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Flooding is a dangerous natural disaster that poses risk to property and

personal safety world-wide. The state of Texas is especially vulnerable to floods; a

region known as “Flash Flood Alley” runs through central Texas, and the coastal

region is prone to severe tropical storms and hurricanes. Flood warning systems

exist in large cities throughout Texas, but there is no coordinated state-wide flood

warning network. In this study, we investigate the feasibility of creating a lo-

cally intelligent, state-wide flood forecasting system by using local observational

streamflow data to better inform a national forecasting model. A method is devel-

oped to integrate streamflow sensors and precipitation products into short-range,

18-hour National Water Model (NWM) forecasts through data assimilation (DA).

Four-dimensional variational data assimilation is coupled with a mass-conservative

Muskingum-Cunge flow routing scheme to propagate streamflow corrections up-

stream and downstream from the sensor locations. The model is applied to a rural

study area in the Texas Hill Country, and the streamflow DA model creates im-

proved forecasts products at the sensor location and over 15 miles upstream and

downstream of the sensor. Proof of concept results from a simplified surface runoff

model using precipitation corrections indicate improved streamflow profiles at the
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upstream location. With further validation and development, there is real poten-

tial in assimilating local data into the NWM to create a statewide flood forecasting

network.

Keywords: flooding, streamflow data assimilation, variational data assimilation,

Muskingum-Cunge, flood warning system
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Chapter 1: Introduction

1.1 Motivation

Flooding is often considered the most devastating natural disaster in the world. It

is the deadliest severe weather hazard in the United States, with a 10-yr average

of over 90 fatalities a year (NWS, 2018). Floods are also the costliest natural

disaster in the United States, causing almost $5 billion in damages annually over

the last 40 years, even excluding damage caused by tropical storms/cyclones (Na-

tional Centers for Environmental Information, 2020). Fatalities and damage costs

due to flooding are exacerbated and continue to increase as extreme rainfall events

become more intense and frequent due to climate change (Boucher et al., 2013).

Floods exist in different forms, such as pluvial flash floods due to intense rainfall

events, prolonged coastal floods caused by tropical storms and hurricanes, and a

combination of both, often referred to as compound flooding (Wahl, Jain, Bender,

Meyers, & Luther, 2015). The state of Texas is both flood- and hurricane-prone,

making it exceptionally susceptible to all types of flooding.

Large urban metroplexes in Texas have developed early flood warning sys-

tems to alert their citizens of dangerous severe weather events. Examples include

the Flood Early Warning System (FEWS) in the city of Austin, TX and the Har-

ris County flood warning system (HCFWS) for Houston, TX and the surrounding

area. FEWS encompasses 130 water level gages, 15 automatic low water crossing

lights or barricades, and predictive modeling and mapping (City of Austin, 2020).
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The HCFWS has an even larger network of 177 water and stream level gages (Har-

ris County Flood Control District, 2020). Preventative measures like these early

warning systems are critical in reducing flood-related deaths. Most flood fatalities

occur on roads, where people are unaware of the life-threatening danger of driving

into flooded water and are unable to escape from their cars (Jonkman & Kelman,

2005; Sharif, Jackson, Hossain, & Zane, 2015).

Although robust flood monitoring and early warning systems exist in large

cities, more rural areas and towns do not have such sophisticated flood prepared-

ness measures in place, leaving citizens and response teams vulnerable to major

storm events. In regions with ungaged rivers and no monitoring systems in place,

emergency services often rely on emergency calls of rising water levels and sub-

merged roads for road closures and evacuation plans. Depending on such reac-

tionary measures can leave rural populations especially vulnerable to flash floods.

For example, in the Texas Hill Country flood in September 2018, the Llano River

suddenly swelled to 40 feet after 10 inches of rain fell in less than 24 hours (McN-

abb, 2018). There were two fatalities associated with the disaster.

Despite the seeming necessity of more proactive measures against flooding,

there are several obstacles preventing small communities from implementing flood

warning systems. Extensive gage networks are expensive to install and to main-

tain. Small communities may be more likely to install a few critically located

gages, but a single gage can only provide a single pinpoint of data in an entire

stream network. Forecasting and hydrologic models can use gage data to assign

a wider significance to limited observations, but developing advanced hydrologic
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models to forecast floods is often data intensive and requires significant expertise.

Small, rural communities rarely have the resources available to support such mea-

sures.

There is a disconnect between people living in rural areas struggling to build

flood warning systems from scratch and existing well-developed forecasting mod-

els. One such existing model is the National Water Model (NWM). The NWM is

a hydrologic modelling framework that simulates observed and forecasted stream-

flow over the entire continental United States (CONUS) and Hawaii. The NWM

ingests a variety of data ranging from radar-gauge observed precipitation to nu-

merical weather prediction, which it uses to create informed forecasts extending

up to 30 days in advance. This study proposes that the NWM creates a unique

opportunity for a statewide implementation of cost-effective flood warning systems.

In this thesis, we evaluate the viability of combining observational data from

streamflow gages with the National Water Model through data assimilation (DA)

to bridge the gap between national flood forecasting and local emergency response.

This study first seeks out to investigate the capability of applying NWM forecast

outputs and local sensor observations to an external data assimilation model in

real-time. The study will then evaluate the performance of the DA model with

two configurations: (1) with only streamflow data assimilating into the model, and

(2) with streamflow and precipitation observations informing the model.
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1.2 Research Questions

This thesis examines the feasibility of utilizing the existing National Water Model

forecasting framework to improve local streamflow forecasts and to eventually in-

form locally intelligent flood warning systems. Three research questions are ad-

dressed:

1. 1. Can an external modeling framework extract forecast data from the Na-

tional Water Model and execute a data assimilation scheme using local stream-

flow data to create a more locally informed forecast? To what extent does this

operation improve the forecasts?

We expect that the model chosen for this study, four-dimensional varia-

tional data assimilation, will efficiently combine the NWM forecasts and

gage-observed streamflow into a single, improved flow profile. The im-

proved streamflow profile can be propagated upstream and downstream of

the streamflow sensor location.

2. Does adding precipitation corrections into the data assimilation model im-

prove the forecast accuracy? To what extent?

By adding the precipitation corrections, we will create a more complete hy-

drologic system within the model. The configuration incorporates surface

runoff contributions to the channel in the form of lateral flow. We expect

implementing precipitation corrections will improve the model performance,

but to a less dramatic extent than the streamflow assimilation.

3. Does this method of combining local gage-observed data and the National

4



Water Model show potential for a state-wide flood warning system?

We expect this thesis to highlight both the strengths and weaknesses of

utilizing a national forecasting framework to inform locally significant events.

It is the first step in a larger effort to use the National Water Model as a

tool for local flood warning systems across the state of Texas. We expect the

study to provide promising results that will inform future endeavors.

1.3 Background

1.3.1 National Water Model

In August 2016, the National Oceanic and Atmospheric Administration (NOAA)

established the National Water Model. The NWM is a hydrologic modelling frame-

work that simulates observed and forecasted streamflow in over 2.7 million stream

reaches over the entire continental United States and Hawaii (Office of Water Pre-

diction, 2020). The National Water Model is comprised of four primary forecast

configurations: analysis/assimilation, short-range, medium-range, and long-range

forecasts. The analysis/assimilation and short-range products are produced hourly

and are the focus of this work. The medium- and long-range products are ensemble

forecasts extending up to 10 and 30 days in advance, respectively, and are created

every 3 and 6 hours, respectively. The medium- and long-range forecasts were

not chosen for this study for several reasons, including: (1) the larger temporal

resolution of 3-6 hours does not suit the rapidly developing nature of flash floods,

(2) forecasts with several days of lead time are extremely difficult to predict and

typically lose accuracy as forecast windows extend, and (3) real-time data assimi-

lation is better suited to describe immediate conditions or those in the near future.
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The core of the NWM framework is the National Center for Atmospheric Re-

search (NCAR)-supported community Weather Research and Forecasting Hydro-

logic model (WRF-Hydro). WRF-Hydro ingests forcing from a variety of sources

including precipitation data from the Multi-Radar/Muti-Sensor precipitation sys-

tem and Stage IV Multisensor Precipitation Estimator, and forecast data from

High Resolution Rapid Refresh, Rapid Refresh, and Global Forecasting System

and Climate Forecast System Numerical Weather Prediction. WRF-Hydro simu-

lates land surface processes with the Noah-MP Land Surface Model (Niu, 2011).

Separate water routing modules perform diffusive wave surface routing and sat-

urated subsurface flow routing on a 250 m grid, and Muskingum-Cunge channel

routing down National Hydrography Dataset stream reaches (Gochis et al., 2018).

For the National Water Model, WRF-Hydro employs a simple nudging data

assimilation implementation to correct modeled stream flows to observed values

at United States Geological Survey (USGS) gages. Nudging allows the NWM to

improve model simulation and forecast initial conditions. This DA method is com-

putationally inexpensive because it enacts a simple assimilation scheme. It inserts

an observed state into the model (with some uncertainty), and the corrections are

then propagated downstream within the stream network. Nudging works well close

to the points of observation but can cause upstream errors. In order to avoid dis-

continuities, WRF-Hydro implements a limited temporal-interpolation approach

to smooth the nudge in time and space. Essentially, the nudging loses power as

it propagates downstream and into the forecast itself. The reader can explore the

model further in the WRF-Hydro Technical Description (Gochis et al., 2018).
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1.3.2 Hydrological and hydraulic routing models

A fundamental step in the development of flow routing models is the estimation of

travel time and attenuation for flood waves in river channels (Heatherman, 2012).

Streamflow routing models vary greatly in complexity and level of mathematical

sophistication. The two primary categories of conceptual flow routing methods

are hydrologic or “lumped” flow models and hydraulic or “distributed” models.

The simpler hydrologic model solves the continuity equation using a relationship

between storage and flow (Ionescu & Gogoaşe Nistoran, 2019). In hydrologic mod-

els, flow routing for a finite stream reach is determined by solving directly for the

outflow as a function of inflow, with all geomorphological and hydraulic proper-

ties of the stream reach lumped into model parameters (Todini, 2007). Perhaps

the best-known hydrologic routing model is the Muskingum method, introduced

by McCarthy to manage the Muskingum River basin in Ohio (McCarthy, 1938).

The Muskingum method is mass conservative, but its simplified nature makes it

challenging to achieve accuracy over large flow regimes, and sharp gradients in the

inflow may lead to false oscillations in the solution and negative flows in the rising

limb of a hydrograph (Perumal, 1992; Perumal & Bhabagrahi, 2008).

Hydraulic routing models, on the other hand, are more flexible than their

hydrologic counterparts. Hydraulic, or distributed, models calculate flow as a

function of time and space throughout the system and are governed by both the

continuity equation and the momentum conservation equations, i.e. the partial dif-

ferential Saint Venant’s equations (Ionescu & Gogoaşe Nistoran, 2019). In 1969,

Cunge extended the Muskingum method to time-variable parameters whose values
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could be determined as a function of a reference discharge and other parameters

such as channel geometry. Cunge’s time-variant model is often designated as a

“semi-distributed” routing model and is commonly referred to as Muskingum-

Cunge (MC).

The MC method has been widely and successfully used for discharge rout-

ing, but there are a couple of well-known shortcomings in the routing model. One

such weakness is the one-dimensional nature of Muskingum-Cunge, which prevents

the model from capturing the dynamics of backwater effects (Shastry et al., 2019).

Backwater effects are a significant element of inland flow dynamics in coastal ar-

eas. This concept will be explored further in Section 3.2.

Another issue with Muskingum-Cunge, as several authors have pointed out,

is that the approach displays a mass balance error that can reach values of 8 to 10%

(Perumal & Bhabagrahi, 2008; Tang, Knight, & Samuels, 1999). Todini (2007) as-

serted the mass balance error exists because the original Muskingum derivation

assumes constant parameters, while the Cunge alteration uses time-variant pa-

rameters. Todini proposed an iterative approach for adapting the MC model to

be mass conservative. Schwanenberg and Alvarado Montero (2016) then refor-

mulated the ideas from Todini (2007) into a numerical implementation that is

mass-conservative and suppresses numerical oscillations, overshooting, and nega-

tive flows.

The National Water Model’s modeling system implements a standard Muskingum-

Cunge method of hydrograph routing with time varying parameter estimates (Gochis

8



et al., 2018). This study seeks to mimic the model framework from the NWM,

but we did not want to ignore the great improvements that have been made

in the field of flow routing models. To that point, this study implements the

mass-conservative, iterative Muskingum-Cunge adapted routing model presented

by Schwanenberg and Alvarado Montero (2016). This model will hereafter be re-

ferred to as the Muskingum-Cunge-Todini (MCT) routing model.
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Chapter 2: Literature Review

2.1 National Water Model Performance

There have been a few studies that have evaluated the performance of the Na-

tional Water Model since its release in 2016. Lin, Hopper, Yang, Lenz, and Zeitler

(2018) studied the hydrometeorological factors constraining flood prediction skill

of a physically based model resembling the NWM over the Texas Hill Country

flood events in 2015. The study found that the best flood predictive skill of the

NWM tends to be observed in regions experiencing rapid rises of floodwater from

causative rainfall, with the model suffering at gages with less rapid flood responses

and those with human-altered flows.

