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Descurainia is a genus in the Brassicaceae distributed throughout temperate areas

of the Old and New World. The genus is well-known for its taxonomic complexity,

especially within New World species, on account of its numerous intergrading forms

coupled with circumscriptions dependent upon inconsistent and overlapping characters.

Descurainia is most diverse in western North America and western South America, with

a smaller center of distribution in the Canary Islands and three additional Old World

species. This distribution makes the genus well-suited for addressing biogeographical

issues related to New World intercontinental dispersal and evolution in island systems.

A molecular-based analysis of Descurainia was conducted using DNA sequences

from nuclear ribosomal internal transcribed spacer (ITS), single-copy nuclear Target of

Rapamycin (TOR), and non-coding chloroplast regions. The genus, with the inclusion of

the monotypic genera Hugueninia and possibly Robeschia, is strongly supported as

monophyletic, and appears to be of Old World origin with recent diversification within
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the Canary Islands and the New World. A phylogeny recovered from combined ITS and

chloroplast data is not well-resolved with respect to relationships between some major

New World lineages, but suggests that multiple independent dispersals of Descurainia

have taken place between North and South America. Substantial incongruence between

ITS, chloroplast, and TOR phylogenies, as well as the presence of mixed ITS and TOR

sequences, point to a complex evolutionary history involving extensive gene flow and

hybridization for North American Descurainia. The molecular data highlight possible

problems with current species circumscriptions, especially within North American taxa

such as D. incisa, D. obtusa, and D. pinnata. ITS and chloroplast data indicate that

species of Descurainia in the Canary Islands are derived via a single colonization event,

most likely from southwestern Europe onto the lowland scrub zone on Tenerife. Both

intra-island adaptive radiation and inter-island colonization have played a prominent role

in the evolution of this genus in the islands. The results presented in this dissertation

represent the first comprehensive molecular study of Descurainia, and may serve as a

phylogenetic framework for future research on the genus as well as phenomena such as

speciation and hybridization in recently-evolved groups.
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Chapter 1: Introduction

Descurainia Webb & Berthel. is a genus in the Brassicaceae with centers of

diversity in the Canary Islands (7 spp.), North America (ca. 12 spp.), and western South

America (ca. 21 spp.) (Fig. 1.1; Table 1.1). Only three species are not wholly confined to

these areas, occupying instead portions of Eurasia or both arctic North America and

northern Siberia. Most species of Descurainia are small-flowered herbaceous annuals or

biennials with small nectaries, although the Canarian species are suffrutescent perennials

with relatively large flowers and conspicuous nectaries (Schulz, 1924; Al-Shehbaz,

1988).

Descurainia was last monographed in its entirety by Schulz (1924), with

treatments of North American (Detling, 1939) and Canary Island (Bramwell, 1977)

species appearing more recently. Although one of the principal genera in the

Brassicaceae (Mabberley, 1997) on the basis of species diversity, there have been no

detailed molecular systematic studies of Descurainia and no hypotheses have been put

forth regarding phylogenetic relationships within the genus. This paucity of critical

studies is largely due to the taxonomic complexity of Descurainia, especially within New

World species that comprise the majority of the genus. Extensive morphological variation

exists within numerous species, many wide-ranging and widely-overlapping taxa appear

to intergrade endlessly, and descriptions are frequently based on inconsistent and

overlapping diagnostic characters. Polyploidy is widespread, at least within North

American species, with tetraploid and hexaploid populations reported for many taxa. This

ploidal level variation, coupled with the presence of morphologically intergrading forms,

suggests the possibility of frequent hybridization, complicating classification efforts.



2

Although the genus is in need of revision, attempts to circumscribe correctly many

species are likely to fail without insights provided by a molecular study.

Many of the morphological characters used to delimit taxonomic boundaries in

the Brassicaceae are homoplastic, and molecular systematic studies are demonstrating

that most traditional tribal and subtribal classifications are highly artificial (Al-Shehbaz

& al., 2006 and Bailey & al., 2006 and references therein). Generic boundaries in the

family are also problematic, and many genera have been discovered to be non-

monophyletic (e.g., Koch & al., 1999a, 2000; Crespo & al., 2000; Sweeney & Price,

2000; Warwick & al., 2002, 2004b; O’Kane & Al-Shehbaz, 2003; Koch & Al-Shehbaz,

2004; Beilstein & al., 2006). Consequently, in addition to clarifying species

circumscriptions within Descurainia, molecular data are also needed to confirm the

monophyly of the genus and its relative position within the Brassicaceae.

On account of its distribution, Descurainia has potential as a model system for

addressing several broad biogeographical questions. One such issue concerns the

frequency and pattern of dispersals between North and South American temperate zones.

North American species of Descurainia are separated from their congeners in South

America by a distance of approximately 2200 km. This pattern of disjunction is well-

known, having been observed for a great number of species, species-pairs, and genera,

many of which are more widely separated then Descurainia. These disjunctions are

generally thought to have arisen via long-distance dispersal, most likely by migrating

birds (Raven, 1963, 1972; Cruden, 1966; Solbrig, 1972; Carlquist, 1983; Simpson &

Neff, 1985). In the case of taxa such as Descurainia which have a more continuous

distribution along the western Cordillera, some authors have suggested that dispersal may

have proceeded in a stepping-stone fashion, rather than by way of a single long-distance

event (Raven, 1963; Cruden, 1966; Thorne, 1972). Considering the large number of New
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World temperate zone disjuncts, surprisingly few molecular phylogenetic investigations

have been carried out on such taxa. Although a few broadly-sampled and well-resolved

phylogenies of genera speciose on both continents have recently appeared (e.g., Bell &

Donoghue, 2005; Simpson & al., 2005; Blattner, 2006; Moore & al., 2006), the majority

of relevant studies have focused on groups comprising many species on one continent

and only one or two species on the other (e.g., Wallace & Jansen, 1990; Vargas & al.,

1998; Morrell & al., 2000; Chan & al., 2001; Lia & al., 2001; Soltis & al., 2001; Bleeker

& al., 2002; Lee & al., 2003; Beier & al., 2004). Descurainia, with its moderate size and

centers of diversity on both continents, is well-suited for studying the origins of New

World temperate zone disjunctions.

Other biogeographical questions which can be addressed using Descurainia are

related to the Canary Islands, whose flora and fauna, together with that of the surrounding

Macaronesian region, has been the focus of a number of recent studies involving

colonization and adaptive radiation on islands (see Juan & al., 2000). It has been

suggested that the Macaronesian endemic flora is a relict of a Tertiary flora which spread

from the Mediterranean basin before the first glaciation of Europe (Bramwell, 1977;

Sunding, 1979; Cronk, 1992). Recent molecular studies, however, suggest that while

some Macaronesian species may be relictual in nature (e.g., Ray, 1995; Mes & al., 1996;

Fuertes-Aguilar & al., 2002; Moore & al., 2002), most groups appear to be recently

derived from herbaceous continental ancestors (e.g., Böhle & al., 1996; Kim & al., 1996;

Francisco-Ortega & al., 1997; Barber & al., 2000; Helfgott & al., 2000; Mort & al.,

2002). Several recent studies of the Macaronesian flora have also investigated

diversification patterns within the islands, such as the relative importance of inter-island

colonization between similar ecological zones compared to adaptive radiation within each

island. Molecular studies suggest that while intra-island adaptive radiation appears to be
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the dominant mode of species diversification in a few groups (e.g., Barber & al., 2000;

Percy & Cronk, 2002), others may have speciated primarily via inter-island colonization

(e.g., Francisco-Ortega & al., 1996; Mes & t’Hart, 1996; Percy & Cronk, 2002; Allan &

al., 2004; Trusty & al., 2005). Because well-resolved multigene phylogenies for many

insular groups have not yet been acquired, however, the overall picture of evolution

within the islands is still emerging. Development of a phylogeny for Canary Island

Descurainia and identification of continental relatives will provide additional evidence

concerning the origin and colonization patterns of the Macaronesian flora.

A major goal of the research described in this dissertation was construction of a

molecular-based phylogeny for the genus Descurainia. Additional aims were to use the

resulting phylogeny to test the monophyly of Descurainia and elucidate its relationship to

other members of the Brassicaceae, estimate evolutionary relationships among New

World Descurainia, with an emphasis on dispersal patterns between North and South

America and the origin of the New World disjunction, and examine the origin and

evolution of the Canary Island species. To accomplish these goals, DNA was isolated

from multiple accessions of most described Descurainia species as well as several close

relatives and suitable outgroups. Phylogenetic analyses were conducted using DNA

sequences obtained for the nuclear ITS ribosomal repeat region (ITS1, 5.8S rRNA, ITS2

[Kim & Jansen, 1994]), several non-coding chloroplast regions, and, for a subset of taxa,

a portion of the single-copy nuclear Target of Rapamycin (TOR) gene. The remaining

three chapters of this dissertation outline these molecular studies, the results, and their

taxonomic and biogeographic implications.

Chapter 2 of this dissertation presents a phylogeny of Descurainia and related

taxa generated from parsimony and Bayesian analyses of the ITS and chloroplast

molecular data. These results indicate that Descurainia is monophyletic with the
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inclusion of monotypic genera Hugueninia Rchb. and possibly Robeschia O. E. Schulz

and Ianhedgea Al-Shehbaz & O’Kane. These genera are sister to a clade consisting of the

European genus Hornungia Rchb. and the New World genus Tropidocarpum Hook.. On

the basis of this study and other reports (e.g., Beilstein & al., 2006), Al-Shehbaz & al.

(2006) have recognized these genera and Trichotolinum O. E. Schulz as constituents of a

new tribe, the Descurainieae.

Phylogenies based on ITS and non-coding chloroplast data reveal that Old World

species D. kochii and D. sophia are the earliest diverging lineages in the genus, and that

the Canary Island species and Hugueninia are sister to all the New World taxa. Within

the New World clade, several major lineages are identified, but their relationships to one

another are not completely resolved.

Molecular clock dating suggests a recent origin in the Irano-Turanian region of

the Old World for Descurainia, with subsequent diversification during the late Pliocene

or early Pleistocene into Europe and into the New World. Species in the Canary Islands

are monophyletic, implying a single colonization event into the islands, and are most

closely related to European Hugueninia. Following introduction into the New World,

most likely from Eurasia into North America, there have been at least two, and possibly

more, dispersals between North and South America. Incongruence between ITS and

chloroplast trees, as well as mixed ITS types observed for some North American

accessions, provide evidence of hybridization in North American Descurainia. The recent

origin of the genus and frequent hybridization are probably responsible for most of the

taxonomic complexity which plagues efforts to classify Descurainia in North and South

America.

In Chapter 3, the results of a molecular analysis based on sequences of a portion

of the single-copy nuclear gene Target of Rapamycin (TOR) are presented. Parsimony
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and Bayesian analyses of the TOR sequence data strongly support New World

Descurainia as a monophyletic lineage which is most closely related to Hugueninia and

sister to Canary Island taxa. The position of Hugueninia with respect to Canary Island

and New World taxa thus differs from the results of Chapter 2. Although most major

New World clades identified by ITS and chloroplast data are present in the TOR

phylogeny, their position with respect to one another is largely unresolved. Extensive

incongruence between ITS, chloroplast, and TOR phylogenies, as well as the presence of

mixed ITS and TOR sequences, suggests a complex evolutionary history for Descurainia.

As a recently-diverged genus, processes such as hybridization and lineage sorting

complicate efforts to develop an accurate taxonomy for the group. Despite the substantial

incongruence observed between ITS, chloroplast and TOR phylogenies as well as the

need for more extensive taxon sampling, some general trends with regards to North

American Descurainia species taxonomy can nonetheless be discerned. Although the

molecular data are consistent with many existing species concepts, problems with the

circumscriptions of taxa such as D. incisa, D. obtusa and D. pinnata are highlighted.

Finally, in Chapter 4, the origin and evolution of the Canary Island species is

examined. A molecular-based phylogeny of Canarian Descurainia was constructed using

DNA sequences from ITS and non-coding chloroplast regions. The results of parsimony

and Bayesian analyses suggest that species of Descurainia in the Canary Islands are

recently derived via a single colonization event. The closest continental relative is

Hugueninia tanacetifolia, a perennial herb from the mountains of southwestern Europe.

Chloroplast data suggest that both intra-island adaptive radiation and inter-island

colonization have played a prominent role in the evolution of Descurainia in the Canary

Islands. The most likely ancestral location of the island progenitor was the lowland scrub

zone on Tenerife.
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Table 1.1. Species concepts for Descurainia and related taxa initially recognized in this
study1. Taxa sampled in this study are marked with an * (see Table 2.2).

Taxon Distribution Reported
chromosome

numbers14

n = 2n =

SECTION SISYMBRIODENDRON (CHRIST) O. E. SHULZ (Canary Islands)

D. artemisioides Svent.* Gran Canaria -- 14a,b

D. bourgaeana Webb. ex. O. E. Schulz* Tenerife 7b,c 14a

D. gilva Svent.* La Palma -- 14d

D. gonzalezi Svent.* Tenerife 7b, 14b 14e, 21a,b

D. lemsii Bramwell* Tenerife 7b 14b

D. millefolia (Jacq.) Webb & Berthel.* Tenerife, La Palma, La
Gomera

-- 14bc

D. preauxiana (Webb) Webb ex O. E.
Schulz*

Gran Canaria -- 14ab

SECTION DESCURAINIA

Eurasia –

D. kochii (Petri) O. E. Schulz* Turkey, Caucasus region -- --

D. sophia (L.) Webb* Europe, Asia (except SE),
N Africa (& New World)

14x 28f

North America –

D. californica (A. Gray) O. E. Schulz* W U.S. 7j 14j

D. hartwegiana (E. Fourn.) Britton2† Central Mexico? -- --

D. impatiens (Cham. & Schltdl.) O. E.
Schulz*

Central & S Mexico 7k --

D. incana (Bernh. ex Fisch. & C. A. Mey.)
Dorn3*

Canada, N U.S. incl. Alaska 7l 14n, 28m
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Table 1.1. Continued.

D. incisa (Engelm. ex A. Gray) Britton3

ssp. filipes (A. Gray) Rollins* W Canada, W U.S. -- 14n,m, 28l,
42l

ssp. incisa* W Canada, W U.S. -- --13

ssp. paysonii (Detling) Rollins* W U.S. -- --
ssp. viscosa (Rydb.) Rollins* W U.S. 7o 14p

D. obtusa (Greene) O. E. Schulz
ssp. adenophora (Wooton & Standley)* SW U.S., N Mexico 21p --
ssp. brevisiliqua Detling4* N Arizona, N New Mexico -- 42m

ssp. obtusa* Arizona, New Mexico, N
Mexico

-- 14m

D. paradisa (A. Nels. & Kenn.) O. E.
Schulz

ssp. nevadensis Rollins* Nevada, Oregon, California -- --
ssp. paradisa* Nevada -- --

D. pinnata (Walter) Britton
ssp. brachycarpa (Richardson) Detling* Canada, N & central U.S. 7q 28n

ssp. glabra (Wooton & Standl.) Detling* SW U.S., N Mexico -- 28m

ssp. halictorum (Cockerell) Detling*9 Central & W U.S., N
Mexico

7r,j 14r,28n,
42m

ssp. intermedia (Rydb.) Detling*9 W Canada, W U.S. -- 28m

ssp. menziesii (DC.) Detling* S California, Baja California -- 28h

ssp. nelsonii (Rydb.) Detling* W Canada, W U.S. -- 14m

ssp. ochroleuca (Wooton) Detling* SW U.S., N Mexico 14s --
ssp. pinnata* SE U.S. 7j --

D. ramosissima Rollins5† Saguache Co., Colorado -- --

D. sophioides (Fischer ex Hook.) O. E.
Schulz*

N Canada, Alaska,
N Siberia10

-- 14n,t

D. streptocarpa (E. Fourn.) O. E. Schulz*11 Central Mexico, Guatemala 14l --

D. torulosa Rollins6† W Wyoming -- --

D. virletii (E. Fourn.) O. E. Schulz* Central Mexico 14j --

South America –

D. adpressa Boelcke Prov. San Juan, Argentina -- --

D. altoandina Romanczuk Prov. Neuquén, Argentina -- --

D. antarctica (E. Fourn.) O. E. Schulz
var. antarctica S Argentina, S Chile -- --
var. bonarelli O. E. Schulz* S Argentina -- --
var. patagonica (Speg.) O. E. Schulz* S Argentina, S Chile -- --
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Table 1.1. Continued.

D. appendiculata (Griseb.) O. E. Schulz* Central & NW Argentina,
Uruguay, S Bolivia

-- --

D. argentea O. E. Schulz7† Prov. Chubut, Argentina -- --

D. argentina O. E. Schulz* Central & NW Argentina -- --

D. athrocarpa (A. Gray) O. E. Schulz*
(includes D. gilgiana Muschl.,
D. macbridei O. E. Schulz, and
D. urbaniana Muschl.)

Peru, Bolivia, N Chile -- --

D. brevifructa Boelcke ex Mart.-Laborde Prov. San Juan, Argentina -- --

D. cumingiana (Fisch. & C. A. Mey.) Prantl 7u 14h

var. cumingiana Chile, W Argentina -- --
var. glabrescens (Speg.) Speg. Chile, S Argentina -- --
var. tenuissima (Phil.) Reiche* Chile, S Argentina -- --

D. depressa (Phil.) Reiche* Bolivia, Peru, N Chile,
NW Argentina

var. depressa8† -- --
var. pflanzii (Muschl.) O. E. Schulz8† -- --

D. erodiifolia (Phil.) Prantl ex Reiche* Chile -- --

D. glaucescens (Phil.) Prantl ex Reiche* Chile, W Argentina -- --

D. heterotricha Speg.* Argentina -- --

D. latisiliqua (Muschl.) O. E. Schulz S Bolivia -- --

D. leptoclada Muschl. ex O. E. Schulz* Bolivia, Peru, NW
Argentina, N Chile

-- 14v

D. myriophylla (Willd. ex DC.) R. E. Fr.*
(includes D. perkinsiana Muschl.

and D. pulcherrima Muschl.)

Colombia, Ecuador, Peru,
Bolivia, N Chile, NW
Argentina

7w 14h,v,w (28
in some
cells)h

D. nana Romanczuk Prov. Santa Cruz, Argentina -- --

D. nuttallii (Colla) O. E. Schulz Chile -- --

D. pimpinellifolia (Barnéoud) O. E. Schulz* Chile, W Argentina -- --

D. stricta (Phil.) Reiche* N Chile -- --
var. minutiflora (Phil.) O. E. Schulz
var. rubescens (Phil.) O. E. Schulz
var. stricta
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Table 1.1. Continued.

var. florida (Phil.) O. E. Schulz

D. titicacensis (Walpers) Lillo Peru, Bolivia, NW Argentina -- --

RELATED TAXA

Hugueninia tanacetifolia (L.) Rchb.12 7g 14-16h

ssp. suffruticosa (L.) Prantl Pyrenees, N Spain -- 14i

ssp. tanacetifolia* SW Alps -- --

Ianhedgea minutiflora (Hook. f & Thoms.)
Al-Shehbaz & O’Kane*

Central & SW Asia -- 28y

Robeschia schimperi (Boiss.) O. E. Schulz* Middle East 8z --

Notes:
1Authors frequently disagree in regards to species and subspecific concepts and no classification is
satisfactory. I have generally followed the Brassicaceae checklist of Warwick & al. (2006) in conjunction
with Schulz (1924), regional treatments, and personal observations of herbarium material. In my view, the
validity of several named species and/or subspecies is questionable (including but not limited to taxa
marked with a †).
2Most likely mislabelled South American collections (cf. Rollins 1993a).
3Rollins (1993a) and Holmgren & al. (2005) include ssp. filipes and paysonii in D. incisa, whereas Detling
(1939) and Welsh & al. (1993) consider them subspecies of D. pinnata. Detling (1939) includes the
remainder of D. incisa in D. incana (= D. richardsonii [Sweet] O. E. Schulz).
4Included by Rollins (1993a) in D. obtusa ssp. obtusa.
5Known only from the type locality (Saguache Co., CO) and probably an intermediate form between D.
pinnata and D. incana.
6Studies by Bricker & al. (2000) suggest that D. torulosa is not sufficiently distinct from D. incana to merit
taxonomic recognition.
7The species description (Schulz 1924) is apparently based on an immature specimen without fruit. Almost
no herbarium material exists that has been considered to be D. argentea.
8These two varieties occur together and differ only in the degree of silique pubescence.
9Holmgren & al. (2005) included ssp. halictorum and ssp. intermedia in var. osmiarum (Cockerell)
Shinners.
10There is also one specimen at MO! collected by Dr. F. V. Hayden 12 June 1860 from “Jacksons Hole on
Snake River [Wyoming] during the expedition of Capt. W. F. Reynolds to the head waters of the Missouri
and Yellowstone Rivers 1859-60.” Plant material from that expedition and many others was processed by
George Engelmann and added to his 94000+ specimen herbarium (inherited by MO); perhaps a label or
sample mix-up occurred with Canadian or Alaskan material.
11Rzedowski & Rzedowski (2001) include D. streptocarpa in D. impatiens.
12A second species, H. balearica (Porta) O. E. Schulz, has been transferred to Diplotaxis (as D. catholica
[L.] DC.).
13Reports of 2n = 42 for D. incisa are based on a sample which is identifiable as D. obtusa ssp. brevisiliqua.
14References for reported chromosome numbers: aBorgen, 1969; bBramwell, 1977; cLarson, 1960; dSuda &
al., 2003; ePolatschek, 1983; f Manton, 1932 (56 in some cells); Baldwin & Campbell, 1940; Löve & Löve,
1956; Mulligan, 1961; Taylor & Mulligan, 1968; Podlech & Dieterle, 1969; Gadella & Kliphuis, 1973;
Ancev, 1981, 1983; Murín, 1974; Aryavand, 1977, 1978; Dvorák & al., 1981; Dvorák & Dadáková, 1984;
Parfenov & Dmitrieva, 1988; Yang & al., 1996; Dobeš & Hahn, 1997; Pogan & al., 1980; Lövkvist &
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Hultgård, 1999; (also one report of 2n = 12 [Saidabadi & Garenflot, 1975] and three reports of 2n = 14
[Bochantzeva, 1972; Krasnoborov & al., 1980; Krasnikov & Lomonosova, 1990]); gDelay, 1971; hManton,
Table 1.1. Continued.

1932; iOrtiz, 1993; jRollins & Rüdenberg, 1977; kBeaman & al., 1962; lReported in Rollins, 1993a but
source not cited; mBaldwin & Campbell, 1940; nMulligan, 1961; oRodman, 1978; pRollins & Rüdenberg,
1979; qEasterly, 1963; rRollins & Rüdenberg, 1971; sWard, 1983; tMulligan, 1961, Packer, 1964; Mulligan,
1970; Zhukova & al., 1973, 1977; Löve & Löve, 1982; Yurtsev & Zhukova, 1982; Petrovsky & Zhukova,
1983; Zhukova & Petrovsky, 1984 (also one report of 2n = 26 [Zhukova, 1966]); uJaretzky, 1932; vDiers,
1961; wHuynh, 1965; x Jaretzky, 1932; Tischler, 1935; Rohweder, 1937; Rodman, 1978; Arohonka, 1982;
Mulligan, 1984; Lan & Cheo, 1989; Khatoon & Ali, 1993; Hill, 1995 (one report of n = 7 [Ghaffari &
Chariat-Panahi, 1985] and one report of n = 10 [Maassoumi, 1980]); yPolatschek, 1971; zAryavand, 1975.
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Fig. 1.1. World-wide distribution of Descurainia and Hugueninia. Darker areas correspond to
regions of greatest species diversity. The primary range of widely-introduced D. sophia, based on
Anderberg & Anderberg (1997), is shown in black outline.
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Chapter 2: Molecular systematics of Descurainia Webb & Berthel.
(Brassicaceae) based on nuclear ITS and non-coding chloroplast DNA

INTRODUCTION

Descurainia Webb & Berthel. is a genus in the Brassicaceae comprising

approximately 40 – 45 species distributed throughout temperate areas of the Old and New

World (Table 1.1; Fig. 1.1). The vast majority of Descurainia species are concentrated in

three regions of the world, namely the Canary Islands (7 spp.), North America (ca. 12

spp.), and western South America (ca. 21 spp.). Only three species are not wholly located

within these centers of distribution: D. sophioides is found in northern Siberia as well as

arctic North America, D. kochii is distributed throughout Turkey and the Caucasus, and

D. sophia is a now widely-introduced Eurasian weed. An additional genus included in

Descurainia by some authors (Prantl, 1891; Appel & Al-Shehbaz, 2003) – Hugueninia

Rchb. – is restricted to the mountains of southwestern Europe.

Morphological characteristics of Descurainia include the presence of minute

dendritic trichomes, pinnate to tripinnate leaves, small yellow or whitish flowers with

spathulate petals, filiform fruiting pedicels, and narrow siliques containing seeds that are

mucilaginous when wet (Schulz, 1924; Al-Shehbaz, 1988; Rollins, 1993a). Many species

of Descurainia also possess unicellular clavate glands, a feature not found in other

members of the Brassicaceae (Al-Shehbaz & al., 2006). The genus name is derived from

Descurea, the name applied to currently-termed Descurainia sophia by Guettard (1747)

in honor of his grandfather François Descurain, a French apothecary and botanist (Webb

& Berthelot, 1836; Holmgren & al., 2005). Although Descurainia is one of the principal

genera in the Brassicaceae (Mabberley, 1997) in terms of species richness, the genus has

not been extensively studied and estimates of the number of species vary. The only
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comprehensive treatment of the genus has been that of Schulz (1924), who divided

Descurainia into two sections. Section Sisymbriodendron (Christ) O. E. Schulz

comprises the seven species endemic to the Canary Islands. These species are self-

incompatible suffrutescent perennials, possessing relatively large flowers, conspicuous

nectaries, and slightly winged seeds. Except for D. millefolia, each of the Canarian

species is narrowly restricted in respect to habitat and island distribution. Section

Descurainia (= sect. Seriphium O. E. Schulz), consisting of small-flowered herbaceous

annuals, biennials, or rarely perennials with inconspicuous nectaries, comprises the

majority of species in the genus. The reproductive biology of this section has not been

studied thoroughly, but several species (i.e., D. californica, D. pinnata, D. richardsonii

[= D. incana or D. incisa], and D. sophia) are known to be autogamous (Rollins and

Rüdenberg, 1971; Best, 1977; Bramwell, 1977; Wiens, 1984; Wiens & al., 1987).

Excluding D. sophioides, which extends westward from northern Canada into Siberia,

only two members of this section are found in the Old World. In contrast to sect.

Sisymbriodendron, taxa in sect. Descurainia are generally weedy and wide-ranging.

Section Descurainia has successfully radiated throughout the northern and

southern hemispheres of the New World. A presence in both North and South America is

uncommon in the Brassicaceae, being true for fewer than a dozen (Rollins, 1993a; Al-

Shehbaz & Price, 2001) out of the approximately 338 genera in the family (Al-Shehbaz

& al., 2006).

Most North American species of Descurainia are distributed in the western

United States, with the greatest concentration of taxa located south and east of the Great

Basin. Only two species extend their ranges east of the Mississippi: D. incana stretches

into Canada as far east as the Great Lakes, D. pinnata ssp. brachycarpa reaches into the

Ohio Valley, New England, and Quebec, and D. pinnata ssp. pinnata is an inhabitant of
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the southeastern U. S. coastal plain. Three to four species are endemic to Mexico. In a

major revision of North American Descurainia, Detling (1939) recognized nine native

species (D. californica, D. hartwegiana, D. impatiens, D. obtusa, D. pinnata, D.

richardsonii, D. sophioides, D. streptocarpa, and D. virletii) and 18 subspecies. He

reclassified many species of Schulz and other authors and recognized 11 subspecies of

the wide-ranging and morphologically variable D. pinnata, dividing them between

southern and northern complexes. More recently, Rollins (1993a) addressed species

concepts in the genus as part of a comprehensive taxonomic treatment of North American

Cruciferae. While agreeing with many of Detling’s classifications, he made a number of

changes, including naming two new species (D. ramosissima and D. torulosa) and

separating D. richardsonii into D. incana and D. incisa. He also transferred several

subspecies of D. pinnata to D. incisa, and raised one subspecies to the species level (D.

paradisa). Detling (1939) and Rollins (1983, 1993a,b), as well as many authors of

regional treatments (e.g., Welsh and Reveal, 1977; Goodrich & Neese, 1986; Al-

Shehbaz, 1988; Welsh & al., 1993; Holmgren & al., 2005) have commented on the

taxonomic complexity of North American Descurainia and the unsatisfactory nature of

the diagnostic characters used to interpret relationships. This has been particularly

problematic within – and between – D. pinnata and D. incisa. Furthermore, in a study

assessing the taxonomic status of D. torulosa (Bricker & al., 2000), six accessions of D.

pinnata, D. incana, and D. incisa, all from Wyoming, were included along with D.

sophia in a molecular analysis. While this sampling was extremely limited, the results

uncovered evidence suggesting that D. pinnata and D. incana as currently recognized

may not be monophyletic.

No comprehensive revision of South American Descurainia has been produced

since Schulz’ (1924) monograph of the entire genus, although checklists and regional
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floras have appeared, most notably in Argentina (Romanczuk, 1984a; Boelcke &

Martínez-Laborde, 1994; Prina, 1995; Zuloaga & Morrone, 1996) and Peru (Macbride,

1938; Brako & Al-Shehbaz 1993). In the absence of an updated comprehensive study, the

number of South American Descurainia species is poorly understood. Roughly 20 – 25

species and 10 – 15 subspecies are generally recognized, although the actual number is

probably much smaller (Al-Shehbaz, pers. omm..). Like their North American

congeners, the South American species are marked by a high degree of taxonomic

complexity. This problem is particularly acute within several wide-ranging complexes

centered around species such as D. appendiculata and D. myriophylla. The center of

diversity for South American Descurainia is northwestern Argentina, and there is a clear

morphological and geographical division in the group. Species distributed along the

Andes from Columbia to northern Argentina are characterized by the appearance of fruit

strongly appressed to the rachis and the possession of fruit valves dehiscing from the

apex to the base. This group comprises about a third of South American Descurainia,

including such species as D. athrocarpa, D. depressa, and D. myriophylla, and is least

diverse, in terms of number of species, in the northern part of its range. The remaining

South American species feature fruit that is erect, spreading, or reflexed, but never

appressed to the rachis. These taxa are distributed throughout various (mainly low- to

mid-elevation) portions of Argentina and Chile, with wide-ranging D. appendiculata

present in Uruguay and southernmost Bolivia as well as Argentina.

As alluded to above, it is difficult to identify many North and South American

Descurainia specimens with confidence using current species concepts, and much

confusion exists regarding some taxonomic boundaries. According to Brassicaceae expert

Ihsan Al-Shehbaz (pers. omm..), Descurainia is the most taxonomically complicated

genus in a family which is itself noted for its taxonomic complexity. Several factors
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contribute to problems with the taxonomy of Descurainia. First, as a result of inadequate

sampling, normal intra- and inter-populational variation is poorly understood. For many

named taxa, material has not been collected from enough populations, and, of those

populations which have been sampled, the only representative is frequently a single

exemplar on an isolated herbarium sheet. A second confounding element is the nature of

the characters used to delimit taxa. Many diagnostic characters used in Descurainia, such

as degree of pubescence or flower color hue, are highly subjective. Others, including

silique length and orientation of pedicels and siliques, are heavily dependent upon the

stage of maturity and often overlap in diagnostic keys. Because inheritance of characters

and the molecular basis of morphological variation is still not fully understood in the

Brassicaceae (Bowman, 2006), it is also uncertain to what extent diagnostic characters

such as glandulosity, pubescence, leaf morphology and silique shape are subject to

convergence. Finally, the extent of hybridization in the genus is unknown, but it has

probably been a more significant process than previously recognized. Gene flow between

populations has undoubtedly been facilitated by the ready dispersability of the small

mucilaginous seeds, range contractions and expansions during previous glacial cycles,

and the effects of human activity and disturbance over past centuries.

Chromosome numbers (x = 7) have been reported for many taxa (Table 1.1).

Species of the Canary Islands are diploid (2n = 14), while the widely-distributed Eurasian

D. sophia is generally tetraploid (2n = 28). North American species surveyed are either

diploid, tetraploid, or hexaploid (2n = 14, 28, 42), with different ploidy levels reported

between some subspecies and even between populations. This variation in ploidy level,

coupled with the morphological variation found in many wide-ranging and widely-

overlapping species, provides support for the idea that hybridization may be a factor in

the evolution of North American Descurainia. In contrast, only three South American
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species have been examined and all three are diploid. This sampling is insufficient,

however, to develop a comprehensive picture of ploidy levels in South American

Descurainia.

In his treatments of the Brassicaceae, Schulz (1924, 1936) included Descurainia

as the largest genus in Sisymbrieae subtribe Descurainiinae, comprising Descurainia,

Hugueninia, Redowskia Cham. & Schltdl., Robeschia O. E. Schulz, Sophiopsis O. E.

Schulz, Smelowskia C. A. Mey, and Trichotolinum O. E. Schulz. Molecular evidence

(Koch & al., 2001, 2003a; Warwick & al., 2002; Beilstein & al., 2006) has clearly

established that the Sisymbrieae, like many other tribes in the Brassicaceae, is not a

natural grouping, and several recent studies have uncovered different relationships with

Descurainia from those suggested by Schulz and indicate that the Descurainiinae may not

be monophyletic. In an ITS- and trnL-based investigation of Smelowskia and related

genera, Warwick & al. (2004b) found that Redowskia and Sophiopsis, as well as several

other small genera, are more appropriately considered as part of Smelowskia than as

distinct genera. They determined that Descurainia, although related, was distinct from

Smelowskia, but they only included three Descurainia species (Eurasian D. sophia and

North American D. californica and D. pinnata) in their analysis. Unpublished molecular

data (cited in Koch & al., 2003a) indicate that Hugueninia is not distinct from

Descurainia and it has been placed in synonymy with Descurainia (Appel & Al-Shehbaz,

2003). Two genera not previously included in the Descurainiinae, Ianhedgea Al-Shehbaz

& O’Kane and Hornungia Rchb., have been found to be closely allied to D. sophia (the

only Descurainia sampled in the ndhF study of Beilstein & al., [2006]). Three species of

North American Tropidocarpum Hook. were also found to be distinct but related to

Descurainia and Hugueninia (R. A. Price, unpublished data cited in Al-Shehbaz, 2003).

Ma & Zhao (1979) placed the Chinese genus Yinshania Y. C. Ma & Y. Z. Zhao in the
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Descurainiinae, but it has been determined, however, not to be closely related (Koch &

Al-Shehbaz, 2000; Bailey & al., 2006). Bailey & al. (2006) recently published the results

of a broad survey of 146 genera and 461 species in the Brassicaceae based on ITS

sequence data. They found that Descurainia, Ianhedgea, and more distantly Hornungia

formed a well-supported lineage whose relationship to Smelowskia and related genera

was unresolved. Their sampling included 2 – 4 accessions of only four Descurainia

species, namely D. sophia and North American D. californica, D. incana, and D. pinnata.

On the basis of those studies (as well as results reported in this dissertation), Al-Shehbaz

& al. (2006) have tentatively proposed new tribal classifications for the Brassicaceae.

Among them is the tribe Descurainieae Al-Shehbaz, Beilstein & E. A. Kellogg which

comprises Descurainia (including Hugueninia), Hornungia, Ianhedgea, Robeschia,

Trichotolinum, and Tropidocarpum. Most of the other members of the Descurainiinae

have been incorporated into another new tribe – Smelowskieae Al-Shehbaz, Beilstein &

E. A. Kellogg.

The goals of the research presented in this chapter were two-fold. The first

objective was to establish generic boundaries and confirm the taxonomic position of

Descurainia by a more thorough sampling of the genus with respect to the Descurainieae,

Descurainiinae and other related taxa. To accomplish this goal, DNA sequences from the

internal transcribed spacer (ITS) region of the nuclear ribosomal DNA repeat (ITS1, 5.8S

rRNA, ITS2; Kim & Jansen, 1994) and from the chloroplast trnL intron (Taberlet & al.,

1991) were utilized. Because these markers have been widely used within the

Brassicaceae for investigating generic level relationships, published sequences were

available for incorporation along with data generated by this study. The second major

focus of the research presented in this chapter was the construction of a molecular-based

phylogeny for Descurainia to assess infrageneric relationships and, given sufficient
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resolution, investigate New World biogeography, especially the timing, number, and

direction of New World dispersal events. To accomplish this goal, the genus was widely

sampled and seven non-coding chloroplast DNA regions and the nuclear ITS region were

employed as phylogenetic markers.

MATERIALS AND METHODS

Sampling.—To assess the monophyly of Descurainia, six representative

Descurainia species, seven close relatives (i.e., Hornungia alpina, H. petraea, H.

procumbens, Hugueninia tanacetifolia, Ianhedgea minutiflora, Robeschia schimperi, and

Tropidocarpum gracile), and a selection of representatives from other tribes (Al-Shehbaz

& al., 2006; Bailey & al., 2006) were included in the analysis (Table 2.1). The accessions

of Descurainia were selected to represent major lineages identified from preliminary

phylogenetic analysis of a broader data set. Arabis alpina, Brassica rapa, and

Sisymbrium altissimum were included as outgroups.

For the broader study of relationships within Descurainia, an attempt was made to

include multiple accessions of each named species and subspecies. Due to collecting

limitations and unavailability of satisfactory herbarium material, DNA was not obtained

for every taxon. The sampling in this study, however, is a strong representation of

morphological and geographical diversity in Descurainia. DNA was isolated from 135

Descurainia samples, representing all ten Old World species (including Hugueninia) (25

accessions), ten of 13 named North American species (71 accessions), and 12 of 21

named South American species (39 accessions), and from putative congeners Ianhedgea

minutiflora (1 accession) and Robeschia schimperi (2 accessions). On the basis of

preliminary analyses of the data in this study and published studies (Warwick & al.,
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2004b; Al-Shehbaz & al., 2006; Bailey & al., 2006) Arabidopsis thaliana, Sisymbrium

altissimum and Smelowskia americana were included as outgroups. Sources of plant

material used in this study and voucher information are in Table 2.2.

