
Copyright

by

Xiaohu Shen

2014



The Dissertation Committee for Xiaohu Shen
certifies that this is the approved version of the following dissertation:

Bayesian Inference Methods for Next Generation DNA

Sequencing

Committee:

Haris Vikalo, Supervisor

Gustavo de Veciana

Sriram Vishwanath

Sujay Sanghavi

Pradeep Ravikumar



Bayesian Inference Methods for Next Generation DNA

Sequencing

by

Xiaohu Shen, B.E., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2014



Dedicated to my family.



Acknowledgments

During my last several years as a graduate student at the University

of Texas at Austin, I am very lucky to work and live with a number of great

people. Without the support and help from them, this dissertation would not

be possible.

I am extremely thankful to my advisor, Prof. Haris Vikalo, who has

influenced and helped me throughout every aspect of my research. Dr. Vikalo

is a great advisor and mentor. He taught me how to do research from the

beginning. His deep insight and experience in biomedical signal processing

and algorithms inspired the ideas of the research presented in this dissertation.

None of these work can be completed without his advice on the methodologies

and enormous revisions to my writing. His great patience and vision always

encourage me to pursuit the best in research and future career.

I would like to thank my committee members: Prof. Gustavo de Ve-

ciana, Prof. Sriram Vishwanath, Prof. Sujay Sanghavi and Prof. Pradeep

Ravikumar, for their time and valuable advice. A lot of the methodologies

used in my research are inspired by the courses they offered at UT Austin.

In my PhD life, I greatly enjoyed the collaborations with my labmates:

Manohar Shamaiah, Shreepriya Das, Somsubhra Barik, Soyeon Ahn and Na-

talia Arzeno-Gonzales. I am also very glad to have best friends around. Thanks

v



to all of you: Aibo Tian, Fei Zhou, Chun Wang, Ping Xia, Yuhuan Du, Zheng

Lu, Ye Chen, Hailong Xiao, Hongbo Si, Lei Guo and Kai Yang.

Lastly but most importantly, I thank my parents and my sister, for

their constant support and encouragement throughout my life.

vi



Bayesian Inference Methods for Next Generation DNA

Sequencing

Publication No.

Xiaohu Shen, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Haris Vikalo

Recently developed next-generation sequencing systems are capable of

rapid and cost-effective DNA sequencing, thus enabling routine sequencing

tasks and taking us one step closer to personalized medicine. To provide a

blueprint of a target genome, next-generation sequencing systems typically

employ the so called shotgun sequencing strategy and oversample the genome

with a library of relatively short overlapping reads. The order of nucleotides in

the short reads is determined by processing acquired noisy signals generated

by the sequencing platforms, and the overlaps between the reads are exploited

to assemble the target long genome. Next-generation sequencing utilizes mas-

sively parallel array-based technology to speed up the sequencing and reduce

the cost. However, accuracy and lengths of the short reads are yet to sur-

pass those provided by the conventional slower and costlier Sanger sequencing

method.

vii



In this thesis, we first focus on Illumina’s sequencing-by-synthesis plat-

form which relies on reversible terminator chemistry and describe the acquired

signal by a Hidden Markov Model. Relying on this model and sequential

Monte Carlo methods, we develop a parameter estimation and base calling

scheme called ParticleCall. ParticleCall is tested on an experimental data

set obtained by sequencing phiX174 bacteriophage using Illumina’s Genome

Analyzer II. The results show that ParticleCall scheme is significantly more

computationally efficient than the best performing unsupervised base calling

method currently available, while achieving the same accuracy.

Having addressed the problem of base calling of short reads, we turn

our attention to genome assembly. Assembly of a genome from acquired short

reads is a computationally daunting task even in the scenario where a reference

genome exists. Errors and gaps in the reference, and perfect repeat regions in

the target, further render the assembly challenging and cause inaccuracies. We

formulate reference-guided assembly as the inference problem on a bipartite

graph and solve it using a message-passing algorithm. The proposed algorithm

can be interpreted as the classical belief propagation scheme under a certain

prior. Unlike existing state-of-the-art methods, the proposed algorithm com-

bines the information provided by the reads without needing to know reliability

of the short reads (so-called quality scores). Relation of the message-passing

algorithm to a provably convergent power iteration scheme is discussed. Re-

sults on both simulated and experimental data demonstrate that the proposed

message-passing algorithm outperforms commonly used state-of-the-art tools,

viii



and it nearly achieves the performance of a genie-aided maximum a posteriori

(MAP) scheme.

We then consider the reference-free genome assembly problem, i.e., the

de novo assembly. Various methods for de novo assembly have been proposed

in literature, all of whom are very sensitive to errors in short reads. We develop

a novel error-correction method that enables performance improvements of de

novo assembly. The new method relies on a suffix array structure built on

the short reads data. It incorporates a hypothesis testing procedure utilizing

the sum of quality information as the test statistic to improve the accuracy of

overlap detection.

Finally, we consider an inference problem in gene regulatory networks.

Gene regulatory networks are highly complex dynamical systems comprising

biomolecular components which interact with each other and through those

interactions determine gene expression levels, i.e., determine the rate of gene

transcription. In this thesis, a particle filter with Markov Chain Monte Carlo

move step is employed for the estimation of reaction rate constants in gene reg-

ulatory networks modeled by chemical Langevin equations. Simulation studies

demonstrate that the proposed technique outperforms previously considered

methods while being computationally more efficient. Dynamic behavior of gene

regulatory networks averaged over a large number of cells can be modeled by

ordinary differential equations. For this scenario, we compute an approxima-

tion to the Cramer-Rao lower bound on the mean-square error of estimating

reaction rates and demonstrate that, when the number of unknown parameters

ix



is small, the proposed particle filter can be nearly optimal.

In summary, this thesis presents a set of Bayesian inference methods

for base-calling and sequence assembly in next-generation DNA sequencing.

Experimental studies shows the advantage of proposed algorithms over tradi-

tional methods.

x



Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2. A particle filtering base-calling method for next-
generation sequencing 6

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Hidden Markov Model of DNA base-calling . . . . . . . . . . . 12

2.5 ParticleCall base-calling algorithm . . . . . . . . . . . . . . . . 15

2.6 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 Assumptions on parameters . . . . . . . . . . . . . . . . 20

2.6.2 Particle filter EM algorithm . . . . . . . . . . . . . . . . 21

2.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7.1 Performance of ParticleCall . . . . . . . . . . . . . . . . 23

2.7.2 Performance comparison of different algorithms . . . . . 24

2.7.3 Quality scores . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.4 Effects of improved base-calling accuracy on de novo se-
quence assembly . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xi



Chapter 3. Iterative Learning for Reference-Guided DNA Se-
quence Assembly 33

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Graphical Model and the Message-Passing Assembly Algorithm 36

3.4 Relation to standard belief propagation . . . . . . . . . . . . . 42

3.5 Binary representation, message passing, and power iteration al-
gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Benchmarking performance of the proposed assembly scheme . 50

3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7.1 Simulation data . . . . . . . . . . . . . . . . . . . . . . 52

3.7.2 Experimental data . . . . . . . . . . . . . . . . . . . . . 56

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 4. Error correction in de novo sequence assembly using
quality information 61

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Suffix arrays and its application to sequencing data . . . . . . 62

4.3 Optimization of the parameters using quality scores . . . . . . 65

4.3.1 Calculate optimal threshold . . . . . . . . . . . . . . . . 65

4.3.2 Choice of optimal support length . . . . . . . . . . . . . 68

4.4 Error correction algorithm based on a hypothesis testing scheme 70

4.4.1 A hypothesis testing scheme to improve the accuracy of
support detection . . . . . . . . . . . . . . . . . . . . . 70

4.4.2 Error correction algorithm . . . . . . . . . . . . . . . . . 71

4.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1 Parameter calculation . . . . . . . . . . . . . . . . . . . 73

4.5.2 Error correction accuracy . . . . . . . . . . . . . . . . . 74

4.6 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . 75

Chapter 5. Inferring Parameters of Gene Regulatory Networks
via Particle Filtering 76

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xii



5.3 Models Based on Chemical Master and Chemical Langevin E-
quations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Particle Filter with Markov Chain Monte Carlo move step . . 83

5.4.1 Computational study of a viral infection network . . . . 88

5.4.2 Computational Study of Procaryotic Regulation . . . . . 90

5.5 A Deterministic Model of Gene Regulatory Networks . . . . . 92

5.5.1 Cramer-Rao lower bound on the mean-square error of es-
timating reaction rates . . . . . . . . . . . . . . . . . . . 94

5.5.2 Computational study of a viral infection network . . . . 97

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 6. Summary and conclusions 100

6.1 Summary of main results . . . . . . . . . . . . . . . . . . . . . 100

6.2 Discussion and future directions . . . . . . . . . . . . . . . . . 102

Index 104

Bibliography 105

xiii



List of Tables

2.1 Comparison of ParticleCall with different Np . . . . . . . . . . 25

2.2 ParticleCall parameter estimation with different w . . . . . . . 25

2.3 Comparison of error rates and speed . . . . . . . . . . . . . . 25

2.4 de novo assembly results . . . . . . . . . . . . . . . . . . . . . 32

3.1 Performance of the message passing algorithm (MP), binary
message passing algorithm (BMP), SAMtools and GATK on E.
coli and N. Meningitidis sequencing data with various coverages.
The average number of decision errors and the corresponding
standard deviation are computed over 30 runs. . . . . . . . . . 58

4.1 Accuracy of different error correction algorithms. . . . . . . . 74

5.1 True and estimated parameters for the two algorithms. Alg.2(1)
employs 2 × 105 MCMC iterations and Alg.2(2) employs 106

iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xiv



List of Figures

2.1 A hidden Markov model of the generated signal in Illumina
sequencing-by-synthesis platforms. . . . . . . . . . . . . . . . . 14

2.2 Per-cycle error rates of ParticleCall, BayesCall, naiveBayesCal-
l, Rolexa and Bustard. . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Standard deviation of error rates of ParticleCall, BayesCall,
naiveBayesCall, Rolexa and Bustard. . . . . . . . . . . . . . . 28

2.4 Discrimination ability D(ϵ) of quality scores vs error tolerance. 30

3.1 Illustration of the reference-guided DNA sequence assembly prob-
lem using short reads. Nodes bi represent bases in the target
DNA sequence and rj represent reads. Each read node is con-
nected to l base nodes, where l denotes the read length. . . . . 38

3.2 Error rates performance of the iterative learning schemes (mes-
sage passing, binary message passing, and power iterations)
compared with the plurality voting and genie-aided MAP schemes.
The error rates of iterative learning schemes and plurality vot-
ing are averaged over 20 experiments. Note that, as seen in the
figure, power iteration and binary message passing have almost
identical performance. . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Average error rates in E. Coli data set. . . . . . . . . . . . . . 68

4.2 Probability density functions of test statistic S. . . . . . . . . . 74

5.1 An illustration of a possible segment of a regulatory pathway. . 77

5.2 The mean-square-error performance comparison between Alg.1
(particle filter) and Alg.2 (MCMC) as a function of the variance
of the observation noise σ2 (Ns = 2 × 104, m = 15, N = 40,
Σ = σ2I). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 The mean and standard error of the particle filter estimator
for the inference of reaction rates in a viral infection network,
shown as a function of the variance of the observation noise (the
number of particles used is Ns = 104, performance is averaged
over 150 simulation runs). . . . . . . . . . . . . . . . . . . . . 93

xv



5.4 The CRLB and the average mean-square error of the particle
filtering algorithm (the number of particles Ns = 104, noise
covariance matrix Σ = I). . . . . . . . . . . . . . . . . . . . . 96

xvi



Chapter 1

Introduction

The advancements of next-generation sequencing technologies have en-

abled inexpensive and rapid generation of vast amounts of sequencing data

[1–3]. At the same time, high-throughput sequencing technologies present us

with the challenge of processing and analyzing large data sets that they pro-

vide. Development of these analysis methods can improve the efficiency and

accuracy of next-generation sequencing, enable routine sequencing tasks and

take us one step closer to personalized medicine.

A fundamental computational challenge encountered in next-generation

sequencing systems is the one of determining the order of nucleotides from the

acquired measurements, the task typically referred to as base calling. The

accuracy of base calling is of essential importance for various downstream

applications including sequence assembly, SNP calling, and genotype calling

[4]. Moreover, improving base calling accuracy may enable achieving desired

performance of downstream applications with smaller sequencing coverage,

which translates to a reduction in the sequencing cost.

In re-sequencing tasks, short reads data obtained from base-calling is

used to assemble the target genome with the goal of, e.g., studying genet-

1



ic variations. Assembly of a genome from short reads is a computationally

challenging task even in the scenario where a reference genome exists. Errors

and gaps in the reference, and perfect repeat regions in the target, render tar-

get assembly difficult. When reconstructing the target DNA sequence using

short-reads and a reference, the short reads are first mapped to a reference se-

quence (a DNA sequence highly similar to the target but not identical) using

an alignment algorithm (e.g., [5], [6] ). Then each position along the target

is determined by combining information provided by all the reads that cover

that particular position. Due to the errors in base calls, short length of the

reads, and repetitiveness in the target, both the mapping and the sequence

assembly steps are potentially erroneous. Such errors can be combated by

using redundancy – each base in the target sequence is typically covered by a

large number of reads.

When a reference genome is not available, the target genome needs to

be reconstructed directly from the short reads. This problem is called de novo

assembly. Several de novo assembly algorithms have been proposed recently

[7–10]. These algorithms are highly sensitive to read errors. To improve the

accuracy of the assembly using next-generation sequencing data, a key step is

to correct the errors in the raw short reads using the redundancy information

provided by the high coverage of next-generation sequencing.

The development in DNA and RNA sequencing technology sparked a

surge of interest in studying gene regulatory mechanisms. The experimental

advances have been accompanied by the theoretical developments in modeling

2



and computational studies of the networks. Combination of these research

efforts provides critical information about the functionality of cells and organ-

isms, reveals mechanisms of genetic diseases, enables optimization of diagnostic

techniques and therapies, and provides aid in the process of drug discovery.

1.1 Organization of the thesis

In Chapter 2, we develop a Hidden Markov Model (HMM) representa-

tion of the signal acquired by Illumina’s sequencing-by-synthesis platforms and

develop a particle filtering (i.e., sequential Monte Carlo) base-calling scheme

that we refer to as ParticleCall [11, 12]. When relying on the BayesCall’s

Markov Chain Monte Carlo implementation of the EM algorithm (MCEM)

to estimate system parameters, ParticleCall achieves the same error rate per-

formance as BayesCall while reducing the time needed for base calling by a

factor of 3. To improve the speed of parameter estimation, we develop a par-

ticle filter implementation of the EM algorithm (PFEM). PFEM significantly

reduces parameter estimation time while leading to a very minor deterioration

of the accuracy of base calling. We demonstrate that ParticleCall also has the

best discrimination ability among all of the considered base calling schemes.

In Chapter 3, we formulate the reference-guided assembly problem as

the inference of the genome sequence on a bipartite graph and solve it using a

message-passing algorithm [13–15]. Unlike existing state-of-the-art methods,

the proposed algorithm performs reference-guided sequence assembly without

relying on the, possibly inaccurate, quality scores of the short reads. Instead,

3



it infers reliability of a base in the assembled sequence by combining the in-

formation of all the reads covering that particular position. The proposed

algorithm can be interpreted as the classical belief propagation under a cer-

tain prior. Binary reformulation of the problem leads to an alternative solution

in the form of another message passing algorithm that is closely related to the

power iteration method. The power iteration method approximates the so-

lution to the sequence assembly problem by the leading singular vector of a

matrix comprising read data. The power iteration method has guaranteed

convergence, and its careful examination provides relation between the algo-

rithm accuracy and the number of iterations. To evaluate the performance

of the proposed techniques, we compare them with a genie-aided maximum a

posteriori (MAP) sequence assembly scheme which is an idealized assembler

with perfect quality score information and error-free mapping of the reads to

their locations. Results on both simulated and experimental data obtained

by sequencing Escherichia Coli and Neisseria Meningitidis at UT Austin’s

Center for Genomic Sequencing and Analysis demonstrate that our proposed

message-passing algorithm performs close to the aforementioned genie-aided

MAP assembly scheme and is superior compared to state-of-the-art methods

(in particular, it outperforms the aforementioned SAMtools and GATK soft-

ware packages).

In Chapter 4, we consider the de novo sequence assembly case in which

a reference genome is not available. We develop a short-reads error correction

algorithm using realistic read error profiles. The proposed error correction al-

4



gorithm utilizing the base quality information provided by the next-generation

DNA sequencing platform and uses suffix array data structure to efficiently i-

dentify the repetitive regions between the short reads. The erroneous bases

are then corrected by comparing them with the bases in other reads. In this

proposed algorithm, a hypothesis testing scheme is adopted to improve the

support detection accuracy. Experimental results show that the proposed er-

ror correction algorithm has higher accuracy than the traditional algorithms.

In Chapter 5, we turn to an inference problem in gene regulatory net-

works. We consider models of gene regulatory networks based on chemical mas-

ter equations, and study the problem of estimating stochastic rate constants

therein [16]. Such models provide the most precise description of the network

processes; however, they are also computationally the most demanding. We

limit our focus on small-sized networks with a known structure but unknown

rate constants. We approximate a chemical master equation by a related

chemical Langevin equation [17], and employ a particle filter with the Markov

Chain Monte Carlo move step to solve the rate estimation problem. Simula-

tion studies demonstrate that the proposed technique outperforms previously

considered methods while being computationally more efficient. Dynamic be-

havior of gene regulatory networks averaged over a large number of cells can

be modeled by ordinary differential equations. For this scenario, we compute

an approximation to the Cramer-Rao lower bound on the mean-square error of

estimating reaction rates and demonstrate that, when the number of unknown

parameters is small, the proposed particle filter can be nearly optimal.

5



Chapter 2

A particle filtering base-calling method for

next-generation sequencing

2.1 Background

A widely used sequencing-by-synthesis platform, commercialized by Il-

lumina, relies on reversible terminator chemistry. A sequencing task on the

platform is preceded by the preparation of a library of single-stranded short

templates created by performing random fragmentation of the target DNA

sample. Each single-stranded fragment in the library is placed on a glass sur-

face (i.e., the flow cell [18]) and subjected to bridge amplification in order to

create a cluster of identical copies of DNA templates [19]. The flow cell con-

tains eight lanes where each lane is divided into a hundred of nonoverlapping

tiles. The order of nucleotides in a DNA template is identified by synthesizing

its complementary strand while relying on reversible terminator chemistry [3].

Ideally, in every sequencing cycle, a single fluorescently labeled nucleotide is

incorporated into the complementary strand on each copy of the template in

a cluster. The incorporated nucleotide is a Watson-Crick complement of the

first unpaired base of the template. In reversible terminator chemistry, four

distinct fluorescent tags are used to label the four bases, and are detected by C-

CD imaging technology. The acquired images are processed in order to obtain

6



intensity signals indicating the type of nucleotide incorporated in each cycle.

These raw signal intensities are then analyzed by a base-calling algorithm to

infer the order of nucleotides in each of the templates.

Quality of the acquired raw signals is adversely affected by the im-

perfections in the underlying sequencing-by-synthesis and signal acquisition

processes. The imperfections are manifested as various sources of uncertain-

ties. For instance, a small fraction of the strands being synthesized may fail to

incorporate a base, or they may incorporate multiple bases in a single test cy-

cle. These effects are referred to as phasing and pre-phasing, respectively, and

they result in an incoherent addition of the signals generated by the synthesis

of the complementary strands on the copies of the template. Other sources

of uncertainty are due to cross-talk and delay effects in the optical detection

process, the residual effects that are readily observed between subsequent test

cycles, signal decay, and measurement noise.

