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Abstract 

 

Evaluation of Relational Database  
Implementation of Triple-Stores 

 

Diego Leonardo Funes, M.S.E. 

The University of Texas at Austin, 2011 

 

Supervisors:  Suzanne Barber and Daniel Miranker 

 

The Resource Description Framework (RDF) is the logical data model of the 

Semantic Web.  RDF encodes information as a directed graph using a set of labeled edges 

known formally as resource-property-value statements or, in common usage, as RDF 

triples or simply triples.  Values recorded in RDF triple form are either Universal 

Resource Identifiers (URIs) or literals.  The use of URIs allows links between distributed 

data sources, which enables a logical model of data as a graph spanning the Internet.  

SPARQL is a standard SQL-like query language on RDF triples.   

This report describes the translation of SPARQL queries to equivalent SQL 

queries operating on a relational representation of RDF triples, and the physical 

optimization of that representation using the IBM DB2 relational database management 

system.  Performance was evaluated using the Berlin SPARQL Benchmark.  The results 

show that the implementation can perform well on certain queries, but more work is 

required to improved overall performance and scalability. 
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Chapter 1:  Introduction 

The Semantic Web is a technology for the evolution of the existing world wide 

web of documents (web pages) to a world wide web of data.  Data is not only made 

available but also described by metadata represented in ontologies suitable for machine 

processing.  This approach is expected to simplify existing services (web search, for 

example) or enable new services.  The realization of the Semantic Web requires a 

standard and flexible data model that facilities the integration of data sources while 

allowing these data sources to evolve in a decentralized environment like the World Wide 

Web.  This chapter briefly describes some of the standards that comprise the Semantic 

Web. 

RESOURCE DESCRIPTION FRAMEWORK 

The Resource Description Framework, or RDF, is a data model designed to 

facilitate data merging and evolution of the logical schema of the data.  At its core RDF 

describes resources using subject-property-object statements, also referred to as RDF 

triples, or simply ‘triples’.  Because RDF information is encoded as set of triple 

statements, systems that store and manage RDF data are referred to as triplestores.  The 

set of triples in a RFD dataset form a directed graph that encodes the properties of each 

resource and the relations between resources.  Figure 1 shows an example RDF graph and 

its triple representation describing some properties of a book and its author 
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Figure 1: Example RDF Graph. 

All RDF features relevant to this report are shown in the Figure above.  The 

notation prefix:name is a short-form used to represent universal resource identifiers, or 

URIs.   This notation is the same used by XML namespace where the prefix expands to a 

proper URL, so rdf:type would expand to http://www.w3.org/1999/02/22-rdf-syntax-

ns#type.  The graph shows a resource ex:book1 of type ex:Book with the title “RDF 

Tutorial” and a creator (author) described as another resource.  Not all resources in a 

RDF graph need to be explicitly named since in many cases the identity of the resource is 
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not as relevant as the set of properties that resource possesses.   In this example, the 

author of the book is represented by a blank node of type foaf:Person with name “Alice” 

and email alice@example.org.   This is a clear example where the identifier used to 

represent a resource (the author) is likely to be irrelevant, but the properties associated to 

the resource are likely to be of interest. 

There are several RDF serialization formats in use today.  RDF/XML is typically 

the choice for machine-readable RDF documents since it allows the reuse of existing 

XML tools and expertise.  However, RDF/XML tends to hide the intuitive graph 

structure of RDF data and as a consequence it is common to use other more human-

readable formats, such N-Triples and Turtle.  The specifics of these serialization formats 

will not be described in this report since they are not rrelevant to the discussion of RDF 

data management.  It is important highlight that RDF should be viewed as a logical data 

model, and not confused with the language or format used for exchange (XML, for 

example). 

RDF places some restrictions on the data types allowed by each term in a triple.  

Subject terms may only be named resources (URIs) or blank nodes1, properties can only 

be URIs, and objects can be URIs or literals of any type.  Note that there are no 

restrictions on what a property should refer to, or any other relations between resources 

and properties.  It would still be a perfectly valid RDF graph if, for example, the 

ex:book1 resource had an additional rdf:type property with a value foaf:Person.  

Encoding domain specific information (for example, that the set of resources of type 

Book and Person is disjoint) is not handled at the level of the data model and delegated to 

description languages like RDF Schema and OWL.  

                                                  
1 Blank nodes are usually represent as _:x where x is an arbitrary identifier required to be locally unique. 
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RDF SCHEMA AND OWL 

RDF Schema (RDFS) and the Web Ontology Language (OWL) provide the 

mechanisms to define the logical schema of the RDF data by specifying relations 

between resources and properties.  RDF Schema defines a primitive modeling language 

capable of specifying the following constraints [3]: 

1. Class and sub-class relations between resources. 

2. Property and sub-property relations. 

3. Property domain and range 

Subclass relations refer to the well-known concepts used in many object-oriented 

languages, where instances belong to a class and all its parent classes.   Property 

hierarchies are a less familiar concept, but it’s the same idea of containment used for 

instances applied to properties.  Finally, property domain and range allow the 

specification of constraints about the classes a property can be applied to and what values 

the property can take.  

The set of data modeling features provided by RDF Schema is not expressive 

enough for modeling all the data domains required by the Semantic Web.   OWL is the 

modeling language intended to fill this need.  Some of the features provided by OWL not 

available in RDF Schema include [3]: 

1. Define disjoint classes. 

2. Combination of classes using set operations such as union, intersection and 

complement. 

3. Cardinality restriction of class sets. 

4. Additional property features like uniqueness, transitivity and inverse. 
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A full description of RDF Schema and OWL is out of the scope of this report2.    

Perhaps the most relevant aspect of these languages from our point of view is that the 

RDF Schema and OWL specifications are also encoded as RDF graphs.  RDF Schema 

and OWL metadata are also first-class RDF data, and can evolve along side the data they 

describe.  The importance of this feature from the RDF data management perspective is 

that any efficient design for the storage and query for RDF is automatically applicable to 

RDF Schema and OWL data. 

 

SPARQL QUERY LANGUAGE 

SPARQL [20] provides a query language at the level of the RDF data model.   

Queries are described as graph patterns that the RDF data must match to be returned as a 

result of the query.  Graph patters are in turn composed of triple patterns.  A triple pattern 

may specify fixed terms that a given triple must match and variable terms that can take 

any value.  The simplest SPARQL query would have a single triple pattern as shown in 

Figure 2. 

 
Figure 2: SPARQL query with a single triple pattern. 

The SELECT clause of the query specifies what variables should be returned as  

results.  The WHERE clause includes all the triple patterns the results must match.  In 

this case the query will return the resource identifier of all resources of type foaf:Person.  
                                                  
2 For details, refer to the w3c recommendations for RDFS [16] and OWL 2 [14]. 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
 
SELECT ?x 
WHERE {  
    ?x rdf:type foaf:Person .  
} 
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However, in this case the resource identifier is not likely to be the information someone 

may want to ask about a person.   Figure 3 expands the query to ask for more interesting 

properties about a person. 

 

 
Figure 3: SPARQL query with join variable. 

 

Now the resource identifier is not used as result, it is only used to specify that the 

properties of interest should refer to the same resource.  In this case the query is asking 

for the name and email of all resources of type foaf:Person.   One feature of this query is 

that for a person to show up in the result it must have a name AND an email address.  It is 

probably safe to assume that a person will always have a name, but there may be people 

without an email address that will not be included in the results.  To handle this use case 

SPARQL defines the OPTIONAL operator to declare that certain triple patterns are 

optional.  If an optional triple pattern is not matched, the results will indicate that the any 

optional projected variables are unbound.  Figure 3 modifies the query to make email 

addresses optional. 

 

 

SELECT ?name ?email 
WHERE {  
    ?x rdf:type foaf:Person .  
    ?x foaf:name ?name .  
    ?x foaf:mbox ?email  
} 

SELECT ?name ?email 
WHERE {  
    ?x rdf:type foaf:Person .  
    ?x foaf:name ?name . 
    OPTIONAL { ?x foaf:mbox ?email } 
} 
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Figure 3: SPARQL query with optional pattern. 

Someone looking at the previous query may ask, “Who doesn’t have an email 

address?”  To answer this question SPARQL provides a FILTER operator that allows the 

specification of arbitrary expressions to determine what should be returned as a result.  

Only results that evaluate the expression to true are returned.  Filter expression can 

include the familiar arithmetic and logical operators found in most programming 

languages, along with additional functions to support regular expression matching, for 

example.  For the specific question on how to find results that do not match an optional 

graph pattern SPARQL defines a bound(x) function that returns true if the variable is 

bound to a value.  Figure 4 shows how the bound(x) function may be used to filter out 

persons that have an email address and only return the name of people with no email 

addresses. 

 
Figure 4: SPARQL query with optional pattern. 

Additional details about the SPARQL query language will be addressed in chapter 

3 when the translation from SPARQL to SQL is described.  However, for a full 

description of SPARQL and its formal semantics refer to the W3C recommendation 

document [20]. 

