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It has been theorized that most proteins are under selection pressure to be 
soluble in crowded cellular spaces. To maintain solubility a proteins’ aggregation 
propensity should be inversely proportional to their maximum likely concentration.  This 
theory was examined by comparing the proteome of the model organism S. cerevisiae, 
which has previously undergone a Whole Genome Duplication (WGD) event to the 
proteome of the closely related yeast K. waltii, which has not undergone WGD. This 
comparison revealed the following: 1) Predicted aggregation propensities are higher in 
S. cerevisiae than K. waltii. 2) Aggregation propensity does not predict which genes 
reverted to a single copy after WGD.  3) In genes which were retained as duplicates in 
S. cerevisiae after WGD, aggregation propensities rose from the inferred common 
ancestral protein.  4) Genes retained as duplicates showed less of an increase relative 
to their homologues in K. waltii than genes which were not retained as duplicates. 5) The 
relationship between the log predicted aggregation propensity and log mRNA expression 
level or log protein abundance was not linear as previously predicted.  These results 
suggest that while there is broad selection pressure for reduced aggregation pressure 
for genes which have been duplicated, the precise relationship between aggregation 
propensity and gene expression is more complicated than previously predicted.  These 
results also allow speculation that the whole genome duplication in S.cerevisiae may 
have been made possible by a general relaxation of aggregation-related selection 
pressure.  
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Introduction

Protein aggregation is a large and growing topic with great medical relevance 

due to various human neurodegenerative diseases which are linked with aggregation 

and amyloid formation 1.  One important open question in the field is whether 

aggregation effects are limited to a small number of proteins which then cause disease,

or whether all proteins are aggregation-prone and thus possibly disease-associated 2.  If 

a particular gene is problematic, then focusing on that gene should lead to useful 

therapies.  If all proteins are aggregation prone, then a more general solution will be 

needed.  It is also unclear whether aggregation is really one process or many, with 

research suggesting that there aggregation in general should be distinguished from the 

fibril formation seen in neurodegenerative diseases 3.  There is even some evidence for 

a viral component to Alzheimer’s 4, in which case aggregation is merely the proximate 

cause of symptoms and not the ultimate cause, leading toward an entirely different set of 

therapies aimed at the virus.  

In the quest to better understand protein aggregation, multiple groups have 

developed algorithms for predicting protein aggregation.  The Vendruscolo lab has 

produced an algorithm called Zyggregator which predicts protein aggregation propensity

5.  Zyggregator uses the hydrophobicity, the secondary structure propensity, and the 

charge of the amino acid (hereafter, AA) to predict the effects of mutations upon the 

aggregation propensity of a protein. To predict the absolute aggregation rate, the same 

factors are used plus the protein is rated on whether or not it has alternating hydrophobic 

and hydrophilic residues.  Their model also accounted for extrinsic factors such as pH 

and ionic strength.  They have argued that aggregation is potentially an issue for any 
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and all proteins, based on their finding of a strong inverse relationship between mRNA 

expression and protein abundance for a small set of human genes 2. They conclude that 

all proteins are poised on the edge of aggregation-related disorders with no safety 

margin.  If true, this would have tremendous ramifications, both for our understanding of 

aggregation and our approaches to treating aggregation related diseases.  It is a bold 

conclusion based on a very small dataset, and therefore warrants additional testing.  

Unfortunately, the Zyggregator algorithm is only available via a web form that accepts 

only a single AA sequence, making it difficult to use for large data sets.  

The Serrano lab has developed an algorithm called TANGO which predicts 

aggregation propensity by examining the tendency of the protein to assume beta-sheet 

conformations rather than competing secondary structures 67.  Specifically, it calculates

the partition function of the phase space specified by the Boltzmann distribution, which 

states that the frequency of each structural state depends only on the energy of that 

state.  The distribution is calculated for each amino acid in isolation, since the problem 

becomes intractable for entire proteins, and so the distribution is only an approximation. 

They have used this algorithm to suggest that aggregation is mostly caused by 

hydrophobic aggregation prone regions which are surrounded by hydrophilic gatekeeper 

amino acid residues.  They have further concluded that while aggregation is a fairly 

universal protein trait, the formation of amyloid fibrils is not necessarily associated with 

aggregation and appears to be a fundamentally different process 3.  The authors have 

made the TANGO algorithm publicly available in the form of a downloadable executable, 

allowing other researchers to use it on large data sets.  Therefore, this prediction 

algorithm will be used for all aggregation propensity prediction in this paper.  

Additional detail on these three topics follows.  



3

Protein Aggregation Background

The following information is primarily taken from the review paper Cellular 

Strategies for Controlling Protein Aggregation, by Tiedmers, et al.  Proteins must bury 

their hydrophobic residues by folding properly in order to function 8 9.  If they fail to do so, 

those hydrophobic surfaces can instead cause aggregation by recruiting other proteins 

and trapping them in a misfolded state, which is eventually toxic in some cases if left 

unchecked 10 11 12.  Cells use a number of systems to deal with misfolding 13 14 15 16 17.  