Illumina’s sequencing platforms are supported by a commercial base-

calling algorithm called Bustard. While Bustard is computationally very ef-

ficient, its base-calling error rates can be significantly improved by various

computationally more demanding schemes [20]. Such schemes include work

presented in [21–24]. Among the proposed methods, the BayesCall algorith-

m [23] has been shown to significantly outperform Bustard in terms of the

achievable base calling error rates. By relying on a full parametric model of

the acquired signal, BayesCall builds a Bayesian inference framework capable

of providing valuable probabilistic information that can be used in downstream

7



applications. However, its performance gains come at high computational cost-

s. A modified version of the BaseCall algorithm named naiveBayesCall [24]

performs base calling in a much more efficient way, but its accuracy deteriorates

(albeit remains better than Bustard’s). Both BayesCall and naiveBayesCal-

l rely on expectation-maximization (EM) framework that employs a Markov

chain Monte Carlo (MCMC) sampling strategy to estimate the parameters of

the statistical model describing the signal acquisition process. This param-

eter estimation step turns out to be very time-consuming, limiting practical

feasibility of the proposed schemes. Highly accurate and practically feasible

parameter estimation and base-calling remain a challenge that needs to be

addressed.

In this chapter, we introduce a Hidden Markov Model (HMM) repre-

sentation of the acquired signals. Relying on the HMM model and particle

filtering (i.e., sequential Monte Carlo) techniques, we develop a novel base

calling and parameter estimation scheme and discuss some important practi-

cal aspects of the proposed method.

2.2 Contributions

In this chapter, we develop a HMM representation of the signal ac-

quired by Illumina’s sequencing-by-synthesis platforms and develop a particle

filtering (i.e., sequential Monte Carlo) base-calling scheme that we refer to as

ParticleCall. When relying on the BayesCall’s Markov Chain Monte Carlo

implementation of the EM algorithm (MCEM) to estimate system parameter-

8



s, ParticleCall achieves the same error rate performance as BayesCall while

reducing the time needed for base calling by a factor of 3. To improve the

speed of parameter estimation, we develop a particle filter implementation of

the EM algorithm (PFEM). PFEM significantly reduces parameter estimation

time while leading to a very minor deterioration of the accuracy of base calling.

Finally, we demonstrate that ParticleCall has the best discrimination ability

among all of the considered base calling schemes.

The ParticleCall software package related to the algorithm described in

this chapter is freely available at https://sourceforge.net/projects/particlecall.

2.3 Mathematical model

To describe the signal acquired by the Illumina’s sequencing-by-synthesis

platform, a parametric model was proposed in [23]. Basic components of the

model are overviewed below.

A length-L DNA template sequence is represented by a 4 × L matrix

S, where the ith column of S, si, is considered to be a randomly generated

unit vector with a single non-zero entry indicating the type of the ith base

in the sequence. We follow the convention where the first component of the

vector si corresponds to the base A, the second to C, the third to G, and the

fourth to T and denote them as eA, eC , eG, eT . The goal of base-calling is to

infer unknown S from the signals obtained by optically detecting nucleotides

incorporated during the sequencing-by-synthesis process.

9



Let p denote the average fraction of strands that fail to extend in a test

cycle. Phasing is modeled as a Bernoulli random variable with probability

p. Let q denote the average fraction of strands which extend by more than

one base in a single test cycle. Pre-phasing is modeled as a Bernoulli random

variable with probability q. Length of the synthesized strand changes from i

to j with probability

Pij =


p, if j = i,
1− p− q, if j = i+ 1,
q, if j = i+ 2,
0, otherwise.

Let P denote an (L + 1) × (L + 1) transition matrix with entries Pij defined

above, 1 ≤ i, j ≤ L + 1. The signal generated over L cycles of the synthesis

process is affected by phasing and pre-phasing and can be expressed as X =

SH, where H = (Hi,j) is an L × L matrix with entries Hi,j = [P j]1(i+1), the

probability that a synthesized strand is of length i after j cycles. Here P j

denotes the jth power of matrix P . The decay in signal intensities over cycles

(caused by DNA loss due to primer-template melting, digestion by enzymatic

impurities, DNA dissociation, misincorporation, etc.) is modeled by the per-

cluster density random parameter λt,

λt = (1− dt)λt−1 + (1− dt)λt−1ϵt, (2.1)

where ϵt ∼ N(0, σ2
t ) is a one-dimensional Gaussian random variable and dt

is the per-cluster density decay parameter within [0, 1]. We represent the tth

column of H as ht and the tth column of X as xt. Incorporating the decay

10



into the model, the signal generated in cycle t is expressed as

xt = λtSht, (2.2)

where xt =
[
xAt x

C
t x

G
t x

T
t

]′
is the vector of signals generated in each of the op-

tical channels. Assuming Gaussian observation noise, the measured intensities

at cycle t are given by

yt = Ktxt +
∑

b∈{A,C,G,T}

xbtη
b
t , (2.3)

where Kt denotes the 4×4 crosstalk matrix describing overlap of the emission

spectra of the four fluorescent tags, and ηAt , η
C
t , η

G
t , η

T
t are independent,

identically distributed (i.i.d.) 4× 1 Gaussian random vectors with zero mean

and a common 4× 4 covariance matrix Σt.

Note that, due to typically small values of p and q, the components

of the vector ht around its tth entry are significantly greater than the re-

maining ones. This observation can be used to simplify the expressions (2.2)

and (2.3). In particular, let hw
t denote the vector obtained by windowing ht

around its tth entry, i.e., by setting small components of ht to 0. In gener-

al, we consider l + r + 1 dominant components of ht centered at position t,

Ht−l,t, Ht−l+1,t, . . . , Ht,t, . . . Ht+r−1,t, Ht+r,t, expression (2.2) becomes

xt ≈ xw
t = λtSh

w
t = λt

r∑
i=−l

st+iHt+i,t. (2.4)

Finally, note that the signal measured in cycle t is empirically observed

to contain residual effect from the previous cycle. The residual effect is mod-

11



eled by adding αt(1− dt)yt−1 to yt, where the unknown parameter αt ∈ (0, 1).

Therefore, the model can be summarized as

λt|λt−1 ∼ N((1− dt)λt−1, (1− dt)2λ2t−1σ
2
t ),

yt|yt−1, S, λt ∼ N(Ktx
w
t + αt(1− dt)yt−1, ∥xw

t ∥22Σt),
st ∼ Unif(eA, eC , eG, eT ),
xwt = λtSh

w
t

t = 1, 2, . . . , L

where ∥ · ∥2 denotes the l2-norm of its argument, and where y0 = 0, λ0 = 1.

2.4 Hidden Markov Model of DNA base-calling

In this section, we reformulate the statistical description of the sig-

nal acquired by the Illumina’s sequencing-by-synthesis platform as a Hidden

Markov Model (HMM) [35]. HMMs comprise a family of probabilistic graph-

ical models which describe a series of observations by a “hidden” stochastic

process and are generally suitable for representing time series data. Sequenc-

ing data obtained from the Illumina’s platform is a set of time-series intensities

y1:L, motivating the HMM representation. HMMs provide a convenient frame-

work for state and parameter estimation, which we exploit to develop a particle

filter base-calling scheme in the next section.

For the sake of convenience, we remove the dependency between sub-

sequent observations yt−1 and yt by defining y
′
t = yt − αt(1 − dt)yt−1, t =

1, 2, . . . , L. Therefore, we can write

y
′

t|S, λt ∼ N(Ktx
w
t , ∥xw

t ∥22Σt). (2.5)

12



Components of y
′
1:L are the observations of our HMM, and depend on the

underlying signals x1:L. Moreover, let Sw
t denote the 4× (l+ r+ 1) windowed

submatrix of S, i.e.,

Sw
t = [st−l st−l+1 . . . st . . . st+r].

Since xw
t = λtSh

w
t = λt

∑t+r
i=t−l siHi,t, it is clear that y

′
t depends on λt and S

w
t .

Therefore, we define the state of the HMM to be the combination of λt and

Sw
t – the per-cluster density at cycle t and the collection of (l + r + 1) bases

around (and including) the base in position t, respectively.

The proposed HMM representation is illustrated in Fig 2.4. The obser-

vation dynamics that characterize the relationship between y
′
t and the hidden

states (Sw
t , λt) are given by the distribution g(y

′
t|Sw

t , λt). It is straightforward

to show from (2.5) that

g(y
′

t|Sw
t , λt) ∼ N(Ktx

w
t , ∥xw

t ∥22Σt). (2.6)

On the other hand, the state transition dynamics is described by the transition

probability between subsequent states, (Sw
t−1, λt−1) and (Sw

t , λt). Since S
w
t and

λt are independent, the transition probability is

f(Sw
t , λt|Sw

t−1, λt−1) = f1(S
w
t |Sw

t−1)f2(λt|λt−1). (2.7)

The second term on the right-hand side of (2.7), f2(λt|λt−1), is known from

the density decay model (2.1),

f2(λt|λt−1) ∼ N((1− dt)λt−1, (1− dt)2λ2t−1σ
2
t ).

13



1S
w

1l

2S
w S

w

L

L
l2l

'

1y
'

2y
'
y
L

Figure 2.1: A hidden Markov model of the generated signal in Illumina
sequencing-by-synthesis platforms.

For notational convenience, we use swt,1, . . . , s
w
t,l+r+1 to denote the set of l+r+1

column vectors of Sw
t . Note that for k = 2, 3, . . . , l+ r+1, the column vectors

swt−1,k in Sw
t−1 and the column vectors swt,k−1 in Sw

t actually represent the same

base. Therefore, the transition model between them can be represent by a δ

function as

p(swt,k−1|swt−1,k) = δ{swt,k−1=swt−1,k}

=

{
1, if swt,k−1 = swt−1,k,
0, if swt,k−1 ̸= swt−1,k.

Let U({eA, eC , eG, eT}) denote a uniform distribution on the support set of

unit vectors ({eA, eC , eG, eT}). We assume no correlation between consecutive

bases of the template sequence, i.e., swt,l+r+1 is generated from U({eA, eC , eG, eT}).

14



Therefore, f1(S
w
t |Sw

t−1) can be written as

f1(S
w
t |Sw

t−1) =

(
l+r+1∏
k=2

δ{swt−1,k=swt,k−1}

)
u(swt,l+r+1),

where u(·) ∼ U({eA, eC , eG, eT}). Hereby, all the components of the HMM

are specified.

2.5 ParticleCall base-calling algorithm

The goal of base calling is to determine the order of nucleotides in a

template from the acquired signal y1:t. This can be rephrased as the problem of

inferring the most likely sequence of states (Sw
t , λt) of the HMM in (2.6)-(2.7)

from the observed sequence y′
1:t (clearly, s1:L follows directly from Sw

t ). We

assume that the parameters Θ = {p, q, d1:L, α1:L, σ1:L, K1:L,Σ1:L} are common

for all clusters within a tile, and that they are provided by a parameter esti-

mation step discussed in the following section. In this section, we introduce

a novel base calling algorithm ParticleCall which relies on particle filtering

techniques to sequentially infer (Sw
t , λt) and, therefore, recover the matrix S.

In general, particle filtering (i.e., sequential Monte Carlo) methods gen-

erate a set of particles with associated weights to estimate the posteriori dis-

tribution of unknown variables given the acquired measurements [34]. In the

proposed HMM framework, we sequentially calculate the posteriori distribu-

tion of the columns of S, p(st|y′
1:t), t = 1, 2, . . . , L, and find the maximum a

posteriori (MAP) estimates of st by solving

ŝt = arg max
st∈{eA,eC ,eG,eT }

{p(st|y′
1:t)}.

15



Our algorithm relies on a sequential importance sampling/resampling

(SISR) particle filter scheme [25] to calculate p(Sw
t , λt|y′1:t). Different choices

and approximation methods of proposal densities are considered in [26–30].

We directly use the transition (2.7) as the proposal density. This sequential

importance sampling suffers from degeneracy and the variance of the impor-

tance weights will increase over time. To address the degeneracy problem, a

resampling step is introduced in order to eliminate samples which have small

normalized importance weights. Common resampling methods include multi-

nomial resampling [25], residual resampling [31] and systematic resampling

[32, 33]. We measure degeneracy of the algorithm using the effective sample

size Keff and, for the sake of simplicity, employ multinomial resampling strat-

egy. If we denote the number of particles by Np, then Keff = (
∑Np

k=1(w
(i)
t )2)−1

and resampling step is used when Keff is below a fixed threshold Nthreshold.

Nthreshold of size O(Np) is typically sufficient [25]. In our implementation, we

set Nthreshold = Np/2.

We omit further details for brevity and formalize the ParticleCall algo-

rithm below.

16



Algorithm 1 ParticleCall base-calling algorithm

1. Initialization:
1.1 Initialize particles:
for i = 1→ Np do

Sample each column of the submatrix S
w,(i)
1 from U({eA, eC , eG, eT});

Sample λ
(i)
1 from a Gaussian distribution with mean 1, and the variance

calculated using Bustard’s estimates of λ in the first 10 test cycles.
end for
1.2 Compute and normalize weights for each particle according to w

(i)
1 ∝

g(y′
1|S

w,(i)
1 , λ

(i)
1 ).

2. Run iteration t(t ≥ 2):
2.1 Sampling:
for i = 1→ Np do

Sample S
w,(i)
t , λ

(i)
t ∼ f(·, ·|Sw,(i)

t−1 , λ
(i)
t−1) according to (2.7).

end for
2.2 Update the importance weight

w
(i)
t ∝ w

(i)
t−1g(y

′
t|S

w,(i)
t , λ

(i)
t ).

2.3 Normalize the weights. Calculate the posteriori probability of st and
obtain the estimate ŝt.
2.4 Resampling:

if Keff =
(∑Np

k=1(w
(i)
t )2

)−1

≤ Nthreshold then

Draw Np samples {S̄w,(j)
t , λ̄

(j)
t , j = 1, . . . , Np} from {Sw,(i)

t , λ
(i)
t , i =

1, . . . , Np} with probabilities proportional to {w(i)
t , i = 1, . . . , Np}.

Assign equal weight to each particle, w̄
(i)
t = 1/Np.

end if

Since Sw
t in the HMM states are discrete with a finite alphabet, and

the transitions of Sw
t and λt are independent according to (2.7), it is possible

to Rao-Blackwellize the ParticleCall algorithm. Rao-Blackwellization is used

to marginalize part of the states in the particle filter, hence reducing the

number of needed particles Np [27]. We marginalize the discrete states Sw
t and

17



reduce the hidden process to λt, while relying on the particle filter to calculate

p(λ1:t|y′
1:t).

The original posterior distribution of the states can be expressed as

p(λ1:t, S
w
1:t|y′

1:t) = p(Sw
1:t|y′

1:t, λ1:t)p(λ1:t|y′
1:t).

Since p(λ1:t|y′
1:t) ∝ p(y′

t|y′
1:t−1, λ1:t)p(λt|λ

(i)
t−1), where λ

(i)
t−1 is a sample from

p(λ1:t−1|y′
1:t−1), we can state the Rao-Blackwellized ParticleCall algorithm as

below.

Algorithm 2 Rao-Blackwellized ParticleCall algorithm

1. Initialization:
1.1 Initialize particles:
for i = 1→ Np do

Sample λ
(i)
1 from a Gaussian distribution with mean 1, and the variance

calculated using Bustard’s estimates of λ in the first 10 test cycles.
end for
1.2 Compute and normalize weights for each particle according to w

(i)
1 ∝

g(y′
1|λ

(i)
1 ) ∝

∑
Sw
1
g(y′

1|Sw
1 , λ

(i)
1 ).

1.3 Calculate the discrete distribution p(Sw
1 |y1, λ

(i)
1 ) for each i.

2. Run iteration t(t ≥ 2):
2.1 Sampling:
for i = 1→ Np do

Sample λ
(i)
t ∼ f(·|λ(i)t−1).

end for
2.2 Update the importance weight w

(i)
t ∝ w

(i)
t−1g(y

′
t|y′

1:t−1, λ
(i)
1:t). and normal-

ize the weights.
2.3 Resample if Keff ≤ Nthreshold

2.4 Update p(Sw
t |y′

1:t, λ
(i)
1:t)

for i = 1→ Np do

Update p(Sw
t |y′

1:t, λ
(i)
1:t) using p(S

w
t−1|y′

1:t−1, λ
(i)
1:t−1) and λ

(i)
t .

end for

18



In step 2.2 of Algorithm 2, the quantity g(y′
t|y′

1:t−1, λ
(i)
1:t) can be obtained

by marginalizing over discrete states Sw
t and Sw

t−1,

g(y′
t|y′

1:t−1, λ
(i)
1:t) =

∑
Sw
t

p(y′
t|y′

1:t−1, S
w
t , λ

(i)
1:t)p(S

w
t |y′

1:t−1, λ
(i)
1:t)

=
∑
Sw
t

p(y′
t|Sw

t , λ
(i)
t )
∑
Sw
t−1

[
p(Sw

t |Sw
t−1,y

′
1:t−1, λ

(i)
1:t)×

p(Sw
t−1|y′

1:t−1, λ
(i)
1:t)
]
, (2.8)

where p(y′
t|Sw

t , λ
(i)
t ) is the observation density,

p(Sw
t−1|y′

1:t−1, λ
(i)
1:t) = p(Sw

t−1|y′
1:t−1, λ

(i)
1:t−1).

Due to the independence of the state transitions, and p(Sw
t |Sw

t−1,y
′
1:t−1, λ

(i)
1:t) =

p(Sw
t |Sw

t−1) due to the Markov property and the independence of the state

transitions.

In step 2.4 of Algorithm 2, the update equation is obtained as

p(Sw
t |y′

1:t, λ
(i)
1:t) ∝ p(Sw

t ,y
′
t, λ

(i)
t |y′

1:t−1, λ
(i)
1:t−1)

=
∑
Sw
t−1

p(y′
t, S

w
t , λ

(i)
t |y′

1:t−1, S
w
t−1, λ

(i)
1:t−1)p(S

w
t−1|y′

1:t−1, λ
(i)
1:t−1)

=
∑
Sw
t−1

[
p(y′

t|Sw
t , λ

(i)
t ,y

′
1:t−1, S

w
t−1, λ

(i)
1:t−1)×

p(Sw
t , λ

(i)
t |y′

1:t−1, S
w
t−1, λ

(i)
1:t−1)p(S

w
t−1|y′

1:t−1, λ
(i)
1:t−1)

]
= p(y′

t|Sw
t , λ

(i)
t )p(λ

(i)
t |λ

(i)
t−1)×∑

Sw
t−1

p(Sw
t |Sw

t−1)p(S
w
t−1|y′

1:t−1, λ
(i)
1:t−1) (2.9)

19



2.6 Parameter estimation

To determine the set of parameters Θ needed to run the proposed Par-

ticleCall base calling algorithm, one could rely on the MCMC implementation

of the EM algorithm (MCEM) proposed in [23]. In section Results, we demon-

strate the performance of the ParticleCall algorithm that relies on the MCEM

parameter estimation scheme. Note, however, that the MCMC sampling strat-

egy employed by MCEM requires a lengthy burn-in period and a very large

sample size to perform the expectation step. Therefore, the MCEM parameter

estimation scheme is computationally rather intensive and requires significant

computational resources if it is to be used for processing large sequencing data

sets. As an alternative, we develop an EM parameter estimation scheme which

relies on the proposed HMM and uses samples generated by a particle filter to

evaluate the expectation of the likelihood function. We refer to this algorithm

as the particle filter EM (PFEM). The speed and accuracy of the proposed

scheme is practically sound for use in next generation sequencing platforms.