Austin-Petersen (2018) analyzed the accuracy of NWM analysis/assimila-

tion and short-range forecasts during the Texas Hill Country floods of 2018 in the

Llano River basin in central Texas as a measure of closeness to USGS stream gages.

In gaged river basins, Austin-Petersen noted that the NWM performed well for

the analysis/assimilation product, but the short-range forecast sometimes contin-

uously predicted decreasing streamflow despite rising flood waters. He attributed

this behavior to incorrect precipitation predictions and resulting rainfall-runoff

mechanisms. The study indicated that the NWM performed poorly in river basins

without USGS gages.
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Viterbo et al. (2020) performed an error analysis on the National Water

Model performance during a flash food event in Ellicott, Maryland in 2018. The

study focused on understanding and assigning uncertainties within the NWM

short-range forecast. They investigated the precipitation forecast product High

Resolution Rapid Refresh and the corresponding hydrologic modeling framework

response to understand how errors propagate through the forecast chain. Viterbo

et al. (2020) found that a slight spatial displacement of a rainfall event, due to

errors in meteorological inputs, can vastly effect the final streamflow forecasts

produced by the National Water Model. They also concluded that these meteo-

rological inaccuracies are compounded in large watersheds, because the location

of intense rainfall events within a large watershed greatly affects the time and

magnitude of peak flows.

2.2 Data Assimilation Models

Data Assimilation (DA) involves combining observations with “prior knowledge”

such as numerical models to obtain an estimate of the true state of a system

and the associated uncertainty of that estimate (Nychka & Anderson, 2010). The

mathematical discipline of data assimilation was initially developed in the field

of Numerical Weather Prediction (Daley, 1991), but its applications today are

far-reaching. One example is how the new age of increasing availability of remote-

sensing data has led to an expansion of data assimilation studies using satellite

data (Montero et al., 2016). Interesting remote-sensing data assimilation studies

include utilizing satellite data to inform a global groundwater storage time series

for drought monitoring (Daley, 1991) and cloud analysis to predict tornadic thun-

derstorms (Hu, Xue, & Brewster, 2006).
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In the realm of flow forecasting, numerous types of data assimilation meth-

ods are constantly developed to create more comprehensive and true-to-life numer-

ical models. Examples include the assimilation of potential evaporation data (Seo,

Cajina, Corby, & Howieson, 2009), of soil moisture and snow depth (Lu, Crow,

Zhu, Yu, & Sun, 2015), and of streamflow data (Lee et al., 2012).

Here, we look at two primary classes of data assimilation models in hydrol-

ogy—sequential and variational data assimilation. Sequential methods rely on the

propagation of model updates from one time to the next in a recursive manner

in order to improve the state estimate (Mclaughlin, 2002). A common principle

in sequential DA is filtering, which attempts to sequentially obtain the posterior

distribution of the state at the current time based on all observations collected so

far (Katzfuss, Stroud, & Wikle, 2016). Kalman (1960) introduced a classic filter-

ing model to work with the entire distribution of the state explicitly, which is now

known as the Kalman filter (KF). The Kalman filter has served as a cornerstone

model in the field of data assimilation. There have been adaptations of the KF;

the most common are the extended Kalman filter and the widely applied Ensemble

Kalman Filter (EnKF) (Evensen, 1994).

The second class of data assimilation, variational data assimilation, uses

optimization algorithms to minimize an objective function (Reichle, 2008). This

objective function is defined in terms of a trade-off between the amount of noise

introduced into the model and the distance between simulated and observed vari-

ables (Alvarado-Montero, Schwanenberg, Krahe, Helmke, & Klein, 2017).
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Recent studies using variational data assimilation to improve streamflow

prediction include: operational streamflow forecasting for gauged headwater basins

by assimilating streamflow, precipitation and potential evaporation data (Seo et

al., 2009) and operational hydrologic forecasting in real-world experiments by as-

similating streamflow data into soil moisture accounting and flow routing models

(Lee et al., 2012). Lee et al. (2012) justify their decision to use a variational

approach over the classic EnKF sequential model by explaining that EnKF is op-

timum only if the observation equation is linear; the linearity constraint can easily

be violated when assimilating streamflow in large storm surges. The variational

approach used in this study to assimilate streamflow into a hydrologic model is

4-dimensional variational (4D-Var) data assimilation and is described in Montero

et al. (2016).

Variational methods depend on adjoint models which compute the sensitiv-

ity of the model output to each of the inputs and states of the model (Seo, Koren,

& Cajina, 2003). The adjoint model is frequently seen as a significant drawback

for variational methods because it adds an additional level of mathematical com-

plexity to the model. Adjoint models will be discussed in further detail in Section

4.3.

13



Chapter 3: Study area and data sources

In this chapter we describe the selection process for the study area and storm events

analyzed in this study. We then explore the types of data applied to the data as-

similation model and the retrieval process used to gain access to the datasets. All

data used in this study are open-source and available for public use. See Appendix

A for online access to all data sources.

3.1 Texas Department of Transportation streamflow sensors

In 2017, the Center for Water and the Environment of the University of Texas

at Austin partnered with the Texas Department of Transportation (TxDOT) to

install a transect of 20 radar streamflow sensors on Interstate Highway 10 (I-10)

bridges (Figure 3.1). The project’s goals were, firstly, to examine the feasibility of

a implementing a robust, statewide streamflow measurement program on TxDOT

bridges and, secondly, to explore the potential of utilizing data from TxDOT

gages and the National Water Model to more accurately depict and forecast flow

conditions on the bridge and transportation network (Maidment et al., 2019). The

project was titled and will be hereafter referred to as Streamflow Measurement at

TxDOT Bridges. This thesis is an extension of the statistical work (Task 5) of

Streamflow Measurement at TxDOT Bridges.
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Figure 3.1: Transect of TxDOT streamflow radar sensors on I-10.

Each radar sensor on the I-10 transect measures the water elevation and

velocity every 15 minutes. These data, coupled with detailed cross-sections of the

streambeds, generate the channel streamflow. The TxDOT sensor streamflow data

is separate from the USGS gage network and can therefore be treated as indepen-

dent from the National Water Model.

The streamflow and stage data for the TxDOT streamflow sensors are pro-

cessed and stored in a cloud data system maintained by KISTERS, a global soft-

ware solutions and technology firm. The data can be viewed in html format or

downloaded as Microsoft Excel and comma-separated values (CSV) files.
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3.2 Study Area

The study area for this thesis needed to be selected from the 20 TxDOT streamflow

sensors on the I-10 transect. Several of the sensors are placed in the far eastern re-

gion of Texas, near Houston and Beaumont, TX. This region is extremely flat and

low-lying, with elevations near sea level, and the sensors are placed over streams

or bayous close to the Gulf of Mexico. Because of these factors, there are consider-

able backwater effects and tidal action in these streams. The interactions between

the inland flows and the coastal tides can create negative velocities in the stream,

which is then transformed into negative flow rates. For example, the most eastern

TxDOT sensor over the Sabine River exhibits extremely active tidal action (Figure

3.2).

Figure 3.2: Sample hydrograph at the Sabine River TxDOT sensor demonstrating the
effects of backwater and tidal action.

Unfortunately, the routing scheme used in this study cannot account for

backwater effects, so these locations are not ideal for study area selection. An-

other factor in selecting the study area was data availability. Several of the TxDOT

sensors were not fully installed and calibrated until the latter half of 2019; these

sensors therefore did not record the larger storms that were captured by the se-
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lected TxDOT gage described below.

The streamflow sensor we chose to analyze for this study is located in

Kendall County in the Texas Hill Country and within “Flash Flood Alley” (Figure

3.3(a)).

Figure 3.3: (a) Location of Guadalupe River study area relative to “Flash Flood Alley”
(b) Relevant USGS and TxDOT streamflow sensors in Guadalupe River study area.

The TxDOT sensor is located at the intersection of the Guadalupe River

and Interstate Highway 10. The study area then extends upstream and down-

stream from the sensor 50 and 30 miles, respectively. Previous work developed in

Streamflow Measurement at TxDOT Bridges indicated that this was a conservative

range for streamflow propagation (Maidment et al., 2019). We then widened the

boundary to include the channel heads of this section of the Guadalupe River.

In this study area, there are four active USGS stream gages on the Guadalupe

River (Figure 3.3(b)). The closest USGS gage upstream of the TxDOT gage is

approximately 35 river miles away (USGS gage 08166250). Although the presence

of an upstream USGS gage could affect the NWM forecasts, we considered the
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span of 35 miles large enough for the influence of the nudging to phase out. The

TxDOT gage itself is collocated with USGS gage 08167000. The data from USGS

gage 08167000 tell a story of historical flooding. In May 2016, the stage height

surged to almost 28 ft; the National Weather Service flood stage at this location

is 21 ft. The USGS gage also recorded a peak flow of 61,200 cfs and a stage height

of over 25 ft during the 2018 Texas Hill Country floods.

In order to circumvent the influence of the collocated USGS gage on the

NWM products we substituted the NWM simulated streamflow with the sum of

the two branching stream segments directly upstream. A brief exploration into

the NWM forecast data confirmed the validity of this assumption.

3.3 Storm Events

The TxDOT streamflow radar sensor was installed and calibrated on November

14, 2018. In the period since installation, this region has experienced no large

flooding events. For this study, we focus on the two storm events with the greatest

streamflows recorded by the TxDOT streamflow sensor and one storm event with

a smaller maximum flow (Figure 3.4).
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Figure 3.4: (Left) Single peak storm event in December 2018 containing the highest
recorded flow on the TxDOT sensor. (Center) Complex multi-peak storm event in May
2019 spanning several days. (Right) Short, relatively small storm event in August 2019.
USGS gage 08167000 streamflow is displayed as the blue series.

The first storm was a quick, single-peak storm event in December 2018,

which recorded the maximum flow rate of 1,200 cfs for the TxDOT gage (Figure

3.4 (left)). The second storm occurred in May 2019, with a similar maximum

streamflow as the December 2018 storm, but with a longer duration, spanning

3-4 days (Figure 3.4 (center)). The third and last storm event occurred a couple

months later in August 2019, with a significantly lower peak flow of 660 cfs (Figure

3.4 (right)).

The TxDOT gage strongly agrees with the collocated USGS gage 08167000

during the three selected storm events (Figure 3.4). Leading up to the storm surges,

the baseline streamflow is equivalent between the two gages. In the rising limb of

the storms and during the high streamflow periods in the two greater storm events

(December 2018 and May 2019) the TxDOT gage reports almost identical flow

rates to the USGS gage. The only periods in which there is remarkable difference

between the two streamflow sensors are the receding limbs of the storm events
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and in the smaller peak flows. The most significant difference is during the small

storm event in August 2019, where the TxDOT sensor recorded a peak streamflow

approximately 200 cfs larger than the USGS gage. In a direct comparison of the

stage height between the two gages, the water levels are evenly matched throughout

all three storms (Figure 3.5).

Figure 3.5: Comparison of stage values between the Guadalupe River TxDOT sensor
and USGS gage 08167000 for the three chosen storm events.

The extremely similar stage values indicate that the differences in stream-

flow in the smaller storm and in the receding limbs of the larger storms are due

to an error in velocity calibration. Overall, the comparison between the TxDOT

sensor and USGS gage is very positive; the closely matched flow rates during high

flows indicate that the TxDOT sensors can be relied upon for large flooding events.

3.4 National Hydrography Dataset

The National Hydrography Dataset Plus Version 2 (NHDPlusV2) is the hydro-

logic framework in which streamflow predictions from the National Water Model

are based. The NHDPlusV2 is a comprehensive geospatial dataset of vector-based

surface water features such as rivers and lakes (McKay et al., 2019). The NHD-
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PlusV2 has a reach addressing system in which water features are broken into

smaller reaches and given a unique ComID. Each ComID designates a singular

stream reach, and each ComID has associated latitude/longitude coordinates and

a corresponding contributing area known as its “catchment” (Figure 3.6).

Figure 3.6: National Hydrography Dataset Plus Version 2 flowlines and catchments for
Guadalupe River study area.

3.5 National Water Model forecasts

NOAA maintains a two-day rolling archive of National Water Model forecasts.

This study required NWM data extending much further back than two days at

the time of data retrieval. Fortunately, Google hosts an extensive archive on its

Google Cloud Platform. The Google archive was created in October 2018 and is

continuously updated as more NWM products are released. Each NWM product

is available as a NetCDF file via manual selection on the online archive and via ap-

plication programmers interface (API) calls, sometimes known as URL requests.
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Although the analysis for this study is focused on a tiny fraction of the total

stream reaches in the U.S., the NetCDF files in the archive are only available as

bulk download of the entire CONUS. For this work, subsets of analysis/assimila-

tion data and short-range products were collected and archived during the selected

storm periods.

The two output types utilized in this study are (1) the point-type files for

stream routing and reservoir tables (in this thesis referred to as channel files), and

(2) 1-km gridded forcing files with the precipitation forcing data. For more infor-

mation on the methodologies used to process the large NetCDF files, the reader

can refer to Appendix B.

