_{6} \mathrm{SCFT}\right]} \\ & \left.\operatorname{SU}(2)_{20} \mathrm{SCFT}\right] \end{aligned} \times\left[\left(E_{6}\right)_{18} \times\right.$
4	$\frac{F_{4}}{0} \quad \underline{B_{2}}$	(0, 2, 0, 0, 2, 0, 0, 0)	$(78,32)$	$\left[\left(E_{6}\right)_{12} \times S U(2)_{7} \mathrm{SCFT}\right]^{2}$
5	$\frac{F_{4}}{0} \quad \underline{\widetilde{A}_{2}}$	(0, 2, 0, 1, 1, 0, 1, 0)	$(96,47)$	$\begin{aligned} & {\left[\left(E_{6}\right)_{6} \mathrm{SCFT}\right]} \\ & \left.\left(G_{2}\right)_{10} \mathrm{SCFT}\right] \end{aligned} \times\left[\left(E_{6}\right)_{18} \times\right.$
6	$\begin{array}{ll} \underline{F_{4}} \\ 2 A_{1} & \underline{A_{2}} \end{array}$	(0, 1, 0, 0, 1, 1, 0, 0)	$(64,31)$	$\operatorname{Spin}(13)_{16} \times U(1)$
7	$\underline{F_{4}} A_{1} \quad \underline{A_{2}}$	(0, 1, 0, 0, 1, 1, 1, 0)	$(86,48)$	$\left(G_{2}\right)_{16} \times S U(6)_{18}$
8	$\frac{F_{4}}{2 A_{1}} \quad \underline{A_{1}+\widetilde{A}_{1}}$	(0, 1, 0, 1, 1, 1, 0, 0)	$(74,40)$	$\begin{array}{lll} \operatorname{Spin}(10)_{16} & \times & \operatorname{SU}(2)_{10} \\ \operatorname{SU}(2)_{32} \times U(1) \end{array} \quad \times$
9	$\frac{F_{4}}{A_{1}} \quad \underline{A_{1}+\widetilde{A}_{1}}$	(0, 1, 0, 1, 1, 1, 1, 0)	$(96,57)$	$\begin{aligned} & S U(6)_{18} \quad \times \quad S U(2)_{64-k} \quad \times \\ & S U(2)_{k} \times S U(2)_{10} \end{aligned}$
10	$\frac{F_{4}}{2 A_{1}} \quad \underline{\widetilde{A}_{1}}$	(0, 1, 0, 1, 2, 1, 0, 0)	$(88,51)$	$\operatorname{Spin}(8)_{16} \times \operatorname{SU}(4)_{12} \times U(1)^{2}$
11	$\underline{F_{4}} \underset{A_{1}}{\widetilde{A}_{1}}$	(0, 1, 0, 1, 2, 1, 1, 0)	$(110,68)$	$S U(6)_{18} \times S U(4)_{12} \times U(1)$
12	$\frac{F_{4}}{3 A_{1}} \quad \underline{A_{1}}$	$(0,1,0,1,1,0,0,1)$	$(84,48)$	$S p(4){ }_{13} \times S U(3)_{24}$
13	$\begin{array}{cc} \underline{F_{4}} \\ A_{2}+2 A_{1} & \underline{0} \\ \hline \end{array}$	$(0,1,0,1,0,0,1,0)$	$(70,31)$	$\left(E_{7}\right)_{18} \times U(1)$
14	$\frac{F_{4}}{2 A_{2}} \quad \underline{0}$	(0, 1, 0, 0, 1, 0, 0, 0)	$(56,16)$	$\left[\left(E_{8}\right)_{12} \mathrm{SCFT}\right] \times\left[\left(E_{6}\right)_{6} \mathrm{SCFT}\right]$
15	$\underset{A_{2}+A_{1}}{\underline{F_{4}}}$	(0, 1, 0, 1, 1, 0, 1, 0)	$(83,42)$	$\left(E_{6}\right)_{18} \times S U(3)_{12} \times U(1)$
16	$\frac{F_{4}}{A_{2}} \underline{0}$	$(0,1,0,1,2,0,1,0)$	$(96,53)$	$\left(E_{6}\right)_{18} \times S U(3)_{12}^{2}$

Table 5.4: Interacting fixtures with enhanced global symmetry

\#	Fixture	$\begin{aligned} & \left(n_{2}, n_{3}, n_{4}, n_{5},\right. \\ & \left.n_{6}, n_{8}, n_{9}, n_{12}\right) \end{aligned}$	$\left(n_{h}, n_{v}\right)$	G_{k}
17	$\underline{\underline{F_{4}\left(a_{2}\right)}} \begin{aligned} & A_{2}+2 A_{1}\end{aligned} \underline{F_{4}\left(a_{2}\right)}$	(0,0,2,2, 1, 1, 1, 0)	$(94,75)$	$S U(2)_{54-k} \times S U(2)_{k} \times U(1)$
18	$\frac{F_{4}\left(a_{2}\right)}{2 A_{2}} \quad \underline{F_{4}\left(a_{2}\right)}$	(0, 0, 2, 1, 2, 1, 0, 0)	$(80,60)$	$\operatorname{Spin}(7)_{12} \times U(1)$
19	$\frac{\underline{F}\left(a_{2}\right)}{A_{2}+A_{1}} \quad \underline{F_{4}\left(a_{2}\right)}$	(0, 0, 2, 2, 2, 1, 1, 0)	$(107,86)$	$S U(3)_{12} \times U(1)^{2}$
20	$\frac{F_{4}\left(a_{2}\right)}{A_{2}} \quad \underline{F_{4}\left(a_{2}\right)}$	(0,0,2,2,3,1,1,0)	$(120,97)$	$S U(3)_{12}^{2} \times U(1)$
21	$\frac{\underline{F_{4}\left(a_{2}\right)}}{A_{2}+2 A_{1}} \quad \underline{C_{3}}$	(0, 1, 2, 2, 1, 1, 1, 0)	$(100,80)$	$\begin{aligned} & S U(2)_{36} \times S U(2)_{18} \times S U(2)_{6} \times \\ & U(1) \end{aligned}$
22	$\frac{F_{4}\left(a_{2}\right)}{2 A_{2}} \quad \underline{C_{3}}$	(0, 1, 2, 1, 2, 1, 0, 0)	$(86,65)$	$\operatorname{Spin}(7)_{12} \times \operatorname{SU}(2)_{6} \times U(1)$
23	$\frac{F_{4}\left(a_{2}\right)}{A_{2}+A_{1}} \quad \underline{C_{3}}$	(0, 1, 2, 2, 2, 1, 1, 0)	$(113,91)$	$S U(3)_{12} \times S U(2)_{6} \times U(1)^{2}$
24	$\frac{F_{4}\left(a_{2}\right)}{A_{2}} \quad \underline{C_{3}}$	(0, 1, 2, 2, 3, 1, 1, 0)	$(126,102)$	$S U(3)_{12}^{2} \times S U(2)_{6} \times U(1)$
25	$\frac{F_{4}\left(a_{2}\right)}{D_{4}\left(a_{1}\right)} \quad \underline{B_{3}}$	($0,0,4,1,1,0,0,0)$	$(64,48)$	$S U(2)_{8}^{3} \times U(1)^{2}$
26	$\frac{F_{4}\left(a_{2}\right)}{A_{3}+A_{1}} \quad \underline{B_{3}}$	(0, 0, 3, 1, 1, 1, 0, 0)	$(73,56)$	$\begin{aligned} & S U(2)_{16} \times S U(2)_{8} \times S U(2)_{9} \times \\ & U(1) \end{aligned}$
27	$\frac{F_{4}\left(a_{2}\right)}{A_{3}} \quad \underline{B_{3}}$	(0, 0, 3, 2, 1, 1, 0, 0)	$(84,65)$	$\begin{aligned} & S U(2)_{16} \times S U(2)_{8} \times S p(2)_{10} \times \\ & U(1) \end{aligned}$
28	$\frac{F_{4}\left(a_{2}\right)}{A_{4}+A_{1}} \quad \underline{C_{3}\left(a_{1}\right)}$	(0, 2, 1, 1, 2, 1, 0, 0)	$(79,63)$	$S U(2)_{7} \times U(1)^{3}$
29	$\frac{F_{4}\left(a_{2}\right)}{A_{4}} \quad \underline{C_{3}\left(a_{1}\right)}$	(0, 2, 2, 1, 2, 1, 0, 0)	$(87,70)$	$S U(2)_{8} \times S U(2)_{7} \times U(1)^{3}$
30	$\frac{F_{4}\left(a_{2}\right)}{A_{4}+A_{1}} \quad \underline{\widetilde{A}_{2}+A_{1}}$	(0, 1, 1, 1, 2, 1, 1, 0)	$(92,75)$	$S U(2)_{20} \times U(1)^{2}$

Table 5.4: Interacting fixtures with enhanced global symmetry

\#	Fixture		$\begin{gathered} \left(n_{2}, n_{3}, n_{4}, n_{5},\right. \\ \left.n_{6}, n_{8}, n_{9}, n_{12}\right) \end{gathered}$	$\left(n_{h}, n_{v}\right)$	G_{k}	
31	$\frac{F_{4}\left(a_{2}\right)}{A_{4}}$	$\widetilde{A}_{2}+A_{1}$	(0, 1, 2, 1, 2, 1, 1, 0)	$(100,82)$	$S U(2)_{20} \times S U(2)_{8} \times U(1)^{2}$	
32	$\frac{F_{4}\left(a_{2}\right)}{A_{4}+A_{1}}$	$\underline{B_{2}}$	(0, 1, 1, 1, 3, 1, 0, 0)	$(86,69)$	$S U(2)_{7}^{2} \times U(1)^{2}$	
33	$\frac{F_{4}\left(a_{2}\right)}{A_{4}}$	$\underline{B_{2}}$	(0, 1, 2, 1, 3, 1, 0, 0)	$(94,76)$	$S U(2)_{8} \times S U(2)_{7}^{2} \times U(1)^{2}$	
34	$\frac{F_{4}\left(a_{2}\right)}{A_{4}+A_{1}}$		(0, 1, 1, 2, 2, 1, 1, 0)	$(104,84)$	$\left(G_{2}\right)_{10} \times U(1)^{2}$	
35	$\frac{F_{4}\left(a_{2}\right)}{A_{4}}$	$\underline{\widetilde{A}_{2}}$	(0, 1, 2, 2, 2, 1, 1, 0)	$(112,91)$	$\left(G_{2}\right)_{10} \times S U(2)_{8} \times U(1)^{2}$	
36	$\frac{F_{4}\left(a_{2}\right)}{E_{6}\left(a_{3}\right)}$	$\underline{A_{2}}$	(0, 1, 1, 0, 1, 1, 0, 0)	$(56,38)$	$\operatorname{Spin}(7)_{16} \times U(1)$	
37	$\frac{F_{4}\left(a_{2}\right)}{A_{5}}$	$\underline{A_{2}}$	(0, 0, 1, 0, 2, 1, 0, 0)	$(63,44)$	$\left(G_{2}\right)_{16} \times S U(2)_{7} \times U(1)^{2}$	
38	$\frac{F_{4}\left(a_{2}\right)}{D_{5}\left(a_{1}\right)}$	$\underline{A_{2}}$	(0, 1, 1, 1, 1, 1, 1, 0)	$(83,64)$	$\left(G_{2}\right)_{16} \times U(1)$	
39	$\frac{F_{4}\left(a_{2}\right)}{D_{4}}$	$\underline{A_{2}}$	(0, 1, 1, 1, 2, 1, 1, 0)	$(96,75)$	$\left(G_{2}\right)_{16} \times S U(3)_{12}$	
40	$\frac{F_{4}\left(a_{2}\right)}{E_{6}\left(a_{3}\right)}$	$\underline{A_{1}+\widetilde{A}_{1}}$	(0, 1, 1, 1, 1, 1, 0, 0)	$(66,47)$	$\begin{aligned} & S U(2)_{64-k_{1}-k_{2}} \times S U(2)_{k_{1}} \\ & \quad \times S U(2)_{k_{2}} \times S U(2)_{10} \end{aligned}$	
41	$\frac{F_{4}\left(a_{2}\right)}{A_{5}}$	$\underline{A_{1}+\widetilde{A}_{1}}$	(0, 0, 1, 1, 2, 1, 0, 0)	$(73,53)$	$S U(2)_{32}^{2} \times S U(2)_{10} \times S U(2)_{7}$	
42	$\frac{F_{4}\left(a_{2}\right)}{D_{5}\left(a_{1}\right)}$	$\underline{A_{1}+\widetilde{A}_{1}}$	(0, 1, 1, 2, 1, 1, 1, 0)	$(93,73)$	$\begin{array}{ll} S U(2)_{64-k} & \times \\ S U(2)_{10} \times U(1) \end{array} \quad S U(2)_{k}$	\times
43	$\frac{F_{4}\left(a_{2}\right)}{D_{4}}$	$\underline{A_{1}+\widetilde{A}_{1}}$	(0, 1, 1, 2, 2, 1, 1, 0)	$(106,84)$	$\begin{aligned} & S U(3)_{12} \times{ }^{\times} S U(2)_{64-k} \\ & S U(2)_{k} \times S U(2)_{10} \end{aligned}$	\times
44	$\frac{F_{4}\left(a_{2}\right)}{E_{6}\left(a_{3}\right)}$	$\underline{\widetilde{A}_{1}}$	(0, 1, 1, 1, 2, 1, 0, 0)	$(80,58)$	$S U(4)_{12} \times U(1)^{2}$	

Table 5.4: Interacting fixtures with enhanced global symmetry

\#	Fixture	$\begin{aligned} & \left(n_{2}, n_{3}, n_{4}, n_{5},\right. \\ & \left.n_{6}, n_{8}, n_{9}, n_{12}\right) \end{aligned}$	$\left(n_{h}, n_{v}\right)$	G_{k}
45	$\frac{F_{4}\left(a_{2}\right)}{A_{5}} \quad \underline{\widetilde{A}_{1}}$	$(0,0,1,1,3,1,0,0)$	$(87,64)$	$S U(4)_{12} \times S U(2)_{7} \times U(1)$
46	$\frac{F_{4}\left(a_{2}\right)}{D_{5}\left(a_{1}\right)} \quad \underline{\widetilde{A}_{1}}$	$(0,1,1,2,2,1,1,0)$	$(107,84)$	$S U(4)_{12} \times U(1)^{2}$
47	$\frac{F_{4}\left(a_{2}\right)}{D_{4}} \quad \underline{\widetilde{A}_{1}}$	$(0,1,1,2,3,1,1,0)$	$(120,95)$	$S U(4)_{12} \times S U(3)_{12} \times U(1)$
48	$\begin{gathered} \frac{C_{3}}{} \\ A_{2}+2 A_{1} \end{gathered}$	$(0,2,2,2,1,1,1,0)$	$(106,85)$	$\begin{aligned} & S U(2)_{36} \times S U(2)_{18} \times S U(2)_{6}^{2} \times \\ & U(1) \end{aligned}$
49	$\frac{C_{3}}{2 A_{2}} \quad \underline{C_{3}}$	$(0,2,2,1,2,1,0,0)$	$(92,70)$	$\operatorname{Spin}(7)_{12} \times S U(2)_{6}^{2} \times U(1)$
50	${\underset{2}{\underline{C_{3}}}}_{A_{2}+A_{1}}^{\underline{C_{3}}}$	$(0,2,2,2,2,1,1,0)$	$(119,96)$	$S U(3)_{12} \times S U(2)_{6}^{2} \times U(1)^{2}$
51	$\frac{C_{3}}{A_{2}} \quad \underline{C_{3}}$	$(0,2,2,2,3,1,1,0)$	$(132,107)$	$S U(3){ }_{12}^{2} \times S U(2){ }_{6}^{2} \times U(1)$
52	$\begin{gathered} \underline{C_{3}} \\ D_{4}\left(a_{1}\right) \end{gathered} \quad \underline{B_{3}}$	$(0,1,4,1,1,0,0,0)$	$(70,53)$	$S U(2)_{8}^{3} \times S U(2)_{6} \times U(1)^{2}$
53	$\stackrel{\underline{C_{3}}}{A_{3}+A_{1}} \underline{\underline{B_{3}}}$	$(0,1,3,1,1,1,0,0)$	$(79,61)$	$\begin{gathered} S U(2)_{9} \times S U(2)_{16} \times \\ S U(2)_{8} \times S U(2)_{6} \times U(1) \end{gathered}$
54	$\frac{C_{3}}{A_{3}} \quad \underline{B_{3}}$	$(0,1,3,2,1,1,0,0)$	$(90,70)$	$\begin{gathered} S p(2)_{10} \times S U(2)_{16} \times \\ S U(2)_{8} \times S U(2)_{6} \times U(1) \end{gathered}$
55	$\begin{array}{cc} \underline{C_{3}} \\ A_{4}+A_{1} & \underline{C_{3}\left(a_{1}\right)} \end{array}$	$(0,3,1,1,2,1,0,0)$	$(85,68)$	$S U(2)_{7} \times S U(2)_{6} \times U(1)^{3}$
56	$\frac{C_{3}}{A_{4}} \quad \underline{C_{3}\left(a_{1}\right)}$	$(0,3,2,1,2,1,0,0)$	$(93,75)$	$\begin{aligned} & S U(2)_{8} \times S U(2)_{7} \times S U(2)_{6} \times \\ & U(1)^{3} \end{aligned}$
57	$\begin{array}{cc} \underline{C_{3}} \\ A_{4}+A_{1} & \underline{\widetilde{A}_{2}+A_{1}} \\ \hline \end{array}$	$(0,2,1,1,2,1,1,0)$	$(98,80)$	$S U(2)_{20} \times S U(2)_{6} \times U(1)^{2}$
58	$\frac{C_{3}}{A_{4}} \quad \underline{\widetilde{A}_{2}+A_{1}}$	$(0,2,2,1,2,1,1,0)$	$(106,87)$	$\begin{aligned} & S U(2)_{20} \times S U(2)_{8} \times S U(2)_{6} \times \\ & U(1)^{2} \end{aligned}$

Table 5.4: Interacting fixtures with enhanced global symmetry

\#	Fixture	$\begin{aligned} & \left(n_{2}, n_{3}, n_{4}, n_{5},\right. \\ & \left.n_{6}, n_{8}, n_{9}, n_{12}\right) \end{aligned}$	$\left(n_{h}, n_{v}\right)$	G_{k}
59	$\underline{\underline{C_{3}}} \underset{A_{4}+A_{1}}{ } \underline{B_{2}}$	(0, 2, 1, 1, 3, 1, 0, 0)	$(92,74)$	$S U(2)_{7}^{2} \times S U(2)_{6} \times U(1)^{2}$
60	$\frac{C_{3}}{A_{4}} \quad \underline{B_{2}}$	(0, 2, 2, 1, 3, 1, 0, 0)	$(100,81)$	$\begin{aligned} & S U(2)_{8} \times S U(2)_{7}^{2} \times S U(2)_{6} \times \\ & U(1)^{2} \end{aligned}$
61	$\underline{\underline{C_{3}}} \underset{A_{4}+A_{1}}{ } \underline{\widetilde{A}_{2}}$	(0, 2, 1, 2, 2, 1, 1, 0)	$(110,89)$	$\left(G_{2}\right)_{10} \times S U(2)_{6} \times U(1)^{2}$
62	$\frac{C_{3}}{A_{4}} \underline{\widetilde{A}_{2}}$	(0, 2, 2, 2, 2, 1, 1, 0)	$(118,96)$	$\begin{aligned} & \left(G_{2}\right)_{10} \times S U(2)_{8} \times S U(2)_{6} \times \\ & U(1)^{2} \end{aligned}$
63	$\begin{gathered} \underline{C_{3}} \\ E_{6}\left(a_{3}\right) \end{gathered} \underline{A_{2}}$	(0, 2, 1, 0, 1, 1, 0, 0)	$(62,43)$	$\operatorname{Spin}(7)_{16} \times \operatorname{SU}(2)_{6}$
64	$\frac{C_{3}}{A_{5}} \quad \underline{A_{2}}$	(0, 1, 1, 0, 2, 1, 0, 0)	$(69,49)$	$\left(G_{2}\right)_{16} \times S U(2)_{7} \times S U(2)_{6} \times U(1)$
65	$\frac{\underline{C_{3}}}{D_{5}\left(a_{1}\right)} \underline{A_{2}}$	(0,2, 1, 1, 1, 1, 1, 0)	$(89,69)$	$\left(G_{2}\right)_{16} \times S U(2)_{6} \times U(1)$
66	$\frac{C_{3}}{D_{4}} \underline{A_{2}}$	(0, 2, 1, 1, 2, 1, 1, 0)	$(102,80)$	$\left(G_{2}\right)_{16} \times S U(3)_{12} \times S U(2)_{6}$
67	$\frac{C_{3}}{E_{6}\left(a_{3}\right)} \quad \underline{A_{1}+\widetilde{A}_{1}}$	(0, 2, 1, 1, 1, 1, 0, 0)	$(72,52)$	$\begin{aligned} & S U(2)_{32} \times S U(2)_{16}^{2} \times S U(2)_{10} \times \\ & S U(2)_{6} \end{aligned}$
68	$\frac{C_{3}}{A_{5}} \quad \underline{A_{1}+\widetilde{A}_{1}}$	(0, 1, 1, 1, 2, 1, 0, 0)	$(79,58)$	$\begin{aligned} & S U(2)_{32}^{2} \times S U(2)_{10} \times S U(2)_{7} \times \\ & S U(2)_{6} \\ & \hline \end{aligned}$
69	$\frac{C_{3}}{D_{5}\left(a_{1}\right)} \underline{A_{1}+\widetilde{A}_{1}}$	(0, 2, 1, 2, 1, 1, 1, 0)	$(99,78)$	$\begin{gathered} S U(2)_{64-k} \times S U(2)_{k} \times \\ S U(2)_{10} \times S U(2)_{6} \times U(1) \end{gathered}$
70	$\frac{C_{3}}{D_{4}} \quad \underline{A_{1}+\widetilde{A}_{1}}$	(0, 2, 1, 2, 2, 1, 1, 0)	$(112,89)$	$\begin{gathered} S U(3)_{12} \times S U(2)_{64-k} \times S U(2)_{k} \\ \times S U(2)_{10} \times S U(2)_{6} \end{gathered}$
71	$\begin{array}{cc} \underline{C_{3}} \\ E_{6}\left(a_{3}\right) & \underline{\widetilde{A}_{1}} \end{array}$	(0, 2, 1, 1, 2, 1, 0, 0)	$(86,63)$	$S U(4)_{12} \times S U(2)_{6} \times U(1)^{2}$
72	$\frac{C_{3}}{A_{5}} \underline{\widetilde{A}_{1}}$	(0, 1, 1, 1, 3, 1, 0, 0)	$(93,69)$	$\begin{aligned} & S U(4)_{12} \times S U(2)_{7} \times S U(2)_{6} \times \\ & U(1) \end{aligned}$

Table 5.4: Interacting fixtures with enhanced global symmetry

\#	Fixture	$\begin{aligned} & \left(n_{2}, n_{3}, n_{4}, n_{5},\right. \\ & \left.n_{6}, n_{8}, n_{9}, n_{12}\right) \end{aligned}$	$\left(n_{h}, n_{v}\right)$	G_{k}
73	$\frac{\underline{C_{3}}}{D_{5}\left(a_{1}\right)} \underline{\tilde{A}_{1}}$	(0, 2, 1, 2, 2, 1, 1, 0)	$(113,89)$	$S U(4)_{12} \times S U(2)_{6} \times U(1)^{2}$
74	$\frac{C_{3}}{D_{4}} \underline{\widetilde{A}_{1}}$	(0, 2, 1, 2, 3, 1, 1, 0)	$(126,100)$	$\begin{aligned} & S U(4)_{12} \times S U(3)_{12} \times S U(2)_{6} \times \\ & U(1) \end{aligned}$
75	$\underset{D_{5}\left(a_{1}\right)}{\underline{B_{3}}} \quad \underline{F_{4}\left(a_{3}\right)}$	(0, 4, 1, 1, 0, 0, 0, 0)	$(51,36)$	$S U(2)_{6}^{4} \times U(1)^{3}$
76	$\frac{B_{3}}{D_{4}} \quad \underline{F_{4}\left(a_{3}\right)}$	(0, 4, 1, 1, 1, 0, 0, 0)	$(64,47)$	$S U(3)_{12} \times S U(2)_{6}^{4}$
77	$\frac{B_{3}}{D_{5}\left(a_{1}\right)} \underline{C_{3}\left(a_{1}\right)}$	(0,3,1, 1, 1, 0, 0, 0)	$(58,42)$	$\begin{aligned} & S U(2)_{12} \times S U(2)_{6}^{2} \times S U(2)_{7} \times \\ & U(1)^{2} \end{aligned}$
78	$\frac{B_{3}}{D_{4}} \quad \underline{C_{3}\left(a_{1}\right)}$	(0,3,1, 1, 2, 0, 0, 0)	$(71,53)$	$\begin{aligned} & S U(3)_{12} \times S U(2)_{12} \times S U(2)_{6}^{2} \times \\ & S U(2)_{7} \end{aligned}$
79	$\underset{D_{5}\left(a_{1}\right)}{B_{3}} \quad \underline{\widetilde{A}_{2}+A_{1}}$	(0,2,1, 1, 1, 0, 1, 0)	$(71,54)$	$\begin{aligned} & S U(2)_{20} \times S U(2)_{18} \times S U(2)_{6} \times \\ & U(1) \end{aligned}$
80	$\begin{array}{ll} \frac{B_{3}}{D_{4}} & \widetilde{A}_{2}+A_{1} \\ \hline \end{array}$	(0, 2, 1, 1, 2, 0, 1, 0)	$(84,65)$	$\begin{aligned} & S U(3)_{12} \times S U(2)_{20} \times S U(2)_{18} \times \\ & S U(2)_{6} \end{aligned}$
81	$\underline{\underline{B_{3}}} \underset{D_{5}\left(a_{1}\right)}{ } \underline{B_{2}}$	(0, 2, 1, 1, 2, 0, 0, 0)	$(65,48)$	$S U(2)_{7}^{2} \times S U(2)_{12}^{2} \times U(1)^{2}$
82	$\frac{B_{3}}{D_{4}} \quad \underline{B_{2}}$	(0, 2, 1, 1, 3, 0, 0, 0)	$(78,59)$	$S U(3)_{12} \times S U(2)_{7}^{2} \times S U(2)_{12}^{2}$
83	$\frac{B_{3}}{E_{6}\left(a_{3}\right)} \quad \underline{A_{2}+\widetilde{A}_{1}}$	(0, 1, 1, 0, 1, 0, 0, 1)	$(63,46)$	$S U(2)_{k} \times S U(2)_{39-k} \times S U(2)_{24}$
84	$\frac{B_{3}}{A_{5}} \quad \underline{A_{2}+\widetilde{A}_{1}}$	$(0,0,1,0,2,0,0,1)$	$(70,52)$	$\begin{aligned} & S U(2)_{7} \times S U(2)_{26} \times S U(2)_{13} \times \\ & S U(2)_{24} \end{aligned}$
85	$\begin{array}{cc} \underline{B_{3}} \\ E_{6}\left(a_{3}\right) & \underline{\widetilde{A}_{2}} \\ \hline \end{array}$	(0, 2, 1, 1, 1, 0, 0, 0)	$(56,37)$	$\operatorname{Spin}(7)_{10} \times S U(2)_{12} \times S U(2)_{6}^{2}$
86	$\frac{B_{3}}{A_{5}} \underline{\widetilde{A}_{2}}$	(0, 1, 1, 1, 2, 0, 0, 0)	$(63,43)$	$\operatorname{Spin}(7)_{10} \times S U(2)_{7} \times S U(2)_{12}^{2}$