2.6.1 Assumptions on parameters

Recall that the set of parameters needed to be estimated before running

ParticleCall is Θ = {p, q, d1:L, α1:L, σ1:L, K1:L,Σ1:L}. The phasing and prephas-

ing parameters p and q are assumed to be the same for each sequencing lane

and are estimated using the same procedure as Bustard (see, e.g., [23]). The

remaining parameters are assumed to be cycle-dependent and need to be es-

timated for each tile. The cycle-dependency assumption on the parameters

20



can lead to a substantial improvement in the base-calling accuracy [20]. In

order to avoid over-fitting, we assume that parameters remain constant within

a short window of cycles and then change to a different set of values. To track

the changes in the parameters, we first divide the total read length L into

several non-overlapping windows and then perform our parameter estimation

window-by-window. To further reduce the number of parameters and improve

the estimation efficiency, we assume that the parameters d1:L and σ1:L are

uniformly distributed over an interval and incorporate them into the hidden

states of the HMM model. Therefore, only the mean and variance of these

parameters, i.e., dmean, dvar, σmean, and σvar need to be estimated. Compu-

tational results demonstrate that these two assumptions does not affect the

accuracy of base-calling.

2.6.2 Particle filter EM algorithm

In the early sequencing cycles, effects of phasing and prephasing are rel-

atively small. Therefore, we may ignore phasing and prephasing to facilitate

straight-forward computation of the initial estimates of the remaining param-

eters. In particular, the signal generated in the early cycles t is approximated

as

xt = λtst. (2.10)

Replacing (2.2) by (2.10) leads to a simplified model that allows for straightfor-

ward base calling and inference of the parameters by means of linear regression.

We use these values to obtain the estimates of dmean, dvar, σmean, and σvar,

21



and to initialize the remaining parameters α, K, Σ, in the particle filter EM

parameter estimation procedure.

The parameter estimation is performed window-by-window and is con-

ducted using n reads randomly chosen from a tile (in our experiments, we use

n = 200). Assume the window length is w, and denote the window index by

m. The particle filter EM (PFEM) algorithm finds parameters for one win-

dow and then uses these values to initialize the search for parameters in the

next window. We illustrate the procedure for the first window here (the same

procedure is repeated in the following windows). Let Θi
1 = {αi, K i,Σi} denote

the set of parameters for window 1 in the ith iteration of the EM scheme. The

estimate of Θi
1 is given by

Θi
1 = argmax

Θ1

L1(Θ
i−1
1 ), (2.11)

where L1(Θ
i−1
1 ) =

∑n
j=1 L1,j(Θ

i−1
1 ) is the sum of the log-likelihood functions

over the reads in the training set. The log-likelihood function for each read,

L1,j(Θ
i−1
1 ), is obtained as

L1,j(Θ
i−1
1 ) = logP (y1:w|Θi−1

1 ) = E
[
logP (y1:w, s1:w, λ1:w|Θi−1

1 )
]
, (2.12)

where the expectation is taken with respect to P (s1:w, λ1:w|y1:w,Θ
i−1
1 ). We

rely on an SISR particle filtering scheme to generate equally weighted sample

trajectories from P (s1:w, λ1:w|y1:w,Θ
i−1
1 ). Based on (2.6) and (2.7), we calcu-

late logP (y1:w, s1:w, λ1:w|Θi−1
1 ) for these samples and compute their average to

approximate the expectation in (2.12). The maximization (2.11) is performed

22



by solving equations obtained after taking gradients of L1(Θ
i−1
1 ) over the pa-

rameters and setting them to 0. In our experiment, the PFEM parameter

estimation scheme performs 30 EM iterations and uses 600 samples from the

particle filter for each window.

2.7 Results

The proposed method is evaluated on a data set obtained by sequenc-

ing phiX174 bacteriophage using Illumina Genome Analyzer II with the cycle

length 76. This is a short genome with a known sequence which enables re-

liable performance comparison of different base-calling techniques. We tested

ParticleCall and several other algorithms on a tile containing 77337 reads, and

present the results here. All the codes are written in C and the tests are run

on a desktop with an Intel Core i7 4-core 3GHz processor.

2.7.1 Performance of ParticleCall

The base calling error rates are computed by aligning the reads to

the reference genome and evaluating frequency of mismatches. Reads that

could not be aligned to the reference with at least 70% matches are discarded.

Note that the error rates and speed of the proposed ParticleCall algorithm

and the parameter estimation scheme are affected by the parameters l, r,

particle number Np, and parameter estimation window length w. We ran

ParticleCall with l = r ∈ {1, 2, 4}. Increasing l and r beyond l = r = 1 did

not affect the performance while it significantly slowed down the algorithm.

23



This is due to small values of the phasing and prephasing probabilities, which

are estimated to be p = 3.54 × 10−8 and q = 0.00335. Therefore, in the

remainder of the chapter, we set l = r = 1. The accuracy of base-calling for

different Np is shown in Table 2.7.1. As seen there, for the original ParticleCall

algorithm, Np = 800 leads to high performance with reasonable speed. Rao-

Blackwellized ParticleCall can achieve the same accuracy with fewer particles

(in particular, Np = 300); however, its effective running time is 3 times that

of the original ParticleCall with the same performance. This is because the

Rao-Blackwellization steps in (2.8) and (2.9) require evaluating a sum over

all possible Sw
t (43 = 64 for our choice l = r = 1), resulting in a fairly

large number of basic operations needed to calculate exact distribution of the

discrete variables. Therefore, for further performance comparisons, we rely

on the original ParticleCall algorithm (formalized as Algorithm 1). Table 2.2

shows the ParticleCall base calling error rate and parameter estimation times

for different window lengths w. In the remainder of the chapter, we set w = 5

as it leads to desirable performance/speed characteristics of the algorithm.

2.7.2 Performance comparison of different algorithms

The error rates and speed of the proposed ParticleCall algorithm are

compared with those of BayesCall, naiveBayesCall, Rolexa, and Bustard. We

run ParticleCall both with parameters provided by the computationally inten-

sive MCEM algorithm as well as with those inferred by the PFEM parameter

estimation scheme proposed in this chapter. The results are reported in Ta-

24



Table 2.1: Comparison of ParticleCall with different Np

Method Np error rate base-calling
time (min)

ParticleCall (via MCEM) 400 0.0126 46
800 0.0124 88
1200 0.0124 130

ParticleCall (via PFEM) 400 0.0128 46
800 0.0125 91
1200 0.0125 133

Rao-Blackwellized ParticleCall 100 0.0128 103
(via MCEM) 200 0.0125 190

300 0.0124 287
400 0.0124 386

Table 2.2: ParticleCall parameter estimation with different w
Window length w base-calling error rate parameter estimation

error rate time (min)
4 0.0125 50
5 0.0125 39
6 0.0127 29
7 0.0130 25

Table 2.3: Comparison of error rates and speed
Method error rate base-calling parameter esti-

time (min) mation time (min)
Bustard 0.0152 2 (total)
Rolexa 0.0170 35 (total)
naiveBayesCall 0.0132 21 1139
BayesCall 0.0124 231 1139
ParticleCall (via MCEM) 0.0124 88 1139
ParticleCall (via PFEM) 0.0125 91 39

25



ble 3. Note that Rolexa generally outputs the so-called IUPAC codes, unlike

all the other considered algorithms which provide sequences of nucleotides A,

C, G, and T. To allow a comparison, we enforce Rolexa to output sequences

of nucleotides as well. The comparison of per-cycle error rates is shown in

Fig 2.7.2. The standard deviation of the error rates is shown in Fig 2.7.2.

It can be seen from Table 2.3 and Fig 2.7.2 that ParticleCall, BayesCall

and naiveBayesCall all have improved base-calling accuracy compared to Bus-

tard. BayesCall is highly accurate but relatively slow – it requires approxi-

mately 4 hours to complete base-calling for one tile of the data. naiveBayesCall

significantly improves base-calling speed over BayesCall but it does so at the

expense of incurring higher error rate. Our ParticleCall base-calling algorith-

m has the same accuracy as BayesCall, while being roughly 3 times faster.

Fig 2.7.2 shows that both ParticleCall and BayesCall are more accurate than

naiveBayesCall in the early cycles and improve over Bustard in all cycles. Note

that Bustard outperforms Rolexa, which is consistent with the results in [20].

Moreover, we see from Table 2.3 that performing parameter estimation via

the MCEM algorithm proposed in [23] requires 19 hours, while the particle

filter implementation of the EM estimation scheme proposed in this chapter

takes only 39 minutes. As evident from Table 2.3, running ParticleCall with

parameters obtained by the PFEM scheme leads to only a minor performance

degradation compared to running it with parameters obtained by the MCEM

algorithm. Running ParticleCall base calling along with the PFEM parameter

estimation scheme takes about 2 hours per tile, which is 9 times faster than

26



0 10 20 30 40 50 60 70 80
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Cycles

E
rr

o
r 

ra
te

Bustard

Rolexa

naiveBayesCall

BayesCall

ParticleCall(via MCEM)

ParticleCall(via PFEM)

Figure 2.2: Per-cycle error rates of ParticleCall, BayesCall, naiveBayesCall,
Rolexa and Bustard.

27



0 10 20 30 40 50 60 70 80
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Cycles

E
rr

o
r 

ra
te

Bustard

Rolexa

naiveBayesCall

BayesCall

ParticleCall(via EM)

ParticleCall(via fast
parameter estimation)

Figure 2.3: Standard deviation of error rates of ParticleCall, BayesCall, naive-
BayesCall, Rolexa and Bustard.

28



the total time required by the less accurate naiveBayesCall.

2.7.3 Quality scores

Quality scores are used to characterize confidence in the outcome of

the base-calling procedures. They are computed as part of the analysis of

the acquired raw data and may be used to filter out reads of suspect quali-

ty, or to shorten the reads if the quality scores of individual bases fall below

certain thresholds. They can also provide confidence information for down-

stream analysis including sequence assembly and SNP and genotype calling.

Frequently used are the so-called phred quality scores, which were originally

developed to assess the quality of the conventional Sanger sequencing and au-

tomate large-scale sequencing projects. Phred scores are also often provided by

the algorithms used for base-calling in next generation sequencing platforms.

Formally, the phred score for a called base in the cycle t, ŝt, is defined as

Qphred(ŝt) = −10 log10 P (ŝt ̸= st).

Essentially, Qphred(ŝt) is the scaled logarithm of the error probability. Higher

quality scores imply smaller probability of the base-calling error. For the

proposed ParticleCall algorithm, probability of correctly calling a base can be

obtained from the posteriori probability as

P (ŝt ̸= st) = 1− p(st|y′
1:t).

Quality scores can be used to compare the discrimination ability of different

algorithms. The discrimination score D(ϵ) at error tolerance ϵ is defined as

29



0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0.964

0.966

0.968

0.97

0.972

0.974

0.976

0.978

0.98

0.982

0.984

Error tolerance ε

D
(ε

)

Bustard

BayesCall

naiveBayesCall

ParticleCall(via MCEM)

ParticleCall(via PFEM)

Figure 2.4: Discrimination ability D(ϵ) of quality scores vs error tolerance.

the ratio of the correctly called bases having P (ŝt ̸= st) < ϵ (i.e., the quality

score higher than −10 log10(ϵ)) to all called bases. Fig 2.7.3 compares the

discrimination ability of ParticleCall, BayesCall, naiveBayesCall and Bustard.

It shows that for a reasonable error tolerance ϵ, ParticleCall with parameters

obtained through MCEM has better discrimination ability than BayesCal-

l, naiveBayesCall and Bustard, while ParticleCall with parameters obtained

through PFEM has discrimination ability close to naiveBayesCall and better

30



than other algorithms. In other words, when a small cutoff error tolerance ϵ is

set and all the bases with quality scores below ϵ are considered invalid, Parti-

cleCall provides the most accurate results among the considered base-calling

schemes.

2.7.4 Effects of improved base-calling accuracy on de novo sequence
assembly

In shotgun sequencing, a long target sequence is oversampled by a li-

brary of randomly fragmented copies of the target, and the overlaps between

short reads obtained by a high-throughput platform are used to assemble the

target. In de novo assembly, the target is reconstructed without consulting any

reference [7, 8]. Performance of assembly algorithms highly depends on the ac-

curacy of base calling. To demonstrate the effects of base-calling accuracy on

assembly, we apply the Velvet assembly algorithm [8] on reads provided by

Bustard, Rolexa, naiveBayesCall, BayesCall, and ParticleCall. In particular,

we randomly subsample the set of reads provided by each of the base calling

algorithms to emulate 5X, 10X, 15X, and 20X coverage. Then we run Velvet

on each of the subsets, and evaluate commonly used metrics that quantify

the quality of the assembly procedure. Specifically, we evaluate the maximum

contig length and the N50 contig length. The described procedure is repeated

200 times to obtain average values of these two quality metrics. The results are

shown in Table 2.4. As can be seen there, ParticleCall provides the largest N50

and maximum contig length among all of the considered base calling schemes,

for all of the considered coverages.

31



Table 2.4: de novo assembly results
Coverage Bustard Rolexa naiveBayesCall

N50 Max N50 Max N50 Max
5X 271 607 259 565 278 604
10X 1169 1750 971 1557 1180 1731
15X 3624 3823 2885 3170 3726 3908
20X 4694 4744 4529 4614 4756 4816
Coverage BayesCall ParticleCall via MCEM ParticleCall via PFEM

N50 Max N50 Max N50 Max
5X 292 629 299 637 289 632
10X 1269 1831 1316 1900 1341 1865
15X 3466 3741 3742 3935 3697 3918
20X 4827 4875 5102 5116 4795 5039

2.8 Conclusions

In this chapter we proposed ParticleCall, a particle filtering algorithm

for base calling in the Illumina’s sequencing-by-synthesis platform. The algo-

rithm is developed by relying on an HMM representation of the sequencing

process. Experimental results demonstrate that the ParticleCall base calling

algorithm is more accurate than Bustard, Rolexa, and naiveBayesCall. It is as

accurate as BayesCall while being significantly faster. Quality score analysis

of the reads indicates that ParticleCall has better discrimination ability than

BayesCall, naiveBayesCall and Bustard. Moreover, a novel particle filter EM

(PFEM) parameter estimation scheme, much faster than the existing Monte

Carlo implementation of the EM algorithm, was proposed. When relying on

the PFEM scheme, ParticleCall has near-optimal performance while needing

much shorter total parameter estimation and base calling time.

32



Chapter 3

Iterative Learning for Reference-Guided DNA

Sequence Assembly

3.1 Background

In next-generation sequencing, the short reads generated by a sequenc-

ing instrument are used to assemble the target genome. The assembly may

be performed with or without referring to a previously determined sequence

related to the target (genome, transcriptome, proteins). De novo assembly

refers to a scenario where the reconstruction is performed without a reference

sequence. This is a computationally challenging task, difficult due to the pres-

ence of perfect repeat regions in the target sequence and short lengths of the

reads [38], [39]. In re-sequencing projects where the goal, for instance, may

be to study genetic variations among individuals or to discover new strains of

bacteria [36], [40], a reference is available and used to order the reads. Such

reference-guided assembly is still challenging due to the errors in the reads

and because the reference often contains errors and gaps [41], [42]. Many of

the assembly challenges are ameliorated if the target sequence is significantly

oversampled and thus the information provided by short reads is highly re-

dundant. This redundancy is quantified by means of a sequencing coverage –

the average number of times a base in the target sequence is present in the

33



overlapping reads. However, the demands for higher throughput and lower

sequencing costs often limit the coverage to medium (5-20X) or low (≤ 5X).

As an example, the ongoing 1000 Genomes Project has opted for trading-off

sequencing depth for the number of individuals being sequenced [46]. In its

preliminary phase, the project has focused on sequencing a large number of

individuals at a very low 3X coverage.

In reference-guided assembly, the short reads are first mapped to a refer-

ence sequence using an alignment algorithm (e.g., [6], [5]). Then each position

along the target is determined by combining information provided by all the

reads that cover that particular position. Due to the errors in base calls, short

length of the reads, and repetitiveness in the target, both the mapping and the

sequence assembly steps are potentially erroneous. The widely used tools to

analyze and assemble genome sequence from high-throughput sequencing data

include SAMtools [41] and Genome Analysis Toolkit (GATK) [42]. Note that

both of these packages rely on the quality scores provided by the sequencing

platform to infer the assembled sequence.

In this chapter, we formulate the reference-guided assembly problem as

the inference of the genome sequence on a bipartite graph and solve it using a

message-passing algorithm. Unlike existing state-of-the-art methods, the pro-

posed algorithm performs reference-guided sequence assembly without relying

on the, possibly inaccurate, quality scores of the short reads. Instead, it infers

reliability of a base in the assembled sequence by combining the information

of all the reads covering that particular position. The proposed algorithm can

34



be interpreted as the classical belief propagation under a certain prior. Binary

reformulation of the problem leads to an alternative solution in the form of

another message passing algorithm that is closely related to the power itera-

tion method. The power iteration method approximates the solution to the

sequence assembly problem by the leading singular vector of a matrix compris-

ing read data. The power iteration method has guaranteed convergence, and

its careful examination provides relation between the algorithm accuracy and

the number of iterations. To evaluate the performance of proposed techniques,

we compare them with a genie-aided maximum a posteriori (MAP) sequence

assembly scheme which is an idealized assembler with perfect quality score

information and error-free mapping of the reads to their locations. Results

on both simulated and experimental data obtained by sequencing Escherichia

Coli and Neisseria Meningitidis at UT Austin’s Center for Genomic Sequenc-

ing and Analysis demonstrate that our proposed message-passing algorithm

performs close to the aforementioned genie-aided MAP assembly scheme and

is superior compared to state-of-the-art methods (in particular, it outperforms

the aforementioned SAMtools and GATK software packages). Note that the

developed algorithms as well as simulation and experimental studies are fo-

cused on haploid genomes – while modifications that enable application to

diploid/polyploid genomes are relatively straightforward, they are beyond the

scope of the current manuscript.

35



3.2 Contributions

In this chapter, we formulate the reference-guided sequence assembly

problem as the inference of the genome sequence on a bipartite graph and solve

it using a message-passing algorithm. The proposed algorithm can be inter-

preted as the well-known classical belief propagation scheme under a certain

prior. Unlike existing state-of-the-art methods, the proposed algorithm com-

bines the information provided by the reads without needing to know reliability

of the short reads (so-called quality scores). Relation of the message-passing

algorithm to a provably convergent power iteration scheme is discussed. To

evaluate and benchmark the performance of the proposed technique, we find

an analytical expression for the probability of error of a genie-aided maxi-

mum a posteriori (MAP) decision scheme. Results on both simulated and

experimental data demonstrate that the proposed message-passing algorithm

outperforms commonly used state-of-the-art tools, and it nearly achieves the

performance of the aforementioned MAP decision scheme.

Implementation code of the ParticleCall algorithm in C++ is available

at https://sourceforge.net/projects/mpsequencing/.

3.3 Graphical Model and the Message-Passing Assem-
bly Algorithm

To facilitate processing of the short reads generated by next-generation

sequencing instruments, we introduce a bipartite graph representing the reads

and bases in the target sequence that needs to be assembled. The fundamental

36



building blocks of a sequence – the nucleotides A, C, G, and T – are numeri-

cally represented using 4-dimensional unit vectors containing a single non-zero

component whose position indicates type of a nucleotide. In particular, the

4-dimensional unit vectors that we use are eA = [1 0 0 0]T , eC = [0 1 0 0]T ,

eG = [0 0 1 0]T , and eT = [0 0 0 1]T . Assume the target sequence has length

L, and denote the bases in the sequence by b1:L. Then each base in the target

sequence is represented by a vector bi ∈ {eA, eC , eG, eT}. For convenience, we

will assume that all the short reads at our disposal are generated by the same

sequencing instrument and thus have identical read length l; note, however,

that there is no loss of generality and that our scheme can combine reads gen-

erated by sequencing the same target on different instruments and of different

read lengths. Let us denote the set of short reads by R = {rj}, j = 1, 2, . . . , n.

