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In highly flexible and highly integrated manufacturing systems such as 

semiconductor manufacturing, equipment has the capability of conducting different 

manufacturing operations and/or producing at various speeds. In such systems, 

degradation of a machine depends highly on the operations performed on it. Selection of 

operations executed on an equipment changes the degradation dynamics and hence 

directly affects preventive maintenance (PM) decisions. On the other hand, PM actions 

interrupt production and change the system reliability and equipment availability, which 

in turn directly affects decisions as to which operations should be performed on which 

piece of equipment. These strong dynamic interactions between equipment condition, 

operations executed on the equipment and product quality necessitate a methodology that 

integrates the decisions of maintenance scheduling and production operations. Currently, 

maintenance and production operations decision-making are two decoupled processes. To 

address the aforementioned problems, in this dissertation, we devise integrated decision-
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making policies for maintenance scheduling and production operations in flexible 

manufacturing systems (FMS) optimizing a customizable objective function that takes 

into account operation-dependent degradation models and production targets. The 

objective function consists of costs associated with scheduled and unscheduled 

maintenance, rewards for successfully completed products and penalties for missed 

production targets. In order to maximize the objective function, a paradigm based on 

metaheuristic optimization and evaluation of candidate solutions via discrete-event 

simulations of operations of the underlying manufacturing system is used. Firstly, we 

propose an operation-dependent decision-making policy for a multiple-product/multiple-

equipment manufacturing system, where each product requires several operations for 

completion and the sequence in which different product types are produced is a priori 

given. The proposed method is tested in simulations of a cluster tool and the results show 

that operation-dependent maintenance decision-making outperforms the case where 

maintenance decisions are made without considerations of operation-dependent 

degradation dynamics. Secondly, we propose an integrated decision-making policy for 

maintenance scheduling and product sequencing where the sequence in which different 

product types can be arranged in a way to maximize the customizable profit function. The 

results show that jointly making maintenance and production sequencing decisions 

consistently and often significantly outperforms the current practice of making these 

decisions separately. Finally, a joint maintenance scheduling and production operations 

decision making policy is proposed for a flexible manufacturing system where the 
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degradation states of the equipment are not perfectly observable, but are rather hidden 

states of a known Hidden Markov Model (HMM). Proposed integrated decision-making 

policy under imperfect degradation state observations is shown to consistently 

outperform the benchmark policies. 
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Chapter 1 

Introduction 

 

 

1.1      Motivation and Background 

Maintenance is an essential part of manufacturing operations ensuring that 

adequate production resources are available to achieve desired productivity and quality in 

a manufacturing system. Adequate implementation of maintenance operations will ensure 

that the production system runs smoothly, with as few unexpected breakdowns as 

possible. However, excessive maintenance will stop the production line, causing both 

losses in production and an increase in expenses due to unnecessary maintenance 

operations. Therefore, in order to keep the production line operating smoothly with 

minimal disruptions and to minimize maintenance costs, it is very important to apply 

maintenance operations efficiently, on the right equipment at the right time. 

Generally speaking, there are two types of maintenance operations; reactive 

maintenance (RM), which occurs when a tool/machine actually fails and preventive 

maintenance (PM), which is performed on a tool/machine before actual failure occurs. 

Even though RM is unavoidable, it usually costs much more and requires more 

maintenance time when compared to PM [1]. For example, in an automotive assembly 

plant a minute of unscheduled downtime can cost as much as $20000 [2]. Also, in 

semiconductor industry, considering that each wafer is worth up to $100K, it is extremely 
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important to keep the production line on and the production equipment at a very good 

condition. Hence, proper scheduling of PM is always desired. 

PM policies can be roughly characterized as reliability-based maintenance (RBM) 

policies, where maintenance is performed at certain time or usage intervals, and 

condition-based maintenance (CBM) policies, where maintenance is performed when the 

condition of machine requires a repair. RBM considers the long-run average of the 

system dynamics and hence the decisions made are not particularly tuned to an individual 

machine. On the contrary, since CBM is more dynamic and the decisions are based on the 

condition of the system at that time point, the effects of those decisions can be 

significantly better than those based on RBM policies [3], enabling preventive 

maintenance of the system only when necessary, thus, saving resources and improving 

system availability [4]. 

In Flexible Manufacturing Systems (FMS), maintenance decisions are 

considerably harder to make, as the machines have the capability of conducting different 

manufacturing operations and/or producing at various speeds. In such systems, 

degradation of a machine depends highly on the operations performed on that machine. 

Thus, selection of operations executed on a machine directly affects PM decisions by 

changing the degradation dynamics. On the other hand, PM actions interrupt production 

and change the system reliability and equipment availability, which in turn directly 

affects decisions as to which operations should be performed on which piece of 

equipment [5]. 
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Such close interaction between production and maintenance operations decision 

making is illustrated in Figure 1. Figure 1.a shows a possible scenario of occasionally 

running a machine with a lower throughput setting, which makes sense especially when 

the machine is severely degraded. This decelerates machine degradation, lengthens the 

uptime of the machine, but also lowers productivity. Conversely, as seen in Figure 1.b, a 

higher throughput setting would accelerate machine degradation and hence increases the 

probability of machine failure. 

 

Figure 1.  Effect of throughput setting change on machine degradation [6] 

 

In existing literature, most of the maintenance decision-making work is based on 

modeling the degradation dynamics of single equipment and scheduling maintenance 

operations for this equipment. However, most production systems, especially flexible 

manufacturing systems (FMS), are composed of multiple equipment which can execute 
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multiple operations. Therefore, there is a need for a decision support tool to schedule the 

maintenance events and production operations, taking the interactions between equipment 

and operations executed on these equipment into consideration. 

 

1.2      Research Objectives and Challenges 

The main objective of the research in this doctoral thesis is to explore various 

forms of integrated decision making policies for maintenance scheduling and product 

dispatching in FMS, with the objective of maximizing a customizable profit function with 

respect to operation-dependent degradation models and production target. Throughout 

this thesis, the profit function will consist of costs associated with scheduled and 

unscheduled maintenance, rewards for production and penalties for missed production 

targets. Simulation based optimization methods are pursued, which will allow one to 

incorporate various forms of more elaborate cost functions individual users may prefer.  

The contributions of this work can be summarized as follows: 

1. A maintenance decision making system based on operation-dependent 

degradation dynamics, where the state of the equipment is perfectly 

observable. 

2. A joint maintenance and operations decision making system where the 

equipment are prone to operation-dependent degradation and the sequence of 

the operations executed on the equipment can be arranged in a way to 

maximize a customizable reward function. 
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3. An integrated maintenance and operations decision making system for 

systems in which the states (condition) of the equipment are not perfectly 

observable. 

 The challenges in achieving the aforementioned contributions can be summarized 

as follows: 

1. Even for a small flexible manufacturing system, the state space of possible 

machine conditions is large, which requires a careful approach to 

optimization. 

2. The sequencing of the products to be produced, and hence the sequencing of 

the operations to be executed on the equipment, changes the degradation 

dynamics of the equipment. Therefore, for each operation sequencing option, 

we would have a different maintenance scheduling policy, which increases the 

size of the already large solution space.  

3. When the states of the equipment are not perfectly observable, the decision 

making challenges grow further. Namely, the influence of degradation 

dynamics is now hidden and needs to be inferred from the available sensor 

readings, which are only probabilistically related to the system condition. This 

adds another level of complexity to the problem of integrated maintenance 

and operations decision-making. 
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1.3   Outline of the Dissertation  

The rest of this dissertation is organized as follows. Chapter 2 presents a review 

of the literature relevant to the proposed research. In Chapter 3, the proposed 

methodology and the experiments for the operation-dependent maintenance scheduling 

for flexible manufacturing systems are shown in detail. The work presented in Chapter 3 

is based on the paper [7]. Chapter 4 discusses the proposed joint maintenance and 

operation decision making methodology in detail, along with prior work in this area. 

Chapter 4 is based on the recently published papers [8] and [9]. Chapter 5 describes the 

proposed methodology for integrated maintenance and operation decision making where 

the states of the equipment are not perfectly observable. Finally, conclusions, guidelines 

for future work and a summary of the scientific contributions of the proposed research are 

presented in Chapter 6, along with past/foreseen publications to be written based on this 

doctoral research. 
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Chapter 2 

Literature Review 
 

 

In order to understand the current state of knowledge on maintenance applications, 

in Section 2.1 we review the maintenance strategies used in manufacturing. In Section 2.2, 

optimization methods used in maintenance problems are reviewed. Finally, a review on the 

existing literature on joint scheduling of maintenance and production operations is given  in 

Section 2.3.  

 

2.1    Maintenance Strategies in Manufacturing 

All manufacturing systems deteriorate by usage and time. As the deterioration 

continues, the quality of the products decrease, the costs of operation increases and 

finally machine breakdown occurs. Maintenance tasks are implemented either to repair 

the broken down equipment or to prevent breakdowns of the equipment in the first place.  

There are mainly two types of maintenance operations; reactive maintenance 

(RM) which occurs when a tool/machine actually fails and preventive maintenance (PM) 

which is performed on a tool/machine before actual failure occurs. Preventive 

maintenance can be grouped as reliability based maintenance (RBM) and condition based 

maintenance (CBM) as will be explained in detailed in following sections. 
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Due to the complexity of the modern manufacturing systems, perfect prediction of 

failures is impossible and hence it is not possible to completely eliminate unexpected 

machine breakdowns and reactive maintenance actions. Even though RM is unavoidable, 

it requires more maintenance time due to unavailability of resources and usually costs 

three or four times higher when compared to PM ([1], [10]). As mentioned by Iakovou et 

al. [11], in addition to being less costly, PM prolongs the useful life of the production 

equipment and keeps the system in an available condition when needed, and the serious 

loss incurred by the unpredicted fails can be avoided [12]. There are also studies that aim 

to build up a buffer inventory to use during a maintenance event, which makes PM even 

more cost effective ([13], [14], [15]). 

2.1.1 Reactive Maintenance 

As aforementioned, due to the complex nature of manufacturing systems, perfect 

prediction of breakdown events is impossible and hence reactive maintenance operations 

are unavoidable. However, it is possible to decrease the maintenance time and increase 

responsiveness through employment of historical data and computers. Kobbacy et al. [16] 

developed an intelligent maintenance optimization system (IMOS) which uses historical 

data obtained from past maintenance events. This historical data is used to create a rule 

based decision support system that gives the maintenance staff guidance concerning 

which repair model should be applied in a given situation. Through the computer 

interface and the rule-based decision support system, the maintenance staff is informed 
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about a breakdown as soon as it occurs and is also told what kind of maintenance action 

to take for that specific breakdown event leading to a shortening in downtime duration. 

2.1.2 Preventive Maintenance 

Acknowledging the fact that PM takes less time and is less costly when compared 

to RM, researchers have focused on finding methods to properly schedule PM and assess 

its effectiveness. One of the first studies on PM was conducted by Barlow and Hunter 

[17] in 1960. Summaries on different PM models for various manufacturing systems can 

be found in the literature surveys of Sherif and Smith [18], Valdez-Flores and Feldman 

[19], Zeng [20], Fernandez et al. [21] and Garg and Deshmukh [22]. 

PM policies can be roughly characterized as reliability-based maintenance (RBM) 

policies, where maintenance is performed at certain time or usage intervals, and 

condition-based maintenance (CBM) policies, where maintenance is performed when the 

condition of machine requires a repair. RBM considers the long-run average of the 

system dynamics and hence the decisions made are not particularly tuned to an individual 

machine. On the contrary, CBM is more dynamic and the decisions are based on the 

condition of the system at that time point. Thus, the effects of those decisions can be 

significantly better than those based on RBM policies [3], which enables preventive 

maintenance of the system only when necessary, thus, saving resources and improving 

system availability [4]. 

Zeng [20] classifies PM into two types as age based maintenance (ABM) and 

condition based maintenance (CBM). However, ABM models degradation through 
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reliability functions and therefore we will review the literature on ABM under reliability 

based maintenance (RBM). 

2.1.2.1 Reliability Based Maintenance 

Reliability based maintenance assumes that the breakdown of a machine follows a 

pattern and the degradation of a machine can be modeled by certain reliability functions. 

In order to estimate the time between two breakdowns and the time required to restore the 

system back to its operational state, researchers have used indices such as Mean Time To 

Failure (MTTF) and Mean Time To Repair (MTTR). Even though MTTF and MTTR are 

the most commonly used indices, Pham et al. [23] have provided expressions for indices 

including reliability, availability, life time, operational life time, first failure time, mean 

life time, mean operational life time and mean time to first failure. Although degradation 

dynamics of a machine can be different from time to time, these indices would still 

provide beneficial estimates of breakdown times. 

Reliability based maintenance (RBM) is commonly referred to as age-dependent 

PM or periodic PM in the literature. In age-dependent PM policy, a unit is preventively 

maintained at predetermined age T, or repaired at failure, whichever comes first ([24], 

[25]). Barlow and Hunter [17] considered age-dependent maintenance policy for both 

simple and complex systems. For simple systems, such as vacuum tubes, they proposed 

to maintain the system to “as good as new” state after a certain time of operation. For 

complex systems, such as computers, they introduced the notion of minimal repair so that 

the system failure rate is not disturbed after maintenance. Legat et al. [26] presented a 
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method for determining optimal age-dependent PM policy for both finite and infinite-

time horizons. Canfield [27] and Charles et al. [28] consider a periodic PM policy with 

perfect maintenance, which means that with each preventive maintenance event the 

system is restored to as good as new state. Nakagawa [29] discussed optimum PM 

strategies for a system with both perfect repair and minimal maintenance policies. 

Another work that considers minimal repair for both preventive maintenance and reactive 

maintenance can be found in [30]. Aforementioned papers on periodic PM policies have 

considered either perfect or minimal repair options. However, it is also possible to have 

an imperfect maintenance option, which causes a variable decrease on the failure rate of 

the system reliability function. In the work of Chaudhuri and Sahu [31], the reliability of 

a system with increasing failure rates (IFR) and with imperfect PM was proved to be a 

concave function and optimum PM intervals for perfect and imperfect PM were found 

and compared. Other works on periodic PM optimization with imperfect maintenance are 

presented in [32], [33] and [34]. The work by Linderman et al. [35] demonstrated 

considerable economic benefits by having an adaptive maintenance policy, where the 

interval of PM events adapts to the stability of the process. 

In aforementioned studies on RBM, systems composed of only a single-unit was 

considered. However in reality, manufacturing systems are composed of multiple 

machines which have economic and failure dependencies [1]. An example for economic 

dependence is the possibility to do PM to non-failed systems at a reduced additional cost, 

while failed subsystems are being repaired. Failure correlations may be explained by the 

effects of failure of one subsystem on the other non-failed subsystems. For example, if a 
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machine fails, the workload of that machine may be transferred to other non-failed 

machines, increasing their degradation rates. An example on failure correlations is 

presented in [36].  

Considering these dependencies, Wang [1] classify the RBM policies on multi-

unit systems as group maintenance policies and opportunistic maintenance policies. 

Group maintenance policy focuses on the replacement or the repair of a group of 

machines when one or a certain number of failures occur ([37], [38]). Opportunistic 

maintenance policy focuses on performing reduced cost PM on non-failed subsystems 

while the system is stopped due to failed subsystems being repaired. Dagpunar [39] 

shows that a reduction in maintenance costs can be obtained via opportunistic/interrupt 

replacements.    

2.1.2.2 Condition Based Maintenance 

Acknowledging its potential for preventively maintaining the system only when 

necessary, CBM policies have gained widespread acceptance in recent years. Ahmad and 

Kamaruddin [40] state that decision making in CBM can be carried out based on two 

methods: current condition evaluation-based (CCEB) and future condition prediction-

based (FCPB). The CCEB method evaluates the current equipment condition, after which 

the appropriate maintenance is carried out if needed. The FCPB method predicts the 

future trend of the equipment condition and the appropriate maintenance is planned and 

scheduled if needed. In this section, we will first review the work based on current 
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condition evaluation and then will continue with a review of the recent studies based on 

predictive CBM. 

The work of Christer and Wang [41] is among the first studies to consider 

condition based maintenance policies. In their work, they addressed the problem of 

condition monitoring of a component with direct measure information, which they call 

wear. The decision problem is to choose an appropriate time for the next inspection based 

upon the condition information obtained to date. If a defective state is identified during 

an inspection or a failure occurs, the component is immediately repaired or replaced. A 

similar inspection time decision problem in the context of condition based maintenance is 

presented in the work of Hontelez et al [42]. Barbera et al. [43] assumed fixed inspection 

intervals at which the condition of the equipment, such as vibration, is monitored. If the 

degradation condition of the equipment is above a certain threshold, an instantaneous 

maintenance action is performed. Aven [44] and Cadini et al. [45] aimed to determine the 

optimal replacement time of the equipment, which may depend on the information about 

the condition of the unit. Dieulle at al. [46] not only determined the inspection schedule 

based on the system state but also the preventive replacement threshold. Similar works on 

the joint determination of both optimal inspection strategy and optimal repair policy for a 

manufacturing system whose result is dependent on the system condition can be found in 

[47], [48] and [49]. 

Above mentioned studies assumed that inspection to reveal the current condition 

of the system was made at either regular intervals (the time between two inspections is 
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constant) or at irregular intervals (the time between two inspections depends on the 

current degradation state of the system). There also exist some studies in the literature on 

CBM that assume continuous monitoring of the system degradation state. For example, 

Kopnov [50] applied two-level control policies to various types of Markov processes 

describing degrading parameters of system units. Barata et al. [51] modeled continuously 

monitored deteriorating systems by using Monte Carlo simulation and embedding the 

resulting model within an “on condition” maintenance optimization scheme for a multi-

component manufacturing system. Similarly, Marseguerra et al. [4] modeled a 

continuously monitored multi-component system and used genetic algorithm to 

determine the optimal degradation level beyond which preventive maintenance has to be 

performed. Zhou et al. [52] developed a dynamic opportunistic maintenance policy for a 

continuously monitored multi-unit series system with integrating imperfect effect into 

maintenance activities. Saassouh et al. [53] proposed an online maintenance decision rule 

for systems where continuous online information on the actual deterioration levels is 

available and the systems are subject to a sudden change in their degradation process. 

Liao et al. [54] determined the optimal reliability threshold R via simulation for a system 

whose reliability could be monitored continuously and perfectly. 

Aforementioned studies on CBM all assumed that the degradation states of the 

systems were directly observable during inspections. However, it may not be possible for 

all systems to see the degradation level directly unless there is an obvious failure of the 

equipment. In such systems, as stated by Wang and Christer [55], the performance of the 

system concerned cannot be described directly by the monitored information, but is 
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correlated with it stochastically. Condition monitoring techniques like vibration and oil 

analysis can be used to infer the degradation state of the system. Makis and Jiang [56] 

and Maillart [57] consider such imperfect-information systems where the system states 

are not observable except failure. The research in [57] models the imperfect-information 

problem as cost-rate-minimizing partially observable markov decision processes 

(POMDP). 

Njike et al. [58] developed an optimal stochastic control model with objective of 

minimizing the discounted overall cost due to maintenance activities, inventory holding 

and backlogs. The deterioration condition of the system is assessed by using the quantity 

of flawless and defective products and this way they considered the machine failure and 

human error in an integrated manner. 

 All aforementioned studies in this section based their decision making on the 

evaluation of the current condition of the system. Further review of such studies can be 

found in [40], [59] and [60]. The rest of this section will focus on the review of predictive 

CBM literature. 

Jardine et al. [61] reviews the research and developments in diagnostics and 

prognostics of mechanical systems implementing CBM with emphasis on models, 

algorithms and technologies for data processing and maintenance decision-making up to 

2005. They state that prognostics, which deals with fault prediction before it occurs, is 

much more efficient than diagnostics, which deals with fault when it occurs, to achieve 

zero-downtime performance. 
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Yam et al. [62] developed an intelligent predictive decision support system 

(IPDSS) based on the recurrent neural network (RNN) approach to predict rate of 

equipment deterioration. The results showed that the IPDSS model provided reliable fault 

diagnosis and strong predictive power for the trend of equipment deterioration. Wu et al. 

[63] used artificial neural networks (ANN) to predict the residual life which is updated 

adaptively online at each sampling instance. This predicted residual life was used to make 

maintenance decisions. Similarly, in [64], [65] and [66], the maintenance decisions were 

based on the predicted residual life distributions (RLD) which can be updated using in 

situ sensor data. The updated distributions are then used to revise the schedule of 

maintenance events based on the most recently observed degradation information. 

In their paper, Garcia et al. [67] presented the application of the Intelligent 

System for Predictive Maintenance (SIMAP) they developed to the health condition 

monitoring of a windturbine gearbox. They have shown that SIMAP was able to optimize 

and dynamically adapt a maintenance calendar for a monitored windturbine according to 

the real needs and operating life of it as well as other technical and economical criteria. 

Lu et al. [68] introduced a predictive CBM model using a state-space model and 

Kalman filtering to predict future degradation state. These predicted states were then 

converted to failure probabilities and the maintenance decisions were based on these 

predicted failure probabilities and associated cost factors. 

Both [69] and [70] use predicted system reliability to determine the maintenance 

schedule that minimizes maintenance cost. Curcurù et al. [69] assume that degradation 
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process is observed at regular time intervals, however the observations are imperfect. 

They show that proposed sensor-driven predictive maintenance policy reduces the 

maintenance cost with respect to time based maintenance policy. In You et al.’s work 

[70], the system is monitored continuously and system reliability prediction is updated. It 

is also assumed in their work that imperfect maintenance is possible and its impacts are 

captured in the maintenance cost.   

Yang et al. [71] focus on the scheduling of the maintenance events by taking the 

complex interaction between the production process and maintenance operations into 

account. Effects of any maintenance schedule were evaluated through a discrete-event 

simulation that utilizes predicted probabilities of machine failures, where predicted 

probabilities of failure are assumed to be available either from historical equipment 

reliability information or based on the newly available predictive algorithms ([72]–[74]). 

 

2.2    Optimization Methods  

 Optimization is a method that selects the best element that minimizes or 

maximizes a certain objective function from a set of elements while taking existing 

constraints on those elements into consideration. In order to accomplish maintenance 

optimization, one needs to develop a mathematical model in which both costs and 

benefits of maintenance are quantified and in which an optimum balance between both is 

obtained [75]. These models can be of help in determining effective and efficient 

schedules and plans, that properly consider/incorporate various maintenance policies, 
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system configurations, shut-off rules, maintenance restoration degrees, correlation 

failures and repairs, failure dependence, economic dependence, non-negligible 

maintenance time, etc [1]. 

Some researchers have used mathematical models to obtain an analytical solution 

to the optimization problem. However, for problems that consider a more complex 

manufacturing system, obtaining analytical solutions is infeasible and hence researchers 

employed other optimization methods like heuristics, simulation and hierarchical 

classification for such complex problems.  

2.2.1 Mathematical Methods 

In their paper, Pham et al [23] provided expressions for different indices such as 

availability, life time, operational life time, first failure time, mean life time, mean 

operational life time and mean time to first failure. More recently, Chen and Trivedi [76] 

studied condition-based maintenance and derived closed-form expressions of system 

availability when the machine undergoes both deterioration as well as Poisson type 

failures. Those closed-form solutions enabled them to find faster algorithms to determine 

optimal inspection policy, where they can observe the current degradation state of the 

system. 

Yamayee [77] has claimed that dynamic programming (DP) suits best for 

maintenance scheduling problems for various reasons. For example, DP is especially 

suitable for problems where a sequence of decisions is involved, the objective need not 

be a continuous function of decision and state variables and analytical forms for the 
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objective function or constraint functions are not required as long as one can obtain 

function values. In their study, Zurn and Quintana [78] have presented a state-space 

representation for the optimal generator maintenance scheduling problem and used 

successive approximations dynamic programming to find the optimal solution. In order to 

reduce the size of the state-space, they implement a group-sequential scheduling method 

instead of a unit-sequential scheduling method. More recently, Barbera et al. [43] 

obtained the optimal solution via dynamic programming for a condition based 

maintenance scheduling problem where the objective is to minimize the long-run average 

cost of maintenance actions and failures.  

Maintenance scheduling literature also includes studies that propose using 

mathematical programming methods for maintenance scheduling problem. For example, 

Dopazo and Merrill [79] model the generator maintenance scheduling problem as a 0-1 

integer programming model and guarantee to find the optimal feasible schedules, if one 

exists. Egan et al. [80] study the problem of scheduling maintenance activities on 

generator units in a power system. They model the problem as an integer programming 

problem and obtain the optimal solution using the branch-and-bound technique. Iakovou 

et al. [11] uses linear programming to determine the optimal periodic maintenance policy 

for a system where the rate of deterioration is linked to its throughput. Wang and Pham 

[32] model the periodic maintenance optimization problem via nonlinear programming 

for a system with imperfect maintenance actions. 
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In some cases, finding the optimal solution for the maintenance planning problem 

may be infeasible due to long computation times. To address this problem, different 

numerical approximation methods have been proposed to find near optimal solutions. For 

example, Tagaras [81] uses the golden section search technique to simultaneously 

optimize the design parameters for both process control and maintenance procedures. A 

well-known gradient search algorithm, steepest ascent method was used by Das and 

Sarkar [82] to find the optimal preventive maintenance policy.  

2.2.2 Metaheuristic Approaches 

The methods based on tractable mathematical models can give a strict optimal 

solution for small scale problems, but are not efficient for large scale problems because 

of tremendous number of intermediate solutions (curse of dimensionality). Hence, it is 

hard to find the optimal solution for large scale problems within a reasonable computing 

time [83]. Different metaheuristic approaches have been proposed in order to find 

optimal or near optimal solutions for large scale maintenance planning problems.  

The genetic algorithm (GA) is a search heuristic that mimics the process of 

natural evolution. GA replicates the selection and inheritance principles of the population 

genetics by implementing "the survival of the fittest" method ([84], [85]). In GA the 

evolution starts with a randomly generated or, if possible, judiciously picked set of 

solutions which are represented through numerical strings (chromosomes). In each 

generation, multiple solutions are stochastically selected from the population based on 

their fitness values (the more fit the solution, the better chance it has to be selected). 
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Through crossover of chromosome pieces and their mutation, a new generation is 

obtained to be used in the next iteration of the algorithm. As the evolution progresses, the 

overall fitness of each subsequent generation improves according to the rules of natural 

selection.  

GA has been widely used by researchers to solve the maintenance planning 

problem. Munoz et al. [86] use the GA at the global and constrained optimization of 

surveillance and maintenance of components based on risk and cost criteria. Contrary to 

the common application, they use decimal representation in their chromosomes instead of 

a binary representation. Cavory et al. [87] encoded the maintenance start times in the 

chromosomes and evaluated the fitness of each chromosome via a simulation in order to 

find the solution that yields the highest throughput. Tsai et al. [12] aim to find the 

activities-combination that maximizes the unit-cost life of the system. They express each 

activities-combination solution by a string of variable integers, where each variable 

represent a component of the multi-component system and the allele number on that 

variable represents the PM activity of that component (no action, simple preventive 

maintenance, and preventive replacement). Marseguerra and Zio [88] utilize GA to 

optimize the components' maintenance periods and number of repair teams. The fitness 

function, which is a profit function which accounts for the safety and economic 

performance of the plant, is evaluated by Monte Carlo simulation. In a later study, 

Marseguerra et al. [4] used GA for determining the optimal degradation level beyond 

which preventive maintenance has to be performed. The fitness function was defined as a 

multi-objective function of profit and system availability. Ilgin and Tunali [89] proposed 
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a GA for the joint optimization of periodic preventive maintenance and spare 

provisioning policies of a manufacturing system operating in the automotive sector. A 

5% reduction in total annual cost and increase in throughput was obtained by their GA 

based approach. Wang et al. [90] use GA in a similar problem where condition based 

maintenance is involved instead of periodic preventive maintenance. Another work on the 

application of GA on joint planning of maintenance and production is presented by 

Machani and Nourelafath [91]. Yang et al. [92] used GA for finding the optimal 

maintenance priority assignment. In the work of Camci [93], for a multi-component 

system employing condition based maintenance the trade-off between maintenance and 

failure is quantified in risk as the objective function and minimized utilizing GA for the 

whole system rather than individual components.   