Table 5.4: Interacting fixtures with enhanced global symmetry

Table 5.4: Interacting fixtures with enhanced global symmetry

\#	Fixture	$\begin{array}{r} \left(n_{2}, n_{3}, n_{4}, n_{5},\right. \\ \left.n_{6}, n_{8}, n_{9}, n_{12}\right) \end{array}$	$\left(n_{h}, n_{v}\right)$	G_{k}
101	$\frac{C_{3}\left(a_{1}\right)}{D_{5}} \quad A_{1}+\widetilde{A}_{1}$	($0,2,1,1,1,1,0,0)$	$(73,52)$	$\begin{gathered} S U(2)_{32} \times S U(2)_{16}^{2} \times \\ S U(2)_{10} \times S U(2)_{7} \times U(1) \end{gathered}$
102	$\frac{C_{3}\left(a_{1}\right)}{D_{5}} \underline{\widetilde{A}_{1}}$	($0,2,1,1,2,1,0,0)$	$(87,63)$	$S U(4)_{12} \times S U(2)_{7} \times U(1)^{3}$
103	$\frac{C_{3}\left(a_{1}\right)}{E_{6}\left(a_{1}\right)} \quad \underline{0}$	($0,2,0,0,1,0,0,0)$	$(55,21)$	$\begin{aligned} & {\left[\left(E_{6}\right)_{6} \mathrm{SCFT}\right]} \\ & \left.\mathrm{SU}(2)_{7} \mathrm{SCFT}\right] \end{aligned} \times\left[\left(E_{6}\right)_{12} \quad \times\right.$
104	$\frac{\widetilde{A}_{2}+A_{1}}{D_{5}} \underline{A_{2}}$	($0,1,1,0,1,1,1,0)$	$(76,55)$	$\left(G_{2}\right)_{16} \times S U(2)_{20} \times U(1)$
105	$\frac{\widetilde{A}_{2}+A_{1}}{D_{5}} \quad \underline{A_{1}+\widetilde{A}_{1}}$	($0,1,1,1,1,1,1,0)$	$(86,64)$	$\begin{gathered} S U(2)_{48} \times S U(2)_{16} \times \\ S U(2)_{10} \times S U(2)_{20} \times U(1) \end{gathered}$
106	$\frac{\widetilde{A}_{2}+A_{1}}{D_{5}} \underline{\widetilde{A}_{1}}$	($0,1,1,1,2,1,1,0)$	$(100,75)$	$S U(4)_{12} \times S U(2)_{20} \times U(1)^{2}$
107	$\frac{\widetilde{A}_{2}+A_{1}}{E_{6}\left(a_{1}\right)} \underline{0}$	($0,1,0,0,1,0,1,0)$	$(68,33)$	$\left(E_{6}\right)_{18} \times S U(2)_{20} \mathrm{SCFT}$
108	$\frac{B_{2}}{D_{5}} \underline{A_{2}}$	($0,1,1,0,2,1,0,0)$	$(70,49)$	$\left(G_{2}\right)_{16} \times S U(2)_{7}^{2} \times U(1)^{2}$
109	$\frac{B_{2}}{D_{5}} \quad \underline{A_{1}+\widetilde{A}_{1}}$	(0, 1, 1, 1, 2, 1, 0, 0)	$(80,58)$	$\begin{aligned} & S U(2)_{32}^{2} \times S U(2)_{10} \times S U(2)_{7}^{2} \times \\ & U(1) \end{aligned}$
110	$\begin{array}{ll} \frac{B_{2}}{D_{5}} & \widetilde{A}_{1} \\ \hline \end{array}$	($0,1,1,1,3,1,0,0)$	$(94,69)$	$S U(4)_{12} \times S U(2)_{7}^{2} \times U(1)^{2}$
111	$\underline{E}_{E_{6}\left(a_{1}\right)}^{\underline{B_{2}}} \quad \underline{0}$	($0,1,0,0,2,0,0,0)$	$(62,27)$	$\begin{aligned} & {\left[\left(E_{6}\right)_{6} \mathrm{SCFT}\right]} \\ & \left.S U(2)_{7}^{2} \mathrm{SCFT}\right] \end{aligned} \times \quad\left[\left(F_{4}\right)_{12} \quad \times\right.$
112	$\frac{A_{2}+\widetilde{A}_{1}}{D_{5}} \quad A_{2}+\widetilde{A}_{1}$	($0,0,1,0,1,0,1,1)$	$(78,58)$	$S p(2)_{39} \times U(1)$
113	$\frac{A_{2}+\widetilde{A}_{1}}{E_{6}\left(a_{1}\right)} \underline{A_{1}}$	($0,0,0,0,1,0,0,1)$	$(62,34)$	$S p(4){ }_{13} \times S U(2)_{26}$
114	$\frac{\widetilde{A}_{2}}{D_{5}} \underline{A_{2}}$	($0,1,1,1,1,1,1,0)$	$(88,64)$	$\left(G_{2}\right)_{16} \times\left(G_{2}\right)_{10} \times U(1)$

Table 5.4: Interacting fixtures with enhanced global symmetry

\#	Fixture	$\begin{aligned} & \left(n_{2}, n_{3}, n_{4}, n_{5},\right. \\ & \left.n_{6}, n_{8}, n_{9}, n_{12}\right) \end{aligned}$	$\left(n_{h}, n_{v}\right)$	G_{k}
115	$\frac{\widetilde{A}_{2}}{D_{5}} \quad \underline{A_{1}+\widetilde{A}_{1}}$	$(0,1,1,2,1,1,1,0)$	$(98,73)$	$\begin{gathered} \left(G_{2}\right)_{10} \times S U(2)_{64-k} \times S U(2)_{k} \\ \times S U(2)_{10} \times U(1) \end{gathered}$
116	$\frac{\widetilde{A}_{2}}{D_{5}} \quad \underline{\widetilde{A}_{1}}$	$(0,1,1,2,2,1,1,0)$	$(112,84)$	$S U(4)_{12} \times\left(G_{2}\right)_{10} \times U(1)^{2}$
117	$\begin{gathered} \underline{\widetilde{A}_{2}} \\ E_{6}\left(a_{1}\right) \end{gathered} \underline{0}$	$(0,1,0,1,1,0,1,0)$	$(80,42)$	$\left(E_{6}\right)_{18} \times\left(G_{2}\right)_{10} \mathrm{SCFT}$
118	$\begin{gathered} \underline{A_{2}} \\ E_{6}\left(a_{1}\right) \end{gathered}$	$(0,0,0,0,2,1,0,0)$	$(64,37)$	$\operatorname{Spin}(7)_{12} \times\left(G_{2}\right)_{16} \times U(1)$
119	$\underline{A}_{E_{6}\left(a_{1}\right)}^{\underline{A_{1}}}$	$(0,0,0,0,1,1,0,1)$	$(79,49)$	$S p(3)_{13} \times S U(3)_{16} \times U(1)$
120	$\frac{A_{1}+\widetilde{A}_{1}}{E_{6}\left(a_{1}\right)} \quad \underline{A_{1}+\widetilde{A}_{1}}$	$(0,0,0,1,1,1,0,0)$	$(60,35)$	$S U(4)_{32} \times S p(2)_{10}$
121	$\frac{A_{1}+\widetilde{A}_{1}}{E_{6}\left(a_{1}\right)} \quad \underline{\widetilde{A}_{1}}$	$(0,0,0,1,2,1,0,0)$	$(74,46)$	$S U(4)_{12} \times S U(2)_{32}^{2} \times S U(2)_{10}$
122	$\begin{gathered} \underline{\widetilde{A}_{1}} \\ E_{6}\left(a_{1}\right) \end{gathered} \underline{\widetilde{A}_{1}}$	$(0,0,0,1,3,1,0,0)$	$(88,57)$	$S U(4)_{12}^{2} \times U(1)$

5.2.5 Mixed fixtures

Table 5.5: Mixed fixtures

$\#$	Fixture	$\left(n_{2}, n_{3}, n_{4}, n_{5}\right.$, $\left.n_{6}, n_{8}, n_{9}, n_{12}\right)$	$\left(n_{h}, n_{v}\right)$	Theory
1	$\underline{F_{4}} \quad(\underline{0}, \operatorname{Spin}(9))$	$(0,1,0,0,0,0,0,0)$	$(16,5)$	$\left(E_{6}\right)_{6} \operatorname{SCFT}+1(9)$
$A_{3}+A_{1}$	$\underline{F_{4}} \quad \underline{A_{2}+\widetilde{A}_{1}}$	$(0,1,0,0,1,0,0,0)$	$(38,16)$	$\left(E_{6}\right)_{12} \times S U(2)_{7}+\frac{1}{2}(1,2)+$ $\frac{1}{2}(7,2)$
2	$2 A_{1}$			

Table 5.5: Mixed fixtures

\#	Fixture	$\begin{aligned} & \left(n_{2}, n_{3}, n_{4}, n_{5},\right. \\ & \left.n_{6}, n_{8}, n_{9}, n_{12}\right) \end{aligned}$	$\left(n_{h}, n_{v}\right)$	Theory
3	$\frac{F_{4}}{A_{1}} \quad \underline{A_{2}+\widetilde{A}_{1}}$	$(0,1,0,0,1,0,1,0)$	$(68,33)$	$\left(E_{6}\right)_{18} \times S U(2)_{20}+\frac{1}{2}(1,2)$
4	$\frac{F_{4}}{3 A_{1}} \quad \underline{A_{2}}$	$(0,1,0,0,1,0,0,0)$	$(39,16)$	$\left(E_{6}\right)_{12} \times S U(2)_{7}+(1,2,3)$
5	$\frac{F_{4}}{3 A_{1}} \quad \underline{A_{1}+\widetilde{A}_{1}}$	$(0,1,0,1,1,0,0,0)$	$(52,25)$	$\begin{aligned} & S U(6)_{12} \\ & \frac{1}{2}(1,2,3,1) \end{aligned} \times \quad \operatorname{Spin}(7)_{10} \quad+$
6	$\begin{array}{ll} \underline{F_{4}} \\ 3 A_{1} & \underline{\widetilde{A}_{1}} \end{array}$	$(0,1,0,1,2,0,0,0)$	$(68,36)$	$S U(6)_{12} \times S U(3)_{12}^{2}+\frac{1}{2}(1,2,1)$
7	$\begin{gathered} \underline{F_{4}} \\ A_{2}+2 A_{1} \end{gathered}$	$(0,1,0,1,0,0,0,0)$	$(36,14)$	$\operatorname{Spin}(14)_{10} \times U(1)+\frac{1}{2}(3,6)$
8	$\begin{gathered} \underline{F_{4}} \\ A_{2}+A_{1} \underline{A_{1}} \end{gathered}$	$(0,1,0,1,1,0,0,0)$	$(55,25)$	$S U(9)_{12} \times U(1)+\frac{1}{2}(1,6)$
9	$\frac{F_{4}}{A_{2}} \underline{A_{1}}$	$(0,1,0,1,2,0,0,0)$	$(68,36)$	$S U(6)_{12} \times S U(3)_{12}^{2}+\frac{1}{2}(1,1,6)$
10	$\begin{array}{cc} \underline{F_{4}} \\ 2 A_{2}+A_{1} & \underline{0} \end{array}$	$(0,1,0,0,0,0,0,0)$	$(16,5)$	$\left(E_{6}\right)_{6} \mathrm{SCFT}+\frac{1}{2}(26,2)$
11	$\frac{F_{4}\left(a_{2}\right)}{2 A_{2}+A_{1}} \quad \underline{F_{4}\left(a_{2}\right)}$	$(0,0,2,1,1,1,0,0)$	$(65,49)$	$\begin{aligned} & S U(2)_{25-k} \times S U(2)_{k} \times U(1)+ \\ & \frac{1}{2}(2) \end{aligned}$
12	$\frac{\underline{F_{4}\left(a_{2}\right)}}{2 A_{2}+A_{1}} \quad \underline{C_{3}}$	$(0,1,2,1,1,1,0,0)$	$(71,54)$	$\begin{gathered} S U(2)_{16} \times S U(2)_{9} \\ \times S U(2)_{6} \times U(1) \\ \quad+\frac{1}{2}(2,1) \end{gathered}$

Table 5.5: Mixed fixtures

\#	Fixture	$\begin{aligned} & \left(n_{2}, n_{3}, n_{4}, n_{5}\right. \\ & \left.n_{6}, n_{8}, n_{9}, n_{12}\right) \end{aligned}$	$\left(n_{h}, n_{v}\right)$	Theory
13	$\frac{F_{4}\left(a_{2}\right)}{E_{6}\left(a_{3}\right)} \quad \underline{A_{2}+\widetilde{A}_{1}}$	$(0,1,1,0,1,0,0,0)$	$(37,23)$	$S p(2)_{12} \times S U(2)_{7} \times S U(2)_{6}+2$
14	$\frac{F_{4}\left(a_{2}\right)}{A_{5}} \quad \underline{A_{2}+\widetilde{A}_{1}}$	$(0,0,1,0,2,0,0,0)$	$(45,29)$	$\begin{aligned} & S p(2)_{7} \times S U(2)_{7} \times S U(2)_{12}^{2}+ \\ & \frac{1}{2}(1,2) \end{aligned}$
15	$\frac{F_{4}\left(a_{2}\right)}{D_{5}\left(a_{1}\right)} \quad \underline{A_{2}+\widetilde{A}_{1}}$	$(0,1,1,1,1,0,1,0)$	$(65,49)$	$\begin{aligned} & S U(2)_{38-k} \times S U(2)_{k} \times U(1)+ \\ & \frac{1}{2}(2) \end{aligned}$
16	$\frac{F_{4}\left(a_{2}\right)}{D_{4}} \quad \underline{A_{2}+\widetilde{A}_{1}}$	$(0,1,1,1,2,0,1,0)$	$(78,60)$	$\begin{aligned} & S U(3)_{12} \times S U(2)_{20} \times S U(2)_{18}+ \\ & \frac{1}{2}(1,2) \end{aligned}$
17	$\begin{gathered} \underline{C_{3}} \\ 2 A_{2}+A_{1} \end{gathered} \underline{\underline{C_{3}}}$	$(0,2,2,1,1,1,0,0)$	$(77,59)$	$\begin{aligned} & S U(2)_{16} \times S U(2)_{9} \\ & \times S U(2)_{6}^{2} \times U(1) \\ & \quad+\frac{1}{2}(2,1,1) \\ & \hline \end{aligned}$
18	$\begin{gathered} \underline{C_{3}} \\ E_{6}\left(a_{3}\right) \end{gathered} \quad \underline{A_{2}+\widetilde{A}_{1}}$	$(0,2,1,0,1,0,0,0)$	$(43,28)$	$\begin{aligned} & S U(2)_{12}^{2} \times S U(2)_{6}^{2} \times S U(2)_{7}+ \\ & (2,1) \end{aligned}$
19	$\frac{C_{3}}{A_{5}} \quad \underline{A_{2}+\widetilde{A}_{1}}$	$(0,1,1,0,2,0,0,0)$	$(51,34)$	$\begin{gathered} S p(2)_{7} \times S U(2)_{24} \times S U(2)_{7} \\ \times S U(2)_{6}+\frac{1}{2}(1,2,1) \end{gathered}$
20	$\begin{gathered} \underline{C_{3}} \\ D_{5}\left(a_{1}\right) \end{gathered} \quad \underline{A_{2}+\widetilde{A}_{1}}$	$(0,2,1,1,1,0,1,0)$	$(71,54)$	$\begin{gathered} S U(2)_{20} \times S U(2)_{18} \\ \times S U(2)_{6} \times U(1) \\ \quad+\frac{1}{2}(2,1) \end{gathered}$
21	$\frac{C_{3}}{D_{4}} \quad \underline{A_{2}+\widetilde{A}_{1}}$	$(0,2,1,1,2,0,1,0)$	$(84,65)$	$\begin{gathered} S U(3)_{12} \times S U(2)_{20} \times S U(2)_{18} \\ \times S U(2)_{6}+\frac{1}{2}(1,2,1) \end{gathered}$

Table 5.5: Mixed fixtures

\#	Fixture	$\begin{aligned} & \left(n_{2}, n_{3}, n_{4}, n_{5},\right. \\ & \left.n_{6}, n_{8}, n_{9}, n_{12}\right) \end{aligned}$	$\left(n_{h}, n_{v}\right)$	Theory
22	$\begin{gathered} \underline{B_{3}} \\ E_{6}\left(a_{3}\right) \end{gathered} \quad \underline{\widetilde{A}_{2}+A_{1}}$	$(0,2,1,0,1,0,0,0)$	$(43,28)$	$\begin{aligned} & S U(2)_{12}^{2} \times S U(2)_{6}^{2} \times S U(2)_{7}+ \\ & \frac{1}{2}(2,1) \end{aligned}$
23	$\frac{B_{3}}{A_{5}} \quad \underline{\widetilde{A}_{2}+A_{1}}$	$(0,1,1,0,2,0,0,0)$	$(50,34)$	$\begin{aligned} & S U(2)_{7} \times S U(2)_{12}^{3} \times S U(2)_{7}+ \\ & \frac{1}{2}(1,2,1) \end{aligned}$
24	$\frac{F_{4}\left(a_{3}\right)}{D_{5}} \quad \underline{A_{2}+\widetilde{A}_{1}}$	$(0,3,1,0,0,0,0,0)$	$(36,22)$	$S U(2){ }_{6}^{6} \times U(1)+\frac{3}{2}(2)$
25	$\frac{C_{3}\left(a_{1}\right)}{D_{5}} \quad \underline{A_{2}+\widetilde{A}_{1}}$	$(0,2,1,0,1,0,0,0)$	$(44,28)$	$\begin{aligned} & S p(2)_{7} \times S U(2)_{12}^{2} \\ & \times S U(2)_{6} \times U(1) \\ & \quad+(2,1) \end{aligned}$
26	$\frac{\widetilde{A}_{2}+A_{1}}{D_{5}} \quad \underline{A_{2}+\widetilde{A}_{1}}$	$(0,1,1,0,1,0,1,0)$	$(58,40)$	$\begin{aligned} & S p(2)_{20} \times S U(2)_{18} \times U(1)+ \\ & \frac{1}{2}(2,1) \end{aligned}$
27	$\frac{\widetilde{A}_{2}+A_{1}}{E_{6}\left(a_{1}\right)} \quad \underline{A_{1}}$	$(0,1,0,0,1,0,0,0)$	$(39,16)$	$\begin{aligned} & \left(E_{6}\right)_{12} \times S U(2)_{7}+\frac{1}{2}(6,1)+ \\ & \frac{1}{2}(1,2) \end{aligned}$
28	$\frac{B_{2}}{D_{5}} \quad \underline{A_{2}+\widetilde{A}_{1}}$	$(0,1,1,0,2,0,0,0)$	$(52,34)$	$\begin{aligned} & S p(2)_{7}^{2} \times S U(2)_{24} \times U(1)+ \\ & \frac{1}{2}(2,1,1) \end{aligned}$
29	$\frac{A_{2}+\widetilde{A}_{1}}{E_{6}\left(a_{1}\right)} \quad \underline{A_{1}+\widetilde{A}_{1}}$	$(0,0,0,0,1,0,0,0)$	$(27,11)$	$S p(5)_{7}+\frac{1}{2}(3,1,2)+\frac{1}{2}(1,2,3)$
30	$\frac{A_{2}+\widetilde{A}_{1}}{E_{6}\left(a_{1}\right)} \quad \underline{\widetilde{A}_{1}}$	$(0,0,0,0,2,0,0,0)$	$(46,22)$	$\left(F_{4}\right)_{12} \times S U(2)_{7}^{2}+\frac{1}{2}(1,2)$
31	$\frac{\widetilde{A}_{2}}{D_{5}} \quad \underline{A_{2}+\widetilde{A}_{1}}$	$(0,1,1,1,1,0,1,0)$	$(70,49)$	$\begin{gathered} S U(2)_{20} \times S U(2)_{18} \\ \times\left(G_{2}\right)_{10} \times U(1) \\ \quad+\frac{1}{2}(2,1) \end{gathered}$

Table 5.5: Mixed fixtures

\#	Fixture	$\begin{aligned} & \left(n_{2}, n_{3}, n_{4}, n_{5},\right. \\ & \left.n_{6}, n_{8}, n_{9}, n_{12}\right) \end{aligned}$	$\left(n_{h}, n_{v}\right)$	Theory
32	$\begin{gathered} \underline{\tilde{A}_{2}} \\ E_{6}\left(a_{1}\right) \end{gathered}$	$(0,1,0,1,1,0,0,0)$	$(52,25)$	$S U(6)_{12} \times \operatorname{Spin}(7)_{10}+\frac{1}{2}(6,1)$
33	$\begin{gathered} \underline{A_{2}} \\ E_{6}\left(a_{1}\right) \end{gathered} \quad \underline{A_{1}+\widetilde{A}_{1}}$	$(0,0,0,0,1,1,0,0)$	$(49,26)$	$S U(6)_{16} \times S U(2)_{9}+\frac{1}{2}(1,2,1)$

We note that for mixed fixture 22 on our list, the order q (equivalently, τ^{2}) term in the expansion of its superconformal index implies that the global symmetry is enhanced to $S U(2)_{19-k} \times S U(2)_{k} \times S U(2)_{24-k_{1}-k_{2}} \times S U(2)_{k_{1}} \times$ $S U(2)_{k_{2}}$. Since we are not able to gauge any of the punctures, we cannot determine the levels k, k_{1}, k_{2} using an S-duality.

However, by setting $k=7, k_{1}=k_{2}=6$, its properties agree with that of mixed fixture 18, up to the addition of a half-hypermultiplet. As further evidence, we have checked that the next non-trivial term in the expansion of the superconformal index is the same for each theory:

$$
\begin{aligned}
\mathcal{I}_{\# 18} & =\mathcal{I}_{\# 22} \times \mathcal{I}_{\text {free }} \\
& =\left(1+2 q^{\frac{1}{2}}+18 q+66 q^{\frac{3}{2}}+\ldots\right)\left(1+2 q^{\frac{1}{2}}+3 q+6 q^{\frac{3}{2}}+\ldots\right) \\
& =1+4 q^{\frac{1}{2}}+25 q+114 q^{\frac{3}{2}}+\ldots
\end{aligned}
$$

Thus we conjecture that the SCFT realized by fixture 22 is the same as that of 18 , and fill in the levels in the table above.

5.2.6 Gauge theory fixtures

Gauge theory fixtures are 3 -punctured spheres with 1 or 2 insertions of $F_{4}\left(a_{1}\right)$. There are 167 such 3 -punctured spheres involving three regular punctures and 1 involving an irregular puncture. Of the 167 , all but 1 are resolved by replacing the $F_{4}\left(a_{1}\right)$ by the pair $F_{4}, E_{6}\left(a_{1}\right)$; that is, they can be thought-of as 4 -punctured spheres in disguise. The remaining case involves two $F_{4}\left(a_{1}\right)$ punctures and is really a 5 -punctured sphere in disguise. The two exceptional cases are listed in the table below. Note that the latter involves two decoupled copies of a theory to be discussed at greater length in \$5.7.2.

Table 5.6: Gauge theory fixtures

\#	Fixture		$\left(n_{2}, n_{3}, n_{4}, n_{5}\right.$, $\left.n_{6}, n_{8}, n_{9}, n_{12}\right)$
1	$\frac{F_{4}\left(a_{1}\right)}{D_{5}} \quad \underline{\left(\widetilde{A}_{1}, S U(4)_{4}\right)}$	$(1,0,0,0,0,0,0,0)$	Theory
2	$\frac{F_{4}\left(a_{1}\right)}{0} \quad \underline{F_{4}\left(a_{1}\right)}$	$(2,2,0,0,2,0,0,0)$	$\left[S U(2)+4(2)+\left(E_{8}\right)_{12}\right]^{2}$ $\simeq\left[S U(2)+\frac{1}{2}(2)\right.$ $\left.+\left(E_{6}\right)_{12} \times S U(2)_{7}\right]^{2}$

5.3 Global symmetries and the superconformal index

To determine the global symmetry of each SCFT and the number of free hypermultiplets for each fixture, we use the superconformal index [22, 23, [24, 25, 26]. This analysis was carried out for the untwisted E_{6} fixtures in 49].

We leave many of the details to that paper, and the references therein.

5.3.1 Superconformal index for twisted fixtures

Following [17, 26, 64], we assume that the superconformal index for an E_{6} fixture with a two twisted punctures and one untwisted puncture takes the usual form:

$$
\begin{align*}
& \mathcal{I}\left(\mathbf{a}_{i} ; \tau\right)= \\
& \mathcal{A}(\tau) \sum_{\left(a_{1}, a_{2}, a_{3}, a_{4}\right)} \frac{\mathcal{K}\left(\mathbf{a}_{1} ; \tau\right) P_{E_{6}}^{\left(a_{1}, a_{2}, a_{3}, a_{2}, a_{1}, a_{4}\right)}\left(\mathbf{a}_{1} ; \tau\right) \prod_{i=2}^{3} \mathcal{K}\left(\mathbf{a}_{i} ; \tau\right) P_{F_{4}}^{\left(a_{1}, a_{2}, a_{3}, a_{4}\right)}\left(\mathbf{a}_{i} ; \tau\right)}{P_{E_{6}}^{\left(a_{1}, a_{2}, a_{3}, a_{2}, a_{1}, a_{4}\right)}\left(\mathbf{a}_{\text {triv }} ; \tau\right)} \tag{5.2}
\end{align*}
$$

where the sum runs over finite-dimensional irreducible representations of F_{4}, and the Dynkin labels of each E_{6} representation are determined by those of the corresponding F_{4} representation, as indicated.

To obtain this formula, one can use the fact that, when C has genus zero, the Hall-Littlewood limit of the superconformal index coincides with the Coulomb branch Hilbert series of the $3 d$ mirror of the $(2,0)$ theory on $C \times S^{1}$. For a fixture of type E_{6} with twisted punctures, the 3 d mirror is obtained by assigning the $3 \mathrm{~d} \mathcal{N}=4 \operatorname{SCFT} T_{\tilde{\rho}}\left(F_{4}\right)$ to each twisted puncture $\tilde{\rho}$ and the $\operatorname{SCFT} T_{\rho}\left(E_{6}\right)$ to the untwisted puncture ρ, and gauging the common centerless flavor symmetry $F_{4} / Z\left(F_{4}\right)$ [14, 12]. The Coulomb branch Hilbert series can then be computed following [65, 66], giving (5.2).

The Taylor expansion of the superconformal index is given by [27]

$$
\mathcal{I}\left(\mathbf{a}_{\mathbf{i}} ; \tau\right)=1+\tau \chi_{\text {free }}^{R}\left(\mathbf{a}_{\mathbf{i}}\right)+\tau^{2}\left(\chi_{\text {free }}^{a d j}\left(\mathbf{a}_{\mathbf{i}}\right)+\chi_{S C F T}^{a d j}\left(\mathbf{a}_{\mathbf{i}}\right)\right)+\ldots
$$

allowing us to read off the number of free hypermultiplets and the global symmetry group of the interacting SCFT for a given fixture. Examples of this type of calculation can be found in [17, 49, 27].

5.3.2 Higher-order expansion of the index

Computing the expansion of (5.2) to higher-order becomes very tedious due to the sum over the Weyl group in the definition of the Hall-Littlewood polynomials. We will therefore also be interested in the Schur limit of the superconformal index, where the Hall-Littlewood polynomials are replaced by characters of the corresponding representations ${ }^{3}$. For a twisted fixture, this is given by
$\mathcal{I}\left(\mathbf{a}_{i} ; q\right)=$
$\prod_{j=2,5,6,8,9,12}\left(q^{j} ; q\right) \sum_{\left(a_{1}, a_{2}, a_{3}, a_{4}\right)} \frac{\prod_{i=1}^{2} \mathcal{K}\left(\mathbf{a}_{i}\right) \chi_{F_{4}}^{\left(a_{4}, a_{2}, a_{3}, a_{4}\right)}\left(\mathbf{a}_{i}\right) \mathcal{K}\left(\mathbf{a}_{3}\right) \chi_{E_{6}}^{\left(a_{1}, a_{2}, a_{3}, a_{2}, a_{1}, a_{4}\right)}\left(\mathbf{a}_{3}\right)}{\chi_{E_{6}}^{\left(a_{1}, a_{2}, a_{3}, a_{2}, a_{1}, a_{4}\right)}\left(\mathbf{a}_{\text {triv }}\right)}$
where $(a ; q) \equiv \prod_{j=0}^{\infty}\left(1-a q^{j}\right)$ is the q-Pochhammer symbol. We expand each character χ^{λ} in (5.3) in terms of $\mathfrak{s u}(2) \times \mathfrak{f}$ characters as determined by the

[^22]$\mathfrak{s u}(2)$ embedding which defines the puncture, where the $\mathfrak{s u}(2)$ fugacity is set equal to $q^{\frac{1}{2}}$. Decomposing the adjoint representation as
$$
\mathfrak{g}=\bigoplus_{n} V_{n} \otimes R_{n}
$$
where V_{n} is the n-dimensional irrep of $\mathfrak{s u}(2)$ and R_{n} is the corresponding representation of $\mathfrak{f}, \mathcal{K}(\mathbf{a})$ is defined by
$$
\mathcal{K}(\mathbf{a})=P E\left[\sum_{n} q^{\frac{n+1}{2}} \chi_{\mathrm{f}}^{R_{n}}(\mathbf{a})\right]
$$
where $P E$ denotes the plethystic exponential. By their definitions, one can easily see that the coefficient of $\tau\left(\tau^{2}\right)$ in the Hall-Littlewood index is the same as that of $q^{\frac{1}{2}}(q)$ in the Schur index (though the higher-order terms are different). However, while the Schur index removes the difficulty of explicitly summing over the Weyl group, we find that the number of terms in the sum in (5.3) grows very quickly at each order in $q^{\frac{1}{2}}$ and begins to involve largedimensional representations of E_{6}, also making the calculation very tedious. Therefore, in most of the calculations that follow, we compute only the next $1-2$ terms in the expansion of the Schur index. It would be very useful to find a more efficient way to explicitly calculate (5.2), (5.3).

