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ABSTRACT

We examine global incompressible axisymmetric perturbations of a differentially rotatingMHD plasmawith radial
density gradients. It is shown that the standard magnetorotational instability (MRI) criterion drawn from the local
dispersion relation is often misleading. If the equilibrium magnetic field is either purely axial or purely toroidal, the
problem reduces to finding the global radial eigenvalues of an effective potential. The standard Keplerian profile in-
cluding the origin is mathematically ill-posed, and thus any solution will depend strongly on the inner boundary. We
find a class of unstable modes localized by the form of the rotation and density profiles, with reduced dependence on
boundary conditions.

Subject headinggs: accretion, accretion disks — instabilities — MHD

1. BACKGROUND

It is often stated that the magnetorotational instability (MRI;
Chandrasekhar 1961; Balbus & Hawley 1991, hereafter BH91)
in accretion disks is a ‘‘local’’ instability, i.e., normal modes are
driven unstable by the local value of the rotational flow shear.
Implicit in this analysis is the assumption that equilibrium rota-
tion and density vary over amuch larger spatial scale than themode
wavelength. Although it has been shown that short-wavelength
linear local MRI modes can drive global turbulence in the non-
linear regime (Balbus & Hawley 1998; Hawley 2001), it is
worthwhile to study linear instabilities with large radial extent
which can contribute more direct angular momentum transfer. In
order to study these modes, it is necessary to use amore complete
treatment, including the radial variations of the equilibrium pro-
files. One arrives at a second-order differential equation, which
can be solved for the structure of global eigenmodes.

Amajor drawback to the study of globalmodes, aside from the
computational complexity, is their strong dependence on bound-
ary conditions, which are often unknown for astrophysical sys-
tems. Previous work (e.g., Dubrulle & Knobloch 1993; Ogilvie
& Pringle 1996, hereafter OP96) has included rigid boundary
walls to discretize the mode spectrum, but this imposition is
arbitrary and unphysical. Another approach (Curry et al. 1994) is
to use pressure constraints to define a boundary, outside of which
the field is taken to be vacuum. Appropriate matching conditions
are then used. Kersale et al. (2004) studied the global MRI
problem with inflow and found that certain boundary conditions
gave rise to ‘‘wall modes’’ with large growth rates. In this paper,
we show that unstable axisymmetric modes in cylindrical geom-
etry can be described by an effective radial potential. The sign of
this potential on the boundary dictates how strongly the mode
structure depends on the specific boundary conditions taken. We
find that smoothly varying equilibrium rotation and density pro-
files can localize modes and reduce dependence on the explicit
treatment of the boundary conditions. The dispersion relation
for these global modes can differ greatly from that of the local
treatment.

Much previous analytical work on global modes has been
carried out using the Boussinesq approximation, which treats
both the equilibrium and perturbed density as constant except
in the equation of motion. This greatly simplifies the dispersion
relation, and the density gradient appears only through the buoy-

ancy term (the Brunt-Väisälä frequency). Although this is an
appropriate step in the local analysis (BH91), when the effective
radial wavelength is of the order of the system size, we must
allow for significant density variations over the region in ques-
tion. In our analysis the density appears in the mode equation in
two additional ways: by allowing the local Alfvén frequency to
change with radius, and by introducing terms proportional to the
first and second derivatives of the Alfvén frequency. It is well
known that density gradients in ideal MHD can lead to both con-
tinuous and discrete Alfvén spectra (Sedláček 1971). In the ab-
sence of equilibrium flow, these modes lead to damped surface
eigenmodes (Chen&Hasegawa 1974). If a free-energy source such
as differential rotation is present, they can couple to produce un-
stable modes. We examine how astrophysically relevant density
profiles can serve to stabilize modes as well as help the appro-
priate imposition of the outer boundary condition.

This paper is organized as follows: In x 2, we derive the radial
global mode equation for incompressible axisymmetric pertur-
bations. By allowing for any rotation and density profile, our anal-
ysis remains relevant to the global MRI in accretion disks as well
as other rotating systems such as laboratory experiments (e.g.,
Goodman & Ji 2002) and stellar core collapse (Akiyama et al.
2003). In x 3, we investigate certain illustrative limits of the sys-
tem represented by this equation. Finally, numerical results are
presented in x 4, showing how certain rotation profiles can lead
to direct localization of these modes.