Occasionally, GA is combined with other methods to improve search efficiency. 

For example, Deris et al. [94] developed a hybrid algorithm that uses GA and constraint-

based reasoning (CBR) to optimize the ship availability in Royal Malaysian Navy. The 

ships are considered available if all of their main systems are in full operational readiness 

and the availability can be improved by effective maintenance planning and scheduling. 

Such hybrid and modified genetic algorithm usage has also been studied by Goncalves 

and Almeida [95] and Chung et al [96].    

Simulated annealing (SA) is inspired by annealing in metallurgy, a technique 

involving heating and controlled cooling of a material to increase the size of its crystals 

and reduce their defects. This notion of slow cooling is implemented in SA as a slow 
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decrease in the probability of accepting worse solutions as it explores the solution space. 

By accepting worse solutions, a more extensive search of the solution space is allowed. 

The method was first described by Metropolis et al. [97] and has been improved by 

Kirkpatrick et al. [98], Cerny [99] and Ingber [100]. SA was applied in the problem of 

scheduling maintenance for a thermal generator by Satoh and Nara [101]. More recently, 

Saraiva et al. [102] proposed a SA based approach for the generator maintenance problem 

but with a different objective function than the one presented in [101]. 

In some cases, due to their inherent deficiencies, GA and SA alone are not 

satisfactory. Therefore, to improve the performances of GA and SA, hybrid algorithms 

combining GA and SA have been proposed for maintenance optimization problems ([83], 

[103]). These hybrid algorithms were shown to perform better over simple GA and SA. 

Tabu Search (TS) is a local search technique that enhances the exploration 

performance by using advanced memory structures of a computer. Once a candidate 

solution has been determined, it is marked as 'tabu' so that the same solution is not visited 

by the algorithm over a certain number of iterations. The search starts from an initial 

solution (randomly seeded or chosen based on some problem specific information), 

moves iteratively from a solution 𝑥 to a “non-tabu” solution 𝑥′ in the local neighborhood 

of 𝑥 and terminates when some stopping criterion is satisfied ([104], [105]).  

Tabu search as an approach for maintenance scheduling has only recently been 

applied. Sawa et al. [106] developed an automatic scheduling method for maintenance 

outage task in power systems using TS. After comparing the results obtained via TS with 
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the optimal solution obtained by implicit enumeration, El-Amin et al. [107] claimed that 

TS offers a viable approach for maintenance scheduling. Gopalakrishnan et al. [108] 

presented a TS based heuristic (PM_TABU) to find the PM schedule that maximizes the 

total priority of the scheduled tasks subject to resource availability constraints. 

PM_TABU was shown to reduce average optimality gap for the test problems. Kim et al. 

[109] proposed a hybrid algorithm of GA, SA and TS for thermal unit maintenance 

scheduling problem. The hybrid algorithm adopted the acceptance probability of SA to 

improve the convergence of simple GA, and TS was introduced to find more accurate 

solutions.   

2.2.3 Simulation Based Optimization 

Simulations have been widely used in various fields because of their ability to 

faithfully represent complex systems. Monte Carlo methods are especially useful for 

modeling complex systems like manufacturing systems. In maintenance optimization 

problem, simulation has been mostly used as a tool to evaluate a certain maintenance 

schedule. In their studies, Borgonovo et al. [110] and Marquez [111] used Monte Carlo 

simulations for assessment of alternative scheduling policies that could be implemented 

dynamically on the shop floor. However, in the case of too many alternative maintenance 

schedules, the search for an optimal solution would require an excessively large number 

of Monte Carlo evaluations. In order to overcome this problem, a hybrid approach of 

Monte Carlo simulation with GA optimization of decisions has been proposed by 

researchers for maintenance optimization problems. For example, Marseguerra et al. [4] 
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consider a continuously monitored multi-component system and use a GA for 

determining the optimal degradation level beyond which PM has to be performed. They 

aim at simultaneously optimizing two objective functions: profit and availability. The 

estimates for these objective functions for each solution generated by GA are obtained 

via Monte Carlo simulations. Cavory et al. [87] aims to increase the overall through-put 

of a single product manufacturing production line by optimizing the schedule of the 

maintenance tasks of all machines. They developed an optimizer using GA and evaluated 

potential solutions by a simulator of the production line. The main focus of their study 

was the tuning of the genetic algorithm parameters. Marseguerra and Zio [88] present an 

approach to the optimal maintenance and repair strategies of an industrial plant, in the 

face of reliability and economic constraints, based on the coupling of GA and Monte 

Carlo techniques. GA is utilized to optimize the components’ maintenance periods and 

number of repair teams. The value of the fitness function is computed by the Monte Carlo 

simulation model of the system, which enabled them to include several practical aspects 

such as stand-by operation modes, deteriorating repairs, aging, sequences of periodic 

maintenances, number of repair teams available for different kinds of repair interventions 

(mechanical, electronic, hydraulic, etc.) and components priority rankings. Bris et al. 

[112] employ the coupling of GA and simulation to find the optimal PM model that 

minimizes the maintenance cost for a system consisting of subsystems connected in 

series. Yang et al. [71] propose a GA based optimization procedure for scheduling of 

maintenance operations in a manufacturing system using the continuous assessment and 

prediction of the level of performance degradation of manufacturing equipment. Effects 
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of any maintenance schedule are evaluated through a discrete-event simulation that 

utilizes predicted probabilities of machine failures in the manufacturing system.  

2.2.4 Decision Trees 

In some maintenance problems, it is important for managers to consider some 

non-quantitative issues such as safety issues. In such cases, the type of maintenance 

strategy to follow becomes more important than the timing of the maintenance. For this 

type of maintenance problems, hierarchical methods, like decision trees, have been used 

to pick the best maintenance strategy that satisfies all the constraints of the system. 

Bevilacqua et al. [113] developed Analytical Hierarchy Process (AHP) for selecting the 

best maintenance strategy for an important oil refinery with about 200 plants in total. 

Considering various parameters, such as safety, machine importance for the process, 

maintenance costs, failure frequency, downtime length, operating conditions and machine 

access difficulty, they give the decisions of what kind of maintenance strategy 

(corrective, preventive, opportunistic, condition-based, predictive) to use. Deshpande and 

Mopak ([114], [115]) used logic trees to suggest PM categories for various failure modes 

in the components in a medium scale steel industry. 

 

2.3   Joint Scheduling of Maintenance and Production Operations  

Despite the fact that there are dynamic interactions between production and 

maintenance events, not many researchers have focused on the problem of optimizing 

production and maintenance jointly. Given that maintenance affects available production 
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time and elapsed production time affects the probability of machine failure, this inter- 

dependency seems to be overlooked in the literature [116]. The literature on joint 

optimization of maintenance and production operations can be grouped into two based on 

the scheduling technique used. The first group considers sequential scheduling of 

production and maintenance operations; a production schedule is determined first and 

then maintenance operations are scheduled according to the pre-determined production 

schedule. The second group, acknowledging the interactions between the effects of PM 

decisions on system reliability and the effects of production on degradation, optimizes 

production and maintenance operations simultaneously.    

2.3.1 Sequential Scheduling 

Benbouzid et al [117] presented a sequential strategy for a flow shop environment 

in which the production tasks are scheduled first and then the tasks of maintenance are 

integrated, taking the scheduling of production as a strong constraint. In their works, 

Cassady and Kutanoglu ([116], [118]) suggested to order the jobs according to weighted 

shortest processing time (WSPT) and then identify the optimal PM decisions for this job 

sequence for large problems. For smaller problems, they solved the integrated preventive 

maintenance and production scheduling problem by using complete enumeration method. 

The first step in their solution procedure was to enumerate the set of all feasible job 

sequences and the second step was to identify the set of optimal PM decisions for each 

feasible job sequence. They compared the performance of the integrated solution with the 

solutions obtained from solving the preventive maintenance planning, and job scheduling 
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problems independently and noted that it is possible to obtain improvements of as much 

as 20%.  

A sequential approach is also followed by Benbouzid-Sitayeb et al. [119]. In their 

study, the jobs are scheduled using Ant System algorithm [120] and then the insertion of 

maintenance tasks is done by using several heuristics, taking the production scheduling as 

a hard constraint. Berrichi et al. [121] used genetic algorithm to find the optimal 

allocation and sequencing of the jobs in a parallel machine environment and determined 

the best PM decisions based on that job schedule.  

2.3.2 Simultaneous Scheduling 

In Flexible Manufacturing Systems (FMS), PM decisions are considerably harder 

to make, as the machines have the capability of conducting different manufacturing 

operations. Since degradation of a machine depends highly on the operations performed 

on it, selection of operations executed on a machine directly affects PM decisions by 

changing the degradation dynamics. On the other hand, PM actions interrupt production 

and change the system reliability and equipment availability, which in turn directly 

affects decisions as to which operations should be performed, on which pieces of 

equipment [5]. This inherent coupling between decisions in the domains of PM and 

production operations necessitates simultaneous consideration and optimization of 

maintenance and production decision in manufacturing systems. As shown in [117], 

integrated scheduling of maintenance and production operations provide better results 

than sequential scheduling of maintenance and production operations.  
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The need for simultaneous maintenance and operations decision making in 

flexible manufacturing systems has been addressed only recently. A group of studies has 

been conducted on systems that produces in lots and consider usage or age based 

preventive maintenance ([91], [122]–[126]). The objective of this group of studies is to 

find the optimal economic production quantity (how much to produce if maintenance 

action is not taken) and preventive maintenance strategy of the system.  

Ben Ali et al. [127] proposed a multi-objective genetic algorithm to solve the 

simultaneous production and maintenance scheduling in the job shop. They considered 

both age based and usage based preventive maintenance. It was assumed that the 

assignment of the jobs to the machines and the number and type of the maintenance tasks 

to be executed on each machine were predetermined. They used GA to find the best 

sequencing for these predetermined production and maintenance operations on each 

machine. Jin et al. [128] also aimed to find the best PM and job sequencing using a GA. 

However, in their work instead of having a PM event at every T time units, they defined 

intervals in which PM tasks can be applied and determined the optimal PM strategy 

accordingly.  

Yang et al. [6] combined age-based maintenance (ABM) decisions with 

operations decision making in an environment where there are only two operation modes 

available: fast and slow. Naturally, a fast operation mode leads to faster degradation but 

higher production, and vice versa. This effect is modeled by operation specific reliability 

functions. In their study, possible schedules are searched using a Genetic Search 
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Algorithm [129] and the value of each schedule is evaluated by a discrete event 

simulation. It was shown in their results that jointly optimizing throughput and 

maintenance operations results in decreased maintenance time and increased profits. 

 A more complex situation is considered in Zhou et al [5]. They develop an 

integrated reconfiguration and ABM policy (IRABM) on a single-product parallel-serial 

system with reconfiguration capabilities. Reconfigurations consisted of transferring 

flexible operations (i.e. the operations that can be executed by more than one machine) to 

a different machine than they were initially assigned to.  With reconfiguration comes the 

ability to improve system throughput and reduce the likelihood of a system-wide failure. 

Nevertheless, there is also an associated cost of operation transfer from a degraded 

machine to a less degraded one, necessitating a tradeoff between the benefits and 

drawbacks of operations reconfiguration. It has been shown in their study that IRABM 

outperforms ABM in terms of lower expected total cost.   

 The previous two publications ([5], [6]) modeled operation-dependent 

degradation through operation specific reliability functions, which makes them very 

suitable for RBM approaches in maintenance decision-making. Iravani and Duenyas 

[130] utilized Markov models to model the degradation of the machine conditions, with 

states of the Markov model representing states of the system degradation. PM is triggered 

when the degradation state reaches a certain threshold level rather than at fixed 

time/usage points, which makes this model particularly suitable for PM decision-making 

in the CBM context. The objective is to minimize the total average inventory and 
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maintenance costs by finding the optimal production and maintenance policy. In other 

words, at any operational state, based on the inventory available, the optimal policy 

determines whether the machine should produce one more item, stay idle or be 

maintained. The study of Yao et al. [131] provided an improvement on the work 

presented in [130] by not just deciding on whether to produce or maintain but if 

production option is chosen, how much to produce. In [130] and [131], the authors 

considered systems which produced only a single type of product and hence they did not 

consider the effects of producing different products on the degradation dynamics of the 

system.  

There have been some studies in the literature, such as the ones presented by 

Kazaz and Sloan [132] and Cai et al. [133], that tackle the maintenance and production 

planning problem in a single-stage multiple-product system. In these studies at each 

decision epoch, the decision of whether to maintain the machine or not is given based on 

the current degradation state of the machine. If production option is chosen, the decision 

of which type of product to produce is given.  

Kaufman and Lewis [134] study a single server maintenance problem with 

workload considerations. Similarly, the work by Zhou et al. [135] use simulation-based 

optimization in a load-sharing system, where different components of the system share an 

overall load. In such systems, loads allocated to each machine vary, thus affecting 

degradation dynamics of each machine, since the degradation of a machine depends on 

the amount of load assigned to that machine. It was shown that Integrated Load 
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Allocation and Condition Based Maintenance Policy introduced in that paper results in 

increased availability of equipment when compared to the traditional CBM.   

 As machine condition degrades, the outgoing product quality (yield) usually also 

decreases. One of the earliest works considering the effects of equipment condition on 

product quality and incorporating it into maintenance scheduling is reported in [136]. A 

decision making policy that simultaneously determines maintenance and production 

schedules for a multiple-product single machine system was developed by considering 

the fact that the machine condition can affect the yield of different product types 

differently. In a later study, Sloan [137] extends the work from [136] by considering 

varying production targets and multiple maintenance actions. In addition, Sloan and 

Shanthikumar [138] consider multiple machines and add job dispatching decisions to the 

decision-making process developed in [136]. They compare the performances of a set of 

predetermined dispatching rules (such as FCFS, SPT, selecting the lot with highest yield, 

etc.) and several specific maintenance policies (such as fixed state, fixed time, etc.).  

More recently, Lee et al. [3] present a novel method on joint CBM and 

dispatching decision-making with yield considerations in a semiconductor manufacturing 

environment. Unlike [136], Lee et al. [3] do not consider only a set of a priori determined 

CBM policies. Instead, CBM policies for different wafer types are determined via 

discrete event simulation and GA based optimization of maintenance triggering states. 

The authors report that using wafer type-dependent CBM policies results in increased 

yields. However, [3] overlooks the fact that degradation is an operation-dependent 
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process and assumes that each operation affects the degradation of the equipment in the 

same way. 

In this thesis, we address the aforementioned gaps by pursuing several integrated 

maintenance and production operations decision-making policies for multiple-

product/multiple-station manufacturing systems, where each product requires several 

operations for completion. In each model we consider, it is assumed that each 

manufacturing station can execute a certain subset of operations where degradation states 

follow a known directly or probabilistically observable operating mode-specific 

stochastic process. The output quality of the products is assumed to decrease as the 

condition of the machine degrades according to a known product-specific stochastic 

model.  
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Chapter 3 

Operation-Dependent Maintenance Scheduling in Flexible 

Manufacturing Systems 
 

 

3.1      Introduction1 

In flexible manufacturing systems (FMS), the machines have the capability of 

conducting different manufacturing operations and/or producing at various speeds. In 

such systems, degradation of a machine depends highly on the operations performed on 

that machine. For example, a certain operation or higher production speeds may degrade 

the system faster whereas another operation or lower production speeds may degrade the 

system slower. Thus, selection of operations executed on a machine directly affects PM 

decisions by changing the degradation dynamics. On the other hand, the degradation 

condition of a machine can affect the outcome ("yield") of various operations differently. 

An acceptable degradation level for operation 𝑜1  may not be acceptable for another 

operation 𝑜2  and hence a PM action would be required before executing 𝑜2  on that 

machine.  

In order to address this problem, in this chapter, we study the problem of 

maintenance scheduling in a multiple-product/multiple-machine system where each 

                                                           
 

1 This chapter is based on the following publication: Celen, M., Djurdjanovic, D., 2012, “Operation-Dependent Maintenance 

Scheduling in Flexible Manufacturing Systems," CIRP Journal of Manufacturing Science and Technology, vol. 5, pp. 296-308. 
M. Celen wrote this publication under D. Djurdjanovic’s supervision.  
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product requires several operations for completion. These operations are executed on 

non-identical machines, each of which can execute a certain subset of operations. 

Degradation processes of the machines are modeled as operation-dependent Markov 

models, with the output quality of the products decreasing as the condition of the 

machine degrades according to a known product-specific stochastic model. Our aim is to 

facilitate maintenance decision-making in highly flexible manufacturing systems (where 

one has the ability to do multiple operations on multiple stations), based on the 

aforementioned operation-dependent degradation models. The decision-making will be 

done by maximizing a customizable reward function, taking into account rewards of 

production and the costs of maintenance operations. 

The rest of this chapter is organized as follows. In Section 3.2, we formally define 

the problem of operation-dependent maintenance scheduling. In Section 3.3, we 

introduce a novel solution procedure for the problem defined in Section 3.2. A numerical 

experiment based on the simulation of a semiconductor cluster tool is introduced in 

Section 3.4. The results collected from this experiment are also enclosed in Section 3.4 in 

order to assess the performance of the newly proposed optimization methodology and 

compare it with traditional policies. Section 3.5 discusses the conclusions of this work 

and possible directions for future work. 
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3.2      Problem Statement 

 Let us consider a flexible manufacturing system with m manufacturing stations 

labeled
 
𝑐1, 𝑐2, … , 𝑐𝑚 and assume that in those stations, we are producing a set of product 

types 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑙}. Let 𝑂 = {𝑜1, 𝑜2, … , 𝑜𝐾} be the set of all operations that can be 

executed by the stations of that manufacturing system. Each product type 𝑤𝑗, 𝑤𝑗 ∈ 𝑊, is 

associated with a sequence of operations 𝑂𝑤𝑗
= [𝑜𝑤𝑗

1 , 𝑜𝑤𝑗

2 , … , 𝑜𝑤𝑗

𝑝𝑗 ] , where 𝑝𝑗  is the 

number of operations needed to manufacture that product type. Since any two product 

types 𝑤𝑗1
 and 𝑤𝑗2

 may have some common operations, the intersections 𝑂𝑤𝑗1
∩ 𝑂𝑤𝑗2

, 

𝑤𝑗1
, 𝑤𝑗2

∈ 𝑊  are not necessarily empty sets. It is assumed that each station 𝑐𝑖  can 

execute operations 𝑂𝑐𝑖
= {𝑜𝑐𝑖

1 , 𝑜𝑐𝑖

2 , … , 𝑜𝑐𝑖

𝑞𝑖} ⊂ 𝑂, where 𝑞𝑖 is the number of operations that 

can be executed by that station. Any two stations 𝑐𝑖1 and 𝑐𝑖2 may be able to execute some 

common operations, which means that 𝑂𝑐𝑖1
∩ 𝑂𝑐𝑖2

, for 𝑐𝑖1 , 𝑐𝑖2 ∈ {𝑐1, 𝑐2, … , 𝑐𝑚} are not 

necessarily empty sets. That means some operations can be executed by more than one 

station, making it necessary to choose which station to use for a given operation. The 

goal will be to produce 𝑁𝑤𝑗
 of each product type 𝑤𝑗, 𝑤𝑗 ∈ 𝑊, within a certain mission 

time 𝑇. 

 In this study, we acknowledge that different operations have different degradation 

effects on the stations. We assume that the degradation is perfectly observable and is 

described via concatenated operation-dependent Markov models. More specifically, the 

degradation process of each station 𝑐𝑖 is characterized by a set of operation-dependent 
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Markov Chains defined over a common state space 𝑆𝑐𝑖
= {1,2, … ,𝑀𝑐𝑖

}, with Markov 

chain states denoting the degradation states of the manufacturing station (1 denoting the 

"good as new" state and 𝑀𝑐𝑖
 denoting the "failed" state).   For any station, the probability 

of transitioning from state 𝑎 to state 𝑏  if operation 𝑜𝑘  is executed in it is defined as 

operation-dependent and station dependent 𝑃𝑎,𝑏
(𝑜𝑘)

, which yields operation-dependent state 

transition matrices 𝑃(𝑜𝑘) = [𝑃𝑎,𝑏
(𝑜𝑘)

], 𝑎 ∈ {1,2, … ,𝑀𝑐𝑖
}, 𝑏 ∈ {1,2, … ,𝑀𝑐𝑖

} . All Markov 

chains are assumed to be unidirectional, modeling the well-accepted intuition that the 

condition of a station can only worsen over time, unless a maintenance operation is done.  

When a maintenance operation is performed, the condition of a station will get 

better, but it may not necessarily go to the “good as new” state. For any station the 

probability of transitioning to a better state as a result of a maintenance operation is 

modeled by station dependent state transition matrices 𝑀𝑃 = [𝑃𝑑,𝑒], 𝑑 ∈ {2, … ,𝑀𝑐𝑖
},

𝑒 ∈ {1,2, … ,𝑀𝑐𝑖
− 1}. This means that, unlike what we see in a lot of existing research, 

this study acknowledges that PMs do not necessarily restore the perfect condition of the 

maintained system (good as new), or just restore the functionality of the system without 

improving its condition (minimal maintenance, or “as bad as before”). 

 Let 𝑆𝑐𝑖

𝑜𝑘 denote the state of station 𝑐𝑖 that triggers preventive maintenance when 

operation 𝑜𝑘  is executed in it. It means that if the current station’s degradation state 𝑋𝑖(𝑡) 

is greater than or equal to 𝑆𝑐𝑖

𝑜𝑘, then operation 𝑜𝑘 could not be performed on that station, 

unless a maintenance operation is done on it beforehand. Thus, as time passes and 
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stations degrade, each station "looses" more and more operations that can be done in it, 

unless a maintenance action is invoked on it to restore its condition. 

 In addition, let us take into account the fact that as the degradation level of a 

station increases, the probability of success of any operation executed on that station 

decreases. We assume that for any station the probability of success of a given operation 

is a known function of the operation 𝑜𝑘 ∈ 𝑂  and the station state 𝑋𝑖 , denoted as 

𝑠𝑐𝑖
(𝑜𝑘, 𝑋𝑖). 

 Our objective is to find a combined policy of maintenance triggering states and 

dispatching of operations across a system that maximizes a reward function that considers 

the benefits of production, costs of maintenance and penalties for unmet production 

goals. In this study, it is assumed that the sequence in which products are manufactured is 

fixed, though this is another decision lever that can (and should) be considered in the 

future. 

More formally, this problem can be defined as follows. Let [𝑑1, … , 𝑑𝐹] denote the 

fixed sequence in which the products are processed in the FMS, where 𝑑𝑞 ∈

{𝑤1, 𝑤2, … , 𝑤𝑙}, 𝑞 = 1, 2, … , 𝐹 and F is the total amount of products that are fed into the 

manufacturing system (this is the sequence in which the products are released into the 

system). Also, let Nw j  denote the production goal for product type 𝑤𝑗 ∈ {𝑤1, 𝑤2, … , 𝑤𝑙}, 

and let 𝑛𝑤𝑗
 denote the number of good products of type 𝑤𝑗  produced during mission time 

T. The operation-dependent CBM policy will be defined by maintenance triggering states 
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𝑆𝑐𝑖

𝑜𝑘 ∈ {1, 2, … ,𝑀𝑐𝑖
} that are specific for each operation 𝑜𝑘 ∈ 𝑂 and each manufacturing 

station 𝑐𝑖 ∈ {𝑐1, 𝑐2, … , 𝑐𝑚}, and that maximize the objective function 

 

 

where 

 𝑅𝑤𝑗
 is the unit reward for good products produced of type 𝑤𝑗, 𝑤𝑗 ∈ 𝑊 

 𝑝𝑤𝑗
 is the unit penalty for penalizing unmet production for product type 𝑤𝑗, 𝑤𝑗 ∈

𝑊  

 𝑐𝑟  denotes the unit cost of reactive maintenance per reactive maintenance event 

 𝑐𝑝 is the unit cost of reactive maintenance per reactive maintenance event 

 𝑉𝑟 is the total number of reactive maintenance events 

 𝑉𝑝 is the total number of preventive maintenance events 

 𝑎𝑤𝑗
= {

1,   𝑖𝑓 𝑛𝑤𝑗
< 𝑁𝑤𝑗

 

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   𝑓𝑜𝑟 ∀𝑤𝑗 ∈ 𝑊 

In other words, the operation-dependent CBM policy will be defined by the optimization 

problem 

               (1) 
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The optimization problem (1) aims to find the operation-dependent maintenance 

triggering states 𝑆𝑐𝑖

𝑜𝑘  that maximize the expected reward function in (1), given a fixed 

product type sequence [𝑑1, 𝑑2, … , 𝑑𝐹]. Objective function in (1) incorporates the rewards 

obtained from the completion of good products, as well as the penalties incurred in case 

the production goal is not met. The expectation operator is applied because of stochastic 

effects induced by randomness in the reliability of equipment (states of manufacturing 

stations degrade according to operation specific and machine specific stochastic 

processes), condition-dependent yields (for each operation and each machine, one has a 

probability of successfully completing the operation) and repair times (repair times are 

not deterministic in our study). All these random effects are modeled via discrete event 

simulations and objective function results obtained from multiple runs of the simulations 

are averaged to estimate the expected profits corresponding to any given maintenance 

triggering policy. 

 In order to assess the performance of the proposed methodology, we will compare 

our results with the traditional Operation-Independent CBM Policy ([136], [139]), which 

assumes that the maintenance triggering states for each station are independent of the 

operation executed in it (i.e. 𝑆𝑐𝑖

𝑜1 = 𝑆𝑐𝑖

𝑜2 = ⋯ = 𝑆𝑐𝑖

𝑜𝐾 = 𝑆𝑐𝑖
 for each station 𝑐𝑖). In both of 

these maintenance decision-making problems, the product type sequence [𝑑1, 𝑑2, … , 𝑑𝐹] 

is assumed to be a priori given, which is consistent with the traditional, fragmented 

approach to maintenance planning and production scheduling. For completeness, the 

Operation-Independent CBM Policy is defined as the solution to the optimization 

problem 
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In both maintenance policies, dispatching of the operations to a machine in the 

cases when an operation can be executed by more than one station is based on the 

intuitive paradigm of always dispatching it to the least degraded station. This dispatching 

policy is supported by results from [3]. In addition, both maintenance policies are 

stationary in the sense that the maintenance triggering states would not change 

throughout the production of all products. 

 

3.3      Solution Procedure 

3.3.1 Operation-Dependent Maintenance Decision-Making 

3.3.1.1 Solution Representation 

For an m-station manufacturing system with K operations that can be executed in 

these stations, a solution for preventive maintenance triggering states can be represented 

with a 𝐾 × 𝑚 matrix illustrated in Figure 2. In this matrix, 𝑖th column represents the 

maintenance triggering states of station 𝑐𝑖  for each operation, and similarly, 𝑘 th row 

represents the triggering states of each station when operation 𝑜𝑘 is produced in them. 

