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Abstract 
 

Material jetting-based additive manufacturing is a promising manufacturing approach 
with increasing interest in mesoscale applications such as microfluidics, membranes, and 
microelectronics. At these size scales, significant edge deformation is observed limiting the 
resolvable feature size. Currently, predicting and controlling such deformations would require 
extensive experimentation or computationally prohibitive simulations. The objective of this work 
is to develop a computationally low cost material jetting model that enables the simulation and 
prediction of mesoscale feature fabrication. To this end, a quasi-static boundary-based method is 
proposed and demonstrated as a simplified and accurate means of predicting the line-by-line, 
layer-by-layer feature development. The method is validated through comparison with the known 
analytical solution for a single droplet; then the method’s application to AM is demonstrated 
through modeling of representative mesoscale features. The benefits and limitations of each are 
discussed. 
 

Introduction 
 

Additive manufacturing (AM) has been widely adopted as a rapid and highly flexible 
class of fabrication techniques. One of the key advantages cited for the adoption of AM is the 
geometric freedom to produce parts of near infinite complexity, fueling design innovations in 
many industries. Like its more traditional manufacturing counterparts, AM is not without its 
manufacturing constraints. These constraints vary between different AM processes, requiring a 
detailed understanding of the effects of geometric and process parameters for each specific 
process. Of particular interest in this work is the material jetting process. 

Material jetting-based (MJ) processes are a promising approach for AM, benefiting from 
the significant process development achieved by commercial 2D inkjet printing. To fabricate 
parts, banks of print heads selectively eject streams of droplets onto a build platform positioned 
below. These droplets then coalesce to form deposited lines, and overlapping lines form a final 
layer. Subsequent layers are deposited in the same fashion, one of top of the other, to form a 3D 
geometry. MJ machines are among the highest resolution AM processes, with the added benefit 
of scalability in both size and speed. Ejected droplets can be melted material, suspensions, or 
photopolymer liquids; no other AM technology offers as much material flexibility as MJ nor the 
ability to deposit different materials on a pixel-by-pixel basis.  
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With these advantages material jetting-based fabrication has attracted significant research 
and development efforts as a novel fabrication technique with particular focus on mesoscale 
applications. Open areas of interest include printed electronics [1], microfluidics [2], and “4D” 
printing [3]. As these new applications develop, MJ systems are increasingly pushing into new 
frontiers of size, complexity, and functionality, testing the limits of current machines. In fact, 
characterization of existing machines has shown significant geometric deformities at the 
mesoscale, such as sloped walls and rounded corners [4,5]. It is therefore critical to develop a 
strong understanding of underlying physical processes along with models capable of accurately 
and efficiently predicting the fabricated geometry. 

Toward that end, the objective of this work is to develop a computationally low cost 
material jetting model that enables the simulation and prediction of mesoscale feature 
fabrication. A quasi-static boundary-based method is proposed and demonstrated as a simplified 
and accurate means of predicting the line-by-line, layer-by-layer feature development. In the next 
section, relevant literature is reviewed along with a discussion of the existing limitations. Next, 
the underlying theory, assumptions and method are presented. The method is validated through 
comparison with the known analytical solution for a single droplet, before demonstrating the 
fuller capability modeling mesoscale feature fabrication.  

 
Literature Review 

 
The long history of inkjet-based printing provides a significant volume of literature on 

the modeling of droplet impingement. Both analytical and numerical studies abound, covering 
single droplet impingement, droplet coalescence, and line formation under various process 
conditions. For a general review of this literature, the reader is referred to work by Derby [6]. 
While certainly requisite for understanding the deposition process, the existing inkjet literature 
suffers from two major short comings relative to AM processes. First, these works assume a 
uniform flat surface. This is clearly insufficient for the AM process. Only for the first passes of 
the first layer will deposition occur on a uniform, flat surface. Subsequent passes and layers are 
deposited on previously deposited lines or layers, which at a minimum will be uneven at the 
edges. Second, many of the traditional computation fluid dynamic (CFD) approaches utilized, 
such as volume-of-fluid, level-set, and phase-field, are extremely computationally demanding. 
This severely limits the number of droplets that can be incorporated, with four droplets being the 
most observed in existing literature [7]. To address this computational burden, Zhou developed a 
Lattice Boltzmann based numerical model to explore droplet interface dynamics and the 
interactions of multiple droplets in a layer [8]. The benefit of his approach is the ability to 
parallelize the simulation such that it can be run on a larger number of computer threads to boost 
simulation efficiency. While promising, the Lattice Boltzmann approach is still very 
computationally demanding, requiring a high performance computing cluster to scale up, and has 
only been demonstrated for up to nine droplets. 