2. BASIC EQUATIONS

The equation of motion for an MHD plasma is

�
@v

@t
þ (v = :)v

� �
¼ �:P þ 1

�0
(: < B) < B�:�g; ð1Þ

where�g is the gravitational potential and P is the scalar pressure.
The magnetic field evolves according to Maxwell’s equation:

@B

@t
¼ : < (v < B): ð2Þ

These equations, along with the divergence condition on the mag-
netic field, admit a rotating cylindrical equilibrium of the form
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B0 ¼ 0; r�B rð Þ;Bz rð Þð Þ and v0 ¼ 0; r� rð Þ; 0ð Þ. In this equilib-
rium, we can write equation (1) as the Euler equation:

� r�2r̂�:�g

� �
�:P0 þ

1

�0
(: < B0) < B0 ¼ 0: ð3Þ

The specification of a density, magnetic field, and rotation profiles
will determine the pressure up to a constant. We can then define a
(local) adiabatic exponent through the identification P ¼ ��� .

If none of the equilibrium quantities depend on the height z
or angle �, we can take Fourier transforms in the axial and azi-
muthal directions. Neglecting the perturbed gravitational potential
��g, the equations for the normal modes of Lagrangian pertur-
bations, [x ¼ x rð Þei kzzþm��!tð Þ] to this equilibrium are (Frieman
& Rotenberg 1960; Chanmugam 1979)

�!2�x þ 2i�(v0 =: )x � F (x) ¼ 0; ð4Þ

where

F (x) ¼ : ��:=x þ x =:ð ÞP½ � þ:= �xð Þ:�g

þ: B0 =bð Þ þ B0 =:ð Þbþ b = :ð ÞB0 ð5Þ
þ:= �x v0 =:ð Þv0 � �v0 v0 =:ð Þx½ �:

The perturbation of the magnetic field is b ¼ : < x < B0ð Þ. For
incompressible (:= x ¼ 0) perturbations, equation (5) can bewrit-
ten as two scalar equations:

�!2
m � !̄2

A

� � d

dr
 T ¼

�
�!2

m � !̄2
A

� ��
�!2

m � !̄2
A

� 2�r��0 þ 2r�B�
0
B þ �N2

�
� 4 ��!m þ �B!̄Að Þ2

�
�r

þ 2
m

r
�!m�þ �B!̄Að Þ T ; ð6Þ

�!2
m � !̄2

A

� � 1
r

d

dr
r�rð Þ ¼ � 2

m

r
�!m�þ �B!̄Að Þ�r

þ m2

r2
þ k2z

� �
 T ; ð7Þ

where !m ¼ !� m�, !̄A ¼ kzB0z þ m�B,  T is the total per-
turbed pressure (gas plusmagnetic), andN 2 ¼��0 /�(r�2�9�g )
is the Brunt-Väisälä frequency. In the present treatment, we allow
� to vary significantly over the region under consideration; as long
as we restrict our analysis to incompressible perturbations, the
above equations are still valid. Through density variation, the lo-
cal Alfvén frequency can change evenwhen the equilibriummag-
netic field is constant. The density length scale L� ¼ d ln�ð Þ/dr½ ��1

is taken to be much larger than the ion Larmor radius (drift waves
are not considered).

2.1. Axisymmetric Modes

For this paper, we restrict our consideration to axisymmetric
modes (m ¼ 0). Then equations (6) and (7) can be reduced to a
single second-order differential equation in the radial coordinate:

d

dr
F(r)

1

r

d

dr
(r�r)

� �
� k 2

z

"
F(r)� 2�r��0

þ 2r�B�
0
B þ �N 2 � 4 ��!þ �B!̄Að Þ2

F(r)

#
�r ¼ 0; ð8Þ

where F(r) ¼ �(r)!2 � !̄2
A, and !̄

2
A ¼ k2z B

2
z0 /�0. This equation

describes the standard MRI in the limit �0 ! 0, and the gravita-
tional interchange instability in the limit � � 0,�0 6¼ 0. If there
is no equilibrium rotation in the system, the mode equation is the
cylindrical form of the well-known differential equation for sur-
face Alfvén waves (Sedláček 1971). There is a continuum of
stable oscillations at each frequency!¼!A(r)¼ k =B0 / �0�(r)½ �1=2;
each frequency is strongly localized around the characteristic ra-
dius whereF(r) vanishes. These modes overlap spatially and give
damping proportional to 1/t. In addition, there exists a discrete
spectrum of surface modes with position-indepenent frequency.
This is the phenomenonof damped resonant absorption,withweak
damping for sharp variations in density (Hasegawa & Uberoi
1982). Finite Larmor radius terms couple these modes to the
Kinetic Alfvén Wave (KAW; Mahajan 1984), which will not be
addressed in this paper.
The mode frequency ! enters the differential equation (8) only