There are up to ∏ (𝑀𝑐𝑖
− 1)

𝐾𝑚
𝑖=1  candidate solutions in the solution space, though 

it can be decreased by acknowledging that not all operations can be executed on all 

stations. Nevertheless, even the aforementioned reduction usually results in a solution 
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space that is too large for complete enumeration, especially when candidate solutions are 

evaluated via replicated discrete-event simulations. 

 
𝑆𝑐1

𝑜1 𝑆𝑐2

𝑜1 ⋯ 𝑆𝑐𝑚

𝑜1  
 

𝑆𝑐𝑖

𝑜1 
Maintenance policy for station 𝑐𝑖 

 
𝑆𝑐1

𝑜2 𝑆𝑐2

𝑜2 ⋯ 𝑆𝑐𝑚

𝑜2  
 

𝑆𝑐𝑖

𝑜2 
 

 
⋯ ⋯ 𝑆𝑐𝑖

𝑜𝑘 ⋯ 
 

⋯ 
      

 
𝑆𝑐1

𝑜𝐾 𝑆𝑐2

𝑜𝐾 ⋯ 𝑆𝑐𝑚

𝑜𝐾 
 

𝑆𝑐𝑖

𝑜𝐾 
  

𝑆𝑐1

𝑜𝑘 𝑆𝑐2

𝑜𝑘 ⋯ 𝑆𝑐𝑚

𝑜𝑘  

Candidate solution matrix 

representation 
  Maintenance policy for operation 

𝑜𝑘 

Figure 2. Solution representation for operation-dependent maintenance decision-making 

policy 

  

Hence, in order to find a practical, applicable and near optimal solution, we used a 

Tabu Search algorithm [105] based on the results of discrete-event simulations of 

operations of the underlying manufacturing system. As illustrated in Figure 3, a set of 

feasible solutions is generated by the Tabu Search algorithm and fed into the discrete-

event simulator. The average profit function value relevant to each candidate solution is 

evaluated from multiple replications of discrete-event simulations of the target 

manufacturing system and is fed back into the Tabu Search algorithm as the objective 

function of the optimization process. 
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Figure 3. Decision-making by Tabu Search algorithm based on simulations 

  

3.3.1.2 Tabu Search Algorithm 

As explained in Section 2.2.3, Tabu Search (TS) has recently begun to be used in 

maintenance optimization problems. The main idea of TS is to mark a candidate solution 

as ‘tabu’ once it has been determined so that the same candidate solution is not visited by 

the algorithm over a certain number of iterations. The search starts from a randomly 

seeded or problem specific initial solution and moves iteratively from a non-tabu solution 

𝑥 to another solution 𝑥′ in the local neighborhood of 𝑥. The flowchart of the Tabu Search 

algorithm implemented in this study is given in Figure 4. 

In our work, to obtain better results in a shorter time, the optimized operation-

independent CBM policy was used as the initial solution in the Tabu Search. However, 

any random solution can be chosen as the initial solution. Elements (candidate solutions) 

in the local neighborhood of the current solution are generated by randomly selecting a 

cell in the matrix representing the current solution (shown in Figure 2) and randomly 

perturbing its value. An example of a local neighborhood for a system with 3 stations, 

each having 5 degradation states and being capable to execute 4 operations, is illustrated 

in Figure 5. For this example, the value of each cell can be perturbed to a value in the set 

Candidate 

Solutions 

Discrete-Event Simulator 

Tabu Search Algorithm 

Expected 

Reward 
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{2, … ,5}, since there are 5 degradation states and maintenance is not performed when the 

machine is at state 1 (the “as good as new” state). In the upper part of Figure 5, the value 

of the cell at the third row and second column is 4 in the current solution and is perturbed 

to 2, 3 and 5 to yield 3 elements in the local neighborhood. In the lower part of the figure, 

the value of the cell in the first row and third column is 5 in the current solution and is 

perturbed to 2, 3 and 4 to form more elements of the local neighborhood. 

A tabu list is implemented to prevent returning to the solutions already visited for 

a certain number of iterations. However, if the best solution among the candidate 

solutions is obtained by a tabu move, but yields an expected profit higher than the best 

profit obtained thus far, then the tabu status of that solution is overridden and it is 

selected as the next incumbent solution. This is a well documented aspiration criterion 

concept, often used in Tabu Search [104]. 

The algorithm terminates whenever the maximum number of iterations is reached 

or a non-improving move is made for a certain number of consecutive iterations. 
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Figure 4. Flowchart of Tabu Search algorithm for operation-dependent maintenance 

decision-making policy 
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Figure 5. Neighborhood generation for maintenance triggering states 

 

3.3.2 Operation-Independent CBM Policy Determination 

As mentioned before, the newly proposed operation-dependent maintenance 

decision-making will be compared with the traditional operation-independent CBM 

policy obtained by solving the optimization problem (2). 

For a manufacturing system with 𝑚 stations, where station 𝑐𝑖 has 𝑀𝑐𝑖
 degradation 

states, the solution space for traditional operation-independent CBM policy optimization 

consists of up to ∏ (𝑀𝑐𝑖
− 1)𝑚

𝑖=1  candidate solutions (since degradation state 1 would 

never be observed as a potential solution in a CBM policy, as it denotes a trivial policy of 

maintaining the station after each operation). The solution space for a simple 5-station 



 
 

47 
 

manufacturing system where each station has 5 degradation states consists of 45 = 1024 

candidate solutions. Since our focus in this study was on a small manufacturing system 

(see Section 3.4), this problem can be solved using complete enumeration. The expected 

profit of each candidate solution is determined by evaluating it via discrete-event 

simulation of the target system over multiple replications. 

 

3.4      Results 

Operation-dependent maintenance decision making was tested on an example of a 

cluster tool, a highly sophisticated and integrated machine routinely used in 

semiconductor manufacturing. A typical cluster tool is a “mini” manufacturing system of 

interacting subsystems (multiple chambers as manufacturing stations, supported by a 

material handling system) and can be seen as a quintessential FMS, since each chamber 

of a cluster tool can be seen as a manufacturing station and different wafer layers 

produced in these chambers can be seen as different operations performed in the 

corresponding manufacturing stations, while different wafer types pushed through the 

tool can be seen as different product types produced in this system.  
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Table 1. Summary of simulation parameters 

  Set of chambers 𝐶 = {𝑐1, 𝑐2, … , 𝑐5} 

Wafer types 𝑊 = {𝑤1, 𝑤2, 𝑤3} 

Number of wafers for each        
wafer type 

𝐹 = 12, 𝐹𝑤1
=  4, 𝐹𝑤2

=  4, 𝐹𝑤3
=  4  (These are the number of lots and 

each lot consists of 25 wafers, hence 100 wafers of each wafer type are fed 
into the system) 

Wafer type sequence [𝑑1, 𝑑2, … , 𝑑12] = [𝑤1, 𝑤2, 𝑤3, 𝑤1, 𝑤2, 𝑤3, 𝑤1 , 𝑤2, 𝑤3 , 𝑤1 , 𝑤2, 𝑤3] 

Production goal (wafers) 𝑁𝑤1
= 𝑁𝑤2

= 𝑁𝑤3
= 67 

Set of operations 𝑂 = {𝑜1, 𝑜2, … , 𝑜13} 

Operation cycle times (min) [10, 20, 15, 15, 20, 20, 10, 25, 10, 15, 10, 10] 

Operation sequences for each     
wafer type 

𝑂𝑤1
= [𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜13, 𝑜5] 

 𝑂𝑤2
= [𝑜6, 𝑜3, 𝑜7, 𝑜11, 𝑜12] 

 𝑂𝑤3
= [𝑜8, 𝑜9, 𝑜10, 𝑜11, 𝑜6] 

Operations executable in each 
chamber 

𝑂𝑐1
= {𝑜1 , 𝑜2, 𝑜4, 𝑜5, 𝑜6, 𝑜7, 𝑜8, 𝑜9} 

 𝑂𝑐2
= {𝑜1 , 𝑜2, 𝑜3, 𝑜4, 𝑜6, 𝑜8, 𝑜9, 𝑜10} 

 𝑂𝑐3
= {𝑜3, 𝑜4, 𝑜5, 𝑜7, 𝑜9, 𝑜10, 𝑜11} 

 𝑂𝑐4
= {𝑜2, 𝑜8, 𝑜12, 𝑜13} 

 𝑂𝑐5
= {𝑜1 , 𝑜5, 𝑜6, 𝑜7, 𝑜11, 𝑜12} 

Degradation state space 𝑆𝑐1
= 𝑆𝑐2

= ⋯ = 𝑆𝑐5
= {1, 2, … , 5} 

Distributions of preventive 
maintenance time for each 
chamber (min) 

[𝑈(31,49), 𝑈(51,69), 𝑈(41,59), 𝑈(21,39), 𝑈(21,39)] and returns to state 1 

[𝑈(18,36), 𝑈(31,49), 𝑈(24,42), 𝑈(11,29), 𝑈(11,29)] and returns to state 2 

[𝑈(4,22), 𝑈(11,29), 𝑈(8,26), 𝑈(1,19), 𝑈(1,19)] and returns to state 3 

Reactive maintenance times for   
each chamber (min) 

[100, 110, 120, 90, 100] 

Rewards ($) 𝑅𝑤1
= 50, 𝑅𝑤2

= 25, 𝑅𝑤3
= 10 

Costs ($) 𝑐𝑝 = 50,   𝑐𝑟 = 250,   𝑝𝑤1
= 20,   𝑝𝑤2

= 10,    𝑝𝑤3
= 4   
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𝑃(𝑜1) =

[
 
 
 
 
0.98 0.02 0 0 0
0 0.98 0.02 0 0
0 0 0.98 0.02 0
0 0 0 0.98 0.02
0 0 0 0 1 ]

 
 
 
 

            𝑃(𝑜2) =

[
 
 
 
 
0.90 0.08 0.02 0 0
0 0.90 0.08 0.02 0
0 0 0.90 0.08 0.02
0 0 0 0.93 0.07
0 0 0 0 1 ]

 
 
 
 

        

 𝑃(𝑜3) =

[
 
 
 
 
0.93 0.05 0.02 0 0
0 0.93 0.05 0.02 0
0 0 0.93 0.05 0.02
0 0 0 0.97 0.03
0 0 0 0 1 ]

 
 
 
 

              𝑃(𝑜4) =

[
 
 
 
 
0.94 0.04 0.015 0.005 0
0 0.94 0.04 0.015 0.005
0 0 0.94 0.04 0.02
0 0 0 0.94 0.06
0 0 0 0 1 ]

 
 
 
 

 

𝑃(𝑜5) =

[
 
 
 
 
0.98 0.015 0.005 0 0
0 0.98 0.015 0.005 0
0 0 0.98 0.015 0.005
0 0 0 0.98 0.02
0 0 0 0 1 ]

 
 
 
 

              𝑃(𝑜6) =

[
 
 
 
 
0.95 0.04 0.01 0 0
0 0.95 0.04 0.01 0
0 0 0.95 0.04 0.01
0 0 0 0.95 0.05
0 0 0 0 1 ]

 
 
 
 

 

 𝑃(𝑜7) =

[
 
 
 
 
0.93 0.04 0.02 0.01 0
0 0.93 0.04 0.02 0.01
0 0 0.93 0.06 0.01
0 0 0 0.97 0.03
0 0 0 0 1 ]

 
 
 
 

                           𝑃(𝑜8) =

[
 
 
 
 
0.97 0.03 0 0 0
0 0.97 0.03 0 0
0 0 0.97 0.03 0
0 0 0 0.97 0.03
0 0 0 0 1 ]

 
 
 
 

          

  𝑃(𝑜9) =

[
 
 
 
 
0.90 0.05 0.03 0.02 0
0 0.90 0.05 0.03 0.02
0 0 0.90 0.07 0.03
0 0 0 0.90 0.10
0 0 0 0 1 ]

 
 
 
 

                   𝑃(𝑜10) =

[
 
 
 
 
0.99 0.01 0 0 0
0 0.99 0.01 0 0
0 0 0.99 0.01 0
0 0 0 0.99 0.01
0 0 0 0 1 ]

 
 
 
 

         

𝑃(𝑜11) =

[
 
 
 
 
0.89 0.07 0.03 0.01 0
0 0.89 0.07 0.03 0.01
0 0 0.91 0.07 0.02
0 0 0 0.91 0.09
0 0 0 0 1 ]

 
 
 
 

                    𝑃(𝑜12) =

[
 
 
 
 
0.92 0.06 0.02 0 0
0 0.92 0.06 0.02 0
0 0 0.92 0.06 0.02
0 0 0 0.95 0.05
0 0 0 0 1 ]

 
 
 
 

  

𝑃(𝑜13) =

[
 
 
 
 
0.95 0.03 0.02 0 0
0 0.95 0.03 0.02 0
0 0 0.95 0.03 0.02
0 0 0 0.96 0.04
0 0 0 0 1 ]

 
 
 
 

                                   𝑀𝑃 =

[
 
 
 
 

0 0 0 0 0
1 0 0 0 0

0.60 0.40 0 0 0
0.60 0.30 0.10 0 0
1 0 0 0 0]

 
 
 
 

 

Figure 6. Operation-dependent transition probability matrices and maintenance transition 

probability matrix 
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In order to assess the performance of the newly proposed maintenance decision-

making methodology, we used the AutoMod software package [140] to simulate a 5-

chamber cluster tool, producing 3 types of wafers. Throughout our study, we used 40 

simulation replications to evaluate each candidate solution for a maintenance policy. We 

determined this number by running the simulations over a wide spectrum of reliability 

and cycle time parameters and by increasing the number of replications until further 

increase of this number did not result in significant changes in the average profits 

obtained from the simulations. There was no control over the random number seeds that 

were used in these replications. It also should be noted that, at the end of each simulation, 

the current condition of the system is not maintained. 

 

Table 2. Probability of success ("yield") for each operation 

 State 1 State 2 State 3 State 4 State 5 

𝒐𝟏 1 0.9606 0.8295 0.8122 0.7938 

𝒐𝟐 1 0.9900 0.9327 0.9132 0.8896 

𝒐𝟑 1 0.9224 0.6022 0.5677 0.4935 

𝒐𝟒 1 0.9801 0.8877 0.8619 0.8284 

𝒐𝟓 1 0.9512 0.8650 0.7643 0.7438 

𝒐𝟔 1 0.9276 0.9110 0.8946 0.8525 

𝒐𝟕 1 0.9317 0.8386 0.5721 0.5062 

𝒐𝟖 1 0.9631 0.8301 0.7737 0.7316 

𝒐𝟗 1 0.9360 0.9042 0.7430 0.6866 

𝒐𝟏𝟎 1 0.9511 0.9397 0.9284 0.8991 

𝒐𝟏𝟏 1 0.9500 0.8758 0.8418 0.7084 

𝒐𝟏𝟐 1 0.9739 0.9605 0.8880 0.8603 

𝒐𝟏𝟑 1 0.9276 0.7848 0.7169 0.6354 
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3.4.1 Baseline Example 

The parameters used in the baseline example are given in Table 1, Table 2 and 

Figure 6. Operation-independent CBM policy was determined through complete 

enumeration and 𝑆𝐶𝐵𝑀 = [3 3 3 3 4]  was found to be the best operation-independent 

CBM policy in the baseline parameter setting. 

In order to optimize the operation-dependent decision-making policy, Tabu 

Search algorithm described in Section 3.3.1.2 was used. The parameters of the Tabu 

Search algorithm used in this study were selected in an ad hoc manner and are given in 

Table 3. General guidelines for a more systematic Tabu Search parameter selection can 

be found in [141].  

Table 3. Parameters of the Tabu Search 

Parameters of Tabu Search Value of Parameters 

Maximum iterations until which the algorithm will run 20 

Tabu list length 5 

Neighbors generated for maintenance triggering states 10 

Replication number to find expected profit 40 

 

One upper bound for both maintenance policies is an ideal scenario where there 

are no PM events, no RM events and no scraps. Therefore, the total rewards from 

production with no scrap, i.e. 8500, is an upper bound for both maintenance policies. We 

can compare this upper bound to the results obtained by the proposed operation-

dependent CBM policy and benchmark operation-independent CBM policy. 
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Let us first note that, as illustrated in Figure 7, the operation-dependent 

maintenance decision-making policy results in a higher expected profit, when compared 

to the traditional operation-independent CBM policy.  

Second, let us inspect the maintenance triggering states obtained by the operation-

dependent maintenance decision-making policy and enclosed in Appendix A.1. For the 

best operation-dependent maintenance decision-making policy, it can be observed that 

the maintenance triggering states 𝑆𝑐2

𝑜9   and 𝑆𝑐3

𝑜9  have been changed from 3 (the state 

implied by the operation-independent CBM policy) to 4, whereas 𝑆𝑐2

𝑜10 has changed from 

3 to 5. Operations 𝑜9  and 𝑜10 are both executed only in the manufacturing of the cheapest 

wafer and this result proves the intuition that as the wafer reward decreases, the effect of 

completing that wafer successfully on the profit decreases, thus favoring later triggering 

of maintenance. In addition to that, the maintenance triggering states 𝑆𝑐2

𝑜3   and 𝑆𝑐3

𝑜4 have 

changed from 3 to 2, whereas 𝑆𝑐5

𝑜12 has changed from 4 to 3. Operations 𝑜3 , 𝑜4  and 𝑜12 

are executed in the manufacturing of more costly wafers and degrade the chambers faster. 

Therefore, this result proves the intuition that more frequent maintenance (corresponding 

to earlier triggering of maintenance) is optimal for faster degrading operations, as well as 

the intuition that increased wafer rewards favor earlier triggering of maintenance. 
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Figure 7. Expected profit comparison for baseline example (black lines denote the  -/+2σ 

control limits) 

   

To gain better understanding of the operation-dependent maintenance decision-

making policy, we studied the influences of reactive maintenance cost (𝑐𝑟), penalty cost 

(𝑝𝑤𝑗
) and production goal (𝑁𝑤𝑗

) parameters, as well as the efficacy of maintenance 

execution on the resulting decisions. 

3.4.2 Influence of reactive maintenance cost (𝐜𝐫) 

The expected profits obtained for various reactive maintenance costs 𝑐𝑟 are shown 

in Figure 8, while the percent improvements obtained with operation-dependent 

maintenance decision-making policy over the operation-independent CBM policy are 

given in Figure 9 (see Appendix A.2 for numerical values of the maintenance triggering 
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state results). As observed in Figure 8, for all reactive maintenance costs, operation-

dependent CBM policy results in a higher expected profit when compared to the 

benchmark policy (operation-independent CBM). Furthermore, as illustrated in Figure 9, 

the benefits of the operation-dependent CBM policy increase as the reactive maintenance 

costs increase. This is intuitively plausible since the operation-dependent maintenance 

decision-making policy decreases the probability of unexpected failures and consequent 

reactive maintenance events. The reason for this is that it finds the most appropriate 

maintenance triggering states for each operation, rather than just one maintenance 

triggering state for all operations, which is what traditional operation-independent CBM 

policy does. 

  

Figure 8. Comparison of expected profits for different reactive maintenance costs (black 

lines denote the  -/+2σ control limits) 
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Figure 9. Percent improvement obtained by the operation-dependent maintenance 

decision-making policy over the operation-independent CBM policy for different reactive 

maintenance costs 

 

3.4.3 Influence of penalty costs (𝐩𝐰𝐣
) 

In this section, we investigate the performance of the newly proposed operation-

dependent maintenance decision-making policy under different penalty cost 

configurations. The expected profit and percent improvement results for increasing 

penalty costs are given in Figure 10 and Figure 11 (for numerical values of the 

corresponding results, please see Appendix A.3). Once again, it is visible from Figure 10 

that the expected profits obtained with the operation-dependent CBM policy are higher 

than the profits obtained by the operation-independent CBM policy, regardless of the 

penalty cost parameters. Also, a closer look at the figure shows that as the penalty costs 

for the wafers change, the expected profits obtained with the operation-dependent CBM 

policy vary slightly. However, the variance of the expected profits for the operation-
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independent CBM policy is higher than the operation-dependent CBM policy. A simple 

explanation for this situation is that even under different penalty costs, operation-

dependent maintenance decision-making policy manages to meet the production goal 

more often and hence is not significantly affected by the changes in the penalty costs. On 

the other hand, the operation-independent CBM policy is less likely to meet the 

production goal and hence results in reduced profits and more uncertainty in the profits as 

the penalty costs increase. 

This reasoning also explains the improvement pattern observed in Figure 11. The 

operation-dependent maintenance decision-making policy pursues maintenance triggering 

states that maximize the probability of successful completion of an operation and thus 

minimizes the number of scrap products. Therefore, it is intuitive that the relative benefits 

of the operation-dependent maintenance decision-making policy over the operation-

independent CBM policy become larger as the penalty costs increase.    
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Figure 10. Comparison of expected profits for changing penalty costs (black lines denote 

the  -/+2σ control limits) 

 

 

 

Figure 11. Percent improvement obtained by operation-dependent maintenance decision-

making policy over the operation-independent CBM policy for different penalty costs 
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3.4.4 Influence of production goals (𝐍𝐰𝐣
) 

 Let us now assess the performance of the proposed methodology under 

increasingly demanding production goals (i.e. as one increases the production goals 𝑁𝑤𝑗
 

for each product type in the cost functions (1) and (2)). The expected profit and percent 

improvements of the newly proposed method over the benchmark operation-independent 

CBM policy for different production goals are given in Figure 12 and Figure 13, 

respectively (for corresponding numerical results, please see Appendix A.4). As can be 

seen in Figure 12, the operation-dependent CBM policy again yields higher expected 

profits when compared to the operation-independent CBM policy. In addition, although 

the expected profits obtained from the operation-dependent CBM policy decrease slightly 

as the production goals increase (which happens because the increasing production goals 

becomes less and less likely to be met), the profit decreases corresponding to the 

operation-independent CBM policy are even more dramatic. 

 The aforementioned results are also intuitively plausible. Namely, as the 

production goals increase, avoiding unscheduled downtime and production penalty costs 

by preventing the production of scrap wafers becomes even more important. The 

operation-dependent CBM policy allows operation-specific maintenance triggering states 

and thus offers more freedom in the maintenance decision-making, which ultimately 

leads to a higher likelihood of meeting the production goals. For example, for the 

operations that are executed in the completion of the wafers that have higher unmet 

production penalty costs, the operation-dependent maintenance decision-making policy 
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can suggest earlier triggering of maintenance, thus reducing the number of scrap wafers 

and increasing the likelihood of making that production goal. It can also compensate for 

the consequent increase in the number of preventive maintenance events by suggesting 

later triggering of maintenance events for other operations. The traditional operation-

independent CBM policy does not have these flexibilities and as the production goals 

increase, the gap between the number of successfully produced wafers and the production 

goal increases more dramatically than in the case of the operation-dependent maintenance 

decision-making policy. Therefore, it is logical that as the production goals increase, the 

relative benefits of the operation-dependent maintenance decision-making policy also 

increase, as can be seen in Figure 13. 

  

Figure 12. Comparison of expected profits for different production goals (black lines 

denote the  -/+2σ control limits) 
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Figure 13. Percent improvement over the operation-independent CBM policy obtained by 

the operation-dependent maintenance decision-making policy for different production 

goals 
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intervention implies maintenance personnel executing PM interventions less effectively 

(possibly because of lower skill levels) and vice versa. 

 Various effectiveness levels of PM interventions are tested using different 

Markov transition matrices corresponding to condition-state recovery induced by PM. 

Figure 14 lists the PM-related Markov transition matrices tested in this study. Going from 

MP1 to MP5, we see increasingly efficient PM interventions, with increasing 

probabilities that PM returns the maintained system to better states (closer to the “as good 

as new” state). Note that MP5 corresponds to perfect maintenance operations that always 

return the maintained system to the “as good as new” state. 

 

𝑀𝑃1 =

[
 
 
 
 

0 0 0 0 0
1 0 0 0 0

0.20 0.80 0 0 0
0.20 0.60 0.20 0 0
1 0 0 0 0]

 
 
 
 

                           𝑀𝑃2 =

[
 
 
 
 

0 0 0 0 0
1 0 0 0 0

0.40 0.60 0 0 0
0.40 0.45 0.15 0 0
1 0 0 0 0]

 
 
 
 

 

𝑀𝑃3 =

[
 
 
 
 

0 0 0 0 0
1 0 0 0 0

0.60 0.40 0 0 0
0.60 0.30 0.10 0 0
1 0 0 0 0]

 
 
 
 

                               𝑀𝑃4 =

[
 
 
 
 

0 0 0 0 0
1 0 0 0 0

0.80 0.20 0 0 0
0.80 0.15 0.05 0 0
1 0 0 0 0]

 
 
 
 

 

𝑀𝑃5 =

[
 
 
 
 
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0]

 
 
 
 

 

Figure 14. Perfect maintenance probabilities used for sensitivity analysis 
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 The expected profits obtained for various levels of maintenance efficacies are 

shown in Figure 15, while the percent improvements obtained with operation-dependent 

maintenance decision-making policy over the operation-independent CBM policy are 

given in Figure 16 (see Appendix A.5 for numerical values of the maintenance triggering 

state results). 

 Once again, one can observe from Figure 15 that for all levels of PM efficacy 

(PM characterized by Markov transition matrices MP1-MP5), the operation-dependent 

CBM policy results in a higher expected profit when compared to the benchmark 

operation-independent CBM policy. In addition, from Figure 16 one can see that higher 

levels of PM efficacy2 result in more pronounced percentual improvements of the newly 

proposed policy over the traditional operation-independent CBM policy. This can be 

explained by the fact that in sophisticated decision mechanisms, such as the operation-

dependent maintenance decision-making proposed in this study, the success of decisions 

depends on the effectiveness of the execution of those decisions. If the decisions are not 

executed effectively (when probabilities of restoring the good conditions of the 

maintained machine are lower), it could remove some of the benefits of the operation-

dependent decision policy. 

                                                           
 

2  Situations when Markovian transition matrices corresponding to PMs have higher likelihood of 

returning the system to the “as good as new” state, i.e. scenarios obtained as we go from Markovian 

transition matrix MP1, towards MP2, then on to MP3 and so on. 
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Figure 15. Comparison of expected profits for different perfect maintenance probabilities 

(black lines denote the  -/+2σ control limits) 

 

 

Figure 16. Percent improvement obtained by the operation-dependent maintenance 

decision-making policy over the operation-independent CBM policy for different perfect 

maintenance policies 
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3.5      Conclusions  

This chapter presents a methodology resulting in an operation-dependent 

maintenance scheduling policy for a manufacturing system composed of multiple 

manufacturing stations that can execute multiple operations. The new methodology is 

based on a metaheuristic optimization where candidate solutions are evaluated through 

repeated discrete event simulations of the underlying manufacturing system. The newly 

introduced operation-dependent decision making policy was evaluated and benchmarked 

against the traditional operation-independent CBM policy on an example of a cluster tool 

model, used routinely in semiconductor manufacturing industry. The new operation-

dependent CBM policy consistently outperformed the benchmark maintenance decision-

making policy. Furthermore, a sensitivity analysis was performed and it was observed 

that higher reactive maintenance costs, unmet production penalty costs, production goals 

and efficacy of maintenance execution lead to more significant relative benefits of the 

newly proposed maintenance policy over the traditional operation-independent CBM 

policy. The aforementioned conclusions support the intuition that the new decision-

making policy reduces unscheduled downtimes, decreases the number of scrap products 

and increases the likelihood of meeting the production goals through added freedom in 

the maintenance decision-making process. 