In general, the base calls in these reads are erroneous due to various uncertain-

ties in the underlying sequencing-by-synthesis process. Average base-calling

error rates of most current next-generation sequencing systems are on the order

of 10−2.

In reference guided sequence assembly, the short reads are mapped onto

the reference using one among many recently developed short-sequence align-

ment algorithms [6], [5]. Note that the reads comprising bases with low quality

scores are often discarded by the alignment algorithms. Ideally, the remaining

reads (the ones of high fidelity) are accurately mapped to their correspond-

ing locations on the reference sequence. However, for some reads there may

exist several candidate positions which leads to possible mis-alignments and,

37



Figure 3.1: Illustration of the reference-guided DNA sequence assembly problem
using short reads. Nodes bi represent bases in the target DNA sequence and rj
represent reads. Each read node is connected to l base nodes, where l denotes
the read length.

consequently, might provide erroneous information about the regions of the

target sequence where the read is mis-aligned. As pointed out in [42], the

misalignment rate for reads from genome regions which contain homozygous

indels (where the chromosomes in a homologous pair have the same sequence

but contain insertion or deletion as compared to the reference genome) can be

as high as 15%.

We represent the reference-guided assembly problem by a graph shown

in Fig. 3.1. The bipartite graph G(b1:L∪ r1:n, E) illustrated in the figure has L

base nodes (representing the target genome sequence) and n read nodes. Since

we assume that all reads are of the same length l, each read node is connected

to exactly l base nodes. The edge (i, j) in the edge set E connecting bi and rj

is associated with a unit vector eij indicating information about the type of

base bi provided by the read rj. Note that the bipartite graph described here

is reminiscent of the graphical representation of the crowdsourcing problem in

38



[43]. Motivated by the iterative learning scheme proposed there, we employ a

message-passing algorithm to infer the target genome sequence using overlap-

ping reads. Note that the previously mentioned problem of having multiple

candidate locations for mapping reads can be incorporated in the proposed

graphical representation and resolved using the algorithm that we describe

next.

The message passing algorithms rely on the exchange of messages be-

tween neighboring nodes in the graph [47]. Our algorithm operates on real-

valued base messages {xi→j}(i,j)∈E and read messages {yj→i}(i,j)∈E. A base

message xi→j is a 4× 1 vector representing the likelihood of the base bi being

A, C, G, or T, while a read message yj→i represents the reliability of read j.

Read messages are initialized from a random distribution, and the message

update rules at iteration k are given by

x
(k)
i→j ←

∑
j′∈∂i\j

(2eij′ − 1)y
(k−1)
j′→i , (3.1)

y
(k)
j→i ←

1

l − 1

∑
i′∈∂j\i

eTi′jx
(k)
i′→j, (3.2)

where ∂i and ∂j denote collection of the neighboring nodes of nodes i and j,

respectively, and 1 is a 4× 1 vector containing all 1’s. Note that 2eij′ − 1 has

element 1 in the position corresponding to the nucleotide base bij′ represented

by eij′ , and −1’s elsewhere. Hence a read with positive reliability value yj′→i

will increase the likelihood of bij′ and decrease the likelihood of other bases.

Finally, the likelihood of a base being A, C, G, or T is calculated as the sum

of the information provided by the reads weighted by each read’s reliability.

39



The symbol with the highest likelihood is chosen as the estimate of the base

in the corresponding position. The estimate rule for the ith base is

b̂i = arg max
t∈{A,C,G,T}

x
{t}
i , (3.3)

where the decision vector xi =
∑

j∈∂i(2eij − 1)y
(km)
j→i . Here, km denotes the

number of iterations performed and x
{t}
i denotes the likelihood corresponding

to symbol t ∈ {A,C,G, T} in the vector xi =
[
x
{A}
i x

{C}
i x

{G}
i x

{T}
i

]T
. The

procedure is formalized as Algorithm 3.

Note that Algorithm 3 needs to be appropriately initialized. In our

experimental studies presented in Section 3.7, we initialize y
(0)
j→i by drawing

from both Gaussian distribution N(1, 1) and uniform distribution U [0, 1]. For

the data sets under consideration, it turns out that different initializations

lead to identical solutions. The algorithm is terminated when the reliability

increment between subsequent iterations is small, i.e.,
∑
|y(k)j→i−y

(k−1)
j→i | < ϵ. As

pointed out earlier, the algorithm does not require exact knowledge of quality

scores, and iteratively infers reliability of individual reads.

Since the reads originating from a single sequencing instrument have

identical lengths, the degree of the read nodes in the graph is uniform. On

the other hand, degree of a base node is the number of reads that cover the

corresponding base, usually referred to as the sequencing coverage. Typically,

coverage varies from one position to another and, consequently, degree of the

base nodes varies. Note that fragmentation of multiple copies of the target se-

quence – a fundamental step in shotgun sequencing procedure – can be viewed

40



Algorithm 3 Message passing for sequence assembly

Input: E, {eij}(i,j)∈E
1 Initialize read messages:
for all (i, j) ∈ E do

Initialize y
(0)
j→i;

end for
2 Iterations:
for k = 1→ km do
for all (i, j) ∈ E do
Update base message:
x
(k)
i→j ←

∑
j′∈∂i\j(2eij′ − 1)y

(k−1)
j′→i ;

Normalize x
(k)
i→j:

x
(k)
i→j ←

x
(k)
i→j

||x(k)
i→j ||2

.

end for
for all (i, j) ∈ E do
Update read message
y
(k)
j→i ← 1

l−1

∑
i′∈∂j\i e

T
i′jx

(k)
i′→j;

end for
end for
3 Estimation:
for i = 1→ L do
Calculate decision vector xi =

∑
j∈∂i(2eij − 1)y

(km)
j→i ;

Estimate the bases
b̂i = argmaxt∈{A,C,G,T} x

{t}
i ;

end for

41



as a uniform sampling from the original DNA strand. The resulting coverage is

a random variable that can be described well by a Poisson distribution [49, 51].

Let c̄ denote the average sequencing coverage. The computational com-

plexity of the base message updating step (3.1), which needs to be performed

in each iteration of Algorithm 3, is O(nlc̄) on average, while the complexity

of the read message updating step (3.2) is O(nl2). Since Lc̄ = nl, the com-

plexity of the algorithm is O(kmnl(l+ c̄)) = O(kmLc̄(l+ c̄)), where km denotes

the number of iterations (i.e., the number of message updates). On the oth-

er hand, the simple plurality voting scheme has complexity O(Lc̄ log c̄). Our

experimental studies show that km ≤ 30 is sufficient for the convergence of

the algorithm. We tested the algorithm on a broad range of parameters (in

particular, for read lengths l ≤ 100, coverage c̄ ≤ 60), and found that the run-

times are comparable to those of the state-of-the-art techniques (SAMtools

and GATK) – a specific comparison of runtimes is reported in Section 3.7.

3.4 Relation to standard belief propagation

As an alternative to the intuitively pleasing but basically heuristic

message passing scheme proposed in Section 3.3, we can also derive a stan-

dard belief propagation algorithm for the reference-guided sequence assembly.

To this end, we seek the sequence b̂1:L that maximizes the joint probabili-

ty P (b̂1:L, p1:n), where p1:n denotes confidences of the aligned read data and

42



pj ∈ [0, 1]. This maximization can be formalized as

max
b̂1:L,p1:n

n∏
j=1

D(pj)
∏

(i,j)∈E

{
pjδ(b̂i = eij) + p̄jδ(b̂i ̸= eij)

}
, (3.4)

where D(pi) denotes the prior distribution on pi and p̄j = 1− pj. δ(·) denotes

an indicator function taking value 1 if its argument is true and is 0 otherwise.

The joint optimization is computationally challenging and thus often practical-

ly not feasible. As an alternative, belief propagation provides an approximate

solution to (3.4) by computing the marginal distributions of the optimization

variables and selecting their most likely values according to the computed dis-

tributions. A thorough review of theoretical and practical aspects of the belief

propagation method can be found in [45]. For the graphical model proposed

in Section 3.3, we define two messages to facilitate belief propagation: x̃i→j

and ỹj→i. The former is the belief on b̂i and essentially represents a distribu-

tion over the four possible nucleotide bases {eA, eC , eG, eT}. The latter is a

probability of pj on [0, 1]. In the kth iteration of the belief propagation algo-

rithm, the message update rules are given by (see, e.g., [45] and the references

therein)

ỹ
(k)
j→i(pj) ∝ D(pj)

∏
i′∈∂j\i

∑
m=A,C,G,T

{
pjδ(ei′j = em)

+p̄jδ(ei′j ̸= em)
}
x̃
(k)
i′→j(em), (3.5)

x̃
(k+1)
i→j (b̂i) ∝

∏
j′∈∂i\j

∫ (
ỹ
(k)
j′→i(pj′)(pj′δ(b̂i = eij′)

+p̄j′δ(b̂i ̸= eij′)
)
dpj′ . (3.6)

43



After the completion of the iterative procedure, the bases bi in the target

genome are estimated by first computing the beliefs x̃i(b̂i) ∝∏
j′∈∂i

∫ (
ỹ
(k)
j′→i(pj′)(pj′δ(b̂i = eij′) + p̄j′δ(b̂i ̸= eij′))

)
dpj′ , (3.7)

where b̂i ∈ {eA, eC , eG, eT}, and then choosing the base with the highest x̃i

value. Note that, by exploiting the symmetry of the expression (3.4), we can

write

x̃
(k+1)
i→j (b̂i ̸= em) ∝

∏
j′∈∂i\j

∫ (
ỹ
(k)
j′→i(pj′)(pj′δ(eij′ ̸= em)

+p̄j′δ(eij′ = em)
)
dpj′ .

For the brevity of notation, we denote x̃
(k)
i→j(em) = x̃

(k)
i→j(b̂i = em). Assuming

that the prior distribution on pj, D(pj), is Beta(0,0) (which is essentially

as same as the Bernoulli(1/2) distribution), the read confidence is a binary

variable,

pj =

{
0, w.p. 1/2,
1, w.p. 1/2.

Define a log-likelihood ratio

ykj→i = log
( ỹ(k)j→i(1)

ỹ
(k)
j→i(0)

)
. (3.8)

After substituting (3.5) in (3.8), we obtain

y
(k)
j→i =

∑
i′∈∂j\i

log
x̃
(k)
i′→j(ei′j)∑

em ̸=ei′j
x̃
(k)
i′→j(em)

=
∑

i′∈∂j\i

log
x̃
(k)
i′→j(ei′j)

x̃
(k)
i′→j(b̂i′ ̸= ei′j)

. (3.9)

44



x
(k)
i→j(1) = log

x
(k)
i→j(eA)

x
(k)
i→j(b̂i ̸= eA)

=
∑

j′∈∂i\j

log

∫ (
ỹ
(k−1)
j′→i (pj′)(pj′δ(eij′ = eA) + p̄j′δ(eij′ ̸= eA)

)
dpj′∫ (

ỹ
(k−1)
j′→i (pj′)(pj′δ(eij′ ̸= eA) + p̄j′δ(eij′ = eA)

)
dpj′

=


log

ỹ
(k−1)

j′→i
(1)

ỹ
(k)

j′→i
(0)

= y
(k−1)
j′→i if eij′ = eA

− log
ỹ
(k−1)

j′→i
(1)

ỹ
(k)

j′→i
(0)

= −y(k−1)
j′→i if eij′ ̸= eA

(3.11)

Define a 4× 1 vector message x
(k)
i→j as

x
(k)
i→j =

[
x
(k)
i→j(1) x

(k)
i→j(2) x

(k)
i→j(3) x

(k)
i→j(4)

]T
,

where

x
(k)
i→j(1) = log

x̃
(k)
i→j(eA)

x̃
(k)
i→j(b̂i ̸=eA)

,

x
(k)
i→j(2) = log

x̃
(k)
i→j(eC)

x̃
(k)
i→j(b̂i ̸=eC)

,

x
(k)
i→j(3) = log

x̃
(k)
i→j(eG)

x̃
(k)

i′→j
(b̂i′ ̸=eG)

,

x
(k)
i→j(4) = log

x̃
(k)
i→j(eT )

x̃
(k)

i′→j
(b̂i′ ̸=eT )

.

It is straightforward to write

y
(k)
j→i =

∑
i′∈∂j\i

ei′jx
(k)
i′→j. (3.10)

A closer examination of the first element of x
(k)
i→j, x

(k)
i→j(1), leads to the simpli-

fication shown in (3.11), where we implicitly used the assumption that pj is

binary. We can obtain similar expressions to (3.11) for other components of

45



x
(k)
i→j. As a result, the updating rule for x

(k)
i→j simplifies to

x
(k)
i→j =

∑
j′∈∂i\j

(2eij′ − 1)y
(k−1)
j′→i , (3.12)

where the vector 2eij′ − 1 has element 1 in the position corresponding to the

nucleotide base bij′ represented by eij′ , and −1’s elsewhere. Therefore, the

belief propagation update rule (3.12) is identical to the update rule (3.1) of

our message passing algorithm presented in Section 3.3. Moreover, the update

rule (3.10) is identical (up to the scaling factor) to the message update rule

(3.2). Therefore, the message passing scheme proposed in Section 3.3 can be

interpreted as belief propagation under a specific prior on the confidence of the

aligned data pj – in particular, pj should come from a Beta(0,0) distribution,

i.e., be treated as a binary variable.

3.5 Binary representation, message passing, and power
iteration algorithm

So far, we discussed reference-guided assembly schemes that rely on a

representation of the nucleotide basis with 4-dimensional vectors {eA, eC , eG, eT}.

As an alternative, in this section we rely on a binary representation of nu-

cleotides to formulate a message passing scheme and discuss the provably con-

vergent power iteration algorithm for finding the target genome sequence. The

power iteration scheme finds the desired sequence by computing the leading

singular vectors of an appropriately defined data matrix.

The four-letter alphabet {A,C,G, T} in DNA sequencing data can be

46



represented using binary symbols, e.g., {+1,−1}. In particular, we encode

the nucleotide basis as A = {−1,−1}, C = {−1,+1}, G = {+1,−1}, and

T = {+1,+1}, and represent reads as binary sequences comprising {±1}.

Similar to how we built a model utilizing 4-dimensional vectors {eA, eC , eG, eT}

in Section 3.3, we define a bipartite graph where each base bi is represented by

two binary nodes b̃2i−1 and b̃2i. Using the output of an alignment algorithm,

each read node of the bipartite graph is connected to 2l binary base nodes

in the node set b̃1:2L, where l denotes read length and L is the length of

the target sequence. For convenience, let us denote the resulting graph by

G(b̃1:2L ∪ r1:n, Ẽ). The edge (k, j) in Ẽ connecting b̃k and rj is assigned a

variable ekj ∈ {±1}, the binary representation of b̃k provided by read rj.

Given such a graphical representation, we can apply a binary message passing

algorithm as in [43]. In particular, the read and base messages are scalars and

the update equations are given by

x
(k)
i→j ←

∑
j′∈∂i\j

eij′y
(k−1)
j′→i , (3.13)

y
(k)
j→i ←

∑
i′∈∂j\i

eTi′jx
(k)
i′→j. (3.14)

After the iterative procedure reaches a stopping criterion, the binary string

representing unknown target DNA sequence is obtained as the weighted aver-

age

b̃i = sign(
∑

j′∈∂i\j

eij′yj′→i). (3.15)

The above algorithm is known to converge to the optimal solution when the

bi-partite graph is regular [44]. In our application, however, the graph is not

47



regular since the sequencing coverage varies. Nevertheless, we find that the

binary message-passing algorithm performs very well in both simulations and

on experimental data, as we demonstrate in Section 3.7. The binary message

passing algorithm is also closely related to the power iteration scheme for

computing the leading singular vector of an appropriately defined data matrix.

We next examine the power iteration algorithm and argue its convergence.

With the adopted binary encoding of nucleotides, we can represent

sequencing reads by a sparse n×2LmatrixD. The 2L columns ofD correspond

to the L positions in the target sequence whereas the jth row of D comprises

binary data representing read rj. In each row, only 2l entries are non-zero

(representing an l-long read) while the remaining ones are filled with zeros.

Therefore, matrix D has entries Dij ∈ {0,+1,−1}. Since the percentage of

nonzero entries of D is 2l
L
and L≫ l, D is a sparse matrix. It is easy to show

(see, e.g., [44]) that if each row of D has the same number of nonzero entries,

and the same holds for each column, the left singular vector corresponding

to the largest singular value of D is a reliable estimate of the target genome

sequence when the measurement noise (i.e., read error rate) is low. Here is an

illustration. Let s denote the 2L × 1 binary vector with alphabet {−1,+1}

representing the true sequence of length L, and let the number of nonzero

entries in each columns of D be c. Consider the case where the reads are

error-free and s is a 2L× 1 all one vector 12L. Since DD
T12L = 2Lc12L, then

s is an eigenvector of DDT . Here D is a non-negative matrix with entries 0s

and 1s and thus, by Perron-Frobenius theorem, 12L is a left singular vector

48



corresponding toD’s largest singular value. In the general case where s consists

of both 1 and −1, we can represent s = S12L where S is a 2L × 2L diagonal

matrix with diag(S) = s. In this case, it is straightforward to generalize the

above analysis and show that s remains to be proportional to the leading

singular vector of the matrix D.

Performing singular value decomposition is roughly cubic in the dimen-

sion of D and, for our problem dimensions, clearly infeasible. Fortunately, we

only need to find u, the leading singular vector of D, and then estimate the

target sequence s as sign(u). This can be done in a computationally efficient

way using the power iteration technique due to sparsity of D. In particular,

the power iteration procedure entails computing

x(k) = Dy(k−1), y(k) = DTx(k). (3.16)

To demonstrate convergence of the power iteration scheme (3.16), let us denote

the singular values of D as σi(D), where σ1(D) ≥ σ2(D) ≥ ... ≥ 0. With a

random initialization y(0), power iterations will converge to the singular vector

u if the inequality σ1(D) > σ2(D) holds strictly. The speed of the convergence

of power iterations depends on the ratio σ2(D)/σ1(D). This can be easily

shown by an analysis of the consecutive projections of the iteratively updated

vectors x(k) onto the singular vector u. In particular, the projection of x(k)

onto u is (uTx(k))u. A closer look into the singular value decomposition shows

that uTx(k)u = (σ1(D))2uTx(k−1)u and (x(k) − uTx(k)u) ≤ (σ2(D))2(x(k−1) −

49



uTx(k−1)u). Therefore,

||x(k) − uTx(k)u||
||uTx(k)u||

≤
(
σ2(D)

σ1(D)

)2 ||x(k−1) − uTx(k−1)u||
||uTx(k−1)u||

≤
(
σ2(D)

σ1(D)

)2k ||x(0) − uTx(0)u||
||uTx(0)u||

.

Clearly, power iterations will converge with any initialization if σ1(D) > σ2(D),

and the speed of convergence depends on the ratio of σ1(D) and σ2(D) – the

larger the ratio, the faster the convergence. On the other hand, from (3.16) it

directly follows that the update equations for the entries of x(k) and y(k) can

be written as

x
(k)
i =

∑
j∈∂i

Dijy
(k−1)
j , y

(k)
j =

∑
i∈∂j

Dijx
(k)
i . (3.17)

Note that the power iterations (3.17) differ from the message update rules

(3.13) and (3.14) in only one term. As our results in Section VI show, accu-

racy of message passing and power iterations is essentially identical, while the

former converges in significantly fewer iterations than the latter. Moreover,

both message-passing schemes – the one based on the representation of basis

via 4-dimensional vectors {eA, eC , eG, eT} as well as the one relying on the

binary representation of nucleotides – converge after approximately the same

number of iterations.