 

SELECT ?name 
WHERE {  
    ?x rdf:type foaf:Person .  
    ?x foaf:name ?name . 
    OPTIONAL { ?x foaf:mbox ?email } 
    FILTER(!bound(?email)) 
} 
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Chapter 2:  Database Design 

The design of an RDF triplestore on top of a relational database management 

system (RDMS) is primarily about the design of the relational physical schema of the 

database.  The goal is to provide the query engine the appropriate access paths to the 

triple data so that efficient query plans can be generated.  The physical design is based on 

assumptions about what algorithms are considered most efficient for RDF data and how 

the query planner may select physical operators.  

Several approaches have been used to map RDF data to the relational domain.  

These may be roughly categorized as follows: 

1. Clustered property tables.  This is a data driven approach where the system 

attempts to derive a relational schema for an instance of RDF data.  The idea 

is to identify cluster of properties that resources have a tendency to posses and 

group them in a single relational table.  The relational schema extraction may 

be done online or offline, but it can become a complicated task given the 

flexibility of the RDF data model.   This system also favors fixed workloads 

since it is not possible to index all possible property table column 

combinations.  This method has been used, in part, by Jena [23]. 

2. Vertical partioning on properties.  Proposed by [2], this is also a data driven 

approach but does not require sophisticated analysis of the dataset.  RDF 

triples are partitioned by property and each property is assigned a table with 

two columns, subject and object.  The main contribution of this technique is 

identifying that join performance is a significant factor in RDF database 

scalability.  For typical queries where the property is fixed and joins are 

specified on the subject of triples, the database can use efficient merge join to 
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run the query.  This system was implemented on a column-oriented database, 

but all of its characteristic features apply to row-oriented databases. 

3. ‘Giant’ triple table.  Conceptually this is the simplest approach since it’s a 

direct mapping of the RDF data model to a relation model.  It has the 

advantage that the relational schema is not driven by specific RDF data, which 

means that, in principle; any performance characteristics of the database 

should apply any dataset.  This is the approach used by many RDF triplestore 

systems including Jena [10], Sesame [6] and RDF-3X[11]. 

 

The RDF triplestore implementation described here is based on the giant triple 

table approach, partitioning the data by object data type.  The primary design constraint is 

the definition of indexes and table clustering. 

TRIPLE TABLE 

Conceptually the definition of a triple table is very simple, as shown in Figure 5. 

Figure 5.  Triple table 

However this table definition is problematic in several ways.  First, it is very 

likely that many URLs, particularly for properties, will be used many times, which 

suggests the use of some form of compression.  Second, join processing on string may 
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not be as efficient as using integers and in some systems may force the query planner to 

only use nested-loop joins instead of more efficient merge or hash joins.  Finally, all 

object values must be serialized to string data, which make the evaluation of filter 

conditions difficult. 

To address the first two problems it is common to employ a symbol dictionary 

that maps strings to unique identifiers.  The triple table is only required to hold integers 

that refer to entries in the dictionary table.  Evaluation of a query begins by looking up 

the symbol identifiers for the fixed terms in the query.   Join between triples operates on 

the integer identifier values.  In many cases a join variable may not be projected as a 

query result, which eliminates the need to ever lookup the string in the dictionary.  

Finally, mapping the identifiers to strings generates the query results.  Figure 6 shows a 

possible implementation of a symbol dictionary. 

 

Figure 6.  Triple table with dictionaries 
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PARTITION ON OBJECT DATATYPE 

The dictionary configuration just described does not address the problem of 

serializing all object values to strings.  The dictionary table would need to not only hold 

string values, but also numeric values.   This suggested that an ideal configuration would 

use a dictionary when the object value is variable in size, like a string, and use an inline 

the value when it is fixed size.  One approach used in systems like Jena/TDB [21] is to 

encode a key in the object value that the system can use to identify if the value is inlined 

or a dictionary key.   However, this technique would complicate the evaluation of filter 

conditions by the SQL database engine.  To avoid this complication data is partitioning 

on multiple tables based on object datatype, where the object column of a table is defined 

to a native SQL datatype that maps to the RDF data types.  String and URIs values are 

mapped to separate dictionaries, while fixed-sized types like ints, floats and date are 

stored inlined.  The string dictionary includes an additional column to store the language 

tag of the string literal.   Figure 7 shows the final configuration of the triple store using 

dictionaries and typed tables.  

Figure 7.  Table partitioning based on object data type 
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Dictionary tables must be indexed on both key and values to speed up lookups of 

strings and identifiers, respectively.   Dictionary keys and values are constraint to be 

unique and not null, and the key of the dictionary is defined as the primary key of the 

table since it will serve as a foreign key to all other tables using the dictionary.  Columns 

of the triple tables are constraint to be not null and foreign keys of the appropriate 

dictionary.  Note that the subject and properties of all tables are URIs and are mapped to 

the URI dictionary table.  A triple table should not contain duplicate statements, which 

suggests that the subject-property-object triple should form the primary key of each triple 

table. 

To eliminate most symbol to ID dictionary look-ups it is possible to use a 

cryptographic hash to generate symbol IDs.  The probability of collisions between 

symbols is practically zero (a property of cryptography hashes) and the client application 

can deterministically resolve symbols to ID without using the dictionary.  This technique 

is used by Jena/TDB and explored in this implementation. 

Dataset partitioning is performed when the database is loaded.  If the RDF dataset 

includes user-defined or other non-primitive (XML Schema) datatypes, additional 

information must be provided to map the datatype to the appropriate SQL datatype.  This 

mapping is necessarily domain specific, since the selection of the SQL datatype will 

depend on how the object value is used.  For example, a phone number may be 

considered a string literal since arithmetic operations on phone number make little sense, 

but the designer may choose to map those values to integers to store them inline and 

avoid dictionary look-ups.  While not considered in this report, it is interesting to observe 

that this information could be encoded in RDF Schema or OWL, allowing the system to 

adapt to any dataset. 
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The triple table partitioning just described is limited to a few simple data types, 

but the concept can be beneficial for object datatypes that require specialized indexing.  

One example is geographic data, which can be efficiently indexed for range query using 

R-Trees.  A database capable of spatial indexing would store geographic data in a 

separate table and could use a R-Tree index for the object column of the table. 

The partitioned triple tables can be exposed as a single triple table using a SQL 

view that is defined as the union of all triple tables.  Because of the requirements of the 

SQL UNION operator, all object values must be formatted to strings.  Depending on the 

database system used, using the triple view as the target of user queries may complicate 

the evaluation of filter expressions.  As will be described in chapter 3, the SPARQL to 

SQL translation will use information from the dataset to target queries to specific tables 

in the database. 

INDEX CONFIGURATION 

The triple tables by themselves will not provide efficient access paths for the 

query planner to use.  Without indexes the only alternative is to perform costly table 

scans.  One advantage of the RDF data model is that a triple table can be indexed in all its 

column permutations, which provides an efficient access path for any query pattern. 

A B-Tree index in all three columns provides the database query planner an 

access path that avoid a table access altogether.  All information in the table is also 

included in the index.  By creating all index combinations the database may never access 

the base table if it can always find an index to satisfy the query.  This is essentially the 

same technique used by current experimental RDF databases like RDF-3X and 

Jena/TDB. 



 14 

The use of indexes can be viewed as an extension of the vertical partitioning 

approach described at the beginning of the chapter.  By partitioning on property, the 

designer optimized queries with fixed properties and joins on subjects.  The advantage in 

processing these queries is that the property can be used to select the appropriate tables 

and, since the subjected are ordered, efficient merge joins can be used to process the join.  

In principle, creating all index combinations provided similar access paths for any query 

pattern.  Fixed terms of a triple pattern define the leading columns of an index and are 

used to find the leaf node in the B-Tree to start the index scan.  From this term, join terms 

in the triple pattern can be found in sorted in the index.  Figure 8 illustrates this process 

assuming a join on two subjects and fixed properties. 

 

 
Figure 8.  Expected index access for query execution 

 As noted in the beginning of the chapter, it is not possible to instruct the query 

planner to use a particular join algorithm or access path.   By creating all index 
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CLUSTERED TABLES CONFIGURATION 

The advantage of using a single table with all index combinations is that all 

decisions in the planning of the query are delegated to the database query optimizer.  An 

alternative approach is to create multiple tables with a single clustering index.   The 

criteria for table selection remains the same, to favor joins between triple terms, but now 

part of the query planning is done indirectly by selecting the table that is considered to be 

the best option based on the query join pattern.  Join ordering is still left to the database 

to determine.  Since the table selection scheme does not make use of any data statistics 

available to the query planner, it is possible to end up with worst performance compared 

to the indexed table configuration.  The clustered table selection scheme is described in 

chapter 3. 

DB2 SPECIFIC CONFIGURATION 

The triplestore implementation just described was implemented on IBM DB2 9.7 

Enterprise Server Edition.  While all of the table schemas described apply to any 

relational database, modern databases are complicated systems with many configuration 

options.  It is necessary to explore features or exploit behaviors specific to the database 

used to implement the RDF triplestore.  This section describes some DB2 specific 

configuration options used. 