Chaperone proteins, especially the Heat Shock Proteins (HSPs), help proteins fold 

properly 14 18 19.  Misfolded proteins that are not refolded are degraded by cytosolic ATP-

dependent AAA+ proteases 13 or acidic hydrolases after they are moved to the 

lysosomal compartment 17 20 21 22.  Protein aggregation seems to result form the 

exhaustion of these functions, either due to a single severe defect or from a combination 

of moderate conditions, with the defects falling into four broad categories: (i) Mutations 

that result in proteins very prone to misfolding or that disrupt the protein quality-control 

systems 23 24 25 26 27 28, (ii) defects in protein biogenesis due to translation errors or 

defects in the assembly of protein complexes 29 30, (iii) environmental stress conditions 

such as reversible heat-induced unfolding 31 and irreversible oxidative damage in the 

form of peptide backbone fragmentation or carbonylation 32 33, and (iv) the slower effects 

of aging, due to both an accumulation of aggregates the cell is unable to deal with and to 

the progressive exhaustion of the quality-control systems 34 35 36 37 38.  The primary 

structural feature of aggregates appears to be intramolecular beta-sheet, with variation 

in the degree of organization of those sheets, with the most organization found in 

amyloid fibrils 39 40 41.  
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It appears that in some cases, the toxic elements are the soluble oligomers, 

rather than the aggregates themselves 24, and that cells respond to the potentially toxic 

misfolded proteins by collecting them in aggregates 42 43 44 45 46 47 48 and then 

sequestering the aggregates at particular sites to be dealt with 49 50 51.  In yeast 52, 

multiple patterns of localization occur.  Heat stress causes aggregation that is not 

specific to particular parts of the cell 53, with most types of aggregates able to be 

reactivated by chaperones during a recovery period.  Aggregates composed of 

unrecoverable proteins, such as oxidatively damaged proteins, ubiquitinated proteins, 

and others, may be localized to one of two sites 51.  The first is the juxtanuclear quality-

control compartment (JUNC), which is the localization site for ubiquitinated proteins.  

The other is found near the vacuole, called the insoluble protein deposit (IPOD)54.  In 

mammals, a specialized form of inclusion bodies is termed the aggresome 55 56.  These 

structures are not normally present but appear in various disease states 57 58, localizing

near the microtubule-organizing center near the nuclear envelope 57.  It appears that 

smaller aggregates are dragged to this site along the microbutules from elsewhere in the 

cell 55.  

Once a protein has accumulated in an aggregate, it may be dealt with by the cell 

using a number of mechanisms.  A bi-chaperone system involving the Hsp70 and 

Hsp104/ClpB systems deals with heat-aggregated proteins by helping them refold into 

their proper state and by protecting the damaged proteins from the protease systems53.  

The bi-chaperone system appears to work by a threading activity which leads to a one-

by-one extraction of misfolded proteins from the aggregate59.  Small heat-shock proteins 

(sHSPs) respond to high temperatures by binding tightly to misfolded species60 61.  This 

provides cells with a handle on aggregates, increasing their solubility, allowing transport, 
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creating a reservoir of misfolded proteins during heat shock, and allowing for more 

efficient disaggregation by chaperone systems.  In bacteria, several additional AAA+ 

chaperones also possess a disaggregation activity62.  In eukaryotes, those chaperones 

are found only in the mitochondria and chloroplasts63, and while cytosolic disaggregation 

still occurs, the chaperones responsible are not known64.  One candidate is valosin-

containing protein (VCP), which is an ATP and ubiquitin dependent AAA+ chaperone65.  

Eukaryotes are thought to rely more heavily on protein degradation relative to protein 

refolding, possibly via the ubiquitination system66.  They also make use of 

macroautophagy21, where a specialized, cytosolic, double-membrane structure engulfs 

substrates to form autophagic vesicles that ultimately fuse with the lysosome for 

degradation of their contents. 

Cells may also deal with aggregates through asymmetrical partitioning during cell 

division. By moving all of the aggregates to one cell, the other cell benefits from a 

reduced aggregate load.  In E.coli, protein aggregates are retained along with the old 

cell pole, producing aggregate free daughter cells which reproduce faster67.  In yeast, 

the mother cell retains aggregates and produces aggregate-free daughter cells by 

budding68, with the aggregates transported out of the bud via actin69.  In mammalian 

cells, asymmetrical partitioning has been observed in some cases, with the shorter-lived 

cell receiving the aggregates70, with the mechanism suspected to involve the 

centrosome71.  

