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Abstract

Background: Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR) is potentially more
powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher
sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions
about the stability of control genes directly into the model-fitting process.

Results: In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed
models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the joint
posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression
of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR
amplification process, and can also glean information from instances of no amplification (zero counts). Our method is very
flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly
incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete
absence of control genes. We also present a natural Bayesian analogue of the ‘‘classic’’ analysis, which uses standard data
pre-processing steps (logarithmic transformation and multi-gene normalization) but estimates all gene expression changes
jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta
Ct analysis based on pairwise t-tests.

Conclusions: Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the
lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions
concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R.
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Introduction

Real-time quantitative PCR [1] is a gold standard for

quantifying the abundances of nucleic acid targets (DNA or

RNA molecules of a particular sequence). One of its most common

implementations, quantitative reverse transcription-PCR (qRT-

PCR), is a gene expression quantification method extensively

applied to test specific hypotheses suggested by genome-scale

approaches (microarrays or RNA-seq), as well as for analyzing

diagnostic gene expression signatures in studies ranging from

medicine to ecology. Despite the widespread use of qRT-PCR, the

data processing and statistical analysis procedures are still in flux,

with many alternative approaches coexisting in the literature and

new methodologies continuously developed. One of the earliest

qRT-PCR analysis methods still very commonly used is relative

quantification using the 22DDCT (‘‘delta-delta Ct’’) method [2]. It

compares pairs of samples to see whether a target gene became

more or less abundant relative to the control gene, the expression

of which is assumed to be constant. This approach is attractive

because of its mathematical elegance and the ability to correct for

unequal amounts of biological material (‘‘template loading’’)

between samples by using the control gene as an internal standard.

As a disadvantage, however, it relies on pairwise comparisons of

samples and therefore makes it difficult to handle more elaborate

experimental designs, particularly involving interactions between

factors [3]. Furthermore, Pfaffl et al [4] pointed out an additional

complication: the need to account for the difference in efficiency of

amplification of the control and target gene. This problem was

addressed by replacing the original 22DDCT equation with a four-

story formula incorporating the efficiencies of PCR for control and

target gene [4]. These efficiencies (amplification factors per single

thermal cycle) are typically determined by qPCR analysis of

dilution series [4–6], although other methods, based on the

analysis of individual product accumulation curves, have been

suggested [7–10].

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e71448



The need to base qPCR analysis on dilution series data made

relative quantification practically equivalent to the other flavor of

qRT-PCR analysis, absolute quantification [11]. Under this

approach, the raw Cq (‘‘cycle of quantification’’) values are

transformed into concentrations of the target per qRT-PCR

reaction, based on the calibration curve constructed across a series

of known target concentrations. The efficiency of amplification is

implicitly taken into account during this conversion. Since in qRT-

PCR the knowledge of the absolute target amount is usually not as

important as the knowledge of its variation across samples, so-

called relative calibration curves, created by diluting an arbitrary

amount of target, are often used [12,13]. These relative calibration

curves provide essentially the same information as the calibration

curves for determining PCR efficiency [4]. To account for

variation in template loading across samples, the procedure called

normalization is performed where the inferred target amounts are

divided by the abundance of a control gene. In this way, all the

target abundances become expressed as fold differences relative to

the abundance of the control gene [14]. However, hardly any one

gene remains perfectly stable [15]. Vandesompele et al [16]

proposed that more accurate normalization could be achieved by

using multiple nearly-stable control genes: in this case, the target

abundances are divided by the geometric average of the control

gene abundances. The same paper also introduced a non-

parametric method, geNorm, for identification of the most stable

control genes based on covariance across samples, which quickly

became a standard in the qRT-PCR field [17]. Another

commonly used method for identifying stable genes is the

parametric NormFinder algorithm [18], which makes use of the

fact that the log-transformed qRT-PCR data satisfy the normality

criterion [19] and uses moments equations to calculate the stability

of each gene independently of other genes. Following normaliza-

tion, several authors used further parametric approaches such as

ANOVA [6,19] and linear mixed models [20–23], applied on a

gene-by-gene basis, to achieve maximum versatility in analysis of

complicated designs. The workflow involving correction for

amplification efficiency followed by multi-gene normalization

and gene-by-gene analysis with t-tests, ANOVA, or linear

modeling represents the current consensus of qRT-PCR data

processing [24].

We would draw an analogy with the literature on data analysis

for DNA microarrays. Here, it has been repeatedly argued that the

joint analysis of the whole dataset is more appropriate. Such an

approach can borrow information across multiple genes, improve

the precision of gene-specific estimates, and properly account for

complex experiment designs, as well as both biological and

technical replication [25]. In the qRT-PCR field, this approach

has been explored by Steibel et al [3], who developed a

parameter-rich linear mixed model to jointly estimate all the

gene-specific effects from non-normalized qRT-PCR data. The

most notable feature of this model is its inclusion of unobserved

random effects, common to all genes in a sample. These random

effects account for unequal template loading between samples,

thereby achieving a functional equivalent of normalization.

Despite the attractiveness of this approach, three major issues

remained unresolved. First, the approach of Steibel et al.

disregards heteroscedasticity, or the increase in sampling variance

at the lower end of target abundances. In this respect it is similar to

essentially all existing qPCR analysis pipelines: the statistical model

ignores the discrete nature of the amplification process. This

heteroscedasticity arises because qRT-PCR is fully capable of

amplifying just a few target molecules within each trial [26,27]. It

thus becomes prone to Poisson-like ‘‘shot noise’’ [28]. Second, the

method cannot easily derive information from PCR trials in which

the sample failed to amplify simply because it contained zero

target molecules. Finally, no solution was provided to directly

include information about control genes into the model-fitting

process.

Here, the mixed-modeling approach of Steibel et al is extended

to account for all these issues. First, a generalized linear mixed

model based on the Poisson-lognormal distribution replaces the

original Gaussian model. This properly handles zero counts, as

well as the shot-noise variance associated with low-abundant

targets. Second, the model fitting process involves a Bayesian

MCMC sampling scheme, and can directly incorporate informa-

tion about control genes in the form of priors. Our implementation

of the method leverages the MCMCglmm package in R [29] and

is presented in the form of a specialized R package, MCMC.qpcr.