Leaf material was field-collected and dried over silica, or harvested from

cultivated plants grown from seed in the greenhouse at the University of Texas at Austin.

Total DNA was extracted using the CTAB method of Doyle & Doyle (1987) followed by

purification using cesium chloride and ethidium bromide gradients. Material was also

obtained from herbarium specimens (with permission) and the DNA isolated following

the protocol in Loockerman & Jansen (1996). DNA from Ianhedgea minutiflora, one

accession of Robeschia schimperi, and one accession of D. sophia was provided by Mark

Beilstein of the University of Missouri – St. Louis.

Because the entire genus was last monographed in 1924, the species concepts of a

variety of authors were followed when classifying and identifying plant material.

Classification of material from the Canary Islands is according to Bramwell (1977) with

identifications confirmed by A. Santos-Guerra, an expert on the Canarian flora. North

American identifications are mainly based on Rollins (1993a) except for D. obtusa which

follows the ideas of Detling (1939). For South American taxa, sources consulted included

Romanczuk (1984a; Patagonia), Boelcke & Martínez-Laborde (1994; northwestern

Argentina), Schulz (1924; South America), and a tentative draft key for South American

species designed by Al-Shehbaz (1999, pers. omm..). Due to the widely-noted and

endless intergrading variation in species such as D. pinnata, determinations can be

notoriously difficult, especially at the subspecies level. Consequently, identifications of

some D. pinnata specimens are necessarily approximate but are shown because to do

otherwise would obscure the general morphological picture.
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PCR amplification and DNA sequencing. — To ascertain the phylogenetic

position of Descurainia, the chloroplast trnLUAA intron (Taberlet & al., 1991) and the

nuclear ITS region were amplified for six Descurainia taxa and three close relatives.

Published and unpublished ITS and trnL sequences of other closely-related taxa and a

selection of representatives from other tribes (Al-Shehbaz & al., 2006; Bailey & al.,

2006) were also incorporated into the data set (Table 2.1). Although no trnL sequence

was available for Tropidocarpum gracile, the ITS sequence was provided by Robert A.

Price and included in the data set.

Seven non-coding chloroplast DNA regions and the internal transcribed spacer

(ITS) region of the nuclear ribosomal DNA repeat (ITS1, 5.8S rRNA, ITS2; Kim &

Jansen, 1994) were utilized as phylogenetic markers in the broader study. The non-coding

chloroplast regions were the rps16 intron (Oxelman & al., 1997) and trnDGUC-trnEUUC

(Demesure & al., 1995), trnEUUC-trnTGGU (Demesure & al., 1995), psbZ-trnfMCAU

(Demesure & al., 1995), trnCGCA-ycf6 (Shaw & al., 2005), ycf6-psbM (Shaw & al., 2005),

and ndhF-rpl32 intergenic spacers. Primers for ndhF-rpl32 (ndhF-F: 5'-

ACTGGAAGTGGAATGAAAGG-3'; rpl32-R: 5'-GCTTTCAACGATGTCCAATA-3';

internal sequencing primers ndhF-iF: 5'-CGTGTAAATCTTTGTTCTAT-3'; rpl32-iR: 5'-

ATAGAACAAAGATTTACACG-3') were designed based on the Arabidopsis thaliana

chloroplast genome (GenBank accession number NC_000932).

DNA regions were amplified via the polymerase chain reaction (PCR) in 50 µL

volumes containing 5 µL of 10X buffer, 4 µL of 25mM MgCl2, 4 µL of 0.25µM dNTPS,

0.5 µL of a 100µM solution of each primer, 0.5 µL of Taq polymerase and 1 µL of

unquantified DNA template. For some difficult-to-amplify samples extracted from

herbarium material, PCR amplifications were accomplished in 25 µL volumes containing

0.25 µL of a 100µM solution of each primer, 0.25 µL of Taq polymerase, 0.5 – 1 µL of
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unquantified DNA template, and 12.5 µL of FailSafe PCR 2x Premix A, D, E or H

(Epicentre). For ITS amplifications, reaction conditions were as follows: one round of

amplification consisting of denaturation at 96˚C for 3 min, annealing at 50˚C for 1 min,

and extension at 72˚C for 1 min, followed by 35 cycles of 95˚C for 1 min, 50˚C for 1

min, and 72˚C for 45 sec, with a final extension step of 72˚C for 7 min. Chloroplast

regions were amplified using the following conditions: denaturation at 96˚C for 3 min,

followed by 35 cycles of 94˚C for 35 sec, 50˚C for 45 sec, and 72˚C for 1 min, with a

final extension of 72˚C for 12 min. Following amplification, PCR products were cleaned

with Qiagen spin columns following the manufacturer’s protocols. Sequencing reactions

were carried out using Big Dye Terminator chemistry. The sequencing products were

cleaned with Centri-cep columns and sequenced on either an MJ Research BaseStation or

ABI Prism 3730 automated sequencer.

Direct sequencing of the ITS region for 10 accessions of D. antarctica, D. incisa,

and D. pinnata generated traces exhibiting double peaks at multiple nucleotide positions.

These samples were cloned with a TOPO TA kit (Invitrogen with vector pCR 2.1-TOPO)

using 1/3 the recommended reaction volumes. For each cloning reaction, 5 – 10

positively transformed colonies were amplified and products sequenced. PCR

amplification of clones containing ITS inserts were carried out as follows: 94˚C for 10

min, followed by addition of Taq polymerase while the reactions were held at 72˚C for 5

– 10 min, and then 37 cycles of 94˚C for 1 min, 48˚C for 1 min, and 72˚C for 1 min,

followed by a final extension step of 72˚C for 12 min. For each cloned sample,

sequencing of transformed colonies generated two distinct sequence types, i.e., clones for

a given type either formed a monophyletic group or, if not forming a monophyletic group

of clones, were identical or differed by a single autapomorphic nucleotide substitution

from other clones of that type. Inclusion of the entire set of cloned sequences in the
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complete data set would have increased analysis run times with slight or no information

gain; consequently, for each sample, two representative sequences (one for each putative

parental type) were selected for inclusion. There were also five sequences (from three

accessions) which upon visual inspection were clearly chimeric and probably an artifact

of PCR-mediated recombination (Bradley & Hillis, 1997; Cronn & al., 2002) or the result

of incomplete concerted evolution following in vivo recombination (Álvarez & Wendel,

2003; Buckler & al., 1997). These were excluded along with the redundant cloned

sequences. During final phylogenetic analyses (after the conclusion of lab work) it was

discovered that the only clone corresponding to one parental type of the accession C19

(D. pinnata spp. intermedia type 1) was also chimeric; although it would have been

possible to reconstruct the “missing” type from an examination of the original

heterogeneous sequence trace, this chimeric sequence was dropped from the data set

without substitution because the presence of the chimeric sequence and absence of the

easily-inferred missing sequence had no topological effect on the outcome of

phylogenetic analyses.

Phylogenetic analyses. – Sequences were edited with Sequencher 4.1.2 (Gene

Codes Corp., 2000) and aligned with ClustalX (Thompson & al., 1997) followed by

manual adjustments. Indels that were potentially phylogenetically informative were

coded as binary (presence/absence) characters following Simmons and Ochoterena

(2000) and appended to the alignment.

Parsimony analyses were performed on each data set with PAUP* 4.0b10

(Swofford, 2002). For the ITS, trnL, and combined ITS-trnL Brassicaceae data sets,

heuristic searches were conducted using 10,000 random addition sequence replicates,

holding 10 trees at each step, and with tree-bisection-reconnection (TBR) branch



25

swapping, characters equally weighted, and gaps treated as missing. For the larger ITS,

chloroplast, and combined ITS-chloroplast Descurainia data sets, 20 independent

parsimony ratchet (Nixon, 1999) runs of 200 iterations each were carried out in PAUP*

using batch files generated by PAUPRat (Sikes & Lewis, 2001). Support for internal

nodes was assessed using bootstrap analysis (Felsenstein, 1985). For the Brassicaceae

data sets, 500 bootstrap replicates were conducted with 100 random additions per

replicate, holding 10 trees at each step; for the Descurainia data sets, this entailed 100

bootstrap replicates of 10 random additions each, holding one tree at each step and saving

no more than 500 trees of length greater than or equal to 200 steps in each replicate.

Bootstrap support was categorized as strong (> 85%), moderate (70 – 85%), weak (50 –

69%), or unsupported (< 50%).

Bayesian analyses were carried out separately on individual and combined data

sets using MrBayes 3.1 (Ronquist & Huelsenbeck, 2003). Best-fit models of evolution for

each data set were selected in MrModeltest 2.2 (Nylander, 2004) based on the Akaike

information criterion (Akaike, 1974; Posada & Buckley, 2004). For those data sets

containing both nucleotide and coded indels, separate evolutionary models were applied

to the data partitions with all parameters unlinked except for topology and branch length;

the model(s) selected by MrModeltest were applied to each nucleotide partition and the

BINARY model (with coding bias set to variable) was applied to the coded indels. Two

independent analyses were performed on each data set. Each analysis was run for 2 – 6

million generations with four Markov chains (three heated and one cold) and trees saved

every 100 generations. Trees were checked for stationarity by plotting log likelihood

values vs. generation, and trees from the burn-in period were discarded. A 50% majority-

rule consensus tree was constructed in PAUP* from the remaining trees. Branches with
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posterior probabilities ≥ 95% were considered to be strongly-supported, with posterior

probabilities < 95% indicating weak support.

To explore alternative hypotheses regarding some New World relationships, a

95% credible set of trees (Huelsenbeck & Rannala 2004) was constructed as follows from

the phylogenies recovered by Bayesian analysis of a combined ITS-chloroplast data set.

The “sumt” command in MrBayes was used to identify the 95% credible set of trees and

generate a .trprobs file containing trees sorted by posterior probability. Trees

corresponding to the 95% credible set were then imported from the .trprobs file into

PAUP*. The “filter constraints” command in PAUP* was subsequently used to search

this 95% credible set for topologies consistent with alternative hypotheses of interest.

Maximum likelihood (ML) analyses were conducted on selected data sets,

excluding coded gap characters, using PAUP* or GARLI 0.95 (Zwickl, 2006;

http://www.bio.utexas.edu/faculty/antisense/garli/Garli.html). GARLI is a genetic-

algorithm-based program which is able to perform rapid ML searches on large data sets

and published studies making use of it are beginning to appear in the literature (Brady &

al., 2006; Schultz & al., 2006). For ML analyses using GARLI, the tree with the best

likelihood score was chosen from the results of 10 – 15 independent runs. ML

bootstrapping was conducted in GARLI using 300 replicates. Substitution models for

both PAUP* and GARLI ML searches were chosen based on the Akaike information

criterion calculated in ModelTest 3.7 (Posada & Crandall, 1998). Shimodaira-Hasegawa

(SH) tests (Shimodaira & Hasegawa, 1999; Goldman & al., 2000) of alternative

hypotheses were conducted on constrained and unconstrained ML trees as implemented

in PAUP* with 1000 RELL bootstrap replicates (one-tailed test).

The incongruence length difference (ILD) test as implemented in PAUP*

(partition homogeneity test of Farris & al., 1994) was used to assess global topological



27

incongruence. Each test consisted of 100 replicates, with 10 random additions per

replicate, holding 20 trees per step. For ITS vs. combined chloroplast data sets, if the ILD

test indicated significant data heterogeneity, conflicting clades were identified by means

of visual inspection and degree of partitioned branch (Bremer) support (Baker & DeSalle,

1997; Baker & al., 1998). Taxa which appeared to contribute to the observed

incongruence were removed until the ILD test indicated no significant conflict.

Partitioned branch support indices were calculated using the program TreeRot.v2

(Sorenson, 1999).

To explore possible New World dispersal patterns in Descurainia, continent of

distribution (i.e., North America or South America) was mapped onto topologies

representing phylogenetic relationships between major New World lineages recovered

from phylogenetic analysis of the combined ITS-chloroplast data set. This was

accomplished using MacClade 4.0 (Maddison & Maddison, 2000) with Fitch parsimony

optimization (unordered characters and unweighted character state changes).

Estimates of divergence times. – Absolute divergence times were calculated

from the ITS and chloroplast data. To eliminate zero- or near zero-length terminal

branches (Sanderson, 2004) and expedite computation, redundant taxa were removed by

pruning identical or nearly-identical sequences from the full data sets. Sequence data for

Rorippa indica were added to the ITS data set for calibration purposes. To eliminate

arbitrary zero-length branches at the root of the tree in PAUP*, Aethionema grandiflorum

(GenBank accession DQ452067), representing a basal genus in the Brassicaceae (Zunk &

al., 1996, 1999; Galloway & al., 1998; Hall & al., 2002; Koch, 2003a; Beilstein & al.,

2006), was also incorporated as an extra outgroup. The best ML tree was generated from

the resulting 27-taxon ITS data set under the SYM+I+Γ model of evolution using GARLI
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0.95. Rate heterogeneity was assessed using a likelihood ratio test (Felsenstein, 1981;

Huelsenbeck & Rannala, 1997) in PAUP* to compare ML trees generated with and

without enforcing a molecular clock. For the ITS data, a molecular clock could be

rejected at the p = 0.01 level but not at p = 0.05. For this data set, divergence times were

consequently estimated under both the assumption of a molecular clock and using a

relaxed molecular clock model.

Two calibration points were employed for the ITS data set. Because fossil pollen

assignable to Rorippa has been identified from Pliocene deposits (2.5-5.0 million years

ago [mya]; Mai, 1995), the node joining Rorippa to the closely-related genus Cardamine

(Franzke & al., 1998) was constrained to a minimum age of 5 million years. Based on

mitochondrial nad4 sequence data and the estimated divergence time between corn and

wheat (Yang & al., 1999), nuclear Chs and chloroplast matK sequence data (Koch & al.,

2001), nuclear Chs and Adh sequence data and Rorippa fossils (Koch & al., 2000), and

comparative chromosome painting (Lysak & al., 2006), the divergence of Arabidopsis

from Brassica has been dated to approximately 20 mya; the age of that node was

accordingly fixed at 20 mya in the analyses.

Based on the above calibration points, the program r8s 1.71 (Sanderson, 2004)

was used to estimate divergence times on the reduced ML tree. The distant outgroup

Aethionema was pruned from the tree, and divergence times were first calculated in r8s

under the assumption of a molecular clock using the Langley-Fitch (LF) method (Langley

& Fitch, 1974) with the truncated Newton (TN) algorithm. Divergence times were also

estimated using penalized likelihood rate-smoothing (Sanderson, 2002). The cross-

validation procedure in r8s was used to determine an optimal smoothing level of 1000,

and divergence times of selected nodes were calculated with this smoothing factor using
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the PL method with the TN algorithm. All solutions were evaluated for correctness using

the checkGradient option.

Confidence intervals on divergence dates were generated using a parametric

bootstrapping approach as recommended by Sanderson (2004). SG Runner, a graphical

user interface to Seq-Gen 1.3.2 (Rambaut & Grassly, 1997), was used to generate 100

bootstrapped data sets based on the reduced ML tree, its branch lengths, and the model

parameters selected by ModelTest for the original data set. ML trees with different

branch lengths but the same topology as the original tree were then generated in PAUP*

from these data sets. These trees were imported into r8s, divergence times were estimated

for nodes of interest, and the “profile” command was used to summarize rate and time

information for each node across the collection of trees.

It was of interest to estimate divergence times on the less optimal ML tree

obtained from constraining New World Descurainia to monophyly, because a

Shimodaira-Hasegawa test indicated that topology could not be rejected. When the

constrained ML tree was generated from the reduced ITS data set, however, several zero-

length internal branches joining some New World clades resulted. Because r8s collapses

zero-length internal branches when calculating divergence times, some relevant dates

(e.g., the age of the most recent common ancestor of New World taxa) could not be

generated. Divergence times were therefore estimated using the chloroplast data where

monophyly of New World taxa is strongly supported. A date of 14.7 mya, estimated from

the ITS data for the last common ancestor of Arabidopsis and Descurainia, was used as a

fixed calibration point. Using a calibration date obtained from another molecular analysis

is not the best approach (Magallón, 2004), but it was the only option available because no

sequence data for these non-coding chloroplast markers exist for Rorippa or Brassica. A

ML tree was generated using GARLI 0.95 under a GTR+Γ model from a reduced
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chloroplast data set of 25 taxa. A likelihood ratio test to assess rate constancy strongly

rejected a molecular clock (p << 0.001). Divergence times were calculated in r8s using

the PL method with the TN algorithm and a smoothing factor of 1000, and confidence

intervals were estimated as described for the ITS data.

RESULTS

Analysis of ITS and trnL data to assess the monophyly of Descurainia. – The

ITS data set for 36 taxa was 647 characters in length, including 644 nucleotide positions

and 3 coded indels, with 5.9% gaps and 0.5% missing characters. 304 characters (50.0%)

were variable and 212 (32.8%) were parsimony informative. Parsimony analysis of the

ITS data set recovered 553 trees of 953 steps (CI [excluding informative characters] =

0.44; RI = 0.60) (Fig. 2.1). Bayesian analysis (SYM+I+Γ, 4 million generations) resulted

in a strict consensus tree (Fig. 2.1) which was essentially identical in topology to that

generated from the parsimony analysis. The strict consensus tree from parsimony and

Bayesian inference is congruent with proposed tribal classifications (Al-Shehbaz & al.,

2006) based in part on the ndhF Brassicaceae study of Beilstein & al. (2006). Taxa

recognized by Al-Shehbaz & al. (2006) as constituting the tribe Descurainieae (except

Trichotolinum, which was not sampled in this study) are well-supported as a distinct

group (bootstrap value [BV] = 91%, posterior probability [PP] = 100%). The

Descurainieae are partitioned into two lineages: 1) Hornungia and Tropidocarpum (BV =

70%, PP = 96%) and 2) Descurainia, Hugueninia, Ianhedgea, and Robeschia (BV =

86%, PP = 100%). Within the latter clade, Ianhedgea is sister to a polytomy (BV = 71%,

PP = 99%) composed of D. kochii + D. sophia (BV = 84%, PP = 100%), Robeschia, and

a strongly-supported (BV = 100%, PP = 100%) New World-Canary Island-Hugueninia
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clade. The Bayesian tree places Robeschia at the base of this polytomy, but support is

weak (PP = 66%).

The aligned trnL intron data set was 554 base pairs in length, including gaps

(15.1%) and missing (0.84%) data. In addition, eight autapomorphic indels were binary-

coded and appended to the data set. Of the 562 characters in the resulting data set, 134

(23.8%) were variable and 60 (10.7%) were parsimony-informative. The same taxa were

included in the trnL data set as in the ITS data set, excluding Tropidocarpum gracile, for

which a trnL intron sequence was not available. Parsimony analysis of the trnL data set

for 35 taxa generated 8734 most parsimonious trees (length = 185 steps, CI = 0.717, RI =

0.843) (Fig. 2.2). Compared to the ITS tree, the strict consensus tree from parsimony and

Bayesian (GTR+I, 3 million generations) analyses is not very well-resolved, although it

is generally congruent. Like the ITS results, a strongly-supported (BV = 97%, PP =

100%) Descurainia New World-Canary Island-Hugueninia clade is present, but its

relationship to other members of the Descurainieae, and most of the other included taxa,

is unresolved. In contrast to the ITS tree, where D. sophia is sister to D. kochii, the trnL

tree joins D. sophia with Ianhedgea. Support for this relationship, however, is weak (BV

= 71%, PP = 90%). As in the ITS results, Hornungia alpina is strongly supported (BV

and PP = 100%) as sister to H. petraea, but additional relationships within Descurainieae

and between Descurainieae and other tribes is largely absent. The Bayesian phylogeny

weakly supports (PP = 89%) a polytomy comprising various members of the

Descurainieae and a strongly-supported (BV = 94%, PP = 99%) Smelowskieae. This

latter tribe contains taxa such as Smelowskia, Redowskia, and Sophiopsis which were

included by Schulz in his subtribe Descurainiinae.

The ITS and trnL data were combined into a single data set comprising 1198

nucleotide bases (1.9% gaps and 9.9% missing) and 11 coded indels. The high percentage
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of missing data was due to the absence of the trnL sequence for Tropidocarpum gracile.

Because the exclusion of T. gracile did not appreciably affect the outcome of preliminary

phylogenetic analyses, this taxon was retained in the combined data set. Of the 1209

characters in the combined data set, 438 (36.2%) were variable and 272 (22.5%) were

parsimony informative. Visual comparison of trees from the separate data sets, as well as

results from the larger-scale study to be described later, suggested incongruence due to

the varying placement of D. sophia. The ILD test (p = 0.18) indicated that the two

partitions were not heterogeneous, however, and parsimony analysis of the combined

data set with and without D. sophia gave essentially identical results. Parsimony analysis

of the combined data set (with D. sophia included) generated 41 most parsimonious trees

of 1149 steps (CI = 0.470, RI = 0.627) (Fig. 2.3). The Descurainieae are strongly

supported (BV = 96%) as a distinct group comprised of Hornungia and Tropidocarpum

(BV = 77%) as a sister lineage to Descurainia, Hugueninia, Robeschia and Ianhedgea

(BV = 89%). Within the latter clade, New World and Canary Island Descurainia, along

with Hugueninia, form a strongly-supported clade (BV = 100%), but resolved

relationships among D. sophia, D. kochii, R. schimperi, and I. minutiflora are largely

absent (BV ranging from < 50% to 55%). The Descurainieae are sister to the

Smelowskieae, but the support is weak (BV = 53%) and conclusions regarding the

relationship between the two tribes is not warranted because of very limited taxon

sampling of other tribes.

Bayesian analysis (SYM+I+Γ for the ITS partition, GTR+I for trnL, and

BINARY for trnL indels, 6 million generations) of the combined data set generated a tree

of similar topology to that of parsimony, but the presence or absence of D. sophia

affected which taxon diverges first within the Descurainia/Ianhedgea/Robeschia lineage.

When D. sophia is included, Robeschia is placed at the base of the clade (PP = 90%) and
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D. kochii is strongly supported (PP = 99%) as sister to D. sophia + Ianhedgea (PP =

100%). When D. sophia is excluded from the analysis, Ianhedgea is placed at the base of

the clade (PP = 99%) with Robeschia next most basal (PP = 99%) followed by D. kochii

(PP = 88%). Regardless of whether D. sophia is included or not, Bayesian analyses join

the Descurainieae and Smelowskieae as sister tribes (PP = 96 – 97%) in this data set.

Analysis of ITS data to assess relationships within Descurainia. – The ITS

data set for 150 accessions and representative cloned samples was easily alignable,

comprising 627 nucleotide positions including gaps (2.5%) and missing (0.1%)

characters. 228 characters (36.4%) were variable and 127 (20.3%) were parsimony

informative (Table 2.3). Excluding outgroups, uncorrected pairwise sequence divergence

(“p” distance in PAUP*) ranged from 0 – 10.8%, with an average of 2.40% (Table 2.4).

Parsimony analysis of the ITS data set using the parsimony ratchet generated

4020 most parsimonious trees of 388 steps (CI [excluding uninformative characters] =

0.63; RI = 0.93) (Figs. 2.4, 2.5). Bayesian analysis of the ITS data set (SYM+Γ, 3 million

generations) produced a consensus tree (Fig. 2.5) which recovered the same major clades

as parsimony. In contrast to the analysis to assess the monophyly of Descurainia, these

results place Robeschia as sister to Descurainia with moderate to strong support (BV =

73%, PP = 100%). This support for a sister relationship between Robeschia and

Descurainia appears to be sensitive to the presence of Hornungia and Tropidocarpum;

when those taxa were added to the analysis, bootstrap support for the branch uniting

Robeschia with Descurainia dropped from 73% to 55%. Within Descurainia, D. sophia

and D. kochii form a clade (BV = 91%, PP = 100%) which is sister to the remainder of

the genus. This well-supported clade (BV = 100%, PP = 100%) comprises a polytomy

with four distinct lineages. Lineage “A” (BV = 86%, PP = 100%) is exclusively North
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American and includes five species (D. californica, D. incana, D. incisa, D. sophioides,

and D. streptocarpa) with definite morphological affinities to each other. The taxon D.

obtusa ssp. brevisiliqua and several accessions with morphology resembling D. pinnata

are also found in lineage A. Lineage “B” (BV = 81 %, PP = 100%) is primarily North

American, consisting of D. paradisa, D. incisa ssp. filipes, some accessions and clones of

D. pinnata, and interestingly, half of the South American D. antarctica clones. The third

main lineage, clade “C”, is very strongly supported (BV = 99%, PP = 100%). It includes

all South American species sampled (except two D. antarctica clones) and North

American taxa D. obtusa ssp. obtusa, D. obtusa ssp. adenophora, D. impatiens, D.

virletii, some accessions and clones of D. pinnata, and an undetermined specimen (C44)

similar to D. streptocarpa and possibly of hybrid origin. Of the four lineages, C had the

greatest sequence divergences, ranging up to 2.46%. There is little resolution within

lineage C, but a few weakly supported clades consistent with geography and morphology

are evident. One of these (clade C-I) encompasses D. pinnata and the Mexican endemic

D. virletii (BV = 57%, PP = 99%); another (C-II) comprises all South American taxa

characterized by fruit spreading away from the rachis (BV = 61%, PP = 93%). Every

accession of D. pinnata exhibiting sequence polymorphism yielded clones in both lineage

B and lineage C. The fourth lineage, “D”, is weakly supported (BV = 53%, PP = 93%),

but includes all the species from the Canary Islands, and is coupled, weakly to strongly

(BV = 55%, PP = 99%), with Hugueninia tanacetifolia ssp. suffruticosa. Surprisingly, the

clade comprising D and Hugueninia is joined in a trichotomy with not only another

accession of Hugueninia (ssp. tanacetifolia) but also with New World clade B. Bootstrap

support for the branch leading to this trichotomy is very weak, although it is strongly-

supported in the Bayesian topology (BV = 57%, PP = 100%). To further evaluate support

for this relationship, an SH test was conducted comparing this topology to one where
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New World Descurainia species (clades A, B and C) were constrained to monophyly.

The outcome of the SH test (p = 0.12) indicated that a tree with New World taxa

monophyletic could not be rejected as being significantly less likely than the tree which

joins lineage D and Hugueninia with New World lineage B.

Chloroplast data. – To assess incongruence, the ILD test was applied to all

possible pairings of the seven chloroplast data sets. All data combinations were supported

as homogeneous at the p = 0.01 level, but were rejected at the p = 0.05 level for the

combinations trnD-trnE vs. rps16 and psbZ-trnfM vs. ndhF-rpl32 (p = 0.04 and 0.02,

respectively). Since the topologies generated from the individual chloroplast partitions

(not shown) do not appear to seriously conflict, and the chloroplast genome is inherited

uniparentally as a single unit and does not usually undergo recombination, this borderline

significant heterogeneity is assumed to be a type I error (i.e., inference of incongruence

where none exists) to which the ILD test has been shown to be highly susceptible

(Dolphin & al., 2000; Barker & Lutzoni, 2002; Darlu & Lecointre, 2002; Dowton &

Austin, 2002). The data from the seven non-chloroplast coding regions were

consequently combined into a single data set. Sequence characteristics for the individual

chloroplast regions and combined data set are found in Table 2.3. The combined

chloroplast data set for 135 accessions contained 5351 nucleotide positions including

gaps (12.8%) and missing (0.8%) characters. (The missing data includes five sequences

that are absent due to unsuccessful PCR amplification: the ndhF-rpl32 region of D.

antarctica D52, D. incisa ssp. viscosa D21, and D. incisa ssp. filipes B195 and the rps16

intron of D. antarctica D52 and D. pinnata ssp. brachycarpa F11). Thirty-eight indels,

ranging in length from 4 to 278 base pairs, and one 5-bp inversion, were binary-coded

and appended to the data set. The resulting data set comprised 5390 characters, of which
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1107 (20.5%) were variable and 581 (10.8%) were parsimony informative. When

outgroups were excluded, uncorrected pairwise (“p”) sequence differences ranged from 0

to 4.42%, with an average divergence of 1.04%.

Parsimony analysis of the combined chloroplast data set for 135 accessions

yielded 3419 most parsimonious trees from the 4020 trees produced using the parsimony

ratchet (length = 1538, CI = 0.713, RI = 0.918) (Figs. 2.6, 2.7). The chloroplast data place

Robeschia schimperi sister to Descurainia with moderate support (BV = 81%). In

contrast to the ITS tree where D. sophia and D. kochii form a separate clade sister to the

remainder of the genus, the chloroplast tree strongly supports D. kochii as sister to the

rest of the genus (BV = 96%). Within the rest of the genus, D. sophia is sister to the

remaining taxa (BV = 100%). In respect to the four lineages A – D described earlier, the

chloroplast phylogeny is generally consistent with the results obtained from the ITS data

set. The Canary Island taxa (lineage D) are strongly supported as monophyletic (BV =

100%) and sister (BV = 100%) to European Hugueninia tanacetifolia ssp. suffruticosa

C6. This clade in turn is sister to the other subspecies of Hugueninia tanacetifolia, ssp.

tanacetifolia B111 (BV = 100%). The Canarian/European lineage is sister with strong

support (BV = 100%) to New World Descurainia. Within the New World clade, lineages

A (D. incana + D. incisa + D. obtusa ssp. brevisiliqua, etc.) and B (D. pinnata + D.

paradisa + D. antarctica) are still present (BV = 100% and 82%, respectively) and form

a strongly-supported clade (BV = 91%) along with one accession of D. incisa which is

found in clade A in the ITS phylogeny. The relationship of the remainder of the New

World taxa (which are primarily found in clade C in the ITS tree) to the A+B clade is

unresolved, but provides further support for clades C-I (D. pinnata + D. virletii, BV =

99%) and C-II (South American spreading fruit, BV = 100%). Clade C-II is grouped with

D. sophioides, D. obtusa ssp. obtusa, D. obtusa ssp. adenophora, and one sample of D.
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californica, but support for this clade is extremely weak (BV = 55%). In addition, all

South American taxa with fruit appressed to the rachis are strongly supported in two

lineages (henceforth designated as C-III and C-IV, BV = 100% in both).

The 50% majority-rule consensus tree generated from Bayesian analysis

(GTR+I+Γ, 4 million generations) is nearly identical to the parsimony tree, with support

values for most of the branches recovered under parsimony generally above 98%. The

only significant topological difference between the trees recovered from the two methods

is that all unresolved “clade C” taxa (i.e., D. californica, D. sophioides, D. obtusa ssp.

obtusa, D. obtusa ssp. adenophora, D. pinnata B12A, C47, D23, and D. incisa D21,

D57) are placed by Bayesian inference in a strongly-supported (PP = 100%) clade that

also includes C-II (PP = 100%).

Maximum sequence divergence within lineages A (0.44%) and B (0.43%) are

similar, and about half of that found within D (1.22%). Sequence divergences within

clade C range from 0 – 1.15% with C-I and C-III having the greatest sequence diversity,

up to 0.49% and 0.45%, respectively. Maximum sequence diversity within C-II (0.16%)

and C-IV (0.086%) is very low.

Sequencing of ITS clones revealed that 10 accessions possessed both clade B and

clade C (either C-I or C-II) types. In the chloroplast phylogeny, all but one of these

accessions are placed in clade B. The exception, D. pinnata ssp. intermedia C19, is found

in clade C-I in the chloroplast tree.

While there are many similarities between the chloroplast and ITS trees, there are

a number of obvious incongruences, especially within North American taxa (summarized

as part of Table 2.5). For example, D. californica, D. sophioides, two D. incisa

accessions (D57 and D21), and D. pinnata C12 are found in clade A in the ITS tree but in

clade C in the chloroplast tree. Conversely, D. impatiens and D. obtusa ssp. adenophora
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are located in clade C in the ITS tree but in clade A in the chloroplast tree. Descurainia

paradisa ssp. nevadensis C48 is found in clade B (ITS) or in clade A (chloroplast), D.

pinnata ssp. nelsonii accessions C47 and D23 are in either clade B (ITS) or clade C

(chloroplast), and D. incana D25 is found in clade A in the ITS phylogeny and its

position is unresolved with respect to clades A and B in the chloroplast tree. In addition,

there is also considerable incongruence within clade A between the two trees. Outside of

North America, the only major incongruence is that of D. sophia; in the ITS phylogeny it

is sister to D. kochii, whereas in the chloroplast phylogeny it is sister to Hugueninia and

species of the New World and Canary Islands.

Tests for incongruence. – Before combining ITS and chloroplast data,

incongruent and redundant taxa were identified and removed as described under

Materials and Methods (cf. Table 2.5). This process was straightforward with two

exceptions. First, the considerable incongruence within lineage A could be resolved by

removal of varying sets of taxa, so that the choice of accessions remaining in that clade in

the final combined data set represents only one alternative among several. Fortunately,

which set of taxa was chosen did not affect the relationship of major lineages in the

combined topology. Secondly, the ILD test detected significant incongruence when clade

D was included (p = 0.05 with compared to p = 0.17 without). Clade D (the Canary

Island/Hugueninia clade) is strongly supported as monophyletic and sister to all New

World taxa. While the topology of the most parsimonious ITS tree conflicts with such a

relationship, the SH test discussed previously supports it as an equally likely alternative.

With respect to clade D and New World species, the phylogeny based on the combined

data set seems reasonable based on morphology and geography. Based on these

observations, and noting that phylogenetic accuracy does not always depend on
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congruent data sets (Hipp & al., 2004), clade D was accordingly retained in the combined

ITS-chloroplast data set.

Analysis of combined data. – The combined ITS and chloroplast data set for 74

accessions included 5894 nucleotide positions, with 0.32% missing characters and 10.9%

gaps. Twenty-three indels were coded as binary characters and appended to the combined

data set. The resulting data set comprised 5917 characters, of which 1159 (19.6%) were

variable and 441 (7.5%) were parsimony informative. The ITS partition contributed

20.6% (91) and the chloroplast partition 79.4% (350) of the parsimony informative

characters.

Parsimony analysis of the combined data set was carried out with Arabidopis

thaliana, Sisymbrium altissimum, and Smelowskia americana as outgroups. For the

Bayesian analysis, a mixed model analysis was conducted (2 million generations) with

the SYM+Γ, GTR+I+Γ, and BINARY models applied to the ITS, chloroplast, and indel

partitions, respectively. The parsimony ratchet recovered 4020 most parsimonious trees

of 1534 steps (CI = 0.709, RI = 0.907) (Fig. 2.8). The strict consensus tree generated by

the Bayesian analysis was identical to that recovered by parsimony except for one weakly

supported branch described below. The phylogeny obtained for the combined ITS-

chloroplast data set provides strong support for the major clades previously observed in

the trees from the separate data sets. Robeschia schimperi is placed as sister (BV = 92%,

PP = 100%) to Descurainia, with D. kochii, in the absence of D. sophia, sister to the rest

of the genus (BV = 100%, PP = 100%). Canary Island taxa and Hugueninia (BV = 100%,

PP = 100%) are sister (BV = 100%, PP = 100%) to the New World species. New World

Descurainia are strongly supported (BV =100%, PP = 100%) as a monophyletic group

composed of the clades A, B and C previously discussed (all with BV and PP = 100%).
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Clade C is sister to a lineage (BV = 89%, PP = 100%) comprising clades A and B. Within

clade C are the North and South American sub-lineages C-I (North American D. pinnata

and D. virletii), C-II (South American spreading fruit + North American D. obtusa), C-III

(South American appressed fruit), C-IV (South American appressed fruit), and C-V

(South American D. cumingiana var. tenuissima), all of which have bootstrap support

values ranging from 97 – 100% and Bayesian posterior probabilities of 100%. The

relationship among these lineages to one another is largely unresolved: parsimony

analysis weakly (BV = 64%) joins clades C-I, C-II, and C-III in a polytomy and places C-

IV and C-V in a sister relationship (BV = 58%). Bayesian analysis (PP = 94 – 95%)

supports these same relationships, and weakly (PP = 87%) implies that clades C-I and C-

III are most closely related. Most of the remaining sampled Bayesian trees that differ

from this topology place C-II, rather than C-III, as sister to C-I.

Optimization of New World distribution on phylogenies. – An examination of

the 4020 most parsimonious trees recovered from parsimony analysis of the combined

ITS-chloroplast data set revealed only two topologies present with respect to

relationships between major New World lineages (Figs. 2.9, 2.10). These two topologies

were also present in a 95% credible set of trees constructed from the trees sampled during

the Bayesian analysis. The topologies differ in the placement of North American clade C-

I and South American clade-III with respect to South American C-II + North American

D. obtusa. The first topology (Fig. 2.9), representing 35% of most parsimonious trees and

84% of the set of 95% credible Bayesian trees, places clade C-III sister to C-II + D.

obtusa. The second topology (Fig. 2.10), representing 65% of most parsimonious trees

and 10% of 95% credible Bayesian trees, groups clade C-I with C-II + D. obtusa.
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When New World continental distribution was traced onto simplified trees

representing these two topologies, five most parsimonious reconstructions were

recovered for the first topology and seven reconstructions were generated for the second.

All reconstructions are consistent with four separate dispersals of Descurainia between

North and South America. Nine of these reconstructions are illustrated in Figs. 2.9 and

2.10. The remaining three reconstructions are not shown because they are inconsistent

with a North American origin for one parent of D. antarctica strongly suggested by the

molecular data.

Divergence time estimates. – Divergence times obtained from the ITS data were

virtually identical regardless of which dating method (LF or PL) was employed (Table

2.6) (Fig. 2.11). Calculated divergence dates (from PL) are as follows: Hornungia-

Ianhedgea 11.03 +/- 0.98 mya; Robeschia-Descurainia 6.75 +/- 0.82 mya; D. kochii-New

World/Canary Island/Hugueninia 5.47 +/- 0.70 mya; Hugueninia-Canary Island 1.00 +/-

0.33 mya; and the last common ancestor of Canary Island taxa 0.75 +/- 0.27 mya.

Hornungia procumbens is estimated to have diverged from its congeners 10.24 +/- 0.98

mya and H. alpina and H. petraea last shared a common ancestor 6.09 +/- 0.90 mya.

