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In the 1990s it was rigorously revealed by the hydrodynamic commu-

nity non-normal nature of operators of the modal analysis of linear processes

in shear flows – so, called “shear flow non-normality”. The non-normality

ensures finite-time, or transient, growth of perturbations in spectrally stable

shear flows that is essentially anisotropic in spectral space and, in turn, leads

to anisotropy of nonlinear processes in spectral space – the dominant nonlinear

process turns out to be not a direct/inverse, but a transverse cascade, that is, a

transverse/angular redistribution of perturbation harmonics in spectral space.

The investigation of the linear transient growth and nonlinear transverse cas-

cade in magnetohydrodynamic (MHD) unbounded constant shear flows – their

special nature, interplay and consequences – is the goal of the present thesis.
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Initially, in Chapter 2, is investigated in detail the transient linear dy-

namics in the form of overreflection of pseudo- and shear-Alfvén waves (P-AWs

and S-AWs) in spectrally stable MHD plane constant shear flow. We show

that: (1) the linear coupling of counter-propagating waves determines the over-

reflection, (2) counter-propagating P-AWs are coupled with each other, while

counter-propagating S-AWs are not coupled with each other, but are asymmet-

rically coupled with P-AWs; S-AWs do not participate in the linear dynamics

of P-AWs, (3) the transient growth of S-AWs is somewhat smaller compared

with that of P-AWs, (4) the linear transient processes are highly anisotropic in

wave number space, (5) the waves with small streamwise wavenumbers exhibit

stronger transient growth and become more balanced.

Further, in the thesis is investigated MHD turbulence in spectrally sta-

ble two dimensional (2D) plane shear flows (Chapter 3) and three dimensional

(3D) Keplerian disk flows, threaded by a non-zero azimuthal (Chapter 4) and

vertical (Chapter 5) net magnetic flux. In order to gain a deeper insight into

the underlying dynamical balances and sustaining mechanism, we performed

a set of numerical simulations in the shearing box model and based on the

simulation data, analyzed in detail the turbulence dynamics in Fourier space.

2D MHD plane shear flow, considered in Chapter 3, is spectrally stable,

so the turbulence is subcritical by nature and hence it can be energetically sup-

ported just by a transient growth mechanism due to shear flow non-normality.

We focus on analysis of the character of nonlinear processes and the under-

lying self-sustaining scheme of the turbulence, i.e., on the interplay between
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linear transient growth and nonlinear processes, in the spectral plane. The

study, being concerned with a new type of energy-injecting process for turbu-

lence - the transient growth - represents an alternative to the main trends of

magnetohydrodynamic (MHD) turbulence research.

In the case of Keplerian disk flows with a net azimuthal field, classical

exponential/modal instabilities are absent and linear growth of perturbations

(shearing waves) has a transient nature, also referred to as nonmodal growth.

Particularly, in the case of disk flows with azimuthal field and rotation, magne-

torotational instability (MRI), being only available source of energy for turbu-

lence, has transient nature and by itself, cannot ensure a long-term sustenance

of the perturbations, i.e. is imperfect in this sense. A necessary positive non-

linear feedback is required to regenerate new transiently growing modes. In

other words, the role of nonlinearity becomes crucial: it lies at the heart of

the sustenance of turbulence. The detailed analysis of the dynamics in apex-

tral/Fourier space, allows to demonstrate existence of the positive feedback.

Specifically, main novelties of the findings are the following:

I. The nonmodal growth process is strongly anisotropic in Fourier space

that, in turn, leads to anisotropy of nonlinear processes in this space. As a

result, the main nonlinear process appears to be not an usual direct/inverse,

but rather a new type of transverse/angular redistribution of perturbation

modes in Fourier space, when their wavevector mainly changes orientation

during nonlinear mode interactions – nonlinear transverse cascade.

II. Both the linear nonmodal growth and nonlinear transverse cascade
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mainly operate at large length scales, comparable to the box/system size.

Consequently, the central, small wavenumber area of Fourier space, is crucial

in the turbulence sustenance process and is called the vital area.

III. The turbulence is sustained by a subtle interplay of the linear non-

modal growth (transient MRI in the case of Keplerian disks) and the nonlinear

transverse cascade. Analyzing this interplay, it is revealed the basic subcycle

of the sustenance scheme that clearly shows synergy of the linear and nonlinear

processes in the self-organization of the magnetized flow system.

In the case of net vertical field, there is exponential growth of axisym-

metric channel modes, and hence no deficit in energy supply. Due to this, the

role of the transverse cascade in the turbulence sustenance is not as crucial

as in the case of the azimuthal field. But it still shapes the dynamics, sets

the saturation level, and determines the overall“design” of the net vertical field

MRI-turbulence. In particular, it accounts for the transfer of energy among the

“building blocks” of this turbulence: the axisymmetric channel mode, zonal

flow, to a broad spectrum of nonaxisymmetric (parasitic) modes.

The analyzed refined interplay of linear and nonlinear processes should

be relevant to the understanding of subcritical turbulence in other sheared and

magnetized complex environmental and engineering flows (e.g., sheared E×B

plasma fusion flows).
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ity, ūy(kzf ), components of the zonal flow mode with kzf =

(±1, 0, 0) as well as the corresponding nonlinear termsN (b)
y (kzf ),

N (u,kin)
y (kzf ), N (u,mag)

y (kzf ), which drive this mode. . . . . . . 207

5.9 The left panel shows the evolution of the total magnetic energy,
〈EM〉 (dashed blue), the magnetic energy of the channel mode,
EM,c (red), the total magnetic energy of the rest modes, EM,r ≈
〈EM〉 − EM,c (green) and the maximum value of the spectral
magnetic energy, EM,max (dashed black), which always coincides
with the energy of the channel mode. The right panel shows
the evolution of the total kinetic energy, 〈EK〉 (dashed blue),
the kinetic energy of the channel mode, EK,c (red), and of the
zonal flow mode, EK,zf (cyan) the total kinetic energy of the rest
modes, EK,r ≈ 〈EK〉 − EK,c − EK,zf (green) and the maximum
value of the spectral kinetic energy, EK,max (dashed black). . . 210

5.10 Spectra of the nonlinear transfer terms in (kx, ky)-plane at kz =
0(left), 1(middle), 2(right) at around t = 294, when the chan-
nel mode energy has a peak. . . . . . . . . . . . . . . . . . . . 215

5.11 The nonlinear transfer term N (u)
y in (kx, ky)-plane at kz = 0, 1,

when the channel mode energy is at the minimum, i.e., at the
end (“bottom”) of the burst at there different moments, t =
296, 311, 383. . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

xviii



5.12 Time-averaged nonlinear term N (b)
x in (kx, ky)-plane at kz =

0(left), 1(middle), 2(right). . . . . . . . . . . . . . . . . . . . 217

5.13 Space-time diagram of the azimuthal field averaged in the hor-
izontal (x, y)-plane, 〈by〉, in the unstratified N2 = 0 (top) and
stratified N2 = 0.25 (bottom) boxes. . . . . . . . . . . . . . . 222

5.14 Evolution of the volume-averaged rms of by and Maxwell stress
multiplied by q, q〈−bxby〉, in the stratified fiducial run at N2 =
0.25 (blue) and unstratified N2 = 0 run (green). . . . . . . . . 224

xix



Chapter 1

Introduction

Nonuniform/shear flows are ubiquitous both in nature and in labora-

tory. They occur in atmospheres, oceans, solar wind, stars, astrophysical disks,

pipe flows, tokamak reactors, etc. Complex dynamics of these systems is, in

many respects, a consequence of their nonuniform kinematics.

Developments in understanding the physics of the causes of turbulence

in spectrally stable shear flows have been irregular and taken considerable

time.The delay was due to some inadequacy of the canonical/modal/spectral

approach to study linear stability of smooth shear flows, which ultimately led

to the change of paradigm to a different, so-called, nonmodal approach (Schmid

& Henningson, 2001). Now the phrases: shear flow nonnormality, nonmodal

approach, transient growth, bypass concept of turbulence, shearing sheet and

etc. are already a common parlance in the fluid dynamical, atmospheric and

astrophysical disk communities. Although, retrospectively a thinking inertia

pretty long was clutching on the modal approach – eigenfunctions and eigen-

values – and delayed the legitimation of these concepts in studies of dynamical

processes in disks.

In the beginning of the 1990s, the non-normal nature of shear flows and
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its consequences became well understood and extensively studied by the hy-

drodynamic community (Reddy & Henningson (1993), Trefethen et al. (1993),

Schmid & Henningson (2001)).Shortcomings of traditional modal analysis (spec-

tral expansion of perturbations in time and subsequent analysis of eigenfunc-

tions) for shear flows have been revealed. Operators in the mathematical

formalism of the modal analysis are non-normal and the corresponding eigen-

modes are nonorthogonal (Reddy & Henningson (1993), Trefethen & Embree

(2005), Schmid (2007)). The nonorthogonality leads to strong interference

among the eigenmodes. Consequently, a proper approach should fully ana-

lyze this interference. While being in principle possible, this is in practice

a formidable task. On this issue colorfully expressed (Trefethen, 1991): “For

non-normal systems eigenvalues may still be used to a greater degree, like a nail

file when a screwdriver can’t be found, but they are rarely exactly right”. As a

result, the mathematical approach was shifted from the 1990s to the nonmodal

approach and a breakthrough in the understanding and precise description of

linear transient phenomena ensued. In spectrally stable hydrodynamic shear

flows, it became clear that vortex and wave mode perturbations of certain

spatial characteristics/orientation undergo linear transient growth (Gustavs-

son (1991), Farrell & Ioannou (1993a), Chagelishvili et al. (2003)), leading to

short perturbation life times. However, in certain favorable circumstances, the

perturbations are sustained for long time by the shear flow. Specifically, the

imperfect linear transient growth, which is the only source of energy for turbu-

lence in such flows, must be compensated by the nonlinear positive feedback,
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i.e., the role of nonlinear processes becomes crucial: they lie at the heart of

sustenance of the turbulence – close the feedback loop ensuring the sustaining

dynamics. On the basis of this interplay between linear transient growth and

nonlinear positive feedback, the hydrodynamic community described in detail

transient growth types and formulated the concept of bypass transition to ex-

plain the onset and sustenance of turbulence in spectrally stable shear flows

(Gebhardt & Grossmann (1994); Baggett et al. (1995); Grossmann (2000);

Chapman (2002)).

One type of linear transient growth – overreflection of pseudo- and

shear-Alfvén waves (P-AWs and S-AWs) – in spectrally stable MHD plane

constant shear flow is investigated in (Gogichaishvili et al., 2014) and represent

the content of Chapter 2.

As for the bypass concept, it was initially illustrated on toy model of

Trefethen et al. (1993). It’s natural that Trefethen’s bypass turbulence model

as a toy one has limitations. Afterwards phenomenological bypass concept was

elaborated by (Waleffe, 1995). The concept relates to bounded hydrodynamics

nonuniform flows and operates in physical space. This model showed limita-

tions of the flow non-normality for the hydrodynamic bounded flow turbulence

(see: Lectures of Summer program in Geophysical Fluid Dynamics, Walsh

Cottage Woods Hole Oceanographic Institution, June 20 – August 26, 2011,

Codirectors: Norman Lebovitz and Phil Morrison). Issues addressed in this

thesis differ from the above case – we address (i) MHD, (ii) unbounded/free,

(iii) constant shear flows where Maxwell (and not Reynolds) stress is dom-
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inant. The action of boundaries on the dynamics is absent (as the flow is

free). The flow profile is linear (and not curved). It appears that, in such

situations, the flow non-normality induced transient growth is the dominant

energy supplying linear phenomenon. So, we consider the simplest/constant

shear flow and analyze the interplay of the linear transient and nonlinear feed-

back processes in spectral (k-)space. First, a constant shear flow is not a

idealization, but quite a realistic/useful model. For instance, the well-known

shearing sheet approximation for investigation of local dynamics in astrophys-

ical disks is based on the background flow configuration with constant shear

of velocity. Second, canonical nonlinear processes, such as direct/inverse cas-

cade, are analyzed in spectral space. Therefore, it is natural to investigate

how enriched the canonical nonlinear processes are by flow shear, whether the

direct and inverse cascades are modified, or a new type of cascade process

appears. The following thoughts can contribute to the clarification of these

questions. Actually, the shear-induced linear nonmodal growth of a perturba-

tion harmonic mainly depends on its wave vector orientation and, to a lesser

degree, on the value (e.g., Farrell, 1988; Butler & Farrell, 1992; Farrell & Ioan-

nou, 1993a; Jimenez, 2013): the spatial Fourier harmonics that have a certain

orientation of the wave vector with respect to shear flow draw energy from it

and grow, whereas harmonics with other orientation of the wave vector give

energy to the flow and decay. This anisotropy of the linear energy-exchange

processes with respect to wave vector orientation (angle), in turn, leads to

anisotropy of nonlinear processes in k-space. Specifically, as revealed in (Hor-
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ton et al., 2010; Mamatsashvili et al., 2014, 2016), in HD and MHD plane

shear flows, the main nonlinear process is not a direct or inverse, but rather,

so-called, nonlinear transverse cascade, that is angular (transverse) redistribu-

tion of perturbation harmonics in k-space. The nonlinear transverse cascade

represents an alternative to the canonical direct and inverse cascades in the

presence of flow velocity shear. Such angular redistribution of harmonics in k-

space has been suggested in the context of the problem of hydrodynamic shear

turbulence in non-magnetized Keplerian disks. In fact, differentially rotating

disks represent special case of shear flows and hence the effects of nonnormal-

ity inevitably play a key role in their dynamics (e.g., Chagelishvili et al., 2003;

Mukhopadhyay et al., 2005; Zhuravlev & Razdoburdin, 2014; Razdoburdin

& Zhuravlev, 2017). Chagelishvili et al. (2003) first showed the applicabil-

ity/relevance of the findings of the hydrodynamic community for spectrally

stable shear flows, the nonorthogonality of linear operators and the nonmodal

approach, the mechanism of perturbation amplification and the bypass con-

cept of onset of turbulence for the dynamics of disks. Then, a simple sketch

of the bypass scenario in wavenumber (kx, ky)-plane was presented (see figure

A.1 of Chagelishvili et al. (2003)), which schematically describes the nonlinear

angular redistribution of harmonics, i.e., the transverse cascade. Subsequently,

a key character of the transverse cascade was confirmed and refined interplay

of linear transient growth and nonlinear transverse cascade analyzed in de-

tail for magnetized Keplerian disks by (Gogichaishvili et al. (2017, 2018)). In

these papers are investigated Keplerian disk flows, threaded by a non-zero az-
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imuthal and vertical net magnetic flux, respectively. The detail description of

the specificity of these cases and the existing knowledge of similar research –

magnetized disk flows – are presented in the related Chapters (4 and 5) of this

theses.

1.1 Vivid example of nonlinear transverse cascade – dy-
namics of coherent vorticies in 2D plane shear flows

The nonlinear transverse cascade and its interplay with the linear tran-

sient growth can be clearly demonstrated in (kx, ky)-plane by analyzing the

dynamics of coherent cyclonic and anticyclonic vorticies in 2D homogeneous

constant shear flow, U0(x) = (0, Ax), with the shear parameter A > 0 ( Horton

et al. (2010)). The nonlinear dynamical equation for the stream function of

perturbations, ψ, is[
∂

∂t
+ U0(x)

∂

∂y

]
∆ψ + J(ψ,∆ψ)− ν∆2ψ = 0, (1.1)

where the spatial operators J(., .) and ∆ are, respectively, 2D Jacobian and

Laplacian and ν is the viscosity. The velocity and energy density of perturba-

tions are defined through ψ and density ρ, respectively, as

vx = −∂ψ
∂y

; vy =
∂ψ

∂x
, e(x, y, t) =

1

2
ρ

[(
∂ψ

∂y

)2

+

(
∂ψ

∂x

)2
]
.

Initially we impose coherent vortices with Gaussian shape of stream function

in the (x, y)-plane:

ψ(x, y, t)|t=0 = nb exp

(
−x

2 + y2

l2

)
. (1.2)
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where n = −1 corresponds to cyclonic and n = 1 to anticyclonic vortex pertur-

bations and b > 0 is their amplitude. Introduce non-dimensional parameters,

τ ≡ At, (X, Y ) ≡ (x, y)

l
, B ≡ b

Al2
, Ψ ≡ ψ

Al2
, E ≡ 2e

ρA2l2
, Re ≡ Al2

ν
,

and perform Fourier transform with respect to the coordinates X and Y ,

Ψ =

∫
dkxdkyΨk exp(ikxX + ikyY ). (1.3)

Substituting Eq. (2.3) into Eqs. (2.1) and (2.2), one can obtain the evolution

equation for Ψk:

k2∂Ψk

∂τ
− ky

∂(k2Ψk)

∂kx
+
k4

Re
Ψk =

∑
k=k′+k′′

(k′xk
′′
y − k′′xk′y)k′2Ψk′Ψk′′ , (1.4)

with the corresponding initial condition in Fourier plane

Ψk|τ=0 = nB exp

(
−
k2
x + k2

y

4π2

)
,

where k2 ≡ k2
x + k2

y. The nonlinear term on the right hand side (rhs) of this

equation describes three-wave interactions. Equation (2.4) forms the basis

of the numerical study to explore quantitatively the dynamics of the stream

function, spectral energy density, and total energy of cyclonic and anticyclonic

vorticies. However, to investigate the physics of the phenomena, one has to

analyze the dynamical equation for the spectral kinetic energy density, Ek =

k2|Ψk|2, which follows from Eq. (2.4),

∂Ek

∂τ
= ky

∂Ek

∂kx
+

2kxky
k2

Ek −
k2

Re
Ek +Nk, (1.5)
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Figure 1.1: Normalized total energy vs. time for coherent anticyclonic (red)
and cyclonic (blue) vortex perturbations for Re = 1000 and B = 3. The
energy of the anticyclonic vortex increases monotonically, while the energy of
the cyclonic one initially increases and then oscillates weakly around a constant
value.

where Nk is the nonlinear term:

Nk =
∑

k=k′+k′′

(k′xk
′′
y − k′′xk′y)k′2(Ψ∗kΨk′Ψk′′ + ΨkΨ∗k′Ψ∗k′′).

