

Copyright

by

Diego Leonardo Funes

2011

The Report Committee for Diego Leonardo Funes
Certifies that this is the approved version of the following report:

Evaluation of Relational Database
Implementation of Triple-Stores

APPROVED BY
SUPERVISING COMMITTEE:

Suzanne Barber

Daniel Miranker

Supervisor:

Co-Supervisor:

Evaluation of Relational Database
Implementation of Triple-Stores

by

Diego Leonardo Funes, B.S.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin
May 2011

 Dedication

To Roxanne, Emma and Baby Lili.

 v

Abstract

Evaluation of Relational Database
Implementation of Triple-Stores

Diego Leonardo Funes, M.S.E.

The University of Texas at Austin, 2011

Supervisors: Suzanne Barber and Daniel Miranker

The Resource Description Framework (RDF) is the logical data model of the

Semantic Web. RDF encodes information as a directed graph using a set of labeled edges

known formally as resource-property-value statements or, in common usage, as RDF

triples or simply triples. Values recorded in RDF triple form are either Universal

Resource Identifiers (URIs) or literals. The use of URIs allows links between distributed

data sources, which enables a logical model of data as a graph spanning the Internet.

SPARQL is a standard SQL-like query language on RDF triples.

This report describes the translation of SPARQL queries to equivalent SQL

queries operating on a relational representation of RDF triples, and the physical

optimization of that representation using the IBM DB2 relational database management

system. Performance was evaluated using the Berlin SPARQL Benchmark. The results

show that the implementation can perform well on certain queries, but more work is

required to improved overall performance and scalability.

 vi

Table of Contents

List of Tables ... viii	

List of Figures .. ix	

Chapter 1: Introduction ...1	

Resource Description Framework...1	

RDF Schema and OWL ..4	

SPARQL Query Language ...5	

Chapter 2: Database Design..8	

Triple table ..9	

Partition on object datatype ..11	

Index configuration...13	

Clustered tables configuration ..15	

DB2 specific configuration ...15	

Chapter 3: SPARQL to SQL Translation ...18	

Basic Graph Patterns...20	

Unions ...25	

Optionals ...26	

Filters ..28	

Joins 30	

Datatype table selection ..31	

Clustered table selection ...33	

SPARLQ to SQL translation restrictions..35	

Optionals with no explicit join variable...35	

Nested Optionals..36	

Chapter 4: Benchmark Results..38	

Systems under test ..38	

Dataset...39	

Load results...39	

 vii

Query results ...40	

DB2 query access plans ..43	

Chapter 5: Conclusion ..46	

Appendices...48	

A. Test System Configuration ..48	

B. Berlin SPARQL Benchmark Test Queries...48	

References..53	

 viii

List of Tables

Table 1. Berlin SPARQL Benchmark load results ...39	

Table 2. Berlin SPARQL Benchmark query results (1M)....................................41	

Table 3. Berlin SPARQL Benchmark query results (25M)..................................41	

Table 4. Berlin SPARQL Benchmark query results (100M)................................42	

Table 5. Berlin SPARQL Benchmark query results (200M)................................42	

 ix

List of Figures

Figure 1:	
 Example RDF Graph. ..2	

Figure 2:	
 SPARQL query with a single triple pattern...5	

Figure 3:	
 SPARQL query with join variable. ...6	

Figure 3:	
 SPARQL query with optional pattern. ..7	

Figure 4:	
 SPARQL query with optional pattern. ..7	

Figure 5. Triple table...9	

Figure 6. Triple table with dictionaries...10	

Figure 7. Table partitioning based on object data type...11	

Figure 8. Expected index access for query execution...14	

Figure 9:	
 SPARQL query. ..19	

Figure 10:	
 SPARQL query algebra...20	

Figure 11:	
 SPARQL basic graph pattern. ...20	

Figure 12:	
 Triple view assumed by query translation...21	

Figure 13:	
 SQL statement FROM clause..21	

Figure 14:	
 SQL statement SELECT clause. ...22	

Figure 15:	
 Full SQL statement from SPARQL query.22	

Figure 16:	
 Alternative SQL query using explicit joins.23	

Figure 17:	
 Query without explicit join variable..24	

Figure 18:	
 SQL translation of implicit join terms...25	

Figure 19:	
 SPARQL UNION operator. ..26	

Figure 20:	
 SQL translation of UNION operator. ..26	

Figure 21:	
 SPARQL OPTIONAL operator. ...27	

Figure 22:	
 SQL translation of OPTIONAL using LEFT OUTER JOIN.28	

 x

Figure 23:	
 SPARQL FILTER operator...29	

Figure 24:	
 SQL translation of FILTER operator. ...29	

Figure 25:	
 SPARQL query algebra...30	

Figure 26:	
 SPARQL query algebra...30	

Figure 27:	
 Infer table data type from query. ...31	

Figure 28:	
 Clustered table selection based on term priority.34	

Figure 29:	
 OPTIONAL without explicit join variable..35	

Figure 30:	
 Equivalent query with explicit join variable.36	

Figure 31:	
 Nested optionals without connecting join variables..........................36	

Figure 32. Berlin SPARLQ Benchmark load times..40	

Figure 33. DB2 Access Plan, fetching from dictionary tables..............................43	

Figure 34. DB2 access plan using index INCLUDE option44	

Figure 35. DB2 access plan using merge-joins...45	

 1

Chapter 1: Introduction

The Semantic Web is a technology for the evolution of the existing world wide

web of documents (web pages) to a world wide web of data. Data is not only made

available but also described by metadata represented in ontologies suitable for machine

processing. This approach is expected to simplify existing services (web search, for

example) or enable new services. The realization of the Semantic Web requires a

standard and flexible data model that facilities the integration of data sources while

allowing these data sources to evolve in a decentralized environment like the World Wide

Web. This chapter briefly describes some of the standards that comprise the Semantic

Web.

RESOURCE DESCRIPTION FRAMEWORK

The Resource Description Framework, or RDF, is a data model designed to

facilitate data merging and evolution of the logical schema of the data. At its core RDF

describes resources using subject-property-object statements, also referred to as RDF

triples, or simply ‘triples’. Because RDF information is encoded as set of triple

statements, systems that store and manage RDF data are referred to as triplestores. The

set of triples in a RFD dataset form a directed graph that encodes the properties of each

resource and the relations between resources. Figure 1 shows an example RDF graph and

its triple representation describing some properties of a book and its author

 2

Figure 1: Example RDF Graph.

All RDF features relevant to this report are shown in the Figure above. The

notation prefix:name is a short-form used to represent universal resource identifiers, or

URIs. This notation is the same used by XML namespace where the prefix expands to a

proper URL, so rdf:type would expand to http://www.w3.org/1999/02/22-rdf-syntax-

ns#type. The graph shows a resource ex:book1 of type ex:Book with the title “RDF

Tutorial” and a creator (author) described as another resource. Not all resources in a

RDF graph need to be explicitly named since in many cases the identity of the resource is

!"#$%&'()

#*+#$,+-()

.+/01(2(3+-'/(4*!56)

#*+#$7(!8*,)

.9/01(6)

#*+#$-:*3)

(3$:**;<)

!"#$%&'()

.=>?)@A%*!0+/6)

(3$B**;)

"1$%0%/()

"1$1!(+%*!)

!"#$%!&'#%(&%()(*+!+,-*#

C)
))D(3$:**;<E)!"#$%&'(E)(3$B**;F)
))D(3$:**;<E)"1$%0%/(E).=>?)@A%*!0+/6F)
))D(3$:**;<E)"1$1!(+%*!E)G$3F)
))DG$3E)!"#$%&'(E)#*+#$7(!8*,F)
))DG$3E)#*+#$,+-(E).9/01(6F)
))DG$3E)#*+#$-:*3E).+/01(2(3+-'/(4*!5F)
H)

."#/%,&0(#%(&%()(*+!+,-*#

 3

not as relevant as the set of properties that resource possesses. In this example, the

author of the book is represented by a blank node of type foaf:Person with name “Alice”

and email alice@example.org. This is a clear example where the identifier used to

represent a resource (the author) is likely to be irrelevant, but the properties associated to

the resource are likely to be of interest.

There are several RDF serialization formats in use today. RDF/XML is typically

the choice for machine-readable RDF documents since it allows the reuse of existing

XML tools and expertise. However, RDF/XML tends to hide the intuitive graph

structure of RDF data and as a consequence it is common to use other more human-

readable formats, such N-Triples and Turtle. The specifics of these serialization formats

will not be described in this report since they are not rrelevant to the discussion of RDF

data management. It is important highlight that RDF should be viewed as a logical data

model, and not confused with the language or format used for exchange (XML, for

example).

RDF places some restrictions on the data types allowed by each term in a triple.

Subject terms may only be named resources (URIs) or blank nodes1, properties can only

be URIs, and objects can be URIs or literals of any type. Note that there are no

restrictions on what a property should refer to, or any other relations between resources

and properties. It would still be a perfectly valid RDF graph if, for example, the

ex:book1 resource had an additional rdf:type property with a value foaf:Person.

Encoding domain specific information (for example, that the set of resources of type

Book and Person is disjoint) is not handled at the level of the data model and delegated to

description languages like RDF Schema and OWL.

1 Blank nodes are usually represent as _:x where x is an arbitrary identifier required to be locally unique.

 4

RDF SCHEMA AND OWL

RDF Schema (RDFS) and the Web Ontology Language (OWL) provide the

mechanisms to define the logical schema of the RDF data by specifying relations

between resources and properties. RDF Schema defines a primitive modeling language

capable of specifying the following constraints [3]:

1. Class and sub-class relations between resources.

2. Property and sub-property relations.

3. Property domain and range

Subclass relations refer to the well-known concepts used in many object-oriented

languages, where instances belong to a class and all its parent classes. Property

hierarchies are a less familiar concept, but it’s the same idea of containment used for

instances applied to properties. Finally, property domain and range allow the

specification of constraints about the classes a property can be applied to and what values

the property can take.

The set of data modeling features provided by RDF Schema is not expressive

enough for modeling all the data domains required by the Semantic Web. OWL is the

modeling language intended to fill this need. Some of the features provided by OWL not

available in RDF Schema include [3]:

1. Define disjoint classes.

2. Combination of classes using set operations such as union, intersection and

complement.