Index with additional columns.  DB2 allows the inclusion of additional columns 

in a unique index that will not be used as part of the key, but will only be included in the 

leaf nodes of the index.   This feature is ideal for the symbol indexes, since the value can 

be included in the key index and vice versa.  Including all the columns that satisfy a 

query in the index eliminates the need to fetch records from the table.  An index scan is 

enough to get all the required information. 
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Query optimization level.  By default, DB2 will attempt to find the optimal join 

order using dynamic programming enumeration.  If the operation goes beyond an user 

configurable memory limit for query compilation, the query planner aborts and reverts to 

a greedy algorithm for join order selection.  Most interesting SPARQL queries will result 

in SQL queries with many joins and compiling such queries will almost certainly 

overflow the memory limit.  To avoid the cost of the fail compilation attempt it is 

desirable to lower the query optimization level to disable dynamic programming  and 

used the greedy algorithm from the start. 

Page size.  To accommodate large strings (> 1000 characters) in the dictionary 

table the default page size of 4kbytes must be increased to allow indexing of the value 

column of the dictionary.  However, the number of rows in a table to limited to 255 rows 

regardless of the row size.  Increasing the result size will result in wasted disk space, and 

more importantly, inefficient use of IO buffers.  Using a page size of 16kbytes, enough to 

index strings up to 4000 characters, will result in a page utilization of around 20% for 

triple tables.  If this configuration is required, DB2 allows the definition of table spaces 

with independent page sizes.  Dictionary tables and triple tables should be defined in 

separate table spaces.  Strings larger than 8000 characters cannot be indexes by regular 

DB2 B-Tree indexes and should be considered special data types with special indexing 

requirements. 

Bulk Loads.   While not strictly part of the physical design of the database, bulk 

loading has important practical implications on the dataset sizes users are willing to store 

in a RDF triplestore.  Transactional inserts are managed using ‘instead of’ triggers on 

triple views.  Clients insert triples in their original form and the trigger map string 

symbols to the appropriate IDs, inserting new symbols in the dictionary when 

appropriate.  This setup is convenient low rate updates on a running database, but the 
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amount of work per triple insert is too high for bulk loading.  The triple insert with this 

configuration was measured at around 100 triples/second, which would result in a load 

time of 23 days for a dataset of 200 million triples, a relatively small dataset given 

today’s scalability requirements into billions of triples. 

To improve bulk load performance the dataset is preprocessed to build the symbol 

dictionaries, partition the dataset by object data type and join the triple symbols with the 

dictionary IDs.  Preprocessing is done by a custom Java application that uses merge joins 

on disk.  The result of the preprocessing step is one file per triple table laid out for fast 

loading using DB2’s LOAD utility. Once data is loaded the database can then index and 

add the appropriate referential constraints to all triple tables. 
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Chapter 3:  SPARQL to SQL Translation 

SPARQL provides the user a high-level mechanism to get information from the 

RDF graph without dealing with the implementation details of the RDF triplestore.  In the 

case of triplestores implemented on top of relational database management systems 

(RDMS), the interlaying storage system already provides a similar high-level mechanism 

in the form of SQL.  However, in the context of RDF data, the physical schema of the 

database required to build SQL queries is an implementation detail that should not be 

directly exposed to users.  The physical schema of the database will likely be designed 

for efficient querying, and may not necessarily represent the RDF data model.  As a 

consequence, the physical organization is both subject to change and inadequate to reason 

about RDF queries.  For these reasons the triplestore should provide a SPARQL interface 

and translate RDF queries to SQL. 

Many RDF storage systems that use relational databases limit the role of the 

database as a persistent and reliable storage mechanism.  Complex SPARQL queries may 

be executed by issuing simpler SQL queries to the database to fetch triples, which are 

then filtered or joined outside the database.  In contrast, for the triplestore system 

described in this report the intention is to offload all query operations to the database.  

This requirement imposes two high-level design principles for the SPARQL to SQL 

translation process: 

1. Coverage.  The translation should cover a reasonable subset of the features 

provided by the SPARQL query language. 

2. Fast and Naïve.  The translation should not attempt complex query optimizations.  

Any advance optimization techniques are delegated to the query optimizer of the 

RDMS. 
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Regarding design principle 1, the reasonable subset is defined in terms of what are 

typical queries used in benchmarks and where the semantic mismatch between SPARQL 

and SQL does not make the translation too complex.  Some limitations of the translation 

algorithm implemented are described later in this chapter. 

The translation process follows a classic compiler structure: a parser converts the 

SPARQL query text to an abstract syntax tree.  The syntax tree is then used to build an 

intermediate representation of the query.  Finally, the intermediate representation is 

translated to SQL.  The first two phases of this process are handled using the open-source 

Jena ARQ framework [4], which converts the SPARQL query text to the SPARQL 

algebra described in the specification document [20].  Figure 10 shows a text 

representation of the SPARQL algebra for the SPARQL query shown in Figure 9. 

 

 
Figure 9: SPARQL query. 

 

 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
 
SELECT ?name ?email 
WHERE {  
    ?x rdf:type foaf:Person .  
    ?x foaf:name ?name . 
    OPTIONAL { ?x foaf:mbox ?email } 
} 
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Figure 10: SPARQL query algebra. 

 

Translating a full SPARQL query to SQL is reduced to traversing the algebra tree 

and translating each algebra element separately.  A basic graph pattern (BGP) is 

considered a leaf of the tree and processed as a single unit.  In other words, individual 

triples nodes have no direct translation to SQL, only the combination of triple patterns 

can generate a meaningful SQL query.  Translated BGP SQL queries are nested in other 

SQL queries to implement other operations of the SPARQL algebra, including 

OPTIONAL and UNION. 

BASIC GRAPH PATTERNS 

A Basic Graph Pattern, or BGP, is the simplest SPARQL query, where it only 

includes triple patterns and variables joining nodes of those triple patterns.  Figure 11 

show a SPARQL query to find the ‘name’ of all RDF items of type ‘Person’.   

 

 
Figure 11: SPARQL basic graph pattern. 

(project (?name ?email) 
  (leftjoin 
    (bgp 
      (triple ?x <rdf:type> <foaf:Person>) 
      (triple ?x <foaf:name> ?name) 
    ) 
    (bgp (triple ?x <foaf:mbox> ?email)))) 
 
 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
 
SELECT ?name 
WHERE {  
    ?x rdf:type foaf:Person .  
    ?x foaf:name ?name . } 
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The first step of the translation to SQL assumes the database includes a single 

triple view with the following columns: 

 

 
Figure 12: Triple view assumed by query translation. 

The columns subject, property and object contain the value of the subject, 

property and object of a triple statement, respectively.  The subject_id, property_id and 

object_id contain the dictionary ID associated with its corresponding value, if the type of 

the value uses a dictionary.   The SQL query is later refined to take into account the 

datatypes of the objects and target the real tables of the database. 

Each triple in the BGP is assigned a unique identifier from a counter starting from 

1.  The identifier is used to alias the database triple table for each triple.  The group of all 

aliased table references form the FROM clause of the SQL query.   The sample query 

includes two triple pattern, which result in two table references: 

 

 
Figure 13: SQL statement FROM clause. 

Each variable in the BGP is tracked to resolve the variable name to the 

appropriate column of the database triple table.  As shown in Figure 14, the projected 

variables in the SQL query are only determined from the projected variables of the 

SPARQL query.  As will be described later in this chapter, a BGP query may also project 

variables requested by other operators.  If projected variable is used in a join (shared 

SELECT ... 
FROM triples t1, triples t2 
WHERE ... 

!"#$%&'( !"#$%&')*+( ,-.,%-'/( ,-.,%-'/)*+( .#$%&'( .#$%&')*+(
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among several triple patterns), the variable is resolved to the first triple in the BGP that 

references the variable.  

 

 
Figure 14: SQL statement SELECT clause. 

The WHERE clause encodes the fixed triples nodes and join variables found in 

the SPARQL graph pattern.  Since the result of the query must satisfy all the constraints 

found in the BGP, the SQL query predicate will be the conjunction of all the fixed node 

and join variable constraints.  Fixed nodes are translated as equalities between the value 

of the node specified in the query and the appropriate value column of the triple view.  

Join constraints are translated as equalities between the IDs of two triples.  The full 

translation is show in Figure 15. 

 

 
Figure 15: Full SQL statement from SPARQL query. 

 

It is important to highlight that the joins occur between IDs and not the values.  In 

many cases, as is the case with the sample query, join variables are not projected as a 

query result.  The actual value of the node is irrelevant to satisfy the query, only equality 

between nodes.  If the join involves a datatype that uses a dictionary, which is always the 

SELECT t2.obj AS name 
FROM triples t1, triples t2 
WHERE ... 

SELECT t2.obj AS name 
FROM triples t1, triples t2 
WHERE t1.prp = ‘rdf:type’ AND 
      t1.obj = ‘foaf:Person’ AND 
      t2.prp = ‘foaf:mbox’ AND 
      t1.sub_id = t2._sub_id  
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case when joining on the subject of a triple, the query engine does not need to look up the 

value in the dictionary to satisfy the query. 

An alternative translation used by other systems, including sparql2sql [7] and 

Jena/SDB [18], where each triple is translated to a SQL select and the query is the join of 

all these selects, as shown in Figure 16.   

 

 
Figure 16: Alternative SQL query using explicit joins. 

The SELECT-FROM-WHERE approached is favored in this implementation for 

the following reasons: 

1. The SELECT-FROM-WHERE query is more declarative and does not suggest 

any particular join order, which is delegated to the query optimizer to determine.  

A good query optimizer will most likely generate the same access plan for both 

queries, but this approach highlights the principle of deferring as much as possible 

to the database optimizer. 