Using Rorippa fossil data and ITS sequences, Kropf & al. (2003) estimated under the

assumption of a molecular clock the same splits as occurring 6.1 – 13.2 mya and 3.4 – 7.4

mya, respectively. The dates calculated from this study thus appear to be consistent with

their calculations. The rate of sequence evolution – 6.9 +/- 0.5 x 10-9 

substitutions/site/year – is similar to rates reported for the ITS region in other annual and

perennial herbs including crucifers (Richardson & al., 2001; Koch & al., 2006).

Divergence times estimated from the chloroplast data are: Robeschia-Descurainia

8.67 +/- 0.48 mya; D. kochii-New World/Canary Island/Hugueninia 7.27 +/- 0.44 mya;
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the most recent common ancestor of New World Descurainia 1.93 +/- 0.17 mya;

Hugueninia-Canary Island 2.21 +/- 0.26 mya; and the last common ancestor of Canary

Island Descurainia 0.77 +/- 0.21 mya. It may be noted that these dates are, in most cases,

somewhat older than the corresponding dates calculated from ITS sequence evolution.

The overall sequence evolution rate for these chloroplast regions was calculated to be 2.2

+/- 0.1 x 10-9 substitutions/site/year. This rate is comparable to typical rates of evolution

for other non-coding chloroplast regions (Richardson & al., 2001). A summary of these

estimates and the phylogenetic tree on which they are based are in Table 2.6 and Fig.

2.12, respectively.

DISCUSSION

Taxonomic position and monophyly of Descurainia. – The results of this study

provide strong support for the monophyly of the recently-designated tribe Descurainieae

(Al-Shehbaz & al., 2006). With the exception of monotypic Trichotolinum, for which

only a few very old collections exist and which is most likely a reduced Descurainia (Al-

Shehbaz, pers. omm..), all putative members of Descurainieae were included and form

a monophyletic group (Fig. 2.3). As described by Al-Shehbaz & al. (2006), species in this

tribe are primarily annual or perennial herbs possessing petiolate, 1 – 3 pinnatisect leaves

which are non-auriculate at the base, ebracteate racemes, dendritic or rarely forked

trichomes, predominately yellow flowers, fruits in usually glabrous terete siliques or

silicles, often numerous tiny mucilaginous seeds in one or two rows, incumbent

cotyledons, and, with some exceptions, a base chromosome number of x = 7. As can be

seen from a comparison of various characters given in Table 2.7, however, not many of

these characteristics are universally present throughout Descurainieae. The tribe is
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morphologically most similar to another newly-proposed tribe, Smelowskieae (Al-

Shehbaz & al., 2006), into which have been placed the remainder of Schulz’s

Descurainiinae, namely Smelowskia, Sophiopsis, and Redowskia, along with several other

small genera (Hedinia Ostenf., Sinosophiopsis Al-Shehbaz, Gorodkovia Botsch. &

Karav., and Ermania Cham. ex Botsch.). Members of the Smelowskieae are

predominantly white-flowered perennials with non-mucilaginous seeds and a base

chromosome number of x = 6, but these characteristics, as well as others noted by Al-

Shehbaz & al. (2006), are also found in some members of Descurainieae and there are no

morphological characters which uniquely distinguish the two tribes from each other. Such

convergence of characters has confounded attempts to accurately classify many members

of the Brassicaceae solely on the basis of morphology (Koch, 2003a; Mitchell-Olds & al.,

2005; Al-Shehbaz & al., 2006). The results of this project (although very limited in tribal

scope) as well as the broad ndhF study of Beilstein & al. (2006) weakly support a sister

relationship between Descurainieae and Smelowskieae (Fig. 2.3). In contrast,

phylogenetic analysis of ITS sequences from 146 genera (Bailey & al., 2006) did not find

support for a sister relationship, although intertribal relationships in their trees were very

poorly resolved. An effort to sequence many nuclear genes for representatives throughout

the entire family is in the organizational stages (C. Pires [Brassicaceae Phylogeny

Working Group], pers. omm..) and will hopefully elucidate the relationship between

Descurainieae and Smelowskieae in the near future.

The results of this study indicate that there are two distinct lineages within

Descurainieae (Fig. 2.3). The first is composed of two genera: Hornungia and

Tropidocarpum. Hornungia is centered in Europe, although one species, the widespread

H. procumbens Hayek, also extends into Asia and western North America.

Tropidocarpum is a genus of four New World species. The only common and relatively
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widespread species is T. gracile Hook., which is distributed from Baja California north

into central California (Al-Shehbaz, 2003); two other species are found in California and

one in central Chile. In addition to its disjunct distribution between California and Chile,

the genus is of interest due to its extreme inter-specific variation in fruit morphology

accompanied by essentially identical vegetative and floral morphology and very limited

sequence divergence. Unpublished ITS and ndhF data (Price, cited in Al-Shehbaz, 2006

and Mitchell-Olds & al., 2005) indicate that sequences of the species differ by only one

or two base pair substitutions. Based on the present study, Tropidocarpum appears to be

most closely related to Hornungia procumbens. While fruit morphology varies widely in

the Hornungia/Tropidocarpum clade, in cross-section the fruits are all angustiseptate, i.e.,

flattened at right angles to the septum. This morphological feature distinguishes the

Hornungia/Tropidocarpum clade from the second Descurainieae lineage, in which the

fruits are terete, quadrangular or rarely slightly latiseptate (D. sophioides).

The second lineage in the Descurainieae comprises Descurainia, Hugueninia,

Ianhedgea, and Robeschia. The molecular data from this study indicate that Hugueninia

is clearly embedded in Descurainia, confirming the preliminary results of Price

(unpublished, cited in Koch & al., 2003a) and conclusions of Appel & Al-Shehbaz

(2003). (To minimize confusion, the designation Hugueninia is retained throughout the

remainder of the dissertation). The taxonomic position of monotypic genera Ianhedgea

and Robeschia with respect to Descurainia is unclear; their placement is affected by the

inclusion or exclusion of D. sophia and Hornungia in the analyses. When D. sophia or

Hornungia are excluded, Ianhedgea, which is distributed in central and southwest Asia,

is placed at the base of this clade, and Robeschia, a native of the Middle East, is sister to

the remaining taxa. Both of these genera share more features with Descurainia than

differences. Robeschia primarily differs from Descurainia by its tapering siliques,
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thickened fruiting pedicels, and a base chromosome number of x = 8 instead of 7. Both

Ianhedgea and Robeschia have white or pinkish flowers; most species of Descurainia

have yellowish flowers although a few New World taxa have white flowers.

Approximately two-thirds of recognized genera in the Brassicaceae consist of one to

three species (Koch & Kiefer, 2006), and Al-Shehbaz & al. (2006) suggest that the vast

majority of these should be united with larger genera. Appel & Al-Shehbaz (2003) in fact

considered Robeschia to be encompassed within Descurainia, but the genus has not been

formally transferred to Descurainia. Regardless of the exact position of Ianhedgea and

Robeschia, the molecular data presented here would support the inclusion of these two

genera within Descurainia. The final genus in the Descurainieae, Trichotolinum, is very

similar to Descurainia, from which it is separated mainly by basally-pubescent anther

filaments and an elongated style (Schulz, 1936; Romanczuk, 1984c). This rare species

was not included in the analysis, however, and until molecular data can be obtained, its

position is open to speculation.

Relationships within Descurainia. – ITS and chloroplast phylogenies offer

mixed support for Schulz’s sectional classifications. In particular, sect. Descurainia,

which was considered to include all the non-Canary Island species, is polyphyletic. New

World species are clearly separated in the tree from D. kochii and D. sophia, the Old

World members of this section. Section Sisymbriodendron, which comprises the Canary

Island taxa, is monophyletic, although it is nested within Hugueninia which is now

confirmed to belong in Descurainia.

Descurainia kochii and D. sophia are sister to the remainder of the genus (Figs.

2.5, 2.7). While D. kochii has a relatively narrow distribution (Turkey and Caucasia), D.

sophia is wide-ranging throughout most of Europe and temperate Asia and is an
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introduced weed in other temperate areas of the world. The successful colonization, vigor

and weediness of D. sophia compared to its Old World congeners is consistent with a

hybrid origin (Grant, 1981; Doyle & al., 1999; Rieseberg & al., 2007), which can be

deduced for D. sophia from its tetraploid chromosome number (2n = 28) and differing

placements in the ITS and chloroplast phylogenies (as well as results to be presented in

Chapter 3). The paternal ancestor of D. sophia is presumably extinct, because there are

no other described Descurainia species occupying the same phylogenetic position as D.

sophia in the ITS tree. Descurainia kochii appears to be closely related to the maternal

parent of D. sophia. As chloroplast DNA is inherited maternally in most angiosperms,

including crucifers such as Brassica (Johannessen & al., 2005) and Arabidopsis

(Martínez & al., 1997), it is assumed in Descurainia that the chloroplast phylogeny is

reflective of maternal ancestry.

Species of Descurainia in the Canary Islands comprise a monophyletic lineage

(Fig. 2.8), suggesting that these woody perennials are descended from a single

colonization of the islands. Relationships within the island taxa, based on the results

reported in this chapter and additional molecular data, are the subject of Chapter 4. The

Canary Island species are, unsurprisingly, most closely related to their nearest continental

neighbor, Hugueninia tanacetifolia. Based on the very limited sampling in this study, H.

tanacetifolia ssp. suffruticosa is more closely related to the Canarian species than to ssp.

tanacetifolia. A range disjunction exists between these two subspecies of Hugueninia,

with ssp. suffruticosa restricted to the Pyrenees and mountains of northern Spain and ssp.

tanacetifolia distributed in the Italian and Swiss Alps. Morphologically, the two

subspecies are more similar to each other than to any of the Canary Island taxa, differing

only in minor details such as degree of pubescence, number of leaf lobes or teeth, fruiting

pedicel length, and a tendency to woodiness, or lack thereof, at the base of the stem
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(Schulz, 1924; Ball, 1964; Ortiz, 1993). The genetic differentiation and present-day

distribution of Hugueninia most likely reflect range disruption during Pleistocene

glaciation and subsequent evolution in isolation in Iberian and Italian glacial refugia

(Hewitt, 1996; Taberlet & al., 1998). If additional sampling confirms the pattern observed

in this study, reclassification of ssp. suffruticosa as a distinct species may be warranted.

Although ITS sequence data is equivocal regarding the monophyly of New World

Descurainia, chloroplast data strongly support New World Descurainia as monophyletic

and sister to Hugueninia and Canary Island species (Fig. 2.7). Within the New World,

there are three major, well-supported groups: clade A is exclusively North American,

clade B is North American with the exception of the maternal type of one South

American species, and clade C contains a mixture of North and South American taxa.

While there is a good deal of incongruence between ITS and chloroplast

phylogenies, it is possible to discern four major North American lineages (Figs. 2.5, 2.7,

2.8). Clade A is distributed along the Rocky Mountains and Sierra Madre Oriental, and

includes D. incana, D. incisa (ssp. incisa, paysonii, and viscosa), D. streptocarpa, and (as

recognized by Detling [1939]) D. obtusa ssp. brevisiliqua. In addition, D. sophioides, D.

californica and D. impatiens are placed by either ITS or chloroplast data (but not both) in

clade A. With the exception of four specimens that are morphologically more similar to

D. pinnata ssp. halictorum, the collection dates range from late June to August, and the

sampled plants are tall, generally branched above, with simply pinnate or pinnate-

pinnatifid leaves, yellow sepals, and more-or-less linear fruit. Seeds in the siliques are

arranged in a single row except for those specimens identified as D. incisa ssp. paysonii,

D. obtusa ssp. brevisiliqua, or cf. D. pinnata ssp. halictorum, all of which exhibit a

biseriate seed arrangement. The common characteristic of fruit appressed to the rachis,

which is shared by D. incana and some of the South American species, must be due to
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morphological convergence, because there is no close phylogenetic relationship between

clade A and any South American taxa.

Based on the sampling of this study, clade B has its center of distribution in the

Great Basin region of the western United States, and extends from southern California at

least to Wyoming (hybrids between this clade and clade C are also found north to

Montana and east to Minnesota). When putative hybrids with other clades are removed,

this group includes D. paradisa ssp. paradisa, D. incisa ssp. filipes, D. pinnata ssp.

menziesii, and one representative each of D. pinnata ssp. nelsonii and D. pinnata ssp.

halictorum. This clade is morphologically heterogeneous, with no shared characteristics

other than the plants tending to be relatively short compared to those in clade A. Dates of

collection of these specimens – May through June – are earlier than for clade A. The

maternal ancestor of the Patagonian species D. antarctica is also found in clade B, and

appears to be most closely related to D. incisa ssp. filipes (Fig. 2.7).

There are two distinct North American lineages which are part of Clade C (Figs.

2.5, 2.7, 2.8). The first of these comprises a single species, D. obtusa, which is distributed

in the mountains and plateau regions of New Mexico, Arizona, northern Baja California

and northern Chihuahua. It is well-supported as a sister species to a group of South

American taxa distributed in Argentina and Chile. The second lineage, referred to as

clade C-I, is composed of the Mexican endemic D. virletii and most of Detling’s southern

subspecies complex of D. pinnata, particularly ssp. pinnata, glabra, ochroleuca, and

halictorum. The D. pinnata specimens in this group range from the coastal plains of the

southeastern United States into Arizona, New Mexico, and northern Mexico. In contrast

to clade B, the members of clade C-I generally share a number of morphological

characters, including pinnatifid or bipinnate lower leaves, purplish or rose-tipped sepals,

distinctly elongated racemes, usually wide-spreading fruiting pedicels, clavate siliques, a
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biseriate seed arrangement, and flowering time from March to April. A more northern

subspecies, D. pinnata ssp. brachycarpa, may also belong in this clade, but chloroplast

sequence data is missing for all but one of the four specimens sequenced or obtained

from GenBank. Based on ITS cloning, the one specimen for which chloroplast data was

obtained appears to be a clade C x clade B hybrid.

Although the ITS and chloroplast trees are in general agreement regarding major

lineages in North America (Figs. 2.5, 2.7), the degree of incongruence is striking (Table

2.5 and Fig. 2.13). Of the 71 sampled North American accessions, 22 (31%) either differ

between the two trees in major clade placement or possess mixed ITS types for different

major clades. Discordance between nuclear and plastid phylogenies is often seen as

evidence of past hybridization events, although other processes, such as lineage sorting

(especially in recently-diversified groups) can also give rise to conflicting topologies

(Wendel & Doyle, 1998; Comes & Abbott, 2001; Linder & Rieseberg, 2004).

While both processes may have contributed to the observed conflict, a good deal

of the incongruence is probably due to hybridization. Virtually nothing is known about

the reproductive biology of North American Descurainia, but widely-noted infra-specific

morphological variation and confusing taxonomic boundaries (e.g., Detling, 1939;

Rollins, 1993a,b; Welsh & al., 1993; Rzedowski & Rzedowski, 2001; Holmgren & al.,

2005), overlapping ranges, and the occurrence of possible intermediate forms (Detling,

1939; pers. obs.) suggest that inter-populational and interspecific gene flow is occurring.

Polyploidy is also relatively common – 15 out of the 29 reported North American

chromosome counts (excluding D. sophioides) are tetraploid or higher (Table 1.1),

although whether these cases represent allopolyploids or autopolyploids is unknown.

Hybridization is an extremely common phenomenon in the Brassicaceae (Marhold &

Lihová, 2006), and hybrid polyploid complexes have been extensively characterized and
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studied in genera such as Biscutella (Tremetsberger & al., 2002), Boechera (e.g., Koch &

al., 2003b; Schranz & al., 2005; Sharbel & al., 2005), Brassica (Osborn. 2004 and

references therein), Cardamine (Urbanska & al., 1997; Franzke & Hurka, 2000; Marhold

& al., 2002a,b, 2004), Cochlearia (Koch & al., 1999b), Draba (Brochmann, 1992; Koch

& Al-Shehbaz 2002), Thlaspi (Koch & al., 1998), and Yinshania (Koch & Al-Shehbaz,

2000). The eight North American accessions with mixed ITS types (seven clade C x

clade B and one vice versa) are presumably allopolyploids arising from relatively recent

hybridization events: with one exception, they belong to taxa which have known

tetraploid populations and whose ranges occur in areas where members of the two clades

are sympatric. The detection of ITS additive sequences is often considered strong

evidence for a recent hybrid origin, especially when hybridization has previously been

suspected for the taxa under investigation (e.g., Kim & Jansen, 1994; Sang & al., 1995;

Whittall & al., 2000; Alice & al., 2001; Tate & Simpson, 2003; Guggisberg & al., 2006).

Some of the samples with polymorphic sequences (e.g., D. pinnata ssp. brachycarpa

F11) are identifiable according to standard taxonomic treatments, but others (e.g.,

accession C4) defy easy classification and exhibit characteristics of several named

subspecies, consistent with a hybrid origin. Sequences of different cloned accessions

within a given clade are not all identical, and they do not tightly cluster together

geographically (nor morphologically); several are from the Great Basin region of Utah

and Nevada, one from central Arizona, two from southern California and northern Baja

California, and one from Minnesota. If these accessions represent hybrid populations,

then such geographic and morphological disparity suggests several independent

hybridization events have taken place.

No ITS additivity was observed for the 14 remaining strongly incongruent

accessions. In contrast to the samples with mixed ITS sequences, for all but two
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accessions (i.e., D. pinnata ssp. nelsonii C47 and D23: ITS clade B vs. chloroplast clade

C) the incongruence exhibited in this category is between clades A and either C or B.

Most involve taxa for which only diploid chromosome counts have been reported (i.e., D.

sophioides [both B112 and F13: A x C], D. californica [both C9 and D12: A x C], D.

impatiens [both C40 and C42: C x A], and D. incisa ssp. viscosa [D21: A x C]) or none

are known (i.e., D. incisa ssp. incisa [D25: A x B?; D57: A x C]. In the absence of

additional molecular or cytological information, it is difficult to distinguish between

potential processes responsible for the incongruence observed in these cases. Some, such

as D. pinnata ssp. nelsonii C47, might be recently-derived polyploids like the accessions

possessing mixed types, but this history has been obscured by either complete concerted

evolution leading to fixation of the paternal type or by preferential PCR amplification of

one parental type. For the species exhibiting incongruence between clades A and C, the

ITS phylogeny is much more consonant with morphology than the chloroplast phylogeny,

a pattern which has been observed in other groups with similar phylogenetic discordance

and often attributed to cytoplasmic introgression (e.g., Soltis & Kuzoff, 1995; Hardig &

al., 2000; Ferguson & Jansen, 2002).

In addition to between-clade incongruence, 21 other accessions (30%) (Table 2.5)

exhibit conflicting placements within a given clade but possess few if any polymorphic

loci. In many of these cases branch lengths are very short and terminal clade support in a

given tree is very weak (Figs. 2.4 – 2.7). Such conflicts could equally well reflect within-

clade gene flow or the effects of lineage sorting, or even represent “soft incongruence”

arising as an artifact of rapid or recent diversification (Wendel & Doyle, 1998). In the

case of clade A where the majority of this conflict resides, the within-clade incongruence

is suggestive of chloroplast introgression. The ITS topology resolves into four weakly-

supported sublineages which, in contrast to the chloroplast tree, are strongly correlated
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with morphology and existing species concepts. If the conflict is indeed due to

chloroplast capture, however, one would expect to see a relationship between geography

and chloroplast haplotypes and this is not the case. If anything, there is more

geographical structure in the ITS tree, with northern and southern components evident.

Geographic distribution of North American Descurainia accessions, along with their

inferred parental lineages, is shown in Fig. 2.14.

As in Boechera, where diversification and hybridization in a Great Basin refugial

area followed by migration to the north and northeast has been inferred (Dobeš & al.,

2004), it is tempting to correlate the distribution of North American Descurainia lineages

and their putative hybrids with evolution in and expansion from southwestern and

southeastern Pleistocene refugia. Given the complicating effects of overlapping glacial

cycles, human activity over past centuries, and ready dispersal of seeds and pollen,

however, any attempt to do so for Descurainia without much more extensive population

sampling would be premature.

Based on ITS and chloroplast data, several preliminary comments can be made

regarding taxonomic issues in North American Descurainia. First, it is clear that D.

pinnata, as currently circumscribed, is polyphyletic, and comprises at least two distinct

species complexes. The first complex, henceforth designated as D. pinnata s.s., is

centered around D. pinnata ssp. pinnata and probably encompasses the majority of ssp.

glabra and ochroleuca as well as D. virletii. In the western part of its range this complex

undergoes extensive hybridization with other taxa. The other species complex appears to

consist of D. incisa ssp. filipes [= D. longipedicellata O. E. Schulz] which encompasses

or intergrades with D. pinnata ssp. intermedia and D. pinnata ssp. nelsonii. Descurainia

paradisa is affiliated with this group, but appears to be sufficiently distinct to merit

continued recognition at the species level. Descurainia pinnata ssp. menziesii is also
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associated with this second complex, which is surprising because morphologically it is

much more similar to D. pinnata s. s. The placement of D. pinnata ssp. brachycarpa

cannot be ascertained with certainty based on the results of this study, but preliminary

results suggest it is more closely allied with D. pinnata s.s. than with the “D.

longipedicellata” complex. Some subspecies, particularly (but not limited to) D. pinnata

ssp. halictorum, most probably represent hybrid populations of polytopic or polyphyletic

origin, and their continued taxonomic recognition may not be justified. A second major

discovery is that Detling’s D. obtusa ssp. brevisiliqua should not be included in D. obtusa

ssp. obtusa where Rollins placed it, and in fact this taxon does not even belong in D.

obtusa. It is clearly more closely related to D. incisa. Because data from an additional

nuclear marker (TOR) further inform relationships within Descurainia, a detailed

discussion of species concepts in North American Descurainia will be deferred until the

end of the next chapter (Chapter 3).

Based on morphology and geography, South American Descurainia comprise two

major divisions – 1) high Andean species with appressed fruit that range from Colombia

to northern Argentina and northern Chile and 2) species with spreading fruit that occupy

mid-level elevations throughout most of Argentina and Chile. The most widespread

species of this latter group, D. appendiculata, also extends into Uruguay and southern

Bolivia. Unlike their North American congeners, there is very little range overlap

between the two morphological divisions. ITS and chloroplast molecular data resolve

South American Descurainia into four strongly-supported lineages that generally

correlate well with major morphological divisions (Figs. 2.5, 2.7, 2.8). There are conflicts

between the two trees, but the incongruence is not as marked nor as extensive as that seen

in North America.
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The monophyly of the first South American lineage, designated clade C-II, is

supported by both ITS and chloroplast data. This clade includes all of the South

American spreading-fruit species that were sampled (i.e., 8 out of 13 named species)

except for D. cumingiana var. tenuissima. There is very little phylogenetic structure

within the group in either tree, and the overall sequence divergence is low (maximum of

0.66% and 0.15% divergence for ITS and chloroplast, respectively, with most ITS

sequences identical or only differing by one base pair). While it is fairly easy to sort

many C-II specimens into more-or-less distinct morphological categories, such as D.

appendiculata, D. pimpinellifolia, and D. antarctica, the specific identification of some

samples is extremely difficult due to intermediate morphology, overlapping characters

and sometimes differing interpretations by various authors. Moreover, many rarely-

collected but widely-dispersed species, such as D. argentea and D. heterotricha, basically

differ from major taxa only in minor details (e.g., petal length, degree of glandulosity)

and possibly represent hybrid forms or variation between populations. This group is

strongly in need of a more detailed morphological and molecular study with additional

sampling to clarify species concepts.

As mentioned previously, at least some populations of D. antarctica, which is

distributed throughout Patagonia, appear to be a product of hybridization between a

member of this South American clade C-II and a presumed dispersant from North

American clade B. All four accessions of D. antarctica, which were collected at different

times from various locations in eastern Chubut or Santa Cruz, form a monophyletic group

which is strongly supported as part of clade B in the chloroplast phylogeny (Fig. 2.7).

Mixed ITS types were detected for three of these four samples; when two of them were

cloned, the resulting sequences were placed in both clade B and clade C-II. Inspection of

the additive ITS sequence for the third sample revealed polymorphisms consistent with
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the same two clades as well. A fifth accession from Chubut (Correa & al. 4949 BAA)

which was not cloned nor included in the final data set also had the same set of

polymorphisms. As described earlier, clade B is the North American clade which

contains D. paradisa, D. incisa ssp. filipes (D. longipedicellata), and several subspecies

of D. pinnata s. l. Romanczuk (1984a,b) claims that D. pinnata is adventive in Patagonia,

citing four specimens collected from sandy, ruderal areas and river banks in Neuquén,

Río Negro, and Chubut. If D. pinnata is present in Patagonia, it might be the clade B

maternal parent of D. antarctica. Upon examination of several specimens notated as D.

pinnata from one of the collections cited (Fisher 62 [SI! NY!]), however, these

specimens appear to be D. appendiculata or D. argentina (both South American), not D.

pinnata. Material from five other collectors, although not cited in Romanczuk, were sent

by Romanczuk’s collaborator O. Boelcke to R. C. Rollins at Harvard for comparison with

known D. pinnata taxa; Rollins’ opinion, recorded in November 1984 on the sample label

at GH, was that they did not match D. pinnata, and he assigned them to D.

appendiculata. An additional specimen annotated as D. pinnata by C. Romanczuk in

1984 (Paladini s. n. from Mendoza [BAA!]) also appears to be D. appendiculata. DNA

sequences were obtained from this specimen (D47) and they are found only in clade C-II

in both ITS and chloroplast trees. The presence of D. pinnata in Argentina appears

doubtful; nevertheless, without examining the other cited specimens, it is not possible to

be certain that D. pinnata has not been collected in Argentina.

The other sampled South American species of Descurainia with spreading fruit is

D. cumingiana. This species, and D. nuttalli of Chile which was not sampled, are rather

morphologically distinct from the species in clade C-II, being easily distinguished from

the latter by elegantly tripinnatisect leaves and long narrow siliques. The four accessions

of D. cumingiana (all var. tenuissima from Chile and Argentina) are well-supported by
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molecular data as forming a distinct monophyletic lineage (C-V) that is not part of clade

C-II. The species is distributed throughout central Chile and also scattered across central

Patagonian regions of Argentina, where it has been reported to hybridize with D.

antarctica (Romanczuk, 1984a). Reports of D. cumingiana var. cumingiana in Mendoza

and northern Neuquén provinces of Argentina (Romanczuk, 1984a; Zuloaga & Morrone,

1994) appear to be based on an overly-broad species concept for D. cumingiana.

Examination of specimens from Neuquén and Mendoza annotated as D. cumingiana by

C. Romanczuk (including Vallerini 393 [BAA!] cited in Romanczuk 1984a) reveals, for

example, a leaf morphology (2- rather than 3-pinnatisect) and seed arrangement (biseriate

instead of uniseriate) that differs from the concepts of other authors (e.g., Schulz, 1924).

Morphologically these samples seem to have closer affinity to taxa such as D. antarctica

and D. pimpinellifolia, but do not key out cleanly to any specific species. Two such

specimens (D34 and D39), one annotated as D. cumingiana by C. Romanczuk and the

other unidentified, were sequenced. ITS data for D34, and ITS and chloroplast data for

D39, definitely place them in clade C-II, not with D. cumingiana.

Morphologically, the high Andean species constituting the other two South

American lineages (denoted as C-III and C-IV) are united by distinct characters such as

fruit appressed to the rachis and valves of the fruit dehiscing from the apex to the base.

These characters are absent from other South American Descurainia species. While the

17 accessions representing five of the eight appressed-fruit species recognized by Brako

& Al-Shehbaz (1993) are basically unresolved with respect to each other and other

species of lineage C in the ITS phylogeny (Fig. 2.5), the chloroplast data provides

resolution within these two lineages that is somewhat correlated with existing species

concepts (Fig. 2.7). Lineage C-III unites one D. myriophylla accession with an

unresolved clade consisting of three branches (Fig. 2.7), one joining both D. athrocarpa
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accessions, another uniting two D. depressa accessions, and a third including all four D.

leptoclada accessions and the two D. stricta samples. Lineage C-IV includes two D.

depressa and four D. myriophylla accessions. The only anomalous aspects of these

placements are that one D. myriophylla accession is in C-III rather than C-IV, and that

some accessions of D. depressa are in C-III while others are in C-IV with D. myriophylla.

These placements might be a result of hybridization. The two species grow in similar

disturbed habitats and what appear to be intermediate forms have been seen where the

two species were growing side by side (pers. obs.).

Compared to the confusing muddle in clade C-II, the species of C-III and C-IV

are mostly easily distinguishable. There is some taxonomic difficulty regarding D. stricta,

however. This species is restricted to the Atacama region of Chile, and it has been

suggested that it may represent a variety of D. myriophylla with pilose fruits or a variety

of D. leptoclada (A. Prina to S. Perfetti, pers. omm..; Al-Shehbaz, pers. omm..). The

situation is not helped by the fact that one named variety of D. stricta (var. florida) has

glabrous fruits, and that the type specimen of D. stricta is so fragmentary that it is hard to

tell what it represents (Al-Shehbaz, pers. omm..). If one considers D. myriophylla to

include D. perkinsiana and D. pulcherrima, following Brako & Al-Shehbaz (1993), most

of the distinguishing features of D. stricta are encompassed within D. myriophylla. Two

D. stricta accessions collected from northern Chile, B38 and D45, could be considered as

D. myriophylla. The fact that they are more closely related to D. leptoclada than D.

myriophylla, however, suggests a different determination. For the purposes of this study,

they are recognized as D. stricta, but, clearly, a better sampling is needed to gain an

accurate understanding of this taxon.
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Origins and biogeography. – Divergence time estimates support an Upper

Miocene origin (5 – 11 mya) for Descurainia and related species. Ianhedgea (central and

southwest Asia), Robeschia (Middle East), and D. kochii (Turkey and Caucasia) are in a

basal position with respect to the remainder of the genus. Assuming that present-day

distributions reflect ancestral areas, this suggests that the genus arose in the Irano-

Turanian region posited by Hedge (1976) as a likely center of origin for the Brassicaceae.

Geographic expansion of Descurainia out of ancestral areas appears to have

begun in the early Pliocene with diversification accelerating during the late Pliocene or

early Pleistocene. This period was marked by dramatic climate changes which opened up

new niches for speciation, and by the final uplift of Eurasian and American mountain

systems which could serve as corridors for migration (Simpson, 1975, 1983;

Agakhanjanz & Breckle, 1995; Hewitt, 1996, 2000; Hewitt & Ibrahim 2001). The genus

spread into Europe giving rise to H. tanacetifolia as well as an unknown (or now extinct)

taxon which hybridized with D. kochii about 2 – 3 mya to form D. sophia. Pleistocene

glacial cycles have had a profound effect on the composition and distribution of species

in Europe, and one of the early glacial cycles may have abetted the extirpation of the

maternal parent of D. sophia as well as contributed to the expansion of D. sophia

throughout Eurasia. Such an event has been reported, for example, in Paeonia L.

(Paeoniaceae), where European populations of present-day Asian species appear to have

been completely replaced by their hybrids during the Pleistocene (Sang & al., 1997a).

Excluding a few probable misreads in one “messy” GenBank sequence with numerous

ambiguous positions, it is interesting that ITS sequences from D. sophia collected in New

Mexico, Colorado, and Argentina as well as sequences reported in GenBank from Canada

(AY230619 and AY230618) and Wyoming (AF205587 and AF118860) are identical.

While this limited sampling may simply reflect introduction of D. sophia into the New
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World from a single Old World source, low genetic diversity is a hallmark of populations

derived from post-glacial expansion (Hewitt, 1996, 2000). Descurainia species in the

Canary Islands are closely related to H. tanacetifolia of the Pyrenees and northern Spain.

These island taxa are clearly not Tertiary relicts as postulated by authors such as

Bramwell (1972), since they arrived in the Canary Islands 500,000 – 750,000 years ago,

probably from the Iberian peninsula, a refugial area during Pleistocene glacial maxima

(Hewitt, 1996; Taberlet & al., 1998).

New World species of Descurainia are of late Pliocene/Pleistocene origin, with

molecular clock calculations from chloroplast data estimating a date of 1.8 – 2.1 mya for

the last common ancestor of all New World taxa, and ITS data suggesting an origin of

approximately 1 mya for each of the three major New World clades. Biogeographic

reconstructions with MacClade (Figs. 2.9, 2.10) are equivocal regarding whether

Descurainia was first introduced into North or South America, although most of the

reconstructions support initial introduction into North America. Although approximately

twice as many species have been recognized in South America compared to North

America, maximum ITS sequence divergence within North American taxa (5.1%) , and

even among many western North American taxa alone (e.g., clades A+B, 3.0%), is much

greater than for all of South America (1.3%); chloroplast data reveal a similar trend

(Table 2.4). This greater genetic diversity within North America relative to South

America argues for North America as the continent of initial establishment, and is

consistent with the general distribution pattern observed in New World Brassicaceae.

Assuming a North American origin for Descurainia in the New World, the

ancestor of North American Descurainia could have conceivably migrated either

westward from Europe or eastward from Eurasia. The close relationship between New

World Descurainia species and those of the Canary Islands and Europe (i.e., Hugueninia)
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would be congruent with dispersal from the European continent. Any introduction from

Europe via a North Atlantic land bridge, however, can be ruled out; such a land

connection is believed to have been broken by the early Eocene (Tiffney, 1985a; Tiffney

& Manchester, 2001) which considerably predates the origin of the genus. More recent

long-distance dispersal from Europe to North America is a possibility though; examples

of such trans-Atlantic dispersals, while not common, include South American

Hypochaeris arriving from northwest Africa during the Pliocene or Pleistocene

(Tremetsberger & al., 2005) and various amphi-Atlantic arctic species whose North

American populations are of late Quaternary origin (Brochmann & al., 2003).

Eastern North America is not the likely ancestral area for the genus in North

America, because the area of greatest species and sequence diversity for North American

Descurainia is the Great Basin region of the western United States. While disjunctions

between southwest North America and the Mediterranean/European flora are known

(cited in Coleman & al., 2003), their origins date from times much earlier than the

Pliocene. Migration from Eurasia, rather than Europe, into western North America is

therefore the most plausible route of introduction of Descurainia into the Americas.

Immigration from central Asia to western North America via the Bering land bridge,

which served as a glacial refugium and corridor for migration of temperate taxa during

the late Tertiary and Quaternary (Tiffney, 1985b; Colinvaux, 1996; Hewitt, 2000), has

been invoked to explain the distribution of a number of genera in the Brassicaceae, such

as Braya Sternb. & Hoppe, Eutrema R. Br., Parrya R. Br., Stroganowia Karelin & Kir.,

and Thellungiella O. E. Schulz (Rollins, 1982). Moreover, many recent molecular studies

have uncovered evidence of dispersal from Asia (especially southwest Asia and Eurasia)

to North America during the Pliocene/Pleistocene, either by long-distance dispersal or via

Beringia. Examples from the Brassicaceae include Braya (Warwick & al., 2004a), Draba
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L. (Koch & Al-Shehbaz 2002), Lepidium (Mummenhoff & al., 2001), Noccaea Kuntz

(Koch & Al-Shehbaz, 2004) and Smelowskia C. A. Mey (Warwick & al., 2004b);

representatives from other families are Androsace L. (Primulaceae; Schneeweiss & al.,

2004), Gentianella Moench (Gentianaceae; Hagen & Kadereit, 2001), Halenia Borkh.

(Gentianaceae; Hagen & Kadereit, 2003), Hordeum (Poaceae; Blattner, 2006), and

Senecio mohavensis (Asteraceae; Coleman & al., 2003). A Eurasian—North American

link within Descurainia is exemplified in the present day by arctic/subarctic D.

sophioides, which is distributed from western Canada (with outlier populations around

Hudson Bay) across Alaska and northern Siberia westward almost to the Ural Mountains.

This species occupies a derived phylogenetic position with respect to New World

Descurainia, however, and its current range may represent expansion from Beringia after

the last glacial maximum rather than a relictual connection between Asia and western

North America. The most recent common ancestor of European and New World

Descurainia could have been eliminated from the mountains of northern Asia during a

period of rapid glaciation in the Pleistocene, as has been considered for Androsace

(Schneeweiss & al., 2004).

Regardless of whether or not one assumes a North American origin for New

World Descurainia, it is clear that there have been several independent dispersals

between North and South America. The exact number, and direction, of all dispersal

events is difficult to infer, unfortunately, because the major North/South American clade

(clade C) is not resolved with respect to some lineages in the parsimony tree (Fig. 2.8).

While the topology (Fig. 2.8) recovered by Bayesian inference is well-resolved, the

posterior probabilities joining some of the clade C lineages are low, suggesting

uncertainty in the placement of those branches. The inability to obtain a well-supported
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resolution for these lineages suggests a period of rapid diversification with some

dispersals occurring nearly simultaneously.

Figures 2.9 and 2.10 illustrate most parsimonious reconstructions of New World

continental distribution (North or South America) traced onto simplified trees

representing the two topologies recovered from parsimony analysis and 94% of the 95%

credible set of trees from Bayesian analysis of the combined ITS-chloroplast data set. All

of these optimizations suggest that there have been multiple dispersals of Descurainia

between North and South America. The majority of reconstructions support a New World

origin in North America followed by three or four independent dispersals to South

America. The general trend of relatively-recent colonization of South America from

North America is consistent with that seen in many genera (e.g., Chrysosplenium

[Saxifragaceae; Soltis & al., 2001], Draba [Koch & Al-Shehbaz, 2002], Fagonia L.

[Zygophyllaceae; Beier & al., 2004], Gentianella [Hagen & Kadereit, 2001], Gilia

[Polemoniaceae; Morell & al., 2000], Lasthenia [Asteraceae; Chan & al., 2001],

Lepidium [Mummenhoff & al., 2001], and Microseris D. Don [Asteraceae; Wallace &

Jansen, 1990]). Several studies have uncovered evidence of multiple independent

dispersals from North to South America, such as in Halenia (Gentianaceae; Hagen &

Kadereit, 2003), Osmorhiza Raf. (Apiaceae; Wen & al., 2002), Sanicula L. (Apiaceae;

Vargas & al., 1998), Tiquilia Pers. (Boraginaceae; Moore & al., 2006) and Valerianaceae

(Bell & Donoghue, 2005). Although multiple dispersals are also suggested in Lycium L.