3. Cardinality restriction of class sets.

4. Additional property features like uniqueness, transitivity and inverse.

 5

A full description of RDF Schema and OWL is out of the scope of this report2.

Perhaps the most relevant aspect of these languages from our point of view is that the

RDF Schema and OWL specifications are also encoded as RDF graphs. RDF Schema

and OWL metadata are also first-class RDF data, and can evolve along side the data they

describe. The importance of this feature from the RDF data management perspective is

that any efficient design for the storage and query for RDF is automatically applicable to

RDF Schema and OWL data.

SPARQL QUERY LANGUAGE

SPARQL [20] provides a query language at the level of the RDF data model.

Queries are described as graph patterns that the RDF data must match to be returned as a

result of the query. Graph patters are in turn composed of triple patterns. A triple pattern

may specify fixed terms that a given triple must match and variable terms that can take

any value. The simplest SPARQL query would have a single triple pattern as shown in

Figure 2.

Figure 2: SPARQL query with a single triple pattern.

The SELECT clause of the query specifies what variables should be returned as

results. The WHERE clause includes all the triple patterns the results must match. In

this case the query will return the resource identifier of all resources of type foaf:Person.

2 For details, refer to the w3c recommendations for RDFS [16] and OWL 2 [14].

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?x
WHERE {
 ?x rdf:type foaf:Person .
}

 6

However, in this case the resource identifier is not likely to be the information someone

may want to ask about a person. Figure 3 expands the query to ask for more interesting

properties about a person.

Figure 3: SPARQL query with join variable.

Now the resource identifier is not used as result, it is only used to specify that the

properties of interest should refer to the same resource. In this case the query is asking

for the name and email of all resources of type foaf:Person. One feature of this query is

that for a person to show up in the result it must have a name AND an email address. It is

probably safe to assume that a person will always have a name, but there may be people

without an email address that will not be included in the results. To handle this use case

SPARQL defines the OPTIONAL operator to declare that certain triple patterns are

optional. If an optional triple pattern is not matched, the results will indicate that the any

optional projected variables are unbound. Figure 3 modifies the query to make email

addresses optional.

SELECT ?name ?email
WHERE {
 ?x rdf:type foaf:Person .
 ?x foaf:name ?name .
 ?x foaf:mbox ?email
}

SELECT ?name ?email
WHERE {
 ?x rdf:type foaf:Person .
 ?x foaf:name ?name .
 OPTIONAL { ?x foaf:mbox ?email }
}

 7

Figure 3: SPARQL query with optional pattern.

Someone looking at the previous query may ask, “Who doesn’t have an email

address?” To answer this question SPARQL provides a FILTER operator that allows the

specification of arbitrary expressions to determine what should be returned as a result.

Only results that evaluate the expression to true are returned. Filter expression can

include the familiar arithmetic and logical operators found in most programming

languages, along with additional functions to support regular expression matching, for

example. For the specific question on how to find results that do not match an optional

graph pattern SPARQL defines a bound(x) function that returns true if the variable is

bound to a value. Figure 4 shows how the bound(x) function may be used to filter out

persons that have an email address and only return the name of people with no email

addresses.

Figure 4: SPARQL query with optional pattern.

Additional details about the SPARQL query language will be addressed in chapter

3 when the translation from SPARQL to SQL is described. However, for a full

description of SPARQL and its formal semantics refer to the W3C recommendation

document [20].

SELECT ?name
WHERE {
 ?x rdf:type foaf:Person .
 ?x foaf:name ?name .
 OPTIONAL { ?x foaf:mbox ?email }
 FILTER(!bound(?email))
}

 8

Chapter 2: Database Design

The design of an RDF triplestore on top of a relational database management

system (RDMS) is primarily about the design of the relational physical schema of the

database. The goal is to provide the query engine the appropriate access paths to the

triple data so that efficient query plans can be generated. The physical design is based on

assumptions about what algorithms are considered most efficient for RDF data and how

the query planner may select physical operators.

Several approaches have been used to map RDF data to the relational domain.

These may be roughly categorized as follows:

1. Clustered property tables. This is a data driven approach where the system

attempts to derive a relational schema for an instance of RDF data. The idea

is to identify cluster of properties that resources have a tendency to posses and

group them in a single relational table. The relational schema extraction may

be done online or offline, but it can become a complicated task given the

flexibility of the RDF data model. This system also favors fixed workloads

since it is not possible to index all possible property table column

combinations. This method has been used, in part, by Jena [23].

2. Vertical partioning on properties. Proposed by [2], this is also a data driven

approach but does not require sophisticated analysis of the dataset. RDF

triples are partitioned by property and each property is assigned a table with

two columns, subject and object. The main contribution of this technique is

identifying that join performance is a significant factor in RDF database

scalability. For typical queries where the property is fixed and joins are

specified on the subject of triples, the database can use efficient merge join to

 9

run the query. This system was implemented on a column-oriented database,

but all of its characteristic features apply to row-oriented databases.

3. ‘Giant’ triple table. Conceptually this is the simplest approach since it’s a

direct mapping of the RDF data model to a relation model. It has the

advantage that the relational schema is not driven by specific RDF data, which

means that, in principle; any performance characteristics of the database

should apply any dataset. This is the approach used by many RDF triplestore

systems including Jena [10], Sesame [6] and RDF-3X[11].

The RDF triplestore implementation described here is based on the giant triple

table approach, partitioning the data by object data type. The primary design constraint is

the definition of indexes and table clustering.

TRIPLE TABLE

Conceptually the definition of a triple table is very simple, as shown in Figure 5.

Figure 5. Triple table

However this table definition is problematic in several ways. First, it is very

likely that many URLs, particularly for properties, will be used many times, which

suggests the use of some form of compression. Second, join processing on string may

!"#$%&'()*+)%*',(+#$%&'(

!"#$%%&'()#*&+,-.%/,,012 !"#$%%*3/+,-.%1+4%56*&2 78&)(95:2;&/<2

!"#$%%&'()#*&+,-.%/,,012 !"#$%%*3/+,-.%1+4%#-3:&2 =>+>>2

!"#$%%&'()#*&+,-.%/,,012 !"#$%%*3/+,-.%1+4%:36&?2 !"#$%%&'()#*&+,-.%/,,0@2

!"#$%%&'()#*&+,-.%/,,0@2 !"#$%%*3/+,-.%1+4%56*&2 7A96-,BC:5,926,2DEF<2

!"#$%%&'()#*&+,-.%/,,0@2 !"#$%%*3/+,-.%1+4%#-3:&2 @4+>>2

!"#$%%&'()#*&+,-.%/,,0@2 !"#$%%*3/+,-.%1+4%-(59.2 G2

 10

not be as efficient as using integers and in some systems may force the query planner to

only use nested-loop joins instead of more efficient merge or hash joins. Finally, all

object values must be serialized to string data, which make the evaluation of filter

conditions difficult.

To address the first two problems it is common to employ a symbol dictionary

that maps strings to unique identifiers. The triple table is only required to hold integers

that refer to entries in the dictionary table. Evaluation of a query begins by looking up

the symbol identifiers for the fixed terms in the query. Join between triples operates on

the integer identifier values. In many cases a join variable may not be projected as a

query result, which eliminates the need to ever lookup the string in the dictionary.

Finally, mapping the identifiers to strings generates the query results. Figure 6 shows a

possible implementation of a symbol dictionary.

Figure 6. Triple table with dictionaries

!"#$%&'()*+)%*',(+#$%&'(

!" #" $"

!" %" &"

!" '" ("

(" #")"

(" %" #*"

(" +" ##"

-,.#+/012(!,.#+/(

#" ,-./0012345670#4*0891:"

%" ,-./0012345670#4*0.62;:"

'" ,-./0012345670#4*0;29:<"

+" ,-./0012345670#4*06=8>7"

!" ,-./00:?=@.1:45670355A#"

(" ,-./00:?=@.1:45670355A%"

$" BC:@=>8;"D:3E"

)" BF>965GH;85>"95"IJKE"

&" '&4&&"

#*" %*4&&"

##" +"

 11

PARTITION ON OBJECT DATATYPE

The dictionary configuration just described does not address the problem of

serializing all object values to strings. The dictionary table would need to not only hold

string values, but also numeric values. This suggested that an ideal configuration would

use a dictionary when the object value is variable in size, like a string, and use an inline

the value when it is fixed size. One approach used in systems like Jena/TDB [21] is to

encode a key in the object value that the system can use to identify if the value is inlined

or a dictionary key. However, this technique would complicate the evaluation of filter

conditions by the SQL database engine. To avoid this complication data is partitioning

on multiple tables based on object datatype, where the object column of a table is defined

to a native SQL datatype that maps to the RDF data types. String and URIs values are

mapped to separate dictionaries, while fixed-sized types like ints, floats and date are

stored inlined. The string dictionary includes an additional column to store the language

tag of the string literal. Figure 7 shows the final configuration of the triple store using

dictionaries and typed tables.

Figure 7. Table partitioning based on object data type

!"#$%&'()*%+,&-'%(.#$%&'(

!" #" $"

/01213(/01(

%" &'()**+,-./01*%.2*34+5"

6" &'()**+,-./01*%.2*(0,75"

#" &'()**+,-./01*%.2*7,458"

9" &'()**+,-./01*%.2*0:3;1"

!" &'()**5<:=(+5./01*-//>%"

$" &'()**5<:=(+5./01*-//>6"

!'*,45213('-5(!'*,45(

?" !"##$ @A5=:;37"B5-C"

D" !"##$ @E;40/FG73/;"4/"HIJC"

!"#$%&'()*%+,&-'%(.#$%&'(

!" %" ?"

