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Abstract 

 

Reconstructing Migration: Using Isotopic Analyses to Examine Ancient 

Maya Mobility in Northwestern Belize 

 

Angelina Jean Locker, M.A. 

The University of Texas at Austin, 2015 

 

Supervisor:  Fred Valdez, Jr.  

 

Isotopic analysis has proven to be beneficial to the field of archaeology, aiding in 

the understanding of changing climatic conditions, diet, and mobility.  This report proposes 

the use of Oxygen and Strontium isotope ratios to understand migration patterns of the 

Ancient Maya within the Program for Belize Archaeological Project (PfBAP) research area 

in northwestern Belize.  Research seeks to first identify immigrants and then try to 

understand sociopolitical factors that may have influenced population movement as well 

as the consequences of that movement upon a region. Currently, our understanding of 

mobility and migration within this region is severely lacking.  This report presents a general 

background on migration in archaeology as well as a general background on oxygen and 

strontium isotopes, their application to the field of archaeology, and how isotopic ratios 

 can shed light on possible reasons for population movement.  Additionally, this report 

outlines a protocol for each isotopic system and proposes future research for the PfBAP 

region.  
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CHAPTER 1 

Introduction 

Mobility and migration have been part of human history since the dawn of the 

species (Little 2004).  Homo sapiens have migrated both short and long distances for 

various reasons over time, and as civilizations developed, people continued to move 

regardless of what society or social class they belonged to (Freiwald 2011). Still, movement 

of people from the distant past was a research topic that was generally ignored by most 

archaeologists during the 1970s and 1980s (Anthony 1990; Burmeister 2000). However, 

within the past 20 years, migration studies in archaeology have found their way back into 

the research spotlight (Cabana and Clark 2011; Cameron 2013; Van Dommelen 2014; Price 

et al. 2012b) due to theoretical outlines and advances in methods.  

Before we can begin discussing migration and mobility, it is important to first 

define them. Typically, migration has been thought of as a monumental population 

movement between long-distance regions while mobility has been thought of as short-

movements, both permanent and non-permanent (Cameron 2013; Van Dommelen 2014; 

Cabana and Clark 2011; Kern 2012). For the purposes of this report, migration and mobility 

will be used interchangeably, as the focus here is on population movements within and into 

a region, regardless of the distance a person travelled.  

Anthony (1990) defines migration as “a behavior that is typically performed by 

defined subgroups (often kin-recruited) with specific goals, targeted on known destinations 
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and likely to use familiar routes” (Anthony 1990: 895-6). Using this definition, and adding 

Cabana and Clark’s (2011) belief that migration need only 

include one person, this report will focus on research 

questions that encompass both long-distance and short-

distance mobility in an attempt to understand the 

consequences of migration within a region. Additionally, 

this report will outline current geochemical methods 

employed to detect migration within a population. A 

research area like the Program for Belize Archaeological 

Project (PfBAP), nestled within the Rio Bravo 

Conservation and Management Area (RBCMA), allows 

for a large-scale regional study to be completed (Figure 1). 

Report Organization and Objectives 

This report is organized into five chapters and provides an in-depth background on 

migration studies in archaeology and strontium and oxygen isotopes. It also proposes a 

method which incorporates using strontium and oxygen isotope ratios as geographic tracers 

of an individual’s place of origin within the Programme for Belize Archaeological Project 

research area in northwestern Belize.  Chapter 2 introduces a literature review of how 

migration and isotope studies have been used in archaeology generally and in the Maya 

world specifically. In addition, chapter two provides information on the relevant research 

area, its geological and environmental setting, and culture history.  Chapter 3 provides 

Figure 1 – Relation of the 

PfBAP area to the country of 

Belize. Courtesy of PfBAP.  
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background information about strontium and oxygen isotopic systems and how these can 

be applied to determine local and non-local populations. This chapter also discusses how 

strontium and oxygen are incorporated into the human skeleton and how they can be used 

as geographic tracers. Chapter 4 proposes a method for isotopic research to be used on 

human remains from the Programme for Belize Archaeological Project. Mass spectrometry 

is explained and a sample preparation protocol and analytical method are outlined for each 

isotope system. Finally, Chapter 5 outlines future research questions that will be addressed 

using strontium and oxygen analyses within the PfBAP region.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 4 

CHAPTER 2 

Literature Review 

While the fact that people frequently migrated in the past is generally 

acknowledged (Van Dommelen 2014; Smith 2014; Burmeister 2000; Osborne 1991), the 

theory behind migration studies is still widely debated (Anthony 1990; Burmeister 2000; 

Smith 2014). Still, there are common themes intertwined in each of the purposed theories 

and such themes can be seen in modern day migration studies by ethnographers, 

geographers, and sociologists.  Most archaeologists admit that the present is not the perfect 

comparison for past events, yet, they agree that modernity does offer a starting point for 

the conversation of what an archaeologist can look for or identify when trying to study 

migration (Anthony 1990; Osborne 1992; Burmeister 2000; Cabana and Clark 2011; Smith 

2014).   

Observations from modern migration studies which may aid in viewing migration 

archaeologically include: 1) migration participant demographics – What are the ages and 

sex of the migrating individuals? If the majority of the immigrating population consists of 

adult females, we may be able to infer marriage alliances. (Anthony 1990; Burmeister 

2000; Clark and Cabana 2011; Cameron 2013); 2) Spatial patterns – Do new sites form 

during population surpluses? How are sites grouped? Specific sites and/or house groups 

may represent ‘ethnic barrios,’ or groupings of immigrants from the same original location 

(Anthony 1990; Osborne 1991; Burmeister 2000; Smith 2014); 3) Return migration 

patterns – a migrant’s return to his/her original place of origin after an extended absence. 

Such occurrences have prompted new trade routes (Anthony 1990; Burmeister 2000; 
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Cabana and Clark 2011; Smith 2014); 4) Social networks – developed routes for migration 

from place A to place B through previous migrations, kinship ties, and/or trade and 

exchange networks. Are geographically similar people migrating along familiar routes due 

to information they obtained from previous migrants?  (Anthony 1990: 903; Burmeister 

2000; Smith 2014); and finally 5) “Negative push and positive pull factors at the place of 

origin and the destination” (Anthony 1990:898) – these can be anything from natural 

disasters, climate change, loss of resources, economic advantages, political upheaval, or 

warfare (Anthony 1990; Burmeister 2000; Cabana and Clark 2011; Cameron 2013).  

Identifying these themes in the archaeological record through the sole analysis of 

cultural materials has proven to be difficult (Koch and Kupke 2012; Burmeister 2000).  

Typically, archaeologists use proxies such as architectural features, ceramics, and/or burial 

goods to identify local and non-local populations (Burmeister 2000; Koch and Kupke 

2012); however, goods and ideas can cross boundaries through non-migratory means, such 

as trade. Additionally, assimilation may lead to a lack of ‘foreign’ goods for an originally 

non-local individual, while social status may lead to a collection of luxurious ‘foreign’ 

goods for a local, elite individual.  

If we identify migration based solely on material goods uncovered from 

excavations and burials, we may misidentify individuals as local when they were actually 

foreign or vice versa (Koch and Kupke 2012; Evans et al. 2006b; Eckardt et al. 2009).  In 

fact, a study conducted by Evans et al. (2006b) exemplifies how archaeologists originally 

misidentified both ‘local’ and ‘exotic’ burials “at the late Roman cemetery at Lankhills 

School, Winchester, southern England” (Evans et al. 2006b: 265).   



 6 

G. Clark originally excavated this cemetery from 1967 to 1972 and assigned buried 

individuals as ‘exotic’ or ‘local’ based on their noted burial customs, associated burial 

goods, and the positioning of those goods relative to the body (Evans et al. 2006b).  Using 

strontium and oxygen isotopic compositions, Evans et al. (2006b) tested the hypothesis G. 