2. The BGP translation does not need to handle the special case when there are no 

join variables between triple patterns, which should be translated as a cross join 

3. No need to track the variable scope.  Using explicit joins, the join predicate can 

only refer to variables that have introduced by a previous triple pattern.  Some 

SPARQL queries may force a reordering of triples to satisfy this requirement. 

SELECT t2.obj AS name 
FROM  
  (SELECT * FROM triples WHERE prp = ‘rdf:type’ AND  
                               obj = ‘foaf:Person’) AS t1 
INNER JOIN 
  (SELECT * FROM triples WHERE prp = ‘foaf:mbox’) AS t2   
ON t1.sub_id = t2._sub_id  
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4. Filters are easier to translate since they are just added as additional constraints of 

the where clause.  Filters are described in more detail later in this chapter. 

 

Regarding point 2, it is common to find SPARQL queries where the join node 

between two triples is not defined explicitly using a variable, and instead use the same 

fixed node on multiple triples, as shown in Figure 17 with its corresponding translation 

Figure 18.   

 

 
Figure 17: Query without explicit join variable. 

Any translation using explicit joins will find that the set of variables shared 

between the two triple patterns is empty.  Since the inner join predicate cannot be empty, 

the translation must either use a cross join, or find common fixed nodes to generate a join 

predicate.  SPARQL allows queries where the triple patterns do not share any variables or 

fixed nodes.  In this case using a cross join is the only option.  In any case, the explicit 

join requires additional complexity to identify and handle these cases.  The SELECT-

FROM-WHERE translation handles all these cases automatically. 

 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX ex: <http://example.org> 
 
SELECT ?label ?comment 
WHERE { 
   ex:item1 rdfs:label ?label . 
   ex:item1 rdfs:comment ?comment } 
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Figure 18: SQL translation of implicit join terms. 

UNIONS 

SPARQL unions are used to match pattern alternatives.  The UNION operator 

maps directly to the SQL UNION operator.  The only requirement is that the projected 

variables (columns) in the BGPs of the union match.  How this condition is met for 

UNIONs illustrates how projected variables are handled in general.  Project variable 

requests are propagated top-down.  The top-level projection is driven by the variable list 

SELECT clause of the SPARQL query.  The project operator requests what variables the 

SQL query should project.  In this case, where SQL query is the UNION operator, the 

translation will add those variables its SQL SELECT clause and propagate the project 

request to its operand sub-queries.  The request will ultimately be received by a BGP, 

which will resolve the variable name to the appropriate triple table column.  If a variable 

cannot be resolved it is projected as NULL, which matches the expected semantics of the 

UNION operator.    

The UNION operation is translated as a SQL union of two sub-queries.  The sub-

queries can be arbitrarily complex, since the translation occurs bottom-up, starting from 

BGP translations.  Any translated SQL as a result of a SPARQL operator can be used as a 

sub-query for another SQL operator, including the UNION operator itself.  To illustrate 

this process, consider the simple query in Figure 19 and its translation in Figure 20.  

SELECT t1.obj AS label, 
       t2.obj AS comment 
FROM triples t1, 
     triples t2 
WHERE t1.sub = 'http://example.orgitem1' AND 
      t1.prp = 'http://www.w3.org/2000/01/rdf-schema#label' AND 
      t2.sub = 'http://example.orgitem1' AND 
      t2.prp = 'http://www.w3.org/2000/01/rdf-schema#comment' 
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Figure 19: SPARQL UNION operator. 

 

 
Figure 20: SQL translation of UNION operator. 

 

Each BGP is translated in isolation and then combined as sub-queries using the 

UNION operator.  In this specific example, taken from the SPARQL specification, the set 

of variables of the two BGPs is disjoint.  To build a valid SQL UNION operator each 

BGP query must project the same variables, which is accomplished by projecting NULL 

values for unknown variables.  

OPTIONALS 

The SPARQL optional operator presents the most challenges in the translation of 

SPARQL to SQL, especially when using filters, multiple or nested optionals.  The 

translation scheme shown in here only considers the subset of well-designed queries as 

PREFIX dc10:  <http://purl.org/dc/elements/1.0/>  
PREFIX dc11:  <http://purl.org/dc/elements/1.1/> 
SELECT ?x ?y  
WHERE  {  
  { ?book dc10:title ?x } UNION { ?book dc11:title  ?y }  
} 

SELECT x, y 
FROM 
   (SELECT t1.obj AS x, null AS y 
   FROM triples_all_pos t1 
   WHERE t1.prp = 'http://purl.org/dc/elements/1.0/title') 
UNION 
   (SELECT null AS x, t2.obj AS y 
   FROM triples_str_tag_pos t2 
   WHERE t2.prp = 'http://purl.org/dc/elements/1.1/title') 



 27 

defined in [15].  This well-defined condition and other restrictions are described later in 

this chapter.  With these restrictions the SPARQL OPTIONAL operator maps to the SQL 

LEFT OUTER JOIN operator. 

The translation of the OPTIONAL operator is similar to the union operator.  Each 

operand of LEFT OUTER JOIN operator is treated as an opaque sub-query.  The join 

predicate is built by finding the intersection of the sets of variables from both sub-

queries.  Even though certain SPARQL queries may result in an empty set of variables, 

this condition is not allowed by this translation.  Such queries will be rejected.  The set of 

join variables is used to project those variables in each sub-query.  Join variable 

projections differ from the projections used for unions in that joins project the IDs of 

triple nodes, not their values. 

 

 
Figure 21: SPARQL OPTIONAL operator. 

 

Figure 21 shows a simple query involving an optional.  The query will return all 

books with a  title specified using the title property version 1.0 and, if available, also 

return its title as specified by the title property version 1.1.  As was the case with unions , 

each BGP is translated in isolation and the optional is translated to a SQL LEFT OUTER 

JOIN.  The ?book join variable provides the join condition.  The translation result is 

shown in Figure 22. 

PREFIX dc10:  <http://purl.org/dc/elements/1.0/>  
PREFIX dc11:  <http://purl.org/dc/elements/1.1/> 
SELECT ?x ?y  
WHERE  {  
  ?book dc10:title ?x OPTIONAL { ?book dc11:title ?y }  
} 
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Figure 22: SQL translation of OPTIONAL using LEFT OUTER JOIN. 

 

FILTERS 

Filters provide a mechanism to provide query constraints in addition to triple 

patterns and join variables.  Translating filter expressions within a BGP is 

straightforward.   The expression is first translated to SQL mapping XQuery operators to 

SQL operators.  Variable names are resolved to value columns of the triple table.  The 

translated expression is added as an additional constraint of the WHERE clause of the 

SQL statement. 

Figure 23 and Figure 24 show a SPARQL query and its translation to SQL, 

respectively.  Note that variables in filter expression must resolve to the value columns, 

not the identifiers. 

SELECT bgp1.x AS x, bgp2.y AS y 
FROM 
 (SELECT t1.obj AS x, t1.sub_id AS book_id 
 FROM triples t1 
 WHERE t1.prp = 'http://purl.org/dc/elements/1.0/title') AS bgp1 
LEFT OUTER JOIN 
 (SELECT t2.obj AS y, t2.sub_id AS book_id 
 FROM triples t2 
 WHERE t2.prp = 'http://purl.org/dc/elements/1.1/title') AS bgp2 
ON bgp1.book_id = bgp2.book_id 
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Figure 23: SPARQL FILTER operator. 

 

 
Figure 24: SQL translation of FILTER operator. 

 

An intuitive way to translate filter expressions inside an OPTIONAL is to 

associate the expression with the BGP inside the OPTIONAL.  In this case, the filter 

expression would be part of the WHERE clause of the right sub-query.  An equivalent 

translation is to include the filter expression as part of the LEFT OUTER JOIN predicate.  

This second alternative has the advantage that variables in the filter expression can refer 

to variables in the BGP containing the OPTIONAL, even if that variable is not contained 

by the OPTIONAL.  This case is illustrated by the query in Figure 25 and its translation 

in Figure 26. 

PREFIX dc:  <http://purl.org/dc/elements/1.0/>  
PREFIX ex:  <http://example.org/> 
SELECT ?title ?price  
WHERE  {  
  ?book dc:title ?x 
  ?book ex:price ?price  
   FILTER(?price < 20)  
} 
 

SELECT t1.obj AS title,  
       t2.obj AS price 
FROM triples t1, triples t2 
WHERE t1.prp = 'http://purl.org/dc/elements/1.0/title' AND 
      t2.prp = 'http://example.org/price' AND 
      t1.sub_id = t2.sub_id AND 
      (t2.obj < 20) 
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Figure 25: SPARQL query algebra. 

 

 
Figure 26: SPARQL query algebra. 

 
JOINS 

SPARQL queries can contain multiple basic graphs patterns.  This is feature is not 

commonly used in benchmarks queries, but it is easily translated as an INNER JOIN 

between sub-queries.  If the graph patterns do not share any variable, a CROSS JOIN 

should be used instead.  Filter within groups are translated with the associated BGP. 