5.4 Enhanced global symmetries: the Sommers-Achar group on the Higgs branch

Consider a family of fixtures where we keep two of the punctures fixed, and vary the third puncture over a special piece, $\{O\}$. Let O_{s} be the special puncture in this special piece. The Sommers-Achar group $C(O)$, for each of the punctures O in the special piece, is a subgroup of Lusztig's canonical quotient group, $\bar{A}(d(O)) \simeq S_{n}$. Let O_{m} be the puncture with the maximal Sommers-Achar group, i.e, the one whose Hitchin pole is $\left(d(O), S_{n}\right)$.

It frequently happens that, when $O=O_{s}$, a simple factor (associated to one of the other punctures, which we are holding fixed) in the manifest global symmetry of the fixture is enhanced as

$$
F_{k n} \rightarrow\left(F_{k}\right)^{n}
$$

(There may, in addition, be further enhancements of the global symmetry but, by examining the fugacity-dependence of the superconformal index, we know unambiguously which ones are associated to the enhancement of $F_{k n}$.) When this enhancement takes place, for $O=O_{s}$, then, for $O=O_{m}$, the $F_{k n}$ is unenhanced and, as O varies over the special piece, the enhancement is the subgroup of $\left(F_{k}\right)^{n}$ which is invariant under $C(O)$ acting by permutations of the n copies of F_{k}.

In particular, this gives an explicit action of the Sommers-Achar group on the holomorphic moment map operators, which are generators of the Higgs
branch chiral ring. Heretofore, the Sommers-Achar group was purely a Coulombbranch concept.

We found numerous examples of this in [49] and were able to verify, using various S-dualities (see, e.g., Section 4 of [49]) that the levels of the factors of F in the global symmetry behave as predicted by this permutation action.

One example eluded us there. We were unable to verify, using S-duality, the levels of the $S U(3)$ s in the first two fixtures in

This example has an additional enhancement. As above, the manifest symmetry of the $A_{2}+2 A_{1}$ puncture is enhanced

$$
S U(2)_{54} \times U(1) \rightarrow S U(2)_{18}^{3} \times U(1)
$$

with the further enhancement

$$
S U(2)_{18}^{3} \times U(1)^{3} \rightarrow S U(3)_{18}^{3}
$$

Otherwise, this example fits the same pattern: the Sommers-Achar group, $C(O)$, acts by permutations on the $S U(3)_{18}^{3}$, and the global symmetry group of the fixture is the subgroup invariant under $C(O)$. That is, $k=k^{\prime}=18$.

The twisted sector of the E_{6} theory provides further examples of this phenomenon. Perhaps the most striking example is the fixture

with an untwisted full puncture, a twisted simple puncture and a twisted puncture, O. As we let the puncture, O, vary over the special piece of $F_{4}\left(a_{3}\right)$, the $\left(E_{6}\right)_{24}$ symmetry of the 0 puncture is enhanced to (the $C(O)$-invariant subgroup of) $\left(E_{6}\right)_{6}^{4}$. The resulting SCFTs are products of the generalized E_{6} Minahan-Nemeschansky SCFTs whose Higgs branches are the moduli space of $l E_{6}$ instantons, $M\left(E_{6}, l\right)^{4}$.

Table 5.7: Fixtures obtained by varying over special piece of $F_{4}\left(a_{3}\right)$

$\#$	O	$C(O)$	Theory	Higgs Branch	$\operatorname{dim}_{\mathbb{H}} \operatorname{Higgs}$	$\left(n_{h}, n_{v}\right)$
1	$\underline{F_{4}\left(a_{3}\right)}$	1	$\left[\left(E_{6}\right)_{6} \mathrm{SCFT}\right]^{4}$	$M\left(E_{6}, 1\right)^{4}$	44	$(64,20)$

[^23]Table 5.7: Fixtures obtained by varying over special piece of $F_{4}\left(a_{3}\right)$

\#	O	$C(O)$	Theory	Higgs Branch	$\operatorname{dim}_{\mathbb{H}} \mathrm{Higgs}$	$\left(n_{h}, n_{v}\right)$
2	$\underline{C_{3}\left(a_{1}\right)}$	\mathbb{Z}_{2}	$\begin{aligned} & {\left[\left(E_{6}\right)_{6} \quad \mathrm{SCFT}\right]^{2} \times} \\ & {\left[\left(E_{6}\right)_{12} \quad \times\right.} \\ & \left.S U(2)_{7} \mathrm{SCFT}\right] \end{aligned}$	$\begin{aligned} & M\left(E_{6}, 1\right)^{2} \quad \times \\ & M\left(E_{6}, 2\right) \end{aligned}$	45	$(71,26)$
3	$\widetilde{\widetilde{A_{2}}+A_{1}}$	S_{3}	$\begin{array}{lll} {\left[\left(E_{6}\right)_{6}\right.} & \mathrm{SCFT}] & \times \\ {\left[\left(E_{6}\right)_{18}\right.} & \times \\ S U(2)_{20} & \mathrm{SCFT}] \\ \hline \end{array}$	$\begin{aligned} & M\left(E_{6}, 1\right) \quad \times \\ & M\left(E_{6}, 3\right) \end{aligned}$	46	$(84,38)$
4	$\underline{B_{2}}$	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$\begin{array}{ll} {\left[\left(E_{6}\right)_{12}\right.} & \times \\ S U(2)_{7} & \mathrm{SCFT}]^{2} \\ \hline \end{array}$	$M\left(E_{6}, 2\right)^{2}$	46	$(78,32)$
	$\underline{A_{2}+\widetilde{A_{1}}}$	S_{4}	$\begin{array}{lr} {\left[\left(E_{6}\right)_{24}\right.} & \times \\ S U(2)_{39} & \mathrm{SCFT}] \\ \hline \end{array}$	$M\left(E_{6}, 4\right)$	47	$(103,56)$

Here the $\left(E_{6}\right)_{6 l}$ global symmetry is realized as the E_{6} global symmetry of $M\left(E_{6}, l\right)$. More subtle relations between instanton moduli spaces will be discussed below in \$5.7.

In this example, the global symmetry groups and the levels were all determined by S-duality. In other examples, S-duality determines some, but not all of the levels of the enhanced global symmetries, and we can use the action of the Sommers-Achar group on the Higgs branch to fill in the missing level:5.

Two more sequences of fixtures, which have one puncture running over the special piece of $F_{4}\left(a_{3}\right)$, have global symmetry groups which are enhanced in this fashion, but levels we could not completely determine using S-duality ${ }^{6}$;

[^24]In the case of

as O varies over the special piece of $F_{4}\left(a_{3}\right)$, the $S U(2)_{24}$ global symmetry of $\underline{B_{3}}$ is enhanced.

Table 5.8: More fixtures obtained by varying over the special piece of $F_{4}\left(a_{3}\right)$

\#	O	$C(O)$	Global Symmetry
75	$\underline{F_{4}\left(a_{3}\right)}$	1	$\begin{aligned} & S U(2)_{24-k_{1}-k_{2}-k_{3}} \times S U(2)_{k_{1}} \times S U(2)_{k_{2}} \\ & \times S U(2)_{k_{3}} \times U(1)^{3} \\ & \hline \end{aligned}$
77	$C_{3}\left(a_{1}\right)$	\mathbb{Z}_{2}	$S U(2)_{12} \times S U(2)_{6}^{2} \times S U(2)_{7} \times U(1)^{2}$
79	$\widetilde{\widetilde{A_{2}}+A_{1}}$	S_{3}	$S U(2)_{24-k} \times S U(2)_{k} \times S U(2)_{20} \times U(1)$
81	$\underline{B_{2}}$	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$S U(2)_{12}^{2} \times S U(2)_{7}^{2} \times U(1)$
	$\underline{A_{2}+\widetilde{A_{1}}}$	S_{4}	$S U(2)_{24} \times S U(2)_{39} \times U(1)$

Filling in the missing levels, we find $k_{1}=k_{2}=k_{3}=k=6$.
special piece of $F_{4}\left(a_{3}\right)$. However, three of the other four fixtures related by varying over the special piece are bad (the other good fixture is mixed fixture 22). In particular, the fixture with the special puncture $F_{4}\left(a_{3}\right)$ is bad, so there is no enhancement of the form discussed above. Thus we don't know how to use this method to determine the levels for fixture 83 .

Similarly, as O in

varies over the special piece of $F_{4}\left(a_{3}\right)$, the $S U(2)_{64} \times S U(2)_{10}$ global symmetry of $\underline{A_{1}+\widetilde{A}_{1}}$ is enhanced.

Table 5.9: More fixtures obtained by varying over the special piece of $F_{4}\left(a_{3}\right)$

$\#$	O	$C(O)$	Global Symmetry
97	$\underline{F_{4}\left(a_{3}\right)}$	1	$S U(2)_{64-k_{1}-k_{2}-k_{3}} \times S U(2)_{k_{1}} \times S U(2)_{k_{2}}$ $\times S U(2)_{k_{3}} \times S U(2)_{10} \times U(1)$
101	$\underline{C_{3}\left(a_{1}\right)}$	\mathbb{Z}_{2}	$S U(2)_{32} \times S U(2)_{16}^{2} \times S U(2)_{10} \times S U(2)_{7} \times$ $U(1)$
105	$\underline{A_{2}+A_{1}}$	S_{3}	$S U(2)_{64-k} \times S U(2)_{k} \times S U(2)_{10} \times S U(2)_{20} \times$ $U(1)$
109	$\underline{B_{2}}$	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$S U(2)_{32}^{2} \times S U(2)_{10} \times S U(2)_{7}^{2} \times U(1)$
	$\underline{A_{2}+\widetilde{A_{1}}}$	S_{4}	$S U(2)_{64} \times S U(2)_{10} \times S U(2)_{39} \times U(1)$

Again, we can fill in the missing levels: $k_{1}=k_{2}=k_{3}=k=16$.

Additionally, we find the following three fixture by varying over special
piece of the untwisted puncture $D_{4}\left(a_{1}\right)$:

As O varies over the special piece of $D_{4}\left(a_{1}\right)$, the $S U(2)_{24}$ global symmetry of $\underline{B_{3}}$ is enhanced.

Table 5.10: Fixtures obtained by varying over the special piece of $D_{4}\left(a_{1}\right)$

$\#$	O	$C(O)$	Global Symmetry
25	$D_{4}\left(a_{1}\right)$	1	$S U(2)_{24-k_{1}-k_{2}} \times S U(2)_{k_{1}} \times S U(2)_{k_{2}} \times U(1)^{2}$
26	$A_{3}+A_{1}$	\mathbb{Z}_{2}	$S U(2)_{24-k} \times S U(2)_{k} \times S U(2)_{9} \times U(1)$
	$2 A_{2}+A_{1}$	S_{3}	$S U(2)_{24} \times S U(2)_{26}$

We fill in the missing levels $k_{1}=k_{2}=k=8$.

$5.5 R_{2,5}$

In [3], we introduced a series of $\mathcal{N}=2$ SCFTs, which we dubbed $R_{2,2 n-1} . \quad R_{2,2 n-1}$ has a $\left(\operatorname{Spin}(4 n+2)_{4 n-2} \times U(1)\right) / \mathbb{Z}_{2}$ global symmetry (enhanced to $\left(E_{6}\right)_{6}$ for $\left.n=2\right)$, central charges $\left(n_{h}, n_{v}\right)=\left(4 n^{2},(n-1)(2 n+1)\right)$
and graded Coulomb branch dimensions $n_{2 k-1}=1$, for $k=2, \ldots, n$.

These play an important role in the strong-coupling duals of various familiar gauge theories. Specifically

$$
\begin{align*}
S U(2 n-1)+4(\boldsymbol{\square})+2(\boldsymbol{\nabla}) & \simeq S p(n-1)+1(\boldsymbol{\square})+R_{2,2 n-1} \\
S U(2 n)+4(\boldsymbol{\square})+2(\boldsymbol{\square}) & \simeq S p(n)+3(\boldsymbol{\square})+R_{2,2 n-1} \tag{5.4}\\
S U(2 n)+1(\boldsymbol{\theta})+1(\boldsymbol{\square}) & \simeq \operatorname{Spin}(2 n+1)+R_{2,2 n-1}
\end{align*}
$$

The realizations of the $R_{2,2 n-1}$ are:

in the $A_{2 n-2}, A_{2 n-1}$ and the twisted sector of the $A_{2 n-1}$ theory, respectively. These different realizations expose different manifest subalgebras ${ }^{77}$ (respectively, $\mathfrak{s u}(2 n-1)_{4 n-2} \times \mathfrak{s u}(2)_{4 n-2}^{2} \times \mathfrak{u}(1)^{2}, \mathfrak{s u}(2 n)_{4 n-2} \times \mathfrak{u}(1)^{4}$ and $\mathfrak{s o}(2 n+1)_{4 n-2}^{2} \times$ $\mathfrak{u}(1))$ of the full global symmetry algebra of the $R_{2,2 n-1}$ SCFT.

The twisted sector of the E_{6} theory provides two new realizations of $R_{2,5}$:

[^25]
which expose a manifest $\mathfrak{s p}(3)_{10} \times \mathfrak{s u}(2)_{30} \times \mathfrak{u}(1)$ or $\mathfrak{s o}(9)_{10} \times \mathfrak{s p}(2)_{10} \times \mathfrak{u}(1)$ subalgebra, respectively, of the $\mathfrak{s o}(14)_{10} \times \mathfrak{u}(1)$ global symmetry algebra of $R_{2,5}$.

The latter realization will be useful to us in $\$ 5.7 .6$. The former provides, among other things, another realization of the aforementioned duality

$$
S U(6)+4(6)+2(15) \simeq S p(3)+3(6)+R_{2,5}
$$

via the 4 -punctured sphere

Here, the gauge coupling,

$$
f(\tau) \equiv-\frac{\theta_{2}^{4}(0, \tau)}{\theta_{4}^{4}(0, \tau)}=\frac{w-1}{w+1}
$$

is a function on the double-cover of $\mathcal{M}_{0,4}$, where

$$
w^{2}=x \equiv \frac{z_{13} z_{24}}{z_{14} z_{23}}
$$

so that $f(\tau)=1$ at the degeneration

and the degeneration

corresponds to the interior point of the gauge theory moduli space, $f(\tau)=-1$.

5.6 Product SCFTs

The $\left(E_{6}\right)_{18} \times\left(G_{2}\right)_{10}$ SCFT occurs twice on our list of interacting fixtures: once, by itself, in

(interacting fixture 117) and once - we claim - as part of a product SCFT

(interacting fixture 5). We can check the latter claim, explicitly, by comparing the SCI for (5.6) with the SCI for (5.5) and the (known) SCI for the $\left(E_{6}\right)_{6}$ SCFT.

Indeed, we find that, to second order in q, we have

$$
\begin{aligned}
\mathcal{I}_{\# 5} & =1+170 q+14601 q^{2}+\ldots \\
& =\left(1+92 q+4916 q^{2}+\ldots\right)\left(1+78 q+2509 q^{2}+\ldots\right) \\
& =\left.\left(\mathcal{I}_{\# 117} \times \mathcal{I}_{\left(E_{6}\right)_{6} S C F T}\right)\right|_{q^{2}}
\end{aligned}
$$

Having established that (5.6) is a product SCFT, we can apply that knowledge to deduce that other fixtures are also product SCFTs. For instance, consider the 4-punctured sphere

The $S U(3)$ gauges a subgroup of the $\left(G_{2}\right)_{10}$ symmetry of the $\left(E_{6}\right)_{18} \times\left(G_{2}\right)_{10}$ SCFT, leaving the $\left(E_{6}\right)_{6}$ SCFT decoupled. Taking the S-dual,

we conclude that fixture on the right also contains a decoupled $\left(E_{6}\right)_{6}$ SCFT and, hence, that

(interacting fixture 61 of [49]) is also a product SCFT.
Similarly, in

the gauging of the G_{2} symmetry leaves the $\left(E_{6}\right)_{6}$ SCFT decoupled. Hence, in the S-dual,

the fixture

(interacting fixture 99 of [49]) is, again, a product SCFT.
As a further check of these identifications, we can compare the SCIs for (5.7) and (5.8) with those of interacting fixtures 15 and 16 above, which directly realize, respectively, the $\left(E_{6}\right)_{18} \times S U(3)_{12} \times U(1)$ and $\left(E_{6}\right)_{18} \times S U(3)_{12}^{2}$ SCFTs.

Indeed, we find that

$$
\begin{aligned}
\mathcal{I}_{\# 61} & =1+165 q+164 q^{\frac{3}{2}}+13451 q^{2}+\ldots \\
& =\left(1+87 q+164 q^{\frac{3}{2}}+4156 q^{2}+\ldots\right)\left(1+78 q+2509 q^{2}+\ldots\right) \\
& =\left.\left(\mathcal{I}_{\# 15} \times \mathcal{I}_{\left(E_{6}\right)_{6} \mathrm{SCFT}}\right)\right|_{q^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{I}_{\# 99} & =1+172 q+14886 q^{2}+\ldots \\
& =\left(1+94 q+5045 q^{2}+\ldots\right)\left(1+78 q+2509 q^{2}+\ldots\right) \\
& =\left.\left(\mathcal{I}_{\# 16} \times \mathcal{I}_{\left(E_{6}\right)_{6} \mathrm{SCFT}}\right)\right|_{q^{2}}
\end{aligned}
$$

Similarly, we can check that interacting fixture 59 of [49]

is a product SCFT by comparing the expansion of its SCI with that of interacting fixture 13 above, which directly realizes the $\left(E_{7}\right)_{18} \times U(1)$ SCFT. Indeed, one finds that

$$
\begin{aligned}
\mathcal{I}_{\# 59} & =1+212 q+112 q^{\frac{3}{2}}+22273 q^{2}+\ldots \\
& =\left(1+78 q+2509 q^{2}+\ldots\right)\left(1+134 q+112 q^{\frac{3}{2}}+9312 q^{2}+\ldots\right) \\
& =\left.\left(\mathcal{I}_{\left(E_{6}\right)_{6} \text { SCFT }} \times \mathcal{I}_{\# 13}\right)\right|_{q^{2}} .
\end{aligned}
$$

Finally, we claim that interacting fixture 111 above is the product of the $\left(E_{6}\right)_{6}$ SCFT and the $\left(F_{4}\right)_{12} \times S U(2)_{7}^{2}$ SCFT. The latter previously appeared in our list of interacting fixtures for the D_{4} theory [5] and appears in mixed fixture 30 above.

We find the expansion of the SCI for fixture 111 is given by

$$
\mathcal{I}_{\# 111}=1+136 q+104 q^{\frac{3}{2}}+9036 q^{2}+\ldots
$$

That of mixed fixture 30 reads

$$
\begin{aligned}
\mathcal{I}_{\# 30} & =1+2 q^{\frac{1}{2}}+61 q+226 q^{\frac{3}{2}}+2394 q^{2}+\ldots \\
& =\left(1+2 q^{\frac{1}{2}}+3 q+6 q^{\frac{3}{2}}+9 q^{2}+\ldots\right)\left(1+58 q+104 q^{\frac{3}{2}}+2003 q^{2}+\ldots\right) \\
& =\left.\left(\mathcal{I}_{\text {free }} \times \mathcal{I}_{\left(F_{4}\right)_{12} \times S U(2)_{7}^{2} S C F T}\right)\right|_{q^{2}}
\end{aligned}
$$

Extracting the order q^{2} expansion of the index of the $\left(F_{4}\right)_{12} \times S U(2)_{7}^{2}$ SCFT from the above, we see that

$$
\begin{aligned}
& \mathcal{I}_{\left(E_{6}\right)_{6} S C F T} \times \mathcal{I}_{\left(F_{4}\right)_{12} \times S U(2)_{7}^{2} S C F T} \\
& =\left(1+78 q+2509 q^{2}+\ldots\right)\left(1+58 q+104 q^{\frac{3}{2}}+2003 q^{2}+\ldots\right) \\
& =1+136 q+104 q^{\frac{3}{2}}+9036 q^{2}+\ldots \\
& =\left.\mathcal{I}_{\# 111}\right|_{q^{2}}
\end{aligned}
$$

5.7 Instanton moduli spaces

Let $M(G, k)$ denote the moduli space of k instantons on \mathbb{R}^{4}, for gauge group $G_{8}^{8} . M(G, k)$ is a hyperKähler space of dimension

$$
\operatorname{dim}_{\mathbb{H}}(M(G, k))=\kappa_{G} k-1
$$

where κ_{G} is the dual Coxeter number and the " -1 " is present because we have removed the overall translational degree of freedom.

For $k=1, M(G, k)$ has hyperKähler isometry group G. In fact, $M(G, 1)$ is the minimal nilpotent orbit in $\mathfrak{g}_{\mathbb{C}}$. For $k 1$, the hyperKähler isom-

[^26]etry group of $M(G, k)$ is $G \times S U(2)$. The origin of the additional $S U(2)$ is as follows ${ }^{9}$. While we've removed the translational symmetry of \mathbb{R}^{4}, the $S O(4)=(S U(2) \times S U(2)) / \mathbb{Z}_{2}$ rotational symmetry still acts on the space of instanton solutions. One of the $S U(2)$ s acts by rotating the complex structures of $M(G, k)$ among themselves. The other $S U(2)$ preserves the quaternionic structure. For $k=1$, it is easy to see that it acts trivially, whereas for $k>1$ it acts nontrivially.

For the classical groups G, the ADHM construction [67] provides a realization of $M(G, k)$ as a hyperKähler quotient of a quaternionic vector space. When G is exceptional, no such construction exists. But (at least for low k) something almost as nice exists. Namely: the hyperKähler quotient $M(G, k) / / / H$, for H some subgroup of the isometry group of $M(G, k)$, has an alternative realization as a hyperKähler quotient either of a quaternionic vector space or of some other well-known hyperKähler space.

The first examples of this phenomenon come from the classic paper of Argyres-Seiberg [2]

$$
\begin{align*}
\left(M\left(E_{6}, 1\right) \times \mathbb{H}^{2}\right) / / / S U(2) & \simeq \mathbb{H}^{18} / / / S U(3) \tag{5.9}\\
M\left(E_{7}, 1\right) / / / S U(2) & \simeq \mathbb{H}^{24} / / / S p(2)
\end{align*}
$$

They established something much stronger: the S-duality of a pair of $\mathcal{N}=2$ supersymmetric quantum field theories. The Higgs branch of one theory is the

[^27]LHS; the Higgs branch of the other is the RHS. Because the Higgs branch geometry is independent of the gauge coupling, the S-duality of the two theories implies that the two Higgs branches are isomorphic. An independent, nontrivial check on the first of these isomorphisms was performed in 68]. At the holomorphic-symplectic level, an axiomatization of this general construction is given in [69].

Further examples of such isomorphisms of hyperKähler quotients of instanton moduli spaces (implied, again, by the S-duality of the corresponding QFTs) appeared in our previous papers. In section 4.2 .3 of [17], we found

$$
\begin{equation*}
M\left(E_{8}, 1\right) / / / S p(2) \simeq \mathbb{H}^{40} / / / S p(3) \tag{5.10}
\end{equation*}
$$

Here, the defining 6-dimensional representation and the 14-dimensional traceless 3-index antisymmetric tensor representation of $S p(3)$ are both pseudo-real (have quaternionic structures) and hence induce, respectively, linear actions on \mathbb{H}^{3} and \mathbb{H}^{7}. On the RHS of 5.10 , we decompose \mathbb{H}^{40} as 11 copies of the former and 1 copy of the latter. In the usual physics notation, we denote this by $\mathbb{H}^{40} \simeq \frac{11}{2}(6) \oplus \frac{1}{2}\left(14^{\prime}\right)$ (" 11 half-hypermultiplets in the fundamental and 1 half-hypermultiplet in the 14^{\prime} representation of $S p(3)$ "). Similarly, on the RHS of (5.9), we have $\mathbb{H}^{24} \simeq 6(4)$ (" 6 full hypermultiplets in the fundamental representation of $S p(2)$ ").

In section 4.1.3 of [38], we found

$$
\begin{equation*}
M\left(E_{7}, 2\right) / / / G_{2} \simeq \mathbb{H}^{57} / / / \operatorname{Spin}(9) \tag{5.11}
\end{equation*}
$$

where, on the RHS, \mathbb{H}^{57} decomposes as the $3(16)+1(9)$ of $\operatorname{Spin}(9)$.
In this section, we will demonstrate five new identities of this sort.

$$
\begin{gather*}
\left(M\left(E_{6}, 2\right) \times \mathbb{H}\right) / / / S U(2) \simeq M\left(E_{8}, 1\right) / / / S U(3) \tag{5.12}\\
M\left(E_{6}, 2\right) / / / S U(3) \simeq\left(M\left(E_{6}, 1\right) \times M\left(E_{6}, 1\right) \times \mathbb{H}^{7}\right) / / / G_{2} \tag{5.13}\\
M\left(E_{7}, 3\right) / / / \operatorname{Spin}(8) \simeq\left(M\left(E_{7}, 1\right) \times M\left(E_{7}, 1\right) \times M\left(E_{7}, 1\right) \times \mathbb{H}^{26}\right) / / / F_{4} \tag{5.14}\\
\left(M\left(E_{7}, 2\right) \times M\left(E_{7}, 1\right)\right) / / / \operatorname{Spin}(8) \simeq \tag{5.15}\\
\left(M\left(E_{7}, 1\right) \times M\left(E_{7}, 1\right) \times M\left(E_{7}, 1\right) \times \mathbb{H}^{9}\right) / / / \operatorname{Spin}(9)
\end{gather*}
$$

and

$$
\begin{equation*}
\left(M\left(E_{8}, 2\right) \times \mathbb{H}^{32}\right) / / / \operatorname{Spin}(12) \simeq\left(M\left(E_{8}, 1\right) \times M\left(E_{8}, 1\right) \times \mathbb{H}^{45}\right) / / / \operatorname{Spin}(13) \tag{5.16}
\end{equation*}
$$

where, on the LHS, the two irreducible spinor representations of $\operatorname{Spin}(12)$ are pseudoreal $\left(\mathbb{H}^{32} \simeq \frac{1}{2}(32) \oplus \frac{1}{2}\left(32^{\prime}\right)\right)$ and, on the RHS, we have $\mathbb{H}^{45} \simeq$ $\frac{1}{2}(64)+1(13)$.
5.7.1 $M\left(E_{6}, 2\right) / / / S U(3) \simeq\left(M\left(E_{6}, 1\right) \times M\left(E_{6}, 1\right) \times \mathbb{H}^{7}\right) / / / G_{2}$
(5.13) is realized in the untwisted D_{4} theory by the 4-punctured sphere

which is an $S U(3)$ gauging of the $\left(E_{6}\right)_{12} \times S U(2)_{7}$ SCFT (whose Higgs branch is $\left.M\left(E_{6}, 2\right)\right)$. The S-dual theory

is a G_{2} gauge theory coupled to two copies of the $\left(E_{6}\right)_{6}$ SCFT (whose Higgs branch is $\left.M\left(E_{6}, 1\right)\right)$ and one hypermultiplet in the 7 .
5.7.2 $\left(M\left(E_{6}, 2\right) \times \mathbb{H}\right) / / / S U(2) \simeq M\left(E_{8}, 1\right) / / / S U(3)$

Recall that, for $k>1, M\left(E_{n}, k\right)$ has an $E_{n} \times S U(2)$ isometry group. (5.12) is unique among the examples listed here, in that on the LHS we use the $S U(2)$ action on $M\left(E_{6}, 2\right)$, which commutes with E_{6} action, to perform the hyperKähler quotient.