Clark originally postulated – the ‘exotic’ population from the Lankhills cemetery were 

originally from Pannonia, located within the Danube region in central Europe.  

Out of 18 re-analyzed burials, nine selected from the previously thought exotic 

population and nine from the previously thought local population, two of the nine supposed 

exotic burials were actually locals while four of the nine supposed locals were actually 

exotic (Evans et al. 2006b).  Additionally, while the exotic population were all initially 

thought to come Pannonia, they actually varied geographically (Evans et al. 2006b). 

Eckardt et al. (2009) followed up on this study by analyzing an additional 40 burials 

(20 ‘local,’8 ‘Pannonian,’ and 12 ‘other’). They too found that the original burial 

interpretations as an indication of migration were incorrect. Only one out of eight supposed 

Pannonian burials was actually from the designated region previous archaeologists 

suspected based on the grave goods. Additionally, of the original 20 ‘local’ burials, nine 

were identified as ‘non-local’ (Eckardt et al. 2009)  

These studies are important, because they shows us that relying solely on the 

archaeological record for migration identification may not be the best method.  Instead, 

geochemistry provides us the evidence necessary to prove migration was occurring through 

the use of isotopic analysis (Van Dommelen 2014; for specific examples see also Bentley 

2006; Freiwald 2011; Hodell et al. 2004; Kern 2012; Koch and Kupke 2012; Price et al. 
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2002; Price et al. 2012a; Price et al. 2012b; Rand 2012; Somerville 2010; Stuart-Williams 

et al. 1996; Sutinen 2014; Thornton 2011; Wright 2005; Wright et al. 2010).  

MIGRATION AND ISOTOPES IN ARCHAEOLOGY 

In 1985, Jonathon Ericson proposed strontium isotopes be used as a means of 

identifying migration within archaeological populations.  Until that point, proxies such as 

ceramics and architectural features (as briefly mentioned above) were the sole indicators 

archaeologists used to identify migrants. Ericson (1985) completed a small pilot study on 

three Chumash individuals from two different cemeteries in the Malibu area of Southern 

California and was able to show how strontium isotope ratios could be used to identify 

local and non-local people. Ericson outlines how strontium isotope ratios in human tooth 

enamel and bone can be used to identify geographic places of origin through variations 

within the 87Sr/86Sr ratios of bedrock. He cautions against low variability between 

locations, food sources, intraregional variability for a given population, and diagenesis.  All 

of these concerns are taken into consideration when selecting a sample for analysis and 

will be discussed in chapter three.  

Following Ericson’s (1985) research, Schwarcz et al. (1991) identified oxygen as 

an additional indicator of geographical location. The assumption is that oxygen varies from 

one climatic region to another, with elevation, from one water reservoir to another, with 

humidity, and with precipitation patterns, all of which vary regionally. These early papers 

established key analytical techniques currently employed in bioarcheology and forensic 

anthropology. The use of these two isotopic systems to study migration has been 



 8 

invaluable, and they have been employed to examine mobility within archaeological 

investigations across the globe (see for example Dupras and Schwarcz 2001; Price et al. 

2002a; Evans et al. 2006a, 2006b; Price and Gestsdottir 2006; Eckardt et al. 2009; Slovak 

et al. 2009; Keenleyside et al. 2011; Gerling et al. 2012; Webb et al. 2012; Symonds et al. 

2014).  

Isotopic analyses as a means of identifying migration was introduced to 

archaeological research starting in the mid-1980s with strontium and the early 1990s with 

oxygen; however, it was not until the early 2000s when both systems became a staple in 

archaeological investigations. Perhaps the most intriguing aspect of the isotopic research 

conducted to date has been the amount of non-locals identified at various archaeological 

sites throughout the world. While the number of non-locals varies greatly, ranging 

anywhere from 3% non-local (Slovak et al. 2009) to 89% non-local (Symonds et al. 2014), 

the surprising fact is that every isotope study included in this report has been able to identify 

non-locals at a site, regardless of the sample size or the location.   

MIGRATION AND ISOTOPES IN MESOAMERICA AND THE MAYA WORLD 

In Mesoamerica, the findings are quite similar, with all isotope studies identifying 

non-local individuals at various archaeological sites during different times. Much of the 

isotopic analyses completed in broader Mesoamerica focus on the ethnic barrios and 

sacrificial victims at Teotihuacan (White et al. 1998, 2002, 2004a, 2004b, 2007; Price et 

al. 2000).  Extensive studies indicate a large foreign population within the ethnic barrios – 

29% at Tlajinga 33 (White et al. 2004), 80% at the Oaxaca Barrio (Price et al. 2000), 25% 
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at Oztoyahualco (Price et al. 2000), 50% at Barrio de los Comerciantes (Price et al. 2000), 

31% at Cueva de las Varillas (Price et al. 2000), and up to 80% at Tlailotlacan (White et 

al. 2004b). Additionally, the Moon Pyramid and the Feathered Serpent Pyramid also 

contained high quantities of foreign sacrificial victims – at least 57% at the Feathered 

Serpent Pyramid (White et al. 2002) and at least 86% at the Moon Pyramid (White et al. 

2007).  

Within the last 10 years, isotope studies have been applied to the Maya world to 

determine whether a link exists between Classic Maya cities and Teotihuacan. Many of 

these studies have focused on larger cities like Kaminaljuyu (White et al. 2000; Wright et 

al. 2010), Tikal (Wright 2005, 2012; Price et al. 2008), and Copan (Price et al. 2008, 2010). 

These sites represent the Maya during the peak of the Classic Period, and each site ranges 

in the number of identified immigrants -- 19% to 26% for Kaminaljuyu (Wright et al. 2010; 

White et al. 2000), 11% to 16% for Tikal (Wright 2005, 2012), and 26% for Copan (Price 

et al. 2010). While immigrants have been identified, connections to Teotihuacan have not.  

In fact, research has shown that immigrants are most likely coming from the Maya 

lowlands, such as the Petén in Guatemala or Belize. There have been few isotope studies 

completed in Belize; however, based on the results from Freiwald (2011), Belize holds 

promise for migration studies, even though it has much smaller communities.  

Freiwald (2011) sampled a total of 148 individuals, encompassing 14 major and 

minor archaeological sites, to determine migration within the Belize River Valley. She was 

able to identify migration at almost every site sampled, regardless of time period or sample 

size. Of the 14 sites sampled, only three did not identify migrants, likely due to the small 
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sample sizes (n=3 per site).  Still, throughout the region, immigrants make up, on average, 

20.8% to 26.2% of all inhabitants, with many of the regions of origin unidentified (Freiwald 

2011).  This is most likely due to a lack of data.   

I propose to add to the existing body of research by measuring strontium isotope 

and oxygen isotope ratios of human remains from the Rio Bravo Conservation and 

Management Area (RBCMA) in northwestern Belize. Using two different isotope systems 

will allow for a more complete understanding of where immigrants originally migrated 

from. The first advantage to using two isotope systems is this allows us to compare to a 

wider range of previously completed isotopic studies.  Some researchers have completed 

strontium isotopic analysis; some oxygen; some have only analyzed bedrock and 

sediments.  Analyzing both systems will allow the data from the PfBAP to be compared to 

a wider range of previously completed isotopic studies of various geographic regions.  

The second advantage to using two isotope systems is their ability to complement 

one another and distinguish local from non-local when one system may be 

indistinguishable from another.  When the data from Sr analysis are first given, Sr is 

reported with six significant figures; however, changes on the second, third and fourth 

decimal places are the most important. For this reason, Sr values reported in archaeological 

contexts are generally reported to the fourth decimal place (Price et al. 2010; Price et al. 