(Solanaceae; Fukuda & al., 2001; Levin & Miller, 2005), the direction of dispersal is

uncertain. Hoffmannseggia (Simpson & al., 2005) also illustrates a history of multiple

dispersals, but the dispersal direction has been from South to North America.

Several of the scenarios in Figs. 2.9 and 2.10 that support a North American

origin for Descurainia also indicate re-dispersal from South America to North America
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has occurred. They suggest that D. obtusa, which is distributed in the mountains and

plateaus of the southwest U. S. and northern Mexico, arose from a common ancestor of

clade C-II, which comprises all of the species (except D. cumingiana) with spreading

fruit ranging primarily throughout Argentina and parts of Chile. Such a situation would

not be without precedent – Blattner (2006) has detected evidence that after introduction

into South America from the north ca. 2 mya, Hordeum re-dispersed to North America on

two separate occasions. It is equally or more likely, however, that South American clade

C-II arose from long-distance dispersal of D. obtusa or a close relative or ancestor from

North America to South America. It is not possible to determine which of these two

scenarios is correct from the current data.

With the exception of the branch joining South American clade C-II with North

American D. obtusa, the branches resolving relationships between major lineages in

clade C, on which the above scenarios are based, are not well-supported (Fig. 2.8).

Generation of trees with alternative arrangements of these weakly-supported branches

(not shown) requires only one or two additional steps compared to the shortest trees

recovered from the parsimony analysis. A few of these alternate topologies are also found

in the 95% set of credible trees generated from Bayesian analysis. Nonetheless,

optimization of continental distribution on any of these alternate topologies yields most

parsimonious reconstructions (not shown) supporting three or four dispersals between

North and South America similar to those illustrated in Figs. 2.9 and 2.10.

As first proposed by authors such as Cruden (1966) and Carlquist (1983),

adhesion of seeds or fruits to (or ingestion by) migrating birds has been suggested as the

mechanism for long-distance dispersal in many studies (e.g., Vargas & al., 1998; Ballard

& Sytsma, 2000; Morrell & al., 2000; Fukuda & al., 2001; Mummenhoff & al., 2001;

Bleeker & al., 2002; Wen & al., 2002; Levin & Miller, 2005; Simpson & al., 2005;
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Blattner, 2006). Because Descurainia has seeds which are mucilaginous when wet, it is

easy to envision such a bird-mediated transport over tropical areas into temperate regions

of South America (and vice versa). Mummenhoff & al. (1992) cite several reports of

Lepidium and Capsella seeds – both crucifers with mucilaginous seeds – found attached

to birds. Long-distance transport of seed from North to South America, whether by birds

or otherwise, would be consistent with the origin of D. antarctica in Patagonia, since

maternal alleles would only be dispersed by seed.

Relative taxonomic utility of non-coding chloroplast markers. – In addition to

the seven non-coding regions which were sequenced and incorporated into the

chloroplast data set, other non-coding chloroplast regions were screened for taxonomic

utility during the course of this study. The additional regions tested included the trnGUUC

intron (Shaw & al., 2005), the trnLUAA intron (Taberlet & al., 1991), and rpoB-trnCGCA

(Shaw & al., 2005), psbM-trnDGUC (Demesure & al., 1995), rps11-rps8, ndhC-trnVUAC,

rbcL-accD, accD-psaI, trnSUGA-psbZ (Demesure & al., 1995), rpl32-trnLUAG, trnSGCU-

trnGUUC, trnTUGU-trnLUAA (Taberlet & al., 1991), atpF-atpH, petA-psbJ, rps16-psbK,

psbA-trnHGUG (Sang & al., 1997a [psbA-F]; Tate & Simpson, 2003 [trnH-R]), and

trnLUAA-trnFGAA (Taberlet & al., 1991) intergenic spacers. (Primer sequences for regions

without cited references were designed from the Arabidopsis thaliana genome and are in

Table 2.8). Screening of some regions was abandoned before many sequences were

obtained because either there was essentially no variation between distant taxa (e.g.,

atpF-atpH, psbA-trnH) or due to difficulty in achieving consistent PCR amplification

(e.g., petA-psbJ, rbcL-accD, rps16-psbK, trnS-psbZ, trnS-trnG). Histograms comparing

pairwise sequence divergence (uncorrected “p” distance), number of parsimony

informative characters, and degree of phylogenetic resolution between representative
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Descurainia species are shown in Fig. 2.15. The four most divergent regions, without

considering indels, were the trnG intron and trnD-trnE, trnE-trnT, and ycf6-psbM

intergenic spacers.

Several recent studies have compared the potential phylogenetic utility of various

non-coding chloroplast regions. Shaw & al. (2005, 2007) compared non-coding regions

across major angiosperm lineages, while the investigations of Daniell & al. (2006) and

Timme & al. (2007) were confined to the Solanaceae and Asteraceae, respectively. Mort

& al. (2007) recently surveyed several regions reported by Shaw & al. (2005), but

focused on additional criteria, such as parsimony informative characters, in addition to

the metric used by Shaw & al. (number of variable characters). For Descurainia (also

taking into account the less-fully screened regions mentioned previously), the results are

broadly consistent with the observations of Shaw & al. (2005, 2007). Some regions which

were potentially very informative in those studies, however, were not very variable

within Descurainia (e.g., ndhC-trnV, petA-psbJ, and atpF-atpH [half of their atpI-atpH])

and vice versa (e.g., trnG intron). Although not illustrated in Fig. 2.15, some regions

were variable within certain lineages (e.g., Canary Island taxa), but provided little

resolution within other major lineages (e.g., New World taxa). The most taxonomically-

useful regions identified in Descurainia varied considerably from many regions of

potential high utility in the Solanaceae and Asteraceae studies. The most useful non-

coding regions will most likely be highly idiosyncratic to the lineage under investigation.

For closely-related taxa like Descurainia, where sequence variation is low, the wisest

approach is to screen a large number of potentially useful non-coding regions before

embarking on an extensive regime of PCR amplification and sequencing for many

samples.
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CONCLUSIONS

The genus Descurainia is supported as a member of the recently-designated tribe

Descurainieae. The placement of Hugueninia within Descurainia is strongly

corroborated, and the possible expansion of Descurainia to include Robeschia and

Ianhedgea is suggested. Phylogenies based on ITS and non-coding chloroplast data

suggest a recent origin in the Irano-Turanian region of the Old World for Descurainia,

with subsequent diversification during the late Pliocene or early Pleistocene into Europe

and into the New World. Species in the Canary Islands are monophyletic, implying a

single colonization event into the islands, and are most closely related to European

Hugueninia. Following introduction into the New World, most likely from Eurasia into

North America, multiple independent dispersals of Descurainia appear to have taken

place between North and South America.

Incongruence between ITS and chloroplast trees, as well as mixed ITS types

observed for some North American accessions, provide strong evidence for substantial

reticulation within North American Descurainia. The recent origin of the genus and

frequent hybridization are probably responsible for most of the taxonomic complexity

which plagues efforts to classify Descurainia in North and South America.

The molecular data indicate several problems with current species concepts,

especially in regard to Descurainia pinnata. To obtain a clear picture of species limits

and confirm the patterns suggested by this study, much more extensive sampling needs to

be carried out, preferably with the addition of one or more low-copy nuclear markers.

These results are necessarily preliminary, but represent the first major molecular

investigation of Descurainia and will thus serve as a important phylogenetic framework

for future studies.
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Table 2.1. Plant material used to assess the monophyly of Descurainia and its
relationship to other genera. Seed source for cultivated plants designated as
follows: [ETSIA] = Escuela Técnica Superior de Ingenieros Agrónomos de
Madrid crucifer seedbank, Universidad Politécnica de Madrid, Spain;
[B&T] = B&T World Seeds, Paguignan, France.

Taxon: Location, date, collector; DNA voucher (herbarium) or GenBank accession
numbers (ITS, trnL)

Arabidopsis thaliana (L.) Heynh.: NC_000932; Arabis alpina L.: AF137559,
AY034180; Boechera holboellii (Hornem.) Á. Löve & D. Löve: AY457932,
DQ013055; Brassica rapa L.: AF531563, AY236217; Cardamine amara L.:
AY260584, AF266633; Descurainia argentina O. E. Schulz var. brachysiliqua
(Chodat & Wilczek) O. E. Schulz: Cultivated, seed [ETSIA 240-5886-81] from
Argentina (TEX); D. gilva Svent.: Spain: Canary Islands, A. Santos s. n. (ORT); D.
incisa (Engelm. ex A. Gray) Britton ssp. incisa: USA: Colorado, Goodson 1502
(TEX); D. kochii (Petri) O. E. Schulz: Turkey: Çankiri, A. Dönmez 11789 (TEX);
D. pinnata (Walter) Britton ssp. glabra (Wooton & Standley) Detling: USA:
Arizona, R. C. Haberle 177 (TEX); D. sophia (L.) Webb ex Prantl: USA: New
Mexico, Beilstein 01-19 (MO); Ermania parryoides (Cham.) Botsch.: AY230625,
AY230540; Gorodkovia jacutica Botsch. & Karav.: AY230606, AY230548;
Halimolobos elatus (Rollins) Al-Shehbaz & C. D. Bailey: DQ336388, DQ336387;
Hedinia tibetica (Thomson) Ostenf.: AY230627, AY230551; Hornungia alpina
(L.) O. Appel: DQ310527, DQ310515; H. petraea (L.) Reichenbach: AJ440308,
AY015905; H. procumbens (L.) Hayek: AJ440309, AY015903; Hugueninia
tanacetifolia (L.) Prantl ssp. suffruticosa: Cultivated from seeds [B&T] (TEX);
Ianhedgea minutiflora (Hook. f. & Thoms.) Al-Shehbaz & O’Kane: Tajikistan:
Badakhson, Solomon et al. 21646 (MO); Lepidium campestre (L.) R. Br.:
AF055197, AY015845; L. virginicum L.: AY662280, AY015902; Mancoa
bracteata (S. Wats.) Rollins: AF307633, AF307556; Nasturtium officinale R. Br.:
AY254531, AY122457; Nerisyrenia linearifolia (S. Wats.) Greene: AF055200,
AF055267; Nevada holmgrenii (Rollins) N. H. Holmgren: AY230589, AY230555;
Physaria fendleri (A. Gray) O'Kane & Al-Shehbaz: AF055199, AF055266;
Polyctenium fremontii (S. Wats) Greene: AY230614, AY230614; Redowskia
sophiifolia Cham. & Schltdl.: AY230608, AY230542; Robeschia schimperi
(Boiss.) O. E. Schulz: Iran: Prov. Esfahan, American-Iranian Botanical Delegation
33719 (TUH); Sinosophiopsis bartholomewii Al-Shehbaz: AY230609, AY230550;
Sisymbrium altissimum L.: USA: Colorado, Goodson 1460 (TEX); Smelowskia
americana (Regel & Herder) Rydb.: USA: Colorado, Goodson 1462 (TEX);
Smelowskia calycina (Stephen) C. A. Mey: AY230576, AY230523; Sophiopsis
sisymbrioides (Regel & Herder) O. E. Schulz: Tajikistan: Pil’doni-Poyen,
Chukavina 352 (GH); Tropidocarpum gracile Hook.: ITS seq. from R. A. Price.
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Table 2.2. Plant material used to examine phylogenetic relationships within Descurainia.
Seed source for cultivated plants designated as follows: [ETSIA] = Escuela
Técnica Superior de Ingenieros Agrónomos de Madrid crucifer seedbank,
Universidad Politécnica de Madrid, Spain; [B&T] = B&T World Seeds,
Paguignan, France.

Taxon; Location, date, collector and DNA voucher (herbarium)

Arabidopsis thaliana (L.) Heynh.: GenBank; NC_000932;

Descurainia antarctica (Fourn.) O. E. Schulz: var. bonarelli O. E. Schulz –
D37: Argentina: Cráter Oreja de Burro, Ea. Monte Aymond, Dept. Güer Aike, Prov.
Santa Cruz, 13 February 1980, O. Boelke et al. 16806 (BAA); var. patagonica
(Speg.) O. E. Schulz – D52: Argentina: RN 40, a 30 km NE de Esquel, Dept.
Cushamen, Prov. Chubut, 2 February 1975, O. Boelcke 16038 (BAA); E2:
Cultivated, seed collected by B. Goodson, 7 January 2005, roadside, RN 3, between
Florentino Ameghino and Uzcudun, Dept. Florentino Ameghino, Prov. Chubut,
Argentina (TEX); F15: Cultivated, seed collected by B. Goodson, 7 January 2005,
roadside, RN3, between Uzcudun and Commodoro Rivadavia, Dept. Florentino
Ameghino, Prov. Chubut, Argentina (TEX);

D. appendiculata (Griseb.) O. E. Schulz: B126: Cultivated, seed collected by B.
Goodson, 27 Dec 2001, on side of gravel road ca. 1.4 km E of Universidad Católica
de Salta, Dept. Capital, Prov. Salta, Argentina (TEX); C25: Cultivated, seed
collected by B. Goodson, 31 Dec 2001, along RP 307 (S 26º52'38.0" W
65º41'35.9"), Dept. Tafí del Valle, Prov. Tucumán, Argentina (TEX); D47:
Argentina: Vivero Sur, Dept. Godoy Cruz, Prov. Mendoza, 1 October 1984,
Paladina s. n. (BAA);

D. argentina O. E. Schulz: var. brachysiliqua (Chodat & Wilczek) O. E. Schulz
– B37: Cultivated, seed [ETSIA 240-5886-81] collected from General Acha, Dept.
Ultracan, Prov. La Pampa, Argentina (TEX); var. undet. – B96: Cultivated, seed
[ETSIA 239-5908-81] collected from roadside, Uspallata, Dept. Las Heras, Prov.
Mendoza, Argentina (TEX);

D. artemisioides Svent.: B36: Cultivated, seed collected [ETSIA 241-4201-76] by
G. Kunkel from Berrazales, Gran Canaria, Canary Islands, Spain (TEX);

D. athrocarpa (A. Gray) O. E. Schulz: B94: Peru: trail to Lago Ishinca, Huascarán
National Park, Prov. Carhuaz, Dept. Ancash, 12 February 1985, D. N. Smith et al.
9450 (MO); C27: Bolivia: slope above road to Valle del Zongo (S 16º16'51" W
68º7'21"), Prov. Murillo, Dept. La Paz, 5 March 2004, B. Goodson 1506 (TEX);
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D. bourgaeana Webb ex O. E. Schulz: B14: Spain: El Portillo, Cañadas del Teide,
Tenerife, Canary Islands, A. Santos s. n. (ORT); B171: Cultivated, seed [ETSIA
242-1629-68] collected by J. Esquinas from Las Cañadas, Tenerife, Canary Islands,
Spain (TEX); D7: Spain: Los Andenes, La Caldera National Park, La Palma, Canary
Islands, A. Santos s. n. (ORT);

D. californica (A. Gray) O. E. Schulz: C9: USA: East Creek campground,
Humboldt National Forest (N 39º29'43" W 114º39'13"), White Pine Co., NV, 22
May 2003, B. Goodson 1493 (TEX); D12: USA: Cedar Creek Campground, Dixie
National Forest (N 37º35'28" W 112º53'53"), Iron Co., UT, 19 August 2001, B.
Goodson 1466 (TEX);

D. cf. erodiifolia (Phil.) Reiche: D50: Argentina: pié de Paramillo de Cuevas,
Dept. Las Heras, Prov. Mendoza, 28 December 1981, Roig 10766 (BAA);

D. cumingiana (Fisch. & C. A. Mey): var. cumingiana – D34: Argentina: Ea.
Fortin Chacabuco, Dept. Los Lagos, Prov. Neuquén, 1 December 1966, Abadie-
Speck 7 (BAA); D39: Argentina: S de Mina Escondida, alrededores del Río
Carranza, Dept. Añelo, Prov. Neuquén, 13 October 1982, M. N. Correa et al. 8699
(BAA); var. tenuissima (Phil.) Reiche – B103: Chile: Prov. Huasco, Atacama
(Region III), 2 November 1991, M. Muñoz et al. 2930 (MO); D38: Argentina: SE de
Pico Oneto, Dept. Sarmiento, Prov. Chubut, 22 October 1976, Irisarri 180 (BAA);
D43: Argentina: 60 km de Jacobacci subiendo a la meseta, Dept. 25 de Mayo, Prov.
Rio Negro, 8 November 1966, Abadie-Vallerini 1020 (BAA); D49: Chile: chacra del
Sr. Benjamin Olivares C., San Felipe, Prov. Los Andes, Valparaíso (Region V), 5
October 1962, A. Garaventa 8072 (BAA);

D. depressa (Phil.) Reiche: C26: Bolivia: Patarani (S 17º14'54" W 67º59'59"),
Prov. Aroma, Dept. La Paz, 3 March 2004, B. Goodson 1505 (TEX); C37: Bolivia:
fallow field along road between Sajama to Patacamaya, ca. 3 km W of Puerto
Japones (17º22'02" W 68º13'27"), Prov. Pacajes, Dept. La Paz, 15 March 2004, B.
Goodson 1520 (TEX); D17: Bolivia: road from Tiwanaku to La Paz, ca. 5 miles E of
Tiwanaku (S 16º35'08" W 68º35'00"), Prov. Ingavi, Dept. La Paz, 11 March 2004,
B. Goodson 1510 (TEX); D31: Argentina: entre Tres Cruces y Iturbe, Dept.
Humahuaca, Prov. Jujuy, 25 January 1964, L. Giusti et al. 558 (BAA);

D. gilva Svent: B22: Spain: Cumbres de Puntallana, La Palma, Canary Islands,
May 2001, S. Santos s. n. (ORT); B163: Cultivated, seed collected [ETSIA 243-
4055-76] by A. Santos from Las Manchas, La Palma, Canary Islands, Spain (TEX);
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D. glaucescens (Phil.) Prantl ex Reiche: D20: Chile: Prov. Copiapó, Region
III(Atacama), January 1926, E. Werdermann 971 (MO);

D. gonzalezi Svent.: B19: Spain: Carretera a Madre de Agua, Vilaflor, Tenerife,
Canary Islands, May 2001, A. Santos s. n. (ORT); B160: Cultivated, seed [ETSIA
244-3172-74] collected from Las Cañadas, Tenerife, Canary Islands, Spain (TEX);

D. heterotricha Speg.: B124: Cultivated, seed collected by B. Goodson, December
2001, weedy field in El Salto, Dept. Luján de Cuyo, Prov. Mendoza, Argentina
(TEX);

D. impatiens (Cham. & Schlecht.) O. E. Schulz: C40: Mexico: 3 km S of
Neverías, Mun. Miahuatlán, Oaxaca, 3 August 1996, G. B. Hinton et al. 26690
(TEX); C42: Mexico: orilla de camino, Mun. Perote, Veracruz, 22 June 1970, F.
Ventura A. 1338 (TEX);

D. incana (Bernh. ex Fischer & C. A. Meyer) Dorn: B109: USA: open meadow
at end of Price Peet Road, Beaverhead Co., MT, 27 July 1979, P. P. Lowrey 2693
(MO); C2: USA: near US Hwy 10A, 21.5 miles west of Anaconda, Granite Co.,
MT, 18 July 1983, R. C. & K. W. Rollins 83308 (GH); D29: USA: N side of Galena
Summit area, between Stanley and Galena, Blaine Co., ID, 27 June 1986, R. C. & K.
W. Rollins 86118 (TEX);

D. incisa (Engelm. ex A. Gray) Britton: ssp. filipes (A. Gray) Rollins – B195:
USA: Falls Canyon, W of Paradise Peak, Humboldt Co., NV, 28 May 1987, A.
Tiehmn 11104 (GH); C21: USA: Flaming Gorge Overlook, Hwy 44, Flaming Gorge
NRA (N 40º54'28" W 109º41'54"), Daggett Co., UT, 29 June 2003, B. Goodson
1499 (TEX); C45: USA: 3 miles SE of North Battle Mountain on road to Stony
Point, Lander Co., NV, 21 May 2002, A. Tiehm 12845 (TEX); D14: USA: FR 221,
Ashley National Forest (N 40º56'22" W 110º00'12"), Daggett Co., UT, 29 June
2003, B. Goodson 1500 (TEX); ssp. incisa – C24: USA: McKenzie Gulch Trail,
White River National Forest, Eagle Co., Colorado, 2 July 2003, B. Goodson 1502
(TEX); D6: USA: Snowbird Ski Resort, Salt Lake Co., UT, 4 August 2004, B.
Goodson 1528 (TEX); D25: USA: steep bank off state Hwy 75, 6.6 miles from
Stanley near the Salmon River, Custer Co., ID, 25 June 1986, R. C. & K. W. Rollins
86101 (TEX); D56: USA: near road to Lower Lagunitas Lakes campground, Rio
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Arriba Co., NM, 2 August 1998, J. McGrath 157 (UNM); D57: USA: Upper
Frijoles Meadow, Los Alamos Co., NM, 19 July 1982, T. Dunbar 609 (UNM); ssp.
paysonii (Detling) Rollins – D28: USA: Browns Park, just NE of Gates of Lodore
above Vermilion drainage, Moffat Co., CO, 26 June 1965, W. A. Weber & P.
Salamun 12649 (TEX); D73: USA: Navajo site T 17N, R 16W, Sec. 4, McKinley
Co., NM, 25 May 1976, W. L. Wagner 1932 (UNM); ssp. viscosa (Rydb.) Rollins –
D21: USA: Crystal Reservoir, Laramie Co., WY, 7 July 1966, Porter & Porter
10187 (TEX); D24: USA: Big Lake, Apache National Forest, Apache Co., AZ, 16
August 1973, A. R. & H. N. Moldenke 27885 (LL);

D. kochii (Petri) O. E. Schulz: D2: Turkey: Karaören Köyü (N 40º30'02" E
33º14'47"), Sabanözü, Çankiri, June 2004, A. Dönmez 11789 (TEX); D3: Turkey:
Eskihisar Köyü çevresi (N 40º51'11" E 33º26'21"), Kastamonu, June 2004, A.
Dönmez 11793 (TEX); D18: Turkey: Koçubaba Kasabasi (N 39º59'27" E
32º51'31"), Baliseyh, Kirikkale, 15 June 2004, A. Dönmez 11928 (TEX);

D. lemsii Bramwell: B23: Spain: Cumbres de la Orotova, Tenerife, Canary Islands,
April 2001, A. Santos s. n. (ORT); B170: Cultivated, seed [ETSIA 245-3094-74]
collected from La Crucita, Tenerife, Canary Islands, Spain (TEX);

D. leptoclada Muschl.: C33: Bolivia: W-facing bank of Río Sururia (S 18º11'08"
W 68º53'48"), Parque Nacional Sajama, Prov. Sajama, Dept. Oruro, 14 March 2004,
B. Goodson 1514 (TEX); C34: Bolivia: above village of Sajama (S 18º07'51" W
68º56'49"), Parque Nacional Sajama, Prov. Sajama, Dept. Oruro, 14 March 2004, B.
Goodson 1515 (TEX); C36: Bolivia: E side of Río Tomarapi, ca. 2 km E of Cosapa
(S 18º05'27" W 68º44'06"), Prov. Sajama, Dept. Oruro, 15 March 2004, B. Goodson
1516 (TEX); D46: Argentina: ladera entre Molino y Mina Aguilar, Dept.
Humahuaca, Prov. Jujuy, 2 March 1983, J. H. Hunziker et al. 10531 (BAA);

D. millefolia (Jacq.) Webb & Berthel.: B24: Spain: Barranco del Rio, La Palma,
Canary Islands, April 2001, A. Santos s. n. (ORT); B38: Cultivated, seed [ETSIA
246-1073-67] collected from Buenavista, Tenerife, Canary Islands, Spain (TEX);
D1: Spain: Buenavista del Norte, Tenerife, Canary Islands, J. Panero & J.
Francisco-Ortega 6987 (TEX); D5: Spain: El Fraile, Tenerife, Canary Islands, A.
Santos s. n. (ORT); F1: Spain: W of San Sebastian, along road to Langrero, La
Gomera, Canary Islands, leg. ign. AAU71-7259 (MO); F2: Spain: Chejelipes, La
Gomera, Canary Islands, leg. ign. AAU71-7533 (MO);
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D. myriophylla (Willdenow ex DC.) R. E. Fries: C29: Bolivia: Laguna Apaña,
Ovejuyo (S 16º32'52" W 68º00'48"), Prov. Murillo, Dept. La Paz, 7 March 2004, B.
Goodson 1508 (TEX); C52: Peru: Cuzco, 17-18 May 1989, Tupayachi 1065 (MO);
D9: Bolivia: La Paz Montículo (S 16º30'27" W 68º07'38"), Prov. Murillo, Dept. La
Paz, 7 March 2004, B. Goodson 1507 (TEX); D13: Bolivia: ca. 2 km W of
Patacamaya (S 17º13'48" W 67º56'17"), Prov. Aroma, Dept. La Paz, 13 March 2004,
B. Goodson 1511 (TEX); D16: Bolivia: ca. 2 km W of Patacamaya (S 17º13'48" W
67º56'17"), Prov. Aroma, Dept. La Paz, 13 March 2004, B. Goodson 1512 (TEX);

D. obtusa (E. L. Greene) O. E. Schulz: ssp. adenophora (Wooton & Standley) –
D61: USA: adjacent to FS 111, Gila National Forest, Grant Co., NM, 19 July 1995,
C. A. Huff & D. Stevens 2310 (UNM); D62: USA: Laguna Lake, Hualpai Indian
Reservation, Coconino Co., AZ, 7 July 1936, W. N. Anderson A201 (UNM); ssp.
brevisiliqua Detling – D58: USA: vicinity of Water Canyon, Socorro Co., NM, 26
July 1973, B. Hutchins 4450 (UNM); D59: Datil Mountains, Catron Co., NM, 1
August 1976, Fletcher 823 (UNM); D72: USA: junction of Forest Roads 234 and
46, Socorro Co., NM, 28 July 1974, B. Hutchins 5099 (UNM); D4 (cf. ssp.
brevisiliqua): USA: VLA radio telescope observatory, Socorro Co., NM, 15 July
2004, B. Goodson 1527 (TEX); ssp. obtusa – B26: USA: slopes along NM Hwy
159, 5 miles E of junction with US Hwy 180 (N 33º23'16" W 108º49'58"), Catron
Co., NM, 10 August 2001, T. Chumley 7359 (TEX); D63: USA: Canon del Alamito,
N side of Ladrons, Socorro Co., NM, 15 August 1965, O. Baca 262 (UNM); D64:
USA: Lower Indian Creek Canyon, Hidalgo Co., NM, 22 August 1975, W. Wagner
1157 (UNM); D65: USA: Sawmill Peak area, Sierra Co., NM, 12 August 1982, B.
Hutchins 10245 (UNM);

D. paradisa (A. Nels. & Kenn.) O. E. Schulz: ssp. nevadensis Rollins – C8: USA:
valley floor, W of NV Hwy 95 and N of Walker Lake (N 38º48'47" W 118º45'59"),
Mineral Co., NV, 21 May 2003, B. Goodson 1492 (TEX); C48: USA: 1.1 miles SE
of main dirt road to Mina, Dunlap Canyon, Mineral Co., NV, 12 May 1988, A.
Tiehm 11582 (TEX); ssp. paradisa – C7: USA: NV Hwy 445 (MM 27), ca. 2 miles
SW of Pyramid Lake Indian Reservation (N 39º52'07" W 119º38'16"), Washoe Co.,
NV, 21 May 2003, B. Goodson 1490 (TEX); C46: USA: 2.8 miles S of Wheeler
Reservoir road on main N-S road to Double Hot Springs, Humboldt Co., NV, 14
May 2002, A. Tiehm 13794 (TEX);

D. pimpinellifolia (Barnéoud) O. E. Schulz: D11: Argentina: RP 52, ca. 34 km
from Uspallata (S 32º30'10" W 69º03'26"), Dept. Las Heras, Prov. Mendoza, 15
December 2001, B. Goodson 1475 (TEX); D42: Argentina: Puesto Agua del Godo,
Reserva San Guillermo, Dept. Iglesia, Prov. San Juan, 13 Jan 1983, Nicora 8466
(BAA); D51: Argentina: Chacras de Coria, Dept. Luján de Cuyo, Prov. Mendoza, 10
October 1972, Roig 7409 (BAA); E3: Argentina: Prov. San Juan, 9 January 1997, R.
Kiesling 8760 (SI);
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D. pinnata (Walter) Britton: ssp. brachycarpa (Richardson) Detling – F11:
USA: banks of Mississippi River, Winona Co., MN, 13 June 1975, S. D. Swanson
490 (MO); F12: USA: limestone cliffs downstream from Dycusburg, overlooking
the Cumberland River, Crittenden Co., KY, 10 April 1969, R. Athey 536 (MO); ssp.
glabra (Wooton & Standley) Detling – B144: USA: 2 mi SW of courthouse,
Prescott, Yavapai Co., AZ, 18 June 2002, R. C. Haberle 177 (TEX); D27: Mexico:
canyon of Rio Guararáy, ca. 0.5 km upstream from Los Aguaros, Mun. Alamos,
Sonora, 16 March 1994, R. S. Felger 94-88 (TEX); C10: USA: ca. 3 miles N of
northern entrance to Joshua Tree National Park (N 34º05'26" W 116º02'12"), San
Bernardino Co., CA, 1 May 2003, T. Chumley 7434 (TEX); ssp. halictorum
(Wooton) Detling – C12: USA: Spring Valley along Hwy 93 ca. 8 miles S of
Majors Place (N 38º56'27" W 114º30'46"), White Pine Co., NV, 6 May 2003, T.
Chumley 7437 (TEX); C14: USA: BLM road to Mormon Mountains, ca. 22 miles N
of junction with I-15 (N 37º01'25" W 114º18'56"), Lincoln Co., NV, 7 May 2003, T.
Chumley 7440 (TEX); D10: USA: Hwy 67, 40 miles N of Alpine (N 30º43'03" W
103º11'56"), Pecos Co., TX, 9 April 2004, B. Goodson 1521 (TEX); D19: USA:
Hwy 67, ca. 9.6 miles S of Marfa (N 30º10'54" W 104º04'43"), Presidio Co., TX, 9
April 2004, B. Goodson 1523 (TEX); D67: USA: Chiracahua Mountains, Cochise
Co., AZ, 14 March 1984, M. Kurzius 84-5 (UNM); D69: USA: Petroglyph National
Monument lowlands, Bernalillo Co., NM, 19 April 2001, A. C. Cully & M. Medrano
s. n. (UNM); D71: USA: Cochiti Lake site along Rio Grande, Sandoval Co., NM, 5
April 1975, G. Tierney A84575 (UNM); ssp. intermedia (Rydb.) Detling – C19:
USA: Red Canyon Lodge Horse Stables, Hwy 44, Flaming Gorge NRA (N
40º52'22" W 109º32'35"), Daggett Co., UT, 29 June 2003, B. Goodson 1498 (TEX);
ssp. menziesii (DC.) Detling – B35: Cultivated, seed [ETSIA 248-1725-69]
collected from Oakzanitas, San Diego Co., CA, USA (TEX); C3: Mexico: RN 1, ca.
5 miles E of El Aquajito (N 30º04'20" W 115º22'41"), Mun. Ensenada, Baja
California Norte, 9 March 2003, T. Chumley 7429 (TEX); D53: USA: 0.5 mile W of
Aguanga, San Diego Co., CA, Riverside Co., CA, 29 March 1990, E. LaRue s. n.
(TEX); D55: USA: Anzo-Borrego State Park, San Diego Co., CA, 24 April 1976, A.
L. & H. N. Moldenke 30653 (TEX); ssp. nelsonii (Rydb.) Detling – C17: USA:
McCarty Canyon Road (N 41º22'39" W 107º18'46"), Carbon Co., WY, 26 June
2003, B. Goodson 1495 (TEX); C47: USA: dome just N of Kobeh Valley Hot
Springs, Eureka Co., NV, 7 June 2002, A. Tiehm 13911 (TEX); D23: USA: Lemhi
Pass, Beaverhead Mountains, between Grant, MT and Tondoy, ID, Beaverhead Co.,
MT, 3 July 1986, R. C. & K. W. Rollins 86185 (TEX); ssp. ochroleuca (Wooton)
Detling – D8: USA: junction of Hwy 17 and county road 112, ca. 16 miles S of
Pecos (N 31º11'12" W 103º34'42"), Reeves Co., TX, 10 April 2004, B. Goodson
1524 (TEX); D26: Mexico: Santa Rosa, Mun. Guadalupe y Calvo, Chihuahua, 3
June 1960, C. W. Pennington 325 (TEX); ssp. pinnata – B12a: USA: Fly Gap
division of Double Helix Ranch, Mason Co., TX, 14 April 2001, B. Goodson 1457
(TEX); D15: USA: picnic area on Hwy 90, 5 miles W of Alpine (N 30º19'22" W
103º44'35"), Brewster Co., TX, 9 April 2004, B. Goodson 1522 (TEX); F5: USA:
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St. Catherine’s Island, Liberty Co., GA, 29 March 1986, S. B. Jones 24758 (MO);
F6: USA: FL 232 ca. 4 miles W of Gainesville, Alachua Co., FL, 25 March 1970,
M. R. Crosby 4844 (MO); F17: USA: I-75 rest area N of Tampa (N 28º12'50" W
82º22'25"), Pasco Co., FL, 5 March 2006, B. Goodson 1616 (TEX); ssp. undet. –
C4: USA: exit 390 I-10 (N 32º13'47" W 109º03'18"), Cochise Co., AZ, 8 March
2003, T. Chumley 7427 (TEX); C15: USA: BLM road to Mormon Mountains, ca.
0.5 miles E of junction with road to Lyman's Crossing (N 37º08'41" W 114º23'01"),
Lincoln Co., NV, 7 May 2003, T. Chumley 7439 (TEX); D68: USA: lower La Cueva
Canyon, Socorro Co., NM, 19 April 1989, T. Maddux & S. Loftin 12 (UNM); D70:
USA: Sevilleta Wildlife Refuge, Socorro Co., NM, 27 April 1990, T. Maddux 327
(UNM);

D. preauxiana (Webb) Webb ex O. E. Schulz: B117: Cultivated, seed [ETSIA
249-4135-76] collected by G. Kunkel, Ayacata, Gran Canaria, Canary Islands, Spain
(TEX);

D. sophia (L.) Webb ex Prantl: B20: USA: Hwy 160 (N 38º15'17" W 105º57'13"),
Saguache Co., CO, 17 August 2001, B. Goodson 1461 (TEX); E6: Argentina: RN
25, Quichara, Dept. Languiñeo, Prov. Chubut, 18 Jan 2005, B. Goodson 1560
(TEX); MB3: USA: New Mexico, Beilstein 01-19 (MO);

D. sophioides (Fischer) O. E. Schulz: B112: Canada: Yukon Territory, 15 July
1978, Cooper 715 (NY); F13: Cultivated, seed collected by J. McKendrick, 17
August 1990, Dalton Highway MP 398.7, Prudhoe Bay, North Slope Co., AK, USA
(TEX);

D. streptocarpa (Fourn.) O. E. Schulz: B33: Mexico: road to summit of Cofre de
Perote, Mun. Perote, Veracruz, 8 July 1980, B. F. Hansen & M. Nee 7702 (MO);
C44 (D. cf. streptocarpa): Mexico: Rancho de la Tinaja (N 29º42'30" W
107º35'30''), Chihuahua, 30 August 1989, M. H. Mayfield et al. 206 (TEX);

D. stricta (Phil.) Reiche: var. undet. – C38: Chile: km 90 on the Arica-Putre road,
Prov. Arica, Tarapacá (Region I), J. L. Panero & B. S. Crozier 8435 (TEX); D45:
Chile: Zapahuira/Putre, Prov. Parinacota, Tarapacá (Region I), s. d., C. Villagrán
2457 (BAA);

D. virletii (Fourn.) O. E. Schulz: B108: Mexico: Laguna de Zumpango, Mun.
Zumpango, Mexico, 3 December 1978, I. Piña E. 100 (MO); C39: Mexico: Tuul Ja',
6 km al E de la cabecera municipal de Amatenango del Valle, Chiapas, 10 February
1988, J. Pérez 266 (TEX);
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Table 2.2. Continued.

Hugueninia tanacetifolia (L.) Prantl: ssp. suffruticosa – C6: Cultivated from
seeds [B&T] (TEX); ssp. tanacetifolia – B111: Italy: Piemonte, 10 July 1988,
Pistarino 2027 (NY);

Ianhedgea minutiflora (Hook. f. & Thoms.) Al-Shehbaz & O’Kane: MB2:
Tajikistan: Badakhson, Solomon et al. 21646 (MO);

Robeschia schimperi (Boiss.) O. E. Schulz: B106: Iran: Prov. Kerman, 27 April
1948, K. H. & F. Rechinger 3076 (MO); MB1: Iran: Prov. Esfahan, ca. 10 km past
Khansar, on road to Golpayegan, 21 May 2004, American-Iranian Botanical
Delegation 33719 (TUH);

Sisymbrium altissimum L.: B21: USA: Hwy 160, 1.7 miles W of Huerfano Co.
line (N 37º33'06" W 105º17'05"), Costilla Co., Colorado, 17 August 2001, B.
Goodson 1460 (TEX);

Smelowskia americana (Regel & Herder) Rydb.: B146: USA: Mt. Sherman, Park
Co., Colorado, 18 August 2001, B. Goodson 1462 (TEX);

Sophiopsis sisymbrioides (Regel & Herder) O. E. Schulz: B194: Tajikistan: South
Altai Mountains, 5 km from Pil’doni-Poyen, in mixed-grass area, 10 July 1963,
Chukavina 352 (GH).
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Table 2.3 Sequence characteristics of DNA regions used in this study for the 150 sample set.

trnC-ycf6 ycf6-psbM trnD-trnE trnE-trnT psbZ-trnfM ndhF-rpl32 rps16
intron

Combined
chloroplast

ITS

Seq. length (bp) 519-585 579-619 517-541 534-775 647-731 656-940 787-828 4423-4857 596-614

# taxa 137 137 137 135 136 133 134 135†† 150

Alignment length 613 647 573 820 788 1044 866 5351 627

% missing/% gaps 0/7.5 0/7.8 0/8.0 0/26.1 0.2/15.5 0.3/15.0 0.2/6.3 0.8/12.8 0.1/2.5

No. of non-
autapomorphic
indels

9 5 3† 1 9 9 3 39† 0

No. informative
characters (%)*

73
(11.7%)

62 (9.5%) 62 (10.7%) 75 (9.1%) 88 (11.0%) 134 (12.7%) 87
(10.0%)

581 (10.8%) 127
(20.3%)

No.informative
characters (%)**

68
(10.9%)

45 (6.9%) 47 (8.2%) 51 (6.2%) 62 (7.8%) 89 (8.5%) 59 (6.8%) 505 (9.4%) 103
(16.4%)

No. of MPTs -- -- -- -- -- -- -- (3419) (4020)

Length of MPTs -- -- -- -- -- -- -- 1538 338

Consistency index
***

0.835 0.753 0.745 0.740 0.653 0.754 0.765 0.713 0.630

Retention index 0.962 0.948 0.948 0.935 0.886 0.921 0.918 0.918 0.925

*incl. outgroups and indels; ** incl. only ingroups and indels; *** excluding informative characters; †including one inversion; ††data missing for ndhF-
rpl32 (D. antarctica D52, D. incisa D21, & D. incisa ssp. filipes B195) and rps16 (D. antarctica D52 & D. pinnata F11).
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Table 2.4. Maximum sequence divergences (based on uncorrected “p” distances) within
major Descurainia lineages.