A realization in the D_{4} theory is

which is S-dual to

It is also realized in the untwisted E_{6} theory as

where the $S U(2)$ gauges the $S U(2)_{7}$ of the $\left(E_{6}\right)_{12} \times S U(2)_{7}$ SCFT and the $\left(E_{8}\right)_{12}$ SCFT is decoupled. The S-dual theory is

where we gauge an $S U(3)$ subgroup of one of the $E_{8} \mathrm{~s}$ while the other $\left(E_{8}\right)_{12}$ SCFT is decoupled.

Another realization of (5.12) appears in the twisted sector of the E_{6} theory. In

the $S U(2)$ gauges the $S U(2)_{7}$ of one of the $\left(E_{6}\right)_{12} \times S U(2)_{7}$ SCFTs, while the other $\left(E_{6}\right)_{12} \times S U(2)_{7}$ SCFT is decoupled. In the S-dual theory,

the $S U(3)$ gauges a subgroup of the E_{8}, while the $\left(E_{6}\right)_{12} \times S U(2)_{7}$ SCFT is decoupled.

A third realization, in which an $\left(E_{6}\right)_{6}$ SCFT is decoupled throughout, is given by

and has S-duals given by

and the gauge-theory fixture

Finally, the 5-punctured sphere

gives a realization of two decoupled copies of this theory. The gauge theory
moduli space is a 4 -fold branched cover of $\mathcal{M}_{0,4}$, with coordinates (y, w) given in terms of the cross-ratios as

$$
y^{2}=s_{1}=\frac{z_{13} z_{25}}{z_{15} z_{23}}, \quad w^{2}=s_{2}=\frac{z_{14} z_{25}}{z_{15} z_{24}}
$$

The gauge couplings are

$$
f\left(\tau_{1}\right)=\frac{y-1}{y+1} \frac{w+1}{w-1}, \quad f\left(\tau_{2}\right)=\frac{y-1}{y+1} \frac{w-1}{w+1}
$$

where

$$
\begin{equation*}
f(\tau) \equiv-\frac{\theta_{2}^{4}(0, \tau)}{\theta_{4}^{4}(0, \tau)} \tag{5.17}
\end{equation*}
$$

and $\tau=\frac{\theta}{\pi}+\frac{8 \pi i}{g^{2}}$. In the limits $f(\tau) \rightarrow 0, \infty$, the $S U(3)+\left[\left(E_{8}\right)_{12}\right]$ description is weakly-coupled. For $f(\tau) \rightarrow 1$, the $S U(2)+\frac{1}{2}(2)+\left[\left(E_{6}\right)_{12} \times S U(2)_{7}\right]$ description is weakly-coupled. Over the degeneration

we have $\left(f\left(\tau_{1}\right), f\left(\tau_{2}\right)\right) \rightarrow(-1,-1)$ and both descriptions are strongly-coupled.

$$
\begin{aligned}
\text { 5.7.3 } & M\left(E_{7}, 3\right) / / / \operatorname{Spin}(8) \simeq\left(M\left(E_{7}, 1\right)^{3} \times \mathbb{H}^{26}\right) / / / F_{4} \\
& \text { and }\left(M\left(E_{7}, 2\right) \times M\left(E_{7}, 1\right)\right) / / / \operatorname{Spin}(8) \simeq\left(M\left(E_{7}, 1\right)^{3} \times \mathbb{H}^{9}\right) / / / \operatorname{Spin}(9)
\end{aligned}
$$

(5.14) and (5.15) both have realizations in the untwisted E_{6} theory.

The former is given by the duality between

and

The latter is given by the duality between

and

In both cases, unlike our previous examples, there is a third S-duality frame, respectively

and

which are $S U(2)$ gaugings of some new non-Lagrangian SCFTs. Alas, since we don't have an independent construction of the Higgs branches of the latter theories, these isomorphisms don't shed much additional light on these instanton moduli spaces.
$\begin{array}{ll}\text { 5.7.4 } & \left(M\left(E_{8}, 2\right) \times \mathbb{H}^{32}\right) / / / \operatorname{Spin}(12) \simeq \\ & \left(M\left(E_{8}, 1\right) \times M\left(E_{8}, 1\right) \times \mathbb{H}^{45}\right) / / / \operatorname{Spin}(13)\end{array}$
Turning to (5.16), there is a realization in the D_{7} theory

which has one S-dual presentation as

realizing the isomorphism of Higgs branches stated in (5.16).

This theory also has a third S-duality frame,

Alas, as in $\$ 5.7 .3$, we have no alternative construction of the Higgs branch of the $S p(2)_{12} \times S U(2)_{24}^{2} \times S U(2)_{13}$ SCFT, so we don't learn anything new from this duality.

5.7.5 Semi-simple quotients

In $\$ 5.7$ we considered isomorphisms of hyperKähler quotients of the form

$$
\begin{equation*}
X_{1} / / / G_{1} \simeq X_{2} / / / G_{2} \tag{5.18}
\end{equation*}
$$

where G_{i} is a simple subgroup of the group of hyperKähler isometries of X_{i}. Let H be the residual group of hyperKähler isometries of the quotient. Of course, we can further quotient both sides of (5.18) by a subgroup of H, but
this would typically not yield anything new; all it would do is lose some of the information contained in (5.18).

There are, however, exceptions. For instance, we can combine 5.10 with the first isomorphism in (5.9) to obtain

$$
\begin{aligned}
M\left(E_{8}, 1\right) / / / S U(3) \times S p(2) & \simeq \mathbb{H}^{40} / / / S U(3) \times S p(3) \\
& \simeq\left(M\left(E_{6}, 1\right) \times \mathbb{H}^{24}\right) / / / S U(2) \times S p(3)
\end{aligned}
$$

where

$$
\begin{array}{ll}
\mathbb{H}^{40}=\frac{5}{2}(1,6)+\frac{1}{2}\left(1,14^{\prime}\right)+(3,6) & \text { of } S U(3) \times S p(3) \\
\mathbb{H}^{24}=\frac{5}{2}(1,6)+\frac{1}{2}\left(1,14^{\prime}\right)+(2,1) & \text { of } S U(2) \times S p(3)
\end{array}
$$

These isomorphisms are realized in the twisted D_{4} theory, as the 5-punctured sphere

has, among its various other S-duality frames,

and

5.7.6 More isomorphisms among hyperKähler quotients

If we are are willing to venture a little further afield, we can find additional hyperKähler quotient identities satisfied by the $M(G, k)$. In $\$ 5.5$, we recalled the $R_{2,2 n-1}$ series of SCFTs. Let us denote the Higgs branch of $R_{2,2 n-1}$ as $M_{2,2 n-1} . M_{2,2 n-1}$ has hyperKähler isometry group $\operatorname{Spin}(4 n+2) \times U(1)$ and dimension

$$
\operatorname{dim}_{\mathbb{H}}\left(M_{2,2 n-1}\right)=2 n^{2}+n+1
$$

From the S-dualities in (5.4), certain hyperKähler quotients of $M_{2,2 n-1}$ are isomorphic to hyperKähler quotients of quaternionic vector spaces

$$
\begin{aligned}
\left(M_{2,2 n-1} \times \mathbb{H}^{2(n-1)}\right) / / / S p(n-1) & \simeq \mathbb{H}^{(2 n-1)(2 n+2)} / / / S U(2 n-1) \\
\left(M_{2,2 n-1} \times \mathbb{H}^{6 n}\right) / / / S p(n) & \simeq \mathbb{H}^{2 n(2 n+3)} / / / S U(2 n) \\
M_{2,2 n-1} / / / S p i n(2 n+1) & \simeq \mathbb{H}^{4 n^{2}} / / / S U(2 n)
\end{aligned}
$$

where, in the first two, the quaternionic vector space on the RHS transforms as $4(\boldsymbol{\square})+2(\boldsymbol{\nabla})$ and, in the third, it transforms as $1(\boldsymbol{\square})+1(\square \boldsymbol{\square})$.

This isn't quite enough information to reconstruct $M_{2,2 n-1}$. But, with a certain poetic license, we can proceed as if we understand that hyperKähler space.

Using the realization of $M_{2,5}$ given in $\$ 5.5$, we have the new isomorphisms

$$
\begin{align*}
\left(M\left(E_{6}, 1\right)^{4} \times \mathbb{H}^{20}\right) / / / \operatorname{Spin}(10) & \simeq\left(M\left(E_{6}, 1\right)^{3} \times M_{2,5}\right) / / / \operatorname{Spin}(9) \\
\left(M\left(E_{6}, 2\right) \times M\left(E_{6}, 1\right)^{2} \times \mathbb{H}^{20}\right) / / / \operatorname{Spin}(10) & \simeq\left(M\left(E_{6}, 2\right) \times M\left(E_{6}, 1\right)\right. \\
& \left.\times M_{2,5}\right) / / / \operatorname{Spin}(9) \\
\left(M\left(E_{6}, 3\right) \times M\left(E_{6}, 1\right) \times \mathbb{H}^{20}\right) / / / \operatorname{Spin}(10) & \simeq\left(M\left(E_{6}, 3\right) \times M_{2,5}\right) / / / \operatorname{Spin}(9) \tag{5.19}
\end{align*}
$$

from studying the 4-punctured spheres

and

which are, respectively, S-dual to

and

Note that:

- The three examples are related by allowing the twisted puncture in the upper left corner to vary over the special piece of $F_{4}\left(a_{3}\right)$. (As discussed above, this special piece consists of five nilpotent orbits. The other two involve theories whose Higgs branches are "new" hyperKähler spaces.)
- In each case, there's a third S-duality frame, which we won't write down, which is a gauge theory fixture.

5.8 Instanton moduli spaces as affine algebraic varieties

As mentioned above, $M(G, 1)$ admits a uniform description as the minimal nilpotent orbit in $\mathfrak{g}_{\mathbb{C}}$. For classical groups, G, the ADHM construction [67] gives a description of $M(G, k)$, for higher k, as a hyperKähler quotient. For exceptional G, a concrete description of the $M(G, k)$ for higher k is not known. However, in a series of papers [70, 71, 172, it was shown that the Hilbert series of $M(G, k)$ for $k>1$ and classical G can be written in terms of the root data of G alone. This provides a natural conjecture for the Hilbert series of $M(G, k)$ for exceptional G, which has been shown to pass many tests.

The Hilbert series contains all information about the ring of holomorphic functions on $M(G, k)$. From this information, in 72 the authors extracted the representations of the generators of $M(G, k)$ at each scaling dimension, and their lowest order chiral ring relations.

They conjectured that $M(G, k)$, as a complex variety, can be realized as an affine algebraic variety whose ring of functions has generators

$$
\begin{gathered}
M \in(1 ; \mathrm{Adj}) \\
M_{p} \in(p ; \mathrm{Adj}) \\
P_{p} \in(p+1 ; 1)
\end{gathered}
$$

transforming in the indicated representations Ω^{10} of $S U(2) \times G$, for $p=2, \ldots, k$.
These generators are subject to a set of polynomial relations. For $k=1$, the M_{p} and P_{p} are absent, and the only non-trivial relations are the celebrated Joseph relations

$$
\begin{equation*}
\left.(M \otimes M)\right|_{\mathcal{I}_{2}}=0 \tag{5.20}
\end{equation*}
$$

where the reducible representation, \mathcal{I}_{2}, is defined through

$$
S_{y m}{ }^{2}(\mathrm{Adj})=V(2 \alpha) \oplus \mathcal{I}_{2}
$$

Here, $V(2 \alpha)$ is the representation whose highest weight is twice the highest root. (5.20) gives a realization of $M(G, 1)$ as an affine algebraic variety.

For $k=2,3$, the lowest-order relations are given in [72].

[^28]The isomorphisms discussed in $\$ 5.7$ provide a strong test of this conjectured description of $M(G, k)$. Following 68, one can explicitly take the hyperKähler quotient on each side, and compare the gauge-invariant generators and relations.

As an illustrative example, we consider $\left(M\left(E_{7}, 1\right)^{3} \times \mathbb{H}^{26}\right) / / / F_{4} \simeq M\left(E_{7}, 3\right) / / / \operatorname{Spin}(8)$. We will not give a precise mapping of the generators, as the methods of [72] do not determine the constants appearing in the relations defining $M\left(E_{7}, 3\right)$ but, up to a few unknown constants, we will be able to determine the form of the correspondence. The generators transform in representations of the $S U(2)_{s} \times S U(2)^{3}$ global symmetry. Moreover, there is an action of S_{3} permuting the $S U(2)^{3}$. On the LHS, it acts by permuting the three $M\left(E_{7}, 1\right)$ s; on the RHS, it is the S_{3} subgroup of E_{7} which acts as triality on the $\operatorname{Spin}(8) \subset E_{7}$. The generators of the ring of functions arrange themselves into representations of this S_{3} action.

We first consider the proposed description of $M\left(E_{7}, 3\right)$ above. Decomposing the 133 of E_{7} under $S U(2)^{3} \times \operatorname{Spin}(8)$:

$$
\begin{aligned}
E_{7} \supset & S U(2)^{3} \times \operatorname{Spin}(8) \\
133= & (3,1,1 ; 1)+(1,3,1 ; 1)+(1,1,3 ; 1)+(1,1,1 ; 28) \\
& +\left(2,2,1 ; 8_{c}\right)+\left(2,1,2 ; 8_{s}\right)+\left(1,2,2 ; 8_{v}\right)
\end{aligned}
$$

we have operators

Table 5.11: Generators of $M\left(E_{7}, 3\right)$

Order	Operator	Representation of $S U(2)_{s} \times S U(2)^{3} \times \operatorname{Spin}(8)$
2	$\Psi_{(\alpha \beta)}$	$(3 ; 1,1,1 ; 1)$
	J, K, L	$(1 ; 3,1,1 ; 1),(1 ; 1,3,1 ; 1),(1 ; 1,1,3 ; 1)$
	M, N, O	$\left(1 ; 2,2,1 ; 8_{c}\right),\left(1 ; 2,1,2 ; 8_{s}\right),\left(1 ; 1,2,2 ; 8_{v}\right)$
	P	$(1 ; 1,1,1 ; 28)$
3	$\Phi_{(\alpha \beta \gamma)}$	$(4 ; 1,1,1 ; 1)$
	$Q_{\alpha}, R_{\alpha}, S_{\alpha}$	$(2 ; 3,1,1 ; 1),(2 ; 1,3,1 ; 1),(2 ; 1,1,3 ; 1)$
	$T_{\alpha}, U_{\alpha}, V_{\alpha}$	$\left(2 ; 2,2,1 ; 8_{c}\right),\left(2 ; 2,1,2 ; 8_{s}\right),\left(2 ; 1,2,2 ; 8_{v}\right)$
	W_{α}	$(2 ; 1,1,1 ; 28)$
4	$X_{(\alpha \beta)}, Y_{(\alpha \beta)}, Z_{(\alpha \beta)}$	$(3 ; 3,1,1 ; 1),(3 ; 1,3,1 ; 1),(3 ; 1,1,3 ; 1)$
	$\widetilde{A}_{(\alpha \beta)}, \widetilde{B}_{(\alpha \beta)}, \widetilde{C}_{(\alpha \beta)}$	$\left(3 ; 2,2,1 ; 8_{c}\right),\left(3 ; 2,1,2 ; 8_{s}\right),\left(3 ; 1,2,2 ; 8_{v}\right)$
	$\widetilde{D}_{(\alpha \beta)}$	$(3 ; 1,1,1 ; 28)$

The lowest-order relation is at order 5, given by [72]
$\left.\left(J Q_{\alpha}+a_{1} K R_{\alpha}+a_{2} L S_{\alpha}+a_{3} M T_{\alpha}+a_{4} N U_{\alpha}+a_{5} O V_{\alpha}+a_{6} P W_{\alpha}\right)\right|_{(2 ; 1,1,1 ; 1)}=0$,
where the a_{i} are constants.
Let us now take the hyperKähler quotient by $\operatorname{Spin}(8)$. The F-term constraint is simply

$$
P=0
$$

So, the gauge-invariant operators are given by

Table 5.12: Generators of $M\left(E_{7}, 3\right) / / / \operatorname{Spin}(8)$

Order	Operator	Representation of $S U(2)_{s} \times S U(2)^{3}$
2	$\Psi_{(\alpha \beta)}$	$(3 ; 1,1,1)$
	J, K, L	$(1 ; 3,1,1),(1 ; 1,3,1),(1 ; 1,1,3)$
3	$\Phi_{(\alpha \beta \gamma)}$	$(4 ; 1,1,1)$
	$Q_{\alpha}, R_{\alpha}, S_{\alpha}$	$(2 ; 3,1,1),(2 ; 1,3,1),(2 ; 1,1,3)$
4	$X_{(\alpha \beta)}, Y_{(\alpha \beta)}, Z_{(\alpha \beta)}$	$(3 ; 3,1,1),(3 ; 1,3,1),(3 ; 1,1,3)$
	M^{2}, N^{2}, O^{2}	$(1 ; 1,1,1)+(1 ; 3,3,1),(1 ; 1,1,1)+$
		$(1 ; 3,1,3),(1 ; 1,1,1)+(1 ; 1,3,3)$

subject to

$$
\begin{equation*}
\left.\left(J Q_{\alpha}+a_{1} K R_{\alpha}+a_{2} L S_{\alpha}+a_{3} M T_{\alpha}+a_{4} N U_{\alpha}+a_{5} O V_{\alpha}\right)\right|_{(2 ; 1,1,1 ; 1)}=0 \tag{5.21}
\end{equation*}
$$

Let's see how this structure is reproduced on the $M\left(E_{7}, 1\right)^{3}$ side. We first decompose the $\left(E_{7}\right)^{3}$ global symmetry under $S U(2)^{3} \times\left(F_{4}\right)_{\text {diag. }}$. Using the description of $M\left(E_{7}, 1\right)$ as the minimal nilpotent orbit in \mathfrak{e}_{7}, we have operators at order 2 in the 133, subject to the Joseph relations at order 4 in the $\mathcal{I}_{2}=$ $1+1539$. These representations decompose under $S U(2) \times F_{4}$ as

$$
\begin{aligned}
E_{7} & \supset S U(2) \times F_{4} \\
133 & =(3,1)+(3,26)+(1,52) \\
1539 & =(1,1)+(1,26)+(1,324)+(3,26)+(3,273)+(3,52)+(5,1)+(5,26)
\end{aligned}
$$

Additionally, we have the generator of \mathbb{H}^{26} at order 1. In total, we have the following generators of $M\left(E_{7}, 1\right)^{3} \times \mathbb{H}^{26}$:

Table 5.13: Generators of $M\left(E_{7}, 1\right)^{3} \times \mathbb{H}^{26}$

Order	Operator	Representation of $S U(2)_{s} \times S U(2)^{3} \times\left(F_{4}\right)_{\text {diag }}$
1	v_{α}	$(2 ; 1,1,1 ; 26)$
2	A, B, C	$(1 ; 3,1,1 ; 1),(1 ; 1,3,1 ; 1),(1 ; 1,1,3 ; 1)$
	D, E, F	$(1 ; 3,1,1 ; 26),(1 ; 1,3,1 ; 26),(1 ; 1,1,3 ; 26)$
	G, H, I	$(1 ; 1,1,1 ; 52),(1 ; 1,1,1 ; 52),(1 ; 1,1,1 ; 52)$

subject to the Joseph relations at order 4.
To describe the hyperKähler quotient by $\left(F_{4}\right)_{\text {diag }}$, we impose the F-term constraints

$$
G+H+I+\left(v_{\alpha} v_{\beta}\right)_{(1 ; 1,1,1 ; 52)}=0
$$

and form gauge-invariant generators. To order 4 , these are given by:

Table 5.14: $\left(M\left(E_{7}, 1\right)^{3} \times \mathbb{H}^{26}\right) / / / F_{4}$

Order	Operator	Representation of $S U(2)_{s} \times$ $S U(2)^{3}$
2	$\begin{aligned} & \left(v_{\alpha} v_{\beta}\right)_{(3 ; 1,1,1 ; 1)} \\ & A, B, C \end{aligned}$	$\begin{aligned} & (3 ; 1,1,1) \\ & (1 ; 3,1,1 ; 1),(1 ; 1,3,1 ; 1) \\ & \quad(1 ; 1,1,3 ; 1) \end{aligned}$
3	$\begin{aligned} & \left(v_{\alpha} v_{\beta} v_{\gamma}\right)_{(4 ; 1,1,1 ; 1)} \\ & \left(D v_{\alpha}\right)_{(2 ; 3,1,1 ; 1)},\left(E v_{\alpha}\right)_{(2 ; 1,2,1 ; 1)}, \\ & \left(F v_{\alpha}\right)_{(2 ; 1,1,3 ; 1)} \end{aligned}$	$\begin{aligned} & (4 ; 1,1,1) \\ & (2 ; 3,1,1),(2 ; 1,3,1),(2 ; 1,1,3) \end{aligned}$
4	$\begin{gathered} \left(\left(v_{\alpha} v_{\beta}\right)_{(3 ; 1,1,1 ; 26)} D\right)_{(3 ; 3,1,1 ; 1)}, \\ \left(\left(v_{\alpha} v_{\beta}\right)_{(3 ; 1,1,1 ; 26)} E\right)_{(3 ; 1,3,1 ; 1)} \\ \left(\left(v_{\alpha} v_{\beta}\right)_{(3 ; 1,1,1 ; 1 ; 6)} F\right)_{(3 ; 1,1,3 ; 1)} \\ \left(D^{2}\right)_{(1 ; 1+5,1,1 ; 1)},\left(E^{2}\right)_{(1 ; 1,1+5,1 ; 1)}, \\ \left(F^{2}\right)_{(1 ; 1,1,1+5 ; 1)} \\ \left(G^{2}\right)_{(1 ; 1,1,1 ; 1)},\left(H^{2}\right)_{(1 ; 1,1,1 ; 1)}, \\ \left(I^{2}\right)_{(1 ; 1,1,1 ; 1)} \\ (D E)_{(1 ; 3,3,1 ; 1)},(D F)_{(1 ; 3,1,3 ; 1)}, \\ (E F)_{(1 ; 1,3,3 ; 1)} \\ (G H)_{(1 ; 1,1,1 ; 1)},(G I)_{(1 ; 1,1,1 ; 1)}, \\ (H I)_{(1 ; 1,1,1 ; 1)} \\ \hline \end{gathered}$	$\begin{aligned} & (3 ; 3,1,1),(3 ; 1,3,1),(3 ; 1,1,3) \\ & (1 ; 1+5,1,1) \\ & (1 ; 1,1+5,1) \\ & (1 ; 1,1,1+5) \\ & (1 ; 1,1,1),(1 ; 1,1,1),(1 ; 1,1,1) \\ & (1 ; 3,3,1),(1 ; 3,1,3),(1 ; 1,3,3) \\ & (1 ; 1,1,1),(1 ; 1,1,1),(1 ; 1,1,1) \end{aligned}$

The gauge-invariant relations at order 4 are given by

$$
\begin{gather*}
\left.\left(A^{2}+c_{1} D^{2}+c_{2} G^{2}\right)\right|_{(1 ; 1,1,1)}=0 \tag{5.22}\\
\left.\left(B^{2}+c_{1} E^{2}+c_{2} H^{2}\right)\right|_{(1 ; 1,1,1)}=0 \tag{5.23}\\
\left.\left(C^{2}+c_{1} F^{2}+c_{2} I^{2}\right)\right|_{(1 ; 1,1,1)}=0 \tag{5.24}\\
\left.\left(A^{2}+c_{3} D^{2}\right)\right|_{(1 ; 5,1,1)}=0 \tag{5.25}\\
\left.\left(B^{2}+c_{3} E^{2}\right)\right|_{(1 ; 1,5,1)}=0 \tag{5.26}\\
\left.\left(C^{2}+c_{3} F^{2}\right)\right|_{(1 ; 1,1,5)}=0 \tag{5.27}
\end{gather*}
$$

where the c_{i} are constants which can be fixed by evaluating a few points on the nilpotent orbit 68.

We see that the correspondence between the generators is given by ${ }^{11}$

Table 5.15: Correspondence between generators

$\left(M\left(E_{7}, 1\right)^{3} \times \mathbb{H}^{26}\right) / / / F_{4}$	$M\left(E_{7}, 3\right) / / / \operatorname{Spin}(8)$
$\left(v_{\alpha} v_{\beta}\right)_{(3 ; 1,1,1 ; 1)}$	$\Psi_{(\alpha \beta)}$
A, B, C	J, K, L
$\left(v_{\alpha} v_{\beta} v_{\gamma}\right)_{(4 ; 1,1,1 ; 1)}$	$\Phi_{(\alpha \beta \gamma)}$
$\left(\left(v_{\alpha} D\right)_{(2 ; 3,1,1 ; 1)},\left(v_{\alpha} E\right)_{(2 ; 1,3,1 ; 1)},\left(v_{\alpha} F\right)_{(2 ; 1,1,3 ; 1)}\right.$	$Q_{\alpha}, R_{\alpha}, S_{\alpha}$

[^29]Table 5.15: Correspondence between generators

$\left(M\left(E_{7}, 1\right)^{3} \times \mathbb{H}^{26}\right) / / / F_{4}$	$M\left(E_{7}, 3\right) / / / \operatorname{Spin}(8)$
$\left(\left(v_{\alpha} v_{\beta}\right)_{(3 ; 1,1,1 ; 26)} D\right)_{(3 ; 3,1,1 ; 1)}$,	
$\left(\left(v_{\alpha} v_{\beta}\right)_{(3 ; 1,1,1 ; 26)} E\right)_{(3 ; 1,3,1 ; 1)}$,	$X_{(\alpha \beta)}, Y_{(\alpha \beta)}, Z_{(\alpha \beta)}$
$\left(\left(v_{\alpha} v_{\beta}\right)_{(3 ; 1,1,1 ; 26)} F\right)_{(3 ; 1,1,3 ; 1)}$	
$(G H)_{(1 ; 1,1,1 ; 1)}$,	$M_{(1 ; 1,1,1 ; 1)}^{2}$,
$(D E)_{(1 ; 3,3,1 ; 1)}$	$M_{(1 ; 3,3,1 ; 1)}^{2}$
$(G I)_{(1 ; 1,1,1 ; 1)}$,	$N_{(1 ; 1,1,1 ; 1)}^{2}$,
$(D F)_{(1 ; 3,1,3 ; 1)}$	$N_{(1 ; 3,1,3 ; 1)}^{2}$
$(H I)_{(1 ; 1,1,1 ; 1),}$	$O_{(1 ; 1,1,1 ; 1)}^{2}$,
$(E F)_{(1 ; 1,3,3 ; 1)}$	$O_{(1 ; 1,3,3 ; 1)}^{2}$

The "extra" generators at order $4,\left(D^{2}\right)_{(1 ; 1+5,1,1 ; 1)},\left(E^{2}\right)_{(1 ; 1,1+5,1 ; 1)}$, $\left(F^{2}\right)_{(1 ; 1,1,1+5 ; 1)}$ and $\left(G^{2}\right)_{(1 ; 1,1,1 ; 1)},\left(H^{2}\right)_{(1 ; 1,1,1 ; 1)},\left(I^{2}\right)_{(1 ; 1,1,1 ; 1)}$, are removed from the chiral ring by the Joseph relations (5.22)-(5.27).

We find the order 5 relation 5.21 on the $M\left(E_{7}, 1\right)^{3}$ side by adding the order 4 Joseph relations

$$
\begin{align*}
& (A D)_{(1 ; 3,1,1 ; 26)}+c_{4}(D G)_{(1 ; 3,1,1 ; 26)}=0 \tag{5.28}\\
& (B E)_{(1 ; 1,3,1 ; 26)}+c_{4}(E H)_{(1 ; 1,3,1 ; 26)}=0 \tag{5.29}\\
& (C F)_{(1 ; 1,1,3 ; 26)}+c_{4}(F I)_{(1 ; 1,1,3 ; 26)}=0 \tag{5.30}
\end{align*}
$$

and contracting with v_{α} :

$$
\left(v A D+v B E+v C F+c_{4}(v D G+v E H+v F I)\right)_{(2 ; 1,1,1 ; 1)}=0 .
$$

Following [72], one can extract the higher-order relations for $M\left(E_{7}, 3\right)$ and compare them with those on the $M\left(E_{7}, 1\right)^{3}$ side obtained from the remaining Joseph relations. It would be interesting to carry out this analysis for the other examples in 5.7 as well.

