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This dissertation presents three studies addressing various modeling

and computational aspects of lattice structures. The first study is concerned

with characterization of the threshold behavior for very slow (subcritical) crack

growth. First, it is shown that this behavior requires the presence of a healing

mechanism. Then thermodynamic analysis of brittle fracture specimens near

the threshold developed by Rice (1978) is extended to specimens undergoing

microstructural changes. This extension gives rise to a generalization of the

threshold concept that mirrors the way the resistance R-curve generalizes the

fracture toughness. In the absence of experimental data, the resistance curve

near the threshold is constructed using a lattice model that includes healing

and rupture mechanisms. The second study is concerned with transmission of

various boundary conditions through irregular lattices. The boundary condi-

tions are parameterized using trigonometric Fourier series, and it is shown that,

vi



under certain conditions, transmission through irregular lattices can be well

approximated by that through classical continuum. It is determined that such

transmission must involve the wavelength of at least 12 lattice spacings; for

smaller wavelength classical continuum approximations become increasingly

inaccurate. Also it is shown that this restriction is much more severe than

that associated with identifying the minimum size for representative volume

elements. The third study is concerned with extending the use of boundary al-

gebraic equations to problems involving irregular rather than regular lattices.

Such an extension would be indispensable for solving multiscale problems de-

fined on irregular lattices, as boundary algebraic equations provide seamless

bridging between discrete and continuum models. It is shown that, in contrast

to regular lattices, boundary algebraic equations for irregular lattices require

a statistical rather than deterministic treatment. Furthermore, boundary al-

gebraic equations for irregular lattices contain certain terms that require the

same amount of computational effort as the original problem.
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Chapter 1

Introduction

This dissertation consists of three modeling and computing studies

based on lattices. The first study is concerned with a threshold resistance

T -curve for subcritical cracks based on the competition between rupture and

healing. The second study is concerned with establishing new relationships

between true discrete and approximate continuum descriptions of irregular

lattices. The third study is concerned with the applicability of boundary al-

gebraic equations for multiscale modeling of irregular lattices.

In the following section, we will give a general account of the back-

ground and literature review associated with lattices. The next three chapters

will consist of their own literature reviews concerning each of the studies cov-

ered in this dissertation.

1.1 Literature Review

The beauty of the lattice models is in their simplicity. Here, we are

mainly concerned with applications of lattice models in the mechanics of ma-

terials and structures.

Navier’s work to derive continuum governing equations for a solid con-
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taining numerous atoms could be regarded as the earliest dedication to connect

lattice models with the mechanics of solids [113]. Later, Hrennikoff [52] and

McHenry [83] worked on the inverse problem to approximate the elastic con-

tinuum model with a discrete spring-mass system. This idea resulted in the

outgrowth of the finite element and finite difference methods.

1.1.1 Physical Lattices

Lattice models work best for the structures and materials naturally

containing discrete units. Some examples illustrating this case are: space-

fillers in architecture and civil engineering [39, 126], large space truss structures

in aerospace engineering [26, 88], cellular foams [40] (Fig. 1.1 (a)), materials

with negative Poisson’s ratios [67] and negative thermal expansion coefficients

[105].

Over the last decade, a new class of ultra light weight materials called

lattice materials (Fig. 1.1 (b) and (c)), has received increasing attention for

its high stiffness-weight and strength-weight ratios [28, 112, 119, 122], energy

absorption [36], shock mitigation [70] and heat insulation [62]. However, lat-

tice materials bring a new type of mechanical problems. When the structure

made of lattice materials is subjected to external loads, it fails locally at the

structural unit level. To resolve all of the microstructures numerically is very

challenging because the number of structural units in lattices could be up to

millions or billions. The classical homogenization method is not a good pre-

scription for such problems since the local response of the structural unit is
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not considered in the equivalent continuum model.

1.1.2 Models Based on Lattices

The lattice model is a collection of one-dimensional bonds (elements)

that interconnect at lattice sites (nodes), which are either regularly or irreg-

ularly situated in space [50]. Typically, there are two origins to approximate

the bonds: (i) in the physics community, bonds are calculated from the inter-

atomic potential energy (or strain energy); and (ii) in civil engineering, bonds

are regarded as structural elements, such as trusses and beams. Therefore,

lattices can be classified into two categories: atomic lattices and truss-like

lattices.

The first category, atomic lattices (Fig. 1.1 (d)), is central to crystal

physics [13–15, 59, 63, 64, 75]. The analysis of crystal defects such as disloca-

tions and grain boundaries requires consideration of interatomic interactions

on the scale of atomic lattices. The lattice statics and molecular dynamics

provide powerful techniques to resolve atomic defects. The potential energy

(or strain energy) of the deformed lattice is postulated with an empirical ex-

pression. In fact, numerous potentials with different levels of accuracy have

been comprehensively investigated [17] in the molecular dynamics modeling

field. For example, the simplest approximation of atomic interactions is the

pair potential for which the potential energy only depends on the distances

between two atoms. Popular pair potentials are the Lennard-Jones potential

[3, 71, 97] and the Morse potential [66, 86]. Furthermore, the Lennard-Jones
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(d)                                                       (e) 

Fig. 1.1 Different types of cellular materials: (a) balsa wood (Da Silva and 

Kyriakides, 2007); (b) aluminum honeycomb (Papka and Kyriakides, 

1994); (c) polycarbonate honeycomb (Papka and Kyriakides, 1998a); (d) 

aluminum open-cell foam; (e) Divinycell H160 closed-cell foam 

(Kyriakides, 2008). 

(a)

spite of limited cell wall ductility associated with

3–7% porosity levels. Then, the mechanics of

laminar flow heat transfer in LCAs is discussed,

upper and lower bound solutions are presented for

the total heat transfer rate for unidirectional
forced flow and compared to finite difference cal-

culations, and results of thermal conductivity

measurements are given for several LCAs. Finally,

the concept of functionally graded LCAs is dis-

cussed with regard to multifunctional applications.

2. Mechanical properties

Common to many ductile honeycombs or foam

materials is a response characterized by several

regimes for IP compression: initial elastic defor-
mation, initial yielding corresponding to plastic

cell wall buckling, a relatively flat extended stress

plateau regime, and finally densification after

substantial crushing; these regimes are shown in

the engineering stress–strain diagram in Fig. 2

(Ashby et al., 2000; Gibson and Ashby, 1997). At

first, the honeycomb cell walls bend or contract/

extend elastically, with stiffness dependent on cell
shape. Beyond a critical strain the cells collapse by

elastic buckling (at very low relative densities) or

plastic yielding and buckling (higher relative den-

sities). The initial plastic buckling instability point

and the post bifurcation behavior depend on the

cell shape and morphology of the honeycomb

structure, the applied boundary conditions and
size of the specimen, and the cell wall material

work hardening rate. Post bifurcation behavior

also depends on the ductility of the cell wall ma-

terial. In Fig. 2, point A indicates the plastic col-

lapse point; if only some of the cells collapse

initially due to geometrical imperfections within

the structure, then there may be a rather gradual

transition into overall structural softening behav-
ior. The degree of softening following initial col-

lapse and the nature of the so-called plateau stress

regime depends on the ductility of the cell wall

material; high ductile walls permit considerable

plastic bending prior to intermittent cell wall

contacts that may result in a relatively flat plateau

regime (see Fig. 2) often with very gradual work

hardening behavior. Cell walls of limited ductility

Fig. 1. Extruded maraging steel LCA reduced from oxide powders and reduced to achieve an 8· 8 square cell array (left); side view of

extruded section (right).

A

*E

 S
tr

es
s 

σ
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D

Dε

Fig. 2. Schematic engineering stress–strain curve of metallic

honeycombs under IP compression.

A.M. Hayes et al. / Mechanics of Materials 36 (2004) 691–713 693

(b)
V.S. Deshpande et al. / J. Mech. Phys. Solids 49 (2001) 1747–1769 1765

Fig. 12. Photograph of the octet-truss lattice material made from a casting aluminium alloy, LM25.

Fig. 13. (a) Comparison between the experimental observations and predictions of the �33 versus �33 response
of the LM25 lattice material. (b) Uniaxial tensile response of the as-cast LM25 aluminium alloy.

Uniaxial compression tests in the three-direction were performed using a standard
screw driven test machine. The load was measured by the load cell of the test machine
and used to deFne the nominal stress in the specimen. The average nominal strain
between two triangulated layers was measured via a clip gauge. The measured uniaxial
stress versus strain curve, �33 versus �33, is plotted in Fig. 13a for the nominal strain rate
�̇33=10−3 s−1. The stress versus strain curve exhibits a hardening response up to a strain
of approximately 5%. Beyond this strain, the response is softening corresponding to
plastic buckling of the struts. Bedding-in e&ects during the early stages of deformation
were detected as seen in Fig. 13a. These bedding-in e&ects occur at the nodes in the
lattice material: the pins of the tetrahedral core bed into the holes of the triangulated
layers during the initial stages of deformation.
In order to compare the measured and predicted sti&ness and strength of the lat-

tice material we measured the uniaxial tensile response of the as-cast LM25 struts;
the measured response is plotted in Fig. 13b. It was found that the LM25 can be

(c) (d)

Figure 1.1: Representations of materials containing lattice structures: (a) Alu-
minum open-cell foam [55] ; (b) Cellular material [49] ; (c) Truss-like material
[29] ; (d) Atomic network [103].
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potential, for example, can be linearized around equilibrium positions based

on the Cauchy-Born rule and reduced to the so-called harmonic potential. The

resulting harmonic pair potential is equivalent to the Hookean spring (truss-

like) lattice model [52]. However, under complex situations, such as surface

reconstruction problems of solid crystals, the potential energy of bonds de-

pends not only on distances of atoms, but also on actual positions or the

local environment. For this reason, multibody potentials based on the embed-

ded atom method [37, 85] and effective medium theory [53, 54] are utilized to

resolve those problems.