In terms of AM specific process modeling, a few works have sought to develop closed-
loop control methods for the MJ process, utilizing droplet-level deposition models in their 
feedback loop. Cohen and Lipson estimated the deposition field height by assuming each droplet 
can be approximated as a spherical cap, where the resulting height is simply a linear addition of 
the overlapping regions [9]. This height map is then used within the feedback loop of their 
“greedy geometric feedback” control algorithm along with real-time measurements. In several 
works, Mishra et al. developed a model based feedback control algorithm using an empirical 
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height change model for the deposition of one droplet next to its neighbors [10], [11]. Given a 
uniform printing grid, it was assumed that the height of a given point on that grid is affected by 
the center droplet, side droplets, and corner droplets. The height change is then the resulting 
summation of all the contributions of these droplets. The main limitation of these works is the 
limited ability to incorporate the effects from droplet-level material flow into a global process 
model, such that feature errors like sloped walls and rounded corners can be captured. 

 
Quasi-static Boundary-based Method: Theory and Implementation 

 
Theory 

 
The present approach is based on the work of Thompson et al., which developed a 

reduced dimensional model to predict the morphology of inkjet printed lines deposited on a flat 
surface [12]. This was accomplished by approximating the complex initial dynamics with a 
simple droplet spreading factor to define the post impingement contact line, then solving the 
subsequent problem using a quasi-static spreading law. 

When a jetted droplet impacts the substrate surface, its shape undergoes a complex 
evolution as it transitions from a spherical shape in flight to its final equilibrium shape, as shown 
in Figure 1. A number of physical parameters affect this evolution and the relative significance 
of inertial forces, capillary forces, and gravitational forces. These parameters include droplet size 
(𝐷0), deposition velocity (𝑈), fluid density (𝜌), viscosity (𝜇), surface tension (𝜎), and material-
surface interaction like contact angle (θ). 

 
Figure 1: Evolution of a 40µm diameter droplet impacting onto a cured droplet (time in µs) 

For the deposition of interest to this work, the shape evolution is generally divided into 
three phases. The initial impact phase is dominated by kinetic behavior determined by the impact 
velocity. The expansion of the droplet is balanced by both surface tension and viscosity. During 
the second phase, depending on the extent of initial expansion and fluid surface interactions, the 
droplet could relax back from expansion or could remain stationary experiencing contact angle 
hysteresis. For the fluids of interest to material jetting, this phase is generally well damped, 
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showing minimum or no oscillation. Finally, in the last phase, capillary forces dominate as the 
fluid spreads to its final sessile shape. 

The relative time scales for each of these phases can be approximated using the following 
equations: 

 
𝑡𝑠𝑝𝑟𝑒𝑎𝑑 ≈

𝐷0
𝑈

 ;  𝑡𝑜𝑠𝑐 ≈ �𝜌𝐷0
3

𝜎
 ;  𝑡𝑣𝑖𝑠𝑐 ≈

𝜌𝐷02

𝜇
 (1) 

Using Equation 1 along with representative values of MJ process parameters the time 
scales for the three phases are listed in Table 1. As a rough order of magnitude estimate, the 
transition from the relaxation phase to the final capillary phase is taken as half the viscous time 
period. 