Edge Theory Papers:

Tartaglia and Vendruscolo have proposed that human proteins have evolved 

precisely enough aggregation resistance to avoid aggregation at their current expression 
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levels but with no margin of error such that any increase in expression level or 

aggregation rate will trigger aggregation2.  They collected data from the literature on 

mRNA expression levels and measured in vivo aggregation propensities of human 

proteins.  They were able to obtain this data for 12 genes.  They excluded one gene 

from analysis due to it being a functional amyloid.  When they graphed expression levels 

vs. aggregation propensities on a log-log scale, they discovered a strong inverse linear 

relationship with r=0.97.  They then concluded that human proteins are produced at 

expression levels at the limits of aggregation, an idea which they dubbed the Edge 

Theory.  This analysis has a number of potential flaws, however.  It considers only 11 

genes. Of those genes nine are known to be involved in disease and six are known to be 

involved specifically in aggregation-related diseases; this suggests that their results may 

not hold true for all genes.  It excludes a gene on the basis of it being a functional 

amyloid without giving a clear definition of the criterion for such, and including that gene 

would dramatically reduce the correlation coefficient.  This analysis uses mRNA levels, 

while one would expect that protein abundances would be limited by aggregation 

propensities.  Finally and most critically, the linear relationship they have demonstrated 

shows only that the safety factor for expression levels vs. aggregation is constant, not 

that it is zero.  Biological safety factors commonly range from 1.3 to 6 for load-bearing 

structural components, and the most common safety factor across systems where it has 

been measured is 272.  It would be surprising to find that proteins are produced with no 

safety factor at all, and the authors present no evidence supporting this conclusion.  

The authors’ next paper examines the relationship between mRNA expression 

levels and protein solubility in E.coli 73.  Since protein solubility data is not widely 

available, the solubility is instead predicted via analysis of the amino acid sequences.  
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By combining predictions based on factors like hydropathy, secondary structure 

propensity, and translation factors using a support vector machine, the final method is 

able to predict 83% of expression levels to within one order of magnitude and 92% to 

within two orders of magnitude. For context, mRNA expression levels in E.coli vary over 

about six orders of magnitude.  The authors then use this method to predict the soluble 

fraction of 746 human proteins expressed in E.coli, and 86% were assigned to the 

correct soluble fraction of four.  One problem with this analysis is that the methods are 

not compared to any baseline or null hypothesis, such as blindly assigning all proteins to 

the same order of magnitude or soluble fraction as the median or mode.  I was unable to 

find the mRNA expression set used in the study, and could not determine the 

performance of a baseline algorithm directly from the dataset.  However, it seems 

reasonable to guess that the distribution is approximately log-normal (this is the case in 

S.cerevisiae, results not shown), in which case their algorithm might well perform only 

slightly better than the baseline described above.  It is not clear why the authors 

switched from their previous linear correlation metric to the classifying to within an order 

of magnitude of the correct value 

The authors continue their search for anticorrelations between protein 

aggregation propensities and mRNA expression levels by examining sub-cellular 

localizations of human proteins74.  They show that when the average predicted 

aggregation propensities for each sub-cellular compartment are plotted against the 

average mRNA expression levels for those compartments, there is a strong 

anticorrelation (r=-0.93 on the log-log scale). They then show that both of these 

properties strongly correlate or anti-correlate with the sub-cellular compartment volume

(r=0.88 for aggregation propensity and r=-0.87 for mRNA level).  It would be interesting 
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to see the results of a straightforward correlation analysis of predicted aggregation 

propensity vs. mRNA levels across all human genes.  They did calculate the correlations 

within each sub-cellular compartment and found that they varied between -0.34 and 

0.26. This suggests that the edge theory does NOT apply across all human proteins, 

although the scatter plots are not provided for the set of all proteins or for any of the 

compartments, making it difficult to tell precisely how the edge theory is failing in those 

cases.  

Tango

The Serrano lab has developed an algorithm called TANGO which predicts 

aggregation propensities of proteins6.  It uses the amino acid sequence, the pH, 

concentration, and ionic strength.  Each segment of a protein can take up different 

conformations.  The likelihood of the conformations is determined by the energy of the 

conformation according to the Boltzmann distribution.  TANGO predicts the beta-

aggregating portions of a peptide by calculating the partition function of the 

conformational phase-space.  In short, TANGO predicts how readily each segment of 

the protein adopts a beta-aggregation conformation.  Other factors included include 

hydrophobicity, beta-sheet propensity, electrostatics, hydrogen-bonding, and competition 

from alpha-helix and beta-turn conformation.  Many of these factors are actually 

calculate by separate program called AGADIR.  Five or more consecutive residues in the 

beta-aggregation conformation state were considered a strong predictor of aggregation 

(92% success rate on the test set).  The authors note that the algorithm is less accurate 

at low levels of aggregation propensity and that TANGO cannot be used to compare 

proteins which differ widely in sequence.
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Question of Interest #1 - Predicted aggregation propensity of Orthologs of 
paralogs vs. orthologs of non-paralogs

Is there a difference in TANGO scores in K. Waltii genes whose orthologs 

remained duplicated in S.cerevisiae after WGD versus those genes whose orthologs 

reverted to a single copy?

Figure 1. S.cerevisiae and K.waltii phylogenetic tree. Not to scale.