Chapter 6

A Family of Interacting SCFTs from the Twisted $A_{2 N}$ Series

In this chapter, we consider the strong-coupling limit of $S U(2 N+1)$ gauge theory with hypermultiplets in the $1(\boldsymbol{\square})+1(\square)^{1}$. We find the following S-duality for this theory

$$
\begin{equation*}
S U(2 N+1)+1(\boldsymbol{B})+1(\square) \simeq S p(N)+R_{2,2 N} \tag{6.1}
\end{equation*}
$$

where $R_{2,2 N}, N \geq 1$, belongs to a family of interacting SCFTs with the following graded Coulomb branch dimensions, trace anomaly coefficients, and global symmetry:

Table 6.1: $R_{2,2 N}$ family of interacting SCFTs

	$\left\{d_{2}, d_{3}, d_{4}, d_{5}, \ldots\right.$, $\left.d_{2 N}, d_{2 N+1}\right\}$	(a, c)	$G_{\text {global }}$	
$R_{2,2 N}$	$\{0,1,0,1, \ldots, 0,1\}$	$\left(\frac{1+19 N+14 N^{2}}{24}, \frac{1+10 N+8 N^{2}}{12}\right)$	$S p(2 N)_{2 N+2}$ $U(1)$	\times

[^30]The proposed duality (6.1) is analogous to the duality

$$
S U(2 N)+1(\mathbb{B})+1(\boldsymbol{\square}) \simeq \operatorname{Spin}(2 N+1)+R_{2,2 N-1}
$$

discussed ${ }^{2}$ in $\S 3.5 .4$ of [7]. However the $R_{2,2 N}$ series of SCFTs is new.
The strong-coupling limit of $S U(3)+1(3)+1(6)$ was considered by Argyres and Wittig in [15]. They conjectured that this theory is dual to an $S U(2)$ gauge theory with $n \leq 3$ fundamental hypermultiplets, coupled to a new rank 1 interacting SCFT. This S-duality alone does not fix n, and the properties of this theory have remained only partially-known. In 4], we gave a $6 D$ realization of this S-duality, which is given by taking $N=1$ in the figure below. From this construction, the properties of the holomorphic moment map operators for the flavor symmetry of the two twisted punctures imply that $n=0$ [4, 61]. In the following, we will provide independent evidence that $n=0$ using the superconformal index. In addition, we will use the index to determine the enhanced global symmetry of the SCFT, and generalize this duality to arbitrary N.

The main tool in our analysis is the Hall-Littlewood limit of the superconformal index [24, 25, 74]. In this limit, the superconformal index is

[^31]equivalent to the Coulomb branch Hilbert series of the $3 D$ mirror of the $(2,0)$ theory on $C \times S^{1}$ [14, 27]. The $3 D$ interpretation allows us to easily obtain the formula for the index of a fixture with twisted $A_{2 N}$ punctures, following [65, 66]. The result is 6.6).

To construct the $R_{2,2 N}$ theories, we consider compactifications of the $A_{2 N}(2,0)$ theory in the presence of \mathbb{Z}_{2} outer-automorphism twists. As discussed in [75], these twists are particularly subtle, and we do not yet understand them well enough to attempt a systematic classification of the $4 D$ theories which arise in this way. Nevertheless, our current level of understanding is sufficient to use them for our purposes here.

6.1 S-duality of $S U(2 N+1)+\wedge^{2}(\square)+\mathbf{S y m}^{2}(\square)$

The $4 D \mathcal{N}=2 S U(2 N+1)$ gauge theory with hypermultiplets in the $1(\boldsymbol{Z})+1(\boldsymbol{\square})$ can be constructed as follows [4]. The $A_{2 N}(2,0)$ theory compactified on a fixture with two full punctures and one minimal puncture gives rise to a free bifundamental hypermultiplet of $S U(2 N+1)$. One can gauge the diagonal $S U(2 N+1)$ flavor symmetry of the two full punctures by connecting them by a cylinder with a \mathbb{Z}_{2} twist line around it, to obtain a one-punctured torus, with a twist line around the a-cycle. This is shown on the left in the figure below. The \mathbb{Z}_{2}-twist line acts as complex conjugation on one of the $S U(2 N+1)$ factors, giving rise to hypermultiplets in the tensor product representation $\square \otimes \square=日+\square$.

The S-dual theory is obtained by exchanging the a - and b-cycles of the
torus. The resulting theory can be seen to arise by compactifying the $A_{2 N}$ theory on a fixture with a minimal untwisted puncture and two full twisted punctures, and connecting the two twisted punctures by a cylinder with a twist line running along it. This is shown on the right in the figure below. We expect this to give rise to an $\operatorname{Sp}(N)$ gauge theory coupled to an interacting SCFT, possibly with n additional hypermultiplets.

In the following, we will use the superconformal index to show that $n=0$, and that the manifest $S p(N)_{2 N+2} \times S p(N)_{2 N+2} \times U(1)$ global symmetry of the interacting SCFT is enhanced to $S p(2 N)_{2 N+2} \times U(1)$. The graded Coulomb branch dimensions and trace anomaly coefficients of the SCFT then follow from S-duality.

6.2 The Argyres-Wittig SCFT

6.2.1 Global symmetry enhancement

We begin by considering the case of $N=1$. The fixture on the right in the figure above then has a manifest $S U(2)_{4} \times S U(2)_{4} \times U(1)$ subgroup of its global symmetry group, which could be enhanced. We will now use the superconformal index to show that this fixture contains an interacting SCFT with no additional free hypermultiplets, and that the global symmetry of the SCFT is enhanced to $S p(2)_{4} \times U(1)$.

We assume that the superconformal index for this fixture has the same general structure one always finds for a 3 -punctured sphere, namely 3^{3}

$$
\begin{equation*}
\mathcal{I}\left(\mathbf{a}_{i} ; \tau\right)=\sum_{\lambda=0}^{\infty} \frac{\prod_{i=1}^{2} \mathcal{K}\left(\mathbf{a}_{i}\right) P_{S U(2)}^{\lambda}\left(\mathbf{a}_{i} ; \tau\right) \mathcal{K}\left(\mathbf{a}_{3}\right) P_{S U(3)}^{(2 \lambda, \lambda)}\left(\mathbf{a}_{3} ; \tau\right)}{\mathcal{K}_{\rho} P_{S U(3)}^{(2 \lambda, \lambda)}\left(\mathbf{a}_{\rho} ; \tau\right)} \tag{6.2}
\end{equation*}
$$

Assigning fugacities to each puncture, this becomes

$$
\begin{aligned}
& \mathcal{I}\left(\mathbf{a}_{i} ; \tau\right)=\frac{\left(1-\tau^{2}\right)\left(1-\tau^{4}\right)\left(1-\tau^{6}\right)}{\left(1-\tau^{2}\right)^{3}\left(1-\tau^{2} a_{1}^{ \pm 2}\right)\left(1-\tau^{2} a_{2}^{ \pm 2}\right)\left(1-\tau^{3} a_{3}^{ \pm 3}\right)\left(1-\tau^{4}\right)} \times \\
& \left(1+\tau^{2}+\sum_{\lambda=1}^{\infty} \frac{P_{S U(2)}^{\lambda}\left(a_{1}, a_{1}^{-1} ; \tau\right) P_{S U(2)}^{\lambda}\left(a_{2}, a_{2}^{-1} ; \tau\right) P_{S U(3)}^{(2 \lambda, \lambda)}\left(a_{3} \tau, a_{3} \tau^{-1}, a_{3}^{-2} ; \tau\right)}{P_{S U(3)}^{(2 \lambda, \lambda)}\left(\tau^{2}, 1, \tau^{-2} ; \tau\right)}\right) \\
& =1+\left(1+\chi_{S p(2)}^{10}\left(a_{1}, a_{2}\right)\right) \tau^{2}+\ldots
\end{aligned}
$$

where

[^32]\[

$$
\begin{equation*}
\chi_{S p(2)}^{10}\left(a_{1}, a_{2}\right)=\chi_{S U(2)}^{3}\left(a_{1}\right)+\chi_{S U(2)}^{3}\left(a_{2}\right)+\chi_{S U(2)}^{2}\left(a_{1}\right) \chi_{S U(2)}^{2}\left(a_{2}\right) . \tag{6.3}
\end{equation*}
$$

\]

The coefficient of τ is zero, indicating that the fixture contains no additional free hypermultiplets. The coefficient of τ^{2} is therefore the character of the adjoint representation of the global symmetry group of the SCFT, which is enhanced to $S p(2) \times U(1)$. Since the embedding (6.3) has index 1 , the level of $S p(2)$ is $k=4$.

$$
\text { Setting } a_{1}=a_{2}=a_{3}=1 \text {, we can sum (6.2) to obtain }
$$

$$
\begin{aligned}
& \mathcal{I}= \\
& \frac{1+2 \tau+8 \tau^{2}+20 \tau^{3}+41 \tau^{4}+62 \tau^{5}+87 \tau^{6}+96 \tau^{7}+\cdots(\text { palindrome }) \cdots+\tau^{14}}{(1-\tau)^{8}(1+\tau)^{6}\left(1+\tau+\tau^{2}\right)^{4}}
\end{aligned}
$$

This expression takes the expected form (see, e.g., [71), and the order of the pole at $\tau=1$ gives the complex dimension of the $4 D$ Higgs branch, which agrees with the answer obtained from S-duality [3, 7]

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{H}=48(c-a)=48\left(\frac{19}{12}-\frac{17}{12}\right)=8
$$

6.2.2 Argyres-Wittig duality

As a further check on the validity of our computation, we compare the index on both sides of the S-duality

$$
S U(3)+1(3)+1(6) \simeq S U(2)+R_{2,2}
$$

The $S U(3)$ theory is a Lagrangian theory, so its index is computed by the matrix integral ${ }_{4}^{4}$

$$
\begin{aligned}
\mathcal{I} & =\oint[d \mathbf{z}]_{S U(3)} P E\left[-\tau^{2} \chi_{S U(3)}^{8}\left(z_{1}, z_{2}\right)\right] P E\left[\tau \chi_{S U(3)}^{3}\left(z_{1}, z_{2}\right)\right] P E\left[\tau \chi_{S U(3)}^{\overline{3}}\left(z_{1}, z_{2}\right)\right] \\
& \times P E\left[\tau \chi_{S U(3)}^{\mathbf{6}}\left(z_{1}, z_{2}\right)\right] P E\left[\tau \chi_{S U(3)}^{\overline{\mathbf{6}}}\left(z_{1}, z_{2}\right)\right] \\
& =\frac{1}{3!} \oint \frac{d z_{1} d z_{2}}{(2 \pi i)^{2} z_{1} z_{2}}\left(1-\left(z_{1} / z_{2}\right)^{ \pm}\right)\left(1-z_{1}^{ \pm 2} z_{2}^{ \pm}\right)\left(1-z_{1}^{ \pm} z_{2}^{ \pm 2}\right) \\
& \times \frac{\left(1-\tau^{2}\right)^{2}\left(1-\tau^{2}\left(z_{1} / z_{2}\right)^{ \pm}\right)\left(1-\tau^{2} z_{1}^{ \pm 2} z_{2}^{ \pm}\right)\left(1-\tau^{2} z_{1}^{ \pm} z_{2}^{ \pm 2}\right)}{\left(1-\tau z_{1}^{ \pm}\right)^{2}\left(1-\tau z_{2}^{ \pm}\right)^{2}\left(1-\tau\left(z_{1} z_{2}\right)^{ \pm}\right)^{2}\left(1-\tau z_{1}^{ \pm 2}\right)\left(1-\tau z_{2}^{ \pm 2}\right)\left(1-\tau\left(z_{1} z_{2}\right)^{ \pm 2}\right)} .
\end{aligned}
$$

Summing the residues at the poles inside the unit circle (taking $\left|z_{1}\right|=\left|z_{2}\right|=$ $1, \tau<1$), we arrive at

$$
\begin{equation*}
\mathcal{I}=\frac{1+\tau^{2}+2 \tau^{3}+\tau^{4}}{(1-\tau)^{3}(1+\tau)\left(1+\tau+\tau^{2}\right)^{2}} \tag{6.4}
\end{equation*}
$$

On the $S U(2)$ side of the duality, the index is given by

$$
\mathcal{I}=\frac{1}{2!} \oint \frac{d a}{2 \pi i a}\left(1-a^{ \pm 2}\right) \mathcal{I}_{S U(2)}^{V}(a) \mathcal{I}_{R_{2,2}}\left(a, a^{-1}, 1\right),
$$

where $\mathcal{I}_{S U(2)}^{V}(a)$ is the index of a free $S U(2)$ vector multiplet. The integrand has poles inside the unit circle at $a=0, \pm \tau, \pm \tau^{3 / 2}$. Summing the residues, we reproduce (6.4). This gives strong evidence that (6.2) indeed gives the index of the Argyres-Wittig SCFT.

[^33]
6.2.3 Chiral ring

We can study the Hall-Littlewood chiral ring [76] of the Argyres-Wittig SCFT by taking the plethystic log of (6.2):

$$
\begin{aligned}
& P L[\mathcal{I}]=\tau^{2}\left(\chi_{S p(2)}^{10}\left(a_{1}, a_{2}\right)+1\right)+\tau^{3}\left(\chi_{S p(2)}^{\mathbf{5}}\left(a_{1}, a_{2}\right) a_{3}^{3}+\chi_{S p(2)}^{\mathbf{5}}\left(a_{1}, a_{2}\right) a_{3}^{-3}\right) \\
& -\tau^{4}\left(\chi_{S p(2)}^{\mathbf{5}}\left(a_{1}, a_{2}\right)+1\right)-\tau^{5}\left(\left(\chi_{S p(2)}^{10}\left(a_{1}, a_{2}\right)+\chi_{S p(2)}^{\mathbf{5}}\left(a_{1}, a_{2}\right)\right) a_{3}^{3}\right. \\
& \left.+\left(\chi_{S p(2)}^{10}\left(a_{1}, a_{2}\right)+\chi_{S p(2)}^{\mathbf{5}}\left(a_{1}, a_{2}\right)\right) a_{3}^{-3}\right)-\ldots
\end{aligned}
$$

where $\chi^{\mathbf{5}}\left(a_{1}, a_{2}\right)=1+\chi_{S U(2)}^{2}\left(a_{1}\right) \chi_{S U(2)}^{2}\left(a_{2}\right)$.
From this expression, we see that the chiral ring has generators at order 2 in the $\mathbf{1 0}_{0}+\mathbf{1}_{0}$ of $S p(2) \times U(1)$ (which are the holomorphic moment map operators for the global symmetry), as well as order 3 generators in the $\mathbf{5}_{3}+\mathbf{5}_{-3}$. These generators are subject to relations at order 4 in the $\mathbf{5}_{0}+\mathbf{1}_{0}$, as well as higher order relations.

We can understand the two relations at order 4 as follows. In [76, 77], it was shown that any $4 D \mathcal{N}=2$ SCFT contains families of protected operators whose correlation functions possess the structure of a $2 D$ chiral algebra. The existence of the chiral algebra structure leads to additional unitarity bounds on central charges in the $4 D$ theory, and saturation of these bounds was shown to follow from Higgs branch chiral ring relations. The operators counted by the Hall-Littlewood superconformal index fall into this class of protected operators, and from table 3 in [77], we see that the level of the $S p(2)$ factor in the global symmetry group saturates the unitarity bound, which follows from
an order 4 relation in the $\mathbf{5}$. It was also shown in [77] that an order 4 relation in the $\mathbf{1}$ implies that the $2 D$ chiral algebra has a stress tensor given by the Sugawara construction, with central charge:

$$
\begin{equation*}
c_{2 D}=\frac{k_{2 D} \operatorname{dim} G_{F}}{k_{2 D}+h^{\vee}} \tag{6.5}
\end{equation*}
$$

where the $2 D$ central charges are related to those in $4 D$ by $c_{2 D}=-12 c_{4 D}$, $k_{2 D}=-\frac{k_{4 D}}{2}$.

Indeed, we find that

$$
c_{4 D}=-\frac{1}{12}\left(\frac{(-2)(10)}{-2+1}+1\right)=\frac{19}{12} .
$$

6.3 Higher N

We now consider the compactification of the $6 D(2,0)$ theory of type $A_{2 N}$ on

and use the superconformal index to argue that these fixtures describe the $R_{2,2 N}$ family of interacting SCFTs, with no additional hypermultiplets.

The Hall-Littlewood index is given by

$$
\begin{equation*}
\mathcal{I}\left(\mathbf{x}_{i} ; \tau\right)=\sum_{\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N} \geq 0} \frac{\prod_{i=1}^{2} \mathcal{K}\left(\mathbf{x}_{i}\right) P_{S p(N)}^{\left(\lambda_{1}, \ldots, \lambda_{N}\right)}\left(\mathbf{x}_{i} ; \tau\right) \mathcal{K}\left(\mathbf{x}_{3}\right) P_{S U(2 N+1)}^{\left(\lambda_{1}^{\prime}, \ldots, \lambda_{N}^{\prime}\right)}\left(\mathbf{x}_{3} ; \tau\right)}{\mathcal{K}_{\rho} P_{S U(2 N+1)}^{\left(\lambda_{1}^{\prime}, \ldots, \lambda_{N}^{\prime}\right)}\left(\mathbf{x}_{\rho} ; \tau\right)} \tag{6.6}
\end{equation*}
$$

where the sum runs over integers λ_{i} labeling $S p(N)$ irreps, and the corresponding $S U(2 N+1)$ representations are given by $\left(\lambda_{1}^{\prime}, \ldots, \lambda_{N}^{\prime}\right)=\left(2 \lambda_{1}, \lambda_{1}+\right.$ $\left.\lambda_{2}, \ldots, \lambda_{1}+\lambda_{N}, \lambda_{1}, \lambda_{1}-\lambda_{N}, \ldots, \lambda_{1}-\lambda_{2}\right)$.

We can characterize these fixtures by the leading power of τ in the expansion of (6.6), as follows [27]: The term coming from taking $\left(\lambda_{1}, \ldots, \lambda_{N}\right)=$ $(0, \ldots, 0)$ in the sum is

$$
1+\tau^{2}\left(\chi_{S p(N)}^{\mathrm{N}(\mathbf{2}+\mathbf{1})}\left(\mathbf{x}_{1}\right)+\chi_{S p(N)}^{\mathrm{N}(\mathbf{2}+\mathbf{1})}\left(\mathbf{x}_{2}\right)+1\right)+\mathcal{O}\left(\tau^{4}\right),
$$

encoding the manifest $\operatorname{Sp}(N)_{2 N+2} \times S p(N)_{2 N+2} \times U(1)$ global symmetry. This global symmetry is enhanced if there are additional terms at order τ^{2} coming from the sum over non-trivial representations. If there are also terms at order τ, then the fixture contains free hypermultiplets along with the interacting SCFT.

Following [27], we give the leading behavior of (6.6) in terms of a vector v, with components

$$
\begin{equation*}
v_{i}=(2 N+2-2 i)+\sum_{\ell=1}^{3} d_{i}^{(\ell)} \tag{6.7}
\end{equation*}
$$

where the first term is the leading power of τ from the denominator in (6.6), and the second term is the leading power of τ from the punctures. For the full twisted punctures, $d_{i}^{(\ell)}=0$ for all i, while for the minimal untwisted puncture we have

$$
d_{i}^{(3)}= \begin{cases}2 i-2 N-1, & 1 \leq i \leq N \\ 0, & i=N+1 \\ 2 i-2 N-3, & N+2 \leq i \leq 2 N\end{cases}
$$

Equation (6.7) then gives

$$
v_{i}= \begin{cases}1, & 1 \leq i \leq N \\ 0, & i=N+1 \\ -1, & N+2 \leq i \leq 2 N\end{cases}
$$

The leading power in τ of (6.6) is therefore given by

$$
\begin{align*}
v \cdot \lambda^{\prime} & =(N+1) \lambda_{1}+\lambda_{2}+\cdots+\lambda_{N}+0-(N-1) \lambda_{1}+\lambda_{2}+\cdots+\lambda_{N} \\
& =2\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{N}\right) \tag{6.8}
\end{align*}
$$

This is minimized by taking $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right)=(1,0, \ldots, 0)$, which gives $v \cdot \lambda^{\prime}=$ 2. Thus, the fixture contains no free hypermultiplets. It is easy to check that the global symmetry is enhanced to $S p(2 N)_{2 N+2} \times U(1)$ by the index 1 embedding

$$
\begin{aligned}
S p(2 N) & \supset S p(N) \times S p(N) \\
& \mathbf{A d} \mathbf{j}=(\mathbf{A d j}, \mathbf{1})+(\mathbf{1}, \mathbf{A d j})+(\mathbf{2 N}, \mathbf{2 N})
\end{aligned}
$$

and the level of $S p(2 N)$ therefore saturates the unitarity bound in [77].
With $n=0$, the S-duality is then given by 6.1), which implies that this SCFT has an effective number of vector and hypermultiplets given by $\left(n_{h}, n_{v}\right)=\left((2 N+1)^{2},(2 N+1)^{2}-1-N(2 N+1)\right)$, which encode the trace anomaly coefficients $(a, c)=\left(\frac{n_{h}+5 n_{v}}{24}, \frac{n_{h}+2 n_{v}}{12}\right)=\left(\frac{1+19 N+14 N^{2}}{24}, \frac{1+10 N+8 N^{2}}{12}\right)$. We see that the $4 D$ central charge is given by the Sugawara construction:

$$
\begin{align*}
c_{4 D} & =-\frac{1}{12}\left(\frac{-(N+1) 2 N(4 N+1)}{-(N+1)+2 N+1}+1\right) \tag{6.9}\\
& =\frac{1+10 N+8 N^{2}}{12} .
\end{align*}
$$

It is easy to check that the saturation of these unitarity bounds follows from chiral ring relations at order τ^{4} in the $\mathbf{1}_{0}+\left(\frac{\mathbf{1}}{\mathbf{2}}(\mathbf{4 N}+\mathbf{1})(\mathbf{4 N}-\mathbf{2})\right)_{\mathbf{0}}$ of $S p(2 N) \times$ $U(1)$ by taking the plethystic \log of (6.6).

A similar analysis can be carried-through for the $R_{2,2 N-1}$ theories. As already pointed out in [77], the level of the $\operatorname{Spin}(4 N+2)_{4 N-2}$ saturates the unitarity bound and the stress tensor of the 2D chiral algebra takes the Sugawara form, (6.5).

Appendices

Appendix A

Tables of \mathbb{Z}_{2}-Twisted D_{N} Punctures

A. $1 \quad D_{5}$ Twisted Sector

Table A.1: D_{5} Twisted Sector

Nahm C-partition	Hitchin Bpartition	Pole structure	Constraints	Flavour group	$\left(\delta n_{h}, \delta n_{v}\right)$
صهחדחד	[9]	$\left\{1,3,5,7 ; \frac{9}{2}\right\}$	-	$S p(4)_{10}$	(240, $\frac{449}{2}$)
$\square_{(\mathrm{ns})}$	$\begin{gathered} \left(\left[7,1^{2}\right],\right. \\ \left.\mathbb{Z}_{2}\right) \\ \hline \end{gathered}$	$\left\{1,3,5,7 ; \frac{7}{2}\right\}$	-	$S p(3){ }_{9}$	(227, $\frac{431}{2}$)
サ110	$\left[7,1^{2}\right]$	$\left\{1,3,5,7 ; \frac{7}{2}\right\}$	$c_{7}^{(8)}=\left(a_{7 / 2}^{(4)}\right)^{2}$	$\begin{aligned} & S p(2)_{8} \times \\ & U(1) \end{aligned}$	$\left(216, \frac{415}{2}\right)$
$\square^{\square}(\mathrm{ns})$	$\begin{gathered} ([5,3,1], \\ \left.\mathbb{Z}_{2}\right) \end{gathered}$	$\left\{1,3,5,6 ; \frac{7}{2}\right\}$	-	$\begin{gathered} S U(2)_{32} \\ \times \\ S U(2)_{7} \end{gathered}$	(207, $\frac{401}{2}$)
\square	$[5,3,1]$	$\left\{1,3,5,6 ; \frac{7}{2}\right\}$	$c_{5}^{(6)}=\left(a_{5 / 2}^{(3)}\right)^{2}$	$S U(2)_{16}^{2}$	(200, $\frac{389}{2}$)
	$\left[5,2^{2}\right]$	$\left\{1,3,5,6 ; \frac{7}{2}\right\}$	$\begin{gathered} c_{5}^{(6)}=\left(a_{5 / 2}^{(3)}\right)^{2} \\ c_{6}^{(8)}=2 a_{5 / 2}^{(3)} \tilde{c}_{7 / 2}^{(5)} \end{gathered}$	$\begin{gathered} S U(2)_{10} \\ \times \\ S U(2)_{6} \end{gathered}$	(184, $\frac{359}{2}$)

Table A.1: D_{5} Twisted Sector

Nahm C-partition	Hitchin Bpartition	Pole structure	Constraints	Flavour group	$\left(\delta n_{h}, \delta n_{v}\right)$
	$\begin{gathered} \left(\left[5,1^{4}\right],\right. \\ \left.\mathbb{Z}_{2}\right) \\ \hline \end{gathered}$	$\left\{1,3,5,5 ; \frac{5}{2}\right\}$	-	$S p(2){ }_{7}$	(182, $\frac{353}{2}$)
	$\left[5,1^{4}\right]$	$\left\{1,3,5,5 ; \frac{5}{2}\right\}$	$c_{5}^{(6)}=\left(a_{5 / 2}^{(3)}\right)^{2}$	$S U(2)_{6}$	$\left(174, \frac{341}{2}\right)$
	$\left[3^{3}\right]$	$\left\{1,3,4,5 ; \frac{7}{2}\right\}$	-	$S U(2)_{10}$	(178, $\frac{349}{2}$)
	$\left[3^{2}, 1^{3}\right]$	$\left\{1,3,4,5 ; \frac{5}{2}\right\}$	-	$U(1)$	(168, $\frac{331}{2}$)
	$\left[3,2^{2}, 1^{2}\right]$	$\left\{1,3,4,5 ; \frac{5}{2}\right\}$	$\begin{gathered} c_{3}^{(4)}=\left(a_{3 / 2}^{(2)}\right)^{2} \\ c_{4}^{(6)}=2 a_{3 / 2}^{(2)} a_{5 / 2}^{(4)} \\ c_{5}^{(8)}=\left(a_{5 / 2}^{(4)}\right)^{2} \end{gathered}$	$U(1)$	(144, $\frac{285}{2}$)
	$\begin{gathered} \left(\left[3,1^{6}\right],\right. \\ \left.\mathbb{Z}_{2}\right) \end{gathered}$	$\left\{1,3,3,3 ; \frac{3}{2}\right\}$	-	$S U(2)_{5}$	(117, $\frac{231}{2}$)
	$\left[3,1^{6}\right]$	$\left\{1,3,3,3 ; \frac{3}{2}\right\}$	$c_{3}^{(4)}=\left(a_{3 / 2}^{(2)}\right)^{2}$	none	(112, $\frac{223}{2}$)

Table A．1：D_{5} Twisted Sector

Nahm C－partition	Hitchin B－ partition	Pole struc－ ture	Constraints	Flavour group	$\left(\delta n_{h}, \delta n_{v}\right)$
日					
日		$\left[1^{9}\right]$	$\left\{1,1,1,1 ; \frac{1}{2}\right\}$	-	none