Clade ITS % chloroplast %

New World - A 1.16 0.44

New World - B 1.63 0.43

New World - A+B 2.95 1.02

New World - C 2.46 1.15
C-I (NA D. pinnata + D. virletii) 1.80 0.49
C-II (SA spreading-fruit) 0.66 0.16
C-III (SA appressed fruit) 0.67† 0.45
C-IV (SA appressed fruit) 0.33† 0.09
C-V (D. cumingiana) 0.17 0.00
D. obtusa ssp. obtusa (NA) 0.49† 0.11

New World - A+B+C 5.08 1.18

All North American accessions 5.08 1.18

All South American accessions
(excluding D. antarctica type 2)

1.31 0.83

D (Canary Is. + Hugueninia) -- 1.22

Canary Is. 1.16 0.54

A+B+C+D 5.08 1.94

†Not present as distinct clade in ITS; members unresolved as part of clade C.
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Table 2.5. Accessions pruned from combined ITS-chloroplast data set due to
incongruence, redundancy, or absence of chloroplast sequence data.

Accession Position in
ITS tree

Position in chloroplast
tree

Cloned ITS type not present in chloroplast tree [included type in brackets]
D. antarctica D37 type 1 C [B] -- [B]
D. antarctica E2 type 1 C [B] -- [B]
D. incisa ssp. filipes D14 type 1 C [B] -- [B]
D. paradisa ssp. nevadensis C8 type 1 C [B] -- [B]
D. pinnata ssp. brachycarpa F11 type 1 C [B] -- [B]
D. pinnata C4 type 1 C [B] -- [B]
D. pinnata ssp. glabra C10 type 1 C [B] -- [B]
D. pinnata ssp. halictorum C14 type 1 C [B] -- [B]
D. pinnata ssp. menziesii C3 type 1 C [B] -- [B]
D. pinnata ssp. intermedia C19 type 2 B [C] -- [C]

Between-clade incongruence
D. californica C9 A C
D. californica D12 A C
D. incisa ssp. incisa D57 A C
D. incisa ssp. viscosa D21 A C
D. pinnata ssp. halictorum C12 A C
D. sophioides B112 A C
D. sophioides F13 A C
D. impatiens C40 C A
D. impatiens C42 C A
D. cf. streptocarpa C44 C A
D. incisa ssp. incisa D25 A polytomy with A & B
D. paradisa ssp. nevadensis C48 B A
D. pinnata ssp. nelsonii C47 B C
D. pinnata ssp. nelsonii D23 B C
D. sophia B20 basal basal
D. sophia E6 basal basal
D. sophia MB3 basal basal

Within-clade incongruence
D. incana C2 A A
D. incisa ssp. paysonii D28 A A
D. incisa ssp. paysonii D73 A A
D. obtusa ssp. brevisiliqua D58 A A
D. obtusa ssp. brevisiliqua D59 A A
D. obtusa ssp. brevisiliqua D72 A A
D. cf. obtusa ssp. brevisiliqua D4 A A
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Table 2.5. Continued.

Accession Position in
ITS tree

Position in chloroplast
tree

D. pinnata D68 A A
D. pinnata D70 A A
D. pinnata ssp. halictorum D19 A A
D. pinnata ssp. halictorum D71 A A
D. streptocarpa B33 A A
D. pinnata ssp. brachycarpa F11 type 2 B B
D. pinnata ssp. nelsonii C17 B B
D. athrocarpa B94 C C
D. depressa C37 C C
D. depressa D31 C C
D. leptoclada D46 C C
D. myriophylla C29 C C
D. myriophylla D13 C C
D. myriophylla D16 C C
D. pinnata ssp. ochroleuca D26 C C
D. obtusa ssp. adenophora D61 C C
D. obtusa ssp. adenophora D62 C C
D. pinnata ssp. glabra B144 C C
D. pinnata ssp. halictorum D69 C C
D. pinnata ssp. ochroleuca D8 C C
D. pinnata ssp. pinnata B12A C C

Not present in chloroplast tree (some regions would not amplify)
D. cumingiana var. cumingiana D34 C --
D. cumingiana var. tenuissima B103 C --
D. cumingiana var. tenuissima D38 C --
D. millefolia F1 D --
D. pinnata ssp. brachycarpa F12 C --
D. pinnata ssp. pinnata F6 C --

Redundant
D. antarctica D52 C B
D. antarctica F15 C B
D. bourgaeana B171 D D
D. gilva B22 D D
D. gonzalezi B160 D D
D. kochii D3 basal basal
D. kochii D18 basal basal
D. lemsii B170 D D
D. leptoclada C34 C C
D. millefolia D1 D D
D. millefolia D5 D D 
D. millefolia F2 D D
D. obtusa ssp. obtusa D65 C C
R. schimperi B106 basal basal
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Table 2.6. Estimated node ages with standard deviations (from parametric bootstrapping)
calculated using penalized likelihood in r8s, based on branch lengths from
reduced ITS and chloroplast maximum likelihood trees (Figs. 2.11 and
2.12). Ages marked with an * were fixed in the analysis. MRCA = most
recent common ancestor.

Clade or Node Age (mya)
estimated from
ITS (Fig. 2.11)

Age (mya)
estimated from

from chloroplast
(Fig. 2.12)

MRCA Arabidopsis, Brassica 20.0* --

MRCA Arabidopsis, Descurainia 17.4 17.4*

Descurainieae 11.03 +/- 0.98 --

MRCA Hornungia, Tropidocarpum 10.24 +/- 0.98 --

MRCA H. alpina, H. procumbens 6.09 +/- 0.90 --

MRCA Robeschia, Descurainia 6.75 +/- 0.82 8.67 +/- 0.48

MRCA D. kochii, New World Descurainia 5.47 +/- 0.70 7.27 +/- 0.44

MRCA D. sophia, NW & Canary Is. -- 5.56 +/- 0.43

MRCA Cardamine, Rorippa ≥ 5.0* --

NW Descurainia – Canary Is. – Hugueninia 2.72 +/- 0.38 2.92 +/- 0.26

MRCA D. kochii, D. sophia 2.52 +/- 0.57 --

New World Descurainia -- 1.93 +/- 0.17

New World clade B 1.07 +/- 0.25 --

New World clade C 1.07 +/- 0.25 --

New World clade A 0.87 +/- 0.31 --

MRCA Canary Is., Hugueninia 1.00 +/- 0.33 2.21 +/- 0.26

Canary Is. 0.75 +/- 0.27 0.77 +/- 0.21
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Table 2.7. Comparison of Descurainia and related genera. Information compiled from Spegazzini (1893), Schulz (1924,
1936), Detling (1939), Ball (1964), Jafri (1973), Bramwell (1977), Romanczuk (1984a), Bramwell & Bramwell
(1990), Ortiz (1993), Rollins (1993a, c), Al-Shehbaz (1999, 2003), Al-Shehbaz & O’Kane (1999), Boulos (1999),
and Appel & Al-Shehbaz (2003). A = annual, B = biennial, and P = perennial.

Character D. sophia D. kochii New World Canary Is. Hugueninia Robeschia Ianhedgea Hornungia Tropidocarpum Trichotolinum
Duration A A A, B, P P P A A A, P A P

Habit Herbs Herbs Herbs Suffrutescent
herbs

Herbs Herbs Herbs Herbs Herbs Suffrutescent
herbs

Unicellular
glands

Absent Absent Present or
absent

Present or
absent

Absent Absent Absent Absent Absent Absent

Leaf
divisions

2- or 3-
pinnatisect

2-pinnatisect 2- or 3-
pinnatisect or
rarely pinnate

1- to 3-
pinnatisect or
pinnate

1- to 2-
pinnatisect

2-
pinnatisect

Finely
pinnatisect
or trisect

Pinnatisect,
dentate or entire

Pinnatisect to
pinnatifid (cauline
lvs only)

Pinnatifid to
pinnatisect (basal
lvs only)

Racemes
bracteate

Absent Absent Rarely basally Absent Absent Absent Absent Absent Present
throughout

Absent

Petal length
(mm)

2 - 2.5 3 1 - 4 3 - 6 2 - 4 4 - 5 1 - 1.8 0.6 - 1.2 1.6 - 5 3 - 4

Petal color Yellow Intense
yellow or
orange

Yellow or
white

Yellow Yellow White or
pale lilac

White or
pink

White Yellow or
yellowish

White

# stamens 6 6 6 6 6 6 6 4 or 6 6 6

Style Short or
obsolete

Short Obsolete or
rarely
prominent

Prominent to
obsolete

Very short Obsolete Absent or
obsolete

Absent or
obsolete

Prominent to
obsolete

Very prominent

Locules per
ovary

2 2 2 2 2 2 2 2 2 or 4 2
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Table 2.7. Continued.

Character D. sophia D. kochii New World Canary Is. Hugueninia Robeschia Ianhedgea Hornungia Tropidocarpum Trichotolinum

Ovules per
ovary

20 - 40 8-15 4-85 6-32 6-11 22 - 28 (6-)10-20 4-20 4-70 10-14

Fruit shape Linear Linear Linear,
oblong,
clavate, or
elliptic

Linear or
oblong

Oblong Linear,
somewhat
tetragonal,
tapering
above

Linear Elliptic to ovate
or lanceolate

Linear, oblong,
elliptic, or
obdeltoid

Linear

Fruit
compression

Nearly
terete

Quadrangular Terete or
rarely
quadrangular

Quadrangular Quadrangular Terete Terete Angustiseptate Angustiseptate Terete

Fruit
pubescence

Glabrous Glabrous Glabrous or
pubescent

Glabrous Glabrous Usually
densely
hairy

Glabrous or
minutely
dendritic

Mostly glabrous Retrorsely or
antrorsely
pubescent, rarely
glabrous

Glabrous

Fruit
orientation

Divaricately
ascending

Pedicels
patent or
slightly
reflexed; fruit
erect

Erect to
widely
spreading

Patent, erect
or ascending

Ascending Ascending
or suberect

Divaricate or
appressed to
rachis

Ascending to
divaricate

Ascending to
divaricate

Erect to ascending

Thickened
fruiting
pedicels

Absent Absent Absent Absent Absent Present Absent or
Present

Absent Absent Absent

Seed
arrangement

Uniseriate Uniseriate Biseriate or
uniseriate

Uniseriate or
biseriate

Uniseriate Uniseriate Uniseriate Biseriate or
aseriate

Uniseriate Uniseriate

Seed
mucilage

Present Present Present Present Absent Present Absent Absent or
Present

Present Not reported

Winged
seeds

Absent Absent Absent Present Absent Absent Absent Absent Absent Not reported

Cotyledons Incumbent Incumbent Incumbent Incumbent Incumbent Not
reported

Incumbent Incumbent or
accumbent

Incumbent Not reported
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Table 2.7. Continued.

Character D. sophia D. kochii New World Canary Is. Hugueninia Robeschia Ianhedgea Hornungia Tropidocarpum Trichotolinum

# of species 1 1 ca 30 - 35 7 1 1 1 3 4 1

Distribution Eurasia
(introduced
elsewhere)

Turkey,
Caucasia

NA & SA Canary
Islands

Europe Middle
East

C & SW
Asia

Europe (1 sp.
into Asia & W
NA)

California, Baja
California, (1 sp.
Chile)

Patagonia

Chromosome
numbers

x = 7
(2n = 28)

Not reported x = 7 (2n =
14,28,42)

x = 7
(2n = 14)

x = 7
(2n = 14)

x = 8 x = 7 (2n =
28)

x = 6 (2n =
12,24)

x = 8 Not reported
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Table 2.8. Primer sequences for non-coding chloroplast markers designed in this study
but not employed in the phylogenetic analysis.

Region Primer Sequence
rps11-rps8 rps11-F 5'-GTATTGTTGAAACTTGCTTGAAC-3'

rps8-R 5'-CGACTTCTCAAGGTATAATGAC-3'

ndhC-trnV ndhC-F 5'-TGCCAAAACAGGAATAGCAC-3'
trnV-R 5'-TTTACCGAGCAGGTCTACGG-3'

rbcL-accD rbcL-F 5'-GCTGCTGCTTGTGAAGTATGG-3'
accD-R 5'-AACTATCCATTGCTTTACTTAGC-3'

accD-psaI accD-F 5'-AGCGAGTTATTTCAGCTCCATGC-3'
psaI-R 5'-GGTAAGTTATTGAAAGTTGTC-3'

rpl32-trnL rpl32-F 5'-CATTAGGGAAATCACTTT-3'
trnL-R 5'-GCGTGTCTACCAATTTCACC-3'

rps16-psbK rps16-F 5'-CGTTGCTTTCTACCACATCG-3
psbK-R 5'-CGCATAACATCTACGATTGG-3'

trnS-trnG trnS-F 5'-CAATCCAACGCTTTAGTCCAC-3'
trnG-R 5'-ATCGTTAGCTTGGAAGGC-3'

atpF-atpH atpF-F 5'-GACCCAAGAAACGAAAGAATCGG-3'
atpH-R 5'-GCCTGGTTGTAGCATTAGC-3'

petA-psbJ petA-F 5'-GAGAAGGTTCAATTATCCGAAATG-3'
psbJ-R 5'-GATTAGGTTCATCCCTGTAG-3'
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Arabidopsis thaliana

Nerisyrenia linearifolia

Physaria fendleri

Boechera holboellii

Polyctenium fremontii *

Smelowskia holmgrenii *

Halimolobos elatus

Mancoa bracteata

Lepidium campestre

Lepidium virginicum

Ermania parryoides

Gorodkovia jacutica

Redowskia sophiifolia *

Hedinia tibetica

Sinosophiopsis bartholomewii

Smelowskia americana *

Smelowskia calycina *

Sophiopsis sisymbrioides *
Descurainia argentina *

Descurainia pinnata *

Descurainia incisa *

Descurainia gilva *

Hugueninia tanacetifolia *

Descurainia kochii *

Descurainia sophia *
Robeschia schimperi *

Ianhedgea minutiflora

Hornungia alpina

Hornungia petraea

Hornungia procumbens

Tropidocarpum gracile

Cardamine amara

Nasturtium officinale

Brassica rapa

Sisymbrium altissimum

Arabis alpina
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84/10071/99
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CAMELINEAE

PHYSARIEAE

BOECHEREAE

HALIMOLOBEAE

LEPIDIEAE

DESCURAINIEAE

SMELOWSKIEAE

CARDAMINEAE

BRASSICEAE

SISYMBRIEAE

ARABIDEAE

Fig. 2.1. One of 553 most parsimonious trees generated from nuclear ITS data to assess the
monophyly of Descurainia. Branch lengths are indicated above branches; bootstrap values >
50%/Bayesian posterior probabilities are below branches. Dashed lines indicate branches that
collapse in the strict consensus tree. Species tagged with an * belong to the subtribe
Descurainiinae as circumscribed by Schulz (1924); tribal classifications on the right-hand side are
those proposed by Al-Shehbaz & al., 2006.
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Arabidopsis thaliana

Halimolobos elatus

Mancoa bracteata

Polyctenium fremontii *

Nerisyrenia linearifolia

Physaria fendleri
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LEPIDIEAE

DESCURAINIEAE

SMELOWSKIEAE

CARDAMINEAE
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SISYMBRIEAE

ARABIDEAE

Descurainia argentina *

Descurainia incisa *

Descurainia pinnata *

Descurainia gilva *

Hugueninia tanacetifolia *

Descurainia kochii *

Descurainia sophia *

Ianhedgea minutiflora
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Gorodkovia jacutica
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Smelowskia americana *

Smelowskia calycina *

Hedinia tibetica

Sinosophiopsis bartholomewii
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60/76

94/99

Ermania parryoides
0

Boechera holboellii

Smelowskia holmgrenii *
5

3

098/100

Fig. 2.2 One of 8734 most parsimonious trees derived from chloroplast trnL data to assess the
monophyly of Descurainia. Branch lengths are indicated above branches; bootstrap values
>50%/Bayesian posterior probabilities are below branches. Dashed lines indicate branches that
collapse in the strict consensus tree. Species tagged with an * belong to the subtribe
Descurainiinae as circumscribed by Schulz (1924); tribal classifications on the right-hand side are
those proposed by Al-Shehbaz & al., 2006.
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Fig. 2.3. One of 41 most parsimonious trees derived from combined ITS-trnL data to assess the
monophyly of Descurainia. Branch lengths are indicated above branches; bootstrap values
>50%/Bayesian posterior probabilities are below branches. Dashed lines indicate branches that
collapse in the strict consensus tree. Species tagged with an * belong to the subtribe
Descurainiinae as circumscribed by Schulz (1924); tribal classifications on the right-hand side are
those proposed by Al-Shehbaz & al., 2006.
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Fig. 2.4. One of 4020 most parsimonious trees recovered from ITS data to assess relationships
within Descurainia using the parsimony ratchet. Branch lengths are indicated above branches.
Generic names are abbreviated as follows: A. = Arabidopsis, D. = Descurainia, H. = Hugueninia,
I. = Ianhedgea, R. = Robeschia, and S. = Sisymbrium (altissimum) or Smelowskia (americana).
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Fig. 2.5. Strict consensus of 4020 most parsimonious trees derived from ITS data to assess
relationships within Descurainia using the parsimony ratchet. Bootstrap values > 50%/Bayesian
posterior probabilities are indicated below branches. Generic names are abbreviated as follows:
A. = Arabidopsis, D. = Descurainia, H. = Hugueninia, I. = Ianhedgea, R. = Robeschia, and S. =
Sisymbrium (altissimum) or Smelowskia (americana). The designations A, B, C, C-I, C-II, and D
refer to clades described in the text. Distributions are abbreviated as follows: NA = North
America, SA = South America, CI = Canary Islands, and EU = Europe, Eurasia and/or Middle
East. Additional clades recovered from parsimony bootstrap or Bayesian analysis which do not
appear in the strict consensus tree are marked by: * (PP = 81%); ** (all members of clade C
except these accessions) (PP = 72%); *** (BV = 63%; PP = 81%). Bayesian analysis also groups
H. tanacetifolia B111 as sister to clade D (55%).
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Fig. 2.6. One of 3419 most parsimonious trees recovered from combined chloroplast data to
assess relationships within Descurainia using the parsimony ratchet. Branch lengths are indicated
above branches. Generic names are abbreviated as follows: A. = Arabidopsis, D. = Descurainia,
H. = Hugueninia, I. = Ianhedgea, R. = Robeschia, and S. = Sisymbrium (altissimum) or
Smelowskia (americana).
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Fig. 2.7. Strict consensus of 3419 most parsimonious trees derived from combined chloroplast
data to assess relationships within Descurainia using the parsimony ratchet. Bootstrap values >
50%/Bayesian posterior probabilities are indicated below branches. Generic names are
abbreviated as follows: A. = Arabidopsis, D. = Descurainia, H. = Hugueninia, I. = Ianhedgea, R.
= Robeschia, and S. = Sisymbrium (altissimum) or Smelowskia (americana). The designations A,
B, C, C-I, C-II, C-III, C-IV, C-V and D refer to clades described in the text. Distributions are
abbreviated as follows: NA = North America, SA = South America, CI = Canary Islands, and EU
= Europe, Eurasia and/or Middle East. Two additional branches within clade B recovered from
Bayesian analysis with very weak support (PP < 72%) are not shown.
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Fig. 2.8. One of 4020 most parsimonious trees recovered from combined ITS-chloroplast data to
assess relationships within Descurainia using the parsimony ratchet. Bootstrap values >
50%/Bayesian posterior probabilities are indicated below branches. Dashed lines indicate
branches that collapse in the strict consensus tree. Generic names are abbreviated as follows: A. =
Arabidopsis, D. = Descurainia, H. = Hugueninia, I. = Ianhedgea, R. = Robeschia, and S. =
Sisymbrium (altissimum) or Smelowskia (americana). The designations A, B, C, C-I, C-II, C-III,
C-IV, C-V and D refer to clades described in the text. Distributions are abbreviated as follows:
NA = North America, SA = South America, CI = Canary Islands, and EU = Europe, Eurasia
and/or Middle East.
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Fig. 2.9. Most parsimonious reconstructions from optimization of New World Descurainia continental distribution (North America [NA]
or South America [SA]) on the topology found in 35% of most parsimonious trees and 84% of the Bayesian 95% credible set of trees from
phylogenetic analysis of the combined ITS-chloroplast data set. Outgroups and Old World taxa are not shown because they have no effect
on the outcome of the reconstructions. (One additional reconstruction, which is inconsistent with the recent introduction of D. antarctica
to SA seen in molecular data, is not illustrated.
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Fig. 2.10. Most parsimonious reconstructions from optimization of New World Descurainia continental distribution (North America [NA]
or South America [SA]) on the topology found in 65% of most parsimonious trees and 10% of the Bayesian 95% credible set of trees from
phylogenetic analysis of the combined ITS-chloroplast data set. Outgroups and Old World taxa are not shown because they have no effect
on the outcome of the reconstructions. (Two additional reconstructions, inconsistent with the recent introduction of D. antarctica to SA
seen in molecular data, are not illustrated.
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Fig. 2.11. The maximum likelihood tree (lnL = -3845.573) derived from a reduced ITS data set
used for divergence time estimates in r8s. Calculated divergence times for labeled nodes are in
million years before present (mya). Calibration nodes are marked with a filled circle (5 mya,
MRCA of Rorippa and Cardamine) and open circle (20 mya, MRCA of Arabidopsis and
Brassica). Generic names are abbreviated as follows: D. = Descurainia and H. = Hugueninia.
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Fig. 2.12. The maximum likelihood tree (lnL = -13776.947) based on a reduced chloroplast data
set used for divergence time estimates in r8s. Calculated divergence times for labeled nodes are in
million years before present (mya). The estimated age of the MRCA of Arabidopsis and
Descurainia (17.4 mya) calculated from the ITS data was used for calibration and is marked with
an open circle. Generic names are abbreviated as follows: A. = Arabidopsis, D. = Descurainia,
H. = Hugueninia, I. = Ianhedgea, R. = Robeschia, and S. = Sisymbrium (altissimum) or
Smelowskia (americana).
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Fig. 2.13. Incongruence between ITS and chloroplast topologies illustrated using the ITS strict
consensus tree. Accessions are highlighted according to the type of incongruence exhibited (see
text): 1) red – mixed ITS types; 2) blue – between-clade; 3) green – within-clade.
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Fig. 2.14. Distribution of North American Descurainia accessions according to parental lineages
(clades A, B or C) inferred from placement in ITS and chloroplast phylogenies. The first letter in
each pair refers to the paternal lineage (ITS) and the second to the maternal lineage (chloroplast).
Accessions where both maternal and paternal lineages were present in ITS mixed types are in
lowercase; a dash (-) indicates that chloroplast data is missing for that accession. For clarity,
several accessions in central New Mexico (AA and CC) are not shown. Two Canadian specimens
(both C-) reported in Warwick & al., 2004 are also included.
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Fig. 2.15. Relative taxonomic utility of non-coding chloroplast markers using five accessions of
Descurainia (D. sophia and one exemplar each from clades A, B, C and D). A) Average p-
distance; B) number of parsimony informative characters; C) percent of nodes resolved in strict
consensus tree with D. sophia as outgroup. Numbers above bars refer to the ranking reported in
Shaw & al., 2007 for 34 non-coding chloroplast regions. In that study, trnD-trnE and trnE-trnT
were grouped together and psbZ-trnfM was grouped with trnS-psbZ.
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Chapter 3: Insights into the systematics of New World Descurainia
Webb & Berthel. (Brassicaceae) based on single-copy nuclear Target of

Rapamycin (TOR)

INTRODUCTION

Descurainia Webb & Berthel. is a genus in the Brassicaceae consisting of

approximately 40 – 45 species distributed in many temperate areas of the Old and New

World (Table 1.1; Fig. 1.1). The genus is most diverse in western North America and

western South America, with a smaller center of distribution in the Canary Islands and

three additional Old World species. Descurainia is well-known for its taxonomic

complexity, especially within New World species, on account of its numerous

intergrading forms coupled with descriptions based on inconsistent and overlapping

characters.

The results of a molecular analysis of Descurainia based on ITS and seven non-

coding chloroplast regions were reported in Chapter 2. The genus, with the inclusion of

the monotypic genera Hugueninia and possibly Robeschia, was strongly supported as

monophyletic, and appears to be of Old World origin with recent diversification within

the Canary Islands and the New World. The phylogeny recovered from the combined ITS

and chloroplast data was not well-resolved with respect to some New World lineages and

therefore equivocal, but suggested that multiple independent dispersals of Descurainia

have taken place between North and South America.

Substantial incongruence between ITS and chloroplast trees, as well as mixed ITS

types observed for several North American accessions, pointed to extensive gene flow

and hybridization within North American Descurainia. Lineage sorting could not be

ruled out as a possible explanation for some incongruence, however, especially within
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major clades. Possible problems with current species circumscriptions were highlighted,

especially within North American D. pinnata and D. obtusa.

As the first comprehensive molecular study of Descurainia, the phylogeny

recovered by the ITS and chloroplast data represents a significant advance in our

understanding of the genus. Because deep nodes joining some New World lineages are

poorly resolved, however, the results are not entirely satisfying. When confronted with

insufficient resolution in such a situation, there are several approaches which might be

employed to increase the amount of usable variation (Hughes & al., 2006). These

alternatives include adding more non-coding chloroplast data, incorporating other nrDNA

sequences such as the external transcribed spacer (ETS) region, making use of PCR-

based fragment length characters from AFLPs, ISSRs, or RAPDs, or employing one or

more low-copy nuclear markers. In the case of Descurainia, the application of a low-

copy nuclear marker would be advantageous for several reasons. In contrast to data from

ETS or additional chloroplast regions, sequences from a low-copy nuclear gene would

constitute an independent data set for corroborating the phylogeny inferred from ITS and

chloroplast DNA. Because low-copy nuclear regions are inherited bi-parentally, but are

less frequently subject to concerted evolution than ITS or ETS (Small & al., 2004), a low-

copy nuclear marker would aid reconstruction of possible past hybridization events

suggested by the ITS and chloroplast data. Finally, unlike DNA fingerprinting methods

such as AFLPs and RAPDs, procedures for sequencing a low-copy nuclear region would

require minimal development before data could be generated and assessment of

homology was expected to be straightforward. Consequently, to confirm and expand on

the patterns suggested by ITS and chloroplast results, the addition of sequence data from

a low-copy nuclear marker for a subset of taxa was the chosen approach.
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The acquisition of sequence data from low-copy nuclear regions is becoming

increasingly popular as a supplement to that obtained from chloroplast and nrDNA.

Markers which have been successfully applied to inter- and infraspecies level problems

include Adh (Sang & al., 1997b; Small & al., 1998; Sang & Zhang, 1999; Small &

Wendel, 2000; Ferguson & Sang, 2001), GBSSI (waxy) (Miller & al., 1999; Peralta &

Spooner, 2001; Small, 2004; Levin & al., 2005; Moore & al., 2006), LEAFY (Feng & al.,

2005), ncpGS (Emshwiller & Doyle, 1999), PepC (Malcomber, 2002; Olson, 2002;

Helfgott & Mason-Gamer, 2004; Weeks & Simpson, 2004), PgiC (Ford & Gottlieb,

2002; Kamiya & al., 2005; Ford & al., 2006), phyA (Ohi-Toma & al., 2006), pistillata

(Bailey & al., 2002), and RPA2, RPB2, and RPD2 (Goetsch & al., 2005; Popp & al.,

2005).

Screening of several of these low- or single-copy markers reported in the

literature, as well as a survey of some promising markers designed by Padolina & al.

(2004), failed to identify a suitable region for use in Descurainia. Regions that amplified

consistently were either insufficiently variable or possessed multiple gene copies which,

given the known presence of polyploidy in the genus, would have necessitated extensive

(and hence expensive) cloning for every sampled accession. Consequently, the genome of

Arabidopsis thaliana, a fairly close relative of Descurainia, was examined for regions

which might be better applicable.

For reconstructing relationships at or below the species level, especially in

recently diverged groups, the most useful gene regions appear to be those that are single-

copy and contain large introns and/or high proportions of intronic DNA (Sang, 2002).

Primers for five regions meeting these criteria were designed based on the A. thaliana

genome and screened for variability, ease of amplification, and absence of multiple

copies. From this survey, a ~2300 bp portion of the nuclear gene Target of Rapamycin
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(TOR) was selected for use as an independent nuclear marker in Descurainia. The TOR

gene, which controls cell growth and proliferation (Robaglia & al., 2004), is single-copy

in Arabidopsis thaliana (Menand & al., 2002). The gene and its protein products have

been extensively investigated in organisms as diverse as plants, fungi, insects and

mammals (e.g., Hay & Sonenberg, 2004; Thomas & al., 2004 & references therein;

Mahfouz, 2006). It has not previously been used in phylogenetic studies. In Descurainia,

nearly 80% of the portion of TOR sequenced consists of several large introns (Fig. 3.1),

which amplified strongly when DNA was of good quality and gave no evidence of gene

duplication in initial screening.

A major objective in using TOR sequence data was to resolve further

relationships between North and South American taxa to clarify dispersal patterns

between the two continents. Secondary goals were to confirm the existence of the major

New World clades recovered from the ITS and chloroplast study, and to acquire

additional insights into the causes of incongruence observed between the two data sets. A

final aim was to bring together information from TOR, ITS and chloroplast phylogenies,

geography, and general morphology as a starting point for addressing North American

species concepts.

MATERIALS AND METHODS

Sampling. –– DNAs from 56 (Table 3.1) of the 145 accessions isolated in the ITS

and chloroplast investigation (Chapter 2) were used for this study. The major criterion

used to select samples, subject to PCR amplifiability, was representation with multiple

accessions of each major New World lineage recovered in the ITS-chloroplast phylogeny.

The subset comprised samples sharing congruent positions in the two trees as well as
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some exhibiting conflicting placements or mixed ITS types, and included 45 New World

Descurainia accessions, three Canary Island species, two accessions of European

Hugueninia, and one accession each of D. kochii (Turkey and Caucasia), D. sophia

(Eurasia), Robeschia schimperi (Middle East), and the close relative and possible

congener Ianhedgea minutiflora (Central Asia). Based on the results of Chapter 2,

Arabidopsis thaliana and Smelowskia americana were used as outgroups.

PCR amplification and DNA sequencing. –– The region between exons 22 – 27

of the nuclear gene Target of Rapamycin (TOR) was employed as a phylogenetic marker.

This region, excluding ca. 80 base pairs of exon 25 which were not sequenced due to

non-overlapping internal sequencing primers, comprised approximately 2340 base pairs,

including five introns ranging in length from ~120 to ~600 base pairs (Fig. 3.1). PCR and

internal sequencing primers are listed in Fig. 3.1.

The TOR region between exons 22 and 27 was amplified via the polymerase

chain reaction (PCR) in 25 µL volumes containing 0.25 µL of a 100µM solution of each

primer, 0.25 µL of Taq polymerase, 0.5 – 1 µL of unquantified DNA template, and 12.5

µL of FailSafe PCR 2x Premix D, E or H (Epicentre). Reaction conditions were: 3 min

of denaturation at 96˚C, followed by 40 cycles of 94˚C for 35 sec, 50 - 54˚C for 45 sec,

and 72˚C for 3 min, with a final extension of 72˚C for 15 min. Agarose gel

electrophoresis of individual reaction mixtures yielded in every case a single band on the

gel corresponding to the expected length of the TOR product. Following amplification,

PCR products were cleaned with Qiagen spin columns according to the manufacturer’s

protocols. Sequencing reactions were carried out using Big Dye Terminator chemistry.

The sequencing products were cleaned with Centri-cep columns and sequenced on an

ABI Prism 3730 automated sequencer.
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Direct sequencing of TOR regions generated traces exhibiting multiple

polymorphisms or overlapping sequences for 18 accessions. These samples were cloned

with a TOPO TA kit (Invitrogen with vector pCR 2.1-TOPO) using 1/3 the recommended

reaction volumes. For each cloning reaction, 4 - 6 positively transformed colonies were

amplified and products sequenced. PCR amplification of clones was carried out as

follows: 94˚C for 10 min, followed by addition of Taq polymerase while the reactions

were held at 72˚C for 5 – 10 min, and then 37 cycles of 94˚C for 1 min, 48˚C for 2 min,

and 72˚C for 1 min, followed by a final extension step of 72˚C for 15 min. From each

cloned accession, with one exception, sequencing of transformed colonies recovered a

maximum of two distinct types, i.e., clones for a given type either formed a monophyletic

group or, if not forming a monophyletic group of clones, were identical or differed by a

single autapomorphic nucleotide substitution from other clones of that type. Because the

exclusion of redundant clones did not alter the outcome of phylogenetic analyses, two

representative sequences (one for each putative parental type) were retained in the final

data set for each sample exhibiting more than one distinct type. For one accession of D.

pinnata ssp. halictorum (D19), three distinct types were observed and three

representative sequences, one for each type, were consequently retained in the final data

set.

The TOR region proved especially difficult to amplify strongly for four

accessions extracted from herbarium specimens (D. cumingiana var. tenuissima D43, D.

impatiens C40, D. incisa ssp. incisa D25, and H. tanacetifolia B111). For these

accessions, this region was therefore amplified in two portions. Because some of the

primers used for these amplifications were originally designed solely as internal

sequencing primers (TORX25R and TORX25F; Fig. 3.1) and were not expected to

anneal exclusively to the region of interest, a “nested-PCR”-type approach was taken:
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following an initial round of PCR to amplify the entire TOR region between exons 22

and 27, the reaction mixture was cleaned and subjected to a second round of

amplification with the annealing temperature lowered to 46ºC using either the primer

pairs TORX22F and TORX25R (to amplify exons 22 – 25 [“TOR-I”]) or TORX25F and

TORX27R (to amplify exons 25 – 27 [“TOR-II”]). Direct sequencing of TOR-I or TOR-

II of accessions D25 and D43 resulted in traces exhibiting multiple polymorphisms or

overlapping sequences, and these products were therefore cloned and sequenced as

described previously. Because transformed colonies for a given accession, however,

contained only TOR-I or TOR-II inserts instead of the entire TOR region, it was then

necessary to determine which resulting TOR-I sequence corresponded to which (if any)

TOR-II sequence type. Since only two types each were identified for D25 and D43, it

was possible to piece them together by reference to their phylogenetic placement in trees

including only TOR-I or TOR-II regions and inspection of the traces obtained from direct

sequencing.

Phylogenetic Analyses. – Sequences were edited with Sequencher 4.1.2 (Gene

Codes Corp., 2000) and aligned with ClustalX (Thompson & al., 1997) followed by

manual adjustments. Indels that were potentially phylogenetically informative were

coded as binary (presence/absence) characters following the simple gap coding method of

Simmons and Ochoterena (2000) and appended to the alignment.

Parsimony analyses were performed on the aligned data set by means of 20

independent parsimony ratchet (Nixon, 1999) runs of 200 iterations each in PAUP*

4.0b10 (Swofford, 2002) using batch files generated by PAUPRat (Sikes & Lewis, 2001).

Support for internal nodes was assessed using bootstrap analysis (Felsenstein, 1985). One

hundred bootstrap replicates of 10 random additions were performed, holding one tree at
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each step and saving no more than 500 trees of length greater than or equal to 200 steps

in each replicate. Bootstrap support categories were strong (> 85%), moderate (70 –

85%), weak (50 – 69%), or unsupported (< 50%).

Bayesian analyses were carried out on the TOR data set using MrBayes 3.1

(Ronquist & Huelsenbeck, 2003), with the best-fit model of evolution determined by the

Akaike information criterion (Akaike, 1974; Posada & Buckley, 2004) as calculated in

MrModeltest 2.2 (Nylander, 2004). Separate models were applied to the nucleotide and

indel data partitions with all parameters unlinked except for topology and branch length;

the model selected by MrModeltest (GTR+Γ) was applied to the nucleotide partition and

the BINARY model (with coding bias set to variable) was applied to the coded indels.

Two independent analyses were performed on the data set. Each analysis was run for

three million generations with four Markov chains (three heated and one cold) and trees

saved every 100 generations. Trees were checked for stationarity by plotting log

likelihood values vs. generation, and trees from the burn-in period were discarded. A

50% majority-rule consensus tree was constructed in PAUP* from the remaining trees.

Strongly-supported branches were considered to be those with posterior probabilities

greater than or equal to 95%, with posterior probabilities less than 95% indicating weak

support.