The second category, truss-like lattices, can be viewed as continuum

level counterparts of atomic lattice models. The one-dimensional interaction

bonds in truss-like lattices are approximated by structural elements widely

used in civil engineering, such as springs [48, 52, 91], trusses [7, 18] and beams

[48, 51, 102, 115]. A very comprehensive discussion of the mechanics of lattice

models has been given by Ostoja-Starzewski [90].

The application of both categories of lattices provides a practical way

of discretizing continuum media. In particular, singular stress issues near

the crack tip in continuum models are successfully avoided in lattices. Thus,

lattice models are widely used to simulate fracture processes in atomic systems

[1, 8, 22, 48, 50] and crack propagations in heterogeneous media. Examples

of heterogeneous media include composites [92, 93], polycrystals [42, 91], soils

[115], concretes [56, 102, 129], ceramics and rocks [7]. In Chapter 2 of this

dissertation, we will describe a threshold resistance T -curve for subcritical
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cracks based on the competition between crack rupture and healing. A kinetic

Monte-Carlo lattice model is used to construct the threshold resistance T -curve

in the absence of experimental data.

1.1.3 Solution Methods

In this dissertation, we are only concerned with the lattice statics, thus,

solution methods for static problems will be presented in this section. The

existing solution techniques can be typically classified into three categories

[76]: brute force methods, homogenization and multiscale methods.

The first solution category, brute force methods, is particularly efficient

when the system size of lattices is not too large. The microstructural details

can be fully resolved in such methods. Approaches in this category include

direct algorithms such as the structural analysis method and fast numerical

algorithms such as FFT or multigrid [104].

The lattice analogue of the boundary element method or so-called

boundary algebraic equations method [76, 79, 80] is one specific and power-

ful brute force approach. This method is similar to the classical boundary

integral equation method, since algebraic equations defined on the boundary

are used to replace the governing difference equation defined on the entire

lattice. Boundary algebraic equations are formulated from the discrete funda-

mental solutions, called lattice Green’s functions [78]. The approach of using

boundary algebraic equations to replace difference equations for a regular lat-

tice dates back to Saltzer [100]. This method offers a new way of using brute

6



force for model reduction on very large regular lattices, and its fast numer-

ical implementations and strict error bounds are very attractive. Haq et al.

[45, 46] presented some applications using boundary algebraic equations and

the hybrid finite-boundary element method for problems on periodic lattices

with interphases and defects. In Chapter 4 of this dissertation, we will discuss

the applicability of lattice Green’s functions as a multiscale modeling approach

for solving problems defined on large-scale disordered lattices.

The second solution category, homogenization, is more suitable for the

case when the local deformation is not important, and the global averaging

response is desired. In addition, the system size could be very large. The

mathematical theory of homogenization for media containing microstructures

was well established since the nineteen sixties and seventies [10]. The literature

closely associated with this asymptotic expansion homogenization for lattices

includes the homogenization of reticulated structures [24], networks [116] and

truss or frame lattices [77].

In the field of micromechanics, practical homogenization methods usu-

ally compute effective properties based on the energy equivalence in a repet-

itive unit cell between the lattice structure and the continuum model [27, 90,

91, 107]. Then, the continuum model with constant effective moduli can be

solved using any conventional continuum discretization method. For disor-

dered lattice models with strong heterogeneities, the global response can be

achieved by the stochastic finite element approach [89, 95].

The third solution category, multiscale methods, is the prescription to

7



solve problems under two assumptions: (i) the system size is too large for avail-

able computational resources and (ii) an accurate solution is required only in

a small subdomain, while the solution for the remaining region does not have

to be accurate. This method addresses actual challenging problems, which

include the mechanical analysis of lattice materials and crystal with defects.

Multiscale methods for bridging diverse spatial scales are typically classified

into two categories [23]: information passing approaches and concurrent ap-

proaches. In the concurrent schemes, models provide the simultaneous resolu-

tion of continuum and discrete length scales. In contrast, in the information-

passing approaches, the parameters in the continuum model are extracted from

the gross response of the microscopic model, and different models are solved

sequentially. The major information passing approaches include the quasicon-

tinuum method [110, 111], the equation free method [61], the heterogeneous

multiscale method [32] and the generalized mathematical homogenization the-

ory [23, 38]. The major concurrent approaches include the coupling of length

scales [99], bridging domain [125] and bridging scale methods [96, 118]. In

Chapter 3 of this dissertation, we will present multiscale analysis of large ir-

regular lattices, and in particular with the use of classical continuum models

for constructing accurate approximate solutions for boundary-vale problems

defined on such lattices.
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1.2 Introduction of Anti-plane Elastostatic Lattices

In this dissertation, we mainly focus on lattices made of linear anti-

plane elastostatic trusses as the underlying discrete model. Every node has one

degree of freedom (out-of-plane displacement u). This anti-plane lattice model

is equivalent to the elastic membrane, thermal conductivity and random fuse

model, by virtue of mathematical analogies [2, 31, 114]. Examples of lattices

with different topologies are illustrated in Figure 1.2.

For the anti-plane elasticity, Hooke’s law for isotropic material is ex-

pressed as

σ
¯

= µγ
¯
. (1.1)

The above notations for stresses and engineering strains are represented as:

σ
¯
≡ (σ31, σ32) and γ

¯
≡ (γ31, γ32) in the 3D elasticity. µ is the shear modulus.

The kinematic equations are

γ
¯

= ∇u, (1.2)

where u denotes the out-of-plane displacement, and the equilibrium equations

are

∇σ
¯

= 0. (1.3)

Combining the above equilibrium, kinematic and constitutive equations, we

obtain the governing equation

∆u = 0, (1.4)

which is the Laplace equation of the scalar u.

9



In the discrete setting, each lattice bar (or bond) with the shear mod-

ulus µ0 is linked through two nodes i and j. The relationship of nodal dis-

placements and forces transmitted by the bond is represented in the matrix

form

µ0A

l

(
1 −1
−1 1

)(
ui
uj

)
=

(
fi
fj

)
. (1.5)

Here A and l are the cross-sectional area and length of the bar element, respec-

tively. The symbols ui and fi denote the nodal displacement and force at the

node i. Following the structural analysis procedure, the algebraic governing

equations are assembled in the standard form

Ku = f . (1.6)

Here K, u and f denote the global stiffness matrix, nodal displacements and

forces, respectively. The equations of (1.6) are closed by prescribing displace-

ments at the exterior boundary and forces in all other interior nodes, so that

(1.6) provides a unique solution for the remaining displacements. The most

straightforward solution method is to use the conventional structural analysis

approach, which involves the procedure to assemble the global stiffness matrix

K and compute the inverse of K.

1.3 Dissertation Structure

This dissertation is organized as follows. In the next three chapters,

we will provide the elaboration of three modeling studies based on lattices. In

the last chapter, we will summarize results and discuss future work. In the

10



Student Version of MATLAB

(a)

Student Version of MATLAB

(b)

Figure 1.2: Examples of lattices: (a) Square lattice; (b) Delaunay lattice.
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remaining sections of this chapter, we will briefly introduce the three modeling

studies based on lattices.

1.3.1 The Resistance Curve for Subcritical Cracks Near the Thresh-
old

In Chapter 2, we generalize Rice’s work [98] by extending it to fracture

specimens undergoing microstructural changes. This generalization qualita-

tively changes the threshold concept. In particular, it is demonstrated that

microstructural changes give rise to multiple threshold states. One conse-

quence of this conclusion is that the oscillatory crack behavior associated with

a particular threshold state is preceded by a growth (or healing) stage. This

is equivalent to saying that, in the presence of microstructural changes, the

threshold concept is generalized by a T -curve similar to the way the fracture

toughness concept is generalized by the R-curve. Towards this objective, a ki-

netic Monte-Carlo lattice model incorporating rupture and healing is used to

construct the threshold resistance T -curve in the absence of experimental data.

The material of Chapter 2 has been published in the International Journal of

Fracture [128].

1.3.2 On Continuum Approximation of Irregular Lattices

In Chapter 3, we are concerned with multiscale analysis of large ir-

regular lattices, and in particular with the use of classical continuum models

for constructing accurate approximate solutions for boundary-value problems

defined on such lattices. Accordingly, the lattice model is treated as exact (or

12



microscopic) and the continuum model as approximate (or macroscopic).

