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With the recent development of smart-well technology, the reservoir community now faces

the challenge of developing robust and efficient techniques for reservoir characterization by

means of data inversion. Unfortunately, classical history-matching methodologies do not

possess computational efficiency and robustness needed to assimilate data measured almost

in real time. Therefore, the reservoir community has started to explore techniques previously

applied in other disciplines. Such is the case of the representer method, a variational data

assimilation technique that was first applied in physical oceanography.

The representer method is an efficient technique for solving linear inverse problems

when a finite number of measurements are available. To the best of our knowledge, a general

representer-based methodology for nonlinear inverse problems has not been fully developed.

We fill this gap by presenting a novel implementation of the representer method applied to

the nonlinear inverse problem of identifying petrophysical properties in reservoir models.

Given production data from wells and prior knowledge of the petrophysical properties, the

goal of our formulation is to find improved parameters so that the reservoir model prediction
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fits the data within some error given a priori.

We first define an abstract framework for parameter identification in nonlinear reser-

voir models. Then, we propose an iterative representer-based scheme (IRBS) to find a solu-

tion of the inverse problem. Sufficient conditions for convergence of the proposed algorithm

are established. We apply the IRBS to the estimation of absolute permeability in single-

phase Darcy flow through porous media. Additionally, we study an extension of the IRBS

with Karhunen-Loeve (IRBS-KL) expansions to address the identification of petrophysical

properties subject to linear geological constraints. The IRBS-KL approach is compared

with a standard variational technique for history matching.

Furthermore, we apply the IRBS-KL to the identification of porosity, absolute and

relative permeabilities given production data from an oil-water reservoir. The general

derivation of the IRBS-KL is provided for a reservoir whose dynamics are modeled by

slightly compressible immiscible displacement of two-phase flow through porous media. Fi-

nally, we present an ad-hoc sequential implementation of the IRBS-KL and compare its

performance with the ensemble Kalman filter.
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Chapter 1

Introduction

1.1 Motivation

The main challenge of reservoir management is to achieve the maximum hydrocarbon re-
covery under the minimum operational costs. This goal cannot be accomplished without a
reservoir simulator capable of predicting the reservoir performance. However, the reliability
of reservoir models depends on the accuracy of the knowledge of the subsurface proper-
ties. These properties are highly heterogeneous and can be measured only at few locations.
Therefore, in order to obtain an accurate reservoir model, it is essential to develop tech-
niques that allow us to obtain a better characterization of the petrophysical properties of
the subsurface.

Automatic history matching is one of the aspects involved in the characterization
of the petrophysical properties of a reservoir. The aim of history matching is to obtain
estimates of the petrophysical properties, so that the model prediction fits the observed
production data. Traditionally, data acquisition for history matching was available by
well-logging techniques which were expensive and required well intervention. However,
after 1997 [27], the development of smart-well technology has dramatically changed the
restrictive scenario for data acquisition. With the aid of down-hole permanent sensors, it is
possible to monitor production data in almost real-time. This data may be used for history
matching in order to obtain a better characterization of the reservoir which in turn can
be used to optimize recovery. Unfortunately, classical history matching techniques are not
able to process large sets of data under reasonable computational cost. For this reason, the
reservoir community has started to implement techniques that have been previously used in
other areas. Such is the case in physical oceanography and meteorology [11, 25, 69, 18, 58],
where several data assimilation technologies have been developed to overcome analogous

1



problems to those faced by the reservoir community.
Within the broad methods for data assimilation, we distinguish between two main

approaches that have been applied to the reservoir modeling application: the Monte Carlo-
type or probabilistic framework [23] and the variational approach [11]. The former consists
of generating an ensemble of different possible realizations of the state variable with given
prior distribution. The model is run for each member of the ensemble up to the first
measurement time. Then, each state variable is updated with standard formulas of Kalman
filtering theory [40] to produce a posterior distribution which is now used to continue the
process. In the Kalman filter-type methods, the model simulator is used as a black box
without the need of an adjoint code. This feature offers a significative advantage in history
matching for which several applications of the Ensemble Kalman Filter (EnKF) have been
conducted [22, 30, 19, 31, 63, 48, 47, 50, 51]. However, there are still open questions arising
from the EnKF implementation. Unphysical solutions, overestimation and poor uncertainty
quantification have been reported with the EnKF [31, 30]. Despite attempts to remediate
these undesired outcomes, the nonlinearity of reservoir models clearly goes beyond the
capabilities of the EnKF.

In the variational approach, the solution is sought as a minimizer of a weighted least-
squares functional that penalizes the misfit between model-based and real measurements.
The corresponding minimization involves the implementation of an optimization technique
which typically requires the development of an adjoint code for the efficient computation
of the derivatives of the cost functional. It is worth mentioning that many variational
approaches for history-matching have been studied during the last years. However, those
approaches are suboptimal and computationally expensive because of the highly-nonlinear
and large-scale reservoir models. For this reason, variational “data assimilation” techniques
have received attention for reservoir and groundwater applications [5, 6, 4, 36, 67, 55]. In lin-
ear variational “data assimilation” an inexpensive minimization of a weighted least-squares
cost functional can be conducted by the so-called representer method [11]. Assuming that
the measurement space is finite dimensional, the representer method provides the solu-
tion to the Euler-Lagrange equations (E-L) resulting from the variational formulation. For
nonlinear problems, the representer method cannot be implemented directly. Nevertheless,
some representer-based techniques have been explored to compute an approximation to the
solution of the E-L equations [4, 55]. However, these approaches do not necessarily yield a
direction of descent of the cost functional. Therefore, an additional technique such as line
search is needed to accelerate or even obtain convergence [4, 67, 55]. Unfortunately, these
additional implementations may compromise the efficiency required for reservoir applica-
tions.
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In this work, we present a novel implementation of the representer method for the
identification of petrophysical properties in reservoir models by means of data inversion.
Given production data and prior knowledge of the “uncertain” property of the reservoir,
a solution to the identification problem is the limit of a sequence of solutions to affine
inverse problems solved by the representer method. At every iteration step, information
from the previous iteration is utilized to pose a linearized inverse problem defined by the
minimization of a weighted least-squares functional that penalizes the misfit between model
prediction and production data. Additionally, this functional contains a regularization
term that incorporates prior knowledge of the reservoir property of interest. Furthermore,
the aforementioned minimization is constrained by the solution to the linearization of the
reservoir (forward) model.

By applying standard techniques from iterative regularization theory [32, 21], con-
vergence results are obtained for the proposed iterative representer-based scheme (IRBS).
Furthermore, we extend the proposed methodology to study the identification of reservoir
properties under lineal geological constraints. Both analytical and numerical results show
that this methodology is efficient and robust in the estimation of petrophysical properties
in reservoir models. Moreover, comparisons with a standard gradient-based approach and
the state-of-the art Ensemble Kalman Filter method, show that the IRBS is a promising
tool for history-matching in reservoir models.

1.2 Outline

A general overview of classical history matching techniques will be provided in Chapter 2.
We also discuss some data assimilation methods, originally implemented in oceanography
and meteorology, that have recently been applied for reservoir characterization. In Chapter
3, we develop an abstract formulation for the problem of identifying poorly known petro-
physical properties in reservoir models. We propose an iterative representer-based scheme
(IRBS) to find a solution to the identification problem. Additionally, we conduct the general
considerations for the application and convergence of the IRBS. In Chapter 4 we study the
application of the IRBS to the single-phase Darcy flow through porous media. We establish
conditions for which the IRBS provides a solution to the identification of absolute perme-
ability. In Chapter 5 we study the IRBS under geological constraints with Karhunen-Loeve
expansions. A comparison with a standard gradient based approach is conducted. In Chap-
ter 6 we extend this algorithm for the simultaneous estimation of porosity and absolute
permeability given pressure and saturation data from the immiscible displacement of two-
phase compressible fluids. The derivation of the representer method is provided. A reduced

3



estimation problem is posed where capillarity and gravity are neglected. We present some
numerical experiment for the estimation of absolute and relative permeability as well as
porosity. Finally, in Chapter 7 the results of the thesis are summarized and some future
research directions are proposed.
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Chapter 2

Literature Review of Parameter

Estimation in Reservoir Modeling

In the last four decades extensive scientific and technical advances have been achieved in
history matching techniques. It is not possible to cover all these methodologies so a brief
overview will be provided in the following paragraphs.

2.1 History Matching

Before 1972, automatic history matching was approached with a least-squares formulation.
The revolutionary study of Jacquard and Jain [37] consists of dividing the reservoir into
zones of constant permeability and minimizing the sum of squared pressure residuals. De-
spite this remarkable work, the minimization of a least-squares criterion was not enough
to ensure stability and uniqueness of the solution. In addition, the computational demand
for computing sensitivity coefficients imposed severe restrictions for the number of zones
resulting in poor reconstruction of the heterogeneity of a real permeability field.

A considerable improvement in history matching took placed with the introduction
of optimal control for the minimization of the least-squares criteria. Chavent et al. [16] used
an adjoint method to reduce the computational cost for the inverse estimation of absolute
permeability and the skin factor in a single-phase flow model. However, the need for a
regularization of the least-squares problem was first realized by Korganoff [41]. He added
regularization terms to penalize oscillatory solutions that arise when increasing the number
of permeability zones.

In 1976, the important work of Gavalas et al. [29] addressed the problem with a
Bayesian approach where the parameters are treated as random variables with known mean
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and prior error covariance. The statistical smoothing effect alleviates numerical instabilities
of the parameter estimates. It should be mentioned that the need for well known prior error
statistics was the main drawback for this technique since efficient measurement technologies
were not available at that time.

An alternative history matching method for the case where prior information is not
available was studied by Kravaris and Seinfield [42]. Following the regularization theory
for ill-posed problems that Tikhonov introduced in 1963 [66], they developed a theory on
distributed parameter identification. Their results focused on the estimation of permeability
in single-phase flow through porous media. Tai-young Lee and Seinfield [43] extended those
results for the simultaneous estimation of absolute and relative permeabilities given rates
and pressure from the immiscible displacement of two-phase flow. Further development
of the theory of parameter identification was made with the implementation of iterative
regularization techniques. For instance, Hanke [32] has derived an iterative Levenberg-
Marquardt method for permeability identification in a single-phase fluid.

In recent years geostatistics has played an important role for reservoir characteri-
zation. For instance, given some measurements of the permeability obtained by routine
core analysis, it is possible to generate a stochastic simulation of the permeability field.
Therefore, the Bayesian approach has been preferable for history matching purposes since
a trustworthy prior guess can be obtained. However, the need for more efficient and less
expensive optimization techniques has been the subject of recent research. For example,
Li et al. [44] have implemented the adjoint method for sensitivity of production data to
permeability and skin factor in three-phase flow. Reynolds and Oliver [57] used the same
technique and model for the simultaneous estimation of absolute and relative permeabilities.

2.2 Data Assimilation

At the same time history matching techniques were developed, the oceanography and mete-
orology communities were attempting to solve a similar problem. Ocean models are based
on several assumptions and approximations that do not capture the system. Discrepancies
between model circulations and observations exceed the standard error in observations. It
was essential to derive “data assimilation” methods to obtain better estimates of the system
given the model and observational data.

As in history matching, the data assimilation problem can be posed in a Bayesian
framework. When the prior error covariances are Gaussian and the model dynamics linear
the problem is equivalent to the minimization of a weighted-least squares objective func-
tional. The minimizer is called the general smoother or generalized inverse and it can be

6



estimated with classical optimization methods. As an alternative method for computing
the generalized inverse, the representer method was introduced first by Bennett in 1985
[9]. One of the advantages of the representer method is that the Euler-Lagrange equa-
tions resulting from the first order optimality condition are solved exactly at the cost of
2M +1 model integrations where M is the number of measurements. Data assimilation ap-
plications with the representer method have been used to study tropical ocean circulations
[13]. It has also been applied to improve ocean tides given altimetry measurements from
the TOPEX/POSEIDON radar satellite [20]. More recently, Rosmond and Xu [58] have
used the representer method to increase the capabilities of the US Navy’s data assimilation
system.

Another implementation that was adopted by the assimilation community is the
Kalman filter [40]. In this method the assimilation is performed sequentially and the state
of the system is updated as soon as measurements become available. Instead of minimizing
an objective functional, it computes the best linear unbiased estimate at each measurement
time. It can be shown [25] that at the final time, the filter and the generalized inverse
are the same. This feature makes the filtering ideal in forecasting applications. However,
a drawback of this method is that an evolution equation for the covariance of the state is
needed which is twice the dimension of the state variable.

For nonlinear dynamics, even if the model prior probability density function (pdf) is
Gaussian, the pdf for the model evolution will become non-Gaussian and the Kalman filter
formulas are neither valid nor useful for approximating the model outputs. The extended
Kalman filter (EKF) is a linearized version of the Kalman filter that was established to
address nonlinear data assimilation. After Evensen [25] showed some applications where the
linearization for the error covariance led to numerical instabilities, in 1994 he [23] proposed
the ensemble Kalman Filter (EnKF); a Monte Carlo version of the KF for data assimilation
in nonlinear dynamics. In this method, an ensemble of state vectors is generated and the
model is evolved until measurements become available. Then, the analysis step is performed
where each ensemble is updated with the standard Kalman filter formula but with Gaussian
errors added to the observations [14]. It has been shown that when the problem is nearly
Gaussian, the Kalman filter captures the correct posterior covariance, which is approximated
by computing the ensemble. Therefore, one of the advantages of the EnKF is that there is
no evolution equation to solve for the error covariance of the state.

The EnKF has been validated on several models [25] and is currently used in real
applications. For example, it is the data assimilation technique used by the system TOPAZ
(Towards an Operational Prediction system for the North Atlantic European coastal Zones)
which is in operation since 2004.
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2.3 Data Assimilation for History Matching

The ability to obtain reliable data from the field was a key for success of data assimilation in
oceanography and meteorology. In the recent years, new technologies became available for
the reservoir community with the introduction of so-called smart wells equipped with sensors
for monitoring downhole pressure and valves to control rates. The reservoir community has
become interested in migrating data assimilation techniques for reservoir characterization.

In the EnKF, the forward model is used as a black-box and only a relatively simple
code is needed for data assimilation. For this reason, the EnKF has received more attention
for reservoir applications. In 2003 Naevdal [50] introduced for the first time the EnKF for
the estimation of absolute permeability given production data. Then, in [48, 31, 71] several
applications of the EnKF to the PUNQ-S3 model were conducted. It is worth mentioning
that in [50, 31], an overshooting of the updated petrophysical properties was observed
after several times of assimilation. Another issue regarding the implementation of the
EnKF is the estimation of unphysical solutions. Such is the case of water saturation which
typically follows a non-gaussian distribution. To overcome this difficulty [30] proposed to
use the EnKF update over a transformation of the physical variable. A different approach,
proposed in [68] and used by [30], consists on updating the dynamic and static variables
with the standard EnKF formulation. Then, if a dynamic estimates is non-physical, the
corresponding static ensemble member is used to generate, by rerunning the forward model,
a consistent dynamic replicate.

In addition to the implementation of the EnKF for the assimilation of production
data, in [19, 63] seismic data has also been utilized. Since 4D seismic data can be given as
a difference between two surveys, [19, 63] combined the EnKF and the ensemble Kalman
smoother for the assimilation of production and seismic data respectively. Furthermore, the
EnKF has been used for history matching of location of geologic facies [47]. In addition,
the EnKF has been considered as an integral part of the so called closed-loop optimization
[49].

In contrast, the representer method has received limited attention for reservoir ap-
plications. In ground water modeling the represented method have been applied for state
and parameter estimation [56, 67]. Furthermore, Baird and Dawson [5, 6] have conducted
an a priori and a posterior error analysis of the representer method for state estimation
in single-phase flow. They have also implemented the representer method for state estima-
tion in two-phase flow [4]. For permeability and state estimation Iglesias and Dawson [36]
have studied an implementation of the representer method in single-phase Darcy flow. In
addition, the recent work of Przybysz-Jarnut [55] has used the representer method for the
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permeability estimation from pressure data in two-phase flow. Finally, the methodology
proposed in this dissertation has been introduced in [35].

2.4 History matching under geological constraints

The history matching community has recognized the importance of developing history
matching techniques that allow the incorporation of geological constraints. Several ap-
proaches have been followed to accomplish this goal. For example, Sarma et. al [61] used
truncated Karhunen-Loeve expansions to parameterize geological constraints for model up-
dating in a reservoir management closed-loop implementation. A parametrization of mul-
tipoint geostatistics based on kernel principal component analysis (PCA) was utilized in
[59]. Analogously, the discrete cosine transform (DCT) has been recently applied in [39]
to parameterize absolute permeability. This parametrization was coupled to the EnKF for
history matching in an oil-water reservoir [38] .

A different approach to history matching under geological constraints can be followed
with geostatics. For example, the gradual deformation method [15] produces stochastic per-
turbations of the initial (Gaussian) prior geological model until the corresponding updated
model generates flow responses that match production data. For non-Gaussian fields, a lo-
cal perturbation method was proposed by Srinivasan and Bryant in [64]. In this paper, the
authors addressed computational efficiency by proposing a parallel domain decomposition
algorithm to conduct the local perturbation. Recently, Barrera [7] developed a geologically
consistent history matching technique. Barrera applied an stochastic perturbation method
to calibrate flow functions consistent with a geological model simulated from different rock
types (pore networks).
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Chapter 3

An Iterative Approach to Data

Inversion in Reservoir Models.

This chapter establishes the general mathematical framework of an iterative representer-
based scheme for data inversion in reservoir modeling.

3.1 Mathematical Motivation for Data Inversion

In order to motivate the definition of the IRBS, let us consider a reservoir whose porosity
and permeability are denoted by φ, K respectively. Assume that the reservoir is filled with
a single-phase fluid of viscosity µ and (constant) compressibility c. In addition, suppose
that there are some injection/production sources denoted by f . Under the aforementioned
assumptions, the dynamics of the reservoir can be predicted by the slightly-compressible
single-phase Darcy flow through porous medium model [8] which is mathematically de-
scribed by the following equation

cφ
∂p

∂t
− 1

µ
∇ ·K∇p = f (3.1)

where p is the pressure which defines the state of the reservoir. When c, µ, φ, K are given
and some initial and boundary conditions are prescribed, then (3.1) can be solved uniquely
for p in the appropriate mathematical spaces [46]. In this model c and µ are (constant)
properties of the fluid which may be easily obtained in practical applications. In contrast,
φ and K are petrophysical properties of the reservoir which may dramatically change with
respect to position within reservoir. Then, a small number of measurements from wells, may
not be enough to capture the heterogeneities of those properties. In other words, φ and K
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are “uncertain” in the sense that they are a poorly known. Therefore, if those parameters
were utilized in (3.1), the solution would be different from the pressure measurements
collected at the wells. Therefore, we need to address the following inverse problem. Given
measurements of the state, find improved parameters such that the discrepancy between
model prediction and real measurements is “small”. Any methodology to solve the inverse
problem requires precise information about the following prior information:

(1) Structure of the (forward) model;

(2) Measurement process;

(3) Observational error information;

(4) Parameters prior knowledge.

In the following sections we mathematically define the inverse problem within a general
abstract framework of Hilbert spaces. In addition, assumptions on the prior information
(1)-(4) are developed. Then, an iterative representer-based scheme is proposed to find
a solution to this problem. Finally, we establish conditions under which the IRBS will
converge to a solution to the inverse problem.

3.2 Prior Information

3.2.1 Preliminaries and Notation

For any vector v ∈ RN we denote by ||v|| = (
∑N

i=1 |vi|2)1/2 the Euclidian norm. For
A ∈ RN×N we also denote by ||A|| = sup||v||6=0

||Av||
||v|| . For any symmetric positive definite

matrix C ∈ RN×N , we denote by ||v||C = (vT Cv)1/2 the corresponding induced norm in
RN . Given a Hilbert space H, we denote the closed ball centered at k of radius r by
B(r, k). Furthermore, the inner product of H is denote by 〈·, ·〉H. Given Ω ⊂ RN and
0 < T < ∞, we define Γ = ∂Ω, ΩT = Ω× (0, T ) and ΓT = Γ× (0, T ). We consider [46] the
usual Sobolev spaces H2(Ω) with the norm given by ||u||H2(Ω) = (

∑
|α|≤2

∫
Ω ||Dαu||2)1/2,

and H1(0, T ;L2(Ω)) with the norm ||u||H1(0,T ;L2(Ω)) = (
∫ T
0 ||u(t)||2L2(Ω)dt)1/2. Addition-

ally, we define the space H2,1(ΩT ) = L2(0, T ; H2(Ω)) ∩ H1(0, T ; L2(Ω)) with the norm
||u||H2,1(ΩT ) = (

∫ T
0 ||u(t)||2H2(Ω)dt + ||u||2H1(0,T ;L2(Ω)))

1/2. Finally, we define H1/2,1/4(ΓT ) =

L2(0, T ;H1/2(Γ))∩H1/4(0, T ;L2(Ω)) with the norm ||u||H1/2,1/4(ΓT ) = (
∫ T
0 ||u(t)||2

H1/2(Γ)
dt+

||u||2
H1/4(0,T ;L2(Γ))

)1/2 where H1/2(Γ) and H1/4(0, T ; L2(Γ)) are interpolation spaces defined
in the sense of Definition 2.1 in [46].
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3.2.2 The Forward Model

Let us represent the reservoir by an open bounded set Ω ⊂ Rl with l = 2, 3. Given some
0 < T < ∞, suppose that [0, T ] is the time of interest for the analysis of the reservoir
dynamics. Assume that the reservoir has N uncertain parameters. The corresponding
parameter space is defined by K = ΠN

i=1Ki where each Ki is a linear subspace either of
L2(Ω) or L2(ΩT ). Let S and Z be arbitrary subspaces of L2(ΩT ). The set S is the space of
all possible states of the reservoir. We now assume that the dynamics of the reservoir can
be described, over a finite interval of time [0, T ], by a set of (forward) model equations

G(k, s) = 0. (3.2)

where G : K × S → Z is a nonlinear operator. For a fixed parameter k ∈ K, an element
of the state space s(x, t) ∈ S that satisfies (3.2) is the corresponding state of the reservoir
which simulates the reservoir dynamics over the interval of time. Parameters which are not
considered uncertain in the sense of the preceding paragraph are assumed to be contained in
the functional relation chosen for the operator G. The subspaces S, K and Z, in addition to
the functional relation for G must be defined for the particular reservoir model of interest.
For the following analysis consider the following assumptions on the (forward model) oper-
ator G

(F1) G : K × S → Z is continuously Frechet-differentiable;

(F2) For each k ∈ K, there exists a unique s ∈ S with G(k, s) = 0;

(F3) For all (k̃, s̃) ∈ K × S, that satisfies G(k̃, s̃) = 0, we assume DsG(k̃, s̃) : S → Z is
a linear isomorphism, and in addition, for every r > 0 and k∗ ∈ K we assume that
there exists a constant C1 such that for every k ∈ B(r, k∗) and s ∈ S that satisfy
G(k, s) = 0, the solution δs to

DkG(k, s)δk + DsG(k, s)δs = 0 (3.3)

satisfies

||δs||S ≤ C1||δk||K (3.4)

for every δk ∈ K (note that C1 is the same for every k ∈ B(r, k̃)).
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3.2.3 Measurements and Parameters Prior Knowledge

Each measurement is treated independently at each location and time of collection. Let us
suppose that we are given a vector dη = [dη

1, . . . , d
η
M ] of M measurements of the state of

the reservoir, such that each dη
m was collected at (xm, tm). In general, measurements are

corrupted by noise. In other words, the vector of measurements dη is only an approximation
to the measurements of the state, that is

||dη − d||C−1 ≤ η, (3.5)

where d = [d1, . . . , dM ] is the vector of perfect (noise-free) measurements. The observation
process responsible for a perfect measurement dm is represented, on the space S, by the
action (Lm(s) = dm) of linear functionals Lm : S → R. In addition, we assume that not
only dη is provided but also its associated error covariance matrix C. Furthermore, prior
knowledge information for each uncertain parameter ki is required to be given as a prior
mean ki and the corresponding prior error covariance function Cki . By definition of the
covariance operator [65], Cki : Ki → Ki is positive definite. Let us define the formal inverse
in the sense of Tarantola:

∫

Σ
Cki(ξ, χ)C−1

ki
(χ, ξ′)dχ = δ(ξ − ξ′), (3.6)

where Σ is either Ω or ΩT . It is not difficult to see that

〈φ, ψ〉Cki
≡

∫

Σ

∫

Σ
φ(ξ)C−1

ki
(ξ, ξ′)ψ(ξ′)dξ dξ′ (3.7)

defines an inner product on Ki for each i = 1, . . . , N . In summary, the following information
must be provided:

(1) dη = [dη
1, . . . , d

η
M ] a vector of M (possibly corrupted by noise) measurements of the

state of the reservoir at {(xm, tm)}M
m=1;

(2) The matrix C of measurement error covariance (positive definite);

(3) Prior knowledge of parameters k = [k1, . . . , kN ];

(4) Parameters prior error covariance operators {Ck1 , · · · , CkN
};

(5) Expressions for the linear functionals L = [L1, . . . ,LM ] representing the process from
which d = [d1, . . . , dM ] was obtained.