Phylogenetic trees generated from TOR, ITS and chloroplast data sets were

explored visually for conflicts, as well as with the incongruence length difference (ILD)

test as implemented in PAUP* (partition homogeneity test of Farris & al., 1994). Each

test consisted of 100 replicates, with 10 random additions per replicate, holding 20 trees

per step.
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RESULTS

Analysis of TOR data. – The TOR data set was easily alignable, consisting of

sequences from 56 accessions; including unique clones, the data set contained a total of

75 sequences. The aligned data set was 2341 base pairs in length, including gaps (8.9%)

and missing (0.2%) data. In addition, 17 indels, ranging in length from 4 – 25 base pairs,

were binary-coded and appended to the combined data set. Of 1015 variable characters in

the resulting data set, 415 (17.6%) were parsimony-informative. This level of variation is

quite similar to that observed for the ITS data (20.3%). Nearly equal levels of variation

for introns from nuclear genes compared to ITS is atypical – most such introns exhibit

smaller (often much smaller) percentages of parsimony-informative characters than for

ITS (Hughes & al., 2006). With outgroups excluded, uncorrected pairwise sequence (“p”)

distances ranged up to 9.74%, with an average of 2.11%.

Parsimony analysis of the TOR data set using the parsimony ratchet generated

4020 most parsimonious trees of 1463 steps (CI = 0.69, RI = 0.83) (Fig. 3.2). Bayesian

analysis of the data set recovered a tree which was identical to the strict consensus

parsimony tree except for the addition of a few poorly-supported branches (Fig. 3.2).

While the TOR-based phylogeny is generally less resolved than those recovered from ITS

and chloroplast data, it nonetheless confirms many patterns detected in the other data sets

and provides new insights. As in the other phylogenies, the TOR tree strongly supports

(BV = 100%, PP = 100%) Ianhedgea as sister to Robeschia and Descurainia; the position

of Robeschia with respect to Descurainia, however, is unresolved. The TOR phylogeny

reveals an interesting situation in regards to D. sophia. Sequencing of cloned PCR

products uncovered two D. sophia types; one is sister (BV = 88%, PP = 99%) to D.

kochii, and the other type is sister (BV = 87%, PP = 99%) to the remainder of the genus
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excluding D. kochii and Robeschia. These positions correspond to the conflicting

placements of D. sophia in the ITS vs. chloroplast trees, respectively, and provide strong

evidence of an allopolyploid origin for this tetraploid species.

Within the remainder of the genus, the Canary Island taxa are strongly supported

(BV = 100%, PP = 100%) as sister to a clade divided into two lineages: 1) both

subspecies of Hugueninia tanacetifolia (BV = 71%, PP = 77%) and 2) New World taxa

(BV = 100%, PP = 100%). A sister relationship between Hugueninia and New World

taxa, instead of Hugueninia sister to Canary Island species, is in strong conflict with the

chloroplast data. The ITS data, however, was equivocal on this point.

New World Descurainia species are strongly supported as monophyletic. Most

New World clades identified from the ITS and chloroplast results (Fig. 2.8) are also

observed in the TOR phylogeny but their relative positions are unresolved (Fig. 3.2).

These include clade B (BV = 84%, PP = 100%) and clade C-I (BV = 99%, 100%) and, as

qualified below, clades C-II, C-III, and C-IV. The position of a few accessions (D.

sophioides, D. pinnata ssp. halictorum D69, D. pinnata ssp. ochroleuca D8, and one

clone each of D. pinnata ssp. intermedia C19 and D. pinnata ssp. nelsonii C17) are

unresolved within New World Descurainia. With the exception of one clone of D.

pinnata ssp. halictorum D19 and D. incisa ssp. incisa D25, the remaining North

American samples (all in clade A in the ITS and/or chloroplast phylogenies) group,

depending on the analysis method, weakly (BV <50%) or strongly (PP = 98%) with some

C-II and North American taxa as discussed below. Some of these clade A accessions (D.

californica C9 and D12 and D. incisa ssp. incisa D6, D25 type 1, and D56) form a

monophyletic group (BV = 75%, PP = 100%), while others (e.g., D. incisa ssp. incisa

C24 and D. pinnata ssp. halictorum D19) are completely unresolved with respect to this

group.
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Several new pieces of information were also uncovered within the New World

group. First, the members of the two South American appressed-fruit clades, C-III and C-

IV, are strongly supported (BV = 96%, PP = 100%) as one lineage. Except for D. stricta

C38, which may be a hybrid between D. depressa and D. myriophylla, this lineage neatly

resolves according to existing species concepts, with D. myriophylla sister to D.

athrocarpa, D. depressa, and D. leptoclada. In the Bayesian phylogeny, D. cumingiana

var. tenuissima (clade V) is placed sister to this appressed-fruit lineage, but the support is

too weak (PP = 50%) to be meaningful. Secondly, in addition to corroborating the mixed

parentage of several putative hybrids identified in the ITS and chloroplast studies (i.e., D.

incisa ssp. incisa D25 [clade A x clade B], D. pinnata ssp. glabra C10 [B x C-I, but not

cloned and hence not included in the data set], D. pinnata ssp. menziesii C3 [B x C-I],

and D. paradisa ssp. nevadensis C8 [B x C-I]), some other taxa also appear to have

experienced hybridization based on multiple types found in the TOR sequences. These

include D. pinnata C15 (B x C-I), D. pinnata ssp. menziesii B35 and B53 (B x C-I), D.

pinnata ssp. nelsonii C17 (clade B x A?), and D. stricta C38 (clade C-III x C-IV).

Surprisingly, South American D. cumingiana var. tenuissima D43 also possess two types,

one in North American clade B and the other unresolved. In contrast to ITS and

chloroplast results, where a maternal parent from clade B was strongly suggested, no

clones of D. antarctica E2 were placed in clade B. An inspection of the direct sequencing

trace for D. antarctica E2 also did not reveal the presence of any clade B types

contributing to the observed polymorphism. Five clade A accessions which possess a

biseriate seed arrangement were sequenced (D. pinnata D68, and D70, D. pinnata ssp.

halictorum D19, D. obtusa ssp. brevisiliqua D60, and D. cf. obtusa ssp. brevisiliqua D4).

Although only two of these accessions were cloned successfully and hence included in

the TOR data set (D4 and D19), all five accessions exhibited mixed types upon direct
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sequencing. Cloning or careful inspection of the sequence traces suggest, however, that

none of these types resemble those found in North American clades other than clade A.

With one exception (D. pinnata ssp. halictorum D19), no more than two distinct types of

sequences (other than minor allelic variants as described under Materials and Methods)

were uncovered from any cloned Descurainia accession exhibiting sequence additivity,

although it is possible that more exhaustive cloning would have revealed additional types.

The most unusual aspect of the New World phylogeny concerns the five species

of the South American spreading-fruit clade C-II included in the analysis. Sequences of

all five were overlapping and polymorphic at many nucleotide positions; when they were

cloned and placed into the phylogeny, two separate but incongruent clades containing all

five species were discovered. One of the C-II clades (C-IIa) (BV = 58%, PP = 98%) was

associated with moderate to strong support (BV = 73%, PP = 100%) with North

American taxa D. impatiens, D. obtusa ssp. obtusa, and D. obtusa ssp. adenophora, and

possibly with North American clade A (BV < 50%, PP = 98%). The relative position of

the other C-II clade (C-IIb) (BV = 82%, PP = 100%), which is weakly to strongly sister

(BV = 53%, PP = 100%) to one clone of D. pinnata ssp. halictorum D19, is unresolved.

Combined TOR, ITS and chloroplast data. – Relationships between major

New World clades are unresolved in the TOR phylogeny. Combination of the TOR

sequence data with non-conflicting ITS and chloroplast data from Chapter 2 might assist

in resolving relationships between these clades. Disregarding minor incongruence within

New World groups and the conflicting position of Hugueninia, however, there are two

factors which hamper attempts to combine data sets. The TOR phylogeny contains two

sets of clade C-II, and it is not clear which clade C-II group in the TOR tree is

orthologous to that uncovered by the ITS and chloroplast data. Relationships within one
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of the clade C-II groups (labeled C-IIa in Fig. 3.2), as well as a sister relationship to D.

obtusa, are however strongly congruent with the pattern seen in the combined ITS and

chloroplast phylogenies, and thus C-IIa might justifiably be included in a combined data

set. More problematically, though, it is clear from visual comparison of strict consensus

trees as well as the ILD test (p < 0.05) that clade A occupies conflicting positions within

the TOR and chloroplast phylogenies. The three data sets were therefore not combined.

DISCUSSION

General relationships within Descurainia. – The phylogeny reconstructed from

analysis of TOR data, while not as well resolved as either the ITS or chloroplast trees, is

consistent in many respects with the results obtained from those data sets. Robeschia, D.

kochii, and D. sophia occupy a basal position in the tree, New World species are strongly

supported as a monophyletic group, and further evidence for a hybrid origin for D. sophia

is provided. As in the ITS and chloroplast study, the inclusion of Hugueninia in

Descurainia is strongly supported. In contrast to chloroplast – and to some extent ITS –

phylogenies, both accessions of Hugueninia are placed in a well-supported sister

relationship to New World rather than Canary Island Descurainia. The explanation for

the differing gene histories with respect to Hugueninia is unclear. One possibility is an

ancient hybridization or allopolyploidization event. Although Hugueninia is diploid (2n =

14) and no evidence of multiple types was detected in ITS or TOR sequences, processes

such as diploidization (Grant 1981; Comai 2005) or concerted evolution could have

obscured such an origin. An alternative explanation involves differential sorting of

ancestral polymorphisms (i.e., lineage sorting) (Wendel & Doyle 1998). Additional

independent nuclear markers will be required to distinguish between these possibilities



122

for Hugueninia. Regardless of which topology correctly reflects organismal history with

respect to Hugueninia, the phylogeny generated from the TOR data set is still congruent

with a common European or Eurasian ancestor for New World, southwestern European,

and Canary Island Descurainia. While the two Hugueninia tanacetifolia accessions group

together, they are only moderately supported as monophyletic (BV = 71%, PP = 77%).

The pairwise sequence divergence (2.09%) between these two geographically-separated

subspecies (ssp. suffruticosa from the Pyrenees and northern Spain and ssp. tanacetifolia

from the southwest Alps) is almost as large as the maximum divergence within all New

World accessions (2.33%).

Although most of the major New World clades identified in Chapter 2 are

strongly supported in the TOR phylogeny, with few exceptions they form a polytomy

suggesting rapid initial diversification within the New World. With respect to the major

clades revealed by ITS and chloroplast data, there are two notable differing placements.

The first difference is a sister relationship for clades C-III and C-IV, which are joined

with strong support. This relationship is consistent with morphology and geography,

because these two lineages comprise all sampled Andean species with appressed fruit.

Combined ITS and chloroplast data suggest a different relationship, but the bootstrap

support is very weak and thus those data may not actually conflict with the TOR

topology. Furthermore, a pistillata intron screening study to be mentioned later also

joined these two clades with strong support. The second significant departure from the

results of Chapter 2 concerns North American clade A with respect to clade C, and

especially South American clade C-II. This situation, graphically summarized in Fig. 3.3,

is difficult to interpret. Without exact chromosome counts and more detailed sampling,

identifying the competing processes giving rise to such a complicated pattern of

relationships is challenging.
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The phylogenetic trees generated using ITS and chloroplast sequence data

suggested numerous cases of hybridization between North American clades B and C-I

presumably arising from recent secondary contact following speciation. This

hybridization was inferred from the occurrence of additive ITS sequences which upon

cloning revealed parental types from both clades. In addition to confirming the mixed

parentage of several of these putative hybrids, cloning of TOR sequences uncovered

additional instances of presumed past hybridization between clades B and C-I and other

lineages. Given the extent of reticulation uncovered, it is little wonder that species

boundaries are so difficult to define in Descurainia.

A major aim of incorporating TOR sequence data into the study was to further

resolve relationships between North and South American clades. Because the TOR data

could not be combined with ITS and chloroplast data sets due to incongruence, it is not

possible to make many additional inferences regarding dispersal patterns between North

and South America. As with ITS and chloroplast data, however, sequence diversity

within North American taxa is greater than in South America. This is consistent with the

earlier suggestion that New World Descurainia was first introduced into North rather

than South America.

Hybridization and dispersal in South American Descurainia. – Molecular data

from Chapter 2 uncovered three to four South American lineages that correlate well with

morphology and geography, and also indicated that D. antarctica arose from a separate

and presumably recent dispersal from North America. TOR sequence data do not

necessarily contradict these observations, but there are several interesting features that

bear addressing.
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One accession of Descurainia cumingiana (var. tenuissima) was included in the

TOR data set. Direct sequencing of this sample generated a polymorphic, overlapping

trace. When PCR products were cloned, two sequence types were recovered. One was

resolved with respect to all other New World taxa, and this result is not incongruent with

previous data which placed D. cumingiana as a distinct lineage within clade C. The

second D. cumingiana TOR clone, however, is included with strong support within the

North American B clade – a placement not observed in either ITS or chloroplast trees.

This might indicate that the species D. cumingiana arose from a clade B x C ancestor

whose clade B paternal line was subsequently lost from ITS regions as a result of

concerted evolution. If so, the hybrid ancestor was probably not polyploid – there have

been two chromosome counts for D. cumingiana and both are diploid (2n = 14) (Jaretzky

1932; Manton 1932). There is an alternative explanation for these results. In Argentina,

from where the sampled D. cumingiana accession was collected, D. cumingiana var.

tenuissima and D. antarctica sometimes co-occur, and specimens have been cited that are

believed to be hybrids (Romanczuk, 1984a). Many Argentinean exemplars, including the

sequenced accession, do indeed bear a stronger resemblance to D. antarctica compared to

Chilean material. If D. cumingiana in Argentina has at some point undergone

hybridization with D. antarctica, the clade B type uncovered in the TOR analysis of the

D. cumingiana accession could reflect the clade B maternal ancestor of introgressed D.

antarctica.

Molecular data in Chapter 2 reveal that Descurainia antarctica is a probable

recent hybrid of an undetermined South American clade C-II member and a maternal

parent from North American clade B. This was inferred from the presence of ITS

sequences that were additive for clades C-II and B and placement of D. antarctica in

clade B in the chloroplast phylogeny. It is thus surprising that no evidence of clade B
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ancestry was detected for the D. antarctica accession included in the TOR data set, with

the only two types recovered corresponding to different C-II sequence groups. Without

more extensive amplification and cloning, it cannot be ascertained if the clade B TOR

type has been eliminated from D. antarctica. This is quite possible; rapid loss of low-

copy DNA sequences following hybridization or polyploidization has been documented,

for example, in wheat (Feldman & al., 1997; Ozkan & al., 2001; Shaked & al., 2001) and

Brassica (Song & al., 1995). The D. antarctica clade B TOR copy could also have been

eliminated due to backcrossing with C-II parents, for example as seen in homoploid

hybridization between allotetraploids in Paeonia (Ferguson & Sang, 2001).

ITS and chloroplast sequence data indicate that the South American spreading-

fruit lineage C-II is monophyletic and possesses a low level of sequence variation. In

contrast, the TOR data reveal two incongruent, monophyletic clades, each comprising

one of the two sets of distinct types generated for each C-II accession cloned and

sequenced (Fig. 3.2). Possible explanations for these patterns include retention of

ancestral polymorphisms, polyploidization, or a recent gene duplication event prior to

diversification of the C-II lineage with subsequent lineage sorting. Of these,

polyploidization is the most likely explanation for the following reason. Although no

polymorphic ITS sequences were observed for any clade C-II accessions, mixed types

were, like TOR, observed for these taxa with another low-copy nuclear marker. While

screening potential nuclear markers, sequences of the pistillata intron (Bailey & Doyle,

1999) were generated for 17 representative accessions (including D. sophia, Canary

Islands, and New World clades A, B, C-I, C-II, C-III, and C-IV). Direct sequencing of 12

of these accessions, as in the TOR study (except for D. sophia), resulted in non-

polymorphic sequences whose phylogenetic placement (not shown) was identical to their

positions in the TOR phylogeny. Direct sequencing of the remaining five accessions,
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consisting of three C-II samples (D. argentina B96, D. heterotricha B124, and D.

pimpinellifolia D11), D. pinnata D19, and D. pinnata ssp. menziesii B35, generated

polymorphic, overlapping traces as in the TOR study. These pistillata products were not

cloned and it is therefore difficult to determine the exact composition of the constituent

types, but there are at least two distinct types in each case. Because the C-II accessions

were polymorphic for both TOR and pistillata, which are located on different

chromosomes (1 and 5, respectively, in Arabidopsis thaliana), a genome-wide event,

such as polyploidization, is a more compelling explanation for the observed pattern than

either gene duplication or noncoalescence of ancestral alleles. Furthermore, although it

by no means excludes the possibility of gene duplication, and would need to be

confirmed for Descurainia by techniques such as Southern blot hybridization (Small &

Wendell, 2000), the TOR gene is highly conserved and single-copy in a wide variety of

organisms (except for two copies in yeast) (Menand & al., 2002).

If the TOR gene was therefore not independently duplicated in the most recent

common ancestor of these taxa (or duplicated less recently with one copy then selectively

lost in other descendants), this result could reflect genome duplication due to

allopolyploidization in a C-II common ancestor. Such an event could have taken place

prior to dispersal from North America, and, based on molecular data, most likely

involved Mexican D. impatiens or a close relative as one of the participants. (See

Mummenhoff & Franzke [in press] for discussion and examples of allopolyploidization

preceding intercontinental dispersal). Unfortunately, because no chromosome counts

have been reported for any C-II species, cytology cannot be used to support or reject this

hypothesis. Furthermore, a broader sampling of populations in the southwestern United

States and especially Mexico is required to identify more precisely the closest North

American relative(s) of the C-II taxa.
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While gene flow seems to be occurring within South American clade C-II

(spreading-fruit) and within South American clades C-III and C-IV (appressed-fruit),

neither ITS, chloroplast, nor TOR sequence data have uncovered any evidence of

hybridization between clade C-II and the two appressed-fruit clades. From the standpoint

of geography, this is not unexpected, because the two morphological groups occupy

different habitats and their ranges do not extensively overlap. Given the weedy nature of

many of these taxa and the wide-ranging extensive hybridization within their North

American congeners, however, it may be that some other reproductive barrier, yet to be

discovered, is in fact responsible for the genetic isolation between these clades.

Phylogenetic utility of the TOR region. – Although the sequenced TOR regions

were not able to resolve most deep nodes joining New World lineages, they were able to

corroborate some information obtained from the ITS and chloroplast study as well as

provide some additional insights. The number of parsimony informative characters and

resolved nodes was nearly comparable to ITS and combined chloroplast data (Table 3.2).

For Descurainia, the degree of resolution provided by these TOR regions also appears to

be similar to that obtainable from the first intron of pistillata, a low-copy nuclear region

successfully employed in several other Brassicaceae studies (Bailey & Doyle, 1999;

Bailey & al., 2002; Lee & al., 2002). Unlike some other low-copy nuclear markers which

have been used in recent phylogenetic studies, the TOR gene has been found to be single-

copy in a wide variety of organisms. In Arabidopsis thaliana, it is 17370 bp long,

including 56 exons. About half of this gene consists of introns, with many ranging in size

between 300 – 750 bp. The results of this study, as well as the features of the TOR gene,

suggest that it might have good applicability as an independent nuclear marker for

members of the Brassicaceae and related families.
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North American taxonomic implications based on ITS, chloroplast, and TOR

phylogenies. – Although TOR sequence data shed little additional light on New World

biogeography, these data, when considered along with that obtained from ITS and

chloroplast data, permit some observations regarding how North American species are

currently delimited. This discussion is limited to North America rather than all New

World species for two reasons: 1) taxon sampling was much more extensive in North

America than in South America, and 2) the results of these phylogenetic analyses and this

discussion will inform a treatment of Descurainia being prepared with Ihsan Al-Shehbaz

for an upcoming volume of Flora of North America. Summaries of the phylogenetic

position of all North American accessions with respect to major clades in the three data

sets are shown in Fig. 3.4 and Table 3.3.

Given the limits imposed by taxon sampling, the findings of this study regarding

North American Descurainia are preliminary, but point to some general trends subject to

confirmation by additional research. As recognized by Rollins (1993a), there are 13

native and one introduced North American species of Descurainia. Multiple populations

of eleven of these species were sampled, and several major lineages were consistently

identified across different data partitions. With the exception of D. pinnata, most existing

North American species concepts appear to be broadly accurate. Based on the molecular

data and/or examination of herbarium specimens, there are perhaps ten native species: D.

californica, D. impatiens, D. incana (including D. incisa and D. obtusa ssp. brevisiliqua),

D. longipedicellata (= D. incisa ssp. filipes), D. obtusa, D. paradisa, D. pinnata, D.

sophioides, D. streptocarpa, and D. virletii. Molecular dating in the previous chapter

demonstrated that the genus Descurainia is of recent origin. As a consequence, on-going

diversification and widespread gene flow (due to easy dispersability and presumed

absence of reproductive barriers), as well as hybrid formation when diverged species
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come into secondary contact, are responsible for blurred species boundaries. Taxonomic

assignments for some herbarium and field specimens may be difficult in the absence of

sequence data from those specific populations.

D. californica. On account of its short fusiform siliques tipped with a prominent

style, profusely branched racemes subtended by leafy bracts, and bright yellow flowers,

D. californica is one of the most easily identifiable species in the genus. As noted by

several authors, this biennial species bears a morphological resemblance to taxa such as

D. impatiens, D. streptocarpa, and D. incisa (Detling, 1939), especially D. incisa ssp.

incisa (Welsh & Reveal, 1977; Welsh & al., 1993). Not surprisingly, the two accessions

of D. californica included in this study are associated in the ITS and TOR phylogenies

with D. incisa and related taxa (e.g., D. incana, D. streptocarpa) (clade A). Although

well-supported as sister to each other in the ITS tree (Fig. 2.5), they are not, however,

sister in the TOR phylogeny (Fig. 3.2). If ITS sequences of two D. californica samples

reported by Warwick & al., 2004b (GenBank accessions AY230616 and AY230617) are

incorporated into the data set, the new sequences are also placed in clade A. They do not,

however, form a monophyletic group with the D. californica accessions of the present

study, weakly clustering instead with D. streptocarpa (BV = 63%, tree not shown). In

contrast to the nuclear data, the two D. californica accessions in this study are placed in

the chloroplast tree in clade C, where they are not monophyletic, but both associated with

taxa such as D. obtusa and D. sophioides, among others (Fig. 2.7). There has been one

chromosome count reported in the literature – a specimen from Nye Co., Nevada

(Beatley & al. 11484 GH!), was found to be diploid (2n = 14) (Rollins & Rüdenberg,

1977). Despite the diploid chromosome count and distinctive morphology, it seems likely

that gene flow and/or lineage sorting is on-going in D. californica.
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D. hartwegiana. This species, which was not sampled nor seen, is known only

from the type collection (Hartweg 38), comprising two specimens from two different

locations in central Mexico. It closely resembles Andean appressed-fruit species such as

D. stricta or D. leptoclada, and Rollins (1993a) suggests that it in fact represents

mislabeled material from one of Hartweg’s South American collecting trips. In the

absence of other Mexican material or clear evidence that Hartweg indeed collected the

specimens from Mexico, it is debatable whether D. hartwegiana should be included as

part of the North American flora.

D. impatiens. Descurainia impatiens is a diploid species (2n = 14) (Beaman & al.,

1962) distributed in the high mountains of southern Mexico. Plants of this species are tall

annuals, with linear fruit and pinnate leaves that are usually sharply incised or toothed. In

overall aspect it resembles species such as D. incisa and D. sophioides more than, for

example, D. pinnata. Both accessions of D. impatiens included in this study are strongly

supported as sister in the ITS and chloroplast phylogenies, where they occupy an

unresolved position in clade C (Fig. 2.5), or are placed with most D. incisa samples in

clade A (Fig. 2.7), respectively. The single accession of D. impatiens sequenced for the

TOR study indicates a sister relationship with South American clade C-IIa but also

suggests that D. impatiens is closely related to D. obtusa (ssp. obtusa and adenophora)

(Fig. 3.2).

D. incana and D. incisa. There have been several different ideas, most

prominently those of Detling (1939) and Rollins (1993a), put forth regarding the

classification of these taxa. Detling recognized a single species, D. richardsonii,

comprising four subspecies: ssp. typica (= ssp. richardsonii), ssp. procera, ssp. incisa,

and ssp. viscosa. All four subspecies occupy mainly cool, mountainous habitats primarily

in the western United States. They are biennials with stems generally branched above,
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and possess pinnate to pinnate-pinnatifid leaves, linear siliques, and a uniseriate seed

arrangement. In two subspecies, ssp. richardsonii and ssp. procera, the pedicels and

siliques are closely appressed to the axis of the raceme, with these two subspecies further

delineated by degree of pubescence and silique length. The other two subspecies, ssp.

incisa and ssp. viscosa, are marked by spreading or ascending pedicels and siliques.

Plants of ssp. viscosa are glandular, whereas those of ssp. incisa are eglandular. As noted

by Dorn (1988) and Kartesz & Gandhi (1991), the name Descurainia incana has priority

over D. richardsonii, and recent authors who follow Detling’s classification scheme have

employed nomenclature updated accordingly. In contrast, as in the classification scheme

of Schulz (1924), Rollins (1993a) segregated ssp. richardsonii and ssp. procera, along

with another minor variety (var. alpestris [Cockerell] O. E. Schulz), from ssp. incisa and

viscosa, merging the former three subspecies into an undifferentiated D. incana. The

remaining subspecies (ssp. incisa and ssp. viscosa) were considered to belong to D.

incisa, to which Rollins added as additional subspecies Detling’s D. pinnata ssp. filipes

and D. pinnata ssp. paysonii (cf. Table 1.1).

Molecular data for ssp. paysonii, at least for the two accessions included in this

study, agree with its placement in a close relationship with D. incisa and D. incana.

Subspecies filipes, on the other hand, is shown to be part of an entirely different lineage

and hence belonging to neither D. incisa nor D. pinnata (see later discussion). While

twelve accessions identifiable as D. incana or D. incisa (excluding ssp. filipes) were

included in the molecular study, the resulting phylogenies are not able to confirm the

circumscriptions of these taxa. They mostly group together in clade A, but intra-clade

relationships differ between trees, some accessions appear to have experienced

introgression of chloroplast DNA from other lineages, and morphologically similar taxa,

such as D. californica, D. impatiens, D. obtusa ssp. brevisiliqua, and D. streptocarpa, are
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sometimes intermixed or sister to D. incisa or D. incana to one extent or another. This is

clearly a complicated and difficult group. A much broader molecular study is needed to

better understand this D. incana – D. incisa complex.

D. obtusa. Descurainia obtusa is a coarse, strict, canescent biennial restricted to

the mountains and high plateaus of the arid southwestern United States and Northern

Mexico. Two to three subspecies have been recognized. Descurainia obtusa ssp. obtusa

and D. obtusa ssp. adenophora possess narrow, linear siliques, ranging up to 15 – 20 mm

long, and leaves with obtuse tips. They differ in several relatively minor characteristics,

including glandulosity, silique pubescence, seed arrangement, and flower size.

Descurainia obtusa ssp. obtusa is generally confined to the mountain and plateau regions

of New Mexico and Arizona, whereas ssp. adenophora has a more southern and western

desert distribution, ranging from northwestern Chihuahua and western New Mexico to

the mountains of southern California and Baja California. Chromosome number reports

(Baldwin & Campbell, 1940) indicate that ssp. obtusa is diploid (2n = 14) (based on

Detling 2381 OSC!) while ssp. adenophora is hexaploid (2n = 42) (Baldwin & Campbell,

1940). A third subspecies, D. obtusa ssp. brevisiliqua, was described by Detling (1939).

Found in Juniperus forests of northern New Mexico and Arizona, it differs considerably

from the other two subspecies, with which it does not co-occur. Descurainia obtusa ssp.

brevisiliqua is characterized by short glabrous siliques reminiscent of those in southern

species of D. pinnata, a tall strict growth habit with numerous short branches in the upper

part of the plant, mostly linear leaf segments, and stems that are usually but not always

purple. Detling encountered specimens in Arizona which he felt were morphologically

intermediate between ssp. brevisiliqua and ssp. obtusa, which was apparently the basis

for his placement of ssp. brevisiliqua as part of D. obtusa. Rollins (1993a) did not

recognize ssp. brevisiliqua as a distinct subspecies, but included it as part of ssp. obtusa.
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Chromosome counts for two D. obtusa ssp. brevisiliqua exemplars (Detling 2380 OSC!

and Detling 2375 OSC) were both hexaploid (2n = 42) (Manton, 1932).

Four accessions of D. obtusa ssp. obtusa were included in the present study. They

are strongly supported as monophyletic in the combined ITS-chloroplast phylogeny. The

phylogenetic position of the single accession of D. obtusa ssp. obtusa sampled for the

TOR phylogeny is identical to its location in the ITS-chloroplast tree. All evidence

supports D. obtusa ssp. obtusa as a well-marked and distinct taxon. Although obviously

closely related, polyploidy and conflicting phylogenetic placements for accessions of D.

obtusa ssp. adenophora suggest that morphological differences from ssp. obtusa could be

due to hybridization with other taxa.

In contrast to the first two subspecies, molecular data indicate that D. obtusa ssp.

brevisiliqua does not belong in D. obtusa. Three exemplars of D. obtusa ssp. brevisiliqua

which closely match Detling’s type specimens were sampled, as well as several other

similar accessions which differ from the original description in some respects (e.g.,

presence of glands). None of these accessions share a close relationship with D. obtusa,

but instead are strongly supported as part of the clade A D. incana – D. incisa complex in

both the ITS (Fig. 2.5) and chloroplast (Fig. 2.7) trees. When the TOR regions of an

accession of D. obtusa ssp. brevisiliqua (D60) were sequenced, polymorphic, overlapping

sequence traces were generated. Cloning of this region for the D. obtusa ssp. brevisiliqua

sample was unfortunately unsuccessful. Careful examination of the mixed sequence

traces, however, did not detect evidence of a contribution from D. obtusa, but instead that

they comprised different types apparently corresponding to those uncovered for

undetermined specimens morphologically similar to ssp. brevisiliqua, e.g., D4. The

evidence suggests that D. obtusa ssp. brevisiliqua is an allopolyploid derived from
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hybridization within the D. incisa group and that specimens matching its description

should thus be classified under D. incisa.

D. paradisa. Descurainia paradisa is quite well-marked, characterized by a low,

bushy habit and unmistakable short, rounded, few-seeded siliques. This annual species

ranges throughout most of Nevada as well as portions of southeastern Oregon and eastern

central California. Detling (1939) classified it as a subspecies of D. pinnata, but most

other botanists have considered it to be a distinct species. Rollins (1993a) separated D.

paradisa into two subspecies, naming a new subspecies – ssp. nevadensis – which is

distinguished from ssp. paradisa by its eglandular nature and prominent styles. Molecular

data support D. paradisa as a good species: both accessions of D. paradisa ssp. paradisa

included in this study are in a strongly-supported sister group relationship which is part of

lineage B and distinct from D. pinnata. Taxonomic recognition of ssp. nevadensis,

however, may not be justified. Examination of a number of such specimens, including

several of Rollins’ paratypes, calls his subspecies concept into question. Many of the so-

designated specimens resemble D. pinnata ssp. nelsonii to some degree or another, and

some were actually previously annotated as that taxon. Others, especially from southern

Nevada, seem to represent D. paradisa intergrading with D. pinnata ssp. glabra, an

observation which was also made by Detling (1939). The possibility of intergradation of

D. paradisa with other taxa to yield the entity considered as ssp. nevadensis is supported

by the molecular data. Three accessions of D. paradisa ssp. nevadensis (one of which

[C47] I consider actually closer to D. pinnata ssp. nelsonii) were sequenced. In all three

cases, the molecular data suggest that genetic material from either clade A, in the case of

C47, or clade C, for C8 and C48, has been introduced into these populations.

D. pinnata. Descurainia pinnata exhibits the widest distribution of the genus in

North America. As currently circumscribed, members of this species are annuals
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possessing (usually) bipinnate lower leaves and siliques which are clavate, subclavate, or

rarely broadly linear. The species is highly polymorphic, with approximately 7 – 10

extensively overlapping and intergrading subspecies, many of which are marked by the

presence of polyploidy (i.e., 2n = 28, 42). On the basis of morphology and geography,

Detling (1939) proposed the existence of two distinct complexes within the species. The

first complex consisted of subspecies occupying hot, arid regions of the southwest

(including northern Mexico), with one subspecies (ssp. pinnata) ranging eastward along

the southern Gulf Coastal Plain to the south Atlantic states. As noted by Detling,

compared to the second complex, these subspecies tend to be more canescent and

bushier, with the pedicels and siliques more widely-spreading and the flowers smaller

and/or paler. The subspecies included within this southern complex were ssp. glabra,

halictorum, menziesii, ochroleuca, paradisa, and pinnata, with ssp. halictorum exhibiting

the widest distribution and greatest range of morphological variation. The second D.

pinnata complex, encompassing ssp. brachycarpa, filipes, intermedia, nelsonii, and

paysonii, was centered around the northern Rocky Mountains, Pacific Northwest, and

adjacent Nevada and Utah, with ssp. brachycarpa extending into the northern and central

plains of the United States and Canada and sporadically to New England. In contrast to

the southern complex, these subspecies are taller and stricter, subglabrous or moderately

pubescent, with more erect pedicels and siliques and generally larger and more brightly

yellow flowers. Detling pointed out that there was extensive intergradation both within

and between the two complexes where the various subspecies come into contact.

Thirty-six accessions of D. pinnata, representing all subspecies recognized by

Detling or Rollins, were sequenced for most or all of the markers in this study. Molecular

results from Chapter 2 broadly confirmed the observations of Detling regarding two

distinct lineages (clades B and C) within taxa circumscribed as D. pinnata. Because the
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complexes were not sister lineages, however, D. pinnata would be polyphyletic. More

specifically, while there were many hybrids, accessions of D. pinnata ssp. pinnata, ssp.

ochroleuca, and in part ssp. glabra and halictorum, were placed in clade C, whereas D.

pinnata ssp. menziesii was placed together with D. paradisa (Detling’s D. pinnata ssp.

paradisa) and D. incisa / pinnata ssp. filipes in clade B. When TOR sequences were

obtained for 21 of the 36 D. pinnata samples, many of the same clade placements were

confirmed. For others, however, such as three D. pinnata ssp. menziesii accessions,

previously undetected evidence of past hybridization between clades B and C was

uncovered. The picture that is thus beginning to emerge is that D. pinnata is too broadly

defined. Based on the molecular data, D. pinnata strictly speaking (D. pinnata s. s.) might

comprise a complex consisting of D. pinnata ssp. pinnata and in part ssp. ochroleuca,

glabra, and halictorum. This group corresponds to those accessions found in lineage C-I

in the molecular phylogenies. As indicated in Chapter 2, sampled members of this

complex share a similar morphology, including pinnatifid or bipinnate lower leaves,

purplish or rose-tipped sepals, distinctly elongated racemes, wide-spreading fruiting

pedicels, clavate siliques, a biseriate seed arrangement, and a spring flowering time. Two

other taxa are associated with this group, and further research might either support their

inclusion in D. pinnata s. s. or maintenance and/or elevation as separate species. One is

the Mexican endemic D. virletii, which is morphologically similar but distinguishable

from D. pinnata s. s. The second related taxon is D. pinnata ssp. brachycarpa, which has

a more northern and western distribution. Morphologically, it is distinct enough to have

been considered as a separate species by earlier botanists (e.g., Richardson, 1823;

Kuntze, 1891; Britton, 1901; Schulz, 1924). ITS data is available for four accessions of

D. pinnata ssp. brachycarpa (two from this study and two from GenBank generated by

Warwick & al., 2004b), but chloroplast data was only obtained for one of them and TOR
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for none. The accession for which both ITS and chloroplast data was generated, F11 from

Minnesota, has a clade B maternal ancestor. One cloned ITS type for F11 is also placed

in clade B. ITS data for the other cloned type of this sample, as well as ITS sequences for

the other three brachycarpa accessions (from Kentucky, Manitoba [AY230622], and

Ontario [AY230621]), place them in clade C-I with D. pinnata s. s. and D. virletii. (The

tree incorporating the GenBank sequences is not illustrated). No evidence of ITS

additivity was observed for these latter three sequences (pers. obs.; C. Sauder, pers.

comm.). While the Kentucky accession is unresolved within clade C-I, the other two

accessions, one cloned type of the Minnesota sample, and one cloned type of a D. incisa

ssp. filipes sample from Utah form a monophyletic group in C-I (Fig. 2.5). Two

chromosome counts have been reported for brachycarpa; one from Ohio is diploid (2n =

14) and one from Alberta (western Canada) is tetraploid (2n = 28) (Mulligan, 1961;

Easterly, 1963). Detling notes that brachycarpa intergrades in the northern Rocky

Mountains with D. pinnata ssp. intermedia. On the basis of the current molecular,

cytological, and morphological evidence, it thus appears that brachycarpa represents

either a distinct species closely related to D. pinnata, or a well-defined subspecies of that

taxon, which hybridizes in the western parts of its range with a species complex centered

around D. incisa / pinnata ssp. filipes (= D. longipedicellata) (see below).

Three subspecies included in D. pinnata by Detling and some other authors

clearly represent different taxa. Descurainia pinnata ssp. paradisa is correctly considered

a distinct species, D. paradisa. Descurainia pinnata ssp. paysonii is, as surmised by

Rollins (1993a), more closely related to D. incisa. Descurainia pinnata ssp. filipes is

neither a subspecies of D. pinnata nor of D. incisa. This latter subspecies (ssp. filipes)

was in fact considered by Schulz (1924), among others, to be a distinct species, D.

longipedicellata. The morphology of this taxon, and that of ssp. intermedia, nelsonii, and
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D. paradisa, differs from D. pinnata s. s. in many respects. For example, leaves of these

taxa tend to be less highly divided and less rounded, especially in the upper portion of the

plant where they are noticeably more linear. Siliques are not clavate, but are broadly or

narrowly linear, or, in the case of D. paradisa, fusiform. There appear to be other subtle

differences as well, such as yellow calyx color, in addition to the more erect pedicels, less

canescent nature of the plants, and other characteristics of the northern D. pinnata

complex which were noted by Detling.