The terms on the rhs of Eq. (2.5) represent four – three linear and one non-

linear – basic phenomena: 1. The linear flux of the spectral kinetic energy

parallel to the kx-axis, 2. The energy exchange between the perturbation har-

monics and the background flow, 3. The viscous dissipation, 4. The nonlinear

processes that redistribute the energy of perturbation harmonics in k-plane,

but do not change their total energy. The interplay of these basic phenomena

defines ∂Ek/∂τ . Solving numerically Eq. (2.4), or equivalently Eq. (2.5), one

can get full information on all the physical quantities and the basic phenomena.

The evolution of the perturbation energy normalized to the initial value
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(a) (b)

(a) (b)

Figure 1.2: The spectrum of the nonlinear term Nk(kx, ky, τ) for the coherent
anticyclonic (upper two plots) and cyclonic (lower two plots) vorticies with
Re = 1000 and B = 3 at times τ = 0.5 and 2, respectively. The nonlinearity
redistributes the perturbation harmonics energy from the blue areas (where
Nk < 0) to the red ones (where Nk > 0) – the nonlinear transverse cascade is
strongly pronounced.

E/E0 for the coherent anticyclonic and cyclonic perturbations are presented in

Fig. 1. The energy of the anticyclonic vortex increases monotonically, while
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the energy of the cyclonic one initially increases and then oscillates weakly

around a constant value. Since, the linear dynamics of the perturbations

are identical, the difference in the energy evolutions is due to the nonlinear

phenomena described in (kx, ky)-plane by Nk. This term for the anticyclonic

vortex (with B = 3 and Re = 1000) is presented in upper plots of Fig. 2 at

τ = 0.5 and 2. The nonlinearity redistributes the perturbation energy from

the blue areas (where Nk < 0) to the red ones (where Nk > 0). The green

refers to areas where Nk ' 0. As one can see, the nonlinear interactions

redistribute energy from quadrants II and IV (where Nk is predominantly

negative), to quadrants I and III (where Nk is predominantly positive). This

nonlinear angular redistribution, or transverse cascade, repopulates the grow-

ing harmonics, which extract shear flow energy and are amplified in quadrants

I and III of k-plane, where kxky > 0 (see Eq. 2.5). This nonlinear feedback

mechanism leads to the growth of the total energy of the coherent anticyclonic

perturbations (the red curve in Fig.1), i.e., – to the sustenance of anticyclonic

perturbations. Also, one can see that the domain of significant nonlinear ac-

tivity shrinks in time towards lower wave numbers: an inverse cascade is also

at work. However, the dominant nonlinear process is the transverse cascade.

The lower plots of Fig. 2 show that the transverse cascade is also

strongly pronounced for coherent cyclonic vortices. However, in this case the

nonlinear dynamics is more complicated. Positive and negative feedbacks al-

ternate in time. Indeed, we see that nonlinear interactions redistribute energy

mainly over wavenumber angle, from quadrants II and IV to quadrants I and
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III at τ = 0.5 and vice versa at τ = 2. Hence, the transverse cascade repop-

ulates growing harmonics (for which kxky > 0) at τ = 0.5, contributing to an

increase in the cyclonic vortex total energy. By contrast, the repopulation of

decaying harmonics by the transverse cascade leads to a decrease in the total

energy at τ = 2 (see variation of the blue curve in Fig. 1). So, in the case

of the cyclonic vortex, the transverse cascade does not ensure a continuous

positive feedback.
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Chapter 2

Nature and dynamics of overreflection of

Alfvén waves in MHD shear flows

2.1 Introduction

Nonuniform flows are ubiquitous both in nature and in laboratory.

They occur in atmospheres, oceans, solar wind, stars, astrophysical disks,

pipe flows, tokamak reactors, etc. Complex dynamics of these systems is, in

many respects, a consequence of their nonuniform kinematics. One of the basic

manifestations of flow shear is wave overreflection phenomenon – substantial

growth of counter-propagating wave perturbations – that occurs universally

whenever flow has non-zero shear. For instance, in astrophysical discs, there is

the overreflection of spiral-density waves, in the atmosphere – internal-gravity

waves, in the solar wind – MHD waves, and in laboratory plasmas.

The essence of the overreflection is the following. If initially in a

shear flow exist just waves having definitely directed group velocity and, con-

sequently, propagating in one direction (i.e. counter-propagating waves are

absent initially), in the course of time, there appears the growth of counter-

propagating waves, i.e., waves that have oppositely (to the initial waves) di-

rected group velocities. Of course, if the initial/incident waves are localized in
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the flow shear direction, the overreflection phenomenon has visual manifesta-

tion – it appears reflected (also localized in the shear direction) waves having

larger, then incident waves, amplitude. However, in the non-modal approach,

investigating the dynamics of spatial Fourier harmonics of waves (so called,

Kelvin waves) that are not localized in the physical space, the visual mani-

festation is absent and one can mathematically describe the overreflection by

the appearance and increase of counter-propagating waves, i.e. – waves hav-

ing oppositely directed group velocity. We aim to go deeper into the physical

mechanism responsible for this overreflection in an incompressible MHD shear

flow.

The overreflection phenomenon is usually analysed on the basis of a sin-

gle second-order ordinary differential (wave) equation (e.g., see seminal papers

on overreflection Goldreich & Tremaine, 1978, 1979; Lindzen & Barker, 1985;

Farrell & Ioannou, 1993b). This approach describes counter-propagating waves

by a single/physical variable and, consequently, possible dynamical processes

between these waves (e.g., their coupling) are, in fact, left out of consideration.

To fill this gap – to reduce the perturbation equations to the set of first order

differential equations for individual counter-propagating wave – we propose,

at first, to find “eigen-variable” for each wave component. I.e., to find vari-

ables for which the linear matrix operator is diagonal in the shearless limit.

Then, one have to generalize the eigen-variables for plasmas with non-zero

shear case. The generalization is not unique possible procedure. But the opti-

mal one is quite easily findable. In the considered MHD flow, the generalized
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variables are the renormalized Elsässer variables (derived in equations 2.12).

Resulting first order ordinary differential equations (written for the general-

ized variables) separate from each other different physical processes, making

it possible to grasp their interplay and to understand the basic physics of

the overreflection phenomenon. In the renormalized Elsässer variables we get

two different types of Alfvén waves in incompressible MHD flows with linear

shear of mean velocity, U0 = (Sy, 0, 0). As stated in the abstract, these waves

are reduced to pseudo- and shear-Alfvén waves when the wavenumber along

Z-axis equals zero (i.e., when kz = 0). Therefore, for simplicity, we labelled

these waves as: P-Alfvén and S-Alfvén waves (Pseudo-Alfven and shear-Alfven

waves). We carried out analytical (Kelvin mode) and numerical analysis of the

linear dynamics of P-AWs and S-AWs. Our analysis has clearly demonstrated

linear coupling between these waves. We describe in detail transient growth of

counter-propagating components of P-AWs and S-AWs when only one of them

exists initially in the flow. The amplification of these (so-called, transmitted

and reflected) waves, i.e. the wave overreflection phenomenon, is determined

by the linear coupling of the waves induced by shear flow non-normality.

Historically, the non-normality of shear flows considerably delayed the

full understanding of their behavior. In fact, this feature and its dynamical

consequences only became well understood by the hydrodynamic community in

the 1990s (e.g., see Reddy & Henningson, 1993; Trefethen et al., 1993; Schmid,

2007). Shortcomings of the traditional modal analysis (i.e., spectral expansion

of perturbations in time and then analysis of eigenfunctions) for shear flows
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have been revealed and an alternative Kelvin wave approach – a special kind

of the non-modal approach – has become well established and has been ex-

tensively used since the 1990s. Kelvin waves represent the basic “elements” of

dynamical processes at constant shear rate (Chagelishvili et al., 1996; Yoshida,

2005) and greatly help to understand finite-time transient phenomena in shear

flows. In particular, non-modal analysis reveals a channel of linear coupling

among different branches/modes of perturbations in shear flows (Chagelishvili

et al., 1997b,a), leading to energy exchange between vortex and wave modes

and between different wave branches.

A new, bypass transition, concept was also formulated by the the hy-

drodynamic community to explain the onset of turbulence in spectrally stable

shear flows (e.g., see Baggett et al., 1995; Grossmann, 2000; Eckhardt et al.,

2007, and references therein) on the basis of the interplay between linear tran-

sient growth and nonlinear positive feedback. The bypass scenario differs

fundamentally from the classical turbulence scenario, which is based on expo-

nentially growing perturbations in a system that supplies turbulent energy. In

the classical case, the nonlinearity is not vital to the existence of the pertur-

bations. Instead, it merely determines their scales, via the direct and inverse

cascades.

This breakthrough led to renewed comprehension of different aspects of

shear flow dynamics. This thesis (related to (Gogichaishvili et al., 2014)), aims

to provide new insight into the physics of wave overreflection on the example

of P-AWs and S-AWs in incompressible MHD flows with linear shear in the
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mean velocity profile. Actually, our study can be of wide applicability:

(i) The method of characterizing overreflection presented here is optimal, more-

over, canonical, and can be easily applied for deeper understanding of the over-

reflection phenomenon in other important cases, such as spiral-density waves in

astrophysical discs and internal-gravity waves in stably stratified atmospheres;

(ii) The presented overreflection dynamics fits in naturally within the above-

mentioned bypass concept. This allows us to adopt schemes and ideas of the

bypass concept for the understanding of driven turbulence in MHD shear flows.

The Chapter is organized as follows. Section 2.2 is devoted to deriv-

ing four first order differential equations (for individual counter-propagating

wave) and qualitative analysis of the equations. Section 2.3 – to the numeri-

cal analysis in two and three dimensions. Summary and discussion are given

in Section 2.4 where we also analyze nonlinear consequences of the described

linear dynamics and application of the proposed approach to more complex

shear flow systems.

2.2 Physical model and equations

Consider a 3D ideal, incompressible MHD fluid flow with constant/linear

shear of velocity, U0 = (Sy, 0, 0), and uniform magnetic field, B0 = (B0, 0, 0),

directed along the flow. The linearized dynamical equations for small pertur-

bations to the flow are:
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(
∂

∂t
+ Sy

∂

∂x

)
vx + Svy = −1

ρ

∂p

∂x
, (2.1)(

∂

∂t
+ Sy

∂

∂x

)
vy = −1

ρ

∂p

∂y
+

B0

4πρ

(
∂by
∂x
− ∂bx
∂y

)
, (2.2)(

∂

∂t
+ Sy

∂

∂x

)
vz = −1

ρ

∂p

∂z
+

B0

4πρ

(
∂bz
∂x
− ∂bx

∂z

)
, (2.3)

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0 ,
∂bx
∂x

+
∂by
∂y

+
∂bz
∂z

= 0 , (2.4)(
∂

∂t
+ Sy

∂

∂x

)
by = B0

∂vy
∂x

, (2.5)(
∂

∂t
+ Sy

∂

∂x

)
bz = B0

∂vz
∂x

, (2.6)

where: ρ is the unperturbed density; p, v and b are the pressure, velocity and

magnetic field perturbations, respectively.

The dynamic equations permit the decomposition of perturbed quan-

tities into Kelvin waves, or spatial Fourier harmonics (SFHs):

Ψ(x, y, z, t) = Ψ̃(kx, ky(t), kz, t) exp(ikxx+ iky(t)y + ikzz) , (2.7)

where Ψ = {p,v,b}, Ψ̃ = {p̃, ṽ, b̃} and ky(t) = ky0 − Skxt.

Introducing the following non-dimensional variables and parameters by

taking: 1/S as the scale of time; Alfvén velocity, VA = B0/(4πρ)1/2, as the

scale of velocity perturbation; B0 as the scale of magnetic field perturbation,

τ = St , ky(τ) = ky(0)− kxτ , v̂y = ṽy/VA ,

v̂z = ṽz/VA , b̂y = b̃y/B0 , b̂z = b̃z/B0 , (2.8)
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the above system of equations reduces to the following first order dynamic

equations:

dv̂y
dτ

= 2χp(τ)v̂y + iΩAb̂y ,
db̂y
dτ

= iΩAv̂y , (2.9)

dv̂z
dτ

= 2χs(τ)v̂y + iΩAb̂z ,
db̂z
dτ

= iΩAv̂z , (2.10)

where

χp(τ) =
kxky(τ)

k2(τ)
, χs(τ) =

kxkz
k2(τ)

,

k2(τ) ≡ k2
x + k2

y(τ) + k2
z , ΩA ≡

kxVA
S

. (2.11)

ΩA is non-dimensional Alfvén wave frequency.

One can say, that v̂y, v̂z, b̂y and b̂z are physical variables, but

not eigen ones for the counter-propagating P-AWs and S-AWs. Here we start

our optimal route to the description of the overreflection phenomenon the

essence of which is outlined in the introduction: initially, one have to define

eigen variable for each wave components in the shearless limit (for which the

linear matrix operator is diagonal). Then, one have to generalize the eigen

variables for non-zero shear case and rewrite the dynamic equations for them.

Fortunately, in the considered MHD flow, one can use the Elsässer variables

as the generalized ones,

Z±p = v̂y ∓ b̂y , Z±s = v̂z ∓ b̂z . (2.12)

Inserting the Elsässer variables into equations (2.9) and(2.10), one get

the set of the four, first order differential equations describing the dynamics of
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P-Alfvén (labelled by the index “p”) and S-Alfvén (labelled by the index “s”)

wave SFHs:
dZ+

p

dτ
= −iΩAZ

+
p + χp(τ)Z+

p + χp(τ)Z−p , (2.13)

dZ−p
dτ

= iΩAZ
−
p + χp(τ)Z−p + χp(τ)Z+

p , (2.14)

dZ+
s

dτ
= −iΩAZ

+
s + χs(τ)Z+

p + χs(τ)Z−p , (2.15)

dZ−s
dτ

= iΩAZ
−
s + χs(τ)Z−p + χs(τ)Z+

p . (2.16)

One can see that the linear matrix operator of the equations (written

for the eigen variables) is not diagonal in shear flow. I.e. the dynamics of the

waves are not separated to each other any more.

2.2.1 Spectral energy

Strictly speaking, the energy of waves should be determined in the

framework of nonlinear problems. However, usually, the concept of energy is

introduced in solving linearized problems (Stepanyants & Fabrikant, 1989).

We also do the same to get a feeling of the dynamics of quadratic forms of

physical variables.

The energy of an individual SFH (total spectral energy) is the sum of
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kinetic and magnetic ones:

E(kx, ky(τ), τ) =
ρV 2

A

2

(
|v̂x|2 + |v̂y|2 + |v̂z|2 + |b̂x|2 + |b̂y|2 + |b̂z|2

)
=

=
1

4
ρV 2

A

(
1 +

k2
y(τ)

k2
x

)(
|Z+

p |2 + |Z−p |2
)

+
1

4
ρV 2

A

(
1 +

k2
z

k2
x

)(
|Z+

s |2 + |Z−s |2
)

+

+
1

4
ρV 2

A

ky(τ)kz
k2
x

(
Z+
p Z

+∗
s + Z−p Z

−∗
s + Z+

s Z
+∗
p + Z−s Z

−∗
p

)
=

= E+
p + E−p + E+

s + E−s + Eint, (2.17)

where:

E±i ≡
1

4
ρV 2

A

(
1 +

k2
y(τ)

k2
x

)
|Z±i |2, i = p, s

Eint ≡
1

4
ρV 2

A

ky(τ)kz
k2
x

(
Z+
p Z

+∗
s + Z−p Z

−∗
s + Z+

s Z
+∗
p + Z−s Z

−∗
p

)
.

One can say, that Ep = E+
p + E−p is the spectral energy of P-AWs,

Es = E+
s +E−s – the spectral energy of S-AWs, and Eint – the spectral potential

energy connected to the coupling, or interaction between P-AWs and S-AWs.

So, the spectral energy, that is the sum of quadratic forms of velocity and

magnetic field perturbations, does not reduce to a sum of quadrates of the

Elsässer variables – it can be interpreted as the sum of the spectral energies

of P-AWs and S-AWs with the additional term, Eint. This additional term

appears in the framework of the considered linear theory due to the coupling

of these two waves and, of course, has not any relation to their nonlinear

interaction. Generally, Eint is of the order of Ep and Es (see below figure

2.6). Evaluating the dynamic processes, we will work in terms of the spectral

energies of the waves (Ep, Es, E
+
p , E+

s , E−p and E−s ).
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2.2.2 Qualitative analysis of the dynamic equations: the wave lin-
ear coupling as the basis of the overreflection

From equations (2.13)-(2.16) it follows that the dynamics of counter-

propagating P-AW SFHs is self-contained – the dynamics is defined by the

intrinsic to the P-AWs terms, while the dynamics of S-AW SFHs is defined by

the extrinsic to S-AWs terms – the second and third rhs terms of equations

(2.15) and (2.16) linearly couple the dynamics of each S-AW SFH to the cor-

responding SFH of P-AWs. So, the coupling is asymmetric: S-AWs do not

participate in the dynamics of P-AWs, while P-AWs do. Somewhat similar

investigation, but in compressible case, is performed in Hollweg & Kaghashvili

(2012). In compressible flows, the coupling is mutual – slow magnetosonic

waves are generated by Alfvén ones and inverse. A physical result of this

process is the generation of density perturbations by Alfvén waves.

The dynamics of each (counter-propagating) P-AW SFH is determined

by the interplay of three different terms on the right hand side of equations

(2.13) and (2.14). The second rhs terms of these equations relate to a mech-

anism of energy exchange between the mean flow and the SFH. The third

rhs terms couple these equations, or physically, linearly couple the counter-

propagating P-AWs. These terms relate to another mechanism, which is

responsible, in many respects, for P-AW overreflection phenomenon. χp is

the time-dependent coupling coefficient of counter-propagating P-AWs and, in

fact, its value determines the strength of the overreflection of these waves. In

the shearless limit, χp = 0 and only the first, easily recognizable terms are
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left in these equations, which result in oscillations with normalized frequencies

ΩA and −ΩA, i.e., with Alfvén frequency, KxVA, in dimensional variables.