2012b).  Price et al. (2012b; Figure 2) provide a detailed map regarding the strontium 
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isotope ratios in the Maya world; however, there is some overlap in Sr isotopic composition 

from sites geographically very distant.  For instance, the Olmec major center of San 

Lorenzo, located on the Gulf Coast of Mexico, just south of the Isthmus of Tehuantepec, 

Figure 2. Map of varying Sr isotope ratios throughout Mesoamerica. Values represent the isotopic 

composition of modern local fauna and archaeological human dental enamel. Adapted from Price et al. 

2012 
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carries the same Sr isotope ratio as the Maya site of Coba, located near the Caribbean coast 

of the Yucatan Peninsula. Similarly, oxygen values may be similar in geographically 

distinct areas (Figure 3).  

Again, we can see overlapping isotopic compositions for measured oxygen isotope 

ratios. The importance of using two isotope systems is to distinguish between individuals 

who may come from geographically distinct areas with similar values in one of the isotope 

systems. Generating a more comprehensive database of oxygen and strontium isotope 

ratios may help us distinguish where people were migrating from rather than simply 

acknowledging there are foreigners present.   

Figure 3. Map of Oxygen isotope variability in Mesoamerica. Values represent the isotopic ratios of 

archaeological human dental enamel and bone. This map includes both phosphate (dark circle or 

positive values) and carbonate (open circle or negative values) values. Adapted from Price et al. 2010. 
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Program for Belize Archaeological Project (PfBAP) 

GEOLOGICAL AND ENVIRONMENTAL SETTING 

The Rio Bravo Conservation and Management Area (RBCMA) is a private reserve 

in northwestern Belize that encompasses 260,000 acres of land, owned and operated by the 

non-governmental organization The Programme for Belize (PfB) (Figure 4) (Valdez, Jr. 

and Cortes-Rincon 2012).  The RBCMA sits within a humid, tropical rain forest and is 

included in the Intertropical Convergence Zone (ITCZ) (Beach et al. 2011). The ITCZ 

generates an average 1500mm of rain each year 

in this region, where the bulk of the rain 

(>200mm/month) comes during the “rainy 

season” (approximately June – January) while 

the region remains temperate (<10mm 

rain/month) during the “dry season” 

(approximately February – May) (Beach et al. 

2002, 2008, 2009, 2011; Luzzadder-Beach and 

Beach 2008; Houk 1996; Sullivan 1997; 

Manning 1997; Lohse 2001; Bridgewater et al. 

2002). Minor deviations occur within this pattern year to year.  

Temperature variations are much less, with summer temperatures averaging around 

26°C (80F) and dropping to the lower 20s.  Winter temperatures average around 24C in 

Figure 4 – Location of the RBCMA and PfB. 

Courtesy of PfBAP. 



 14 

the daytime and can reach 10C (50F) during 

the night (Houk 1996; Sullivan 1997; 

Manning 1997; Lohse 2001; Bridgewater et 

al. 2002; Beach et al. 2008). 

Geologically, northwestern Belize 

rests atop the Yucatan Platform and is 

primarily comprised of Tertiary and 

Cretaceous limestone (Lohse 2001; et al. 2002; Beach et al. 2002, 2008, 2009). These 

limestone outcrops were formed during the Eocene when Belize and most of the Yucatan 

Peninsula of Mexico were below sea level (Sullivan 1997).  Belize gradually emerged from 

the water, creating terracing as the water slowly receded from the land.  Three of these 

terraces resulted in fairly steep escarpments which now characterize the western portion of 

the RBCMA (Figure 5)   (Houk 1996; Sullivan 1997; Manning 1997; Lohse 2001). The 

region of the RBCMA west of Booth’s River is made up of wetlands and savannahs 

(Bridegwater et al. 2002; Beach et al. 2008). 

The escarpments which characterize the region along with the climate and its 

relationship to δ18O values of water make the PfBAP area ideal for migration studies which 

incorporate strontium and oxygen isotope ratios. Each of the escarpments may have distinct 

strontium isotope compositions due to the varying times they uplifted from the ocean. 

Additionally, LA-ICP-MS analysis completed on ceramics indicates variation in elemental 

concentrations between the different escarpments (Locker et al. 2015). Varying amounts 

of initial rubidium will affect the 87Sr/86Sr isotope ratios measured in each escarpment.  

Figure 5 – Map detailing the changing terrain in 

the RBCMA. Courtesy of PfBAP.  
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The climate of the region will also help distinguish it from other regions in 

Mesoamerica. As noted above, the PfBAP is nestled within a humid, tropical rainforest 

located inside the ITCZ.  It is also located in the Maya lowlands.  The oxygen isotope ratios 

measured in the RBCMA will differ from oxygen isotope ratios measured in non-rainforest 

environments with less rainfall, in the mountainous Maya highlands, in coastal regions, in 

arid environments, in regions where the Pacific Ocean acts as the main source of air masses, 

and in regions which differ in latitude and consequently fall outside the ITCZ.  

Explanations of why oxygen isotope ratios vary in geographically distinct places are 

explained in further detail in Chapter 3.  

CULTURAL HISTORY 

The Programme for Belize Archaeological Project (PfBAP), nestled within the Rio 

Bravo Conservation and Management Area (RBCMA), presents an ideal environment for 

mobility and migration studies. Occupation in the RBCMA spans from the Paleoindian 

Period (15,000 – 8,000 BCE) through the Historical Period (Valdez, Jr. and Cortes-Rincon 

2012; Houk 1996; Lohse 2001; Manning 1997; Sullivan 1997). However, this report 

focuses on the migration within the region spanning the Late Preclassic (300 BCE – 250 

CE) to the Terminal Classic (CE 800 – 900).  

During this time interval, the RBCMA saw a rapid increase in population in the 

Late Preclassic, before experiencing a major decline in inhabitants at the end of the Early 

Classic (CE 250 – 550), commonly referred to as the Middle Classic Hiatus (approximately 

530 CE). Then, in the Late Classic (CE 600 – 800), the region again saw a major influx of 
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residents on an even larger scale than it saw in the Late Preclassic. Population growth 

flourished during this period throughout the RBCMA before the region almost completely 

depopulated by the Terminal Classic. There is little evidence of occupation in the region 

during the Postclassic (CE 900 – 1600) (Houk 1996; Lohse 2001; Manning 1997; Sullivan 

1997).  

Currently, we do not know how people were moving around the region or how 

many non-locals were moving into the area as no migration studies have yet been 

completed in the RBCMA, or in northwestern Belize in general. However, with the ability 

to include human specimens from a variety of sites, we can understand migration and 

mobility at both a local level and the broader, regional scale. This will enhance our 

understanding of migrations, economic interactions, political and marital alliances, and 

commoner adaptations to changes in demographics. 
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CHAPTER 3 

Isotope Background and Theory 

A nuclide, in its simplest definition, is a nucleus, consisting of neutral neutrons and 

positively charged protons, surrounded by negatively charged electrons (Sharpe 2007; 

Meier-Augenstein 2010).  Each element on the Periodic Table is defined by the number of 

protons within its nucleus. Thus the number of protons within the nucleus of a given 

element will always be the same; however, the number of neutrons within the nucleus of a 

particular element may vary (Katzenberg 2000; Banner 2004; Sharpe 2007; Meier-

Augenstein 2010; Porcelli and Baskaran 2011).  As such, an isotope can be defined as a 

nuclide of an element with varying amounts of neutrons.  

The number of protons in the nucleus determines the number of electrons outside 

it, which essentially defines an element’s chemical characteristics (Katzenberg 2000; 

Merier-Augenstein 2010).  The mass of an electron does not impact a nuclide; however, 

neutrons, like protons, have an influential mass. As a consequence, the total mass of 

isotopes of the same element will vary from each other; however, the chemical 

characteristics that define the element, such as the valence or its electronegativity, will not 

be affected (Meier-Augenstein 2010; Katzenberg 2000). The physical characteristics of the 

element, such as kinetic properties and bonding energies, will vary with mass (Meier-

Augenstein 2010; Porcelli and Baskaran 2011) which result in fractionation of isotopes 

from one another by chemical and physical processes.  