through F and the last term in square brackets. If either Bz0 or�B

vanishes, only!2 appears. Since all other terms are real, the eigen-
values ! must then be purely real or imaginary (Chandrasekhar
1960). Although the presence of velocity shear makes the evo-
lution equation non-Hermitian, when restricted to the normal
mode solutions of purely axial or toroidal fields, we obtain a fully
Hermitian eigenvalue problem (provided that the equation is well
behaved at the boundaries). This allows for a significant simpli-
fication in the search for global modes. Before proceeding, we
examine the local limit of the above mode equation.

2.2. Local Dispersion Relation

In order for modes to be spatially oscillatory, we must have
� 00 /� < 0. If the radial variation of the equilibrium quantities is
small with respect to the scale of the perturbation, we can take
an expansion �(r) ¼ 1þ �r(r � r0)

2 /2 in equation (8). Solving
for �(r ¼ r0), and finding which values of r0 make �r < 0, we
obtain

�r ¼ k2z

"
1� 2�r��0 � 2�r�B�

0
B

F
þ �N2

F
� 4(��!þ �B!̄A)

2

F2

#

þ 1

r2
� 1

r

F 0

F
; ð9Þ

where here all quantities are taken at their local values. In the
Boussinesq limit (F 0 ¼ 0, N2 6¼ 0), this reproduces the local
MRI dispersion relation of BH91, if we identify �r ! �k2r and
take kr; kz 31/r. Thus, the global analysis and the local analysis
agree in the appropriate limit. However, this equation provides
no indication as to which radius should be used when applying
this criterion, or what to do if it is satisfied in some places and not
in others. The local instability criterion can be useful in locating
the region containing the most unstable mode, which for the
MRI generally occurs near the point of greatest shear. If the
mode has radial extent comparable to the equilibrium variation,
the full global analysis can lead to results quite different from this
local criterion.

2.3. Effective Potential

When the equilibrium magnetic field is purely axial, equa-
tion (8) only admits modes with real !2. If the Alfvén term
F(r) ¼ �!2 � !̄2

A has the same sign for all r in the domain, we
can make the substitution y ¼ (� rF )1

=2�r. For purely growing
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modes, F(r) is negative for all r, regardless of the form of the
density profile. We arrive at

d2y

dr2
� V (r; !)y ¼ 0;

V (r; !) ¼ k 2

 
1� 2�r��0

F
þ �N2

F
� 4�2�2!2

F2

!
þ 3

4r2
þ Q(r);

Q(r) ¼� 1

2r

F 0

F
þ 1

2

F 00

F
� 1

4

F 02

F2
: ð10Þ

The problem becomes one of finding the zero energy solutions
of the frequency dependent ‘‘effective potential’’V (r; !) (Mahajan
& Krishnan 2006). If the potential is positive everywhere, the
solutions are monotonic, and it is impossible to construct a global
solution satisfying both boundary conditions. It is therefore nec-
essary thatV (r; !) < 0 in some region in r for a global mode to be
possible. There are two distinct ways for this to occur:

1. V (r; !) is negative all the way up to one or both of the
boundaries of the region under consideration. This gives rise to
boundary-localized ‘‘wall’’ modes like the ones found in OP96.
Any change of the boundary condition will drastically affect the
mode structure and frequency spectrum. TheKeplerian flow pro-
file is always of this type for the inner boundary, as we shall see
below.

2. V (r; !) has a minimum which is less than zero at some
radius, but is positive elsewhere. In this case, the region of os-
cillation is localized by the potential well, and the mode is spa-
tially evanescent outside the well. The boundaries play a reduced
role in the mode structure, although they can still be important.
The local stability criterion may be satisfied over significant por-
tions of the disk yet unstable modes can exist which are localized
by the effective potential well. The most unstable modes are the
ones with no zero crossings; these modes tend to have a greater
radial extent and thus a greater chance of carrying radial angular
momentum.