As for equations (2.15) and (2.16), the second and third rhs terms

describe the growth of S-AWs that occurs due to the linear coupling of P-

AWs and S-AWs, i.e. the growth of S-AWs is an indirect consequence of P-

AWs growth. Nevertheless, as it follows from the below performed numerical

calculations, the growth of P-AWs prevails over the growth of S-AWs for a

wide range of the system parameters.

2.2.3 Qualitative analysis of the dynamics of P-Alfvén waves

We analyze the wave dynamics in polar coordinates,

Z±i (τ) = |Z±i (τ)| exp(−iφ±i (τ)) , i = p, s (2.18)

and define the degree of imbalance for counter-propagating SFHs of P-AWs

and S-AWs as:

αi = 1− |Z
−
i |2

|Z+
i |2

, i = p, s. (2.19)

For the purpose of the visualization of overreflection phenomenon we

introduce “instantaneous frequency” as

Ω±i (τ) =
dφ±i (τ)

dτ
, i = p, s. (2.20)

As it was mentioned above, the dynamics of counter-propagating P-

Alfvén waves is self-contained. Let’s focus on a qualitative analysis of P-AWs’

SFHs amplitude and phase dynamics.
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From equations (2.13) and (2.14) it follows:

d

dτ
(|Z+

p |2 − |Z−p |2) = 2χp(τ)(|Z+
p |2 − |Z−p |2) =

=

[
d

dτ
ln

(
k2
x + k2

y(0) + k2
z

k2
x + k2

y(τ) + k2
z

)]
(|Z+

p |2 − |Z−p |2) , (2.21)

or, after integration,

|Z+
p (τ)|2 − |Z−p (τ)|2 =

k2
x + k2

y(0) + k2
z

k2
x + k2

y(τ) + k2
z

(|Z+
p (0)|2 − |Z−p (0)|2) . (2.22)

We see that if the waves are balanced at the beginning, |Z+
p (0)| =

|Z−p (0)|, they remain balanced. If at the beginning |Z+
p (0)| 6= |Z−p (0)|, then

the difference of the intensities varies by an algebraic law (∼ 1/k2(τ)) that

is characteristic to transient growth in hydrodynamic shear flows (Farrell &

Ioannou, 1993a; Schmid, 2007). This indicates a common basis of transient

dynamics in MHD and hydrodynamics shear flows.

Renormalizing the Elsässer variables:

|Z±p (τ)| = exp

 τ∫
0

dτ ′χp(τ
′)

 |Ẑ±p (τ)| =

√
k2
x + k2

y(0) + k2
z

k2
x + k2

y(τ) + k2
z

|Ẑ±p (τ)| , (2.23)

Equations (2.13) and (2.14) are reduced to

dẐ+
p

dτ
= −iΩAẐ

+
p + χp(τ)Ẑ−p ,

dẐ−p
dτ

= iΩAẐ
−
p + χp(τ)Ẑ+

p , (2.24)

and equation (2.22) to

|Ẑ+
p (τ)|2 − |Ẑ−p (τ)|2 = |Ẑ+

p (0)|2 − |Ẑ−p (0)|2 , (2.25)
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i.e., in this version of eigen variables, the dynamic equations are simplified

(compare 2.13 and 2.14 with 2.24) and, in addition (as it follows from equa-

tion 2.25), the difference between the intensities is constant. Equation (2.25)

indicates the conservation of action for P-AW harmonics. The similar conser-

vation of wave action for different and more complex configuration is derived

in Heinemann & Olbert (1980). The latter considers small-amplitude, toroidal

non-WKB (long wavelength) Alfvén waves in a model of axisymmetric ideal

MHD solar wind flow neglecting solar rotation. The considered toroidal waves

decouple from compressional waves in linear approximation and their ampli-

tudes dynamics can be computed from only two equations without considera-

tion of the other wave modes. I.e. the dynamics of the toroidal Alfvén waves is

self-contained as the dynamics of counter-propagating P-AWs considered here.

Consequently, the conservation of wave action in the both cases is reduced to

the conservation of the wave action for one (counter-propagating, or inward-

outward) wave mode independently to the complexity of the flow system and

has the simple form.

Equations (2.18) and (2.23) give

Ẑ±p (τ) = |Ẑ±p (τ)| exp(−iφ±p (τ)) , (2.26)

substituting which in (2.24), after simple but cumbersome mathematical ma-

nipulations, finally, results in two dynamic equations for the normalized total

intensity, |Ẑ+
p (τ)|2 + |Ẑ−p (τ)|2, and phases difference, ∆φp(τ) = φ+

p (τ)−φ−p (τ),
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of the counter-propagating P-Alfvén waves:

d ln(|Ẑ+
p |2 + |Ẑ−p |2)

dτ
= Γ(τ)χp(τ) cos ∆φp , (2.27)

d∆φp
dτ

= 2ΩA −
χp(τ)

Γ(τ)
sin ∆φp , (2.28)

where,

Γ(τ) =
2|Ẑ+

p ||Ẑ−p |
|Ẑ+

p |2 + |Ẑ−p |2
(2.29)

mathematically is the ratio of the geometrical and arithmetic means of the

amplitudes. Of course, this ratio is the maximum when the amplitudes are

equal to each other. Consequently, the fastest growth of the total intensity of

the counter-propagating waves occurs when the waves are balanced from the

beginning, |Ẑ+
p (0)| = |Ẑ−p (0)|. In this case, Γ(τ) = 1 that contributes to the

intensification of the growth. The results of the presented below numerical

calculations confirms this.

The growth also depends on sign-varying quantities χp and cos ∆φp.

For the optimal growth, the coincidence of their signs during main part of the

dynamics is necessary. The sign of χp(τ) is defined by the sign of kxky(τ).

If initially kxky(0) > 0, χp(0) is positive. In the course of time, when

τ > τ ∗ ≡ ky(0)/kx, χp(τ) becomes negative. For the effectivness of the growth,

well-timed change of the sign of cos ∆φp is necessary to make the rhs of

equation (2.27) positive again. So, the growth should depend strongly on

the dynamics of ∆φp(τ), including the initial value of the phase difference,

∆φp(0). This fact is also confirmed by the following calculations.
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2.3 Numerical analysis

It is seen from equations (2.13)-(2.16) that, S-AWs do not participate in

any energy exchange processes in the flow. If initially only S-AWs are excited

in the flow, |Z±s (0)| 6= 0 and |Z±p (0)| = 0, and the dynamics is trivial – any

kind of energy exchange process is absent and we simply have the propagation

of S-AWs. So, we analyze cases when initially only P-AW SFHs are imposed in

the flow. Specifically, we inserted a single unidirectional P-AW harmonic (i.e.,

with one sign of frequency, Z+
p (0) = 1 and Z−p (0) = 0) or counter-propagating

P-AW harmonics with equal amplitudes but different phases (Z+
p (0) = 1 and

Z−p (0) = 1, i,−1). We present the results of the numerical calculations for

ΩA = 0.1; 0.3; 1 and ky(0)/kx = 100. We consider two-dimensional (kz = 0),

as well as three-dimensional (kz/kx = 1; 10) cases. A general outcome of the

dynamics is the following: the growth of the waves occurs mostly at ΩA < 1

and ky(0)/kx > 1; the intensity of the processes increases with the decrease of

ΩA and increase of ky(0)/kx; it also strongly depends on the value of kz/kx.

2.3.1 Two-dimensional case

The transient dynamics of amplitudes of P-AWs (governed by equations

2.13 and 2.14) is shown in figure 2.1 at ΩA = 0.1 and kz = 0 when initially only

unidirectional P-AW harmonic is imposed in the flow. The dynamics of corre-

sponding phases of the two-dimensional P-AW harmonic is presented in figure

2.2. Plotted in figure 2.3 are the variation of the P-AWs’ SFH instantaneous

frequencies, Ω+
p and Ω−p , associated with the dynamics of the corresponding
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Figure 2.1: |Z+
p | (solid black) and |Z−p | (dashed blue) vs time in log-linear

scaling at: Z+
p (0) = 1, Z−p (0) = 0, Z+

s (0) = 0, Z−s (0) = 0, ΩA = 0.1,
ky(0)/kx = 100 and kz = 0.

phases.

With the help of equations (2.13) and (2.14) and Figures 2.1-2.3 one

can trace each stage of the evolution of the counter-propagating P-AW har-

monic, which in fact, represents the overreflection phenomenon. Initially, as

Z−p (0) = 0, in (2.14) only the last rhs term is nonzero. So, the initial amplifica-

tion and the dynamics of Z−p (τ) is due to the third term χpZ
+. Therefore, the

positive “instantaneous frequency” of Z+
p results in the positive “instantaneous

frequency” of Z−p (see figure 2.3). The growth of |Z−p | is rapid, but algebraic

(nonexponential). In the course of the evolution, |Z−p | becomes almost equal

to |Z+
p | (see figure 2.1 at τ ' τ ∗ ≡ ky(0)/kx = 100). At the same time, the

influence of the first and second rhs terms of equation (2.14) become appre-

ciable, behavior of φ−p and Ω−p changes at τ ' τ ∗ with Ω−p becoming negative
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Figure 2.2: φ+
p (solid black) and φ−p (dashed blue) vs time for the same

parameters as in figure 2.1.

and, as a result of all these, Z−p is propagating opposite to Z+
p . With further

increase of time, Ω−p tends to −ΩA and slightly varies around it. As for the

dynamics of Z+
p , the coupling (the last rhs term of equation 2.13) somewhat

modifies its dynamics in the vicinity of τ ' τ ∗, where Z−p is already large and

χp is not small too (while at τ � τ ∗, χp → 0).

Figure 2.4 shows that, starting with a purely unidirectional P-AW har-

monic, Z−p (0) = 0, the perturbation energy increases and reaches a peak value

at time τ ' τ ∗. After that, the harmonic undergoes nearly periodic and damp-

ing oscillations around some plateau value of the energy. This plateau value

increases with decreasing ΩA.

Figure 2.5 shows that the imbalance degree of the P-AW harmonic

decreases with time (with the increase of the amplitudes), i.e., the energy

propagating opposite to the X-axis approaches the energy propagating along
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Figure 2.3: Instantaneous frequencies Ω+
p (solid black) and Ω−p (dashed blue)

vs time for the same parameters as in figure 2.1.
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Figure 2.4: Normalized spectral energy of P-AWs, Ep(τ)/E(0), vs time in log-
linear scaling for the same parameters as in figure 2.1, but at ΩA = 0.1 (solid
black), ΩA = 0.3 (dashed blue) and ΩA = 1 (dotted red).
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Figure 2.5: The imbalance degree of P-AWs, αp = 1− |Z−p |2|Z+
p |2, vs time for

the same parameters as in figure 2.1, but at ΩA = 0.1 (solid black), ΩA = 0.3
(dashed blue) and ΩA = 1 (dotted red).

the X-axis: for the case of ΩA = 1, the harmonic remains imbalanced, for

the case of ΩA = 0.3 the imbalance degree tends to 0.05, and for the case of

ΩA = 0.1, in fact, the harmonic becomes balanced with time.

When initially counter-propagating P-AW harmonics with equal ampli-

tudes but different phases (Z+
p (0) = 1 and Z−p (0) = 1, i,−1) are inserted, the

dynamics is simpler. Amplitudes of the physical variables are equal to each

other, Z+
p (τ) = Z−p (τ), according to equation (2.22), i.e., they are balanced

from the beginning and their phase dynamics is quite trivial.

Figure 2.6 shows that the transient growth of perturbation energy is

smaller in the case of initially imposed unidirectional P-AW harmonic than

that in the case when equal amplitude counter-propagating P-AW harmonics

are imposed. And, in the latter cases, the energy growth is maximum if the
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Figure 2.6: Normalized spectral energy of P-AWs, Ep(τ)/E(0), vs time in two-
dimensional case (kz = 0, Z±s = 0) at: ΩA = 0.1, ky(0)/kx = 100, Z+

p (0) = 1
and Z−p (0) = 0 (thick solid black), Z−p (0) = 1 (solid black), Z−p (0) = i (dashed
blue), Z−p (0) = −1 (dotted red).
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Figure 2.7: Normalized spectral energies: E(τ)/E(0) (thick solid black),
Ep(τ)/E(0) (solid black), Es(τ)/E(0) (dashed blue) and Eint(τ)/E(0) (dotted
red) vs time at: Z+

p (0) = 1, Z−p (0) = 0, Z±s (0) = 0, ΩA = 0.1, ky(0)/kx = 100
and kz/kx = 1.
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Figure 2.8: Normalized spectral energies of P-AWs and S-AWs, Ep(τ)/E(0)
(solid black) and Es(τ)/E(0) (dashed blue), vs time for the same parameters
as in figure 2.7, but at kz/kx = 10.

phases of the inserted harmonics differ from each other by π/2 (Z+
p (0) = 1

and Z−p (0) = i).

2.3.2 Three-dimensional case

Figures 2.7-2.11 correspond to 3D cases when initially just unidirec-

tional P-AW harmonic is imposed in the flow. Figures 2.12 and 2.13 – when

initially counter-propagating P-AW harmonics are inserted with equal ampli-

tudes but different phases.

In the 3D case, S-AWs become an active participant in the dynamics,

however, the growth of P-AWs remains somewhat larger than the growth of

S-AWs. Figure 2.7 shows the prevalence of P-AWs for kz/kx = 1. (It is natural

that this prevalence is more pronounced for kz/kx � 1.) The transient growth
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Figure 2.9: |Z+
s | (solid black) and |Z−s | (dashed blue) vs time in log-linear

scaling for the same parameters as in figure 2.7.

of both waves substantially reduces with the further increase of the ratio kz/kx

(see figure 2.8) and, consequently, SFHs with kz/kx � 1 do not play any role

in the dynamical processes.

In figure 2.9 we present the dynamics of |Z+
s | (solid black) and |Z−s |

(dashed blue) vs time in log-linear scaling for a small value of ΩA (ΩA = 0.1)

and kz/kx = 1 when, only Z+
p (0) is inserted in the flow (i.e., Z−p (0), Z±s (0) = 0).

In the beginning, |Z+
s | increases stronger than |Z−s |. However, in the course of

the evolution, |Z−s | becomes almost equal to |Z+
s |. Figure 2.10 shows that with

increase of the amplitudes, the imbalance degree of the S-AWs decreases with

time for small ΩA as it is for P-AWs (compare figures 2.5 and 2.10). S-AWs

are imbalanced already at ΩA ' 1. However, the growth of S-AWs is negligible

in the last case.

Figure 2.11 shows that, the growth of the total spectral energy is max-
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Figure 2.10: The imbalance degree of S-AWs, αs = 1 − |Z−s |2/|Z+
s |2, vs time

in log-linear scaling for the same parameters as in figure 2.7, but at ΩA = 0.1
(solid black), ΩA = 0.3 (dashed blue) and ΩA = 1 (dotted red).

Figure 2.11: Normalized spectral energy, E(τ)/E(0), vs time in log-linear
scaling for 2D and 3D cases for the same parameters as in figure 2.7, but at
kz/kx = 0 (solid), kz/kx = 1 (dashed) and kz/kx = 10 (dotted).
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imal for 2D case and decreases with the increase of kz/kx. This result is

somewhat unexpected/surprising, because in non-magnetized flows (i.e., in

the simplest incompressible hydrodynamic constant shear flow) the transient

growth of three-dimensional perturbations is generally stronger than transient

growth of two-dimensional ones (e.g., see Chagelishvili et al., 1996; Moffatt,

1967; Farrell & Ioannou, 1993a; Bakas et al., 2001) and the dynamics of a

non-magnetized system is determined by three-dimensional perturbations.

Figures 2.12 and 2.13 show that the energy growth is maximal if the

phases of inserted SFHs differ from each other by π/2 (as in the 2D case).

These figures also coincide with 2.7 for cases when phases of the initially in-

serted SFHs differ from each other – the transient growth of P-AW always

prevails over the growth of S-AW. All energy dynamics plots (see figures

2.4,2.6,2.7,2.11-2.13) show that real transient growth takes place in the vicinity

of τ ' τ ∗ during the time interval |τ − τ ∗| ≤ Ω−1
A .

2.4 Summary and discussion

The proposed formalism provides a deeper insight into the physical

mechanism underlying the overreflection phenomenon by allowing us to sep-

arate from each other physical processes associated with counter-propagating

waves and to follow their interaction during the overreflection. Based on the

presented analysis, the path to the overreflection is as follows. Initially an im-

posed on the shear flow pure Z+
p generates Z−p due to the shear-induced linear

coupling, that at first propagates in the same direction as Z+
p . With time, Z−p
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Figure 2.12: Normalized spectral energy of P-AWs, Ep(τ)/E(0), vs time at:
ΩA = 0.1, ky(0)/kx = 100, kz/kx = 1, Z±s (0) = 0, Z+

p (0) = 1 and Z−p (0) = 0
(thick solid black), Z−p (0) = 1 (solid black), Z−p (0) = i (dashed blue), Z−p (0) =
−1 (dotted red).

Figure 2.13: Normalized spectral energy of S-AWs, Es(τ)/E(0), vs time at:
ΩA = 0.1, ky(0)/kx = 100, kz/kx = 1, Z±s (0) = 0, Z+

p (0) = 1 and Z−p (0) = 0
(thick solid black), Z−p (0) = 1 (solid black), Z−p (0) = i (dashed blue), Z−p (0) =
−1 (dotted red).
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grows transiently and in the vicinity of τ ' τ ∗ (at which ky(τ
∗) = 0) reverses

the direction of propagation and becomes counter-propagating to Z+
p . Both

counter-propagating P-AWs SFHs exhibit transient growth that is appreciable

at ΩA < 1, kz/kx ≤ 1 and ky(0)/kx � 1. As for S-AWs, its transient growth

occurs due to the linear coupling of P-AW and S-AW, i.e. – is an indirect

consequence of P-AW (i.e. Z+
p and Z−p ) growth. At the same time, the growth

of P-AWs somewhat prevails over the growth of S-AWs. It is obvious, that the

dynamics has transient nature, as it should be – shear flow non-normality in-

duced energy exchange processes are always transient (e.g., see Schmid, 2007).