Results

Motivating example
The dataset that was chosen for re-analysis addressed the effects

of heat-light stress and recovery in a reef-building coral Porites

astreoides [23]. Briefly, eight individual colonies of the coral were

fragmented into 4 pieces each and allowed to acclimate in

common benign conditions for four days. On the fifth morning,

two fragments of each colony were placed into a stressful

environment (elevated heat and light). At midday, when the stress

intensity was the highest, one stressed fragment and one control

fragment (remaining in the benign conditions) were sampled,

representing the first sampling timepoint. In the end of the same

day, the second stressed fragment was put back into the benign

environment for recovery. This fragment, along with the

remaining control fragment, was sampled at midday on the

following day (the second timepoint). Expression of 15 genes, 5 of

which were putative control genes, was assayed by qRT-PCR on

LightCycler 480 (Roche) with SYBR-based detection, corrected

for amplification efficiencies, normalized by the 3 genes that

proved to be most stable according to geNorm test [16], and

analyzed using linear mixed models applied on a gene-by-gene

basis [23].

This dataset is interesting from the analytical standpoint

because of three reasons. First, one of the main effects of interest

is the interaction term, Condition:Timepoint, describing the gene

regulation in coral fragments that were first stressed and then

allowed to recover. Evaluation of the interaction term necessitates

the use of linear models or ANOVA rather than non-parametric

methods or pairwise t-tests [3]. Second, the dataset includes an

important random factor: the identity of the coral colony from

which the experimental fragments were obtained. This factor

accounts for variation in the baseline levels of gene expression

between individual corals, and prompts the use of a linear mixed

model rather than a simple linear model. Finally, several genes

were so low-abundant under some conditions that they became

undetectable in a considerable number of trials, precluding the

straightforward use of log-transformation typical of qRT-PCR

analysis [16,19].

Poisson-lognormal mixed models
The standard practice for qRT-PCR analysis is to analyze each

gene individually, using control genes to estimate the required

normalization factors. In contrast, we build a hierarchical model

that can be used to jointly estimate the effects of experimental

treatments on the expression of all genes. Under such an

approach, control genes can sharpen estimates of model param-

eters, but are not strictly necessary, as all normalization happens

within the model.

Bayesian Analysis of qRT-PCR Data
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In this respect, our approach is similar to that proposed by

Steibel et al [3], who model the cycle of quantification (Cq) using

linear mixed models (LMMs) with Gaussian errors. Since Cq is

proportional to the negative logarithm of a gene’s initial transcript

copy number, this assumption implies that copy number (an

integer quantity) is being modeled with a log-normal distribution.

Our approach differs in that we directly model the initial copy

number using generalized linear mixed models (GLMMs) with

Poisson-lognormal errors [30]. This is a very natural way to model

multiplicative fold-changes. It is also more appropriate for count

data than a log-normal model, and can flexibly accommodate a

wide range of mean-variance relationships. Moreover, unlike the

Gaussian model for Cq, it also gleans information from samples

that fail to amplify (Cq = ‘), as these correspond to counts of zero.

A third advantage of our model is that it naturally accounts for

the so-called ‘‘shot noise’’ that arises from the discrete nature of

PCR amplification. Shot noise refers to Poisson-like fluctuations

that become discernible when the number of target molecules is

small enough so that such fluctuations are the dominant source of

variability after signal amplification. To see why this occurs for

weak signals, observe that if the true number of target molecules in

a sample is Poisson distributed, then the absolute magnitude of

shot-noise variation grows like the square root of the expected

number of molecules. This is much slower than linear growth,

meaning that the relative contribution of shot noise decreases and

the signal-to-shot-noise ratio increases as the expected number of

counts gets larger. This explains why shot noise is more frequently

observed when amplifying samples with very few target molecules,

as we illustrate experimentally below.

In describing our model, we use the following subscript

conventions:

– g: gene

– i: level of a treatment condition

– j: level of a grouping variable, e.g. block, plot, genetic line, etc.

– k: biological replicate (a single RNA sample)

– r: technical replicate.

Thus ygijkr is the count (initial transcript copy number) for gene g

under treatment i, group j, sample k, and technical replicate r. Our

model assumes that ygijkr arises from a Poisson-lognormal

distribution:

ygijkr*PLN lgijk,s2
g

� �

where PLN(m,v) denotes the Poisson-lognormal distribution with

rate parameter m and log-variance v. In our model, the log-

variance is gene-specific, and the rate terms involve regressions on

both fixed and random effects, as detailed in the subsequent

section.

There is no closed-form expression for the density of the

Poisson-lognormal, but it may be interpreted as a mixture of

Poissons. Specifically, suppose that

y*Pois leeð Þ, e*N 0,s2
� �

: ð1Þ

Then the marginal distribution of y is Poisson-lognormal with

parameters l and s2. Intuitively, the PLN is similar to the

negative-binomial distribution, which can also be expressed as a

mixture of Poissons, but which (unlike the PLN) has a closed-form

density.

A notable feature of the Poisson-lognormal model is its

overdispersion relative to the Poisson: if y*PLN l,s2
� �

, then

E(y)~exp(lzs2=2)

var(y)~exp(lzs2=2)zexp(2l)fexp(2s2){exp(s2)g§E(y) :

This is important for adequately describing the technical

variability of qPCR measurements, which need not match the

strict mean-variance relationship implied by the Poisson distribu-

tion. Observe that in the limit as the log-variance goes to 0, the

model becomes Poisson.

For the purpose of model-fitting, we appeal to (1) and re-write

the original model in an equivalent hierarchical form, which

facilitates computation via Markov-chain Monte Carlo:

ygijkrD lgijk,egijkr

� �
*Pois lgijke

egijkr
� �

lgijk~exp(ygijk)

egijk*N(0,s2
g) :

The e terms, which are mutually independent, appear as

random effects in the hierarchical specification. This gives the

appearance of a saturated or even non- identified model. But they

are best thought of as merely data-augmentation variables that

yield a computationally efficient way to recover the original

Poisson-lognormal specification (which is neither saturated nor

unidentified).