$" %" D"

!"#$%&'()*%+,&-'%(.#$%&'(

$" 9" %$

!"#$%&'()*%+,&-'%(.#$%&'(

!" 6" &'(''$

$" 6")*(''$

KHE"

ALHEMN"

EML"

JOPQL"

 12

Dictionary tables must be indexed on both key and values to speed up lookups of

strings and identifiers, respectively. Dictionary keys and values are constraint to be

unique and not null, and the key of the dictionary is defined as the primary key of the

table since it will serve as a foreign key to all other tables using the dictionary. Columns

of the triple tables are constraint to be not null and foreign keys of the appropriate

dictionary. Note that the subject and properties of all tables are URIs and are mapped to

the URI dictionary table. A triple table should not contain duplicate statements, which

suggests that the subject-property-object triple should form the primary key of each triple

table.

To eliminate most symbol to ID dictionary look-ups it is possible to use a

cryptographic hash to generate symbol IDs. The probability of collisions between

symbols is practically zero (a property of cryptography hashes) and the client application

can deterministically resolve symbols to ID without using the dictionary. This technique

is used by Jena/TDB and explored in this implementation.

Dataset partitioning is performed when the database is loaded. If the RDF dataset

includes user-defined or other non-primitive (XML Schema) datatypes, additional

information must be provided to map the datatype to the appropriate SQL datatype. This

mapping is necessarily domain specific, since the selection of the SQL datatype will

depend on how the object value is used. For example, a phone number may be

considered a string literal since arithmetic operations on phone number make little sense,

but the designer may choose to map those values to integers to store them inline and

avoid dictionary look-ups. While not considered in this report, it is interesting to observe

that this information could be encoded in RDF Schema or OWL, allowing the system to

adapt to any dataset.

 13

The triple table partitioning just described is limited to a few simple data types,

but the concept can be beneficial for object datatypes that require specialized indexing.

One example is geographic data, which can be efficiently indexed for range query using

R-Trees. A database capable of spatial indexing would store geographic data in a

separate table and could use a R-Tree index for the object column of the table.

The partitioned triple tables can be exposed as a single triple table using a SQL

view that is defined as the union of all triple tables. Because of the requirements of the

SQL UNION operator, all object values must be formatted to strings. Depending on the

database system used, using the triple view as the target of user queries may complicate

the evaluation of filter expressions. As will be described in chapter 3, the SPARQL to

SQL translation will use information from the dataset to target queries to specific tables

in the database.

INDEX CONFIGURATION

The triple tables by themselves will not provide efficient access paths for the

query planner to use. Without indexes the only alternative is to perform costly table

scans. One advantage of the RDF data model is that a triple table can be indexed in all its

column permutations, which provides an efficient access path for any query pattern.

A B-Tree index in all three columns provides the database query planner an

access path that avoid a table access altogether. All information in the table is also

included in the index. By creating all index combinations the database may never access

the base table if it can always find an index to satisfy the query. This is essentially the

same technique used by current experimental RDF databases like RDF-3X and

Jena/TDB.

 14

The use of indexes can be viewed as an extension of the vertical partitioning

approach described at the beginning of the chapter. By partitioning on property, the

designer optimized queries with fixed properties and joins on subjects. The advantage in

processing these queries is that the property can be used to select the appropriate tables

and, since the subjected are ordered, efficient merge joins can be used to process the join.

In principle, creating all index combinations provided similar access paths for any query

pattern. Fixed terms of a triple pattern define the leading columns of an index and are

used to find the leaf node in the B-Tree to start the index scan. From this term, join terms

in the triple pattern can be found in sorted in the index. Figure 8 illustrates this process

assuming a join on two subjects and fixed properties.

Figure 8. Expected index access for query execution

 As noted in the beginning of the chapter, it is not possible to instruct the query

planner to use a particular join algorithm or access path. By creating all index

combinations the expectation is that the query planner will use one of these, along with

other heuristics and statistics, to determine the best query plan.

!"#!$"%&' ()*+$,%' #*+$,%'

!" !" ##"

!" $" ##"

!" %" ##"

$" !" ##"

%" !" ##"

%" %" ##"

%" &" ##"

!"#!$"%&' ()*+$,%' #*+$,%'

!" !" ##"

!" $" ##"

!" %" ##"

$" !" ##"

%" !" ##"

%" %" ##"

%" &" ##"

'()*+",-.("

'()*+",-.("

/*01*"23'("

 15

CLUSTERED TABLES CONFIGURATION

The advantage of using a single table with all index combinations is that all

decisions in the planning of the query are delegated to the database query optimizer. An

alternative approach is to create multiple tables with a single clustering index. The

criteria for table selection remains the same, to favor joins between triple terms, but now

part of the query planning is done indirectly by selecting the table that is considered to be

the best option based on the query join pattern. Join ordering is still left to the database

to determine. Since the table selection scheme does not make use of any data statistics

available to the query planner, it is possible to end up with worst performance compared

to the indexed table configuration. The clustered table selection scheme is described in

chapter 3.

DB2 SPECIFIC CONFIGURATION

The triplestore implementation just described was implemented on IBM DB2 9.7

Enterprise Server Edition. While all of the table schemas described apply to any

relational database, modern databases are complicated systems with many configuration

options. It is necessary to explore features or exploit behaviors specific to the database

used to implement the RDF triplestore. This section describes some DB2 specific

configuration options used.

Index with additional columns. DB2 allows the inclusion of additional columns

in a unique index that will not be used as part of the key, but will only be included in the

leaf nodes of the index. This feature is ideal for the symbol indexes, since the value can

be included in the key index and vice versa. Including all the columns that satisfy a

query in the index eliminates the need to fetch records from the table. An index scan is

enough to get all the required information.

 16

Query optimization level. By default, DB2 will attempt to find the optimal join

order using dynamic programming enumeration. If the operation goes beyond an user

configurable memory limit for query compilation, the query planner aborts and reverts to

a greedy algorithm for join order selection. Most interesting SPARQL queries will result

in SQL queries with many joins and compiling such queries will almost certainly

overflow the memory limit. To avoid the cost of the fail compilation attempt it is

desirable to lower the query optimization level to disable dynamic programming and

used the greedy algorithm from the start.

Page size. To accommodate large strings (> 1000 characters) in the dictionary

table the default page size of 4kbytes must be increased to allow indexing of the value

column of the dictionary. However, the number of rows in a table to limited to 255 rows

regardless of the row size. Increasing the result size will result in wasted disk space, and

more importantly, inefficient use of IO buffers. Using a page size of 16kbytes, enough to

index strings up to 4000 characters, will result in a page utilization of around 20% for

triple tables. If this configuration is required, DB2 allows the definition of table spaces

with independent page sizes. Dictionary tables and triple tables should be defined in

separate table spaces. Strings larger than 8000 characters cannot be indexes by regular

DB2 B-Tree indexes and should be considered special data types with special indexing

requirements.

Bulk Loads. While not strictly part of the physical design of the database, bulk

loading has important practical implications on the dataset sizes users are willing to store

in a RDF triplestore. Transactional inserts are managed using ‘instead of’ triggers on

triple views. Clients insert triples in their original form and the trigger map string

symbols to the appropriate IDs, inserting new symbols in the dictionary when

appropriate. This setup is convenient low rate updates on a running database, but the

 17

amount of work per triple insert is too high for bulk loading. The triple insert with this

configuration was measured at around 100 triples/second, which would result in a load

time of 23 days for a dataset of 200 million triples, a relatively small dataset given

today’s scalability requirements into billions of triples.

To improve bulk load performance the dataset is preprocessed to build the symbol

dictionaries, partition the dataset by object data type and join the triple symbols with the

dictionary IDs. Preprocessing is done by a custom Java application that uses merge joins

on disk. The result of the preprocessing step is one file per triple table laid out for fast

loading using DB2’s LOAD utility. Once data is loaded the database can then index and

add the appropriate referential constraints to all triple tables.

 18

Chapter 3: SPARQL to SQL Translation

SPARQL provides the user a high-level mechanism to get information from the

RDF graph without dealing with the implementation details of the RDF triplestore. In the

case of triplestores implemented on top of relational database management systems

(RDMS), the interlaying storage system already provides a similar high-level mechanism

in the form of SQL. However, in the context of RDF data, the physical schema of the

database required to build SQL queries is an implementation detail that should not be

directly exposed to users. The physical schema of the database will likely be designed

for efficient querying, and may not necessarily represent the RDF data model. As a

consequence, the physical organization is both subject to change and inadequate to reason

about RDF queries. For these reasons the triplestore should provide a SPARQL interface

and translate RDF queries to SQL.

Many RDF storage systems that use relational databases limit the role of the

database as a persistent and reliable storage mechanism. Complex SPARQL queries may

be executed by issuing simpler SQL queries to the database to fetch triples, which are

then filtered or joined outside the database. In contrast, for the triplestore system

described in this report the intention is to offload all query operations to the database.

This requirement imposes two high-level design principles for the SPARQL to SQL

translation process:

1. Coverage. The translation should cover a reasonable subset of the features

provided by the SPARQL query language.

2. Fast and Naïve. The translation should not attempt complex query optimizations.

Any advance optimization techniques are delegated to the query optimizer of the

RDMS.

 19

Regarding design principle 1, the reasonable subset is defined in terms of what are

typical queries used in benchmarks and where the semantic mismatch between SPARQL

and SQL does not make the translation too complex. Some limitations of the translation

algorithm implemented are described later in this chapter.

The translation process follows a classic compiler structure: a parser converts the

SPARQL query text to an abstract syntax tree. The syntax tree is then used to build an

intermediate representation of the query. Finally, the intermediate representation is

translated to SQL. The first two phases of this process are handled using the open-source

Jena ARQ framework [4], which converts the SPARQL query text to the SPARQL

algebra described in the specification document [20]. Figure 10 shows a text

representation of the SPARQL algebra for the SPARQL query shown in Figure 9.

Figure 9: SPARQL query.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?email
WHERE {
 ?x rdf:type foaf:Person .
 ?x foaf:name ?name .
 OPTIONAL { ?x foaf:mbox ?email }
}

 20

Figure 10: SPARQL query algebra.

Translating a full SPARQL query to SQL is reduced to traversing the algebra tree

and translating each algebra element separately. A basic graph pattern (BGP) is

considered a leaf of the tree and processed as a single unit. In other words, individual

triples nodes have no direct translation to SQL, only the combination of triple patterns

can generate a meaningful SQL query. Translated BGP SQL queries are nested in other

SQL queries to implement other operations of the SPARQL algebra, including

OPTIONAL and UNION.