The following assumption is needed.
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Assumption 1 (A1). For i = 1, . . . , N the space Ki is complete with the induced norm
|| · ||Cki

Then, from standard functional analysis K = ΠN
i=1Ki is a Hilbert space with the

norm induced by the following inner product.

〈φ, ψ〉K ≡
N∑

i=1

〈φi, ψi〉Cki
(3.8)

In the context of reservoir modeling (Model 3.1 for example), the prior error covariance
reflects the prior knowledge of the spatial variability of the petrophysical properties. In real
applications, the covariance may be determined from well logs, core analysis, seismic and
the geology of the formation.

3.3 The solution to the Inverse Problem

Having established the assumption on the prior information, we need now to define what we
mean by a solution to the inverse problem. Inspired by the theory of parameter identification
[32, 21], we now formulate

Definition 1. Assume that the state of the system is described by (3.2) and the mea-
surement process is represented by L = [L1, . . . ,LM ] as described above. Given a vector
d = [d1, . . . , dM ] of exact measurements (noise-free) of the state of the system, a solution to
the Noise-Free Parameter Identification Problem (NF-PIP) is an element k ∈ K, such that

G(k, s) = 0 and L(s) = d (3.9)

for some s ∈ S.

It is important to emphasize that we need to have measurements from the real state
of the reservoir. Suppose that the measurements were perfect (noise-free) and the model
dynamics and measurement process are represented correctly by the mathematical models
under consideration. Then it is reasonable to think that the measurements were obtanied
from the “true state” sT of the system which satisfies the model dynamics (3.2) for some
“true parameter” kT . For this reason we postulate the following:

Attainability condition of data: There exists at least one solution kT ∈ K to the noise-
free parameter identification problem. We refer to kT as the “true parameter”.
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For example, suppose we are interested in the identification of K in model (3.1) given
pressure data from some well locations (assuming that c, φ and µ are perfectly known). It
is clear that there may be several permeability configurations that will generate the same
pressure response which is measured at the wells. However, the reservoir has one and only
one permeability field which is responsible for the generation of the collected measurements.

3.3.1 An Iterative Representer-Based Scheme (IRBS)

In order to find an approximation to a solution of the NF-PIP (Definition (1)), we propose
the following algorithm. Assume we are given k0 = k, an estimate of the error level η, prior
error covariances C, {Cki}N

i=1 and some τ > 1.

Algorithm 1 (IRBS). For n = 1, . . .

(1) Solution to the forward model. Given kn−1, we compute sn
F the solution to the

forward model

G(kn−1, sn
F ) = 0 (3.10)

(2) Stopping rule (Discrepancy Principle). If ||dη − L(sn
F )|| ≤ τη, stop. Output:

kn−1.

(3) Parameter update by means of data assimilation with representers. Define
kn as the solution to the linearized data assimilation problem

J(s, k) = [dη − L(s)]T C−1[dη − L(s)] + ||k − kn−1||2K → min (3.11)

subject to

LG(k, s) = DkG(kn−1, sn
F )[k − kn−1] + DsG(kn−1, sn

F )[s− sn
F ] = 0. (3.12)

In the following sections we develop sufficient conditions for convergence of this
algorithm.

3.3.2 Step (3). Solution to the linearized problem by the representer

method

Now we prove that problem (3.11)-(3.12) admits a unique solution. Moreover, an explicit
formula for k will be provided in terms of “representers”. Note that (3.12) is nothing but the

15



linearization of the reservoir model around [kn−1, sn
F ]. The first term of (3.11) is a weighted

least-squares functional that penalizes the misfit between real and predicted measurement.
The second term accounts for the error between prior and estimated parameters.

The “Representers”

We define the following variables: ∆k = k − kn−1 and ∆s = s − sn
F . Then, problem

(3.11)-(3.12) is equivalent to the minimization of

Jn(∆s,∆k) = [dη − L(sn
F )− L(∆s)]T C−1[dη − L(sn

F )− L(∆s)] + ||∆k||2K (3.13)

subject to the linearized constraint

DkG(kn−1, sn
F )∆k + DsG(kn−1, sn

F )∆s = 0. (3.14)

We now state the following

Lemma 1. Assume (A1) and (F1)-(F3) hold. Let r > 0 and k∗ ∈ K arbitrary. Take C1

given by (F3) for B(r, k∗). If kn−1 ∈ B(r, k∗), then, for each m ∈ {1, . . . ,M}, there exists
a “representer” γn

m ∈ K such that

〈γn
m, ∆k〉K = Lm(∆s), (3.15)

for all ∆k ∈ K, where ∆s is the solution to (3.14). Furthermore, the“representer matrix”
defined by

[Rn]ij = 〈γn
i , γn

j 〉K. (3.16)

satisfies

||Rn|| ≤ C2
1 ||L||2 (3.17)

with ||L|| = supi ||Li||.

Proof: By the invertibility of DsG(kn−1, sn
F ) we may consider the linear operator

Wn : K → S such that Wn(∆k) = ∆s where ∆s is the solution to (3.14). Since kn−1 ∈
B(r, k∗), by hypothesis (F3) there exists C1 such that

||Wn(∆k)||S = ||∆s||S ≤ C1||∆k||K (3.18)
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for every ∆k ∈ K. Then, by linearity and continuity of Li ◦ Wn we are allowed to apply
the Riez representation theorem. Thus, for each i = 1, . . . ,M , we assume the existence of
γn

i such that

〈γn
i , ∆k〉K = [Li ◦Wn](∆k) = Li(∆s), (3.19)

where ∆s and ∆k are related by (3.14). Then, we have proved (3.15). On the other hand,
from definition (3.16), (3.18) and (3.19) it follows that

|[Rn]ij | ≤ ||γn
i ||K||γn

j ||K ≤ ||Li||||Lj ||||Wn||2 ≤ C2
1 ||L||2. (3.20)

which proves (3.17). ¤
The following theorem establishes local existence and uniqueness of the nth step of the
IRBS.

Theorem 1. Assume (A1) and (F1)-(F3) hold. Let r > 0 and k∗ ∈ K arbitrary. Take
C1 given by (F3) for B(r, k∗). If kn−1 ∈ B(r, k∗) and the set of “representers” {γn

m}M
m=1 is

linearly independent, then Rn is positive definite and

k(ξ) = kn−1(ξ) + [γn(ξ)]T [Rn + C]−1[dη − L(sn
F )] (3.21)

is the unique minimizer of Jn (3.11) subject to (3.12) in K, where γn(ξ) = [γn
1 (ξ), . . . , γn

M (ξ)].

Proof: From Lemma 1 we assume the existence of the representers {γn
m}M

m=1.
Clearly, (3.16) implies that Rn is positive semidefinite. Moreover, if xRnx = 0 for some
x = (x1, . . . , xM ) ∈ RM , then, from (3.16) and the linearity of the inner product it follows
that

M∑

m,j

xjR
n
j,mxm = 〈

M∑

j=1

xjγ
n
j ,

M∑

m=1

xmγn
m〉K = ||

M∑

j=1

xjγ
n
j ||2K = 0. (3.22)

Since by hypothesis {γn
m}M

m=1 is linearly independent, we conclude that x = 0 and so Rn is
positive definite.

Now we consider the following decomposition of K: K = span{γn} + span{γn}⊥
where, span{γn} ≡ {k ∈ K |k =

∑M
m=1 βmγn

m for some {βi}M
i=1 ∈ RM}. Then, for every

∆k ∈ K,

∆k =
M∑

m=1

βmγn
m + b (3.23)
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where

〈γn
i , b〉K = 0 (3.24)

for all i = 1, . . . , M . If we substitute (3.23) into (3.19) and apply (3.24) we find 〈γn
i , ∆k〉K =∑

j βj〈γn
i , γn

j 〉K = [Li ◦Wn](∆k) = Li(∆s). Therefore, from definition (3.16)

Rnβ = L(∆s) (3.25)

where L = [L1, . . . ,LM ] and β = [β1 . . . , βM ]. We now substitute (3.25) and (3.23) into
(3.13)-(3.14). Then we use (3.24) and the definition of the representer matrix (3.16) to find
that the minimization problem is posed in terms of

J(β, b) = [dη − L(sn
F )−Rnβ]T C−1[dη − L(sn

F )−Rnβ] + βT Rnβ + ||b||2K (3.26)

over the set C = RM × {b ∈ K | 〈γn
i , b〉 = 0}. Since Rn is positive definite, it is not difficult

to see that Jn is a strict convex functional. Additionally it is clear that C is a convex subset
of RM ×K. Then, it follows from standard optimization theory that any local minimum of
Jn is a unique global minimum over C. Therefore, we proceed to compute the first order
optimality condition which characterizes a global minimizer over C. Note that

1
2
DJn(β, b)[δβ, δb] = −[dη − L(sn

F )−Rnβ]T C−1Rnδβ + βT Rnδβ + 〈b, δb〉K. (3.27)

From (3.16) it is obvious that Rn is positive definite. Since by definition C is also positive
definite, then Rn and Rn + C are invertible. Therefore, DJn = 0 implies

(β, b) = ([Rn + C]−1[dη − L(sn
F )], 0). (3.28)

We now use (3.28) in (3.23) which in turn, by the change of variables defined at the begin-
ning of this subsection yields (3.21). ¤

Remark 1. It is essential to note that the results from Theorem 1 do not depend on the
accuracy of the measurement vector dη. Expression (3.21) can be used with dη replaced
by d (noise-free data). Analogously, the inverse of the covariance matrix may be replaced
with any positive definite matrix. However, for practical applications, measurements will
always be subject to errors and the error covariance may be available. For this reason we
have weighted the measurement misfit (see (3.11)) with the inverse of the covariance matrix,
as is typically done in standard Data Assimilation [11], where Jn may be derived from a
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Bayesian formulation for the linearized problem.

Remark 2. The assumption of linear independence of the representers can be interpreted
as a condition that prevents us from having redundant measurements.

3.3.3 Convergence Properties

The IRBS proposed in the previous section is equivalent to the Levenberg-Marquardt
method derived by Hanke in [32]. However in our approach, we consider an implicit system
(see equation (3.2)) instead of the parameter-to-observation map of [32]. The reason for
this selection comes from the fact that the reservoir model is commonly described by a set
of PDEs for which energy inequalities may be available. Second, we always assume that
the observation space is finite dimensional so that the representer method can be applied.
In contrast to [32], with the aforemention property we do not need to interpolate the data
which always comes as a finite dimensional set. Third, in our formulation we incorporate
prior knowledge which is relevant to the application. Despite some subtle differences be-
tween our methodology and the one presented in [32], in [35] we showed that our approach
is a particular case of Hanke’s work in the case of a fixed Levenberg-Marquardt parameter
α = 1 and an appropriate selection of the parameter norm. However, we point out that
in [32] the linearized inverse problem is solved with an standard implementation of the
Levenberg-Marquardt whereas in the IRBS, we apply the representer method (see Theorem
1).

We now state some necessary conditions for convergence of Algorithm 1. First we
need the following assumptions

Assumption 2 (A2). Let us denote by Gr the residual of G defined by the relation

G(k, s) = G(k̃, s̃) + DkG(k̃, s̃)[k − k̃] + DsG(k̃, s̃)[s− s̃]

+Gr(k − k̃, s− s̃). (3.29)

Given k̂ fixed, there exists C2 > 0 and δ > 0 such that if k, k̃ ∈ B(δ, k̂) then

||L(sr)|| ≤ C2||k − k̃||K||L(s)− L(s̃)|| (3.30)

where sr is the solution to

DsG(k̃, s̃)sr = Gr(k − k̃, s− s̃), (3.31)

s and s̃ are the (unique) solutions to G(k̃, s̃) = 0 = G(k, s).
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As we indicated earlier, in [35] we have shown that under some conditions, the IRBS
is equivalent to the algorithm proposed in [32]. By showing that equivalence, sufficient
conditions for convergence of the IRBS can be easily obtained. In this dissertation (see
appendix) however, we conduct the complete proofs of convergence for the IRBS pointing
out the technical differences with the work of Hanke [32].
The first result we need is

Lemma 2. Let dη ∈ RM (η fixed) and C ∈ RM×M be a positive definite matrix. Suppose
assumptions (A1)-(A2) and (F1)-(F3) hold. For any k∗ ∈ K and r > 0, let C1 be the
constant in (F3) for the closed ball B(r, k∗). Define

ρ ≡ 1
C2

1 ||L||2||C||−1 + 1
. (3.32)

Suppose that for some n, the following inequality is satisfied

||dη − L(sr)||C−1 ≤ ρ

a
||dη − L(sn

F )||C−1 (3.33)

for some a > 1, where sr is the solution to

DkG(kn−1, sn
F )[k∗ − kn−1] + DsG(kn−1, sn

F )[sr − sn
F ] = 0 (3.34)

If kn−1 ∈ B(r, k∗), then kn defined by (3.21) for dη = d∗, satisfies

||k∗ − kn−1||2K − ||k∗ − kn||2K > 2ρ2
[a− 1

a

]
||d∗ − L(sn

F )||2C−1 (3.35)

Proof. See appendix.
The previous lemma is needed to show that, when some conditions are satisfied, the sequence
kn generated with the representer method (Theorem 1) at the nth iteration, is a better
approximation than the corresponding estimate at the (n− 1)th iteration. Moreover, it can
be shown that kn is Cauchy which by completeness of K implies that kn has a limit. Then
by showing that this limit is a solution the NF-PIP, we can prove

Theorem 2. Let d ∈ RM be the vector of exact measurements and C ∈ RM×M an arbitrary
positive definite matrix with eigenvalues {λi}M

i=1 and α ≡ maxλi/minλi. Let us assume
(A1)-(A2) and (F1)-(F3) and let k∗ be a solution to the NF-PIP. For k̂ = k∗, take C2 and
δ > 0 as in (A2) .Consider B(δ/2, k∗) and the corresponding constant C1 as in (F3). Let ρ

be defined by (3.32). If k0 = k (the initial guess) satisfies

||k∗ − k||K < min
{δ

2
, a2

}
(3.36)
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for some a2 < ρ
2C2α1/2 , then kn, defined in (3.21) for dη = d∗, converges to a solution to

the NF-PIP.

Proof. See appendix.
Theorem 2 is essential because it allows to prove convergence for exact measurements. In
the case of noisy measurements, the first step is to show that the stopping rule terminates
the iteration after a finite number of iterations. Then, we show that the sequence generated
with Theorem 1, as the noise level converges to zero, the corresponding sequence converges
to a solution to the NF-PIP granted by Theorem 2. In summary, we need to prove

Theorem 3 (Convergence of the IRBS). Let dη be a vector of noisy measurements for
η ∈ (0, η∗] where η∗ > 0 is the largest noise level given a priori. Let C ∈ RM×M be the
(positive definite) covariance matrix corresponding to dη∗. Let {λi}M

i=1 be the eigenvalues of
C and we define α ≡ maxλi/minλi. Suppose that ||dη − d||C−1 ≤ η where d is the exact
data. Let kn

η be defined by (3.21) and let sn
F,η be the solution to G(kn

η , sn
F,η) = 0. Let us

assume (A1)-(A2) and (F1)-(F3) and let k∗ be a solution to the NF-PIP. For k̂ = k∗, take
C2 and δ > 0 as in (A2) .Consider B(δ/2, k∗) and the corresponding constant C1 as in
(F3). Let τ > 1/ρ with ρ defined by (3.32). If k0 = k satisfies

||k∗ − k0||K < min
{

δ/2,
ρτ − 1

α1/2C2(1 + τ)
,

ρ

2α1/2C2

}
, (3.37)

then (Discrepancy Principle) there exists a finite integer n = n(η) such that ||dη−L(sn(η)
F )||C−1 ≤

τη and ||dη−L(sm
F )||C−1 > τη for m < n(η). Moreover, k

n(η)
η converges to a solution of the

NF-PIP as η → 0.

Proof. See appendix.
With the convergence results presented in this chapter, we have established conditions on
the forward model, measurement functional and prior information so that the IRBS will
converge to an approximate solution in the sense of Definition 1.
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Chapter 4

Application of the IRBS on a

Linear Model

In the previous section we presented a variational formulation for parameter identification
in a system that is described by (3.2) where the operator G satisfies hypothesis (F1)-(F3)
and (A2). In this section we focus in a parabolic system described by the following operator
G : Y ×H2,1(ΩT ) → L2(0, T ; L2(Ω))×H1/2,1/4(ΓT )×H1(Ω):

G(Y, p) =




∂p
∂t −∇ · eY∇p− f

−eY∇p · n−BN

p(x, 0)− I(x)


 (4.1)

where Y will be defined below. As we indicated earlier this operator (see equation (3.1))
has important applications in subsurface flow modeling. Another interesting example can
be obtained if eY is the hydraulic conductivity of an aquifer. Then, G(Y, p) = 0 may take
the form of the PDE system that describes the groundwater flow. Therefore, the inverse
estimation of Y by means of data assimilation is of great relevance for the subsurface com-
munity. For this reason we have chosen these problems in order to validate the IRBS. First,
we need to verify that the operator G satisfies the hypothesis required to apply IRBS. In
the next sections we discuss some numerical results relevant to the applications mentioned
above.
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4.1 An application of the abstract framework

Assume Ω ⊂ RN has the strong Lipschitz property. Let CY be a covariance operator such
that

||Y ||2Y ≡
∫

Ω

∫

Ω
Y C−1

Y Y (4.2)

is equivalent to the Sobolev norm H3(Ω) for N = 2, 3. Then, from the Sobolev imbedding
theorem, H3(Ω) ↪→ C1(Ω). Let us define the space Y to be the completion of C1(Ω) with
the norm || · ||Y . Then, (A1) is satisfied. Given Hm ∈ L2(0, T ; L2(Ω)), for m = 1, ·,M , we
define the measurement functional by

Lm(p) =
∫ T

0

∫

Ω
Hm(x, t)p(x, t) dx dt (4.3)

From standard PDEs theory, we have the following theorem

Theorem 4. For each Y ∈ Y ↪→ C1(Ω), and (f, BN , I) ∈ L2(0, T ;L2(Ω))×H1/2,1/4(ΓT )×
H1(Ω), there exists a unique p ∈ H2,1(ΩT ) such that G(Y, p) = 0 and

||p||H2,1(ΩT ) ≤ C
[
||f ||L2((0,T );L2(Ω)) + ||BN ||H1/2,1/4(ΓT ) + ||I||H1(Ω)

]
(4.4)

where C is constant that only depends on an upper bound for ||Y ||Y , a lower bound for eY ,
Ω and T .

Proof: See [46].
From this result we deduce the following corollary:

Corollary 1. Let (f,BN , I) ∈ L2(0, T ; L2(Ω))×H1/2,1/4(ΓT )×H1(Ω) be fixed. Take Ŷ ∈ Y

arbitrary and r > 0. Consider B(r, Ŷ ) in Y. Then, there exists a constant C∗ > 0 such
that for every Y ∈ B(r, Ŷ ), the solution to the following problem

∂h

∂t
−∇ · eY∇h = f (4.5)

∇h · n = BN (4.6)

h(x, 0) = I (4.7)

satisfies

||h||H2,1(ΩT ) ≤ C∗
[
||f ||L2((0,T );L2(Ω)) + ||BN ||H1/2,1/4(ΓT ) + ||I||H1(Ω)

]
(4.8)
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C∗ depends only on T , Ω, Ŷ and r. In addition, for any Y ∈ B(r, Ŷ ) we have that

||eY ||C1(Ω) ≤ ω(Ŷ , r) (4.9)

where ω is a constant that depends only on Ŷ and r.

Proof: For all Y ∈ B(r, Ŷ ), we have that ||Y − Ŷ ||Y ≤ r. By the Sobolev imbedding
we know that

||Y − Ŷ ||C1(Ω) ≤ r. (4.10)

Trivially, |Y (x)− Ŷ (x)| ≤ r for all x ∈ Ω. Then

Y∗ ≡ −r + min
Ω

Ŷ ≤ −r + Ŷ (x) ≤ Y (x) ≤ r + Ŷ (x) ≤ r + max
Ω

Ŷ ≡ Y ∗. (4.11)

A similar argument shows

DY∗ ≡ −r + min
Ω

Ŷ ′ ≤ −r + Ŷ ′(x) ≤ Y ′(x) ≤ r + Ŷ ′(x) ≤ r + max
Ω

Ŷ ′ ≡ DY ∗. (4.12)

Note that the minimum and maximum above exist since Ŷ and Ŷ ′ are continuous and
defined on Ω which is compact. Then Y∗ ≤ Y (x) ≤ Y ∗ for all x ∈ Ω and so

0 < eY∗ ≤ eY (x) ≤ eY ∗ . (4.13)

for all x ∈ Ω and for all Y ∈ B. In addition, from (4.10) we have that ||Y ||C1(Ω) ≤
r + ||Ŷ ||C1(Ω). Therefore for every Y ∈ B(r, Ŷ ) we use r + ||Ŷ ||C1(Ω) as an upper bound and
eY∗ as a lower bound in Theorem 4 to find

||p||H2,1(ΩT ) ≤ C∗
[
||f ||L2((0,T );L2(Ω)) + ||BN ||H1/2,1/4(ΓT ) + ||I||H1(Ω)

]
. (4.14)

Finally from (4.13) and (4.12), DY∗eY∗ ≤ Y ′(x)eY (x) ≤ DY ∗eY ∗ . Thus, |Y ′(x)eY (x)| ≤
min{−DY∗eY∗ , DY ∗eY ∗} from which it follows

||eY ||C1(Ω) = max
Ω

[|eY (x)|+ |Y ′(x)eY (x)|] ≤ eY ∗ + min{−DY∗eY∗ , DY ∗eY ∗} ≡ ω(r, Ŷ ).(4.15)

¤

Proposition 1. The operator G defined by (4.1) satisfies conditions (F1)-(F3).
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Proof:

(F1) G is continuously Frechet-differentiable. This results can be shown easily and so the
proof is omitted. It can actually be shown that

DG(Ỹ , p̃)[δY, δp] = DY G(Ỹ , p̃)δY + DpG(Ỹ , p̃)δp (4.16)

where

DY G(Ỹ , p̃)δY =



−∇ · eỸ δY∇p̃

−eỸ δY∇p̃ · n
0


 , DpG(Ỹ , p̃)δp =




∂δp
∂t −∇ · eỸ∇δp

−eỸ∇δp · n
δp(x, 0)


(4.17)

(F2) This is exactly Theorem 4.