A fractionation factor (α) can be determined by examining the ratios between two 

isotopes from the same element. In other words: 



 18 

𝛼 =  
𝑅𝐴

𝑅𝐵
 

 

where RA is the isotope ratio in one phase (e.g. liquid water) and RB is the isotope ratio in 

another phase (e.g. water vapor), and both are representative of the same element (e.g. 

Oxygen) (Sharp 2007; Porcelli and Baskaran 2011). There is a larger magnitude of 

fractionation in lighter elements due to the relative mass differences between isotopes. 

For example, hydrogen has the largest fractionation factor, while heavier elements, like 

strontium, have very small and usually considered insignificant fractionation. This can be 

explained by a simple mathematical equation: 

 

𝑀ℎ𝑒𝑎𝑣𝑦 − 𝑀𝑙𝑖𝑔ℎ𝑡

𝑀𝑎𝑡𝑜𝑚𝑖𝑐
 

 

where Mheavy is the mass of the heavy isotope, Mlight is the mass of the light isotope, and 

Matomic represents the atomic mass of the element.  

Fractionation can occur in both equilibrium processes, where two reservoirs are 

engaged in equal isotopic exchange, and kinetic processes, where the distribution of 

isotopes is controlled by the rates of chemical and/or physical processes.  One example of 

a kinetic process in situations related to diffusion or evaporation is when one phase is 

removed much more quickly than another. For example, evaporation is considered a kinetic 

effect whereby the rate of evaporation of H2
16O is faster than the evaporation of H2

18O 

(Sharp 2007; Porcelli and Baskaran 2011).  A Rayleigh distillation equation can be used to 
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account for changes in the isotope compositions of water vapor in a cloud due to 

precipitation: 

 

𝑅

𝑅𝑖
=  𝐹𝛼−1 

 

where R is the measured isotope ratio (e.g. 18O/16O), Ri is the initial isotope ratio, α is the 

fractionation factor as described above, and F is the fraction of water vapor remaining in 

the cloud (Sharp 2007; Porcelli and Baskaran 2011).  

STABLE AND RADIOGENIC ISOTOPES 

Twenty-one elements on the Periodic Table are monoisotopic, including 

phosphorous, fluorine, sodium and aluminum; the remaining elements consist of stable and 

radiogenic isotopes (Sharp 2007; Meier-Augenstein 2010). Stable isotopes do not decay 

over time (Katzenberg 2000; Sharp 2007). Radiogenic isotopes are daughters generated 

from either alpha, beta, or gamma decay from a radioactive parent, due to the instability of 

a nucleus (Banner 2004; Porcelli and Baskaran 2011). Additionally, radiogenic isotopes 

can be either stable or radioactive (Sutinen 2014).  

Stable and radiogenic isotopes have been used to investigate research interests in 

the earth sciences, chemistry, biology, and recently, archaeology (Price et al. 2002; Banner 

2004; Sharp 2007; Meier-Augenstein 2010; Baskaran 2011; Porcelli and Baskaran 2011;). 

The use of both stable and radiogenic isotopes is complementary to one another and can 

help constrain places of origin where geographic variation may be low or where two 
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distinct geographic locations share the same isotopic compositions (Beard and Johnson 

2000; Banner 2004; Hodell et al. 2004; Evans et al. 2006a; Eckardt et al. 2009; Keenleyside 

et al. 2011; Slovak and Paytan 2011; Price et al. 2012a). 

The use of strontium and oxygen isotope ratios to identify migration in the distant 

past dates back to the early 1990s when researchers began to explore Ericson’s (1985) in-

depth proposal for their use (Katzenberg 2000).  This technique works off the assumption 

that isotope ratios measured in human bone and dental enamel can be used as geographical 

tracers to determine points of origin or early childhood. In other words, an individual whose 

tooth enamel’s isotopic composition matches the local isotopic ratios can be identified as 

a local, while an individual whose tooth enamel’s isotopic ratios do not match the local 

isotopic composition can be identified as a non-local. Local values for strontium are 

determined by measuring isotope ratios of local sediments, plants, gastropods, and faunal 

remains; for oxygen, local values are determined through a statistical groupings of isotopic 

ratios measured in human bone.  Two-sigma standard deviation outliers are generally 

considered non-local individuals. Increasingly, oxygen and strontium isotope ratios have 

been used to investigate research questions pertaining to human mobility in various regions 

of the world (see Wright and Schwarcz 1999; Price et al. 2000, 2008, 2010, 2012; Hodell 

et al. 2004; Bentley 2006; Slovak and Paytan 2011; Gerling et al. 2012; Koch and Kupke 

2012; Frei and Price 2013; Fenner and Wright 2014).  

Strontium 

There are four naturally occurring, stable isotopes of Strontium – 84Sr with a natural 

abundance of 0.56%; 86Sr at 9.87%; 87Sr at 7.04%; and 88Sr at 82.53%. 87Sr is a radiogenic 
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daughter product of 87Rubidium (Rb), due to beta decay processes (Beard and Johnson 

2000; Price et al. 2000, 2008, 2012; Banner 2004; Hodell et al. 2004; Bentley 2006; Price 

and Gestsdottir 2006; White et al. 2007; Andrushko et al. 2009; Sommerville 1010; 

Thornton 2011; Freiwald 2011; Slovak and Paytan 2011; Sutinen 2014). While 87Sr is the 

product of radioactive decay, it is itself a stable isotope and will not decay further (Hodell 

et al. 2004; Bentley 2006; Andrushko et al. 2009; Sommerville 1010; Thornton 2011; 

Freiwald 2011; Sutinen 2014).  87Sr is normalized to a non-radiogenic isotope, such as 86Sr, 

to measure variations within isotopic ratios due to  87Rb86Sr decay over time and natural 

discrepancies within 87Sr geographically (Beard and Johnson 2000; Price et al. 2000, 2008).  

Strontium isotope ratios differ geographically due to the original amount of Rb 

within a rock and the rock’s age. (Ericson 1985; Price et al. 2000, 2002, 2008; Hodell et 

al. 2004; Price and Gestsdottir 2006; White et al. 2007; Slovak and Paytan 2011; Wright 

2012; Frei and Price 2014). Rb is incompatible with the mantle and incorporated into partial 

melts of the mantle; thus, it is high in certain crustal materials, such as shales, sandstones, 

and granites while low in others, such as limestones, basalts, and marbles (Beard and 

Johnson 2000). The age of the rock also contributes greatly to the variances in 87Sr/86Sr 

ratios.  Because they started with higher concentrations of Rb when they formed, old 

metamorphic rocks (>100Ma) will have some of the highest 87Sr/86Sr ratios (Hodell et al. 

2004; Evans et al. 2006a, 2006b; Price and Gestsdottir 2006; White et al. 2007; Slovak and 

Paytan 2011; Frei and Price 2013). This is because Rb was plentiful in the rock when it 

formed and has had ample time to decay into 87Sr.  The 87Sr/86Sr ratios of younger rocks 

(1-10Ma) will have much lower 87Sr/86Sr ratios because Rb has not had as much time to 
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decay. (Price et al. 2000, 2002, 2008; Hodell et al. 2004; Evans et al. 2006a, 2006b; Price 

and Gestsdottir 2006; White et al. 2007; Slovak and Paytan 2011; Wright 2012; Frei and 

Price 2013). Furthermore, the value of a given marine sedimentary rock, such as a calcium 

carbonate, will not vary much over time due to an initial lack of Rb. Strontium and calcium 

are chemically similar, so Sr often substitutes for Ca, excluding Rb.  For these reasons, 

calcium carbonates like limestone represent the 87Sr/86Sr ratio of the ocean during the time 

of their formation (Hodell et al. 2004). 

We know that the 87Sr/86Sr ratio varies over time and location due to radioactive 

decay from 87Rb. While the differences in ratios can seem quite small (0.0001 to 0.001), 

such variations between two regions can have immense impacts on data interpretations.  