Our point of departure is that, for many problems associated with

fracture and microscopic pattern formation, characterization of the contin-

uum model is an important but nevertheless secondary objective. For those

problems, the primary objective is to compute microscopic quantities relevant

to the phenomenon of interest. Accordingly, we focus not on the continuum

model but on how its introduction affects the microscopic quantities of inter-

est. Furthermore, in contrast to the majority of multiscale models involving

continuum components, we engage the continuum model not as a component

of a multiscale model, but rather as a generator of a limited approximation ba-

sis for exact solutions of boundary-value problems defined for the exact lattice

model.

1.3.3 On Extension of Boundary Algebraic Equations to Irregular
Lattices

In Chapter 4, we attempt to extend boundary algebraic equations

(BAEs) to irregular lattices. Such an extension would be indispensable for

solving multiscale problems defined on irregular lattices, as BAEs provide a

seamless transition to remote boundary conditions. We developed a BAE for a

model problem relevant to analyzing defects in irregular lattices. Nevertheless,

this BAE requires statistical treatment and certain terms of it are as difficult

to compute as the solution itself. In contrast, for regular lattices, the BAE

can be treated deterministically and the same terms are very easy to compute.

13



Thus, for now, the idea of applying BAEs to irregular lattices is not attractive.

An appropriate statistical setting for this problem is very challenging and is

not pursued here. In the end of this chapter, we summarize the difficulties

associated with those BAEs and outline possible avenues for future research.
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Chapter 2

The Resistance Curve for Subcritical Cracks

Near the Threshold

Thermodynamic analysis of brittle fracture specimens near the thresh-

old developed by J. R. Rice [Thermodynamics of quasi-static growth of Griffith

cracks, J Mech Phys Solid, 26, pp. 61-78, (1978)] is extended to specimens

undergoing microstructural changes. The proposed extension gives rise to a

generalization of the threshold concept that mirrors the way the resistance

curve generalizes the fracture toughness. In the absence of experimental data,

the resistance curve near the threshold is constructed using a basic lattice

model.

2.1 Introduction

According to elementary fracture mechanics, rapid crack growth occurs

when the Mode I stress intensity factor K exceeds its critical value Kc. In the

subcritical regime K < Kc crack growth is slow. Also it is widely accepted

that growth stops completely for K < Kth. Under fixed ambient conditions,

the threshold Kth is treated as a material property. It is important in many

biomedical, chemical, geotechnical, and nuclear engineering applications.
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According to the conventional definition, the condition K < Kth implies

that the crack velocity ȧ is zero no matter how long the specimen is exposed to

loading. In reality, this assertion is validated only over a finite hold time and

within a certain length resolution associated with crack growth. Note that a

patient observer with an accurate measuring device is more likely to observe

crack growth than a less patient observer with a less accurate measuring device.

Thus patience and accuracy favor lower values of Kth. Ultimately, an infinitely

patient observer with an infinitely accurate measuring device should report

Kth = 0!

In practice, the threshold is associated with an extremely small rather

than zero crack velocity. This is sufficient for estimating a lower bound for the

time it takes to reach the critical stateK = Kc. The usefulness of this approach

is somewhat limited, especially for applications involving very large times. In

this regard, it is instructive to examine some of available experimental data.

Most of the data compiled in [69] are collected under conditions characterized

by velocities in the range between 10−6 and 10−12 m/s. However, in a recent

study [82], it is suggested that the velocity should be as low as 10−14 m/s. For

current measuring devices, this velocity gives rise to the test duration close

to one year [82]. For most applications, such a choice should be prohibitive.

More importantly, there are no good reasons to believe that the resulting Kth

is a material property.

A rigorous argument in favor of Kth > 0 has been made by Rice [98],

who associated the threshold with a transition between growth and healing.
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According to Rice, the crack fluctuates near the threshold, with healing being

dominant in the regime K < Kth and growth being dominant in the regime

K > Kth. This behavior has been validated by Lawn and co-workers [120, 121]

who conducted elegant experiments involving loading-unloading cycles leading

to crack growth and healing. Unfortunately, by and large Rice’s work remains

ignored by practitioners. On the one hand, this could be easily explained

by difficulties associated with registering healing. On the other hand, heal-

ing is ubiquitous in biological systems, and it has been observed in polymers

[57, 58, 101, 124], ceramics [20, 25, 35, 44, 68, 123], concrete [54] and rocks [106].

Furthermore, several healing mechanisms have been identified, and among

them healing by diffusion appears to be the most common one [19]. Here

we distinguish between healing and toughening mechanisms. The latter make

crack growth more difficult but do not lead to negative crack growth. Of

course toughening mechanisms may interact with healing ones. In particular,

we single out a universal zero-temperature toughening mechanism associated

with statistical spatial inhomogeneity of the fracture toughness [12, 21].

The principal limitation of Rice’s analysis is that it is restricted to

brittle specimens. In this chapter, we remove this limitation by taking into

account microstructural changes due to creep. This generalization qualita-

tively changes the threshold concept. In particular, we demonstrate that mi-

crostructural changes should result in a threshold spectrum rather than a

single threshold value. As far as the macroscopic behavior is concerned, this

proposition implies that in general the threshold state may be preceded by
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a growth (or healing) stage. This behavior mirrors that of the R-curve [16],

in which Kc is treated as a function of the crack advance ∆a rather than a

constant. Accordingly, we refer to the threshold spectrum as the T -curve.

We are not aware of any experimental data suitable for validating (or

invalidating) our proposition because the current practice of data reporting

does not include the function ∆a(t), which is critical for constructing the T -

curve. As a partial remedy, we introduce a very basic lattice model which

allows us to construct synthetic data and compute the T -curve.

The rest of the chapter is organized as follows. In Section 2.2, following

Rice [98], we analyze fracture specimens undergoing microstructural changes.

In Section 2.3, we introduce the lattice model. In section 2.4, we present

simulation results. In section 2.5, we summarize key results of our work.

2.2 Analysis

In this section, we consider a hypothetical threshold test conducted on

a clamped Mode I fracture specimen (Fig. 2.1) subjected to a step load. We

assume that the specimen is infinite, the crack is semi-infinite, and inelasticity

is confined to a small zone adjacent to the crack tip, so that the energy release

rate G remains constant throughout the test.

In the absence of microstructural changes, the threshold is described

by the inequality [98]

(G− 2γ) ȧ ≥ 0 (2.1)
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where γ is the specific surface energy. This inequality implies growth for

G−2γ > 0 and healing for G−2γ < 0. We regard a as the external (observable)

state variable and G−2γ as the conjugate thermodynamic force. The threshold

is associated with the equilibrium condition G− 2γ = 0, with the implication

that this equilibrium state is stable.

In the presence of microstructural changes, (2.1) is generalized as[
Ĝ(G,φ)− 2γ

]
ȧ+ λ · φ̇ ≥ 0 (2.2)

Here φ is a column vector of internal (non-observable) state variables repre-

senting the microstructure and λ is a column vector of thermodynamic forces

conjugate to φ. The hat symbol is used to emphasize that the energy release

rate depends on microstructural details, and the macroscopic energy release

rate G is treated as a loading parameter.

In the presence of microstructural changes, one cannot make a conclu-

sive statement about the sign of ȧ unless the internal state has been equili-

brated. With this provision, (2.2) reduces to the familiar inequality structure[
Ĝ(G,φ∗)− 2γ

]
ȧ ≥ 0 . (2.3)

Here φ∗ denotes stable equilibrium states. Inequality (2.3) implies that each

pair (G,φ∗) satisfying

Ĝ(G,φ∗)− 2γ = 0 (2.4)

can be regarded as a threshold state. Thus it becomes appropriate to consider

a threshold spectrum rather than a single threshold value.
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Let us rewrite (2.4) in a form that does not include explicit dependence

on the internal state. To this end, we assume that (2.4) can be solved for G

and expressed in the form

G− Ĝth(φ
∗) = 0 , (2.5)

so that explicit dependence on the internal state is transferred to the state

function Ĝth(φ
∗). Next, we observe that for each pair (G,φ∗) satisfying (2.4)

there exists a corresponding ∆a∗. This allows us to rewrite (2.5) in the form

G−Gth(∆a
∗) = 0 (2.6)

which does not include explicit dependence on the internal state. We refer

to the function Gth(∆a
∗) as the T -curve. It is straightforward to determine

experimentally, as it represents all pairs (G,∆a∗) associated with macroscopic

thermodynamic equilibrium.

The T -curve shares many common features with the R-curve widely

used for representing plasticity effects on the fracture toughness [16]. The

idea behind the R-curve is that the plastic flow near the crack tip produces an

additional toughening effect as the crack grows. However, at some point, the

plastic flow becomes steady and the effective toughness reaches a steady value.

As a result the function Gc(∆a) initially increases and then reaches a plateau.

It is reasonable to expect that the T -curve behaves similarly, although the

toughening effect is expected to be associated with creep rather than plasticity.

Similarly to the R-curve, the usefulness of the T -curve is limited be-

cause it is constructed under constant G conditions, and for most specimens
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G depends on a. This dependence may significantly affect the evolution of

the internal state, and ultimately the equilibrium states forming the threshold

spectrum. Thus the use of the T -curve should be restricted to small ∆a∗.

It is worth emphasizing one major difference between the conventional

and proposed threshold testing. In the standard test, the apparent value of

Gth is lower for patient observers. In contrast, in the proposed approach, a

patient observer is rewarded with a high value of Gth because the time to reach

equilibrium should be large for large G. In this regard, an intriguing question

is whether the T -curve approaches Gc for large ∆a∗.