Accessions of the remaining named subspecies of D. pinnata – intermedia,

menziesii, and nelsonii – as well as some accessions identified as ssp. glabra and

halictorum, largely appear to be hybrids between clades C-I and B. The molecular data

do not provide sufficient resolution to precisely identify parental species. In the case of

intermedia and nelsonii, as noted in the previous paragraph, morphology suggests that

they are possibly most closely related to ssp. filipes (= D. longipedicellata). It is possible

that the morphology of intermedia and nelsonii might represent variation within a filipes-

like species complex which is undergoing diversification. Alternatively, these forms

could have arisen largely as the result of hybridization events between distantly related

but geographically overlapping taxa. The reported tetraploid (2n = 28) (Baldwin &

Campbell, 1940) chromosome count for ssp. intermedia would be consistent with the

latter scenario. Because DNA from a limited number of populations was utilized, more

extensive sampling is clearly needed to work out the evolutionary history of this group.

ITS and chloroplast data do not distinguish D. pinnata ssp. menziesii from the rest

of clade B, but morphologically and geographically, it appears to be more closely aligned

with D. pinnata s. s. of clade C. Restricted almost entirely to southern California, it

shares the bipinnate leaves, wide-spreading clavate siliques and biseriate seed

arrangement found in these southern subspecies of D. pinnata. When the ITS and non-
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coding chloroplast regions of four accessions of D. pinnata ssp. menziesii were

sequenced, it was therefore rather surprising that three of them were placed in clade B in

both trees. The fourth accession, from northern Baja California, had ITS types of both B

and C-I, and a clade B chloroplast haplotype. When TOR introns were sequenced for

three of these accessions, the explanation for morphological similarity to clade C was

apparent: upon cloning, all three accessions possessed types corresponding to both clade

B and clade C-I. Given the reported tetraploid (2n = 28) (Manton, 1932) chromosome

count and the rather different morphology compared to most other clade B members, it

appears that an independent allopolyploidization event has occurred giving rise of some

or all populations of D. pinnata ssp. menziesii. Pending further sampling, it is unclear

how this taxon should be classified.

D. ramosissima. This annual species was described by Rollins (1984) based on

plants growing intermixed with D. pinnata ssp. halictorum in Saguache Co., Colorado. It

possesses a distinctive growth habit, with numerous branches arising from the base

giving the plant a very bushy appearance. Descurainia ramosissima was not sampled in

this study, but probably is part of the D. incisa – D. incana (clade A) complex discussed

previously. It is mentioned here, even though not included in the molecular study, so that

this discussion of species concepts will be comprehensive for North America.

D. sophia. Descurainia sophia is not native to the New World, but is widely-

distributed throughout North America where it has become established as an important

agricultural weed (Best, 1977). During the course of this project, it was frequently

encountered in disturbed areas along road margins and cultivated fields. Hultén (1968)

reports hybrids of D. sophia x D. sophioides occurring around Alaskan villages and

elsewhere, but the characteristic highlighted – both glandular and stellate trichomes – is

considered part of the normal range of variation within D. sophioides by other authors
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(e.g., Schulz, 1924; Detling, 1939; Rollins, 1993a). (D. sophia is stellate and eglandular,

whereas these characters vary in D. sophioides). Best (1977) states that no hybrids

between D. sophia and other congeners are known in Canada, and no other authors report

hybrids. Molecular data from this study indicate that D. sophia is not closely related to

North American species, and no evidence of gene flow was detected between D. sophia

and any New World taxa. It appears that the species have diverged to such an extent that

hybridization is unlikely.

D. sophioides. Two accessions of D. sophioides were included in this study.

Although their placement differs between phylogenies derived from ITS and chloroplast

data sets, they are sister to each other in both trees (Figs. 2.5 and 2.7). Only one accession

was sequenced for the TOR portion of the study; no polymorphic loci were observed and

in that tree (Fig. 3.2), its position is unresolved within the New World species. Compared

to many New World Descurainia, D. sophioides is morphologically fairly uniform, and

this diploid (2n = 14), typically annual, species is readily identified from its subumbellate

inflorescence which is overtopped by the developing siliques. There is very little range

overlap between arctic D. sophioides and other North American species, although it may

come in contact in the southern part of its Canadian range with D. incana and D. pinnata

ssp. brachycarpa. Its relatively isolated geographical distribution probably accounts for

the lack of taxonomic complexity in this species compared to many of its congeners.

D. streptocarpa. Descurainia streptocarpa is the southernmost ranging species of

the genus in North America, distributed in the high mountain regions of central and

southern Mexico and Guatemala. This annual species differs mainly from D. impatiens of

southern Mexico by virtue of its wide-spreading, often slightly deflexed pedicels and

narrow siliques less than 1 mm wide. In contrast, in D. impatiens the siliques are

generally broader and the pedicels are ascending, but this latter character is somewhat



141

dependent on plant maturity. Rzedowski and Rzedowski (2001) include D. streptocarpa

within a very variable D. impatiens, but in the present study they do not form a

monophyletic group. One D. streptocarpa accession, B33 collected in Veracruz, is placed

in varying positions within the clade A D. incana – D. incisa complex in ITS and

chloroplast phylogenies (Figs. 2.5 and 2.7). Another accession (C44 from central

Chihuahua) may also represent D. streptocarpa, but the determination is difficult because

it also resembles out-of-range D. incisa ssp. viscosa. A complex ancestry is indicated by

conflicting lineages in the ITS (unresolved in clade C) and chloroplast (clade A) trees.

This accession is not included in the TOR data set because only the TOR-II portion (i.e.,

exons 25 – 27) was successfully amplified and sequenced, but that sequence portion

groups C44 most closely with D. impatiens. Descurainia streptocarpa is reportedly

tetraploid (2n = 24) (Rollins, 1993a).

D. torulosa. Descurainia torulosa, as first characterized by Rollins (1983), is

distinguished by a short, low branching habit, extremely short pedicels, and closely-

appressed but flaring torulose siliques. The taxon is of conservation interest, being

restricted to a few populations in western Wyoming (Bricker & al., 2000). In a

morphological analysis of all known specimens, however, Bricker & al. (2000) found a

wide range of variation and failed to identify any characters that clearly separate D.

torulosa from D. incana. They also conducted a brief ITS molecular survey and found D.

torulosa to be weakly monophyletic (BV = 52%), but their analysis was inadequate from

a geographic and taxonomic sampling standpoint, consisting of four D. torulosa

accessions along with two D. sophia, three D. incana, and three D. pinnata specimens all

collected from the vicinity of Laramie, Wyoming. DNA from D. torulosa was not

sampled in the present study, but the four D. torulosa ITS sequences generated by

Bricker & al. (2000) were retrieved from GenBank. When incorporated into the ITS data



142

set and analyzed, they are clearly placed in clade A (not illustrated) but not as a

monophyletic group. Owing to several ambiguous nucleotide positions and some obvious

polymorphisms between sequences, the exact placement of any given D. torulosa

sequence, and its effect on the topology of clade A, is influenced by which other D.

torulosa accessions are included. Without examining the original sequence traces, it is

impossible to determine whether the individual sequences were polymorphic, but the

published sequences seem to suggest this might be the case. Regardless of the taxonomic

validity of D. torulosa, the data clearly support inclusion of these accessions within the

complicated and confusing D. incana – D. incisa species complex which remains to be

satisfactorily interpreted.

D. virletii. ITS and chloroplast regions were sequenced for two accessions of this

Mexican endemic. They are strongly supported as sister in the combined ITS-chloroplast

tree when incongruent taxa are removed. Based on this limited sampling, D. virletii is

closely related to southern species of D. pinnata, from which it is chiefly distinguished by

shorter pedicels which on the lower portions of the racemes are subtended by bracts. Like

them, this tetraploid species (2n = 28) (Rollins & Rüdenberg, 1977) is annual in habit.

Additional sampling might in fact indicate that D. virletii should be considered a

subspecies of D. pinnata s. s.

CONCLUSIONS

TOR sequence data strongly support New World Descurainia as a monophyletic

lineage which is most closely related to Hugueninia and sister to Canary Island taxa.

Although most major New World clades identified by ITS and chloroplast data are

present in the TOR phylogeny, their position with respect to one another is largely

unresolved. Extensive incongruence between ITS, chloroplast, and TOR phylogenies, as
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well as the presence of mixed ITS and TOR sequences, suggests a complex evolutionary

history for Descurainia. As a recently-diverged genus, processes such as hybridization

and lineage sorting complicate efforts to develop an accurate taxonomy for the group.

The results reported in this chapter, combined with those in Chapter 2, have

established a phylogenetic framework for future research, which will be critical as almost

every aspect of this genus warrants further investigation. To confirm and extend the

results of this study, chromosome counts need to be obtained, more thorough sampling at

the population level must take place, and the addition of sequences from other single-

copy nuclear regions or data from DNA fingerprinting techniques such as ISSRs should

be considered. Informed by present and future molecular data, a thorough and statistically

rigorous morphological study and revision will also be required for the development of

an accurate taxonomy for Descurainia. Further molecular and morphological work may

lead to establishment of Descurainia as a model generic system, like Boechera, Brassica,

and Cardamine (Bailey & al., 2006), for studying phenomena such as speciation and

hybridization in recently-evolved groups in the Brassicaceae and other plant families.
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Table 3.1. Plant material used to examine phylogenetic relationships within Descurainia
with TOR sequence data. Seed source for cultivated plants designated as
follows: [ETSIA] = Escuela Técnica Superior de Ingenieros Agrónomos de
Madrid crucifer seedbank, Universidad Politécnica de Madrid, Spain;
[B&T] = B&T World Seeds, Paguignan, France.

Taxon; Location, date, collector and DNA voucher (herbarium)

Arabidopsis thaliana (L.) Heynh.: GenBank; NC_000932;

Descurainia antarctica (Fourn.) O. E. Schulz: var. patagonica (Speg.) O. E.
Schulz – E2: Cultivated, seed collected by B. Goodson, 7 January 2005, roadside,
RN 3, between Florentino Ameghino and Uzcudun, Dept. Florentino Ameghino,
Prov. Chubut, Argentina (TEX);

D. appendiculata (Griseb.) O. E. Schulz: B126: Cultivated, seed collected by B.
Goodson, 27 Dec 2001, on side of gravel road ca. 1.4 km E of Universidad Católica
de Salta, Dept. Capital, Prov. Salta, Argentina (TEX);

D. argentina O. E. Schulz: B96: Cultivated, seed [ETSIA 239-5908-81] collected
from roadside, Uspallata, Dept. Las Heras, Prov. Mendoza, Argentina (TEX);

D. athrocarpa (A. Gray) O. E. Schulz: C27: Bolivia: slope above road to Valle del
Zongo (S 16º16'51" W 68º7'21"), Prov. Murillo, Dept. La Paz, 5 March 2004, B.
Goodson 1506 (TEX);

D. bourgaeana Webb ex O. E. Schulz: B14: Spain: El Portillo, Cañadas del Teide,
Tenerife, Canary Islands, A. Santos s. n. (ORT);

D. californica (A. Gray) O. E. Schulz: C9: USA: East Creek campground,
Humboldt National Forest (N 39º29'43" W 114º39'13"), White Pine Co., NV, 22 May
2003, B. Goodson 1493 (TEX); D12: USA: Cedar Creek Campground, Dixie
National Forest (N 37º35'28" W 112º53'53"), Iron Co., UT, 19 August 2001, B.
Goodson 1466 (TEX);

D. cumingiana (Fisch. & C. A. Mey): var. tenuissima (Phil.) Reiche – D43:
Argentina: 60 km de Jacobacci subiendo a la meseta, Dept. 25 de Mayo, Prov. Rio
Negro, 8 November 1966, Abadie-Vallerini 1020 (BAA);
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Table 3.1. Continued.

D. depressa (Phil.) Reiche: C26: Bolivia: Patarani (S 17º14'54" W 67º59'59"), Prov.
Aroma, Dept. La Paz, 3 March 2004, B. Goodson 1505 (TEX); C37: Bolivia: fallow
field along road between Sajama to Patacamaya, ca. 3 km W of Puerto Japones
(17º22'02" W 68º13'27"), Prov. Pacajes, Dept. La Paz, S 15 March 2004, B. Goodson
1520 (TEX); D17: Bolivia: road from Tiwanaku to La Paz, ca. 5 miles E of
Tiwanaku (S 16º35'08" W 68º35'00"), Prov. Ingavi, Dept. La Paz, 11 March 2004, B.
Goodson 1510 (TEX):

D. heterotricha Speg.: B124: Cultivated, seed collected by B. Goodson, December
2001, weedy field in El Salto, Dept. Luján de Cuyo, Prov. Mendoza, Argentina
(TEX);

D. impatiens (Cham. & Schlecht.) O. E. Schulz: C40: Mexico: 3 km S of
Neverías, Mun. Miahuatlán, Oaxaca, 3 August 1996, G. B. Hinton et al. 26690
(TEX);

D. incisa (Engelm. ex A. Gray) Britton: ssp. filipes (A. Gray) Rollins – C21:
USA: Flaming Gorge Overlook, Hwy 44, Flaming Gorge NRA (N 40º54'28" W
109º41'54"), Daggett Co., UT, 29 June 2003, B. Goodson 1499 (TEX); C45: USA: 3
miles SE of North Battle Mountain on road to Stony Point, Lander Co., NV, 21 May
2002, A. Tiehm 12845 (TEX); ssp. incisa – C24: USA: McKenzie Gulch Trail, White
River National Forest, Eagle Co., Colorado, 2 July 2003, B. Goodson 1502 (TEX);
DQ418717; D6: USA: Snowbird Ski Resort, Salt Lake Co., UT, 4 August 2004, B.
Goodson 1528 (TEX); D25: USA: steep bank off state Hwy 75, 6.6 miles from
Stanley near the Salmon River, Custer Co., ID, 25 June 1986, R. C. & K. W. Rollins
86101 (TEX); D56: USA: near road to Lower Lagunitas Lakes campground, Rio
Arriba Co., NM, 2 August 1998, J. McGrath 157 (UNM);

D. kochii (Petri) O. E. Schulz: D3: Turkey: Eskihisar Köyü çevresi (N 40º51'11" E
33º26'21"), Kastamonu, June 2004, A. Dönmez 11793 (TEX);

D. lemsii Bramwell: B23: Spain: Cumbres de la Orotova, Tenerife, Canary Islands,
April 2001, A. Santos s. n. (ORT);

D. leptoclada Muschl.: C34: Bolivia: above village of Sajama (S 18º07'51" W
68º56'49"), Parque Nacional Sajama, Prov. Sajama, Dept. Oruro, 14 March 2004, B.
Goodson 1515 (TEX); C36: Bolivia: E side of Río Tomarapi, ca. 2 km E of Cosapa
(S 18º05'27" W 68º44'06"), Prov. Sajama, Dept. Oruro, 15 March 2004, B. Goodson
1516 (TEX);

D. millefolia (Jacq.) Webb & Berthel.: B24: Spain: Barranco del Rio, La Palma,
Canary Islands, April 2001, A. Santos s. n. (ORT);



146

Table 3.1. Continued.

D. myriophylla (Willdenow ex DC.) R. E. Fries: C29: Bolivia: Laguna Apaña,
Ovejuyo (S 16º32'52" W 68º00'48"), Prov. Murillo, Dept. La Paz, 7 March 2004, B.
Goodson 1508 (TEX); D9: Bolivia: La Paz Montículo (S 16º30'27" W 68º07'38"),
Prov. Murillo, Dept. La Paz, 7 March 2004, B. Goodson 1507 (TEX);

D. obtusa (E. L. Greene) O. E. Schulz: ssp. adenophora (Wooton & Standley) –
D61: USA: adjacent to FS 111, Gila National Forest, Grant Co., NM, 19 July 1995,
C. A. Huff & D. Stevens 2310 (UNM); cf. ssp. brevisiliqua Detling – D4: USA: VLA
radio telescope observatory, Socorro Co., NM, 15 July 2004, B. Goodson 1527
(TEX); ssp. obtusa – B26: USA: slopes along NM Hwy 159, 5 miles E of junction
with US Hwy 180 (N 33º23'16" W 108º49'58"), Catron Co., NM, 10 August 2001, T.
Chumley 7359 (TEX);

D. paradisa (A. Nels. & Kenn.) O. E. Schulz: ssp. nevadensis Rollins – C8: USA:
valley floor, W of NV Hwy 95 and N of Walker Lake (N 38º48'47" W 118º45'59"),
Mineral Co., NV, 21 May 2003, B. Goodson 1492 (TEX); ssp. paradisa – C7: USA:
NV Hwy 445 (MM 27), ca. 2 miles SW of Pyramid Lake Indian Reservation (N
39º52'07" W 119º38'16"), Washoe Co., NV, 21 May 2003, B. Goodson 1490 (TEX);
C46: USA: 2.8 miles S of Wheeler Reservoir road on main N-S road to Double Hot
Springs, Humboldt Co., NV, 14 May 2002, A. Tiehm 13794 (TEX);

D. pimpinellifolia (Barnéoud) O. E. Schulz: D11: Argentina: RP 52, ca. 34 km
from Uspallata (S 32º30'10" W 69º03'26"), Dept. Las Heras, Prov. Mendoza, 15
December 2001, B. Goodson 1475 (TEX);

D. pinnata (Walter) Britton: ssp. glabra (Wooton & Standley) Detling – D27:
Mexico: canyon of Rio Guararáy, ca. 0.5 km upstream from Los Aguaros, Mun.
Alamos, Sonora, 16 March 1994, R. S. Felger 94-88 (TEX); ssp. halictorum
(Wooton) Detling –D10: USA: Hwy 67, 40 miles N of Alpine (N 30º43'03" W
103º11'56"), Pecos Co., TX, 9 April 2004, B. Goodson 1521 (TEX); D19: USA: Hwy
67, ca. 9.6 miles S of Marfa (N 30º10'54" W 104º04'43"), Presidio Co., TX, 9 April
2004, B. Goodson 1523 (TEX); D69: USA: Petroglyph National Monument
lowlands, Bernalillo Co., NM, 19 April 2001, A. C. Cully & M. Medrano s. n.
(UNM); ssp. intermedia (Rydb.) Detling – C19: USA: Red Canyon Lodge Horse
Stables, Hwy 44, Flaming Gorge NRA (N 40º52'22" W 109º32'35"), Daggett Co.,
UT, 29 June 2003, B. Goodson 1498 (TEX); ssp. menziesii (DC.) Detling – B35:
Cultivated, seed [ETSIA 248-1725-69] collected from Oakzanitas, San Diego Co.,
CA, USA (TEX); C3: Mexico: RN 1, ca. 5 miles E of El Aquajito (N 30º04'20" W
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115º22'41"), Mun. Ensenada, Baja California Norte, 9 March 2003, T. Chumley 7429
(TEX); D53: USA: 0.5 mile W of Aguanga, San Diego Co., CA, Riverside Co., CA,
29 March 1990, E. LaRue s. n. (TEX); ssp. nelsonii (Rydb.) Detling – C17: USA:
McCarty Canyon Road (N 41º22'39" W 107º18'46"), Carbon Co., WY, 26 June 2003,
B. Goodson 1495 (TEX); ssp. ochroleuca (Wooton) Detling – D8: USA: junction of
Hwy 17 and county road 112, ca. 16 miles S of Pecos (N 31º11'12" W 103º34'42"),
Reeves Co., TX, 10 April 2004, B. Goodson 1524 (TEX); ssp. pinnata – B12a: USA:
Fly Gap division of Double Helix ranch, Mason Co., TX, 14 April 2001, B. Goodson
1457 (TEX); D15: USA: picnic area on Hwy 90, 5 miles W of Alpine (N 30º19'22"
W 103º44'35"), Brewster Co., TX, 9 April 2004, B. Goodson 1522 (TEX); F17:
USA: I-75 rest area N of Tampa (N 28º12'50" W 82º22'25"), Pasco Co., FL, 5 March
2006, B. Goodson 1616 (TEX); ssp. undet. – C15: USA: BLM road to Mormon
Mountains, ca. 0.5 miles E of junction with road to Lyman's Crossing (N 37º08'41"
W 114º23'01"), Lincoln Co., NV, 7 May 2003, T. Chumley 7439 (TEX);

D. sophia (L.) Webb ex Prantl: MB3: USA: New Mexico, Beilstein 01-19 (MO);

D. sophioides (Fischer) O. E. Schulz: F13: Cultivated, seed collected by J.
McKendrick, 17 August 1990, Dalton Highway MP 398.7, Prudhoe Bay, North Slope
Co., AK, USA (TEX);

D. stricta (Phil.) Reiche: var. undet. – C38: Chile: km 90 on the Arica-Putre road,
Prov. Arica, Tarapacá (Region I), J. L. Panero & B. S. Crozier 8435 (TEX);

Hugueninia tanacetifolia (L.) Prantl: ssp. suffruticosa – C6: Cultivated from
seeds [B&T] (TEX); ssp. tanacetifolia – B111: Italy: Piemonte, 10 July 1988,
Pistarino 2027 (NY);

Ianhedgea minutiflora (Hook. f. & Thoms.) Al-Shehbaz & O’Kane: MB2:
Tajikistan: Badakhson, Solomon et al. 21646 (MO);

Robeschia schimperi (Boiss.) O. E. Schulz: MB1: Iran: Prov. Esfahan, ca. 10 km
past Khansar, on road to Golpayegan, 21 May 2004, American-Iranian Botanical
Delegation 33719 (TUH);

Smelowskia americana (Regel & Herder) Rydb.: B146: USA: Mt. Sherman, Park
Co., Colorado, 18 August 2001, Goodson 1462 (TEX); DQ418729.
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Table 3.2. Comparative phylogenetic utility of ITS, combined chloroplast, and TOR
regions based on a 34-accession data set.

Characteristic ITS Combined
chloroplast

TOR

Length of aligned data set (bp) 627 5351 2341

Number of non-autapomorphic indels 0 20 12

CI (excluding uninformative
characters)

0.709 0.794 0.806

RI 0.877 0.901 0.898

Tree length 245 1444 984

Number of MPTs 6 36 45

Number of variable characters 180 1162 782

Parsimony informative characters
(%)

72 (11.5%) 425 (7.9%) 296 (12.6%)

Number of resolved nodes in strict
consensus tree

8 17 16

Number of nodes with bootstrap
values > 85%

6 16 13

Number of nodes with posterior
probabilities > 94%

15 20 19
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Table 3.3. Summary of ITS, chloroplast, and TOR placements for North American Descurainia accessions. Chromosome
numbers are from literature reports for that taxon and do not represent actual counts of sequenced accessions.

Taxon Accession Location ITS cp TOR Chromosome
counts (2n = )

D. californica C9 White Pine Co., NV A C A 14
D. californica D12 Iron Co., UT A C A 14
D. impatiens C40 Oaxaca, MEX C A C-IIa 14
D. impatiens C42 Veracruz, MEX C A -- 14
D. incana B109 Beaverhead Co., MT A A -- 14, 28
D. incana C2 Granite Co., ID A A -- 14, 28
D. incana D29 Blaine Co., ID A A -- 14, 28
D. incisa ssp. filipes B195 Humboldt Co., NV B B -- 14, 28, 42
D. incisa ssp. filipes C21 Daggett Co., UT B B B 14, 28, 42
D. incisa ssp. filipes C45 Lander Co., NV B B B 14, 28, 42
D. incisa ssp. filipes D14 Daggett Co., UT BxC B -- 14, 28, 42
D. incisa ssp. incisa C24 Eagle Co., CO A A A --
D. incisa ssp. incisa D25 Custer Co., ID A A or B B --
D. incisa ssp. incisa D56 Rio Arriba Co., NM A A A --
D. incisa ssp. incisa D57 Los Alamos Co., NM A C -- --
D. incisa ssp. incisa D6 Salt Lake City Co., UT A A A --
D. incisa ssp. paysonii D28 Moffat Co., CO A A -- --
D. incisa ssp. paysonii D73 Mckinley Co., NM A A -- --
D. incisa ssp. viscosa D21 Laramie Co., WY A C -- 14
D. incisa ssp. viscosa D24 Apache Co., AZ A A -- 14
D. obtusa ssp. adenophora D61 Grant Co., NM C C C-IIa 42
D. obtusa ssp. adenophora D62 Coconino Co., AZ C C -- 42
D. obtusa ssp. brevisiliqua D58 Socorro Co., NM A A -- 42
D. obtusa ssp. brevisiliqua D59 Catron Co. NM A A -- 42
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Taxon Accession Location ITS cp TOR Chromosome
counts (2n = )

D. obtusa ssp. brevisiliqua D72 Socorro Co., NM A A -- 42
D. cf. obtusa ssp. brevisiliqua D4 Socorro Co., NM A A A 42
D. obtusa ssp. obtusa B26 Catron Co., NM C C C-IIa 14
D. obtusa ssp. obtusa D63 Socorro Co., NM C C -- 14
D. obtusa ssp. obtusa D64 Hidalgo Co., NM C C -- 14
D. obtusa ssp. obtusa D65 Sierra Co., NM C C -- 14
D. paradisa ssp. nevadensis C48 Mineral Co., NV B A -- --
D. paradisa ssp. nevadensis C8 Mineral Co., NV BxC-I B BxC-I --
D. paradisa ssp. paradisa C46 Humboldt Co., NV B B B --
D. paradisa ssp. paradisa C7 Washoe Co., NV B B B --
D. pinnata ssp. menziesii D53 Riverside Co., CA B B BxC-I 28
D. pinnata ssp. menziesii D55 San Diego Co., CA B B -- 28
D. pinnata C15 Lincoln Co., NV B B BxC-I 14
D. pinnata C4 Cochise Co., AZ BxC B -- 14
D. pinnata D68 Socorro Co., NM A A A? 14
D. pinnata D70 Socorro Co., NM A A A? 14
D. pinnata ssp. brachycarpa F11 Winona Co., MN BxC B -- 14, 28
D. pinnata ssp. brachycarpa F12 Crittenden Co., KY C -- -- 14, 28
D. pinnata ssp. glabra B144 Yavapai Co., AZ C-I C-I -- 28
D. pinnata ssp. glabra C10 San Bernadino Co., CA BxC-I B B x C 28
D. pinnata ssp. glabra D27 Sonora, MEX C-I C-I C-I 28
D. pinnata ssp. halictorum C12 White Pine Co., NV A C-I -- 14, 28, 42
D. pinnata ssp. halictorum C14 Lincoln Co., NV BxC B -- 14, 28, 42
D. pinnata ssp. halictorum D10 Pecos Co. TX C-I C-I C-I 14, 28, 42
D. pinnata ssp. halictorum D19 Presidio Co., TX A A A? 14, 28, 42
D. pinnata ssp. halictorum D67 Cochise Co., NM C-I C-I -- 14, 28, 42
D. pinnata ssp. halictorum D69 Bernalillo Co., NM C C-I unres 14, 28, 42
D. pinnata ssp. halictorum D71 Sandoval Co., NM A A -- 14, 28, 42
D. pinnata ssp. intermedia C19 Daggett Co., UT BxC C-I unres x B 28
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Taxon Accession Location ITS cp TOR Chromosome
counts (2n = )

D. pinnata ssp. menziesii B35 San Diego Co., CA B B BxC-I 28
D. pinnata ssp. menziesii C3 Baja California, MEX BxC-I B BxC-I 28
D. pinnata ssp. nelsonii C17 Carbon Co., WY B B unres x B 14
D. pinnata ssp. nelsonii C47 Eureka Co., NV B C -- 14
D. pinnata ssp. nelsonii D23 Beaverhead Co., MT B C -- 14
D. pinnata ssp. ochroleuca D26 Chihuahua, MEX C-I C-I -- 28
D. pinnata ssp. ochroleuca D8 Reeves Co., TX C C-I unres 28
D. pinnata ssp. pinnata B12A Mason Co., TX C-I C C-I 14
D. pinnata ssp. pinnata D15 Brewster Co., TX C-I C-I C-I 14
D. pinnata ssp. pinnata F17 Pasco Co., FL C-I C-I C-I 14
D. pinnata ssp. pinnata F5 Liberty Co., GA C-I C-I -- 14
D. pinnata ssp. pinnata F6 Alachua Co., FL C-I -- -- 14
D. sophioides B112 Yukon Terr., CAN A C -- 14
D. sophioides F13 North Slope Co., AK A C unres 14
D. streptocarpa B33 Veracruz, MEX A A -- 28
D. cf. streptocarpa C44 Chihuahua, MEX C A -- 28
D. virletii B108 Mexico DF, MEX C-I C-I -- 28
D. virletii C39 Chiapas, MEX C-I C-I -- 28
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Name   Primer sequence 

TORX22F  5'-AAC TTA TCT TCC AGT CAT CCT TCC-3'

TORX27R  5'-CTC ATC CAT TCC TCC CAA TC-3'

internal sequencing primers:

TORX23F  5'-TGA CAA GAG TAA TCC CGT GTG-3'

TORI24F  5'-AGG CAT TGT GTC ACT ATC TGG-3'

TORX25R  5'-GTG AAG TCC TCT CCA AGT GC-3'

TORX25F  5'-GCA CTT GGA GAG GAC TTC AC-3'

TORX22F ->
<- TORX25R TORX25F ->

<- TORX27R

~1400 bp 
(including portions of exons 22 & 25)

~940 bp 
(including portions of exons 25 & 27)

2422 23 25 26 27

TORX23F -> TORI24F ->

320 120 60050130 130 600170

Fig. 3.1 Diagram of TOR region amplified and sequenced, with a list of PCR and sequencing
primers. Exons are numbered; shaded regions represent introns. Numbers below exons and
introns represent approximate size (in base pairs) of sequenced region in Descurainia.
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A. thaliana

D. antarctica E2 c1
D. pimpinellifolia D11 c2
D. appendiculata B126 c5
D. argentina B96 c4
D. heterotricha B124 c2
D. impatiens C40
D. obtusa aden D61
D. obtusa obtu B26
D. californica C9
D. incisa inci D56 c1
D. incisa inci D6
D. incisa inci D25 c1
D. californica D12
D. incisa inci D56 c2
D. incisa inci C24
D. cf. obtusa brev D4 c2
D. pinnata hali D19 c4
D. pinnata hali D19 c2
D. antarctica E2 c5
D. heterotricha B124 c4
D. argentina B96 c3
D. pimpinellifolia D11 c4
D. appendiculata B126 c4
D. pinnata hali D19 c1
D. pinnata inte C19 c3
D. pinnata nels C17 c1
D. paradisa neva C8 c2
D. pinnata glab D27
D. pinnata hali D10
D. pinnata menz C3 c1
D. pinnata menz B35 c4
D. pinnata menz D53 c2
D. pinnata pinn B12A
D. pinnata pinn D15
D. pinnata pinn F17
D. pinnata C15 c4
D. pinnata ochr D8
D. pinnata hali D69
D. athrocarpa C27
D. leptoclada C34
D. leptoclada C36
D. depressa C26
D. depressa D17
D. stricta C38 c2
D. depressa C37
D. myriophylla C29
D. myriophylla D9 c5
D. stricta C38 c4
D. cumingiana tenu D43 c4
D. sophioides F13
D. cumingiana tenu D43 c6
D. pinnata menz C3 c2
D. incisa fili C21
D. incisa fili C45
D. pinnata nels C17 c2
D. paradisa neva C8 c1
D. pinnata C15 c1
D. pinnata menz D53 c1
D. pinnata menz B35 c2
D. paradisa para C46
D. paradisa para C7
D. pinnata inte C19 c1
D. incisa inci D25 c2
H. tanacetifolia B111 c3
H. tanacetifolia C6
D. bourgaeana B14
D. lemsii B23
D. millefolia B24
D. sophia MB3 c1
D. kochii D3
D. sophia MB3 c2
R. schimperi MB1
I. minutiflora MB2
S. americana B146 c1156
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Fig. 3.2. One of 4020 most parsimonious trees recovered from TOR sequence data using the
parsimony ratchet. Bootstrap values > 50%/Bayesian posterior probabilities are indicated below
branches. Dashed lines indicate branches that collapse in the strict consensus tree. Cloned
sequences are indicated by the letter “c” followed by the colony number (e.g., c5). Generic names
are abbreviated as follows: A. = Arabidopsis, D. = Descurainia, H. = Hugueninia, I. =
Ianhedgea, R. = Robeschia, and S. = Smelowskia. The designations A, B, C, C-I, C-IIa, C-IIb, C-
III, C-IV, C-V and D refer to clades described in the text. Distributions are abbreviated as
follows: NA = North America, SA = South America, CI = Canary Islands, and EU = Europe,
Eurasia and/or Middle East.
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D. streptocarpa C44

D. cf. streptocarpa C44

D. incisa C24

Clade C-II

D. obtusa obtu

D. obtusa aden

D. impatiens

D. californica C9

Clade C-I

D. incisa D56

D. incisa D6

D. cf. obtusa brev D4

D. pinnata D68

D. pinnata D70

D. pinnata C12

D. pinnata D19

D. californica D12

D. sophioides

Clade B

Clade C-II

D. obtusa obtu

D. obtusa aden

D. californica C9

Clade C-I

D. californica D12

D. sophioides

D. pinnata C12

D. incisa D56

D. incisa D6

D. incisa C24

D. cf. obtusa brev D4

D. impatiens

D. pinnata D68

D. pinnata D70

D. pinnata D19

Clade B Clade B

D. sophioides

Clade C-I

D. californica C9

D. obtusa obtu

D. obtusa aden

D. impatiens

Clade C-IIa

D. incisa D56

D. incisa D6

D. californica D12

D. incisa C24

D. cf. obtusa brev D4

D. pinnata D19a

(D. pinnata D70)

Clade C-IIb

(D. pinnata D68)

D. pinnata D19b

A

C

C

A

ITS Chloroplast TOR

C

A

A

A

A or C

C

Fig. 3.3. Illustration of some aspects of conflict between ITS, chloroplast and TOR phylogenies with respect to clades A and C. Placement
of accessions D68 and D70 in the TOR tree inferred from examination of polymorphic sequence traces.
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Fig. 3.4. New World Descurainia species concepts inferred from ITS, TOR, and chloroplast molecular data, and distribution of accessions
with parental lineages. Left side of each colored circle indicates inferred paternal lineage (from ITS and/or TOR) and the right side the
inferred maternal lineage (from chloroplast). The tree in the lower left shows lineage relationships based on the topology generated from
combined ITS-chloroplast molecular data.
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Chapter 4: Molecular systematics of Descurainia (Brassicaceae) in the
Canary Islands: biogeographic and taxonomic implications

INTRODUCTION

The Canary Islands comprise seven islands and several islets located in the

eastern Atlantic Ocean near northwest Africa. The islands are volcanic in origin and

range in age from 0.8 to 21 million years old (Carracedo, 1994). The native flora, which

is allied to that of the surrounding Macaronesian region and in many cases to the

Mediterranean area, exhibits a high degree of endemicity (Francisco-Ortega & al., 2000).

The Canarian flora, along with that of Macaronesia, has been the subject of a

number of recent molecular studies involving colonization and adaptive radiation on

islands. Many of these studies have focused on the high prevalence of woodiness in

Macaronesian endemics. This trait has been proposed as evidence of a relict origin for the

island flora, suggesting that Macaronesian species are descended from woody

continental ancestors extirpated from Europe during Pleistocene glaciation and that

herbaceous continental relatives derive from subsequent recolonization of the mainland

(Bramwell, 1972; Sunding, 1979; Cronk, 1992). Molecular studies have revealed that

some island endemics are probably relictual (e.g., Lavatera phoenicea Vent. [Malvaceae;

Ray, 1995; Fuertes-Aguilar & al., 2002]; Plocama pendula Aiton [Rubiaceae; Bremer,

1996; Andersson & Rova, 1999]; and Tolpis Adanson [Asteraceae; Moore & al., 2002]),

but most groups appear to be recently derived from herbaceous continental ancestors

(e.g., the Macaronesian clade of Crassulaceae [Mort & al., 2002]; the Bencomia Webb &

Berthel. [Rosaceae] alliance [Helfgott & al., 2000]; Echium L. [Boraginaceae; Böhle &

al., 1996]; Sideritis L. [Lamiaceae; Barber & al., 2000]; and the Sonchus L. [Asteraceae]

alliance [Kim & al., 1996]). Other issues of interest concern patterns of diversification
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within the islands, such as colonization routes, direction of habitat shifts, and, in

particular, the relative contribution of inter-island colonization compared to intra-island

adaptive radiation in the evolution of the insular flora. The Canary Islands feature several

distinct ecological zones arising from varied elevations and the influence of northeastern

trade winds (Bramwell, 1972; Francisco-Ortega & al., 1996; Juan & al., 2000). Since

similar ecological zones are present on different islands, inter-island colonization may

have played an important role in the evolution of the Canarian flora. Molecular studies

suggest that while intra-island adaptive radiation appears to be the dominant mode of

species diversification in Sideritis (Barber & al., 2000) and one introduction of Teline

Medik. (Fabaceae; Percy & Cronk, 2002), several Macaronesian groups may have

speciated primarily via inter-island colonization (e.g., Adenocarpus DC. [Fabaceae; Percy

& Cronk, 2002]; Aeonium Webb & Berthel. [Crassulaceae; Mes & t’Hart, 1996];

Argyranthemum Sch. Bip. [Asteraceae; Francisco-Ortega & al., 1996]; Bystropogon

L´Hèr [Lamiaceae; Trusty & al., 2005]; and Lotus L. [Fabaceae; Allan & al., 2004]).

Because well-resolved multigene phylogenies for many insular groups have not yet been

acquired, however, the overall picture of evolution within the islands is still emerging. In

this study several of these issues are explored in the context of evolution of Descurainia

Webb & Berthel. (Brassicaceae) in the Canary Islands.

Descurainia includes approximately 45 species distributed throughout temperate

areas of the world. Members of this taxonomically complex genus are characterized by

dendritic trichomes, pinnate to tripinnate leaves, yellow or whitish flowers, narrow

siliques with seeds that are mucilaginous when wet, and, in many cases, unicellular

clavate glands (Schulz, 1924; Al-Shehbaz, 1988; Rollins, 1993a). In the only

comprehensive treatment of the genus, Schulz (1924) divided Descurainia into two

clearly-delineated sections: sect. Descurainia (published as sect. Seriphium O. E. Schulz)
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and sect. Sisymbriodendron (Christ) O. E. Schulz. Section Descurainia, consisting of

small-flowered herbaceous annuals, biennials, and perennials, comprises the majority of

species in the genus. Generally weedy and wide-ranging, members of this section are

restricted to the New World, with the exception of D. kochii (eastern Turkey and the

Caucasus) and D. sophia (originally Eurasian, now world-wide). Species in sect.