To try to make small changes in ratios easier to understand, results may be presented in 

epsilon notation (ε87Sr): 

 

ε87Sr = ( 

87
86 𝑆𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

87
86 𝑆𝑟𝑏𝑢𝑙𝑘 𝑒𝑎𝑟𝑡ℎ

− 1) ∗ 10,000 

 

where 87Sr/86Srmeasured is the amount of 87Sr/86Sr measured in your sample and 87Sr/86Srbulk 

earth is equal to 0.7045, an internationally accepted value. 

This variation between locations is what makes Sr appealing for migration studies 

within an archaeological context. The Sr ratios from an individual’s tooth enamel can be 

used to determine a geographic place of origin when compared to local samples of bedrock, 

sediments, and/or modern or archaeological faunal remains (Beard and Johnson 2000; 
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Price et al. 2002, 2008; Wright 2005; Evans 2006a, 2006b; Eckardt et al. 2009; Gerling et 

al. 2012). Furthermore, because the half-life of 87Rb is 4.88x1010 years, there is no concern 

that archaeological investigations will be affected by the decay of 87Rb into 87Sr, since the 

time scale archaeologists work on is so short in comparison (Price et al. 2000, 2002, 2008; 

Hodell et al. 2004; Bentley 2006; Andrushko et al. 2009; Sommerville 1010; Thornton 

2011; Freiwald 2011; Sutinen 2014). 

Strontium in the Human Body 

 Strontium has the ability to act as a geographic tracer of an individual’s place of 

origin through tropic cycles (Ericson 1985; Hodell et al. 2004; Wright 2005; Bentley 2006; 

Andrushko et al. 2009; Sommerville 1010; Thornton 2011; Freiwald 2011; Sutinen 2014). 

The underlying bedrock, limestone in the case of PfBAP, carries an 87Sr/86Sr ratio.  After 

traveling through the bedrock, water containing Sr with this isotopic ratio percolates out 

into the soils and is absorbed by local plants. Animals consume the plants and drink the 

water; followed by humans eating the animals and plants and drinking the same water.  

Isotopic fractionation between 87Sr and 86Sr is relatively small; it has been noted that mass 

fractionation is almost completely absent between strontium isotopes (Ericson 1985; Beard 

and Johnson 2000; Price et al. 2000, 2002; Hodell et al. 2004; Wright 2005 Evans et al. 

2006a, 2006b; Eckardt 2009; Slovak and Paytan 2011; Frei and Price 2013). In the rare 

event that any fractionation does occur during analysis, it can be corrected for by measuring 

known standards alongside the unknowns. The computer software used to operate the mass 

spectrometer then calculates what the true 87Sr/86Sr ratios of the unknowns are. In other 

words, the local person who eats local foods and drinks local waters, should be 
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representative of the local Sr isotopic values (Beard and Johnson 2000; Hodell et al. 2004; 

Bentley 2006; Evans et al. 2006a, 2006b; Andrushko et al. 2009; Eckardt et al. 2009; 

Slovak and Paytan 2011; Frei and Price 2013).  After ingestion, Sr is incorporated into 

human tissues like fingernails, hair, bone, and dental enamel (Slovak and Paytan 2011; Frei 

and Price 2013).  

Bones and teeth are the only remaining human tissues available to us at the PfBAP 

and make up the samples to be used for analysis. Human bone, commonly referred to as 

bioapatite, is a hard mineral matrix composed of insoluble calcium phosphate 

hydroxyapatite with a chemical formula of [Ca10(PO4)6(OH)2] (Price et al. 2000, 2012a, 

2012b; White et al. 2007; Grimes and Pellegrini 2013). Strontium and calcium (Ca) are 

chemically similar, and as such, a portion of Sr substitutes for Ca in bone and tooth enamel 

during mineralization phases (Budd et al. 2000; Price et al. 2000, 2008, 2012a, 2012b; 

Wright 2005; Bentley 2006; White et al. 2007; Slovak and Paytan 2011). Since no 

fractionation occurs within the tropic cycle or during these mineralization phases, the ratio 

of 87Sr/86Sr in an individual’s bone or tooth enamel can be measured and used to identify 

whether or not the individual consumed local foods during tooth mineralization periods.  

For this research, tooth enamel is preferred over bone samples for multiple reasons.  

As mentioned in the Geological and Environmental Setting section of Chapter 2, the 

PfBAP is located in a very humid, tropical rainforest. Acidic soils and excessive rainfall 

are not ideal conditions for the preservation of bones. As such, teeth represent the bulk of 

the available specimens.  Additionally, studies have shown that tooth enamel, unlike bone, 

is highly resistant to diagenetic contamination which often occurs during postmortem 
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deposition (Beard and Johnson 2000; Bentley 2006; Price and Gestsdottir 2006; Slovak et 

al. 2009; Price et al. 2012a, 2012b). 

Further, tooth enamel does not remodel after formation. The mineralization phases 

for tooth enamel are in the early stages of a person’s life and vary in time depending upon 

the tooth. While the tooth is forming, it incorporates the local 87Sr/86Sr ratio through the 

substitution of strontium for calcium. Once the tooth has finished forming, the chemical 

composition does not change, thus reflecting the Sr isotope ratio of the bedrock of where 

the tooth formed (Beard and Johnson 2000; Budd et al. 2000; Schweissing and Grupe 2003; 

Hodell et al. 2004; Wright, 2005, 2012; Price and Gestsdottir 2006; White et al. 2007; 

Slovak et al. 2009; Slovak and Paytan 2011; Gerling et al. 2012; Price et al. 2000, 2002, 

2008, 2010, 2012a, 2012b; Boric and Price 2013).  

Incisors develop first, followed by canines, and finally molars (Wright and 

Schwarcz 1998, 1999; Beard and Johnson 2000; White et al. 1998, 2000, 2002, 2004a, 

2004b, 2007; Keenleyside et al. 2011; Wright 2012; Webb et al. 2014), with Sr isotopic 

compositions decreasing with later tooth formation phases due to a change from weaning 

to eating local food sources (Beard and Johnson 2000). Choosing the same tooth (e.g. the 

first molar or pre-molar) for every individual to be analyzed ensures a similar time of 

reference across an entire population regardless of differences in the age the individuals 

were at their time of death or a difference between burial time scales (e.g. Late Preclassic 

vs. Late Classic).  

Identifying a representative local signature can be difficult.  We know that geologic 

sources can be used to determine the 87Sr/86Sr values for a location. The first step may be 
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to sample the bedrock in the region to try to assess the local strontium isotopic composition 

and any variations within it (Beard and Johnson 2000). While this will give you ratios of 

the underlying bedrock, it may not provide an accurate signature for local inhabitants.  

There are additional contributors to an individual’s strontium intake – soils, rainfall, ground 

waters, and the atmosphere. Soils will have the largest impact on Sr values, especially in 

the PfBAP region where clays are abundant, but precipitation and atmospheric components 

have also been shown to contribute (Beard and Johnson 2000; Price et al. 2002; Hodell et 

al. 2004). Moreover, Sr ratios can vary within a single piece of rock and between rocks, 

and people are not completely sedentary. Local populations may not live on the same 

formation of bedrock (assuming the two rocks have different 87Sr/86Sr ratios). Thus, it is 

more accurate to compare the 87Sr/86Sr ratios of human specimens to the ratios of other 

biologically available samples, such as faunal remains, gastropods, and, if available, other 

human bone samples from the site being studied (Price et al. 2002; Hodell et al. 2004; 

Wright 2005; Bentley 2006; Price and Gestsdottir 2006; Andrushko et al. 2009; Slovak et 

al. 2009; Frei and Price 2013). 