3.6 Multi-Radar Multi-Sensor precipitation data

The Multi-Radar Multi-Sensor (MRMS) system was recently implemented at the

National Centers for Environmental Prediction (NCEP). MRMS combines data

from a vast array of resources including multiple radars, satellites, surface ob-

servations, upper air observations, rain gauges and numerical weather prediction

models to produce a suite of quantitative precipitation estimation (QPE) products

(Zhang et al., 2016). MRMS provides radar-based QPE, gage-based QPE, and lo-

cal gage bias-corrected radar QPE. Each product has 1-km spatial resolution and

temporal resolution ranges from 1 to 72 hours. A previous study investigated the

accuracy and predictive skill of precipitation products coupled with the NWM and

found that the local gage bias-corrected radar QPE performs best overall (Lin et

al., 2018). Viterbo et al. (2020) also used the bias-corrected QPE from MRMS as
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the observational dataset to evaluate the NWM.

NCEP maintains a rolling one-week archive of real-time operational MRMS

products, but the storms in this study extend past the one-week window. Iowa

State University hosts an archive of several precipitation datasets in the Iowa En-

vironmental Mesonet, including a selection of MRMS precipitation products. The

archive allows for the user to navigate to a date of interest and download the tar-

get QPE product as a bulk file covering the continental United States. MRMS

products are downloaded in a compressed format and, similar to the Google Cloud

Platform for the NWM, can be retrieved via API calls.

The MRMS QPE files are downloaded as GRIB2 files, the World Meterolog-

ical Organization’s standard for distributing gridded data, in a highly compressed

format in an unusual projection coordinate system. The process developed in this

study to access the MRMS precipitation data involves a GRIB2 decoder program

published by the NWS and additional spatial reference system manipulation. For

information on the methodology used to process MRMS files, the reader can refer

to Appendix C.
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Chapter 4: Methodology

4.1 Channel flow routing (theory)

The National Water Model uses a straightforward variable parameter Muskingum-

Cunge channel routing scheme. This routing method is based on the core conti-

nuity equation that relates input, output and storage:

dS

dt
= I(t)−Q(t) (4.1)

where I(t) is input, Q(t) is output, and S(t) is storage. In this situation, the

input is known yet both output and storage are unknown. The Muskingum-Cunge

scheme approaches this issue by framing storage in terms of ‘wedges’ (Figure 4.1).

Figure 4.1: Diagram of the classic semi-distributed hydrologic routing scheme
Muskingum-Cunge. Diagram adapted from Yoo et al. (2017).

The shape and size of the wedge depend on two parameters—flood wave

travel time, K, and weighting factor, x (also referred to as ε). The two parameters
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can be characterized as:

K = ∆x/c (4.2)

ε = 0.5(1− Q

BSoc∆x
) (4.3)

where ∆x is the channel length, c is the kinematic (gravity-driven) wave celerity,

Q is discharge, B is channel top width, and So is longitudinal channel slope. Given

the dependence on discharge, the two parameters cannot be statically calculated

for a given stream reach and are instead time-variable. A more detailed description

of the mechanics of Muskingum-Cunge is available in Cunge (1969).

The routing model for this study is Muskingum-Cunge-Todini (MCT), which

is a mass-conservative, iterative form of the Muskingum-Cunge routing model. To

illustrate how the MCT scheme works we will return to Equation 4.1 and transform

the equation to a discretized, integrated form:

Sk(Ik, Qk, p)− Sk−1(Ik−1, Qk−1, p)

∆t
− Ik−1/2 +Qk−1/2 = 0 (4.4)

In Equation 4.4, k-1 and k are time steps of a generalized flow routing model

and k-1/2 describes the flux in and out of the control volume between time steps.

For simplicity, we assume that storage can be expressed as a function of inflow

(I ), outflow (Q), and some parameters (p). We can further discretize Equation

4.4 by introducing the theta-method to express the intermediate flux terms Ik−1/2
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and Qk−1/2 as variables of time steps k,k-1 by:

Ik−1/2 = (1− θI)Ik−1 + θII
k (4.5)

Qk−1/2 = (1− θQ)Qk−1 + θQQ
k (4.6)

where θI,Q serve as time-weighting factors between the old and new time steps.

Using this substitution, we can now formulate:

F (Ik−1,k, Qk−1,k) =
Sk(Ik, Qk, p)− Sk−1(Ik−1, Qk−1, p)

∆t

−(1− θI)Ik−1 − θIIk + (1− θQ)Qk−1 + θQQ
k

(4.7)

where F is an implicit function representing the mass error in the reservoir. Since

the inflow is known at both time steps k-1,k and the outflow is available at time

step k-1, the only unknown time-dependent variable in Equation 4.7 is the outflow

Qk at the new time step k. In a generic setup, the solution to determine the

unknown Qk can be achieved by a Newton–Raphson iterative procedure, reading:

Qk
n+1 = Qk

n −
F (Qk

n)

F ′(Qk
n)

(4.8)

where n is the iteration index. The solution for Qk is reached when the function

F, or the mass balance error, is close enough to zero. We can apply this mass-
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conservative formulation to the Muskingum-Cunge model to receive:

F (Qk) =
[KεI +K(1− ε)Q]k − [KεI − kK(1− ε)Q]k−1

∆t

−0.5(Ik−1 −Qk−1)− 0.5(Ik −Qk)

(4.9)

F ′(Qk) =
[(δK/δQ(1− ε)−Kδε/δQ)Q+K(1− ε)]k

∆t
+ 0.5 (4.10)

In the above formulation, the time-weighting coefficients θI,Q are equal to

0.5. By implementing θI,Q values of 0.5, the flow approximations are second or-

der in time, creating a much more accurate flow routing method. Muskingum

parameters K and ε at time step k change in the iteration history of Equation

4.8 because of its dependency on Qk
n. In the original Muskingum–Cunge method,

the parameters are evaluated at Qk−1 only, which corresponds to a single iteration

step of the Newton–Raphson approach with an initial guess of Qk.

4.2 Streamflow Routing Implementation

In this section we describe the hands-on implementation of the MCT routing

scheme explained above. There are two types of routing used in this study—

routing schemes with only channel streamflow and routing schemes with channel

and lateral streamflow. Both processes are described in the following sections.
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4.2.1 Channel streamflow routing (implementation)

In order to create an operational MCT routing network within the Guadalupe

River study area, there are two types of required inputs—channel characteristics

and flow rates. The National Water Model has a database of channel charac-

teristics such as slope, bed width, and length for every ComID in the NHD-

PlusV2 stream network. The parameters are stored in a NetCDF file named

“RouteLink NHDPLUS.nc” (McKay et al., 2019). These data provide information

to generate (1) synthetic rating curves which relate stage values to a correlating

flow rate and (2) Muskingum’s parameters K and ε by applying Equations 4.2 and

4.3. Using this information, we can create a table for each ComID in the study

area, tabulating discharge, stage value, and Muskingum’s K and ε, as a function of

increasing stage values. The prepared tables allow for quick iterations in the MCT.

Next, there are two types of streamflow inputs required to initialize the

MCT routing model. The first streamflow input is referred to as the “initial

conditions” (Figure 4.2 (left)) or Qstart,i where i denotes the stream segment. The

initial conditions are essentially a snapshot of the discharge in every branch of the

main channel at time = 0. The second streamflow input is referred to as “inflow”

(Figure 4.2 (right)) or Qin. The inflow is the channel streamflow at the farthest

upstream branch for all time steps in the MCT routing model.
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Figure 4.2: Diagrams for the two inputs into the channel flow routing model: initial
conditions (left) and inflows (right).

With all inputs at hand, the Muskingum-Cunge-Todini routing model can

now be initiated. At the first time step, all streamflow in the channel is known

(Qstart,i). Then for all subsequent time steps, the initial flows, Qstart,i, are propa-

gated downstream and more streamflow enters the system at the upstream bound-

ary as inflow (Qin).

4.2.2 Channel and lateral streamflow routing (implementation)

In real-world scenarios rivers swell and flood waves propagate, but these actions

are more complex than a simple function of increased upstream flow. During

storm events, precipitation falls on the terrain surrounding the channel network,

and a fraction of that precipitation becomes surface runoff. The overland flow
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can then drain into the main channel, forming a streamflow contribution called

“lateral” flow. In Section 4.5, we further discuss the mechanisms that determine

what fraction of precipitation is transformed into surface runoff. In the MCT

routing model, the lateral flow is treated as an additional input into each ComID-

designated stream segment and is merged into the channel flow.

In the Muskingum-Cunge-Todini routing and 4-dimensional variation data

assimilation (4D-Var DA) coupled model, the lateral flow inputs are not treated

like the main channel streamflow. They are not iterated upon, but they are ac-

counted for in the overall water budget. By including lateral flows, we can account

for the rainfall-runoff phenomenon along the main river channel and thus form a

more realistic flood wave event.

4.3 Streamflow data assimilation (theory)

In order to improve the National Water Model short-range forecasts, the TxDOT

streamflow data are assimilated using 4D-Var data assimilation coupled with the

flow routing scheme described in the previous section.

Unlike the “nudging” data assimilation model currently implemented in

the NWM, 4D-Var allows for corrections in the streamflow both upstream and

downstream from the point of observation at the sensor location (Figure 4.3).
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Figure 4.3: Simplified diagram to illustrate how the 4-dimensional variational data as-
similation model operates.

In the 4D-Var DA model, observed streamflow is accepted at a downstream

location, notated “sensor location” (Figure 4.3). An upstream inflow is then iter-

atively altered to suit the downstream flow profile. Essentially the model works

by ingesting a downstream hydrograph and asking itself what could have occurred

upstream to create this streamflow profile. It forms that upstream hydrograph

and routes it downstream to the sensor using the Muskingum-Cunge-Todini rout-

ing scheme.

As stated earlier, variational methods use optimization algorithms to mini-

mize an objective function (Seo et al., 2003). The objective function is a summation

of weighted squared distances between model simulation series and the observa-
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tion series for the duration of the analysis (Chao & Lang-Ping Chang, 1992). The

objective function for the 4D-Var DA model for assimilating streamflow reads:

min
∆QDA

f =
0∑

k=−N+1

[wQI(QIDA,k −QINWM,k)2 + wQO(QOobs,k −QODA,k)2] (4.11)

where k is the time step index, and wQI and wQO are experimentally determined

weighting coefficients. Equation 4.11 can be split into two terms: (1) the squared

difference at the inflow location between the inflow series created by the DA model

(QIDA,k) and the original inflow from the NWM (QINWM,k), and (2) the squared

difference at the streamflow sensor between the observed streamflow (QOobs,k) and

the streamflow simulated from the DA model (QODA,k). Simply put, the objective

function is a trade-off between the amount of upstream flow alteration introduced

into the model and the distance between simulated and observed variables.

The minimization problem described in Equation 4.11 theoretically has an

infinite number of solutions, so we need a method to optimize the solution. One

approach is to compute the derivatives of the objective function with respect to

the noise terms to enable the use of gradient-based optimizers (Alvarado-Montero

et al., 2017). However, calculating numerical differentiation for each possible itera-

tion of noise introduced can quickly become computationally cumbersome for large

optimization problems and can introduce truncation errors (Alvarado-Montero et

al., 2017). Instead, we can use adjoint models. Adjoint models calculate the

sensitivity of the model to changes in the inputs and model states through algo-

rithmic differentiation in reverse mode (Griewank & Walther, 2008). This process

essentially traces first-order derivatives backwards in time through the simulation
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model, allowing for a single run to evaluate all gradients (Seo et al., 2003). The

general adjoint equation for the 4D-Var model in this study reads:

0∑
k=−N+1

[2wQI(QIDA,k −QINWM,k)− 2wQO(QOobs,k −QODA,k)] (4.12)

The data assimilation methodology for National Water Model short-range

forecasts hinges on the determination of a look-back period, sometimes also referred

to as the assimilation window. The look-back period is the portion of the forecast

that is dedicated to data assimilation (Figure 4.4).

Figure 4.4: Diagram to illustrate how the National Water Model short-range forecasts
are divided as a function of the lookback window length.

In order to significantly alter the flow profiles, some part of the 18-hour

forecast time-series needs to have already happened. For example, say it is 11:00

AM on 8-27-19, as depicted in Figure 4.4, and a town forecasting center would like

to run the data assimilation model. They decided they need a forecast window of

9 hours, so they dedicate the first 9 hours to assimilation and the last 9 hours to

forecast propagation. To do this, the model would retrieve the short-range forecast
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initiated at 8-29-19 2:00. It could then run the data assimilation model for the

last 9 hours of observed discharge from the gage, then propagate the altered flow

for the remainder of the forecast (9 hours).

4.4 Streamflow data assimilation (implementation)

The procedure for initiating the data assimilation model is similar to the methods

described in Section 4.2.1 for streamflow routing without DA. The model requires

the same two inputs of (1) initial conditions and (2) inflow series at upstream

location, but the DA model also requires an additional third input of the observed

streamflow series from the TxDOT sensor. Once the inputs are ready, the 4D-Var

data assimilation model runs for a pre-determined lookback period. The model

solves the optimization problem of the most feasible upstream hydrograph to create

the downstream observation. The new data-assimilated series at the sensor loca-

tion can then be inserted into the entire 18-hour short-range forecast and routed

downstream using the MCT routing scheme.