Structure of the regression model
Our model for log-rate term ygijk~log(lgijk) takes the form

ygijk~IgzBigztkzajgzskg: ð2Þ

We describe each component of the model in more detail, along

with the priors used for the random effects.

– Ig represents a gene-specific intercept. This is always part of the

model; it represents the baseline level of each gene’s expression

under the ‘‘reference’’ or baseline combination of experimental

treatments (fixed factors), to which all other treatment effects

will be compared. In our coral example, a natural choice for

the reference combination is the control condition at the first

time point.

– Big is the fixed effect of treatment i on gene g. This term derives

from the experimental design matrix, and consists of a series of

gene-specific fixed effects that we are primarily interested in.

We denote this term B to signify that it captures the main

biological relevance of the study. In our coral example, this

corresponds to a series of interaction terms: gene/condition,

gene/timepoint, and gene/timepoint/condition.

– tk is a random effect meant to capture unequal template loading

(hence t ) in biological replicate k. Intuitively, this accounts for

the reality that, all else being equal, biological replicates may

still differ systematically in the transcript copy numbers across

all genes due to variation in the gross amount and/or quality of

RNA among samples. These effects are modeled with a

Gaussian prior where the gene-specific variance is common to

all replicates.

Bayesian Analysis of qRT-PCR Data
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– ajg is the gene-specific random effect associated with the jth level

of some grouping variable, such as block, plot, litter as in

Steibel et al [3], or coral colony in our motivating example.

Depending on the experimental design, there may be more

than one grouping variable, or none at all. These effects are

modeled with a Gaussian prior whose variance may, in

principle, be gene-specific.

– skg captures residual variation across different biological

samples, assuming that some genes might vary more than

others. These effects are modeled with a Gaussian prior whose

variance may also be gene-specific.

Explaining the model using coral example
To make sure we are understood not only by statisticians but

also by qRT-PCR practitioners, below we explain in more

colloquial terms how the model (2) is constructed for our

motivating example.

The model has a single response variable, the transcript count,

whose rate is modeled on a log-linear scale. The most basic

explanatory variable in the model is ‘gene’, which corresponds to

the term Ig in the formula (2) and accounts for different levels of

expression between genes. We may express this informally as:

ln(rate)*gene,

where ‘‘rate’’ refers to the count rate of the Poisson-lognormal

model. Intuitively, this is the likely frequency of transcript counts

for a particular gene in a particular sample. Such a primitive

model, however, would be of little value since in qRT-PCR we are

typically not interested in difference in expression between genes,

but want to learn how the expression of each gene varies

depending on the experimental treatments. To find this out, we

augment our model with a series of terms describing gene-specific

effects of experimental treatments, corresponding to the term Big in

the formula (2). In our coral experiment, we have two treatments

(or, using linear modeling terminology, factors): Condition with

levels ‘‘control’’ and ‘‘heat’’ and Timepoint with levels ‘‘one’’ and

‘‘two’’, plus their interaction (i.e., we suspect that there might be

some Timepoint-specific effects of Condition). This experimental

design is incorporated into the model as follows:

ln(rate)*genezgene : Conditionzgene : Timepointz

gene : Timepoint : Condition,

where the colon indicates interaction, essentially standing for ‘‘-

specific effect of ‘‘. The model is fully flexible, not being limited to

a particular number of factors, number of levels within each factor,

or presence-absence of interactions.

Even though this model specification seems to contain all the

terms we want to estimate, we must take care of other important

sources of variation that, while being of no real interest to us, must

be taken into account to ensure that the model is accurate and

powerful. The most important of these is the random effect of the

biological replicate (i.e., an individual RNA sample), accounting

for the variation in quality and/or quantity of biological material

among samples, which corresponds to the term tk in the formula

(2). The designation ‘‘random effect’’ implies that we are not

interested in actual estimates of each sample’s quality or quantity,

but simply want to partition out the corresponding variance.

Random effects are imagined as random variables drawn from an

underlying distribution the variance of which the model will

estimate. In the simplified notation that we use throughout this

section, we will list the names of random factors in square brackets,

to discriminate them from the factors of primary interest (‘‘fixed

factors’’) that we discussed before:

ln(rate)*genezgene : Conditionzgene : Timepointz

gene : Timepoint : Conditionz½sample� :

Note that, since the variation in cDNA quality and/or quantity

affects all genes in a sample in the same way, this random factor is

not gene-specific. The introduction of this random factor into the

qRT-PCR model was perhaps the most important innovation in

the model of Steibel et al [3].

The experimental design might have involved additional

‘‘grouping factors’’ that are not directly related to the experimental

treatments being studied but still might be responsible for a

considerable proportion of variation and must be accounted for to

achieve more accurate predictions. These factors, if present, would

correspond to the term ajg in the formula (2). For example, the

experiment might have involved repeated measurements of

participating individuals, partitioning of the experimental subjects

between several blocks (plots, tanks) for technical reasons, or

measurements of all the effects of interest on different genotypes.

The latter is the case in our coral example, where we used 8 coral

colonies each split into four clonal fragments that were exposed to

our experimental treatments. The grouping factors can be

specified in the model as additional random factors; however, in

contrast to the sample factor, these would be gene-specific since

different genes might be affected by the grouping factors

differently. In our case, we want to account for possible differences

in baseline level of expression of each of our genes between 8

colonies, and we augment our model as follows:

ln(rate)*genezgene : Conditionzgene : Timepointz

gene : Timepoint : Conditionz½sample�z

z½gene : colony�

Once again, the model is flexible in the number of grouping

factors that could be included.