It is instructive to compare the restrictions imposed on the crack growth

in the conventional, Rice’s, and proposed approaches. The conventional ap-

proach is characterized by the restrictive condition

∆a = 0 for all t > 0.

The other two approaches require the introduction of the average crack growth

increment

∆a(t) :=
1

t

∫ t

0

∆a(t′)dt′ .

Then, according to Rice, the conventional restriction is relaxed as

∆a(t)→ 0 as t→∞ .

Finally, the proposed approach involves the most relaxed condition

∆a(t)→ ∆a∗(G) = G−1
th (G) as t→∞ . (2.7)
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2.3 Simulation Methodology

In this section, we present a methodology for computing the T -curve

using a model specimen well suited for simulations.

2.3.1 Specimen Description

In the previous section, the T -curve was introduced using an infinite

clamped specimen with a semi-infinite crack. For simulation purposes, it is nei-

ther necessary nor useful to consider the entire specimen. Instead we consider

its process zone subjected to boundary conditions consistent with the K-fields.

Furthermore, all arguments presented in the previous section for Mode I speci-

mens also hold for Mode III specimens, which are easier to simulate than their

Mode I counterparts.

For simulations, we consider specimens similar to the one shown in

Figure 2.2. Each specimen microstructure is a simple square lattice whose

nodes have the Cartesian coordinates

x1 = li1 and x2 = l

(
i2 +

1

2

)
where l denotes the lattice spacing, and i1 and i2 are integers (Fig. 2.2). The

lattice microstructure is well suited for simulations, especially those involv-

ing microstructural changes associated with rupture and healing of its bonds;

a model describing those processes will be presented in Section 2.3.2. The

macroscopic specimen dimensions are such that the crack length is equal to

Ml, the size along the x1 axis is equal to 2Ml, and the size along the x2 axis
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Figure 2.1: Clamped Mode I fracture specimen.
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Figure 2.2: The fracture specimen for M = 12 (left); The crack tip and the
coordinate system (right).
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is equal to (2M + 1)l. Ultimately, M must be chosen sufficiently large, so that

all quantities of interest, and in particular the T -curve, are independent of M .

Under anti-plane deformation, the elastic response of a bond is governed

by the stiffness c relating the shear force per unit out-of-plane thickness and the

difference between the out-of-plane nodal displacements. On the macroscopic

scale, the overall elastic response is represented by the overall shear modulus

µ = c

This relationship is straightforward to establish by considering a periodic prob-

lem for an l × l cross.

The specimen is loaded by prescribing the Mode III displacements [16]

u(r, θ) =

√
Gr

πµ
sin

θ

2
(2.8)

at the exterior nodes, except for the nodes on the crack faces; all other nodes

are kept force-free. Here r and θ are the polar coordinates (Fig. 2.2b). We

regard G as the loading parameter.

The adopted model is known in the literature as a random fuse model;

for pertinent details and a literature survey we refer to a comprehensive review

[2].

2.3.2 Bond Rupture and Healing

We assume that lattice bond rupture is a thermally activated process

and adopt a commonly used model for this phenomenon [9]. In that model it
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is assumed that an infinitesimal probability of rupture δΦ under a constant

force F during an infinitesimal time interval (t, t+ δt) is given by the equation

δΦ = Ψ(t, F ) exp

(
F

R

)
δt

τ
. (2.9)

Here Ψ is the probability of survival in the time interval (0, t); R and τ are

model constants. During the time interval (t, t+δt) the probability of survival

is reduced by δΦ,

Ψ(t+ δt, F )−Ψ(t, F ) = −δΦ , (2.10)

so that we can combine (2.9) and (2.10) to obtain

Φ(t, F ) = 1− exp

[
− exp

(
F

R

)
t

τ

]
(2.11)

and

Ψ(t, F ) = exp

[
− exp

(
F

R

)
t

τ

]
. (2.12)

Let us emphasize that these simple expressions are valid only when F is held

constant. In general, the solution of (2.9) and (2.10) requires numerical inte-

gration. Also note that the probability of survival approaches zero exponen-

tially fast as t and F increase. Thus (2.9) is close to the rule that states that

a bond ruptures once the force reaches a critical value.

According to the chosen rupture model, even unloaded specimens will

eventually fail. To prevent this from happening, we assume that the proba-

bility of healing of a vacant site during the time interval (t, t+ δt) is given by

the equation

δΠ = α [1− Π(t)]
δt

τ
, (2.13)
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where α is a dimensionless material constant. This equation parallels (2.9) as

the term 1 − Π represents the probability of non-healing in the time interval

(0, t). Upon integration of (2.13) we obtain

Π(t) = 1− exp

(
−αt
τ

)
. (2.14)

2.3.3 Implementation Details

In a typical numerical experiment, a specimen similar to that shown

in Figure 2.2 was subjected to Mode III displacement-prescribed boundary

conditions (2.8), with G held constant throughout the experiment. Due to

microstructural changes, an incremental computational procedure was neces-

sary. In that procedure, each increment was associated with one and only one

microstructure changing event. To explain the procedure we use the induc-

tion, and suppose that an event occurs at a certain time t = t0. Using this

information, we have to determine (i) the time t0 + ∆t when the next event

occurs and (ii) the event itself.

First, we determine the forces transmitted by the bonds of the instan-

taneous microstructure by solving equations governing the elastic response.

Those equations combine the force equilibrium and Hooke’s law. For example,

for a node attached to four bonds the governing equation is the well-known

five-point stencil

c[4u(i1, i2)− u(i1 + 1, i2)− u(i1− 1, i2)− u(i1, i2 + 1)− u(i1, i2− 1)] = f(i1, i2)

(2.15)
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Here i1 and i2 are integer coordinates, u is the nodal displacement, and f is

the nodal force. If the number of bonds is less than four, then (2.15) must be

modified. For example, if the bond between the nodes (i1, i2) and (i1 + 1, i2)

is missing, then (2.15) is modified as

c[3u(i1, i2)− u(i1 − 1, i2)− u(i1, i2 + 1)− u(i1, i2 − 1)] = f(i1, i2)

Nodes not attached to at least one bond are disregarded. The system of

algebraic equations is closed by setting f = 0 at every node except for the

boundary nodes where the displacements are prescribed.

Once the forces have been determined, the time increment ∆t toward

the next event and the event itself can be computed using kinetic Monte-Carlo

method [117], [127], [84]. Here, we closely follow the scheme used in [73] and

[33]. Suppose that there are m bonds and n vacancies and the local time

scale is set so that t0 = 0. The probability that an event occurs during an

infinitesimal time interval (∆t,∆t + δt) but not during a finite time interval

(0,∆t) is expressed as

δP = N(∆t)

[
nα +

m∑
i=1

exp

(
Fi
R

)]
δt

τ
. (2.16)

Here N(∆t) is the probability of no event occurring during the finite time

interval (0,∆t). Note that the probabilities of the independent events involved

in this equation are infinitesimal, and therefore the usual rules of probability

theory can be replaced with simple addition. Following (2.10), during the

infinitesimal time interval (∆t,∆t + δt), the probability N is reduced by δP ,
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so that

δP = −[N(∆t+ δt)−N(∆t)] = −∂N(∆t)

∂t
δt . (2.17)

Now we can combine (2.16) and (2.17) into the ordinary differential equation

∂N(∆t)

∂t
= −N (∆t)

[
nα +

m∑
i=1

exp

(
Fi
R

)]
1

τ

with the initial condition is N(0) = 1. This equation is easy to integrate over

the time interval (0,∆t) because on this interval the forces remain constant.

As a result we obtain

N(∆t) = exp

{
−

[
nα +

m∑
i=1

exp

(
Fi
R

)]
∆t

τ

}
. (2.18)

This equation can be used to solve for the time increment ∆t, by equating

N(∆t) to a realization of a random variable uniformly distributed over the

interval (0,1).

Once the time increment ∆t has been determined, the corresponding

microstructural event is chosen according to the following three-step procedure:

• Assign the probability for each individual rupture event, 1 ≤ k ≤ m,

wk =
exp

(
Fk

R

)
nα +

∑m
i=1 exp

(
Fi

R

) ;

• Assign the same probability to all healing events, m+ 1 ≤ k ≤ m+ n,

wk =
α

nα +
∑m

i=1 exp
(
Fi

R

) ;
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• Among the m+ n events, the chosen one has the number i, determined

by the inequality
i−1∑
j=1

wj ≤ η ≤
i∑

j=1

wj

where η is a realization of a random variable uniformly distributed over

the interval (0,1). If η < w1 then i = 1.

For our purposes, it is important to differentiate between events asso-

ciated with crack growth versus damage accumulation. To this end, we adopt

the following rules for constructing the function a(t):

• Throughout the loading history, the crack is defined as a contiguous path

of ruptured bonds starting at the origin. The crack length is defined as

the path projection on the x1-axis. For example, if rupture occurs in the

bonds centered at (0, 0) and (l, 0), then the crack increment ∆a = 2l.

However, if rupture occurs in the bond centered at (l, 0) but the bond

centered at (0, 0) is intact, then ∆a = 0.