Sisymbriodendron are self-incompatible perennial shrubs, possessing relatively large

flowers, conspicuous nectaries, and slightly winged seeds, and are endemic to the Canary

Islands.

Recent molecular work (cited in Koch & al., 2003a) and the results reported in

Chapters 2 and 3 of this dissertation support the inclusion of an additional genus –

Hugueninia Rchb. – in Descurainia. This genus constitutes a single species, H.

tanacetifolia, which is a perennial herb distributed in the mountains of northern Spain,

the Pyrenees, and the southwestern Alps. It shares many morphological features with

Descurainia, including branched trichomes, pinnate leaves, and fruit comprised of

siliques. This similarity led Prantl (1891) to include the species in Descurainia, placing it

in its own section (sect. Hugueninia), and recently Appel & Al-Shehbaz (2003) have also

placed it in synonymy with Descurainia.

As circumscribed by Bramwell (1977), there are seven species in sect.

Sisymbriodendron. These species are restricted to four of the five westernmost Canary

Islands (Fig. 4.1) where they variously occupy lowland scrub, pine forest, and high

altitude desert ecological zones (Bramwell & Bramwell, 1990; Francisco-Ortega & al.,

1996; Juan & al., 2000). Subtropical lowland scrub, occurring at altitudes of 250 – 600 m

on the five westernmost islands, is frequently partitioned into humid and arid sub-zones

based on whether the area falls under the influence of humid northeastern trade winds.

Pine forest, in which Pinus canariensis C. Sm. (Pinaceae) is dominant, is primarily found
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on the islands of Gran Canaria, Tenerife, La Palma, and El Hierro on southern-facing

slopes at elevations of 600 – 2000 m and northern-facing slopes at elevations of 1200 –

2000 m. At elevations above 2000 m on Tenerife, Gran Canaria, and to a lesser extent La

Palma, a subalpine shrub community occupies high altitude desert.

The only widespread insular species of Descurainia, D. millefolia, inhabits

lowland scrub on Tenerife, La Gomera, and La Palma, extending into pine forest on the

latter island. Two Descurainia species are endemic to lowland scrub on Gran Canaria: D.

artemisioides in shady ravines and cliffs of the Guayedra Massif in western Gran Canaria

and D. preauxiana on cliffs in the southern and central regions of the island. Descurainia

lemsii is restricted to Tenerife, where it is locally frequent on high northern slopes at the

upper limit of the pine forest. Another Tenerife endemic is D. gonzalezi, inhabiting pine

forest, and very rarely, the high altitude desert of Las Cañadas del Teide. Descurainia

bourgaeana also occupies Las Cañadas del Teide on Tenerife and has recently been

discovered in similar habitat on the island of La Palma. Descurainia gilva, which is

morphologically similar to D. lemsii, occurs in the upper limits of pine forest near the rim

of Caldera de Taburiente in the north central region of La Palma. Because Descurainia

has speciated into separate habitats on several of the islands, a molecular study of this

genus can provide valuable insights into colonization patterns in the Canarian flora.

In this chapter, the origin and evolution of Descurainia in the Canary Islands is

examined using molecular-based phylogenies constructed from nuclear and chloroplast

DNA markers. The objectives of this study were to: 1) identify the closest continental

relative of the island taxa; 2) determine whether the island taxa are relictual or derived

compared to continental relatives; and 3) investigate the dominant pattern of colonization

within the islands.
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MATERIALS AND METHODS

Sampling. –– All seven members of Descurainia sect. Sisymbriodendron were

sampled. For each species, material was obtained from each island and habitat (i.e.,

lowland scrub, pine forest, or high altitude desert) on which it was reported, except for D.

millefolia from pine forest on La Palma.

Because molecular data of Chapter 2 support the monophyly of both sect.

Sisymbriodendron and New World Descurainia, for this analysis the remaining Old

World congeners (D. kochii, D. sophia, and H. tanacetifolia) and two New World

representatives (D. depressa and D. incisa) were included. Smelowskia americana and

Arabidopsis thaliana were used as outgroups. Sources of plant material used in this

study, along with voucher information and GenBank accession numbers, are in Table 4.1.

Leaf material was field-collected and dried over silica, or harvested from

cultivated plants grown in the greenhouse at the University of Texas at Austin (seed

provided by César Gómez-Campo from the Escuela Técnica Superior de Ingenieros

Agrónomos seedbank). Total DNA was extracted using the CTAB method of Doyle &

Doyle (1987) followed by purification using cesium chloride and ethidium bromide

gradients. Material was also obtained from herbarium specimens, and the DNA isolated

following the protocol in Loockerman & Jansen (1996).

PCR amplification and DNA sequencing. –– Seven non-coding chloroplast

DNA regions and the internal transcribed spacer (ITS) region of the nuclear ribosomal

DNA repeat (ITS1, 5.8S rRNA, ITS2; Kim & Jansen 1994) were utilized as phylogenetic

markers in this study. Non-coding chloroplast regions were the rps16 intron (Oxelman &

al., 1997) and trnDGUC-trnEUUC (Demesure & al., 1995), trnEUUC-trnTGGU (Demesure &

al., 1995), psbZ-trnfM (Demesure & al., 1995), rpoB-trnCGCA (Shaw & al., 2005), ndhF-
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rpl32, and ndhC-trnVUAC intergenic spacers. Primers for ndhF-rpl32 (ndhF-F: 5'-

ACTGGAAGTGGAATGAAAGG-3'; rpl32-R: 5'-GCTTTCAACGATGTCCAATA-3')

and ndhC-trnV (ndhC-F: 5'-TGCCAAAACAGGAATAGCAC-3'; trnV-R: 5'-

TTTACCGAGCAGGTCTACGG-3') were designed based on the Arabidopsis thaliana

chloroplast genome (GenBank accession number NC_000932).

DNA regions were amplified via the polymerase chain reaction (PCR) in 50 µL

volumes containing 5 µL of 10X buffer, 4 µL of 25mM MgCl2, 4 µL of 0.25µM dNTPS,

0.5 µL of a 100µM solution of each primer, 0.5 µL of Taq polymerase and 1 µL of

unquantified DNA template. For ITS amplifications, reaction conditions were as follows:

one round of amplification consisting of denaturation at 96˚C for 3 min, annealing at

50˚C for 1 min, and extension at 72˚C for 1min, followed by 35 cycles of 95˚C for 1 min,

50˚C for 1 min, and 72˚C for 45 sec, with a final extension step of 72˚C for 7 min.

Chloroplast regions were amplified using the following conditions: denaturation at 96˚C

for 3 min, followed by 35 cycles of 94˚C for 35 sec, 50˚C for 45 sec, and 72˚C for 1 min,

with a final extension of 72˚C for 12 min. Following amplification, PCR products were

cleaned with Qiagen spin columns following the manufacturer’s protocols. Sequencing

reactions were carried out using Big Dye Terminator chemistry. The sequencing products

were cleaned with Centri-cep columns and sequenced on either an MJ Research

BaseStation or ABI Prism 3730 automated sequencer.

Phylogenetic Analyses. –– Sequences were edited with Sequencher 4.1.2 (Gene

Codes Corp., 2000) and aligned with ClustalX (Thompson & al., 1997) followed by

manual adjustments. Indels that were potentially phylogenetically informative were

coded as binary (presence/absence) characters and appended to the alignment. All
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sequences were deposited in GenBank and GenBank accession numbers are included in

Table 4.1.

Parsimony analyses were performed on each data set with PAUP* 4.0b10

(Swofford 2002). For each data set, heuristic searches were conducted using 10,000

random addition sequence replicates, holding 10 trees at each step, and with tree-

bisection-reconnection (TBR) branch swapping, characters equally weighted, and gaps

treated as missing. Support for internal nodes was assessed using bootstrap analysis

(Felsenstein, 1985) of 500 replicates with 100 random additions per replicate and holding

10 trees at each step.

Separate Bayesian analyses were carried out on the ITS data set and a combined

chloroplast data set using MrBayes 3.1 (Ronquist & Huelsenbeck, 2003). Evolutionary

models were selected based on the hierarchical likelihood ratio test implemented in

MrModeltest 2.2 (Nylander, 2004). The model chosen for the ITS data set was SYM+Γ.

For the combined chloroplast data set, separate models were applied to the two data

partitions with all parameters unlinked except for topology and branch length; the F81+Γ

model was applied to the nucleotide partition and the BINARY model (with coding bias

set to variable) was applied to the coded indels. Two independent analyses were

performed on each data set. Each analysis was run for 1,000,000 generations with four

Markov chains (three heated and one cold) and trees saved every 100 generations. Trees

were checked for stationarity by plotting log likelihood values vs. generation, and trees

from the burn-in period were discarded. A 50% majority-rule consensus tree was

constructed in PAUP* from the remaining trees.

Topological incongruence was assessed using the incongruence length difference

(ILD) test as implemented in PAUP* (partition homogeneity test of Farris & al., 1994).
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Each test consisted of 100 replicates, with 500 random additions per replicate, and the

MULTREES option set to off.

Character optimizations. –– To elucidate patterns of colonization within the

islands, redundant taxa, as well as non-insular Descurainia and a putative recent hybrid

of D. gonzalezi X D. bourgaeana (see discussion), were removed from the combined

chloroplast data set. Parsimony analysis of the reduced data set was conducted with

Arabidopsis thaliana and Smelowskia americana as outgroups. Island distribution and

ecological zone were then mapped separately onto the phylogenetic tree using MacClade

4.0 (Maddison & Maddison, 2000). Fitch parsimony (unordered characters and

unweighted character state changes) was employed as the optimality criterion.

RESULTS

Analysis of ITS data. –– The ITS data set was readily alignable, and comprised

621 nucleotide positions including gaps (1.9%) and missing (0.1%) characters. There

were no phylogenetically informative gaps. Three characters were polymorphic for most

of the Canary Island taxa and were excluded from the analysis. Of the remaining 618

characters, 128 (20.7%) were variable and 47 (7.6%) were parsimony informative (Table

4.2).

Parsimony analysis of the ITS data for all 23 taxa yielded 28 most parsimonious

trees of 158 steps (CI [excluding uninformative characters] = 0.79, RI = 0.85) (Fig. 4.2).

The Canary Island taxa form a well-supported clade (bootstrap value [BV] = 86%) which

is sister to Hugueninia tanacetifolia in the strict consensus tree. The node joining the

island taxa with H. tanacetifolia is moderately well-supported, with a BV = 78%. The



165

remaining Old World Descurainia (D. kochii and D. sophia) form a clade (BV = 92%)

which is strongly supported (100%) as sister to the rest of the genus. Phylogenetic

relationships within the island are completely unresolved.

Bayesian analysis of the ITS data set recovered a consensus tree with the same

topology as parsimony. Posterior probabilities (PP) are 100% for all nodes which

received bootstrap support > 50% in the parsimony tree, with the exception of the branch

joining D. kochii with D. sophia (99% support). While analysis of the ITS data does not

allow us to make any inferences about colonization within the Canary Islands, the data

strongly support the monophyly of the island taxa and identify H. tanacetifolia as the

closest continental relative.

Analysis of chloroplast data. –– Sequence characteristics for the various

chloroplast regions are listed in Table 4.2. Trees obtained from parsimony analysis of the

individual chloroplast data sets (not shown) were congruent, which is expected as the

chloroplast is inherited as a single unit and thus all genes should be linked. The individual

chloroplast data sets were consequently combined into a single data set and subjected to

further analyses. The combined data set contained 6029 nucleotide positions including

gaps (8.6%) and missing (0.04%) characters. Fourteen indels, ranging in length from 5 to

160 base pairs, were binary-coded and appended to the data set, resulting in 6043

characters, of which 668 (11.1%) were variable and 239 (4.0%) were parsimony

informative.

Parsimony analysis of the combined chloroplast data for 23 taxa generated 42

trees of 762 steps (CI [excluding uninformative characters] = 0.81, RI = 0.89). One of

the most parsimonious trees is shown in Fig. 4.3. The tree strongly supports (BV = 100%,

PP = 100%) the monophyly of the Canary Island taxa and a sister relationship to H.
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tanacetifolia. The island taxa resolve into two well-supported clades. One clade (BV and

PP = 100%) comprises three species from Tenerife: D. millefolia and D. lemsii + D.

gonzalezi. The other major clade (BV = 80%, PP = 99%) includes exemplars of six of the

seven island species. Within this group are three clades: 1) D. millefolia samples

collected from La Palma and La Gomera (BV = 67%, PP = 99%); 2) D. artemisioides +

D. preauxiana (BV and PP = 100%) from Gran Canaria; and 3) a well-supported (BV

and PP = 100%) but poorly-resolved group comprising D. bourgaeana (Tenerife and La

Palma), D. gilva (2 samples from La Palma), and D. gonzalezi (Tenerife). The latter two

clades appear to be sister, but the node joining them is only moderately supported (BV =

72%, PP = 95%). In contrast to the ITS tree, D. sophia is more closely related to the rest

of the genus than D. kochii, but the Old World taxa still do not comprise a monophyletic

group.

The strict consensus tree generated by Bayesian analysis was similar to the

parsimony tree. An additional branch was recovered uniting the two D. gilva exemplars

with two D. bourgaeana samples. Bayesian posterior probabilities range from 95 – 100%

for each node in the tree.

Analysis of combined data. –– When the ITS and chloroplast data sets were

combined, the ILD test indicated they were not homogeneous (p = 0.03). Following

removal of either D. kochii or D. sophia from the analysis, no significant heterogeneity

was detected (p = 1.0). Not unexpectedly (given that the ITS data set contains no

parsimony-informative characters within the Canary Island taxa), parsimony and

Bayesian analysis of the combined data sets (excluding D. kochii) generated results

essentially identical to those generated by analysis of the chloroplast data set alone. As a
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consequence, inferences regarding diversification within the islands can only be made

based on the results of the chloroplast analysis.

Character optimizations. –– Parsimony analysis of the reduced chloroplast data

set generated one most parsimonious tree of 534 steps (CI [excluding uninformative

characters] = 0.95, RI = 0.96) (not shown). This tree was identical to that obtained by

pruning taxa from the original strict consensus tree except that D. bourgaeana from La

Palma was sister to D. gilva rather than D. bourgaeana from Tenerife. This sister

relationship is most likely an artifact of the short branch lengths between these taxa;

when D. bourgaeana samples from both islands were constrained to monophyly, a single

most parsimonious tree only one step longer and otherwise identical in topology was

generated. This slightly less parsimonious tree was used in the character optimizations.

Island distribution and ecological zone were traced separately on the reduced tree (Figs.

4.4 and 4.5). Outgroup taxa (Arabidopsis thaliana and Smelowskia americana) were not

scored because the characters optimized on the tree (ecological zone and island

distribution) were not applicable.

Optimization of ecological zone on the reduced tree yielded three most

parsimonious reconstructions (Fig. 4.4). These reconstructions suggest that the ancestral

habitat of Descurainia in the Canary Islands was located in lowland scrub, and that there

have been at least three ecological shifts, two into pine forest and one into high altitude

desert zones.

When island distribution was traced on the reduced tree, two most parsimonious

reconstructions were generated (Fig. 4.5). One reconstruction implies that the original

location of Canarian Descurainia was on the island of La Palma and the other

optimization identifies Tenerife as the ancestral island.
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DISCUSSION

Taxonomic implications. –– The results of ITS and chloroplast analyses clearly

demonstrate that the Canary Island species are monophyletic. Phylogenetic analysis of

the chloroplast data reveals two major island lineages. One lineage (the “Tenerife” clade)

is restricted to Tenerife (D. gonzalezi, D. lemsii, and D. millefolia), whereas the other

lineage (the “mixed” clade) includes taxa from four islands: D. bourgaeana (Tenerife and

La Palma), D. artemisioides and D. preauxiana (Gran Canaria), D. gilva (La Palma), and

D. millefolia (La Palma and La Gomera).

There are two unusual placements in the tree. The first of these is the apparent

polyphyly of D. millefolia. While three samples of D. millefolia collected on Tenerife

group together in the “Tenerife” clade, D. millefolia from La Palma and La Gomera are

well-supported as part of the “mixed” clade. Descurainia millefolia is the most

widespread of the island species and is morphologically quite variable. Several varieties

and forms have been described, including D. millefolia f. brachycarpa (Schulz, 1924)

from western La Palma, D. millefolia var. sabinalis (Schulz, 1924) from Tenerife and D.

millefolia var. macrocarpa from La Gomera, Tenerife, and La Palma (Pitard & Proust,

1908). Many of the characters that distinguish these varieties, however, are reportedly not

constant in cultivation (Bramwell, 1977). The samples in this study from La Gomera and

eastern La Palma, however, are morphologically similar to the Tenerife samples (all of

which were collected from the Teno region of Tenerife). Whether the divergent position

of these specimens is due to an ancient hybridization event or simply represents

morphological convergence cannot be ascertained without more extensive sampling and

development of a better-resolved nuclear phylogeny than that provided by the ITS data.
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The other unusual feature in the chloroplast phylogeny is the placement of one sample of

D. gonzalezi (from Las Cañadas) in the “mixed” clade and one sample (from Vilaflor) in

the “Tenerife” clade. Except for a unique 18-bp insertion, the Las Cañadas sequence is

identical to one of the D. bourgaeana samples, yet in morphology it appears to be D.

gonzalezi. Pérez de Paz (1981) has noted the two reported locations of D. gonzalezi and

hypothesized that the high altitude desert Las Cañadas population is derived from the

population in the pine forest at Vilaflor. Chromosome counts (Borgen, 1969; Bramwell,

1977) for D. gonzalezi collected at Las Cañadas, where it is rare and sympatric with D.

bourgaeana, have detected triploid (2n = 21) and tetraploid (2n = 28) individuals in

addition to diploids. Chromosome counts of all other Canary Island species have been

exclusively diploid (2n = 14) (Borgen, 1969; Bramwell, 1977; Suda & al., 2003). On the

basis of this chromosomal evidence, it appears likely that D. gonzalezi from Las Cañadas

is hybridizing with another species, and D. bourgaeana is the geographically closest and

therefore most likely candidate. Consequently, the unusual phylogenetic position of this

D. gonzalezi collection and its short branch length most likely reflects recent chloroplast

capture from D. bourgaeana.

In addition to the putative D. gonzalezi X D. bourgaeana hybrid identified in the

analysis, other natural Descurainia hybrids have also been reported in the Canary Islands.

These include D. artemisioides X D. preauxiana on Gran Canaria (Hansen & Sunding,

1993), D. bourgaeana X D. lemsii on Tenerife (A. Santos, unpublished), and D. gilva X

D. bourgaeana on La Palma (A. Santos, unpublished). Interspecific hybridization within

groups that have radiated following a single introduction has been reported for many

Macaronesian taxa (reviewed in Francisco-Ortega & Santos-Guerra, 2001). Many of

these hybrids have arisen recently as previously isolated taxa come into close contact

through human disturbance (Levin & al., 1996).
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In his revision of Descurainia in the Canary Islands, Bramwell (1977) identified

several characters, such as growth form, distribution and density of the indumentum, leaf

shape, petal shape, and size and orientation of siliques, which have taxonomic utility for

delineating species boundaries. There appears, however, to be little correlation between

these morphological characters and the chloroplast phylogeny. Based on their

morphological similarity, for example, Bramwell suggested that D. gilva and D. lemsii

are closely related. This similarity is likely due to convergence: the chloroplast tree

indicates that D. lemsii is in fact sister to D. gonzalezi and not closely related to D. gilva.

On the other hand, Bramwell’s assertion that D. gilva might be considered as a local

vicariant of D. bourgaeana is consistent with their sister relationship in the chloroplast

tree. From a morphological point of view, however, the growth habit and fruit of D.

bourgaeana and D. gilva are not very similar.

Biogeography. –– Single colonization events into Macaronesia can be inferred

from molecular phylogenies of over two dozen Macaronesian endemic genera, including,

to name just a few, Argyranthemum (Francisco-Ortega & al., 1996, 1997), Bystropogon

(Trusty & al., 2005), Cheirolophus Cass. (Asteraceae; Susanna & al., 1999), Crambe L.

(Brassicaceae; Francisco-Ortega & al., 2002), Echium (Böhle & al., 1996), Isoplexis

(Lindl.) Loud. (Scrophulariaceae; Bräuchler & al., 2004), Lotus (Allan & al., 2004),

Micromeria Benth. (Lamiaceae; Bräuchler & al., 2005), Pericallis D. Don (Asteraceae;

Panero & al., 1999; Swenson & Manns, 2003), and Sideritis (Barber & al., 2000).

Molecular studies have also uncovered examples of multiple independent introductions,

but in almost every case these have involved genera with very few Macaronesian

representatives (e.g., Asteriscus Miller [Asteraceae; Goertzen & al., 2002], Hedera L.

[Araliaceae; Vargas & al., 1999], Ilex L. [Aquifoliaceae; Cuénoud & al., 2000], Lavatera
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L. [Malvaceae; Fuertes-Aguilar & al., 2002; Ray, 1995], Plantago L. [Plantaginaceae;

Rønsted & al., 2002], and Solanum L. [Solanaceae; Bohs & Olmstead, 2001]. The

explanation for why groups arising from single introductions have radiated more

spectacularly than those which have arrived repeatedly is currently being debated

(Herben & al., 2005; Saunders & Gibson, 2005; Silvertown & al., 2005); one possibility

is that niche preemption by initial colonists has prevented successful establishment of

later-arriving congeners (Silvertown 2004).

Both the ITS and chloroplast data sets strongly support the monophyly of

Descurainia in the Canary Islands and hence the idea that there was a single colonization

of the islands. The closest continental relative of the insular taxa is H. tanacetifolia

which is distributed in the mountains of southwestern Europe. Like the island taxa, H.

tanacetifolia is a perennial with relatively large flowers and a diploid chromosome

number of 2n = 14. In contrast, the other European Descurainia, D. sophia, is a small-

flowered annual or biennial with a chromosome number of 2n = 28.

Recent molecular studies have demonstrated that many Macaronesian groups,

rather than being relictual, are recently derived from herbaceous continental ancestors.

The monophyly of the island clade and its sister relationship to H. tanacetifolia is

consistent with a derived position for Descurainia in the Canary Islands. The low

sequence divergence among the island species, and molecular dating reported in Chapter

2, lend support for a recent introduction. In contrast to groups in which woodiness and

the perennial habit appear to have been acquired after arrival in the islands (e.g.,

Aichryson Webb & Berthel. [Crassulaceae; Fairfield & al., 2004]; Argyranthemum

[Francisco-Ortega & al., 1997]; and Echium [Böhle & al., 1996]), both characteristics

may have been present in the continental ancestor of Canarian Descurainia. The closest

continental relative, H. tanacetifolia, is a perennial, and one of its two subspecies, H.
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tanacetifolia ssp. suffruticosa, is suffrutescent near the base (Schulz, 1924). Descurainia

sect. Sisymbriodendron is not the only recently derived insular group whose continental

ancestors may have been woody perennials. While there has undeniably been an increase

in insular woodiness in many Macaronesian groups, in many cases the closest continental

relatives of these endemics are reported to be suffrutescent perennials or shrubs. Among

such groups, which also have annual and/or herbaceous members, are the Bencomia

alliance (Helfgott & al., 2000), Convolvulus L. (Convolvulaceae; Carine & al., 2004),

Isoplexis (Bräuchler & al., 2004), Plantago (Rønsted & al., 2002), the Sonchus alliance

(Kim & al., 1996), and possibly Pericallis (Swenson & Manns, 2003; but see Panero &

al., 1999).

Character optimizations suggest that Descurainia first arrived in the Canary

Islands on one of two islands (Fig. 4.5). One most parsimonious reconstruction (Fig.

4.5A) implies that the original location of Canarian Descurainia was on the island of La

Palma with one dispersal to Gran Canaria, one dispersal to La Gomera, and two

dispersals to Tenerife. The other optimization (Fig. 4.5B) points to Tenerife as the

ancestral island. It suggests that there has subsequently been a single dispersal from

Tenerife to La Palma, followed by dispersal from La Palma to Gran Canaria and La

Gomera and back-dispersal from La Palma to Tenerife (and thus that D. bourgaeana

arose from D. gilva). Initial introduction onto Tenerife is more likely because Tenerife is

older, larger, and closer to the continent than La Palma. While both scenarios imply that

taxa on Gran Canaria arose from introductions from La Palma, it should be noted that

reconstructions that support dispersal to Gran Canaria from adjacent Tenerife require

only one additional step.

Few molecular studies have addressed origin and direction of colonization within

the Canary Islands. Each island, except El Hierro (the youngest), has been proposed at
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least once as the location of an initial introduction, but the two most common patterns

reported to date involve dispersal from the eastern to western islands and dispersal from

Tenerife. The easternmost, and oldest, islands of Fuerteventura and/or Lanzarote have

been identified as the ancestral location for Androcymbium Willd. (Colchicaceae;

Caujapé-Castells & al., 2001), Aichryson (Fairfield & al., 2004), and two of the three

independent introductions of Asteriscus (Goertzen & al., 2002). In the case of

Androcymbium, and possibly Aichryson, subsequent dispersal to the five westernmost

islands proceeded via La Palma. Percy & Cronk (2002) proposed that La Gomera was the

location of two separate introductions of Teline. One colonization of Asteriscus (Goertzen

& al., 2002) appears to have taken place on Gran Canaria. In addition to Descurainia,

genera for which Tenerife is proposed as either the island of first introduction or as an

important center of dispersal include Lotus (Fairfield & al., 2004), Crambe (Francisco-

Ortega & al., 2002), and Sonchus (Kim & al., 1996).

Ecological diversification. –– When ecological zones are mapped onto the

chloroplast tree (Fig. 4.4), all reconstructions agree that the most likely ancestral habitat

of Descurainia in the Canary Islands was lowland scrub with subsequent shifts into pine

forest and high altitude desert. This pattern of radiation from lower elevation zones to

higher elevation zones has also been observed in Crambe (Francisco-Ortega & al., 2002).

Several modes of species diversification have been identified within the Canary

Islands. One such pattern is intra-island adaptive radiation, in which speciation is

accompanied by habitat shifts within the same island. Speciation may also be facilitated

by inter-island colonization, either between similar ecological zones or accompanied by

ecological shifts. Molecular studies of several Macaronesian groups have sought to

examine the relative importance of these modes of evolution. It should perhaps be
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emphasized that in all of the groups studied, one pattern may dominate, but both

processes appear to have contributed in varying degrees. Inter-island colonization has

been the primary mode of diversification in most Macaronesian groups, including

Aeonium (Mes & t ' Hart, 1996), Argyranthemum (Francisco-Ortega & al., 1996),

Crambe (Francisco-Ortega & al., 2002), Lotus (Allan & al., 2004), Pericallis (Panero &

al., 1999), and the Sonchus alliance (Kim & al., 1996), while intra-island adaptive

radiation has dominated the evolutionary history of the Gonospermum Less. (Asteraceae)

alliance (Francisco-Ortega & al., 2001), Sideritis (Barber & al., 2000) and the Teline

monspessulana group (Percy & Cronk, 2002). In Bystropogon (Trusty & al., 2005), intra-

island adaptive radiation has contributed to the evolution of one major clade but inter-

island dispersal has been common in the other.

Both intra-island adaptive radiation and inter-island dispersal have occurred in

Descurainia. At least two species, and possibly a third, have arisen on Tenerife through

adaptive radiation (i.e., D. gonzalezi, D. lemsii, and perhaps D. bourgaeana). On the

other hand, several cases of inter-island dispersal can be inferred as well. Character state

reconstructions suggest inter-island dispersal has taken place from lowland scrub on

Tenerife or La Palma to similar habitat on Gran Canaria, giving rise to D. artemisioides

and D. preauxiana. Furthermore, two dispersals must have occurred between La Palma

and Tenerife, although the direction of colonization is equivocal. In these cases, inter-

island dispersal has been accompanied by at least one habitat shift.

CONCLUSIONS

Canary Island species of Descurainia appear to be recently descended from

continental ancestors via a single colonization event. The closest continental relative is H.

tanacetifolia, which is clearly nested within Descurainia. The chloroplast data suggest
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that intra-island adaptive radiation and inter-island colonization have both played a

prominent role in the evolution of Descurainia in the Canary Islands, and that the most

likely ancestral location of the island progenitor was the lowland scrub zone on Tenerife.

By utilizing several rapidly-evolving non-coding chloroplast DNA regions, it was

possible to construct a highly-resolved phylogenetic history for Descurainia in the

Canary Islands. In contrast, the ITS tree is uninformative. Given the lack of resolution in

the ITS tree and the evidence for hybridization in the chloroplast phylogeny, a better-

resolved nuclear-based phylogeny is needed to confirm the patterns detected in this study.
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Table 4.1. Plant material used in the Canary Island study. Seed source for all cultivated
plants was the Escuela Técnica Superior de Ingenieros Agrónomos de
Madrid crucifer seedbank, Universidad Politécnica de Madrid, Spain.

Taxon (DNA accession): Location, collector and DNA voucher (herbarium); Insular
habitat; GenBank accessions (ITS, trnD-trnE, trnE-trnT, psbZ-trnfM, ndhF-rpl32,
rpoB-trnC, ndhC-trnV, rps16)

Arabidopsis thaliana (L.) Heynh.; GenBank; – ; NC_000932;

Descurainia artemisioides Svent.: Gran Canaria: Berrazales, cultivated, (TEX);
Lowland scrub; DQ418708, DQ418554, DQ418576, DQ418598, DQ418620,
DQ418642, DQ418664, DQ418686;

D. bourgaeana Webb ex O. E. Schulz B14: Tenerife: Cañadas del Teide, El
Portillo, A. Santos s. n. (ORT); High altitude desert; DQ418709, DQ418555,
DQ418577, DQ418599, DQ418621, DQ418643, DQ418665, DQ418687; D7: La
Palma: Los Andenes, La Caldera National Park, A. Santos s. n. (ORT); High altitude
desert; DQ418711, DQ418557, DQ418579, DQ418601, DQ418623, DQ418645,
DQ418667, DQ418689; B171: Tenerife: Las Cañadas, cultivated, (TEX); High
altitude desert; DQ418710, DQ418556, DQ418578, DQ418600, DQ418622,
DQ418644, DQ418666, DQ418688;

D. depressa (Phil.) Reiche: Bolivia: Patarani, B. Goodson 1505 (TEX); – ;
DQ418712, DQ418558, DQ418580, DQ418602, DQ418624, DQ418646,
DQ418668, DQ418690;

D. gilva Svent. B22: La Palma: Cumbres de Puntallana, A. Santos s. n. (ORT); Pine
forest; DQ418714, DQ418560, DQ418582, DQ418604, DQ418626, DQ418648,
DQ418670, DQ418692; B163: La Palma: Las Manchas, cultivated (TEX); Pine
forest; DQ418713, DQ418559, DQ418581, DQ418603, DQ418625, DQ418647,
DQ418669, DQ418691;

D. gonzalezi Svent. B19: Tenerife: Vilaflor, Carretera a Madre de Agua, A. Santos
s. n. (ORT); Pine forest; DQ418562, DQ418584, DQ418606, DQ418716,
DQ418628, DQ418650, DQ418672, DQ418694; B160: Tenerife: Las Cañadas,
cultivated, (TEX); High altitude desert; DQ418561, DQ418583, DQ418605,
DQ418715, DQ418627, DQ418649, DQ418671, DQ418693;

D. incisa (Engelm. ex A. Gray) Britton: USA: Eagle Co., Colorado, B. Goodson
1502 (TEX); – ; DQ418717, DQ418563, DQ418585, DQ418607, DQ418629,
DQ418651, DQ418673, DQ418695;
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Table 4.1. Continued.

D. kochii (Petri) O. E. Schulz: Turkey: Kastamonu, A. Dönmez 11793 (TEX); – ;
DQ418718, DQ418564, DQ418586, DQ418608, DQ418630, DQ418652,
DQ418674, DQ418696;

D. lemsii Bramwell B23: Tenerife: Cumbres de la Orotova, A. Santos s. n. (ORT):
Pine forest; DQ418720, DQ418566, DQ418588, DQ418610, DQ418632,
DQ418654, DQ418676, DQ418698; B170: Tenerife: La Crucita, cultivated, (TEX);
Pine forest; DQ418719, DQ418565, DQ418587, DQ418609, DQ418631,
DQ418653, DQ418675, DQ418697;

D. millefolia (Jacq.) Webb & Berthel. B24: La Palma: Barranco del Rio, A. Santos
s. n. (ORT); Lowland scrub; DQ418721, DQ418567, DQ418589, DQ418611,
DQ418633, DQ418655, DQ418677, DQ418699; B38: Tenerife: Buenavista,
cultivated, (TEX); Lowland scrub; DQ418722, DQ418568, DQ418590, DQ418612,
DQ418634, DQ418656, DQ418678, DQ418700; D1: Tenerife: Buenavista del
Norte, J. Panero & J. Francisco-Ortega 6987 (TEX); Lowland scrub; DQ418723,
DQ418569, DQ418591, DQ418613, DQ418635, DQ418657, DQ418679,
DQ418701; D5: Tenerife: El Fraile, A. Santos s. n. (ORT); Lowland scrub;
DQ418724, DQ418570, DQ418592, DQ418614, DQ418636, DQ418658,
DQ418680, DQ418702; F2: La Gomera: Chejelipes, leg. ign. AAU71-7533 (MO);
Lowland scrub; DQ418725, DQ418571, DQ418593, DQ418615, DQ418637,
DQ418659, DQ418681, DQ418703;

D. preauxiana (Webb) Webb ex O. E. Schulz B117: Gran Canaria: Ayacata,
cultivated, (TEX); Lowland scrub; DQ418726, DQ418572, DQ418594, DQ418616,
DQ418638, DQ418660, DQ418682, DQ418704;

D. sophia (L.) Webb ex Prantl: USA. Saguache Co., Colorado: B. Goodson 1461
(TEX); – ; DQ418727, DQ418573, DQ418595, DQ418617, DQ418639,
DQ418661, DQ418683, DQ418705;

Hugueninia tanacetifolia (L.) Prantl ssp. tanacetifolia: Italy: Piemonte. Pistarino
2027 (NY); – ; DQ418728, DQ418574, DQ418596, DQ418618, DQ418640,
DQ418662, DQ418684, DQ418706;

Smelowskia americana (Regel & Herder) Rydb.: USA. Park Co., Colorado: B.
Goodson 1462 (TEX); – ; DQ418729, DQ418575, DQ418597, DQ418619,
DQ418641, DQ418663, DQ418685, DQ418707.
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Table 4.2. Sequence characteristics of DNA regions used in the Canary Island study.

trnD-trnE trnE-trnT psbZ-trnfM ndhF-rpl32 rpoB-trnC ndhC-trnV rps16
intron

Combined
chloroplast

ITS

Seq. length (bp) 521-537 592-759 656-731 849-922 1008-1170 824-884 782-815 5478-5637 592-611

Alignment
length

553 790 754 968 1202 913 849 6029 618

No. of non-
autapomorphic
indels

0 1 2 3 2 2 4 14 0

No. inf. chars.
(%) incl.
outgroups and
indels

22 (3.9%) 27 (3.4%) 23 (3.3%) 44 (4.5%) 37 (3.1%) 45 (4.9%) 41 (4.8%) 239 (4.0%) 47 (7.6%)

No. inf. chars.
(%) incl.only
island taxa and
indels

4 (0.72%) 3 (0.38%) 4 (0.53%) 6 (0.62%) 7 (0.58%) 10 (1.1%) 10 (1.2%) 44 (0.73%) 0

No. of MPTs 1 1 >50,000 >50,000 156 900 1382 42 28

Length of
MPTs

61 90 99 163 128 122 95 762 158

Consistency
index excl.
uninf. chars.

0.87 0.83 0.69 0.82 0.82 0.81 0.88 0.82 0.79

Retention index 0.93 0.91 0.72 0.90 0.91 0.91 0.94 0.89 0.85
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Fig. 4.1. Map and distribution of Descurainia in the Canary Islands. Approximate age of each
island is given in millions of years (mya) following Carracedo (1994).
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Fig. 4.2. One of 28 most parsimonious trees derived from nuclear ITS data. Dashed lines indicate
branches that collapse in the strict consensus tree. Branch lengths are indicated below branches;
bootstrap values > 50 % / Bayesian posterior probabilities are indicated below. Generic names are
abbreviated as follows: A. = Arabidopsis, D. = Descurainia, H. = Hugueninia,and S. =
Smelowskia.



181

D. bourgaeana B14

D. bourgaeana D7

D. gilva B163

D. gilva B22

D. bourgaeana B171

D. gonzalezi B160

D. artemisioides

D. preauxiana

D. millefolia B24

D. gonzalezi B19

D. lemsii B170

D. lemsii B23

D. millefolia D1

D. millefolia D5

D. millefolia B38

H. tanacetifolia

D. depressa

D. incisa

D. sophia

D. kochii

S. americana

A. thaliana

100/100

100/100

73/97

70/98

- /98

100/100

100/100

72/95

80/99

96/100

100/100

100/100

99/100

100/100

99/100

100/100

6

0

3

6

0

0

0

4

4

0

11

11

2

5

220

87

58

44

11

93

29

50

13

28

17

11

1

7

3

2

1

5

8

11

3

0

0

0

2

0

SW Europe

S. America

N. America

Eurasia

Turkey

Tenerife

Tenerife

Tenerife

La Palma

La Palma

Gran
Canaria

6

2
D. millefolia F2 La Gomera67/99

Fig. 4.3. One of 42 most parsimonious trees derived from combined rps16, trnD-trnE, trnE-trnT,
psbZ-trnfM, ndhF-rpl32, rpoB-trnC, and ndhC-trnV chloroplast sequence data. Dashed lines
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= pine forest, and filled circle = high altitude desert.
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Fig. 4.5. Most parsimonious reconstructions resulting from optimization of island distribution on
the single most parsimonious tree obtained after phylogenetic analysis of the reduced chloroplast
DNA data set when D. bourgaeana is constrained to monophyly. Arrows between islands on the
map indicate direction of dispersal; arrows within an island represent intra-island adaptive
radiation. A) Reconstruction suggesting La Palma as ancestral island for Canarian Descurainia;
B) reconstruction suggesting Tenerife as ancestral island.
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