The two remaining terms that we still need to add are both

error terms, accounting for the residual variation that remained

unexplained. The first one is specified as a random factor and

reflects the unexplained differences between biological replicates

(samples), corresponds to the term skg in the formula (2). It makes

sense to assume that this factor would be gene-specific, i.e., some

genes will vary more than others among samples:

ln(rate)*genezgene : Conditionz

gene : Timepointzgene : Timepoint :

Conditionz½sample�z

z½gene : colony�z½gene : sample�

Finally, the remaining unexplained variation would be due to

the differences between technical replicates, reflecting the preci-

sion of the qPCR instrument used. This term corresponds to the

error term e of the general Poisson-lognormal model given by

equation (1). We follow Steibel et al [3], who found that the model

Bayesian Analysis of qRT-PCR Data
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fit is typically improved when specifying this term as gene-specific:

ln(rate)*genezgene : Conditionzgene : Timepointz

gene : Timepoint : Conditionz½sample�z

z½gene : colony�z½gene : sample�z½gene : residual�

It is important to note that separating variances due to

gene:sample from gene:residual is only possible when the dataset

contains technical replicates (which, ideally, it should); otherwise

the variances collapse into a single term gene:residual.

Specification of priors
For fixed factors involving genes that are not designated as

control genes, a diffuse normal prior is used, with mean = 0 and

very large variance (108) [29]. For control genes, we want to

specify that they should be stable (i.e., have mean = 0) with better

confidence, which means some smaller prior variance. Within the

method implemented in the MCMC.qpcr package, the default

setting of the stability parameter for designated control genes

allows them to vary 1.2-fold on average across experimental

conditions, but this value can be increased to relax the stability

assumption, or decreased down to 1, which would mean that the

control genes are expected to be perfectly stable. Importantly, it is

also possible to run the analysis in the ‘‘naive’’ form, without

specifying any control genes.

In addition to restricting the mean change of the control genes

in response to fixed factors, we might also wish to restrict their

variances due to gene-specific random effects, ajg and skg in the

formula (2). MCMC.qpcr package provides an option to fix the

variance components for the control genes at some specified value.

For variance components of all non-control genes, flat non-

informative priors are used by default, resulting in estimates

approximating the maximum likelihood method [29], with an

option to substitute them for two types of inverse Wishart priors.

We found that, at least in the experiments described here, the

inferred effect sizes and credible intervals were virtually unaffected

by prior variance specifications and therefore chose not to discuss

these options here, even though they may come useful in the future

in the experiments specifically designed to quantify variances (such

as, for example, in quantitative genetics).

Model estimates and credible intervals
One notable advantage of the MCMC-based approach is that

point estimates and credible intervals for any modeled effects can

be easily calculated based on the parameter values sampled by the

Markov chain. A credible interval is a Bayesian analogue of the

confidence interval in frequentist statistics, and is defined as an

interval that, with a specified posterior probability (e.g. 0.95),

contains the true value of the parameter. Pairwise differences

between conditions characterized by various factor combinations

can also be computed, along with their credible intervals. This is

useful for situations when factors have more than two levels. In

addition to the fixed effects, credible intervals of variance

components can be similarly examined; however, it must be

remembered that interval estimates for variance components are

robust only for data sets with many replications at the

corresponding level of the model hierarchy.

Testing for statistical significance
The question of interest in qPCR analysis is whether a specific

treatment had an effect on a specific gene. The posterior

distribution for Big provides a direct answer to questions about

probable effect size – or example, via a 95% posterior credible

interval for each Big term. Since within a single qRT-PCR

experiment multiple comparisons of this kind are typically

performed, there is a need to correct these results for multiple

testing (but see [31] for a discussion of the multiplicity issue in this

context). There are also many strategies for full Bayesian model

selection that naturally account for multiple testing, e.g. [32]. But

these are computationally intensive, and cannot be straightfor-

wardly applied in non-Gaussian settings such as ours.

Although it is less natural to do so under the Bayesian paradigm,

one may also use posterior tail areas to construct a procedure that

behaves very much like a classical significance test. Specifically,

define the two-sided Bayes tail area pig as twice the fraction of all

sampled parameter values for Big that cross zero with respect to the

posterior mean. These values would correspond to pMCMC

calculated within the MCMCglmm package [29]. We treat the

pig’s as if they were classical p-values and correct them for multiple

testing using a method that controls the false-discovery rate (FDR).

For large MCMC samples, our definition of pig based on

posterior tail areas is usually sufficient. But the lowest non-zero p-

value that can be thus obtained is 2/M, where M is the size of the

MCMC sample. To derive lower p-values based on a limited

MCMC run, we approximate the posterior distribution of each

parameter by a normal distribution and calculate a Bayesian z-

score (the mean of the posterior divided by its standard deviation).

This yields a two-tailed p-value based on a standard z-test.

There are at least two reasons why proceeding in this manner

yields a sensible, though not exact, test. First, the Bernstein–von

Mises theorem implies that, under quite general conditions, the

joint posterior distribution behaves asymptotically like a multivar-

iate normal distribution centered at the maximum-likelihood

estimate, and with inverse covariance matrix given by the Fisher

information matrix [33]. This implies that Bayesian tail areas are

asymptotically equivalent to classical p-values (see, e.g. [34]).

While this asymptotic guarantee may be cold comfort for

researchers with modest sample sizes, it should be emphasized that

even purely classical analyses of generalized linear mixed models

yield significance tests that are valid only asymptotically (e.g. [35]

pg 385). Indeed, the construction of exact significance tests that

properly account for the sampling distribution of both random

effects and variance components in mixed models is notoriously

challenging, and an open area of statistical research.

Second, the key feature of a p-value is that it has a uniform

distribution under the null hypothesis. We conducted a simulation

study to check whether this fact holds for pig calculated on the basis

of the Bayesian z-score in a realistic scenario. The results were

encouraging (see below), seemingly justifying the use of pig as a

classical test statistic.

Conversion of qRT-PCR data to counts
The central procedure in our method is the transformation of

raw Cq values into molecule counts. In principle, this can be

achieved using absolute quantification curves [11], which would

need to be constructed for all genes. One disadvantage of this

approach is that generation of such calibration curves must rely on

an independent method of molecule quantification, which ideally

should be more precise than qPCR. Here we explored an

alternative approach, which relies on the knowledge of amplifi-

cation efficiency (E, the factor of amplification per cycle) and the

Cq of a single target molecule (Cq1). The counts can then be

obtained using the formula:

Bayesian Analysis of qRT-PCR Data
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Count~E Cq1{Cqð Þ,

rounded to integer. (3)

To directly estimate Cq1 for several gene targets and evaluate

the extent of its variation, we amplified seven targets from a series

of four-fold cDNA dilutions that extended into the range of less

than one target molecule per amplification trial with six technical

replicates per dilution (Fig. 1). As expected, for all targets the

variance between technical replicates increased as the average Cq

per dilution began to exceed 30 (Fig. 1 a–c), presumably because

of more and more pronounced effect of shot noise due to lowering

number of molecules sampled per trial. We assumed that higher

Cq values in dilutions where not all of the six amplification trials

were successful likely corresponded to single-molecule amplifica-

tion events [26], and estimated Cq1 visually (dashed lines on Fig 1

a–c).