PREFIX dc:  <http://purl.org/dc/elements/1.0/>  
PREFIX ex:  <http://example.org/> 
SELECT ?title ?price  
WHERE  {  
  ?book dc:title ?title . 
  OPTIONAL { ?book ex:price ?price  
  FILTER(?title = 'xyz') }  
} 
 

SELECT bgp1.title AS title,  
       bgp2.price AS price 
FROM 
   (SELECT t1.obj AS title, 
           t1.sub_id AS book_id 
   FROM triples t1 
   WHERE t1.prp = 'dc:title') AS bgp1 
LEFT OUTER JOIN 
   (SELECT t2.obj AS price, 
           t2.sub_id AS book_id 
   FROM triples t2 
   WHERE t2.prp = ‘ex:price') AS bgp2 
ON bgp1.book_id = bgp2.book_id AND 
   (bgp1.title = 'xyz') 
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DATATYPE TABLE SELECTION 

The translation algorithm so far has targeted a single triple table in the database.  

For the query to be valid each table reference must be resolved to a specific object 

datatype table.  Some queries may provide enough information to resolve the table 

datatypes using type inference.  Consider a likely analysis of the query in Figure 27: 

variable ?x is used as a subject, so it must be a resource, which means the first triple 

pattern should resolve to the triple table with URI objects.  Variable ?y is used in an 

expression involving an integer, so ?y must be an integer as well for the expression to be 

well-typed.  Since ?y is used as the object of the second triple pattern the table can be 

resolve to the integer table. 

 

 
Figure 27: Infer table data type from query. 

However, in many cases type information is not available.  The most basic query 

is to request the value of a set of properties for a resource (subject).  This query would 

involve multiple triple patterns with fixed properties, joined by a single subject variable 

and free object variables.  There is no way to determine what object datatype will satisfy 

the query since any type is allowed.  Without any additional information there are two 

ways to check all triples across tables that satisfy the query, both of which have 

undesirable properties in terms of efficiency and complexity 

1.   Use a triple that is defined as the union of all triple tables.  All object values 

are formatted as strings to satisfy the SQL UNION operator requirements 

SELECT ?x ?y 
WHERE  {  
  ex:sub ex:p ?x . 
  ?x ex:q ?y FILTER ( ?y > 10 ) 
} 
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2. Generate a SQL query for all permutations of table datatypes and triple 

patterns.  The final result is the union of all queries. 

This problem can be resolved for most queries if some information about the 

dataset is included in the translation process.  While RDF allows complete flexibility in 

terms of the datatypes a property may refer to, most real-world data will have some 

structure that limits the range for a property.  For example, a name property will likely 

point to a string literal, while an age property will point to a numeric value.  This 

information is easy to extract from the dataset even no RDF Schema or OWL metadata is 

available. 

During the database load process, the system builds a map of properties to object 

datatype.  With the information the resolution of table types during the translation process 

is done as follows: 

1. If the property term of a triple pattern is fixed, lookup the datatype for the 

property and use the database table associated with that datatype. 

2. If the object term of a triple pattern is fixed, use its datatype information to 

select the appropriate database table. 

3. If both property and object terms are fixed, ensure that the datatype 

information from steps 1 and 2 matches.  Otherwise the query result is empty. 

4. If both property and object terms are variable, use a triple view defined as the 

union of all triple tables. 

The triple view union of all triple tables is still required, but its use is limited to a 

very specific triple pattern. 

This table selection scheme is clearly effective for datasets where each property 

refers to a single value datatype, as is the case in many real-world and benchmark 

datasets.  For properties that refer to multiple datatypes the system could automatically 



 33 

create a view defined as the union of these datatypes.  There are certainly pathological 

datasets that cannot be handled efficiently, but they are considered out of the scope of this 

report since their efficient storage may require completely different techniques. 

If using the multiple indexes database configuration, datatype information is 

enough to generate a valid SQL query.  The query optimizer will generate the access plan 

using its internal statistics and available indexes. 

CLUSTERED TABLE SELECTION 

When using the explicit clustered table configuration there is no way to tell the 

database query optimizer that the tables refer to the same data and can be used 

interchangeably.  This is accomplished by the use of indexes on the triple tables.  Using 

clustered table is then a way to force the database to use a given index.  Cluster selection 

is added to the table after the table datatype has been resolved.  In accordance to the 

design principles mentioned in the beginning of the chapter, cluster selection is done as 

simple as possible, using only information about fixed triple terms and join variables.  No 

dataset statistics or global optimization techniques are used. 

Each triple is modeled as a list of three items (subject, proprety and object) that 

can be reordered.  The ordering in the list determines the clustering of the target table.  If 

the list is {property, subject, object} the compiler will use the PSO clustering for that 

table reference.  During the translation process each term is assigned a priority.  When a 

full BGP is read, the list is sorted according to their priority.  The problem is then 

reduced to assigning the appropriate priority to each term. 

 The desired clustering is determined by the fixed terms and joined variables.  

Consequently free variables are the lowest priority and will move to the right of the 

cluster ordering.  Fixed terms should be used to locate the group of clustered rows that 
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share the same property, so they are given the highest priority.  Joined variables will be 

placed in between fixed terms to the left and free variables to the right.  Ties between 

terms of the same type (fixed, joined or free) are broken by assuming that object terms 

are more selective than subject terms, and subject terms are more selective that property.  

The preference is to move more selective terms to the left in order to reduce the number 

of rows to scan.  As a consequence objects are given the highest priority and properties 

the lowest priority. 

To encode these ordering constraints term priority is defined using a high digit 

that encodes the term type priority (fixed, join or free) and the term position in the triple 

(subject, property or object).  Figure 28 illustrates the clustered table selection using a 

simple example query. 

 

 

 
Figure 28: Clustered table selection based on term priority. 

The implicit assumption made by this clustered table selection scheme is that join 

between triple tables will dominate the execution time of the query.   The determination 

of join order is left to the database query optimizer. 
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SPARLQ TO SQL TRANSLATION RESTRICTIONS 

 Many features of the SPARQL language are left out of the translation process just 

described.  Named graphs (GRAPH operator), projection expressions, ASK and 

CONSTRUCT query types, and most XQuery functions available in filter expressions, to 

name a few, were considered out of scope for this implementation and will not be 

described in detail.  Instead, this section enumerates SPARQL queries that highlight a 

semantic mismatch between SPARQL and SQL, or SPARQL featuresthat someone may 

expect to work given the subset of features implemented by the current compiler. 

Optionals with no explicit join variable 

It is not uncommon to implicit define a join condition using fixed node values. 

For example, consider the query in Figure 29. 

 

 
Figure 29: OPTIONAL without explicit join variable. 

The subject node on both graphs patterns is fixed to the value ex:sub, which 

constitutes a valid join condition for the join operation.  However, the implicit join 

condition is not detected by the SPARQL to SQL translation and the query is rejected.  

Detecting such condition would require inspecting the fixed nodes of the graph patterns 

operands of the OPTINAL operator, detecting at least one join condition and promoting it 

to the ON clause of the SQL LEFT OUTER JOIN operator.  Note that queries such as the 

PREFIX ex:  <http://example.org/> 
SELECT * 
WHERE  {  
  ex:sub ex:p ?w . 
  OPTIONAL { ex:sub ex:q ?y } 
} 
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one used in the example can be rewritten to an equivalent form that uses explicit join 

variables, as shown in Figure 30. 

 

 
Figure 30: Equivalent query with explicit join variable. 

Implicit join conditions only affect optional graph patterns.  The translation of a 

basic graph pattern automatically handles implicit joins by including each triple pattern as 

a table reference in the FROM clause and fixed node conditions in the WHERE clause of 

the SQL statement. 

Nested Optionals 

SPARQL variable scoping allows a variable introduced in a graph pattern to be 

referenced by nested optional patterns, even if the variable is not referenced by all the 

patterns in between.  Figure 31 shows an example of such queries. 

 
Figure 31: Nested optionals without connecting join variables. 

PREFIX ex:  <http://example.org/> 
SELECT * 
WHERE  {  
  FILTER(?s = ex:sub) 
  ?s ex:p ?w . 
  OPTIONAL { ?s ex:q ?y } 
} 
 

PREFIX ex:  <http://example.org/> 
SELECT * 
WHERE  {  
  ?x ex:p ?w . 
  OPTIONAL {  

?y ex:q ?y . 
OPTIONAL { ?x ex:r ?z }  

} } 
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These queries are rejected for the same reason optional without explicit join 

variables are rejected: it is not possible to build the LEFT OUTER JOIN predicate.  This 

restriction matches the well-designed criteria defined in [15], where join variables present 

between nested optional graphs patterns must also appear in all optional patterns in 

between.  With this restriction SPARQL queries have well defined properties in terms of 

associativity and commutativity of optional operators.   Given that this particular query 

pattern has been found problematic in the definition of SPARQL semantics it is not 

considered a severe limitation for this implementation. 
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Chapter 4:  Benchmark Results 

SYSTEMS UNDER TEST 

The triplestores used in the evaluation were selected based on ease of use, 

popularity in the Semantic Web community or due to an interesting implementation.  The 

two systems used are briefly described below: 

Jena/TDB [21].   Jena is an open-source Semantic Web framework developed by 

HP Labs with support for RDF, SPARQL, RDFS and OWL inference.  RDF triplestores 

can be instantiated over most relational databases (SDB) or over a custom native RDF 

store (TDB).  The evaluation presented here used the native version of the RDF store, 

Jena/TDB, which defines three B+Tree triple indexes on SPO, POS and OSP triples.  The 

triple table is not materialized since the indexes include all necessary information about 

the dataset.  Triples are formed from integer IDs that map to symbols in a dictionary.  