A． $2 \quad D_{6}$ Twisted Sector

Table A．2：D_{6} Twisted Sector

Nahm C－ partition	Hitchin B－ partition	Pole structure	Constraints	Flavour group	$\left(\delta n_{h}, \delta n_{v}\right)$
（10mm0	［11］	$\left\{1,3,5,7,9 ; \frac{11}{2}\right\}$	－	$S p(5)_{12}$	$\left(440, \frac{831}{2}\right)$
\％mins）	$\begin{gathered} \left(\left[9,1^{2}\right]\right. \\ \left.\mathbb{Z}_{2}\right) \\ \hline \end{gathered}$	$\left\{1,3,5,7,9 ; \frac{9}{2}\right\}$	－	$S p(4)_{11}$	$\left(424, \frac{809}{2}\right)$
田	$\left[9,1^{2}\right]$	$\left\{1,3,5,7,9 ; \frac{9}{2}\right\}$	$\begin{array}{ll} \hline c_{9}^{(10)} & = \\ \left(a_{9 / 2}\right)^{(5)} & \\ \hline \end{array}$	$\begin{aligned} & S p(3)_{10} \times \\ & U(1) \end{aligned}$	（410，$\frac{789}{2}$ ）
\＃mm（ns）	$\begin{gathered} ([7,3,1] \\ \left.\mathbb{Z}_{2}\right) \end{gathered}$	$\left\{1,3,5,7,8 ; \frac{9}{2}\right\}$	－	$\begin{aligned} & S p(2)_{9} \times \\ & S U(2)_{40} \end{aligned}$	$\left(398, \frac{771}{2}\right)$
冉回	$[7,3,1]$	$\left\{1,3,5,7,8 ; \frac{9}{2}\right\}$	$\begin{aligned} & c_{7}^{(8)}= \\ & \left(a_{7 / 2}^{(4)}\right)^{2} \end{aligned}=$	$\begin{gathered} S U(2)_{20}^{2} \\ \times \\ S U(2)_{8} \\ \hline \end{gathered}$	（388，$\frac{755}{2}$ ）

Table A．2：D_{6} Twisted Sector

$\begin{gathered} \text { Nahm } \\ \text { C- } \\ \text { partition } \end{gathered}$	Hitchin B－ partition	Pole structure	Constraints	Flavour group	$\left(\delta n_{h}, \delta n_{v}\right)$
\＃\＃	$\left[5^{2}, 1\right]$	$\left\{1,3,5,6,8 ; \frac{9}{2}\right\}$	－	$S p(2){ }_{12}$	（380，$\frac{741}{2}$ ）
	$\left[7,2^{2}\right]$	$\left\{1,3,5,7,8 ; \frac{9}{2}\right\}$	$\begin{gathered} c_{7}^{(8)}= \\ \left(a_{7 / 2}^{(4)}\right)^{2} \\ c_{8}^{(10)}= \\ 2 a_{7 / 2}^{(4)} \tilde{c}_{9 / 2}^{(6)} \end{gathered}$	$\begin{aligned} & S p(2)_{8} \times \\ & S U(2)_{12} \end{aligned}$	$\left(368, \frac{717}{2}\right)$
$\Pi_{(n s)}$	$\begin{gathered} \left(\left[5,3^{2}\right]\right. \\ \left.\mathbb{Z}_{2}\right) \end{gathered}$	$\left\{1,3,5,6,7 ; \frac{9}{2}\right\}$	－	$\begin{gathered} S U(2)_{12} \\ \times \\ S U(2)_{7} \\ \hline \end{gathered}$	（359，$\frac{703}{2}$ ）
$母 ⿻ 彐 丨$	$\left[5,3^{2}\right]$	$\left\{1,3,5,6,7 ; \frac{9}{2}\right\}$	$\begin{aligned} & c_{5}^{(6)}= \\ & \left(a_{5 / 2}\right)^{3)} \end{aligned}=$	$\begin{gathered} S U(2)_{12} \\ \times \\ U(1) \\ \hline \end{gathered}$	（352，$\frac{691}{2}$ ）
$\theta^{n}(\mathrm{~ns})$	$\begin{gathered} \left(\left[7,1^{4}\right]\right. \\ \left.\mathbb{Z}_{2}\right) \end{gathered}$	$\left\{1,3,5,7,7 ; \frac{7}{2}\right\}$	－	$S p(3){ }_{9}$	$\left(367, \frac{711}{2}\right)$
母	$\left[7,1^{4}\right]$	$\left\{1,3,5,7,7 ; \frac{7}{2}\right\}$	$\begin{aligned} & c_{7}^{(8)}= \\ & \left(a_{7 / 2}^{(4)}\right)^{2} \end{aligned}$	$S p(2){ }_{8}$	$\left(356, \frac{695}{2}\right)$
$\text { \#'r }_{(\mathrm{ns})}$	$\begin{gathered} \left(\left[5,3,1^{3}\right]\right. \\ \left.\mathbb{Z}_{2}\right) \\ \hline \end{gathered}$	，$\left\{1,3,5,6,7 ; \frac{7}{2}\right\}$	－	$\begin{aligned} & S U(2)_{7} \times \\ & U(1) \end{aligned}$	（347，$\frac{681}{2}$ ）
\#\#	$\left[5,3,1^{3}\right]$	$\left\{1,3,5,6,7 ; \frac{7}{2}\right\}$	$\begin{aligned} & c_{5}^{(6)}= \\ & \left.\left(a_{5 / 2}\right)^{(3)}\right)^{2} \end{aligned}$	$S U(2)_{32}$	（340，$\frac{669}{2}$ ）

Table A．2：D_{6} Twisted Sector

Nahm C－ partition	Hitchin B－ partition	Pole structure	Constraints	Flavour group	$\left(\delta n_{h}, \delta n_{v}\right)$
母	$\left[5,2^{2}, 1^{2}\right]$	$\left\{1,3,5,6,7 ; \frac{7}{2}\right\}$	$\begin{gathered} c_{5}^{(6)}= \\ \left(a_{5 / 2}^{(3)}\right)^{2} \\ c_{6}^{(8)}= \\ 2 a_{5 / 2}^{(3)} a_{7 / 2}^{(5)} \\ c_{7}^{(10)}= \\ \left(a_{7 / 2}^{(5)}\right)^{2} \\ \hline \end{gathered}$	$\begin{aligned} & S U(2)_{6} \times \\ & U(1) \end{aligned}$	$\left(314, \frac{619}{2}\right)$
\#(ns)	$\begin{gathered} \left(\left[3^{3}, 1^{2}\right],\right. \\ \left.\mathbb{Z}_{2}\right) \\ \hline \end{gathered}$	$\left\{1,3,4,5,7 ; \frac{7}{2}\right\}$	－	$S U(2)_{11}$	（319，$\frac{629}{2}$ ）
田	$\left[3^{3}, 1^{2}\right]$	$\left\{1,3,4,5,7 ; \frac{7}{2}\right\}$	$\begin{aligned} & c_{7}^{(10)}= \\ & \left(a_{7 / 2}^{(5)}\right)^{2} \end{aligned}$	$U(1)$	（308，$\frac{609}{2}$ ）
田	$\left[3,2^{4}\right]$	$\left\{1,3,4,5,6 ; \frac{7}{2}\right\}$	$\begin{gathered} c_{3}^{(4)}= \\ \left(a_{3 / 2}^{(2)}\right)^{2} \\ c_{4}^{(6)}= \\ 2 a_{3 / 2}^{(2)} a_{5 / 2}^{(4)} \\ c_{5}^{(8)}= \\ \left(a_{5 / 2}^{(4)}\right)^{2} \\ +2 a_{3 / 2}^{(2)} \tilde{c}_{7 / 2}^{(6)} \\ c_{6}^{(10)}= \\ 2 a_{5 / 2}^{(4)} \tilde{c}_{7 / 2}^{(6)} \\ \hline \end{gathered}$	$S U(2)_{12}$	$\left(256, \frac{507}{2}\right)$
	$\begin{gathered} \left(\left[5,1^{6}\right]\right. \\ \left.\mathbb{Z}_{2}\right) \end{gathered}$	$\left\{1,3,5,5,5 ; \frac{5}{2}\right\}$	－	$S p(2)_{7}$	（282，$\frac{553}{2}$ ）

Table A．2：D_{6} Twisted Sector

Nahm C－ partition	Hitchin B－ partition	Pole structure	Constraints	Flavour group	$\left(\delta n_{h}, \delta n_{v}\right)$
\＃	$\left[5,1^{6}\right]$	$\left\{1,3,5,5,5 ; \frac{5}{2}\right\}$	$\begin{aligned} & c_{5}^{(6)}= \\ & \left(a_{5 / 2}^{(3)}\right)^{2} \end{aligned}$	$S U(2){ }_{6}$	$\left(274, \frac{541}{2}\right)$
	$\left[3^{2}, 1^{5}\right]$	$\left\{1,3,4,5,5 ; \frac{5}{2}\right\}$	－	$U(1)$	（268，$\frac{531}{2}$ ）
田	$\left[3,2^{2}, 1^{4}\right]$	$\left\{1,3,4,5,5 ; \frac{5}{2}\right\}$	$\begin{gathered} c_{3}^{(4)}= \\ \left(a_{3 / 2}^{(2)}\right)^{2} \\ c_{4}^{(6)}= \\ 2 a_{3 / 2}^{(2)} a_{5 / 2}^{(4)} \\ c_{5}^{(8)}= \\ \left(a_{5 / 2}^{(4)}\right)^{2} \\ \hline \end{gathered}$	none	$\left(244, \frac{485}{2}\right)$
	$\left(\left[3,1^{8}\right]\right.$ $\left.\mathbb{Z}_{2}\right)$	$\left\{1,3,3,3,3 ; \frac{3}{2}\right\}$	－	$S U(2)_{5}$	$\left(177, \frac{351}{2}\right)$
田	$\left[3,1^{8}\right]$	$\left\{1,3,3,3,3 ; \frac{3}{2}\right\}$	$\begin{aligned} & c_{3}^{(4)}= \\ & \left(a_{3 / 2}^{(2)}\right)^{2} \end{aligned}$	none	$\left(172, \frac{343}{2}\right)$
昌	［ 1^{11} ］	$\left\{1,1,1,1,1 ; \frac{1}{2}\right\}$	－	none	（60，$\frac{121}{2}$ ）

Appendix B

Bala-Carter Notation

B. 1 Bala-Carter Labels

In the twisted and untwisted sectors of the A and D series, punctures were in one-to-one correspondence with certain classes of partitions [4, 7, 1, 11]. The partition denotes how the fundamental representation (vector representation, in the case of $\mathfrak{s o}(N))$ of $\mathfrak{g} \square$ decomposes into representations of the corresponding (Nahm) $\mathfrak{s u}(2)$. Moreover, one can also read off the centralizer, \mathfrak{f}, of $\mathfrak{s u}(2)$ inside \mathfrak{g}, as well as the decomposition of the fundamental representation of \mathfrak{g} under $\mathfrak{s u}(2) \times \mathfrak{f}$, from the partition (see (2.7) in [7]). The decomposition under $\mathfrak{s u}(2) \times \mathfrak{f}$ for each puncture is precisely the information needed to compute the flavour group levels in 84.1 .4 .1 , as well as the expansion of the superconformal index in $\$ 5.3$. In what follows, we will explain how these decompositions are obtained for the punctures in the \mathfrak{e}_{6} theory.

In contrast to classical \mathfrak{g}, nilpotent orbits in the exceptional Lie algebras, which label our punctures, are not naturally classified by partitions. The theorem of Bala and Carter states that there is a one-to-one correspondence

[^34]between nilpotent orbits in \mathfrak{g} and (conjugacy classes of) pairs $\left(\mathfrak{l}, O^{\mathfrak{l}}\right)$ where \mathfrak{l} is a Levi subalgebra ${ }^{2}$ of \mathfrak{g} and $O^{\mathfrak{l}}$ is a distinguished 3^{3} nilpotent orbit in \mathfrak{l}. By the Jacobson-Morozov theorem, any representative X of $O^{\text {l }}$ embeds in a standard triple $\mathbb{4}^{4}\{H, X, Y\} \subset \mathfrak{l}$, where $H \in \mathfrak{h} . \mathfrak{l}$ then has a decomposition into $a d_{H}$-eigenspaces
$$
\mathfrak{l}=\bigoplus_{k \in \mathbb{Z}} \mathfrak{l}_{k}
$$
where $\mathfrak{l}_{k}=\{x \in \mathfrak{l} \mid[H, x]=k x\}$. Let $\mathfrak{l}^{\prime} \equiv \mathfrak{l}_{0}$ and $\mathfrak{u}^{\prime} \equiv \oplus_{0<k \in \mathbb{Z}} \mathfrak{l}_{k}$. Then, $\mathfrak{p}=\mathfrak{l}^{\prime}+\mathfrak{u}^{\prime}$ is a parabolic subalgebra of \mathfrak{l}, with explicit Levi decomposition into a Levi subalgebra \mathfrak{l}^{\prime} and the nilradical \mathfrak{u}^{\prime} of \mathfrak{p}. (Notice that the Cartan of \mathfrak{l} is contained in \mathfrak{l}^{\prime}, so $\operatorname{rank}\left(\mathfrak{l}^{\prime}\right)=\operatorname{rank}(\mathfrak{l})$.

A nilpotent orbit in \mathfrak{g} is then given the label $X_{N}\left(a_{i}\right)$, called the BalaCarter label, where X_{N} is the Cartan type of the semisimple part of \mathfrak{l}, and i is the number of simple roots in \mathfrak{l}^{\prime}. The case $i=0$ is denoted just by X_{N}, and corresponds to the principal orbit in \mathfrak{l}, which is always distinguished.

There are 16 conjugacy classes of Levi subalgebras of E_{6}. These are specified by their semisimple parts: $0, A_{1}, 2 A_{1}, 3 A_{1}, A_{2}, A_{2}+A_{1}, 2 A_{2}, A_{2}$, $A_{2}+2 A_{1}, A_{3}+A_{1}, D_{4}, A_{4}, A_{4}+A_{1}, A_{5}, D_{5}$, and E_{6}. Here, $k A_{N}$ denotes the direct sum of k copies of A_{N}. The label 0 denotes the Cartan subalgebra,

[^35]for which the only distinguished orbit is the zero orbit. For \mathfrak{l} of classical type, distinguished orbits in \mathfrak{l} are easily specified in terms of their partition: for \mathfrak{l} of type A, the only distinguished orbit is the principal orbit (which, for A_{N-1}, has partition $[N]$), while for \mathfrak{l} of type B, C, D, distinguished orbits are those for which the partition has no repeated parts. It was found by Bala and Carter that, for \mathfrak{l} of type $G_{2}, F_{4}, E_{6}, E_{7}$, and E_{8}, there are $2,4,3,6$, and 11 distinguished orbits, respectively.

The distinguished orbits in the Levi subalgebras listed above give rise to 21 nilpotent orbits in \mathfrak{e}_{6}. We list these in the table below, along with the centralizer, \mathfrak{f}, and the decomposition of the 27 and 78 of \mathfrak{e}_{6} under $\mathfrak{s u}(2) \times \mathfrak{f}^{5}$. But, before that, let us give a few examples of how to obtain the decomposition of the 27 for various embeddings.

First, consider $\mathfrak{l}=D_{4}$. In this case there are two distinguished orbits, with partitions [7,1] and [5,3], corresponding to nilpotent orbits D_{4} and $D_{4}\left(a_{1}\right)$, respectively, in \mathfrak{e}_{6}. The first has centralizer $\mathfrak{s u}(3)$ and the second, $\mathfrak{u}(1)^{2}$. We can obtain the decomposition of the 27 for each of these by embedding $\mathfrak{s u}(2)$ in the $\mathfrak{s o}(8)$ factor in $\mathfrak{s o}(8) \times \mathfrak{u}(1)^{2} \subset \mathfrak{s o}(10) \times \mathfrak{u}(1) \subset \mathfrak{e}_{6}$. The 27 of \mathfrak{e}_{6} decomposes

[^36]under $\mathfrak{s o}(10) \times \mathfrak{u}(1)$ as
\[

$$
\begin{aligned}
\mathfrak{e}_{6} & \supset \mathfrak{s o}(10) \times \mathfrak{u}(1) \\
27 & =1_{-4}+10_{2}+16_{-1}
\end{aligned}
$$
\]

The 10 and 16 of $\mathfrak{s o (1 0)}$ decompose under $\mathfrak{s o}(8) \times \mathfrak{u}(1)$ as

$$
\begin{aligned}
\mathfrak{s o}(10) & \supset \mathfrak{s o}(8) \times \mathfrak{u}(1) \\
10 & =1_{2}+1_{-2}+\left(8_{v}\right)_{0} \\
16 & =\left(8_{s}\right)_{1}+\left(8_{c}\right)_{-1}
\end{aligned}
$$

so we have

$$
\begin{aligned}
\mathfrak{e}_{6} & \supset \mathfrak{s o}(8) \times \mathfrak{u}(1) \times \mathfrak{u}(1) \\
27 & =1_{0,-4}+1_{2,2}+1_{-2,2}+\left(8_{v}\right)_{0,2}+\left(8_{s}\right)_{1,-1}+\left(8_{c}\right)_{-1,-1}
\end{aligned}
$$

For $D_{4}\left(a_{1}\right)$, we embed $\mathfrak{s u}(2)$ in $\mathfrak{s o}(8)$ by taking

$$
\begin{aligned}
\mathfrak{s o}(8) & \supset \mathfrak{s u}(2) \\
8_{v, s, c} & =5+3
\end{aligned}
$$

which gives

$$
\begin{aligned}
\mathfrak{e}_{6} & \supset \mathfrak{s u}(2) \times \mathfrak{u}(1) \times \mathfrak{u}(1) \\
27 & =1_{0,-4}+1_{2,2}+1_{-2,2}+3_{0,2}+3_{1,-1}+3_{-1,-1}+5_{0,2}+5_{1,-1}+5_{-1,-1}
\end{aligned}
$$

For D_{4}, we embed $\mathfrak{s u}(2)$ in $\mathfrak{s o}(8)$ by taking

$$
\begin{aligned}
\mathfrak{s o}(8) & \supset \mathfrak{s u}(2) \\
8_{v, s, c} & =7+1
\end{aligned}
$$

which gives

$$
\begin{aligned}
\mathfrak{e}_{6} & \supset \mathfrak{s u}(2) \times \mathfrak{u}(1) \times \mathfrak{u}(1) \\
27 & =1_{0,-4}+1_{2,2}+1_{-2,2}+1_{0,2}+1_{1,-1}+1_{-1,-1}+7_{0,2}+7_{1,-1}+7_{-1,-1}
\end{aligned}
$$

For this embedding, the $\mathfrak{u}(1)^{2}$ centralizer enhances to $\mathfrak{s u}(3)$. To see this, we can make a change of basis so that the two $\mathfrak{u}(1)$ charges are given in terms of the old ones by

$$
\begin{aligned}
q_{1}^{\prime} & =\frac{1}{2}\left(q_{1}+q_{2}\right) \\
q_{2}^{\prime} & =\frac{1}{2}\left(q_{1}-q_{2}\right)
\end{aligned}
$$

Then the decomposition becomes

$$
\begin{aligned}
\mathfrak{e}_{6} & \supset \mathfrak{s u}(2) \times \mathfrak{u}(1) \times \mathfrak{u}(1) \\
27 & =1_{-2,2}+1_{2,0}+1_{0,-2}+1_{1,-1}+1_{0,1}+1_{-1,0}+7_{1,-1}+7_{0,1}+7_{-1,0}
\end{aligned}
$$

where we recognize these $\mathfrak{u}(1)^{2}$ charges as the weights (in the Dynkin basis) of the 6 and $\overline{3}$ of $\mathfrak{s u}(3)$. Thus, the decomposition of the 27 is given by

$$
\begin{array}{r}
\mathfrak{e}_{6} \supset \mathfrak{s u}(2) \times \mathfrak{s u}(3) \\
27=(1,6)+(7, \overline{3})
\end{array}
$$

Now, consider $\mathfrak{l}=E_{6}$. There are three distinguished orbits in \mathfrak{e}_{6}, giving rise to nilpotent orbits $E_{6}, E_{6}\left(a_{1}\right)$, and $E_{6}\left(a_{3}\right)$. The decomposition of the 27 for each of these can be obtained by taking the principal embedding of $\mathfrak{s u}(2)$ inside the maximal subalgebras $\mathfrak{f}_{4}, \mathfrak{s p}(4)$, and $\mathfrak{s u}(3)$ of $\mathfrak{e}_{6}{ }^{6}$, respectively. We work out the decomposition for E_{6} (the principal nilpotent orbit in \mathfrak{e}_{6}); the decompositions for $E_{6}\left(a_{1}\right)$ and $E_{6}\left(a_{3}\right)$ follow the same steps.

The 27 of \mathfrak{e}_{6} decomposes under \mathfrak{f}_{4} as

$$
\begin{aligned}
\mathfrak{e}_{6} & \supset \mathfrak{f}_{4} \\
27 & =1+26
\end{aligned}
$$

The principal embedding of $\mathfrak{s u}(2)$ in \mathfrak{f}_{4} is given by taking

$$
\begin{aligned}
\mathfrak{f}_{4} & \supset \mathfrak{s u}(2) \\
26 & =9+17
\end{aligned}
$$

so the decomposition of the 27 for E_{6} is given by

$$
\begin{aligned}
& \mathfrak{e}_{6} \supset \mathfrak{s u}(2) \\
& 27=1+9+17
\end{aligned}
$$

To see which distinguished orbit corresponds to which $E_{6}\left(a_{i}\right)$, we need to count the number of simple roots in \mathfrak{l}^{\prime}. To do that, we make recourse to the decomposition of the 78 .

[^37]- For the first case (embedding via \mathfrak{f}_{4}), the 78 decomposes as $3+9+$ $11+15+17+23$. So $\operatorname{dim}\left(\mathfrak{l}^{\prime}\right)=\operatorname{dim}\left(\mathfrak{g}_{0}\right)=6$, which is also equal to $\operatorname{rank}\left(\mathfrak{l}^{\prime}\right)=\operatorname{rank}\left(\mathfrak{e}_{6}\right)$. Thus \mathfrak{l}^{\prime} is just the Cartan subalgebra and this is the principal embedding, E_{6}.
- For the embedding via $\mathfrak{s p}(4)$, the 78 decomposes as $3+5+7+9+2(11)+$ $15+17$, so we have $\operatorname{dim}\left(\mathfrak{l}^{\prime}\right)=8$ and \mathfrak{l}^{\prime} must contain precisely one positive (hence, simple) root. Thus, this is $E_{6}\left(a_{1}\right)$.
- Finally, for the embedding via $\mathfrak{s u}(3)$, the 78 decomposes as $3(3)+3(5)+$ $2(7)+2(9)+2(11)$, so $\operatorname{dim}\left(\mathfrak{l}^{\prime}\right)=12$ and \mathfrak{l}^{\prime} contains three simple roots. Hence, this is $E_{6}\left(a_{3}\right)$.

Appendix C

Embeddings of $S U(2)$ in E_{6}

C. 1 Embeddings of $S U(2)$ in E_{6}

Here we give the decompositions of the 27 and the 78 under $\mathfrak{s u}(2) \times \mathfrak{f}$ for the nilpotent orbits in \mathfrak{e}_{6}.

Table C.1: Embeddings of $S U(2)$ in E_{6}

Bala- Carter	\mathfrak{f}	27	78
0	\mathfrak{e}_{6}	$(1 ; 27)$	$(1 ; 78)$
A_{1}	$\mathfrak{s u}(6)$	$(1 ; \overline{15})+(2 ; 6)$	$(1 ; 35)+(2 ; 20)+(3 ; 1)$
$2 A_{1}$	$\begin{aligned} & \mathfrak{s o}(7) \times \\ & \mathfrak{u}(1) \\ & \hline \end{aligned}$	$\begin{aligned} & \left(1 ; 7_{2}+1_{-4}\right) \\ & \quad+\left(2 ; 8_{-1}\right)+\left(3 ; 1_{2}\right) \end{aligned}$	$\begin{gathered} \left(1 ; 1_{0}+21_{0}\right) \\ +\left(2 ; 8_{3}+8_{-3}\right)+\left(3 ; 7_{0}+1_{0}\right) \end{gathered}$
$3 A_{1}$	$\begin{aligned} & \mathfrak{s u}(3) \times \\ & \mathfrak{s u}(2) \end{aligned}$	$\begin{gathered} (1 ; \overline{6}, 1)+(2 ; 3,2) \\ +(3 ; 3,1) \end{gathered}$	$\begin{gathered} (1 ; 8,1)+(1 ; 1,3)+(2 ; 8,2) \\ +(3 ; 1,1)+(3 ; 8,1)+(4 ; 1,2) \end{gathered}$
A_{2}	$\begin{aligned} & \mathfrak{s u}(3) \times \\ & \mathfrak{s u}(3) \end{aligned}$	$\begin{gathered} (1 ; 3, \overline{3})+(3 ; 1,3) \\ +(3 ; \overline{3}, 1) \end{gathered}$	$\begin{gathered} (1 ; 8,1)+(1 ; 1,8)+(3 ; 1,1) \\ +(3 ; 3,3)+(3 ; \overline{3}, \overline{3}) \\ +(5 ; 1,1) \end{gathered}$

Table C.1: Embeddings of $S U(2)$ in E_{6}

Bala- Carter	\mathfrak{f}	27	78
$A_{2}+A_{1}$	$\begin{aligned} & \mathfrak{s u}(3) \times \\ & \mathfrak{u}(1) \end{aligned}$	$\begin{gathered} \left(1 ; 3_{2}\right)+\left(2 ; 3_{-1}+1_{1}\right)+ \\ \left(3 ; \overline{3}_{0}+1_{-2}\right)+\left(4 ; 1_{1}\right) \end{gathered}$	$\begin{gathered} \left(1 ; 8_{0}+1_{0}\right)+ \\ \left(2 ; 3_{1}+\overline{3}_{-1}+1_{-3}+1_{3}\right) \\ +\left(3 ; 3_{-2}+\overline{3}_{2}+1_{0}+1_{0}\right) \\ +\left(4 ; 3_{1}+\overline{3}_{-1}\right)+\left(5 ; 1_{0}\right) \\ \hline \end{gathered}$
$2 A_{2}$	\mathfrak{g}_{2}	$(1 ; 1)+(3 ; 7)+(5 ; 1)$	$(1 ; 14)+(3 ; 7+1)+(5 ; 7+1)$
$\begin{aligned} & A_{2}+ \\ & 2 A_{1} \end{aligned}$	$\begin{aligned} & \mathfrak{s u}(2) \times \\ & \mathfrak{u}(1) \end{aligned}$	$\begin{array}{r} \left(1 ; 1_{2}+1_{-4}\right)+\left(2 ; 4_{-1}\right) \\ \quad+\left(3 ; 3_{2}\right)+\left(4 ; 2_{-1}\right) \end{array}$	$\begin{gathered} \left(1 ; 1_{0}+3_{0}\right)+\left(2 ; 4_{3}+4_{-3}\right)+ \\ \left(3 ; 1_{0}+3_{0}+5_{0}\right) \\ +\left(4 ; 2_{3}+2_{-3}\right) \\ +\left(5 ; 3_{0}\right) \\ \hline \end{gathered}$
A_{3}	$\begin{aligned} & \mathfrak{s p}(2) \times \\ & \mathfrak{u}(1) \end{aligned}$	$\begin{aligned} & \left(1 ; 5_{-2}+1_{4}\right)+\left(4 ; 4_{1}\right) \\ & \quad+\left(5 ; 1_{-2}\right) \end{aligned}$	$\begin{gathered} \left(1 ; 10_{0}+1_{0}\right)+\left(3 ; 1_{0}\right) \\ +\left(4 ; 4_{3}+4_{-3}\right)+\left(5 ; 5_{0}\right) \\ \quad+\left(7 ; 1_{0}\right) \end{gathered}$
$\begin{aligned} & 2 A_{2}+ \\ & A_{1} \end{aligned}$	$\mathfrak{s u}(2)$	$\begin{aligned} (1 ; 1) & +(2 ; 2)+(3 ; 3) \\ & +(4 ; 2)+(5 ; 1) \end{aligned}$	$\begin{gathered} (1 ; 3)+(2 ; 4+2)+ \\ (3 ; 3+1+1) \\ +(4 ; 2+2)+ \\ (5 ; 3+1)+(6 ; 2) \\ \hline \end{gathered}$
$A_{3}+A_{1}$	$\begin{aligned} & \mathfrak{s u}(2) \times \\ & \mathfrak{u}(1) \end{aligned}$	$\begin{aligned} & \left(1 ; 1_{4}+1_{-2}\right)+\left(2 ; 2_{-2}\right) \\ & \quad+\left(3 ; 1_{1}\right)+\left(4 ; 2_{1}\right) \\ & \quad+\left(5 ; 1_{1}+1_{-2}\right) \end{aligned}$	$\begin{aligned} & \left(1 ; 1_{0}+3_{0}\right)+(2 ; 2)_{0} \\ & \quad+\left(3 ; 1_{3}+1_{-3}+1_{0}+1_{0}\right) \\ & \quad+\left(4 ; 2_{3}+2_{-3}+2_{0}\right) \\ & \quad+\left(5 ; 1_{3}+1_{0}+1_{-3}\right) \\ & \quad+(6 ; 2)_{0}+\left(7 ; 1_{0}\right) \\ & \hline \end{aligned}$