 

 

 

 



 
 

65 
 

Chapter 4 

Integrated Maintenance and Operations Decision Making in 

Flexible Manufacturing Systems 
 

 

4.1      Introduction3 

As mentioned in Section 3.1, machines in flexible manufacturing systems (FMS) 

have the capability of executing different operations and the degradation of a machine is 

highly dependent on the operation performed on it. Therefore, one can reconfigure 

production operations to increase the chance of successfully executing all operations and 

to decrease maintenance costs. For example, one could reroute operations from a 

degraded machine to less degraded ones to improve the yield and reduce the likelihood of 

unscheduled downtimes. In addition to that, one could also change sequence in which 

products are produced and delay scheduled maintenance to times when it is less intrusive 

on the overall production and most cost effective (weekends, or times of low demand). 

                                                           
 

3 This chapter is based on the following three publications: 

a. Celen, M., Djurdjanovic, D., 2012, “Joint Maintenance and Production Operations Decision Making in Flexible 
Manufacturing Systems," Proceedings of the ASME 2012 International Manufacturing Science and Engineering 

Conference, Paper ID. MSEC2012-7258.   

M. Celen wrote this publication under D. Djurdjanovic’s supervision.  
b. Cholette, M. E., Celen, M., Djurdjanovic, D., and Rasberry, J. D., 2013, “Condition Based Monitoring and 

Operational Decision Making in Semiconductor Manufacturing," IEEE Transactions on Semiconductor 

Manufacturing, vol. 26, no. 4, pp. 454-464.   
M. Celen wrote Sections IV and V in this publication. 

c. Celen, M., Djurdjanovic, D., 2015, “Integrated Maintenance Decision-Making and Product Sequencing in Flexible 

Manufacturing Systems," ASME Journal of Manuf. Sci. and Eng., vol. 137, no. 4, pp. 1-15.  
M. Celen wrote this publication under D. Djurdjanovic’s supervision. 
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This section will illustrate benefits of joint maintenance and product dispatching in a 

FMS in which one knows operating mode dependent degradation dynamics. 

In Chapter 3, the sequence in which different product types are produced was 

assumed to be a priori given and was not optimized. Unlike Chapter 3, in this chapter, we 

pursue an integrated decision-making policy for maintenance scheduling and product 

sequencing in a multiple-product/multiple-station manufacturing system, similar to the 

one considered in Chapter 3 (i.e. consisting of multiple manufacturing stations, each of 

which can execute a set of operations and each of which undergoes an observable 

operation-specific degradation process). The decision-making will be done by 

maximizing a customizable reward function, taking into account rewards of production, 

the costs of maintenance operations and penalties for unmet production goals. 

The rest of this chapter is organized as follows. In Section 4.2, we formally define 

the problem of integrated decision-making for maintenance scheduling and production 

sequencing. In Section 4.3, we introduce a novel solution procedure for the problem 

defined in Section 4.2. The results collected from the simulation of a semiconductor 

cluster tool are enclosed in Section 4.4 in order to assess the performance of the newly 

proposed optimization methodology and compare it with traditional policies as well as 

the policy proposed in Chapter 3. Section 4.5 discusses the conclusions of this work and 

possible directions for future work.  
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4.2    Problem Statement 

 As in Chapter 3, let us consider a FMS with m manufacturing stations labeled
 

𝑐1, 𝑐2, … , 𝑐𝑚 , producing a set of product types 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑙} . Let 𝑂 =

{𝑜1, 𝑜2, … , 𝑜𝐾} be the set of all operations that can be executed by the stations of that 

manufacturing system. Each product type 𝑤𝑗, 𝑤𝑗 ∈ 𝑊, is associated with a sequence of 

operations 𝑂𝑤𝑗
= [𝑜𝑤𝑗

1 , 𝑜𝑤𝑗

2 , … , 𝑜𝑤𝑗

𝑝𝑗 ] , where 𝑝𝑗  is the number of operations needed to 

manufacture that product type. It is assumed that each station 𝑐𝑖 can execute operations 

𝑂𝑐𝑖
= {𝑜𝑐𝑖

1 , 𝑜𝑐𝑖

2 , … , 𝑜𝑐𝑖

𝑞𝑖} ⊂ 𝑂, where 𝑞𝑖 is the number of operations that can be executed by 

that station. The goal will be to produce 𝑁𝑤𝑗
 of each product type 𝑤𝑗, 𝑤𝑗 ∈ 𝑊, within a 

certain mission time 𝑇. 

 The degradation process of each station will be modeled via concatenated 

operation-specific Markov models. More precisely, the degradation states of each station 

𝑐𝑖  are assumed to be observable (or perfectly inferred) and follow operation-specific 

Markov models defined over a common state space 𝑆𝑐𝑖
= {1,2, … ,𝑀𝑐𝑖

} (degradation state 

“1” denoting the "good as new" state and Mci
 denoting the "failed" state). For any station, 

the probability of transitioning from state 𝑎 to state 𝑏 if operation 𝑜𝑘 is executed in it is 

defined as operation-dependent and station dependent 𝑃𝑎,𝑏
(𝑜𝑘)

, which yields operation-

dependent state transition matrices 𝑃(𝑜𝑘) = [𝑃𝑎,𝑏
(𝑜𝑘)

], 𝑎 ∈ {1,2, … ,𝑀𝑐𝑖
}, 𝑏 ∈ {1,2, … ,𝑀𝑐𝑖

}. 

All Markov chains are assumed to be unidirectional, modeling the well-accepted intuition 
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that the condition of a manufacturing station can only worsen over time, unless a 

maintenance operation is done.  

When a maintenance operation is performed, the condition of a station will get 

better, but it may not necessarily go to the “good as new” state. For any station the 

probability of transitioning to a better state as a result of a maintenance operation is 

modeled by station dependent state transition matrices 𝑀𝑃 = [𝑃𝑑,𝑒], 𝑑 ∈ {2, … ,𝑀𝑐𝑖
},

𝑒 ∈ {1,2, … ,𝑀𝑐𝑖
− 1} . Thus, maintenance itself is modeled as a single-step Markov 

process. 

In addition, we take into account the fact that as the degradation level of a station 

increases, the probability of success of any operation executed on that station decreases. 

We assume that for any station the probability of success of a given operation is a known 

function of the operation 𝑜𝑘 ∈ 𝑂 and the station state 𝑋𝑖, denoted as 𝑠𝑐𝑖
(𝑜𝑘, 𝑋𝑖).  

Let 𝑆𝑐𝑖

𝑜𝑘 denote the state of station 𝑐𝑖 that triggers preventive maintenance when 

operation 𝑜𝑘  is executed on it. It means that if the current station’s degradation state 

𝑋𝑖(𝑡) is greater than or equal to 𝑆𝑐𝑖

𝑜𝑘, then operation 𝑜𝑘 could not be performed on that 

station, unless a maintenance operation is done on it beforehand.  

 Finally, let [ Fdd ,,1  ] denote the production sequence in which the products are 

processed in the FMS, where  lq wwwd ,,, 21  , Fq ,,2,1   and F is the total 
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amount of products that are fed into the manufacturing system4. In this chapter, it will be 

assumed that the FMS is such that the sequence [ Fdd ,,1  ] in which products are 

released into the FMS can also be changed. This means that the goal of producing a given 

number of units of each product type produced in a system could be achieved through 

multiple different sequences in which the units are released into it. 

The decision-making objective will be to find a combined policy of maintenance 

triggering states across a system and product-type sequencing which maximizes a reward 

function that considers the benefits of production, costs of maintenance and penalties for 

unmet production goals. The benefits of production (rewards) come from selling the good 

products 5 . As the machines degrade, the probability of successfully completing an 

operation decreases, hence the number of scrap (not good) products increases, which 

makes it harder to meet the production goal. If the number of good products produced is 

not enough to meet the production goal, we assume we lose the customer that demanded 

those products and hence incur an unmet production goal penalty. In order to maximize 

the reward function, we would like to increase our rewards as much as possible and incur 

no penalty for unmet production goal. This is only possible by keeping the machines in 

the “good as new” state and thus mostly eliminating scrap products. However, this would 

mean maintaining the machines constantly, which would be very costly. To find the 

trade-off between the number of maintenance events executed and the number of scrap 

                                                           
 

4 Effectively, [
1
, ,

F
d d ] is the sequence in which the products are released into the system. 

5 Products of acceptable quality. 
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products produced, we have included maintenance costs associated with each preventive 

and reactive maintenance events into our reward function. More formally, the decision 

optimization problem will be defined as follows. Let 
jwN  denote the production goal for 

product type  lj wwww ,,, 21  , and let 
jwn  denote the number of good products of 

type 
jw  produced during mission time T. The integrated decision-making policy will be 

pursued through the optimization procedure  

 

 

 

 

 

where 

 
jwR  is the unit reward for good products produced of type 

jw , Ww j   

 
jwp  is the unit penalty for penalizing unmet production for product type 

jw , Ww j    

 rc  denotes the unit cost of reactive maintenance (RM) per reactive maintenance event 

 
pc  is the unit cost of preventive maintenance (PM) per preventive maintenance event 
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 crc  denotes the unit cost of RM conducted during time intervals in which 

maintenance operation can be performed at a cheaper price (such as night shifts, 

weekends)6 

 
cpc is the unit cost of PM executed during time intervals in which maintenance 

operations can be executed at a cheaper price7 

 rV  is the total number of RM events 

 
pV  is the total number of PM events 

 crV  is the total number of RM events during less expensive maintenance time periods 

 
cpV  is the total number of PM events during less expensive maintenance time periods 

 
1,  if 

0,   otherwise 

j j

j

w w

w

n N
a


 


 for 
jw W   

 

The objective function shown in (3) aims to find the product sequence 

 1 2, , , Fd d d  and operation-dependent maintenance triggering states k

i

o

cS  that maximize 

the expected reward function in (3). We understand that cost models in different 

companies would be very different. Even within a single company, different parts of the 

company may implement different cost models. Therefore, we created a method that is 

not dependent on the cost function in the sense that we used simulation based 

                                                           
 

6 Of course, if such periods of cheaper maintenance do not exist in the given FMS, then 
cr r

c c . 

7 Once again, if such periods of time do not exist in a given FMS, then 
cp p

c c . 
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metaheuristic optimization where the cost function can easily be changed to suit the 

reality of a company while the optimization method would not change at all. In order to 

demonstrate our method, we utilized a very simple and intuitive objective function 

(shown in (3)) that rewards production and punishes downtime and scrap products.  

The expectation operator is applied because of the stochastic effects induced by 

randomness in the reliability of equipment (states of manufacturing stations degrade 

according to operation specific and machine specific stochastic processes), condition-

dependent yields (for each operation and each machine, one has a probability of 

successfully completing the operation), maintenance effects (equipment condition after 

maintenance is stochastic as mentioned earlier) and repair times (repair times are not 

deterministic in our study). All these random effects are modeled via discrete event 

simulations and objective function results obtained from multiple runs of the simulations 

are averaged to estimate the expected profits corresponding to any given product 

sequence and maintenance triggering policy. 

In order to assess the performance of the proposed methodology, the integrated 

decision-making results will be compared with the traditional Operation-Independent 

CBM Policy, which assumes that the maintenance triggering states for each station are 

independent of the operation executed in it (i.e. 𝑆𝑐𝑖

𝑜1 = 𝑆𝑐𝑖

𝑜2 = ⋯ = 𝑆𝑐𝑖

𝑜𝐾 = 𝑆𝑐𝑖
 for each 

station 𝑐𝑖 ). The new decision-making policy will also be compared to the Operation-

Dependent CBM Policy, presented in Chapter 3. In both of these benchmark problems, 

the product type sequence [𝑑1, 𝑑2, … , 𝑑𝐹]  is assumed to be a priori given, which is 
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consistent with the traditional, fragmented approach to maintenance planning and 

production scheduling. For completeness, these two problems are defined below. 

 

Operation-Independent CBM Policy Determination: 

 

 

 

Operation-Dependent CBM Policy Determination: 

 

 

 

 

The integrated decision-making policy and both benchmark CBM policies are 

stationary in the sense that the selected maintenance triggering states and product type 

sequence would not change throughout the execution of all production. 

 

4.3    Solution Procedure 

For an m-station manufacturing system with K operations that can be executed in 
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that not all operations can be executed in all stations. Nevertheless, even the 

aforementioned reduction usually results in a solution space that is too large for complete 

enumeration, especially when candidate solutions are evaluated via replicated discrete-

event simulations. 

Hence, in order to find a practical, applicable and near optimal solution, a Tabu 

Search algorithm [104] is used, with discrete-event simulations of the target 

manufacturing system providing cost effects of any candidate solution. The average profit 

relevant to each candidate solution is evaluated from multiple replications of the discrete-

event simulations of the target manufacturing system and is fed back into the Tabu Search 

algorithm to guide the movements towards improved candidate decisions. 

The local neighborhood of any candidate solution is generated by generating 

neighborhoods for the candidate maintenance triggering states and product type 

sequence. To generate the neighborhood for maintenance triggering states, a cell in the 

matrix representing the current solution (rows representing operations and columns 

representing machines) is selected randomly and its value is perturbed. The details of 

maintenance triggering state neighborhood generation can be found in Section 3.3.1.2. 

For the product type sequence, neighbors were generated by pairwise interchanges of two 

randomly selected product types. An example of product type sequence neighborhood 

generation for a system that produces 10 products (3 of product type 𝑤1, 2 of product 

type 𝑤2, 2 of product type 𝑤3 and 3 of product type 𝑤4) is given in Figure 17. At each 

iteration, for the current CBM and product type sequence solution, a limited number of 
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product type sequence neighbors are generated. For the sequence that gives the highest 

profit, a predetermined number of cells are selected from the matrix representing the 

maintenance triggering states and their values are perturbed. The operation-dependent 

CBM policy presented in Chapter 3 and a randomly selected product type sequence were 

used in this study as the initial solution in order to speed up the metaheuristic 

optimization process. 

Please note that the solution procedures for the benchmark policies have been 

presented in detail in Chapter 3, and therefore will not be elaborated on in this chapter. 

 

Figure 17. Neighborhood generation for product type sequence 
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4.4    Results 

Integrated decision-making of preventive maintenance scheduling and product 

sequencing was tested on an example of a cluster tool, described in Section 3.4. 

In order to assess the performance of the newly proposed optimization 

methodology, the AutoMod software package [140] was used to simulate a 5-chamber 

cluster tool, producing 3 types of wafers. Throughout our study, 40 simulation 

replications were used to evaluate each candidate solution for a maintenance and product 

sequencing policy. This number was determined by increasing the number of replications 

until further increase of this number did not result in significant changes in average profit 

effects of simulations ran for a wide set of parameters. There was no control over the 

random number seeds that were used in these replications. It also should be noted that, at 

the end of each simulation, the current system condition is not maintained. 

4.4.1 Baseline Example 

The parameters used to generate the results are given in Table 4, Table 5 and 

Figure 18. Within this plethora of parameters, let us note that PM times are assumed to be 

approximately one half of the corresponding RM times. In addition, the night shifts (8pm 

– 8am) were assumed to be the periods of cheaper maintenance, during which 

maintenance events were assumed to cost 2/5th of a regular maintenance event executed 

during day shifts (8am – 8pm), for both preventive and reactive maintenance 

interventions. It can also be noted that, based on the corresponding Markovian state 



 
 

77 
 

transition matrices, operations 2o , 3o , 7o , 9o , 11o  and 12o  degrade the chambers slower 

than other operations. In addition, analysis of degradation dependent yield shows that 

operations 3o , 7o , 9o , 11o  and 13o  are more sensitive to degradation, since their yields 

decrease more severely as the degradation state of the chamber increases. These points 

will be important as we analyze the effects of the newly introduced integrated decision-

making policy and compare them to the benchmark policies. 

The operation-independent CBM policy was determined through complete 

enumeration and SCBM = [3 3 2 3 2]  was found to be the best operation-independent 

CBM policy in the baseline parameter setting. On the other hand, in order to optimize the 

integrated decision-making policy, Tabu Search algorithm described in Section 3.3.1.2 

was used. The parameters of the tabu search algorithm used in this study were selected in 

an ad hoc manner and are given in Table 6.  

From Figure 19, it is immediately visible that the integrated decision-making 

policy results in a higher expected profit, when compared to the traditional operation-

independent CBM policy and the operation-dependent CBM policy introduced in Chapter 

3. There are several reasons for this performance improvement brought by the newly 

proposed decision-making method. Firstly, the benefits of considering operation-

dependent degradation dynamics and postulating an operation-dependent maintenance 

policy were apparent, similarly to what we saw in Chapter 3. Namely, for the best 

integrated decision-making policy, it was observed that the maintenance triggering states 

2

4

o

cS , 3

3

o

cS , 8

4

o

cS , 9

3

o

cS , 10

2

o

cS  and 11

5

o

cS  are higher (allowing more degradation) compared to 



 
 

78 
 

the traditional, operation-independent CBM policy. As mentioned before, operations 2o

and 3o  degrade the chambers slower than others and the optimized operation-mode 

dependent maintenance triggering states yielded by the procedure proposed in this 

chapter support the intuition that less frequent maintenance should be allowed for slower 

degrading operations. In addition, since operations 8o , 9o , 10o  and 11o  are involved in the 

manufacturing of cheaper (less rewarding) wafers, the corresponding optimized 

maintenance triggering states also conform with the intuition that as the wafer reward 

decreases, the effect of completing that wafer successfully on the profit decreases, thus 

favoring later triggering of maintenance. 

In addition, clear benefits of the ability to adjust product sequencing within the 

newly proposed decision-making scheme can be seen in Figure 20. It can be observed in 

Figure 20 (a) that the integrated decision-making policy not only decreases the total 

number of PM events, but also increases the number of the PM events occurring in the 

cheaper maintenance periods, when compared to the benchmark policies. The reason for 

this is that, by allowing changes in the product sequence, the integrated decision-making 

policy takes advantage of the cheaper maintenance periods and rearranges the product 

sequencing in a way that more PM events are pushed to take place during those periods. 

This is a significant feature which contributed to the beneficial cost effects of the 

decision-making procedure introduced in this study, which is not available in the 

fragmented maintenance and product sequencing decision-making schemes traditionally 

pursued in manufacturing today. 
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Table 4. Summary of simulation parameters for integrated decision-making 

  Set of chambers  1 2 5
, , ,C c c c  

Wafer types  1 2 3
, ,W w w w  

Number of wafers for each        
wafer type 

12F  , 
1

4
w

F  , 
2

4
w

F  , 
3

4
w

F   (These are the number of lots and each 

lot consists of 25 wafers, hence 100 wafers of each wafer type are fed into 
the system) 

Wafer type sequence [
1 2 12
, , ,d d d ]=[ 1 2 3 1 2 3 1 2 3 1 2 3, , , , , , , , , , ,w w w w w w w w w w w w ] 

Production goal (wafers) 
1 2 3

85
w w w

N N N    

Set of operations  1 2 13
, , ,O o o o  

Operation cycle times (min) [10, 20, 15, 15, 10, 20, 20, 10, 25, 10, 15, 10, 10] 

Operation sequences for each     
wafer type  

1 1 2 3 4 13 5
, , , , ,

w
O o o o o o o  

  
2 6 3 7 11 12

, , , ,
w

O o o o o o  

  
3 8 9 10 11 6

, , , ,
w

O o o o o o  

Operations executable in each 
chamber  

1 1 2 4 5 6 7 8 9
, , , , , , ,

c
O o o o o o o o o  

  
2 1 2 3 4 6 8 9 10

, , , , ,, ,
c

O o o o o o o o o  

  
3 3 4 5 7 9 10 11

, , , , ,,
c

O o o o o o o o  

  
4 2 8 12 13

, , ,
c

O o o o o  

  
5 1 5 6 7 11 12

, , , ,,
c

O o o o o o o  

Degradation state space  
1 2 5

1,2, ,5
c c c

S S S     

Distributions of preventive 
maintenance times for each 
chamber (min) 

 (31,49), (51,69), (41,59), (21,39), (21,39)U U U U U   

Periods of cheaper maintenance 8:00pm – 8:00am each day 

Reactive maintenance times for   
each chamber (min)  (62,98), (102,138), (82,118), (42,78), (42,78)U U U U U  

Reward parameters ($) 
1

50
w

R  ,  
2

25
w

R  ,  
3

10
w

R    

Costs ($) 50
p

c  , 250
r

c  , 20
cp

c  , 100
cr

c  , 
1

20
w

p  , 
2

10
w

p  , 
3

4
w

p      
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Table 5. Probability of success for each operation for integrated decision-making 

 State 1 State 2 State 3 State 4 State 5 

1o  1 0.9606 0.8295 0.8122 0.7938 

2o  1 0.9900 0.9327 0.9132 0.8896 

3o  1 0.9224 0.6022 0.5677 0.4935 

4o  1 0.9801 0.8877 0.8619 0.8284 

5o  1 0.9512 0.8650 0.7643 0.7438 

6o  1 0.9276 0.9110 0.8946 0.8525 

7o  1 0.9317 0.8386 0.5721 0.5062 

8o  1 0.9631 0.8301 0.7737 0.7316 

9o  1 0.9360 0.9042 0.7430 0.6866 

10o  1 0.9511 0.9397 0.9284 0.8991 

11o  1 0.9500 0.8758 0.8418 0.7084 

12o  1 0.9739 0.9605 0.8880 0.8603 

13o  1 0.9276 0.7848 0.7169 0.6354 

 

 

𝑃(𝑜1) =

[
 
 
 
 
0.98 0.02 0 0 0
0 0.98 0.02 0 0
0 0 0.98 0.02 0
0 0 0 0.98 0.02
0 0 0 0 1 ]

 
 
 
 

  𝑃(𝑜2) =

[
 
 
 
 
0.90 0.08 0.02 0 0
0 0.90 0.08 0.02 0
0 0 0.90 0.08 0.02
0 0 0 0.93 0.07
0 0 0 0 1 ]

 
 
 
 

  𝑃(𝑜3) =

[
 
 
 
 
0.93 0.05 0.02 0 0
0 0.93 0.05 0.02 0
0 0 0.93 0.05 0.02
0 0 0 0.97 0.03
0 0 0 0 1 ]

 
 
 
 

    

 𝑃(𝑜4) =

[
 
 
 
 
0.94 0.04 0.015 0.005 0
0 0.94 0.04 0.015 0.005
0 0 0.94 0.04 0.02
0 0 0 0.94 0.06
0 0 0 0 1 ]

 
 
 
 

        𝑃(𝑜5) =

[
 
 
 
 
0.98 0.015 0.005 0 0
0 0.98 0.015 0.005 0
0 0 0.98 0.015 0.005
0 0 0 0.98 0.02
0 0 0 0 1 ]

 
 
 
 

 

 𝑃(𝑜6) =

[
 
 
 
 
0.95 0.04 0.01 0 0
0 0.95 0.04 0.01 0
0 0 0.95 0.04 0.01
0 0 0 0.95 0.05
0 0 0 0 1 ]

 
 
 
 

   𝑃(𝑜7) =

[
 
 
 
 
0.93 0.04 0.02 0.01 0
0 0.93 0.04 0.02 0.01
0 0 0.93 0.06 0.01
0 0 0 0.97 0.03
0 0 0 0 1 ]

 
 
 
 

   𝑃(𝑜8) =

[
 
 
 
 
0.97 0.03 0 0 0
0 0.97 0.03 0 0
0 0 0.97 0.03 0
0 0 0 0.97 0.03
0 0 0 0 1 ]

 
 
 
 

          

  𝑃(𝑜9) =

[
 
 
 
 
0.90 0.05 0.03 0.02 0
0 0.90 0.05 0.03 0.02
0 0 0.90 0.07 0.03
0 0 0 0.90 0.10
0 0 0 0 1 ]

 
 
 
 

 𝑃(𝑜10) =

[
 
 
 
 
0.99 0.01 0 0 0
0 0.99 0.01 0 0
0 0 0.99 0.01 0
0 0 0 0.99 0.01
0 0 0 0 1 ]

 
 
 
 

 𝑃(𝑜11) =

[
 
 
 
 
0.89 0.07 0.03 0.01 0
0 0.89 0.07 0.03 0.01
0 0 0.91 0.07 0.02
0 0 0 0.91 0.09
0 0 0 0 1 ]

 
 
 
 

                   

 𝑃(𝑜12) =

[
 
 
 
 
0.92 0.06 0.02 0 0
0 0.92 0.06 0.02 0
0 0 0.92 0.06 0.02
0 0 0 0.95 0.05
0 0 0 0 1 ]

 
 
 
 

      𝑃(𝑜13) =

[
 
 
 
 
0.95 0.03 0.02 0 0
0 0.95 0.03 0.02 0
0 0 0.95 0.03 0.02
0 0 0 0.96 0.04
0 0 0 0 1 ]

 
 
 
 

           𝑀𝑃 =

[
 
 
 
 

0 0 0 0 0
1 0 0 0 0

0.60 0.40 0 0 0
0.60 0.30 0.10 0 0
1 0 0 0 0]

 
 
 
 

       

Figure 18.Operation-specific transition probability matrices and maintenance transition 

probability matrix for integrated decision making 
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Table 6. Parameters of tabu search for integrated decision-making 

Parameters of Tabu Search Value 

Maximum iterations  20 

Tabu list length 5 

Neighbors for product type sequence 10 

Neighbors for maintenance triggering states 15 

Replication number to find expected profit 40 

 

 

 

 

Figure 19. Expected profit comparison for integrated decision-making policy 
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Figure 20. Comparison between the expected numbers of maintenance events conducted 

during the expensive and cheap maintenance periods 

 

To gain better understanding of the newly proposed integrated decision-making 

policy, we studied the influences of cheap/regular maintenance cost ratio, unmet 

production penalty cost (𝑝𝑤𝑗
) and production goal (𝑁𝑤𝑗

) parameters, as well as the 

efficacy of maintenance execution on the resulting decisions and their effects. Results of 

these studies are enclosed below. 

4.4.2 Influence of cheap/regular maintenance cost ratio 

The ratios of maintenance costs during the cheap and regular maintenance periods 

were varied across a wide range of values8 and, as can be clearly observed from Figure 

21, for all cheap/regular maintenance cost ratios, the integrated decision-making policy 

                                                           
 

8 Regardless of the cheap/regular maintenance ratio, average maintenance costs over the length of the day were kept the same as 
they were for the baseline example. 
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results in a higher expected profit when compared to the benchmark policies. Figure 22 

illustrates how the integrated decision-making policy took advantage of the cheaper 

maintenance periods and delivered higher expected profits. Namely, as the cheap/regular 

maintenance cost ratio decreases and execution of PM operations during cheaper 

maintenance periods carries more potentials for savings, the integrated maintenance 

policy arranges the product sequence in such a way that more maintenance events occur 

during the cheaper maintenance periods, thus taking advantage of the reduced cost. This 

increasing trend is clearly evident in Figure 22.  

Furthermore, as illustrated in Figure 23, the benefits of the integrated decision-

making policy relative to the operation-independent CBM policy increase as the 

cheap/regular maintenance cost ratio decreases. This is reasonable since with the decrease 

in the cheap/regular maintenance cost ratio, the cost opportunity to push more 

maintenance events to the cheaper maintenance periods grows. Since only the integrated 

decision-making policy has the capability to, when necessary, re-sequence products and 

push more PM events to the cheaper maintenance periods, its cost relative benefits over 

the benchmark policies grow. 