If the equilibrium magnetic field is purely toroidal, the effec-
tive potential becomes

V (r; !) ¼ k 2

�
1� 1

!2

�
4�2 þ 2r��0 � N 2 � 2r�B�

0
B=�
��

þ 3

4r2
þ Q(r): ð11Þ

Since the equilibrium magnetic field is perpendicular to k, the
Alfvén term F ! �!2, and the only coupling to the magnetic
field is through the equilibrium magnetic shear 2r�B�

0
B. If the

modified Rayleigh criterion,

4�2 þ 2r��0 � N2 � 2r�B�
0
B=� > 0;

is satisfied, the potential is always positive for purely growing
modes, and the system is stable to m ¼ 0 perturbations (i.e.,
there are no global axisymmetric MRI modes). In the absence
of rotation, this is the Tayler ‘‘pinch’’ stability criterion (Tayler
1973). The current-free configuration �B ¼ �r�2 is always sta-
bilizing. In what follows, we examine only purely axial magnetic
fields, and defer consideration of toroidal fields to a later paper
examining nonaxisymmetric disturbances.

3. GLOBAL SOLUTIONS

We begin by investigating various limits of the global mode
equations analytically.

3.1. Rigid Rotation

If � ¼ �0, B ¼ Bz0, and the density is constant, the mode
equation reduces to (F0 ¼ !2 � !̄2

A /�0 ¼ const:)

d

dr

1

r

d

dr
r�r � k 2z �r ¼ � 4k 2!2�2

0

F2
0

�r; ð12Þ

allowing a family of solutions

�r ¼ AJ1(�r)þ BY1(�r);

describing shear Alfvén waves in a rigidly rotating homogeneous
plasma (Hasegawa&Uberoi 1982). Here,� is to be interpreted as
an effective radial wavenumber obeying

�2 ¼ k 2z
4!2�2

0

F2
0

� 1

� �
: ð13Þ

The values of �2 are determined by matching the solutions
of equation (12) to the imposed boundaries. This results in a
(boundary-dependant) discrete spectrum of stable eigenmodes
when �2 > 0 (Dubrulle & Knobloch 1993).

If the dispersion relation of equation (13) gives a negative
value for �2, the solution is a linear combination of the modified
Bessel functions I1( �j jr) and K1( �j jr). When the rotation fre-
quency is constant throughout the entire domain, there can be no
global mode satisfying both boundaries, as both solutions to
equation (12) are monotonic. If only a portion of the domain is
subject to rigid rotation (the effective potential is positive in that
region but negative elsewhere), themodifiedBessel functions pro-
vide suitable limiting forms. In particular, when either the density
or the rotation are small for large r, we obtain �j j � kz (vacuum
solution). We will use this result in x 4 to provide interior and
exterior boundary matching conditions for modes localized by
the form of the equilibrium profiles.

3.2. An Exactly Solvable Profile

For the next limit, we investigate a system with differential ro-
tation for which we can find exact solutions. Take constant den-
sity � ¼ �0, let

�2 ¼ �2
0

	

r
þ �

h i
; ð14Þ

and take the magnetic field to be uniform in the ẑ direction. For
this profile �0 < 0 if 	 > 0. We have deliberately chosen this
form so that the result for rigid rotation can be obtained by letting
	! 0 and � ! 1. A pure power law is obtained when � ! 0.
As we have stressed above, any rotation profile may be obtained
by specifying an appropriate equilibrium pressure. The effective
potential equation

d 2y

dr2
�
"

3

4r2
þ k 2z 1� 4��2

0!
2

F2
0

� �
þ k 2z

	�2
0

F0r
1� 4!2

F0

� �#
y ¼ 0

ð15Þ
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may be written in the standard Whittaker form (Abramowitz &
Stegun 1964):

d 2y

dr 2
� p0 �

q0

r
þ 3

4r2

� �
y ¼ 0; ð16Þ

where

p0 ¼ k 2z 1� 4��2
0!

2

F2
0

� �
; q0 ¼ � 	k 2z �

2
0

F0

1� 4!2

F0

� �
:

On a semi-infinite domain r2 (0;1), it allows well-behaved
solutions (� is the Kummer function):

yn ¼ �n
ffiffiffiffiffiffiffiffiffiffiffi
�F0r

p
¼ Ar3=2e�

ffiffiffiffi
p0

p
r�

3

2
� q0

2
ffiffiffiffiffi
p0

p ; 3; 2
ffiffiffiffiffi
p0

p
r

� �
: ð17Þ

This solution requires p0 > 0, which is satisfied for purely grow-
ing modes (all modes if � ! 0). The eigenvalue condition arises
from the need for the displacement and its radial derivative to be
bounded at both r ! 0 and r ! 1; the latter demands that the
Kummer series terminates. This happens when