• For the original vacancies, introduced to form the crack, healing is al-

lowed only for the vacancy centered at (−l, 0). If that vacancy has healed,

then healing is allowed only for the vacancy centered at (−2l, 0), and so

on.

• Healing of vacancies created throughout the loading history is dictated

by (2.13), without any additional restrictions.
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2.4 Simulation Results

In this section, we present simulation results obtained using the method-

ology described in Section 2.3. The simulation objective is to construct the

T -curve and to examine associated statistical and size effects. The structure of

the governing equations is such that all simulation results can be normalized

so that α becomes the only important model parameter.

2.4.1 Crack Growth Versus Damage Accumulation

In this section, we examine the competition between crack growth (or

healing) versus damage accumulation. Crack growth is driven by rupture of a

small number of bonds ahead of the crack tip, whereas damage accumulation

is driven by rupture away from the crack tip. Since the probability of rupture

is an exponential function of G (2.11), high values of G (load) favor crack

growth rather than damage accumulation. Thus, for a fixed α, the rupture

pattern represents damage accumulation for low G, and straight crack growth

for high G. In between, one can observe various combinations of crack growth

and damage accumulation, including curvilinear crack paths (Fig. 2.3). Near

a threshold, α� 1 requires relatively large Gth, and therefore thresholds cor-

responding to α � 1 favor crack growth rather than damage accumulation.

Consequently, one can simulate thresholds corresponding to α� 1 using rela-

tively small specimens. Therefore simulation results presented in this chapter

involve α� 1.

Let us emphasize that, in this chapter, we are concerned with con-
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structing a meaningful T -curve by identifying a sufficiently large specimen

size M rather than by characterizing the process zone surrounding the crack

tip. Therefore a detailed analysis of the process zone is not required. Thus our

approach parallels that leading to the restriction on the minimum specimen

size for fracture toughness testing [16]:

Lmin ≥ 2.5

(
Kc

σy

)2

,

where σy is the yield stress, and the factor 2.5 is determined empirically. This

factor is determined without relying on any particular process zone model.

2.4.2 Quasi-brittle Regime

In this section, we analyze the asymptotic regime as α → ∞. In this

regime, rupture events are limited to the bond ahead of the crack tip, and

healing events are limited to the vacancy right behind the crack tip. As a

result the threshold state is characterized by fluctuations between rupture of

that bond and healing of that vacancy. By equating the probabilities of these

events,

exp

(
F

R

)
= α ,

one obtains the force in the bond ahead of the crack tip

F = R logα .

For the specimen shown in Figure 2.2, this force corresponds to displacement

boundary conditions (2.8) governed by

G = 1.26
R2

cl
logα2 (2.19)
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Figure 2.3: Rupture patterns for α = 100 and M = 12: (a)Damage accumu-
lation for G = 1.02GB; (b) Damage and crack growth for G = 7.97GB; (c)
Curvilinear crack growth path for G = 15.3GB; (d) Straight crack growth path
for G = 40.0GB.
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Here the numerical factor is determined computationally. Equation (2.19) is

regarded as an asymptotic estimate for the threshold for α� 1.

It is worth mentioning that in the asymptotic regime the specimen

behaves as if it were brittle because the strong healing effectively freezes mi-

crostructural events in the bulk of the specimen. Accordingly, we denote G

defined in (2.19) by GB where the subscript B refers to brittle:

GB = 1.26
R2

cl
logα2

There is another parallel with brittle behavior, as in the asymptotic regime

GB is the only threshold value. Indeed, in this regime, G > GB leads to

unbounded crack growth, whereas G < GB leads to unbounded crack healing.

The corresponding T -curve has the form

Gth(∆a) = GBH(∆a)

where H is Heavyside’s step function. Of course for ∆a > 0 this is the form

of the R-curve for rapidly growing cracks.

2.4.3 T -curve

In this section, we present simulation results for the T -curve. Simula-

tion results are presented by normalizing ∆a by l, the time t by τ , and G by

GB. In particular, we express the function Gth(∆a
∗) as

Gth(∆a
∗) = GBF

(
α,

∆a∗

l

)
. (2.20)
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Thus our objective is to construct the dimensionless function F of two dimen-

sionless variables. This function must be independent of the specimen size M .

Also it is important to examine the significance of statistical effects.

Equilibrium states were computed according to the following rules:

1. From numerical experiments, it was established that a typical transient

growth (or healing) stage involves about 5,000 events and its duration is

close to t = τ ;

2. A typical simulation lasted for t = 5τ .

3. The mean and the standard deviation for the function ∆a(t) were com-

puted over the interval 2τ ≤ t ≤ 5τ ;

4. The mean was accepted as ∆a∗ as long as the standard deviation was

less than 1% of the original crack length Ml.

5. Rejections were associated with specimen breaking and were treated as

simulation artifacts.

Simulation results for the T -curve for α = 100 using specimens with

M = 8 and M = 12 are presented in Figure 2.4. To avoid numerical artifacts

associated with specimen breaking, simulation were restricted to ∆a∗ ≤ .5Ml.

The data for M = 8 and M = 12 are in the range of ∆a∗ where comparisons

are meaningful, and therefore the size effect appears to be small. The T -curve

is well approximated by a straight line with the intercept Gth(0) ≈ GB.
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Figure 2.4: The T -curve for α = 100 using specimens with M = 8 and M = 12.
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To examine statistical effects, we conducted simulations for α = 100

using specimens with M = 8 and M = 12. We selected two values of G for each

specimen specimen size, and computed ten realizations per G. In each case,

the standard deviation for ∆a∗ was less than a half of the lattice spacing. For

small ∆a∗, this value of the standard deviation may represent significant size

effects. Nevertheless, its significance is greatly reduced for large |∆a∗|. This

behavior is not surprising, as for large |∆a∗|, one expects that equilibrium is

controlled by a large number of rupture and healing events in the bulk of the

specimen rather than a small number of events near the crack tip.

We also examined the dependence of F on α, with an expectation that

the dependence of Gth on α is captured by GB. To this end, we computed

F for M = 12 and α = 50, 100, 1000 and determined that there is a weak

dependence of F on α.

Finally, we examined memory effects. In particular, we considered two

loading histories for α = 100 and M = 12:

G1(t) = 0.87GBH(t) + .5GBH(t− 2τ)

and

G2(t) = 1.37GBH(t)− .5GBH(t− 2τ)

for t ≤ 12τ . If memory effects were absent, then one would expect that the

first history would result in the same ∆a∗ as the history G = 1.37GBH(t),

whereas the second history would result in the same ∆a∗ as the history G =

0.87GBH(t). In contrast, the simulation results were ∆a∗1 = 2.44l versus 3.28l
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and ∆a∗2 = −0.57l versus −1.53l. That is, in both cases, the initial stage

mattered. For the first history, it resulted in reduced growth in comparison to

the reference history G = 1.37GBH(t). Similarly, for the second history, the

initial stage resulted in reduced healing in comparison to the reference history

G = 0.87GBH(t). In summary, the adopted model predicts significant history

effects.

2.5 Closure

In this chapter, we extended thermodynamic analysis of brittle fracture

specimens near the threshold developed by Rice (1978) to specimens undergo-

ing microstructural changes. Key conclusions of this work are as follows:

• In order to achieve a non-zero threshold value, the healing mechanism

should be taken into account. (Here, we single out crack closure as a

different mechanism to affect the threshold.)

• In the presence of healing and microstructural changes, one should expect

multiple threshold states.

• On the macroscopic level, the multiple threshold states can be repre-

sented by a T -curve, which is quite similar to the R-curve.

In the absence of necessary experiments, the T -curve was constructed using a

basic lattice model. Although the adopted model can be easily criticized as

unrealistic, its basic feature, involving the competition between rupture and
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healing, could be incorporated into a cohesive zone model. Such a construction

is transparent, but the ensuing model is not expected to yield qualitatively

different results.
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Chapter 3

On Continuum Approximation of Irregular

Lattices

3.1 Introduction

This chapter is concerned with multiscale analysis of large irregular

lattices, and in particular with the use of classical continuum models for con-

structing accurate approximate solutions for boundary-value problems defined

on such lattices. Accordingly, the lattice model is treated as exact (or mi-

croscopic) and the continuum model as approximate (or macroscopic). This

topic is thoroughly understood for infinite periodic lattices governed by lin-

ear algebraic equations. In particular, there is a systematic procedure for

constructing a hierarchy of continuum models from the equations governing

the lattice model [77]. The first model in that hierarchy represents lattice

symmetry but not its dimensions, whereas more complex models represent

both. In principle, one can use that procedure to derive any known linear

continuum model from an infinite periodic lattice. In contrast, finite irregular

lattices do not lend themselves to elegant mathematical treatment, and there-

fore their analysis has to involve computational experiments. Nevertheless,

required computing is straightforward, and it allows one to develop a good

understanding of various important issues.
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The most basic continuum model corresponding to an irregular lat-

tice can be constructed by assuming that there is a mesoscopic representative

volume element (RVE), whose extrinsic properties are adopted as intrinsic

material properties of the macroscopic continuum model [47]. This point of

view is widely accepted, and there is a very large body of literature dedicated

to the determination of RVE properties. For irregular lattices, we single out

the work of Ostoja-Starzhewski and Wang [94] who carried out Monte-Carlo

simulations focused on statistical and size effects for RVEs representing three

classes of two-dimensional lattices. In particular, those researchers determined

the minimum RVE size l0 for which classical elasticity model is acceptable

within a prescribed tolerance ε.