The p-values calculated through a paired t-test to observe the statistical 

significance of the outperformance of the proposed method over the benchmark policies 

are given in Table 7. The proposed integrated decision-making policy outperforms the 

operation-independent CBM policy with statistical significance in all instances. For the 

higher cheap/regular maintenance cost ratios, the benefits of the integrated decision-
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making policy over the operation-dependent CBM policy will be lower as pushing the 

maintenance events to cheaper maintenance periods would not yield substantial 

maintenance cost decrease. Therefore the proposed method does not outperform the 

operation-dependent CBM policy significantly for higher cheap/regular maintenance cost 

ratios. 

 

Figure 21. Comparison of expected profits for different cheap/regular maintenance cost 

ratios (black lines denote the  -/+2σ limits of the simulation outcomes) for the integrated 

decision-making policy, operation-dependent CBM policy and the traditional operation-

independent CBM policy 

 

Table 7. p-values for different cheap/regular maintenance cost ratios 

 1/6 2/5 3/4 1 

Integrated decision-making  
over 

Operation-independent 
0.0001 0.0006 0.0025 0.0060 

Integrated decision-making  
over 

Operation-dependent 
0.0077 0.0362 0.1865 0.1620 
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Figure 22. Comparison of number of regular and cheap PM events for various cost ratios 

 

 

 

 

Figure 23. Percent improvement obtained by the integrated decision-making policy over 

the benchmark policies for different cheap/regular maintenance cost ratios 
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4.4.3 Influence of unmet production penalty costs (𝒑𝒘𝒋
) 

 In this section, we investigate the performance of the newly proposed integrated 

decision-making policy under different unmet production penalty costs. The expected 

profit and percent improvements over the benchmark policies for various penalty costs 

are respectively given in Figure 24 and Figure 25. Once again, it is visible from Figure 24 

that the expected profits obtained using the integrated decision-making policy are higher 

than the profits obtained by the benchmark policies, regardless of the unmet production 

penalty costs. Also, a closer look at the figure shows that as the penalty costs of unmet 

production grow, the expected profits obtained using the integrated decision-making 

policy diminish slightly while the expected profits for the operation-independent and 

operation-dependent CBM policies diminish considerably. The reason for this situation is 

that the integrated decision-making policy manages to meet the production goal more 

reliably by involving a smaller number of maintenance events, compared to the 

benchmark policies. This reduction in the number of maintenance events is due to the 

ability of the newly proposed decision-making scheme to change the product sequence 

and to keep assigning less degradation-sensitive products to more degraded machines. 

This is evident in Figure 26, where we see the expected total number of PM events for 

various unmet production penalty costs.   
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Figure 24. Comparison of expected profits for changing unmet production penalty costs 

(black lines denote the  -/+2σ limits of the simulation outcomes) for the integrated 

decision-making policy, operation-dependent CBM policy and the traditional operation-

independent CBM policy 
 

 

 

 

Figure 25. Percent improvement obtained by the integrated decision-making policy over 

the benchmark policies for different unmet production penalty costs 
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Figure 26. Expected total number of PM events for changing penalty costs (black lines 

denote -/+ 2σ limits of the simulation outcomes) for the integrated decision-making 

policy, operation-dependent CBM policy and the traditional operation-independent CBM 

policy 

 

The same rationale also explains the results presented in Figure 25, which shows 

the percentual improvements brought by the newly proposed integrated decision-making 

scheme relative to the benchmark policies. The integrated decision-making policy is able 

to meet the production goal using fewer maintenance events, whereas the benchmark 

policies require more frequent maintenance interventions in order to meet that goal as the 

penalty costs increase. This explains why the relative benefits of the integrated decision-

making policy over the benchmark policies consistently become larger as the unmet 

production penalty costs increase. 
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8 shows the p-values calculated through a paired t-test. The proposed integrated 

decision-making policy significantly outperforms the operation-independent CBM policy 

in all instances. However, for the lowest penalty costs, the relative benefit of the 

integrated decision-making policy over operation-dependent CBM policy is the smallest 

and hence outperformance of the proposed method over operation-dependent CBM 

policy is not statistically significant. 

 

Table 8. p-values for different penalty costs (𝑝𝑤1
, 𝑝𝑤2

, 𝑝𝑤3
) 

 10,5,2 20,10,4 30,15,6 40,20,8 

Integrated decision-making  
over 

Operation-independent 
0.0262 0.0006 0.0008 0.0001 

Integrated decision-making  
over 

Operation-dependent 
0.2036 0.0362 0.0301 0.0339 

 

 

4.4.4 Influence of production goals (𝑵𝒘𝒋
) 

Let us now assess the performance of the integrated decision-making 

methodology introduced in this chapter under increasingly demanding production goals9. 

The expected profits for the newly proposed and benchmark decision-making schemes 

are shown in Figure 27 and, once again, the integrated decision-making policy 

consistently yields higher expected profits, when compared to the benchmark policies. 

                                                           
 

9 I.e. as one increases the production goals 𝑁𝑤𝑗
 for each product type in the cost functions (3), (4) and (5). 
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This can be explained by the fact that as the production goals increase, avoiding 

unscheduled downtime and production penalty costs by preventing the production of 

scrap wafers becomes increasingly influential on the effects of any decision-making 

policy. The integrated decision-making policy jointly optimizes product sequencing and 

operation-specific maintenance triggering states and thus offers more freedom in the 

operational decision-making. For example, for the operations that are executed in the 

completion of the wafers for which we have a higher production goal, the integrated 

decision-making policy can suggest earlier triggering of maintenance, thus reducing the 

number of scrap wafers and increasing the likelihood of reaching that production goal. It 

can also compensate for the consequent increase in the number of preventive 

maintenance events by suggesting later triggering of maintenance events for other 

operations. In addition, by changing the product sequence, the integrated decision-

making has the flexibility to assign less sensitive operations to more degraded chambers, 

thus reducing the number of scrap wafers, and potentially postponing the maintenance of 

those machines towards periods of cheaper maintenance. The traditional operation-

independent CBM policy does not have these flexibilities and as the production goals 

increase, in order to reduce the number of scrap wafers, the number of maintenance 

events, and hence maintenance costs, increase more dramatically than in the case of the 

integrated decision-making policy. This is clearly visible in Figure 29, which shows 

expected maintenance costs for the 3 policies considered in this study. 

It is therefore logical that as the production goals increase, the relative benefits of 

the integrated decision-making policy over the traditional operation-independent CBM 
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policy consistently increase, as can be seen in Figure 28. However, it can also be 

observed in Figure 28 that for the highest production goal, the percentual improvement of 

the integrated decision-making policy over the operation-dependent CBM policy actually 

decreases, as does the slope of the percentual improvements the newly proposed policy 

relative to the traditional CBM policy. The reason for this can be seen in Figure 30. 

Namely, even though the probability of meeting the production goal decreases for all 

maintenance policies as the production goal increases, the decrease in this probability for 

the integrated decision-making policy is more dramatic, as it prefers to decrease the 

number of maintenance events at the cost of the increased number of scrap wafers, which 

further reduces the probability of meeting the production goals. Therefore, despite the 

fact that the expected maintenance cost increases only slightly with the increasing 

production goals for the integrated decision-making policy, the decrease in the 

probability of meeting the production goal causes the pattern seen in Figure 28 for the 

most aggressive production goals. In Table 9, it is observed that the integrated decision-

making policy outperforms the benchmark policies significantly despite the pattern 

observed in Figure 28. 
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Figure 27. Comparison of expected profits for different production goals (black lines 

denote the  -/+2σ limits of the simulation outcomes) for the integrated decision-making 

policy, operation-dependent CBM policy and the traditional operation-independent CBM 

policy 
 

 

 

Figure 28. Percent improvement over benchmark policies obtained by the integrated 

decision-making policy for different production goals 
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Figure 29. Total expected maintenance cost obtained by different maintenance policies 

for increasing production goals  

 

 

 

Figure 30. Probabilities of meeting the production goal for 3 decision-making policies 

over increasing production goals 
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In order to observe the behavior of the integrated decision-making system under 

conditions where it is no longer more cost effective to sacrifice production for the sake of 

decreased maintenance cost, we increased the unmet production goal penalties and set 

them to be double the reward for each wafer. For these penalty parameters, we conducted 

another comparative study for the same production goals as those considered in Figure 

28. Results of this study are illustrated in Figure 31, which shows percentual 

improvements of the integrated decision-making policy over the benchmark policies for 

the increased unmet production penalty costs. For these parameters, the cost of unmet 

production is so much more severe that the integrated decision-making policy no longer 

prefers sacrificing production in order to reduce maintenance costs, which is why results 

in Figure 31 shows consistently increasing percentual improvements over the benchmark 

policies.  

 

 

Figure 31. Percent improvement over the benchmark policies obtained by the integrated 

decision-making policy for higher unmet production penalty costs  
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The p-values associated with higher penalty costs are presented in Table 10. As 

can be observed in Table 10, the proposed method significantly outperforms the 

benchmark policies in all but one instance. For the lowest production goal, the integrated 

decision-making policy yields the lowest relative benefits over the operation-dependent 

CBM policy and hence the outperformance is not statistically significant. 

 

Table 9. p-values for different production goals (𝑁𝑤1
, 𝑁𝑤2

, 𝑁𝑤3
) 

 85,85,85 90,90,90 95,95,95 

Integrated decision-making  
over 

Operation-independent 
0.0006 0.0001 0.0001 

Integrated decision-making  
over 

Operation-dependent 
0.0362 0.0017 0.0462 

 

 

Table 10. p-values for different production goals (𝑁𝑤1
, 𝑁𝑤2

, 𝑁𝑤3
) with higher penalty 

costs 

 85,85,85 90,90,90 95,95,95 

Integrated decision-making  
over 

Operation-independent 
0.0001 0.0001 0.0001 

Integrated decision-making  
over 

Operation-dependent 
0.1228 0.0043 0.0003 
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4.4.5 Influence of probabilities that preventive maintenance actions restore the 

perfect condition of the maintained system (MP) 

In this study, we acknowledge the fact that the effects of a maintenance operation 

may be uncertain. As mentioned in the problem description in Section 4.2, we 

acknowledge that imperfect maintenance may happen and will study in this section the 

effects of the effectiveness of maintenance operations on the expected profits yielded by 

different decision-making policies.  

Various effectiveness levels of PM interventions are tested using different 

Markov transition matrices corresponding to the condition-state recoveries induced by 

PM events. Figure 32 lists the PM-related Markov transition matrices tested in this study. 

Generally speaking, these matrices express the effectiveness of maintenance operations 

via the expected equipment condition after a maintenance is executed. Matrices MP1 – 

MP5 are selected in such a way that regardless of the state at which maintenance is 

invoked, as we go from MP1 to MP5, we see increasingly efficient PM interventions, 

with increasing probabilities that PM returns the maintained system to better states 

(closer to the “as good as new” state). Note that MP5 corresponds to perfect maintenance 

operations that always return the maintained system to the “as good as new” state. 
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𝑀𝑃1 =

[
 
 
 
 

1 0 0 0 0
1 0 0 0 0

0.20 0.80 0 0 0
0.20 0.60 0.20 0 0
1 0 0 0 0]

 
 
 
 

 𝑀𝑃2 =

[
 
 
 
 

1 0 0 0 0
1 0 0 0 0

0.40 0.60 0 0 0
0.40 0.45 0.15 0 0
1 0 0 0 0]

 
 
 
 

 𝑀𝑃3 =

[
 
 
 
 

1 0 0 0 0
1 0 0 0 0

0.60 0.40 0 0 0
0.60 0.30 0.10 0 0
1 0 0 0 0]

 
 
 
 

  𝑀𝑃4 =

[
 
 
 
 

1 0 0 0 0
1 0 0 0 0

0.80 0.20 0 0 0
0.80 0.15 0.05 0 0
1 0 0 0 0]

 
 
 
 

  𝑀𝑃5 =

[
 
 
 
 
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0]

 
 
 
 

 

Figure 32. Perfect maintenance probabilities used for sensitivity analysis with integrated 

decision-making policy 

 

The expected profits obtained for various levels of maintenance efficacies are 

shown in Figure 33, while the percent improvements obtained with the integrated 

decision-making policy over the benchmark policies are given in Figure 34. 

From Figure 33, we can once again observe that for all levels of PM efficacy, the 

integrated decision-making policy results in a higher expected profit, when compared to 

the benchmark policies. In addition, from Figure 34 one can see that higher levels of PM 

efficacy10 result in more pronounced percentual improvements of the newly proposed 

policy over the traditional operation-independent CBM policy. This can be explained by 

the fact that in sophisticated decision mechanisms, such as the newly proposed integrated 

decision-making, the success of decisions strongly depends on the effectiveness of the 

execution of those decisions. If the decisions are not executed effectively (when 

probabilities of restoring the good conditions of the maintained machine are lower), that 

                                                           
 

10 Situations when Markovian transition matrices corresponding to PMs have higher likelihood of 

returning the system closer to the “as good as new” state, i.e. scenarios obtained as we go from Markovian 

transition matrix MP1, to MP2, then on to MP3 and so on. 
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diminishes the benefits of the integrated decision-making policy and reduces the resulting 

profits.  

In addition, it can also be observed from Figure 34 that as the maintenance 

efficacy increases, the percentual improvements obtained by the integrated decision-

making policy over the operation-dependent CBM policy first rise and then decrease. 

This phenomenon can be explained as follows. When the maintenance efficacy is lower, 

the maintenance triggering threshold decisions in both operation-dependent CBM policy 

and the integrated decision-making policy are not reliable as the execution of these 

decisions is far from perfect and hence the benefits of the ability to rearrange the product 

sequencing become more pronounced. However, as the maintenance efficacy keeps 

increasing, the maintenance decisions are applied more and more effectively and hence 

the relative advantage of the integrated decision-making policy due to the ability to 

rearrange the product sequence decreases, resulting in the trend we see in Figure 34.  

The p-values calculated through a paired t-test are presented in Table 11. As 

mentioned in the previous paragraph, when the maintenance efficacy is lower, both the 

integrated decision-making policy and the operation-dependent CBM policy fail to 

produce reliable maintenance triggering threshold decisions. Therefore, the proposed 

integrated decision-making policy does not produce significantly better results than the 

operation-dependent CBM policy for lower maintenance efficacies. 
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Figure 33. Comparison of expected profits for different probabilities of perfect 

maintenance (black lines denote the -/+2σ limits of the simulation outcomes) for the 

integrated decision-making policy, operation-dependent CBM policy and the traditional 

operation-independent CBM policy 

 

 

 

Figure 34. Percent improvement obtained by the integrated decision-making policy over 

the benchmark policies for different probabilities of perfect maintenance  
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Table 11. p-values for different probabilities of perfect maintenance 

 MP1 MP2 MP3 MP4 MP5 

Integrated decision-making 
over 

Operation-independent 
0.0978 0.0015 0.0006 0.0001 0.0001 

Integrated decision-making 
over 

Operation-dependent 
0.2737 0.0828 0.0362 0.0255 0.0023 

 

 

4.5    Conclusions 

In this chapter, a decision-making system for maintenance scheduling and product 

sequencing for a multiple machine/multiple operation manufacturing system is presented. 

To the best of our knowledge, this is the first integrated decision-making study in a 

manufacturing system consisting of multiple manufacturing stations that considers both 

operation-dependent degradation models and a model of the probability of manufacturing 

success yield, that is both operation and degradation dependent.  

The newly introduced integrated decision making policy was applied on an 

example of a cluster tool model, which is a mini flexible manufacturing system. It was 

benchmarked against the traditional operation-independent condition based maintenance 

policy, as well as the operation-dependent condition based maintenance policy presented 

in Chapter 3. In addition, a sensitivity analysis was conducted to evaluate the 

performance of the newly proposed methodology under varying relative costs of 

maintenance in periods of cheap and regular maintenance interventions, penalties of 

unmet production, production goals and efficacy of maintenance. The results show that 

the integrated decision-making policy consistently outperforms the benchmark decision 
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policies by providing a higher expected profit. Furthermore, it was observed that 

decreasing the ratio of costs of maintenance interventions during periods of cheap 

maintenance relative to those done during regular maintenance periods, as well as 

increasing of the unmet production penalty costs for unmet production, production goals 

and efficacy of maintenance execution all resulted in more significant benefits of the 

newly proposed integrated decision-making policy over the traditional operation-

independent CBM policy. In addition, decreases in the cheap/regular maintenance cost 

ratios and increases in the penalties of unmet production consistently yielded increased 

relative benefits of the newly introduced policy over the operation-dependent CBM 

policy from Chapter 3. Finally, sensitivity studies regarding different production goals 

and efficacies of maintenance operations illustrated how an interplay of contributions 

from a reduction in the number of PM events, probabilities of meeting various production 

goals, penalties due to unmet production and reliability with which maintenance decision 

are executed lead to different trends in the relative improvements of the integrated 

maintenance and production sequencing policy over the operation-dependent CBM 

policy. 
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Chapter 5 

Integrated Maintenance and Operations Decision Making with 

Imperfect Degradation State Observations 
 

 

5.1    Introduction 

In Chapters 3 and 4, it was assumed that the degradation process of the underlying 

equipment condition follows a specific Markov Model with current conditions of the 

manufacturing environment being perfectly observable (states of the Markov Model were 

perfectly observable at any given time). However, in some highly complex 

manufacturing environments, such as highly integrated systems of multiple interacting 

subsystems, or in systems involving numerous distributed multi-physics phenomena, 

such as plasma-based tools in semiconductor manufacturing, the condition of the 

equipment cannot be directly observed and must be probabilistically inferred from the 

available sensor readings [142], [143]. Acknowledging this, recently it has been proposed 

to model degradation in such systems as a Hidden Markov Model (HMM), where 

degradation states of the monitored system are modeled as the hidden states of the HMM 

and the sensor readings are the observable symbols of the HMM. In such an environment, 

integrated decision-making of the operations and maintenance scheduling has not been 

addressed before and that is the gap that will be addressed in this chapter. 
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In this chapter, we consider a FMS where the degradation processes of each 

machine are still characterized by operation-dependent Markov chains. However, the 

current degradation states of the machines are not perfectly observable and can only be 

inferred probabilistically from available sensor readings. The decisions of actions 

(execute PM, RM or operation) are made based on uncertain information. Therefore, this 

process is a Partially Observable Markov Decision Process (POMDP).  A POMDP is a 

generalization of a Markov Decision Process (MDP). The system dynamics of a POMDP 

are determined by a MDP and there are still a set of states, a set of actions, state 

transitions and rewards for actions. However, contrary to a MDP, in POMDP, the current 

state of the system is not perfectly observable which adds a set of observations to the 

model.   

The rest of this chapter is organized as follows. In Section 5.2, we give a brief 

overview of the latest progress in the application of POMDPs in the integrated decision-

making realm. Section 5.3 will formally define the problem of integrated decision-

making for maintenance scheduling and production sequencing in an FMS with imperfect 

degradation state observations, while Section 5.4 introduces a novel solution procedure 

for this joint decision-making problem. In order to assess the performance of the newly 

proposed decision-making methodology and compare it with some more traditional 

decision-making policies, the results collected from a series of numerical experiments 

based on the simulations of a semiconductor cluster tool are enclosed in Section 5.5. 

Finally, Section 5.6 discusses the conclusions of this work and possible directions for 

future research. 
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5.2    Overview of POMDP in Integrated Decision-Making 

Howard [144] described movement in an MDP as a frog in a pond jumping from 

lily pad to lily pad.  On the other hand, the setting of a POMDP can be viewed as a fog 

shrouded lily pond. The frog is no longer certain about which pad it is currently on and 

before jumping, the frog can obtain information about its current location. POMDP’s are 

suitable for manufacturing applications, where thorough inspection of the machine 

condition is costly and often infeasible. However, this suitability comes at the cost of 

added computational complexity.  

POMDP models have been applied to areas like cost control problems in 

accounting [145], internal control of a corporate control system [146], learning process 

[147], job search [148], etc. However, we will only elaborate on the literature on the 

POMDP based maintenance decision-making for a deteriorating system.  

The first works on the modeling of machine deterioration and maintenance as a 

POMDP mainly considered only two actual states for the current degradation of the 

machine (core states) and three possible actions (do nothing, do inspection, do 

maintenance). Girshick and Rubin [149] were one of the first to consider such a setting. 

They determined the forms of optimal maintenance policies in the case where no 

information regarding the condition of the station is obtained if "do nothing" action is 

selected and perfect information is obtained if "do inspection" option is selected. 

However, Taylor [150] showed the maintenance policy from [149] to be wrong via a 

counter-example. For the two-state core process, Ross [151] showed that the optimal 
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policy may have four regions (produce without inspection - inspection - produce without 

inspection - repair), despite the common intuition of three regions (produce without 

inspection - inspection - repair). Recently, Ivy and Nembhard [152] proposed a 

simulation methodology for integrating statistical quality control and POMDP in order to 

develop and evaluate optimal maintenance policies for a two-state system. 

 Smallwood and Sondik [153] considered a more general setting with more than 

two core states. They showed that the optimal payoff function is piecewise linear and 

convex, and presented an algorithm using this property to calculate the optimal control 

policy over a finite horizon. White [154] has shown that only control limit strategies 

should be examined for finding an optimal policy for a partially observable replacement 

problem. Lovejoy [155] provided sufficient conditions for the optimal policy to be 

monotone on the space of state probability vectors ordered by likelihood ratios (totally 

positive of order 2, TP2). Maillart [57] considered a system with obvious failures and 

modeled both the perfect-information (observations perfectly reveal the underlying 

deterioration state) and imperfect-information (observations are only probabilistically 

related to the underlying deterioration state) cases as cost-rate-minimizing POMDP's. 

Elwany, Gebraeel and Maillart [156] focused on the exponentially increasing degradation 

models and showed that the optimal replacement policy for such models is a 

monotonically non-decreasing control limit policy. 

 In most manufacturing environments, especially in flexible manufacturing 

systems, a machine can execute multiple operations and hence its degradation model 
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changes as the operation executed on it changes. However, few researchers have 

considered the influence of a varying environment on the maintenance decision-making. 

Byon, Ntaimo and Ding [157] examined optimal repair strategies that minimizes the 

expected average cost over an infinite horizon for wind turbines operating under 

stochastic weather conditions. The closest work in literature to the proposed work in this 

chapter was presented by Jin, Miyawaki and Suzuki [158]. They considered a system that 

deteriorates under the influence of a controllable varying environment. They identified a 

sufficient condition that ensures the optimality of the control limit policy with respect to 

the system's prior probability and its environment. In [158], the degradation of the 

machine is affected by the varying environment, but the condition of the environment is 

not affected by the degradation of the machine.  

In our work, the degradation of the machines influences our decisions on the 

dispatching of the operations to the machines, which effectively means decision-making 

will affect the operating regime of the machine (“environment” variable from [158]). 

Furthermore, in all of the studies presented above, the cost of each action (production, 

preventive maintenance, reactive maintenance) is assumed to be known. In our study, the 

degradation state of a machine affects the probability of successful completion of an 

operation and too many unsuccessful operations may lead to an unmet production goal 

penalty. Hence, in the study proposed in this document, it is much more challenging to 

express the cost effects of actions, compared to what we see in [158]. The 

aforementioned challenges will be addressed in the remainder of this chapter. 
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5.3   Problem Statement 

 In this chapter, we consider a similar problem to the one described Chapter 4, 

with a crucial modification in the sense that the degradation states of the manufacturing 

stations are not perfectly observable anymore and can only be inferred from the available 

sensor readings. More precisely, we consider a manufacturing environment with m 

stations labeled 𝑐1, 𝑐2, … , 𝑐𝑚, producing a set of product types 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑙} via a 

set 𝑂 = {𝑜1, 𝑜2, … , 𝑜𝐾}  of operations that can be executed by the stations of that 

manufacturing system. It is assumed that each station 𝑐𝑖  can execute operations 𝑂𝑐𝑖
=

{𝑜𝑐𝑖

1 , 𝑜𝑐𝑖

2 , … , 𝑜𝑐𝑖

𝑞𝑖} ⊂ 𝑂, where 𝑞𝑖 is the number of operations that can be executed by that 

station. Any two stations 𝑐𝑖1 and 𝑐𝑖2 may be able to execute some common operations, 

which means that 𝑂𝑐𝑖1
∩ 𝑂𝑐𝑖2

, for 𝑐𝑖1 , 𝑐𝑖2 ∈ {𝑐1, 𝑐2, … , 𝑐𝑚}  may not necessarily be an 

empty set. Each product type 𝑤𝑗 , 𝑤𝑗 ∈ 𝑊, is associated with a sequence of operations 

𝑂𝑤𝑗
= [𝑜𝑤𝑗

1 , 𝑜𝑤𝑗

2 , … , 𝑜𝑤𝑗

𝑝𝑗 ], where 𝑝𝑗  is the number of operations needed to manufacture 

product type 𝑤𝑗. Successful completion of 𝑤𝑗 requires all the operations in the sequence 

𝑂𝑤𝑗
 to be executed successfully. The goal will be to produce 𝑁𝑤𝑗

 of each product type 

𝑤𝑗, 𝑤𝑗 ∈ 𝑊, within a certain mission time 𝑇. 

 𝑋𝑖(𝑡) denotes the unobservable degradation state of station 𝑐𝑖  at time 𝑡 , where  

𝑋𝑖(𝑡) ∈ 𝑆𝑐𝑖
 and 𝑆𝑐𝑖

= {1,2, … ,𝑀𝑐𝑖
}. The initial distribution of 𝑋𝑖(𝑡) is given by 𝜋𝑖(0) =

[Pr(𝑋𝑖(0) = 1) , Pr(𝑋𝑖(0) = 2) ,  … ,  Pr(𝑋𝑖(0) = 𝑀𝑐𝑖
)].  The unobservable degradation 
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states are assumed to evolve according to an operation-dependent Markov process and 

the station and operation-dependent transition probabilities are represented in matrix form 

𝑷
𝑐𝑖 

(𝑜𝑘)
=

[
 
 
 𝑝𝑐𝑖,1,1

(𝑜𝑘)
⋯ 𝑝𝑐𝑖,1,𝑀𝑐𝑖

(𝑜𝑘)

⋮ ⋱ ⋮

𝑝𝑐𝑖,𝑀𝑐𝑖
,1

(𝑜𝑘)
⋯ 𝑝

 𝑐𝑖, 𝑀𝑐𝑖
,𝑀𝑐𝑖

(𝑜𝑘)

]
 
 
 

  

where 𝑝𝑐𝑖,𝑢,𝑣
(𝑜𝑘)

 is the probability of transitioning from state 𝑢  to 𝑣  when operation 𝑜𝑘  is 

executed on station 𝑐𝑖. The transition probability matrix 𝑷
𝑐𝑖 

(𝑜𝑘)
 will be an upper triangular 

matrix when a production operation is executed, whereas it will be a lower triangular 

matrix when a maintenance event is executed. Thus, we assume that when a maintenance 

operation is performed, the condition of a station will get better, but it may not 

necessarily go to the “good as new” state. 