3

2
� q0

2
ffiffiffiffiffi
p0

p ¼ �n; ð18Þ

yielding the dispersion relation,

	k 2z �
2
0

F0

1� 4!2

F0

� �
¼ �kz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4��2

0!
2

F2
0

s
(2nþ 3): ð19Þ

If � ! 0, we can solve equation (19) for the frequency

!2
n ¼ !2

A þ kz	�
2
0

2(2nþ 3)
3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16

!2
A 2nþ 3ð Þ
kz	�

2
0

s" #
: ð20Þ

From equation (20), we derive the instability criterion:

	�2
0 > kzv

2
a(2nþ 3); ð21Þ

where va ¼ !A/kz.

The radial quantum number n appears explicitly in the spectral
relation. The first three modes and associated effective potentials
are plotted in Figure 1. For small kz, equation (21) provides a
more severe constraint on �0 (measured by 	) than the local cri-
terion k 2

z v
2
a < 2r��0 (BH91).We see that as the radial mode num-

ber n rises, the instability criterion becomes harder to satisfy, and
the higher order radial modes are less unstable. Thus, the converse
of equation (21) with n ¼ 0 can be taken as a necessary condition
for global stability. In Figure 2, we plot the growth rate versus
Alfvén frequency for the first three radial modes, for kz ¼ 1. We
see that when !A is small, we have � � !A/

ffiffiffi
3

p
for all modes. As

the magnetic field is increased, the lowest order modes remain
the most unstable. The growth rate for each mode reaches a peak
value of � ¼ 	1=2�0 /[4(2nþ 3)1

=2 ] at the Alfvén frequency!A ¼
7	1=2�0kz /[4 2nþ 3ð Þ1=2 ]. The growth rate then decreases as !A

increases. There exists a critical magnetic field strength above
which each mode ceases to be unstable, with the lowest order
radial mode persisting to the highest field value.
In this case, the instability criterion, although both qualitatively

and quantitatively different from the ‘‘local’’ criterion, can indeed
be satisfied for �0 < 0. The eigenvalue problem is well posed;
well-defined square integrable eigenfunctions are associated with
unstable modes. The discretization is entirely defined by satis-
faction of the outer boundary condition. If we had instead im-
posed hard boundaries at some radii r1 and r2, wewould arrive at a
different spectrumby including the second solution toWhittaker’s
equation, which blows up near the origin. This illustrative case
shows the perils of a rotation profile which is unbounded near the
origin (making the inner boundary very important), as well as
one which has constant density and slow falloff of rotation out to
large radius (making the outer boundary important).

3.3. Keplerian Profile

When the equilibriumpressure and self-gravitation of the plasma
are negligible, we obtain the Keplerian case,� ¼ �0r

�3=2 (�2
0 ¼

GM /R3
0), whence the Brunt-Väisälä frequency goes to zero. This

is the case most often used in the study of thin accretion disks
(Balbus &Hawley 1998; Frank et al. 2002). The effective poten-
tial is

VKep(r; !) ¼ V (r; !) ¼ k 2 � k(r; !)
r3

þ 3

4r2
þ Q(r; !);

Fig. 1.—Profile �2 ¼ 	/r, � ¼ const:, considered in x 3.2, admits a discrete
spectrum of eigenmodes. For each radial quantum number n, there exists an ef-
fective potential (solid lines), which supports a global mode satisfying the eva-
nescent boundary conditions (dashed lines). As n increases, the potential well
gets deeper, and the mode extends over a greater area. For the unstable branch,
higher n corresponds to smaller growth rate.

Fig. 2.—Growth rate vs. Alfvén frequency for the first three radial eigen-
modes of the profile �2 ¼ 	/r, � ¼ �0, kz ¼ 1. The lowest order radial mode is
the most unstable for all magnetic field values. As the magnetic field strength is
increased, the growth rate of each mode first increases and then decreases until
the mode is stabilized.
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where we have defined

k(r; !) ¼ k 2�2
0

�2!2 þ 3�!̄2
A

F2
;

andQ(r) is defined as in x 3.2. If the density is constant,Q(r) ¼ 0,
and k must then be a positive constant if there is to be a spatially
oscillatory MRI mode. The effective potential VKep then has no
potential well—it takes its minimum negative value on the inner
boundary (case 1 described in x 2.3). If the region contains the
origin, the point r ¼ 0 is an essential singularity (VKep � k/r3 !
�1). The solutions to the differential equation near this singu-
larity, although bounded, have divergent first derivatives. The
problem of Keplerian rotation including the central point is math-
ematically ill-defined in the constant density case, and no global
MRI mode can be supported.