By the nature of data assimilation models, the 4D-Var method only im-

proves data during periods in which observations are available. Once that period

ends, the improved series quickly reverts to the raw National Water Model forecast

series. This can be improved with coupled forecast modeling, but it is not within

the scope of this study.
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4.5 Streamflow and precipitation data assimilation

As discussed in Section 4.2.2, the addition of precipitation corrections into the data

assimilation process adds a layer of complexity and creates a more realistic model.

When precipitation falls to Earth’s surface, there are a myriad of physical and

meteorological characteristics that affect runoff. These factors include, but are not

limited to: land use, soil type, soil saturation levels, slope of the land, distribution

of rainfall over the drainage basin, the size of the drainage basin, and direction

of storm movement (USGS, 2020). The National Water Model uses the Noah-MP

land-surface model (Niu, 2011) to model these complex interactions. However,

the motivation behind this study is to create a simplified data assimilation model

that can be implemented in any small community without extensive hydrologic

knowledge and modeling experience. To that end, we investigated the viability

of using a simple rational method approach to transform precipitation events to

equivalent surface runoff. The rational method is used to estimate flow rate for a

given precipitation event, which is computed using:

Q = CIA (4.13)

where Q is the equivalent flow rate, C is the runoff coefficient, I is the rainfall

intensity, and A is the drainage area (Dhakal et al., 2011). The C coefficient ranges

from 0 for a completely pervious surface to 1 for a completely impervious surface.

The exact interpretation of the C coefficient varies throughout the literature, but

it is generally defined as the portion of rainfall that becomes direct runoff during

an event (Merz, Blöschl, & Parajka, 2006).
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In this study, we characterize the C coefficient using a land cover raster,

which can be obtained at a 30-meter resolution from the 2016 National Land

Cover Dataset (NLCD). The relationship between land cover class and C values has

been investigated in previous studies, and the studies conservatively determined

and applied C values corresponding to NLCD classes (Greer, Wilbanks, Clifton,

Wilson, & Graettinger, 2018; Young, McEnroe, & Rome, 2009). Table 4.1 shows

the equivalent C values for discrete land cover classes.

Table 4.1: Land cover classes and equivalent C values

NLCD classes and Rational Method Coefficients
NLCD Value Land Cover Class C Value

11 Open water 1
21 Developed, open space 0.8
22 Developed, low intensity 0.85
23 Developed, medium intensity 0.9
24 Developed, high intensity 0.95
31 Barren land 0.6
41 Deciduous forest 0.3
42 Evergreen forest 0.2
43 Mixed forest 0.25
52 Shrub/scrub 0.7
71 Herbaceous 0.65
81 Hay/pasture 0.4
82 Cultivated crops 0.45
90 Woody wetlands 0.9
95 Emergent herbaceous wetlands 0.95

Using Table 4.1 and the catchment polygons from NHDPlusV2, we can
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estimate the composite C value for a given ComID drainage area using:

C =

N∑
j=1

(CjAj)

N∑
j=1

Aj

(4.14)

where Aj is the area for land cover j and n is the number of distinct land cover

categories. The NLCD land cover raster is clipped to the catchments along the

main channel of the Guadalupe River (Figure 4.5), and a composite C value is

computed for each catchment.

Figure 4.5: National Land Cover Dataset raster clipped to the NHD catchments along
the entire Guadalupe River main channel in the study area (left) and directly upstream
of the TxDOT sensor (right).

Using the composite C coefficients for the NHD catchments, we can calculate

an adjusted lateral flow value for each ComID by applying:

qlat,corrected = qlat,NWM + C(IMRMS − INWM)Acatchment (4.15)

where qlat,NWM is the lateral flow product from the NWM provided in the chan-

nel output file (derived from LSM terrain routing), IMRMS is the rainfall intensity
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from the MRMS gage-adjusted QPE, INWM is the rainfall intensity from the NWM

gridded forcing file, and Acatchment is the area of the individual NHD catchment.

The corrected lateral flow can now be inserted into the routing/data assimilation

run as indicated in Section 4.2.2.

4.6 Data assimilation evaluation metrics

Two statistical metrics are used to evaluate the data assimilation model perfor-

mance at the sensor location. Table 4.2 summarizes the statistical indicators used

in the study.

Table 4.2: Performance metrics for quantitative analysis
Statistical indicators and relevant information

Abbreviation Statistical Indicator Value Range Performance Classification Reference
R2 Coefficient of 0.7 < R2 < 1 Very Good (Moriasi et al., 2007)

determination 0.6 < R2 < 0.7 Good
0.5 < R2 < 0.6 Satisfactory

R2 < 0.5 Unsatisfactory
NSE Nash-Sutcliffe 0.75 < NSE < 1 Very Good (Moriasi et al., 2007)

Efficiency coefficient 0.65 < NSE < 0.75 Good (Boskidis et al., 2012)
0.5 < NSE < 0.65 Satisfactory
0.4 < NSE < 0.5 Acceptable

NSE < 0.4 Unsatisfactory

The Nash-Sutcliffe Efficiency (NSE) coefficient is given by the formula:

NSE = 1−

n∑
i=1

(Qobs −Qsim)2

n∑
i=1

(Qobs −Qobs,avg)2

(4.16)

where n represents the number of observations in the study, i indicates the time se-

ries of the observed and simulated pairs, Qobs and Qsim stand for the observed and

simulated streamflow, respectively, and Qobs,avg is the average observed discharge
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by the TxDOT sensor during the storm event. NSE is a widely used statistical in-

dicator that measures the predictive power of hydrologic models. Its value ranges

from −∞ to 1, where 1 indicates a perfect model and negative values indicate that

the observed mean is a better predictor than the model.

The coefficient of determination (R2) is represented by the equation:

R2 =

n∑
i=1

[(Qobs −Qobs,avg)(Qsim −Qsim,avg)]
2√

n∑
i=1

(Qobs −Qobs,avg)2

√
n∑

i=1

(Qsim −Qsim,avg)2

(4.17)

where the notation is identical to that in Equation 4.16. The coefficient of deter-

mination provides a measure of how well observed outcomes are replicated by the

model, based on the proportion of total variation of outcomes explained by the

model (Steel & Torrie, 1960).
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Chapter 5: Analysis Results and Discussion

The analysis is divided into three main sections. First, in Section 5.1, we explore

how the National Water Model performed during the three flood events before

any external assimilation. Next, in Sections 5.2 and 5.3, we quantitatively and

qualitatively evaluate the streamflow-only data assimilation model, and finally in

Section 5.4, we evaluate the streamflow + precipitation assimilation model.

5.1 Performance of NWM without Data Assimilation

In order to assign importance to the data assimilation model in this study, we need

to evaluate how the National Water Model performed without external interfer-

ence from the TxDOT sensor observational forcing. In this section, we qualitatively

compare the sequence of short-range forecasts and the analysis/assimilation time

series to the observed discharge recorded by the TxDOT streamflow sensor for

each storm event.

5.1.1 December 2018 storm event

Throughout the duration of the December 2018 storm event, the accuracy of the

Nation Water Model short-range products varies widely (Figure 5.1).
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Figure 5.1: Performance of the National Water Model short-range and analysis/assimi-
lation forecast products during the December 2018 storm event.

The short-range forecasts with long lead times before the storm event do

fairly well. They are indicated by the lighter yellow series in Figure 5.1. Most

forecasts predict the timing of the streamflow surge, which is indicated by the lack

of short-range series remaining at the initial baseline flow. As the storm draws

nearer, however, the forecasts begin to greatly overestimate the peak flows of the

flood event. Several forecasts predict peak flows two to a little over three times

higher than the observed maximum discharge (1,200 cfs). The short-range forecasts

during this period are largely variable as well. Some forecasts are actually under-

predicting the storm magnitude and some are more noticeably over-predicting.

The NWM then recovers in the falling limb of the storm, agreeing well with the

timing and the magnitude of the receding flow rate.
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The analysis/assimilation series creates a hydrograph of a two-peak storm,

with the true streamflow peak occurring in between them. It largely misses the

high flows that occur during that peak event; the maximum flow rate for the anal-

ysis/assimilation product is slightly over half of the true peak flow.

5.1.2 May 2019 storm event

Leading up to the May 2019 storm event, the National Water Model exhibits sig-

nificant variability in its prediction of the storm surge (Figure 5.2).

Figure 5.2: Performance of the National Water Model short-range and analysis/assim-
ilation forecast products during the May 2019 storm event. The y-axis is log-scale for
clarity.

The short-range forecasts produced in the pre-storm period both vastly
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overestimate and underestimate the magnitude of the storm event, depending on

the individual forecast, than was observed by the TxDOT streamflow gage. The

forecasts in the rising limb of the storm largely underestimate the event as well.

Unlike the two other storms analyzed in this study, the May 2019 storm is a

multi-peak, several-day event. After the first, and largest, rising limb passes, the

National Water Model recovers well. Although slightly offset in its timing and

magnitude of the following peak flows, the NWM short-range forecasts during this

period generally forecast the shape of the flow event.

The analysis/assimilation time series for the May 2019 storm performs well.

It effectively estimates the shape of the observed hydrograph, but the streamflow

is approximately 75% of the observed discharge at the TxDOT gage.

5.1.3 August 2019 storm event

For the August 2019 storm, most of the short-range National Water Model fore-

casts fall within the general magnitude of the surging streamflow (Figure 5.3).
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Figure 5.3: Performance of the National Water Model short-range and analysis/assimi-
lation forecast products during the August 2019 storm event.

In the pre-storm and rising limb period, most of the short-range forecasts

predict the rise in streamflow reasonably accurately (yellow to light green time

series in Figure 5.3). The magnitude is close to the true peak discharge (660 cfs),

but the streamflow surge in these forecasts takes longer to develop than the quick,

two- to three-hour period observed in the TxDOT sensor. During this period,

there are a few outlier short-range forecasts that predict significantly greater flow

in the last couple hours of the 18-hour forecast. This behavior, also seen in the

other two storms, is likely attributed to incorrect meteorological forecasts several

hours in the future.

The short-range forecasts identically follow the analysis/assimilation series

in the falling limb of the storm event. The NWM estimates the increased flow to
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be much slower and much more delayed than the observed streamflow.

5.2 Quantitative analysis and discussion of streamflow data assimila-

tion

The quantitative analysis is broken into two sections. First, the results from the

quantitative analysis are presented and explained in Section 5.2.1. Then, key take-

aways from the analysis are discussed in Section 5.2.2.

5.2.1 Quantitative streamflow data assimilation results

As mentioned in Section 4.6, the performance metrics used in this study are the

Nash-Sutcliffe Efficiency coefficient (NSE) and the coefficient of determination

(R2). The data assimilation model was run for each storm given three different

lookback periods of 6, 9, and 12 hours. The NSE and R2 values are evaluated for

each data assimilation run and then plotted against the hydrograph for the rele-

vant storm event (Figure 5.4). The DA series evaluated in Figure 5.4 only span

the lookback period itself, not the entire 18-hour forecast. The full short-range

forecast series are presented later in Figure 5.5.

In this section, we also compare the performance of the un-assimilated

NWM forecasts to the data assimilation model results. The NSE values are cal-

culated between the un-assimilated NWM forecasts and the TxDOT sensor obser-

vations, both for the first 12 hours of the forecast (Figure 5.4) and for the entire

short-range period (Figure 5.5). The un-assimilated R2 performance scores are not
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included to preserve the clarity of the figures. The R2 values for the DA lookback

series rapidly change from time step to the next, making several series difficult

to depict. Additionally, the bulk of the following analysis is focused on the NSE

results because they are more discerning in their evaluation of the model.
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Figure 5.4: Data assimilation evaluation for all storms with respect to NSE (left) and
R2 (right). The duration of the model runs span the look back periods of 6, 9, 12 hours.

During the period leading up to the December 2018 storm surge, the DA

model performs well across all lookback periods, which is indicated by NSE values

rapidly increasing to the 0.8 to 1 range (Figure 5.4 (a)). These high scores are con-
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sidered to be within the “very good” range for evaluating hydrologic simulations

(Table 4.2). The un-assimilated NWM forecasts do not perform well in this period;

the NSE values are very low with only two visible peaks above zero (Figure 5.4 (a)).

The 12-hour lookback DA model results outperform the simulations with shorter

lookback periods. The NSE values from the 12-hour lookback simulations are in

the “very good” range 12 hours before the surge in streamflow, which is approxi-

mately 3 and 6 hours before the the 9-hour and 6-hour lookback period simulation

results, respectively. The model runs with longer lookback windows regularly re-

ceive better statistical scores because they have more informed data points in the

18-hour forecast, which in turn produces much more closely matched series overall.

After the pre-storm period in the December storm event, the DA results

from all three lookback periods rapidly deteriorate. The NSE values plunge be-

low zero during the second half of the rising limb and peaking stage of the storm

(Figure 5.4(a)). Negative NSE values indicate that the observed mean is a better

indicator than the model. The magnitude of a negative NSE value does not con-

vey significance, so results in the negative NSE range are not differentiated from

each other in this study. The phenomenon of why the NSE values are negative for

forecasts initiated during periods of abruptly increasing streamflow is investigated

further in Section 5.2.2. After the peak streamflow has passed, the NSE values

re-surge to the 0.75 to 1 range, with the 12-hour lookback DA model once again

maintaining high NSE values for the longest period.