Oxygen 

Oxygen has three naturally occurring, stable, non-radiogenic isotopes: 16O with an 

abundance of 99.762%; 17O at 0.038%; and 18O at 0.20%.  Oxygen isotope ratios are 

compared to a standard and are notated in permil as δ values, such that 

 

𝛿 = ( 
𝑅𝑠𝑎𝑚 − 𝑅𝑠𝑡𝑑

𝑅𝑠𝑡𝑑
) ∗ 1000 
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where Rsam is equal to the heavy/light isotope ratio (18O/16O) in the sample and Rstd is equal 

to the heavy/light isotope ratio in the standard (White et al. 2000; 2002; 2004a; 2004b; 

2007; Sharp 2007; Price et al. 2012; Wright 2012; Sutinen 2014; Symonds et al. 2014). 

Values are multiplied by 1000 so the rather small δ values are converted to a more 

reasonable quantity in parts per mil (‰) (Sharp 2007; Porcelli and Baskaran 2011; Sutinen 

2014; Symonds et al. 2014). If the δ values are positive, the ratio of heavy to light isotopes 

of the sample is greater than the standard. If the δ values are negative, the ratio of heavy to 

light isotopes of the sample is less than the standard (Price et al. 2012). 

Two standards are used for oxygen analysis, one for low temperature carbonates 

(Pee Dee Belemnite [PDB]) and one for water, silicates, and quartz (Standard Marine 

Ocean Water [SMOW]) (Price et al. 2012). Oxygen isotope ratios can be measured in the 

carbonate or phosphate component of human dental enamel and bone.  The carbonate 

component utilities the PDB standard while the phosphate component utilizes the SMOW 

standard.  The two can be related using the following: 

 

δ18OSMOW = 1.03091 (δ18OPDB) + 30.91 

 

This equation seeks to relate the SMOW and PDB scales. Once the scales have been 

related, the calculated δ18OSMOW is then substituted into the below equation to account for 

the mineralization of human dental enamel at body temperature: 
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δ18Ophosphate = 0.98 (δ18OSMOW) – 8.5 

 

 Oxygen isotopes are representative of the local meteoric rainwater, and vary 

depending upon the distance travelled from the ocean, cooling history of the air, humidity, 

elevation, latitude, and precipitation patterns (Stuart-Williams et al. 1996; White et al. 

1998, 2000, 2002, 2004a, 2007; Wright and Schwarcz 1998; Dupras and Schwarcz 2001; 

Evans et al. 2006a ; Eckardt et al. 2009; Price et al. 2010, 2012a; Wright et al. 2010; 

Keenleyside et al. 2011; Gil et al. 2014).  Essentially, as clouds form over oceans, they take 

in evaporating water molecules. As they travel from the ocean over the land, the heavy 

oxygen isotope (18O) is preferentially incorporated into the liquid water during 

condensation and removed from the air mass as precipitation occurs, as a result the isotopic 

signatures closest to the ocean will be heaviest (more positive values). As the clouds 

continue to move over land and up in elevation, the falling rain from the clouds has much 

lower δ18O values, resulting in isotopically lighter water (more negative values) (Price et 

al. 2010; Wright et al. 2010).  As such, rain that occurs on the coast is typically isotopically 

heavier (meaning more 18O) than rain falling further inland (Price et al. 2010) 

Unlike Sr, the mass fractionation between oxygen isotopes is much greater due to 

the larger relative mass difference between 18O and 16O. As such, oxygen isotopes are 

susceptible to biological and environmental processes (Price et al. 2012a; Webb et al. 2013; 

Symonds et al. 2014).  It is possible that changing environmental factors, such as hurricanes 

and heavy flooding, and evaporation during the dry season affected the δ18O values of the 

Maya aguadas, where the Maya would have gotten their water during the dry seasons.  
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Evaporation during the dry seasons has the ability to increase δ18O values in standing water 

(like the aguadas) and waxy leaves. It is because of these changing environmental factors 

that oxygen isotopes are relevant to migration studies (Dupras and Schwarcz 2001; Evans 

et al. 2006a; Keenleyside et al. 2011) as sites within regions will carry their own 

independent oxygen isotopic values. 

Oxygen in the Human Body 

Oxygen isotope analysis for human provenance focuses on subtle differences in 

meteoric water sources between geographic regions (White et al. 1998; Dupras and 

Schwarcz 2001; Gerling et al 2012; Webb et al. 2013; Gil et al. 2014), and relies on two 

expectations: 1) human teeth will represent the region in which they formed; and 2) 

geographic regions are isotopically distinct from one another (White et al. 1998, 2000, 

2004a, 2007; LaPorte et al. 2009; Price et al. 2010, 2012a; Wright 2012; Webb et al. 2013, 

2014; Gil et al. 2014). Though consumption of local waters, oxygen is integrated into the 

phosphate [PO4], carbonate, and hydroxyl [OH] components of human tooth enamel, 

formed during early childhood (typically before the age of 12 in all teeth), and of bone 

(Stuart-Williams 1996; Wright and Schwarcz 1998; Stephan 2000; Dupras and Schwarcz 

2001; Evans et al. 2006a, 2006b; Eckardt et al. 2009; Wright et al. 2010; Freiwald 2011; 

Keenleyside et al. 2011; Slovak and Paytan 2011; Gerling et al. 2012; Price et al. 2012a; 

Grimes and Pellegrini 2013; Webb et al. 2013; Gil et al. 2014; Sutinen 2014; Symonds et 

al 2014).  
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There are additional factors that contribute to the oxygen values in teeth and bone, 

resulting in multiple difficulties when measuring the local oxygen values of the past. The 

first struggle is that it is hard to find a proxy of what the local signature was since oxygen 

isotope values can seasonally vary (Price et al. 2010; Wright 2012; Symonds et al. 2014). 

Modern faunal remains cannot be used due to the variability of oxygen isotopes in an 

annual cycle (Dupras and Schwarcz 2001).  Additionally, animals often obtain their water 

much differently than humans.  Humans often rely on meteoric water sources as their main 

intake of water while animals often rely on leaf water as their main source (Dupras and 

Schwarcz 2001). Due to the oxygen fractionation which occurs during species-specific 

bone mineralization and the evaporation effects on oxygen from the plants consumed as 

water resources by the animal, values are not representative across species (Wright and 

Schwarcz 1998; Dupras and Schwarcz 2001; Wright et al. 2010).  

The second obstacle is that meteoric water is not the only contributor to oxygen 

values in humans. Breastfeeding has proven to have an influence on the δ18O in infants and 

consequently teeth that form during infancy, like incisors and canines, since breastmilk has 

a heavier isotopic value than water due to its formation from body water rather than 

meteoric waters (Wright and Schwarcz 1998, 1999; White et al. 2002, 2004a, 2007; 

Eckardt et al. 2009). Still, the enrichment from breastfeeding can be accounted for 

isotopically as researchers have shown through the measurement of lighter δ18O values as 

tooth formation ages increase (Wright and Schwarcz 1998, 1999). In other words, the third 

molar, which mineralizes between ages 9 to 13, has lighter oxygen values than the second 

molar which has lighter values than the first molar, etc. In the Maya region, children began 
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the weaning process between two and four years old (Wright and Schwarcz 1998, 1999; 

White et al. 2002, 2004a, 2007), so samples can be selected to avoid influence of 

breastfeeding. In the event that no molars are available for sampling, 1‰ can be subtracted 

from tooth samples that formed before weaning (White et al. 2002, 2004a, 2007; Eckardt 

et al. 2009). Choosing a tooth that formed after the weaning period has ended (e.g. the first 

molar) ensures the measured oxygen ratios reflect the local values and not that of the 

mother’s breastmilk which is more enriched in oxygen (Wright et al. 2010); however, 

research has shown that if molars are not available for selection and if canines or pre-molars 

are used, oxygen values can be subtracted to remove any influence the mother’s breastmilk 

had on the forming tooth (Wright 2005; Wright et al. 2010).   