Our point of departure is that, for many problems associated with

fracture and microscopic pattern formation, characterization of the RVE is

an important but nevertheless secondary objective. For those problems, the

primary objective is to compute microscopic quantities relevant to the phe-

nomenon of interest. Accordingly, we focus not on the continuum model but

on how its introduction affects the microscopic quantities of interest. Further-

more, in contrast to the majority of multiscale models involving continuum

components, we engage the continuum model not as a component of a mul-

tiscale model, but rather as a generator of a limited approximation basis for

exact solutions of boundary-value problems defined for the exact lattice model.

A basic setting for our work involves a large irregular lattice Ω contain-

ing a small domain of interest ω, for which the displacements and forces must
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be computed within a prescribed tolerance ε. We treat the lattice as a system

responding to an input φ by an output ψ. We associate the input and output

with nodal displacements at the exterior nodes ∂Ω and ∂ω, respectively. In

this context, our objective is to determine a family of inputs φ0 for which

the corresponding outputs ψ0 are accurately approximated by the continuum

model. It is argued that such inputs are characterized by a minimum wave

length λ0 dependent on tolerance ε.

Despite significant differences in problem settings and objectives, our

approach has been significantly influenced by the work of Babuska and co-

workers on pollution errors [6] and more recently on the penetration function

[5]. Furthermore, our work supports their notion that one must be extremely

careful in replacing microscopic models with macroscopic ones.

The remainder of the chapter is organized as follows. In Section 3.2

we formulate the problem. In Section 3.3 we analyze the problem using the

singular value decomposition (SVD). In Section 3.4, we discuss simulation

results. In Section 3.5, we discuss key results, their place in the pertinent

literature, and propose avenues for further research. Mathematical tools used

in this chapter are well established; we refer to [109] for details.

3.2 Problem Formulation

Consider a two-dimensional irregular lattice constructed according to

the following procedure: (i) the nodes are generated as a set of points whose

cartesian coordinates are uniformly distributed random variables, and (ii) the
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nodes are connected by the bonds following the Delaunay triangulation. We

refer to such lattices as Delaunay random lattices. This class of lattices were

part of numerical experiments carried out in [94]. A convenient macroscopic

parameter for such lattices is the areal node density µ. Throughout the paper

we use the length
√

1/µ as the length gauge. Alternatively, one could use the

average bond length h as the gauge. Monte-Carlo simulations provide a simple

relationship between these two quantities:

h ≈ 1.15
√
µ
.

A circular lattice is constructed by taking a large lattice and discarding

all nodes lying outside of the circle and all bonds connected to at least one

node lying outside of the circle. The exterior nodes of a lattice are defined as

the set of vertices of the largest polygon whose edges are lattice bonds.

We assume that the lattice is subjected to anti-plane deformation and

its bonds exhibit linear elastic behavior characterized by the stiffness inversely

proportional to the bond length. This dependence is consistent with the as-

sumption that all bonds have the same shear modulus and in-plane thickness.

Let us consider a circular lattice Ω of radius R. The lattice is subjected

to prescribed displacements at the exterior nodes ∂Ω, while the rest of the

nodes are unloaded; we denote the vector of prescribed displacements by φ.

This prescription gives rise to a well-posed linear algebraic problem, whose

solution yields nodal displacements and internal forces in the lattice. This

basic approach is applicable to sufficiently small lattices only.
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For large lattices, one needs to develop a multiscale representation that

delivers accurate predictions for the quantities of interest using significantly

reduced amounts of data and arithmetic operations. We define the domain

of interest ω as a circle of radius r (r < R) concentric with Ω. We define

as the quantities of interest the nodal displacements of ∂ω and denote them

by ψ. By restricting the quantities of interest to the boundary, we suppose

that all other nodal displacements of ω are less prone to errors associated with

multiscale representation. The matrix relating the input φ to the output ψ is

referred to as the transmission matrix:

ψ = Tφ . (3.1)

This dimensionless matrix is uniquely defined by the lattice geometry.

Following the structure of multiscale models involving discrete and con-

tinuum components [72], we partition Ω into three concentric domains (Fig.

3.1):

• Domain of interest ω (circle of radius r);

• Deterministic buffer zone (ring with radii r and ρ = r + δ);

• Statistical buffer zone (ring with radii ρ and R).

In a typical multiscale model involving discrete and continuum components,

these zones are represented by the discrete, handshake, and continuum compo-

nents, respectively. We depart from this representation by regarding the lattice
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geometry as a deterministic entity in the domain of interest and deterministic

buffer zone. In the statistical buffer zone, the lattice geometry is regarded as a

statistical entity, but its areal node density µ is fixed and equal to that in the

domain of interest and deterministic buffer zone. Thus, on the macroscopic

scale, the lattice is uniform. In simulations, at first, the entire lattice is gen-

erated as a Delaunay random lattice. Then, the nodes inside the domain of

interest and deterministic buffer zone are retained, whereas the nodes inside

the statistical buffer zone are generated anew. The adopted structure of the

statistical buffer zone is consistent with the view that the continuum model

can be derived via ensemble averaging. Also, it is appropriate to treat the

transmission matrix as a random variable, and focus on computing its mean

value T̄ via ensemble averaging.

3.3 Singular Value Decomposition

The singular value decomposition theorem is a natural way of evaluat-

ing the transmission matrix:

T̄m×n = Um×mSm×nV
∗
n×n . (3.2)

Here the asterisk denotes matrix transposition. The matrix dimensions m×n

represent the number of nodes of ∂ω and ∂Ω, respectively; of course m < n.

The matrices U and V are unitary (U−1 = U ∗ and V −1 = V ∗). The matrix

S is rectangular and consists of two blocks. The left block is a diagonal

m × m matrix containing the singular values si, and the right block is an
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Figure 3.1: Circular lattice Ω (circle of radius R) and its subdomains: Domain
of interest ω (circle of radius r); Deterministic buffer zone (ring with radii r
and ρ = r + δ); Statistical buffer zone (ring with radii ρ and R).
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m× n−m matrix filled with zeros. The singular values are numbered so that

s1 ≥ s2 ≥ ... ≥ sm.

The singular value decomposition theorem lends itself to a transparent

and useful interpretation, once we regard φ as an input and ψ as the corre-

sponding output. Then the vector V ∗φ represents the input as a superposition

of n orthogonal inputs. The structure of the matrix S implies that out of n

of those inputs only the first m are transmitted; the singular values represent

the weights assigned to those m inputs. Finally, the matrix U converts the

m weighted orthogonal inputs into the output column-vector ψ of size m. A

meaningful comparison of T̄ with its counterpart based on a continuum model

must be restricted to comparisons of the matrices S and V , as they control

how the input is structured. In contrast, the matrix U controls how the input

is converted into the output in the domain of interest. Details of that conver-

sion are significantly affected by the local microstructural details and therefore

cannot by captured by the continuum model.

Now let us focus our attention to the transmission matrix corresponding

to the simplest continuum model, governed by the Dirichlet boundary-value

problem for Laplace’s equation:

∇2u(x) = 0 x ∈ Ω and u(x) = φ(x) x ∈ ∂Ω . (3.3)

Here we slightly abuse the notation by treating all quantities as continuous

but keeping the symbols that have been used for discrete quantities. The

transmission operator (infinite-dimensional matrix) for this problem follows
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directly from Poisson’s formula

ψ(θ) = Tφ(θ) =
1

2π

∫ 2π

0

R2 − r2

R2 + r2 − 2rR cos (θ − θ′)
φ(θ′) dθ′ . (3.4)

The spectral properties of this operator are well known since

T

(
cos kθ
sin kθ

)
=
( r
R

)k ( cos kθ
sin kθ

)
k = 0, 1, 2, ... . (3.5)

The nontrivial eigen-pair corresponding to k = 0 represents rigid body motion.

A finite-dimensional analog of T is obtained by (i) evaluating ψ at

m uniformly spaced angular locations and (ii) replacing the integral with a

Riemann’s sum involving n terms. As a result we obtain

T = USV∗

with

Uij =

√
1

m


1 if j = 1

√
2 cos πij

m
if j is even

√
2 sin πi(j−1)

m
if j is odd and greater than 1

(3.6)

si =

√
m

n



1 if i = 1(
r
R

)i/2
if i is even(

r
R

)(i−1)/2
if i is odd and greater than 1

(3.7)

Vij =

√
1

n


1 if j = 1

√
2 cos πij

n
if j is even

√
2 sin πi(j−1)

n
if j is odd and greater than 1

(3.8)
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The indices run from 1 to m in (3.6) and (3.7) and from 1 to n in (3.8). Note

that the matrices U and V are unitary only if m and n are odd numbers.

For even numbers the matrices are no longer unitary but the columns remain

orthogonal.

The trigonometric structure of the V-matrix implies that the processed

input V∗φ is a superposition of waves generated by the functions cos (kθ) and

sin (kθ). Accordingly, one should expect that the continuum model may be

useful only for k < k0, where k0 is a threshold wave number that depends on

tolerance ε and possibly other problem parameters.