Introduction:

It has been theorized that most proteins in cells are under selection pressure to 

have a low enough aggregation propensity to remain soluble at the expression levels

required for the cell to function, also known as the Edge Theory 2.  If true, any effect that 

produced changes in copy count of the gene would trigger strong selection pressure on 

the aggregation propensity of the protein.  Whole genome duplication (WGD) results in 

two copies of a gene, which would be expected to increase expression level.  It has 

been shown that the duplication of chromosomes produces an approximate doubling of 

gene expression across the entire duplicated chromosome in aneuploid yeast 75, and the 
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effect of duplicating all the chromosomes can be expected to be similar.  If yeast 

proteins were already at the edge, the increase in expression level from WGD would 

push proteins over the edge and favor a return to a single copy, increased solubility, or 

reduced expression levels.  The selection should be strongest in those proteins which 

are closest to the edge, namely those with high aggregation tendency, high protein 

abundance, or both.  We tested this hypothesis by looking at the popular model 

organism S.cerevisiae, which has been previously shown to have undergone a WGD 

event,76 possibly as an adaptation for rapid sugar metabolism77.  K.waltii is a closely

related yeast species which split off from S.cerevisiae ~150 MYA 78, prior to the WGD 

event, and serves as a control.  I used the TANGO algorithm to predict the aggregation 

propensity for all K.waltii genes based on their amino acid sequence and compared 

genes which reverted to single copy in S.cerevisiae with those that were maintained as 

two copies. This allows me to use K.waltii as a baseline to control for changes in 

aggregation propensity which occurred after the WGD event in S.cerevisiae.  The same 

experiment was repeated using S.cerevisiae.  Finally, overall TANGO scores for the 

K.waltii and S.cerevisiae proteomes were compared.

Methods:

K.waltii protein sequences were obtained from the supplementary data of the 

Kellis WGD paper, as was the list of genes that were retained as duplicates in 

S.cerevisiae.  The protein sequences were fed into TANGO.exe using the standard 

settings and the total TANGO score for each was recorded.  
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Figure 2: The distributions of TANGO score in S.cerevisiae for genes which were retained as 
duplicates vs. genes which reverted to singletons.  The median TANGO score for duplicated 
genes was 1712, while the median TANGO score for singletons genes was 1752.  The 
distributions were not statistically significant (p=0.16 WMW, n1=899, n2=4342).  
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Figure 3 Distributions of TANGO scores for orthologs of genes where both duplicates were 
retained as duplicates vs. orthologs of genes which reverted to singletons.  Distributions were not 
significantly different. (p=0.550 WMW test, p=0.705 KS test)
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Figure 4 Distributions of log TANGO scores for all genes in K.waltii and all genes in S.cerevisiae.  
S.cerevisiae has a statistically significantly higher median score (1477 vs. 1626, p=0.003 WMW)
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Figure 5: The distribution of differences in TANGO score between orthologous genes in 
S.cerevisiae and K.waltii.  Median difference was smaller for duplicated genes (42 vs. 74).  
Distributions were significantly different (KS test, p=0.005)
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Figure 6: Distribution of protein abundances in S.cerevisiae.  The median abundance for 
duplicated genes was 2490, while the mean abundance for singleton genes was 2750.  This 
difference was statistically significant (p=0.042, KS test, n1 = 321, n2 = 3159).  

Results:  

Duplication status does not affect TANGO score in S.cerevisiae.  The median 

TANGO score for duplicated genes was 1712, while the median TANGO score for 

singletons genes was 1752.  This difference was not statistically significant (p =0.16 

WMW, n1=899, n2=4342).  

The aggregation propensity of genes in K.waltii does not predict whether or not 

their paralogs in S.cerevisiae were retained as duplicates or reverted to singletons.  In 
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K.waltii, paralogs of duplicated genes had a median TANGO score of 1575.  Paralogs of 

singleton genes had a median TANGO score of 1477.  The two samples were not 

significantly different (p=0.550, WMW test, n1=441, n2=5150).  

TANGO Scores are higher in S.cerevisiae.  The median TANGO score in 

S.cerevisiae was 1626, vs. 1427 for K.waltii, and this difference was statistically 

significant (p=0.003, WMW, n1=5150, n2=6610).

TANGO scores of duplicated genes are less different from their orthologs than 

genes which reverted to singletons.  This is a paired analysis, using the differences 

between orthologous genes in S.cerevisiae and K.waltii.  TANGO scores are very similar 

for orthologous genes (scatter plot not shown), so a paired analysis is reasonable.  The 

median difference was smaller for duplicated genes (42 vs. 74).  The distributions of 

differences were significantly different for duplicated genes vs. genes which returned to 

single copy (KS test, p=0.005).

Duplicated genes have higher protein abundance per gene than genes which 

reverted to a single copy.   In S.cerevisiae, the median abundance for duplicated genes 

was 2490, while the mean abundance for singleton genes was 2750.  This difference 

was statistically significant (p=0.042, KS test, n1 = 321, n2 = 3159).  