Table C.1: Embeddings of $S U(2)$ in E_{6}

BalaCarter	f	27	78
$D_{4}(a 1)$	$\begin{aligned} & \mathfrak{u}(1) \quad \times \\ & \mathfrak{u}(1) \end{aligned}$	$\begin{aligned} & 1_{2,2}+1_{0,-4}+1_{-2,2} \\ & +3_{1,-1}+3_{0,2}+3_{-1,-1} \\ & +5_{1,-1}+5_{0,2}+5_{-1,-1} \end{aligned}$	$\begin{aligned} & 1_{0,0}+1_{0,0}+3_{0,0} \\ & +3_{2,0}+3_{1,3}+3_{1,-3}+3_{0,0} \\ & +3_{-2,0}+3_{-1,-3}+3_{-1,3}+3_{0,0} \\ & +5_{2,0}+5_{1,3}+5_{1,-3}+5_{0,0} \\ & +5_{-2,0}+5_{-1,-3}+5_{-1,3} \\ & +7_{0,0}+7_{0,0} \end{aligned}$
A_{4}	$\begin{aligned} & \mathfrak{s u}(2) \times \\ & \mathfrak{u}(1) \end{aligned}$	$\begin{aligned} & \left(1 ; 2_{-5}\right)+\left(3 ; 1_{-2}\right) \\ & \quad+\left(5 ; 2_{1}+1_{4}\right) \\ & \quad+\left(7 ; 1_{-2}\right) \end{aligned}$	$\begin{aligned} & \left(1 ; 3_{0}+1_{0}\right)+\left(3 ; 2_{3}+2_{-3}+1_{0}\right) \\ & \quad+\left(5 ; 1_{6}+1_{0}+1_{-6}\right) \\ & \quad+\left(7 ; 2_{3}+2_{-3}+1_{0}\right) \\ & \quad+\left(9 ; 1_{0}\right) \end{aligned}$
D_{4}	$\mathfrak{s u}(3)$	$(1 ; 6)+(7 ; \overline{3})$	$(1 ; 8)+(3 ; 1)+(7 ; 8)+(11 ; 1)$
$A_{4}+A_{1}$	$\mathfrak{u}(1)$	$\begin{aligned} 2_{-5} & +3_{-2}+4_{1} \\ & +5_{4}+6_{1}+7_{-2} \end{aligned}$	$\begin{aligned} & 1_{0}+2_{3}+2_{-3}+3_{0}+3_{0}+4_{3}+ \\ & 4_{-3}+5_{6}+5_{0}+5_{-6}+6_{-3} \\ & +6_{3}+7_{0}+8_{-3}+8_{3} \\ & +9_{0} \end{aligned}$
$D_{5}(a 1)$	$\mathfrak{u}(1)$	$\begin{aligned} 1_{-4} & +2_{-1} \\ & +3_{2} \\ & +6_{-1} \end{aligned}+7_{2}+8_{-1} 1$	$\begin{aligned} & 1_{0}+2_{3}+2_{-3}+3_{0}+3_{0}+5_{0} \\ & +6_{3}+6_{-3}+7_{0}+7_{0} \\ & +8_{3}+8_{-3}+9_{0}+11_{0} \\ & \hline \end{aligned}$
A_{5}	$\mathfrak{s u}(2)$	$\begin{aligned} & (1 ; 1)+(5 ; 1)+(6 ; 2)+ \\ & (9 ; 1) \end{aligned}$	$\begin{aligned} & (1 ; 3)+(3 ; 1)+(4 ; 2)+(5 ; 1) \\ & +(6 ; 2)+(7 ; 1)+(9 ; 1) \\ & +(10 ; 2)+(11 ; 1) \end{aligned}$
$E_{6}(a 3)$	-	$1+5+5+7+9$	$\begin{aligned} & 3+3+3+5+5+5 \\ & +7+7+9+9+11+11 \\ & \hline \end{aligned}$
D_{5}	$\mathfrak{u}(1)$	$1_{2}+1_{-4}+5_{-1}+9_{2}+11_{-1}$	$\begin{aligned} & 1_{0}+3_{0}+5_{3}+5_{-3}+7_{0}+9_{0} \\ & +11_{3}+11_{0}+11_{-3}+15_{0} \\ & \hline \end{aligned}$
$E_{6}(a 1)$	-	$5+9+13$	$3+5+7+9+11+11+15+17$
E_{6}	-	$1+9+17$	$3+9+11+15+17+23$

C. 2 Projection Matrices

Our classification of interacting and mixed fixtures using the superconformal index, carried out in section 5.3, required that we know the decomposition of a number of higher-dimensional \mathfrak{e}_{6} representations (and not just the 27 and the 78) under $\mathfrak{s u}(2) \times \mathfrak{f}$. These are trivial to obtain using LieART [78], provided we know a projection matrix for each embedding [79, 78].

From the decomposition of the 27 , listed in the table above, one obtains a projection matrix simply by defining a $6 \times \mathrm{rk}(\mathfrak{s u}(2) \times \mathfrak{f})$ matrix, M, such that the LieART command

$$
\operatorname{In}[1]=\operatorname{Project}[M, \text { WeightSystem[Irrep }[E 6][1,0,0,0,0,0]]]
$$

gives the corresponding $\mathfrak{s u}(2) \times \mathfrak{f}$ weights. This projection matrix can then be used to obtain the decomposition of any \mathfrak{e}_{6} irrep under $\mathfrak{s u}(2) \times \mathfrak{f}$.

Below, we list a projection matrix for each embedding, following the conventions of LieART.

Table C.2: Projection Matrices

Bala-Carter	\mathfrak{f}	Projection Matrix	
A_{1}		$\left(\begin{array}{cccccc}-1 & -2 & -3 & -2 & -1 & -2 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$	
	$\mathfrak{s u}(6)$		

Table C.2: Projection Matrices

Bala-Carter	f	Projection Matrix
$2 A_{1}$	$\mathfrak{s o}(7) \times \mathfrak{u}(1)$	$\left(\begin{array}{cccccc}2 & 3 & 4 & 3 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 2 & 1 & 0 & -1 & -2 & 0\end{array}\right)$
$3 A_{1}$	$\mathfrak{s u}(3) \times \mathfrak{s u}(2)$	$\left(\begin{array}{llllll}2 & 3 & 4 & 3 & 2 & 1 \\ 1 & 2 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 & 0 & 1\end{array}\right)$
A_{2}	$\mathfrak{s u}(3) \times \mathfrak{s u}(3)$	$\left(\begin{array}{cccccc}2 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ -1 & -2 & -3 & -2 & -1 & -2\end{array}\right)$
$A_{2}+A_{1}$	$\mathfrak{s u}(3) \times \mathfrak{u}(1)$	$\left(\begin{array}{cccccc}3 & 5 & 7 & 5 & 3 & 3 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & -1 & -1 & -1 & -1\end{array}\right)$
$2 A_{2}$	\mathfrak{g}_{2}	$\left(\begin{array}{llllll}4 & 6 & 8 & 6 & 4 & 4 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$

Table C.2: Projection Matrices

Bala-Carter	1	Projection Matrix
$A_{2}+2 A_{1}$	$\mathfrak{s u}(2) \times \mathfrak{u}(1)$	$\left(\begin{array}{cccccc}3 & 4 & 6 & 4 & 3 & 4 \\ 1 & 4 & 6 & 4 & 1 & 2 \\ -1 & -2 & 0 & 2 & 1 & 0\end{array}\right)$
A_{3}	$\mathfrak{s p}(2) \times \mathfrak{u}(1)$	$\left(\begin{array}{cccccc}4 & 7 & 10 & 7 & 4 & 6 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ -2 & -1 & 0 & 1 & 2 & 0\end{array}\right)$
$2 A_{2}+A_{1}$	$\mathfrak{s u}(2)$	$\left(\begin{array}{llllll}4 & 6 & 9 & 6 & 4 & 5 \\ 0 & 2 & 3 & 2 & 0 & 1\end{array}\right)$
$A_{3}+A_{1}$	$\mathfrak{s u}(2) \times \mathfrak{u}(1)$	$\left(\begin{array}{cccccc}4 & 8 & 11 & 8 & 4 & 5 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ -2 & -1 & 0 & 1 & 2 & 0\end{array}\right)$
$D_{4}(a 1)$	$\mathfrak{u}(1) \times \mathfrak{u}(1)$	$\left(\begin{array}{cccccc}4 & 8 & 10 & 8 & 4 & 6 \\ 1 & 1 & 0 & -1 & -1 & 0 \\ -1 & 1 & 0 & -1 & 1 & 0\end{array}\right)$
A_{4}	$\mathfrak{s u}(2) \times \mathfrak{u}(1)$	$\left(\begin{array}{cccccc}6 & 10 & 12 & 10 & 6 & 6 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ -2 & -1 & -3 & -2 & 2 & 0\end{array}\right)$

Table C.2: Projection Matrices

Bala-Carter	f	Projection Matrix
D_{4}	$\mathfrak{s u}(3)$	$\left(\begin{array}{cccccc}6 & 10 & 16 & 10 & 6 & 10 \\ 0 & 0 & 1 & 2 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 & 0\end{array}\right)$
$A_{4}+A_{1}$	$\mathfrak{u}(1)$	$\left(\begin{array}{cccccc}6 & 10 & 12 & 10 & 6 & 7 \\ -2 & -4 & -6 & -2 & 2 & -3\end{array}\right)$
$D_{5}(a 1)$	$\mathfrak{u}(1)$	$\left(\begin{array}{cccccc}7 & 12 & 18 & 12 & 7 & 10 \\ -1 & -2 & 0 & 2 & 1 & 0\end{array}\right)$
A_{5}	$\mathfrak{s u}(2)$	$\left(\begin{array}{cccccc}8 & 14 & 19 & 14 & 8 & 10 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$
$E_{6}(a 3)$	-	$\left(\begin{array}{lllllll}8 & 14 & 18 & 14 & 8 & 8\end{array}\right)$
D_{5}	$\mathfrak{u}(1)$	$\left(\begin{array}{cccccc}10 & 18 & 24 & 18 & 10 & 10 \\ -1 & -2 & 0 & 2 & 1 & 0\end{array}\right)$
$E_{6}(a 1)$	-	$\left(\begin{array}{llllll}12 & 22 & 30 & 22 & 12 & 16\end{array}\right)$
E_{6}	-	$\left(\begin{array}{llllll}16 & 30 & 42 & 30 & 16 & 22\end{array}\right)$

As an example, let's work out the decomposition of the 51975 for the orbit $2 A_{2}$. Running LieART, we obtain the decomposition with the following two lines of code:

$$
\begin{aligned}
& \text { In [1] = ProjectionMatrix[E6, ProductAlgebra[SU2, G2]] }=\left(\begin{array}{cccccc}
4 & 6 & 8 & 6 & 4 & 4 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \\
& \text { In[2] = DecomposeIrrep[Irrep[E6] [1, 0, 1, 0, 0, 0] , ProductAlgebra[SU2, G2]] } \\
& \text { Out [2] = }
\end{aligned}
$$

$$
\begin{gather*}
(1,1)+14(3,1)+10(5,1)+13(1,7)+13(7,1)+ \\
25(3,7)+5(9,1)+34(5,7)+4(11,1)+ \\
25(7,7)+9(1,14)+17(9,7)+16(3,14)+6(11,7)+ \\
22(5,14)+2(13,7)+15(7,14)+10(9,14)+3(11,14)+ \\
(13,14)+6(1,27)+25(3,27)+23(5,27)+21(7,27)+ \\
9(9,27)+4(11,27)+5(1,64)+12(3,64)+13(5,64)+ \\
9(7,64)+4(9,64)+(11,64)+4(1,77)+6(3,77)+ \\
2\left(3,77^{\prime}\right)+8(5,77)+\left(5,77^{\prime}\right)+4(7,77)+\left(7,77^{\prime}\right)+ \\
2(9,77)+(3,182)+(1,189)+2(3,189)+2(5,189)+ \tag{7,189}
\end{gather*}
$$

This works for all of the orbits above, except for $D_{4}\left(a_{1}\right)$, as the LieART command "DecomposeIrrep" does not seem to work when the target subalgebra has more than one $\mathfrak{u}(1)$ factor. In this case, getting the decomposition
is only slightly more complicated. For example, we obtain the decomposition of the 27 of E_{6} as follows:
$\operatorname{In}[1]=$ ProjectionMatrix[D5, ProductAlgebra[D4, U1]] $=\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1\end{array}\right)$
$\operatorname{In}[2]=\operatorname{ProjectionMatrix[D4,ProductAlgebra[A1]]=(\begin{array} {llll}{4}&{6}&{4}&{4}\end{array}),~(1)}$

In [3] = DecomposeIrrep[DecomposeIrrep[DecomposeIrrep[

Irrep[E6] [1, 0, 0, 0, 0, 0], ProductAlgebra[D5, U1]],

ProductAlgebra[D4, U1] , 1], ProductAlgebra[A1], 1]

$$
\begin{aligned}
\text { Out }[3]= & (1)(2)(2)+(1)(0)(-4)+(1)(-2)(2)+(3)(1)(-1)+(3)(0)(2) \\
& +(3)(-1)(-1)+(5)(1)(-1)+(5)(0)(2)+(5)(-1)(-1)
\end{aligned}
$$

Appendix D

Constraints for twisted E_{6} punctures

D. 1 Constraints

Table D.1: Constraints

Bala- Carter	New parameters	Constraints
\widetilde{A}_{1}	$h_{6} \equiv \frac{a_{11 / 2}^{(6)}}{z^{11 / 2}}$	$\phi_{12}-h_{6}^{2} \sim \frac{1}{z^{10}}$
\widetilde{A}_{2}	$h_{3} \equiv \frac{a_{5 / 2}^{(3)}}{z^{5 / 2}}$	$\phi_{8}-\phi_{5} h_{3} \sim \frac{1}{z^{6}}$
$\phi_{12}+\phi_{6}^{2}+\frac{1}{16} \phi_{6} h_{3}^{2}+3 \phi_{9} h_{3}+\frac{1}{1024} h_{3}^{4} \sim \frac{1}{z^{9}}$		
B_{2}	$h_{3} \equiv \frac{a_{5 / 2}^{(3)}}{z^{5 / 2}}$	$\phi_{9}-\frac{1}{12} h_{3}\left(h_{3}^{2}+h_{6}+2 \phi_{6}\right) \sim \frac{1}{z^{13 / 2}}$
$h_{6} \equiv \frac{a_{5}^{(6)}}{z^{5}}$	$\phi_{12}-h_{3}^{2}\left(h_{3}^{2}-h_{6}\right)-\frac{1}{4}\left(h_{3}^{2}-h_{6}-2 \phi_{6}\right)^{2} \sim \frac{1}{z^{9}}$	
$\widetilde{A}_{2}+$	$h_{3} \equiv \frac{a_{5 / 2}^{(3)}}{z^{5 / 2}}$	$\phi_{12}-24 \phi_{9} h_{3}+\left(\phi_{6}+2 h_{3}^{2}\right)^{2} \sim \frac{1}{z^{9}}$
A_{1}	$h_{3} \equiv \frac{a_{5 / 2}^{(3)}}{z^{5 / 2}}$	$\phi_{9}-\frac{1}{12} h_{3}\left(h_{3}^{2}+h_{3}^{\prime 2}+2 \phi_{6}\right) \sim \frac{1}{z^{13 / 2}}$
$C_{3}\left(a_{1}\right)$	$h_{3}^{\prime} \equiv \frac{a_{5 / 2}^{\prime(3)}}{z^{5 / 2}}$	$\phi_{12}-h_{3}^{2}\left(h_{3}^{2}-h_{3}^{\prime 2}\right)-\frac{1}{4}\left(h_{3}^{2}-h_{3}^{\prime 2}-2 \phi_{6}\right)^{2} \sim \frac{1}{z^{9}}$

Table D.1: Constraints

Bala- Carter	New parameters	Constraints
$F_{4}\left(a_{3}\right)$	$\begin{aligned} h_{3} & \equiv \frac{a_{5 / 2}^{(3)}}{z^{5 / 2}} \\ h_{3}^{\prime} & \equiv \frac{a_{5 / 2}^{\prime(3)}}{z^{5 / 2}} \\ h_{3}^{\prime \prime} & \equiv \frac{a_{5 / 2}^{\prime \prime(3)}}{z^{5 / 2}} \end{aligned}$	$\begin{aligned} & \phi_{6}+2 h_{3}^{2}+h_{3}^{\prime 2}-3 h_{3}^{\prime \prime 2} \sim \frac{1}{z^{4}} \\ & \phi_{9}-\frac{1}{3} h_{3}\left(h_{3}^{\prime 2}+3 h^{\prime \prime}{ }_{3}^{2}\right) \sim \frac{1}{z^{13 / 2}} \\ & \phi_{12}+8 h_{3}^{2}\left(h_{3}^{\prime 2}-3 h_{3}^{\prime \prime 2}\right)+\left(h_{3}^{\prime 2}+3 h_{3}^{\prime \prime 2}\right)^{2} \sim \frac{1}{z^{9}} \end{aligned}$
B_{3}	$h_{4} \equiv \frac{a_{3}^{(4)}}{z^{3}}$	$\begin{aligned} \phi_{8}-48 h_{4}^{2} & \sim \frac{1}{z^{5}} \\ \phi_{9}-\phi_{5} h_{4} & \sim \frac{1}{z^{11 / 2}} \\ \phi_{12}+96 h_{4}^{3} & \sim \frac{1}{z^{8}} \end{aligned}$
C_{3}	$\begin{aligned} h_{3} & \equiv \frac{a_{5 / 2}^{(3)}}{z^{5 / 2}} \\ h_{4} & \equiv \frac{a_{3}^{(4)}}{z^{3}} \end{aligned}$	$\begin{gathered} \phi_{6}+6 h_{3}^{2} \sim \frac{1}{z^{4}} \\ \phi_{8}-16 \phi_{2} h_{3}^{2}-8 \phi_{5} h_{3}-48 h_{4}^{2} \sim \frac{1}{z^{5}} \\ \phi_{9}+\frac{1}{3} \phi_{6} h_{3}+\phi_{5} h_{4}-2 \phi_{2} h_{4} h_{3}+\frac{2}{3} h_{3}^{3} \sim \frac{1}{z^{11 / 2}} \\ \phi_{12}+\phi_{6}^{2}+24 \phi_{9} h_{3}-3 \phi_{8} h_{4}-12 \phi_{6} \phi_{2} h_{4}+4 \phi_{6} h_{3}^{2} \\ +24 \phi_{5} h_{4} h_{3}+36 \phi_{2}^{2} h_{4}^{2}-24 \phi_{2} h_{4} h_{3}^{2}+4 h_{3}^{4}+48 h_{4}^{3} \sim \frac{1}{z^{7}} \end{gathered}$
$F_{4}\left(a_{2}\right)$	$h_{4} \equiv \frac{a_{3}^{(4)}}{z^{3}}$	$\begin{aligned} & \phi_{8}-48 h_{4}^{2} \sim \frac{1}{z^{5}} \\ & \phi_{9}+\phi_{5} h_{4} \sim \frac{1}{z^{11 / 2}} \\ & \phi_{12}+\phi_{6}^{2}-12 h_{4}\left(\frac{1}{4} \phi_{8}-3 \phi_{2}^{2} h_{4}+\phi_{6} \phi_{2}-4 h_{4}^{2}\right) \sim \frac{1}{z^{7}} \end{aligned}$

Table D.1: Constraints

Bala- Carter	New parameters	Constraints
$F_{4}\left(a_{1}\right)$	$\begin{aligned} h_{2} & \equiv \frac{a_{3 / 2}^{(2)}}{z^{3 / 2}} \\ h_{3} & \equiv \frac{a_{2}^{(3)}}{z^{2}} \\ h_{6} & \equiv \frac{a_{7 / 2}^{(6)}}{z^{7 / 2}} \end{aligned}$	$\begin{gathered} \phi_{5}-2 h_{3} h_{2} \sim \frac{1}{z^{5 / 2}} \\ \phi_{6}-6 \phi_{2} h_{2}^{2}-h_{3}^{2} \sim \frac{1}{z^{3}} \\ \phi_{8}+4 \phi_{2} h_{3}^{2}+48 h_{2}\left(h_{6}-h_{2}^{3}\right) \sim \frac{1}{z^{4}} \\ \phi_{9}+\phi_{5} h_{2}^{2}-h_{6} h_{3} \sim \frac{1}{z^{9 / 2}} \\ \phi_{12}-3 \phi_{8} h_{2}^{2}+2 \phi_{6} h_{3}^{2}-12 \phi_{2} h_{3}^{2} h_{2}^{2}-36 h_{6}^{2}-h_{3}^{4} \sim \frac{1}{z^{6}} \end{gathered}$
F_{4}	$h_{3} \equiv \frac{a_{3 / 2}^{(3)}}{z^{3 / 2}}$	$\begin{gathered} \phi_{5}-\phi_{2} h_{3} \sim \frac{1}{z^{3 / 2}} \\ \phi_{6}+\frac{3}{2} \phi_{2}^{3}+\frac{3}{2} h_{3}^{2} \sim \frac{1}{z^{2}} \\ \phi_{8}+4 \phi_{6} \phi_{2}+3 \phi_{2}^{4}-4 \phi_{5} h_{3}+2 \phi_{2} h_{3}^{2} \sim \frac{1}{z^{2}} \\ \phi_{9}+\frac{1}{6} \phi_{6} h_{3}-\frac{1}{4} \phi_{5} \phi_{2}^{2}+\frac{1}{4} \phi_{2}^{3} h_{3}+\frac{1}{12} h_{3}^{3} \sim \frac{1}{z^{5 / 2}} \\ \phi_{12}+\phi_{6}^{2}+12 \phi_{9} h_{3}+\phi_{6} h_{3}^{2}+\frac{3}{2} \phi_{2}^{6}+3 \phi_{6} \phi_{2}^{3} \\ +\frac{3}{4} \phi_{8} \phi_{2}^{2}-3 \phi_{5} \phi_{2}^{2} h_{3}+\frac{3}{2} \phi_{2}^{3} h_{3}^{2}+\frac{1}{4} h_{3}^{4} \sim \frac{1}{z^{3}} \end{gathered}$

Appendix E

Embeddings of $S U(2)$ in F_{4}

E. 1 Appendix: Embeddings of $S U(2)$ in F_{4}

Table E.1: Embeddings of $S U(2)$ in F_{4}

BalaCarter	\mathfrak{f}	26	52
A_{1}	$\mathfrak{s p}(3)$	$(2,6)+(1,14)$	$(3,1)+\left(2,14^{\prime}\right)+(1,21)$
\widetilde{A}_{1}	$\mathfrak{s u}(4)$	$\begin{gathered} (2,4)+(2, \overline{4})+(1,6) \\ +(3,1)+(1,1) \end{gathered}$	$\begin{gathered} (3,1)+(3,6) \\ +(2,4)+(2, \overline{4})+(1,15) \\ \hline \end{gathered}$
$A_{1}+\widetilde{A}_{1}$	$\begin{aligned} & \mathfrak{s u}(2) \quad \times \\ & \mathfrak{s u}(2) \end{aligned}$	$(1 ; 5,1)+(2 ; 3,2)+(3 ; 3,1)$	$\begin{gathered} (1 ; 3,1)+(1 ; 1,3)+ \\ (2 ; 5,2)+(3 ; 1,1)+ \\ (3 ; 5,1)+(4 ; 1,2) \\ \hline \end{gathered}$
A_{2}	$\mathfrak{s u}(3)$	$(3,3)+(3, \overline{3})+(1,8)$	$\begin{gathered} (5,1)+(3,6)+(3, \overline{6}) \\ \quad+(3,1)+(1,8) \end{gathered}$
\widetilde{A}_{2}	\mathfrak{g}_{2}	$(3,7)+(5,1)$	$(5,7)+(3,1)+(1,14)$
$A_{2}+\widetilde{A}_{1}$	$\mathfrak{s u}(2)$	$\begin{gathered} (4,2)+(3,3)+ \\ (2,4)+(1,1) \end{gathered}$	$\begin{array}{r} (5,3)+(4,2)+(3,5) \\ +(3,1)+(2,4)+(1,3) \end{array}$
B_{2}	$\begin{aligned} & \mathfrak{s u}(2) \quad \times \\ & \mathfrak{s u}(2) \end{aligned}$	$\begin{aligned} & (5,1,1)+(4,2,1)+ \\ & (4,1,2)+(1,2,2)+ \\ & (1,1,1) \end{aligned}$	$\begin{gathered} (7,1,1)+(5,2,2)+ \\ (4,2,1)+(4,1,2) \\ +(3,1,1)+(1,3,1) \\ +(1,1,3) \end{gathered}$
$\widetilde{A}_{2}+A_{1}$	$\mathfrak{s u}(2)$	$\begin{gathered} (5,1)+(4,2)+ \\ (3,3)+(2,2) \end{gathered}$	$\begin{aligned} & (6,2)+(5,3)+(4,2)+ \\ & 2(3,1)+(2,4)+(1,3) \end{aligned}$
$C_{3}\left(a_{1}\right)$	$\mathfrak{s u}(2)$	$\begin{gathered} 2(5,1)+(4,2)+(3,1) \\ +(2,2)+(1,1) \end{gathered}$	$\begin{aligned} & (7,1)+(6,2)+(5,1)+ \\ & 2(4,2)+3(3,1)+(1,3) \\ & \hline \end{aligned}$

Table E.1: Embeddings of $S U(2)$ in F_{4}

Bala- Carter	\mathfrak{f}	26	52
$F_{4}\left(a_{3}\right)$	-	$3(5)+3(3)+2(1)$	$2(7)+4(5)+6(3)$
B_{3}	$\mathfrak{s u}(2)$	$(1 ; 5)+(7,3)$	$(1 ; 3)+(3 ; 1)+$ $(7 ; 5)+(11 ; 1)$
C_{3}	$\mathfrak{s u}(2)$	$(9,1)+(6,2)+(5,1)$	$(11,1)+(10,2)+(7,1)$ $+(4,2)+(3,1)+(1,3)$
$F_{4}\left(a_{2}\right)$	-	$(9)+(7)+2(5)$	$2(11)+(9)+$ $(7)+(5)+3(3)$
$F_{4}\left(a_{1}\right)$	-	$(11)+(9)+(5)+(1)$	$(15)+2(11)+$ $(7)+(5)+(3)$
F_{4}	-	$(17)+(9)$	$(23)+(15)+(11)+(3)$

E. 2 Projection matrices

Table E.2: Projection Matrices

Bala-Carter	\mathfrak{f}	Projection Matrix
$\underline{A_{1}}$	$S p(3)_{13}$	$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0\end{array}\right)$
$\underline{\widetilde{A}_{1}}$	$S U(4)_{12}$	$\left(\begin{array}{llll}0 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0\end{array}\right)$