3.6 Benchmarking performance of the proposed assem-
bly scheme

To evaluate performance of the proposed iterative learning scheme, in

this section we compare the probability of error with a genie-aided maximum

50



a posteriori (MAP) estimator of the bases in the target sequence. The genie-

aided MAP estimator considers an idealized scenario where short reads are

mapped to the reference genome with no errors, i.e., there are no misplace-

ments of the reads along the reference sequence. Moreover, it assumes that

the exact probabilities of mis-calling the bases in the short reads are available

(i.e., has exact quality score information). Recall that our message-passing

scheme does not make such practically unrealistic assumptions and, in fact,

does not require prior knowledge of quality scores. The details of the MAP

estimator can be found in [37]. For the sake of completeness, we review the

basic computing procedure here.

Let bk denote the kth base in the target sequence, and let y
(i)
k denote

the signal generated by sequencing bk, i = 1, 2, . . . , ck, where ck denotes the

total number of reads covering bk. Assume that the probability of erroneously

calling bk in the ith read is p
(i)
k . Given the base calls of the reads covering bk,

y
(i)
k , the MAP estimate b̂k is found as

b̂k = argmax
x

ck∑
i=1

δ(y
(i)
k = x)w

(i)
k + log(p

(i)
k ) + log(P (bk = x)),

where δ(·) denotes an indicator function taking value 1 if its argument is true

and is 0 otherwise, and we introduced w
(i)
k = log

(
1−p

(i)
k

p
(i)
k

)
. Therefore, the

estimate b̂k is given by

b̂k = argmax
x

ck∑
i=1

w
(i)
k δ(y

(i)
k = x) + log(P (bk = x)). (3.18)

In the absence of prior information P (bk = x), the MAP estimation of bk in

(3.18) is identical to the so-called weighted plurality voting [48].

51



3.7 Results

In this section we present performance studies using both simulations

and experimental data sets. First, using realistic synthetic data, we compare

the performance of the message passing algorithm from Section 3.3 (Algorithm

3), the binary message passing algorithm and the power iteration algorithm.

Moreover, we examine the convergence properties of all these schemes and

benchmark their accuracy by comparing it with the genie-aided MAP estima-

tion employed in the idealistic scenario where the exact error probabilities of

the reads are known. Then we proceed by testing the algorithms on the ex-

perimental data we obtained by sequencing E. Coli and N. Meningitides using

Illumina’s HiSeq sequencing instrument that provides 100-bp long reads. In

particular, we compare the performance of our developed reference-guided se-

quence assembly algorithms with the commonly used sequencing data analysis

tools including GATK and SAMtools.

3.7.1 Simulation data

We simulated reference-guided sequence assembly of the genome of a

strain of Neisseria Meningitidis. The reference sequence is obtained from

the GenBank (http://www.ncbi.nlm.nih.gov/nuccore) database and is L =

2, 184, 406 bases long. The reference is used to generate target sequences hav-

ing 1% variation rate. We then uniformly select starting positions along the

sequence and simulate short reads of length l = 76 (mimicking Illumina’s

Genome Analyzer II platform). Sequencing errors in these reads are simulated

52



according to the position-dependent base calling error profile typical of this

particular sequencing platform [12]. The average error rate of the base call-

ing procedure is 0.015 (averaged over all reads and bases in the reads). To

construct the bipartite graphical model, we map the reads to the reference se-

quence using an alignment algorithm based on the Burrows-Wheeler transform

[6] and thus establish connections (i.e., edges) between the read nodes and their

aligned base nodes. The read nodes with multiple candidate mapping positions

are replicated (where each replica may be assigned different confidence score),

and each replica is connected to its corresponding set of base nodes. The bipar-

tite graph with binary base nodes introduced in Section 3.5 is constructed in

the same way. We apply both the message passing algorithms from Section 3.3

and Section 3.5 to infer the target sequence (note that since the algorithms are

randomly initialized, the stopping points and hence the resulting assembled

sequences may be different). We also form the binary data matrix representing

all the short read data and employ the power iteration method to infer the

target genome sequence. While the analysis in Section 3.5 gives a guarantee

of convergence of the power iteration algorithm, we found that its convergence

is usually faster than the theoretical bound. We set the stopping criterion for

all these iterative learning methods as
∑
|y(k)j→i − y

(k−1)
j→i | < ϵ = 0.01L. It turns

out that both message passing algorithms need ∼ 30 iterations to converge,

while the power iterations converge in ∼ 50 iterations. We initialize all these

algorithm by generating y
(0)
j→i from the Gaussian distribution N(1, 1) and the

uniform distribution U(0, 1) – our extensive simulation studies indicate that

53



different initializations lead to the same error rate of the considered iterative

schemes.

For a comparison, we also consider the plurality voting based decision

scheme often used in practice (see, e.g., [49]). Here, multiple calls for a base in

any given position along the target sequence are consolidated by performing

plurality voting. Notice that, in both message passing and plurality voting,

we assume the error profiles of the reads (i.e., base calling error rates) are un-

known. Plurality voting assumes all reads have equal reliability while message

passing scheme iteratively infers the reliability of each read. We also consider

probability of error of the MAP decision scheme in Section 3.6 which assumes

perfect knowledge of the positions of reads along the target sequence and exact

information about position-dependent base calling errors (both assumptions

are unrealistic in practice). The error rates of these algorithms are shown in

Fig. 3.2 for various sequencing coverages (horizontal axis shows the average

coverage). As can be seen from Fig. 3.2, the message-passing scheme and the

power iteration algorithm outperform plurality voting. The binary message

passing algorithm has almost identical accuracy as power iterations, while be-

ing slightly worse than Algorithm 3. Moreover, we see that the error rates

of message passing are close to the genie-aided MAP decision scheme, which

represents the best that can be achieved.

54



Figure 3.2: Error rates performance of the iterative learning schemes (mes-
sage passing, binary message passing, and power iterations) compared with the
plurality voting and genie-aided MAP schemes. The error rates of iterative
learning schemes and plurality voting are averaged over 20 experiments. Note
that, as seen in the figure, power iteration and binary message passing have
almost identical performance.

55



3.7.2 Experimental data

In addition to the simulation studies, we tested the performance of our

proposed iterative learning schemes for reference-guided sequence assembly us-

ing two experimental data sets. In particular, we sequenced Escherichia Coli

(from strain MG1655, 4.64×106 bases long) and Neisseria Meningitidis (from

strain FAM18, having length 2.2× 106) at the Center for Genomic Sequencing

and Analysis of the University of Texas at Austin. The data is obtained using

Illumina’s HiSeq platform that provides 100bp-long paired-end reads, and the

performance of our proposed methods are compared with that of the widely

used sequencing analysis packages SAMtools and GATK. Both SAMtools and

GATK process aligned next-generation sequencing data stored in SAM format,

the alignment file format provided by the majority of frequently used align-

ment tools (e.g., BWA). These files contain the aligned reads, their positions

and the quality scores of the bases. SAMtools calculates empirical quality

scores from the alignment information and uses them to recalibrate the raw

quality scores provided by the sequencing platform. The assembled sequence

is formed using the aligned bases weighted by these new quality scores. In

addition to the quality score recalibration, GATK also performs a local re-

alignment procedure to correct misaligned reads, especially from the target

genome region containing indels compared to the reference genome. After

performing sequence assembly using quality score information, these software

packages can also perform downstream single nucleotide polymorphism (SNP)

detection, while GATK also incorporates a machine learning tool to separate

56



true variation from sequencing platform artifacts.

The two genomes are sequenced using 67% of an HiSeq platform lane

having approximately 30 × 106 reads, resulting in the coverage greater than

200. This enables accurate inference of the true E. Coli and N. Meningitides

sequences using any of the techniques discussed in the chapter, providing us

with the ground truth. To determine the accuracy of our proposed schemes in

realistic scenarios where the coverage is limited, we uniformly subsample the

data to emulate low coverage situations. The resulting error rates are shown

in Table 3.7.2. As can be seen there, the developed message passing schemes

outperform both SAMtools and GATK in terms of the accuracy. The number

of iterations for each message passing scheme was set to 30, which at cover-

age c = 20 resulted in the average CPU runtimes of 65 and 37 minutes for

processing E. Coli and N. Meningitidis data sets, respectively (the algorithms

were coded in C++, run on a 3.07G Hz single core machine). The correspond-

ing runtimes for SAMtools are 50 and 28 minutes, and for GATK 53 and 30

minutes. As seen from the table, increasing the coverage can dramatically im-

prove accuracy of the assembly – recall the discussion from Section 3.6 where

we showed that the probability of error of the genie-aided MAP estimator

decreases exponentially with the coverage. However, increasing coverage also

increases the cost of the sequencing project.

Note that the sequenced genome might contain insertions as compared

to the reference or, equivalently, the reference sequence contains gaps. This

structural variation can be detected in the alignment stage by using paired-

57



Sequence Number of errors
and Coverage MP BMP SAMtools GATK

E coli
15 3484± 88 3507± 76 3655± 66 3598± 72
20 2566± 66 2599± 54 2677± 71 2634± 53
25 1243± 31 1256± 44 1298± 41 1283± 55
30 763± 20 781± 23 811± 23 798± 18

N. Meningitidis
15 2168± 35 2231± 43 2404± 37 2358± 30
20 1201± 29 1299± 26 1388± 30 1379± 20
25 899± 16 913± 20 933± 24 921± 19
30 658± 11 669± 11 681± 9 680± 15

Table 3.1: Performance of the message passing algorithm (MP), binary mes-
sage passing algorithm (BMP), SAMtools and GATK on E. coli and N. Menin-
gitidis sequencing data with various coverages. The average number of decision
errors and the corresponding standard deviation are computed over 30 runs.

end reads [52], [53]. The paired-end reads have a known range of lengths of

inserts between the reads in a pair. The gaps in the reference can be detected

by relying on a multi-read alignment of the pairs of reads and comparing the

aligned positions with the insert lengths. We used the scheme in [53] to perform

the alignment of our E. Coli data set and detected 34 gaps in the reference.

We included the gap positions as additional base nodes in our graphical model

and used our Algorithm 3 to identify the order of nucleotides in the gaps. As

a result, 31 out of 34 gaps were reconstructed (i.e., closed).

58



3.8 Conclusions

We studied reference-guided sequence assembly from short reads gen-

erated by next-generation sequencing technologies, specifically focusing on the

problem of obtaining the target genome sequence from potentially erroneous

and misaligned reads. We cast the problem as the inference of the target

sequence on an appropriately defined bipartite graph and proposed iterative

learning algorithms for solving it. In particular, we developed message pass-

ing algorithms that rely on both binary as well as representation of nucleotide

bases by 4-dimensional vectors. It was shown that the derived message pass-

ing algorithm (in particular, Algorithm 3 in Section 3.3) can be interpreted as

the standard belief propagation under a certain prior. In addition, the prob-

lem was rephrased so that the power iteration algorithm, employed to find

the leading singular vector of a matrix collecting all short reads, results in a

good approximation of the target sequence. Convergence of power iterations

is guaranteed, while the convergence of message passing algorithms is studied

empirically. Unlike existing methods, the proposed algorithms find the desired

sequence without using reliability information (i.e., quality scores) of the short

reads – in fact, message passing algorithms infer the aforementioned quality

score information.

To assess achievable accuracy of the proposed iterative learning tech-

niques, we analyzed the probability of error of a genie-aided maximum a pos-

teriori decision scheme in the idealized scenario where the base calling error

rates and read mapping locations are known perfectly. It was shown empiri-

59



cally that the iterative learning schemes perform close to the genie-aided es-

timation scheme, and that they outperform state-of-the-art software packages

for downstream processing of sequencing data.

60



Chapter 4

Error correction in de novo sequence assembly

using quality information

4.1 Background

In Chapter 3, we considered the sequence reconstruction problem un-

der the assumption we have a reference sequence of the same species. In de

novo sequence assembly, however, we need to assemble the long target genome

sequence directly from short reads without a reference. Several recent devel-

oped de novo assembly algorithms can be found in [7–10]. These algorithms

are highly sensitive to read errors. As we see in Chapter 3, the per-base read

error rates of next-generation sequencing are between 1% to 2%, which is much

higher compared to traditional Sanger technique. To improve the accuracy of

the assembly using next-generation sequencing data, a key step is to correct

the errors in the raw short reads using the redundancy information provid-

ed by the high coverage of next-generation sequencing. A set of short read

error correction methods optimized for next-generation sequencing have been

introduced to tackle this task. SHREC [54] uses a generalized suffix tree data

structure to improve the efficiency of error correction. The recently developed

HiTEC [55] utilizes a suffix array structure built on the string of all reads.

The parameters of the algorithm are optimized using statistical analysis of the

61



correction procedure. This algorithm is shown to be more accurate and robust

than SHREC and other previous methods. However, it assumes the reads pro-

vided by the next-generation sequencing have flat per-base error rate, which

limits the accuracy of this method.

In this chapter, we develop a new short read error correction method for

de novo assembly of next-generation sequencing. Traditional error correction

methods are based on the assumption that all bases in the reads have same

probability of error, which is not realistic to next-generation sequencing data.

Our method considers realistic error profile of the reads in next-generation

sequencing technology and utilizes the provided base quality information to

improve the accuracy of error correction. A hypothesis testing scheme rely-

ing on quality scores is used to improve the overlap detection. By using the

suffix array data structure, it can also efficiently search all potential support

segments in the reads. Experimental results show that our algorithm can im-

prove the error correction performance comparing with the previous mentioned

methods.

4.2 Suffix arrays and its application to sequencing data

Suffix array is a simple data structure first introduced to perform on-line

string search by Manber and Myers [56]. Compared to suffix trees, suffix arrays

are more space-efficient in applications while their complexity of searching

substrings is competitive. A DNA sequence can be represented as a string

with an appropriately defined alphabet and the corresponding suffix array can

62



be obtained. Here we give a brief overview of suffix array data structure and

its application to DNA sequences.

Consider the 4-letter alphabet representing the nucleotide bases Σ =

{A,C,G, T}; then a DNA sequence is a string over Σ, and we denote the set of

all DNA sequences by Σ∗. Assume that the length of a DNA sequence S is l.

The suffix of S starting at the i-th position is denoted by Si = sisi+1 . . . sl. The

reverse compliment of S, denoted by S̄, is a sequence obtained by reversing S

and then complementing its bases, i.e., A� T , C � G.

The basis of the suffix array data structure is an alphabetically sorted

array of all the suffixes of string S. We denote suffix array as SA. SA[k] is the

start position of the kth smallest suffix in the suffix set {S1, S2, ...Sl}. There-

fore, we can order the suffixes as SSA[1] < SSA[2] < . . . < SSA[l]. The longest

common prefix between consecutive suffixes in the suffix array is denoted by

lcp. lcp[i] is the length of the longest common prefix between SSA[i−1] and

SSA[i]. lcp[0] = 0 by definition. Suffix arrays and the corresponding lcp can

be computed efficiently in O(l) time and space using the algorithms in [57, 58]

and [59].

We here apply the concept of suffix arrays to the DNA sequencing data

sets in the de novo assembly problem. In high-throughput DNA sequencing, a

target genome with length L is oversampled and a large set of short reads with

same length are generated. These reads are potentially erroneous as discussed

in Chapter 2 and Chapter 3. Assume there are n reads r1, r2, . . . , rn with same

length l. In next-generation sequencing, we also have the quality scores of all

63



these reads which indicate their probability of error. Note that this is a major

difference between our approach and existing methods where the quality scores

are not considered and the error probability is assumed to be the same for all

bases.

We concatenate all the reads ris and their complements r̄is to construct

a string and use $ as an auxiliary symbol to mark the end of each read. The

resulting string is

R = r1$r̄1$r2$r̄2$ . . . rn$r̄n$.

We obtain suffix array SA and longest common prefix lcp of read string R. Our

basic error correction mechanism follows the idea described in both HiTEC and

SHREC where the support values of a base is counted. Assume an erroneous

base is in the kth position of read ri, which is sampled from the jth position

of the genome G. In order to correct the error, we look for bases in other

reads having the same support. The support u of a base b is defined as a

fixed length segment of bases in the reads preceding b. We define the number

of occurrences of pair (u, b) in all reads as supp(u, b). Intuitively, the larger

supp(u, b) is, the more confident we are in the correctness of base b. If we

observe another base c which has the same support u but supp(u, c) is small,

we are likely to identify c as an erroneous called base in the reads and should

be corrected into b.

64



4.3 Optimization of the parameters using quality scores

There are two parameters that need to be calculated to run the error

correction algorithm: the length of the support w and the threshold T for

verification of the correctness of a support sequence. By exploiting the error

profile of the sequencing data sets, we can obtain the optimal values of these

parameters under some criterion.

4.3.1 Calculate optimal threshold

The length of the support u affects the performance of error correction.

Based on the quality scores provided by the sequencing platforms, we can

find the optimal support length to minimize the expected number of errors.

Assume the support length is w, and that a base b inside the read has support

sequence u. We want to calculate the expected number of correct (u, b) pairs

and erroneous pairs. We assume that the error profile (average probability

of error for different positions) of these short read data is known and can be

transformed to the probability of being correct q(1), q(2), . . . , q(l) for each read

position.

We denote pc as the probability of a read covers (u, b) pair and contains

no errors inside this pair. We also assume the read is sampled uniformly from

the original genome G. If the (u, b) pair starts from jth position of the genome

G, the read covering this pair can start from j− l+w+1, j− l+w+2, . . . , jth

65



positions. So we can get

pc =
l − w
L

1

l − w
{q(1)q(2) . . . q(w + 1) + q(2)q(3) . . . q(w + 2)

+ . . .+ q(l − w) . . . q(l − 1)q(l)}

=
1

L

l−w∑
i=1

q(i)q(i+ 1) . . . q(i+ w) (4.1)

Let Nc denote the number of such reads, the probability of Nc = k is

P (Nc = k) =

(
n

k

)
pkc (1− pc)n−k.

In genome G, there are in total L − w ≈ L (u, b) pairs. Thus the expected

number of correct (u, b) pairs with supp(u, b) = k is

Mc(k) = P (Nc = k)L

=

(
n

k

)
pkc (1− pc)n−kL. (4.2)

Then we consider the case in which the read contains errors inside (u, b)

pair. In particular, we consider the case a read covers pair (u, b) and has one

error inside this pair. The probability of a read containing more than one error

is much smaller so we do not consider these cases. Let pe be the probability of

a read covering (u, b) pair and contains an error. We further assume this error

happens uniformly in all the positions in u and position b with probability

1
w+1

, then if the (u, b) pair is at the beginning of the read, the probability of

the read contains one error in (u, b) is

pe1 =
1

w + 1
{1− q(1)

3
q(2)q(3) . . . q(w + 1) + q(1)

1− q(2)
3

q(3) . . . q(w + 1)

+ . . .+ q(1)q(2) . . . q(w)
1− q(w + 1)

3
}.

66



Thus, we can calculate pe2, pe3, . . . , pe,l−w in the same way and obtain pe as

pe =
l − w
L

1

l − w
{pe1 + pe2 + . . .+ pe,l−w}

=
1

L

1

w + 1

l−w∑
i=1

j=i+w∑
j=i

{
∏

i≤m≤i+w,m ̸=j

q(m)}1− q(j)
3

. (4.3)

Let Ne denote the number of such reads, similar as the case with correct (u, b)

pair case, we can calculate the probability of Ne = k as

P (Ne = k) =

(
n

k

)
pke(1− pe)n−k.