 As mentioned before, the underlying degradations states 𝑋𝑖(𝑡) are not perfectly 

observable. Instead, we have observations that give probabilistic information related to 

the true state of the system. Let 𝑏𝑖(𝑡) denote the observation emitted by station 𝑐𝑖 at time 

𝑡 and be defined over the state space 𝐵𝑐𝑖 = {𝛾1, 𝛾2, … , 𝛾𝑁𝑐𝑖
}. Observations are emitted 

from each state according to the 𝑀𝑐𝑖
× 𝑁𝑐𝑖

 dimensional emission probability matrix  

𝑸
𝑐𝑖 

(𝑜𝑘)
=

[
 
 
 𝑞𝑐𝑖,1,𝛾1

(𝑜𝑘)
⋯ 𝑞𝑐𝑖,1,𝛾𝑁𝑐𝑖

(𝑜𝑘)

⋮ ⋱ ⋮

𝑞𝑐𝑖,𝑀𝑐𝑖
,𝛾1

(𝑜𝑘)
⋯ 𝑞𝑐𝑖,𝑀𝑐𝑖

,𝛾𝑁𝑐𝑖

(𝑜𝑘)

]
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where 𝑞𝑐𝑖,𝑗,𝛾𝑘

(𝑜𝑘)
 is the probability of observing symbol 𝛾𝑘 when the actual degradation state 

of station 𝑐𝑖 is 𝑗 and action 𝑜𝑘 is executed on it. In this work, emission probability matrix 

𝑸
𝑐𝑖 

(𝑜𝑘)
 is assumed to be known. 

 In addition, let us take into account the fact that as the degradation level of a 

station increases, the probability of success of any operation executed on that station 

decreases. It will be assumed that for any station, the probability of success of a given 

operation is a known function of the operation 𝑜𝑘 ∈ 𝑂 and the station state 𝑋𝑖, denoted as 

𝑠𝑐𝑖
(𝑜𝑘, 𝑋𝑖). 

 Let [𝑑1, … , 𝑑𝐹]  denote the production sequence in which the products are 

processed in the FMS, where  𝑑𝑞 ∈ {𝑤1, 𝑤2, … , 𝑤𝑙} , 𝑞 = 1, 2, … , 𝐹  and F is the total 

amount of products that are fed into the manufacturing system11. In this chapter, similar 

to Chapter 4, it will be assumed that the FMS is such that the sequence [𝑑1, … , 𝑑𝐹] in 

which products are released into the FMS can also be changed. This means that the goal 

of producing a given number of units of each product type produced in a system could be 

achieved through multiple different sequences in which the units are released into it.  

 Based on the product sequence and already completed operations for a product, 

next operation to be executed is determined, i.e. 𝑜𝑘  where 𝑜𝑘 ∈ {𝑜1, 𝑜2, … , 𝑜𝐾} . If 

operation 𝑜𝑘 can be executed more than one station, following the reasoning from [3], 

and job dispatching policy pursued in [7], [8], it will be dispatched to the station with the 

                                                           
 

11 Effectively, [𝑑1, … , 𝑑𝐹] is the sequence in which the products are released into the system. 
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lowest expected degradation state12, where the expected state of station 𝑐𝑖  at time t is 

evaluated as 

∑ 𝑢𝜋𝑖𝑢(𝑡)
𝑀𝑐𝑖
𝑢=1 . 

The action 𝑎𝑡+1  to be taken at time 𝑡 + 1 , will be determined based on the 

information obtained from the distribution 𝜋𝑖(𝑡 + 1) of hidden states of station 𝑐𝑖 at time 

𝑡 + 1. It will be assumed that a failed state is perfectly observable and if a station 𝑐𝑖 

enters that failed state, it immediately shutdowns, requiring a reactive maintenance action 

to bring it back up. If the station is not in failed state, but the available observations 

indicate a situation in which probability that the degradation progressed beyond the 

maintenance triggering threshold for that station is sufficiently big, a preventive 

maintenance event will be triggered. More precisely, for a station 𝑐𝑖 on which operation 

𝑜𝑘 needs to be performed at time 𝑡 + 1, if 

∑ 𝜋𝑖𝑣(𝑡 + 1) ≥ 𝛼

𝑣≥𝑆𝑐𝑖

𝑜𝑘

 

where 𝛼 is a tunable parameter13, operation 𝑜𝑘 could not be processed on it unless  PM 

event is done on the station. 

The decision-making objective will be to find a combined policy of maintenance 

triggering states across a system and product-type sequencing which maximizes a reward 

                                                           
 

12 This is a modification from what was done in [7], [8], because degradation states are now hidden. 
13 α is one of the parameters for which a sensitivity analysis will be conducted. 
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function that considers the benefits of production, costs of maintenance and penalties for 

unmet production goals. More formally, the decision optimization problem will be 

defined as follows. Let 𝑁𝑤𝑗
 denote the production goal for product type 𝑤𝑗 ∈

{𝑤1, 𝑤2, … , 𝑤𝑙} , and let 𝑛𝑤𝑗
 denote the number of good products of type 𝑤𝑗 . The 

integrated decision-making policy will be pursued through the optimization procedure  

 

 

 

where 

 𝑅𝑤𝑗
 is the unit reward for good products produced of type 𝑤𝑗, 𝑤𝑗 ∈ 𝑊 

 𝑝𝑤𝑗
 is the unit penalty for penalizing unmet production for product type 𝑤𝑗, 𝑤𝑗 ∈ 𝑊  

 𝑐𝑟  denotes the unit cost of reactive maintenance (RM) per reactive maintenance event 

 𝑐𝑝 is the unit cost of preventive maintenance (PM) per preventive maintenance event 

 𝑐𝑐𝑟  denotes the unit cost of RM conducted during time intervals in which 

maintenance operation can be performed at a cheaper price (such as night shifts, 

weekends)14 

 𝑐𝑐𝑝 is the unit cost of PM executed during time intervals in which maintenance 

operations can be executed at a cheaper price15 

                                                           
 

14 Of course, if such periods of cheaper maintenance do not exist in the given FMS, then 𝑐𝑐𝑟 = 𝑐𝑟. 
15 Once again, if such periods of time do not exist in a given FMS, then 𝑐𝑐𝑝 = 𝑐𝑝. 
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 𝑉𝑟 is the total number of RM events 

 𝑉𝑝 is the total number of PM events 

 𝑉𝑐𝑟 is the total number of RM events during less expensive maintenance time periods 

 𝑉𝑐𝑝 is the total number of PM events during less expensive maintenance time periods 

 𝑎𝑤𝑗
= {

1,   𝑖𝑓 𝑛𝑤𝑗
< 𝑁𝑤𝑗

 

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   𝑓𝑜𝑟 ∀𝑤𝑗 ∈ 𝑊 

 

The objective function shown in (1) aims to find the product sequence 

[𝑑1, 𝑑2, … , 𝑑𝐹] and operation-dependent maintenance triggering states 𝑆𝑐𝑖

𝑜𝑘 that maximize 

the expected reward function in (1).  

We understand that cost models in different companies, or even within different 

parts of the same company could be very different. Therefore, we pursued a method that 

is not dependent on the cost function in the sense that we used simulation based 

metaheuristic optimization where the cost function can easily be changed to suit the 

reality of a company, while the optimization method would not change at all. In order to 

demonstrate our method, we utilized a very simple and intuitive objective function (1) 

that rewards production and punishes downtime and scrap products. Interested 

readers/users can easily change the objective function to accommodate the needs of their 

production systems.  

The expectation operator in (1) is applied because of the stochastic effects 

induced by randomness in the reliability of equipment (states of manufacturing stations 
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degrade according to operation specific and machine specific stochastic processes), 

stochastic relations between equipment condition and available observations, condition-

dependent yields (for each operation and each machine, one has a probability of 

successfully completing the operation), maintenance effects (equipment condition after 

maintenance is stochastic) and repair times (repair times are not modeled 

deterministically). All these random effects are modeled via discrete event simulations 

and objective function results obtained from multiple runs of the simulations are averaged 

to estimate the expected cost effects corresponding to any given product sequence and 

maintenance triggering policy. 

In order to assess the performance of the newly proposed methodology, the 

integrated decision-making policy introduced in this chapter will be compared with the 

traditional Operation-Dependent CBM Policy and Operation-Independent CBM Policy.  

Both benchmark policies will be modeled similarly to the newly proposed integrated 

decision-making policy such that in both benchmark policies the degradation is modeled 

by operation-dependent Markov chains. In both benchmark policies, the degradation 

states are not perfectly observable and can only be inferred from observed symbols.  

 The main difference of the operation-dependent CBM policy from the integrated 

decision-making policy is that the product type sequence [𝑑1, 𝑑2, … , 𝑑𝐹] is assumed to be 

a priori given. The action selection process for operation-dependent CBM policy is the 

same as the action selection process for the integrated decision-making policy. If 

operation 𝑜𝑘 can be executed more than one station, it will be dispatched to the station 
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with the lowest expected degradation state. The action 𝑎𝑡+1 to be taken at time 𝑡 + 1, will 

be determined based on the information obtained from the distribution 𝜋𝑖(𝑡 + 1)  of 

hidden states of station 𝑐𝑖  at time 𝑡 + 1. If the station is in failed state, it is perfectly 

observable and requires a RM event. If the station is not in failed state, but the available 

observations indicate a situation in which probability that the degradation progressed 

beyond the maintenance triggering threshold for that station is sufficiently big, a 

preventive maintenance event will be triggered. Operation-dependent CBM policy will be 

pursued through the optimization procedure 

 

 

 

 

 

 For the operation-independent CBM policy, the product type sequence 

[𝑑1, 𝑑2, … , 𝑑𝐹]  is again assumed to be a priori given. In this policy, the inferred 

maintenance triggering states for each station are independent of the operations executed 

on it (i.e. 𝑆𝑐𝑖

𝑜1 = 𝑆𝑐𝑖

𝑜2 = ⋯ = 𝑆𝑐𝑖

𝑜𝐾 = 𝑆𝑐𝑖
 for each station 𝑐𝑖). The action selection process 

for this policy is similar to the other benchmark policy and the proposed integrated 

decision-making policy. However, it differs in the way a PM event is triggered which is 

independent of the operation executed on that station for this policy. More precisely, a 

PM event is triggered if  

∑ 𝜋𝑖𝑣(𝑡 + 1) ≥ 𝛼𝑣≥𝑆𝑐𝑖
. 

1 1 1

1 2

2 2 2

1 2

1 2

       
1 1

    

  

maximize        ( )     (2)
j j j j j j

o o o
c c cm

o o o
c c cm

o o oK K K
c c cm

l l

w w r r p p cr cr cp cp w w w w

j j
S S S

S S S

S S S

E R n V c V c V c V c a N n p
 

 
 
 
 
 
 
 
 
 

 
      

 
 
 



 
 

115 
 

For completeness, the optimization procedure for operation-independent CBM policy is 

as follows:  

 

 

 

It should be mentioned that, the integrated decision-making policy and the 

benchmark CBM policies described above are stationary in the sense that the selected 

maintenance triggering states and product type sequence would not change throughout 

the execution of all production. 

 

5.4    Solution Procedure 

5.4.1 Degradation State Estimation 

 Since the current degradation states of the stations are not perfectly observable, 

they can be only inferred from the observations. The estimations on the current state of a 

station at time 𝑡 + 1 are dependent on the action taken at time t and the observable 

symbol emitted by the station at time 𝑡 + 1. To estimate condition of the station 𝑐𝑖 at time 

𝑡 + 1 , given that symbol 𝛾𝑘 was observed at time 𝑡 + 1, the following commonly used 

Bayes’ formula can be employed to obtain the probability density of hidden states at time 

𝑡 + 1 [159]: 

𝜋𝑖𝑣(𝑡 + 1) =  
∑ 𝑞𝑖𝑣𝛾𝑘

 𝑝𝑐𝑖,𝑢,𝑣
𝑎𝑡  𝜋𝑖𝑢(𝑡)𝑢∈𝑆𝑐𝑖

∑ ∑ 𝑞𝑖𝑣′𝛾𝑘
 𝑃𝑐𝑖,𝑢,𝑣′

𝑎𝑡  𝜋𝑖𝑢(𝑡)𝑢∈𝑆𝑐𝑖𝑣′∈𝑆𝑐𝑖

  ,    𝑣 = 1,… ,𝑀𝑐𝑖
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5.4.2 Solution Representation 

For an m-station manufacturing system with K operations that can be executed in 

these stations, a solution for preventive maintenance triggering states can be represented 

with a 𝐾 × 𝑚 matrix illustrated in Figure 35(a). In this matrix, 𝑖th column represents the 

maintenance triggering states of station 𝑐𝑖  for each operation, and similarly, 𝑘 th row 

represents the maintenance triggering states of each station when operation 𝑜𝑘 is executed 

in it. In addition, the product type sequence [𝑑1, 𝑑2, … , 𝑑𝐹] can be represented as an array 

of symbols denoting the product types, as shown in Figure 35 (b). The solution space is 

too large for complete enumeration, especially when candidate solutions are evaluated via 

replicated discrete-event simulations. On the other hand, the objective function does not 

have tractability, i.e. the problem at hand is a big stochastic optimization with no clear 

structure to reduce its complexity16. Hence, in order to find a practical, sub-optimal 

solution, a Tabu Search metaheuristic algorithm [105] is used, with discrete-event 

simulations of the target manufacturing system providing cost effects of any candidate 

decision. The cost effects of a candidate solution are evaluated via averaging the 

objective function values obtained from multiple replications of the discrete-event 

simulations of the target manufacturing system, which is fed back into the Tabu Search 

algorithm to guide the movements towards improved candidate decisions. 

 

                                                           
 

16 As mentioned earlier, we pursued flexibility of the cost function (i.e. the objective function), to deal with the reality that even 
different departments within the same company could have different needs to be represented in the cost function. 
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𝑆𝑐1

𝑜1 𝑆𝑐2

𝑜1 ⋯ 𝑆𝑐𝑚

𝑜1  
 

𝑆𝑐𝑖

𝑜1 
Maintenance policy for station 𝑐𝑖 

 
𝑆𝑐1

𝑜2 𝑆𝑐2

𝑜2 ⋯ 𝑆𝑐𝑚

𝑜2  
 

𝑆𝑐𝑖

𝑜2 
 

 
⋯ ⋯ 𝑆𝑐𝑖

𝑜𝑘 ⋯ 
 

⋯ 
      

 
𝑆𝑐1

𝑜𝐾 𝑆𝑐2

𝑜𝐾 ⋯ 𝑆𝑐𝑚

𝑜𝐾 
 

𝑆𝑐𝑖

𝑜𝐾 
  

𝑆𝑐1

𝑜𝑘 𝑆𝑐2

𝑜𝑘 ⋯ 𝑆𝑐𝑚

𝑜𝑘  

Candidate solution matrix 

representation 
  Maintenance policy for operation 

𝑜𝑘 

(a) 

𝑑1 𝑑2 𝑑3 ⋯ 𝑑𝐹 

(b) 

Figure 35. Representation of a candidate solution for the integrated decision-making 

policy 

 

5.4.3 Tabu Search Algorithm 

Tabu Search has recently begun to receive attention in the realm of maintenance 

optimization problems ([160] - [109]). The main idea of Tabu Search is to mark a 

candidate solution as ‘tabu’ once it has been evaluated so that the same candidate solution 

is not revisited over a certain number of iterations. The search starts from a randomly 

seeded or problem specific initial solution and moves iteratively from a non-tabu 

candidate solution 𝑥 to another non-tabu solution 𝑥′ in the local neighborhood of 𝑥.  

In this chapter, similar to Chapter 4, the local neighborhood of any candidate 

solution is created by generating neighborhoods for the candidate maintenance triggering 

states and product type sequence, similarly to how it was done in [8]. For the sake of 
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completeness, let us repeat the description of how it was done. In order to create a 

neighbor for the maintenance triggering states of the current solution, a cell in the 

corresponding matrix (shown in Figure 35 (a)) is selected randomly and its value is 

perturbed. This procedure is repeated a predetermined number of times in order to 

generate a local neighborhood of the current solution. For the product type sequence, 

neighbors were generated via a predetermined number of pairwise interchanges of two 

randomly selected product types (two randomly selected cells in the array representing 

the product sequence in Figure 35 (b)).  

It should be noted that in this work, the operation-dependent CBM policy 

presented in Section 5.3 was used as the initial solution in order to speed up the 

metaheuristic optimization process17. 

A tabu list is implemented to prevent returning to the solutions already visited for 

a certain number of iterations. However, if the best solution among the candidate 

solutions is obtained by a tabu move that yields an expected profit higher than the best 

profit obtained thus far, then its tabu status is overridden and it was allowed to be 

selected as the next incumbent solution. In other words, in the Tabu Search employed in 

this chapter, we used the well documented aspiration criterion concept, often used in the 

Tabu Search literature [104]. 

                                                           
 

17 The initial product sequence was randomly chosen, though that portion of the initial candidate solution can also be chosen 
more intelligently, to further accelerate the search, if some structure of prior knowledge about the problem exists. 
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The algorithm terminates whenever the maximum number of iterations is reached 

or no improvements are made for a certain number of consecutive iterations. 

5.4.4 Solution Procedure for Benchmark Policies 

5.4.4.1 Solution Procedure for Operation-Dependent CBM Policy 

 The solution procedure for operation-dependent CBM policy is very similar to the 

solution procedure for the integrated decision-making policy described in Sections 5.4.1 

– 5.4.3.  

 As mentioned before, in the benchmark operation-dependent CBM policy, the 

current degradation states are not perfectly observable. The probability density of hidden 

states of station 𝑐𝑖 at time 𝑡 + 1, given that action 𝑎𝑡 was taken at time 𝑡 and symbol 𝛾𝑘 

was observed at time 𝑡 + 1, can be estimated using the following formula: 

𝜋𝑖𝑣(𝑡 + 1) =  
∑ 𝑞𝑖𝑣𝛾𝑘

 𝑝𝑐𝑖,𝑢,𝑣
𝑎𝑡  𝜋𝑖𝑢(𝑡)𝑢∈𝑆𝑐𝑖

∑ ∑ 𝑞𝑖𝑣′𝛾𝑘
 𝑃𝑐𝑖,𝑢,𝑣′

𝑎𝑡  𝜋𝑖𝑢(𝑡)𝑢∈𝑆𝑐𝑖𝑣′∈𝑆𝑐𝑖

  ,    𝑣 = 1,… ,𝑀𝑐𝑖
 

Each solution can be represented as shown in Figure 2 and Figure 35 (a) and as 

explained in Section 5.4.2. For operation-dependent CBM policy, a Tabu Search 

metaheuristic algorithm is used, with discrete-event simulations of the target 

manufacturing system providing cost effects of any candidate solution. The local 

neighborhood of any candidate solution is created by generating neighborhoods for the 

candidate maintenance triggering states similarly to how it was done in [7]. The local 

neighborhood generation for maintenance triggering states has been explained in detail in 
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Section 5.4.3 and will not be repeated here. However, it should be mentioned that for the 

operation-dependent CBM policy, unlike the integrated decision-making policy, a 

neighborhood for product type sequence will not be generated as the product type 

sequence [𝑑1, 𝑑2, … , 𝑑𝐹] is assumed to be a priori given.  

5.4.4.2 Solution Procedure for Operation-Independent CBM Policy 

The probability density of hidden states in operation-dependent CBM policy can 

be estimated similarly to the way it was done for the integrated decision-making policy 

and operation-dependent CBM policy using the following Bayes’ formula: 

𝜋𝑖𝑣(𝑡 + 1) =  
∑ 𝑞𝑖𝑣𝛾𝑘

 𝑝𝑐𝑖,𝑢,𝑣
𝑎𝑡  𝜋𝑖𝑢(𝑡)𝑢∈𝑆𝑐𝑖

∑ ∑ 𝑞𝑖𝑣′𝛾𝑘
 𝑃𝑐𝑖,𝑢,𝑣′

𝑎𝑡  𝜋𝑖𝑢(𝑡)𝑢∈𝑆𝑐𝑖𝑣′∈𝑆𝑐𝑖

  ,    𝑣 = 1,… ,𝑀𝑐𝑖
 

 

A solution for operation-independent CBM policy can be represented as shown in 

Figure 36. For a manufacturing system with 𝑚  stations, where station 𝑐𝑖  has 𝑀𝑐𝑖
 

degradation states, the solution space for optimization of the traditional operation-

independent CBM policy consists of up to ∏ (𝑀𝑐𝑖
− 1)𝑚

𝑖=1  candidate solutions. Thus, the 

CBM solution space for a simple 5-station manufacturing system, where each station has 

5 degradation states, consists of 45 = 1024 candidate solutions. Since our focus in this 

study was on a small manufacturing system (see Results section), this problem was 

solved using complete enumeration. 
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Figure 36. Representation of a candidate solution for the operation-independent CBM 

policy 

 

5.5    Results 

The newly proposed integrated decision-making in the domains of preventive 

maintenance scheduling and product sequencing with imperfect degradation state 

observations was tested on an example of a semiconductor manufacturing cluster tool, 

described in detail in Section 3.4. 

In order to assess the performance of the newly proposed optimization 

methodology, we used the AutoMod software package [140] to simulate a 5-chamber 

cluster tool, producing 3 types of wafers. Throughout our study, we used 40 simulation 

replications to evaluate each candidate solution for a maintenance and product 

sequencing policy. This number was determined by increasing the number of replications 

until further increase of this number did not result in significant changes in the average 

profit effects of simulations ran for a wide set of parameters. There was no control over 

the random number seeds that were used in these replications. It should be noted that, at 

the end of each simulation, the current system condition is not maintained. 

 

 

𝑆𝑐1
 𝑆𝑐2

 ⋯ 𝑆𝑐𝑚
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5.5.1 Baseline Example 

The parameters used in the baseline example are given in Table 12, Table 13 and 

Figure 37.  

Similar to Chapter 4, let us note that PM times are assumed to be approximately 

one half of the corresponding RM times. In addition, the night shifts (8pm – 8am) were 

assumed to be the periods of cheaper maintenance, during which maintenance events 

were assumed to cost 2/5th of a regular maintenance event executed during day shifts 

(8am – 8pm), for both PM and RM interventions. It can also be noted that, based on the 

corresponding state transition matrices, operations o2, o3, o7, o9, o11 and o12 degrade the 

chambers slower than other operations. In addition, analysis of degradation dependent 

yield shows that operations o3 , o7 , o9 , o11  and o13  are more sensitive to degradation, 

since their yields decrease more severely as the degradation state of the chamber 

increases. These points will be important as we analyze the effects of the newly 

introduced integrated decision-making policy and compare them to the benchmark 

policies. 

As mentioned in the previous section, operation-independent CBM policy was 

determined through complete enumeration and SCBM = [2 3 2 3 3] was found to be the 

best operation-independent CBM policy for the baseline parameter setting. On the other 

hand, in order to optimize the integrated decision-making policy, Tabu Search algorithm 

described in previous section was used. The parameters of the Tabu Search algorithm 

used in this study were selected in an ad hoc manner and are given in Table 14. One 
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should note that general guidelines for a more systematic Tabu Search parameter 

selection can be found in [141]. 

 

𝑃(𝑜1) =

[
 
 
 
 
0.98 0.02 0 0 0
0 0.98 0.02 0 0
0 0 0.98 0.02 0
0 0 0 0.98 0.02
0 0 0 0 1 ]

 
 
 
 

  𝑃(𝑜2) =

[
 
 
 
 
0.90 0.08 0.02 0 0
0 0.90 0.08 0.02 0
0 0 0.90 0.08 0.02
0 0 0 0.93 0.07
0 0 0 0 1 ]

 
 
 
 

  𝑃(𝑜3) =

[
 
 
 
 
0.93 0.05 0.02 0 0
0 0.93 0.05 0.02 0
0 0 0.93 0.05 0.02
0 0 0 0.97 0.03
0 0 0 0 1 ]

 
 
 
 

    

 𝑃(𝑜4) =

[
 
 
 
 
0.94 0.04 0.015 0.005 0
0 0.94 0.04 0.015 0.005
0 0 0.94 0.04 0.02
0 0 0 0.94 0.06
0 0 0 0 1 ]

 
 
 
 

        𝑃(𝑜5) =

[
 
 
 
 
0.98 0.015 0.005 0 0
0 0.98 0.015 0.005 0
0 0 0.98 0.015 0.005
0 0 0 0.98 0.02
0 0 0 0 1 ]

 
 
 
 

 

 𝑃(𝑜6) =

[
 
 
 
 
0.95 0.04 0.01 0 0
0 0.95 0.04 0.01 0
0 0 0.95 0.04 0.01
0 0 0 0.95 0.05
0 0 0 0 1 ]

 
 
 
 

   𝑃(𝑜7) =

[
 
 
 
 
0.93 0.04 0.02 0.01 0
0 0.93 0.04 0.02 0.01
0 0 0.93 0.06 0.01
0 0 0 0.97 0.03
0 0 0 0 1 ]

 
 
 
 

   𝑃(𝑜8) =

[
 
 
 
 
0.97 0.03 0 0 0
0 0.97 0.03 0 0
0 0 0.97 0.03 0
0 0 0 0.97 0.03
0 0 0 0 1 ]

 
 
 
 

          

  𝑃(𝑜9) =

[
 
 
 
 
0.90 0.05 0.03 0.02 0
0 0.90 0.05 0.03 0.02
0 0 0.90 0.07 0.03
0 0 0 0.90 0.10
0 0 0 0 1 ]

 
 
 
 

 𝑃(𝑜10) =

[
 
 
 
 
0.99 0.01 0 0 0
0 0.99 0.01 0 0
0 0 0.99 0.01 0
0 0 0 0.99 0.01
0 0 0 0 1 ]

 
 
 
 

 𝑃(𝑜11) =

[
 
 
 
 
0.89 0.07 0.03 0.01 0
0 0.89 0.07 0.03 0.01
0 0 0.91 0.07 0.02
0 0 0 0.91 0.09
0 0 0 0 1 ]

 
 
 
 

                   

 𝑃(𝑜12) =

[
 
 
 
 
0.92 0.06 0.02 0 0
0 0.92 0.06 0.02 0
0 0 0.92 0.06 0.02
0 0 0 0.95 0.05
0 0 0 0 1 ]

 
 
 
 

      𝑃(𝑜13) =

[
 
 
 
 
0.95 0.03 0.02 0 0
0 0.95 0.03 0.02 0
0 0 0.95 0.03 0.02
0 0 0 0.96 0.04
0 0 0 0 1 ]

 
 
 
 

           𝑀𝑃 =

[
 
 
 
 

0 0 0 0 0
1 0 0 0 0

0.60 0.40 0 0 0
0.60 0.30 0.10 0 0
1 0 0 0 0]

 
 
 
 

       

 𝑄 =

[
 
 
 
 
0.85 0.10 0.05 0 0
0.06 0.85 0.06 0.03 0
0.03 0.06 0.85 0.06 0
0 0.05 0.10 0.85 0
1 0 0 0 0]

 
 
 
 

 

Figure 37. Operation-specific transition probability matrices, maintenance transition 

probability matrix and emission probability matrix for integrated decision making with 

imperfect state observations 
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Table 12. Summary of simulation parameters for integrated decision-making with 

imperfect state observations 

  Set of chambers 𝐶 = {𝑐1, 𝑐2, … , 𝑐5} 

Wafer types 𝑊 = {𝑤1, 𝑤2, 𝑤3} 

Number of wafers for each        
wafer type 

𝐹 = 12, 𝐹𝑤1
=  4, 𝐹𝑤2

=  4, 𝐹𝑤3
=  4  (These are the number of lots and 

each lot consists of 25 wafers, hence 100 wafers of each wafer type are fed 
into the system) 

Wafer type sequence [𝑑1, 𝑑2, … , 𝑑12] = [𝑤1, 𝑤2, 𝑤3, 𝑤1, 𝑤2, 𝑤3, 𝑤1 , 𝑤2, 𝑤3 , 𝑤1 , 𝑤2, 𝑤3] 

Production goal (wafers) 𝑁𝑤1
= 𝑁𝑤2

= 𝑁𝑤3
= 85 

Set of operations 𝑂 = {𝑜1, 𝑜2, … , 𝑜13} 

Operation cycle times (min) [10, 20, 15, 15, 20, 20, 10, 25, 10, 15, 10, 10] 