Conclusion: 

The clearest result is that S.cerevisiae genes have higher aggregation 

propensities than K.waltii.  This could be due to WGD or selection pressures due to 

environmental differences, particularly since S.cerevisiae has been domesticated for 

~6000 years79. TANGO scores are not significantly different between duplicates and 

singletons in S.cerevisiae, or between their orthologs in K.waltii.  This suggests that 
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aggregation propensity did not influence which genes were retained as duplicates.  

While TANGO scores are higher overall in S.cerevisiae than K.waltii, the differences are 

larger in genes which reverted to single copy relative to those which remained as 

duplicates in S.cerevisiae.  This suggests that after WGD, there was selection pressure 

on the genes which were retained as duplicates to reduce their aggregation propensity, 

or at least pressure which prevented their aggregation propensity from rising as fast as 

other genes.  

  Assuming that TANGO score is an accurate measure of aggregation propensity, 

then aggregation propensity is not a major selective force driving the loss or elimination 

of duplicate copies of genes after WGD.  TANGO scores are higher in S.cerevisiae than 

in K.waltii, but it is unclear whether this rise is due to the WGD event.  Since the 

ancestral state is unknown, it is unclear whether TANGO scores increased in 

S.cerevisiae or fell in K.waltii.  Furthermore, the K.waltii proteome was generated by 

predicting ORFs in the K.waltii genome after sequencing, and may not be accurate. In 

particular, ORF prediction must guess at intron locations and in many cases will 

incorrectly identify start codon locations.  Finally, TANGO was not intended to be used to 

measure absolute aggregation propensity, only relative propensities of mutants.  

Therefore, the comparison of duplicated vs. nonduplicated genes may not be a valid 

application of the algorithm.  These two factors may have contributed to a lack of power 

in the comparison of duplicated to non-duplicated genes.  The analyses which compared 

orthologs using TANGO should be a valid application, and these analyses found 

significant differences.  Highly abundant proteins are more likely to be retained as 

duplicates, which is the opposite of what the edge theory would predict.  However, 

abundance is strongly correlated with essentiality, which may overwhelm the effects of 
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any aggregation-related selection pressure. Taken all together, this evidence suggests 

that genes for highly abundant proteins tend to be retained after WGD, and that genes 

which remain duplicated reduce their aggregation propensity.  
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Question of Interest #2:  AA sequence pressure

Does WGD produce selection pressures on aggregation propensity at the level of 

amino acid sites? First, do I see more mutations after WGD at sites that have high or low 

aggregation propensity? Second, if mutations do occur do those mutations raise or lower 

the aggregation propensity?  

Introduction

The Edge Theory predicts that duplication of genes should produce an increase 

in gene copy count which would raise expression levels and thus cause aggregation.  

Therefore, there should be selection pressure on genes which remained as duplicates to 

reduce their aggregation propensity.  This was tested by looking at point mutations 

which occurred after whole genome duplication in genes where both copies were 

retained in the yeast S.cerevisiae.   In order to tell which point mutations occurred after 

the WGD event, the closely related yeast K.waltii was used as a control.  I used the 450 

gene alignments of S.cerevisiae paralogs with their K.waltii orthologs from Kellis, et al. 

76.  A section of one such alignment is shown.    
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Figure 7. Phylogeny of K.waltii and S.cerevisiae, as well as a selected subsection of a three-gene 
alignment between K.waltii and the two homologues in S.cerevisiae resulting from whole-genome 
duplication (WGD).  Para sites are those where one S.cerevisiae copy matches the AA in K.waltii, 
but the other S.cerevisiae copy has a different AA.  These indicate a mutation occurring in 
S.cerevisiae after WGD.  Ortho sites are those were both S.cerevisiae copies match each other 
but differ from K.waltii. These indicate that a mutation occurred either in S.cerevisiae before WGD 
or in K.waltii. Sites where all three genes have different AA are uninformative because they do
not allow us to infer the ancestral state.

There is a speciation event between K.waltii and S.cerevisiae, and then a WGD 

in S.cerevisiae.  To simplify the analysis, only amino acid sites compatible with the 

assumption of one mutation from the common ancestor of the two organisms will be 
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considered (assumption of parsimony).  If a mutation occurs in K.waltii after speciation, 

then both copies in S.cerevisiae will have the same amino acid, and the K.waltii copy will 

have a different amino acid at that site.  If there was a mutation in S.cerevisiae after 

speciation but before the WGD event, the same signature appears.  Those mutations will

be referred to as ortho mutations because the orthologs have different amino acids at 

that site.  In both of these cases, the mutation occurred when there was only one copy in 

the cell.  These mutations will serve as a control.  The other informative case is when 

there is a mutation in S.cerevisiae after WGD, and this produces a signature where the 

two copies in S.cerevisiae are different, but one of them will match the K.waltii.  These 

are mutations which must have occurred after the WGD event and in the presence of 

two copies of the gene.  These mutations will be referred to as para mutations because 

the amino acids at that site are different between two paralogs.  If the edge theory is 

correct, I would expect to see selection pressure associated with aggregation effects at 

these sites.  If there were no mutations, then the amino acid will be the same in all three 

copies and this provides no information about selection pressure.  If all three copies 

have a different amino acid, then there were multiple mutations and I don’t know where 

they occurred, so they provide no information about selection pressure.