And the expected number of erroneous (u, b) pairs is

Me(k) =

(
n

k

)
pke(1− pe)n−kL.

The analysis in this section is used to determine the threshold T to

distinguish the support values of correct (u, b) pairs from erroneous (u, b) pairs.

This threshold is used in the error correction algorithm to verify the correctness

of the support. We choose T as

T = min{k|Mc(k) > Me(k)}. (4.4)

To calculate Mc(k) and Me(k), we need to know the error profile of the short

read data to obtain q(1), q(2), . . . , q(l). These can be computed from the per-

cycle error rates provided by the sequencing platform. For example, the error

rates provided by ParticleCall and BayesCall shown in Fig. 2.7.2 can be directly

used. In order to process the data sets such as the E. Coli data mentioned in

Section 3.7.2, we can use the average error rates for each position of the reads

as the error profile. The average error rates in the E. Coli data set is shown

in Fig. 4.1.

67



0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

base position

av
er

ag
e 

er
ro

r 
ra

te

Figure 4.1: Average error rates in E. Coli data set.

4.3.2 Choice of optimal support length

In order to calculate the threshold T , the support length w need to be

determined beforehand. In current sequencing technology, the read length l

is typically around 70 − 120. The length of w is usually chosen in the range

10− 20 in recently developed error correction algorithms. In HiTEC, a more

sophisticated approach is used to approximately find an optimal wm and a set

of w values around wm are tried to achieve the best performance in the error

correction algorithm. We combine this approach with a hypothesis testing

scheme to obtain optimal w in our error correction algorithm. Denote the

average error rate for all the bases in the reads as p̄. If w is too large, it is

possible that some reads will have errors distributed in a way such that there

68



are no w consecutive correct positions. In this case the errors in this read is

not correctable by the error correction scheme. The expected number of this

kind of reads can be calculated by

U(w) =
l∑

i=1

g(i, l)p̄i(1− p̄)l−in,

where g(i, l) is the number of possible ways to place i errors in a length l read.

It can be calculated using an iterative procedure as shown in [55]. U(w) will

decrease when we decrease w. However, if w is too small, the possibility of

repetitive regions in the genome with length w increases. In this case, if one

read contains pair (u, b) but has an error inside u such that u is changed to

v, and v is also in the genome, the b base might be incorrectly changed in the

error correction process. The expected number of such reads D(w) can also

be calculated using the parameter p̄. The theoretical optimal support length

wo can be obtained as

wo = argmin
w

(U(w) +D(w)). (4.5)

In practice, we test a set of w values around wo to obtain optimal w with

lowest expected testing error pFP + pFN in hypothesis testing. The details of

the hypothesis testing scheme is described in following section.

69



4.4 Error correction algorithm based on a hypothesis
testing scheme

4.4.1 A hypothesis testing scheme to improve the accuracy of sup-
port detection

The error correction algorithm basically will look for all the bases with

same length w support. The correctness of base b is determined by whether

the support value is bigger than threshold T . The suffix array data structure

and longest common prefix values can be used to obtain all the bases with

same support. We check the set of consecutive positions in the suffix array

with longest common prefix value (lcp) larger than w and the w + 1 position

is not the auxiliary symbol $.

This support detection procedure does not utilize the quality score in-

formation provided in the next-generation sequencing data set. In fact, it

assumes all the bases in the support sequence are equally reliable, which is

not the case in recent sequencing technology. A length w support sequence at

the beginning of a read is usually much more reliable than the same length

sequence at the end of the read. We can use quality scores to verify the reli-

ability of the read and discard unreliable data to improve the accuracy of the

support value calculation. Here we use a hypothesis testing procedure based

on quality scores to determine whether a support sequence is correct.

We set the null hypothesis H0 as the support sequence u is correct and

the alternative hypothesis H1 as u contains errors so it should be disregarded

in the support value calculation. We use the summation of the quality values

70



(the probability of correctness converted from quality score) S as our test

statistic. Assume the quality values of the bases inside the length w support

sequence u are qu1, qu2, . . . , quw, then

S = qu1 + qu2 + . . .+ quw.

Intuitively, the higher S is, the more confidence we will have in the correctness

of u. So we can choose a parameter θ and set the rejection region of the test

as S < θ and acceptance region as S > θ. For each fixed support length w, we

can obtain the conditional pdfs of test statistic S given different hypotheses.

Then the test threshold θ can be optimized by minimizing the testing error

pFP + pFN . We illustrate this procedure using an example in next section.

4.4.2 Error correction algorithm

We can formalize the error correction procedure as Algorithm 4.

The construction of the suffix arrays of R can be efficiently performed

by the libdivsufsort library [60]. It uses a suboptimal approach but it is proved

to be significantly faster and space efficient than the theoretically optimal

algorithms in practice.

In step (1.2), we need to obtain the conditional pdfs of the test statistic

S given the hypotheses, i.e., p(S|H0) and p(S|H1). These two pdfs are in

general the same in the same sequencing platform, so we can obtain them

from the control lane data.

71



Algorithm 4 Error correction algorithm

Input: short reads data r1, r2, . . . , rn and corresponding quality scores for
each read base
1. Initialization:
1.1 compute optimal parameters T and wo using (4.4) and (4.5)
1.2 obtain conditional distribution of the test static S from the control lane
data and use them to search optimal θ which minimizes expected testing
error.
2. Iterations
repeat
count = 0
construct R and compute suffix arrays and corresponding lcp
for each length w support sequence u with number of occurrence ≥ T +1
do
do hypothesis testing for each u, discard if S < θ
obtain correct set Bc = {b|supp(u, b) ≥ T}
obtain error set Be = {b|supp(u, b) < T}
for each b ∈ Be do
correct b to a ∈ Bc.

end for
end for

until count
ln

< 0.0001

72



4.5 Experimental results

4.5.1 Parameter calculation

In order to test the performance of the proposed algorithm, we use the

E. Coli data set from Illumina’s HiSeq platform which contains approximately

4 × 106 reads with read length l = 100. So the coverage of the data set is

around 100. The exact sequence of this E. Coli strand is known so we can use

it to evaluate the performance of our error correction method.

We use the average quality values of each of the read position to calcu-

late the error profile. The average error rate of all bases is p̄ = 0.025. Using

the error profile and p̄, we can obtain wo = 17 and T = 24.

For each w value we used in the algorithm, a corresponding θ value

need to be determined. We need to obtain two pdfs p(S|T0) and p(S|T1)

for this sequencing platform. We use the true E. Coli sequence and use a

short read alignment algorithm to align all the reads to it. Then whether a

base in the read is correct is determined according to if it match the base in

the exact sequence. We randomly choose 107 length w read fragments and

plot the histograms of test statistic S, of the correct fragments and erroneous

fragments, respectively. These two histograms are used to approximate p(S|T0)

and p(S|T1). The approximate pdfs for w = 16 is shown in Fig 4.2. We

search for different w values and find the optimal parameters are w = 16 and

θ = 14.35 which can minimize pFP + pFN .

73



Figure 4.2: Probability density functions of test statistic S.

Sequence Error(%) this chapter SHREC HiTEC
E. coli 3.5 89.6 71.3 83.2
N. Meningitidis 3.9 87.3 69.5 81.1

Table 4.1: Accuracy of different error correction algorithms.

4.5.2 Error correction accuracy

In de novo error correction, the accuracy of the algorithm is defined

as the ratio between the number of corrected reads and the number of reads

contain errors in the original data set. We compare our algorithm with other

error correction algorithms HiTEC and SHREC. The comparison result is

shown in Table 4.5.2. We can see the accuracy of the error correction can be

improved by 5% using our error correction scheme incorporating the quality

score information and the hypothesis testing procedure.

74



4.6 Conclusions and discussion

In this chapter, we consider the error correction problem in de novo

DNA sequence assembly. We develop an error correction algorithm utilizing

the quality information of the reads provided by the next-generation DNA

sequencing platform. The algorithm uses suffix array data structure to ef-

ficiently identify the repetitive regions between the short reads and correct

the erroneous bases by comparing it to the bases in other reads. A hypothesis

testing scheme is adopted to improve the support detection accuracy. The test

statistic based on the quality scores of certain fragments of the read is used to

test the correctness of the fragment. Experimental results show that the pro-

posed error correction algorithm has higher accuracy compared to traditional

algorithms.

In this chapter, we use an experimental approach, i.e., plotting the

empirical probability density function of p(S|H0) and p(S|H1), to calculate the

threshold θ used in the hypothesis testing. Whether there exists an analytical

form of these two functions can be further discussed to facilitate the usage of

the proposed error correction algorithm.

75



Chapter 5

Inferring Parameters of Gene Regulatory

Networks via Particle Filtering

5.1 Background

Gene regulatory networks (GRN) are systems comprising biomolecu-

lar components (genes, mRNA, proteins) that interact with each other and

through those interactions determine gene expression levels, i.e., determine

the rate of gene transcription to mRNA [61–63]. The signals in GRN are car-

ried by molecules. For instance, proteins which enable initiation of the gene

transcription to mRNA (so-called transcription factors) can be considered as

input signals. They bind to the so-called promoter regions adjacent to the

regulated gene and, in doing so, enable an RNA Polymerase to perform the

transcription. On the other hand, proteins that are translated from the mR-

NA can be considered as output signals. Some of the created proteins may

act as transcription factors themselves and upregulate or downregulate gene

expressions, i.e., activate or suppress the transcription process. This creates

feedback loops in the network which allow direct or indirect self-regulation. An

illustration of a possible segment of a regulatory pathway is shown in Fig. 5.1.

76



Figure 5.1: An illustration of a possible segment of a regulatory pathway.

Recent development of DNA and protein microarrays sparked a surge

of interest in studying gene regulatory mechanisms. The excitement is due to

the capability of the microarrays to conduct simultaneous tests of an entire

genome of an organism. By testing a number of biological samples taken over

a period of time, one can track the network dynamics. The experimental ad-

vances have been accompanied by the theoretical developments in modeling

and computational studies of the networks. Combination of these research

efforts provides critical information about the functionality of cells and organ-

isms, reveals mechanisms of genetic diseases, enables optimization of diagnostic

techniques and therapies, and provides aid in the process of drug discovery.

To enable the analysis of gene regulatory networks, we need accurate

77



yet tractable models capturing their dynamical behavior. The molecular inter-

actions in gene regulatory networks are inherently stochastic. For instance, the

number of created proteins is a random variable due to thermal fluctuations

in a cell which cause promotors to randomly switch between an active and a

repressed state. The fluctuations in the number of proteins are enhanced by

the protein degradation which is a stochastic process itself. This, along with

several other sources of randomness, call for probabilistic modeling of gene

regulatory networks. However, a very detailed description of a network may

be difficult to analyze and often requires considerable computational efforts.

Hence, several models with varying degree of accuracy and complexity have

been proposed. These models rely on representations via chemical master

and chemical Langevin equations [64, 66, 67], ordinary differential equations

[68, 69], Bayesian [70, 71] and Boolean [63, 72] networks. Having selected one

of the above models, we are interested in finding its structure and parameters

that provide the best explanation of the experimental data. This requires fur-

ther computational studies and opens up questions related to, e.g., stability

and control of the network. However, inference problems in gene regulatory

networks are often challenging, and the difficulty of a problem increases with

the complexity of the model and the size of the network.

In this chapter, we consider models of GRN based on chemical mas-

ter equations, and study the problem of estimating stochastic rate constants

therein. Such models provide the most precise description of the network

processes; however, they are also computationally the most demanding. We

78



limit our focus on small-sized networks with a known structure but unknown

rate constants. We approximate a chemical master equation by a related

chemical Langevin equation [17], and employ a particle filter with the Markov

Chain Monte Carlo move step to solve the rate estimation problem. Simula-

tion studies demonstrate that the proposed technique outperforms previously

considered methods while being computationally more efficient. Dynamic be-

havior of gene regulatory networks averaged over a large number of cells can

be modeled by ordinary differential equations. For this scenario, we compute

an approximation to the Cramer-Rao lower bound on the mean-square error of

estimating reaction rates and demonstrate that, when the number of unknown

parameters is small, the proposed particle filter can be nearly optimal.

The chapter is organized as follows. Section 5.3 describes the chemical

master equation model of a gene regulatory network and its approximation

by a chemical Langevin equation. Section 5.4 presents the particle filtering

algorithm for the estimation of the stochastic rate constants, and compares its

performance with prior work. In Section 5.5, a deterministic model based on

ordinary differential equations is described, and the Cramer-Rao lower bound

on the performance of estimating rate constants is computed. Finally, we

conclude the chapter in Section 5.6.

5.2 Contributions

In this chapter, a particle filter with Markov Chain Monte Carlo move

step is employed for the estimation of reaction rate constants in gene regula-

79



tory networks modeled by chemical Langevin equations. Simulation studies

demonstrate that the proposed technique outperforms previously considered

methods while being computationally more efficient. Dynamic behavior of gene

regulatory networks averaged over a large number of cells can be modeled by

ordinary differential equations. For this scenario, we compute an approxima-

tion to the Cramer-Rao lower bound on the mean-square error of estimating

reaction rates and demonstrate that, when the number of unknown parameters

is small, the proposed particle filter can be nearly optimal.

5.3 Models Based on Chemical Master and Chemical
Langevin Equations

Consider a GRN comprising N molecular components. The network

variables are the numbers of the molecules of each of the N species; gener-

ally, we are interested in the temporal changes of these variables. Denote

the number of molecules of the ith network component at time t by xi(t);

for convenience, collect the xi(t) into a vector X(t), i.e., denote X(t) =

[x1(t) . . . xN(t)]
T . Molecular reactions in a GRN are subject to significant

spontaneous fluctuations. Consequently, the numbers of the molecular species

xi(t) are inherently stochastic processes. We can model X(t) as a Markov pro-

cess with discrete states, where the time evolution of the state probabilities

P (X, t) is given by the chemical master equation, ∂P (X,t)
∂t

=

M∑
m=1

[am(X − Vm)P (X − Vm, t)− am(X)P (X, t)] . (5.1)

80



In (5.1), M denotes the total number of reactions that are possible with-

in the network (i.e., the number of the so-called reaction channels), Vm =

[vm1 vm2 . . . vmN ]
T is the vector describing change in the number of molecules

of each of the N species due to the reaction in the mth reaction channel (e.g.,

vmi is the change, either positive or negative, in the number of molecules of

the ith network component due to the reaction in the mth channel). Moreover,

am(·) in (5.1) is the so-called propensity function, i.e., am(·)dt is the probabil-

ity that during time interval (t, t+ dt) there is a reaction in the mth channel.

The propensity function can further be expressed as am(X(t)) = cmhm(X(t)),

where cmdt is the probability that one reaction takes place in (t, t + dt) and

hm(X(t)) denotes the number of possible simultaneous reactions1. The chem-

ical master equation is often used to simulate the Markov process X(t) and

enable computational studies of GRN. To this end, one may employ various

stochastic simulation algorithms, originally proposed by Gillespie [64].

The model (5.1) provides a very accurate description of the network

dynamics [64]. However, since it tracks individual discrete events, it is often

cumbersome for practical purposes. For instance, relying on (5.1) to infer

the parameters of the network (i.e., the stochastic rate constants cm) may

in principle be possible [73]; however, it is computationally rather intensive

to do so. Therefore, simplified network models are desirable. Under certain

assumptions (e.g., large xi(t), small dt), we may approximate (5.1) by the

1The coefficients cm are often referred to as the stochastic rate constants. The func-
tion hm(X(t)) counts all possible combinations of individual molecules that may lead to a
reaction in the mth channel.

81



chemical Langevin equation, X(t+ dt)−X(t) =

M∑
m=1

[
Vmam(X(t))dt+ Vm

√
am(X(t))dtNm(0, 1)

]
, (5.2)

where Nm(0, 1) denote zero-mean, unit-variance, independent, identically dis-

tributed (iid) Gaussian random variables. By collecting vectors Vm into a

stoichiometry matrix S = [V1 V2 . . . VM ], we can write (5.2) as

X(t+ dt)−X(t) = Sa(X(t))dt+ (SA(X(t))ST )1/2dW, (5.3)

where dW denotes anM -dimensional Wiener process, vector a(X(t)) is defined

as

a(X(t)) = [a1(X(t)) a2(X(t)) . . . aM(X(t))]T ,

and where

A(X(t)) = diag {a1(X(t)), a2(X(t)), . . . , aM(X(t))}.

We should point out that while the chemical Langevin equation (5.2) may be

used as a network model for the purpose of parameter estimation, in general

it is not sufficiently accurate to provide reliable simulations of the network

dynamics. To conduct computational studies of a GRN, we still need to model

them using stochastic simulation algorithms.

Let us write the chemical Langevin equation (5.3) using the notation

typically encountered in the literature on stochastic differential equations,

X(t+ dt)−X(t) = µ(X(t),θ)dt+ σ(X(t),θ)dW, (5.4)

82



where µ(X(t),θ) = Sa(X(t)) denotes the drift, and σ(X(t),θ) = (SA(X(t))ST )1/2

is the diffusion, and θ is the vector of (generally unknown) parameters (i.e.,

the elements of θ are the stochastic rate constants ci). Our goal is to infer

θ from X(t) observed at discrete time instances ti = i∆, 1 ≤ i ≤ L, where

L denotes the total number of observations. Assuming zero-mean Gaussian

measurement noise with covariance matrix Σ, the collected observations have

normal distribution of the form

yi = y(i∆) ∼ N(X(i∆),Σ).

In [74], the authors find the best linear-model fit to the data presumed to

be generated by (5.4), and then infer parameters based on the derived linear

model. In [75, 76], the use of statistical mechanics tools for the estimation

of the parameters of a network modeled by (5.4) was considered. In [77, 78],

a Markov Chain Monte Carlo (MCMC) algorithm was employed to infer the

network parameters. This approach provides sound estimate of the parameters

but it requires a very high computational effort. As an alternative, we propose

the use of a particle filter with an MCMC move step. This we describe in the

next section.

5.4 Particle Filter with Markov Chain Monte Carlo move
step

We consider Bayesian approaches to inferring the unknown parame-

ters in θ, which is treated as a random vector with a prior p(θ). Specifi-

cally, we rely on particle filtering methods to infer the posterior distribution

83



p(θ|y1:N), and then find the estimate θ̂ as the conditional mean of p(θ|y1:N).

Here y1:N = {y1, y2, . . . , yN} denotes the set of observations collected in the

interval [∆, N∆], where ∆ denotes the sampling period and N denotes the to-

tal number of observations (e.g., yn is the noisy observation collected at time

n∆). The desired posterior distribution can be expressed as

p(θ|y1:N) =
∫
p(x1:N ,θ|y1:N)dx1:N ,

where x1:N = {x1, x2, . . . , xN} denotes the set of points of the process X(t) cor-

responding to the observations in y1:N (e.g., xn = X(n∆)), and p(x1:N ,θ|y1:N)

is given by

p(x1:N ,θ|y1:N) ∝ p(y1:N |x1:N ,θ)p(x1:N |θ)p(θ). (5.5)

To evaluate (5.5), one needs to compute the joint density

p(x1:N |θ) = p(xN |xN−1,θ) . . . p(x2|x1,θ)p(x1|θ).