The DA model results from the December 2018 storm event are similar when

measured by the coefficient of determination (Figure 5.4(b)). In the pre-storm pe-
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riod, the R2 values gradually increase from the “acceptable” and “satisfactory”

value ranges (Table 4.2) to the “very good” range of 0.85 to 1. All three data

assimilation model results maintain extremely high coefficient of determination

scores for more than 6 hours in the end of the pre-storm period. However, once

the storm surge begins, the model performance of all three simulations drops to

unsatisfactory levels. The R2 values again increase to good levels after the surge,

much like the NSE scores. Throughout the entire storm duration, the periods of

time in which the R2 values are at excellent levels are much longer than their NSE

counterparts. This pattern persists in the next two storms as well, indicating that

this is a byproduct of the statistical indicators themselves.

The performance results from the multi-peak, prolonged storm event in May

2019 (Figure 5.4(c) and 5.4(d)) echo the patterns we observed in the December

2018 storm. The data assimilation model once again does well in the pre-storm

period with NSE and R2 values at excellent levels just before the first storm surge.

Once the streamflow begins rapidly increasing, the results fall to unsatisfactory

levels. The model then recovers during the receding limb of the storm event.

The time periods in which the DA model performs well are narrower in the more

complex May storm event, but this cycle is evident in all three peaks. The un-

assimilated NWM forecasts do not predict the observed streamflow adequately;

the NSE values are negative for the entire May 2019 storm event.

The August 2019 storm event exhibits similar behavior to the first two

storms (Figure 5.4(e) and 5.4(f)). The performance values repeat the same cycle

of excellent performance in the pre-storm period, followed by unsatisfactory scores
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during the period of increasing flows, which is in turn followed by good results in

the receding limb. The un-assimilated forecasts are “adequate” (Table 4.2) for a

few hours in the pre-storm period and are not seen again. The DA model results

in the receding limb are lower than the December 2018 and May 2019 storms.

Next, the performance metrics are applied to the entire short-range forecasts

(Figure 5.5).
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Figure 5.5: Data assimilation evaluation for all storms with respect to NSE (left) and
R2 (right). The model runs span the entire short-range 18-hour forecast.

Here, the remaining (un-assimilated) sections of the 18-hour forecasts are in-

corporated into the performance metrics. This marks the departure from observation-

improved streamflow to the integration of unaltered National Water Model fore-
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casts. Therefore, the information gathered from the statistical indicators (Figure

5.5) is an evaluation of the National Water Model as a method to attach forecast-

ing capacity to the assimilated streamflow, rather than an evaluation of the data

assimilation model itself.

Across all storms and lookback windows, the agreement between the data

assimilation model results and the TxDOT observations decreases substantially,

indicated by a significant decline in the statistical indicator scores. The December

2018 and May 2019 storms particularly display significant reduction in perfor-

mance scores. The May 2019 storm event only has a few individual results from

the 12-hour lookback model to rise above the unsatisfactory levels (Figure 5.5(c)).

The coefficient of determination is not as harshly affected; there are regions in

every storm across all three lookback periods that have R2 values in the “good”

to “very good” range.

Overall, the data assimilated results outperform the raw, un-assimilated Na-

tional Water Model forecasts. The NSE scores in the pre-storm period are greater

for the DA model excepting a few early spikes in the December 2018 storm and

one spike in the August 2019 storm. However, the DA model results no longer

have a dominance over the un-assimilated NWM series. This change in behavior

suggests that the errors in the remainder of the forecast (Figure 5.4 vs. Figure

5.5) are significant.
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5.2.2 Quantitative streamflow data assimilation discussion

A positive result from the lookback-only analysis (Figure 5.4) is the excellent per-

formance of the DA model in the pre-storm period before the streamflow surges

hit the TxDOT gage. In all three storms, the performance of the 12-hour lookback

model is “very good” for at least 12 hours before the increase in flow. This period

marks the most critical time for flood streamflow forecasting. Another critical pe-

riod during a flood event is the receding limb of a storm surge. During this time,

emergency responders want to know when the flood waters will recede and when

roads will be accessible. The high performance values in this region are also an

encouraging result.

The significant decrease in performance scores from the assimilation period

(Figure 5.4) to the full short-range forecast (Figure 5.5) indicates that the NWM

forecasts from the three storms do not agree with what was ultimately observed.

The combination of a well-matched forecast with the data assimilation window

is critical in creating an operational and reliable flooding warning system. If the

National Water Model is not performing well in what it sees as ungaged water-

sheds, there may be a need for more involved methods for transitioning from the

assimilation window to the forecast period.

One option to improve the forecast period is to implement a temporal-

interpolation method between the simulated series and the NWM forecast at the

last point of the assimilation window. This method would create interpolated

values between the last observations and the future forecasted streamflow, thus
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enabling the observations to carry weight beyond the assimilation window. This

operation is similar to how the nudging method works in the National Water Model

forecasts.

The poor performance scores in both the lookback window-only (Figure

5.4) and full short-range forecasts (Figure 5.5) during periods of rapidly increasing

streamflow prompt a need for further investigation. Although forecast warning

systems emphasize the need for accurate forecasts in the pre-storm period, the

climbing limb is still extremely important in more prolonged flooding events. We

have included a sample data assimilation model run of the full short-range forecast

at the peak of the December 2018 storm event (Figure 5.6). The NSE values for

the three simulated look-back periods and for the un-assimulated NWM forecast

are all negative.

Figure 5.6: Data assimilation model run for the peak flow of the December 2018 storm
event with low NSE and R2 scores.

Initially, it may seem unclear why the forecast received such low NSE scores.

Quickly after the model is initialized, the simulated streamflows match the ob-
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served streamflow and remain close to the observations until the lookback periods

expire. The simulated streamflows then rejoin the forecast in the upstream loca-

tion (Figure 5.6(a)), and the flow is propagated downstream, which is lower than

the observed streamflow. This is the expected behavior for the 4D-Var DA model

if the NWM is under-forecasting.

Upon closer inspection, we see the first data point of the observed stream-

flow is almost three times the value of the the NWM estimation. It is known that

the NSE metric can be sensitive to outliers, making this initial difference very

powerful in the overall performance score. The gap between the observed and

simulated series quickly closes, but once the data assimilation periods are over,

the flows again diverge. The simulated forecasts return to falsely under-forecasted

streamflows. Therefore, although the DA model did not fail to properly assimilate

the observed values, the NSE evaluations produce unsatisfactory scores.

Another interesting result in this analysis is the unsatisfactory performance

scores in the pre-storm period for the full short-range forecast model (Figure 5.5)

relative to the lookback-only model (Figure 5.4). These drastically lower scores are

a direct reflection of the short-range forecasts (Figures 5.1, 5.2, and 5.3) that sig-

nificantly overestimate, and sometimes underestimate, the magnitude of the storm

surge. If the NWM predicts extremely high flows in the remainder of the forecast

(last 6 to 12 hours, depending on the lookback period), the high flows are directly

absorbed into the DA series. The large disparity between simulated and observed

series would return poor NSE values.
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A possible method to improve these forecasts in the pre-storm period is take

several previous forecasts into account. The sequence of forecasts frequently os-

cillates between vastly overestimating and underestimating the storm magnitude,

reflecting large uncertainty in the forecast. Optimally combining some previous

number of forecasts could create a more stable, time-averaged forecast series.

5.3 Upstream and downstream propagation of streamflow alteration

Once the data assimilation model has created improved streamflow at the inflow

location and at the sensor location, the altered flow profiles can be propagated

downstream (Figure 5.7).
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Figure 5.7: Sample data assimilation results from upstream and downstream flow prop-
agation. (a) Hydrograph 10 miles upstream; (b) Hydrograph at the sensor location; and
(c) Hydrograph of each downstream reach, extending 18 miles downstream.

The power of using 4-D variational data assimilation rather than the tra-

ditional sequential or nudging DA models is evident in its far-reaching influence

both upstream and downstream (Figure 5.7). With one point of observation, we

can estimate the flows of a 28 mile stretch of the Guadalupe River. The quality of

the propagated flow estimates relies heavily on the length of the data assimilation

window. If the window is too small, it cannot capture a meaningful change in the

volume of water to be propagated. The propagation of streamflow-only assimi-

lation also loses power as the distance increases, because it neglects contribution
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from branching channels and lateral flows from surface runoff.

The propagation region of 28 miles presented here is somewhat arbitrary;

the power of the propagation could be even larger. We do not have validation

methods available to us at this point to confirm the accuracy of the upstream/-

downstream hydrographs. There are no other streamflow gages within a reasonable

propagation zone. The closest gage upstream is 35 miles and there are no down-

stream gages close to the study area. We can, however, improve the model by

incorporating corrections in precipitation estimates over the study area to model

contributions to the channel via surface runoff. This concept is explored in the

next section.

5.4 Analysis of streamflow and precipitation data assimilation

As explained in Section 4.5, we incorporate precipitation corrections into the data

assimilation model to allow for lateral flow contributions to the primary channel

streamflow through rainfall-runoff interactions. Heavy rainfall over the study area

can significantly contribute to the rising water levels in flash floods. For example,

Viterbo et al. (2020) found that a slightly displaced rainfall event over a small

watershed was likely a key reason why the National Water Model underestimated

the magnitude of the flood event in Ellicott, Maryland in 2018.

Unluckily for flood analysis, but luckily for the citizens of Kendall county,

there have been no significant flood events in the Guadalupe River study area since

the TxDOT streamflow sensor was installed in November 2018. The precipitation
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observed at the TxDOT sensor for its two largest recorded storm events are still

very low (Figure 5.8).

Figure 5.8: Hourly cumulative precipitation from National Water Model analysis/assim-
ilation forcings and Multi-Radar Multi-Sensor gage-corrected QPE during the December
2018 and May 2019 storm events.

The hourly intensity in either storm event does not surpass 3.5 cm/hr.

Because of the low rainfall rates, improvement to the data assimilation model

through precipitation corrections will be limited. In order to produce proof of

concept results for precipitation contributions to the data assimilation model, we

chose to analyze a short-range NWM forecast with the most significant difference

between precipitation observed and precipitation forecasted along the Guadalupe

River main channel. The forecast initialized on May 8, 2019 at 10:00 fits that

parameter. The NWM forecast indicated very little precipitation and lateral flows

during the following 18 hours. The magnitude of the difference between forecasted

and observed precipitation varies across the Guadalupe River study area (Figure

5.9).

59



Figure 5.9: Error estimation (RSME) between forecasted and observed precipitation
data over the entire Guadalupe study area for the May 8, 10:00 short-range forecast.

The precipitation forecast most closely matches the observed rainfall in the

northwest region of the study area (Figure 5.9). The greatest RMSE, and there-

fore the greatest discrepancy between the NWM forecast and the observations, are

centered near the main channel of the Guadalupe River near the streamflow sensor

location.

In order to allow for more lateral flow contributions, the inflow location

in the precipitation correction model is 16 miles upstream of the sensor (Figure

5.10(a)).
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Figure 5.10: Streamflow assimilation and lateral runoff contribution results on a sample
short-range forecast with a 9-hour lookback window during the May 2019 storm event.

There is a difference in the upstream flow profile when the lateral flow is ac-

counted for (Figure 5.10(a)). The initial jump in streamflow is noticeably smaller,

and the periods of recorded rainfall (Figure 5.8(a)) allow for reduced flows up-

stream. The streamflow profile downstream at the gage location is extremely sim-

ilar between the precipitation-corrected and streamflow DA-only models, which is

expected.

These positive changes in the upstream flow profile are presumed to be more

influential in storm events with higher precipitation values. This correction is im-

portant, because upstream improvement is a major advantage of the 4-dimensional

variational data assimilation model over sequential DA model alternatives.
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Chapter 6: Conclusions

In this study, we demonstrated that a 4-dimensional variational data assimilation

model improved streamflow estimation and forecasting in the Guadalupe River

study area. The improved streamflow was propagated over 15 miles upstream and

downstream. We also found that there are significant errors and uncertainty in Na-

tional Water Model forecasts, so we proposed additional methods to advance the

current modelling framework. The incorporation of precipitation correction into

the model created improved streamflow profiles in the upstream channel reaches.

We believe this study is a significant first step towards a NWM-based statewide

flood forecasting system.

6.1 Research Question 1 Answered

Can an external modeling framework extract forecast data from the National Water

Model and execute a data assimilation scheme using local streamflow data to create

a more locally informed forecast? To what extent does this improve the forecasts?

In this study, we were able to establish a procedure for extracting NWM

forecasts and feeding the data to an external 4D variational data assimilation

model. The 4D-Var DA model was coupled with a mass-conservative Muskingum-

Cunge routing scheme to assimilate data from a TxDOT streamflow sensor on the

Guadalupe River. The DA/routing model is extremely computationally efficient,
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requiring less than 1/100th of a second to complete a model run. The high model

efficiency is ideal for real-time flood forcasting.