Strong selection pressures to reduce aggregation are predicted to have two 

effects: The mutations should be preferentially located at sites which have a high local 

aggregation propensity (as changes at these sites would have the most dramatic effects) 

and the mutations should result in a lower aggregation propensity.   
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Methods:

450 alignments of three genes were taken from Kellis, et al. 76.  Alignments that 

had fewer than 3 para sites (n=40) or fewer than 3 ortho sites (n=6) were discarded as 

uninformative.  Alignments in which more than 50% of sites were insertion/deletion 

mutations were discarded as well (n=63); aligning sequences with high indel rates is 

difficult to do reliably in any case and automated methods in particular tend not to do 

well on these sets.  This is exacerbated by the fact that open reading frames (ORFs)

identification was automated by Kellis, et al.; these alignments do not correspond to 

sequenced proteins but merely ORFs which were predicted to correspond to actual 

genes.  As such, the start codons and location of introns were predicted based on 

genome sequence alignment with S.cerevisiae.  Many of the rejected genes have large

deletions in K.waltii at the N-terminus, which is probably due to incorrectly identified start 

codons rather than true deletion mutations.  Since the following analysis is entirely 

dependent on the assumption that the alignments given are correct, the 63 genes with a 

high percentage of insertion/deletion sites in the alignment were rejected.  This left 375 

alignments. 

TANGO.exe was used to generate TANGO scores for each site of all three 

genes of the alignments.  The mean score was calculated over all sites, all para sites, 

and all ortho sites for each alignment. The experimental unit is a three-gene alignment 

rather than a particular AA site.   It would be unreasonable to assume that the mutations 

in the same gene are independent of each other, so analysis was carried out on the 

mean scores for each alignment.  

In addition, at para sites, the ancestral state could be inferred and so the 

difference in TANGO score from the new mutation to the ancestral state was calculated. 
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Figure 8. Distribution of mean TANGO scores for para and ortho sites for three-gene alignments.  
TANGO scores were not significantly different (p=0.09 for one-sample t-test of the differences).
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Figure 9. The distribution of the average difference in TANGO scores of the new mutation from 
the inferred ancestor for 375 genes retained as duplicates.  Mean TANGO scores increased on 
average by 0.208, which was statistically significant (p=0.022, one-sample t-test).

Results:

Higher mean TANGO scores were observed at ortho sites than at para sites: 

6.35 vs. 5.98.  This difference was not significant ( p=0.09 for one-sample t-test of 

differences).  
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Para mutations resulted in a mean increase in TANGO score of 0.208.  This 

increase was statistically significant (one sample t-test, p=0.022, 95% CI of 0.0298,

0.386).  

The average magnitude of the change in TANGO score per gene was higher for para 

sites than for ortho sites (median of 2.99 for para sites, 2.84 for ortho sites, n=366, 

p=0.025 for a paired samples t-test of the log-transformed data, mean log para was 

0.3870 vs. mean log ortho 0.3290.).  

Para mutations are roughly twice as common as ortho mutations (44232 para 

mutations vs. 21345 ortho mutations, significantly different, paired t-test of the percent

para per alignment vs. the percent ortho per alignment, p<0.0005).  

Conclusion:

The edge theory predicts that any increase in copy count or aggregation 

propensity will produce damaging levels of aggregation.  If this is correct, whole genome 

duplication should produce an increase in gene copy count and a corresponding 

increase in expression level for those genes retained as duplicates 80 81, based on the 

fact that aneuploidy in yeast results in a doubling of gene expression along the entire 

length of a doubled chromosome 75.  This increase can be compensated for by 

mutations.  The most common compensatory mutation is simple deletion or inactivation.  

However, for those genes where both copies are retained, I would expect mutations to 

preferentially reduce the aggregation load.  

First, I would expect the mutations to occur preferentially at sites strongly 

contributing to the overall aggregation propensity of the protein.  However, the average 

aggregation propensity of sites where mutations occurred under WGD conditions is not 
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statistically significantly different from the average aggregation propensity of sites where 

mutations occurred under non-WGD conditions.  This says that there is no pressure for 

mutations to occur at highly aggregation-prone sites.  

Second, I would expect mutations to occur which lower the aggregation 

propensity of the protein.  For sites where I can identify a mutation as having occurred 

under WGD conditions, I can also identify the ancestral state and determine the direction 

of the change in aggregation propensity.  Contrary to what the Edge Theory would 

predict, I actually see mutations which cause an increase in aggregation propensity 

under WGD conditions.  However, aggregation propensity in S.cerevisiae is higher 

overall.  Since S.cerevisiae has been domesticated for thousands of years 79, it is 

possible that the increase in aggregation propensity is an adaptation to domestication 

rather than a response to WGD, or to another difference in environments.  The ideal test 

would be to examine the genomes of many organisms which have undergone WGD and 

compare them to close relative which have not.  