Operation sequences for each     
wafer type 

𝑂𝑤1
= [𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜13, 𝑜5] 

𝑂𝑤2
= [𝑜6, 𝑜3, 𝑜7, 𝑜11, 𝑜12] 

𝑂𝑤3
= [𝑜8, 𝑜9, 𝑜10, 𝑜11, 𝑜6] 

Operations executable in each 
chamber 

𝑂𝑐1
= {𝑜1 , 𝑜2, 𝑜4, 𝑜5, 𝑜6, 𝑜7, 𝑜8, 𝑜9} 

𝑂𝑐2
= {𝑜1 , 𝑜2, 𝑜3, 𝑜4, 𝑜6, 𝑜8, 𝑜9, 𝑜10} 

𝑂𝑐3
= {𝑜3, 𝑜4, 𝑜5, 𝑜7, 𝑜9, 𝑜10, 𝑜11} 

𝑂𝑐4
= {𝑜2, 𝑜8, 𝑜12, 𝑜13} 

𝑂𝑐5
= {𝑜1 , 𝑜5, 𝑜6, 𝑜7, 𝑜11, 𝑜12} 

Degradation state space 𝑆𝑐1
= 𝑆𝑐2

= ⋯ = 𝑆𝑐5
= {1, 2, … , 5} 

Distributions of preventive 
maintenance times for each 
chamber (min) 

[𝑈(31,49), 𝑈(51,69), 𝑈(41,59), 𝑈(21,39), 𝑈(21,39)]   

Periods of cheaper maintenance 8:00pm – 8:00am each day 

Reactive maintenance times for   
each chamber (min) 

[𝑈(62,98), 𝑈(102,138), 𝑈(82,118), 𝑈(42,78), 𝑈(42,78)] 

Reward parameters ($) 𝑅𝑤1
= 50, 𝑅𝑤2

= 25, 𝑅𝑤3
= 10 

Costs ($) 𝑐𝑝 = 50,   𝑐𝑟 = 250,   𝑐𝑐𝑝 = 20,   𝑐𝑐𝑟 = 100, 𝑝𝑤1
= 20,   𝑝𝑤2

= 10,    𝑝𝑤3
= 4   

Alpha (𝛼) 0.70 
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Table 13. Probability of success ("yield") for each operation for integrated decision-

making with imperfect state observations 

 State 1 State 2 State 3 State 4 State 5 

𝒐𝟏 1 0.9606 0.8295 0.8122 0.7938 

𝒐𝟐 1 0.9900 0.9327 0.9132 0.8896 

𝒐𝟑 1 0.9224 0.6022 0.5677 0.4935 

𝒐𝟒 1 0.9801 0.8877 0.8619 0.8284 

𝒐𝟓 1 0.9512 0.8650 0.7643 0.7438 

𝒐𝟔 1 0.9276 0.9110 0.8946 0.8525 

𝒐𝟕 1 0.9317 0.8386 0.5721 0.5062 

𝒐𝟖 1 0.9631 0.8301 0.7737 0.7316 

𝒐𝟗 1 0.9360 0.9042 0.7430 0.6866 

𝒐𝟏𝟎 1 0.9511 0.9397 0.9284 0.8991 

𝒐𝟏𝟏 1 0.9500 0.8758 0.8418 0.7084 

𝒐𝟏𝟐 1 0.9739 0.9605 0.8880 0.8603 

𝒐𝟏𝟑 1 0.9276 0.7848 0.7169 0.6354 

 

 

Table 14. Parameters of Tabu Search for integrated decision-making with imperfect state 

observations 

Parameters of Tabu Search Value 

Maximum iterations  20 

Tabu list length 5 

Neighbors for product type sequence 10 

Neighbors for maintenance triggering states 15 

Replication number to find expected profit 40 
 

From Figure 38, it is immediately visible that the integrated decision-making 

policy results in a higher expected profit, when compared to the traditional operation-

independent CBM policy and the operation-dependent CBM policy. There are several 

reasons for this performance improvement brought by the proposed integrated decision-

making method. Firstly, the benefits of considering operation-dependent degradation 
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dynamics and postulating an operation-dependent maintenance policy were apparent, 

similarly to what was found in [7] and [8]. Namely, for the best integrated decision-

making policy, it was observed that the maintenance triggering states Sc1

o2, Sc1

o7, Sc1

o9, Sc3

o11 

and Sc5

o11 are higher (allowing more degradation) compared to the traditional, operation-

independent CBM policy. As mentioned before, operations o2, o7, o9and o11 degrade the 

chambers slower than others and the optimized operation-mode dependent maintenance 

triggering states yielded by the procedure proposed in this chapter support the intuition 

that less frequent maintenance should be allowed for slower degrading operations. In 

addition, since operations o7, o9 and o11 are involved in the manufacturing of cheaper 

(less rewarding) wafers, the corresponding optimized maintenance triggering states also 

conform with the intuition that as the wafer reward decreases, the effect of completing 

that wafer successfully on the profit decreases, thus favoring later triggering of 

maintenance.  

In this study, as mentioned in Section 5.4.4, for the benchmark policies, the action 

𝑎𝑡+1 to be taken at time 𝑡 + 1, is determined based on the information obtained from the 

distribution 𝜋𝑖(𝑡 + 1)  of hidden states of station 𝑐𝑖  at time 𝑡 + 1 . A much simpler 

practice, that is commonly implemented in manufacturing fabs, is determining the action 

at time 𝑡 + 1  according to the highest likelihood state based on the observed symbol. 

However, as can be seen from the leftmost bar in Figure 38, this approach yields much 

lower expected profits when compared to the proposed integrated decision-making 

policy. 
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Clear benefits of the ability to adjust product sequencing within the newly 

proposed decision-making scheme can be seen in Figure 39. One can observe in Figure 

39 (a) that the integrated decision-making policy not only decreases the total number of 

PM events, but also increases the number of the PM events occurring in the cheaper 

maintenance periods, when compared to the benchmark policies. The reason for this is 

that, by allowing changes in the product sequence, the integrated decision-making policy 

takes advantage of the cheaper maintenance periods and rearranges the product 

sequencing in a way that more PM events are pushed to take place during those periods. 

This is a significant feature which contributed to the beneficial cost effects of the 

decision-making procedure proposed in this chapter, as it did in Chapter 4, which is not 

available in the fragmented maintenance and product sequencing decision-making 

schemes, traditionally pursued in manufacturing today. 
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Figure 38. Comparison of expected profits for the integrated decision-making policy, 

operation-dependent CBM policy and the traditional operation-independent CBM policy 

with imperfect state observations 
 

 

   

(a) Expected number of PM events                     (b) Expected number of RM events 

Figure 39. Comparison between the expected numbers of maintenance events conducted 

during the expensive and cheap maintenance periods for a system with imperfect state 

observations 
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To gain better understanding of the newly proposed integrated decision-making 

policy, we studied the influences of maintenance threshold (𝛼), production goal (Nwj
) 

parameters, efficacy of maintenance execution and uncertainty in emission matrix on the 

resulting decisions and their effects. Results of these studies are enclosed below. 

5.5.2 Influence of maintenance probability threshold (α) 

As explained in Section 5.3, the execution of a preventive maintenance event is 

dependent on whether the probability that degradation progressed beyond 𝑆𝑐𝑖

𝑜𝑘 is greater 

than some threshold 𝛼 or not.   

In this section, we evaluate the performance of the integrated decision-making 

policy under varying values of 𝛼. It is visible from Figure 40 that the expected profits 

obtained using the integrated decision-making policy are consistently higher than the 

profits obtained by the benchmark policies. In addition, it can be observed in Figure 41 

that the percent improvement of the integrated decision-making policy over benchmark 

policies is higher for the smallest 𝛼 value and lower and similar for higher 𝛼 values. The 

reason for this is that when 𝛼 is small, the system is prone to having more PM events and 

hence the capabilities of integrated decision-making becomes crucial in keeping both the 

maintenance and scrap cost low. The benchmark policies also aim to keep the 

maintenance costs low but are not able to reduce the scrap at the same time. As 𝛼 

increases, the probability of triggering a maintenance event becomes lower and hence the 

impact of the capability of integrated decision-making policy in keeping the scrap cost 

low reduces.  
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The p-values calculated through a paired t-test to evaluate the statistical 

significance of the outperformance of the proposed method over the benchmark policies 

are given in Table 15. The proposed integrated decision-making policy outperforms both 

the operation-independent CBM policy and operation-dependent CBM policy with 

statistical significance in all instances. 

The p-values for the same decision-making policy but for varying 𝛼 values are 

given in Table 16. 

 

  
Figure 40. Comparison of expected profits for different alpha (𝛼) values (black lines 

denote the  -/+2σ limits of the simulation outcomes) for the integrated decision-making 

policy, operation-dependent CBM policy and the traditional operation-independent CBM 

policy 
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Figure 41. Percent improvement obtained by the integrated decision-making policy over 

the benchmark policies for different alpha (𝛼) values 

 

 

Table 15. p-values for different alpha (𝛼) threshold values 

 𝛼 = 0.55 𝛼 = 0.70 𝛼 = 0.85 𝛼 = 0.95 

Integrated decision-making  
over 

Operation-independent 
0.0006 0.0013 0.0022 0.0440 

Integrated decision-making  
over 

Operation-dependent 
0.0189 0.0595 0.0177 0.0261 

 

 

 

Table 16. p-values for the same decision-making policy over varying alpha (𝛼) threshold 

values 

 𝛼 = 0.55 
vs 

𝛼 = 0.70 

𝛼 = 0.70 
vs  

𝛼 = 0.85 

𝛼 = 0.85 
vs  

𝛼 = 0.95 

Operation-independent 0.0836 0.9364 0.6362 

Operation-dependent 0.0805 0.8134 0.8159 

Integrated decision-making 0.2299 0.8090 0.5975 
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5.5.3 Influence of emission probability matrices (Q)  

 As explained in detail in Section 5.3, the major improvement compared to the 

research presented in Chapter 4 is that the degradation state of the system is not perfectly 

observable anymore and must be inferred from the available observations. The emission 

probability matrix (𝑄) provides the probabilistic relations between the hidden degradation 

states and the available observations. 

 In this section, we will investigate the performance of the integrated decision-

making policy under various emission probability matrices. It is assumed that there are 

five observation symbols that can be used to infer the actual degradation states which 

makes these matrices 5 by 5, with 𝑞𝑖𝑗 denoting the probability of observing symbol 𝑗 if 

actual state is 𝑖. Matrices 𝑄1 − 𝑄5, shown in Figure 42, are selected in a way that as we 

go from 𝑄1 to 𝑄5, the relation between the observed symbol and the actual degradation 

state becomes more and more deterministic (entropies of the matrices become smaller as 

we go from 𝑄1 to 𝑄5). In 𝑄5 case, the relation is completely deterministic, i.e. given an 

observation symbol, one can identify the actual degradation state with probability 1.   

𝑄1 =

[
 
 
 
 
0.55 0.3 0.15 0 0
0.18 0.55 0.18 0.09 0
0.09 0.18 0.55 0.18 0
0 0.15 0.3 0.55 0
0 0 0 0 1]

 
 
 
 

         𝑄2 =

[
 
 
 
 
0.7 0.2 0.1 0 0
0.13 0.7 0.13 0.04 0
0.04 0.13 0.7 0.13 0
0 0.1 0.2 0.7 0
0 0 0 0 1]

 
 
 
 

      𝑄3 =

[
 
 
 
 
0.85 0.10 0.05 0 0
0.06 0.85 0.06 0.03 0
0.0.3 0.06 0.85 0.06 0

0 0.05 0.10 0.85 0
0 0 0 0 1]

 
 
 
 

  𝑄4 =

[
 
 
 
 
0.95 0.04 0.01 0 0
0.02 0.95 0.02 0.01 0
0.01 0.02 0.95 0.02 0
0 0.01 0.04 0.95 0
0 0 0 0 1]

 
 
 
 

  𝑄5 =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

  

Figure 42. Emission probability matrices used for sensitivity analysis 
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As observed in Figure 43, the integrated decision-making policy outperforms the 

benchmark CBM policies for various emission probability matrices. The p-values 

presented in Table 17 show that the outperformance of the integrated decision-making 

policy over traditional operation-independent CBM policy is statistically significant for 

all cases but 𝑄1. For the operation-dependent CBM policy, it is statistically significant 

for all cases but 𝑄1 and 𝑄2. These findings are consistent with the trend observed in 

Figure 44. As mentioned above, when we go from 𝑄5 to 𝑄1, estimation of the actual 

degradation states from the observed symbols become more and more stochastic, making 

the maintenance decisions more unreliable. Therefore, the benefits of the integrated 

decision-making over the benchmark policies would be low for these more stochastic 

cases. 

As mentioned above, emission probability matrix 𝑄5 represents the case where 

we can determine the actual degradation state with certainty for a given observation 

symbol. This case is identical to the problem addressed in Chapter 4 where the 

degradation states were perfectly observable. It can be observed in Figure 45 that the 

expected profits obtained by the integrated decision-making policy with imperfect 

degradation states using emission probability matrix 𝑄5  are almost the same as the 

expected profits obtained by the integrated decision-making policy with perfect 

degradation-state observations (see Figure 19), which is confirmed by a p-value of 0.756. 
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Figure 43. Comparison of expected profits for different emission probability matrices 

(black lines denote the -/+2σ limits of the simulation outcomes) for the integrated 

decision-making policy, operation-dependent CBM policy and the traditional operation-

independent CBM policy 

 

 

Table 17. p-values for different emission probability matrices 

 Q1 Q2 Q3 Q4 Q5 

Integrated decision-making 
over 

Operation-independent 
0.1138 0.0167 0.0013 0.0011 0.0021 

Integrated decision-making 
over 

Operation-dependent 
0.4132 0.3515 0.0595 0.0159 0.0066 
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Figure 44. Percent improvement obtained by the integrated decision-making policy over 

the benchmark policies for different emission probability matrices 

 

  
Figure 45. Comparison of expected profits obtained by the integrated decision-making 

policy with imperfect observations using emission probability matrix 𝑄5 and with perfect 

observations (black lines denote the -/+2σ limits of the simulation outcomes) 
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5.5.4 Influence of production goals (𝑵𝒘𝒋
) 

 Let us now assess the performance of the newly introduced integrated decision-

making methodology under increasingly demanding production goals18. The expected 

profits for the newly proposed and benchmark decision-making schemes are shown in 

Figure 46 and, once again, the integrated decision-making policy consistently yields 

higher expected profits, when compared to the benchmark policies. The p-values given in 

Table 18 show that integrated decision-making policy outperforms the benchmark 

policies significantly.    

 This can be explained by the fact that as the production goals increase, avoiding 

unscheduled downtime and production penalty costs by preventing the production of 

scrap wafers becomes increasingly influential on the effects of any decision-making 

policy. The integrated decision-making policy jointly optimizes product sequencing and 

operation-specific maintenance triggering states and thus offers more freedom in the 

operational decision-making. For example, for the operations that are executed in the 

completion of the wafers for which we have a higher production goal, the integrated 

decision-making policy can suggest earlier triggering of maintenance, thus reducing the 

number of scrap wafers and increasing the likelihood of reaching that production goal. It 

can also compensate for the consequent increase in the number of preventive 

maintenance events by suggesting later triggering of maintenance events for other 

                                                           
 

18 I.e. as one increases the production goals 𝑁𝑤𝑗
 for each product type in the cost functions (1), (2) and (3). 
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operations. In addition, by changing the product sequence, the integrated decision-

making has the flexibility to assign less sensitive operations to more degraded chambers, 

thus reducing the number of scrap wafers, and potentially postponing the maintenance of 

those machines towards periods of cheaper maintenance. The traditional operation-

independent CBM policy does not have any of these flexibilities and the operation-

dependent CBM policy does not have the flexibility of product sequencing and hence as 

the production goals increase, in order to reduce the number of scrap wafers, the number 

of maintenance events, and hence maintenance costs, increase more dramatically than in 

the case of the integrated decision-making policy.   

 It is therefore logical that as the production goals increase, the relative benefits of 

the integrated decision-making policy over the benchmark CBM policies consistently 

increase, as can be seen in Figure 47.  
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Figure 46. Comparison of expected profits for different production goals (black lines 

denote the  -/+2σ limits of the simulation outcomes) for the integrated decision-making 

policy, operation-dependent CBM policy and the traditional operation-independent CBM 

policy with imperfect state observations 

 

 

Figure 47. Percent improvement over benchmark policies obtained by the integrated 

decision-making policy with imperfect state observations for different production goals 
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Table 18. p-values for different production goals (𝑁𝑤1
, 𝑁𝑤2

, 𝑁𝑤3
) for a system with 

imperfect state observations 

 85,85,85 90,90,90 95,95,95 

Integrated decision-making  
over 

Operation-independent 
0.0013 0.0001 0.0001 

Integrated decision-making  
over 

Operation-dependent 
0.0595 0.0029 0.0011 

 

 

5.5.5 Influence of probabilities that preventive maintenance actions restore the 

perfect condition of the maintained system (MP) 

 As mentioned in the problem description in Section 5.3, we acknowledge in this 

study that imperfect maintenance may happen. In this section, we will evaluate the 

impacts of the effectiveness of maintenance operations on the expected profits yielded by 

different decision-making policies.  

 Various effectiveness levels of PM interventions are tested using different 

Markov transition matrices corresponding to the condition-state recoveries induced by 

PM events. Figure 48 lists the PM-related Markov transition matrices tested in this study. 

Generally speaking, these matrices express the effectiveness of maintenance operations 

via the expected equipment condition after a maintenance event is executed. Matrices 

MP1 – MP5 are selected in such a way that, regardless of the state at which maintenance 

is invoked, as we go from MP1 to MP5, we see increasingly efficient PM interventions, 

with increasing probabilities that PM returns the maintained system to better states 
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(closer to the “as good as new” state). Note that MP5 corresponds to perfect maintenance 

operations that always return the maintained system to the “as good as new” state. 

 

𝑀𝑃1 =

[
 
 
 
 

1 0 0 0 0
1 0 0 0 0

0.20 0.80 0 0 0
0.20 0.60 0.20 0 0
1 0 0 0 0]

 
 
 
 

 𝑀𝑃2 =

[
 
 
 
 

1 0 0 0 0
1 0 0 0 0

0.40 0.60 0 0 0
0.40 0.45 0.15 0 0
1 0 0 0 0]

 
 
 
 

 𝑀𝑃3 =

[
 
 
 
 

1 0 0 0 0
1 0 0 0 0

0.60 0.40 0 0 0
0.60 0.30 0.10 0 0
1 0 0 0 0]

 
 
 
 

  

                               𝑀𝑃4 =

[
 
 
 
 

1 0 0 0 0
1 0 0 0 0

0.80 0.20 0 0 0
0.80 0.15 0.05 0 0
1 0 0 0 0]

 
 
 
 

  𝑀𝑃5 =

[
 
 
 
 
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0]

 
 
 
 

 

Figure 48. Perfect maintenance probabilities used for sensitivity analysis of the integrated 

decision-making policy with imperfect state observations 

 

 The expected profits obtained for various levels of maintenance efficacies are 

shown in Figure 49, while the percent improvements obtained with the integrated 

decision-making policy over the benchmark policies are given in Figure 50. 

 From Figure 49, we can once again observe that for all levels of PM efficacy, the 

integrated decision-making policy results in a higher expected profit, when compared to 

the benchmark policies. In addition, from Figure 50 one can see that the percentual 

improvements obtained by the integrated decision-making policy over the benchmark 

policies first rise and then decrease. This phenomenon can be explained through the 

following reasoning. When the maintenance efficacy is lower, the maintenance triggering 

thresholds are not reliable in either of the benchmark policies or the integrated decision-

making policy and hence the benefits of product sequencing become more pronounced. 
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However, as the maintenance efficacy keeps increasing, the maintenance decisions are 

applied more and more effectively and hence the relative advantage of the integrated 

decision-making policy due to the ability to rearrange the product sequence decreases, 

resulting in the trend we see in Figure 50. It can also be observed from the same figure 

that the percentual improvements of the integrated decision-making policy over the 

operation-independent CBM policy are always higher than the percentual improvements 

over the operation-dependent CBM policy. This is due to the fact that even though the 

integrated decision-making policy’s advantage via the capability of product sequencing 

reduces, it still has an added advantage over the traditional operation-independent CBM 

policy by using operation-dependent maintenance triggering states.     

The p-values calculated through a paired t-test are presented in Table 19. 

Integrated decision-making policy yields significantly better results over operation-

independent CBM policy for all but the lowest maintenance efficacy values. Following 

the trend given in Figure 50, statistical significance of integrated decision-making policy 

over operation-dependent CBM policy decreases as the maintenance efficacy increases. 

 

 

Table 19. p-values for different probabilities of perfect maintenance for a system with 

imperfect state observations 

 MP1 MP2 MP3 MP4 MP5 

Integrated decision-making 
over 

Operation-independent 
0.064 0.0019 0.0013 0.0007 0.0461 

Integrated decision-making 
over 

Operation-dependent 
0.1446 0.0368 0.0595 0.1134 0.1706 
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Figure 49. Comparison of expected profits for different probabilities of perfect 

maintenance (black lines denote the -/+2σ limits of the simulation outcomes) for the 

integrated decision-making policy, operation-dependent CBM policy and the traditional 

operation-independent CBM policy with imperfect state observations 

 

Figure 50. Percent improvement obtained by the integrated decision-making policy over 

the benchmark policies for different probabilities of perfect maintenance for a system 

with imperfect state observations 
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5.6    Conclusions 

In this chapter, an integrated decision-making system for maintenance scheduling 

and product sequencing for a multiple machine/multiple operation manufacturing system 

with imperfect degradation state observations is presented. Very few researchers have 

studied the impacts of the environment on the performance of the target system and none 

have studied the impacts of the target system on the environment. In this study, the 

decisions of which operations to execute on which equipment are based on the inferred 

condition of the equipment and hence the condition of the target system impacts the 

environment. Therefore, to the best of our knowledge, this is the first integrated decision-

making study considering both the impacts of the environment in the target system and 

the impact of the target system on the environment.  

The integrated decision making policy with imperfect state observations presented 

in this chapter was applied on an example of a cluster tool model. It was benchmarked 

against the traditional operation-independent condition based maintenance policy, as well 

as the operation-dependent condition based maintenance policy both of which assumed 

imperfect state observations. The performance of the integrated decision-making policy 

was evaluated under various system parameters such as maintenance probability 

threshold (𝛼), emission probability matrix, production goals and perfect maintenance 

probability. The results show that integrated decision-making policy with imperfect state 

observations outperforms the benchmark policies, in most cases significantly. One 

instance of the sensitivity analysis for emission probability matrices included the case 
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where the relation between the actual degradation states and observation symbols were 

deterministic. It is shown in Section 5.5.3 that this case is identical to the problem 

addressed in Chapter 4, i.e. integrated decision-making for a system with perfect 

degradation state observations.  
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Chapter 6 

Summary and Future Work 

 

 

The research proposed in this dissertation studies the problems of joint decision 

making policy for maintenance scheduling and product sequencing in flexible 

manufacturing systems. The goal is to maximize a customizable profit function with 

respect to operation-dependent degradation models and production target using various 

operation mode dependent degradation and yield models for the manufacturing system.  

In Chapter 3, which is based on a recent publication [7], a new maintenance 

decision-making policy based on operation-dependent degradation models and 

production targets was introduced. The decision-making was done by maximizing a 

customizable reward function, taking into account rewards of production, costs of 

maintenance and penalties for unmet production goals. The newly introduced operation-

dependent decision-making policy was benchmarked against the traditional operation-

independent CBM policy, where the maintenance decisions for the equipment are 

independent of the operations executed in it. The results showed that the operation-

dependent CBM policy consistently outperformed the benchmark policy in terms of 

profit. Through the sensitivity analysis, it was observed that higher reactive maintenance 

costs, unmet production penalty costs, production goals and efficacy of maintenance 
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execution lead to more significant relative benefits of the newly proposed maintenance 

policy over the more traditional operation-independent CBM policy.  

In both the newly introduced operation-dependent CBM policy and the traditional 

operation-independent CBM policy, the sequence in which the products are produced was 

assumed to be a priori given, which is consistent with the traditional, fragmented 

approach to maintenance planning and production scheduling. In order to address the 

problems emanating from this fragmented approach, in Chapter 4, an integrated decision-

making policy for maintenance scheduling and product sequencing was pursued. The 

proposed integrated decision-making policy was benchmarked against operation-

independent CBM policy and the operation-dependent CBM policy presented in Chapter 

3. Through a sensitivity analysis conducted in a simulated environment, the newly 

proposed methodology was shown to outperform the benchmark policies consistently and 

often significantly by providing a higher expected profit.   

In the manufacturing systems studied in Chapters 3 and 4, the degradation states 

of the equipment were assumed to be perfectly observable. However, in some highly 

complex manufacturing environments, the condition of the equipment cannot be directly 

observed and must be probabilistically inferred from the available sensor readings, i.e. 

the degradation states are not perfectly observable. Acknowledging this, in Chapter 5, an 

integrated decision-making policy based on partially observable degradation states was 

presented for a multiple machine/multiple operation FMS. This new decision-making 

policy was benchmarked against the traditional operation-independent CBM policy and 
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the operation-dependent CBM policy, both of which assumed imperfect state 

observations. It was shown through a sensitivity analysis that the newly proposed 

integrated decision-making policy outperformed the benchmark policies consistently 

even with imperfect state observations. One case of the sensitivity analysis on the 

emission probability matrix was the situation where the relation between the actual 

degradation states and observation symbols was deterministic, which is equivalent to 

having perfect state observations. The results from this case was compared to the results 

obtained in Chapter 4, confirming this equivalency and showing that the integrated 

decision-making policy presented in Chapter 5 is a generalization of the policy presented 

in Chapter 4.   

In order to assess the performances of the newly proposed decision-making 

policies presented in this dissertation, a typical semiconductor manufacturing cluster tool 

was simulated. Even though the parameters used in these simulations are believed to be 

representative of the conditions observed in a semiconductor manufacturing fab, an 

avenue for future work would be obtaining real production and yield parameters from 

industrial partners and testing the proposed methodologies on a real manufacturing 

system. Another avenue for future work is to introduce uncertainty to the state transitions 

describing the Markovian models of degradation processes used in Chapters 3 and 4. 

Despite some work focusing on the uncertainty of the transition probability matrices in 

MDPs ([161]–[163]), we are not aware of any previous study on this in the realm of 

integrated maintenance and production operations decision-making.  
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In Chapter 5, the triggering threshold (𝛼) for probabilities of degraded states was 

regarded as a tunable parameter and a sensitivity analysis was conducted for this 

parameter. For future work, we believe that the integrated decision-making policy 

presented in Chapter 5 would greatly benefit from treating 𝛼 as a variable and optimizing 

it to find the maximum profit solution. In addition, the emission probability matrices 

were assumed to be known with certainty. Therefore, another possible extension for the 

work presented in Chapter 5 would be to introduce uncertainty into the emission 

probability matrices of HMMs modeling asset degradation. 

 

6.1    Scientific Contributions 

Each chapter of this doctoral dissertation has certain scientific contributions 

which resulted in past/foreseen publications. This section will focus on an overview of 

the scientific contributions that spanned all chapters. 

Through this entire doctoral research, the interactions between operations and 

maintenance in a multi-product/multi-station FMS have been demonstrated and 

quantified.  