3.4 Simulation Results

In this section, we present simulation results that allow us to identify

inputs φ0 for which the outputs T̄ φ0 and Tφ0 are sufficiently close. Further-

more, we establish that those inputs are identified by an ε-dependent minimum

wave length λ0.

All computational results reported here were obtained using Monte-

Carlo simulations traversing the space spanned by the parameters δ, ∆, and ρ

as defined in Figure 3.1. For each point of that space we conducted 100 realiza-

tions. For each ten realizations, the nodal positions inside the circle of radius

ρ were fixed, while the nodal positions inside the ring of thickness ∆ were

generated anew. We found that statistics generated in this manner was suffi-

ciently accurate for our purposes. Moreover, it appears that our conclusions

would not be affected if we conducted the entire study using only one lattice
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realization inside the circle of radius ρ. The quantity of interest for Monte-

Carlo simulations was the ensemble average T̄ (δ,∆, ρ), and the corresponding

S and V matrices.

To compare the transmission through lattices versus continuum we

computed the difference between the corresponding singular values si versus

si and column-vectors of V versus V. Both si and V were computed as pre-

scribed in (3.7) and (3.8). For the i-th singular values, the error was defined

as

esi
=

∣∣∣∣si − si
si

∣∣∣∣ . (3.9)

For the i-th column-vectors the error was defined as

evi
=

√√√√ n∑
j=1

(vji − vji)2 . (3.10)

There is no need to normalize this error because both vji and vji are unit

vectors.

In Figure 3.2, we show three plots for the error evi
versus the mode

number i for three cases corresponding to

(a) ρ = 25, δ = 5, ∆ = 5

(b) ρ = 25, δ = 5, ∆ = 15

(c) ρ = 25, δ = 5, ∆ = 25.

These plots reveal that as ∆ increases the curve evi
versus i approaches the

shape characterized by a sharp transition. The transition occurs somewhere
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between the 20th and 30th modes, and it signifies that the errors in the post-

transition interval are very large. Before the transition, the errors are in the

range between 10% and 30%. In this regard, let us mention that this level of

errors is typical for simulations we performed.

In Figure 3.3, we show five modes corresponding to ρ = 25, δ = 5, and

∆ = 20. There the continuous lines and discrete symbols represent the exact

and approximate solutions, respectively. These plots reaffirm the tendency

revealed in Figure 3.2 – the quality of approximate solutions deteriorates for

high order modes. Again, even for the first non-trivial mode cos θ the error is

above 10%.

In Figure 3.4, we show three plots for the error evi
versus the mode

number i for three cases corresponding to evi
versus the mode number i for

three cases corresponding to

(a) ρ = 20, δ = 2, ∆ = 20

(b) ρ = 20, δ = 5, ∆ = 20

(c) ρ = 20, δ = 10, ∆ = 20.

These plots reveal that for a sufficiently large ∆ the curve evi
versus i is rather

insensitive to the value of δ as long as it exceeds several lattice spacings.

Based on simulation results presented in Figures 3.2 through 3.4, we

would like to make the following proposition:
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Figure 3.2: Error evi
verses the mode number i for (a) ρ = 25, δ = 5, ∆ = 5;

(b) ρ = 25, δ = 5, ∆ = 15; (c) ρ = 25, δ = 5, ∆ = 25.
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Figure 3.3: Discrete (symbols) versus continuum (lines) modes for ρ = 25, δ =
5,∆ = 20: (a) mode number 2 (ev2 = 0.11), (b) mode number 12 (ev12 = 0.14),
(c) mode number 22 (ev22 = 0.27), (d) mode number 32 (ev32 = 1.30), (e) mode
number 42 (ev42 = 1.34). The threshold for ε = 0.3 is i0 = 23 and the wave
number k0 = 11.
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Figure 3.4: Error evi
verses the mode number i for (a) ρ = 20, δ = 2, ∆ = 20;

(b) ρ = 20, δ = 5, ∆ = 20; (c) ρ = 20, δ = 10, ∆ = 20.
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For a prescribed tolerance ε there exist δ0, ∆0, and i0(ρ) such that, for lattices

with δ > δ0 and ∆ > ∆0, evi
< ε for any i < i0(ρ). In less formal terms,

this proposition implies that the continuum solutions are good approximations

for adequately shielded domains of interest and sufficiently low modes. Our

simulation results suggest that for ε = 0.3, δ0 = 2 and ∆0 = 10.

Dependence of the threshold i0 on ρ is unsettling because the threshold

should be a lattice property. This issue is resolved by introducing the threshold

wavelength

λ0 =
πρ

i0
. (3.11)

A plot λ0 versus ρ supports the proposition that in the range between 10 ≤

ρ ≤ 25 a constant λ0 ≈ 13 may be used as a uniquely defined threshold for

ε = 0.3 (Fig. 3.5). We repeated the entire study using esi
rather than evi

as

the error indicator. This did not change the overall trend but led to a slightly

lower threshold λ0 ≈ 12.

3.5 Closing Remarks

In this work, we attempted to determine the usefulness of continuum

models for constructing approximate solutions for large lattices without ac-

tually specifying parameters of the continuum model. Instead we defined a

restricted class of continuum models and determined conditions under which

solutions of such models are sufficiently close to the exact solutions. This

point of view departs from the RVE-centric approaches in which the principal
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Figure 3.5: The threshold wavelength λ0 versus ρ.
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quantities of interest are tied directly to the RVE. Therefore it is interesting to

compare these two points of view. Since each approach involves a macroscopic

length scale, it is meaningful to compare the threshold wave length λ0, central

to our approach, to the minimum RVE size l0, central to the conventional

approach. For this purpose, we computed the coefficient of variation for the

overall shear modulus, under prescribed linear displacements, as a function of

the RVE diameter. The curve is shown in Figure 3.6. RVEs were generated by

computing 100 realizations for each size. This curve implies that even for the

smallest RVE’s the coefficient of variation is well below the tolerance ε = 0.3 we

had to adopt for analyzing the transmission. Thus the conventional approach

dramatically underestimates the minimum length scale at which solutions of

the continuum model can be used for approximating solutions of the discrete

model.

Our work can be regarded as a small step toward asking a much more

general question: What would be an ε-dependent optimal (minimal) represen-

tation (model) of the lattice? Such representations are central to multireso-

lution analysis that includes wavelets, multigrid, and fast multipole methods.

The essential ingredients of multi-resolution representations are hierarchy of

coarse-scale models, data compression, and cross-scale data passing. Particu-

lars of these ingredients are determined as part of the optimization procedure.

This view of multiscale modeling has been already explored using wavelets

[4, 30, 108] and multigrid [65, 87] methods. Connections between multireso-

lution methodology and multiscale modeling become transparent if one con-
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Figure 3.6: The coefficient of variation for the overall shear modulus versus
the RVE diameter.
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siders the fast multipole method [43] as an example. That method includes

data compression (use of multipole and local moments), cross-level data pass-

ing (multipole-to-multipole and local-to-local translations), and a hierarchy

of single-coarse-scale models (multipole-to-local translations). It is interesting

to observe that the original version of the fast multipole method is based on

spherical harmonics and has strong connections with classical electrostatics.

In contrast, recent versions of the fast multipole method [41, 81] are based

on linear algebraic tools, which optimize the performance but are difficult to

relate to physical models. Let us also single out the so-called equation-free

approach [61] in which the coarse-scale models are created on the fly by pro-

jecting the governing equations of the fine-scale model on coarse scales. This

approach has been applied to a variety of interesting problems [11, 34, 60, 74]

that involve non-linear dynamical systems. Those problems and consequently

pertinent numerical methods are difficult to analyze, so that reliability of sim-

ulation results is a major issue.
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Chapter 4

On Extension of Boundary Algebraic

Equations to Irregular Lattices

4.1 Introduction

This chapter is motivated by Martinsson and Rodin’s papers [79, 80]

where they developed boundary algebraic equations (BAEs) for solving prob-

lems defined on regular lattices. BAEs share many features with boundary

integral equations. The latter are related to linear partial differential equa-

tions, whereas the former are related to finite difference equations. Haq et al.

[46] applied BAE to solving non-linear problems involving defects in regular

infinite lattices. In that paper, the defect core, where non-linearities were im-

portant, was represented by finite difference equations, whereas a BAE was

used for representing the surrounding linear lattice. As a result the origi-

nal problem was reduced to a relatively small non-linear algebraic problem

defined on the core. Thus this approach exploited the property that, like inte-

gral equations, BAEs are particularly effective for solving problems involving

infinite domains.

In this chapter, we attempt to extend BAEs to irregular lattices. Such

an extension would be indispensable for solving multiscale problems defined on
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irregular lattices, as BAEs provide a seamless transition to remote boundary

conditions. However, it is shown that, BAEs for irregular lattices contain

certain terms may require the same amount of computational effort as the

original problem for which the equations are formulated. In this chapter, we

formulate a BAE for a model problem and expose the fundamental obstacle

that prevents us from using that BAE as an effective tool. Nevertheless, the

new BAE, and its extensions, may be treated within a statistical setting, which

has not been explored in this work.

This chapter is structured as follows. In Section 4.2, we define a partic-

ular type of irregular lattices and define various lattice subdomains of interest.