The Cq1 values were negatively correlated with the amplifica-

tion efficiency estimated from 6–7 higher-concentration dilutions

(blue line of Fig. 1 d, p = 0.005). This correlation was reasonably

close to what is expected under the model with the single efficiency

parameter [4] assuming Cq1 = 36 for a target with efficiency E = 2

(red line on Fig. 1 d), although the slope of the real regression was

notably shallower. Below we show that the results of relative

quantification within our method are relatively robust to mis-

specification of the Cq1 value, so the empirical formula describing

the regression on Fig. 1 d (Cq1 = 79–21.5 E) provides a reasonable

approximation if the experimental estimates of gene-specific Cq1

values are not available. Moreover, as we describe in the

subsequent section, the results were virtually identical even when

we simply assumed the same Cq1 = 37 for all genes.

Cq1 and goodness of fit
The mis-specification of Cq1 can be expected to affect primarily

low-abundant genes, which lie in the ‘‘shot noise zone’’ (Cq .30,

Fig. 1 a–c) and for which the range of abundances might be bounded

by zero (i.e., empty amplification trials in the data). Fig. 2 shows the

results of a naı̈ve model (no control genes specified) estimating the

main effect of heat stress in our coral dataset, fitted to the data

converted either with formula-approximated Cq1 (Fig. 1 d) or the

same Cq1 for all genes, which was either too large (40), or too small

(35). As expected, too large or too small Cq1 (Fig. 2 a) affected point-

estimates considerably only for the least-abundant genes which were

zero-bounded (chrom, clect, g3pdh, and hsp16). For these genes, larger

Cq1 resulted in larger inferred fold-change and broader credible

intervals, with the exception of hsp16. For other genes, the point-

estimates were unaffected, while the credible intervals exhibited the

same tendency to scale with Cq1, but to a much smaller extent than

for the zero-bounded genes. Assuming a single Cq1 = 37 for all genes

had virtually no effect on the inference, compared to the more

accurate formula-approximated Cq1 data (Fig. 2 b). Goodness-of-fit

characteristics were visually indistinguishable between the dataset

converted using formula-approximated Cq1 and the dataset with the

same Cq1 = 37 for all genes (Fig. 3). The departures from perfect

linearity (Fig. 3 a) and trend towards higher variance at the low end

of predicted values (Fig. 3 b) were negligible, and the distribution of

lognormal residuals was very close to normal (Fig. 3 c). The

probabilities of Poisson residuals [36] were nearly exactly as

expected (Fig. 3 d), supporting the basic assumption that the higher

variance at higher Cq is due to Poisson fluctuation in numbers of

sampled molecules [28].

Effect of control genes and fixation parameters
Figure 4 a shows the comparison between naı̈ve model and two

informed models in which either one (nd5) or two (nd5 and rpl11)

control genes were specified but allowed to change 1.2-fold on

average in response to the fixed factors. Inclusion of control genes

did not have much effect on the point-estimates, but led to

considerable narrowing of the credible intervals. The most

narrowing was seen after adding one control gene; addition of

the second one had much less effect. Figure 4 b compares the

results of the naı̈ve and informed model with two control genes

(the same as on Fig. 4 a) with the ‘‘fixed’’ model in which the two

control genes were required to remain perfectly stable. Complete

fixation of control genes results in very narrow credible intervals;

however, perfect stability of expression of any one gene is

considered to be an unrealistic assumption [15], and hence the

power gained in the fixed model may be coming at the expense of

accuracy.

Analysis of smaller datasets
Good performance of the naı̈ve model, not relying on any control

gene information, may not be too surprising for a dataset that

Figure 1. Effect of target concentration on Cq variance and estimation of the Cq for a single target molecule (Cq1). (a–c) Examples of
amplification of different gene targets from a series of four-fold template dilutions with six-fold technical replication. The red line is the linear
regression across 6–7 most concentrated dilutions where the increase in variance was not yet pronounced. The amplification efficiency (E, the factor
of amplification per cycle), calculated from the slope of this regression [4], is listed on each panel in the lower left corner. The dotted horizontal line
marks the visually determined Cq1. (d) Estimated Cq1 values for all tested targets plotted against their amplification efficiency. The blue line is linear
regression, the shaded area corresponds to 95% confidence interval. The red line is the correlation expected from the efficiency-based PCR model [4]
and Cq1 = 36 for a gene with E = 2.
doi:10.1371/journal.pone.0071448.g001
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contains many genes demonstrating various expression patterns, but

will it work when genes are few and their expression patterns are

unbalanced? To explore this issue, a smaller dataset was extracted

from the coral stress data containing only four genes: a control gene

rpl11 and three most highly regulated genes, the heat shock proteins

hsp16, hsp60 and hsp90 (Fig. 5 a, c). Analysis of this small dataset

recovered exactly the same regulation patterns for the four genes as

observed in the whole dataset, irrespective of whether the control

gene was specified as a prior or not (Fig. 5 a, c). Moreover, even when

the control gene was removed from the dataset, leaving only the

three genes that were strongly up- or down-regulated in concert, the

same results were recovered (Fig. 5 b, d).