In addition to enrichment from breastfeeding, humans’ δ18O values are depleted 

through sweat, urine, feces, and carbon dioxide (White et al. 2000, 2002, 2004a, 2004b, 

2007; Dupras and Schwarcz 2001; Price et al. 2012a). As a result, statistical analyses must 

be completed on burials from each site to try to obtain a representative local signature.  

Outliers larger than a 2-sigma standard deviation from the averaged values of the 

population are considered to be non-local. Research has shown variation within a given 

population is typically less than 2‰ (Price et al. 2012a). 

As mentioned previously, tooth enamel is the preferred choice for identifying local 

and non-local individuals because it does not remodel over time, it represents a formation 

period during childhood across an entire population, and is highly resistant to diagenetic 

alteration while buried (Lécuyer et al. 1993; Rink and Schwarcz 1995; White et al. 1998, 

2000, 2004a, 2004b; Wright and Schwarcz 1998, 1999; Evans et al. 2006a; Eckardt et al. 
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2009; Price et al. 2010; Wright et al. 2010; Keenleyside et al. 2011; Wright 2012; Webb et 

al. 2014). An individual whose tooth enamel falls within the local values will be considered 

local, while an individual whose tooth enamel falls outside the local values will be 

considered non-local (Keenleyside et al. 2011). This is different for oxygen isotopes in 

human bones, where O is constantly replenished during bone growth and remodeling. As 

such, O is also a great indicator of mobility throughout an individual’s lifetime (Evans et 

al. 2006a; Price et al. 2012; Stuart-Williams et al. 1996).  

While the sample preparation is much more intensive, I propose to analyze the 

oxygen isotope ratioss from the phosphate component from human tooth enamel and bone 

rather than the carbonate component. The bond between phosphorous and oxygen is very 

strong and as such is highly resistant to diagenetic alteration (White et al. 1998; Wright 

and Schwarcz 1998, Vennemann et al. 2002; Wright et al. 2010; Grimes and Pellegrini 

2013). While researchers have studied the removal of diagenetic contamination from the 

calcite portion of enamel and bone, there a loss of the original oxygen isotope ratios, 

resulting in altered numbers (White et al. 1998; Dupras et al. 2001; Grimes and Pellegrini 

2013). Phosphates allow for the analysis of original δ18O values in both bone and tooth 

specimens, which will help constrain individuals geographically.   
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CHAPTER 4 

Mass Spectrometry  

As discussed in Chapter 3, oxygen and strontium values are represented as ratios, 

and these ratios are measured by a mass spectrometer.  What type of mass spectrometer 

you use will depend upon what you are trying to analyze; however, the process of analysis 

for all spectrometers is relatively similar (see Figure 5; reference Sharp 2007; Smith and 

Thakur 2010).    

 

Samples are first introduced into the instrument through a sample inlet. In the case 

of strontium, where, a Thermal Ionisation Mass Spectrometer (TIMS) is used, samples are 

simply loaded on filaments and placed in the instrument. For oxygen, where an Isotope 

Ratio Mass Spectrometer is used, samples are converted from either a solid or a liquid to a 

gaseous mixture.  Once this has occurred, the gas mixture travels to the ion source where 

the molecules are ionized by blasting them with electrons. The TIMS ionizes by heating 

the samples (Smith and Thakur 2010). This ionization results in the loss of a single electron 

from each molecule, creating cations, or positively-charged ions.   

The cations are then focused as they travel, under vacuum, through a series of cones 

and plates.  These cones and plates ensure that the kinetic energy of each ion is the same 

as the sample travels through the flight tube. The beam is accelerated as it reaches the Mass 

Analyzer.   

Figure 6 – Basic components of a Mass Spectrometer. Borrowed from Smith and Thakur 

2010.  
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In the mass analyzer, the beam encounters a magnet and bends. Ions travel at 

different trajectories depending upon their mass to charge (m/z) ratio. Heavier masses will 

not bend as much as lighter masses, and as such, heavier masses will travel along outer 

routes, while lighter masses travel along inner paths. As the ions leave the mass analyzer, 

they enter the detector where they are counted either sequentially (e.g. ICP-MS) or 

simultaneously (e.g. TIMS and IRMS) by faraday cups.  The collection of ions is measured 

as a voltage and can be displayed graphically as a spectrum or given as ratios.  

The type of precision achieved by a mass spectrometer depends upon its detector 

and the number of faraday cups.  An instrument like an IRMS measures the mass/charge 

ratio of a select number of voltages represented by various molecules (e.g. mass 44, 45, 

and 46 to monitor CO2 gas) and measures them simultaneously, resulting in precision to 

the second decimal place in per mil notation (Sharp 2007) . An instrument like a TIMS 

measures the mass/charge ratio of a select number of currents represented by a single 

element of interest, and also measures them simultaneously, resulting is high precision to 

the sixth significant figure of a ratio (Price et al. 2012a, 1012b).  Before either of these 

instruments can be utilized for measuring strontium and oxygen isotope ratios within dental 

enamel and bone specimens, samples must be cleaned, dissolved, and re-precipitated as 

solids that have isolated the constituent of interest.  
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Proposed Method for Future Research 

OXYGEN ISOTOPES 

Following protocols outlined by Stephan (2000), Meier-Augenstein (2010), and 

Grimes and Pellegrini (2013), samples will be prepared in the Stable Isotope Mass 

Spectrometry laboratory located at the Jackson School of Geosciences (JSG) at the 

University of Texas at Austin (UT). The ultimate end goal of sample prep is to remove any 

organic material and diagenetic contamination from the teeth and bones, dissolve the 

bioapatite sample, and reprecipitate as silver orthophosphate (Ag3PO4).  This process is 

designed to isolate the phosphate component for oxygen isotope analysis using a 

Temperature Conversion Elemental Analyzer (TC/EA) coupled to an Isotope Ratio Mass 

Spectrometer (IRMS).  Samples may be analyzed at UT or they may be sent to an 

established laboratory for analysis. 

Sample prep occurs in four major stages.  The first stage concerns exterior cleaning 

and sample drilling. To remove the exterior surface and any contaminants, samples are first 

abraded 100µm using a rotary tool with a tungsten carbine brush attachment. Samples are 

then placed into an ultrasonic cleaner filled with double distilled water (ddH2O) for 

approximately one hour.  This ensures any remaining surface contaminants (e.g. dust) are 

removed prior to sample homogenization. Once the samples have been ultrasonically 

cleaned, they are placed into a drying oven set at 50°C for two hours.  Ultrasonic cleansing 

and drying are repeated as many times as needed until all surface contaminants are 

removed.  
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Once the samples have been cleaned, a known quantity is sectioned out. Using a 

rotary tool with a diamond drill bit, samples are drilled longitudinally.  This ensures 

homogenization of the sample where isotope values may vary. Approximately 40mg of 

powdered enamel or bone is removed from each sample and placed into a 15mL centrifuge 

tube.  To remove apatite powder and ensure no cross contamination occurs, drill bits and 

the workspace are wiped down with a diluted bleach solution and latex gloves are changed 

between each sample.  

The second stage involves removing any organic material and/or diagenetic 

contaminants that may affect the analysis. 2mL of 2.5% sodium hypochlorite (NaOCl) is 

added to each sample tube before the samples are gently agitated for 24hours. Samples are 

then centrifuged for five minutes at 10,000rpm before the supernatant is discarded. The 

sample pellet is thoroughly washed with ddH2O before it is centrifuged for another five 

minutes at 10,000 rpm.  This process is repeated until the supernatant pH reaches neutral.  

When neutrality is reached, a few drops of the final supernatant is added to 0.5mL of 1M 

silver nitrate (AgNO3) to check for chloride, which is indicated by a formation of milky 

precipitation.  If one occurs, the rinse procedure is repeated until the final supernatant is 

chloride free.   