BASIC GRAPH PATTERNS

A Basic Graph Pattern, or BGP, is the simplest SPARQL query, where it only

includes triple patterns and variables joining nodes of those triple patterns. Figure 11

show a SPARQL query to find the ‘name’ of all RDF items of type ‘Person’.

Figure 11: SPARQL basic graph pattern.

(project (?name ?email)
 (leftjoin
 (bgp
 (triple ?x <rdf:type> <foaf:Person>)
 (triple ?x <foaf:name> ?name)
)
 (bgp (triple ?x <foaf:mbox> ?email))))

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name
WHERE {
 ?x rdf:type foaf:Person .
 ?x foaf:name ?name . }

 21

The first step of the translation to SQL assumes the database includes a single

triple view with the following columns:

Figure 12: Triple view assumed by query translation.

The columns subject, property and object contain the value of the subject,

property and object of a triple statement, respectively. The subject_id, property_id and

object_id contain the dictionary ID associated with its corresponding value, if the type of

the value uses a dictionary. The SQL query is later refined to take into account the

datatypes of the objects and target the real tables of the database.

Each triple in the BGP is assigned a unique identifier from a counter starting from

1. The identifier is used to alias the database triple table for each triple. The group of all

aliased table references form the FROM clause of the SQL query. The sample query

includes two triple pattern, which result in two table references:

Figure 13: SQL statement FROM clause.

Each variable in the BGP is tracked to resolve the variable name to the

appropriate column of the database triple table. As shown in Figure 14, the projected

variables in the SQL query are only determined from the projected variables of the

SPARQL query. As will be described later in this chapter, a BGP query may also project

variables requested by other operators. If projected variable is used in a join (shared

SELECT ...
FROM triples t1, triples t2
WHERE ...

!"#$%&'(!"#$%&')*+(,-.,%-'/(,-.,%-'/)*+(.#$%&'(.#$%&')*+(

 22

among several triple patterns), the variable is resolved to the first triple in the BGP that

references the variable.

Figure 14: SQL statement SELECT clause.

The WHERE clause encodes the fixed triples nodes and join variables found in

the SPARQL graph pattern. Since the result of the query must satisfy all the constraints

found in the BGP, the SQL query predicate will be the conjunction of all the fixed node

and join variable constraints. Fixed nodes are translated as equalities between the value

of the node specified in the query and the appropriate value column of the triple view.

Join constraints are translated as equalities between the IDs of two triples. The full

translation is show in Figure 15.

Figure 15: Full SQL statement from SPARQL query.

It is important to highlight that the joins occur between IDs and not the values. In

many cases, as is the case with the sample query, join variables are not projected as a

query result. The actual value of the node is irrelevant to satisfy the query, only equality

between nodes. If the join involves a datatype that uses a dictionary, which is always the

SELECT t2.obj AS name
FROM triples t1, triples t2
WHERE ...

SELECT t2.obj AS name
FROM triples t1, triples t2
WHERE t1.prp = ‘rdf:type’ AND
 t1.obj = ‘foaf:Person’ AND
 t2.prp = ‘foaf:mbox’ AND
 t1.sub_id = t2._sub_id

 23

case when joining on the subject of a triple, the query engine does not need to look up the

value in the dictionary to satisfy the query.

An alternative translation used by other systems, including sparql2sql [7] and

Jena/SDB [18], where each triple is translated to a SQL select and the query is the join of

all these selects, as shown in Figure 16.

Figure 16: Alternative SQL query using explicit joins.

The SELECT-FROM-WHERE approached is favored in this implementation for

the following reasons:

1. The SELECT-FROM-WHERE query is more declarative and does not suggest

any particular join order, which is delegated to the query optimizer to determine.

A good query optimizer will most likely generate the same access plan for both

queries, but this approach highlights the principle of deferring as much as possible

to the database optimizer.

2. The BGP translation does not need to handle the special case when there are no

join variables between triple patterns, which should be translated as a cross join

3. No need to track the variable scope. Using explicit joins, the join predicate can

only refer to variables that have introduced by a previous triple pattern. Some

SPARQL queries may force a reordering of triples to satisfy this requirement.

SELECT t2.obj AS name
FROM
 (SELECT * FROM triples WHERE prp = ‘rdf:type’ AND
 obj = ‘foaf:Person’) AS t1
INNER JOIN
 (SELECT * FROM triples WHERE prp = ‘foaf:mbox’) AS t2
ON t1.sub_id = t2._sub_id

 24

4. Filters are easier to translate since they are just added as additional constraints of

the where clause. Filters are described in more detail later in this chapter.

Regarding point 2, it is common to find SPARQL queries where the join node

between two triples is not defined explicitly using a variable, and instead use the same

fixed node on multiple triples, as shown in Figure 17 with its corresponding translation

Figure 18.

Figure 17: Query without explicit join variable.

Any translation using explicit joins will find that the set of variables shared

between the two triple patterns is empty. Since the inner join predicate cannot be empty,

the translation must either use a cross join, or find common fixed nodes to generate a join

predicate. SPARQL allows queries where the triple patterns do not share any variables or

fixed nodes. In this case using a cross join is the only option. In any case, the explicit

join requires additional complexity to identify and handle these cases. The SELECT-

FROM-WHERE translation handles all these cases automatically.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ex: <http://example.org>

SELECT ?label ?comment
WHERE {
 ex:item1 rdfs:label ?label .
 ex:item1 rdfs:comment ?comment }

 25

Figure 18: SQL translation of implicit join terms.

UNIONS

SPARQL unions are used to match pattern alternatives. The UNION operator

maps directly to the SQL UNION operator. The only requirement is that the projected

variables (columns) in the BGPs of the union match. How this condition is met for

UNIONs illustrates how projected variables are handled in general. Project variable

requests are propagated top-down. The top-level projection is driven by the variable list

SELECT clause of the SPARQL query. The project operator requests what variables the

SQL query should project. In this case, where SQL query is the UNION operator, the

translation will add those variables its SQL SELECT clause and propagate the project

request to its operand sub-queries. The request will ultimately be received by a BGP,

which will resolve the variable name to the appropriate triple table column. If a variable

cannot be resolved it is projected as NULL, which matches the expected semantics of the

UNION operator.

The UNION operation is translated as a SQL union of two sub-queries. The sub-

queries can be arbitrarily complex, since the translation occurs bottom-up, starting from

BGP translations. Any translated SQL as a result of a SPARQL operator can be used as a

sub-query for another SQL operator, including the UNION operator itself. To illustrate

this process, consider the simple query in Figure 19 and its translation in Figure 20.

SELECT t1.obj AS label,
 t2.obj AS comment
FROM triples t1,
 triples t2
WHERE t1.sub = 'http://example.orgitem1' AND
 t1.prp = 'http://www.w3.org/2000/01/rdf-schema#label' AND
 t2.sub = 'http://example.orgitem1' AND
 t2.prp = 'http://www.w3.org/2000/01/rdf-schema#comment'

 26

Figure 19: SPARQL UNION operator.

Figure 20: SQL translation of UNION operator.

Each BGP is translated in isolation and then combined as sub-queries using the

UNION operator. In this specific example, taken from the SPARQL specification, the set

of variables of the two BGPs is disjoint. To build a valid SQL UNION operator each

BGP query must project the same variables, which is accomplished by projecting NULL

values for unknown variables.

OPTIONALS

The SPARQL optional operator presents the most challenges in the translation of

SPARQL to SQL, especially when using filters, multiple or nested optionals. The

translation scheme shown in here only considers the subset of well-designed queries as

PREFIX dc10: <http://purl.org/dc/elements/1.0/>
PREFIX dc11: <http://purl.org/dc/elements/1.1/>
SELECT ?x ?y
WHERE {
 { ?book dc10:title ?x } UNION { ?book dc11:title ?y }
}

SELECT x, y
FROM
 (SELECT t1.obj AS x, null AS y
 FROM triples_all_pos t1
 WHERE t1.prp = 'http://purl.org/dc/elements/1.0/title')
UNION
 (SELECT null AS x, t2.obj AS y
 FROM triples_str_tag_pos t2
 WHERE t2.prp = 'http://purl.org/dc/elements/1.1/title')

 27

defined in [15]. This well-defined condition and other restrictions are described later in

this chapter. With these restrictions the SPARQL OPTIONAL operator maps to the SQL

LEFT OUTER JOIN operator.

The translation of the OPTIONAL operator is similar to the union operator. Each

operand of LEFT OUTER JOIN operator is treated as an opaque sub-query. The join

predicate is built by finding the intersection of the sets of variables from both sub-

queries. Even though certain SPARQL queries may result in an empty set of variables,

this condition is not allowed by this translation. Such queries will be rejected. The set of

join variables is used to project those variables in each sub-query. Join variable

projections differ from the projections used for unions in that joins project the IDs of

triple nodes, not their values.

Figure 21: SPARQL OPTIONAL operator.

Figure 21 shows a simple query involving an optional. The query will return all

books with a title specified using the title property version 1.0 and, if available, also

return its title as specified by the title property version 1.1. As was the case with unions ,

each BGP is translated in isolation and the optional is translated to a SQL LEFT OUTER

JOIN. The ?book join variable provides the join condition. The translation result is

shown in Figure 22.

PREFIX dc10: <http://purl.org/dc/elements/1.0/>
PREFIX dc11: <http://purl.org/dc/elements/1.1/>
SELECT ?x ?y
WHERE {
 ?book dc10:title ?x OPTIONAL { ?book dc11:title ?y }
}

 28

Figure 22: SQL translation of OPTIONAL using LEFT OUTER JOIN.

FILTERS

Filters provide a mechanism to provide query constraints in addition to triple

patterns and join variables. Translating filter expressions within a BGP is

straightforward. The expression is first translated to SQL mapping XQuery operators to

SQL operators. Variable names are resolved to value columns of the triple table. The

translated expression is added as an additional constraint of the WHERE clause of the

SQL statement.

Figure 23 and Figure 24 show a SPARQL query and its translation to SQL,

respectively. Note that variables in filter expression must resolve to the value columns,

not the identifiers.