The dictionary is a table is indexes by a single B+Trees that map symbol to ID.   The 

converse ID to symbol mapping is done using a sequential scan of the symbol table.  

Node IDs are generated from the md5 hash of the symbol.  Fixed-sized values like 

intergers and floats are inlined in the B+Tree triple indexes.  The bit pattern of the index 

value is used to encode whether the value is an entry in the dictionary or an inlined value. 

Sesame OpenRDF [13].  Sesame is also a popular Semantic Web framework with 

RDFS and OWL inference capabilities, and support for multiple backend store options.  

For this evaluation two storage options were used: native RDF on disk and relational 

database store using Postgresql 9.0.3.  The default configuration for the native store uses 

two B+Tree indexes over SPOC and POSC, where C refers to an additional context term 

that identifies the dataset that the triple belongs to.  The database backend configuration 

is also based on a single triple table without the use of a dictionary. 
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DATASET 

The Berlin SPARQL Benchmark V3.0 [5] was used for the evaluation of the 

triplestores.   The benchmark is based on a synthetic dataset designed around an e-

commerce use case with products from different vendors and user reviews.   The 

benchmarks distribution includes a dataset generator and testdriver with queries for 

various use cases.  Typical dataset sizes used for triplestore evaluation are 1M, 25M, 

100M and 200M triples (M = million).  The test results presented were generated using 

the ‘explore’ use case query mix.  The specific SPARQL queries used for evaluation are 

listed in the appendix. 

LOAD RESULTS 

Load times are listed in hours:minutes:seconds format3.  DB2 load time includes 

table loading, index creation, table reorganization and gathering of statistics.  Dataset 

preprocessing is listed separately since it is required once per dataset, but should be 

considered part of the DB2 loading time. 

 

 1M 25M 100M 200M 

Jena/TDB 00:00:23.26 00:09:57.90 00:53:04.70 01:54:32.50 

Sesame/Native 00:01:00.80 01:10:02.95 54:35:20.04 --- 

Sesame/DB 00:05:55.39 08:31:56.57 --- --- 

DB2/Preprocess 00:01:37.42 00:52:15.75 03:58:43.84 09:02:39.96 

DB2/Index 00:00:57.89 00:22:53.89 02:07:41.71 07:09:01.04 

DB2/Clustered 00:03:17.38 01:18:02.39 04:30:59.32 --- 

Table 1.  Berlin SPARQL Benchmark load results 

                                                  
3 Missing entries indicates that the dataset was not loaded due to time constraints.  
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Figure 32.  Berlin SPARLQ Benchmark load times 

Figure 32 shows the load time for each system (log10 scale).  DB2 results 

configurations include data preprocessing time.  The triple tables loaded to DB2 used 

hashed values as symbol ID.  The query processor can be configured to use symbols or 

hash values during SQL query generation.   

QUERY RESULTS 

All query results are listed as average query execution time in seconds.  Four DB2 

configuration were tested:  Index on all 6 column combinations using symbol dictionaries 

(DB2/IDX); index on all 6 column combinations using hashing (DB2/IDX-HS); and 

clustered triple tables using symbol dictionaries (DB2/CL).  Entries marked with ‘---‘ 

indicate that the query was not executed because the dataset was not loaded.  Entries 

marked with ‘>300’ indicate that the query took longer than 5 minutes and the test driver 

timed out. 
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 1 2 3 4 5 7 8 10 11 

Jena/TDB 0.023 0.049 0.024 0.026 0.049 0.035 0.034 0.027 0.038 

Sesame/Native 0.004 0.006 0.005 0.005 0.082 0.036 0.008 0.006 0.209 

Sesame/DB 0.020 0.097 0.029 0.067 0.099 0.141 0.087 0.125 0.081 

DB2/IDX 0.103 0.860 0.101 0.229 0.074 0.781 0.314 0.125 0.057 

DB2/IDX-HS 0.048 0.305 0.026 0.060 0.045 0.051 0.074 0.097 0.103 

DB2/CL 0.080 0.352 0.088 0.105 0.076 0.664 0.320 0.124 0.082 

Table 2.  Berlin SPARQL Benchmark query results (1M). 

 

 

 1 2 3 4 5 7 8 10 11 

Jena/TDB 0.096 0.113 0.116 0.103 0.458 0.300 0.222 0.183 0.135 

Sesame/Native 0.057 0.021 0.032 0.043 1.817 0.262 0.127 0.146 5.128 

Sesame/DB 0.065 0.148 0.116 0.146 1.111 0.412 0.607 0.425 8.553 

DB2/IDX 1.370 29.80 1.874 3.497 2.167 37.53 8.442 6.553 0.498 

DB2/IDX-HS 0.258 1.071 0.671 0.319 10.15 14.03 0.399 0.636 0.155 

DB2/CL 0.766 6.162 1.327 0.766 1.895 37.33 10.08 6.647 0.225 

Table 3.  Berlin SPARQL Benchmark query results (25M). 
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 1 2 3 4 5 7 8 10 11 

Jena/TDB 0.255 0.254 0.260 0.268 1.471 0.828 0.557 0.431 0.295 

Sesame/Native 3.760 0.189 2.927 1.310 108.68 2.371 0.606 1.628 217.442 

Sesame/DB --- --- --- --- --- --- --- --- --- 

DB2/IDX 4.762 251.8 7.056 13.50 11.35 >300 59.97 83.30 0.847 

DB2/IDX-HS 0.673 5.341 0.808 1.267 43.74 >300 1.495 0.658 0.138 

DB2/CL 3.548 45.90 6.828 8.127 11.37 >300 124.7 69.73 0.222 

Table 4.  Berlin SPARQL Benchmark query results (100M). 

 

 1 2 3 4 5 7 8 10 11 

Jena/TDB 0.260 0.245 0.255 0.302 18.488 1.036 0.595 0.450 0.266 

Sesame/Native --- --- --- --- --- --- --- --- --- 

Sesame/DB --- --- --- --- --- --- --- --- --- 

DB2/IDX4 --- --- --- --- --- --- --- --- --- 

DB2/IDX-HS4 --- --- --- --- --- --- --- --- --- 

DB2/CL --- --- --- --- --- --- --- --- --- 

Table 5.  Berlin SPARQL Benchmark query results (200M). 

                                                  
4 Dataset was loaded but test driver did not complete after 6 hours of operation.  Results for benchmark 
systems are shown for completeness. 
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DB2 QUERY ACCESS PLANS 

This section will present a few access plans generated from the test queries to 

briefly show some of the query plan decisions made by DB2.  In general, the query plans 

generated by SPARQL queries are complex, involving many joins.  It is not possible to 

describe every access plan used in the evaluation. 

 

 
Figure 33.  DB2 Access Plan, fetching from dictionary tables 

The Figure above shows a typical access plan for a simple SPARQL query.  To 

resolve resource identifiers to IDs using the dictionary, the URI index is used to find row 

identifiers, which are then used to fetch records from the dictionary.  In general, DB2 will 

use a nested loop join to join the dictionary identifier with the triple table.  This is 
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reasonable considering that the result of the dictionary look-up is guaranteed to be one 

record since there is a uniqueness constraint on the URI column of the dictionary.   From 

this access plan it can also be seen that DB2 does not access the base triple table and, 

since the index has all triple columns, only index scans are used to join triples.  As 

mentioned in Chapter 2, DB2 allows additional columns to be included in the leaves of an 

index.  This option can be used by dictionary indexes to allow for index only scans when 

resolving resource identifiers to string and vice versa.  The access plan using this option 

is shown in Figure 33. 

 
Figure 34.  DB2 access plan using index INCLUDE option 
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The new access plan shows that only index scans are required to satisfy the query.  

This is basically the same technique used by many native RDF databases, where the triple 

table is never materialize and only index scans are used.  This access plan is typical for 

the queries used in the benchmark.  In general DB2 will use nested loop joins between 

triple indexes and dictionary indexes, and hash joins to join triples.  For all the dataset 

sizes used in the benchmark DB2 will select hash joins.  However for smaller datasets 

DB2 will use merge joins as shown in Figure 34.  This is interesting since merge joins are 

typically used by native RDF databases to join triples, given that index scans already 

provide sorted join columns, but clearly DB2 query planner is using other metrics to 

select hash joins instead. 

 

 
Figure 35.  DB2 access plan using merge-joins. 
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Chapter 5:  Conclusion 

It is clear from the benchmark results that more investigation regarding database 

configuration is required to implement a scalable triplestore with good overall 

performance using the design described in this report.  While overall query performance 

is worse compared to the benchmark systems, for many queries execution time was in the 

same order of magnitude.  This is encouraging given that both these Jena and Sesame are 

using similar indexing data structures to the DB2 implementation.  It is not unreasonable 

to think that expert configuration of the DB2 system could result in much better 

performance.  A first step would be to focus on problematic queries, notably query 7, 

which degrades considerably as the number of triple increases.  This query is notable in 

that uses optional and nested optional graph patterns extensively, which indicates a 

performance problem in the design of the triplestore for the execution left outer joins.  