We now consider the effect of nonconstant density on purely
growing globalmodes (� 2 ¼�!2 > 0).We assume that for astro-
physically relevant cases, � is bounded and that �0(r) < 0 (the
convective stability criterion is satisfied). The Alfvén frequency
becomes a function of position, and k can become negative if
� 2 > 3!̄2

A /� [recall that !̄A ¼ kzB0z /(�0�0)
1=2]. This leads to the

conclusion that the maximum growth rate of the local MRI in
a Keplerian flow profile is �max ¼

ffiffiffi
3

p
!A(r). In the global case,

however, a mode with a given growth rate may be spatially eva-
nescent in one region but oscillatory in the other—a potential
well is created. If k remains negative as r ! 0, the modes will be
well-defined. Since this criterion depends on the value of!2, there
will always be some growth rates for which k > 0 sufficiently
close to the origin. The complete spectrumwill still be ill-defined.

Density variation also introduces terms to the effective poten-
tial (eq. [10]) which depend on the gradient of the Alfvén term
F(r) ¼ �!2 � !̄2

A. If the density has a power-law profile in some
region (� ¼ �0r

�a, a > 0), we find that the part of V that is en-
tirely due to density variation is

Q(r) ¼ a2

2r2(1þWra)2
1

2
þWra

� �
> 0;

whereW ¼ !̄2
A /(�0�

2). The contribution is therefore positive for un-
stable modes. For small r, we have Q � 1/r2. This inhomogeneity-
induced term does not diverge as fast as the Keplerian term, and
has little effect on the inner boundary. An exponential density
drop � � e�r=k gives similar results. We conclude that density var-
iation cannot remove the essential singularity that arises due to
Keplerian rotation.

The density gradient term Q(r) can be negative if the density
profile is locally linear and drops near to zero quickly. If � ¼
�0 1�� r � r0ð Þ/a½ � between r0 and some r2 ¼ r0 þ a, then

Q(r) ¼ �

2a

1

1þW � �=að Þ(r � r0)

;
1

r
� �

2a

1

1þW � �=að Þ(r � r0)

� �
;

which is negative for

(r � r0) >
2a

3�
(1þW )� r0

3
:

This has an interesting consequence for models which use the
constant density approximation over much of the range and then

assume zero density outside some boundary (e.g., Curry et al.
1994). While discontinuity matching may be used, a sharp den-
sity drop over a small region can lead to very unstablewall modes,
since smaller values of W are more likely to have negative Q(r)
over a wider range. Also, the further out the density drop-off oc-
curs, the more negative this term will be (if � is small and r0 is
large). If the rotation is sub-Keplerian, a negative radial density
gradient impliesN2 < 0, soN 2 /F > 0 for unstablemodes, and the
buoyancy terms can help to mediate this effect.

We see that density gradients in most cases serve to ‘‘shut off ’’
modes that exist for constant density. Both the local Alfvén vari-
ation and the positive Q(r) terms serve to shrink the region over
which the effective potential remains negative. Eventually, for a
given k and !̄A, the density profile becomes so steep that themost
unstable mode is no longer supported. Since lowering the density
has the effect of raising the local Alfvén frequency, we are in ef-
fect raising the ‘‘average’’ Alfvén frequency for the mode. This
phenomenon mimics an effective raising of the magnetic field,
which is known to shut off MRI modes.

4. NUMERICAL RESULTS

In this section, we numerically examine how modified rota-
tion and density profiles can localize and discretize the unstable
radial modes. For given �(r) and �(r), we select the axial wave-
number kz and fiducial Alfvén frequency !̄A, and use a shooting
and matching code to find the growth rates and radial structures
of the unstable modes. At the inner boundary, starting conditions
for the shooting routine are obtained by assuming that there is
some radius belowwhich both the density and the rotation can be
taken constant, (� ¼ �0 and � ¼ �0). The bounded solution in
that region is then the modified Bessel function I1( �0j jr), as
discussed in x 3.1. The outer boundary is handled in a similar
fashion. Care is taken to choose the outer boundary far enough
out such that the resulting growth rate and mode structure so
obtained does not change appreciably when the boundary is
moved.