SELECT bgp1.x AS x, bgp2.y AS y
FROM
 (SELECT t1.obj AS x, t1.sub_id AS book_id
 FROM triples t1
 WHERE t1.prp = 'http://purl.org/dc/elements/1.0/title') AS bgp1
LEFT OUTER JOIN
 (SELECT t2.obj AS y, t2.sub_id AS book_id
 FROM triples t2
 WHERE t2.prp = 'http://purl.org/dc/elements/1.1/title') AS bgp2
ON bgp1.book_id = bgp2.book_id

 29

Figure 23: SPARQL FILTER operator.

Figure 24: SQL translation of FILTER operator.

An intuitive way to translate filter expressions inside an OPTIONAL is to

associate the expression with the BGP inside the OPTIONAL. In this case, the filter

expression would be part of the WHERE clause of the right sub-query. An equivalent

translation is to include the filter expression as part of the LEFT OUTER JOIN predicate.

This second alternative has the advantage that variables in the filter expression can refer

to variables in the BGP containing the OPTIONAL, even if that variable is not contained

by the OPTIONAL. This case is illustrated by the query in Figure 25 and its translation

in Figure 26.

PREFIX dc: <http://purl.org/dc/elements/1.0/>
PREFIX ex: <http://example.org/>
SELECT ?title ?price
WHERE {
 ?book dc:title ?x
 ?book ex:price ?price
 FILTER(?price < 20)
}

SELECT t1.obj AS title,
 t2.obj AS price
FROM triples t1, triples t2
WHERE t1.prp = 'http://purl.org/dc/elements/1.0/title' AND
 t2.prp = 'http://example.org/price' AND
 t1.sub_id = t2.sub_id AND
 (t2.obj < 20)

 30

Figure 25: SPARQL query algebra.

Figure 26: SPARQL query algebra.

JOINS

SPARQL queries can contain multiple basic graphs patterns. This is feature is not

commonly used in benchmarks queries, but it is easily translated as an INNER JOIN

between sub-queries. If the graph patterns do not share any variable, a CROSS JOIN

should be used instead. Filter within groups are translated with the associated BGP.

PREFIX dc: <http://purl.org/dc/elements/1.0/>
PREFIX ex: <http://example.org/>
SELECT ?title ?price
WHERE {
 ?book dc:title ?title .
 OPTIONAL { ?book ex:price ?price
 FILTER(?title = 'xyz') }
}

SELECT bgp1.title AS title,
 bgp2.price AS price
FROM
 (SELECT t1.obj AS title,
 t1.sub_id AS book_id
 FROM triples t1
 WHERE t1.prp = 'dc:title') AS bgp1
LEFT OUTER JOIN
 (SELECT t2.obj AS price,
 t2.sub_id AS book_id
 FROM triples t2
 WHERE t2.prp = ‘ex:price') AS bgp2
ON bgp1.book_id = bgp2.book_id AND
 (bgp1.title = 'xyz')

 31

DATATYPE TABLE SELECTION

The translation algorithm so far has targeted a single triple table in the database.

For the query to be valid each table reference must be resolved to a specific object

datatype table. Some queries may provide enough information to resolve the table

datatypes using type inference. Consider a likely analysis of the query in Figure 27:

variable ?x is used as a subject, so it must be a resource, which means the first triple

pattern should resolve to the triple table with URI objects. Variable ?y is used in an

expression involving an integer, so ?y must be an integer as well for the expression to be

well-typed. Since ?y is used as the object of the second triple pattern the table can be

resolve to the integer table.

Figure 27: Infer table data type from query.

However, in many cases type information is not available. The most basic query

is to request the value of a set of properties for a resource (subject). This query would

involve multiple triple patterns with fixed properties, joined by a single subject variable

and free object variables. There is no way to determine what object datatype will satisfy

the query since any type is allowed. Without any additional information there are two

ways to check all triples across tables that satisfy the query, both of which have

undesirable properties in terms of efficiency and complexity

1. Use a triple that is defined as the union of all triple tables. All object values

are formatted as strings to satisfy the SQL UNION operator requirements

SELECT ?x ?y
WHERE {
 ex:sub ex:p ?x .
 ?x ex:q ?y FILTER (?y > 10)
}

 32

2. Generate a SQL query for all permutations of table datatypes and triple

patterns. The final result is the union of all queries.

This problem can be resolved for most queries if some information about the

dataset is included in the translation process. While RDF allows complete flexibility in

terms of the datatypes a property may refer to, most real-world data will have some

structure that limits the range for a property. For example, a name property will likely

point to a string literal, while an age property will point to a numeric value. This

information is easy to extract from the dataset even no RDF Schema or OWL metadata is

available.

During the database load process, the system builds a map of properties to object

datatype. With the information the resolution of table types during the translation process

is done as follows:

1. If the property term of a triple pattern is fixed, lookup the datatype for the

property and use the database table associated with that datatype.

2. If the object term of a triple pattern is fixed, use its datatype information to

select the appropriate database table.

3. If both property and object terms are fixed, ensure that the datatype

information from steps 1 and 2 matches. Otherwise the query result is empty.

4. If both property and object terms are variable, use a triple view defined as the

union of all triple tables.

The triple view union of all triple tables is still required, but its use is limited to a

very specific triple pattern.

This table selection scheme is clearly effective for datasets where each property

refers to a single value datatype, as is the case in many real-world and benchmark

datasets. For properties that refer to multiple datatypes the system could automatically

 33

create a view defined as the union of these datatypes. There are certainly pathological

datasets that cannot be handled efficiently, but they are considered out of the scope of this

report since their efficient storage may require completely different techniques.

If using the multiple indexes database configuration, datatype information is

enough to generate a valid SQL query. The query optimizer will generate the access plan

using its internal statistics and available indexes.

CLUSTERED TABLE SELECTION

When using the explicit clustered table configuration there is no way to tell the

database query optimizer that the tables refer to the same data and can be used

interchangeably. This is accomplished by the use of indexes on the triple tables. Using

clustered table is then a way to force the database to use a given index. Cluster selection

is added to the table after the table datatype has been resolved. In accordance to the

design principles mentioned in the beginning of the chapter, cluster selection is done as

simple as possible, using only information about fixed triple terms and join variables. No

dataset statistics or global optimization techniques are used.

Each triple is modeled as a list of three items (subject, proprety and object) that

can be reordered. The ordering in the list determines the clustering of the target table. If

the list is {property, subject, object} the compiler will use the PSO clustering for that

table reference. During the translation process each term is assigned a priority. When a

full BGP is read, the list is sorted according to their priority. The problem is then

reduced to assigning the appropriate priority to each term.

 The desired clustering is determined by the fixed terms and joined variables.

Consequently free variables are the lowest priority and will move to the right of the

cluster ordering. Fixed terms should be used to locate the group of clustered rows that

 34

share the same property, so they are given the highest priority. Joined variables will be

placed in between fixed terms to the left and free variables to the right. Ties between

terms of the same type (fixed, joined or free) are broken by assuming that object terms

are more selective than subject terms, and subject terms are more selective that property.

The preference is to move more selective terms to the left in order to reduce the number

of rows to scan. As a consequence objects are given the highest priority and properties

the lowest priority.

To encode these ordering constraints term priority is defined using a high digit

that encodes the term type priority (fixed, join or free) and the term position in the triple

(subject, property or object). Figure 28 illustrates the clustered table selection using a

simple example query.

Figure 28: Clustered table selection based on term priority.

The implicit assumption made by this clustered table selection scheme is that join

between triple tables will dominate the execution time of the query. The determination

of join order is left to the database query optimizer.

!"
"""#$"%#"$%"
"""&'"()"&*"

"""$$"%#"#%"
"""&*"(+"&,"
-"

!"#$%

!"#$%

&"!%

&!"%

./"01232"."4"#"56"6322"783589:2"
"""""""""."4"$"56";<5="783589:2"
"""""""""."4"%"56"65'2>"
"""""""""/"4"#"56")3<)23?*"
"""""""""/"4"$"56"@A9;2B?"
"""""""""/"4"%"56"<9;2B?""

 35

SPARLQ TO SQL TRANSLATION RESTRICTIONS

 Many features of the SPARQL language are left out of the translation process just

described. Named graphs (GRAPH operator), projection expressions, ASK and

CONSTRUCT query types, and most XQuery functions available in filter expressions, to

name a few, were considered out of scope for this implementation and will not be

described in detail. Instead, this section enumerates SPARQL queries that highlight a

semantic mismatch between SPARQL and SQL, or SPARQL featuresthat someone may

expect to work given the subset of features implemented by the current compiler.

Optionals with no explicit join variable

It is not uncommon to implicit define a join condition using fixed node values.

For example, consider the query in Figure 29.

Figure 29: OPTIONAL without explicit join variable.

The subject node on both graphs patterns is fixed to the value ex:sub, which

constitutes a valid join condition for the join operation. However, the implicit join

condition is not detected by the SPARQL to SQL translation and the query is rejected.

Detecting such condition would require inspecting the fixed nodes of the graph patterns

operands of the OPTINAL operator, detecting at least one join condition and promoting it

to the ON clause of the SQL LEFT OUTER JOIN operator. Note that queries such as the

PREFIX ex: <http://example.org/>
SELECT *
WHERE {
 ex:sub ex:p ?w .
 OPTIONAL { ex:sub ex:q ?y }
}

 36

one used in the example can be rewritten to an equivalent form that uses explicit join

variables, as shown in Figure 30.

Figure 30: Equivalent query with explicit join variable.

Implicit join conditions only affect optional graph patterns. The translation of a

basic graph pattern automatically handles implicit joins by including each triple pattern as

a table reference in the FROM clause and fixed node conditions in the WHERE clause of

the SQL statement.

Nested Optionals

SPARQL variable scoping allows a variable introduced in a graph pattern to be

referenced by nested optional patterns, even if the variable is not referenced by all the

patterns in between. Figure 31 shows an example of such queries.

Figure 31: Nested optionals without connecting join variables.