Database configuration is also likely to be the cause of scalability issues beyond 100 

million triples. 

Perhaps the most interesting aspect of the evaluation is the comparison between 

the different DB2 triplestores configurations.  Hashing had a noticeable impact on overall 

query performance.  This performance boost is expected since hashing avoids a 

dictionary lookup to resolve query strings, but it was unexpected to find that the use of 

hashing could performance on certain queries.  These effects could be explained by the 

fact that the SPARQL compiler does not use hashed values for filter expressions, which 

requires dictionary lookups.  In general, a better understanding of the effects of the 

dictionary compression design is necessary. 

Finally, it was surprising to find that clustering had a significant impact on 

performance when compared to the indexed configuration.  As mentioned in previous 
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chapters, creating all six indexes on a triple table gives the query planner the option to 

always select index scans, and avoid fetching records from the base triple table.   Using 

separate clustered tables with a single index allows the SPARLQ compiler to suggest that 

a specific index should be used.  The cluster table selection algorithm used in the 

evaluation was naïve, using only information about term types (fixed, join variable or 

free variable) in a triples triple pattern.  No dataset statistics or global optimization 

algorithms were used, and yet it is clear that restricting the access paths available to the 

query planner had a positive impact on query performance.  Also, note that because the 

complexity of the queries the DB2 optimization class used in the evaluation was lowered 

to effectively disable dynamic programming cost-based join order selection and force the 

query planner to use a greedy algorithm instead.  The fact that such a simple cluster 

selection algorithm had an impact in performance suggests that an interesting area of 

future investigation would be to find out what other optimization techniques could be use 

during SQL query generation to improve access plans for RDF query workloads.
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Appendices 

A. TEST SYSTEM CONFIGURATION 
	
  
Windows	
  7	
  Ultimate	
  64-­‐bit	
  Service	
  Pack	
  1	
  
Intel	
  i3	
  Dual	
  Core	
  3.2GHz	
  with	
  12GB	
  RAM	
  
Two	
  1TB	
  5400rpm	
  64MB	
  cache	
  hard-­‐drives	
  configured	
  in	
  RAID	
  1	
  (mirror)	
  	
  
Java	
  1.6.0_24	
  for	
  Windows	
  64-­‐bit	
  
IBM	
  DB2	
  Enterprise	
  Server	
  Edition	
  9.7	
  for	
  Windows	
  64-­‐bit	
  (x86-­‐64)	
  
Jena/TDB	
  Fuseki	
  version	
  0.1.0	
  
Sesame	
  2.3.2	
  with	
  apache-­‐tomcat	
  6.0.32	
  
Postgresql	
  64-­‐bit	
  version	
  9.0.3	
  

B. BERLIN SPARQL BENCHMARK TEST QUERIES 

Berlin SPARQL Benchmark version 3.0 explore use case was used in the 

evaluation.  Triple terms enclosed by %xx% indicate nodes that are replaced to fixed 

values by the benchmark test driver.  Assume the following prefix header for all queries: 

 
PREFIX	
  bsbm-­‐inst:	
  <http://www4.wiwiss.fu-­‐berlin.de/bizer/bsbm/v01/instances/>	
  
PREFIX	
  bsbm:	
  <http://www4.wiwiss.fu-­‐berlin.de/bizer/bsbm/v01/vocabulary/>	
  
PREFIX	
  rdfs:	
  <http://www.w3.org/2000/01/rdf-­‐schema#>	
  
PREFIX	
  rdf:	
  <http://www.w3.org/1999/02/22-­‐rdf-­‐syntax-­‐ns#>	
  
PREFIX	
  dc:	
  <http://purl.org/dc/elements/1.1/>	
  
PREFIX	
  foaf:	
  <http://xmlns.com/foaf/0.1/>	
  
PREFIX	
  rev:	
  <http://purl.org/stuff/rev#>	
  
PREFIX	
  xsd:	
  <http://www.w3.org/2001/XMLSchema#>	
  
Q1.	
  
SELECT	
  DISTINCT	
  ?product	
  ?label	
  
WHERE	
  {	
  	
  
	
  	
  	
  ?product	
  rdfs:label	
  ?label	
  .	
  
	
  	
  	
  ?product	
  a	
  %ProductType%	
  .	
  
	
  	
  	
  ?product	
  bsbm:productFeature	
  %ProductFeature1%	
  .	
  	
  
	
  	
  	
  ?product	
  bsbm:productFeature	
  %ProductFeature2%	
  .	
  	
  
	
  	
  	
  ?product	
  bsbm:productPropertyNumeric1	
  ?value1	
  .	
  	
  
	
  	
  	
  FILTER	
  (?value1	
  >	
  %x%)	
  	
  
}	
  
ORDER	
  BY	
  ?label	
  
LIMIT	
  10	
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Q2.	
  
SELECT	
  ?label	
  ?comment	
  ?producer	
  ?productFeature	
  ?propertyTextual1	
  
	
  	
  	
  	
  	
  	
  	
  ?propertyTextual2	
  ?propertyTextual3	
  ?propertyNumeric1	
  ?propertyNumeric2	
  
	
  	
  	
  	
  	
  	
  	
  ?propertyTextual4	
  ?propertyTextual5	
  ?propertyNumeric4	
  	
  
WHERE	
  {	
  
	
  	
  	
  	
  FILTER(?product	
  =	
  %ProductXYZ%)	
  
	
  	
  	
  	
  ?product	
  rdfs:label	
  ?label	
  .	
  
	
  	
  	
  	
  ?product	
  rdfs:comment	
  ?comment	
  .	
  
	
  	
  	
  	
  ?product	
  bsbm:producer	
  ?p	
  .	
  
	
  	
  	
  	
  ?p	
  rdfs:label	
  ?producer	
  .	
  
	
  	
  	
  	
  ?product	
  dc:publisher	
  ?p	
  .	
  	
  
	
  	
  	
  	
  ?product	
  bsbm:productFeature	
  ?f	
  .	
  
	
  	
  	
  	
  ?f	
  rdfs:label	
  ?productFeature	
  .	
  
	
  	
  	
  	
  ?product	
  bsbm:productPropertyTextual1	
  ?propertyTextual1	
  .	
  
	
  	
  	
  	
  ?product	
  bsbm:productPropertyTextual2	
  ?propertyTextual2	
  .	
  
	
  	
  	
  	
  ?product	
  bsbm:productPropertyTextual3	
  ?propertyTextual3	
  .	
  
	
  	
  	
  	
  ?product	
  bsbm:productPropertyNumeric1	
  ?propertyNumeric1	
  .	
  
	
  	
  	
  	
  ?product	
  bsbm:productPropertyNumeric2	
  ?propertyNumeric2	
  .	
  
	
  	
  	
  	
  OPTIONAL	
  {	
  ?product	
  bsbm:productPropertyTextual4	
  ?propertyTextual4	
  }	
  
	
  	
  	
  	
  OPTIONAL	
  {	
  ?product	
  bsbm:productPropertyTextual5	
  ?propertyTextual5	
  }	
  
	
  	
  	
  	
  OPTIONAL	
  {?product	
  bsbm:productPropertyNumeric4	
  ?propertyNumeric4	
  }	
  
}	
  
	
  
Q3.	
  
SELECT	
  ?product	
  ?label	
  
WHERE	
  {	
  
	
  	
  	
  	
  ?product	
  rdfs:label	
  ?label	
  .	
  
	
  	
  	
  	
  ?product	
  a	
  %ProductType%	
  .	
  
	
  	
  	
  	
  ?product	
  bsbm:productFeature	
  %ProductFeature1%	
  .	
  
	
  	
  	
  	
  ?product	
  bsbm:productPropertyNumeric1	
  ?p1	
  .	
  
	
  	
  	
  	
  FILTER	
  (	
  ?p1	
  >	
  %x%	
  )	
  	
  
	
  	
  	
  	
  ?product	
  bsbm:productPropertyNumeric3	
  ?p3	
  .	
  
	
  	
  	
  	
  FILTER	
  (?p3	
  <	
  %y%	
  )	
  
	
  	
  	
  	
  OPTIONAL	
  {	
  	
  
	
  	
  	
  	
  	
  	
  	
  ?product	
  bsbm:productFeature	
  %ProductFeature2%	
  .	
  
	
  	
  	
  	
  	
  	
  	
  ?product	
  rdfs:label	
  ?testVar	
  }	
  
	
  	
  	
  	
  	
  	
  	
  FILTER	
  (!bound(?testVar))	
  	
  
}	
  
ORDER	
  BY	
  ?label	
  
LIMIT	
  10	
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Q4.	
  
SELECT	
  DISTINCT	
  ?product	
  ?label	
  ?propertyTextual	
  
WHERE	
  {	
  
	
  	
  {	
  	
  
	
  	
  	
  	
  	
  	
  ?product	
  rdfs:label	
  ?label	
  .	
  
	
  	
  	
  	
  	
  	
  ?product	
  rdf:type	
  %ProductType%	
  .	
  
	
  	
  	
  	
  	
  	
  ?product	
  bsbm:productFeature	
  %ProductFeature1%	
  .	
  
	
  	
  	
  	
  	
  	
  ?product	
  bsbm:productFeature	
  %ProductFeature2%	
  .	
  