(F3) From (4.17) and Theorem 4 it follows that, for any (f, BC , I) ∈ L2(0, T ;L2(Ω)) ×
H1/2,1/4(ΓT )×H1(Ω), problem




∂δp
∂t −∇ · eỸ∇δp

−eỸ∇δp · n
δp(x, 0)


 =




f

BN

I


 (4.18)

has a unique solution δp. Then, DpG(Ỹ , p̃)δp = (f, BC , I) which proves surjection.
Uniqueness implies injectivity and so the isomorphism. Let us now consider any
B(r, Ŷ ). We realize that (3.3) is equivalent to DY G(Y, p)δY +DpG(Y, p)δp = 0 which
implies

∂δp

∂t
−∇ · eY∇δp = ∇ · eY δY∇p, (4.19)

eY∇δp · n = −eY δY∇p · n, (4.20)

δp(x, 0) = 0. (4.21)

Then, for Y ∈ B(r, Ŷ ), we apply (4.8) to find that

||δp||H2,1(ΩT ) ≤ C∗
(
||∇ · eY δY∇p||L2((0,T );L2(Ω)) + ||eY δY∇p · n||H1/2,1/4(ΓT )

)

≤ C∗||δY ||Y
[
||eY ||Y ||p||H2,1(ΩT ) + ||BN ||H1/2,1/4(ΓT )

]
. (4.22)
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From (4.8) and (4.9)

||δp||H2,1(ΩT ) ≤ C∗||δY ||Y
[
ω(r, Ŷ )C∗[||f ||L2((0,T );L2(Ω))

+||BN ||H1/2,1/4(ΓT ) + ||I||H1(Ω)] + ||BN ||H1/2,1/4(ΓT )

]
(4.23)

from which it follows that ||δp||H2,1(ΩT ) ≤ C1||δY ||Y for

C1 = C∗
[
ω(r, Ŷ )C∗

[
||f ||L2((0,T );L2(Ω)) + ||BN ||H1/2,1/4(ΓT ) + ||I||H1(Ω)

]

+||BN ||H1/2,1/4(ΓT )

]
(4.24)

and so (F3) is proved. ¤

The convergence results of the IRBS applied to problem (4.1) and (4.3) can be summarized
in the following Corollary.

Corollary 2. Assume that the hypothesis of Proposition 1 as well as (A2) hold. Given
τ > 1, if

θ ≡ C2
1 ||L||2||C−1|| < τ − 1 (4.25)

and the initial guess (prior knowledge) k is close enough to a solution to the NF-PIP, then
the IRBS converges to an approximate solution in the sense of Definition 1.

Proof. Since (A1)-(A2), (F1)-(F3) are satisfied, we can apply the results of Chapter
3.

Remark 3. From the definition of C1 (4.24) we point out that (4.25) balances relative
magnitudes of the assimilation information and the forward model. More precisely, for a
fixed ball B(r, Ŷ ), θ is a function of Ŷ , f , I, BC , eŶ , Ω, T , L, C. In practice, (4.25) may
be difficult or impossible to verify. Nevertheless, in Section 6 the numerical experiments
show that, for example, for different values τ > 1, the result of Corollary 2 holds.

Remark 4. Note that we have assumed that (A2) holds in Corollary 2. Proving Assumption
(A2) for (4.1) and (4.3) is still an open problem. However, our numerical results show that
convergence is achieved for a broad class of experiments.

It is worth mentioning that Hanke in [32] proved Assumption (A2) for G given by
(4.1) but for K = eY . He also considered the identity mapping as the measurement operator.
In that case, the operator G(K, p) is bilinear and the proofs can be obtained by standard
PDE techniques.
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4.2 Implementation

For the implementation of the IRBS we need the explicit form of Rn as well as γn. To
obtain closed form relations, we first recall that kn (3.21) was derived from the first order
optimality condition on Jn. For the application under consideration, this can be obtained
by considering the Lagrangian:

Qn[Y, p, λ] =
1
2
[d− L(p)]T C−1[d− L(p)]

+
∫

Ω

∫

Ω
(Y (x)− Y n−1(x))C−1

Y (x, x′)(Y (x′)− Y n−1(x′)) +
∫

Ω

∫ T

0
λLG(p, Y ) (4.26)

where

LG(p, Y ) ≡




∂p
∂t −∇ · (eY n−1∇p)−∇ · (Y − Y n−1)eY n−1∇pn

F − f

(eY n−1∇p · n + (Y − Y n−1)eY n−1∇pn
F · n)|ΓN

−BN

p|t=0 − I


 = 0 (4.27)

is the linearized constraint. Then, the first order optimality condition DQn[Y, p, λ] = 0
gives rise to the following Euler-Lagrange (E-L) system.
State:

∂pn

∂t
−∇ · (eY n−1∇pn)−∇ · (Y n − Y n−1)eY n−1∇pn

F = f on Ω× (0, T ] , (4.28)

eY n−1∇pn · n + (Y n − Y n−1)eY n−1∇pn
F · n = BN on ΓN × (0, T ], (4.29)

pn = I, in Ω× {0} , (4.30)

Adjoint:

− ∂λn

∂t
−∇ · (eY n−1∇λn) = (d− L(pn))C−1H in Ω× (0, T ], (4.31)

eY n−1∇λn · n = 0 on ΓN × (0, T ] , (4.32)

λn = 0 in Ω× {T}, (4.33)

Parameter:

Y n(x) = Y n−1(x)−
∫ T

0

∫

Ω
CY (x, x′)∇λn(x′, t) · eY n−1(x′)∇pn

F (x′, t)dt dx′. (4.34)
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Here, H = [H1, . . . , HM ] and pn
F is the solution to G(Y n−1, pn

F ) = 0 (with G from (4.1)).
The representers can be obtained by postulating that

pn = pn
F +

M∑

m=1

βn
mrn

m, λn =
M∑

m=1

βn
mαn

m, Y n = Y n−1 +
M∑

m=1

βn
mγn

m (4.35)

for some functions rn
m(x, t), αn

m(x, t) and γn
m(x) and scalars βn

m to be determined. When
the previous expressions are substituted in the E-L system, we obtain that (4.35) solves the
E-L system if and only if rn

m is the solution to

∂rn
m

∂t
−∇ · (eY n−1∇rn

m)−∇ · (γn
meY n−1∇pn

F ) = 0, in Ω× (0, T ], (4.36)

eY n−1∇rn
m · n + γn

meY n−1∇pn
F · n = 0 on Γ× (0, T ], (4.37)

rn
m = 0, in Ω× {0}, (4.38)

αn
m is the solution to

− ∂αn
m

∂t
−∇ · (eY n−1∇αn

m) = Hm in Ω× (0, T ], (4.39)

eY n−1∇αn
m · n = 0 on ΓN × (0, T ], (4.40)

αn
m = 0 in Ω× {T}, (4.41)

and γn
m satisfies

γn
m(x) = −

∫ T

0

∫

Ω
CY (x, x′)∇αn

m(x′, t) · eY n−1(x′)∇pn
F (x′, t) dt dx′. (4.42)

and the representer coefficients are given by (3.28) as

(Rn + C)βn = d− L(pn
F ) (4.43)

with the matrix Rn defined by Rn
ij = Li(rn

j ). For this problem, we have directly derived
the representer method in [36].

We now prove the following

Proposition 2. The representers are given by expression (4.42).

Proof: Let us take δY ∈ Y arbitrary and consider δp the solution to LG(δp, δY ) = 0.
We want to prove (see Section (3.3.2) ) that for every m ∈ {1, . . . , M}, 〈γm, δY 〉Y = Lm(δp).
Multiplying (4.39) by δp, integrating by parts and using (4.41)-(4.40) as well as the definition
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of Lm yields

∫

Ω

(
αn

m(t = 0)δp(t = 0)
)

+
∫

Ω

∫ T

0

[∂δp

∂t
−∇ · (eY n−1∇δp)

]
αn

m

+
∫

Γ

∫ T

0
eY n−1∇δp · n αn

m = Lm(δp), (4.44)

and from (4.27) we find

∫

Ω

∫ T

0
∇ · (δY eY n−1∇pn

F )αn
m −

∫

Γ

∫ T

0
δY eY n−1∇pn

F · n αn
m = Lm(δp). (4.45)

Integrating by parts again yields

−
∫

Ω

∫ T

0
δY eY n−1∇pn

F · ∇αn
m = Lm(δp). (4.46)

On the other hand, we multiply (4.42) by C−1
Y δY , integrate and use (3.6) to find

∫

Ω

∫

Ω
γn

mC−1
Y δY = −

∫

Ω

∫ T

0
∇αn

m · eY n−1∇pn
F δY. (4.47)

Thus, combining (4.46) and (4.47) we obtain

〈γm, δY 〉Y ≡
∫

Ω

∫

Ω
γn

mC−1
Y δY = Lm(δp) (4.48)

for all δY and δp that satisfy (4.27). Therefore, since the representer obtained by the Riez
theorem is unique, we have proved the result ¤.

In this section we present some numerical examples to show the capabilities of the
IRBS. First, some aspects related to the implementation are discussed.

4.2.1 Discretization

Note from the previous section that systems (4.31)-(4.40) need to be solved at each iteration.
For the spatial discretization, a cell-centered finite differences (CCFD) scheme is utilized
[3]. Time discretization is implemented with a Backward-Euler scheme. The coefficient
of the second order elliptic operator is assumed to be constant at each cell. Then, with
the CCFD discretization, the coefficient in each cell edge is approximated by the harmonic
average. For the present analysis we use covariance functions for which (4.42) becomes a
convolution which can be computed efficiently by the FFT.
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4.2.2 Measurement Functional

For each measurement location and time, we assume that the measurement functional is the
average of the state variable, over a small cube around the measurement and time location.
In other words, Lm is given by (4.3) with

Hm(x, y, t) =

[
1 if (x, y) ∈ R t− tm ≤ st

0 else

]
(4.49)

R = {(x, y) : |x− xm| ≤ sx, |y − ym| ≤ sy} (4.50)

where sx and sy are defined so that R coincides with the cell containing (xm, ym) and st is
defined so that [tm, tm + st) corresponds to the time interval containing tm. This definition
serves as an approximation to pointwise measurements.

4.2.3 Prior Error Information and Norms

As indicated before, Assumption (A1) is an essential assumption for the previous analysis.
More precisely, we need an equivalence between the norm induced by the inverse covariance
operator and a Sobolev norm. Some equivalences of this type can be found in [53, 70, 65] for
different types of covariance functions. However, the assumptions on the regularity of the
coefficient of the second order elliptic operator may not be preserved by the discretization
scheme. In addition, direct computation of (4.2) may become computationally prohibited
and so it is avoided in these experiments. Moreover, as we pointed out before, the perme-
ability is assumed to be piecewise constant. For this reason we relax the assumptions on
the regularity for the parameter and the L2(Ω)-norm (l2 norm for the discretized problem)
is considered for convergence analysis in the parameter space. Additionally, we need to
specify the prior error covariance CY , and the prior mean Y which is used as the first guess
(Y 0 = Y ) in the IRBS. For the following examples, the experimental omnidirectional semi-
variogram [17] of the true parameter is computed and a variogram model is fitted. Then,
CY is defined as the covariance of the associated variogram model of the true permeability.

4.2.4 Generation of Synthetic Data

For the following set of experiments, a “true permeability” (“true hydraulic conductivity”)
is prescribed. Then, we generate synthetic data dη by running the model simulator with the
“true parameter” and applying the measurement functional defined by (4.3) with (4.49).
In order to avoid an “inverse crime”, this data is obtained from a finer grid than the one
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utilized for the inverse computations. Additionally, Gaussian noise with zero mean and
covariance C = σ2

ηIM×M is added to the measurement. In our choice of C, IM×M is the
M × M identity matrix where M is the number of measurements for the corresponding
experiment. The true parameter is used only to compare to our final estimated parameter.

4.2.5 Stopping rule

The stopping criteria for the algorithm presented in Section IRBS requires an estimate of
the noise level. However, only the measurements (dη) as well as the prior error statistics
(ση) may be available. To obtain an estimate of the error level in the case C = σ2

ηI, we
assume that dη = d + σηe where e is a Gaussian random variable with zero mean and
variance equal one. Therefore, since dη − d = σηe, if we assume that |ej | ≤ 1, it follows∑M

j |dη
j − dj |2 = σ2

η

∑M
j |ej |2 ≤ σ2

ηM . Thus, ||dη − d|| ≤ ση

√
M . With this argument we

propose to use η = ση

√
M as the noise level for the algorithm. For the stopping criteria, we

recall that the IRBS is terminated when ||dη−L(sn
F )|| ≤ τση

√
M for the first time. Having

discussed some general considerations, we now introduce some examples. The objective of
these experiments is to analyze the efficiency of the IRBS to obtain improved parameters
while fitting the synthetic data.

4.2.6 The Groundwater Flow

Groundwater flow can be modeled by the following equation [8]

S
∂h

∂t
−∇ · eY∇h = f (4.51)

where S is specific storage, f accounts for sources, eY is the hydraulic conductivity and h

is the piezometric head. When proper boundary conditions are imposed, (4.51) takes the
form (up to known constants) of the operator (4.1). The parameter to be estimated is Y

and all the other parameters are assumed to be perfectly known.

Experiment I.

In order to validate the IRBS presented in the previous sections, we consider the same
problem used in [32]. The forward model is the steady state of (4.51) over a square domain

31



of dimension 6km× 6km. The boundary conditions are given by,

u(x, 0) = 100m, ux(6km, y) = 0, (4.52)

−eY ux(0, y) = 500m3km−1day−1, uy(x, 6km) = 0 (4.53)

and a constant (in time) recharge is represented by

f(x, y) =





0 0 < y < 4km,

0.137× 10−3m/day 4km < y < 5km,

0.274× 10−3m/day 5km < y < 6km

(4.54)

The grid used for the synthetic data generation and for the IRBS are 180× 180 and 60× 60
respectively. The measurement locations are shown in Figure 4.1(a). For the prior mean
of Y = lnK we select the natural logarithm of the initial guess used in [32]. Note from
Figure 4.1 (b), that the true conductivity is geometrically anisotropic and therefore, the
omnidirectional semivariogram is poor prior knowledge of the truth. It is the purpose of
this example to illustrate the efficiency of our method when limited information is provided.
The covariance associated with the variogram model fitted to the experimental semivari-
ogram as well as other pertinent information are displayed in Table 4.1. In Experiment IA
and IB we follow [32] and test the scheme for two different signals-to-noise ratios (SNR).
The estimated results are displayed in Figure 4.1 (c)(d) where a good agreement to the
true log hydraulic conductivity is obtained. Figure 4.1(e) shows the true and estimated
hydraulic conductivity fields projected along the phantom shown in Figure 4.1(a) (dotted
red line). Convergence history for IA and IB are displayed in Table 4.2. Note that for
smaller (SNR), the IRBS provides smaller error in the computed parameter. In contrast
to the work in [32] where the hydraulic conductivity K is identified, in our approach the
estimation is performed for Y = lnK. Although the latter approach imposes a stronger
nonlinearity in the abstract formulation, the implementation does not require modification
when negative values of the parameter occur. This may become an advantage in problems
(see Experiment III) where the true parameter changes by several orders of magnitude, and
further modifications may be detrimental to the quality of the identification.

We remark that the measurement data is assimilated only from the measurement
locations. Unlike the standard parameter identification approaches, there is no need to
interpolate the entire field of the state variable. Moreover, [32] reported that, when the pa-
rameter identification problem is posed with a finite-dimensional measurement space, their
method becomes considerably less efficient. On the other hand, the IRBS convergence is
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Table 4.1: Information for data assimilation. Experiment I.
Experiment IA IB
# of Measurement Locations 18 18
τ 1.5 1.5
ητ [m] 11.4551 1.1455
ση [m] 1.8 0.18
Y [lnm/day] ln 20 ln 20
CY (ξ, ξ′) [ln(m/day)]2 2.2 exp

[
− ||ξ−ξ′||

1km

]
2.2 exp

[
− ||ξ−ξ′||

1km

]

signal-to-noise ratio (SNR) 102.27 1034

achieved in a few iterations with satisfactory results. Such behavior should not be surprising
since the present approach takes into account prior information.

Table 4.2: Numerical Results. Experiment I.
Experiment IA Experiment IB

n ||Y n−1 − Ytrue||l2 ||dη − L(pn
F )|| ||Y n−1 − Ytrue||l2 ||dη − L(pn

F )||
1 178.9116 409.9119 178.9116 410.4575
2 114.0224 125.5916 116.4194 124.7171
3 81.7970 27.4934 83.2218 24.8984
4 70.4071 3.7471 69.2700 2.4368
5 — — 67.8318 0.0685

4.2.7 Single-phase Darcy flow through porous media

We now study the reservoir model described by (3.1).

Experiment II.

In Experiment II we are interested in determining the efficiency for the estimation of the log
permeability Y = ln K from pressure data collected at different configurations. The true log
permeability (Figure 4.2 (a)) is generated stochastically with the routine SGSIM [17]. Table
4.3 shows the reservoir properties and Table 4.4 presents prior error information. Table
4.5 provides the corresponding information for each run whose corresponding estimations
are presented in 4.2 (b)-(f). For experiments IIB, IIC and IID, the observation wells are
equally spaced over the domain but they do not coincide with either the injection or the
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(d) Experiment IB
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Figure 4.1: Experiment I. Top Left: Aquifer Configuration (observation wells are indicated
by ∗). Top Right and Middle: log hydraulic conductivity fields [ln (m/days)]. Bottom:
Hydraulic conductivity [m/days] fields projected over the phantom
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production wells. For experiments IIA and IIE measurements are collected at the injection
and production wells. It comes as no surprise that the quality of the reconstruction depends
on the number of measurements available. However, the measurement locations also affects
the final outcome. It is also worth mentioning that the best estimate of log permeability was
obtained with Experiment IIE which corresponds to the configuration of maximum number
of observation wells. Additionally, convergence is achieved within the first five iterations for
all the different configurations. Clearly, non uniqueness is always evident since for a small
number of observations, there are many possible parameters that will fit the data

Table 4.3: Reservoir description. Experiment II and Experiment III.
Experiment II III
Dimension ft3 2000× 2000× 2 2000× 4000× 2
Grid Blocks (for synthetic data) 180× 180× 1 60× 220× 1
Grid Blocks (for IRBS) 60× 60× 1 60× 110× 1
Time interval [0, T ] (days) [0,1] [0,1]
Time discretization dt (days) 0.01 0.01
Porosity 0.2 0.2
Water compressibility (psi−1) 3.1e-6 3.1e-6
Rock compressibility (psi−1) 1.0e-6 1.0e-6
Water viscosity (cp) 0.3 0.3
Initial pressure (psi) 5000 10000
Number Injection Wells 2 4
Number Production Wells 6 5
Shut-in Time ts (day) 0.75 0.75
a Injection rate (stb/day) 2500 1000
a Production rate (stb/day) 833.33 1000

a Rate per well in the interval [0, ts].

Table 4.4: Prior error information for Experiment II.
τ 2.0
ση [psi] 5.0
Y [lnmd] 196.42
CY (ξ, ξ′) [ln(md)]2 0.95 exp

[
− ||ξ−ξ′||

400ft

]

ση [psi] 5.0
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(b) Experiment IIA
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(c) Experiment IIB
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(d) Experiment IIC
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(e) Experiment IID
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(f) Experiment IIE

Figure 4.2: Experiment II. Log permeability fields [lnmd]
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Table 4.5: Numerical Results. Experiment II.
Configuration IIA IIB IIC IID IIE
# Measu. Loc. 8 16 25 36 8
# of Meas. Times 1 1 1 1 2
τη [psi] 28.28 40.00 50.00 60.00 40.00
a,b||Ytrue − Y ∗||l2 [ln(md)] 68.74 63.75 58.08 47.27 59.84
Iterations 5 3 4 4 6

a Y ∗ ≡ limY n.
b ||Y − Ytrue||l2 = 79.19

Experiment III. Spe Model.

In Experiment III we are interested in the estimation of a more realistic permeability field.
The true permeability (Figure 6.13 (a)) is taken from the third layer of the absolute per-
meability data for the 10th SPE comparative project [33]. One of the interesting aspects of
this permeability is that it has a variability of several orders of magnitude (10−3md-104md).
A heterogeneous field of this type is challenging even for the direct simulation of reservoir
models. Any inverse approach that attempts its reconstruction should be robust enough
to manage, not only the number of degrees of freedom, but also its lack of regularity. We
test the methodology with the forward model given by (3.1), for the estimation of the per-
meability from synthetic data (pressure). Measurements are collected at the injection and
production wells, as wells as two additional observation wells. Table 4.3 show the reservoir
description and Table 4.6 presents the information for the assimilation experiments. Figure
4.4 (a) and 4.4 (b) show the convergence history for both experiments. From Figure 6.13 (a)
it is clear that the true log permeability is anisotropic. Although the isotropic covariance is
only poor prior knowledge of the spatial variability, the estimated log permeability Figure
6.13 (b) capture some of the main characteristics of the true log permeability field. In Ex-
periment IIIB we select, by inspection, a different error covariance function that reflects the
higher spatial correlation in the x direction. According to definition of noise level (Section
4.2.5), both experiments have the same stopping threshold. In fact, from Figure 4.4 (b)
it can be observed that data has been fitted with about the same accuracy. However, in
Experiment IIIB, an improved estimation is achieved (Figure 4.4 (a)) because we considered
“better” prior knowledge (correlation lengths) than in Experiment IIIA.
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Table 4.6: Data Assimilation Information. Experiment IIIA and IIIB.
Experiment IIIA IIIB

# of Measurement Locations 12 12
# of Measurement Times 2 2

τ 2.0 2.0
τη [psi] 73.485 73.485
ση [psi)] 7.5 7.5
Y [lnmd] 24.85 24.85

aCY (ξ, ξ′) [lnmd]2 3.2 exp
[
− ||ξ−ξ′||

500ft

]
3.2 exp

[
−

√
|x−x′|2
(286ft)2

+ |y−y′|2
(160ft)2

]a

a ξ = (x, y)
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(c) Experiment IIIB

Figure 4.3: Experiment III. Log permeabilities [lnmd].
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Chapter 5

The IRBS with geological

constraints

In Chapter 4 we evaluated the efficiency of the IRBS for the estimation of absolute perme-
ability in single-phase Darcy flow through porous media. The mean and the error covariance
was the a priori information that we used in the implementation of the IRBS. Even when
poor prior information was considered, the experiments of Chapter 4 show that the IRBS
provides an acceptable reconstruction of permeability field. However, as we pointed in
Chapter 1, any inversion technique must allow incorporation of any additional geological
constraints. In this chapter we test the IRBS under geological constraints described by
two-point statistics. Since the IRBS is a variational technique, we use Karhunen-Loeve
(KL) expansions to parameterize the petrophisical properties of the reservoir. Finally, since
the KL expansion has already been applied [60] for gradient-based history-matching tech-
niques, we conduct a comparison of the IRBS-KL with a gradient-based approach whose
optimization is performed with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.