This statement is correct for constant in time shear flows. However, in peri-

odic shear flows (i.e., when shear parameter is a periodic function of time),

wave perturbations may grow exponentially in time. For instance, Zaqarashvili

(2000); Zaqarashvili & Roberts (2002) studied the stability of periodic MHD

shear flows, showing that the temporal behaviour of spatial Fourier harmon-

ics of magnetosonic waves is governed by Mathieu’s equation. Consequently,

the harmonics with the half frequency of the shear flow grow exponentially in

time. Mathieu’s equation represent a single second order ordinary differential

(wave) equation and describes counter-propagating waves of a single/physical

variable. Consequently, possible dynamical processes between these waves

(e.g., their coupling) are, in fact, left out of consideration. To get an addi-

tional information about the physics of the growth (e.g., to grasp the coupling

between counter-propagating waves) one has to find “eigen-variable” for each

wave component and, by this way, reduce Mathieu’s equation to the set of first
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order differential equations for individual counter-propagating wave (as it is

done for the constant shear flows).

Evaluating the linear transient dynamics we use the concept of energy.

Of course, when calculating energy - the quantity of the second order in the

wave amplitude - causes dissatisfaction associated with the known fact: it

is obviously necessary to take into account changes in the mean parameters

of the environment and, in particular, the wave-induced flow (Stepanyants &

Fabrikant, 1989). In this case, there is an ambiguous field separation of the

physical variables in the wave field and the medium field. These issues are

rather complicated and analysis continues to this day. For example, in the

MHD context, theory for the wave and background stress energy tensors is

developed based on the exact Lagrangian map in Webb et al. (2005). We do not

go into this debate, but, only aim to get a feeling of the dynamics of quadratic

forms of physical variables. Therefore, we introduced the concept of energy in

solving the linearized problems as it is usually accepted in hydrodynamic and

magnetodynamic flow studies (Stepanyants & Fabrikant, 1989).

Maximal transient growth (and overreflection) of the wave energy oc-

curs in the 2D limit (at kz = 0). Consequently, the dynamics of the MHD

flow should be defined mainly by SFHs with kz/kx � 1. At the same time,

the transient growth of the both, P- and S-Alfvén wave modes increases with

decreasing ΩA. If initially only unidirectional P-AW harmonic is imposed in

the flow, the imbalance degree decreases with the decrease of ΩA and the waves

become already balanced at ΩA = 0.1. If initially counter-propagating P-AW

38



harmonics with equal amplitudes are imposed, they maintain the balance irre-

spective of the initial phase. Because of the condition ΩA ∼ kx, SFHs having

smaller kx exhibit stronger growth. Finally, one can conclude, that the dy-

namical processes should be defined by waves having small kx and kz, i.e. long

streamwise and spanwise wavelengthes, λx, λz � VA/S.

2.4.1 Impact of the transient growth on the character of nonlinear
cascade processes

The described linear dynamics is expected to have significant nonlin-

ear consequences. The point is that the linear transient processes are mainly

defined by coefficients χp of equations (2.13) and (2.14). The coefficients intro-

duce dependency of the transient growth on the ratio kxky(τ)/k2(τ). Conse-

quently, the transient growth depends not on the value but on the orientation

of wavevector and takes place when |χp(τ)| ≥ ΩA, i.e. when |ky(τ)/kx| ≤ Ω−1
A .

As it is outlined at the end of the previous section, this happens in the vicinity

of τ ' τ ∗ during the time interval |τ − τ ∗| ≤ Ω−1
A (see figures 2.4,2.6,2.7,2.11-

2.13). It is obvious, that the linear transient processes are highly anisotropic

in wavenumber plane. A similar anisotropy exists in hydrodynamic shear flows

Horton et al. (see for details 2010). The anisotropy changes classical view on

the nonlinear cascade processes: classically, the net action of nonlinear (turbu-

lent) processes is interpreted as either a direct or inverse cascade. However, as

it is shown in Horton et al. (2010), in hydrodynamic nonuniform/shear flows,

the dominant process is a nonlinear redistribution over wavevector angles of

perturbation spatial Fourier harmonics. This anisotropic transfers of spec-
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tral energy in the wavenumber space has been coined as nonlinear transverse

cascade.

Nonlinear transverse cascade redistributes perturbation harmonics over

different quadrants of the wavenumber plane (e.g., from quadrants where

kxky > 0 to quadrants where kxky < 0 or vice versa) and the interplay of

this nonlinear redistribution with linear phenomena (transient growth) be-

comes intricate: it can realize either positive or negative feedback. In the case

of positive feedback, the nonlinearity repopulates transiently growing pertur-

bations and contributes to the self-sustenance of perturbations. Consequently,

nonlinear transverse cascade naturally appears as a possible cornerstone of the

bypass scenario of turbulence.

The similarity of the anisotropy of the transient growth in the hydro-

dynamic and our MHD cases hints at the similarity of nonlinear processes.

In other words, the transverse cascade should also be inherent to MHD shear

flows. Therefore, the conventional characterization of MHD turbulence in

terms of direct and inverse cascades, which ignores the transverse cascade,

can be misleading for MHD shear flow turbulence. In principal, the nonlin-

ear transverse cascade can repopulate the transiently growing wave SFHs in

a MHD shear flow and can acquire a vital role of ensuring the self-sustenance

of the waves. To verify these, consistent with the bypass concept, processes in

MHD shear flows, (Mamatsashvili et al., 2014) is already simulated nonlinear

dynamics of the considered here flow system in 2D limit . The performed

direct numerical simulations show the existence of subcritical transition to
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turbulence even in the 2D case, i.e., show the vitality of the bypass transi-

tion to turbulence for the simplest (spectrally stable) plane MHD flow. The

minimal/critical Reynolds number of the subcritical transition turned out to

be about 5000, i.e. larger than for the hydrodynamic Couette flow, where

Recr ∼ 350. At the same time, in the hydrodynamic case, the transition

occurs just in the 3D case, while in the simplest MHD flow, the subcritical

transition and self-sustenance of turbulence occurs in the 2D case too.

Discussing the character of nonlinear cascade processes, finally, one has

to present the generalizing view.

MHD turbulence phenomenon is ubiquitous in nature and is very im-

portant in engineering/industrial applications. So, it is natural that there is an

enormous amount of research devoted to it, starting with seminal papers Irosh-

nikov (1963) and Kraichnan (1965) and their extensions Goldreich & Sridhar

(1995); Boldyrev (2005). To date, the main trends, including cases of forced,

freely decaying and with background magnetic field MHD turbulence, estab-

lished over decades are thoroughly analyzed in a number of review articles

and books (see e.g., Biskamp, 2003; Mininni, 2011; Brandenburg & Lazarian,

2013). Most of such an analysis commonly focuses on turbulence dynam-

ics in wavenumber/Fourier space. However, the case of MHD turbulence in

smooth shear flows involves fundamental novelties: the energy-supplying pro-

cess for turbulence is the flow nonnormality induced linear transient growth.

The latter anisotropically injects energy into turbulence over a broad range of

lengthscales, consequently, rules out the inertial range of the activity of nonlin-
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earity and leads to complex/refined interplay of linear and nonlinear processes

(Mamatsashvili et al., 2014). These circumstances give rise to new type of

processes in the turbulence dynamics that are not accounted for in the main

trends of MHD turbulence research.

The essence of the view is the following: anisotropic linear processes

lead to anisotropy of nonlinear processes. Specifically, the nonlinear transverse

cascade (that is anisotropic by definition) is the result of only anisotropic linear

coupling/reflection. For instance, there is a number of papers addressing linear

wave reflection that is caused by parallel gradients of density/magnetic field

(e.g., Velli et al., 1989; Matthaeus et al., 1999; Dmitruk et al., 2002; Verdini

et al., 2012; Perez & Chandran, 2013). However, this kind of reflection, due to

the absence of the above noted anisotropy in wavenumber space, should not

lead to the nonlinear transverse cascade. A flow configuration, similar to our

magnetized shear flow, is considered by Hollweg et al. (2013), addressing the

wave reflection. The difference is in the value of beta parameter – we consider

incompressible waves in high-beta plasma, while, that paper considers com-

pressible waves in low-beta plasma. The participants of the linear dynamics are

different, however, in the both cases, transient liner processes/coupling/growth

are anisotropic. Consequently, the nonlinear transverse cascade should also be

important for the range of parameters considered in Hollweg et al. (2013).
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2.4.2 On application of the proposed approach of the overreflection
to more complex shear flow systems

Finally, we would like to stress that the present scenario and math-

ematical formalism of the overreflection phenomenon is easily applicable to

more complex shear flow systems, including widely discussed cases of over-

reflection of spiral-density waves in astrophysical discs and of internal-gravity

waves in stably stratified atmospheres. The proposed approach describes each

(counter-propagating) wave component by its generalized eigen variable. In

the considered here MHD flow, fortunately, one can use Elsässer variables (see

equation 2.12) or its renormalized version (see equation 2.23) as the general-

ized eigen variables. This fact has actually simplified our analysis. As for more

complex shear flow systems, there appears to be some difficulty in finding gen-

eralized eigen variable and construction of fist order differential equations for

each counter-propagating wave. The difficulty is due to the fact that in com-

plex flow systems “nominal frequency” may depend on the varying/shearwise

wavenumber and, consequently, on time (e.g., as the “nominal frequency” of

internal-gravity waves), while in our case considered here Alfvén waves, the

“nominal frequency” (Alfvén frequency) does not depend on the shearwise

wavenumber and is constant. However, this is not a fundamental difficulty –

it requires just a bit of complicated calculations and gives somewhat bulky

coefficients in dynamical equations. So, to apply the proposed mathematical

approach, one has to find eigen variables of the waves in the shearless limit,

then generalize these eigen variables for the non-zero shear case and write
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dynamic equations for them. This procedure gives the corresponding set of

easily foreseeable, coupled first order ordinary differential equations for each

counter-propagating wave.
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Chapter 3

Nonlinear transverse cascade and

two-dimensional magnetohydrodynamic

subcritical turbulence in plane shear flows

3.1 Introduction

The problem of the onset and self-sustenance of turbulence in spectrally

stable nonuniform flows is a challenge to fluid dynamics research. The efforts in

this direction significantly increased in the 1990s with the understanding and

rigorous description of the nonnormal nature of nonuniform, or shear flows (see

e.g., Refs. Reddy et al. (1993); Trefethen et al. (1993); Schmid & Henningson

(2001); Criminale et al. (2003); Schmid (2007)) and its direct consequences,

such as the possibility of finite-time, or transient growth of perturbations in

spectrally stable shear flows (e.g., Refs. Gustavsson (1991); Farrell & Ioan-

nou (1993a); Reddy & Henningson (1993); Farrell & Ioannou (2000)). Clas-

sical (direct and inverse) nonlinear cascade processes, even if anisotropic, are

in fact unable to provide self-sustenance of perturbations (turbulence) when

transiently (non-exponentially) growing modes are present in the flow. In the

case of a specific shear flow, however, turbulence can self-organize and be self-

sustained through the refined interplay of the linear transient and nonlinear

processes, where the flow shear acts, through the Reynolds stress, to contin-
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uously supply the turbulence with energy thanks to an essential constructive

feedback provided by the nonlinear processes Gebhardt & Grossmann (1994);

Henningson & Reddy (1994); Baggett et al. (1995); Grossmann (2000); Chap-

man (2002); Eckhardt et al. (2007).

The direct (nonlinear) cascade – a central process in Kolmogorov’s phe-

nomenology – is a consequence of the existence of the so-called inertial range

in spectral (Fourier, or wavenumber) space, which is free from the action of

linear energy-exchange processes and, in fact, occupied by nonlinear trans-

fers. Kolmogorov’s classical theory of forced turbulence in hydrodynamics

(HD) is the following: large scale (long wavelength) perturbations imposed

on the flow are transferred by a direct nonlinear cascade, through the inertial

range, to short wavelengths and, ultimately, to the dissipation region. So,

the direct cascade, together with linear instability and dissipative phenomena,

constitute the well-known scheme of forced turbulence in HD. However, in

spectrally stable shear flows, where transient growth of perturbations is the

only possibility, the balance of processes leading to the self-sustenance of tur-

bulence should be completely different. The shear-induced transient growth

mainly depends on the orientation (and, to a lesser degree, on the value) of

the perturbation wavevector: the spatial Fourier harmonics of perturbations

(SFHs) having a certain orientation of the wavevector with respect to the shear

flow, can draw flow energy and get amplified, whereas harmonics having an-

other orientation of the wavevector give energy back to the flow and decay. In

other words, the linear energy-exchange processes are strongly anisotropic in
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wavenumber k-space and occur over a broad range of wavenumbers without

leaving a free room (i.e., inertial range) for the action of nonlinear processes

only. This might render Kolmogorov’s phenomenology inapplicable to spec-

trally stable shear flows. A strong anisotropy of the linear processes in shear

flows, in turn, leads to anisotropy of nonlinear processes in k-space. In this

case, as revealed in Ref. Horton et al. (2010), even in the simplest HD shear

flow with linear shear, the dominant nonlinear process turns out to be not

a direct, but a transverse cascade, that is, a transverse (angular) redistribu-

tion of perturbation harmonics over different quadrants of wavenumber plane

(e.g., from quadrants where kxky > 0 to quadrants where kxky < 0 or vice

versa). The interplay of this nonlinear redistribution with linear phenomena

(transient growth) becomes intricate: it can provide either positive or nega-

tive feedback. In the case of positive feedback, the nonlinearity repopulates

transiently growing modes and contributes to the self-sustenance of pertur-

bations. This combined action of anisotropic linear and nonlinear processes

can, in turn, give rise to an anisotropic energy spectrum, which, in general,

is expected to differ from the Kolmogorovian. As a result, the transverse cas-

cade may naturally appear to be a possible keystone of the bypass concept of

subcritical turbulence in spectrally stable hydrodynamic shear flows.

In this Chapter (related to (Mamatsashvili et al., 2014)), is extended

the above study of nonlinear processes in HD flows to magnetohydrodynamic

(MHD) flows and investigate subcritical turbulence in the simplest, spectrally

stable shear flow of magnetized plasma. We present the results of direct nu-
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merical simulations (DNS) in Fourier plane, demonstrating the dominance of

the transverse cascade in MHD shear flows too. Specifically, we consider the

dynamics of two-dimensional (2D, with zero spanwise wavenumber, kz = 0)

perturbations in unbounded incompressible MHD fluid flow with linear shear

of velocity threaded by a uniform background magnetic field directed parallel

to the flow. This flow configuration is spectrally stable in the linear regime

Stern (1963); Ogilvie & Pringle (1996) and therefore should be dominated by

the above-mentioned shear-induced transient phenomena Chagelishvili et al.

(1997). Our main goals are:

(i) to examine subcritical transition to turbulence and subsequent self-

sustaining dynamics by DNS,

(ii) to describe the general behavior of nonlinear processes (transfers)

– transverse cascade – in the presence of shear by carrying out an analysis of

these processes in Fourier plane,

(iii) to show that the nonlinear transverse cascade is a keystone of self-

sustaining dynamics of the turbulence in this simple open MHD flow system.

The last point will allow us to find out in what form the bypass concept

of subcritical turbulence can be realized in spectrally stable MHD shear flows.

MHD turbulence phenomenon is ubiquitous in nature and is very im-

portant in engineering applications. So, it is natural that there is an enor-

mous amount of research devoted to it, starting with seminal papers Iroshnikov

(1963) and Kraichnan (1965) and their extensions Goldreich & Sridhar (1995);
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Boldyrev (2005). To date, the main trends, including cases of forced and freely

decaying MHD turbulence as well as MHD turbulence with a background mag-

netic field, established over decades have been thoroughly analyzed in a number

of review articles and books (see e.g., Refs. Biskamp (2003); Mininni (2011);

Brandenburg & Lazarian (2013) and references therein). Most of these analy-

ses commonly focus on turbulence dynamics in wavenumber space. However,

the case of MHD turbulence in smooth shear flows that we study here in-

volves fundamental novelties: an energy-supplying process for turbulence is

the flow nonnormality induced linear transient growth. The latter anisotrop-

ically injects energy into turbulence over a broad range of lengthscales and,

consequently, rules out the inertial range of the sole activity of nonlinearity

and leads to a complex/refined interplay of linear and nonlinear processes.

These circumstances give rise to new type of processes in turbulence dynamics

that are not accounted for in the main trends of MHD turbulence research.

Magnetized shear flows have been considered in a number of papers

Kim (2006); Douglas et al. (2008); Newton & Kim (2009). However, the range

of target parameters adopted in these studies excludes transient growth ef-

fects due to shear and novelties associated with it. So, these investigations

still belong to the existing trends of MHD turbulence research. For instance,

these studies consider the limit of a strong background magnetic field, B0,

along the flow, where the Alfvén frequency of modes with wavenumber k,

ωA = k · B0/(4πρ0)1/2 (ρ0 is the equilibrium density), is larger than shear

rate of the mean flow and since transient phenomena responsible for energy
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injection from shear flow into perturbation harmonics are inefficient in this

case, external forcing (peaked at certain wavenumbers) is included to drive

turbulence. In contrast to this, in our case, the magnetic field is weak and the

adopted parameters permit an effective transient exchange of energy between

the mean flow and the perturbation harmonics; this actually should serve to

drive turbulence without any external forcing. In this regard, in Refs. Haw-

ley et al. (1995); Fromang & Papaloizou (2007); Guan et al. (2009); Simon &

Hawley (2009); Lesur & Longaretti (2011), the dynamics of MHD turbulence is

investigated in a somewhat similar setup – astrophysical (protoplanetary) disk

flows with Keplerian shear and an imposed large-scale magnetic field which

is typically weak (i.e., usual plasma β � 1 in disks, see e.g. Ref. Armitage

(2011)). This means that there exists harmonics whose Alfvén frequency is

smaller than shear parameter, as in our case. However, in Refs. Fromang &

Papaloizou (2007); Lesur & Longaretti (2011), although turbulence dynam-

ics is analyzed in Fourier space, the magnetic field is directed perpendicular

to the flow and consequently shear-induced transient phenomena differ from

those studied here. On the other hand, Refs. Hawley et al. (1995); Guan et al.