4.1. Modified Keplerian Profile

We do not attempt to model real accretion disk boundary lay-
ers near the inner object; to do so would require a full treatment
of pressure, accretion inflow, etc. (see, e.g., Rogava & Tsiklauri
1993). Rather, we wish to examine the simplest rotation profiles
relevant to global MRI. Since the MRI is driven by strong shear,
it makes sense to examine profiles that are flat for small radii, and
which smoothly transition to rapid falloff for large radii. To this
end, we take a general form

�(r) ¼
�0

1þ r � r1ð Þ=R0½ �s for r > r1;

� ¼ �0 for r < r1:

8<
: ð22Þ

For the case s ¼ 3/2, r1 ¼ 0, this profile approaches Keplerian
for r3R0, but tends to a constant �0 at the origin. This corre-
sponds to a simple model of an accretion disk where the pressure
support is only significant below some radius R0, the inner mo-
tion corresponding to that of a rigid rotor. The shear is maxi-
mized near r ’ 0:342R0, as opposed to the true Keplerian case
where the shear remains unbounded as the origin is approached.
The density is taken to be constant (we shall examine the effects
of varying density below). We normalize frequencies to the cen-
tral rotation frequency �0, and lengths to the fiducial radius R0.
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The density and magnetic field are normalized such that vAR
�1
0 ¼

�0 for vA(normalized) ¼ 1.
The effective potential for this profile is shown in Figure 3 for

three values of the growth rate �, and for kz ¼ 1, vA ¼ 0:25.
Modes with more rapid radial oscillation have smaller growth
rates; this corresponds to a deeper potential well. When the well
is very deep, the radial wavelength is small, and a local treatment
becomes valid, but only near the bottom of the well. The most
unstable mode has no nodes (n ¼ 0). Although the local criterion
for instability can be satisfied at some radii for larger growth
rates, no eigenmodes exist with these larger growth rates which
satisfy the evanescent boundary conditions.

The dependence of the growth rate on the strength of the back-
ground magnetic field is qualitatively similar to the case consid-
ered in x 3.2, and is plotted in Figure 4. For small values of the
magnetic field, we find that the unstable radial modes are very
close together in growth rate and lie close to the shear Alfvén
wave dispersion relation � ¼ kzvAz. For the parameters given, the
most unstable mode reaches a maximum at !A ¼ 0:2, �n¼0 ¼
0:105. At this field strength, the n ¼ 1 mode has �n¼1 ¼ 0:036,

implying that after one rotation, the n ¼ 0 mode dominates by a
factor of �e3 � 20. For stronger background fields, the growth
rates diminish, and the higher radial order modes are stabilized.
Eventually, the magnetic field becomes so strong that even the
lowest order radial mode is no longer supported—the effective
potential is not sufficiently deep to support a radial eigenmode.
Also plotted is the numerically determined critical stability bound-
ary !A crit for the most unstable mode as a function of the vertical
wavenumber (in the regime kz � R�1

0 ). Note that in this range, the
mode can have a significant radial extent; thus, the modes that
we are concerned with have effective radial wavenumber kr P kz.
Since the critical Alfvén frequency rises slower than linearly with
increasing kz, the critical magnetic field required to shut off the
instability decreases as kz increases.

4.2. Density Variation

We now take for our density profile a form similar to equa-
tion (22):

�(r) ¼
�0

1þ r � r�
� �

=a

 �q for r > r�;

� ¼ �0 for r < r�:

8<
: ð23Þ

This profile, like the rotation profile, was chosen to yield con-
stant density below r�, and tend to a power law for large r. As
noted above, power-law density profiles have a stabilizing effect
on the global modes. The falloff of density for large radius has
the effect of smoothly transitioning the effective potential to that
of a locally stable vacuum magnetic field [as �! 0, k2 ! kz,
and the radial solution becomes K1(kzr)].
To demonstrate these effects, we examine themaximumgrowth

rates as the transition radius r� is varied, for fixed a ¼ R0, q ¼ 2.
Figure 5 shows the effective potential for the most unstable mode
as the density transition point r� is moved inward. When r� is
much larger than the radial peak of the constant density mode,
there is little effect on the mode, as the density is roughly con-
stant over the region where the mode is oscillatory. As the ped-
estal width shrinks, the effective Alfvén velocity increases over
the region where the mode is nonzero, raising the outer edge
of the potential well. For fixed central Alfvén speed v̄A, the
frequency of the mode must decrease so that the well remains
deep enough to support a mode, and the peak moves inward.

Fig. 3.—Effective potential for the rotation profile� ¼ �0 /(1þ r 3
=2), � ¼ �0.