The DA model was evaluated at three different lookback windows—6, 9

and 12 hours. The un-assimilated NWM forecasts were evaluated for what could

be considered the 12 hour lookback period. Two statistical indicators, the Nash-

Sutcliffe Efficiency coefficient (NSE) and the coefficient of determination (R2),

were used to evaluate the performance of the data assimilation model and Na-

tional Water Model forecasts. Across the board, the data assimilated simulations

significantly out-performed the un-assimilated series. This is confirmation that the

data assimilation model creates a more locally informed time series throughout the

lookback period.

The simulated lookback window data scored “very good” values for the per-

formance metrics, especially R2, in the pre-storm and falling limb regions of the

storm events. Excellent performance in these periods of the storm is an encourag-

ing result from a flood forecasting and emergency management perspective. The

longer the assimilation time, the longer the model maintained high scores in the

performance metrics. The statistical indicator values dropped to unsatisfactory

levels during the climbing limb and peak flow regions of the storm. We attribute

the low performance scores during this period to the tendency of the NWM to

under-estimate forecasts during this time and to the high emphasis the perfor-

mance metrics place on outliers.

The assimilated lookback windows were re-integrated with the remainder
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of the short-range 18-hour forecasts and routed downstream. In these model runs,

the statistical indicator scores declined across all lookback window lengths and all

storms. The pre-storm period, previously highly scored, saw a remarkable decrease

in NSE value. This was contributed to the fact that many of the NWM forecasts

for this period are highly variable and frequently highly overestimate the observed

values.

Two approaches were proposed to help resolve the issues in the current data

assimilation model. The first is to implement a temporal-interpolation method to

allow the observations to carry significance beyond the assimilation window. The

second is to optimally combine several forecasts to create a more stable, time-

averaged forecast period.

The improved streamflow from the data assimilation model could be prop-

agated upstream and downstream of the streamflow sensor location. In the study,

the propagation zone extended up to 16 miles upstream and 18 miles downstream.

The propagation zone could be extended farther, but it is assumed that the confi-

dence in the streamflow profile decreases as the distance from the streamflow sensor

increases. Additional streamflow sensors upstream and downstream are necessary

to validate the propagated flows.

6.2 Research Question 2 Answered

Does adding precipitation corrections into the data assimilation model improve the

forecast accuracy? To what extent?
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A simplified surface runoff model was created to convert rainfall to equiv-

alent lateral flow using the rational method and land cover data. The storms

recorded by the Guadalupe River sensor were relatively small storm events with

little input from precipitation over the study area. Because of this limitation, a

proof of concept model run was created to illustrate the potential benefits of in-

cluding precipitation corrections into the 4D variational data assimilation model.

The results showed that the profile at the upstream inflow location was no-

ticeably improved. The initial increase of streamflow was decreased. There were

also smaller channel flows throughout the assimilation window where the observed

precipitation levels were elevated. The precipitation corrections were substantial,

but not to the extent of the of the streamflow data assimilation. In order to more

thoroughly evaluate the value of adding precipitation corrections, the model needs

to be tested on bigger storm events with high precipitation intensity over the study

area.

6.3 Research Question 3 Answered

Does this method of combining local gage-observed data and the National Water

Model show potential for a state-wide flood warning system?

The results from this study show that there is considerable potential in as-

similating local streamflow into National Water Model forecasts as a method to

build a state-wide flood warning system in under-served rural areas. The methodol-
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ogy creates highly correlated simulated storm forecasts to the observed streamflow

in the period before the storm surge hits.

The variable nature of the full short-range NWM forecasts in the periods

leading up to the storm events indicate that there is a need for more involved

forecast modeling. More accurate forecast periods are crucial in developing an

operational and reliable flooding warning system. Two options were proposed

in this thesis for improving the forecasts. The first suggestion is to implement a

temporal-interpolation scheme to phase observational data into the forecast period.

Another strategy is to develop a method to optimally combine successive short-

range forecasts into time-averaged, more stabilized forecast products. Further

investigation of larger storm events across several study areas is necessary to get

a more complete assessment of the model.
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Chapter 7: Future Work

The methodology developed in this study is a promising start to an external mod-

eling framework. The 4-dimensional data assimilation model is built to optimally

combine local streamflow data into the well-established National Water Model

streamflow forecasting model. In this thesis, there were two suggested improve-

ments that could be made to the existing model framework. These improvements

would allow for a more informed transition from the data assimilation period to

the forecast period in the short-range forecasts.

An exciting opportunity of improvement, beyond what has already been

mentioned, is to extend the region of influence wider than the existing single-

channel framework. Currently, the streamflow assimilation only works on the

channel on which the streamflow sensor is located. The NWM, meanwhile, has a

cohesive routing and assimilation structure embedded into the complex, branching

stream network that spans the United States. The next step is to incorporate the

entire branching stream network into the 4D variational data assimilation model.

Branching streams can contribute substantial streamflow to a primary river chan-

nel, especially during flash floods when minor channels in small watersheds can

quickly turn into high velocity, high risk flooded channels. At this point, we have

achieved an operational branched Muskingum-Cunge-Todini routing scheme but

have not been able to develop the data assimilation model for the branching net-

work. This is the obvious next step.
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Another promising area for model development is in the flow routing scheme.

The one-direction nature of Muskingum-Cunge severely limits the capacity of the

4-dimensional data assimilation model in coastal areas. Backwater and tidal inter-

actions are significant factors in compound flooding events when both precipita-

tion and tropical storms/hurricanes contribute to dangerous flooding conditions.

A more flexible two-dimensional routing scheme would greatly improve the mod-

elling framework and expand the regions of Texas where it can be applied.

——————————————————–
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Appendices
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A Online data resources

Texas Department of Transportation sensor data

In Section 4.5 of the Streamflow Measurement at TxDOT Bridges technical re-

port, there is a detailed outline for how to access the TxDOT sensor data in the

KISTERS Big Data system (Maidment et al., 2019). We refer the reader to this

resource for a thorough understanding of how the KISTERS database operates.

For a cursory inspection of the TxDOT sensor data, the following URL lists

the available time series data for each sensor in the I-10 transect: https://nwm

.kisters.de/KiWIS/KiWIS?service=kisters&type=queryServices&datasource=

0&request=getStationList&format=html&site id=30284&addlinks=true.

The interested reader can select the timeseries list for the desired sensor location

and follow the guidelines in Maidment et al. (2019) from there.

National Water Model forecast data in the Google Cloud Platform archive

The Google Cloud Platform archive landing page can be found at: https://

console.cloud.google.com/storage/browser/national-water-model

From there, the reader can navigate to the date and specific forecast of interest.

For example, the short-range forecasts for May 1st, 2020 are located at: https://

console.cloud.google.com/storage/browser/national-water-model/nwm.20200501/

short range/

70

https://nwm.kisters.de/KiWIS/KiWIS?service=kisters&type=queryServices&datasource=0&request=getStationList&format=html&site_id=30284&addlinks=true
https://nwm.kisters.de/KiWIS/KiWIS?service=kisters&type=queryServices&datasource=0&request=getStationList&format=html&site_id=30284&addlinks=true
https://nwm.kisters.de/KiWIS/KiWIS?service=kisters&type=queryServices&datasource=0&request=getStationList&format=html&site_id=30284&addlinks=true
https://console.cloud.google.com/storage/browser/national-water-model
https://console.cloud.google.com/storage/browser/national-water-model
https://console.cloud.google.com/storage/browser/national-water-model/nwm.20200501/short_range/
https://console.cloud.google.com/storage/browser/national-water-model/nwm.20200501/short_range/
https://console.cloud.google.com/storage/browser/national-water-model/nwm.20200501/short_range/


Iowa Environmental Mesonet MRMS precipitation data archive

The entire IEM archive contains many datasets outside the MRMS system and

the overall archive landing page is: https://mtarchive.geol.iastate.edu/.

From there, the reader can navigate to the year, month, and day of interest.

The Multi-Radar Multi-Sensor data is housed in the “mrms” folder, and in that

directory, you can choose from the suite of MRMS radar/precipitation products.

For example, the 1-hr gage-corrected precipitation data used in this study for May

1st, 2020 are located at: https://mtarchive.geol.iastate.edu/2020/05/01/

mrms/ncep/GaugeCorr QPE 01H/
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B Data processing for National Water Model outputs

Channel file data processing

The conversion from raw short range and analysis/assimilation channel NetCDF

files covering CONUS to a single CSV file for only the stream reaches in the study

area is contained in the following script.

1 # -*- coding: utf -8 -*-

2 """

3 @author: leahh

4 """

5

6 from netCDF4 import Dataset

7 from datetime import datetime ,timedelta

8 import pandas as pd

9 import numpy as np

10 import xarray as xr

11 import os

12

13 #function to generate the NetCDF indices for your comIDs

14 def get_id_indices(find_ids , all_ids):

15 if len(find_ids) and type(find_ids [0]) is str:

16 find_ids = [int(x) for x in find_ids]

17 if type(find_ids) != ’numpy.ndarray ’:

18 find_ids = np.array(find_ids)

19 if type(all_ids) != ’numpy.ndarray ’:

20 all_ids = np.array(all_ids)

21 sorted_index = all_ids.argsort ()
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22 sorted_nc_comids = all_ids[sorted_index]

23 found_index_sorted = np.searchsorted(sorted_nc_comids ,

find_ids)

24 index = sorted_index[found_index_sorted]

25 return index

26

27 df = pd.read_csv(’GuadBranchingMC.csv’) #file with Musk -cunge data

28 COMIDs = df[’COMID’]. tolist () #grab comIDs

29

30 #sample netcdf file

31 samplefc = Dataset(r’C:\Users\leahh\Box\Research\NWMdata\

SR_channel_rt\June2019_storm\

shortrange_channel_rt_2019_06_17_t08.nc’,’r’)

32 allCOMID = samplefc.variables[’feature_id ’]

33 allCOMID_arr = allCOMID [:]

34 index_sel = get_id_indices(COMIDs , allCOMID_arr)

35

36 #path to SR forecasts

37 path = ’C:/ Users/leahh/Box/Research/NWMdata/SR_channel_rt/

Aug2019_storm ’

38

39 #path to analysis/assim forecasts

40 path_AnA = ’C:/Users/leahh/Box/Research/NWMdata/AnA_channel_rt/

Aug2019_storm ’

41

42 #output path for csv file

43 comb_path = ’C:/ Users/leahh/Box/Research/NWMdata/CombinedCSVs/

Aug2019_storm ’

44

45 fnames = [i for i in os.listdir(path) if os.path.isfile(os.path.
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join(path ,i)) and \

46 ’shortrange_channel_rt ’ in i]

47 nwmvars = [’streamflow ’,’qSfcLatRunoff ’,’qBucket ’,’nudge’]

48 shortnames = [’flow’,’lat’,’gwBucket ’,’nudge ’]

49 for file in fnames:

50 date_time_str = file [22: -3] #isolate datetime code from end of

filename

51 t0 = datetime.strptime(date_time_str , ’%Y_%m_%d_t%H’)

52

53 AnAfn = ’AnA_channel_rt ’+date_time_str+’.nc’

54 AnAfile = os.path.join(path_AnA ,AnAfn)

55

56 timelist =[]

57 for i in range (18):

58 t = t0 + timedelta(hours=i+1)

59 timelist.append(t)

60

61 SR_data = xr.open_dataset(os.path.join(path ,file), chunks = {’

time’: 18})

62 AnA_data = xr.open_dataset(AnAfile)

63 for v,sn in zip(nwmvars ,shortnames):

64 SR_array = SR_data[v][:, index_sel ].data.compute ()

65 var_df = pd.DataFrame(data = SR_array , index=timelist ,

columns=COMIDs)

66

67 AnA_array = AnA_data[v][ index_sel ]. values

68 var_df.loc[t0] = AnA_array # adding a row

69 var_df = var_df.sort_index ()

70

71 combined_fn= ’channel_rt ’+date_time_str+’
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_GuadBranchingatI10_ ’+sn+’.csv’

72 export_csv = var_df.to_csv(os.path.join(comb_path ,

combined_fn))

73

74

75 print(’finished coversion for ’, date_time_str)

Forcing file data processing

The conversion from raw short range and analysis/assimilation forcing NetCDF

files covering CONUS to a single CSV file for only the stream reaches in the study

area is contained in the following script.