We would expect aggregation selection pressures to produce larger changes in 

aggregation propensity than other selection pressures.  Therefore, para sites should 

show larger changes in TANGO score than ortho sites, regardless of the direction.  This 

was confirmed (paired samples t-test of log-transformed scores p=0.025) although the 

evidence is not very strong.  

Cells could also respond to increased aggregation loads through mutations which 

reduce expression levels or protein abundance, but those kinds of mutations are more 

difficult to identify and were not analyzed.  
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Question of Interest #3: Testing the Edge Theory using the S.cerevisiae
data

Is there a strong inverse linear relationship between the log aggregation 
propensity of a protein and the log protein abundance or log mRNA expression for 
proteins in S.cerevisiae?  Is the same trend present for any subgroups of genes?

Introduction:

I am going to directly reproduce the original Edge Theory experiment 2, which 

was to compare aggregation propensity to protein abundance, except that I am going to 

do it for the entire S.cerevisiae proteome rather than a selection of human proteins and I 

will use the TANGO algorithm to predict the aggregation propensity rather than 

measuring it in vitro.  Then, the predicted aggregation propensity will be compared to the 

measured protein abundance as well as to the measured mRNA expression levels.  

Methods:

Predicted protein aggregation propensities were calculated using the TANGO 

algorithm.  Protein abundance data for S.cerevisiae genes was obtained from the 

Marcotte lab, with collection details described in Laurent et al 82. The data is available at 

http://www.marcottelab.org/MSdata.  mRNA expression levels were taken from the same 

paper.  

Results:  

I compared TANGO scores vs. protein abundance and three different mRNA 

expression level datasets.  Since TANGO scores, protein abundance, and mRNA levels 

are approximately log-normally distributed, and because the linear regression observed 

in the Edge Theory paper was done on the log-transformed aggregation and expression 

levels, all analysis were performed on the log-transformed data.  Linear regressions 
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were performed for TANGO score vs. abundance and TANGO score vs. mRNA 

expression levels.

Figure 10. Log-transformed protein abundance vs log TANGO score.  r = 0.049, p < 0.005.

Figure 11. Log transformed mRNA expression level (Sage data set) vs. log TANGO score.  r = 
0.095, p < 0.005
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Figure 12. Log transformed mRNA expression level (HDA data set) vs. log TANGO score.  
r=0.115, p<0.005.

Figure 5.  Log transformed mRNA expression level (Wang data set) vs. log TANGO score.  
r=0.128, p<0.005.
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N r r^2 P

Protein 
Abundance

2517 0.049 0.0024 < 0.005

SAGE mRNA 
expression level

2467 0.095 0.009 < 0.005

HDA mRNA 
expression level

5301 0.115 0.013 < 0.005

Wang mRNA 
expression level

5546 0.128 0.016 < 0.005

Figure 6.  Linear regressions of protein abundance and mRNA expression level datasets against 
TANGO score. All datasets log-transformed.  

All of the regressions were significant with negative slope but all had dramatically 

smaller r values than the 0.95 reported by Tartaglia, et al2.  The edge theory predicts that 

all proteins evolve to the highest aggregation propensity allowed by their ideal 

expression level, and that the relationship between these is linear on a log-log scale. If 

correct, all graphs should show a strong linear relationship.  Instead, none of the graphs 

show a linear relationship, let alone a strong one. It looks like there might be two 

different populations of genes, one with similar aggregation propensities and varied 

abundance and another with differing aggregation propensities but similar abundances.  
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Figure 7. Log protein abundance vs. log mRNA expression level (Wang data set).  r = 0.556, 
p<0.0005.

Protein abundance and mRNA expression levels are loosely correlated.  For the 

SAGE mRNA expression level data set, 25% of the variation in log protein abundance is 

explainable by the variation in log mRNA expression level (p < 0.0005).  For the HDA 

data set and Wang data set, the numbers are 37.9% and 31%.  For the SAGE dataset, 

the abundance varies over 2-3 orders of magnitude for a particular mRNA expression 

level.  For the HDA data set, the abundance varies over about 2 orders of magnitude for 

any given mRNA expression level.  For the Wang dataset, it varies over up to 4 orders of 

magnitude.

Similar plots were constructed for subgroups of protein based on gene ontology 

classifications as well as on sub-cellular compartment localization.  It was hoped that the 

Edge Theory might hold for some of these subgroups, despite not appearing to hold for 

proteins in general.  Scatter plots were generated for the following compartments: actin, 

ambiguous, bud, bud neck, cell periphery, cytoplasm, early Golgi, endosome, ER, ER to 

Golgi, Golgi, late Golgi, lipid particles, microtubules, mitochondria, nuclear periphery, 
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nucleolus, nucleus, peroxisome, punctate composite, spindle pole, vacuolar membrane, 

and vacuole.  None of the subcompartments showed a strong linear correlation by visual 

inspection.  Scatter plots were also generated for 67 groups of genes by gene-ontology 

keyword.  Visual inspection again failed to find any groups which showed strong linear 

correlations.  The cytosolic compartment data looks very similar to the overall data, 

which eliminates any concern that transmembrane proteins affected the overall analysis.  