Table 1: Time scales of droplet spreading 

𝝆 (kg/m3) 𝝁 (Pa·s) 𝝈 (N/m) 𝑫𝟎 (µm) 𝑼 (m/s) 

1000 0.010 0.025 40 4 

𝒕𝒔𝒑𝒓𝒆𝒂𝒅 (µs) 𝒕𝒐𝒔𝒄 (µs) 𝒕𝒗𝒊𝒔𝒄 (µs) 𝒕𝒓𝒆𝒍𝒂𝒙 (µs) 𝒕𝒅𝒆𝒑 (µs) 

10 50 160 80 125 

To put these time scales into perspective we’ll compare the printing deposition interval, 
𝑡𝑑𝑒𝑝 (the time between subsequent drops). We estimate the ejection rate for an Objet machine to 
be ~8 kHz, based on speed of the printhead and known resolution, giving a deposition interval of 
125 µs. We can see that the initial droplet spreading and oscillation is much faster than the 
droplet deposition, meaning that the fluid bead fully reaches the capillary stage before 
subsequent deposition. This is a great benefit towards simplifying our fluid modeling. In the 
capillary stage for a fluid with low Ohnesorge number, the bead evolution can be considered 
quasi-static such that the fluid surface can be determined based on the contact line boundary and 
the Young-Laplace equation [12]. Therefore, with a reasonable prediction of the droplet footprint 
after the spreading phase, the final fluid surface can be determined with reasonable accuracy 
without having to solve the full fluid problem as shown next. 

 
Figure 2: a) Droplet in quasi-static state, b) fluid substrate contact line 
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Consider a fluid wetting a surface in a quasi-static or equilibrium state like the one shown 
in Figure 2a. Assuming gravitational forces are negligible, Bond << 1 as is the case in this work, 
the pressure drop across the liquid-gas interface is described by the Young-Laplace equation: 

 
∆𝑝 = 𝜎 �

1
𝑅1

+
1
𝑅2
� (2) 

where ∆𝑝 is the pressure drop across the fluid interface, 𝜎 is the surface tension, and 𝑅1 and 𝑅2 
are the principal radii of curvature. 

The Young-Laplace equation assumes that on the interface the only stress applied is from 
external pressure and the resulting pressure drop is balanced by the surface tension forces, 
determined by the product of the bulk surface tension parameter, 𝜎, and the mean curvature 
� 1
𝑅1

+ 1
𝑅2
�. Since the liquid is assumed to be in a quasi-static state, tangential stresses are assumed 

to be negligible. 
Expressing Equation 2 in terms of Cartesian coordinates, where the height of the liquid 

interface is 𝑧 = ℎ(𝑥,𝑦), yields the following equation: 
 ∆𝑝 = −𝜎 ∇ ∙ ∇ℎ

�1+|∇ℎ|2
 , (𝑥,𝑦) ∈  Ω, 𝛤(𝑥,𝑦) =  𝑠(𝑥,𝑦) (3) 

where Ω  is the wetted region, 𝛤 is the contact line, and 𝑠(𝑥,𝑦) is the height profile of the 
substrate. 

Equation 3 is a second order nonlinear partial differential equation of the elliptic form 
and fully describes the fluid interface so long as ℎ(𝑥,𝑦) and 𝑠(𝑥,𝑦) are unique for any point 
(𝑥,𝑦). Given a prescribed pressure drop and associated boundary conditions, Equation 3 can be 
solved to determine the fluid interface height; however, typically the associate pressure drop 
across the interface is not known a priori. Fortunately, since our deposited material has a known 
mass and is assumed incompressible, the volume of material is known.  By adding a matching 
volume constraint, calculated using Equation 4, the pressure drop can be varied iteratively to 
solve for the interface height: 

 
𝑉 =  �(

Ω

ℎ(𝑥, 𝑦) − 𝑠(𝑥,𝑦))𝑑𝑥𝑑𝑦 (4) 

It should be noted that solving nonlinear PDE’s numerically is far from trivial and nearly 
impossible analytically for any complex domain. For this reason, many works seek to simplify to 
a linear form by adopting the thin film approximation shown in Equation 5, which drops the first 
derivative terms with the error vanishing as a function of the square of the slopes. 