For kz ¼ 1, vA ¼ 0:25, we plot V (r; !) for three different values of � ( ¼ �i!).
As � increases, the potential becomes less negative. When � ¼ 0:0954, the po-
tential supports the lowest order (n ¼ 0) discrete radial eigenmode (dashed line).
Even though there is a negative potential for larger growth rates, no eigenmode
exists which satisfies both boundary conditions; � ¼ 0:0954 is the most unstable
mode for these kz and vA values and all higher nmodes have smaller growth rates.
For � above �0.15, the potential is no longer negative anywhere.

Fig. 4.—(a) Growth rate of the first three radial eigenmodes vs. magnetic field strength for the rotation profile � ¼ �0 /(1þ r3
=2) at fixed kz ¼ 1. We see that as the

local Alfvén frequency increases, we transition from a shearlike mode �� kzvA to a cutoff. Themaximum growth rate for this wavenumber is �max ¼ 0:105, occurring at
kzvA ¼ 0:2�0. (b) Critical Alfvén frequency (in units of the central rotation frequency) above which no unstable global modes are supported as a function of axial
wavenumber. Since the slope of this plot is less than linear, the critical field strength v̄A crit decreases with increasing kz.
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For r� below �1, there is no longer a possibility of an unstable
eigenmode.

5. CONCLUSION

When linear perturbations of an inhomogeneous medium
have wavelengths comparable to the equilibrium variation scale,
spatial Fourier analysis becomes suspect, and global methods are
more applicable. We have shown that the study of long radial
wavelength incompressible axisymmetric perturbations of a dif-
ferentially rotating plasma gives rise to a effective potential prob-
lem with two classes of boundary dependence. In the first class,
the effective potential is negative up to the boundaries, i.e., the
plasma boundaries are locally MRI-unstable. The solutions in
this situation will always depend strongly on the type of bound-
ary conditions imposed. In the case of pure Keplerian rotation,
the eigenmode equation has an essential singularity at the origin.
Physically, this means that the rotational shear is maximized on
the inner boundary, making the most unstable modes ‘‘wall’’
modes, discretized by the imposed boundary. The second situa-
tion arises when the equilibrium profile is such that local MHD-
stability holds at the boundaries. This can happen if the rotation
shear vanishes for small radius, such as for boundary layer near
the central object of an accretion disk. The spatial region over
which the unstable modes exist are limited by the equilibrium
flow and density profiles, leading to reduced dependence on the
boundaries. The depth of the potential well is a decreasing func-

tion of growth rate. As the local limit is achieved when the po-
tential well is deepest, this result suggests that global modes may
be more unstable. In addition, growth rates depend on the back-
ground magnetic field in a complex fashion. For a given perpen-
dicular wavenumber, there exists a critical !A above which no
unstable linear modes are supported, as in the case of the local
MRI, but the cutoff values depend on the global properties of the
density and shear flow profiles.

We have not considered the stability of the system to global
nonaxisymmetric perturbations, as the effective potential treatment
not as readily applicable when m 6¼ 0. The potential becomes
complex, and overstable convective modes can occur. These may
have larger growth rates than the axisymmetric modes considered
above. For similar reasons, the case of mixed toroidal and axial
fields was not considered. In resistive magnetofluids, complex
axisymmetric disturbances can manifest as helical MRI modes
which convect along the ẑ axis (Rüdiger et al. 2006). Ideal MHD
helical MRI for some simple equilibrium profiles were consid-
ered in Curry & Pudritz (1995), but these modes depend strongly
on the boundary conditions. An extension to the potential theory
described above will be used to study the existence and structure
of these modes in a forthcoming paper.

The authors wish to thank Richard Hazeltine and J. Craig
Wheeler for useful discussions.
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Sedláček. 1971, J. Plasma Phys., 5, 239
Tayler, R. J. 1973, MNRAS, 161, 365

Fig. 5.—For the profile discussed in x 4.2, the effective potential of the most unstable mode for three values of the transition radius r� ¼ f5; 3; 1:05g. When r� is
larger than the location of maximum shear, the growth rate remains unchanged (� ¼ 0:0955 when r� ¼ 5). As the density falloff moves nearer to this point, the n ¼ 0
growth rate decreases (� ¼ 0:0233 for r� ¼ 5), and mode becomes more spatially localized (compare to Fig. 3). The mode is eventually cut off for r� ’ 1.

AXISYMMETRIC MAGNETOROTATIONAL INSTABILITY 1229No. 2, 2008