5.1 Parametrization by K-L expansions

In this section we discuss some of the key ideas in K-L expansions. For additional technical
details we refer the reader to [62, 34]. Let us consider a covariance operator C defined on
a Hilbert space H. Formally, when the covariance is a compact self-adjoint operator, the
spectral theorem ensures the existence of an orthonormal basis {vα}α∈I of H, such that
each vα is an eigenvector of C. Additionally, for every z ∈ H the following relation holds

C(z) =
∑

α∈I
λα < vα, z > vα (5.1)
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where λα is the eigenvalue of the corresponding eigenvector vα. In the context of Chapter 4,
the covariance is an integral operator on a functional space for which the previous expression
becomes,

C(x, y) =
∞∑

i=1

λivi(x)vi(y) (5.2)

and each vi is the solution of the following integral equation of the second kind
∫

Ω
C(y, x)vi(x)dx = λivi(y). (5.3)

With the previous considerations, it can be shown that a random field Y with mean Y and
covariance C can be expressed as

Y (x) = Y (x) +
∞∑

i

√
λiξivi(x), (5.4)

where {ξi}∞i=1 is a family of uncorrelated random variables. Expression (5.4), usually referred
to as the K-L expansion of Y , provides a parametrization of the random field Y in terms
of {ξi}∞i=1, and deterministic variables vi and λi. From (5.2)-(5.4) is easy to see that the
problem of finding the K-L expansions of a random field can be posed as a problem of
finding the eigenvalues of the covariance operator.

In reservoir modeling applications, (5.4) can be used to characterized uncertain
petrophysical properties with given two-point statistics. This may become more evident
if we consider the discrete case for which (5.4) becomes

w = w + V D1/2ξ, (5.5)

where V and D are the matrices of eigenvectors and eigenvalues of the covariance matrix
C. Therefore, once the eigenvalue decomposition is performed, a direct multiplication by
an uncorrelated random vector will produce a realization w with mean w and covariance
C. Unfortunately, solving the eigenvalue problem may become computationally prohibitive
since C has dimensions N × N where N is the number of grid blocks used to describe
the reservoir. Additionally, in reservoir modeling the petrophysical information may be
available from training images based on geological information such as the depositional
environment of the reservoir. Therefore, the functional relation of the covariance may not
be available. On the other hand, either from a covariance or a training image we can
always obtain equally probable stochastic realizations of the petrophysical properties of the
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reservoir. Therefore, it has been suggested [59] to work in the general framework of using
the covariance of a sample of stochastic realizations generated with the provided geological
information. In the following lines we describe the standard procedure to find the K-L
expansions when the covariance is computed from a sample.

Assume that we are given Nr (zero mean) centered realizations {wj}Nr
j=1 of the petro-

physical property w. Suppose that Nr < N and define the covariance of the sample by

C =
1

Nr

Nr∑

j=1

wjw
T
j . (5.6)

By construction C cannot have more than Nr − 1 nonzero eigenvalues. Let Nd be the
number of nonzero eigenvalues. Let us define D̃ the matrix of nonzero eigenvalues of C

sorted in ascending order and Ṽ be the corresponding matrix of eigenvectors. From (5.4)
is easy to see that zero eigenvalues are irrelevant for the parametrization of w in terms of
ξ. In fact, after a possible rearrangement of (5.4) the corresponding parametrization of w

is given by

w = w + Ṽ D̃1/2ξ, (5.7)

for ξ ∈ RNd . Furthermore, any eigenvector of C with nonzero eigenvalue must lie in the
subspace generated by {wj}Nr

j=1. From this observation, it can be shown [62] that problem
(5.3), for the discretized case and for nonzero eigenvalues, is equivalent to solve

Pu = Nrλu, (5.8)

where P is the Nr ×Nr kernel matrix defined by

Pi,j = wT
i wj . (5.9)

Since typically Nr << N , there is an exceptional computational savings in solving (5.8)
instead of the eigenvalue problem for C. Then, after solving (5.8) it is straightforward to
find Ṽ and D̃ respectively. Moreover, it is also possible to conduct additional reductions by
keeping only NKL < Nd eigenvectors in Ṽ corresponding to the highest eigenvalues. These
eigenvectors, also called principal components, may retain enough information of the spatial
variability of the petrophysical property consistent with the covariance C. This reduction,
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in the abstract setting can be written as a truncation of (5.4), i.e,

Y (x) = Y (x) +
NKL∑

i

√
λiξivi(x). (5.10)

Convergence results and other mathematical considerations with (5.10) can be found in [34].

5.2 The IRBS with K-L parametrization

Given prior geological information of the absolute permeability of a reservoir, in this section
we apply the IRBS for the permeability estimation given production data from a single-phase
simulator. The methodology follows the same steps as in the previous chapter. However,
we incorporate the KL expansions so that the identification is performed for ξ in (5.10).
The IRBS with KL parametrization can be implemented with

Algorithm 2 (IRBS-KL). Assume we are given the prior mean of the petrophysical prop-
erty Y 0 = Y as well as the prior error covariance CY . Suppose Y has a parametrization
(5.4) in terms of K-L expansions.

(1) Compute the spectral decomposition of CY .

(2) Determine NKL such that the first NKL eigenvalues retains enough information pro-
vided by CY (i.e., that Y can be described with (5.10)) .

(3) Set ξ0 = 0 (equivalently Y 0 = Y ). For n=1,. . .

[3.1] We compute pn
F , the solution to the forward model

G(ξn−1, pn
F ) ≡




∂pn
F

∂t −∇ · eY (ξn−1)∇pn
F − f

−eY (ξn−1)∇pn
F · n−BN

pn
F (x, 0)− I(x)

Y (ξn−1)− Y −∑NKL
i

√
λiξ

n−1
i vi(x)




= 0 (5.11)

[3.2] If ||dη − L(pn
F )|| ≤ τη, stop. Output: Y (ξn−1).

[3.3] Solve

Qn[ξ, p, λ] = [d− L(p)]T C−1
η [d− L(p)]

+
∫

Ω

∫

Ω
[Y (ξ(x))− Y (ξn−1(x))]CY (x, z)[Y (ξ(z))− Y (ξn−1(z))]

+
∫

Ω

∫ T

0
λLG(p, Y (ξ)) → min, (5.12)
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where

LG(p, ξ) ≡




c∂p
∂t −∇ · (eY (ξn−1)∇p)−∇ ·

[
DξY (ξn−1)[ξ − ξn−1]eY (ξn−1)∇pn

F

]
− f

(eY (ξn−1)∇p · n + DξY (ξn−1)[ξ − ξn−1]eY (ξn−1)∇pn
F · n)|ΓN

−BN

p|t=0 − I


 = 0

(5.13)

and

DξY (ξn−1)[ξ − ξn−1] =
NKL∑

i

√
λivi(x)[ξ − ξn−1]. (5.14)

5.2.1 Some Remarks on the IRBS-KL

We now discuss some interesting and useful aspects of Algorithm 2. First, we note that
constraint (5.14) can be incorporated directly in (5.12) without the need of an additional
adjoint. Second, the representer method can be used to solve the E-L equations resulting
from (5.12). It follows trivially that (4.42) must be replaced with

γn
m(x) = −

Nkl∑

i=1

∫ T

0

∫

Ω
λivi(x)vi(y)∇αn

m(x′, t) · eY (ξn−1(x′))∇pn
F (x′, t) dt dx′. (5.15)

where now γn
m corresponds to the representer expansion of ξ, i.e.

ξn = ξn−1 +
M∑

m=1

βn
mγn

m. (5.16)

Furthermore, we observe that the minimization of (5.12) is conducted for ξ instead of Y .
Then, in order to understand the regularizing effect of the IRBS, we study the second term
in the right hand side of (5.12). From (5.11) note that

∫

Ω

∫

Ω
[Y (ξ(x))− Y (ξn−1(x))]CY (x, z)[Y (ξ(z))− Y (ξn−1(z))]

=
NKL∑

i,j

∫

Ω

∫

Ω

√
λj

√
λi[ξi − ξn−1

i ][ξi(z)− ξn−1
i (z)]vi(x)vj(z)

=
NKL∑

i,j

∫

Ω

∫

Ω
λi[ξi − ξn−1

i ]2 = ||ξ − ξn−1||L2(Ω) (5.17)
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where we have used the fact that {vi}NKL
i=1 is orthonormal. Then, (5.17) states that the

identification on ξ penalizes only the L2-norm of ξ and therefore no regularity is insured.
Then, any regularity on Y is now obtained by the KL parametrization. This statement
should have some implications in the identification of parameters with IRBS-KL as we
will point out in the following section. Finally, we recall from the previous chapter that
the IRBS is data driven in the sense that convergence is controlled by the misfit between
the observations and model predictions computed at each iteration (||dη − L(pn

F )). More
precisely (see Theorem (3)), convergence is achieved when ||dη − L(pn

F ) ≤ τη. Therefore,
changing the parametrization of the identified variables does not affect the implementation
of the stopping rule. However, from Theorem 3 and (2) it is clear that the parametrization
will affect the radius and speed of convergence of the IRBS.

5.2.2 A Numerical Example

Let us consider the anisotropic “true permeability” of Figure 5.3 (A). This stochastic field
was generated with SGSIM, assuming an exponential variogram with a maximum range of
continuity in the north-east direction. The corresponding covariance can be obtained by
the following relation

CY (h) = C exp
−h′

a
, (5.18)

where h = (x, y), a is the range in the north-east direction and h′ = Ah with

A =

[
cos(π/4) sin(π/4)
r sin(π/4) r cos(π/4)

]
. (5.19)

In (5.17), r = a/amin is the anisotropic ratio which for this experiment we chose r = 10. In
Experiment IV-A, we apply the IRBS as in the previous chapter with the covariance given
by (5.18) and without any parametrization. The reservoir description is displayed in Table
5.1 and convergence is shown in Table 5.2. The corresponding reconstruction is presented
in Figure 5.3 (b). Note that the IRBS has produced a remarkable estimation since the
major heterogeneities have been recovered. However, the estimated field is smoother than
the “true permeability” that we attempted to reproduce. This is not surprising when we
observe that (5.18) is used in the right hand side of (4.34). Formally, Y (x) will inherit the
regularity of CY (x, z), which from (5.18) is C1 in {x ∈ R2−{z = x}}. Therefore, we expect
Y to be at least continuous as we indeed confirm by looking at Figure 5.3(b).

We now apply the IRBS with the K-L parametrization presented in the previous
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Table 5.1: Reservoir description. Experiments IV(A)-IV(C)
Dimension ft3 800× 800× 10 Water viscosity (cp) 0.3
Grid Blocks (for IRBS) 80× 80× 1 Initial pressure (psi) 5000
Time interval [0, T ] (days) [0,1] Number Injection Wells 6
Time discretization dt (days) 0.01 Number Production Wells 2
Porosity 0.2 Shut-in Time ts (day) 0.75
Water compressibility (psi−1) 3.1e-6 a Injection rate (stb/day) 833.33
Rock compressibility (psi−1) 1.0e-6 a Production rate (stb/day) 1200

a Rate per well in the interval [0, ts].

section. With SGSIM we generate 180 unconditional stochastic realizations consistent with
(5.18). Some of those realizations are presented in Figure (5.1). From a geological point of
view, those fields are equally probable permeabilities consistent with the geology, which in
this case, is given by covariance (5.18) and a prior mean Y = log(450md). It is now the
goal of the IRBS-KL to find among all those possible fields, one that produces the best fit
to the production data in the sense of Definition ??.

We start Algorithm 2 by computing the kernel eigenvalue decomposition (5.8) of
the sample covariance defined in (5.6), also denoted by CY . In Figure 5.2(a) we present
a stochastic field generated with parametrization (5.7). Note that this field has the same
structure as those of Figure 5.1 and so it is indeed a good parametrization of the underlying
heterogeneities. Figures 5.2(b)-(d) show the same field but generated with only some of
the highest eigenvectors of CY . It can be observed that 50% (NKL = 90) of the highest
eigenvalues is enough to retain the spatial structure. Therefore, in Experiment IV(B) we use
parametrization (5.7) for the first 90 eigenvalues of CY and we repeat Experiment IV(A)
but now using IRBS as we indicated in Algorithm 2. In Figure 5.3 (c) we present the
estimated permeability field. Note that this estimation satisfies the geological constraints
imposed by the prior error covariance. In Table 5.2 the convergence history for Experiment
IV(B) is displayed. Since the number of measurements is the same, the stopping threshold
is also the same for both experiments IV(A) and IV(B) (see Section 4.2.5). However, as
we pointed out earlier, convergence is slower in the IRBS-KL because the parametrization
affects the rate of convergence. However, as we expected the IRBS-KL produces a bigger
reduction of the error in the permeability field.
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(c) Realization 3
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(e) Realization 5
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(f) Realization 6

Figure 5.1: Experiment IV. Some stochastic realizations generated for the application of
the IRBS-KL

Table 5.2: Numerical Results. Experiment IV.
Experiment IVa Experiment IVb

n ||Y n−1 − Ytrue||l2 ||dη − L(pn
F )|| ||Y n−1 − Ytrue||l2 ||dη − L(pn

F )||
1 67.7438 0.3280e3 67.7438 1.2176e3
2 67.8908 1.8866e3 91.5568 8.7531e3
3 85.0330 0.5446e3 59.6032 2.9214e3
4 53.5765 0.1449e3 43.2175 0.8300e3
5 48.8545 0.0246e3 38.4377 0.1539e3
6 — — 37.9704 0.0138e3
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(c) 50%
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(d) 30%

Figure 5.2: Example of a field generated with KL expansions, retaining some percentage
of the highest eigenvalues values
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(b) IRBS
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(c) IRBS with KL
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(d) Gradient Based (BFGS)

Figure 5.3: Experiment IV. Permeability Fields.
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5.3 The IRBS vs. a standard Gradient-Based Technique

As we study in the previous section, the parametrization by KL expansions (5.4) not only
provides computational savings but also ensure geological consistency (two-point statistics)
of the estimated field. Additionally, we showed that the KL expansions can be incorporated
to the IRBS because (5.4) is a differentiable operator (see equation (5.14)). Therefore, the
KL parametrization can be applied to any gradient-based history matching approach. In
this section we study the implementation of the standard variational approach for history
matching with geological constraints. We use the single phase simulator of Chapter 4 and
the same reservoir of Experiment IV(A).

5.3.1 The standard Variational Approach

We now address the “parameter estimation” problem with the standard variational approach
[28]. For the model of Chapter 4, this formulation is posed by the minimization of

J = [d− L(p)]T C−1[d− L(p)] +
∫

Ω

∫

Ω
[Y − Y ]CY [Y − Y ] → min (5.20)

subject to

G(p, Y ) ≡




c∂p
∂t −∇ · (eY∇p)− f

−eY∇p · n + BN

p|t=0 − I


 = 0 (5.21)

where d is the vector of pressure measurements with covariance matrix C, L is the corre-
sponding linear functional applied to the p computed from (5.21). When Y and d follows a
Gaussian distribution with prior error covariance CY and C respectively, then (5.20) can be
derived from a Bayesian formulation [28]. In that case, (5.20) is equivalent to maximizing
the conditional joint probability density function f(p, Y |d). If the forward model (5.21)
were linear (in (p, Y )), then “the” solution to (5.20) would be the (most probable) maxi-
mum a posteriori estimate of Y . However, since the constraint G is nonlinear, the solution
to (5.20) may not be unique and therefore the concept of “most probable” estimate does
not apply. Nevertheless, the estimation problem, with the standard variational approach,
for the nonlinear case, is to find a local minimum of J .
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5.3.2 A gradient-based algorithm

Among the several techniques that can be used to minimize J , the BFGS method has
received special attention since it does not involves the computation of the Hessian of J .
Although we are considering a toy problem for which any other technique may be suitable,
we use the BFGS to find a solution of (5.20). The BFGS method involves the computation
of the derivative of J with respect Y which required the adjoint of G. It is not difficult to
see that

∂J

∂ξ
(p, λ, ξ)[δξ] =

∫

Ω

∫

Ω
[Y (x)− Y (x)]CY (x, z)DξY δξ(z) +

∫ T

0

∫

Ω
∇λ · eY∇pDξY δξ (5.22)

where λ is the solution to

− ∂λ

∂t
−∇ · (eY∇λ) = (d− L(p))C−1H in Ω× (0, T ], (5.23)

eY∇λ · n = 0 on ΓN × (0, T ], (5.24)

λ = 0 in Ω× {T}. (5.25)

Here H = [H1 . . . , Hm] and each Hm is defined by (4.3). In (5.22) we allow for some
differentiable parametrization Y = Y (ξ) for ξ ∈ L2(Ω). The standard variational approach
with the BFGS is summarized in the following

Algorithm 3 (Standard Variational Approach with BFGS). Given a priori mean
ξ = 0, (Y ), prior error covariances CY and C. For n = 1, . . .

(1) Start with Hn−1 = H0 an approximation to the Hessian of J

(2) Determine a direction of descent δξ by solving

〈Hn−1δξ, δ̃ξ〉L2(Ω) = −∂J

∂ξ
(pn−1, λn−1, ξn−1)[δ̃ξ] (5.26)

for all δ̃ξ ∈ L2(Ω).

(3) Perform a line search to find ξn = ξn−1 + αδξ where α is chosen so that the strong
Wolfe conditions are satisfied.

(4) Compute pn, λn and ∂J
∂ξ (pn, λn, ξn) from (5.21), (5.23) and (5.22) respectively. If

||∂J
∂ξ ||L2(Ω) ≤ θ, stop. Output: ξn.
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(5) Define the new Hessian approximation by

Hnv = Hn−1v + A
un

||un||L2(Ω)

〈 un

||un||L2(Ω)
, v

〉
L2(Ω)

+B
Hn−1sn

||Hn−1sn||L2(Ω)

〈 Hn−1sn

||Hn−1sn||L2(Ω)
, v

〉
L2(Ω)

(5.27)

where

un =
∂J

∂ξ
(pn−1, λn−1, ξn−1)− ∂J

∂ξ
(pn, λn, ξn) sn = Y n − Y n−1 (5.28)

and

A =
||un||2L2(Ω)

〈un, sn〉L2(Ω)
B =

||Hn−1s
n||2L2(Ω)

〈un,Hn−1sn〉L2(Ω)
(5.29)

5.3.3 Remarks on Algorithm 3

We now remark some points with respect to Algorithm 3

(1) Algorithm (3) is an iterative scheme that finds a local minimum of J constrained to
the nonlinear equation (5.21). In contrast, on each iteration of the IRBS we solve a
cost functional Jn constrained to the linearization of (5.21).

(2) After convergence the BFGS finds [p, λ, ξ] that solves the nonlinear E-L equations
associated with (5.20). In other words, BFGS finds a solution to

∂J

∂ξ
= 0. (5.30)

On the other hand, the IRBS finds a solution to the PIP in the sense of Definition
(??) which does not explicitly involve the minimization of a functional.

(3) The BFGS is stopped when ∂J
∂ξ is sufficiently small. The IRBS is terminated when

the data misfit is small.

5.3.4 Numerical Comparison

To further observe the difference of the IRBS and the standard approach with BFGS we
conduct Experiment IV(c) with the same reservoir whose (true) permeability is shown in
Figure 5.3(a). The estimation has been conducted with Algorithm 3. At the discretized
level, instead of using the approximation to the Hessian operator we use the following
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expression

H−1
n =

[
I − unsT

n

uT
nsn

]
H−1

n−1

[
I − unsT

n

uT
nsn

]
+

snsT
n

uT
nsn

(5.31)

where un and sn are the discretized versions of (5.28). For the line search of step (3), we
implemented a back tracking algorithm that uses quadratic interpolation for the fulfillment
of the strong Wolfe conditions. We selected an stopping threshold θ = 1e − 3 and an
initial approximation to the inverse of the Hessian H−1

o = 1e − 3I. We will come back
to this point in the next paragraph. The BFGS takes 120 iterations to converge (see
Figure 5.4) and it requires 1200 forward model evaluations. In Figure 5.3(d) we present the
estimated permeability field. After convergence the BFGS produces a field with an error
of ||Ytrue − YBFGS ||l2 = 39.02. A direct comparison shows that the IRBS generates a field
(Experiment IV(b)) with slightly better accuracy (||Ytrue − YBFGS ||l2 = 37.83. However,
the IRBS required 6 iterations which accounts for 300 forward model evaluations. While
the accuracy is equivalent, the IRBS performance is four times faster than the standard
approach with BFGS.
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Chapter 6

The IRBS for data inversion in

two-phase flow through porous

media

In this chapter we describe the application of the IRBS for the identification of petrophysical
properties in an oil-water reservoir. In Section 6.1 we introduce the forward model of
interest and in Section 6.2 we define the measurement process for the inverse problem.
The application of the IRBS is presented in Section 6.3. Some technical aspects of the
implementation are provided in Section 6.4. In Section 6.5 we present two experiments
for the estimation of petrophysical properties in this application. Finally, in Section 6.6 we
propose an ad-hoc sequential implementation suitable for a closed-loop approach. Numerical
results for a benchmark are obtained, and a comparison with the EnKF is provided.

6.1 The Forward Model

We consider the immiscible displacement of two-phase slightly compressible flow through a
porous medium. Let us denote by α = w (α = o) the corresponding wetting phase (non-
wetting phase). We suppose that there are NI injection wells and NP production wells
whose locations within the reservoir are {xl

I}NI
l=1 and {xl

P }NP
l=1 respectively. Moreover, it

is assumed that only the wetting phase is injected at a specified rate denoted by Qw. In
addition, the production rate for each phase is denoted by qα and we impose the condition
that the corresponding production wells are operated under specified bottom hole pressure.
The porosity and the absolute permeability of the reservoir are denoted by φ and K where
the latter is considered isotropic (with respect to the flow direction), and the former is
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assumed to satisfy the following relation

φ = φr[1 + cr(p− pr)] (6.1)

where φr is the porosity at pressure pr and cr is the (constant) rock compressibility. Let sα

and ρα be the saturation and the density of the α-phase respectively. In this analysis we
assume that ρα is given by

ρα = ρr
α[1 + cα(p− pr)] (6.2)

where ρr
α is the density at pressure pr and cα is the (constant) compressibility of the α-phase.