1 # -*- coding: utf -8 -*-

2 """

3 Created on Thu Dec 11:22:31 2019

4

5 @author: leahh

6 """

7

8 from datetime import datetime ,timedelta

9 import pandas as pd

10 import numpy as np

11 import xarray as xr

12 import os

13

14 MCdata = pd.read_csv(’GuadBranchingMC_xycoords.csv’) #import Musk -

cunge data

15 x_coords = MCdata[’POINT_X ’]. tolist () #grab lat/lons for every

75



COMID in the SA

16 y_coords = MCdata[’POINT_Y ’]. tolist ()

17 COMIDs = MCdata[’COMID’]. tolist () #grab comid lists

18

19 # path to short range files

20 forcing_path = r’C:\ Users\leahh\Box\Research\NWMdata\SR_forcing\

Aug2019_storm ’

21

22 # path to analysis/assim files

23 path_AnA = r’C:/Users/leahh/Box/Research/NWMdata/AnA_forcing/

Aug2019_storm ’

24

25 #output path

26 comb_path = r’C:/Users/leahh/Box/Research/NWMdata/CombinedCSVs/

Aug2019_storm ’

27

28 #grab forcing file names

29 fnames = [i for i in os.listdir(forcing_path) if os.path.isfile(os

.path.join(forcing_path ,i)) and \

30 ’shortrange_forcing ’ in i]

31

32 for file in fnames [18:]:

33 date_time_str = file [19: -12] #isolate datetime code from end

of filename

34 AnAfn = ’AnA_forcing ’+date_time_str+’.nc’

35

36 t0 = datetime.strptime(date_time_str , ’%Y_%m_%d_t%H’)

37 timelist =[]

38 timelist.append(t0)

39 for i in range (18):
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40 t = t0 + timedelta(hours=i+1)

41 timelist.append(t)

42

43 dataNWM = xr.open_dataset(os.path.join(forcing_path ,file))

44 AnA_data = xr.open_dataset(os.path.join(path_AnA ,AnAfn))

45

46 precip_arr = np.zeros ([len(x_coords) ,19])

47 for i in range(len(x_coords)):

48 ana_precip=AnA_data.RAINRATE.sel(x=x_coords[i],y=y_coords[

i],method=’nearest ’).values

49 ana_prec = float(ana_precip)

50 precip_arr[i,0] = ana_prec

51 precip = dataNWM.RAINRATE.sel(x=x_coords[i],y=y_coords[i],

method=’nearest ’).dropna(dim=’time’).values

52 precip_arr[i ,1:20] = precip

53 df = pd.DataFrame(data = precip_arr ,columns = timelist ,index =

COMIDs)

54 dfT = df.T

55

56 combined_fn= ’forcing_ ’+date_time_str+’_GuadBranching_atI10.

csv’

57 export_csv = dfT.to_csv(os.path.join(comb_path ,combined_fn))

——————————————————–
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C Data processing for Multi-Radar Multi-sensor precipitation files

The data processing for the MRMS files was a more involved process. The proce-

dure is as follows:

1. Retrieve the highly compressed GRIB2 files from the Iowa State mesonet

archive.

2. Create a batch file with the following script to convert the compressed GRIB2

files to NetCDF files. The batch script utilizes the command prompt package

Degrib from the NWS to handle GRIB2 data.

1 # -*- coding: utf -8 -*-

2 """

3 @author: leahh

4 """

5 from datetime import datetime ,timedelta

6 import numpy as np

7 import os

8

9 def MRMSfilenames(begin_date ,number_of_days):

10 #INPUTS same as first function in

DataRetrieval_MRMS_iastate

11 #OUTPUTS: (1) Retrieval_names: nams of the .grib2.gz

files created in previous script

12 # (2) extracted_names: intermediate names created

by degrib (standardized , do not touch)

13 # (3) nc_names: filenames for .nc final products

14 # (4) bat_name: name of the batch file you are

making

15
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16 t1 = datetime.strptime(begin_date , ’%Y%m%d’)

17 datestoget = [t1+n*timedelta(days =1) for n in range(

number_of_days)]

18

19 bat_name = ’GZtoNC_ ’+datetime.strftime(datestoget [0], ’%b

%d’)+’to’+datetime.strftime(datestoget [-1], ’%b%d%Y’)

20 # this is the name for the batch file you are creating

21 print(bat_name)

22

23 retrieval_names = np.empty ([len(datestoget) ,24], dtype =

object)

24 extracted_names = np.empty ([len(datestoget) ,24], dtype =

object)

25 nc_names = np.empty ([len(datestoget) ,24], dtype = object)

26

27 for index ,date in enumerate(datestoget):

28 datestring = ’MRMS_GaugeCorr_QPE_ ’+datetime.strftime(

date , ’%Y_%m_%d’)

29 extract_datestring = ’MRMS_GaugeCorr_QPE_01H_00 .00_’+

datetime.strftime(date , ’%Y%m%d’)

30 namelist =[]

31 extract_namelist =[]

32 nc_namelist =[]

33 for hour in range (24):

34 hourstring = ’_t{:02d}’.format(hour)+’.grib2.gz’

35 extract_hourstring = ’ -{:02d}’.format(hour)+’

0000. grib2 ’

36

37 filename = datestring+hourstring

38 extractedname = extract_datestring+
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extract_hourstring

39 ncfilename = filename [: -8]+’nc’

40

41 namelist.append(filename)

42 extract_namelist.append(extractedname)

43 nc_namelist.append(ncfilename)

44

45 retrieval_names[index ,:] = namelist

46 extracted_names[index ,:] = extract_namelist

47 nc_names[index ,:] = nc_namelist

48 return(retrieval_names ,extracted_names ,nc_names ,bat_name)

49

50 #execute the function above:

51 files ,extracted_names ,nc_fns ,bat_fn = MRMSfilenames(’20181226

’ ,4)

52

53 ## the process below creates the lines needed to access

tcldegrib tool and decompress and convert files from .

grib2.gz to .nc

54 ## uses the outputs from the above function

55

56 #path for location of MRMS .grib2.gz files

57 tmpdir = r’C:\ Users\leahh\Box\Research\PrecipModels\MRMSfiles

\MRMS_retrieved ’

58

59 #batch filename with extension

60 #NOTE: for a trial run you can attach ’.txt’ instead so you

can see if the lines are written correctly

61 bat_file = bat_fn+’.bat’

62
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63 #batch path+name

64 dl_file = os.path.join(tmpdir , bat_file)

65 print(dl_file)

66

67 #operation to actually write the content of the .bat file

68 with open(dl_file , ’w’) as f:

69 #beginning lines to setup the environment you need

70 #root is the location of Anaconda3 installation

71 #batfile is the path to the anaconda batch script "

activate"

72 #finally call ’root’ and ’batfile ’

73 f.write(’@echo off \nset root=’+’"’+r’C:\\ Users \\leahh \\

Anaconda3 ’+’"’+’\n’+’set batfile=’+’"’+r’C:\\ Users \\leahh

\\ Anaconda3 \\ Scripts \\ activate.bat’+’"’+’\n’+’call %

batfile% %root% \n’)

74

75 num_days = files.shape [0]

76 num_hrs = files.shape [1]

77

78 for day in range(num_days):

79 for hour in range(num_hrs):

80 file = files[day ,hour]

81 extract_file = extracted_names[day ,hour]

82 line = r’C:\ Users\leahh\Anaconda3\Scripts\patool

extract ’+file

83 newfn = file [: -8]+’nc’

84 line2 = r’C:\ndfd\degrib\bin\degrib ’ + ’"’+

extract_file+’"’ + ’ -C -msg 1 -NetCDF 1 -out ’ + ’"’+

newfn+ ’"’ + ’ -namePath ’ +’"’+ r’C:\Users\leahh\Box\

Research\PrecipModels\MRMSfiles\MRMS_retrieved ’+’"’
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85 f.write(line +’\n’)

86 f.write(line2+’\n’)

3. Run the batch script in a command prompt.

4. Run the following python script to grab the precipitation data from the

latitude/longitude coordinates of your study area stream reaches from the

output projection coordinate system of the NetCDF file.

1 # -*- coding: utf -8 -*-

2 """

3 @author: leahh

4 """

5

6 from netCDF4 import Dataset

7 import numpy as np

8 import xarray as xr

9 import pyproj

10 import pandas as pd

11 import os

12 from datetime import datetime ,timedelta

13

14 #Import latitude and longitude point data in negative degrees

for longitude

15

16 MC_df = pd.read_csv(r’C:\Users\leahh\Box\Research\NWMdata\

GuadBranchingMC.csv’)

17 lats = MC_df[’Latitude ’]. tolist ()

18 lons = MC_df[’Longitude ’]. tolist ()

19 COMIDs = MC_df[’COMID’]

20
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21 #Get the projection function that converts the latitude ,

longitude coordinates to the projection cell number

22 PCS2=pyproj.Proj("+proj=eqc +lat_1 =20 +lat_2 =55 +lon_1=-60 +

lon_2 =-130 +x_0=0 +y_0=0 +a=6378160.0 +b=6356684.713804713

+units=m")

23

24 files_path = r’C:\Users\leahh\Box\Research\PrecipModels\

MRMSfiles\MRMS_retrieved ’

25 fnames = [i for i in os.listdir(files_path) if os.path.isfile

(os.path.join(files_path ,i)) and \

26 ’MRMS_GaugeCorr_QPE_2019_08 ’ in i and ’.nc’ in i]

27

28 long_max = 299.994998; lat_max =54.995000

29 precip_arr = np.zeros ([len(lats),len(fnames)])

30 timelist = []

31 for i,file in enumerate(fnames):

32 date_time_str = file [19: -3] #isolate datetime code from

end of filename

33 t = datetime.strptime(date_time_str , ’%Y_%m_%d_t%H’)

34 timelist.append(t)

35

36 precipdata = xr.open_dataset(os.path.join(files_path ,file

))

37 varlist = precipdata.variables

38

39 for j in range(len(lats)):

40 x_init ,y_init = PCS2(long_max -lons[j],lat_max -lats[j

])

41 x_meter =x_init /1113.119; y_meter = y_init /1113.119

42 x_cell = 7000- x_meter; y_cell = 3500- y_meter
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43

44 #select the precipitation value corresponding to the

nearest cell

45 precip_pt = precipdata[precipvar ].sel(XCells=x_cell ,

YCells=y_cell ,method=’nearest ’).values

46 precip_arr[j,i] = precip_pt

47 df = pd.DataFrame(data = precip_arr ,columns = timelist ,index

= COMIDs)

48 dfT = df.T

——————————————————–
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D Data Assimilation + Performance Metrics script

1 # -*- coding: utf -8 -*-

2 """

3 Created on Wed Apr 22 14:11:04 2020

4

5 @author: leahh

6 """

7

8 import numpy as np

9 import pandas as pd

10 from datetime import datetime , timedelta

11 from netCDF4 import Dataset

12 from matplotlib import pyplot as plt

13 import time

14 import muskingum

15 import muskingum_util_edited_dirk

16 import Hydro_PerfMetricFuncts

17 from matplotlib import dates as mdates

18 import Preprocessing

19 from scipy.optimize import minimize

20 from scipy.optimize import check_grad

21 import os

22

23 #link to NWM AnA + SR csv files for the given storm

24 #storm_path = r’C:/Users/leahh/Box/Research/NWMdata/CombinedCSVs/

Aug2019_storm/sub_flows ’

25 storm_path = r’C:\Users\leahh\Box\Research\NWMdata\CombinedCSVs\

Branching_channel_rt\Sub_flows ’

26

85



27 #list of NWM fc files

28 fnames = [i for i in os.listdir(storm_path) if os.path.isfile(os.

path.join(storm_path ,i)) and \

29 ’channel_rt ’ in i]

30

31 filenum = len(fnames)

32

33 #use a smaller length if you are having stability issues to divide

long channels

34 critical_length = 20000

35 epsilon_limit = 0.2

36 baseline_flow = 0

37 theta = 0.5

38 lbwindows = [6,9,12] #number of hours for the lookback windows

39

40 #initialize the performance metric matrices

41 NSE_lb = np.zeros([filenum ,3])

42 NSE_SR = np.zeros([filenum ,3])

43 MBE_lb = np.zeros([filenum ,3])

44 MBE_SR = np.zeros([filenum ,3])

45 CC_lb = np.zeros ([filenum ,3])

46 CC_SR = np.zeros ([filenum ,3])

47 NWM_eval = np.zeros ([filenum ,3])

48 timestamps = []

49

50 #loop through every forecast

51 for fnum ,file in enumerate(fnames):

52 date_dt_str = file [10:24] #isolate datetime in filename

53 date_dt = datetime.strptime(date_dt_str , ’%Y_%m_%d_t%H’)

54 timestamps.append(date_dt)
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55 for i in range(len(lbwindows)):

56 lb_time = lbwindows[i] # select lookback period (hrs)

57

58 #get the streamflow data from the csv files

59 flows = pd.read_csv(os.path.join(storm_path ,file))

60 flows.rename(columns = {’Unnamed: 0’:’time’}, inplace =

True)

61

62 flows[’time’] = pd.to_datetime(flows[’time’])

63 flows.set_index(’time’, inplace=True)

64 flows = flows /0.028316847 #convert from m3/s to cfs

65

66 #resample to 5 minute intervals (same in NWM WRF -Hydro)

67 flows = flows.resample(’300S’).interpolate(method=’linear ’

)

68

69 #generate Muskingum Cunge parameters from separate script

70 MCdf = Preprocessing.MC_data_structure(r’C:\ Users\leahh\

Box\Research\NWMdata\GuadFinalMC.csv’,critical_length)

71

72 #read observational data from TxDOT sensor

73 txdot = pd.read_csv(r’C:\Users\leahh\Box\Research\Sensor

Data\KISTERS_txdot\Guadelupe_May2019_storm_UTC_507to512.csv’,

delimiter=’;’,header=None)

74 txdot.columns = [’time’,’Q_cfs ’]