 ∆𝑝 =  𝜎∇2ℎ(𝑥,𝑦) = 𝜎 �ℎ𝑥𝑥 + ℎ𝑦𝑦� (5) 

Equation 5 represents a second order linear partial differential equation of the elliptic 
form and is equivalent to the commonly seen Poisson equation. As such, solving for the resulting 
height field is much more manageable resulting in better stability and faster solutions so long as 
the resulting error is acceptable. The degree of this error will be tested later during validation. 
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Implementation 
 

The above model is solved numerically using the finite element method implemented in 
MATLAB. The finite element method is a power tool whereby a geometric domain of interest is 
divided into a collection of subdomains over which approximate solutions to the governing 
equations are solved, and then assembled together to form a piecewise solution to the problem of 
interest. The benefits of such an approach are far reaching, but most important are the ability to 
represent complex geometric domains with simple subdomains (finite elements) and the ability 
to reduce the solution of governing equation over these domains to much more manageable 
systems of algebraic equations. There are several common finite element approaches. The 
MATLAB implementation utilizes the weighted-residual approach (also known as the Galerkin). 

The method used consists of three steps described below and demonstrated by modeling a 
line consisting of five sequential droplets, deposited at the edge of a previous layer, shown in 
Figure 3. 

 
Figure 3: Line deposited at edge of previous layer 

 
Step 1: Define the domain boundary 

 
The first step towards defining the domain boundary is to estimate the contact line 

boundary of fluid in contact with the substrate. For each droplet, it is assumed that the fluid will 
flow outward from the deposition site, and the distance traveled can be modeled with a spreading 
law. For now, a simple spreading law is considered: distance traveled in each radial direction and 
over the surface is a constant value, where the constant is determined based on a single droplet 
spreading on a flat surface. A more sophisticated second spreading law could consider how the 
slope of the substrate at each deposition site would change the spread distance in each radial 
direction. 

An example of the predicted spread for five sequential drops at the edge of an existing 
layer is shown in Figure 4. 
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Figure 4: Predict droplet spread 

Next, the droplet profiles are projected onto the x-y plane and the convex hull of the points 
is determined. The resulting represents the 2D domain boundary of the problem. On this 
boundary, a Dirichlet boundary condition is used, which specifies the value of the solution at the 
boundary of the domain. Since the domain boundary is the point where the fluid interface meets 
the substrate at the contact line, the associate boundary value at each point is simply the height of 
the surface at that point, which is set by using the substrate height from the previous layer and 
interpolating for any points between the grid spacing.  

 
Step 2: Mesh the domain 

 
With the domain boundary and associated boundary conditions set, the domain is now 

meshed with triangular elements. When meshing the domain, maximum element size and 
element order (linear or quadratic) is specified. These selections impact both solution accuracy 
and simulation time. The relative influence of these parameters is evaluated during validation 
below.  
 

Step 3: Solve the PDE and Volume Constraint 
 

With the boundary conditions set and the domain meshed, the fluid surface problem is 
solved using the finite element method implemented in MATLAB. As was previously stated, 
since the specific interface pressure difference is not known a priori, a volume constraint is used. 
This is implemented as a bounded search problem, to find the associated pressure difference to 
satisfy the volume constraint after the surface is solved. Thus, to begin the search, an initial 
pressure value is given and the PDE is solved over the finite element domain. The volume of the 
solution is calculated using the trapezoidal method, subtracting the volume of the substrate 
beneath the domain. The volume difference is then calculated and used to generate the next 
pressure value based on the gradient of the volume solutions. This is repeated iteratively until the 
volume constraint is met. Stopping criteria is set to a percent volume difference under 0.5. The 
solution of the example problem is shown in Figure 5. 
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Figure 5: Solution for 3D fluid interface 

 
Results and Discussion 

 
Validation 

 
To evaluate the boundary-based method’s capacity to efficiently predict a deposited fluid 

surface, we compare the FEA simulation results for a single droplet on a flat surface with a 
spherical cap, shown in Figure 6, which is the known analytical solution to the Young-Laplace 
model for a micro-scale sessile drop. For this comparison, a 30pL droplet with a 45° static 
contact angle is used, resulting in a base radius of 35.2 µm and center height of 14.6 µm. 