(2009); Simon & Hawley (2009) similarly to our study, consider orientation for

the magnetic field along the mean flow (i.e., azimuthal for disk flows). They

observe three-dimensional (3D) self-sustained turbulence, which is expected

to be governed by transient processes of a type similar to those of the 2D

shear turbulence studied here, but since the turbulence dynamics (energy in-

jection and transfers) was not investigated in spectral space in those studies,
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identification of shear-induced effects is not straightforward in their analysis.

The Earth’s magnetosphere, created by the interaction of the solar

wind with the Earth’s magnetic field, represents a huge “laboratory” of vari-

ous MHD turbulence. In different parts of this laboratory (e.g., ion foreshock,

magnetosheath, LL magnetopause, polar cusps, ionosphere, magnetotail) char-

acteristic parameters vary greatly from each other. There are shear flows,

different orientations of the magnetic field, different values of the plasma β

parameter, anisotropic magnetic pressure, magnetic reconnection, etc. (see

e.g., Ref. Zimbardo et al. (2010) for a recent review). Evidently, it is hard to

seek an immediate realization of the proposed scheme of MHD shear turbu-

lence in the magnetized environment of the Earth. Still, certain areas can be

identified where a similar configuration and course of events are realized. This,

first of all, implies high-β regions with shear flows and a mean magnetic field

parallel to the flow velocity. Generally, such regions are in the magnetotail,

magnetosheath and cusp, but a definite view can be obtained after a detailed

investigation of the dynamical processes therein.

The specific nature of nonlinear processes, which we will focus on in

our study is, in many respects, a consequence of the shear-induced transient

linear dynamics described in Refs. Balbus & Hawley (1992); Chagelishvili et al.

(1997); Dimitrov et al. (2011); Gogichaishvili et al. (2014). We particularly

follow Chapter 2, where the linear dynamics of pseudo-Alfvén waves (P-AWs)

and shear-Alfvén waves (S-AWs) is described in a 3D MHD flow with linear

shear and parallel magnetic field. Specifically, it is shown there that:
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1. Counter-propagating P-AWs are coupled to each other, while S-AWs are

not coupled with each other, but are asymmetrically coupled to P-AWs;

S-AWs do not participate in the linear dynamics of P-AWs,

2. The linear coupling of counter-propagating waves determines the tran-

sient growth (overreflection).

3. The transient growth of S-AWs is somewhat smaller compared with that

of P-AWs,

4. Waves with a smaller streamwise wavenumber, ky, exhibit stronger tran-

sient growth,

5. Maximal transient growth (and overreflection) of the wave energy occurs

for 2D waves with kz = 0.

These preliminary linear results served as a natural starting point of the

present study of nonlinear dynamics of 2D perturbations with kz = 0 and

white-noise initial spectrum in k-plane using DNS with a spectral code.

This Chapter is organized as follows. Section 3.2 is devoted to the

physical model and derivation of dynamical equations in spectral plane. The

DNS of the turbulence dynamics is presented in Section 3.3 In Section 3.4, we

perform analysis of the numerical results focusing on the activity of linear and

nonlinear processes in spectral plane. A summary and discussion are given in

Section 3.5.
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3.2 Physical model and equations

The motion of an incompressible conducting fluid with constant viscos-

ity, ν, and Ohmic resistivity, η, is governed by the basic equations of MHD

∂U

∂t
+ (U · ∇) U = −∇P

ρ
+

(B · ∇) B

4πρ
+ ν∇2U, (3.1)

∂B

∂t
= ∇× (U×B) + η∇2B, (3.2)

∇ ·U = 0, (3.3)

∇ ·B = 0, (3.4)

where ρ is the fluid density, U is the velocity, B is the magnetic field and P is

the total pressure equal to the sum of the thermal and magnetic pressures.

Equations (3.1)-(3.4) have a stationary equilibrium solution – an un-

bounded plane Couette flow along the y−axis with linear shear of velocity in

the the x-direction, U0 = (0,−Sx, 0), and threaded by a uniform background

magnetic field parallel to the flow, B0 = (0, B0y, 0). Without loss of generality,

the constant shear parameter S and B0y are chosen to be positive, S,B0y > 0.

The equilibrium density ρ0 and total pressure P0 are spatially constant. Such

a simple configuration of an unbounded flow with a linear shear of the veloc-

ity profile corresponds, for example, to plasma flow in astrophysical accretion

disks in the framework of the widely used local shearing box approximation

(e.g., Ref. Hawley et al. (1995)) as well as to flows of magnetized plasma in

the laboratory (e.g., Refs. Kim (2006); Douglas et al. (2008)). It allows us to
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grasp key effects of shear on the perturbation dynamics and, ultimately, on

the resulting MHD turbulent state in kinematically nonuniform plasma flows.

Consider 2D perturbations of the velocity, total pressure and mag-

netic field, u, p and b, which are independent of the vertical z-coordinate

(∂/∂z = 0), about the equilibrium. In this case, the evolution in the horizon-

tal (x, y)−plane is decoupled from that of the z−components of the perturbed

velocity and magnetic field, so we set them to zero, uz = bz = 0. Repre-

senting the total fields as the sum of the equilibrium and perturbed values,

U = U0 + u, P = P0 + p and B = B0 + b, substituting these into Eqs. (3.1)-

(3.4) and rearranging the nonlinear terms with the help of Eqs. (3.3) and (3.4),

we arrive at the following system governing the dynamics of perturbations with

arbitrary amplitude(
∂

∂t
− Sx ∂

∂y

)
ux = − 1

ρ0

∂p

∂x
+

B0y

4πρ0

∂bx
∂y

+ ν∇2ux+

+
∂

∂y

(
bxby
4πρ0

− uxuy
)

+
∂

∂x

(
b2
x

4πρ0

− u2
x

)
, (3.5)

(
∂

∂t
− Sx ∂

∂y

)
uy = Sux −

1

ρ0

∂p

∂y
+

B0y

4πρ0

∂by
∂y

+ ν∇2uy+

+
∂

∂x

(
bxby
4πρ0

− uxuy
)

+
∂

∂y

(
b2
y

4πρ0

− u2
y

)
, (3.6)(

∂

∂t
− Sx ∂

∂y

)
bx = B0y

∂ux
∂y

+ η∇2bx +
∂

∂y
(uxby − uybx), (3.7)(

∂

∂t
− Sx ∂

∂y

)
by = −Sbx +B0y

∂uy
∂y

+ η∇2by −
∂

∂x
(uxby − uybx) , (3.8)

∂ux
∂x

+
∂uy
∂y

= 0, (3.9)
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∂bx
∂x

+
∂by
∂y

= 0. (3.10)

We solve Eqs. (3.5)-(3.10) in a rectangular 2D domain with sizes Lx and Ly,

respectively, in the x− and y−directions, −Lx/2 ≤ x ≤ Lx/2 and −Ly/2 ≤

y ≤ Ly/2, divided into Nx × Ny cells. Since we consider an unbounded flow

with linear shear, we adopt boundary conditions commonly used in similar

cases of MHD simulations of astrophysical disk flows in the local shearing

box approximation (e.g., Refs. Hawley et al. (1995); Fromang & Papaloizou

(2007); Guan et al. (2009); Lesur & Longaretti (2011); Davis et al. (2010)).

Namely, for the perturbations of all quantities, we impose periodic boundary

conditions in the y−direction and shearing-periodic in the x−direction. That

is, the x−boundaries are initially periodic, but shear with respect to each other

as time goes by, becoming again periodic at discrete moments tn = nLy/SLx,

where n = 1, 2, ... is a positive integer. This can be written as

f(x, y, t) = f(x+ Lx, y − SLxt, t) (x boundary),

f(x, y, t) = f(x, y + Ly, t) (y boundary),

where f ≡ (u, p,b) denotes any of the perturbed quantities. These boundary

conditions ensure natural evolution of shearing plane waves within the domain,

as it would be in an unbounded constant shear flow.

3.2.1 Energy equation

In this subsection, we derive dynamical equations for kinetic and mag-

netic energies in order to gain insight into the interplay of the flow shear and
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nonlinearity in the self-sustenance of perturbations. The perturbation kinetic

and magnetic energies are defined, respectively, as

EK =
ρ0u

2

2
, EM =

b2

8π
.

Using the main Eqs. (3.5)-(3.10) and the above shearing box boundary condi-

tions, after some algebra, we can readily derive the evolution equation for the

domain-averaged kinetic and magnetic energies

d

dt
〈EK〉 = S 〈ρ0uxuy〉+

B0y

4π

〈
ux
∂bx
∂y

+ uy
∂by
∂y

〉
+

+
1

4π

〈
uxby

∂bx
∂y

+
ux
2

∂b2
x

∂x
+
uy
2

∂b2
y

∂y
+ uybx

∂by
∂x

〉
− ρ0ν〈(∇ux)2 + (∇uy)2〉,

(3.11)

d

dt
〈EM〉 = S

〈
−bxby

4π

〉
+
B0y

4π

〈
bx
∂ux
∂y

+ by
∂uy
∂y

〉
+

+
1

4π

〈
bx
∂

∂y
(uxby) +

b2
x

2

∂ux
∂x

+
b2
y

2

∂uy
∂y

+ by
∂

∂x
(uybx)

〉
− η

4π
〈(∇bx)2+(∇by)2〉,

(3.12)

where the angle brackets denote a spatial average, 〈...〉 =
∫ ∫

... dxdy/LxLy,

with the integral being taken over an entire domain. Adding up Eqs. (3.11)

and (3.12), the cross terms of linear origin, proportional to B0y, and nonlinear

terms cancel out due to the boundary conditions and we obtain the equation

for the total energy E = EK + EM ,

d〈E〉
dt

= S

〈
ρ0uxuy −

bxby
4π

〉
−ρ0ν〈(∇ux)2+(∇uy)2〉− η

4π
〈(∇bx)2+(∇by)2〉.

(3.13)
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The first term on the right hand side of Eq. (3.13) is the shear parameter,

S, multiplied by the total stress in the angle brackets. The total stress is the

sum of the Reynolds, ρ0uxuy, and Maxwell, −bxby/4π, stresses which describe,

respectively, the exchange of kinetic and magnetic energies between pertur-

bations and the background flow in Eqs. (3.11) and (3.12). Note that they

originate from the linear terms proportional to shear on the right hand sides

of Eqs. (3.6) and (3.8). These stresses also determine the rate of momentum

transport (see e.g., Refs. Hawley et al. (1995); Balbus (2003); Douglas et al.

(2008)) and thus are one of the important quantities characterizing shear flow

turbulence. The second and third terms describe energy dissipation due to

viscosity and resistivity, respectively. Note that the net contribution from

nonlinear terms has canceled out in the total energy evolution Eq. (3.13) after

averaging over the domain. Thus, only Reynolds and Maxwell stresses can

supply perturbations with energy, extracting it from the mean flow due to

shear; the other two terms are negative definite and dissipative. In the case

of shear flow turbulence studied below, these stresses ensure energy injection

into turbulent fluctuations. The nonlinear terms, not directly tapping into

the shear flow energy and therefore not changing the total perturbation en-

ergy, serve only to redistribute energy gained by means of the stresses among

Fourier harmonics of perturbations with different wavenumbers (see below).

In the absence of shear (S = 0), the contribution from the Reynolds and

Maxwell stresses disappears in Eq. (3.13) and hence the total perturbation

energy cannot grow, gradually decaying due to viscosity and resistivity.
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3.2.2 Spectral representation of the equations

Before proceeding further, we normalize the variables by taking the

shear time, S−1, as the unit of time, the Alfvén speed, uA = B0y/(4πρ0)1/2, as

the unit of velocity, ` ≡ uAS
−1 as the unit of length and B0y as the unit of the

magnetic field perturbations,

St→ t,
(x
`
,
y

`

)
→ (x, y),

u

uA
→ u,

p

ρ0u2
A

→ p,
b

B0y

→ b,
EK,M
ρ0u2

A

→ EK,M .

Viscosity and resistivity are characterized by hydrodynamic, Re, and magnetic,

Rm, Reynolds numbers defined here, for convenience, in terms of uA and ` as

Re =
uA`

ν
=
u2
A

νS
, Rm =

uA`

η
=
u2
A

ηS
.

These numbers are also referred to, respectively, as viscous and resistive El-

sasser numbers (e.g., Ref. Lesur & Longaretti (2011)). The strength of the

imposed mean magnetic field is measured by the ratio of the mean flow kinetic

energy to the magnetic energy within the domain

β =
πρ0S

2L2
x

3B2
0y

=
S2L2

x

12u2
A

=
L2
x

12`2
.

For further analysis, we need to do a spectral representation of the main

equations. We decompose the perturbations into spatial Fourier harmonics

(SFHs)

f(r, t) =

∫
f̄(k, t) exp (ik · r) d2k (3.14)
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where, as before, f ≡ (u, p,b) denotes the perturbations and f̄ ≡ (ū, p̄, b̄)

is their corresponding Fourier transforms (kz = 0 for z−independent 2D per-

turbations and d2k ≡ dkxdky). Substituting decomposition (3.14) into Eqs.

(3.5)-(3.10) and taking into account the above normalization, we arrive at the

following equations governing the dynamics of perturbation SFHs in spectral

plane (
∂

∂t
+ ky

∂

∂kx

)
ūx = −ikxp̄+ iky b̄x −

k2

Re
ūx + ikyN1 + ikxN2, (3.15)

(
∂

∂t
+ ky

∂

∂kx

)
ūy = ūx − ikyp̄+ iky b̄y −

k2

Re
ūy + ikxN1 + ikyN3, (3.16)(

∂

∂t
+ ky

∂

∂kx

)
b̄x = ikyūx −

k2

Rm
b̄x + ikyN4, (3.17)(

∂

∂t
+ ky

∂

∂kx

)
b̄y = −b̄x + ikyūy −

k2

Rm
b̄y − ikxN4, (3.18)

kxūx + kyūy = 0, (3.19)

kxb̄x + ky b̄y = 0, (3.20)

where k2 = k2
x + k2

y (wavenumbers are normalized by `−1). These spectral

equations contain the linear as well as the nonlinear, N1(k, t), N2(k, t), N3(k, t)

and N4(k, t), terms that are the Fourier transforms of corresponding linear and

nonlinear terms in the original Eqs. (3.5)-(3.10). The latter are given by

N1(k, t) =

∫
d2k′

[
b̄x(k

′, t)b̄y(k− k′, t)− ūx(k′, t)ūy(k− k′, t)
]

N2(k, t) =

∫
d2k′

[
b̄x(k

′, t)b̄x(k− k′, t)− ūx(k′, t)ūx(k− k′, t)
]

N3(k, t) =

∫
d2k′

[
b̄y(k

′, t)b̄y(k− k′, t)− ūy(k′, t)ūy(k− k′, t)
]
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N4(k, t) =

∫
d2k′

[
ūx(k

′, t)b̄y(k− k′, t)− ūy(k′, t)b̄x(k− k′, t)
]

and describe nonlinear triad interactions among velocity and magnetic field

components of SFHs with different wavenumbers in Fourier k-plane. Equa-

tions (3.15)-(3.20), which are the basis for subsequent analysis, involve two

free dissipative parameters Re and Rm. Since we consider a finite domain in

physical (x, y)-plane, the perturbation dynamics also depends on the small-

est wavenumber available in this domain, or equivalently on its sizes Lx and

Ly, which are the other two free parameters of the problem. Given these pa-

rameters and specific initial conditions, Eqs. (3.15)-(3.20) fully determine the

nonlinear dynamics of the considered system in Fourier plane. These equations

form the mathematical basis of our main goal – to investigate the character

of nonlinear processes and self-sustaining scheme of the (subcritical) MHD

turbulence in k-plane in this constant shear flow. Since energy spectra and

nonlinear transfers relate to energy equations, following Refs. Chagelishvili

et al. (2002); Alexakis et al. (2007); Fromang & Papaloizou (2007); Simon

et al. (2009); Horton et al. (2010); Lesur & Longaretti (2011), below we derive

equations governing the evolution of kinetic and magnetic spectral energies.

Multiplying Eqs. (3.15) and (3.16), respectively, by ū∗x and ū∗y, combin-

ing and adding its complex conjugate, we arrive at the following equation for

the nondimensional kinetic spectral energy ĒK = |ūx|2 + |ūy|2,

∂ĒK
∂t

+
∂

∂kx

(
kyĒK

)
= IK + IK−M +DK +NK , (3.21)
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where

IK = ūxū
∗
y + ū∗xūy = −2kxky

k2
ĒK , DK = −2k2

Re
ĒK ,

IK−M = iky
(
ū∗xb̄x + ū∗y b̄y − ūxb̄∗x − ūy b̄∗y

)
,

and the nonlinear kinetic transfer function NK(k, t) is given by

NK(k, t) = i(kyū
∗
x + kxū

∗
y)N1(k, t) + ikxū

∗
x[N2(k, t) − N3(k, t)] + c.c. .

Similarly, multiplying Eqs. (3.17) and (3.18), respectively, by b̄∗x and b̄∗y, com-

bining and adding its complex conjugate, we obtain the evolution equation for

the nondimensional magnetic spectral energy ĒM = |b̄x|2 + |b̄y|2,

∂ĒM
∂t

+
∂

∂kx

(
kyĒM

)
= IM + IM−K +DM +NM , (3.22)

where

IM = −b̄xb̄∗y − b̄∗xb̄y =
2kxky
k2

ĒM ,

IM−K = −IK−M , DM = − 2k2

Rm
ĒM

and the nonlinear magnetic transfer function NM(k, t) is given by

NM(k, t) = i(ky b̄
∗
x − kxb̄∗y)N4(k, t) + c.c. .