Conclusion:  

Protein aggregation does not have a simple correspondence to mRNA 

expression levels or to protein abundance.  Protein abundance correlates less well with 

TANGO scores than the various measurements of mRNA expression levels, although 

since the relationship is not linear this may not be a useful metric.  The original Edge 

paper also used mRNA expression levels rather than abundance2.  The fact that mRNA 

is more closely associated with aggregation than abundance is fairly surprising, since 

the TANGO score measures the aggregation propensity of the protein rather than the 

mRNA coding for it. Aggregation effects should act directly on the protein and only 

indirectly on the mRNA expression levels.  This may be explainable by the fact that 

mRNA expression levels are more closely related to turnover rates, while protein 

abundance measures how much of the protein is present.  Properly folded proteins 

should be less vulnerable to aggregation since their hydrophobic residues are buried, so 

aggregation is a concern only before the protein has folded or if the protein is later 

unfolded.  Proteins with a long half life might spend the same amount of time folding but 

much more time in their folding state and thus present a lower aggregation risk.  It might 

be very interesting to compare aggregation propensities to turnover rates.



33

Final Conclusions

Aggregation propensity does not affect which genes are retained as duplicates 

after WGD, regardless of whether the aggregation propensity is measured in 

S.cerevisiae or for the homologues in K.waltii.  Aggregation propensity was higher in the 

species with WGD, but the difference was smaller for genes which were retained as 

duplicates.  Abundant genes are more likely to be retained as duplicates, but this may be 

related to essentiality rather than aggregation selection pressures.  

At the amino acid level, we did not see a preference for mutations to occur at 

sites with high aggregation propensities.  Mutations which occurred under conditions of 

duplication tended to increase TANGO scores, but this may be due to the overall rise in 

TANGO scores in S.cerevisiae.   It does suggest that the difference in overall 

aggregation propensity for S.cerevisiae proteins vs. K.waltii proteins is due to an 

increase in S.cerevisiae rather than a decrease in K.waltii from the ancestral state.  

Mutations which occurred under conditions of duplication also produced larger changes 

in aggregation propensity than mutations which did not occur under conditions of 

duplication.  Finally, mutations which occurred under conditions of duplication occurred

twice as often as mutations not under conditions of duplication.  Combined with the 

result that proteins retained as duplicates had less of an increase in aggregation than 

other proteins, these results suggest that there was fairly noticeable selection pressures 

on duplicates after WGD.  There appears to have been a general relaxation of 

aggregation-related selection pressure in S.cerevisiae after WGD, but the relaxation was 

less dramatic for duplicated genes, suggesting that duplication really did increase 

aggregation.  
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A potential confounding factor is the possibility that proteins preferentially 

aggregate with themselves; with two different copies of a gene, each copy may mutate 

to the point where it forms two different pools of protein, each of which aggregates 

separately. If so, then having two versions of the gene actually decreases the selection 

pressures associated with aggregation since the total amount of protein which can be 

safely produced is effectively doubled.  Indeed, studies of Alzheimer’s disease 

genotypes suggest that having two different alleles of the protein which forms amyloid 

fibrils in Alzheimer’s can produce less severe symptoms than being homozygous for 

either allele83.

The Edge theory is based on an observation that mRNA expression levels and 

protein aggregation propensity were strongly inversely correlated.  This trend was not 

observed in S.cerevisiae.  It is possible that aggregation is more about protein turnover 

rate than protein abundance in general, and this might be an interesting area for future 

research.  

Based on this research, it seems that there is no simple rule which relates a 

protein’s abundance or expression level to the aggregation propensity in S.cerevisiae.  

There is some evidence that duplication of genes triggers increased aggregation 

pressures for those genes, but abundance rather than aggregation propensity predicts 

which genes were retained as duplicates.  Since S.cerevisiae has higher overall 

aggregation propensities than its close relative, it may be that one of the prerequisites 

for WGD is a relaxation of aggregation pressures, so that the rise in aggregation issues 

from duplication can be tolerated.  An analysis which constructed phylogenetic trees that 

included many more related yeast species would allow the inference of the ancestral 

state for all genes, which would help answer that question.  None of my results can
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comment directly on the claim of the Edge Theory that proteins have no safety factor in 

their expression level vs. their aggregation propensity, but given the wide variations in 

both mRNA expression levels and protein abundance levels at particular aggregation 

propensities, as well as the apparently small selection pressures associated with 

aggregation effects, it seems likely that most proteins in yeast are not right at the limit.  

However, the fact that duplicated genes had smaller aggregation propensity differences 

suggests that the safety factor between the actual aggregation propensity and the ideal 

propensity is less than two for at least some genes.  
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