With these assumptions, the model equations can be written as

∂

∂t
(φραsα) +∇ · (ραuα) = ρα

NP∑

l=1

ql
αδ(x− xl

P ) + ρα

NI∑

l=1

Ql
αδ(x− xl

I) (6.3)

where the flux for each phase is given by Darcy’s law

uα = −krα

µα
K∇p. (6.4)

In (6.4), krα denotes the relative permeability, µα the viscosity and p is the pressure. In
equation (6.4), capillarity is neglected and so p is the field pressure for both phases. The
mobility for each phase and the total mobility are defined by

λα ≡ krα

µα
. (6.5)

and

λ ≡ λw + λo. (6.6)

respectively. For the injection/production rates we use Peaceman’s well model [54]

ql
α(t) ≡ ωl

P λαK[P l
bh − p], (6.7)

Ql
w(t) ≡ ωl

IλK[pl
bh − p], (6.8)

where the well index is defined by

wl
ξ =

2π∆Lξ,l

ln(r(ξ,l)
e /r

(ξ,l)
w )

(6.9)
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for ξ = {I, P}. In expression (6.1), ∆Lξ,l denotes the length of a gridblock containing the
lth injection(ξ = I) /production (ξ = P ) well. rξ,l

e and rξ,l
w denote the equivalent and the

well radius respectively. In definitions (6.7) and (6.8), K, λ, λα and p are evaluated at
the gridblock containing the corresponding well. However, for the sake of clarity in the
subsequent analysis the notation of this evaluation will be omitted.

We now assume both phases fill the porous medium and so

sw + so = 1. (6.10)

Expanding the first two terms in (6.3), using (6.1)-(6.2), dividing by ρα and considering
that crφr ≈ crφ and c2

r ≈ 0, we obtain

φ(cr + cα)sα
∂p

∂t
+ φ

∂sα

∂t
+∇ · uα =

Np∑

l=1

ql
αδ(x− xl

P ) +
NI∑

l=1

Ql
αδ(x− xl

I). (6.11)

Adding (6.11) for both phases and using (6.10) we find

φc(sw)
∂p

∂t
+∇ · u =

Np∑

l=1

qlδ(x− xl
P ) +

NI∑

l=1

Ql
wδ(x− xl

I), (6.12)

where we have defined

c(sw) ≡ (cr + cwsw + co(1− sw)), (6.13)

ql ≡ ql
w + ql

o, (6.14)

u ≡ uw + uo. (6.15)

Note from (6.4)-(6.5) and (6.15) that

uw = fwu, (6.16)

u = −λK∇p, (6.17)

where the fractional flow is given by

fw ≡ λw

λ
. (6.18)
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Similarly we find that

ql = ql
w + ql

o = ωl
P λK[P l

bh − p] (6.19)

and so

qw =
λw

λ
q = fwq. (6.20)

With (6.16) and (6.20) we rewrite equation (6.11), for α = w, as

φ(cr + cw)sw
∂p

∂t
+ φ

∂sw

∂t
+∇ · fwu =

Np∑

l=1

fwqlδ(x− xl
P ) +

NI∑

l=1

Ql
wδ(x− xl

I). (6.21)

Additionally, for simplicity, Neumann boundary conditions are provided

u · n = B (6.22)

as well as initial conditions for pressure and water saturation

p(0, x) = p0, sw(0, x) = s0. (6.23)

Finally, for each phase α, we assume that the relative permeability kr,α is a function of the
phase saturation parameterized by

krw = aw

[ sw − siw

1− siw − sor

]θw

, (6.24)

kro = ao

[ 1− sw − sor

1− siw − sor

]θo

. (6.25)

Since only sw will be considered for the model equations, from now on the subscript will
be omitted. Then, from (6.12), (6.21), (6.7)-(6.8) and (6.17)-(6.19) we define the nonlinear
operator G ≡ [G, Gw, U, {W l

q}NP
l=1, {W l

Q}NI
l=1, F ] where

G ≡ φc(s)∂p
∂t +∇ · u−∑Np

l=1 qlδ(x− xl
P )−∑NI

l=1 Qlδ(x− xl
I),

Gw ≡ φ(cr + cw)s∂p
∂t + φ∂s

∂t +∇ · fwu−∑Np

l=1 fwqlδ(x− xl
P )−∑NI

l=1 Qlδ(x− xl
I),(6.26)
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U ≡ u + λeY∇p,

W l
q ≡ ql − ωl

P Kλ[P l
bh − p(xl

P )],

W l
Q ≡ Ql − ωl

IKλ[pl
bh − p(xl

I)],

F = fw(s)− λw
λ . (6.27)

For the inverse problem we suppose that the following parameters are given:

cα, cr, siw, sor, aw, ao, {Ql}NI
l=1, {P l

bh}NP
l=1, ω

l
I , ω

l
P , (6.28)

and the uncertain parameters are

P ≡ [
Y = log(K), φr, θw, θo

]
. (6.29)

Therefore, if we define the vector of state variables

S ≡ [
s, p,u, ql, pl

bh

]
, (6.30)

the forward model can be written as

G(P,S) = 0. (6.31)

6.2 Data and Measurement Functionals

We now discuss different type of measurements that will be assimilated with the IRBS.

1) Injection Wells. For the l-th injection well, l ∈ {1, . . . , NI}, we assume the bottom-
hole pressure (BHP) is measured at M l

I measurement times denoted by {tl,mI }M l
I

m=1.
The vector of measurements is denoted by

dl
I ≡

[
dl,1

I , . . . , d
l,M l

I
I

]T
, l ∈ {1, . . . , NI}, (6.32)

and the associated measurement functional on pl
bh (6.8) is defined by

Ll,m
I (pl

bh) ≡
∫ T

0
pl

bh(t)δ(t− tl,mI ). (6.33)

Then, we define

Ll
I ≡

[
Ll,1

I (pl
bh), . . . ,Ll,M l

I
I (pl

bh)
]T

, l ∈ {1, . . . , NI}. (6.34)
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2) Production Wells. For the l-th production well, l ∈ {1, . . . , Np}, we may consider
measurements of the total flow rate as well as the fractional flow. Let M l

P be the

number of measurement times denoted by {tl,mP }M l
P

m=1. In this case, the vector of
measurements is defined by

dl
p ≡

[
dl,1

p , . . . , d
l,M l

P
p

]T
, l ∈ {1, . . . , NP }. (6.35)

Furthermore, we consider a measurement functional defined by

Ll,m
P (ql, fw(xl

P , t))(t) =
∫ T

0
[aql(t) + bfw(xl

P , t)]δ(t− tl,mP ) (6.36)

for a, b ∈ {0, 1}. We also define

Ll
p ≡

[
Ll,1

p (ql, fw(xl
P , t)), . . . ,Ll,M l

p
p (ql, fw(xl

P , t))
]T

, l ∈ {1, . . . , Np}. (6.37)

3) Observation Wells. We finally consider observational pressure wells whose locations
are denoted by {xl

o}No
l=1. For the l-th pressure-observation well, l ∈ {1, . . . , No}, we

assume there are M l
o measurement times denoted by tl,mo . The following variables are

defined

dl
o =

[
dl,1

o , . . . , dl,M l
o

o

]T
, l ∈ {1, . . . , No}, (6.38)

Ll,m
o (p)(t) =

∫

Ω

∫ T

0
p(x, t)δ(t− tl,mo )δ(x− xl,m

o ), (6.39)

Ll
o =

[
Ll,1

o (p), . . . ,Ll,M l
o

o (p)
]T

, l ∈ {1, . . . , No}. (6.40)

In general, for any index χ ∈ {p, I, o}, the vector of observations can be written as

dl
χ =

[
dl,1

χ , . . . , d
l,M l

χ
o

]T
, l ∈ {1, . . . , Nχ}, (6.41)
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and a similar relation holds for Ll
χ. Then, let us define vectors

dχ =




d1
χ
...

dNχ
χ


 , Lχ =




L1
χ
...

LNχ
χ


 (6.42)

of dimension
∑Nχ

l=1 M l
χ. In addition, for each type of measurement χ ∈ {p, I, o}, at well

l ∈ {1, . . . , Nχ}, we assume that the set of measurements dl
χ = {dl,m

χ }M l
χ

m=1 has an error
covariance matrix denoted by Cχ,l. Finally, we define

d =




dp

dI

do


 , L =




Lp

LI

Lo


 . (6.43)

6.3 The IRBS for Two-Phase flow

For the forward model defined in (6.31) and the assimilation information described above,
we now present the IRBS for the identification of P.

Algorithm 4 (IRBS for Two-Phase flow). We start with an initial guess P, as well as the
corresponding prior error covariances CY , Cφ, σw and σo. For each n = 1, . . . ,

(1) Solution to the forward model. Given the parameters estimated from the previous
iteration Pn−1 ≡ [

Y n−1, φn−1
r , θn−1

w , θn−1
o

]
, we compute the solution to the forward

model Sn
F , i.e, we solve

G(Pn−1,Sn
F ) = 0 (6.44)

where Sn
F ≡

(
sn
F , pn

F ,un
F , ql,n

F , pl,n
bh,F

)
.

(2) Stopping rule (Discrepancy Principle). If ||Dη − L(Sn
F )|| ≤ τη, stop. Output:

Pn−1.

(3) Parameter update by means of representers. Define Pn as the solution to the
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linearized data assimilation problem

J = Jd +
∫

Ω

∫

Ω
(Y − Y n−1)C−1

Y (x, y)(Y − Y n−1)

+
∫

Ω

∫

Ω
(φr − φn−1

r )C−1
φ (x, y)(φr − φn−1

r ) +
∑
α

1
σ2

α

(θα − θn−1
α )2

→ min, (6.45)

where

Jd =
∑
χ

N l
χ∑

l=1

[dl
χ −Ll

χ]C−1
χ,l [d

l
χ −Lχ] (6.46)

subject to

LG̃(Pn−1,Sn
F ) ≡ DPG(Pn−1,Sn

F )[Pn − Pn−1] + DsG(Pn−1,Sn
F )[Sn − Sn

F ] = 0(6.47)

In the following sections we discuss the implementation of Step (3) in Algorithm 4.

6.3.1 The Euler-Lagrange Equations

In order to compute the solution to problem (6.45) we need to find the linearized operator
LG̃. First, for any function g of (s, θw, θo, φr), we define

Dk
τ gn

F ≡ (Dk
τ g)(sn

F , pn
F , θn−1

w , θn−1
o , φn−1

r ) (6.48)

for τ ∈ {s, θw, θo} and k ∈ {0}∪N. In Appendix B we provide some key steps to reduce the
formulation in terms only of the linearized variables S ≡ (p, s). Moreover, the linearized
problem LG̃ = 0 is equivalent to

LG[Pn −Pn−1,Sn − Sn
F ] = 0, (6.49)

where

LG(P,S) ≡
[
Gn(P,S) Gn

w(P,S) Bn(P,S) Bn
w(P,S)

]
(6.50)
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for

Gn(P,S) ≡ φn
F c(sn

F )
∂p

∂t
+ φn

F [cw − co]
∂pn

F

∂t
s + φrc(sn

F )cr
∂pn

F

∂t

+∇ ·
[
T n(P,S)un

F − λn
F eY n−1∇p

]
−

Np∑

l=1

[
T n(P,S)qn

F − ωp,l
I λn

F eY n−1
p
]
δ(x− xl

p), (6.51)

Gn
w(P,S) ≡ φn

F (cr + cw)sn
F

∂p

∂t
+ crφ

n−1
r p

∂sn
F

∂t
+ φn

F (cr + cw)s
∂pn

F

∂t

+φn
F

∂s

∂t
+ φr

[
(cr + cw)sn

F

∂pn
F

∂t
+ [1 + cr[pn

F − pr]]
∂sn

F

∂t

]

+∇ ·
[
T n

w (P,S)un
F − λn

w,F eY n−1∇p

]

−
Np∑

l=1

[
T n

w (P,S)qn
F − ωp,l

I λn
w,F eY n−1

p
]
δ(x− xl

p), (6.52)

Bn ≡
[
T n(P,S)un

F − λn
F eY n−1∇p

]
· n, (6.53)

Bn
w ≡

[
T n

w (P,S)un
F − λn

w,F eY n−1∇p
]
· n (6.54)

and the auxiliary operators

T n(P,S) ≡ κn
s s + Y +

∑
α κn

wθα, (6.55)

T n
w (P,S) ≡ κn

w,ss + fwY + κn
wθw. (6.56)

In (6.51)-(6.56), we have applied the following formulas

κn
s =

Dsλ
n
F

λn
F

, κn
α =

Dθαλn
F

λn
F

, κn
w,s =

Dsλ
n
w,F

λn
F

,

φn
F = φn−1

r [1 + cr(pn
F − pr)], (6.57)

defined according to (6.48). Note that all variables with superscript n and/or subscript F

are known at the current iteration.

As we discussed in Chapter (4), problem (6.45) can be solved by computing the
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solution to the EL system that arises from the problem

Q → min, (6.58)

where

Q = J +
∫

Ω

∫ T

0
[ΛGn + ΛwGn

w]−
∫

Γ

∫ T

0
[ΛBn + ΛwBn

w]

+
∫

Ω

[
Λφn

F c(sn
F )(p− pn

F ) + Λw[φn
F (cr + cw)sn

F (p− pn
F ) + φn

F (s− sn
F )]

]
t=0

. (6.59)

Note that in (6.59), Λ and Λw are the Lagrange multipliers associated with the two con-
straint functions (6.51)-(6.52). Some aspects of (6.58)-(6.59) are now pointed out. For each
χ ∈ {p, I, o}, l ∈ {1, . . . , Nχ}, and i ∈ {1, . . . , 5} we define vectors Dl

i,χ ∈ RM l
χ by

Dl,m
i,χ = X l,m

i,χ δ(x− xl
χ)δ(t− tl,mχ ), m ∈ {1, . . . ,M l

χ}, (6.60)

where

X l,m
i,χ =





ωl
pλ

n
F eY n−1

if χ = p & i = 1,

1 if χ ∈ {I, o} & i = 1,

aqn
F κn

s + b(κn
w,s − κn

s fn
w,F ) if χ = p & i = 2,

−(pl,n
bh,F − pn

F )κn
s if χ = I & i = 2,

0 if χ = o & i ∈ {2, 3, 4, 5},
aqn

F if χ = p & i = 3,

−(pl,n
bh,F − pn

F ) if χ = I & i = 3,

b(κn
w − κn

wfn
w,F ) if χ = p & i = 4,

−[pl,n
bh,F − pn

F ]κn
w if χ = I & i = 4,

aqn
F κn

o − bκn
ofn

w,F if χ = p & i = 5,

−[pl,n
bh,F − pn

F ]κn
o if χ = I & i = 5.

(6.61)

In Appendix B we show that the EL equations for problem (6.59) are (6.49) as well
as the following

Adjoint System

An[Λ, Λw] =
∑

χ

∑Nχ

l=1[d
l
χ −Ll

χ]C−1
I,l D

l
1,χ (6.62)

An
w[Λ, Λw], =

∑
χ

∑Nχ

l=1[d
l
χ −Ll

χ]C−1
I,l D

l
2,χ, (6.63)
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where

An[Λ, Λw] = − ∂

∂t

[
Λφn

F c(sn
F )

]
− ∂

∂t

[
Λwφn

F (cr + cw)sn
F

]
+ Λwcrφ

n−1
r

∂sn
F

∂t

−∇ ·
[
λn

F eY n−1∇Λ + λn
w,F eY n−1∇Λw

]
+

Np∑

l=1

ωp,l
I

[
λn

F eY n−1
Λ + λn

w,F eY n−1
Λw

]
δ(x− xl

p)

(6.64)

and

An
w[Λ,Λw] ≡ Λφn

F [cw − co]
∂pn

F

∂t
+ Λwφn

F (cr + cw)
∂pn

F

∂t
− ∂[φn

F Λw]
∂t

−∇ ·
[
(Λκn

s + Λwκn
w,s)u

n
F

]
+ Λ∇ · [κn

s u
n
F ] + Λw∇ · [κn

w,su
n
F ]

−
Np∑

l=1

qn
F

[
Λqn

F κn
s + Λwκn

w,s

]
δ(x− xl

p). (6.65)

System (6.62)-(6.63) is supplied with homogeneous Neummann boundary conditions and
final time conditions for Λ and Λw.

Control Equations

The control equations for P are

Y = Y n−1 +
∫

Ω

∫ T

0
C−1

Y (x, y)
[
[∇Λ + fn

w,F∇Λw] · un
F +

Np∑

l=1

qn
F [Λ + fn

w,F Λw]δ(x− xl
p)

+
∑
χ

Nχ∑

l=1

[dl
χ −Ll

χ]C−1
χ,l D

l
3,χ

]
,(6.66)

θw = θn−1
w + σ2

w

∫

Ω

∫ T

0

[
κn

w∇[Λ + Λw] · un
F +

Np∑

l=1

qn
F κn

w[Λ + Λw]δ(x− xl
P )

+
∑
χ

Nχ∑

l=1

[dl
χ −Ll

χ]C−1
χ,l D

l
4,χ

]
, (6.67)
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θo = θn−1
o + σ2

o

∫

Ω

∫ T

0

[
κn

o∇Λ · un
F +

Np∑

l=1

qn
F κn

oΛδ(x− xl
p) +

∑
χ

Nχ∑

l=1

[dl
χ −Ll

χ]C−1
χ,l D

l
5,χ

]
,

(6.68)

φr = φn−1
r −

∫ T

0

∫

Ω
C−1

φ (x, y)
[
Λc(sn

F )
∂pn

F

∂t
+

Λw

φn−1
r

[
φn−1

r (cr + cw)sn
F

∂pn
F

∂t
+ φn

F

∂sn
F

∂t

]]
.

(6.69)

In the following section, equations (6.49), (6.62)-(6.69) will be solved by representer
expansions. From Chapter (3) we know that any state variable and parameter can be written
as a linear combination of a representer function that contributes for each measurement
utilized for the inversion. For this reason we postulate that for ξ ∈ {p, s, Y, φr, θw, θo}, the
following expansion holds

ξ = ξn
F +

∑

χ∈{p,I,o}

Nχ∑

l=1

M l
χ∑

j=1

βl,j
χ Rl,j

χ,ξ. (6.70)

6.3.2 Definitions and Notation

We define

B[s, θw, θo] =
[
κn

w,s − κn
s fn

w,F

]
s +

[
κn

w − κn
wfn

w,F

]
θw − κn

ofn
w,F θo. (6.71)

Furthermore, for each χ ∈ {p, I, o}, every l ∈ {1 . . . , Nχ} and every j ∈ {1 . . . ,Mk
χ}, we

define

rl,j
χ ≡

(
Rl,j

χ,p, R
l,j
χ,s, R

l,j
χ,Y , Rl,j

χ,w, Rl,j
χ,o

)
, (6.72)

vl,j
χ ≡

(
Rl,j

χ,s, R
l,j
χ,w, Rl,j

χ,o

)
. (6.73)

(6.74)

For each ξ ∈ {p, I, o}, every k ∈ {1 . . . , Nξ} and every m ∈ {1 . . . , Mk
ξ } let us define

[τk,m,l
ξ,χ ]j ≡





∫ T
0 δ(t− tl,mp )

[
aq

[
qn
FT [rl,j

χ ]− ωk
pλn

F eY n−1
Rl,j

χ,p

]
+ bB[vl,j

χ ]
]

if ξ = p,

− ∫ T
0 δ(t− tk,m

I )
[
[pl,n

bh − pn
F ]T [rχ,l

j ]−Rl,j
χ,p

]
if ξ = I,

∫ T
0 δ(t− tk,m

o )Rl,j
χ,p if ξ = o,

(6.75)
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where χ ∈ {p, I, o}, l ∈ {1, . . . , Nχ} and j ∈ {1, . . . , M l
χ}. We also define vector

τ k,m,l
ξ,χ ≡ (

[τk,m,l
ξ,χ ]1, . . . , [τ

k,m,l
ξ,χ ]M l

χ

)
, (6.76)

and matrix

υk,l
ξ,χ =




τ k,1,l
ξ,χ
...

τ
k,Mk

ξ ,l

ξ,χ


 . (6.77)

Note that τ k,m,l
ξ,χ ∈ RM l

χ and υk,l
ξ,χ ∈ RMk

ξ ×M l
χ . Additionally,

Vk,l
ξ,χ ≡

{
Cχ,k + υk,l

ξ,χ if k = l and χ = ξ

υk,l
ξ,χ otherwise,

(6.78)

(6.79)

where Cχ,k is the covariance matrix introduced in Section (6.2). Furthermore, let us define

Vl
ξ,χ =




V1,l
ξ,χ
...

VNξ,l
ξ,χ


 , bχ ≡




b1
χ
...

bNχ
χ


 , (6.80)

where

bl
χ ≡ (βl,1

χ , . . . , β
l,M l

χ
χ ). (6.81)

Note that bχ ∈ R
∑Nl

χ
l=1 M l

χ and Vl
ξ,χ ∈ R

∑Nξ
k=1 Mk

ξ ×M l
χ . Finally, we define matrix Vξ,χ ∈

R
∑Nξ

k=1 Mk
ξ ×

∑Nχ
l=1 M l

χ by the following relation

Vξ,χ ≡
[

V1
ξ,χ · · · VNχ

ξ,χ

]
. (6.82)

6.4 Implementation

For the adjoint (6.62)-(6.64) we consider the following expression

Λ =
∑

χ∈{p,I,o}
∑Nχ

l=1

∑M l
χ

j=1 βl,j
χ Λl,j

χ , (6.83)

Λw =
∑

χ∈{p,I,o}
∑Nχ

l=1

∑M l
χ

j=1 βl,j
χ Λl,j

χ,w. (6.84)
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When (6.70) and (6.83)-(6.84) are substituted in (6.49), (6.62)-(6.69) we obtain the following
algorithm which is Step (3) of Algorithm 4.

Algorithm 5 (Step (3) of Algorithm 4). For each χ ∈ {p, I, o}, l ∈ {1, . . . , N l
χ} and

j ∈ {1, . . . ,M l
χ}

(1) Find the adjoint representers Λl,j
χ and Λl,j

χ,w by solving

A[Λl,j
χ , Λl,j

χ,w] = Dl,j
1,χ, (6.85)

Aw[Λl,j
χ , Λl,j

χ,w] = Dl,j
2,χ. (6.86)

(2) Compute the permeability, relative permeabilities and porosity representers with

Rl,j
χ,Y =

∫

Ω

∫ T

0
C−1

Y (x, y)
[
∇Λl,j

χ + fn
w,F∇Λl,j

χ,w · un
F +

Np∑

l=1

qn
F [Λl,j

χ + fn
w,F Λl,j

χ,w]δ(x− xl
p) + Dl,j

3,χ

]
,

(6.87)

Rl,j
χ,w =

∫

Ω

∫ T

0

[
κn

w∇[Λl,j
χ + Λl,j

χ,w] · un
F +

Np∑

l=1

qn
F κn

w[Λl,j
χ + Λl,j

χ,w]δ(x− xl
p) + Dl,j

4,χ

]
,

(6.88)

Rl,j
χ,o =

∫

Ω

∫ T

0

[
κn

o∇Λl,j
χ · vn

F +
Np∑

l=1

qn
F τn

o Λl,j
χ δ(x− xl

p) + Dl,j
5,χ

]
, (6.89)

and

Rχ,l
j,φ = −

∫ T

0

∫

Ω
C−1

φ (x, y)

[
Aχ,l

j c(sn
F )

∂pn
F

∂t
+

Aχ,l
j,w

φn−1
r

[
φn−1

r (cr + cw)sn
F

∂pn
F

∂t
+ φn

F

∂sn
F

∂t

]]
.