PREFIX ex: <http://example.org/>
SELECT *
WHERE {
 FILTER(?s = ex:sub)
 ?s ex:p ?w .
 OPTIONAL { ?s ex:q ?y }
}

PREFIX ex: <http://example.org/>
SELECT *
WHERE {
 ?x ex:p ?w .
 OPTIONAL {

?y ex:q ?y .
OPTIONAL { ?x ex:r ?z }

} }

 37

These queries are rejected for the same reason optional without explicit join

variables are rejected: it is not possible to build the LEFT OUTER JOIN predicate. This

restriction matches the well-designed criteria defined in [15], where join variables present

between nested optional graphs patterns must also appear in all optional patterns in

between. With this restriction SPARQL queries have well defined properties in terms of

associativity and commutativity of optional operators. Given that this particular query

pattern has been found problematic in the definition of SPARQL semantics it is not

considered a severe limitation for this implementation.

 38

Chapter 4: Benchmark Results

SYSTEMS UNDER TEST

The triplestores used in the evaluation were selected based on ease of use,

popularity in the Semantic Web community or due to an interesting implementation. The

two systems used are briefly described below:

Jena/TDB [21]. Jena is an open-source Semantic Web framework developed by

HP Labs with support for RDF, SPARQL, RDFS and OWL inference. RDF triplestores

can be instantiated over most relational databases (SDB) or over a custom native RDF

store (TDB). The evaluation presented here used the native version of the RDF store,

Jena/TDB, which defines three B+Tree triple indexes on SPO, POS and OSP triples. The

triple table is not materialized since the indexes include all necessary information about

the dataset. Triples are formed from integer IDs that map to symbols in a dictionary.

The dictionary is a table is indexes by a single B+Trees that map symbol to ID. The

converse ID to symbol mapping is done using a sequential scan of the symbol table.

Node IDs are generated from the md5 hash of the symbol. Fixed-sized values like

intergers and floats are inlined in the B+Tree triple indexes. The bit pattern of the index

value is used to encode whether the value is an entry in the dictionary or an inlined value.

Sesame OpenRDF [13]. Sesame is also a popular Semantic Web framework with

RDFS and OWL inference capabilities, and support for multiple backend store options.

For this evaluation two storage options were used: native RDF on disk and relational

database store using Postgresql 9.0.3. The default configuration for the native store uses

two B+Tree indexes over SPOC and POSC, where C refers to an additional context term

that identifies the dataset that the triple belongs to. The database backend configuration

is also based on a single triple table without the use of a dictionary.

 39

DATASET

The Berlin SPARQL Benchmark V3.0 [5] was used for the evaluation of the

triplestores. The benchmark is based on a synthetic dataset designed around an e-

commerce use case with products from different vendors and user reviews. The

benchmarks distribution includes a dataset generator and testdriver with queries for

various use cases. Typical dataset sizes used for triplestore evaluation are 1M, 25M,

100M and 200M triples (M = million). The test results presented were generated using

the ‘explore’ use case query mix. The specific SPARQL queries used for evaluation are

listed in the appendix.

LOAD RESULTS

Load times are listed in hours:minutes:seconds format3. DB2 load time includes

table loading, index creation, table reorganization and gathering of statistics. Dataset

preprocessing is listed separately since it is required once per dataset, but should be

considered part of the DB2 loading time.

 1M 25M 100M 200M

Jena/TDB 00:00:23.26 00:09:57.90 00:53:04.70 01:54:32.50

Sesame/Native 00:01:00.80 01:10:02.95 54:35:20.04 ---

Sesame/DB 00:05:55.39 08:31:56.57 --- ---

DB2/Preprocess 00:01:37.42 00:52:15.75 03:58:43.84 09:02:39.96

DB2/Index 00:00:57.89 00:22:53.89 02:07:41.71 07:09:01.04

DB2/Clustered 00:03:17.38 01:18:02.39 04:30:59.32 ---

Table 1. Berlin SPARQL Benchmark load results

3 Missing entries indicates that the dataset was not loaded due to time constraints.

 40

Figure 32. Berlin SPARLQ Benchmark load times

Figure 32 shows the load time for each system (log10 scale). DB2 results

configurations include data preprocessing time. The triple tables loaded to DB2 used

hashed values as symbol ID. The query processor can be configured to use symbols or

hash values during SQL query generation.

QUERY RESULTS

All query results are listed as average query execution time in seconds. Four DB2

configuration were tested: Index on all 6 column combinations using symbol dictionaries

(DB2/IDX); index on all 6 column combinations using hashing (DB2/IDX-HS); and

clustered triple tables using symbol dictionaries (DB2/CL). Entries marked with ‘---‘

indicate that the query was not executed because the dataset was not loaded. Entries

marked with ‘>300’ indicate that the query took longer than 5 minutes and the test driver

timed out.

!"

!#"

!##"

!###"

!####"

!#####"

!######"

!" $%" !##" $##"

!"
#$

%&
'(

)%
*+"

,-
.)
/"
0$

.1
2%

34(5)6%"7%&6'8+).%*('++'"0.2%

&'()*+,-"

.'/)0'*1)23'"

.'/)0'*,-"

,-$*4(5'6"

,-$*789/:';"

 41

 1 2 3 4 5 7 8 10 11

Jena/TDB 0.023 0.049 0.024 0.026 0.049 0.035 0.034 0.027 0.038

Sesame/Native 0.004 0.006 0.005 0.005 0.082 0.036 0.008 0.006 0.209

Sesame/DB 0.020 0.097 0.029 0.067 0.099 0.141 0.087 0.125 0.081

DB2/IDX 0.103 0.860 0.101 0.229 0.074 0.781 0.314 0.125 0.057

DB2/IDX-HS 0.048 0.305 0.026 0.060 0.045 0.051 0.074 0.097 0.103

DB2/CL 0.080 0.352 0.088 0.105 0.076 0.664 0.320 0.124 0.082

Table 2. Berlin SPARQL Benchmark query results (1M).

 1 2 3 4 5 7 8 10 11

Jena/TDB 0.096 0.113 0.116 0.103 0.458 0.300 0.222 0.183 0.135

Sesame/Native 0.057 0.021 0.032 0.043 1.817 0.262 0.127 0.146 5.128

Sesame/DB 0.065 0.148 0.116 0.146 1.111 0.412 0.607 0.425 8.553

DB2/IDX 1.370 29.80 1.874 3.497 2.167 37.53 8.442 6.553 0.498

DB2/IDX-HS 0.258 1.071 0.671 0.319 10.15 14.03 0.399 0.636 0.155

DB2/CL 0.766 6.162 1.327 0.766 1.895 37.33 10.08 6.647 0.225

Table 3. Berlin SPARQL Benchmark query results (25M).

 42

 1 2 3 4 5 7 8 10 11

Jena/TDB 0.255 0.254 0.260 0.268 1.471 0.828 0.557 0.431 0.295

Sesame/Native 3.760 0.189 2.927 1.310 108.68 2.371 0.606 1.628 217.442

Sesame/DB --- --- --- --- --- --- --- --- ---

DB2/IDX 4.762 251.8 7.056 13.50 11.35 >300 59.97 83.30 0.847

DB2/IDX-HS 0.673 5.341 0.808 1.267 43.74 >300 1.495 0.658 0.138

DB2/CL 3.548 45.90 6.828 8.127 11.37 >300 124.7 69.73 0.222

Table 4. Berlin SPARQL Benchmark query results (100M).

 1 2 3 4 5 7 8 10 11

Jena/TDB 0.260 0.245 0.255 0.302 18.488 1.036 0.595 0.450 0.266

Sesame/Native --- --- --- --- --- --- --- --- ---

Sesame/DB --- --- --- --- --- --- --- --- ---

DB2/IDX4 --- --- --- --- --- --- --- --- ---

DB2/IDX-HS4 --- --- --- --- --- --- --- --- ---

DB2/CL --- --- --- --- --- --- --- --- ---

Table 5. Berlin SPARQL Benchmark query results (200M).

4 Dataset was loaded but test driver did not complete after 6 hours of operation. Results for benchmark
systems are shown for completeness.

 43

DB2 QUERY ACCESS PLANS

This section will present a few access plans generated from the test queries to

briefly show some of the query plan decisions made by DB2. In general, the query plans

generated by SPARQL queries are complex, involving many joins. It is not possible to

describe every access plan used in the evaluation.

Figure 33. DB2 Access Plan, fetching from dictionary tables

The Figure above shows a typical access plan for a simple SPARQL query. To

resolve resource identifiers to IDs using the dictionary, the URI index is used to find row

identifiers, which are then used to fetch records from the dictionary. In general, DB2 will

use a nested loop join to join the dictionary identifier with the triple table. This is

 44

reasonable considering that the result of the dictionary look-up is guaranteed to be one

record since there is a uniqueness constraint on the URI column of the dictionary. From

this access plan it can also be seen that DB2 does not access the base triple table and,

since the index has all triple columns, only index scans are used to join triples. As

mentioned in Chapter 2, DB2 allows additional columns to be included in the leaves of an

index. This option can be used by dictionary indexes to allow for index only scans when

resolving resource identifiers to string and vice versa. The access plan using this option

is shown in Figure 33.

Figure 34. DB2 access plan using index INCLUDE option

 45

The new access plan shows that only index scans are required to satisfy the query.

This is basically the same technique used by many native RDF databases, where the triple

table is never materialize and only index scans are used. This access plan is typical for

the queries used in the benchmark. In general DB2 will use nested loop joins between

triple indexes and dictionary indexes, and hash joins to join triples. For all the dataset

sizes used in the benchmark DB2 will select hash joins. However for smaller datasets

DB2 will use merge joins as shown in Figure 34. This is interesting since merge joins are

typically used by native RDF databases to join triples, given that index scans already

provide sorted join columns, but clearly DB2 query planner is using other metrics to

select hash joins instead.

Figure 35. DB2 access plan using merge-joins.

 46

Chapter 5: Conclusion

It is clear from the benchmark results that more investigation regarding database

configuration is required to implement a scalable triplestore with good overall

performance using the design described in this report. While overall query performance

is worse compared to the benchmark systems, for many queries execution time was in the

same order of magnitude. This is encouraging given that both these Jena and Sesame are

using similar indexing data structures to the DB2 implementation. It is not unreasonable

to think that expert configuration of the DB2 system could result in much better

performance. A first step would be to focus on problematic queries, notably query 7,

which degrades considerably as the number of triple increases. This query is notable in

that uses optional and nested optional graph patterns extensively, which indicates a

performance problem in the design of the triplestore for the execution left outer joins.