75 txdot[’time’] = pd.to_datetime(txdot[’time’])

76 txdot.set_index(’time’, inplace=True)

77 txdot = txdot.resample(’300S’).interpolate(method=’linear ’

)

78

87



79 txsensorCOM = 3589508 #COMID of sensor location

80 Qout_init = flows[str(txsensorCOM)]

81

82 sensor_ind = 33 #index within the system of sensor

location

83 up_ind = 26 #index within the system of upstream location

84

85 MC_in = MCdf[’COMID’][ up_ind] #location of Qin upstream

86

87 Qin_orig = flows[str(MC_in)] #unassimilated upstream

series

88 MCdf_upstream = MCdf.iloc[up_ind:sensor_ind ].copy()

89

90 #export MC data

91 export_csv = MCdf_upstream.to_csv(’GuadMC_ratingcurve_inp.

csv’, index = None , header=True) #used for rating curve

function

92

93 lengths = MCdf_upstream[’Length (m)’]

94 len_of_channel=sum(lengths)*0.621371*10** -3 #converting

length of channel to miles

95 #print(’length of channel with improved flow: ’,

len_of_channel , ’miles ’)

96

97 COMIDs = MCdf_upstream[’COMID’] #COMID list in numerical

form

98 COMIDstr = [str(i) for i in COMIDs] #COMID list as strings

99

100 t0 = flows.index [0] #beginning of fc and assimilation

window
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101 tf_sel = t0 + timedelta(hours=lb_time) #end of

assimilation window

102 tf = flows.index[-1] #end of forecast for the USGS

selection

103

104 flows_DA = flows [(flows.index >= t0) & (flows.index <=

tf_sel)] #the portion of the fc dedicated to DA

105 flows_DA_up = flows_DA[COMIDstr] #selection from the flows

df for the selected COMIDs

106 flows_up = flows[COMIDstr] #NWM simulated flow for the

selected COMIDs for the entire fc

107 flows_sensor = flows[str(txsensorCOM)]. tolist ()

108

109 txdot_DA = txdot [(txdot.index >= t0) & (txdot.index <=

tf_sel)] #portion of USGS observations dedicated to DA

110 txdot_up = txdot [(txdot.index >= t0) & (txdot.index <= tf

)] #portion of USGS observations during the entire 18 hour fc

111

112 #calculate performance metrics for unassimilated NWM data

113 if i == 0:

114 NWM_eval[fnum ,0] = Hydro_PerfMetricFuncts.NSE(

flows_up[str(txsensorCOM)],txdot_up[’Q_cfs ’]. tolist ())

115 NWM_eval[fnum ,1] = Hydro_PerfMetricFuncts.MBE(flows_up

[str(txsensorCOM)],txdot_up[’Q_cfs ’]. tolist ())

116 CC_NWM = np.corrcoef(flows_up[str(txsensorCOM)]. tolist

(),txdot_up[’Q_cfs’]. tolist ())[0,1]

117 NWM_eval[fnum ,2] = float(CC_NWM)

118

119 rc = muskingum_util_edited_dirk.rating(len(MCdf_upstream),

’GuadMC_ratingcurve_inp.csv’)
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120 rc[:,3,:] = np.minimum(rc[:,3,:], epsilon_limit)

121 ntime = len(flows_DA_up)

122 dt = 300 # timestep in measure of seconds

123 nbranch = len(MCdf_upstream)

124 indx = muskingum.get_indx ()

125 nseries = max([max(indx[’inp’]. values ()), max(indx[’state’

]. values ()), max(indx[’out’]. values ())])+1

126 value = np.zeros((ntime , nbranch , nseries), dtype= np.

double)

127 adjoint = np.zeros((ntime , nbranch , nseries), dtype= np.

double)

128

129 startflows = flows_DA_up.iloc [0]. copy()

130

131 #set the inflow to the value array

132 value[:,0,indx[’inp’][’QBC’]] = flows_DA_up[COMIDstr [0]]

133

134 #Set the initial flows

135 value[0,:,indx[’state ’][’QI’]] = startflows

136 value[0,:,indx[’state ’][’QO’]] = startflows

137

138 indx_par_int = muskingum.get_indx_par_int ()

139 npar_int = max(indx_par_int.values ())+1

140 par_int = np.zeros((nbranch , npar_int), dtype= np.int)

141 par_int[:, indx_par_int[’INDX_DOWN ’]] = np.arange(1,nbranch

+1, dtype=np.int)

142 par_int[-1,indx_par_int[’INDX_DOWN ’]] = -1

143 par_int[:, indx_par_int[’MODE’]] = 3

144

145 indx_par_dbl = muskingum.get_indx_par_dbl ()
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146 npar_dbl = max(indx_par_dbl.values ())+1

147 par_dbl = np.zeros((nbranch , npar_dbl), dtype= np.double)

148 par_dbl[:, indx_par_dbl[’K’]] = 15000.0

149 par_dbl[:, indx_par_dbl[’M’]] = 1.0

150 par_dbl[:, indx_par_dbl[’EPS’]] = 0.25

151 par_dbl[:, indx_par_dbl[’THETA’]] = theta

152

153 # model simulation

154 start = time.time()

155 muskingum.simulate(value , par_int , par_dbl , rc, dt)

156

157 # adjoint mode

158 start = time.time()

159 muskingum.adjoint(value , adjoint , par_int , par_dbl , rc, dt

)

160

161 Qobs = txdot_DA[’Q_cfs’]. tolist ()

162 QI = flows_DA_up[str(MC_in)]

163

164 w_QI = 0.1

165 w_QO = 1.0

166

167 def cost_function(QI_DA):

168 global value

169

170 # simulation

171 value[:,0,indx[’inp’][’QBC’]] = QI_DA

172 muskingum.simulate(value , par_int , par_dbl , rc, dt)

173

174 # cost function

91



175 f = 0.0;

176 for it in range(ntime):

177 f += w_QO * (Qobs[it] - value[it ,nbranch -1,indx[’

state ’][’QO’]])**2

178 f += w_QI * (value[it ,0,indx[’inp’][’QBC’]] - QI[

it])**2

179 return f

180

181 def cost_function_derivative(QI):

182

183 global value

184 global adjoint

185

186 # simulation

187 value[:,0,indx[’inp’][’QBC’]] = QI

188 muskingum.simulate(value , par_int , par_dbl , rc, dt)

189

190 # initialization of adjoint

191 adjoint = np.zeros((ntime , nbranch , nseries), dtype=

np.double)

192

193 # cost function derivative

194 for it in range(ntime):

195 adjoint[it ,nbranch -1,indx[’state’][’QO’]] = w_QO *

-2.0*( Qobs[it]-value[it,nbranch -1,indx[’state ’][’QO’]])

196 adjoint[it ,0,indx[’inp’][’QBC’]] = w_QI * 2.0*(

value[it ,0,indx[’inp’][’QBC’]] - QI[it])

197

198 # adjoint

199 muskingum.adjoint(value , adjoint , par_int , par_dbl , rc
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, dt)

200

201 return adjoint [:,0,indx[’inp’][’QBC’]]

202

203

204 f = cost_function(QI)

205 ### print(’cost function value f = ’ + str(f))

206

207 QI_DA = minimize(cost_function , QI, method=’BFGS’, jac=

cost_function_derivative ,

208 options ={’gtol’: 1e-6, ’maxiter ’: 500, ’

disp’: True})

209 ### print(’cost function value f = ’ + str(QI_DA.fun))

210

211 Qsensor_DA = value[:,nbranch -1,indx[’state ’][’QO’]]. copy()

212 Qin_DA = QI_DA.x

213 Qsensor_NWM = flows_DA_up[str(txsensorCOM)]

214

215 graphname = ’Guad_DA_ ’+date_dt_str+’lb’+str(lb_time)+’hour

.png’

216

217 ### print(’accuracy of derivative ’)

218 ### print(check_grad(cost_function ,

cost_function_derivative , QI , epsilon =1e-4))

219

220 NSE_lb[fnum ,i] = Hydro_PerfMetricFuncts.NSE(Qsensor_DA ,

Qobs)

221 MBE_lb[fnum ,i] = Hydro_PerfMetricFuncts.MBE(Qsensor_DA ,

Qobs)

222 CC_1 = np.corrcoef(Qsensor_DA ,Qobs)[0,1]
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223 CC_lb[fnum ,i] = float(CC_1)

224 ### Moving on to complete SR forecast !!

225

226 flows_up[str(MC_in)][0: len(Qin_DA)]= Qin_DA

227 Qin_new = flows_up[str(MC_in)]

228

229 ntime = len(flows_up)

230 dt = 300 # timestep in measure of seconds

231 nbranch = len(MCdf_upstream)

232

233 rc = muskingum_util_edited_dirk.rating(len(MCdf_upstream),

’GuadMC_ratingcurve_inp.csv’)

234 rc[:,3,:] = np.minimum(rc[:,3,:], epsilon_limit)

235

236 indx = muskingum.get_indx ()

237 nseries = max([max(indx[’inp’]. values ()), max(indx[’state’

]. values ()), max(indx[’out’]. values ())])+1

238 value = np.zeros((ntime , nbranch , nseries), dtype= np.

double)

239 adjoint = np.zeros((ntime , nbranch , nseries), dtype= np.

double)

240

241 startflows = flows_up.iloc [0]. copy()

242

243 #set the inputs to the value array

244 value[:,0,indx[’inp’][’QBC’]] = flows_up[COMIDstr [0]]

245 value[0,:,indx[’state ’][’QI’]] = startflows

246 value[0,:,indx[’state ’][’QO’]] = startflows

247

248 indx_par_int = muskingum.get_indx_par_int ()
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249 npar_int = max(indx_par_int.values ())+1

250 par_int = np.zeros((nbranch , npar_int), dtype= np.int)

251 par_int[:, indx_par_int[’INDX_DOWN ’]] = np.arange(1,nbranch

+1, dtype=np.int)

252 par_int[-1,indx_par_int[’INDX_DOWN ’]] = -1

253 par_int[:, indx_par_int[’MODE’]] = 3

254

255 indx_par_dbl = muskingum.get_indx_par_dbl ()

256 npar_dbl = max(indx_par_dbl.values ())+1

257 par_dbl = np.zeros((nbranch , npar_dbl), dtype= np.double)

258 par_dbl[:, indx_par_dbl[’K’]] = 15000.0

259 par_dbl[:, indx_par_dbl[’M’]] = 1.0

260 par_dbl[:, indx_par_dbl[’EPS’]] = 0.25

261 par_dbl[:, indx_par_dbl[’THETA’]] = theta

262

263 # model simulation

264 muskingum.simulate(value , par_int , par_dbl , rc, dt)

265

266 # adjoint mode

267 muskingum.adjoint(value , adjoint , par_int , par_dbl , rc, dt

)

268

269 Qsensor_DA_fullSR = value[:,nbranch -1,indx[’state ’][’QO’]]

270 #print(’length = ’,len(Qsensor_DA_fullSR))

271 NSE_SR[fnum ,i] = Hydro_PerfMetricFuncts.NSE(

Qsensor_DA_fullSR ,txdot_up[’Q_cfs’]. tolist ())

272 MBE_SR[fnum ,i] = Hydro_PerfMetricFuncts.MBE(

Qsensor_DA_fullSR ,txdot_up[’Q_cfs’]. tolist ())

273 CC = np.corrcoef(Qsensor_DA_fullSR.tolist (),txdot_up[’

Q_cfs ’]. tolist ())[0, 1]
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274 CC_SR[fnum ,i] = float(CC)

275 #CC_SR[i] = Hydro_PerfMetricFuncts.CCsquared(Qsensor_DA_fullSR

,txdot_up[’Q_cfs ’].tolist ())

276

277 print(NSE_SR)

278 dataseries = np.hstack ((NSE_lb , MBE_lb , CC_lb , NSE_SR , MBE_SR ,

CC_SR , NWM_eval))

279 colname = [’NSE_lb6 ’,’NSE_lb9 ’,’NSE_lb12 ’,’MBE_lb6 ’,’MBE_lb9 ’,’

MBE_lb12 ’,\

280 ’CC_lb6 ’,’CC_lb9 ’,’CC_lb12 ’,’NSE_SR6 ’,’NSE_SR9 ’,’NSE_SR12 ’,\

281 ’MBE_SR6 ’,’MBE_SR9 ’,’MBE_SR12 ’,’CC_SR6 ’,’CC_SR9 ’,’CC_SR12 ’,’

NWM_NSE ’,’NWM_MBE ’,’NWM_CC ’]

282 perfdf =pd.DataFrame(data=dataseries ,columns=colname ,index=

timestamps)

283 exp_csv = perfdf.to_csv(r’C:\ Users\leahh\Box\Research\Thesis_Work\

PerformanceFigures\PerformanceMetricsMayStorm.csv’)

284 plt.plot(flows_up.index ,txdot_up[’Q_cfs’]. tolist (),label=’observed

’)

285 plt.plot(flows_up.index ,flows_sensor ,label=’NWMorig ’)

286 plt.plot(flows_up.index ,value[:,nbranch -1,indx[’state’][’QO’]],

label=’simulated ’)

287 plt.show()

——————————————————–
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