(6.90)

(3) Compute the forward representers Rl,j
χ,p and Rl,j

χ,s from the following system

Gn(Rl,j
χ,p, R

l,j
χ,s, R

l,j
χ,Y , Rl,j

χ,w, Rl,j
χ,o, R

l,j
χ,φr

) = 0, (6.91)

Gn
w(, Rl,j

χ,p, R
l,j
χ,s, R

l,j
χ,Y , Rl,j

χ,w, Rl,j
χ,φr

) = 0. (6.92)

67



(4) Find the coefficients (6.70) βj,l
χ from

Vb = d−L, (6.93)

where d and L were defined in (6.43). Matrix V (respect. b) is a block matrix (vector)
whose entry (ξ, χ) is matrix Vξ,χ (bξ) defined by (6.82) (respect. (6.81)).

6.5 Numerical Experiments. Waterflood

In this section we present some numerical results of the implementation of Algorithm 4
(with Step (3) given by Algorithm 5) for the estimation of petrophysical properties in the
model described by (6.31).

6.5.1 Estimation of Absolute and Relative Permeabilities

In Experiment V we apply the IRBS-KL to the joint estimation of absolute and relative
permeabilities. We use Algorithm 4 assuming that porosity is known (Cφ = 0). For the
absolute permeability we choose the true permeability of Figure 6.1(b). This permeability
is chosen from a set of 200 realizations consistent with the following semivariogram model

γ = 0.35 Sp135(1000, 150) + 0.35 Exp90(200, 200). (6.94)

The first term of this expression denotes a contribution of 0.35md of a spherical variogram
with maximum continuity at an azimuthal angle of 135 degrees (with respect to the north-
south direction). The maximum and minimum ranges of continuity are 1000ft and 150ft
respectively. The second term corresponds to a contribution of 0.35md of an exponential
isotropic variogram with range 200ft at an azimuthal angle of 90 degrees.

We use 180 realization (not including the true permeability) to perform the KL
parametrization for log-permeability as described in Chapter 5. We retain 90 eigenvectors
corresponding to the highest eigenvalues of the KL decomposition. The identification of
absolute permeability is carried out for ξ in expression (5.10). On the other hand, the
estimation of the relative permeabilities is based on the exponent of curves (6.24)-(6.26).
We assume “true parameters” θw = 3.2 and θo = 2.8. These parameters as well as the
permeability of Figure 6.1 are used to generate synthetic data with the forward simulator
with relevant data displayed in Tables 6.1. Well configuration as well as the prior error log-
permeability are presented in Figure 6.1 (a). Pertinent information about data assimilation
is displayed in Table 6.3. The estimated absolute permeability field is displayed in Figure
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6.1 (c). The estimated parameters of the relative permeability curves can be found in
the last column of Table (6.2). In Figure 6.3 we show the relative permeability curves
corresponding to the true, prior (n = 0) and estimated (n = 5) parameters. Additionally,
history matching of wells are shown in Figure 6.2 and convergence performance is available
in Table 6.2. Note that convergence is achieved first for BHP measurements (n = 4).
In general, each parameter has different sensitivity to each measurement type. For this
reason, the stopping rule (see Chapter 3) must be simultaneously satisfied by each type of
observation misfit.

The results of this experiment are quite satisfactory. Improved estimates of the
relative permeabilities were obtained. Moreover, the estimated absolute permeability not
only captures the main heterogeneities but also the geological constraint. However, in the
region near well I1 we observe that a poor identification was obtained. In contrast, the
corresponding history matching plot (Figure 6.2 (a)) shows almost a perfect match to the
measurement. When we look closely at I1, we see a good reconstruction only within a small
(two or three gridblocks) neighborhood of I1. This situation can be attributed to expression
(6.8) where the permeability is evaluated at the gridblock containing I1. Therefore, once the
value of the log-permeability at that gridblock has been identified, no additional information
can be learn from the observation at well I1. It is clear that further investigation of well
models may improve the inverse computations.

Table 6.1: Reservoir description. Experiment V and VI.
Experiment V and VI VII
Dimension ft3 1315× 1315× 3.5 2000× 7000× 32
Grid Blocks (for synthetic data) 80× 80× 1 60× 110× 1
Time interval [0, T ] (years) [0,2.7] [0,2.7]
Time discretization dt (days) 8.0 8.0
Water compressibility (psi−1) 3.1e-6 3.1e-6
Rock compressibility (psi−1) 1.0e-6 1.0e-6
Water viscosity (cp) 3.0 3.0
Oil viscosity (cp) 1.0 1.0
Initial pressure (psi) 6165 6236
Number Injection Wells 9 15
Number Production Wells 4 8
a Injection rate (bbl/day) 100 700
a Production BHP (psi) 6100 6160
a We use constant BHP (rate) at every well production (injection) well.
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Figure 6.1: Experiment V. Log permeability fields [lnmd].

6.5.2 Estimation of Porosity

In Experiment VI we consider the application of the IRBS-KL to the identification of
porosity. This petrophysical property does not have a large range of variability. Then, from
the identification point of view, we may think it is easy to identify. However, as we will see
in this experiment there are interesting challenges to face.

We assume that absolute and relative permeabilities are known (CY = 0 = σw = σo).
A true porosity is generated from 180 unconditional realizations having an isotropic spher-
ical covariance with range of 300ft and a contribution of 0.3. The same process for KL
parametrization was applied to parameterize the porosity field. For this experiment we
assume all the parameters are perfectly known except the porosity. When we inspect equa-
tions (6.8) and conduct some experiments, we realize that bottom hole pressure collected
at injection wells is not too sensitive to the changes in porosity. In contrast, a change in
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Figure 6.2: Bottom hole pressure (BPP) and water cut (WCT) history-matching. Exper-
iment V.
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Figure 6.3: Experiment V. Relative permeability curves.

Table 6.2: Convergence Results. Experiment V.
(iteration) n ||dη

p − L(fn
w,F )||2C−1 ||dη

I − L(pbh)||2C−1 θw θo

1 1.353e3 2.061e3 2.2 2.2
2 4.982e2 4.376e2 3.1978 2.8516
3 1.229e2 3.850e1 2.8653 2.4465
4 2.07e1 1.33e1 2.9087 2.8897
5 8.5e0 1.30e1 2.9053 2.9273

porosity is reflected in the production wells water cut curves. This situation can be for-
mally observed from the simple expression of the Buckley-Leverett equation as the velocity
front is inversely proportional to porosity. Therefore, it comes as no surprise that only
measurements from production wells after breaktrough contributes to the identification of
porosity. The prior mean and well configuration is shown in Figure 6.4(a). In Figure 6.4(b)
we present an estimate obtained with IRBS-KL for (signal-to-noise ratio) SNR = 700 (Ex-
periment VI(a)). Since we obtained a poor identification, it seems that this choice of noise
level is small for a substantial identification of porosity. However, it is interesting to ob-
serve from the correspoding history matching curves (Figures 6.5,6.6 (A) and (C)) that the
aforementioned SNR provides reasonable matched curves. When we repeat the experiment
for SNR = 1e4 (Experiment VI(b)), the estimated porosity presented in Figure 6.4 (c),
shows a considerable improvement. In this case, the history curves (Figures 6.5,6.6 (B)

72



Table 6.3: Information for data assimilation. Experiment V.
Well type Production Injection
Measurement type water cut (WCT) Bottom hole pressure (BHP)
# Measurement times/well 3 2
τ 1.1 1.1
η2τ2 1.45e1 2.18e1
σ 1e-2 1.5 [psi]

and (D)) matched almost exactly not only the measurements but also the entire interval of
waterflood. In Table 6.4 we display the convergence history. As we experienced in Chapter
4, for a SNR smaller we obtain faster convergence since we require less accuracy in the
inverse model prediction.

Table 6.4: Convergence Results. Experiment VI.
Experiment VI(a) Experiment VI(b)

(iteration) n ||dη
p − L(fn

w,F )||2C−1 ||dη
p − L(fn

w,F )||2C−1

1 3.576e2 1.509e5
2 2.958e1 1.116e4
3 7.956e0 8.766e3
4 - 4.345e2
5 - 1.552e0

6.6 A Sequential Implementation

In Section (6.3) we presented a formulation for the identification of petrophysical properties
given measurements which were all collected during the time interval of interest. However,
in practical applications it is also relevant to consider a sequential approach of the history
matching problem. For this reason we now describe an ad-hoc implementation of the IRBS
for the sequential estimation of absolute permeability given dynamic data. In the IRBS,
the interval of time is given by the forward model. Therefore, we formulate a sequence of
identification problems for which the initial guess of the current interval is the estimated
parameter from the previous one. The procedure is summarize in the following

Algorithm 6 (Sequential IRBS). Given prior estimates (Y, φr, θα), define problem (6.31)
in some initial interval of time [t0, t1] with an initial condition

[
p, s, pl

bh, ql
]
t0
.
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Figure 6.4: Experiment V(b). Porosity fields.
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Figure 6.5: Experiment VI(a)-(b). Water cut (WCT) history matching. Wells P1-P2.
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Figure 6.6: Experiment VI(a)-(b). Water cut (WCT) history matching. Wells P3-P4.

76



(1) Apply IRBS (Algorithm 4 with Step (3) given by Algorithm 5) for measurements collected
at [tn−1, tn], to obtain, after convergence, estimate (Y, φr, θα)

(2) With the new parameters (Y, φr, θα), compute the forward model solution (p, s, pl
bh, ql) in

interval [tn−1, tn].

(3) Set
[
p, s, pl

bh, ql
]
tn−1

=
[
p, s, pl

bh, ql
]
tn

.

We now validate this algorithm using a true permeability from the SPE model that
we used in Chapter 4. In this case we select the first layer of the reservoir (Figure 6.7)(a).
This field has been recently used in [38] for history matching with the EnKF and geological
constraints parameterized with the discrete cosine transform. In [38] the original perme-
ability was scaled to avoid issues in the forward model. In this experiment we use the same
scaling (K ∈ [102md, 105md]) and well-configuration of [38]. For simplicity we keep the
injection rate (bottom hole pressure) constant at each injection (production) well. In order
to apply the IRBS-KL we need a set of realizations consistent with the geology of the true
permeability. Since this information is not provided in the SPE model, we compute the
experimental semivariogram (see Figure 6.7 (b)) in two directions with azimuthal angles
ψ = 0 and ψ = π/2. We observe from Figure 6.7 (b) that this field presents both zonal and
geometrical anisotropy. Therefore, we use two structures to model the variogram of this
field. In Figure 6.8 we show the experimental and the corresponding fitted model in the
two directions, where the fitted model is given

γ = 0.35Sph90(1860, 300) + 0.55Sph(333, 333). (6.95)

Then, 200 unconditional realization were generated consistent with (6.95). Some of those
realizations are displayed Figure 6.9. Note that the structure of the “true permeability” was
captured with model (6.95). We now use this set of realization to perform principal compo-
nent analysis and obtain the KL parametrization to be use in the IRBS. For the sequential
IRBS we consider 4 assimilation intervals of equal length δT = 0.45years. Each assimilation
time is taken at the middle of the time window. Some assimilation information is displayed
in Table 6.5. The following results include a total of 44 months of history matching fol-
lowed by 22 months of prediction. In Figure 6.10 we present the log-permeability estimates
obtained for the assimilated intervals and in Table 6.6 we show convergence performance.
History matching is presented in Figures 6.11 and 6.12.

Note that after the first assimilation time (0, t1), the IRBS-KL produces a perme-
ability with a good visual agreement to the true log-permeability. In fact, for the subsequent
intervals the estimate of the log-permeability does not exhibits substantial change. This
phenomena is reflected in Table 6.6. After the first assimilation time, convergence is achieved

77



0 0.2 0.4 0.6
0

0.5

1

1.5

2

x (km)

y 
(k

m
)

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

(a) SPE Permeability

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lag−distance (ft)
V

ar
io

gr
am

 [l
og

(m
d)

]

Azth. Angle=0
Azth. Angle=90

(b) Experimental Semivariograms

Figure 6.7: Experiment VI. SPE log-permeability and experimental semivariograms.

Table 6.5: Information for data assimilation. Experiment V.
Well type Production Injection
Measurement type total flow rate Bottom hole pressure (BHP)
τ 1.1 1.1
η2τ2 9.68e0 1.82e1
σ 10[bbl/day] 1.5 [psi]

in the first iteration. On the other hand, from Figures 6.11 and 6.12 we see that after the
first assimilation time, those subtle changes in log-permeability are indeed contributing to
the matching of measurements.

6.6.1 IRBS Vs EnKF

One of our future goals is to incorporate the IRBS within the close-loop approach for
reservoir management. The results of the previous section were encouraging since the IRBS
is capable of producing updates of the petrophysical properties consistent to dynamics data
and geological constraints. We now compare the results obtained in the previous section
with those obtained with the implementation of EnKF.

To our best knowledge the EnKF has not been applied to the estimation of absolute
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Figure 6.8: Experiment VI. Initial log-permeability and variograms.
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Figure 6.9: Experiment VI. Stochastic realizations for Experiment VII.
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(a) Prior (b) (0, t1) (c) (t1, t2)

(d) (t2, t3) (e) (t3, t4) (f) True

Figure 6.10: Experiment VI. Log permeability fields [lnmd] computed with sequential
IRBS-KL.
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Figure 6.11: Experiment VII(a). BHP history matching.
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Figure 6.12: Experiment VII(a). Total flow rate history matching.
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Table 6.6: Convergence Results. Experiment VII(a).
Assimilation Interval: [0, 0.445] (years)
(iteration) n ||dη

I − L(qn
F )||2C−1 ||dη − L(pbh)||2C−1

1 4.17445e4 5.5885e3
2 3.2877e4 1.678e2
3 1.0709e4 1.03e1
4 9.9e2 5.3104e0
Assimilation Interval: [0.445, 0.913] (years)
(iteration) n ||dη

I − L(qn
F )||2C−1 ||dη − L(pbh)||2C−1

1 4.1484e2 1.42e2
2 6.603e-1 4.086
Assimilation Interval: [0.913, 1.3813] (years)
(iteration) n ||dη

I − L(qn
F )||2C−1 ||dη − L(pbh)||2C−1

1 2.2475e3 4.27e2
2 6.2354 1.2673
Assimilation Interval: [1.3813, 1.8495] (years)
(iteration) n ||dη

I − L(qn
F )||2C−1 ||dη − L(pbh)||2C−1

1 6.0e1 2.67e1
2 6.4e-1 7.65e0

permeability with a KL parametrization. Therefore, we believe this is a good opportunity
to take that approach. For technical details of the general implementation of the EnKF we
refer the reader to [22].

The incorporation of the KL expansions to the EnKF is trivial. Instead of using
the standard formula for updating the full vector of grid-block log-permeability, we rather
update variable ξ in expression (5.10). The filtering problem is therefore posed on the
parameter of the linear geological constraints. We consider an initial ensemble of parameters
(ξ) with 120 members. The ensemble size was selected to obtain a final cputime of 2e3sec
which is the same execution time of the IRBS-KL implementation of the previous section.
Note that the initial ensemble produces 120 log-permeability realizations consistent with
(6.95). The assimilation times in the EnKF implementations are the same as those for the
IRBS. However, note that in the EnKF the implementation is fully sequential. In Figure
6.13 we present estimates of log-permeability at each assimilation time. Each estimate
was obtained from expression (5.10), by using the updated ensemble mean ξmean at the
assimilation time. The history matching plots at some well locations are shown in Figure
6.14. Note that the spread of the ensemble is reduced as more measurements are assimilated.
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(a) Prior (b) t=0.21 years (c) t=0.68 years

(d) t=1.15 years (e) t=1.62 years (f) True

Figure 6.13: Experiment VI(b).EnKF estimated log permeability fields [lnmd].
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Figure 6.14: Experiment VI(b). EnKF history matching.
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In order to compare the results with those obtained with IRBS-KL we now present in
Figures 6.15, 6.16 the history matching curves at some wells computed with both IRBS-KL
and the EnKF mean. Although the EnKF mean produces good fit to the measurements,
clearly the IRBS is more accurate especially at the initial assimilation intervals. Therefore,
if we needed to predict a more accurate reservoir performance, the IRBS would be a better
option for the estimation of log-permeability. However, when we compare Figure 6.13 with
Figure 6.10, we find that at the third assimilation time, the EnKF has generated more
consistent estimate of the permeability than the IRBS. This phenomena clearly reflects the
fact that in the EnKF, the covariance of the ensemble is updated at each assimilation time.
In contrast, our implementation of the IRBS assumes a constant covariance during the
whole experiment. In our previous results [36] we have found explicit formulas for updating
covariance in terms of representers. Further investigation should address covariance update
in the IRBS implementation.
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Figure 6.15: EnKF History-Matching (total flow rate).
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Figure 6.16: EnKF History-Matching (bottom hole pressure).
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Chapter 7

Conclusions and Future Research

In this dissertation we presented the theory and application of an iterative representer-
based scheme (IRBS) for the identification of petrophysical properties in reservoir models.
The objective of the proposed IRBS was to generate improved estimates of the reservoir
properties that honor dynamic data collected at wells. The inverse problem was defined
within an abstract framework of parameter identification. Standard techniques allowed us
to establish general conditions for convergence of the IRBS. The abstract framework is
very convenient when the forward model is described by a PDE such as the linear model
studied in Chapter 4. By means of energy inequalities in Sobolev spaces, we proved local
convergence of the IRBS applied to the identification of the coefficient of the second order
elliptic operator in a parabolic linear forward model. As in any Gauss-Newton method,
we found that convergence of the IRBS is insured when the initial guess is close enough
to a solution of the parameter identification problem. Our numerical results show that
even when the initial guess is far from the “truth”, fast convergence is achieved. Moreover,
the identified parameter always showed substantial improvement with respect to the initial
guess.

One aspect that distinguishes the IRBS from other quasi-Newton methods is the im-
plementation of the representer method for solving the linearized inverse problem on each
iteration. Although there are other linear programming methods that can be used to solve
the linearized problem, the representer method provides an efficient implementation that
exploits two specific properties of the inverse problem: the penalty functional is quadratic
and the number of measurements is finite. These properties are the essence of the compu-
tational efficiency of the representer method which became evident when we compared the
IRBS with a direct implementation of a standard gradient-based history matching technique.
In addition, the implementation of the IRBS is general and robust whereas the standard
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gradient-based techniques require scaling and damping which are mostly determined on a
case-by-case basis [28].

As we indicated earlier, the mathematical framework of the IRBS was inspired by the
theory of Tikhonov regularization for parameter identification. In contrast to the classical
parameter identification approach [32], our approach incorporated prior knowledge via the
prior error covariance of the uncertain parameter. Our numerical results showed that even
with poor prior knowledge, the reconstructions captured the main heterogeneities of the
fields. Furthermore, when linear geological constrains were imposed, the dimension of the
parameter space was reduced. As a consequence, the ill-posedness of the inverse problem was
partially alleviated, and the IRBS-KL produced better and geologically consistent estimates
of the petrophysical properties of the reservoir.

The IRBS-KL was applied to the estimation of petrophysical properties in an oil-
water reservoir. We presented a formal derivation of the IRBS for the estimation of porosity,
permeability and relative permeability curves. In this derivation, the linearized well model
was the measurement functional of the linearized inverse problem at each iteration. Al-
though we used a simple well model, encouraging results were obtained. However, we
observed that more realistic well models should be used for a better identification near the
wellbore. Moreover, a deep understanding of the relation parameter-observation is required
to establish the appropriate measurements during the assimilation and avoid redundancy
in the inversion.

The formulation of the IRBS for the estimation of reservoir properties was not only
efficient and robust but also convenient for the closed-loop approach. We derived an ad hoc
sequential implementation of the IRBS and compared its performance with the ensemble
Kalman filter. It was found that the IRBS provided better estimates at the beginning of the
assimilation window. The numerical results were promising and indicated that the IRBS
may become a tool for parameter estimation in reservoir modeling. With the integration of
seismic data and smart-wells technology, better prior knowledge and reliable measurements
may result in an improved reservoir characterization.

The theory and application presented in this dissertation may be extended in many
ways. With respect to the theory, one of the following steps is to derive the necessary
conditions for convergence of the IRBS applied to the forward model of Chapter 6. The main
challenge of this research is the proper application of existence and uniqueness results of the
forward model [2, 72]. This theoretical analysis may be helpful to understand the capabilities
and limitations of the IRBS. Additionally, one the most important aspects of the inverse
problem is to determine the identifiability of the petrophysical properties of the reservoir.
Where and when should we measure the state? Should we expect local identifiability of the
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uncertain property? Some of those concerns have already been addressed for the simplified
model of Buckley-Leverett in one dimension. However, for the two-phase model utilized
in the present work, those are still open questions whose answer may be the parameter-
observation relation so valuable for improving the inverse estimations.

With respect to the application, the next step is the analysis of the well-model in
the inverse estimation. A natural approach would be the implementation of the IRBS with
a more accurate well-model. A different approach is the incorporation of the uncertainty
in the well model as part of the inverse problem. This could be accomplished following our
previous work on state estimation [36] by adding the well-model error as a forcing term
in the model equations. Furthermore, in order to identify realistic geological models, it
is essential to incorporate new parameterizations that preserves multipoint statistics. The
natural approach is to implement the IRBS coupled with the nonlinear PCA used in [59].
Finally, it is important to develop a version of the IRBS for the problem of uncertainty
quantification. The covariance must be updated at some point of the implementation of the
IRBS. In particular, in the sequential IRBS-KL, the parametrization should be updated after
each assimilation interval of time so that the geological information can be fully captured.
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Appendix A

Proofs of Chapter 3

In this section we provide rigorous proofs of Lemma 2 and Theorems 2 and 3 of Chapter 3.
We first present a technical lemma concerned with the monotonicity of the iterates. This
lemma is analogous to Proposition 2.1 of [32]. However, the main difference to the work of
[32] is that the nonlinearity condition (Assumption 2) is imposed to the implicit nonlinear
forward operator G(k, s) = 0.