Database configuration is also likely to be the cause of scalability issues beyond 100

million triples.

Perhaps the most interesting aspect of the evaluation is the comparison between

the different DB2 triplestores configurations. Hashing had a noticeable impact on overall

query performance. This performance boost is expected since hashing avoids a

dictionary lookup to resolve query strings, but it was unexpected to find that the use of

hashing could performance on certain queries. These effects could be explained by the

fact that the SPARQL compiler does not use hashed values for filter expressions, which

requires dictionary lookups. In general, a better understanding of the effects of the

dictionary compression design is necessary.

Finally, it was surprising to find that clustering had a significant impact on

performance when compared to the indexed configuration. As mentioned in previous

 47

chapters, creating all six indexes on a triple table gives the query planner the option to

always select index scans, and avoid fetching records from the base triple table. Using

separate clustered tables with a single index allows the SPARLQ compiler to suggest that

a specific index should be used. The cluster table selection algorithm used in the

evaluation was naïve, using only information about term types (fixed, join variable or

free variable) in a triples triple pattern. No dataset statistics or global optimization

algorithms were used, and yet it is clear that restricting the access paths available to the

query planner had a positive impact on query performance. Also, note that because the

complexity of the queries the DB2 optimization class used in the evaluation was lowered

to effectively disable dynamic programming cost-based join order selection and force the

query planner to use a greedy algorithm instead. The fact that such a simple cluster

selection algorithm had an impact in performance suggests that an interesting area of

future investigation would be to find out what other optimization techniques could be use

during SQL query generation to improve access plans for RDF query workloads.

 48

Appendices

A. TEST SYSTEM CONFIGURATION
	

Windows	
 7	
 Ultimate	
 64-­‐bit	
 Service	
 Pack	
 1	

Intel	
 i3	
 Dual	
 Core	
 3.2GHz	
 with	
 12GB	
 RAM	

Two	
 1TB	
 5400rpm	
 64MB	
 cache	
 hard-­‐drives	
 configured	
 in	
 RAID	
 1	
 (mirror)	
 	

Java	
 1.6.0_24	
 for	
 Windows	
 64-­‐bit	

IBM	
 DB2	
 Enterprise	
 Server	
 Edition	
 9.7	
 for	
 Windows	
 64-­‐bit	
 (x86-­‐64)	

Jena/TDB	
 Fuseki	
 version	
 0.1.0	

Sesame	
 2.3.2	
 with	
 apache-­‐tomcat	
 6.0.32	

Postgresql	
 64-­‐bit	
 version	
 9.0.3	

B. BERLIN SPARQL BENCHMARK TEST QUERIES

Berlin SPARQL Benchmark version 3.0 explore use case was used in the

evaluation. Triple terms enclosed by %xx% indicate nodes that are replaced to fixed

values by the benchmark test driver. Assume the following prefix header for all queries:

PREFIX	
 bsbm-­‐inst:	
 <http://www4.wiwiss.fu-­‐berlin.de/bizer/bsbm/v01/instances/>	

PREFIX	
 bsbm:	
 <http://www4.wiwiss.fu-­‐berlin.de/bizer/bsbm/v01/vocabulary/>	

PREFIX	
 rdfs:	
 <http://www.w3.org/2000/01/rdf-­‐schema#>	

PREFIX	
 rdf:	
 <http://www.w3.org/1999/02/22-­‐rdf-­‐syntax-­‐ns#>	

PREFIX	
 dc:	
 <http://purl.org/dc/elements/1.1/>	

PREFIX	
 foaf:	
 <http://xmlns.com/foaf/0.1/>	

PREFIX	
 rev:	
 <http://purl.org/stuff/rev#>	

PREFIX	
 xsd:	
 <http://www.w3.org/2001/XMLSchema#>	

Q1.	

SELECT	
 DISTINCT	
 ?product	
 ?label	

WHERE	
 {	
 	

	
 	
 	
 ?product	
 rdfs:label	
 ?label	
 .	

	
 	
 	
 ?product	
 a	
 %ProductType%	
 .	

	
 	
 	
 ?product	
 bsbm:productFeature	
 %ProductFeature1%	
 .	
 	

	
 	
 	
 ?product	
 bsbm:productFeature	
 %ProductFeature2%	
 .	
 	

	
 	
 	
 ?product	
 bsbm:productPropertyNumeric1	
 ?value1	
 .	
 	

	
 	
 	
 FILTER	
 (?value1	
 >	
 %x%)	
 	

}	

ORDER	
 BY	
 ?label	

LIMIT	
 10	

 49

Q2.	

SELECT	
 ?label	
 ?comment	
 ?producer	
 ?productFeature	
 ?propertyTextual1	

	
 	
 	
 	
 	
 	
 	
 ?propertyTextual2	
 ?propertyTextual3	
 ?propertyNumeric1	
 ?propertyNumeric2	

	
 	
 	
 	
 	
 	
 	
 ?propertyTextual4	
 ?propertyTextual5	
 ?propertyNumeric4	
 	

WHERE	
 {	

	
 	
 	
 	
 FILTER(?product	
 =	
 %ProductXYZ%)	

	
 	
 	
 	
 ?product	
 rdfs:label	
 ?label	
 .	

	
 	
 	
 	
 ?product	
 rdfs:comment	
 ?comment	
 .	

	
 	
 	
 	
 ?product	
 bsbm:producer	
 ?p	
 .	

	
 	
 	
 	
 ?p	
 rdfs:label	
 ?producer	
 .	

	
 	
 	
 	
 ?product	
 dc:publisher	
 ?p	
 .	
 	

	
 	
 	
 	
 ?product	
 bsbm:productFeature	
 ?f	
 .	

	
 	
 	
 	
 ?f	
 rdfs:label	
 ?productFeature	
 .	

	
 	
 	
 	
 ?product	
 bsbm:productPropertyTextual1	
 ?propertyTextual1	
 .	

	
 	
 	
 	
 ?product	
 bsbm:productPropertyTextual2	
 ?propertyTextual2	
 .	

	
 	
 	
 	
 ?product	
 bsbm:productPropertyTextual3	
 ?propertyTextual3	
 .	

	
 	
 	
 	
 ?product	
 bsbm:productPropertyNumeric1	
 ?propertyNumeric1	
 .	

	
 	
 	
 	
 ?product	
 bsbm:productPropertyNumeric2	
 ?propertyNumeric2	
 .	

	
 	
 	
 	
 OPTIONAL	
 {	
 ?product	
 bsbm:productPropertyTextual4	
 ?propertyTextual4	
 }	

	
 	
 	
 	
 OPTIONAL	
 {	
 ?product	
 bsbm:productPropertyTextual5	
 ?propertyTextual5	
 }	

	
 	
 	
 	
 OPTIONAL	
 {?product	
 bsbm:productPropertyNumeric4	
 ?propertyNumeric4	
 }	

}	

	

Q3.	

SELECT	
 ?product	
 ?label	

WHERE	
 {	

	
 	
 	
 	
 ?product	
 rdfs:label	
 ?label	
 .	

	
 	
 	
 	
 ?product	
 a	
 %ProductType%	
 .	

	
 	
 	
 	
 ?product	
 bsbm:productFeature	
 %ProductFeature1%	
 .	

	
 	
 	
 	
 ?product	
 bsbm:productPropertyNumeric1	
 ?p1	
 .	

	
 	
 	
 	
 FILTER	
 (
 ?p1	
 >	
 %x%	
)	
 	

	
 	
 	
 	
 ?product	
 bsbm:productPropertyNumeric3	
 ?p3	
 .	

	
 	
 	
 	
 FILTER	
 (?p3	
 <	
 %y%	
)	

	
 	
 	
 	
 OPTIONAL	
 {	
 	

	
 	
 	
 	
 	
 	
 	
 ?product	
 bsbm:productFeature	
 %ProductFeature2%	
 .	

	
 	
 	
 	
 	
 	
 	
 ?product	
 rdfs:label	
 ?testVar	
 }	

	
 	
 	
 	
 	
 	
 	
 FILTER	
 (!bound(?testVar))	
 	

}	

ORDER	
 BY	
 ?label	

LIMIT	
 10	

	

	

	

	

 50

Q4.	

SELECT	
 DISTINCT	
 ?product	
 ?label	
 ?propertyTextual	

WHERE	
 {	

	
 	
 {	
 	

	
 	
 	
 	
 	
 	
 ?product	
 rdfs:label	
 ?label	
 .	

	
 	
 	
 	
 	
 	
 ?product	
 rdf:type	
 %ProductType%	
 .	

	
 	
 	
 	
 	
 	
 ?product	
 bsbm:productFeature	
 %ProductFeature1%	
 .	

	
 	
 	
 	
 	
 	
 ?product	
 bsbm:productFeature	
 %ProductFeature2%	
 .	

	
 	
 	
 	
 	
 	
 ?product	
 bsbm:productPropertyTextual1	
 ?propertyTextual	
 .	

	
 	
 	
 	
 	
 	
 ?product	
 bsbm:productPropertyNumeric1	
 ?p1	
 .	

	
 	
 	
 	
 	
 	
 FILTER	
 (
 ?p1	
 >	
 %x%	
)	

	
 	
 }	
 UNION	
 {	

	
 	
 	
 	
 	
 	
 ?product	
 rdfs:label	
 ?label	
 .	

	
 	
 	
 	
 	
 	
 ?product	
 rdf:type	
 %ProductType%	
 .	

	
 	
 	
 	
 	
 	
 ?product	
 bsbm:productFeature	
 %ProductFeature1%	
 .	

	
 	
 	
 	
 	
 	
 ?product	
 bsbm:productFeature	
 %ProductFeature3%	
 .	

	
 	
 	
 	
 	
 	
 ?product	
 bsbm:productPropertyTextual1	
 ?propertyTextual	
 .	

	
 	
 	
 	
 	
 	
 ?product	
 bsbm:productPropertyNumeric2	
 ?p2	
 .	