	
  	
  	
  	
  	
  	
  ?product	
  bsbm:productPropertyTextual1	
  ?propertyTextual	
  .	
  
	
  	
  	
  	
  	
  	
  ?product	
  bsbm:productPropertyNumeric1	
  ?p1	
  .	
  
	
  	
  	
  	
  	
  	
  FILTER	
  (	
  ?p1	
  >	
  %x%	
  )	
  
	
  	
  }	
  UNION	
  {	
  
	
  	
  	
  	
  	
  	
  ?product	
  rdfs:label	
  ?label	
  .	
  
	
  	
  	
  	
  	
  	
  ?product	
  rdf:type	
  %ProductType%	
  .	
  
	
  	
  	
  	
  	
  	
  ?product	
  bsbm:productFeature	
  %ProductFeature1%	
  .	
  
	
  	
  	
  	
  	
  	
  ?product	
  bsbm:productFeature	
  %ProductFeature3%	
  .	
  
	
  	
  	
  	
  	
  	
  ?product	
  bsbm:productPropertyTextual1	
  ?propertyTextual	
  .	
  
	
  	
  	
  	
  	
  	
  ?product	
  bsbm:productPropertyNumeric2	
  ?p2	
  .	
  
	
  	
  	
  	
  	
  	
  FILTER	
  (	
  ?p2>	
  %y%	
  )	
  	
  
	
  	
  }	
  	
  
}	
  
ORDER	
  BY	
  ?label	
  
OFFSET	
  5	
  
LIMIT	
  10	
  
	
  
Q5.	
  
SELECT	
  DISTINCT	
  ?product	
  ?productLabel	
  
WHERE	
  {	
  	
  
	
  	
  	
  ?product	
  rdfs:label	
  ?productLabel	
  .	
  
	
  	
  	
  FILTER	
  (%ProductXYZ%	
  !=	
  ?product)	
  
	
  	
  	
  %ProductXYZ%	
  bsbm:productFeature	
  ?prodFeature	
  .	
  
	
  	
  	
  ?product	
  bsbm:productFeature	
  ?prodFeature	
  .	
  
	
  	
  	
  %ProductXYZ%	
  bsbm:productPropertyNumeric1	
  ?origProperty1	
  .	
  
	
  	
  	
  ?product	
  bsbm:productPropertyNumeric1	
  ?simProperty1	
  .	
  
	
  	
  	
  FILTER	
  (?simProperty1	
  <	
  (?origProperty1	
  +	
  120)	
  &&	
  ?simProperty1	
  >	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (?origProperty1	
  -­‐	
  120))	
  
	
  	
  	
  %ProductXYZ%	
  bsbm:productPropertyNumeric2	
  ?origProperty2	
  .	
  
	
  	
  	
  ?product	
  bsbm:productPropertyNumeric2	
  ?simProperty2	
  .	
  
	
  	
  	
  FILTER	
  (?simProperty2	
  <	
  (?origProperty2	
  +	
  170)	
  &&	
  ?simProperty2	
  >	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (?origProperty2	
  -­‐	
  170))	
  
}	
  
ORDER	
  BY	
  ?productLabel	
  
LIMIT	
  5	
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Q6.	
  	
  Removed	
  from	
  version	
  3	
  of	
  the	
  benchmark.	
  
	
  
Q7.	
  
SELECT	
  ?productLabel	
  ?offer	
  ?price	
  ?vendor	
  ?vendorTitle	
  ?review	
  ?revTitle	
  	
  

	
  ?reviewer	
  ?revName	
  ?rating1	
  ?rating2	
  
WHERE	
  {	
  
	
  	
  	
  FILTER(?product	
  =	
  %ProductXYZ%)	
  
	
  	
  	
  ?product	
  rdfs:label	
  ?productLabel	
  .	
  
	
  	
  	
  OPTIONAL	
  {	
  
	
  	
  	
  	
  	
  	
  ?offer	
  bsbm:product	
  ?product	
  .	
  
	
  	
  	
  	
  	
  	
  ?offer	
  bsbm:price	
  ?price	
  .	
  
	
  	
  	
  	
  	
  	
  ?offer	
  bsbm:vendor	
  ?vendor	
  .	
  
	
  	
  	
  	
  	
  	
  ?vendor	
  rdfs:label	
  ?vendorTitle	
  .	
  
	
  	
  	
  	
  	
  	
  ?vendor	
  bsbm:country	
  <http://downlode.org/rdf/iso-­‐3166/countries#DE>	
  .	
  
	
  	
  	
  	
  	
  	
  ?offer	
  dc:publisher	
  ?vendor	
  .	
  	
  
	
  	
  	
  	
  	
  	
  ?offer	
  bsbm:validTo	
  ?date	
  .	
  
	
  	
  	
  	
  	
  	
  FILTER	
  (?date	
  >	
  %currentDate%	
  )	
  
	
  	
  	
  }	
  
	
  	
  	
  OPTIONAL	
  {	
  
	
  	
  	
  	
  	
  	
  ?review	
  bsbm:reviewFor	
  ?product	
  .	
  
	
  	
  	
  	
  	
  	
  ?review	
  rev:reviewer	
  ?reviewer	
  .	
  
	
  	
  	
  	
  	
  	
  ?reviewer	
  foaf:name	
  ?revName	
  .	
  
	
  	
  	
  	
  	
  	
  ?review	
  dc:title	
  ?revTitle	
  .	
  
	
  	
  	
  	
  	
  	
  OPTIONAL	
  {	
  ?review	
  bsbm:rating1	
  ?rating1	
  .	
  }	
  
	
  	
  	
  	
  	
  	
  OPTIONAL	
  {	
  ?review	
  bsbm:rating2	
  ?rating2	
  .	
  }	
  	
  
}	
  }	
  
	
  
Q8.	
  
SELECT	
  ?title	
  ?text	
  ?reviewDate	
  ?reviewer	
  ?reviewerName	
  ?rating1	
  	
  
	
  	
  	
  	
  	
  	
  	
  ?rating2	
  ?rating3	
  ?rating4	
  	
  
WHERE	
  {	
  	
  
	
  	
  	
  ?review	
  bsbm:reviewFor	
  %ProductXYZ%	
  .	
  
	
  	
  	
  ?review	
  dc:title	
  ?title	
  .	
  
	
  	
  	
  ?review	
  rev:text	
  ?text	
  .	
  
	
  	
  	
  FILTER	
  langMatches(	
  lang(?text),	
  "EN"	
  )	
  	
  
	
  	
  	
  ?review	
  bsbm:reviewDate	
  ?reviewDate	
  .	
  
	
  	
  	
  ?review	
  rev:reviewer	
  ?reviewer	
  .	
  
	
  	
  	
  ?reviewer	
  foaf:name	
  ?reviewerName	
  .	
  
	
  	
  	
  OPTIONAL	
  {	
  ?review	
  bsbm:rating1	
  ?rating1	
  .	
  }	
  
	
  	
  	
  OPTIONAL	
  {	
  ?review	
  bsbm:rating2	
  ?rating2	
  .	
  }	
  
	
  	
  	
  OPTIONAL	
  {	
  ?review	
  bsbm:rating3	
  ?rating3	
  .	
  }	
  
	
  	
  	
  OPTIONAL	
  {	
  ?review	
  bsbm:rating4	
  ?rating4	
  .	
  }	
  }	
  
ORDER	
  BY	
  DESC(?reviewDate)	
  	
  
LIMIT	
  20	
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Q9.	
  DESCRIBE	
  SPARQL	
  queries	
  are	
  not	
  supported	
  
	
  
Q10.	
  
SELECT	
  DISTINCT	
  ?offer	
  ?price	
  
WHERE	
  {	
  
	
  	
  	
  ?offer	
  bsbm:product	
  %ProductXYZ%	
  .	
  
	
  	
  	
  ?offer	
  bsbm:vendor	
  ?vendor	
  .	
  
	
  	
  	
  ?offer	
  dc:publisher	
  ?vendor	
  .	
  
	
  	
  	
  ?vendor	
  bsbm:country	
  <http://downlode.org/rdf/iso-­‐3166/countries#US>	
  .	
  
	
  	
  	
  ?offer	
  bsbm:deliveryDays	
  ?deliveryDays	
  .	
  
	
  	
  	
  FILTER	
  (?deliveryDays	
  <=	
  3)	
  
	
  	
  	
  ?offer	
  bsbm:price	
  ?price	
  .	
  
	
  	
  	
  ?offer	
  bsbm:validTo	
  ?date	
  .	
  
	
  	
  	
  FILTER	
  (?date	
  >	
  %currentDate%	
  )	
  
}	
  
ORDER	
  BY	
  xsd:double(str(?price))	
  
LIMIT	
  10	
  
	
  
Q11.	
  
SELECT	
  ?property	
  ?hasValue	
  ?isValueOf	
  
WHERE	
  {	
  
	
  	
  	
  {	
  %OfferXYZ%	
  ?property	
  ?hasValue	
  }	
  
	
  	
  	
  UNION	
  
	
  	
  	
  {	
  ?isValueOf	
  ?property	
  %OfferXYZ%	
  }	
  
}	
  
	
  
Q12.	
  CONSTRUCT	
  SPARQL	
  queries	
  are	
  not	
  supported	
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