A.1 Proof of Lemma 2

Since (A1) and (F1)-(F3) hold, the assumptions on Theorem 1 are satisfied. Then, kn is
well defined in terms of (3.21). We recall that Rn defined by (3.16) is positive semidefinite.
Since C is by hypothesis positive definite, then Rn +C is symmetric positive definite. Note
now that

||k∗ − kn||2K = −||kn − kn−1||2K + 2||kn − kn−1||2K
−2〈k∗ − kn−1, kn − kn−1〉K + ||k∗ − kn−1||2K. (A.1)

From expression (3.21) and using the linearity of the inner product it follows

− 2〈k∗ − kn−1, kn − kn−1〉K = −2
M∑

mj

[Rn + C]−1
mj [d

η
j − Lj(sn

F )]〈k∗ − kn−1, γn
m〉K. (A.2)

From the definition of γn
m (see (3.19)),

〈k∗ − kn−1, γm〉K = Lm(sn
r − sn

F ) (A.3)
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where sn
r is the solution to

DkG(kn−1, sn
F )[k∗ − kn−1] + DGs(kn−1, sn

F )[sn
r − sn

F ] = 0. (A.4)

Substituting (A.3) into (A.2) and with some simple computations we find

− 2〈k∗ − kn−1, kn − kn−1〉K = 2
M∑

mj

[Rn + C]−1
mj [d

η
j − Lj(sn

F )][dη
m − Lm(sn

r )]

−2
M∑

mj

[Rn + C]−1
mj [d

η
j − Lj(sn

F )][dη
m − Lm(sn

F )]

= 2[dη − L(sn
F )]T [Rn + C]−1[dη − L(sn

r )]− 2[dη − L(sn
F )]T [Rn + C]−1[dη − L(sn

F )]. (A.5)

With similar arguments we obtain

2||kn − kn−1||2K = 2[dη − L(sn
F )]T [Rn + C]−1Rn[Rn + C]−1[dη − L(sn

F )]. (A.6)

Then, the second and third terms of the right hand side of expression (A.1) can be written
as

2||kn − kn−1||2K − 2〈k∗ − kn−1, kn − kn−1〉K = 2[dη − L(sn
F )]T [Rn + C]−1[dη − L(sn

r )]

−2[dη − L(sn
F )]T [Rn + C]−1C[Rn + C]−1[dη − L(sn

F )],(A.7)

where we have applied

[Rn + C]−1 − [Rn + C]−1Rn[Rn + C]−1 = [Rn + C]−1C[Rn + C]−1. (A.8)

We substitute (A.7) in (A.1) and use the fact that ||kn − kn−1||2K > 0 to obtain

||k∗ − kn−1||2K − ||k∗ − kn||2K > −2[dη − L(sn
F )]T [Rn + C]−1[dη − L(sn

r )]

+2[dη − L(sn
F )]T [Rn + C]−1C[Rn + C]−1[dη − L(sn

F )]. (A.9)

Note that the second term in the right hand side of the previous expression satisfies

2[dη − L(sn
F )]T [Rn + C]−1C[Rn + C]−1[dη − L(sn

F )]

= 2[dη − L(sn
F )]T C−1/2C1/2[Rn + C]−1C1/2C1/2[Rn + C]−1C1/2C−1/2[dη − L(sn

F )]

= 2[dη − L(sn
F )]T C−1/2A2C−1/2[dη − L(sn

F )],(A.10)
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where

A ≡ C1/2[Rn + C]−1C1/2. (A.11)

We substitute (A.10) in (A.9) and use definition (A.11) in the first term in the right hand
side of (A.9) to obtain,

||k∗ − kn−1||2K − ||k∗ − kn||2K > −2[dη − L(sn
F )]T C−1/2AC−1/2[dη − L(sn

r )]

+2[dη − L(sn
F )]T C−1/2A2C−1/2[dη − L(sn

F )]. (A.12)

Moreover, we note that

2[dη − L(sn
F )]T C−1/2AC−1/2[dη − L(sn

r )] ≤ 2||AC−1/2[dη − L(sn
F )]||||dη − L(sn

r )||C−1 .

(A.13)

This inequality, applied to (A.12), yields

||k∗ − kn−1||2K − ||k∗ − kn||2K
> 2||AC−1/2[dη − L(sn

F )]||
[
||AC−1/2[dη − L(sn

F )]|| − ||dη − L(sn
r )||C−1

]
. (A.14)

On the other hand, is easy to see that

||AC−1/2[dη − L(sn
F )]|| ≥ 1

||A−1|| ||C
−1/2[dη − L(sn

F )]|| = 1
||A−1|| ||d

η − L(sn
F )||C−1 .

(A.15)

Furthermore, from (A.11) and (3.17) it follows

||A−1|| ≤ ||C−1/2[Rn + C]C−1/2|| = ||C−1/2RnC−1/2 + I||
≤ ||L||2C2

1 ||C−1||+ 1. (A.16)

Combining (A.15), (A.16) and (3.32), we find

||AC−1/2[dη − L(sn
F )]|| > 1

||L||2C2
1 ||C−1||+ 1

||dη − L(sn
F )||C−1 = ρ||dη − L(sn

F )||C−1 .(A.17)
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Then, (A.14) becomes

||k∗ − kn−1||2K − ||k∗ − kn||2K
> 2||AC−1/2[dη − L(sn

F )]||
[
ρ||dη − L(sn

F )||C−1 − ||dη − L(sn
r )||C−1

]
, (A.18)

and by using hypothesis (3.33)

||k∗ − kn−1||2K − ||k∗ − kn||2K
> 2ρ

[a− 1
a

]
||AC−1/2[dη − L(sn

F )]|| ||dη − L(sn
F )||C−1 . (A.19)

An additional application of (A.17) yields (3.35). ¤

A.2 Proof of Theorem 2

First we show that the sequence is monotone decreasing. Since k∗ is a solution to the NF-
PIP, let s∗ be such that G(k∗, s∗)=0 and L(s∗) = d. On the other hand, note from (3.36)
that k ∈ B(δ, k∗), then from (A2) (for k = k̂ = k∗, k̃ = k) it follows that

||L(sr)|| ≤ C2||k∗ − k||K||L(s∗)− L(s1
F )||, (A.20)

where sr satisfies (3.31):

DsG(k, s1
F )sr = −DkG(k, s1

F )[k∗ − k]−DsG(k, s1
F )[s∗ − s1

F ]. (A.21)

Then, it is not difficult to see that

||L(sr)||C−1 ≤ ||C−1||1/2||L(sr)|| ≤ ||C−1||1/2C2||k∗ − k||K||L(s∗)− L(s1
F )||

≤ α1/2C2||k∗ − k||K||L(s∗)− L(s1
F )||C−1 (A.22)

If we perform the change of variables st = sr + s∗, it follows that (A.21) becomes

0 = DkG(k, s1
F )[k∗ − k] + DsG(k, s1

F )[st − s1
F ], (A.23)

which must be solved for st. The previous change of variables is substituted in (A.22) to
obtain

||d− L(st)||C−1 ≤ a2α
1/2C2||d− L(s1

F )||C−1 ≤ ρ

2
||d− L(s1

F )||C−1 , (A.24)
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where we have used (3.36) and the fact that L(s∗) = d. From (A.23) and (A.24) we realize
that the assumptions of the previous lemma are satisfied (a = 2). Then k1, given by (3.21),
for dη = d (see Remark 1) satisfies

||k∗ − k0||2K − ||k∗ − k1||2K > ρ2||d− L(s0
F )||2C−1 . (A.25)

Therefore, δ > ||k∗ − k0||2K > ||k∗ − k1||2K and we can apply the same argument inductively
to show that

||k∗ − kn−1||2K > ||k∗ − kn||2K (A.26)

for all n. For this reason we may define

α = lim
n→∞ ||k∗ − kn||K. (A.27)

We now prove that kn is Cauchy. Let m > q and consider l ∈ [q, m] such that

||d− L(sl
F )||C−1 ≤ ||d− L(sn

F )||C−1 (A.28)

for all n ∈ [q, m]. Note from (3.21) that

〈k∗ − kl−1, kn − kn−1〉K = 〈k∗ − kl−1, γn[R + C]−1[d− L(sn
F )]〉K

=
M∑

jm

[R + C]−1
jm[d− L(sn

F )]j〈k∗ − kl−1, γn
m〉K. (A.29)

By the definition of γn
m ((3.14), (3.19)) we know that

〈k∗ − kl−1, γn
m〉K = Lm(∆s), (A.30)

where ∆s satisfies

0 = DkG(kn−1, sn
F )[k∗ − kl−1] + DsG(kn−1, sn

F )∆s. (A.31)

On the other hand, let sn
r be the solution to

0 = DkG(kn−1, sn
F )[k∗ − kn−1] + DsG(kn−1, sn

F )[sn
r − sn

F ]. (A.32)
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We subtract the previous equation from (A.31) to show that ∆s satisfies

0 = DkG(kn−1, sn
F )[kl−1 − kn−1] + DsG(kn−1, sn

F )[sn
r −∆s− sn

F ]. (A.33)

Observe that kl−1, kn−1 ∈ B(δ/2, k∗) by (A.26). Then, ||kl−1 − kn−1||K < δ, and we may
apply assumption (A2) for k = kl−1, k̃ = kn−1, s = sl

F and s̃ = sn
F . Then,

||L(sl
F )− L([sn

r −∆s])||C−1 ≤ α1/2C2||kl−1 − kn−1||K||L(sl
F )− L(sn

F )||C−1

≤ C2α
1/2δ||L(sl

F )− L(sn
F )||C−1 , (A.34)

where we applied the same argument that we used to obtain (A.22). We now substitute
(A.30) in (A.29), use (A.34) and the triangle inequality to obtain

|〈k∗ − kl−1, kn − kn−1〉K| ≤ ||[d− L(sn
F )][R + C]−1C1/2|| ||L(∆s)||C−1

≤ C2α
1/2δ||[d− L(sn

F )][R + C]−1C1/2|| ||L(sl
F )− L(sn

F )||C−1

+||[d− L(sn
F )][R + C]−1C1/2|| ||L(sn

r − sl
F )||C−1 . (A.35)

Applying the triangle inequality again we find

|〈k∗ − kl−1, kn − kn−1〉K| ≤ ||[d− L(sn
F )][R + C]−1C1/2||

[
C2δα

1/2||d− L(sn
F )||C−1

+C2δα
1/2||L(sl

F )− d||C−1 + ||L(sn
r )− d||C−1 + ||d− L(sl

F )||C−1

]
.

(A.36)

In addition, by definition of sn
r (A.32) and since ||k∗−kn−1||K < δ, we apply (A2) one more

time to derive

||d− L(sn
r )||C−1 ≤ C2α

1/2||k∗ − kn−1||K||d− L(sn
F )||C−1 ≤ C2α

1/2δ||d− L(sn
F )||C−1 ,(A.37)

where we have used the fact that L(s∗) = d (k∗ is a solution to the NF-PIP). Expression
(A.37) is substituted in (A.36). Then, (A.17) and (A.28) yields

|〈k∗ − kl−1, kn − kn−1〉K| ≤ ||AC−1/2[d− L(sn
F )]||(3C2δα

1/2 + 1)||d− L(sn
F )||C−1 . (A.38)

On the other hand, as we indicated earlier, the previous lemma applies for a = 2, so we can
use expression (A.19) to find

1
ρ

[
||k∗ − kn−1||2K − ||k∗ − kn||2K

]
> ||AC−1/2[d− L(sn

F )]|| ||d− L(sn
F )||C−1 . (A.39)
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Then we combine (A.38) and (A.39) to obtain

|〈k∗ − kl−1, kn − kn−1〉K| ≤ (3C2α
1/2δ + 1)
ρ

[
||k∗ − kn−1||2K − ||k∗ − kn||2K

]
(A.40)

Furthermore, we define ei = k∗ − ki. So, for l, q,m as before, it is not difficult to see that

〈el−1 − eq−1, el−1〉K =
l−1∑
n=q

〈kn − kn−1, kl−1 − k∗〉K. (A.41)

Then, from (A.40)

|〈el−1 − eq−1, el−1〉K| ≤ (3C2δα
1/2 + 1)
ρ

l−1∑
n=q

(
||k∗ − kn−1||2K − ||k∗ − kn||2K

)

=
(3C2δα

1/2 + 1)
2ρ

(
||k∗ − kq−1||2K − ||k∗ − kl−1||2K

)
, (A.42)

so, from (A.27) |〈el−1− eq−1, el−1〉K| → α−α = 0 as q, l →∞. With the same argument it
follows that ||el−eq||2K → 0 and ||el−em||2K → 0 as m, q, l →∞. Finally, since ||km−kq||2K =
||em − eq||2K ≤ 2||em − el||2K + 2||el − eq||2K, we have that kn is a Cauchy sequence.

Then, by completeness of K, kn has a convergent subsequence also denoted by kn.
Let us define k̂ = limn→∞ kn. Let, ŝ be the solution to G(k̂, ŝ) = 0. Since G satisfies
(F1)-(F3), by the Implicit Function Theorem (IFT), there exists a neighborhood U of k̂

such that G(k, s(k)) = 0 for all k ∈ U , where s : U → S is a continuous function. Since
||kn − k̂||K → 0 as n → ∞, we may take n sufficiently large such that kn ∈ U . Therefore,
as n → ∞, by continuity of s (with respect k), sn+1

F = s(kn) → s(k̂) = ŝ. By linearity, we
also have that L(sn+1

F ) → L(ŝ). However, from (A.25), it follows

l∑

n=1

||d− L(sn
F )||2 <

1
ρ2

l∑

n=1

(||k∗ − kn−1||2K − ||k∗ − kn||2K)

=
1
ρ2

(||k∗ − k0||2K − ||k∗ − kl||2K). (A.43)

Then, when l →∞ it follows

∞∑

n=1

||d− L(sn
F )||2 <

1
ρ2

(||k∗ − k0||2K − α) < ∞, (A.44)

and so ||d − L(sn
F )||2 → 0. Therefore, as n → ∞, L(sn

F ) → d and since we already proved
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that L(sn
F ) → L(ŝ), it now follows d = L(ŝ). We conclude that k̂ is a solution to the

NF-PIP. ¤.
In contrast to the proof of Theorem 2.2 in [32], in the previous theorem an acceptable
distance between the initial guess and a solution to the NF-PIP depends not only on the
nonlinearity condition (Assumption 2), but also on the norm of the measurement functional
L, and the prior error covariance matrix C.

A.3 Proof of Theorem 3

Since k∗ is a solution to the NF-PIP, let s∗ ∈ S be such that G(k∗, s∗) = 0 and L(s∗) = d.
Assume η > 0 is fixed. Let s1

r be the solution to

DsG(k, s1
F )[s1

r − s∗] = Gr(s∗ − s1
F , k∗ − k). (A.45)

Since ||k∗ − k||K ≤ δ/2 < δ, we apply Assumption (A2) (for k̂ = k = k∗ and k̃ = k) to
obtain

||L(s∗)− L(s1
r)||C−1 ≤ C2α

1/2||k∗ − k||K||L(s∗)− L(s1
F )||C−1 . (A.46)

Note now that

||dη − L(s1
r)||C−1 ≤ ||dη − L(s∗)||C−1 + ||L(s∗)− L(s1

r)||C−1

≤ η + C2α
1/2||k∗ − k||K||L(s∗)− L(s1

F )||C−1

≤ η + C2α
1/2||k∗ − k||K[||dη − L(s∗)||C−1 + ||dη − L(s1

F )||C−1 ]

≤ [1 + C2α
1/2||k∗ − k||K]η + C2α

1/2||k∗ − k||K||dη − L(s1
F )||C−1 , (A.47)

where we used (A.46) and the hypothesis on the noise level (||dη − L(s∗)||C−1 ≤ η). On
the other hand, by the discrepancy principle, before we terminate the IRBS τη < ||dη −
L(s1

F )||C−1 and so

||dη − L(s1
r)||C−1 ≤ 1

τ
[1 + C2α

1/2||k∗ − k||K]||dη − L(s1
F )||C−1

+C2α
1/2||k∗ − k||K||dη − L(s1

F )||C−1 =
ρ

a
||dη − L(s1

F )||C−1 (A.48)

for

a =
ρτ

1 + (1 + τ)C2α1/2||k∗ − k0||K
. (A.49)
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Then, since k ∈ B(δ/2, k∗) we may apply Lemma 2 to obtain that k1
η, defined by (3.21),

satisfies

||k∗ − k||2K − ||k∗ − k1
η||2K > 2ρ2

[a− 1
a

]
||dη − L(s1

F )||2C−1 (A.50)

(we have added the subscript η to emphasize that k1
η depends in this case of dη). From

(3.37) note that

||k∗ − k0||K <
ρτ − 1

4α1/2C2(1 + τ)
<

ρτ − 1
α1/2C2(1 + τ)

, (A.51)

and so

1 + α1/2C2(1 + τ)||k∗ − k0||K < ρτ. (A.52)

Then, (A.49) implies a > 1. Therefore, δ/2 > ||k∗ − k||2K > ||k∗ − k1
η||2K. By applying this

methodology inductively, we show that kn
η given by (3.21) satisfies

||k∗ − kn−1
η ||2K > ||k∗ − kn

η ||2K (A.53)

as long as τη < ||dη − L(sn
F )||C−1 and so the sequence kn

η is monotone decreasing. Let us
assume that for n = n(η),

||dη − L(sn
F )||C−1 ≤ τη. (A.54)

From (A.50) it follows that

n(η)−1∑

n=1

(
||k∗ − kn−1

η ||2K − ||k∗ − kn
η ||2K

)
> 2ρ2

[a− 1
a

] n(η)−1∑

n=1

||dη − L(sn
F )||2C−1 . (A.55)

Reducing some terms in the left hand side and using the fact that τη < ||dη − L(sn
F )||C−1 ,

we find

∞ > ||k∗ − k||2K ≥ ||k∗ − k||2K − ||k∗ − kn(η)−1
η ||2K > 2ρ2

[a− 1
a

]
τ2η2(n(η)− 1).

This inequality shows that, given η > 0 fixed, the discrepancy principle terminates the IRBS
after a finite number n(η) of iterations. We now observe from (3.37) that ||k∗ − k0||K <

ρ/(2α1/2C2). Therefore, Theorem 2 can be applied where now kn is the sequence given by
(3.21) with dη replaced by d.
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We now prove by induction that for all m fixed, km
η → km as η → 0. For m = 0 the

result follows trivially. Let us assume that ||km−1
η − km−1||K → 0 as η → 0. Let sm

F and
sm
F,η be such that G(km−1, sm

F ) = 0 = G(km−1
η , sm

F,η). By definition,

km
η − km = km−1

η − km−1 + [γm]T [Rm + C]−1[dη − L(sm
F,η)− d + L(sm

F )]. (A.56)

Therefore,

||km
η − km||K ≤ ||km−1

η − km−1||K
+||γm||K||[Rm + C]−1C1/2||

[
η + ||L(sm

F,η)− L(sm
F )||C−1

]
. (A.57)

We now use the inductive hypothesis, the IFT and the linearity of L to conclude that
km

η → km as η → 0.
Now we show that if n(η) remains bounded for all η > 0, kn

η converges to kn as
η → 0 and that kn is a solution to the NF-PIP.

||d− L(sm
F )||C−1 ≤ η + ||dη − L(sm

F,η)||C−1 + ||L(sm
F,η)− L(sm

F )||C−1 (A.58)

for all m. In particular, for the stopping index n = n(η) (A.54), it follows that

||d− L(sn
F )||C−1 ≤ η + τη + ||L(sn

F,η)− L(sn
F )||C−1 (A.59)

Therefore, since we already showed that kn
η → kn as η → 0, we use the same argument as

before to obtain that ||d− L(sn
F )|| = 0. Then kn

η converges to a solution to the NF-PIP as
η → 0.

Now we consider the case where n(η) → ∞ as η → 0. Let k be the limit of kn, the
sequence with exact data which exists by Theorem 2 and is a solution to the NF-PIP. Then
we may take n large enough such that

||k − kn||K <
ρτ − 1

4α1/2C2(1 + τ)
(A.60)

Thus,

||k − k∗||K ≤ ||k − kn||K + ||kn − k∗||K ≤ ρτ − 1
4α1/2C2(1 + τ)

+ ||k − k∗||K, (A.61)
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where we have used the fact that kn is monotone decreasing. Then, from (3.37)

||k − k||K ≤ ||k − k∗||K + ||k∗ − k||K ≤ ρτ − 1
4α1/2C2(1 + τ)

+ 2||k − k∗||K

<
3
4

ρτ − 1
α1/2C2(1 + τ)

<
ρτ − 1

C2α1/2(1 + τ)
(A.62)

Then, by the argument used above, expression (A.53) follows with k∗ replaced by k. On
the other hand, given ε > 0, since kn → k, we may take m(ε) such that if m ≥ m(ε), then
||k − km||K ≤ ε

2 . In addition, since n(η) → ∞ as η → 0, there exists δ > 0, such that
n(η) > m(ε) whenever η < δ. Furthermore, we note from A.57 (with n replaced by m(ε)),
that there exists δ2 such that, if η < δ2, ||km(ε)

η − km(ε)||K ≤ ε
2 . Then if η < min (δ, δ2),

||kn(η)
η − k||K ≤ ||km(ε)

η − k||K ≤ ||km(ε)
η − km(ε)||K + ||k − km(ε)||K ≤ ε (A.63)

Thus, as n(η) →∞ for η → 0, kn
η → k where k is a solution to the NF-PIP. ¤
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Appendix B

Derivation of the IRBS for

Two-Phase Flow

B.1 Reduction of the Linearized Case

From definition (6.48) and equations (6.26)-(6.31) we know that

ql,n
F = ωl

P λn
F eY n−1

[P l
bh − pn

F (xl
P )], (B.1)

un
F = −λn

F eY n−1∇pn
F , (B.2)

Ql = ωl
Ie

Y n−1
λn

F [pl,n
bh,F − pn

F (xl
I)]. (B.3)

Using again definition (6.48) it is straightforward tho observe that

DPG(Pn−1,Sn
F )[Pn − Pn−1] + DsG(Pn−1,Sn

F )[S − Sn
F ]

= φn
F c(sn

F )
∂[p− pn

F ]
∂t

+ φn
F [cw − co]

∂pn
F

∂t
[s− sn

F ]

+[φr − φn−1
r ]c(sn

F )
∂pn

F

∂t
+∇ · [u− un

F ]−
Np∑

l=1

[q − qn
F ]δ(x− xl

p), (B.4)
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DPGw(Pn−1,Sn
F )[Pn − Pn−1] + DsGw(Pn−1,Sn

F )[S − Sn
F ]

= φn
F (cr + cw)sn

F

∂[p− pn
F ]

∂t
+ crφ

n−1
r [p− pn

F ]
∂sn

F

∂t
+ φn

F (cr + cw)[s− sn
F ]

∂pn
F

∂t

+φn
F

∂[s− sn
F ]

∂t
+ [φr − φn−1

r ]
[
(cr + cw)sn

F

∂pn
F

∂t
+ [1 + cr[pn

F − pr]]
∂sn

F

∂t

]

+∇ · [fn
w,F [u− un

F ] +
[
fw − fn

w,F ]un
F

]−
Np∑

l=1

[
fn

w,F [q − qn
F ] +

[
fw − fn

w,F ]qn
F

]
δ(x− xl

p),(B.5)

DPH(Pn−1,Sn
F )[Pn −Pn−1] + DsH(Pn−1,Sn

F )[S − Sn
F ]

= [u− un
F ] + Dsλ

n
F [s− sn

F ]eY n−1∇pn
F + [Y − Y n−1]eY n−1

λn
F∇pn

F

−
∑
α

Dαλn
F [θα − θn−1

α ]eY n−1∇pn
F + λn

F eY n−1∇[p− pn
F ], (B.6)

DPWn,l
q (Pn−1,Sn

F )[Pn − Pn−1] + DsW
n,l
q (Pn−1,Sn

F )[S − Sn
F ]

= [ql − ql,n
F ]− ωl

P Dsλ
n
F eY n−1

(P l
bh − pn

F (xl
P )[s− sn

F ]

−
∑
α

ωl
P Dθαλn

F eY n−1
(P l

bh − pn
F (xl

P )[θα − θn−1
α ]

−ωl
P λn

F eY n−1
(Pbh − pn

F )[Y − Y n−1] + ωl
P λn

F eY n−1
(p− pn

F ), (B.7)