Once the supernatant is chloride free, 2mL of 0.125M sodium hydroxide (NaOH) 

is added to the sample pellet and gently agitated for 48h.  This ensures any remaining 

organic material is dissolved. After 48h, the samples are centrifuged for five minutes at 

10,000rpm. Sample pellets are repeatedly washed with ddH2O and centrifuged until a 

neutral pH is reached.  
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The third phase involves dissolving the phosphate component from the sample 

pellets and into an aqueous solution. 2mL of 2M hydrofluoric (HF) is added to the sample 

pellet for a 24h digestion period. The samples are then centrifuged for five minutes before 

the supernatant is pipetted into a 250mL beaker (filled with 3mL of 2M potassium 

hydroxide (KOH) to neutralize the HF) and kept for the final stage. The centrifuge tubes 

containing the sample pellet are then filled with ddH2O, centrifuged again, and the 

supernatant added to the neutralized HF solution.  Double distilled water is added to fill 

each beaker to 200mL. 

 In the final phase, the samples are re-precipitate as Ag3PO4. 15mL of buffered 

silver ammine solution is added to each beaker before they are placed on a hotplate and 

slowly warmed to 70°C.  Samples are held at this temperature for 3h. After 3h, samples are 

removed from the hotplate and slowly cooled to room temperature before the supernatant 

pH is rechecked for neutrality. The greenish crystals that have formed are filtered using 

pre-weighed 0.2µm filters, washed three to four times with distilled water, and dried at 

50°C for approximately 12 hours. Once dried, 0.2mg of each sample is placed into tightly 

folded (4 x 3.2 mm), pre-cleaned silver capsule prior to analysis. 

STRONTIUM ISOTOPES 

Following the protocol outlined by Price et al. (2000), samples will be prepared in 

the Isotope Clean Laboratory also located in the JSG at UT.  The goal of the sample prep 

is to remove organic material and diagenetic contamination for the teeth, dissolve the 

bioapatite sample, isolate the strontium, and precipitate the strontium component as a salt 
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for analysis.  This process allows for the isolation of strontium for analysis using a Thermal 

Ionization Mass Spectrometer (TIMS).  Samples will be analyzed with the Thermo 

Scientific Triton TIMS located in the TIMS Laboratory within the JSG at UT.  

Ultrasonic cleaning and sample sectioning is identical to oxygen sample 

preparation. Once the samples have been cleaned and sectioned out, diagenetic 

contaminants are removed by adding 2mL of 5% ultrapure acetic acid to each sample vial 

before being sonicated for 15 minutes.  After 15 minutes of ultrasonic cleansing, the 

samples are left to soak in acetic acid for 12 hours.  This has been shown to remove most 

contaminants (Price et al. 2000).  After 12 hours of soaking, samples are centrifuged at 

10,000 rpm for five minutes before being rinsed with deionized water. The rinse is repeated 

three times, removing the supernatant after each centrifuge before samples are placed on a 

hot plate set to 50C, and left to dry for 24 hours.  

The samples will then be dried down and sent through a second phase of dissolution 

to remove any remaining minerals or precipitates. This includes first transferring the 

samples to sterile silica glass tubes that have previously been cleaned in nitric acid (HNO3).  

This ensures no organic contaminants are on the glass tubes. Samples are ashed in a muffle 

furnace set to 825C for 8 hours.  

Samples are redissolved in 2mL of ultrapure 0.5M HNO3 before strontium isolation 

begins. Elemental separation for Sr will be completed using Eichrom Sr-specific resin. 

Once the Sr is isolated, 10 μl of phosphoric acid (H3PO4) will be added to the sample before 

being dried down.  A drop of concentrated 15M HNO3 will then be added to remove any 

remaining organics.  Samples will be dried down before being loaded onto Rhenium 
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filaments with Tantalum Fluoride slurry and analyzed on the Thermo Triton TI thermal-

ionization mass spectrometer (TIMS), also located in the JSG at UT.   

 NIST NBS987 will be used as a calibration standard to ensure precision of the 

instrument, data will be normalized to the accepted value of NBS987 of 0.710248 and the 

six-month lab average, and BHVO will be used as a secondary standard to measure 

accuracy. The TIMS software automatically corrects for any mass fractionation, 

normalizing to 88Sr/86Sr = 8.375209 using an exponential law and also uses the accepted 

87Sr/85Sr = 0.3856 to correct for any Rb interferences. Laboratory blanks will be calculated 

using an Isotopic Dilution Equation and will determine any lab contamination, which may 

affect the results.  
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CHAPTER 5 

Future Research 

Immigration and human mobility are constant features in contemporary national 

discourses, bringing up complex questions pertaining to social sustainability. It is not 

unreasonable to suggest that the articulation between migration and sustainability was also 

of concern to past societies. To better understand the consequences of ancient Maya 

mobility through time, I will combine archaeological research with oxygen and strontium 

isotopic analyses.  

As mentioned in Chapter 2, this research is associated with the Programme for 

Belize Archaeological Project (PfBAP), which includes archaeological sites dating from 

the Late Preclassic (300 BCE–250 CE) to the Terminal Classic (800–900 CE). I want to 

understand the consequences of mobility and determine if major population changes during 

this time interval were related to intraregional mobility, long distance immigration, or both. 

In other words, what are the demographic shifts throughout the PfBAP area over time? Is 

mobility restricted to local people moving around the region or can we also identify 

foreigners? Do new communities develop because of population overflow? Are these sites 

representative of specific people? Can we determine marriage alliances/kinship ties 

through migration patterns? 

We do not yet know how people were moving throughout the PfBAP region; 

however, a robust dataset of human remains exists which will help clarify our 

understanding of demographic changes. I have currently obtained permission to analyze 

tooth and bone samples from 130 human specimens excavated from the PfBAP area and 
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43 individuals from external sites. Additional samples will be added over the next two to 

three years. I will compare the isotopic signatures of individuals from the PfBAP area with 

external sites and previously published data from the Maya region and outside it to 

determine the percentage of non-local individuals who were buried within the region and 

to try to pinpoint their place of origin.  

 Using the methods outlined in Chapter 4, I will analyze the oxygen and strontium 

components of human teeth and bone.  Upon identifying non-locals, I will examine spatial 

patterns and demographics of the non-local population to test my hypothesis, which 

proposes population movements within the PfBAP area encompassed people from a wide 

range of places and distances, establishing marriage and kinship alliances between sites 

and resulting in the development of new sites in the Late Classic. This research seeks to 

measure isotopic values to reflect the origin of and length of time individuals spent in the 

PfBAP area and the consequences for population changes.  

Conclusion 

Migration affects both the migrating population and the native population, the place 

of emigration and the place of origin, and society at large (Kern 2012).  Migrants help 

facilitate the movement of new cultural practices and beliefs, dietary habits and foods, and 

diseases (Little 2004). Trying to fully understand a group of people cannot be completed 

without understanding the consequences of demographic changes.  These fluctuations may 

impact the environmental conditions of a site, the social complexities of a civilization, 
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and/or the biological changes in a population and can occur over an extended period of 

time rather than the inert snapshot shown to the archaeologist (Little 2004; Osborne 1991).  

Strontium and oxygen isotopic analyses have proven to be beneficial in identifying 

non-locals from various archaeological projects around the world (for specific examples 

see Bentley 2006; Eckhart et al. 2009; Evans et al. 2006; Freiwald 2011; Hodell et al. 2004; 

Kern 2012; Koch and Kupke 2012; Price et al. 2002; Price et al. 2012a; Price et al. 2012b; 

Rand 2012; Somerville 2010; Stuart-Williams et al. 1996; Sutinen 2014; Thornton 2011; 

Wright 2005; Wright et al. 2010), and these analyses provide the foundation needed to 

address consequences of migration.  Once migrants have been identified in the PfBAP 

region, I will employ methodologies to test the effects of mobility and immigration through 

qualitative and quantitative analyses of settlement patterns and distributions (e.g. the 

emergence of new communities) and changes in material goods.  
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