The ‘‘classic’’ model
Some datasets may not conform to the assumption of our model

(2) that the variation in template loading between samples, tk, can

be modeled as a single Gaussian distribution across all exper-

imental conditions. If for some conditions the RNA samples

systematically show substantially lower concentration and/or

quality, the model will infer down-regulation of all genes under

these conditions. Accounting for such a bias would unavoidably

require reliance on control genes for normalization. We therefore

implemented our single-model MCMC-based approach involving

the multi-gene normalization procedure [16]. The normalized

data are analyzed using the same model as given by formula (2)

only lacking the tk term since this variation is supposed to be

subtracted out. Since normalization procedure would preclude the

use of counts as the response variable, we have to fall back to log-

transformed expression values and run a lognormal rather than

Poisson-lognormal model. The data for this analysis is prepared by

converting raw Cq values into natural logarithms of relative

abundances (Ra) while correcting for the efficiency of amplification

using the transformation introduced previously [3,23]:

Ra~{Cq:ln(E) ð4Þ

We call this model ‘‘classic’’ since it is based on earlier

developments [22–24] and lacks the main advancements proposed

in this paper, such as the use of generalized linear modeling to

account for higher variance of low-abundant targets and the

possibility to analyze the data without reliance upon control genes.

The one innovation this model offers, however, is a single-model

Figure 2. Effect of Cq1 setting on the point estimates and credible intervals of the fixed effects of stress in the coral dataset,
according to the naive model. The points are posterior means, the 95% credible intervals are denoted as dashed lines connecting upper and
lower interval limits across genes, to better visualize changes in their width. (a) Comparison of the results based on formula-approximated Cq1 (‘‘est.’’)
with analyses assuming the same inflated (40) or diminished (35) Cq1 for all genes. The three most affected genes are clect, chrom, g3pdh, and hsp16,
which were so low-abundant in at least one of the experimental conditions such that many of their qPCR trials were empty. (b) Comparison between
analyses with formula-based Cq1 (‘‘est.’’) and uniform Cq1 = 37 for all genes.
doi:10.1371/journal.pone.0071448.g002

Figure 3. Goodness-of-fit characteristics of the naı̈ve model
applied to the coral stress dataset, for the Cq1 = 37 setting for
all genes. (a) Plot of lognormal residuals against predicted values to
test for linearity. (b) Scale-location plot to test for homoscedasticity. A
good fit is corroborated by the lack of pronounced mean trend in these
two plots (red lines). (c) Plot of quantiles of standardized lognormal
residuals against theoretical quantiles of the normal distribution. Red
diagonal corresponds to the exact match. (d) Probabilities of
experimental Poisson residuals plotted against their theoretical
probabilities for one of the MCMC samples. All MCMC samples show
the same nearly perfect fit to the Poisson expectations.
doi:10.1371/journal.pone.0071448.g003
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rather than gene-by-gene analysis, which is expected to boost the

power considerably since the model draws evidence from all genes

simultaneously [25].

For the coral stress dataset, the ‘‘classic’’ model generated

virtually identical point-estimates of fold changes as the full

Bayesian models (Fig. 6 a), while being comparable in the width of

the credible intervals to the most powerful model of the three, the

fixed model (Fig. 6 b).

Bayesian p-values
The p-values based on Bayesian z-test agreed well with pig

calculated directly from the posterior tail areas (Fig. 7 a),

supporting the validity of the z-test approach. To explore the

distribution of z-test derived p-values under null hypothesis under

three models (naı̈ve, informed, and ‘‘classic’’) we generated three

null datasets based on our coral data by subtracting the main

effects inferred by each of the models from the efficiency-corrected

Cq values (Cqcorrected = Cq ? log2(E), the ‘‘perfect world’’ Cq values

that would have been observed if all genes were amplified with the

efficiency of exactly 2, [23]). We then ran 100 re-analyses of these

datasets while randomly shuffling samples between experimental

conditions and calculated Bayesian p-values for the main effects

and their interaction for each gene, resulting in 2,600 p-values per

model. The frequency distribution of these p-values was nearly

ideally uniform under the naı̈ve model (Fig. 7 b) and only slightly

skewed under informed and ‘‘classic’’ models (Fig. 7 c,d). This

result suggests that the test based on Bayesian p-values will be of

correct size for the naı̈ve model, will be slightly more conservative

than the nominal alpha value under the informed model, while

under ‘‘classic’’ model it might be very slightly less conservative.

These deviations of Bayesian p-values from the uniform distribu-

tion under the null hypothesis are probably negligible for all

practical intents and purposes. In particular, they should not

preclude the applicability of multiple testing correction controlling

for false discovery rate [37].

Comparison with other methods
Figure 8 presents the results of MCMC.glmm analysis of the

coral stress dataset using the naı̈ve model, this time showing both

the effect of stress and subsequent recovery, which were the focus

of the original analysis based on multi-gene normalization and

gene-by-gene linear mixed modeling [23]. Notably, the naı̈ve

model was able to recapitulate the previous findings without

making any assumptions regarding control genes. As before, the

main effects of stress included very strong up-regulation of hsp16 (a

small heat-shock protein), more modest up-regulation of large heat

shock proteins hsp60 (Fig. 8 c) and hsp90, and down-regulation of

actin (Fig. 8 b); during recovery this pattern was reversed. For these

Figure 4. Effect of adding control genes (highlighted) as priors on the estimates of fixed effects of stress in the coral dataset. The
points are posterior means, the 95% credible intervals are denoted as dashed lines connecting upper and lower interval limits across genes. (a)
Comparison between naı̈ve model (no control genes specified) and two informed models, with one (nd5) or two (nd5, rpl11) control genes specified
(the control genes were allowed to change 1.2-fold on average in response to fixed factors). (b) Comparison of the naı̈ve and two-gene informed
model to the two-gene fixed model, in which the same control genes were required to be absolutely stable.
doi:10.1371/journal.pone.0071448.g004

Figure 5. Analysis of small unbalanced subsets of the coral
stress data. (a, c): Three heat shock protein genes plus one control
gene (rpl11), analyzed using naı̈ve, informed, and fixed model. (b,d):
Analysis of only the three heat-shock proteins. (a,b) – effects of stress;
(c,d) – effects of recovery. The points are posterior means, the whiskers
denote 95% credible intervals. Bayesian analysis infers the same fold-
changes regardless of specification of the control gene and even in its
absence.
doi:10.1371/journal.pone.0071448.g005
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four response genes reported the original paper [23], we plotted

their inferred fold-changes during stress and recovery under naı̈ve,

informed and ‘‘classic’’ models against the originally reported

values (Fig. 9 a), observing a very close match. Plotting the new p-

values (based on Bayesian z-test) against the previous results (Fig. 9

b) illustrated that the naı̈ve model is less powerful (most points are

below the diagonal), informed model appears about as powerful,

and ‘‘classic’’ model is considerably more powerful than the

original analysis. The new models, including the naı̈ve one,

suggested additional significantly changing genes (such as down-

regulation of glyceraldehyde-3-phosphate dehydrogenase, g3pdh,

during recovery, Fig 8 a), which were not detected previously and

not included in the plots on Fig. 9. The much higher power of the

‘‘classic’’ model compared to the previous gene-by-gene analysis

confirmed the expectation that a single-model approach, drawing

evidence from all genes at once, would be more powerful even if it

is based on the same data pre-processing pipeline (log-transfor-

mation and multigene normalization).