In general, however, the transition densities

p(xn+1|xn,θ) = p(X((n+ 1)∆)|X(n∆),θ)

for the process (5.4) are not available in a closed form. The stochastic dif-

ferential equation (5.4) can be discretized using the Euler-Maruyama scheme

as

xn+1 = xn + µ(xn,θ)∆ + σ(xn,θ)δW,

where δW denotes a zero-mean Gaussian distribution with covariance ∆I, and

I denotes the identity matrix. Hence the transition density p(xn|xn−1,θ) can

84



be approximated by a Gaussian distribution with mean xn + µ(xn,θ)∆ and

covariance σ(xn,θ)(σ(xn,θ))
T∆. However, the Euler-Maruyama approxima-

tion of the transition density is accurate only when ∆ is small. If the sampling

period is not sufficiently small, one can introduce the so-called missing values

z1:m = {z1, z2, . . . , zm} which emulate the diffusion process between xn and

xn+1 (a distinct set of missing values is introduced for each n). The number

of augmented missing values m is chosen such that the Euler-Maruyama ap-

proximation of the transition density between zk and zk+1 is accurate, i.e., m

is chosen such that p(zk+1|zk,θ) can be closely approximated by a Gaussian

distribution. It is straightforward to show that

π̃(zj|zj−1,θn−1, yn) = N(zj−1 + ψ
∆

m
, γ

∆

m
), (5.6)

where ψ = µ+ β(β∆j +Σ)−1(yn− [xn−1 + µ∆j]), γ = β − β(β∆j +Σ)−1βT ∆
m
,

µ = Sa(xn−1), β = SA(xn−1)S
T , ∆j = (m − j + 1)∆

m
, and Σ denotes the

covariance matrix of the measurement noise.

Introduction of the missing values enables propagating (5.5) by means

of a particle filter, where the filter relies on a Gaussian importance densi-

ty (5.6). A simple sequential importance resampling (SIR) scheme provides

asymptotically consistent estimates, i.e., the approximation converges to the

true value of the parameters as the number of particles grows. However, the

SIR scheme often suffers from sample impoverishment and, therefore, has weak

performance. To improve the sample diversity and the performance of the par-

ticle filter, we employ the importance sampling scheme with an MCMC move

85



step. Specifically, we use the Metropolis-Hastings algorithm to decide whether

a resampled particle will be accepted or not. For implementation details, we

refer the reader to the formal algorithm given below:

1. (Initialization) Set n = 1. Draw {θi
n, x

i
n}Ns

i=1 from the prior density π(θ)π(xn).

Assign particle weights ωi
n = π(yn|xin,θi

n), for i = 1, 2, ..., Ns, and normalize

them.

2. (Iterations) For n ≥ 2:

2.1 For i = 1, ..., Ns, draw missing data {zik}mk=1 from an importance density

q(z1, . . . , zm|θi
n−1, x

i
n−1, yn)

obtained using the Euler approximation as

π(z1|xin−1)
m∏
j=2

π̃(zij|zij−1,θ
i
n−1, yn),

where π̃(zij|zij−1,θ
i
n−1, yn) =

N(zij−1 + ψ
∆

m
, γ

∆

m
),

ψ = µ+ β(β∆j +Σ)−1(yn − [xin−1 + µ∆j]), γ = β − β(β∆j +Σ)−1βT ∆
m
,

µ = Sa(xin−1), β = SA(xin−1)S
T , ∆j = (m− j + 1)∆

m
.

Set xin = zim and update the particle weights as

ωi
n = ωi

n−1π(yn|xin,θi
n−1)π(z

i
1|xin−1,θ

i
n−1)

×

m∏
j=2

π(zij|zij−1,θ
i
n−1)

q(z1, ..., zm|θi
n−1, x

i
n−1, yn)

.

86



2.2 (Normalization) Normalize the weights ωi
n, and compute Neff = 1

Ns∑
k=1

(ωk
n)

2

.

2.3 (Resampling) If Neff < Nthreshold,

{θi∗
n , x

i∗
n ,

1
Ns
}Ns
i∗=1 = Resample({θi

n, x
i
n, ω

i
n}Ns

i=1).

2.4 (Resample move) If resampling is performed in step 2.3, then for i =

1, ..., Ns:

(a) Draw a candidate θ∗ from a kernel density K(θ) = N(θi
n, hoptS),

where S is the empirical covariance of θ in the previous step and hopt is

the smoothing parameter.

(b) Draw missing data {zik∗}mk∗=1 from an importance density

q(z1∗, ..., zm∗|θ∗, x
i
n−1, yn)

and set xin∗ = zim∗.

(c) Calculate the Metropolis-Hastings acceptance rate

α =
π(yn|xin∗,θ∗)π(z1∗|xin−1,θ∗)

π(yn|xin,θi
n)π(z

i
1|xin−1,θ

i
n−1)

×

m∏
j=2

π(zij∗|zi(j−1)∗,θ∗)

m∏
j=2

π(zij|zij−1,θ
i
n−1)

q(z1, ..., zm|θi
n−1, x

i
n−1, yn)

q(z1∗, ..., zm∗|θ∗, xin−1, yn)
.

(d) Set (θi
n, x

i
n) = (θ∗, x

i
n∗) with prob. min{1, α}.

87



5.4.1 Computational study of a viral infection network

We demonstrate the performance of the proposed algorithm on a viral

infection network previously studied in [81, 83]. The network comprises 6

reaction channels,

R1 : DNA+ P → V,
R2 : DNA→ RNA+DNA,
R3 : RNA→ ∅,
R4 : RNA→ DNA+RNA,
R5 : RNA→ P +RNA,
R6 : P → ∅,

where P denotes viral protein molecules, and V denotes synthesized viral cells.

Reaction R1 is the process of producing viral cells from the viral DNA and

protein. Reactions R2 and R5 are the transcription and translation process of

the viral genes, respectively. Reaction R4 models replication of a viral RNA

template into a viral DNA.

For the purpose of parameter estimation, we assume that the above

network evolves according to (5.3). However, the network is simulated vi-

a the Gillespie’s algorithm, with the rate constants set to [c1 c2 c3 c4 c5 c6]
T

= [11.25 × 10−3 0.25 0.5 1 2 1]T . We refer to the proposed particle filtering

algorithm with MCMC move step as Alg.1, and employ it to estimate parame-

ters in this network. The performance of the Alg.1 is compared to the MCMC

method proposed in [78], denoted for convenience as Alg.2. Alg.1 is performed

with Ns = 2 × 104, m = 15, and the resampling threshold Nthreshold = Ns/2.

Both algorithms use N = 40 noisy observations of the network states, and

employ the same initial sample distribution. The log-values of the parameters

88



10
−2

10
0

0

1

2
x 10

−6 c
1

M
S

E

10
−2

10
0

0

0.05

0.1

c
2

10
−2

10
0

0

0.1

0.2

c
3

M
S

E

10
−2

10
0

0

0.02

0.04

c
4

10
−2

10
0

0

0.5

1

c
5

M
S

E

10
−2

10
0

0

0.2

0.4

c
6

 

 

PF
MCMC

Figure 5.2: The mean-square-error performance comparison between Alg.1
(particle filter) and Alg.2 (MCMC) as a function of the variance of the ob-
servation noise σ2 (Ns = 2× 104, m = 15, N = 40, Σ = σ2I).

log(θi) are initialized from the uniform distribution U(−4, 2), and the noise

variance is assumed to be known. [Note that even though c1 does not belong

to the initialization range, the proposed technique accurately infers its val-

ue.] Fig. 5.4.1 compares the mean-square-error of estimating the parameters

of the viral infection network using Alg.1 and Alg.2, obtained by performing

150 simulation runs. Clearly, the proposed Alg.1 outperforms Alg.2, while

being roughly 5 times faster – the average running time of Alg.1 is 1030 sec-

onds, while the average running time of Alg.2 is 5500 seconds (simulations in

Matlab).

89



5.4.2 Computational Study of Procaryotic Regulation

In this subsection, we illustrate the performance of the proposed al-

gorithm when employed for estimating reaction rates in a network with 12

parameters. In particular, we consider estimation of the reaction rates in a

GRN model of procaryotic auto regulation. The system is characterized by

the following 12 reactions [78]:

R1 : P1 +DNA1 → P ·DNA1,
R2 : P ·DNA1 → P1 +DNA1,
R3 : P1 +DNA2 → P ·DNA2,
R4 : P ·DNA2 → P1 +DNA2,
R5 : DNA1 → DNA1 +RNA1,
R6 : RNA1 → RNA1 + P1,
R7 : DNA2 → DNA2 +RNA2,
R8 : RNA2 → RNA2 + P2,
R9 : RNA1 → ∅,
R10 : RNA2 → ∅,
R11 : P1 → ∅,
R12 : P2 → ∅.

Reactions R1 ∼ R4 represent the reversible processes of repressor protein P1

binding to DNA1 and DNA2. Reactions R5 ∼ R8 are the transcription and

translation processes of genes DNA1 and DNA2. Reactions R9 ∼ R12 repre-

sent the degradation process of proteins and mRNAs in the system. The state

vector X collects the numbers of components DNA1, DNA2, RNA1, RNA2,

P1, and P2, and hence is a 6-dimensional state vector.

Similar to the study of the viral infection network in the previous sub-

section, to infer the reaction rates we assume that the above network evolves

according to (5.3). However, the network is simulated via the Gillespie’s algo-

90



Alg.1 Alg.2(1) Alg.2(2)
c1 0.08 0.0707 0.0443 0.0869
c2 0.82 0.8219 0.6726 0.7134
c3 0.09 0.0597 0.1121 0.0650
c4 0.9 0.5625 1.3913 0.5943
c5 0.25 0.3283 0.1826 0.2862
c6 0.1 0.1195 0.5800 0.0469
c7 0.35 0.2875 0.9009 0.2561
c8 0.3 0.4167 0.8943 0.3577
c9 0.1 0.1197 0.1573 0.0985
c10 0.1 0.1432 0.5097 0.2943
c11 0.12 0.1178 1.2766 0.0984
c12 0.1 0.1384 0.1669 0.1232

time(s) 5.9× 104 5.3× 104 2.5× 105

Table 5.1: True and estimated parameters for the two algorithms. Alg.2(1)
employs 2× 105 MCMC iterations and Alg.2(2) employs 106 iterations.

rithm. In particular, we generate N = 30 noisy observations yn, 1 ≤ n ≤ 30,

where the measurement noise is Gaussian with σ2 = 1 (i.e., the noise variance

matrix is Σ = I). The particle filter (our Alg.1) is performed withNs = 2×105,

m = 20, and the resampling threshold Nthreshold = Ns/5. The log-values of the

parameters log(θi) are initialized from the uniform distribution U(−5, 1).

The reaction rates are inferred as the mean values of the distributions

estimated by the particle filter. True values of the parameters and their esti-

mates are shown in Table 5.4.2. When Alg. 2 is performed with m = 20 and

2× 105 MCMC iterations with a 3× 104 burn-in period, the runtime of Alg.1

and Alg.2 is comparable but the former is significantly more precise than the

latter. In order to achieve similar performance, Alg.2 requires significantly

91



higher complexity (106 MCMC iterations with a 3× 104 burn-in period).

5.5 A Deterministic Model of Gene Regulatory Net-
works

In reaction systems where both the number of molecules and the system

volume are large, due to averaging the system dynamics can be described by a

deterministic model. The same applies to modeling the dynamic behavior of a

gene regulatory network averaged over a large number of cells. A deterministic

model based on ordinary differential equations (ODE) is of the form [17, 65]

dx(t)

dt
= Sa(x(t),θ), (5.7)

where x(t) comprises real-valued and deterministic variables. On the other

hand, the observation process is assumed to be corrupted by a Gaussian noise

and hence the measurements are given by

y(t) = x(t) + v(t). (5.8)

Typically, observations are collected at discrete time instances ti = i∆, 1 ≤

i ≤ L, where L denotes the total number of observations. Therefore,

y(i∆) = x(i∆) + v(i∆), 1 ≤ i ≤ L, (5.9)

where E{v(i∆)v(j∆)T} = σ2
vINδij.

To facilitate a simple estimation procedure, (5.7) can be discretized as

x((i+ 1)∆)− x(i∆) = ∆ · Sa(x(i∆),θ), i = 1, . . . , L− 1. (5.10)

92



−1 −0.5 0 0.5 1
0.006
0.008

0.01
0.012
0.014
0.016

c
1

−1 −0.5 0 0.5 1
0

0.2

0.4

c
2

−1 −0.5 0 0.5 1
0

0.5

1

c
3

−1 −0.5 0 0.5 1
0.5

1

1.5

c
4

−1 −0.5 0 0.5 1
0

2

4

c
5

log
10

(σ2)

−1 −0.5 0 0.5 1
0

1

2

c
6

log
10

(σ2)

Figure 5.3: The mean and standard error of the particle filter estimator for the
inference of reaction rates in a viral infection network, shown as a function of
the variance of the observation noise (the number of particles used is Ns = 104,
performance is averaged over 150 simulation runs).

93



It was pointed out in [80] that, under appropriate conditions, discretization

induces smaller error than the measurement noise. In general, we assume that

∆ ≪ σ2. To estimate the unknown parameters θ in (5.10), we employ the

particle filtering with MCMC step (i.e., Algorithm 1 in Section 5.4). Since

the state transitions in the model (5.10) are deterministic (and not random,

as in (5.3)), some of the steps of Alg.1 simplify. In particular, Step 2.1 of

Algorithm 1 can be simplified in the following way: for each particle, instead

of drawing a series of missing data {zik}mk=1 from an importance distribution,

we deterministically generate them from the previous state xin−1 as

zi1 = xin−1 +
∆

m
· Sa(xi

n−1,θ
i
n−1),

zik = zik−1 +
∆

m
· Sa(zik−1,θ

i
n−1), k = 2, . . . ,m

and xin = zim. The weights updating equation becomes

ωi
n = ωi

n−1π(yn|xin,θi
n−1).

Moreover, the Metropolis-Hastings acceptance rate is simplified to

α =
π(yn|xin∗,θ∗)

π(yn|xin,θi
n)
.

Other steps of Algorithm 1 remain unchanged.

5.5.1 Cramer-Rao lower bound on the mean-square error of esti-
mating reaction rates

Mean-square error of any estimation procedure can be bounded below

by the Cramer-Rao lower bound (CRLB) [79]. In this section, we compute the

94



CRLB on the estimation of reaction rates in the network described by (5.7),

(5.9). Collect the observations y(i∆), i = 1, 2, . . . , L, into a vector

y = [y(∆)T y(2∆)T . . . y(L∆)T ]T .

The Cramer-Rao lower bound on the minimum mean-square error of estimat-

ing a parameter θi given y is computed as

E
(
θ̂i − θi

)2
≥ [F−1]ii, (5.11)

where the Fisher information matrix F is given by the negative of the expected

value of the Hessian matrix of log p
y|θ(y),

Fij = −Ey
∂2

∂θi∂θj
log p

y|θ(y). (5.12)

From (5.9), it follows that y is a Gaussian vector with mean ȳ(i∆) = x(i∆)

and covariance R = σ2
vINL. Thus we have

p
y|θ(y) =

1√
(2π)NL|R|

exp[−1

2
(y − ȳ)TR−1(y − ȳ)].

Following a similar derivations in [82], we obtain

Fij =

(
∂ȳ

∂θi

)T

R−1

(
∂ȳ

∂θj

)
+

1

2
tr

{
R−1∂R

∂θi
R−1 ∂R

∂θj

}
. (5.13)

Since R is known, ∂R/∂θi = 0, and thus

Fij =

(
∂ȳ

∂θi

)T

R−1

(
∂ȳ

∂θj

)
. (5.14)

Therefore, only ∂ȳ/∂θi is needed to evaluate Fij. From (5.8), it follows that

ȳ(t) = x(t). Moreover, since am(x(t)) = θmhm(x(t)), we can write

a(ȳ(t)) = diag {θ}H(ȳ(t)),

95



4 6 8 10 12 14 16 18
−10

−5

0

c
1

lo
g 10

(M
S

E
)

4 6 8 10 12 14 16 18

−4

−2

0

2

c
2

4 6 8 10 12 14 16 18
−4

−2

0

2

c
3

lo
g 10

(M
S

E
)

4 6 8 10 12 14 16 18

−4

−2

0

c
4

4 6 8 10 12 14 16 18
−4

−2

0

c
5

lo
g 10

(M
S

E
)

number of observations
4 6 8 10 12 14 16 18

−4

−2

0

c
6

number of observations

 

 

CRLB
PF

Figure 5.4: The CRLB and the average mean-square error of the particle fil-
tering algorithm (the number of particles Ns = 104, noise covariance matrix
Σ = I).

where H(ȳ(t)) = [h1(ȳ(t)) h2(ȳ(t)) . . . hM(ȳ(t))]T . Taking derivatives of both

side of (5.10), we obtain

∂ȳ((i+ 1)∆)

∂θm
=

∂ȳ(i∆)

∂θm
+∆ · S · EiH(ȳ(i∆))

+ ∆ · Sdiag {θ}∂H(ȳ(i∆))

∂θm
, (5.15)

where Ei denotes theM×M matrix with all zero entries except the (i, i) entry

which is equal to 1.

Notice that ∂hi(ȳ(i∆))/∂θm are functions of ȳ(i∆) and ∂hi(ȳ(i∆))/∂θm;

therefore, we can recursively calculate ∂ȳ((i+ 1)∆)/∂θm from ∂ȳ(i∆)/∂θm and

ȳ(i∆). The value of ȳ(t)s can be obtained by numerically solving (5.7) (e.g.,

96



using Mathematica). This enables computation of ∂ȳ/∂θm and, therefore, the

desired CRLB. [Note: the CRLB computed in this section assumes the dis-

cretized model (5.10); as ∆→ 0, it approaches the true bound on estimating

θ in (5.7).]

5.5.2 Computational study of a viral infection network

We illustrate the performance of the particle filter and compare it with

the computed CRLB for the case of the viral infection network studied in

Section 3.1. We assume that the network evolves according to the ODE model

described in this section. The rate constants associated with reactions are, as

before, [c1 c2 c3 c4 c5 c6]
T = [11.25 × 10−3 0.25 0.5 1 2 1]T . We apply the

modified version of Algorithm 1 described in this section to estimate the rate

constants, and evaluate the corresponding CRLB. Note that, in this example,

the stoichiometry matrix is given by

S =


1 0 0 0 0 0
0 1 −1 0 0 0
−1 0 0 1 0 0
−1 0 0 0 1 −1

 ,
and hence

∂H(ȳ(i∆))

∂cm
=



∂ȳ3(i∆)
∂cm

ȳ4(i∆) + ȳ3(i∆)∂ȳ4(i∆)
∂cm

∂ȳ3(i∆)
∂cm

∂ȳ2(i∆)
∂cm

∂ȳ2(i∆)
∂cm

∂ȳ2(i∆)
∂cm

∂ȳ4(i∆)
∂cm


.

Fig. 5.4.2 shows the mean and standard error of inferring the reaction

97



rates using the proposed estimator, shown as a function of the variance of the

observation noise (discretization time ∆ = 0.1, the number of particles Ns =

10000, the noise variance σ2 = 1). Several of the parameters are estimated very

accurately (e.g., c1, c4), while others have relatively large mean-square-error

(e.g., c2, c6). Fig. 5.5.1 compares the estimation mean-square error with the

corresponding CRLB, plotted as a function of the number of measurements

N used for the estimation. As indicated in Fig. 5.5.1, the estimator performs

close to the CRLB for several of the parameters (e.g., c2, c3), while for other

parameters there is room for improvement.

5.6 Conclusions

In this chapter, we studied the problem of estimating reaction rates in a

gene regulatory network modeled by a chemical Langevin equation, i.e., a high-

dimensional stochastic differential equation. We proposed a solution which

employs a particle filtering algorithm with Markov Chain Monte Carlo move

step. Extensive simulation studies demonstrated that the proposed technique

requires less computational complexity to achieve performance comparable

to previously proposed methods. Moreover, we considered the deterministic

description of the average network dynamics based on an ordinary differential

equation model. For this scenario, we computed an approximate Cramer-Rao

lower bound on the mean-square error of the estimation and demonstrated

that, for some of the parameters, the proposed particle filter can be nearly

optimal. The computed CRLB is indicative of the number of data points (i.e.,

98



the number of experiments) required to achieve a desired accuracy of inferring

reaction rates. Further studies are needed to enable near-CRLB performance

in the scenario of estimating a large number of unknown parameters.