DPWn,l
Q (Pn−1,Sn

F )[Pn − Pn−1] + DsW
n,l
Q (Pn−1,Sn

F )[S − Sn
F ]

= −ωi,l
I Dsλ

n
F eY n−1

(pn
bh,F − pn

F )[s− sn
F ]

−
∑
α

ωi,l
I Dθαλn

F eY n−1
(pn

bh,F − pn
F )[θα − θn−1

α ]

−ωl
Iλ

n
F eY n−1

(pn
bh,F − pn

F )[Y − Y n−1]

−ωl
Iλ

n
F eY n−1

(pn
bh − pn

bh,F ) + ωl
Iλ

n
F eY n−1

(p− pn
F ). (B.8)

From definitions (6.55) and the fact that LG̃(Pn−1,Sn
F ) = 0, we can write (B.6)-(B.9) in

the following compact form

u− un
F = −λn

F eY n−1∇[p− pn
F ] + T [s− sn

F , Y − Y n−1, {θα − θn−1
α }α]un

F , (B.9)

ql − ql,n
F = −ωl

Iλ
n
F eY n−1

(p− pn
F ) + T [s− sn

F , Y − Y n−1, {θα − θn−1
α }α]qn

F , (B.10)

pl
bh − pl,n

bh,F = p− pn
F − T [s− sn

F , Y − Y n−1, {θα − θn−1
α }α][pl,n

bh − pn
F ]. (B.11)
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In addition, some simple computations show that

fw − fn
w,F = B[s− sn

F , {θα − θn−1
α }α] (B.12)

for B defined in (6.71)

B[s, θw, θo] =
[
κn

w,s − κn
s fn

w,F

]
s +

[
κn

w − κn
wfn

w,F

]
θw − κn

ofn
w,F θo. (B.13)

Now observe that

fn
w,F [u− un

F ] + [fw − fn
w,F ]un

F

= −λn
w,F eY n−1∇[p− pn

F ] + fwT [s− sn
F , Y − Y n−1, {θα − θn−1

α }α]un
F

+
[
κn

w,s − κn
s fn

w,F

]
[s− sn

F ] +
[
κn

w − κn
wfn

w,F

]
[θw − θn−1

w ]− κn
ofn

w,F [θo − θn−1
o ]un

F (B.14)

and some algebraic manipulation yields

fn
w,F [u− un

F ] + [fw − fn
w,F ]un

F

=
[
κn

w,s[s− sn
F ] + κn

w[θw − θn−1
w ] + fn

w,F [Y − Y n−1]
]
un

F

−λn
w,F eY n−1∇[p− pn

F ] = Tw[s− sn
F , Y − Y n−1, {θα − θn−1

α }α]un
F . (B.15)

Similarly

fn
w,F [q − qn

F ] + [fw − fn
w,F ]qn

F

=
[
κn

w,s[s− sn
F ] + κn

w[θw − θn−1
w ] + fn

w,F [Y − Y n−1]
]
qn
F

−ωp,l
I λn

w,F eY n−1
(p− pn

F ) = Tw[s− sn
F , Y − Y n−1, θw − θn−1

w

]
qn
F . (B.16)

Equation (B.15) and (B.16) are substituted in (B.4)-(B.5) to obtain

DPG(Pn−1,Sn
F )[Pn −Pn−1] + DsG(Pn−1,Sn

F )[S − Sn
F ]

= φn
F c(sn

F )
∂[p− pn

F ]
∂t

+ φn
F [cw − co]

∂pn
F

∂t
[s− sn

F ] + [φr − φn−1
r ]c(sn

F )
∂pn

F

∂t

+∇ ·
[
T [s− sn

F , Y − Y n−1, {θα − θn−1
α }α]un

F − λn
F eY n−1∇[p− pn

F ]
]

−
Np∑

l=1

[
T [s− sn

F , Y − Y n−1, {θα − θn−1
α }α]qn

F − ωp,l
I λn

F eY n−1
(p− pn

F )
]
δ(x− xl

p) (B.17)
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and

DPGw(Pn−1,Sn
F )[Pn −Pn−1] + DsGw(Pn−1,Sn

F )[S − Sn
F ]

= φn
F (cr + cw)sn

F

∂[p− pn
F ]

∂t
+ crφ

n−1
r [p− pn

F ]
∂sn

F

∂t
+ φn

F (cr + cw)[s− sn
F ]

∂pn
F

∂t

+φn
F

∂[s− sn
F ]

∂t
+ [φr − φn−1

r ]
[
(cr + cw)sn

F

∂pn
F

∂t
+ [1 + cr[pn

F − pr]]
∂sn

F

∂t

]

+∇ ·
[
Tw[s− sn

F , Y − Y n−1, θw − θn−1
w ]un

F − λn
w,F eY n−1∇[p− pn

F ]
]

−
Np∑

l=1

[
Tw[s− sn

F , Y − Y n−1, θw − θn−1
w ]qn

F − ωp,l
I λn

w,F eY n−1
(p− pn

F )
]
δ(x− xl

p). (B.18)

which shows (6.51)-(6.52). Similar argument yields (6.53) and (6.55)

B.1.1 Measurement Functional on the linearized variables

In order to compute the representer coefficients, we need to study the measurement func-
tional on the linearized variables. From (B.9)-(B.12) we observe that

Ll,m
I (pl

bh) =
∫ T

0
δ(t− tl,mI )pl

bh(t) = pl,n
bh,F (tl,mI )

−
∫ T

0
δ(t− tl,mI )

[
[pl,n

bh − pn
F ]T [s− sn

F , Y − Y n−1, {θα − θn−1
α }]

]
− [p− pn

F ]
]
, (B.19)

Ll,m
p (ql(t), fw(xl

p, t)) =
∫ T

0
δ(t− tl,mp )[aql(t) + bfw(xl

p, t)]

= aql,n
F (tl,mp ) + bfn

w,F (xl
p, t

l,m
p )

+
∫ T

0
δ(t− tl,mp )

[
aq

[
qn
FT [s− sn

F , Y − Y n−1, {θα − θn−1
α }]− ωp,l

I λn
F eY n−1

(p− pn
F )

]

+bB[s− sn
F , {θα − θn−1

α }]
]

(B.20)

and, by definition (6.39),

Ll,m
o (p) =

∫ T

0
δ(t− tl,mo )p(xl

o, t) = p(xl
o, t

l,m
o ). (B.21)
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B.1.2 The EL equations

For the derivation of the EL equations we first observe that

2DpJ = DpJd +
∫

Ω

∫ T

0

[
Λ

[
φn

F c(sn
F )

∂p̂

∂t
−∇ ·

[
λn

F eY n−1∇p̂
]

+
Np∑

l=1

ωp,l
I λn

F eY n−1
p̂δ(x− xl

p)
]

+Λw

[
φn

F (cr + cw)sn
F

∂p̂

∂t
+ crφ

n−1
r p̂

∂sn
F

∂t
−∇ ·

[
λn

w,F eY n−1∇p̂
]

+
Np∑

l=1

ωl
pλ

n
w,F eY n−1

p̂δ(x− xl
p)

]]

+
∫

∂Ω

∫ T

0
[Λλn

F eY n−1∇p̂ · n + ΛwDλn
w,F eY n−1∇p̂ · n] +

∫

Ω
[Λφn

F c(sn
F ) + Λwφn

F (cr + cw)sn
F ]p̂(t = 0).

(B.22)

We integrate by parts once with respect time and twice with respect x. Then we assume
Λ = 0 = Λw on t = T and

λn
F eY n−1∇Λ + λn

w,F eY n−1∇Λw = 0, (B.23)

to find

2DpJ = DpJd +
∫

Ω

∫ T

0

[
− ∂

∂t

[
Λφn

F c(sn
F )

]
p̂− ∂

∂t

[
Λwφn

F (cr + cw)sn
F

]
+ Λwcrφ

n−1
r

∂sn
F

∂t

]
p̂

−
∫

Ω

∫ T

0
∇ ·

[
λn

F eY n−1∇Λ + λn
w,F eY n−1∇Λw

]
p̂

+
Np∑

l=1

ωp,l
I

∫

Ω

∫ T

0

[
λn

F eY n−1
Λ + λn

w,F eY n−1
Λw

]
p̂δ(x− xl

p).

(B.24)

From 6.46) and (B.19)-(B.21) we find

DpJd =
Np∑

l=1

M l
p∑

j,m

[dl,m
p −Ll,m

p (ql)][C−1
p,l ]j,m

[ ∫ T

0

∫

Ω
ωl

pλ
n
F eY n−1

p̂δ(x− xl
p)δ(t− tl,mp )

]

−
NI∑

l=1

M l
I∑

j,m

[dl,m
I − Ll,m

I (pl
bh)][C−1

I,l ]j,m
[ ∫ T

0

∫

Ω
p̂δ(x− xl

I)δ(t− tl,mI )
]

−
No∑

l=1

M l
o∑

j,m=1

[dl,m
o −Ll,m

o (p)]T [C−1
o,l ]m,j

∫ T

0

∫

Ω
p̂δ(x− xl,m

o )δ(t− tl,mo ). (B.25)
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Then, (B.25) becomes

2DpJ =
Np∑

l=1

M l
p∑

j,m

[dl,m
p −Ll,m

p (ql)][C−1
p,l ]j,m

[ ∫ T

0

∫

Ω
ωl

pλ
n
F eY n−1

p̂δ(x− xl
p)δ(t− tl,mp )

]

−
NI∑

l=1

M l
I∑

j,m

[dl,m
I − Ll,m

I (pl
bh)][C−1

I,l ]j,m
[ ∫ T

0

∫

Ω
p̂δ(x− xl

I)δ(t− tl,mI )
]

−
No∑

l=1

M l
o∑

j,m=1

[dl,m
o −Ll,m

o (p)]T [C−1
o,l ]m,j

∫ T

0

∫

Ω
p̂δ(x− xl,m

o )δ(t− tl,mo )

+
∫

Ω

∫ T

0

[
− ∂

∂t

[
Λφn

F c(sn
F )

]
p̂− ∂

∂t

[
Λwφn

F (cr + cw)sn
F

]
+ Λwcrφ

n−1
r

∂sn
F

∂t

]
p̂

−
∫

Ω

∫ T

0
∇ ·

[
λn

F eY n−1∇Λ + λn
w,F eY n−1∇Λw

]
p̂

+
Np∑

l=1

ωl
p

∫

Ω

∫ T

0

[
λn

F eY n−1
Λ + λn

w,F eY n−1
Λw

]
p̂δ(x− xl

p),

(B.26)

which in turn yields

An[Λ, Λw] =
NI∑

l=1

M l
I∑

j,m

[dl,m
I − Ll,m

I (pl
bh)][C−1

I,l ]j,m
[ ∫ T

0

∫

Ω
p̂δ(x− xl

I)δ(t− tl,mI )
]

−
Np∑

l=1

M l
p∑

j,m

[dl,m
p −Ll,m

p (ql)][C−1
p,l ]j,m

[ ∫ T

0

∫

Ω
ωl

pλ
n
F eY n−1

p̂δ(x− xl
p)δ(t− tl,mp )

]

+
No∑

l=1

M l
o∑

j,m=1

[dl,m
o −Ll,m

o (p)]T [C−1
o,l ]m,j

∫ T

0

∫

Ω
p̂δ(x− xl,m

o )δ(t− tl,mo ) (B.27)
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for An defined in (6.64). Similarly,

2DsJ = DsJd +
∫

Ω

∫ T

0
Λ

[
φn

F [cw − co]
∂pn

F

∂t
ŝ +∇ ·

[
κn

s ŝun
F

]
−

Np∑

l=1

qn
F κn

s ŝδ(x− xl
p)

]

+
∫

Ω

∫ T

0
Λw

[
φn

F (cr + cw)ŝ
∂pn

F

∂t
+ φn

F

∂ŝ

∂t
+∇ ·

[
κn

w,sŝu
n
F

]
−

Np∑

l=1

qn
F τn

w,sŝδ(x− xl
p)

]

−
∫

Γ

∫ T

0

[
Λ[κn

s ŝun
F · n] + Λw[κn

w,sŝu
n
F · n]

]
+

∫

Ω

[
φn

F ŝ]
]
(t = 0).

(B.28)

Then, integrating by parts and using the same final time conditions on Λ, Λw, as well as
(B.23) we obtain

2DsJ = DsJd +
∫

Ω

∫ T

0

[
Λφn

F [cw − co]
∂pn

F

∂t
+ Λwφn

F (cr + cw)
∂pn

F

∂t
− ∂[φn

F Λw]
∂t

]
ŝ

−
∫

Ω

∫ T

0

[
∇Λ ·

[
κn

s ŝun
F

]
+∇Λw ·

[
κn

w,sŝu
n
F

]]
−

Np∑

l=1

∫

Ω

∫ T

0
qn
F

[
Λκn

s + Λwκn
w,s

]
ŝδ(x− xl

p)

(B.29)

On the other hand, is easy to see that

∫

Ω

∫ T

0

[
κn

s∇Λ · un
F + κn

w,s∇Λwun
F

]
ŝ

=
∫

Ω

∫ T

0

[
∇ · [Λκn

s u
n
F ] +∇ · [Λwκn

w,su
n
F ]

]
ŝ−

∫

Ω

∫ T

0

[
Λ∇ · [κn

s u
n
F ] + Λ∇ · [κn

s u
n
F ]

]
ŝ(B.30)

Therefore,

2DsJ = DsJd +
∫

Ω

∫ T

0

[
Λφn

F [cw − co]
∂pn

F

∂t
+ Λwφn

F (cr + cw)
∂pn

F

∂t
− ∂[φn

F Λw]
∂t

]
ŝ

−
∫

Ω

∫ T

0

[
∇ · [Λκn

s u
n
F ] +∇ · [Λwκn

w,su
n
F ]

]
ŝ +

∫

Ω

∫ T

0

[
Λ∇ · [κn

s u
n
F ] + Λ∇ · [κn

s u
n
F ]

]
ŝ

−
Np∑

l=1

∫

Ω

∫ T

0
qn
F

[
Λκn

s + Λwκn
w,s

]
ŝδ(x− xl

p).

(B.31)
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From 6.46) and (B.19)-(B.21) we compute

DsJd = −
Np∑

l=1

M l
p∑

jm

[dl,j
p − Ll,j

p (ql(t), fw(xl
p, t))][C

−1
p,l ]j,m

[ ∫ T

0

∫

Ω

[
aqn

F κn
s

−b[κn
w,s − κn

s fn
w,F ]

]
δ(x− xl

p)δ(t− tl,mp )
]

+
NI∑

l=1

M l
I∑

j,m

[dl,j
I − Ll,j

I (pl
bh)][C−1

I,l ]j,m
[ ∫ T

0

∫

Ω
[pl,n

bh,F − pn
F ]κn

s ŝδ(t− tl,mI )δ(x− xl
I)

]
(B.32)

and so (B.31) can be written as

2DsJ = −
Np∑

l=1

M l
p∑

jm

[dl,j
p − Ll,j

p (ql(t), fw(xl
p, t))][C

−1
p,l ]j,m

[ ∫ T

0

∫

Ω

[
aqn

F κn
s

−b[κn
w,s − κn

s fn
w,F ]

]
δ(x− xl

p)δ(t− tl,mp )
]

+
NI∑

l=1

M l
I∑

j,m

[dl,j
I − Ll,j

I (pl
bh)][C−1

I,l ]j,m
[ ∫ T

0

∫

Ω
[pl,n

bh,F − pn
F ]κn

s ŝδ(t− tl,mI )δ(x− xl
I)

]

+
∫

Ω

∫ T

0

[
Λφn

F [cw − co]
∂pn

F

∂t
+ Λwφn

F (cr + cw)
∂pn

F

∂t
− ∂[φn

F Λw]
∂t

]
ŝ

−
∫

Ω

∫ T

0

[
∇ · [Λκn

s u
n
F ] +∇ · [Λwκn

w,su
n
F ]

]
ŝ +

∫

Ω

∫ T

0

[
Λ∇ · [κn

s u
n
F ] + Λ∇ · [κn

s u
n
F ]

]
ŝ

−
Np∑

l=1

∫

Ω

∫ T

0
qn
F

[
Λqn

F τn
s + Λwτn

w,s

]
ŝδ(x− xl

p)
]
,

(B.33)

which is equivalent to

An
w[Λ, Λw] =

Np∑

l=1

M l
p∑

jm

[dl,j
p − Ll,j

p (ql(t), fw(xl
p, t))][C

−1
p,l ]j,m

[ ∫ T

0

∫

Ω

[
aqn

F κn
s

−b[κn
w,s − κn

s fn
w,F ]

]
δ(x− xl

p)δ(t− tl,mp )
]

−
NI∑

l=1

M l
I∑

j,m

[dl,j
I − Ll,j

I (pl
bh)][C−1

I,l ]j,m
[ ∫ T

0

∫

Ω
[pl,n

bh,F − pn
F ]κn

s ŝδ(t− tl,mI )δ(x− xl
I)

]
(B.34)
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for An
w defined in (6.65). Analogously,

2DY J = DY Jd +
∫

Ω

∫

Ω
(Y − Y n−1)C−1

Y (x, y)Ŷ

+
∫

Ω

∫ T

0
Λ

[
∇ · [λn

F Ŷ un
F

]−
Np∑

l=1

qn
F Ŷ δ(x− xl

p)
]

+Λw

[
∇ · [λn

w,F Ŷ un
F ]−

Np∑

l=1

fn
w,F qn

F Ŷ δ(x− xl
p)

]

−
∫

Γ

∫ T

0
[Λλn

F Ŷ un
F · n + Λn

w,F Ŷ un
F · n]

(B.35)

and the same arguments as before show

Y − Y n−1 =
∫

Ω

∫ T

0
C−1

Y (x, y)

[
[∇Λ + fn

w,F∇Λw] · un
F +

Np∑

l=1

qn
F [Λ + fn

w,F Λw]δ(x− xl
p)

+
Np∑

l=1

M l
p∑

jm

[dj,l
q − Lj,l

q (ql)][C−1
p,l ]j,m

[
qn
F δ(x− xl

p)δ(t− tl,mp )
]

−
NI∑

l=1

M l
I∑

j,m

[dl,j
I − Ll,j

I (pl
bh)][C−1

I,l ]j,m[pl,n
bh,F − pn

F ]δ(t− tl,mI )δ(x− xl
I)

]]
.

(B.36)

Expressions (6.67)-(6.69) are obtained with the same arguments.

B.2 The Representers Algorithm

Note that A and Aw (6.64)-(6.65) are bilinear operators. Then, expressions (6.83)-(6.84)
are substituted in (6.62)-(6.63) we find that

Nχ∑

l=1

M l
χ∑

j=1

βl,j
χ A[Λl,j

χ , Λl,j
χ,w] =

Nχ∑

l=1

M l
χ∑

j,m=1

[dl,j
χ − Ll,j

χ ][C−1
χ,l ]j,mDl,m

1,χ . (B.37)
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Then, Λl,j
χ and Λl,j

χ,w satisfies (6.85)-(6.86) if and only if

βl,m
χ =

M l
χ∑

j=1

[dl,j
χ − Ll,j

χ ][C−1
χ,l ]j,m (B.38)

for every χ ∈ {p, I, o}, l ∈ {1, . . . , Nχ} and m ∈ {1, . . . , M l
χ}. From definition (6.81),

expression (B.38) becomes

βl
χ = [dl

χ − Ll
χ]C−1

χ,l , (B.39)

which finally can be written as

Cχ,lβ
l
χ = [dl

χ − Ll
χ]. (B.40)

The same argument of linearity shows (6.87)-(6.90) as well as

T [s− sn
F , Y − Y n−1, {θα − θn−1

α }] =
∑
χ

Nχ∑

l=1

M l
χ∑

j=1

βχ,l
j T [rχ,l

j ], (B.41)

where rχ,l
j was defined in (6.72). Therefore, it follows from (B.20) that

Lk,m
p (qk) = Lk,m

p (qk,n
F ) +

∑
χ

Nχ∑

l=1

M l
χ∑

j=1

βl,j
χ

∫ T

0
δ(t− tP,k

m )
[
qn
FT [rχ,l

j ]− ωk
P λn

F eY n−1
Rl,j

χ,p

]
(B.42)

and from definition (6.75)-(6.76) we obtain

Lk,m
q (qk) =

∫ T

0
δ(t− tP,l

m )qk(t) = Lk,m
q (qk,n

F ) +
∑
χ

Nχ∑

l=1

τ k,m,l
q,χ · bl

χ. (B.43)

Similarly, from (B.21)

Lk,m
I (pk

bh) = Lk,m
I (pk,n

bh,F )−
∑
χ

Nχ∑

l=1

M l
χ∑

j=1

βl,j
χ

∫ T

0
δ(t− tI,k

m )
[
[pl,n

bh − pn
F ]T [rχ,l

j ]−Rl,j
χ,p

]
(B.44)

and so

Lk,m
I (pk

bh) = Lk,m
I (pk,n

bh,F ) +
∑
χ

Nχ∑

l=1

τ k,m,l
I,χ · bl

χ. (B.45)
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Analogously,

Lk,m
o (p) = Lk,m

o (pn
F ) +

∑
χ

Nχ∑

l=1

τ k,m,l
o,χ · bl

χ. (B.46)

Then, for ξ ∈ {p, I, o}, the general case can be written as

Lk,m
ξ (ξ) = Lk,m

ξ (ξn
F ) +

∑
χ

Nχ∑

l=1

τ k,m,l
ξ,χ · bl

χ. (B.47)

On the other hand, substituting (B.47) in (B.38) yields

[Cξ,kbk
ξ ]m = dk,m

ξ −Lk,m
ξ (ξn

F )−
∑
χ

Nχ∑

l=1

τ k,m,l
ξ,χ · bl

χ, (B.48)

which by using (6.77) and (6.41) becomes

Cξ,kbk
ξ +

∑
χ

Nχ∑

l=1

υk,l
ξ,χ · bl

χ = dk
ξ −Lk

ξ (ξ
n
F ). (B.49)

Note that (B.49) can be written as

[Cξ,k + υk,k
ξ,ξ ]bk

ξ +
Nξ∑

l 6=k

υk,l
ξ,ξ · bl

ξ +
∑

χ 6=ξ

Nχ∑

l=1

υk,l
ξ,χ · bl

χ = dk
ξ −Lk

ξ (ξ
n
F ). (B.50)

From (6.78), the previous expression becomes

[Vk,k
χ,χ]bk

ξ +
Nξ∑

l 6=k

Vk,l
ξ,ξ · bl

ξ +
∑

χ 6=ξ

Nχ∑

l=1

Vk,l
ξ,χ · bl

χ = dk
ξ −Lk

ξ (ξ
n
F ) (B.51)

Simple computations then show that (B.51) is

∑
χ

Nχ∑

l=1

Vk,l
ξ,χ · bl

χ = dk
ξ −Lk

ξ (ξ
n
F ), (B.52)

which in turn, by (6.42) and (6.80), implies

∑
χ

Nχ∑

l=1

Vl
ξ,χ · bl

χ = dξ −Lξ (B.53)
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Finally, from (6.43) we have

∑
χ

Vξ,χbχ = dξ −Lξ (B.54)

that we rewrite as

Vb = d−L (B.55)

for d and L defined in (6.80) and V as described in Step (4) of Algorithm 4
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