By inspection of Eqs. (3.21) and (3.22), one can distinguish five basic processes

underlying the dynamics of ĒK and ĒM :

1. The quantities kyĒK and kyĒM in the second terms on the left hand

sides of Eqs. (3.21) and (3.22) are, respectively, the fluxes of the kinetic

and magnetic spectral energies parallel to the kx−axis. These terms
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are of linear origin, coming from the convective derivative on the left

hand sides of the main Eqs. (3.5)-(3.10) and therefore correspond to

the advection by the mean flow. In other words, background shear flow

makes the spectral energies (Fourier transforms) “drift” in k−plane, and

SFHs with ky > 0 and ky < 0 travel, respectively, along and opposite

the kx−axis at a speed |ky|, whereas SFHs with ky = 0 are not advected

by the flow. Since
∫
d2k∂(kyĒK,M)/∂kx = 0, this drift only transports

SFHs parallel to the kx−axis, without changing the total kinetic and

magnetic energies.

2. The first terms on the right hand sides, IK and IM , are associated with

shear, i.e., they originate from linear terms proportional to the shear

parameter on the right hand side of Eqs. (3.6) and (3.8), and describe

energy exchange between the mean flow and individual SFHs. These

terms are related to the domain-averaged nondimensional Reynolds and

Maxwell stresses entering Eqs. (3.11) and (3.12) through

〈uxuy〉 =
1

2

∫
IK(k, t)d2k,

〈−bxby〉 =
1

2

∫
IM(k, t)d2k

and therefore serve as a main source of energy for SFHs (with ky 6= 0)

at the expense of which they can undergo amplification. This shear-

induced growth of perturbation SFHs is in fact linear by nature and

has a transient character due to the drift in k−plane Balbus & Hawley

(1992); Chagelishvili et al. (1997); Dimitrov et al. (2011); Mamatsashvili
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et al. (2013); Pessah & Chan (2012). The SFHs, drifting parallel to the

kx−axis, go through dynamically important regions in spectral plane,

where energy-supplying linear terms, IK and IM , and redistributing non-

linear terms, NK and NM , are at work from small and intermediate

wavenumbers almost up to the dissipation region at large wavenumbers

(see e.g., Fig 3.6). In the case of turbulence studied below, IK and IM

describe the injection, respectively, of kinetic and magnetic energies into

turbulent fluctuations as a function of wavenumbers (see also Refs. Fro-

mang & Papaloizou (2007); Lesur & Longaretti (2011)).

3. The second, cross terms on the right hand sides, IK−M and IM−K , de-

scribe the exchange between kinetic and magnetic spectral energies.

They have opposite signs and therefore cancel out in the total energy

budget of SFHs [see Eq. (3.24) below]. These terms are also of linear

origin, corresponding to terms proportional to B0y (linearized magnetic

tension and electromotive forces) in Eqs. (3.5)-(3.8).

4. The third terms on the right hand sides, DK and DM , describe the

dissipation of kinetic and magnetic energies due to viscosity and resis-

tivity, respectively. Comparing these dissipation terms with the energy-

supplying terms IK and IM , we see that viscous and resistive dissipation

are important at large wavenumbers k & kD = min(
√

Re,
√

Rm), where

kD denotes the effective wavenumber for which dissipation effects start

to play a role.

63



5. The fourth terms on the right hand sides, NK and NM , describe nonlinear

transfers, respectively, of kinetic and magnetic energies among SFHs with

different wavenumbers in k−plane. It follows from the definition of NK

and NM that their sum integrated over an entire wavenumber plane is

equal to zero, ∫
[NK(k, t) +NM(k, t)]d2k = 0, (3.23)

which is, in fact, a direct consequence of the vanishing of the nonlinear

terms in the total energy Eq. (3.13) in real plane. This implies that

the main effect of nonlinearity is only to redistribute (scatter) energy

drawn from the mean flow among kinetic and magnetic components of

perturbation SFHs with different wavenumbers, while leaving the total

(kinetic plus magnetic) spectral energy summed over all wavenumbers

unchanged. In general, nonlinear transfer functions, NK and NM , play

a central role in MHD turbulence theory – they determine cascades of

spectral energies in k−space, leading to the development of their spe-

cific spectra. These transfer functions are one of the main focuses of the

present analysis. We aim to explore how they operate in the presence of

shear, adopting the approach of Refs. Chagelishvili et al. (2002); Horton

et al. (2010), which numerically studied the nonlinear dynamics of 2D

perturbations in an HD Couette flow by performing a full 2D Fourier

analysis of individual terms in the evolution equation for spectral en-

ergy, thus allowing for anisotropy of spectra and cascades. In particular,

we show below that like that in the HD shear flow, nonlinear transfers
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in the quasi-steady MHD shear turbulence result in the redistribution

of spectral energy among wavevector angles in k−plane, which we re-

fer to as a nonlinear transverse cascade, in contrast to classical HD or

MHD turbulence without background shear flow, where energy cascade

processes change only the wavevector magnitude, k = |k|, of SFHs (see

e.g., Ref. Biskamp (2003)).

Combining Eqs. (3.21) and (3.22), we obtain the equation for the total

spectral energy Ē = ĒK + ĒM ,

∂Ē

∂t
+

∂

∂kx

(
kyĒ

)
= IK + IM +DK +DM +NK +NM . (3.24)

As mentioned above, the linear cross terms responsible for kinetic and mag-

netic energy exchange are absent in this equation. The net effect of the non-

linear terms in the total spectral energy budget over all wavenumbers is zero

according to Eq. (3.23). Thus, as follows from Eq. (3.24), the only source

for the total perturbation energy is the integral over an entire spectral plane∫
(IK + IM)d2k that extracts energy from a vast reservoir of shear flow and

injects it into perturbations. Since the terms IK and IM , as noted above, are

of linear origin, the energy extraction and perturbation growth mechanisms

are essentially linear by nature. The role of nonlinearity is to continually pro-

vide, or regenerate those SFHs in k−plane that are able to undergo transient

growth, drawing on the mean flow energy, and in this way feed the nonlinear

state over long times.
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3.3 Nonlinear evolution

We now turn to an analysis of the nonlinear evolution of perturbations

employing modern numerical methods. The main emphasis is on the spectral

aspect of the dynamics using the mathematical formalism outlined in the pre-

vious section. We start a fiducial run by imposing solenoidal random noise

perturbations of the velocity and magnetic field with spatially uniform rms

amplitudes 〈u2〉1/2 = 〈b2〉1/2 = 0.84 on top of the equilibrium. The computa-

tional domain is a square of size Lx×Ly = 400×400 and resolution Nx×Ny =

512×512. The reason for taking a large domain is to encompass wavenumbers

as small as possible at which, as shown below, the effective transient amplifi-

cation of SFHs and most of dynamical activity take place. The minimum and

maximum wavenumbers of the domain are kx,min = ky,min = 2π/Lx = 0.016

and kx,max = ky,max = πNx/Lx = 4.02. The viscous and resistive Reynolds

numbers are fixed to the values Re = Rm = 5 (corresponding to magnetic

Prandtl number of unity Pr = Rm/Re = 1), so that the dissipation wavenum-

ber, kD, falls in this range, kD =
√

Re = 2.24 < kx,max.
1 Note also that for the

domain size Lx = 400 the above defined parameter β = L2
x/12 = 1.33 × 104

is quite large, indicating that the background magnetic field energy is small

compared to the kinetic energy of the mean flow and therefore the flow can be

regarded as weakly magnetized.

1The usual Reynolds numbers defined in terms of the half domain size Lx/2 and the
mean flow velocity at the domain boundary, U0,max = SLx/2, Re∗ = LxU0,max/2ν,Rm∗ =
LxU0,max/2η, are related to the Reynolds numbers used here by Re∗ = L2

xRe/4,Rm∗ =
L2
xRm/4. So, for Lx = 400 and Re = Rm = 5, these numbers are actually quite large
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Figure 3.1: Evolution of the domain-averaged (a) perturbed kinetic, 〈EK〉, and
magnetic, 〈EM〉, energies as well as (b) the Reynolds and Maxwell stresses in
the fiducial run. Data have been boxcar-averaged over 60 shear times to make
the plot readable. In the beginning, all these quantities steadily grow as a
result of shear-induced transient amplification of separate SFHs. Then, at
about t = 250, the amplification saturates to a quasi-steady turbulent state
that persists till the end of the run. The magnetic energy is a bit higher than
the kinetic one and the positive Maxwell stress dominates over the negative
Reynolds stress.
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The subsequent time-evolution with these initial conditions was fol-

lowed to tf = 600 (i.e., for a total of 600 shear times) by solving the basic Eqs.

(3.5)-(3.10) using the spectral snoopy code 2. The mean magnetic field B0

is conserved with time, because the domain-averaged fluctuating (turbulent)

fields, as we checked, remain zero, 〈u〉 = 〈b〉 = 0, during the whole run thanks

to the shearing box boundary conditions. The snoopy is a general purpose

code, solving HD and MHD equations, including shear, rotation, weak com-

pressibility and several other physical effects. It is based on a spectral (Fourier)

method allowing for the drift of harmonics in k-space due to mean flow (i.e.,

the shearing box boundary conditions are implemented in the code). The

Fourier transforms are computed using the FFTW 3 library. Nonlinear terms

are computed using a pseudo-spectral algorithm Canuto et al. (1988) and an-

tialiasing is enforced using the “3/2” rule. Time-integration is performed by

a third order Runge-Kutta scheme for nonlinear terms, whereas an implicit

scheme is used for viscous and resistive terms. This spectral scheme uses a pe-

riodic remap algorithm in order to continually follow the smallest wavenumber

of the system in the sheared frame moving with the flow. The code has been

tested and extensively used in a number of fluid dynamical and astrophysi-

cal contexts (see e.g., Refs. Lesur & Longaretti (2011, 2007); Lesur & Ogilvie

(2008); Lesur & Papaloizou (2010); Longaretti & Lesur (2010); Rempel et al.

(2010); Herault et al. (2011)).

Re∗ = Rm∗ = 2.0× 105
2The code is available for download at G. Lesur’s web page

http://ipag.obs.ujf-grenoble.fr/∼lesurg/snoopy.html
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Figure 3.1 shows the time-development of the domain-averaged per-

turbed kinetic, 〈EK〉, and magnetic, 〈EM〉, energies as well as the Reynolds,

〈uxuy〉, and Maxwell −〈bxby〉 stresses. At the early stage of evolution, they all

increase as a result of linear transient growth of separate SFHs contained in

the initial conditions. Then, after about 250 shear times, on reaching sufficient

amplitudes in the nonlinear regime, the energies and stresses settle down to a

quasi-steady state of sustained turbulence (see Fig. 3.2) that does not decay

and persists until the end of the simulation at tf = 600.

In this state, the kinetic and magnetic energies are comparable – a

ratio of their domain- and time-averaged over the whole quasi-steady state

(denoted here and below, for the stresses, with double brackets) values is

〈〈EM〉〉/〈〈EK〉〉 = 1.28, that is, there is a near equipartition of the energy

between kinetic and magnetic components. The Maxwell stress is much larger

than the Reynolds stress, indicating that the turbulent transport and energy

extraction from the mean flow are dominated by the magnetic field perturba-

tions. The average of the domain-averaged Maxwell stress over the last 350

shear times is positive 〈〈−bxby〉〉 = 84.5, while that of the domain-averaged

Reynolds stress is negative 〈〈uxuy〉〉 = −10.4. As is seen from Eq. (3.13),

the domain-averaged total stress must necessarily be positive for maintenance

of turbulence and therefore it is the Maxwell stress that plays a decisive role

in this process – counteracting dissipation, it ensures continuous feeding and

sustenance of the turbulence at the expense of the mean shear flow.

The structure of the velocity and magnetic field in the quasi-steady
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Figure 3.2: (Color online) Distribution of (a),(b) the velocity and (c),(d) the
magnetic field components in (x, y)−plane in the fully developed quasi-steady
turbulence at t = 490. This state is fairly nonlinear: ux and uy vary within
limits comparable to the domain-averaged velocity of the background flow (in
non-dimensional units 〈|U0|〉 = Lx/4 = 100), while bx and by are much larger
than the background magnetic field B0y = 1. Structures in the uy and by fields
are elongated in the y−direction due to shear.
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turbulent state (at t = 490) is depicted in Fig. 2. These fields are chaotic

with uy and by [Figs. 3.2(b) and 3.2(d)] having more elongated features in the

y−direction due to shear compared to ux and bx [Figs. 3.2(a) and 3.2(c)]. At

this time, the normalized fluctuating velocity and magnetic field are compa-

rable, 〈u2
x〉 = 87.68, 〈u2

y〉 = 178.73, 〈b2
x〉 = 113.17, 〈b2

y〉 = 238.64 and are much

larger than their corresponding initial values. Also, the y−components are

larger than the x-ones: 〈u2
x〉 < 〈u2

y〉, 〈b2
x〉 < 〈b2

y〉, which holds throughout the

run. Within the domain, ux and uy reach maximum values |ux|max = 51.53

and |uy|max = 70.15 comparable to the average background flow velocity,

〈|U0|〉 = Lx/4 = 100, and the bx and by have grown much larger, |bx|max = 70.61

and |by|max = 72.78, than the mean field B0y = 1. So, this quasi-steady MHD

turbulence can be viewed as being strongly nonlinear and weakly magnetized,

since 〈b2〉1/2 � B0y.

The general behavior of the domain-averaged kinetic and magnetic en-

ergies and stresses with time obtained here in the 2D case is qualitatively

consistent with that typically found in similar, but 3D simulations of MHD

turbulence driven by the magnetorotational instability (MRI) in local models

of accretion disks with a net toroidal magnetic field along the disk flow Hawley

et al. (1995); Guan et al. (2009); Simon & Hawley (2009), as in the present

setup. In both cases, there are no exponentially growing modes in the consid-

ered unbounded constant shear flows in the classical sense of linear stability

analysis Stern (1963); Ogilvie & Pringle (1996), i.e., the flows are spectrally

stable. In such flows, perturbations can grow only transiently during finite
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times Balbus & Hawley (1992); Chagelishvili et al. (1997); Dimitrov et al.

(2011), which is thought to be a key factor for the onset of subcritical turbu-

lence Grossmann (2000); Chapman (2002); Eckhardt et al. (2007). One of the

basic characteristics of subcritical transition is its sensitivity to the initial per-

turbation amplitude (e.g., Refs. Baggett et al. (1995); Schmid & Henningson

(2001); Lesur & Papaloizou (2010); Duguet et al. (2010)), which is also ob-

served here. We found that there exists a critical amplitude for initial velocity

and magnetic field perturbations (at a given Lx, Re and Rm) below which tur-

bulence is absent – there is only transient amplification insufficient to trigger

transition, which eventually decays due to dissipation. By contrast, for initial

amplitudes larger than the critical value a turbulent transition does occur af-

ter a phase of large enough transient growth, as is also evident from Fig. 3.1.

Specifically, at Re = Rm = 5 adopted here, the critical amplitude turned out

to be 〈u2〉1/2crit = 〈b2〉1/2crit = 0.34 (for the same type of initial noise spectrum for

both velocity and magnetic field perturbations), and in the fiducial run we ac-

cordingly selected the initial rms amplitudes (=0.84) larger than this in order

to achieve turbulent regime. This confirms that the turbulence we study here is

subcritical, however, we have not explored the transition process, that is, have

not pinned down the critical transition amplitude for different values of the

system parameters (domain size, Reynolds numbers, etc.) in more detail. The

problem of subcritical transition in MHD shear flows deserves a special inves-

tigation in its own right, but in the present analysis we are mainly interested

in the properties of the resulting self-sustaining turbulence itself once it has
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settled into quasi-steady state. The underlying physics of the onset and suste-

nance of subcritical turbulence in spectrally stable hydrodynamic shear flows

– the bypass concept – has been extensively studied previously in a number of

papers (see e.g., Refs. Grossmann (2000); Eckhardt et al. (2007) for a review),

but extension to MHD turbulence in spectrally stable magnetized shear flows,

to the best of our knowledge, has not been systematically investigated yet.

The equilibrium flow considered here with a linear spanwise shear of mean ve-

locity and streamwise magnetic field is the simplest but important example of

such spectrally stable magnetized shear flows that allows us to grasp specific

processes determining the onset, self-sustenance and spectral characteristics

of MHD turbulence in this kind of flow. Deeper insight into the dynamics of

such subcritical MHD turbulence can be gained by performing an analysis in

spectral space.

3.4 Turbulence behavior in spectral plane

In this section, we focus on the analysis of the dynamics of the quasi-

steady turbulent state in Fourier plane. We now explicitly calculate the indi-

vidual terms in Eqs. (3.21) and (3.22), which were classified and described in

Sec. II, using the simulation data. The snoopy code, being of the spectral

type, is particularly useful for this purpose, as it allows us to directly extract

Fourier transforms from the data.

Before proceeding to spectral analysis, we note that generally a turbu-

lent field and hence its Fourier transform are quite noisy. To remove this noise
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Figure 3.3: (Color online) Time-averaged (a) kinetic and (b) magnetic energies’
spectra in k−plane pertaining to the quasi-steady turbulent state. These time-
averages are done over 80 shear times, as described in the text. The isolines
correspond to the values −4,−3.5,−3,−2,−1, 0 of log10(ĒK) in panel (a) and
to the values −4,−3.5,−3,−2,−1,−0.5,−0.3, 0 of log10(ĒM) in panel (b).
Both spectra are anisotropic, having larger power at the kx/ky > 0 side. The
kinetic energy spectra is more concentrated at smaller wavenumbers than the
magnetic one. The dashed rectangle in each plot encloses the region of major
activity of the dynamical terms in Eqs. (3.21) and (3.22), which are shown in
Fig. 3.5.

and extract valuable information on the trends in the turbulence dynamics,

all Fourier transforms (spectra) presented below are averaged over 80 shear

times. The interval between two successive dumps in the code was set to 1

shear time, so the averaging is represented by 80 snapshots. From now on we

concentrate on the evolution after the quasi-steady saturated nonlinear state

has set in (i.e., at t & 250), so we can choose the starting moment for aver-

aging arbitrarily over the duration of this state, since the result is practically

independent of this moment by virtue of the quasi-steadiness of the process.
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3.4.1 Energy spectra

Figure 3.3 shows the time-averaged spectra of the kinetic and magnetic

energies in k−plane that have been established in the quasi-steady turbulent

state. Note that both spectra are strongly anisotropic, with the magnetic

energy spectrum being broader than the kinetic energy one. For k & 0.5, they

have a similar elliptical shape inclined to the kx−axis, whereas at k . 0.5

these spectra differ in structure: isolines for the magnetic energy divide into

two sets of ellipses near the center with the same inclination. This indicates

that SFHs with kx/ky > 0 have more energy than those with kx/ky < 0 at

fixed ky. Since β � 1, the effect of the mean flow shear prevails over that of

the mean magnetic field that leads us to suppose that the anisotropy of these

spectra might be primarily due to shear. 3 These features of the kinetic and

magnetic energy spectra, which clearly distinguish them from typical turbulent

spectra in the classical shearless case Biskamp (2003), arise as a consequence

of the specific way in which the terms of linear and nonlinear origin in Eqs.