This restriction is not essential – all we need is a well defined process for con-

structing irregular lattices. In Section 4.3, we define Green’s function for a

finite irregular lattices. In Section 4.4, we define model problems for finite and

infinite and formulate the corresponding BAEs. In Section 4.5, we summarize

the difficulties associated with those BAEs and outline possible avenues for

future research.

4.2 Lattices

Consider a three-dimensional irregular lattice formed by tetrahedral

cells. Mechanically, such a lattice behaves like a truss, so that the lattice

bonds (truss bars) transmit axial forces only. Numerically, such lattices can

be constructed using the following procedure: (i) generate nodes as a set of

points whose cartesian coordinates are uniformly distributed random variables,
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and (ii) use Delaunay triangulation to connect the nodes with the bonds.

A quasi-spherical lattice domain is constructed by taking a large lattice

and discarding all the nodes lying outside of a prescribed sphere and all the

bonds connected to at least one node lying outside of the sphere. The exterior

nodes of a lattice structure are defined as the set of vortices of the largest

polyhedra whose edges are lattice bonds. We use the symbols Γ and Ω to

denote the lattice nodes and subdomains, respectively. The exterior nodes of

Ω are defined by ∂Ω.

Let us consider two lattices. The first one is constructed as a quasi-

spherical lattice of radius R; we refer to this lattice as Ω (Figure 4.1a). The

second lattice is formed by cutting out a concentric quasi-spherical void Ω−

from Ω. The void radius is denoted by r and the resulting spherical shell is

denoted by Ω+ (Figure 4.1b). Note that Γ = Γ+ ∪ Γ− but Ω 6= Ω+ ∪ Ω−,

because the lattice Ω+ ∪ Ω− is disjoint as it does not include the bonds who

have one node in Γ+ and the other in Γ−. We denote those bonds by Ω0. We

define the exterior nodes of Ω+ as the exterior nodes of Ω and denote them by

Γe. We denote the interior boundary nodes of Ω+ by Γi and define them as

the set of nodes connected by the bonds Ω0 to the nodes ∂Ω− (Figure 4.1c).

The assumption that the radii and the shell thickness are sufficiently larger in

comparison to a typical bond length is implicit in all adopted definitions.

Infinite lattices are defined by considering sequences of finite lattices.

For example, for quasi-spherical lattices, we consider a sequence constructed

such that each lattice of radius Rn contains all the nodes of the lattice of ra-
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Figure 4.1: (a) Quasi-spherical domain Ω; (b) Quasi-spherical shell Ω+; (c)
The interface between Ω− and Ω+ involving the nodes ∂Ω− (solid circles) and
Γi (unfilled circles), and the bonds Ω0.
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dius Rn−1 and the remaining nodes are added with the same node density as

the node density in Rn−1. Of course this sequence implies that Γ0 ⊂ Γ1 ⊂

Γ2... ⊂ Γn−1 ⊂ Γn. It is clear that sequences constructed in this manner in-

volve lattices that have to be treated as random variables. Thus we suppose

that the lattice Ω0 is prescribed and treat it as a deterministic entity; conse-

quently quantities of interest associated with Ω0 are treated deterministically.

In contrast, for n > 0, quantities of interest associated with Ωn, are treated

as random variables. Similar sequences can be constructed for quasi-spherical

shells Ω+.

4.3 Green’s Function

Green’s function U ij is defined via a map relating the displacement ui

at a node i of Ω to a nodal force p applied at a node j:

ui = U ij · p . (4.1)

The displacements are defined with the provision that uk = 0 for all k ∈ ∂Ω,

and all nodes other than the node j and the exterior nodes are not loaded.

Thus Green’s function U ij is a square matrix whose entries are second rank

tensors.

4.4 Boundary Algebraic Equation

In this section, we develop a BAE for a model problem defined for the

shell Ω+ subjected to an external linear constraint ui = ε0 · xi for i ∈ Γe and
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not loaded at nodes other than Γe. Here ε0 is a constant symmetric second-

rank (strain) tensor. We denote the displacements and forces associated with

this problem by u and f , respectively, and refer to these quantities as the

main elastic state.

To construct the BAE we introduce an auxiliary elastic state of Ω+

that involves Green’s function defined on Ω. To this end, we first subject

Ω to conditions involved in the definition of Green’s function, so that the

displacements are U ij · p. Next, we cut through the connecting bonds Ω0 and

thus cut Ω+ out of Ω. To maintain the displacements U ij · p, we subject Ω+

to the forces transmitted through the bonds Ω0 to its interior boundary nodes

Γi. Thus the auxiliary elastic state of Ω+ is characterized by non-zero forces

only on the nodes Γi and Γe; we denote those forces by F ij · p.

The BAE is constructed by applying the Maxwell-Betty reciprocity

theorem to the main and axillary elastic states of Ω+:

uj +
∑

i∈Γi∪Γe

F ij · ui =
∑

i∈Γi∪Γe

U ij · f i j ∈ Ω+ . (4.2)

A more specific form of this equation is obtained by recognizing that f i = 0

for i ∈ Γi, U ij = 0 for i ∈ Γe, and ui = ε0 · xi for i ∈ Γe:

uj +
∑
i∈Γi

F ijui = −
∑
i∈Γe

F ij · ε0 · xi j ∈ Γi . (4.3)

Here we restrict the nodes j to Γi as this is sufficient for solving for the unknown

displacements.
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BAE (4.3) must be modified if one is interested in solving problems for

infinite lattices. This is necessary because the sum over Γe is not well defined

for infinite lattices. To address this issue let us consider a BAE for Ω, rather

than Ω+, subjected to an external linear constraint ui = ε0 · xi for i ∈ Γe:

vj +
∑
i∈Γe

F ij · vi =
∑
i∈Γe

U ij · gi j ∈ Γi . (4.4)

Here v and g are the displacements and forces induced by the linear constraint

imposed on Ω. The problem-specific form of (4.4) is

vj +
∑
i∈Γe

F ij · ε0 · xi = 0 j ∈ Γi . (4.5)

Now we can combine (4.3) and (4.5) to obtain a BAE that does not involve

summation over the nodes Γe:

uj +
∑
i∈Γi

F ijui = vj j ∈ Γi . (4.6)

In a deterministic setting, this BAE does not pose difficulties associated with

extending the quasi-spherical spherical lattice to infinity. In particular, if the

lattice were regular, then the tensor F ij could be constructed in a straightfor-

ward manner and the right-hand side is simply vj = ε0 · xj. In contrast, for

irregular lattices, (4.6) requires a statistical treatment. Furthermore, for irreg-

ular lattices, the right-hand side vj is as difficult to construct as the solution

of interest itself.
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4.5 Summary

In this chapter, we developed a BAE relevant to analyzing defects in

irregular lattices. Nevertheless, this BAE requires statistical treatment and its

right-hand-side is as difficult to compute as the solution itself. In contrast, for

regular lattices, the BAE can be treated deterministically and the right-hand-

side is very easy to compute. Thus, for now, the idea of applying BAEs to

irregular lattices is not attractive. An appropriate statistical setting for this

problem is very challenging and is not pursued here.
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Chapter 5

Concluding Remarks

In this dissertation, we presented three studies involving regular and

irregular lattices. In the first study, concerned with characterization of near

threshold behavior of subcritical cracks, the adopted regular lattice model was

the simplest model that allowed us to demonstrate existence of the resistance

T -curve. It would be exceedingly optimistic to expect from that model to

provide any quantitative predictions but it was ideal for establishing a quali-

tative trend. In the second study, relationships between microscopic discrete

and macroscopic continuum models were approached in a way that differs sig-

nificantly from those well accepted in the research community. In particular,

instead of focusing on the definition of the representative volume element, as it

is usually done in the literature, we focused on how errors associated with the

continuum model affect the microscopic quantities of interest. Furthermore, in

contrast to the majority multiscale models involving continuum components,

we engage the continuum model not as a component of a multiscale model,

but rather as a generator of a limited approximation basis for exact solutions

of boundary-value problems defined for the exact lattice model. Thus our

approach is more in line with the current trend in multiscale modeling and

computing, where it is necessary not only to determine macroscopic model pa-
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rameters but also to control the quality of transmission of data passed from the

macroscopic to microscopic scales. In the third study, an attempt was made to

extend boundary algebraic equations, developed for regular lattices, to irreg-

ular lattices. Although resulting boundary algebraic equations are difficult to

solve, it may be interesting to consider their treatment within an appropriate

statistical setting. This is a very interesting direction for future research.

In closing, let us suggest that we expect that lattice-based modeling and

computing will play a greater role in the future than it plays presently. Indeed,

originally continuum models were introduced to suppress various microscopic,

molecular, and atomistic scale effects. With the current trend in multiscale

modeling and computing, where bridging of continuum and atomistic scales is

often of primary concern, continuum models become somewhat of a liability,

as they require very fine discretization and often give rise to singularities and

other artificial undesired effects. Of course, continuum models are indispens-

able over large spatial (and temporal) scales, and the challenge is to identify

hybrid models that combine the beneficial features of discrete and continuum

models. Also, advances in nano-manufacturing are expected to lead to lattice-

based optimal material designs for a variety of microelectronics, energy, and

medical applications. Inevitably, those advances will spur the development of

better lattice models.
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