To see how the new methods compares to the classic delta-

delta-Ct procedure [2], we re-analyzed the data comprising

Figure 6 in [38]. This experiment examined the effect of a single

factor, treatment, with five levels (control and four different heat

stress regimes) on the expression of nine response genes in cultured

murine fibroblasts. A single control gene (glyceraldehyde-3-

phosphate dehydrogenase, g3pdh) was used to calculate fold-

changes relative to the control condition while correcting for

amplification efficiencies [4]. The dataset included three biological

replicates per factor level and three technical replicates per RNA

sample. For naı̈ve and informed models, we converted the original

Ct data to counts assuming Cq1 = 37 for all genes. The ‘‘classic’’

model recapitulated the delta-delta Ct results nearly exactly, as

expected, but it is notable that very similar fold-changes were also

inferred by the naı̈ve model, which did not use any control gene

information (Fig. 10 a). Moreover, the power of all our models

(even the naı̈ve one) was substantially higher than the power of the

original analysis based on pairwise t-tests (Fig. 10 b).

Discussion

qRT-PCR data as counts
The purpose of Cq-to-counts transformation described here is to

create a dataset in which the increase in variance at the low gene

Figure 6. Comparison of the procedure based on multigene normalization followed by single-model MCMC analysis (‘‘classic’’
model) to full Bayesian models. (a) Point-estimates and credible intervals for the effects of stress in coral dataset inferred by the informed model
(allowing control genes rpl11 and nd5 to change 1.2-fold on average) and ‘‘classic’’ model based on normalization using the same two control genes.
Points are posterior means, the whiskers denote 95% credible intervals. (b) Comparison of the power of the ‘‘classic’’ model (transformed p-values
along the horizontal axis) to the power of full Bayesian models (see legend). The colored lines are linear regressions to illustrate trends (no statistical
implications intended), the black dotted line is 1:1 correspondence. ‘‘Classic’’ model generates the the credible intervals that are as narrow as under
the fixed model, but relies on more realistic assumptions.
doi:10.1371/journal.pone.0071448.g006

Figure 7. Properties of p-values based on Bayesian z-test. (a) Correspondence between p-values based on posterior tail areas (horizontal axis)
and z-test based p-values (vertical axis) for the stress and recovery effects in the coral dataset. (b–d) Frequency distribution of z-test based p-values
obtained using naı̈ve (b), informed (c) and ‘‘classic’’ (d) models from datasets simulated under null hypothesis. The fraction of simulated p-values that
are less than 0.05 is given above each plot.
doi:10.1371/journal.pone.0071448.g007
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expression values (Fig. 1 a–c) can be adequately accounted for by

the relative quantification model. General reasoning, earlier

literature [28], and our analysis presented here (Figure 3 d)

suggest that this increase in variance is likely due to Poisson-

distributed fluctuations when the number of sampled molecules is

small. It has been previously shown that the amplification products

obtained from DNA samples so highly-diluted that only a fraction

of PCR trials are successful indeed correspond to amplification of

individual molecules [26]. This substantiates our approach of

determining Cq1, the number of PCR cycles required to amplify a

single target molecule, through analysis of over-extended dilution

series (Fig. 1 a–c). It is notable, however, that the Cq1 values thus

determined show less pronounced correlation with the efficiency of

amplification (Fig. 1 d) than expected under the simple qPCR

model with a single efficiency parameter [4]. We must therefore

caution that even though Cq-to-counts data transformation

achieves its primary purpose, enabling quantification of very

low-abundant targets within the general relative quantification

framework, further qPCR model development might be required

to ensure accurate absolute quantification of individual molecules.

The Poisson-lognormal Bayesian model
This model is designed to be universally applicable in qRT-

PCR. It properly handles the full range of target abundances down

to the individual molecule level, derives information from no-

amplification trials, and provides a possibility to specify control

genes with the desired degree of confidence. In the same time, it is

fully flexible in terms of experimental designs that it can

accommodate, and would handle any number of fixed and

random effects and their interactions.

The ‘‘classic’’ and lognormal Bayesian models
The ‘‘classic’’ model represents a viable alternative to the full

Bayesian analysis especially for the cases when the quantity and/or

quality of the RNA samples varies systematically across experi-

mental conditions, and when the expression levels are not too low

(i.e., the majority of Cq values are below 30). The model is

considerably more powerful than previously used procedures

based on the same principles of data processing (Fig. 9 and 10),

highlighting the advantage of joint analysis of expression of all

genes within the same model. It is also more powerful that any of

the full-Bayesian models described here, with the exception of the

fixed model (Fig. 7). The power is expected to improve with more

Figure 8. Visualization of the results of Bayesian analysis of the
coral stress dataset. (a) Effects of stress and recovery under naı̈ve
model. It can be seen that recovery gene regulation is basically a mirror
image of stress response. (b) Transcript abundances of selected genes
(see legend) across conditions of interest. The points are posterior
means, the whiskers denote 95% credible intervals.
doi:10.1371/journal.pone.0071448.g008