99



Chapter 6

Summary and conclusions

6.1 Summary of main results

The work presented in this thesis was motivated by the advancements of

next-generation sequencing technologies and their related applications. These

technologies enabled inexpensive and rapid generation of vast amounts of se-

quencing data. At the same time, high-throughput sequencing technologies

present us with the challenge of processing and analyzing large data sets that

they provide. We considered various problems in the data processing pipeline

– base-calling, sequence assembly, and error correction – and developed new

algorithms improving the efficiency and accuracy of data analysis. The main

contributions of this thesis is summarized as follows.

• In Chapter 2, we considered the base-calling problem in Illumina’s se-

quencing platform. We presented a particle filtering (i.e., sequential

Monte Carlo) base-calling algorithm that we referred to as ParticleCall.

It is based on a Hidden Markov Model (HMM) representation of the sig-

nal acquired by Illumina’s sequencing-by-synthesis platforms. We also

developed an new EM (PFEM) algorithm relying on the samples gener-

ated from particle filters to improve the speed of parameter estimation

100



in base-calling.

• In Chapter 3, we focused on the reference-guided DNA sequence assem-

bly problem. We formulated this problem as the inference of the genome

sequence on a bipartite graph and solved it using a message-passing al-

gorithm. We showed that the proposed algorithm can be interpreted as

the classical belief propagation under a certain prior. A binary reformu-

lation of the problem led to an alternative solution in the form of another

message passing algorithm that is closely related to the power iteration

method. The performance of the message passing assembly algorithm

is close to a genie-aided maximum a posteriori (MAP) sequence assem-

bly scheme which is an idealized assembler with perfect quality score

information and error-free mapping of the reads to their locations.

• In Chapter 4, we turned to the error correction problem in de novo

sequence assembly. We presented a new error correction algorithm uti-

lizing the base quality information provided by the next-generation DNA

sequencing platform. The algorithm uses suffix array data structure to

efficiently identify the repetitive regions between the short reads and

correct the erroneous bases by comparing them with the bases in other

reads. We developed a hypothesis testing scheme to improve the de-

tection accuracy. Experimental results showed that the proposed error

correction algorithm has higher accuracy compared to traditional algo-

rithms.

101



• In Chapter 5, we considered an application in gene regulatory networks.

We studied the problem of estimating stochastic rate constants therein.

We approximated a chemical master equation description of gene regula-

tory networks by a related chemical Langevin equation and developed a

particle filter algorithm with the Markov Chain Monte Carlo move step

to solve the rate estimation problem. The algorithm can also be applied

to ordinary differential equation models, which captures dynamic be-

havior of gene regulatory networks averaged over a large number of cells.

For these models, we computed an approximation to the Cramer-Rao

lower bound on the mean-square error of estimating reaction rates and

demonstrated that, when the number of unknown parameters is small,

the proposed particle filter can be nearly optimal.

6.2 Discussion and future directions

In the HMM we used in ParticleCall, it is possible to incorporate pri-

or information on the transition probabilities between successive DNA bases,

i.e., the transition distribution over the successive rows of S. In practice, we

often do not have prior information about the transition probabilities, and

hence our scheme assumed that they are uniform (i.e., bases are independent).

However, it is straightforward to incorporate different transition matrix into

our algorithm with other settings unaltered. Further study using other data

sets is needed to examine the effect of incorporating prior information in this

algorithm.

102



In Chapter 4, we used the histograms from the benchmark data set to

approximate the conditional pdf of the test statistic S given the hypotheses.

It is possible to assume these conditional distributions are subject to certain

type of analytical forms such as Gaussian distribution and binomial distribu-

tions. Under these assumptions, an analytical form of the density functions

can be calculated and the choice of test threshold θ can be formalized as an

analytical calculation. However, whether this assumption is valid needs to be

further investigated using different data sets obtained from different sequenc-

ing platforms. The process to obtain the analytical form of the conditional

distribution can be further discussed.

In conclusion, we developed several Bayesian inference algorithms and

showed that they improve the efficiency and accuracy of data analysis in next-

generation DNA sequencing tasks. Applying such techniques to other sequenc-

ing related problems such as RNA sequencing, genotyping, and problems in

metagenomics, are of great interest for future work.

103



Index

Abstract, vii

Acknowledgments, v

Bibliography, 115

Dedication, iv

104



Bibliography

[1] J. Shendure, H. Ji, “Next-generation DNA sequencing,” Nat Biotechnology,

vol. 26, pp. 1135-1145, 2008.

[2] M. Metzker, “Emerging technologies in DNA sequencing,” Genome Re-

search, vol. 56, pp. 1767-1776, 2005.

[3] D. Bentley, “Whole-genome re-sequencing,” Curr Opin Genet Dev, vol. 16,

pp. 545-552, 2006.

[4] R. Nielsen, J. Paul, A. Alvrechtsen and Y. Song, “Genotype and SNP

calling from next-generation sequencing data,” Nature Reviews, vol. 12,

pp. 443-451, 2011.

[5] H. Li, R. Durbin, “Fast and accurate short read alignment with Burrows-

Wheeler transform,” Bioinformatics, vol. 25, pp. 1754-1760, 2009.

[6] B. Langmead et al. “Ultrafast and memory-efficient alignment of short

DNA sequences to the human genome,” Genome Biology, vol. 10, 2009.

[7] J. Butler, I. MacCallum, M. Kleber, I. Shlyakhter, M. Belmonte, E. Lander,

C. Nusbaum and D. Jaffe, “ALLPATHS: de novo assembly of whole-genome

shotgun microreads,” Genome Research, vol. 18, no. 5, pp. 810-820, 2008.

105



[8] D. Zerbino and E. Birney, “Velvet: algorithms for de novo short read

assembly using de Bruijn graphs,” Genome Research, vol. 18, no. 5, pp.

810-820, 2008.

[9] M. Chaisson et al., “De novo fragment assembly with short mate-paired

reads: Does the read length matter” Genome Research, vol. 19, pp. 336-

346, 2009.

[10] J. Chen and S. Skiena, “Assembly for double -ended short-read sequencing

technologies,” Advances in Genome Sequencing Technology and Algorithm-

s, Artech House Publishers, pp. 123-141.

[11] X. Shen and H. Vikalo, “A sequential Monte Carlo base-calling method for

next-generation DNA sequencing,” 2011 IEEE International Workshop on

Genomic Signal Processing and Statistics (GENSIPS), pp. 121-122, 2011.

[12] X. Shen and H. Vikalo, “ParticleCall: A particle filter for base calling in

next-generation sequencing systems,” BMC Bioinformatics, vol. 13, July

2012.

[13] X. Shen and H. Vikalo, “A message passing algorithm for reference-guided

sequence assembly from high-throughput sequencing data,” 2012 IEEE In-

ternational Workshop on Genomic Signal Processing and Statistics (GEN-

SIPS), pp. 35-37, 2012.

[14] X. Shen, M. Shamaiah and H. Vikalo, “Message passing algorithm for

inferring consensus sequence from next-generation sequencing data,” 2013

106



IEEE International Symposium on Information Theory, pp. 1631-1634,

2013.

[15] X. Shen, M. Shamaiah and H. Vikalo, “Iterative Learning for Reference-

Guided DNA Sequence Assembly from Short Reads: Algorithms and Lim-

its of Performance,” arXiv preprint arXiv:1403.5686, 2014.

[16] X. Shen and H. Vikalo, “Inferring parameters of gene regulatory networks

via particle filtering,” EURASIP Journal on Advances in Signal Processing,

pp. 5:1-5:9, 2010.

[17] X. Cai and X. Wang, “Stochastic modeling and simulation of gene net-

works,” IEEE Signal Processing Magazine, vol. 24, no. 1, pp. 27-36,

2007.

[18] M. Fedurco, A. Romieu, S. Williams and et al., “BTA, a novel reagent for

DNA attachment on glass and efficient generation of solid-phase amplified

DNA colonies,” Nucleic Acids Res, vol. 34, no. 3, 2006.

[19] G. Turcatti and A. Romieu and M. Fedurce and et al., “A new class of

cleavable fluorescent nucleotides: synthesis and optimization as reversible

terminators for DNA sequencing by synthesis,” Nucleic Acids Res, vol. 36,

no. 4, 2008.

[20] C. Ledergerber and C. Dessimoz, “Base-calling for next-generation se-

quencing platforms,” Briefings in Bioinformatics, vol. 12, pp. 489-497,

2011.

107



[21] J. Rougemont, A. Amzallag, C. Iseli, L. Farinelli, I. Xenarios and F. Naef,

“Probabilistic base calling of solexa sequencing data,” BMC Bioinformat-

ics, vol. 9:431, 2008.

[22] Y. Erlich, P. Mitra, M. Delabastide, W. McCombie and G. Hannon, “Alta-

Cyclic: a self-optimizing base caller for next-generation sequencing,” Nat

Methods, vol. 5, pp. 679-682, 2008.

[23] W. Kao, K. Stevens and Y. Song, “BayesCall: A model-based base-calling

algorithm for high-throughput short-read sequencing,” Genome Research,

vol. 19, pp. 1884-1895, 2009.

[24] W. Kao, K. Stevens and Y. Song, “naiveBayesCall: an efficient model-

based base-calling algorithm for high-throughput sequencing,” Journal of

Computational Biology, vol. 18, pp. 365-377, 2011.

[25] O. Cappé, E. Moulines and T. Rydén, “Inference in hidden Markov mod-

els,” Springer Verlag, 2005.

[26] M. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle

filters,” Journal of the American Statistical Association, pp. 590-599, 1999.

[27] A. Doucet, S. Godsill and C. Andrieu, “On sequential Monte Carlo sam-

pling methods for Bayesian filtering,” Statistics and computing, vol. 10,

pp. 197-208, 2000.

108



[28] S. Kim, N. Shephard and S. Chib, “Stochastic volatility: likelihood in-

ference and comparison with ARCH models,” The Review of Economic

Studies, vol. 65, no. 3, pp. 361-393, 1998.

[29] M. Shamaiah, X. Shen and H. Vikalo, “Sequential Monte Carlo method

for parameter estimation in diffusion models of affinity-based biosensors,”

2011 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing, pp. 525-528, 2011.

[30] M. Shamaiah, X. Shen and H. Vikalo, “Estimating Parameters of Sampled

Diffusion Processes in Affinity Biosensors,” IEEE Transactions on Signal

Processing, vol. 60, pp. 3228-3239, 2012.

[31] J. Liu and R. Chen, “Sequential Monte Carlo methods for dynamic sys-

tems,” Journal of the American statistical association, pp. 1032-1044,

1998.

[32] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian nonlin-

ear state space models,” Journal of computational and graphical statistics,

pp. 1-25, 1996.

[33] J. Carpenter, P. Clifford and P. Fearnhead, “Improved particle filter for

nonlinear problems,” Radar, Sonar and Navigation, IEE Proceedings-, vol.

146, no. 1, pp. 2-7, 1999.

[34] A. Doucet and X. Wang, “Monte Carlo methods for signal processing: A

review in the statistical signal processing context,” IEEE Signal Processing

109



Magzine, vol. 22, pp. 152-170, 2005.

[35] S. Eddy, “Hidden Markov models,” Current Opinion in Structural Biolo-

gy, vol. 6, no. 3, pp. 361-365, 1996.

[36] A. Aktmann, P. Weber, et al. “A beginners guide to SNP calling from

high-throughput DNA-sequencing data,” Human Genetics, pp. 1-14, 2012.

[37] M. Shamaiah, “Algorithms and analysis for next generation biosensing

and sequencing systems,”PhD Thesis, 2012.

[38] R. Dalloul, et al. “Multi-platform next-generation sequencing of the do-

mestic turkey (Meleagris gallopavo): Genome assembly and analysis,” P-

LoS Biol, 8:e1000475, 2010.

[39] R. Li, et al. “The sequence and de novo assembly of the giant panda

genome,” Nature, vol. 463, pp. 311-317, 2010.

[40] R. Li, Y. Li, et al. “SNP detection for massively parallel whole-genome

resequencing,” Genome Research, vol. 19, pp. 1124-1132, 2009.

[41] H. Li, B. Handsaker, et al. “The Sequence Alignment/Map format and

SAMtools,” Bioinformatics, vol. 25, pp. 2078-2079, 2009.

[42] M. DePristo, E. Banks, R. Poplin, et al. “A framework for variation

discovery and genotyping using next-generation DNA sequencing data,”

Nature Genetics, vol. 43, pp. 491-498, 2011.

110



[43] D. Karger, S. Oh, D. Shah, “Iterative learning for reliable crowd-sourcing

systems,” in Proceedings of NIPS, 2011.

[44] D. Karger, S. Oh, D. Shah, “Budget-optimal Crowdsourcing using Low-

rank Matrix Approximation,” Communication, Control, and Computing

(Allerton), 2011 49th Annual Allerton Conference on. IEEE, 2011.

[45] J. Yedidia, W. Freeman, Y. Weiss, “Constructing free-energy approxima-

tions and generalized belief propagation algorithms,” IEEE Transactions

on Information Theory, vol 51, pp. 2282-2312, 2005.

[46] R. M. Durbin et al. “A map of human genome variation from population-

scale sequencing,” Nature 467 (7319), pp. 1061-1073, 2010.

[47] F. Kschischang, H. Loeliger, “Factor graphs and the sum-product algo-

rithm,” IEEE Transactions on Information Theory, vol. 47, 2001.

[48] X. Lin, S. Yacoub, J. Burns, and S. Simske, “Performance analysis of

pattern classifier combination by plurality voting,” Pattern Recognition

Letters, vol. 24, pp. 1959-1969, 2002.

[49] W. C. Kao, A. H. Chan, and Y. S. Song, “ECHO: a reference-free short-

read error correction algorithm,” Genome Research, vol. 21, no. 7, pp.

1181-92, 2011.

[50] G. Levitin, Universal Generating Function in Reliability Analysis and Op-

timization, Springer-Verlag, 2005.

111



[51] G. A. Churchill and M. S. Waterman, “The accuracy of DNA sequences:

Estimating sequence quality,” Genomics, vol. 14, pp. 89-98, 1992.

[52] DNASTAR: http://www.dnastar.com/t-sub-nextgen-genome-solutions-automated-

genome-closure.aspx

[53] T. Rausch, K. Sergey, et al. “A consistency-based consensus algorithm

for de novo and reference-guided sequence assembly of short reads,” Bioin-

formatics, vol. 25, no. 9, pp. 1118-1124, 2009.

[54] J. Schröder, H. Schröder, S. Puglisi, R. Sinha and B. Schmidt, “SHREC:

a short-read error correction method,” Bioinformatics, vol. 25, no. 17, pp.

2157-2163, 2009.

[55] L. Ilie, F. Fazayeli and S. Ilie, “HiTEC: accurate error correction in high-

throughput sequencing data,” Bioinformatics, vol. 27, no. 3, pp. 295-302,

2011.

[56] U. Manber and G. Myers, “Suffix arrays: a new method for on-line

search,” SIAM J. Comput., 2003.

[57] J. Karkkainen and P. Sanders, “Simple linear work suffix array construc-

tion,” in Proceedings of ICALP’03, 2003.

[58] D.K. Kim et al., “Constructing suffix arrays in linear time,” J. Discrete

Algorithms, vol. 3, pp. 126-142, 2005.

112



[59] T. Kasai et al., “Linear-time longest-common-prefix computation in suffix

arrays and its applications,” in Proceedings of CPM’01, 2001.

[60] Y. Mori,“libdivsufsort,”http://code.google.com/p/libdivsufsort/.

[61] W. F. Loomis and P. W. Sternberg, ”Genetic networks,” Science, pp:

269-649, 1995.

[62] D. Thieffry, ”From global expression data to gene networks,” BioEssays,

vol. 21, no. 11, pp: 895-899, 1999.

[63] R. Albert, ”Boolean modeling of genetic regulatory networks,” Complex

Networks, Springer-Verlag, 2004.

[64] D. T. Gillespie, ”Exact stochastic simulation of coupled chemical reac-

tion,” Journal of Physical Chemistry, vol. 81, no. 25, pp. 2340-2361,

1977.

[65] D. T. Gillespie, ”The chemical Langevin equation,” Journal of Chemical

Physics, vol. 113, no. 1, pp. 297-306, 2000.

[66] D. T. Gillespie, ”A rigorous derivation of the chemical master equation,”

Physica A, 188: 404-425, 1992.

[67] H. H. McAdams and A. Arkin, ”Stochastic mechanisms in gene expres-

sion,” Proceedings of the National Academy of Sciences, vol. 94, pp. 814-

819, 1997.

113



[68] T. Chen, H. L. He, and G. M. Church, ”Modeling gene expression with

differential equations,” Proceedings of Pacific Symposium on Biocomputing,

pp. 29-40, 1999.

[69] F. Grognard, H. de Jong, and J.-L. Gouze, ”Piecewise-linear models of ge-

netic regulatory networks: theory and examples,” Lecture notes in control

and information sciences (LNCIS), Springer-Verlag, 2007.

[70] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, ”Using Bayesian net-

works to analyze expression data,” J. Comput. Biol., vol. 7, 601, 2000.

[71] D. Heckerman, ”A tutorial on learning with Bayesian networks,” in Learn-

ing in Graphical Models, Kluwer, 1998.

[72] S. A. Kauffman, ”Metabolic stability and epigenesis in randomly con-

structed genetic nets,” J. of Theoretical Biology, vol. 22, pp: 437-467,

1969.

[73] R. J. Boys, D. J. Wilkinson, and T. B. L. Kirkwood, ”Bayesian inference

for a discretely observed stochastic kinetic model,” Statistics and Comput-

ing, vol. 18, no. 2, pp. 125-135, 2008.

[74] K.-C. Chen, et. al., ”A stochastic differential equation model for quan-

tifying transcriptional regulatory network in Saccharomyces cerevisiae,”

Bioinformatics, vol. 21, no. 12, pp: 2883-2890, 2005.

[75] J. Berg, ”Dynamics of gene expression and the regulatory inference prob-

lem” Europhys. Lett., vol. 82, 28010, 2008.

114



[76] A. Benecke, ”Gene regulatory network inference using out of equilibrium

statistical mechanics,” HFSP Journal, vol. 2, no. 4, pp: 183-8, 2008.

[77] A. Golightly and D. J. Wilkinson, ”Bayesian sequential inference for s-

tochastic kinetic biochemical network models,” Journal of Computational

Biology, 13(3), 838-851, 2006.

[78] A. Golightly, ”Bayesian Inference for Nonlinear Multivariate Diffusion

Processes,” Ph.D Thesis, Newcastle University, 2006.

[79] H. Cramer, ”Mathematical Models of Statistics”, Princeton University

Press, Princeton, NJ 1946.

[80] Z. Li and M. Osborne, ”Parameter estimation of ordinary differential

equations,” IMA Journal of Numerical Analysis, 25, 264-285, 2005.

[81] R. Srivastava, L. You, J. Summers, J. Yin, ”Stochastic vs. Deterministic

Modeling of Intracellular Viral Kinetics,” Journal of Theoretical Biology,

218, 2002.

[82] H. Vikalo, B. Hassibi, A. Hassibi, ”Limits of Performance of Quantitative

Polymerase Chain Reaction Systems”, IEEE Tran. on Information Theory,

Vol.56, No.2, 2010.

[83] J. Goutsias, ”Quasiequilibrium approximation of fast reaction kinetics in

stochastic biochemical systems,” Journal of Chemical Physics, 122, 2005.

115