(3.21) and (3.22) operate in k−plane. We show below that these terms are

anisotropic over wavenumbers due to shear, resulting in a new phenomenon –

the transverse cascade of power in spectral plane – compared to the classical

(isotropic) case.

The above time-averaged 2D spectra integrated over the angle in k−plane,

Ē
(k)
K,M = k

∫ 2π

0
ĒK,Mdφ, and represented as a function of k are shown in Fig.

3Similar anisotropic spectra were also observed in the simulations of MHD turbulence
driven by the MRI in the presence of shear Hawley et al. (1995); Lesur & Longaretti (2011).
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3.4. From intermediate wavenumbers k ∼ 0.2 up to dissipation wavenum-

bers k ∼ kD = 2.24, both one-dimensional (1D) spectra exhibit power-law

dependence on k, however, with different spectral indices – the kinetic energy

spectrum is well fitted by k−1.4 and the magnetic energy spectrum by k−2. At

these wavenumbers, the spectral density of the magnetic energy is larger than

that of the kinetic one, but at smaller k . 0.2 it decreases and becomes less

than the kinetic one, both deviating from the power-law. These power-law

parts of the spectra clearly differ from the typical Iroshnikov-Kraichnan (IK)

spectrum, k−1.5, characteristic of classical 2D and 3D MHD turbulence without

background shear flow Biskamp (2003), though the kinetic energy spectrum is

still close to it. Different spectra of kinetic and magnetic energies, following

approximately power-laws (though, with kinetic energy spectrum somewhat

coincident with the IK one), are also present in analogous 3D simulations of

MRI-driven MHD turbulence in the shearing box model of a disk Simon et al.

(2009); Fromang (2010); Lesur & Longaretti (2011). However, it was pointed

out in those studies that in the presence of differential rotation (shear) and

weak magnetization (β � 1) associated with disk flows, which are in fact also

shared by the 2D MHD shear flow considered here, classical Kolmogorov or

IK phenomenology is generally not applicable to turbulence dynamics, because

due to shear, energy injection from the mean flow into turbulence can occur

over a broad range of length-scales available in the flow, from the largest scale

down to the dissipation scale, that in turn prevents the development of the

proper inertial range of a spectrum in the classical sense (see also Refs. Fro-
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mang & Papaloizou (2007); Lesur & Longaretti (2011)). So, the spectra ob-

tained in those disk simulations, despite being of the power-law type, are in

fact determined by interplay between injection terms due to the linear MRI,

operating over a range of wavenumbers, and nonlinear terms in spectral space.

The situation is similar in the present problem. As shown below, the action

of the energy injection terms IK and, especially, of IM extends over a range

of wavenumbers in k−plane and is remarkably anisotropic [see Figs. 3.5(a),

3.5(b) and 3.6]. As noted above, these terms are responsible for the linear

transient amplification of SFHs and energy extraction from the mean flow,

so in this respect they play a similar role of supplying turbulence with en-

ergy in our nonrotating case as the (transient) azimuthal MRI in rotating disk

flows. Moreover, we demonstrate that there exists a new phenomenon – the

transverse nonlinear cascade of spectral energy density – resulting from this

anisotropy and, ultimately, from shear. These new features are not common

to shearless MHD turbulence and hence it is not surprising that Kolmogorov

or IK theory cannot adequately describe shear flow turbulence.

We have presented the energy spectra from two perspectives: fully

in k−plane in Fig. 3.3 and their angle-integrated (over shells of constant

|k|) versions in Fig. 3.4, the former is obviously more informative than the

latter. We emphasize that angle-integration of turbulent spectra and transfer

functions when they are anisotropic in wavenumber plane might lead to the

loss of essential information on the detailed nonlinear dynamics, so we take a

more general strategy of Ref. Horton et al. (2010) and represent energy spectra
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Figure 3.4: Kinetic and magnetic energy spectra from Fig. 3.3 integrated
over the angle in k−plane and plotted as a function of k. From intermediate,
k ∼ 0.2, to dissipation, k ∼ kD = 2.24, wavenumbers a power-law behavior is
observed in both spectra, though with different spectral indices: k−1.4 for the
kinetic and k−2 for the magnetic energies.

as well as injection and nonlinear transfer terms in full in k−plane, in contrast

to previous related studies of MHD turbulence in shear flows considering either

such angle-integrated or reduced 1D spectra (e.g., Refs. Fromang & Papaloizou

(2007); Simon et al. (2009); Davis et al. (2010); Lesur & Longaretti (2011)).

This allows us to obtain a complete dynamical picture and understanding of

the nature of subcritical MHD turbulence in the presence of mean flow shear.
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3.4.2 Spectra of energy injection: IK and IM

To better understand the character of the above anisotropic kinetic and

magnetic energy spectra and nonlinear transfers, in Fig. 3.5 we present the

distribution of the time-averaged kinetic and magnetic injection functions, IK

and IM , cross terms, IK−M and IM−K , and nonlinear transfer terms, NK and

NM , in k−plane in the quasi-steady turbulent state. From this figure it is seen

that these terms differ in magnitude and, like the spectral energies, all exhibit

anisotropy over wavenumbers, that is, depend on the wavevector angle. IK

is mostly concentrated at small wavenumbers, k . 0.1 [Fig. 3.5(a)], being

positive at kx/ky < 0 (red and yellow regions), where it increases the kinetic

energy of SFH, and negative at kx/ky > 0 (blue regions), where it takes kinetic

energy from SFH and gives it back to the flow. A net contribution of IK over

all wavenumbers is, however, negative (i.e., 〈uxuy〉 < 0). On the other hand,

IM mostly operates at larger wavenumbers, 0.05 . k . 0.5 [Fig. 3.5(b)],

and is dominant and positive on the kx/ky > 0 side (red and yellow regions),

where it supplies SFH with magnetic energy. The net result of IM over all

wavenumbers is a positive energy gain for perturbations (i.e., 〈−bxby〉 > 0),

which prevails over the net negative effect of IK , as is also evident from Fig.

3.1(b), and maintains turbulence. So, energy input for perturbation SFHs is

provided by the magnetic source term IM , which operates over a much broader

region in k-plane than IK does. We checked that such a dependence of kinetic

and magnetic energy injection terms on wavenumbers, in fact, is also seen

for the linear evolution of SFH, i.e., when the SFH drifts along the kx−axis
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Figure 3.5: (Color online) Maps of the time-averaged (a) kinetic, IK , and (b)
magnetic, IM , energy injection terms, (c) and(d) the cross terms IK−M , IM−K
and the (e) kinetic, NK , and (f) magnetic, NM , nonlinear transfer terms in
k−plane in the state of quasi-steady turbulence. The time averages are ob-
tained over an interval of 80 shear times (from 472 to 552 shear times), as de-
scribed in the text. Kinetic energy injection mostly occurs at small wavenum-
bers, k . 0.1, and on the kx/ky < 0 side where IK > 0, while magnetic energy
injection occurs mostly at intermediate wavenumbers, 0.05 . k . 0.5, on the
kx/ky > 0 side where IM > 0, overall it is dominant over IK , i.e, energy injec-
tion into turbulence appears to be due mainly to the Maxwell stresses. The
NK and NM terms transfer, respectively, the spectral kinetic and magnetic en-
ergies anisotropically (transversely) in wavenumber plane, away from regions
where they are negative NK < 0, NM < 0 (blue) to regions where they are
positive NK > 0, NM > 0 (yellow). The nonlinear terms are comparable to
the injection terms and both are about two orders of magnitude larger than
the cross terms.
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due to shear, its kinetic energy first increases at kx/ky < 0, then decreases

after crossing the point kx = 0, while its magnetic energy starts to increase

at kx/ky > 0 during a few shear times and then continues to oscillate with

Alfvén frequency, ωA = uAky, and constant amplitude (provided dissipation is

neglected).

The linear cross terms, IK−M and IM−K [Figs. 3.5(c) and 3.5(d)], are

small compared to both IK , IM and nonlinearNK , NM terms. In spectral plane,

the action of these terms is somewhat opposite to that of the corresponding

injection terms. IK−M lowers the kinetic energy at small wavenumbers, but

increases at intermediate and large wavenumbers on the kx/ky > 0 side, while

IM−K lowers the magnetic energy at intermediate and large wavenumbers in

the same quadrant and increases it at small wavenumbers. As noted above,

these cross terms cancel out in the total energy Eq. (3.24) and because they

are much smaller than the other dynamical terms, do not play any major role

in the energy balance in Eqs. (3.21) and (3.22) too.

The difference between the injection wavenumbers for the kinetic and

magnetic energies is demonstrated more clearly in Fig. 3.6, showing these in-

jection, nonlinear transfer, and dissipation terms angle-integrated in k−plane,

I
(k)
K , N

(k)
K , D

(k)
K [Fig. 3.6(a)] and I

(k)
M , N

(k)
M , D

(k)
M [Fig. 3.6(b)], and represented

as a function of k. It is seen from this figure that the range of wavenumbers,

where the injection terms are at work, extends from the smallest wavenumbers

in the domain, kx,min, up to k ∼ 1, comparable to the dissipation wavenumber

kD. I
(k)
K is positive at small wavenumbers, reaching a maximum at k ≈ 0.05,
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then becomes negative and vanishing at k > 0.12 (i.e., no longer injects kinetic

energy). On the other hand, I
(k)
M is positive and hence creates the turbulence’s

magnetic energy at all wavenumbers, reaching a maximum at k ≈ 0.2, which

is about twice as large as that of I
(k)
K . Note in Fig. 3.6 that these injection

and nonlinear transfer terms N
(k)
K and N

(k)
M widely overlap. This implies that

in the presence of shear, there is not a single injection scale in the flow, as

is usually assumed in classical turbulence theory, but instead energy injection

occurs all the way from the largest length-scales down to the dissipation scale.

Therefore, although power-law spectra for both the kinetic and the

magnetic energies are found at 0.2 . k . 2 (Fig. 3.4), they still cannot be

considered as being a proper inertial range, since energy is injected at these

intermediate scales (see also Refs. Fromang & Papaloizou (2007); Lesur &

Longaretti (2011) for a similar situation in the MRI-driven turbulence, where

the injection of energy, drawn from the mean flow, into turbulence occurs over

a range of scales at which nonlinear transfers operate as well). From Fig. 3.6,

it is also seen that in this wavenumber range, the dissipation terms are much

smaller than the injection and nonlinear transfer terms, so this part of the

energy spectra are in fact formed mainly as a result of the combined action of

the linear injection and nonlinear cascade.
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Figure 3.6: (Color online) Kinetic and magnetic injection and nonlinear trans-
fer terms from Fig. 3.5 as well as dissipation terms integrated over the angle
in k−plane, (a) I

(k)
K , N

(k)
K , D

(k)
K and (b) I

(k)
M , N

(k)
M , D

(k)
M , and represented as a

function of k. Injection terms (dashed lines) operate over a range of wavenum-
bers, overlapping with nonlinear terms (solid lines). The magnetic energy
injection is larger than the kinetic one. Both viscous and resistive dissipation
(dot-dashed lines) are relatively important only at k > kD = 2.24. The ref-
erence dotted vertical line marks the maximum wavenumber k = 0.5 of the
domains in Fig. 3.5. Shaded (gray) regions correspond to wavenumbers at

which N
(k)
K < 0, N

(k)
M < 0 and hence the kinetic and magnetic energies, re-

spectively, are transferred, on average, away from these wavenumbers due to
nonlinearity.
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3.4.3 Nonlinear transfers NK and NM – the essence of the transverse
cascade

We now move to describing the nonlinear kinetic and magnetic trans-

fer functions. As noted above, they do not represent a new source of total

energy for turbulence, but only act to redistribute kinetic and magnetic spec-

tral energies, which are extracted from the mean flow, over wavenumbers and,

in cooperation with injection terms, determine the characteristics of spectra.

So, our primary goal is to understand how the nonlinear transfer terms work

and, consequently, in which directions energies cascade in Fourier plane in the

presence of background shear. As mentioned in Introduction, for a purely

HD constant shear (Couette) flow, which is spectrally stable, it was shown

in Ref. Horton et al. (2010) that nonlinear transfer function is anisotropic in

k−plane, i.e., depends on the polar angle due to shear and, as a consequence,

leads to redistribution of the spectral energy over wavevector angles. This

relatively new process termed the angular, or transverse cascade of energy has

been shown to be essential for the maintenance of the subcritical nonlinear

state in this flow via the bypass mechanism.

Actually, identification of the transverse cascade of energy has been

made possible by virtue of representation of the dynamics fully in 2D spectral

plane, without performing angle-integration that would result in washing out

a key element of this process – the angular dependence (anisotropy) of the

transfer functions’ spectra. The findings in that paper indicate that in HD

shear flows, along with the direct and inverse cascades quite well established in
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Figure 3.7: (Color online) Kinetic and magnetic injection and nonlinear trans-

fer terms from Fig. 3.5 integrated over k, (a) I
(θ)
K , N

(θ)
K and (b) I

(θ)
M , N

(θ)
M , and

represented as a function of the wavevector polar angle θ (angles π < θ < 2π
correspond to complex conjugates and are not shown here). These plots clearly
demonstrate the angular dependence (anisotropy) of both the injection (dashed
lines) and the nonlinear transfer (solid lines) terms. Shaded (gray) regions cor-

respond to angles at which N
(θ)
K < 0, N

(θ)
M < 0 and hence kinetic and magnetic

energies, respectively, are transferred from these angles to other angles due to
nonlinearity, that is, a new phenomenon – the transverse (angular) cascade of
energy – takes place.
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turbulence theory, a new, transverse type of cascade can also take place which,

in fact, appears to be as important as the former. Based on these results, in the

present Chapter we generalize a spectral analysis of nonlinear dynamics given

in Horton et al. (2010) for the HD constant shear flow to the MHD constant

shear flow considered here, with the aim of understanding the mechanism

responsible for the sustenance of the subcritical MHD turbulence in question.

Specifically, we will examine whether there exists a cooperative action of any

kind between energy-injecting linear and nonlinear transfer terms, like that

occurring in HD shear flows, capable of sustaining perturbations in spectrally

stable MHD shear flows.

Figures 3.5(e) and 3.5(f) show the distribution of the time-averaged ki-

netic, NK , and magnetic, NM , nonlinear transfer functions with wavenumbers

in the quasi-steady turbulence, alongside the injection terms, in order to easily

see their cooperative (correlated) action with the latter. As mentioned above,

both NK and NM are strongly anisotropic, i.e., depend on the polar angle

in k−plane. This anisotropy has qualitatively the same character as that of

IK , IM , IK−M and the 2D energy spectra in Fig. 3.3, that is, the spectra of all

these are inclined towards the kx−axis due to shear. To bring out this angular

dependence more clearly, we integrated IK , IM and NK , NM over k, from the

smallest kmin = kx,min to the largest kmax = kx,max values in the domain,

I
(θ)
K,M =

∫ kmax

kmin

IK,Mkdk, N
(θ)
K,M =

∫ kmax

kmin

NK,Mkdk

and represent them as functions of the polar angle θ in Fig. 3.7. While

the above-defined N
(k)
K and N

(k)
M describe energy transfers in the direction
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of k, N
(θ)
K and N

(θ)
M describe energy transfer along the azimuthal direction,

perpendicular to k.

As shown in Figs. 3.5-3.7, the distributions ofNK andNM over wavenum-

bers differ, leading to different types of cascades for the kinetic and mag-

netic spectral energies. Since these quantities are symmetric with respect to a

change k → −k, without loss of generality, everywhere below we concentrate

on the upper part (ky > 0) of k−plane. NK mainly operates in two regions

of k−plane: at small wavenumbers, k . 0.1, where it is negative [blue region

with NK < 0 in Fig.3.5(e) corresponding to gray-shaded area with N
(k)
K < 0 in

Fig. 3.6(a)], and at intermediate wavenumbers 0.1 . k . 0.5 on the kx/ky > 0

side (0 ≤ θ ≤ π/2), where it is positive (yellow region with NK > 0); at all

other wavenumbers the kinetic transfer function is nearly zero. On the other

hand, NM mainly operates at 0.05 . k . 1 [see also Fig. 3.6(b)], is positive

at 0.3π . θ ≤ π [yellow region with NM > 0 in Fig. 3.5(f)] and negative at

0 ≤ θ . 0.3π (blue region with NM < 0); at all other wavenumbers the mag-

netic transfer term is nearly zero. Note also that the distributions of NK and

NM look somewhat similar to those of the linear exchange terms IK−M and

IM−K , respectively, but, as noted above, the latter are two orders of magnitude

smaller than the former.

By definition, these nonlinear transfer functions redistribute the corre-

sponding spectral energies away from the regions in k−plane where they are

negative to the regions where they are positive. The kinetic energy injection

due to IK occurs, as described above, at small wavenumbers (k . 0.1) with
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π/2 < θ < π where IK > 0 [see also Figs. 3.6(a) and 3.7(a)], but the NK

term is negative there, transferring kinetic energy away from these injection

wavenumbers to intermediate wavenumbers, k & 0.1, with 0 ≤ θ ≤ π/2, where

NK > 0. This picture of spectral kinetic energy transfer, or cascade towards

larger wavenumbers is also evident from Fig. 3.6(a), where the angle-integrated

N
(k)
K changes from negative to positive at about k = 0.1, consistent with the

flow of kinetic energy away from k . 0.1 to k & 0.1. The cascade behavior

for the turbulent magnetic energy is different from that of the kinetic energy.