Figure 9. Comparison of the Bayesian analysis of the coral
stress dataset to the previously published results based on
multigene normalization and gene-by-gene linear mixed
modeling [23]. (a) The match between the fold-changes inferred in
the current reanalysis and previously reported changes, for naı̈ve,
informed and ‘‘classic’’ models. (b) Correspondence between p-values
under the naı̈ve, informed, and ‘‘classic’’ models (see legend on panel a)
and the previously reported p-values. Points above the line indicate
higher power (lower p-values) of the new models. The reanalysis p-
values were derived by the Bayesian z-test.
doi:10.1371/journal.pone.0071448.g009

Figure 10. Comparison of the Bayesian method to the delta-
delta-Ct method, reanalyzing data from [38]. (a) Fold-changes
inferred by the naı̈ve, informed and ‘‘classic’’ models plotted against
fold-changes derived by the delta-delta-Ct analysis with a single control
gene. (b) Comparison of p-values derived by the Bayesian z-test from
naı̈ve, informed, and ‘‘classic’’ models (see legend on panel a) with p-
values obtained by pairwise t-tests within the delta-delta-Ct pipeline.
On both panels, the line denotes 1:1 correspondence. On panel b,
points above the line indicate higher power (lower p-values) of the new
models.
doi:10.1371/journal.pone.0071448.g010
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genes in the dataset. Although the power comes at a cost of strong

assumptions concerning control gene stability, the ‘‘classic’’ model

only requires their average expression to be constant, which is

considered acceptable in the qRT-PCR analysis field [16].

Compared to the fixed model, which requires absolute stability

of each of the control genes, this is objectively a more realistic

assumption.

When the targets’ abundances remain relatively high and there

is little concern about shot noise, it is possible avoid making

assumptions concerning Cq1 values but still use the full Bayesian

approach. To do this, the MCMC.qpcr package implements the

model (2) in a lognormal form, based on log-transformed

efficiency-corrected data (4). In this implementation, full range

of possibilities is retained for specifying (or not) any control genes

as priors.

Choice of model: power versus risk of bias
The models described here might be ranked according to their

increasing power, manifested as narrowing credible intervals, in

the order naı̈ve – informed – ’’classic’’/fixed. It is encouraging

that, at least for the two qRT-PCR datasets that we examined

here, all models gave very similar point-estimates of gene

expression changes when applied to the same data (Fig. 9 and

10), indicating the lack of major biases induced by the increasing

number and strength of assumptions within the models. Still, it is

important to remember that higher power brings about the risk of

biased inference, especially since the power comes as a result on

increasingly stronger assumptions. The fixed model, for example,

assumes complete stability of the control genes, which is not

realistic in gene expression studies and therefore should be avoided

in qRT-PCR. On another hand, although the naı̈ve model might

seem preferable since it makes the least assumptions, it underuti-

lizes the possibilities provided by the Bayesian framework, which is

rather undesirable unless the analysis has to be kept strongly

conservative. We feel that for the majority of day-to-day qRT-

PCR cases the best choice balancing the conservatism and good

use of available information would be the informed model with

one or two control genes, or the ‘‘classic’’ model with three-four

control genes.

Control genes
From a practical qRT-PCR standpoint, arguably the most

attractive feature of the full Bayesian methodology is its robustness

with respect to the number and even the very presence of control

genes among the analyzed targets. Even when control genes are

not specified as priors (naı̈ve model), the model still can

successfully discount the variation due to different amounts of

template across samples (Fig. 5 and 6). This ‘‘self-normalizing’’

capacity highlights the advantage of whole-dataset mixed model

analysis. The model regards sample-specific effects as a random

variable drawn from the same normal distribution, which helps

disentangle them from the regulation patterns due to fixed effects.

The accuracy of this inference benefits more from the larger

number of samples than from the number of genes or technical

replicates, since the parameters of the distribution underlying

sample-specific variation can be estimated with better confidence

with more samples.

Even when naı̈ve model analysis is intended, it would be

prudent to keep one or two presumably stable genes among

analyzed targets: such genes could serve as indicators that the

model performs reasonably, in addition to diagnostic plots (Fig. 3).

The stability of the control genes can be validated by running a

naı̈ve model, and it is also possible to use the naı̈ve model to

identify potential control genes in the first place. It must be

emphasized, however, that inferring control genes from an

experimental dataset and then using them to analyze the same

dataset may lead to biased inference due to circularity. Ideally,

control genes should be selected based on an independent

experiment or other supporting data. If there is no such prior

information, at the very least an alternative method of control

gene selection should be used, such as non-parametric geNorm

[16]. A single control gene seems to be sufficient to gain good

power within the informed model (Fig. 5 a).

Even though our fixed model makes assumptions that are hardly

ever realistic in analysis of gene expression [15], absolute fixation

of a control target could be useful in certain experimental designs.

One example is quantifying relative amounts of DNA targets, such

as the amount of parasite or pathogen DNA relative to the DNA of

the host. In this case, the absolute fixation of the control (host-

specific) gene would generate the required relative quantification

results, with the most power (Fig. 5 b and Fig 7).

Implementation
The MCMC.qpcr package accompanying this paper (File S1)

comprises the complete pipeline of qRT-PCR analysis based on

the methodologies described here. The complexity of the model (2)

remains mostly hidden from the user since the function that builds

the model formula, constructs priors, and runs MCMC chain only

requires the user to specify the fixed and random effects (if any).

The functions to extract the inferred gene expression changes, to

calculate their credible intervals and statistical significance, and to

visualize the results (such as on Fig. 5, 6 and 8) also require

relatively simple and intuitive user input. The tutorial accompa-

nying the MCMC.qpcr package (File S2) explains the whole

process step by step, and we believe that this will make our

methodologies accessible even to beginner R users.

Methods

The qPCR analysis of over-extended dilution series (Fig. 1) was

performed on a Roche LightCycler 480 instrument equipped with

a 384-well block, using LightCycler 480 SYBR Green I Master kit

(Roche). The primer sequences, composition of the reaction mix,

cycling parameters and procedures for RNA isolation and cDNA

synthesis were the same as described previously [23]. All the

analyses and development of data processing functions were

accomplished in R software environment [39].

Supporting Information

File S1 MCMC.qpcr R source package.
(TAR.GZ)

File S2 Tutorial for the Bayesian qRT-PCR analysis
methodology as implemented in the MCMC.qpcr pack-
age.
(PDF)
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