A simulation and metaheuristic based optimization framework was devised which 

enables one to model a manufacturing system as close to reality as possible by allowing 

the flexibility to use different cost functions, dynamic degradation models which are 

operating regime specific, various maintenance cost periods and yield models. To the best 

of our knowledge, this is the first integrated decision-making study in a multiple-station 
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manufacturing system that considers both operation-dependent degradation models and a 

model of the probability of product yield, that is both operation and degradation state 

dependent. The aforementioned framework was used to evaluate sensitivities and gain an 

understanding of how effectiveness of integrated decision-making changes with changing 

parameters. 

A new integrated maintenance and operations decision making system was 

conceived for a FMS with imperfectly observable degradation states. This work is one of 

the first works in POMDP literature to consider the effects of varying environment on 

degradation dynamics of the stations. Also, to the best of our knowledge, it is the first 

work that considers the effects of the condition of the stations on the environment 

affecting it.  

 

6.2    Publications 

The publications already produced or anticipated to be produced based on this 

doctoral research are as follows: 

• Celen, M., Djurdjanovic, D., 2012, “Joint Maintenance and Production 

Operations Decision Making in Flexible Manufacturing Systems," Proceedings of 

the ASME 2012 International Manufacturing Science and Engineering 

Conference, Paper ID. MSEC2012-7258.  
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• Celen, M., Djurdjanovic, D., 2012, “Operation-Dependent Maintenance 

Scheduling in Flexible Manufacturing Systems," CIRP Journal of Manufacturing 

Science and Technology, vol. 5, pp. 296-308.19  

• Cholette, M. E., Celen, M., Djurdjanovic, D., and Rasberry, J. D., 2013, 

“Condition Based Monitoring and Operational Decision Making in 

Semiconductor Manufacturing," IEEE Transactions on Semiconductor 

Manufacturing, vol. 26, no.4, pp. 454-464. 

• Celen, M., Djurdjanovic, D., 2015, “Integrated Maintenance Decision-Making 

and Product Sequencing in Flexible Manufacturing Systems,” ASME Journal of 

Manufacturing Science and Engineering, vol. 137, no. 4, pp. 1–15. 

• Celen, M., Djurdjanovic, D., 2016/2017, “Integrated Maintenance and Operations 

Decision Making with Imperfect Degradation State Observations,” anticipated 

conference/journal paper based on Chapter 5. 

  

                                                           
 

19 Based on Celen, M., Djurdjanovic, D., 2010, “Operation-Dependent Maintenance Scheduling in Flexible Manufacturing 

Systems," 44th CIRP International Conference on Manufacturing Systems. 

Invited by Prof. Neil Duffie, University of Wisconson - Madison 
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Chapter 7 

Literature Review of Methods Relevant to Populating Models 

 

 

The research presented in this dissertation explores various forms of integrated 

decision making policies for maintenance scheduling and product sequencing in FMS, 

with the objective of maximizing a customizable profit function. The performance of 

these proposed methodologies are tested on a simulated model of a cluster tool. There are 

several parameters used in these simulations such as cycle time, rewards of production, 

maintenance time and cost. Such parameters can easily be obtained from historical data in 

any manufacturing system. On the other hand, identification of the yield models and 

operation-specific Markov models used in modeling the degradation process of the 

stations is not straightforward and is out of the scope of this dissertation. However, a 

review on the most recent methods for operation-dependent degradation and yield model 

identifications will be presented in this chapter. 

 

7.1    Review of HMM Estimation 

As mentioned in Chapter 5, in highly complex manufacturing environments, such 

as the cluster tool simulated in this dissertation, the condition of the equipment cannot be 

directly observed and can only be probabilistically inferred from the available sensor 

readings. In addition, the decisions of PM, RM or production decisions are made based 
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on uncertain information making this process a POMDP. HMMs are similar to POMDPs 

in that they have an unobserved underlying state which must be inferred through a series 

of observations. The main difference being that HMMs are used for monitoring processes 

without decision making. Therefore, HMM identification methods can be applied directly 

to learn POMDP parameters  but may require more data for training due to the addition 

of actions [164]. The rest of this section will give a brief overview of HMM identification 

methods and their applications. However, the main focus will be on identification of 

operation-specific HMMs as operation-dependent degradation models are utilized in the 

work presented in this dissertation. 

In his tutorial paper [165], Rabiner mentioned that three basic problems must be 

solved for an HMM model to be useful in real-world applications: 

Problem 1 (Evaluation) is the determination of the probability of an observation 

sequence given an HMM. It is common in classification type tasks and Forward 

Backward Procedure [165]–[167] can be used to solve Problem 1. 

Problem 2 (Decoding) is the determination of the hidden state sequence given an 

observation sequence and a HMM. The difficulty of this problem lies with the definition 

of the optimal state sequence [165] as there are several possible optimality criteria. One 

possible optimality criterion is to choose the hidden states which are individually most 

likely. Another optimality criterion is to choose the most likely hidden state sequence. 

Viterbi Algorithm [168] can be employed to find this most likely state sequence.   
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Problem 3 (Learning) is the determination of the HMM parameters that 

maximize the probability of the sequence of observations and is by far the most difficult 

problem. The well-known Baum-Welch algorithm ([165], [169]) is commonly used to 

solve this problem. However, Baum-Welch algorithm (BW) and other gradient based 

search methods can be trapped in local optima and hence metaheuristics methods have 

been utilized to overcome this drawback of BW ([142], [170]–[172]). 

HMMs have found their way into various application areas such as speech 

recognition ([165], [173], [174]), signature forgery prevention [175], protein structure 

profiling [176] and equipment condition monitoring ([177]–[183]). 

As aforementioned, operation-dependent degradation models have been employed 

throughout the work presented in this dissertation. However, despite the wide application 

of HMMs in equipment condition monitoring, identification of operation-specific HMMs 

have been addressed only recently. In [142], Cholette and Djurdjanovic present a novel 

data-driven approach for monitoring systems operating under variable conditions. Their 

method is based on characterizing the degradation process as operation-specific HMMs, 

where the hidden states represent the unobservable degradation states. The evaluation and 

decoding problems are solved by using the Forward Procedure and Viterbi Algorithm but 

with modified definitions of forward and backward variables to account for different 

operating regimes. For the learning problem, a modified Baum-Welch procedure is 

presented in detail. In order to avoid the local optima in the presence of operation-

specific HMMs, the authors develop a GA-based identification method. Each candidate 
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solution in the population was improved by using the modified Baum-Welch procedure 

and their fitness was determined, where the fitness of any candidate solution was defined 

as the likelihood of the observation sequence. The solutions with the highest fitness 

values were then used to generate the next population of candidate solutions. In [184], 

Cholette also used Tabu Search for local optima avoidance. 

  Zhang et al. [143] stated not only gradient based search algorithms such as 

Baum-Welch do not guarantee global optimality, but they also do not readily provide the 

information on model uncertainty (how close or how far the actual solution is from the 

maximum likelihood estimate). In addition, model uncertainties accumulate as one 

attempts to predict probabilities of degradation states further and further ahead and hence 

could cause the predictions to become useless. In order to address these problems, they 

proposed a Bayesian estimation scheme for identification of operating regime specific 

HMM parameters. The capabilities of the proposed Bayesian estimation procedure to 

identify HMM parameters and the associated parametric uncertainties were first 

demonstrated via simulations, then on a vast dataset obtained from a PECVD tool 

operating in a major semiconductor fab.  

 

7.2   Review of Yield Estimation 

In semiconductor manufacturing fabs, development of in-situ particle monitors 

has made it possible to assess the level of contamination while the equipment is in use 

[185]. The use of such monitors also enabled the association of the wafer yields with the 
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current condition of the equipment and hence improved maintenance decisions and 

process control [186]. However, most of the research in this area did not address the 

impact of yield in product dispatching decisions. Sloan and Shanthikumar [136] was the 

first study to consider product dispatching in a single-stage system where the product 

yield was directly linked to the equipment condition. Later Sloan and Shanthikumar [138] 

extended the work presented in [136] by considering a multi-stage system.  

In both [136] and [138], the product yield decreases as the equipment condition 

worsens. The expected yield values were generated from a beta distribution and sorted. In 

the work presented in this dissertation, the product yield is operation dependent and 

decreases with increasing equipment degradation, which is in line with the assumptions 

in Sloan and Shanthikumar’s studies. Therefore, the expected yield values used in the 

simulations in this work were taken from [138].    
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Appendix 

A.1. Maintenance triggering states for the baseline example in Chapter 3 

 

 
 OPERATION-INDEPENDENT CBM 

(Baseline) 
    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 3 3 5 5 4 

Op2 3 3 5 3 5 

Op3 5 3 3 5 5 

Op4 3 3 3 5 5 

Op5 3 5 3 5 4 

Op6 3 3 5 5 4 

Op7 3 5 3 5 4 

Op8 3 3 5 3 5 

Op9 3 3 3 5 5 

Op10 5 3 3 5 5 

Op11 5 5 3 5 4 

Op12 5 5 5 3 4 

Op13 5 5 5 3 5 

 

 

 OPERATION-DEPENDENT CBM 

(Baseline) 

 Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 3 3 5 5 4 

Op2 3 3 5 3 5 

Op3 5 2 3 5 5 

Op4 3 3 2 5 5 

Op5 4 5 2 5 4 

Op6 3 4 5 5 3 

Op7 3 5 3 5 4 

Op8 3 3 5 3 5 

Op9 3 4 4 5 5 

Op10 5 5 3 5 5 

Op11 5 5 4 5 3 

Op12 5 5 5 3 3 

Op13 5 5 5 3 5 
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A.2. Maintenance triggering states for the increasing reactive maintenance costs (𝐜𝐫) in Chapter 3 

 OPERATION-INDEPENDENT 

CBM 

(𝒄𝒓 = 𝟏𝟎𝟎 ) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 5 3 5 5 3 

Op2 5 3 5 3 5 

Op3 5 3 3 5 5 

Op4 5 3 3 5 5 

Op5 5 5 3 5 3 

Op6 5 3 5 5 3 

Op7 5 5 3 5 3 

Op8 5 3 5 3 5 

Op9 5 3 3 5 5 

Op10 5 3 3 5 5 

Op11 5 5 3 5 3 

Op12 5 5 5 3 3 

Op13 5 5 5 3 5 

 

 OPERATION-DEPENDENT 

CBM 

(𝒄𝒓 = 𝟏𝟎𝟎 ) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 5 3 5 5 2 

Op2 3 3 5 5 5 

Op3 5 3 3 5 5 

Op4 5 3 2 5 5 

Op5 5 5 2 5 3 

Op6 5 3 5 5 3 

Op7 5 5 3 5 3 

Op8 5 3 5 5 5 

Op9 5 4 5 5 5 

Op10 5 3 3 5 5 

Op11 5 5 5 5 4 

Op12 5 5 5 4 4 

Op13 5 5 5 3 5 

 

 

 
 

OPERATION-INDEPENDENT 

CBM 

(𝒄𝒓 = 𝟒𝟓𝟎 ) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 4 3 5 5 3 

Op2 4 3 5 3 5 

Op3 5 3 2 5 5 

Op4 4 3 2 5 5 

Op5 4 5 2 5 3 

Op6 4 3 5 5 3 

Op7 4 5 2 5 3 

Op8 4 3 5 3 5 

Op9 4 3 2 5 5 

Op10 5 3 2 5 5 

Op11 5 5 2 5 3 

Op12 5 5 5 3 3 

Op13 5 5 5 3 5 

 

 OPERATION-DEPENDENT 

CBM 

(𝒄𝒓 = 𝟒𝟓𝟎 ) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 2 2 5 5 2 

Op2 4 3 5 5 5 

Op3 5 3 2 5 5 

Op4 5 3 3 5 5 

Op5 3 5 2 5 3 

Op6 3 3 5 5 5 

Op7 4 5 3 5 3 

Op8 4 5 5 5 5 

Op9 4 4 2 5 5 

Op10 5 3 5 5 5 

Op11 5 5 2 5 3 

Op12 5 5 5 3 3 

Op13 5 5 5 2 5 

 

 

 OPERATION-INDEPENDENT 

CBM 

(𝒄𝒓 = 𝟔𝟓𝟎 ) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 3 3 5 5 4 

Op2 3 3 5 3 5 

Op3 5 3 2 5 5 

Op4 3 3 2 5 5 

Op5 3 5 2 5 4 

Op6 3 3 5 5 4 

Op7 3 5 2 5 4 

Op8 3 3 5 3 5 

Op9 3 3 2 5 5 

Op10 5 3 2 5 5 

Op11 5 5 2 5 4 

Op12 5 5 5 3 4 

Op13 5 5 5 3 5 

 

 OPERATION-DEPENDENT 

CBM 

(𝒄𝒓 = 𝟔𝟓𝟎 ) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 2 3 5 5 4 

Op2 4 3 5 3 5 

Op3 5 3 2 5 5 

Op4 3 3 2 5 5 

Op5 3 5 2 5 3 

Op6 3 3 5 5 4 

Op7 3 5 2 5 5 

Op8 3 3 5 3 5 

Op9 4 3 2 5 5 

Op10 5 4 2 5 5 

Op11 5 5 2 5 3 

Op12 5 5 5 3 4 

Op13 5 5 5 3 5 

 

 

 OPERATION-INDEPENDENT 

CBM 

(𝒄𝒓 = 𝟖𝟓𝟎 ) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 2 3 5 5 4 

Op2 2 3 5 3 5 

Op3 5 3 2 5 5 

Op4 2 3 2 5 5 

Op5 2 5 2 5 4 

Op6 2 3 5 5 4 

Op7 2 5 2 5 4 

Op8 2 3 5 3 5 

Op9 2 3 2 5 5 

Op10 5 3 2 5 5 

Op11 5 5 2 5 4 

Op12 5 5 5 3 4 

Op13 5 5 5 3 5 

 

 OPERATION-DEPENDENT 

CBM 

(𝒄𝒓 = 𝟖𝟓𝟎 ) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 2 3 5 5 4 

Op2 2 3 5 3 5 

Op3 5 3 2 5 5 

Op4 3 3 2 5 5 

Op5 2 5 2 5 4 

Op6 2 3 5 5 4 

Op7 2 5 2 5 4 

Op8 2 3 5 3 5 

Op9 2 3 2 5 5 

Op10 5 3 2 5 5 

Op11 5 5 2 5 4 

Op12 5 5 5 3 4 

Op13 5 5 5 3 5 
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A.3. Maintenance triggering states for the increasing penalty costs (𝐩𝐰𝐣
) in Chapter 3 

 

 OPERATION-INDEPENDENT CBM 

(𝒑𝒘𝟏
= 𝟏𝟎,  𝒑𝒘𝟐

= 𝟓, 𝒑𝒘𝟑
= 𝟐) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 3 3 5 5 3 

Op2 3 3 5 3 5 

Op3 5 3 2 5 5 

Op4 3 3 2 5 5 

Op5 3 5 2 5 3 

Op6 3 3 5 5 3 

Op7 3 5 2 5 3 

Op8 3 3 5 3 5 

Op9 3 3 2 5 5 

Op10 5 3 2 5 5 

Op11 5 5 2 5 3 

Op12 5 5 5 3 3 

Op13 5 5 5 3 5 

 

 

 
OPERATION-DEPENDENT CBM 

(𝒑𝒘𝟏
= 𝟏𝟎,  𝒑𝒘𝟐

= 𝟓, 𝒑𝒘𝟑
= 𝟐) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 3 3 5 5 2 

Op2 4 4 5 3 5 

Op3 5 2 2 5 5 

Op4 3 3 3 5 5 

Op5 4 5 2 5 3 

Op6 3 4 5 5 3 

Op7 2 5 2 5 2 

Op8 3 3 5 3 5 

Op9 4 4 5 5 5 

Op10 5 4 5 5 5 

Op11 5 5 4 5 3 

Op12 5 5 5 3 3 

Op13 5 5 5 3 5 

 

       OPERATION-INDEPENDENT CBM 

(𝒑𝒘𝟏
= 𝟑𝟎,  𝒑𝒘𝟐

= 𝟏𝟓, 𝒑𝒘𝟑
= 𝟔) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 3 3 5 5 3 

Op2 3 3 5 3 5 

Op3 5 3 3 5 5 

Op4 3 3 3 5 5 

Op5 3 5 3 5 3 

Op6 3 3 5 5 3 

Op7 3 5 3 5 3 

Op8 3 3 5 3 5 

Op9 3 3 3 5 5 

Op10 5 3 3 5 5 

Op11 5 5 3 5 3 

Op12 5 5 5 3 3 

Op13 5 5 5 3 5 

 

 OPERATION-DEPENDENT CBM 

(𝒑𝒘𝟏
= 𝟑𝟎,  𝒑𝒘𝟐

= 𝟏𝟓, 𝒑𝒘𝟑
= 𝟔) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 3 3 5 5 3 

Op2 3 3 5 3 5 

Op3 5 3 3 5 5 

Op4 3 3 3 5 5 

Op5 3 5 3 5 3 

Op6 3 3 5 5 3 

Op7 3 5 2 5 3 

Op8 3 3 5 3 5 

Op9 3 3 3 5 5 

Op10 5 3 3 5 5 

Op11 5 5 3 5 3 

Op12 5 5 5 3 3 

Op13 5 5 5 3 5 

 

 OPERATION-INDEPENDENT CBM 

(𝒑𝒘𝟏
= 𝟒𝟎,  𝒑𝒘𝟐

= 𝟐𝟎, 𝒑𝒘𝟑
= 𝟖) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 5 3 5 5 3 

Op2 5 3 5 3 5 

Op3 5 3 3 5 5 

Op4 5 3 3 5 5 

Op5 5 5 3 5 3 

Op6 5 3 5 5 3 

Op7 5 5 3 5 3 

Op8 5 3 5 3 5 

Op9 5 3 3 5 5 

Op10 5 3 3 5 5 

Op11 5 5 3 5 3 

Op12 5 5 5 3 3 

Op13 5 5 5 3 5 

 

 OPERATION-DEPENDENT CBM 

(𝒑𝒘𝟏
= 𝟒𝟎,  𝒑𝒘𝟐

= 𝟐𝟎, 𝒑𝒘𝟑
= 𝟖) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 5 3 5 5 3 

Op2 5 3 5 3 5 

Op3 5 3 3 5 5 

Op4 5 3 3 5 5 

Op5 5 5 3 5 3 

Op6 5 3 5 5 3 

Op7 5 5 3 5 3 

Op8 5 3 5 3 5 

Op9 2 3 3 5 5 

Op10 5 3 3 5 5 

Op11 5 5 3 5 3 

Op12 5 5 5 3 3 

Op13 5 5 5 3 5 
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A.4. Maintenance triggering states for increasing production goals (𝐍𝐰𝐣
) in Chapter 3 

 

 OPERATION-INDEPENDENT CBM 

(𝑵𝒘𝟏
= 𝟖𝟓,  𝑵𝒘𝟐

= 𝟖𝟓, 𝑵𝒘𝟑
= 𝟖𝟓) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 3 3 5 5 3 

Op2 3 3 5 3 5 

Op3 5 3 3 5 5 

Op4 3 3 3 5 5 

Op5 3 5 3 5 3 

Op6 3 3 5 5 3 

Op7 3 5 3 5 3 

Op8 3 3 5 3 5 

Op9 3 3 3 5 5 

Op10 5 3 3 5 5 

Op11 5 5 3 5 3 

Op12 5 5 5 3 3 

Op13 5 5 5 3 5 

 

 OPERATION-DEPENDENT CBM 

(𝑵𝒘𝟏
= 𝟖𝟓,  𝑵𝒘𝟐

= 𝟖𝟓, 𝑵𝒘𝟑
= 𝟖𝟓) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 2 3 5 5 3 

Op2 3 3 5 3 5 

Op3 5 3 3 5 5 

Op4 3 3 3 5 5 

Op5 3 5 2 5 3 

Op6 3 5 5 5 3 

Op7 3 5 3 5 3 

Op8 3 3 5 3 5 

Op9 4 2 3 5 5 

Op10 5 3 3 5 5 

Op11 5 5 3 5 3 

Op12 5 5 5 3 3 

Op13 5 5 5 3 5 

 

 OPERATION-INDEPENDENT CBM 

(𝑵𝒘𝟏
= 𝟗𝟎,  𝑵𝒘𝟐

= 𝟗𝟎, 𝑵𝒘𝟑
= 𝟗𝟎) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 3 3 5 5 5 

Op2 3 3 5 3 5 

Op3 5 3 2 5 5 

Op4 3 3 2 5 5 

Op5 3 5 2 5 5 

Op6 3 3 5 5 5 

Op7 3 5 2 5 5 

Op8 3 3 5 3 5 

Op9 3 3 2 5 5 

Op10 5 3 2 5 5 

Op11 5 5 2 5 5 

Op12 5 5 5 3 5 

Op13 5 5 5 3 5 

 

 OPERATION-DEPENDENT CBM 

(𝑵𝒘𝟏
= 𝟗𝟎,  𝑵𝒘𝟐

= 𝟗𝟎, 𝑵𝒘𝟑
= 𝟗𝟎) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 3 4 5 5 2 

Op2 3 3 5 3 5 

Op3 5 3 2 5 5 

Op4 3 3 2 5 5 

Op5 5 5 2 5 2 

Op6 3 3 5 5 5 

Op7 3 5 2 5 3 

Op8 3 3 5 4 5 

Op9 3 3 2 5 5 

Op10 5 3 2 5 5 

Op11 5 5 2 5 5 

Op12 5 5 5 3 5 

Op13 5 5 5 3 5 

 

 OPERATION-INDEPENDENT CBM 

(𝑵𝒘𝟏
= 𝟗𝟓,  𝑵𝒘𝟐

= 𝟗𝟓, 𝑵𝒘𝟑
= 𝟗𝟓) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 5 3 5 5 2 

Op2 5 3 5 3 5 

Op3 5 3 2 5 5 

Op4 5 3 2 5 5 

Op5 5 5 2 5 2 

Op6 5 3 5 5 2 

Op7 5 5 2 5 2 

Op8 5 3 5 3 5 

Op9 5 3 2 5 5 

Op10 5 3 2 5 5 

Op11 5 5 2 5 2 

Op12 5 5 5 3 2 

Op13 5 5 5 3 5 

 

 OPERATION-DEPENDENT CBM 

(𝑵𝒘𝟏
= 𝟗𝟓,  𝑵𝒘𝟐

= 𝟗𝟓, 𝑵𝒘𝟑
= 𝟗𝟓) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 2 3 5 5 3 

Op2 5 3 5 5 5 

Op3 5 3 2 5 5 

Op4 3 3 2 5 5 

Op5 5 5 2 5 2 

Op6 5 3 5 5 3 

Op7 4 5 2 5 2 

Op8 5 3 5 3 5 

Op9 5 5 2 5 5 

Op10 5 4 4 5 5 

Op11 5 5 4 5 3 

Op12 5 5 5 3 4 

Op13 5 5 5 3 5 
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A.5. Maintenance triggering states for the increasing perfect maintenance probabilities (MP) in Chapter 3 

 

 OPERATION-INDEPENDENT 

CBM 

(𝑴𝑷𝟏) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 4 2 5 5 3 

Op2 4 2 5 2 5 

Op3 5 2 2 5 5 

Op4 4 2 2 5 5 

Op5 4 5 2 5 3 

Op6 4 2 5 5 3 

Op7 4 5 2 5 3 

Op8 4 2 5 2 5 

Op9 4 2 2 5 5 

Op10 5 2 2 5 5 

Op11 5 5 2 5 3 

Op12 5 5 5 2 3 

Op13 5 5 5 2 5 

 

 OPERATION-DEPENDENT 

CBM 

(𝑴𝑷𝟏) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 4 2 5 5 3 

Op2 4 4 5 5 5 

Op3 5 3 2 5 5 

Op4 4 2 2 5 5 

Op5 4 5 2 5 3 

Op6 2 3 5 5 3 

Op7 2 5 2 5 3 

Op8 4 2 5 4 5 

Op9 5 5 3 5 5 

Op10 5 3 2 5 5 

Op11 5 5 2 5 3 

Op12 5 5 5 2 3 

Op13 5 5 5 2 5 

 

 OPERATION-INDEPENDENT 

CBM 

(𝑴𝑷𝟐) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 5 3 5 5 2 

Op2 5 3 5 3 5 

Op3 5 3 2 5 5 

Op4 5 3 2 5 5 

Op5 5 5 2 5 2 

Op6 5 3 5 5 2 

Op7 5 5 2 5 2 

Op8 5 3 5 3 5 

Op9 5 3 2 5 5 

Op10 5 3 2 5 5 

Op11 5 5 2 5 2 

Op12 5 5 5 3 2 

Op13 5 5 5 3 5 

 

 OPERATION-DEPENDENT 

CBM 

(𝑴𝑷𝟐) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 5 3 5 5 2 

Op2 4 3 5 3 5 

Op3 5 3 2 5 5 

Op4 5 3 2 5 5 

Op5 5 5 2 5 2 

Op6 5 3 5 5 2 

Op7 5 5 2 5 2 

Op8 5 3 5 3 5 

Op9 5 3 2 5 5 

Op10 5 3 2 5 5 

Op11 5 5 2 5 2 

Op12 5 5 5 3 2 

Op13 5 5 5 3 5 

 

 OPERATION-INDEPENDENT 

CBM 

(𝑴𝑷𝟒) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 3 3 5 5 3 

Op2 3 3 5 3 5 

Op3 5 3 3 5 5 

Op4 3 3 3 5 5 

Op5 3 5 3 5 3 

Op6 3 3 5 5 3 

Op7 3 5 3 5 3 

Op8 3 3 5 3 5 

Op9 3 3 3 5 5 

Op10 5 3 3 5 5 

Op11 5 5 3 5 3 

Op12 5 5 5 3 3 

Op13 5 5 5 3 5 

 

 OPERATION-DEPENDENT 

CBM 

(𝑴𝑷𝟒) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 3 3 5 5 3 

Op2 3 3 5 5 5 

Op3 5 3 3 5 5 

Op4 3 3 4 5 5 

Op5 5 5 3 5 2 

Op6 3 5 5 5 3 

Op7 3 5 3 5 3 

Op8 3 3 5 3 5 

Op9 3 3 3 5 5 

Op10 5 5 3 5 5 

Op11 5 5 4 5 3 

Op12 5 5 5 3 3 

Op13 5 5 5 3 5 

 

 OPERATION-INDEPENDENT 

CBM 

(𝑴𝑷𝟓) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 3 3 5 5 3 

Op2 3 3 5 3 5 

Op3 5 3 3 5 5 

Op4 3 3 3 5 5 

Op5 3 5 3 5 3 

Op6 3 3 5 5 3 

Op7 3 5 3 5 3 

Op8 3 3 5 3 5 

Op9 3 3 3 5 5 

Op10 5 3 3 5 5 

Op11 5 5 3 5 3 

Op12 5 5 5 3 3 

Op13 5 5 5 3 5 

 

 OPERATION-DEPENDENT 

CBM 

(𝑴𝑷𝟓) 

    Ch1 Ch2 Ch3 Ch4 Ch5 

Op1 3 3 5 5 3 

Op2 3 3 5 3 5 

Op3 5 3 3 5 5 

Op4 3 3 3 5 5 

Op5 3 5 3 5 3 

Op6 5 3 5 5 3 

Op7 3 5 3 5 3 

Op8 3 3 5 3 5 

Op9 3 3 3 5 5 

Op10 5 3 3 5 5 

Op11 5 5 3 5 3 

Op12 5 5 5 3 3 

Op13 5 5 5 3 5 
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