	
 	
 	
 	
 	
 	
 FILTER	
 (
 ?p2>	
 %y%	
)	
 	

	
 	
 }	
 	

}	

ORDER	
 BY	
 ?label	

OFFSET	
 5	

LIMIT	
 10	

	

Q5.	

SELECT	
 DISTINCT	
 ?product	
 ?productLabel	

WHERE	
 {	
 	

	
 	
 	
 ?product	
 rdfs:label	
 ?productLabel	
 .	

	
 	
 	
 FILTER	
 (%ProductXYZ%	
 !=	
 ?product)	

	
 	
 	
 %ProductXYZ%	
 bsbm:productFeature	
 ?prodFeature	
 .	

	
 	
 	
 ?product	
 bsbm:productFeature	
 ?prodFeature	
 .	

	
 	
 	
 %ProductXYZ%	
 bsbm:productPropertyNumeric1	
 ?origProperty1	
 .	

	
 	
 	
 ?product	
 bsbm:productPropertyNumeric1	
 ?simProperty1	
 .	

	
 	
 	
 FILTER	
 (?simProperty1	
 <	
 (?origProperty1	
 +	
 120)	
 &&	
 ?simProperty1	
 >	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (?origProperty1	
 -­‐	
 120))	

	
 	
 	
 %ProductXYZ%	
 bsbm:productPropertyNumeric2	
 ?origProperty2	
 .	

	
 	
 	
 ?product	
 bsbm:productPropertyNumeric2	
 ?simProperty2	
 .	

	
 	
 	
 FILTER	
 (?simProperty2	
 <	
 (?origProperty2	
 +	
 170)	
 &&	
 ?simProperty2	
 >	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (?origProperty2	
 -­‐	
 170))	

}	

ORDER	
 BY	
 ?productLabel	

LIMIT	
 5	

	

 51

Q6.	
 	
 Removed	
 from	
 version	
 3	
 of	
 the	
 benchmark.	

	

Q7.	

SELECT	
 ?productLabel	
 ?offer	
 ?price	
 ?vendor	
 ?vendorTitle	
 ?review	
 ?revTitle	
 	

	
 ?reviewer	
 ?revName	
 ?rating1	
 ?rating2	

WHERE	
 {	

	
 	
 	
 FILTER(?product	
 =	
 %ProductXYZ%)	

	
 	
 	
 ?product	
 rdfs:label	
 ?productLabel	
 .	

	
 	
 	
 OPTIONAL	
 {	

	
 	
 	
 	
 	
 	
 ?offer	
 bsbm:product	
 ?product	
 .	

	
 	
 	
 	
 	
 	
 ?offer	
 bsbm:price	
 ?price	
 .	

	
 	
 	
 	
 	
 	
 ?offer	
 bsbm:vendor	
 ?vendor	
 .	

	
 	
 	
 	
 	
 	
 ?vendor	
 rdfs:label	
 ?vendorTitle	
 .	

	
 	
 	
 	
 	
 	
 ?vendor	
 bsbm:country	
 <http://downlode.org/rdf/iso-­‐3166/countries#DE>	
 .	

	
 	
 	
 	
 	
 	
 ?offer	
 dc:publisher	
 ?vendor	
 .	
 	

	
 	
 	
 	
 	
 	
 ?offer	
 bsbm:validTo	
 ?date	
 .	

	
 	
 	
 	
 	
 	
 FILTER	
 (?date	
 >	
 %currentDate%	
)	

	
 	
 	
 }	

	
 	
 	
 OPTIONAL	
 {	

	
 	
 	
 	
 	
 	
 ?review	
 bsbm:reviewFor	
 ?product	
 .	

	
 	
 	
 	
 	
 	
 ?review	
 rev:reviewer	
 ?reviewer	
 .	

	
 	
 	
 	
 	
 	
 ?reviewer	
 foaf:name	
 ?revName	
 .	

	
 	
 	
 	
 	
 	
 ?review	
 dc:title	
 ?revTitle	
 .	

	
 	
 	
 	
 	
 	
 OPTIONAL	
 {	
 ?review	
 bsbm:rating1	
 ?rating1	
 .	
 }	

	
 	
 	
 	
 	
 	
 OPTIONAL	
 {	
 ?review	
 bsbm:rating2	
 ?rating2	
 .	
 }	
 	

}	
 }	

	

Q8.	

SELECT	
 ?title	
 ?text	
 ?reviewDate	
 ?reviewer	
 ?reviewerName	
 ?rating1	
 	

	
 	
 	
 	
 	
 	
 	
 ?rating2	
 ?rating3	
 ?rating4	
 	

WHERE	
 {	
 	

	
 	
 	
 ?review	
 bsbm:reviewFor	
 %ProductXYZ%	
 .	

	
 	
 	
 ?review	
 dc:title	
 ?title	
 .	

	
 	
 	
 ?review	
 rev:text	
 ?text	
 .	

	
 	
 	
 FILTER	
 langMatches(
 lang(?text),	
 "EN"	
)	
 	

	
 	
 	
 ?review	
 bsbm:reviewDate	
 ?reviewDate	
 .	

	
 	
 	
 ?review	
 rev:reviewer	
 ?reviewer	
 .	

	
 	
 	
 ?reviewer	
 foaf:name	
 ?reviewerName	
 .	

	
 	
 	
 OPTIONAL	
 {	
 ?review	
 bsbm:rating1	
 ?rating1	
 .	
 }	

	
 	
 	
 OPTIONAL	
 {	
 ?review	
 bsbm:rating2	
 ?rating2	
 .	
 }	

	
 	
 	
 OPTIONAL	
 {	
 ?review	
 bsbm:rating3	
 ?rating3	
 .	
 }	

	
 	
 	
 OPTIONAL	
 {	
 ?review	
 bsbm:rating4	
 ?rating4	
 .	
 }	
 }	

ORDER	
 BY	
 DESC(?reviewDate)	
 	

LIMIT	
 20	

 52

	

Q9.	
 DESCRIBE	
 SPARQL	
 queries	
 are	
 not	
 supported	

	

Q10.	

SELECT	
 DISTINCT	
 ?offer	
 ?price	

WHERE	
 {	

	
 	
 	
 ?offer	
 bsbm:product	
 %ProductXYZ%	
 .	

	
 	
 	
 ?offer	
 bsbm:vendor	
 ?vendor	
 .	

	
 	
 	
 ?offer	
 dc:publisher	
 ?vendor	
 .	

	
 	
 	
 ?vendor	
 bsbm:country	
 <http://downlode.org/rdf/iso-­‐3166/countries#US>	
 .	

	
 	
 	
 ?offer	
 bsbm:deliveryDays	
 ?deliveryDays	
 .	

	
 	
 	
 FILTER	
 (?deliveryDays	
 <=	
 3)	

	
 	
 	
 ?offer	
 bsbm:price	
 ?price	
 .	

	
 	
 	
 ?offer	
 bsbm:validTo	
 ?date	
 .	

	
 	
 	
 FILTER	
 (?date	
 >	
 %currentDate%	
)	

}	

ORDER	
 BY	
 xsd:double(str(?price))	

LIMIT	
 10	

	

Q11.	

SELECT	
 ?property	
 ?hasValue	
 ?isValueOf	

WHERE	
 {	

	
 	
 	
 {	
 %OfferXYZ%	
 ?property	
 ?hasValue	
 }	

	
 	
 	
 UNION	

	
 	
 	
 {	
 ?isValueOf	
 ?property	
 %OfferXYZ%	
 }	

}	

	

Q12.	
 CONSTRUCT	
 SPARQL	
 queries	
 are	
 not	
 supported	

 53

References

1. Abadi, D. J., Marcus, A., Madden, S. and Hollenbach, K. J. SW-Store: a

vertically [artitioned DBMS for Semantic Web data management. In VLDB,

2009.

2. Abadi, D. J., Marcus, A., Madden, S. and Hollenbach, K. J. Scalable Semantic

Web data management using vertical partitioning. In VLDB, 2007.

3. Antoniou, G. and Harmelen, F. A Semantic Web Primer, 2nd edition. 2008.

4. ARQ – A SPARQL Processor for Jena. http://jena.sourceforge.net/ARQ

5. Bizer, C and Schultz, A. The Berlin SPARQL Benchmark. In IJSWIS, 2009.

6. Broekstra, J. and Kampman A. Sesame: A generic Architecture for Storing and

Querying RDF and RDF Schema. In ISWC 2002.

7. Cyganiak, R. A relational algebra for Sparql. HP-Labs Technical Report,

HPL2005-170.

8. Das, S., Chong, E. I., Eadon G. and Srinivasan J. Supporting Ontology-based

semantic matching in RDBMS. In VLDB, 2004.

9. Harris, S. and Gibbins, N. 3store: Efficient bulk RDF storage. 2003.

10. Jena: a Semantic Web Framework for Java. http://jena.sourceforge.net

11. Neumann, T. and Weikum, G. RDF-3X: a RISC-style Engine for RDF. In

PVLDB, 2008.

12. Neumann, T. and Weikum, G. Scalable join processing on very large RDF

graphs. In SIGMOD, 2009.

13. OpenRDF. http://www.openrdf.org

14. OWL 2 Web Ontology Language. http://www.w3.org/TR/owl-overview/.

October 2009.

15. Perez, J., Arenas, M. and Gutierrez, C. Semantics and Complexity of SPARQL.

In ISWC 2006.

 54

16. RDF Schema 1.0. http://www.w3.org/TR/rdf-schema/. February 2004

17. Resource Description Framework. http://www.w3.org/RDF/

18. SDB – A SPARQL database for Jena. http://www.openjena.org/SDB/

19. Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N. and Manegold S. Column-

Store Support for RDF Data Management: not all swans are white. In PVLDB,

2008

20. SPARLQ Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/.

W3C Recommendation, January 15 2008.

21. TDB – A SPARQL Database for Jena. http://www.openjena.org/TDB/

22. Weiss, C., Karras, P. and Bernstein, A. Hexastore: Sextuple Indexing for

Semantic Web Data Management. In PVLDB, 2008.

23. Wilkinson, K., Sayers, C., Kuno, H. and Reynolds, D. Efficient RDF Storage and

Retrieval in Jena2. 2003.