 
Figure 6: Spherical Cap 

The numerical solution is calculated and evaluated for the mean absolute error throughout 
the domain and center height error compared with the spherical cap. The effect of mesh 
size/density and element order is evaluated, with results shown in Table 2. Overall, the numerical 
solution using the nonlinear formulation is quite accurate for both types of elements, as well as 
the coarsest mesh sizes, having a maximum average absolute error less than 0.2µm and 
maximum center height error less than 0.25µm. Comparing the quadratic elements with the 
linear elements reveals a significant increase in simulation time for only a minor improvement in 
terms of accuracy. The linear formulation boasts an additional reduction in simulation time, but 
has increased error. Both the nonlinear and linear formulations present orders of magnitude 
reduction in simulation time compared with a full 3D simulation, while still preserving 
acceptable accuracy. For comparison, the single droplet simulation shown in Figure 1 would 
need over 6 hours of simulation time using the level-set method in COMSOL. 
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As an additional validation, the method was run using parameters from the work of Lee 
and Son, who studied the deposition of up to four sequential droplets [7]. The boundary-based 
method showed good agreement with their work. 
 

Table 2: Effects of mesh size and order on simulation time and accuracy 

  Nonlinear Form 
2nd Order Elements 

Nonlinear Form 
1st Order Elements 

Linear Form 
1st Order Elements 

Elem 
max 
(µm) 

No. 
Elem 

𝑬𝒓𝒓𝒂𝒗𝒈 
(µm) 

𝑬𝒓𝒓𝒄𝒆𝒏𝒕 
(µm) 

𝑻𝒊𝒎𝒆 
(sec) 

𝑬𝒓𝒓𝒂𝒗𝒈 
(µm) 

𝑬𝒓𝒓𝒄𝒆𝒏𝒕 
(µm) 

𝑻𝒊𝒎𝒆 
(sec) 

𝑬𝒓𝒓𝒂𝒗𝒈 
(µm) 

𝑬𝒓𝒓𝒄𝒆𝒏𝒕 
(µm) 

𝑻𝒊𝒎𝒆 
(sec) 

10 136 0.082 0.104 19.01 0.177 0.230 8.78 0.273 1.012 0.99 

5 504 0.102 0.175 19.23 0.114 0.209 8.33 0.305 0.945 1.19 

2.5 2118 0.098 0.171 29.21 0.100 0.185 11.57 0.321 0.941 1.88 
 

Modeling Mesoscale Features 
 

Having validated the Quasi-static Boundary-based Method, feature fabrication is now 
investigated. The model parameters are based on the Objet Connex 260 printer specifications, 
which has a reported 600 dpi resolution in the x and y axes resulting in 42.3 µm droplet and line 
spacing. To achieve this resolution, the system requires four deposition passes and the nozzle 
spacing is such that during any single pass, fluid from two adjacent nozzles doesn’t interact. For 
this study a 30pL droplet with a 45° static contact angle is used. 

A 1x1mm square extrusion is modelled with a desired thickness of 0.2mm. This equates 
to a 25x25 droplet grid, 10 deposited layers, and a total of 6,250 droplet deposition sites. Overall, 
it took approximately 15 minutes to complete the simulation, averaging about 90 seconds per 
layer. Such a simulation would be unimaginable using any traditional CFD approach. 

The final predicted geometry is shown in Figure 7. 

  
Figure 7: 1x1mm square after 10 layers 
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Figure 8 shows a side view of the simulated feature along with a feature fabricated using 
a Connex 260 machine. Qualitatively there is a good match between the boundary-based method 
and the fabricated part with its rounded corners and sloped walls. With greater details of the 
specific machine deposition parameters and fluid properties, this prediction would become 
increasingly accurate. 

 
Figure 8: a) Side view of simulated feature, b) side view of fabricated feature 

 
Conclusion 

 
In this work, a quasi-static boundary-based approach is proposed to model the line-by-

line, layer-by-layer shape evolution of the material jetting process. The method was validated 
through comparison with the exact solution for a hemispherical drop and the results of a high 
fidelity CFD simulation found in literature, showing very close results in both cases. The 
approach was then extended to simulate fabrication of a mesoscale square extrusion. The 
predicted feature shows rounded corners and sloped walls as a result of the MJ process, which is 
qualitatively verified by experimental characterization of a commercial machine. While 
preliminary in nature, the results presented above lay a strong foundation for the effectiveness of 
the proposed method to predict the MJ process. For future works, the initial droplet spreading 
will be investigated along with a deeper analysis of the computational efficiency of the proposed 
method. 
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