Table E.2: Projection Matrices

Bala-Carter	f	Projection Matrix
$\underline{A_{1}+\widetilde{A}_{1}}$	$S U(2)_{64} \times S U(2)_{10}$	$\left(\begin{array}{llll}1 & 3 & 3 & 2 \\ 4 & 8 & 4 & 2 \\ 1 & 1 & 1 & 0\end{array}\right)$
$\underline{A_{2}}$	$S U(3){ }_{16}$	$\left(\begin{array}{llll}4 & 6 & 4 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0\end{array}\right)$
$\underline{\widetilde{A}_{2}}$	$\left(G_{2}\right)_{10}$	$\left(\begin{array}{llll}4 & 8 & 6 & 4 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$
$\underline{A_{2}+\widetilde{A}_{1}}$	$S U(2){ }_{39}$	$\left(\begin{array}{llll}2 & 6 & 5 & 3 \\ 4 & 6 & 3 & 1\end{array}\right)$
$\underline{B_{2}}$	$S U(2)_{7}^{2}$	$\left(\begin{array}{cccc}4 & 10 & 7 & 4 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}\right)$
$\underline{\widetilde{A}_{2}+A_{1}}$	$S U(2){ }_{20}$	$\left(\begin{array}{llll}4 & 9 & 7 & 4 \\ 2 & 3 & 1 & 0\end{array}\right)$
$\underline{C_{3}\left(a_{1}\right)}$	$S U(2)_{7}$	$\left(\begin{array}{cccc}5 & 11 & 8 & 4 \\ 1 & 1 & 0 & 0\end{array}\right)$
$\underline{F_{4}\left(a_{3}\right)}$	-	$\left(\begin{array}{llll}6 & 12 & 8 & 4\end{array}\right)$
$\underline{B_{3}}$	$S U(2){ }_{24}$	$\left(\begin{array}{cccc}6 & 16 & 12 & 6 \\ 4 & 4 & 2 & 2\end{array}\right)$

Table E.2: Projection Matrices

Bala-Carter	\mathfrak{f}	Projection Matrix
$\underline{C_{3}}$	$S U(2)_{6}$	$\left(\begin{array}{cccc}9 & 19 & 14 & 8 \\ 1 & 1 & 0 & 0\end{array}\right)$
$\underline{F_{4}\left(a_{2}\right)}$	-	$\left(\begin{array}{cccc}10 & 20 & 14 & 8\end{array}\right)$
$\underline{F_{4}\left(a_{1}\right)}$	-	$\left(\begin{array}{cccc}14 & 26 & 18 & 10\end{array}\right)$
$\underline{F_{4}}$	-	$\left(\begin{array}{cccc}22 & 42 & 30 & 16\end{array}\right)$

Bibliography

[1] D. Gaiotto, " $\mathcal{N}=2$ dualities," JHEP 1208 (2012) 034 ,
arXiv:0904.2715 [hep-th].
[2] P. C. Argyres and N. Seiberg, "S-duality in $\mathcal{N}=2$ supersymmetric gauge theories," JHEP 12 (2007) 088, arXiv:0711.0054 [hep-th].
[3] O. Chacaltana and J. Distler, "Tinkertoys for Gaiotto duality," JHEP 1011 (2010) 099, arXiv: 1008.5203 [hep-th].
[4] O. Chacaltana, J. Distler, and Y. Tachikawa, "Gaiotto duality for the twisted $A_{2 N-1}$ series," arXiv:1212.3952 [hep-th].
[5] O. Chacaltana and J. Distler, "Tinkertoys for the D_{N} series," JHEP 1302 (2013) 110, arXiv:1106.5410 [hep-th].
[6] D. Gaiotto, G. W. Moore, and A. Neitzke, "Wall-crossing, Hitchin systems, and the WKB approximation," arXiv:0907.3987 [hep-th].
[7] O. Chacaltana, J. Distler, and Y. Tachikawa, "Nilpotent orbits and codimension-two defects of $6 \mathrm{~d} N=(2,0)$ theories," Int.J.Mod.Phys. A28 (2013) 1340006, arXiv:1203.2930 [hep-th].
[8] N. Seiberg and E. Witten, "Gauge dynamics and compactification to three dimensions," hep-th/9607163.
[9] Y. Tachikawa, "On W-algebras and the symmetries of defects of 6D $\mathcal{N}=(2,0)$ theory,"JHEP 03 (2011) 043, arXiv:1102.0076 [hep-th].
[10] L. F. Alday, F. Benini, and Y. Tachikawa, "Liouville/Toda central charges from M5-branes," Phys. Rev. Lett. 105 (2010) 141601, arXiv:0909.4776 [hep-th]
[11] Y. Tachikawa, "Six-dimensional D_{N} theory and four-dimensional SO-USp quivers," JHEP 0907 (2009) 067, arXiv:0905.4074 [hep-th]
[12] D. Gaiotto and E. Witten, "S-duality of boundary conditions in $\mathcal{N}=4$ super Yang-Mills theory," arXiv:0807.3720 [hep-th].
[13] D. Gaiotto and E. Witten, "Supersymmetric boundary conditions in $\mathcal{N}=4$ super Yang-Mills theory," arXiv:0804.2902 [hep-th].
[14] F. Benini, Y. Tachikawa, and D. Xie, "Mirrors of 3D Sicilian theories," JHEP 09 (2010) 063, arXiv:1007.0992 [hep-th].
[15] P. C. Argyres and J. R. Wittig, "Infinite coupling duals of $\mathcal{N}=2$ gauge theories and new rank 1 superconformal field theories," JHEP 01 (2008) 074, arXiv:0712.2028 [hep-th].
[16] A. D. Shapere and Y. Tachikawa, "Central charges of $\mathcal{N}=2$ superconformal field theories in four dimensions," JHEP 09 (2008) 109, arXiv:0804.1957 [hep-th].
[17] O. Chacaltana, J. Distler, and A. Trimm, "Tinkertoys for the twisted D-series," arXiv:1309.2299 [hep-th].
[18] Y. Tachikawa, " $\mathcal{N}=2$ S-duality via outer-automorphism twists," J. Phys. A44 (2011) 182001, arXiv:1009.0339 [hep-th].
[19] D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie algebras. Van Nostrand, 1993.
[20] D. Nanopoulos and D. Xie, "Hitchin equation, singularity, and $\mathcal{N}=2$ superconformal field theories," JHEP 03 (2010) 043, arXiv:0911. 1990 [hep-th].
[21] S. Gukov and E. Witten, "Rigid surface operators," arXiv:0804.1561 [hep-th]
[22] A. Gadde, E. Pomoni, L. Rastelli, and S. S. Razamat, "S-duality and 2d topological QFT," JHEP 1003 (2010) 032, arXiv:0910. 2225 [hep-th].
[23] A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, "The 4d superconformal index from q-deformed 2d Yang-Mills," Phys.Rev.Lett. 106 (2011) 241602, arXiv:1104.3850 [hep-th].
[24] A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, "Gauge theories and Macdonald polynomials," Commun.Math.Phys. 319 (2013) 147-193, arXiv:1110.3740 [hep-th].
[25] J. Kinney, J. M. Maldacena, S. Minwalla, and S. Raju, "An index for 4 dimensional superconformal theories," Commun.Math.Phys. 275 (2007) 209-254, hep-th/0510251.
[26] M. Lemos, W. Peelaers, and L. Rastelli, "The superconformal index of class S theories of type $\mathrm{D}, "$ arXiv:1212.1271.
[27] D. Gaiotto and S. S. Razamat, "Exceptional indices," JHEP 1205 (2012) 145, arXiv:1203.5517 [hep-th].
[28] N. J. Evans, C. V. Johnson, and A. D. Shapere, "Orientifolds, branes, and duality of 4-D gauge theories," Nucl.Phys. B505 (1997) 251-271, arXiv:hep-th/9703210 [hep-th].
[29] K. Landsteiner, E. Lopez, and D. A. Lowe, "N=2 supersymmetric gauge theories, branes and orientifolds," Nucl.Phys. B507 (1997) 197-226, arXiv:hep-th/9705199 [hep-th].
[30] A. Brandhuber, J. Sonnenschein, S. Theisen, and S. Yankielowicz, "M theory and Seiberg-Witten curves: Orthogonal and symplectic groups," Nucl.Phys. B504 (1997) 175-188, arXiv:hep-th/9705232 [hep-th].
[31] K. Hori, "Consistency condition for five-brane in M theory on $\mathrm{R}^{* *} 5$ / Z(2) orbifold," Nucl.Phys. B539 (1999) 35-78, arXiv:hep-th/9805141 [hep-th].
[32] E. G. Gimon, "On the M theory interpretation of orientifold planes," arXiv:hep-th/9806226 [hep-th].
[33] Y. Tachikawa and S. Terashima, "Seiberg-Witten geometries revisited," JHEP 09 (2011) 010, arXiv:1108. 2315 [hep-th].
[34] P. C. Argyres and A. D. Shapere, "The vacuum structure of $\mathcal{N}=2$ superQCD with classical gauge groups," Nucl.Phys. B461 (1996) 437-459, hep-th/9509175.
[35] A. Hanany, "On the quantum moduli space of vacua $\mathcal{N}=2$ supersymmetric gauge theories," Nucl.Phys. B466 (1996) 85-100, hep-th/9509176.
[36] S. Terashima and S.-K. Yang, "Seiberg-Witten geometry with various matter contents," Nucl.Phys. B537 (1999) 344-360, hep-th/9808022.
[37] L. Bhardwaj and Y. Tachikawa, "Classification of $4 \mathrm{~d} N=2$ gauge theories," JHEP 1312 (2013) 100, arXiv:1309.5160.
[38] O. Chacaltana, J. Distler, and A. Trimm, "Seiberg-Witten for $\operatorname{Spin}(n)$ with Spinors," arXiv:1404.3736 [hep-th].
[39] V. B. Mehta and C. S. Seshadri, "Moduli of vector bundles on curves with parabolic structures," Math. Ann. 248 no. 3, (1980) 205-239.
[40] C. T. Simpson, "Harmonic bundles on noncompact curves," J. Amer. Math. Soc. 3 no. 3, (1990) 713-770.
[41] W.-Y. Chuang, D.-E. Diaconescu, R. Donagi, and T. Pantev, "Parabolic refined invariants and Macdonald polynomials," arXiv:1311.3624 [hep-th].
[42] N. Hitchin, "Stable bundles and integrable systems," Duke Math. J. 54 no. 1, (1987) 91-114.
[43] D.-E. Diaconescu, R. Donagi, and T. Pantev, "Intermediate Jacobians and ADE Hitchin systems," Math. Res. Lett. 14 no. 5, (2007) 745-756, hep-th/0607159.
[44] A. Klemm, W. Lerche, P. Mayr, C. Vafa, and N. P. Warner, "Self-dual strings and $\mathcal{N}=2$ supersymmetric field theory," Nucl. Phys. B477 (1996) 746-766, hep-th/9604034.
[45] N. Seiberg and E. Witten, "Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric QCD," Nucl.Phys. B431 (1994) 484-550, hep-th/9408099.
[46] O. Aharony and Y. Tachikawa, "A holographic computation of the central charges of $d=4, \mathcal{N}=2$ SCFTs,"JHEP 0801 (2008) 037, arXiv:0711.4532 [hep-th].
[47] T. Banks, M. R. Douglas, and N. Seiberg, "Probing F theory with branes," Phys.Lett. B387 (1996) 278-281, hep-th/9605199.
[48] K. Dasgupta and S. Mukhi, "F theory at constant coupling," Phys.Lett. B385 (1996) 125-131, hep-th/9606044.
[49] O. Chacaltana, J. Distler, and A. Trimm, "Tinkertoys for the E_{6} theory," arXiv:1403.4604 [hep-th].
[50] E. Witten, "Some comments on string dynamics," hep-th/9507121.
[51] S. Terashima and S.-K. Yang, "Exceptional Seiberg-Witten geometry with massive fundamental matters," Phys.Lett. B430 (1998) 102-108, arXiv:hep-th/9803014 [hep-th].
[52] R. Lawther and D. M. Testerman, "Centres of centralizers of unipotent elements in simple algebraic groups," Mem. Amer. Math. Soc. 210 no. 988, (2011) vi+188.
[53] W. M. McGovern, "The adjoint representation and the adjoint action," in Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action, vol. 131 of Encyclopaedia Math. Sci., pp. 159-238. Springer, 2002.
[54] N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, vol. 946 of Lecture Notes in Mathematics. Springer, 1982.
[55] E. J. Martinec and N. P. Warner, "Integrable systems and supersymmetric gauge theory," Nucl.Phys. B459 (1996) 97-112, hep-th/9509161.
[56] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.7.4, 2014. http://www.gap-system.org.
[57] W. Lerche and N. Warner, "Exceptional SW geometry from ALE fibrations," Phys.Lett. B423 (1998) 79-86, hep-th/9608183.
[58] S. Katz and D. R. Morrison, "Gorenstein threefold singularities with small resolutions via invariant theory for Weyl groups," J. Algebraic Geom. 1 no. 3, (1992) 449-530, alg-geom/9202002.
[59] R. W. Carter, Finite groups of Lie type - Conjugacy classes and complex characters -. Pure and Applied Mathematics. John Wiley \& Sons, 1985.
[60] D. Gaiotto, L. Rastelli, and S. S. Razamat, "Bootstrapping the superconformal index with surface defects," arXiv:1207.3577 [hep-th].
[61] D. Gaiotto, G. W. Moore, and Y. Tachikawa, "On 6D $\mathcal{N}=(2,0)$ theory compactified on a Riemann surface with finite area," arXiv:1110.2657 [hep-th].
[62] J. A. Minahan and D. Nemeschansky, "Superconformal fixed points with E_{N} global symmetry," Nucl. Phys. B489 (1997) 24-46,
hep-th/9610076.
[63] O. Chacaltana, J. Distler, and A. Trimm, "Tinkertoys for the Twisted E_{6} Theory," arXiv:1501.00357 [hep-th].
[64] N. Mekareeya, J. Song, and Y. Tachikawa, "2d TQFT structure of the superconformal indices with outer-automorphism twists," JHEP 1303 (2013) 171, arXiv:1212.0545 [hep-th].
[65] S. Cremonesi, A. Hanany, N. Mekareeya, and A. Zaffaroni, "Coulomb branch Hilbert series and Hall-Littlewood polynomials," JHEP 1409 (2014) 178, arXiv:1403.0585 [hep-th].
[66] S. Cremonesi, A. Hanany, N. Mekareeya, and A. Zaffaroni, "Coulomb branch Hilbert series and Three Dimensional Sicilian Theories," JHEP 1409 (2014) 185, arXiv: 1403.2384 [hep-th].
[67] M. Atiyah, N. J. Hitchin, V. Drinfeld, and Y. Manin, "Construction of Instantons," Phys.Lett. A65 (1978) 185-187.
[68] D. Gaiotto, A. Neitzke, and Y. Tachikawa, "Argyres-Seiberg duality and the Higgs branch," Commun. Math. Phys. 294 (2010) 389-410, arXiv:0810.4541 [hep-th].
[69] G. W. Moore and Y. Tachikawa, "On 2d TQFTs whose values are holomorphic symplectic varieties," Proc.Symp.Pure Math. 85 (2012) 191-208, arXiv:1106.5698 [hep-th].
[70] S. Benvenuti, A. Hanany, and N. Mekareeya, "The Hilbert Series of the One Instanton Moduli Space," JHEP 1006 (2010) 100,
arXiv:1005.3026 [hep-th].
[71] A. Hanany, N. Mekareeya, and S. S. Razamat, "Hilbert Series for Moduli Spaces of Two Instantons," JHEP 1301 (2013) 070, arXiv:1205.4741 [hep-th].
[72] S. Cremonesi, G. Ferlito, A. Hanany, and N. Mekareeya, "Coulomb Branch and The Moduli Space of Instantons," JHEP 1412 (2014) 103, arXiv:1408.6835 [hep-th]
[73] O. Chacaltana, J. Distler, and A. Trimm, "A Family of $4 D \mathcal{N}=2$
Interacting SCFTs from the Twisted $A_{2 N}$ Series," arXiv:1412.8129 [hep-th].
[74] L. Rastelli and S. S. Razamat, "The superconformal index of theories of class $\mathcal{S}, "$ arXiv:1412.7131 [hep-th].
[75] Y. Tachikawa, "On S-duality of 5D super Yang-Mills on S^{1}," JHEP 11 (2011) 123, arXiv:1110.0531 [hep-th].
[76] C. Beem, W. Peelaers, L. Rastelli, and B. C. van Rees, "Chiral algebras of class S," arXiv:1408.6522 [hep-th].
[77] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli, et al., "Infinite Chiral Symmetry in Four Dimensions," arXiv:1312.5344 [hep-th].
[78] R. Feger and T. W. Kephart, "LieART - a Mathematica application for Lie algebras and representation theory," arXiv:1206.6379 [math-ph].
[79] R. Slansky, "Group Theory for Unified Model Building," Phys.Rept. 79 (1981) 1-128.

[^0]: ${ }^{1}$ We assume the number of punctures on C is sufficient to get a $4 d$ SCFT in the zero area limit.

[^1]: ${ }^{1}$ This chapter is based on [17].

[^2]: ${ }^{2} \mathrm{~A}$ D-partition of $2 N$ is a partition of $2 N$ where each even part appears with even multiplicity. However, "very even" D-partitions - those where all of the parts are even correspond to not one, but two, nilpotent orbits. To distinguish between the two orbits, we assign a red or blue colour to the very-even Young diagrams.
 ${ }^{3}$ This Spaltenstein map consists in taking the "D-collapse" of the transpose of the Dpartition. The D-collapse operation is explained in the untwisted D-series paper [5] as well as in the book [19].

[^3]: ${ }^{4}$ When p is non-special (i.e., when it does not lie in the image of the Spaltenstein map), the information encoded in $d(p)$ must be supplemented by a nontrivial "Sommers-Achar" finite group, C, whose definition can be found in [7]. This additional discrete information encodes the disconnected part of the group of gauge transformations which we mod out by in constructing the solutions to the Hitchin system. In particular, it determines the presence (or absence) of the "a-type" constraints, on the gauge-invariant k-differentials. This, in turn affects the local contributions to the graded Coulomb branch dimensions. In the Tables, we denote the Hitchin pole for non-special punctures as a pair $(d(p), C)$.
 ${ }^{5}$ Using a nilpotent element X in this equation amounts to writing the local boundary condition in the absence of mass deformations. The mass-deformed boundary condition involves semisimple (diagonalizable) elements of $\mathfrak{s o}(2 N)$, whose eigenvalues take values in the Cartan subalgebra of the flavour Lie algebra for the puncture. For the untwisted A series, a recipe for mass-deformed local boundary conditions was given in [20]. A general prescription is given in Sec. 2.4 of [7].

[^4]: ${ }^{6}$ A C-partition of $2 N$ is a partition of $2 N$ where each odd part appears with even multiplicity. A B-partition of $2 N-1$ is a partition of $2 N-1$ where each even part appears with even multiplicity.
 ${ }^{7}$ This Spaltenstein map consists in adding a part " 1 " to a C-partition p, taking the transpose, and then doing a B-collapse. The result is always a B-partition. The "B-collapse" is discussed in [14, 7] and in [19].
 ${ }^{8}$ Again, when the Nahm pole p is non-special, the complete Hitchin pole information is not just $d(p)$, but a pair $(d(p), C)$, with C the Sommers-Achar group [7].

[^5]: ${ }^{9}$ In this subsection, we use generic names for Coulomb branch parameters such as $u_{2 k}, v_{2 k}, r_{k}$, etc. They are understood to be different variables in different collisions.

[^6]: ${ }^{11}$ As in [3, 5, 4], a Nahm-pole partition p is represented by a Young diagram such that the column heights are equal to the parts of p. (So D-partition $\left[2^{4}\right]$.) In this paper we do not use Young diagrams to represent Hitchin-pole partitions.

[^7]: ${ }^{12}$ To minimize the number of ensuing branch cuts, we have chosen not to preserve the obvious $z_{3} \leftrightarrow z_{4}$ symmetry. We can restore it by redefining the Coulomb branch parameter

 $$
 \hat{\tilde{u}}=\tilde{u}\left(\frac{z_{13} z_{24}}{z_{12} z_{34}}\right)^{1 / 2}
 $$

 The resulting theory lives naturally on the 4 -fold branched cover of $\mathcal{M}_{0,4}$.

[^8]: ${ }^{13}$ In the following, we need only consider the "Hall-Littlewood" limit of the index, where we restrict to the one-parameter slice in the space of superconformal fugacities given by $\left(p=0, q=0, t^{1 / 2} \equiv \tau\right)[24]$.

[^9]: ${ }^{14}$ If the puncture is not "very even", different choices of fugacities are related by a Weyl transformation, under which the Hall-Littlewood polynomials are invariant. For "very even" punctures there are two inequivalent choices, which are permuted by the \mathbb{Z}_{2} outerautomorphism, corresponding to the red and blue coloring. For examples, see [26].

[^10]: ${ }^{1}$ The solutions (with arbitrary masses for the vector and spinor hypermultiplets) of the asymptotically-free theories for $n=8,10,12$ were constructed in 36. The status of SeibergWitten solutions, to various $\mathcal{N}=2$ supersymmetric gauge theories, was recently reviewed in 37 .
 ${ }^{2}$ This chapter is based on 38 .

[^11]: ${ }^{3}$ For many purposes, it's convenient to replace Σ by the compact curve

 $$
 0=\lambda^{2 N}+\phi_{2}(z) \lambda^{2 N-2} \mu^{2}+\phi_{4}(z) \lambda^{2 N-4} \mu^{4}+\cdots+\phi_{2 N-2}(z) \lambda^{2} \mu^{2 N-2}+\tilde{\phi}(z)^{2} \mu^{2 N}
 $$

 in $\operatorname{tot}\left(P\left(K_{C} \oplus \mathcal{O}\right)\right)$. Away from the punctures, $\mu \neq 0$ and we can scale it to 1 . At the punctures, $\mu=0$, and the SW curve has interesting ramification over the punctures. The A_{N-1} case [39, 40 is explained in detail in 41]. The generalization to D_{N} has a few subtleties, which we won't attempt to explicate here.

[^12]: ${ }^{4}$ In the D_{4} theory, there are examples of $\operatorname{Spin}(8)$ gauge theory, with matter in the $n_{s}\left(8_{s}\right)+n_{c}\left(8_{c}\right)+\left(6-n_{s}-n_{c}\right)\left(8_{v}\right)$, where $\tilde{\phi}(z)$ has isolated zeroes on C. Over those points, Σ has ordinary double points and, similarly, we work on the resolution, $\hat{\Sigma}$.

[^13]: ${ }^{5}$ This interacting fixture is another realization of the $\left(E_{7}\right)_{8 n} \times S U(2)_{(n-1)(4 n+1)}$ SCFT, which arises on the world volume of n D3-branes probing a III* singularity in F-theory (see [46, 47, 48] and $\S 5.3$ of 49].

[^14]: ${ }^{6}$ Note that, here, we use the Lie algebra embedding, $\left(\mathfrak{f}_{4}\right)_{k} \supset\left(\mathfrak{g}_{2}\right)_{k} \times \mathfrak{s u}(2)_{8 k}$.

[^15]: ${ }^{1}$ This chapter is based on [49].

[^16]: ${ }^{2}$ In what follows we will consider the Hall-Littlewood limit of the index [24], which depends on one superconformal fugacity, τ.

[^17]: ${ }^{3}$ Since the theories considered here are all "good" or "ugly" (in the sense of 61]), the lowest possible contribution from the sum over $\lambda>0$ is at order τ (see 27] for a discussion of the superconformal index in the context of the good/ugly/bad trichotomy of $4 \mathrm{~d} \mathcal{N}=2$ theories). From (4.6), we see that $\mathcal{A}(\tau)$ and $\mathcal{K}\left(\mathbf{a}_{i}\right)$ are both $1+\mathcal{O}\left(\tau^{2}\right)$, so we can set them both to one in the order τ^{2} approximation. We have also used the fact that $P^{\lambda}=\chi^{\lambda}+\mathcal{O}\left(\tau^{2}\right)$.

[^18]: ${ }^{4}$ For simplicity, we write the dimension to stand for the character of the corresponding representation. The subscript is the $U(1)$ weight.

[^19]: ${ }^{5} \mathrm{Or}$, in the case of fixture 13 , a full puncture, corresponding to the trivial orbit, 0 .
 ${ }^{6}$ For brevity, we will often omit the level, k, when denoting an irregular puncture.

[^20]: ${ }^{1}$ This chapter is based on 63 .

[^21]: ${ }^{2}$ We also allow for the fields on C to undergo a monodromy upon traversing a homologically non-trivial cycle.

[^22]: ${ }^{3}$ This limit corresponds to the $(0, q, t=q)$ slice in the space of superconformal fugacities [24].

[^23]: ${ }^{4}$ These SCFTs are realized in F-theory as the theory on l D3-branes coincident with a IV* singularity.

[^24]: ${ }^{5}$ The action of $C(O)$ on the Higgs branch of mixed fixtures is not so transparent.
 ${ }^{6}$ Interacting fixture 83 in the table above contains the puncture $\underline{A_{2}+\widetilde{A}_{1}}$, which is in the

[^25]: ${ }^{7}$ As symmetry groups, they are, respectively, $S\left(U(2 n-1) \times U(2)^{2}\right), S\left(U(2 n) \times U(1)^{3}\right)$ and $(\operatorname{Spin}(2 n+1) \times \operatorname{Spin}(2 n+1) \times U(1)) / \mathbb{Z}_{2}$.

[^26]: ${ }^{8}$ Equivalently, the moduli space of framed instantons on S^{4}.

[^27]: ${ }^{9}$ We thank Andrew Neitzke for a discussion of this point.

[^28]: ${ }^{10}$ We label irreducible representations of $S U(2)$ by their dimension. In what follows, it is convenient to realize the n-dimensional irrep as a rank- $(n-1)$ symmetric tensor, $\Phi_{\left(\alpha_{1} \alpha_{2} \ldots \alpha_{n-1}\right)}$.

[^29]: ${ }^{11}$ We have multiple generators with the same quantum numbers, so, without knowing the constants a_{i}, the correspondence between these generators is only up to a permutation (or linear combination).

[^30]: ${ }^{1}$ This chapter is based on [73].

[^31]: ${ }^{2}$ The $R_{2,2 N-1}$ series of SCFTs, which have global symmetry $\operatorname{Spin}(4 N+2)_{4 N ? 2} \times U(1)$ also play a role in the dualities [3]

 $$
 \begin{aligned}
 S U(2 N-1)+4(\square)+2(\boldsymbol{\square}) & \simeq S p(N-1)+1(\square)+R_{2,2 N-1} \\
 S U(2 N)+4(\square)+2(\boldsymbol{\square}) & \simeq S p(N)+3(\square)+R_{2,2 N-1}
 \end{aligned}
 $$

[^32]: ${ }^{3}$ The various parts of this formula have been explained many times in the references above. See, e.g., 64.

[^33]: ${ }^{4}$ For simplicity, we set the fugacities of the $U(1)^{2}$ flavor symmetry to 1 .

[^34]: ${ }^{1}$ For untwisted (twisted) punctures in the A and D series, \mathfrak{g} is of type $A(B)$ and $D(C)$, respectively.

[^35]: ${ }^{2}$ A Levi subalgebra $\mathfrak{h} \subset \mathfrak{l} \subset \mathfrak{g}$ is a reductive subalgebra, \mathfrak{l}, containing the Cartan subalgebra, \mathfrak{h}, of \mathfrak{g}. See section 3.8 of [?] for an introduction.
 ${ }^{3}$ A nilpotent orbit, \mathcal{O}, in \mathfrak{g} is distinguished if and only if the only Levi subalgebra of \mathfrak{g}, containing \mathcal{O}, is \mathfrak{g} itself.
 ${ }^{4}$ Any $\mathfrak{s u}(2)$ subalgebra of \mathfrak{g} is spanned by a standard triple $\{H, X, Y\}$ of nonzero elements of \mathfrak{g} satisfying the bracket relations $[H, X]=2 X,[H, Y]=-2 Y$, and $[X, Y]=H$.

[^36]: ${ }^{5}$ The decomposition of the 27 determines a projection matrix, which can be used to obtain the decompositions of higher-dimensional representations. We list a projection matrix for each puncture in Appendix E.2. The decomposition of the 78 determines the levels of the flavor groups, as described in 4.1.4.1.

[^37]: ${ }^{6}$ One might wonder about the other maximal subalgebras of \mathfrak{e}_{6}. One finds that the principal embedding of $\mathfrak{s u}(2)$ in $\mathfrak{s u}(2) \times \mathfrak{s u}(6)$ or $\mathfrak{s u}(3) \times \mathfrak{g}_{2}$ again gives $E_{6}\left(a_{3}\right)$, in \mathfrak{g}_{2} gives $E_{6}\left(a_{1}\right)$, in $\mathfrak{s o}(10) \times \mathfrak{u}(1)$ gives D_{5}, and in $\mathfrak{s u}(3)^{3}$ gives D_{4}.