The magnetic energy injection due to IM occurs at intermediate wavenumbers

(0.05 . k . 1) for 0 < θ < π/2, where IM > 0 [see also Figs. 3.6(b) and

3.7(b)], but the NM term, which is mostly negative there, transfers the mag-

netic energy away from this injection region to its neighboring region on the

left with slightly smaller wavenumbers but larger polar angles 0.3π . θ ≤ π,

where NM is positive. This cascade of magnetic energy to smaller wavenum-

bers is more clearly seen from Fig. 3.6(b), where the angle-integrated N
(k)
M

changes from positive to negative at around k = 0.17, indicating the flow of

magnetic spectral energy from k & 0.1 to k . 0.1.

Thus, in shear MHD turbulence, the kinetic and magnetic energies are

transferred both along the wavevector, corresponding to familiar direct and

inverse cascades, and transversely (perpendicular) to it (i.e., over angles θ).

Just this second type of nonlinear cascade, better characterized by N
(θ)
K and

N
(θ)
M (Fig. 3.7), is a new effect of shear and is discussed more in the next

subsection; it is absent in classical shearless MHD turbulence.
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As stressed in Ref. Horton et al. (2010), the transverse cascade of en-

ergy appears to be a generic feature of nonlinear dynamics of perturbations

in spectrally stable shear flows, so the conventional description of shear flow

turbulence solely in terms of direct and inverse cascades, which leaves such

nonlinear transverse cascade out of consideration, might be incomplete and

misleading. We emphasize that in the present case revealing the complete

picture of these nonlinear cascade processes has become largely possible due

to carrying out the analysis in spectral plane. Because of the shear-induced

anisotropy of cascade directions, only angle-integrated transfer functions in

Fig. 6 (that are in fact typically used in most numerical studies of shear MHD

turbulence, e.g., Refs. Fromang & Papaloizou (2007); Simon et al. (2009);

Davis et al. (2010); Lesur & Longaretti (2011)), clearly, are not fully repre-

sentative of the actual, more general nonlinear redistribution of the spectral

energies in k−plane, which also includes transfer with respect to wavevector

angles – the transverse cascade.

3.4.4 Interplay of the linear injection and nonlinear transverse cas-
cade

We have seen above that the nonlinear redistributions of spectral kinetic

and magnetic energies over the wavevector polar angle, θ, in k−plane, termed

the transverse cascade, are due to shear-induced dependence of the nonlinear

transfer functions NM and NM on this angle. This can be better appreciated

from Fig. 3.7 showing the N
(θ)
K and N

(θ)
M introduced in previous subsection.

They exhibit different dependencies over θ, resulting in different characters of

89



the transverse cascade for the kinetic and magnetic energies. Note the opposite

relative trends between I
(θ)
K and N

(θ)
K [Fig. 3.7(a)] and between I

(θ)
M and N

(θ)
M

[Fig. 3.7(b)] with respect to θ:

I
(θ)
K ≤ 0 and N

(θ)
K > 0 at 0 ≤ θ ≤ π/2,

I
(θ)
K ≥ 0 and N

(θ)
K ≈ 0 at π/2 < θ ≤ π.

On the other hand,

I
(θ)
M ≥ 0 and N

(θ)
M ≤ 0 at 0 ≤ θ . 0.3π,

I
(θ)
M ≈ 0 and N

(θ)
M > 0 at 0.3π . θ ≤ π.

This implies that the region of k−plane, where SFHs are replenished with

kinetic energy by nonlinearity (i.e., where NK > 0), lies on the right side of

the kinetic energy injection region with IK > 0, whereas the region where SFHs

are replenished with magnetic energy by nonlinearity (i.e., where NM > 0) lies

on the left side of the magnetic energy injection region with IM > 0, as also

seen in Fig. 5. As explained below, this specific arrangement of the injection

and nonlinear redistribution areas for the magnetic energy in spectral plane

appears to be crucial to the sustenance of the turbulence.

After characterizing the specific activity of the linear injection and non-

linear transfer terms in k−plane associated with the presence of shear, we now

consider the evolution of SFHs in the quasi-steady turbulence and identify a

mechanism sustaining this state. As noted above, apart from these terms, Eqs.

(3.21) and (3.22) also contain terms describing drift of SFHs in spectral plane
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due to shear flow. In the upper half-plane (ky > 0) we focus on, all SFHs

drift along the kx−axis direction and cross the injection and transfer regions

in succession. Since the turbulence is quasi-steady, these three basic processes

involved in the spectral Eqs. (3.21) and (3.22): linear drift of SFHs, energy in-

jection and nonlinear transfer, together with viscous and resistive dissipation,

are in subtle balance, or cooperation, resulting in the closed (positive) feedback

loop that energetically maintains this state. We interpret the workings of this

loop as follows. Let us start the loop cycle. The nonlinear transfer functions

NK and NM supply (from a previous cycle) SFHs with kinetic energy mainly

at wavenumbers with polar angles 0 ≤ θ . 0.6π and 0.7π . θ ≤ π, where

NK > 0, N
(θ)
K > 0, and magnetic energy at 0.3π . θ ≤ π, where NM , N

(θ)
M > 0

[see Figs. 3.5(e), 3.5(f) and 3.7]. Then, these SFHs drift along the kx−direction

and enter the injection regions, where IK > 0 and IM > 0. As a result, the

kinetic energy of those SFHs with ky . 0.1 and the magnetic energy of those

SFHs with ky & 0.05 grow at the expense of the mean flow – just at this stage

the kinetic and magnetic energies are being injected into the turbulence due to

IK and IM from the mean flow. Then, the SFHs move into the regions where

NK < 0 and NM < 0 and hence these nonlinear terms now act to transfer

part of the kinetic and magnetic energies from the amplified SFHs back, re-

spectively, to the regions where NK > 0 and NM > 0, from which these SFHs

started off, in this way regenerating new SFHs there (positive nonlinear feed-

back). Towards the end of the cycle, part of the original SFH’s kinetic energy

is returned to the mean flow, since IK ≤ 0 at 0 ≤ θ ≤ π/2, so effectively there
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is no net gain of the turbulent kinetic energy from the mean shear flow; the

second part, which goes into the new SFHs, is taken from the magnetic energy

via the nonlinear exchange by positive NK (at ky & 0.1) and the third part is

gradually dissipated due to viscosity as the SFH drifts further towards larger

wavenumbers (k & kD). So, during each cycle, the SFHs gain primarily the

magnetic energy from the mean flow due to the injection term IM . Part of this

magnetic energy is transformed by nonlinearity into the kinetic, as mentioned

above, and the other part into magnetic energies of the newly created SFHs.

The rest of the magnetic energy is dissipated due to resistivity. As seen from

Figs. 3.5(f) and 3.7(b), in k−plane, the magnetic injection region lies on the

right side of the region of its nonlinear regeneration where NM > 0. As a

consequence, these new (regenerated) SFHs will drift through the same cycle

and the whole process of (magnetic) energy extraction from the mean flow will

be repeated. In this way, a positive feedback loop – a cooperative interplay

of the linear transient amplification and nonlinear transverse redistribution

of the magnetic spectral energy is established, ensuring the sustenance of a

quasi-steady turbulent state at the expense of the background flow energy.

We have seen that a principal role in the above-described MHD self-

sustaining mechanism is played by magnetic field perturbations that actually

feed turbulence – SFHs, which are able to extract energy from the shear flow

by means of the Maxwell stresses (i.e., by IM), are continuously repopulated

by the nonlinear magnetic transfer term. This nonlinear positive feedback for

the magnetic perturbations is probably related to the fact that the Maxwell
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stress has the “right” positive sign to supply turbulence [Fig. 3.1(b)]. By

contrast, the injection region for the kinetic energy in k−plane lies to the

left and below the main region of its nonlinear regeneration [at 0 ≤ θ ≤ π/2

where NK > 0, see Figs. 3.5(e) and 3.7(a)]. As a result, the majority of new

SFHs, drifting along the kx−axis, cannot cross the injection region and thus

continuously gain the kinetic energy from the flow; even the small fraction of

new SFHs that can cross this region eventually returns the kinetic energy to

the flow where IK < 0. In other words, the nonlinear feedback for the kinetic

energy does not operate in a similar, constructive, manner as that for the

magnetic energy. This may be related to the Reynolds stress being negative

[Fig. 3.1(b)] and hence ineffective in feeding turbulence with kinetic energy.

So, in the 2D MHD shear turbulence considered here, unlike the Maxwell

stress, the Reynolds stress cannot provide the right sign for transport.

3.5 Discussion and summary

In this Chapter, we have studied the characteristics and self-sustaining

mechanism of subcritical MHD turbulence in incompressible magnetized spec-

trally stable shear flows via DNS using the spectral code snoopy. We have

examined how the background shear flow interacts with the turbulent fluctu-

ations of the incompressible 2D MHD equations to produce a self-sustained

turbulence. The analysis of the turbulence dynamics was carried out in Fourier

plane. To keep the problem as manageable as possible and at the same time

not to omit key effects of shear on the dynamics of turbulence, as the base
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flow we took the simplest but important case of plane MHD Couette flow

with linear shear and an imposed background uniform, weak, magnetic field

parallel to it. This flow configuration is linearly stable (with decaying linear

perturbations at long times) according to classical (modal) stability theory

and hence the only cause of transition to turbulence can be a linear transient

amplification of (magnetic field) perturbations due to the nonnormality as-

sociated with shear at streamwise wavenumbers ky < S/uA. Consequently,

the considered 2D MHD turbulence is subcritical by nature. To understand

its sustaining mechanism, we Fourier transformed basic MHD equations and

derived evolution equations for the perturbed kinetic and magnetic spectral

energies in wavenumber plane. In these spectral equations, using the sim-

ulation results, we calculated individual terms, which are divided into two

types – terms of linear and nonlinear origin. The terms of linear origin – the

Maxwell and Reynolds stresses – are responsible for energy exchange between

the turbulence and the mean flow through transient amplification of pertur-

bation harmonics due to shear. However, as we have shown, only the positive

Maxwell stress appears to be a dominant (magnetic) energy injector for the

turbulence; it is much larger than the Reynolds stress, which has a negative

sign and therefore does not contribute to the turbulent kinetic energy gain.

Another linear term due to shear in these equations makes the spectral energies

drift in the spectral plane parallel to the kx−axis. The nonlinear terms, which

do not directly draw the mean flow energy, act to transversely redistribute

this energy in Fourier plane, continually repopulating perturbation harmonics
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that can undergo transient growth. Thus, we have demonstrated that in spec-

trally stable shear flows, the subcritical MHD turbulent state is sustained by

the interplay of linear and nonlinear processes – the first supplies energy for

turbulence via shear-induced transient growth mechanism of magnetic field

perturbations (characterized by the Maxwell stresses) and the second plays

an important role of providing a positive feedback that makes this transient

growth process recur over long times and compensate for high-k dissipation

due to viscosity and resistivity.

This picture is consistent with the bypass scenario of subcritical turbu-

lence in spectrally stable shear flows and differs fundamentally from a usual

(supercritical) turbulence scenario, which is based on exponentially growing

perturbations in a system that permanently supply turbulent energy and do

not require nonlinear (positive) feedback for its sustenance. Such a coopera-

tive action of linear transient growth and nonlinear transfer mechanisms relies

on anisotropy of the energy spectra, injection and nonlinear cascades in spec-

tral plane (see Fig. 3.5), which is ultimately attributable to the flow shear.

This shear-induced anisotropy, i.e., the dependence of spectra and nonlinear

transfers on polar angle in k−plane, as we found and analyzed here in the

case of MHD flows, appears to be inherent in shear flow turbulence; a similar

anisotropy exists in HD shear flows (see Ref. Horton et al. (2010) for details).

It differs from the typical anisotropy of classical (shearless) MHD turbulence

in the presence of a (strong) background magnetic field (e.g., Ref. Goldreich &

Sridhar (1995)) and changes the classical view on nonlinear cascade processes:
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traditionally, the net action of nonlinear turbulent processes is interpreted as

either a direct or an inverse cascade (e.g., Ref. Biskamp (2003)). Our analysis

demonstrates, however, that in MHD shear flows, like HD ones, the domi-

nant nonlinear process, resulting from the spectral anisotropy, is in fact the

redistribution of perturbation spatial Fourier harmonics over the wavevector

angles. (Probably for this reason, in our simulations with background shear

we did not observe the typical 2D coherent magnetic structures that grow via

merging due to inverse cascade of magnetic helicity Biskamp & Welter (1989);

Wu & Chang (2001)). These anisotropic energy transfers in Fourier space have

been termed nonlinear transverse redistribution, or the transverse cascade. In

the considered flow, the nonlinear transverse cascade plays a vital role in the

long-term sustenance of turbulence – it redistributes mainly magnetic spectral

energy over different angles in k−plane such that to continually regenerate

those harmonics which, drifting in spectral plane, have the potential to un-

dergo transient growth, extracting energy from the mean flow. This indicates

that the transverse cascade of spectral (magnetic) energy appears to be charac-

teristic of MHD turbulence in shear flows, so the conventional characterization

of nonlinear MHD cascade processes in the presence of the flow shear in terms

of direct and inverse cascades, which ignores the transverse cascade, should be

generally incomplete and misleading. Identification of this new – transverse

– type of nonlinear cascades and its role in the maintenance of shear MHD

turbulence represents one of our main results.

We showed that as a result of anisotropy of nonlinear transfers in
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k−plane, kinetic and magnetic energy spectra are also highly anisotropic (see

Fig. 3.3). These spectra integrated over wavevector angle exhibit power-law

behavior for intermediate wavenumbers, though with different spectral indices:

k−1.4 for the kinetic and k−2 for the magnetic energies. Despite this, the angle-

averaged spectra we found should not be regarded as truly inertial ranges,

because the stresses inject kinetic and magnetic energies into turbulence over

a broad range of wavenumbers – from the largest scales in the domain down

to the shortest scales comparable to dissipation scale – well overlapping with

the nonlinear transfer terms (see Figs. 3.6 and 3.7). So, these spectra are

determined by the combined effect of linear injection and nonlinear transfer

terms. This is in contrast to the usual forced turbulence case, where energy

is injected (by external forcing) in a narrow wavenumber band and subse-

quent development of spectra is due to nonlinearity only (e.g., Refs. Biskamp

(2003); Douglas et al. (2008); Newton & Kim (2009)). As noted above, the

energy injection by the stresses occurs through the transient amplification of

perturbation Fourier harmonics due to shear, implying that the shear plays an

important dynamical role at large and intermediate scales (& uA/S). However,

the angle-averaging of anisotropic spectra (and also of transfer functions) in

shear flows, as often done in similar cases, might result in the loss of essential

information about the spectral characteristics of shear turbulence because of

its angular dependence too.

In the context of the spectral indices, it is interesting to point out that

in some regions of the Earth’s magnetotail, a magnetic energy spectrum with
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a slope close to that obtained here, k−2, is observed Zimbardo et al. (2010). It

is hard to attribute this observational result to either the Kolmogorov or the

IK spectra. This may suggest the influence of shear flow on the dynamics of

the magnetotail turbulence and formation of its spectrum. The way we see it,

definite conclusions can be drawn by performing a numerical analysis similar

to that presented here for a specific 3D model configuration of the magnetotail.

In this Chapter, we have considered 2D dynamics and a brief discussion

of 3D MHD turbulence in magnetized shear flows is in order. According to the

classical view, there is a fundamental difference in the nonlinear dynamics of

2D versus 3D HD processes: 3D ones are characterized by a direct cascade of

energy, while 2D ones by inverse cascade. By contrast, in MHD, the nonlinear

dynamics of 2D and 3D processes are similar in the sense that cascade direc-

tions of characteristic quantities (energy, helicity, etc.) are identical (see e.g.,

Ref. Biskamp (2003)). As for the transverse cascade analyzed in this Chapter,

it occurs in HD as well as in MHD shear flows. It is well-known that in HD

shear flows, 2D turbulence is not maintained and dies out (without external

forcing), i.e., inverse cascade modified by transverse cascade is unable to sus-

tain turbulence (HD turbulence in shear flows is usually 3D). The present study

demonstrates that, unlike HD shear flows, self-sustained 2D turbulence can do

exist in MHD shear flows owing to the transverse cascade. Being dependent on

the shear, the transverse cascade is expected to occur and play an important

role in the dynamics of 3D MHD shear turbulence too. But further stud-

ies should clarify, whether the nonlinear dynamics with the third z−direction
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(perpendicular to the flow plane) represents just a mere extension of the basic

self-sustaining process described here in 2D or introduces a qualitatively new

contribution. In any case, the transverse cascade will remain a vital ingredient

in the self-sustenance of turbulence in 3D too. Although our analysis is limited

to 2D, since these are the streamwise and shearwise directions, it allows us to

bring out a basic mechanism underlying the self-sustenance (via interplay of

linear transient amplification and nonlinear transverse cascade processes) and

properties of subcritical MHD shear turbulence.
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Chapter 4

Nonlinear transverse cascade and sustenance

of MRI-turbulence in Keplerian disks with an

azimuthal magnetic field

4.1 Introduction

The problem of the onset and sustenance of turbulence in accretion

disks lies at the basis of understanding different aspects of disk dynamics and

evolution: secular redistribution of angular momentum yielding observation-

ally obtained accretion rates, dynamo action and generation of magnetic fields

and outflows, possibility of appearance of coherent structures (e.g., vortices,

zonal flows, pressure bumps) that can form sites for planet formation. Investi-

gations in this direction acquired new impetus and became more active since

Balbus & Hawley (1991) demonstrated the relevance and significance of the

magnetorotational instability (MRI) for disks. Today the MRI is considered

as the most likely cause of magnetohydrodynamic (MHD) turbulence in disks

and hence a driver agent of the above phenomena. Starting from the 1990s

a vast number of analytical and numerical studies have investigated different

aspects of linear and nonlinear evolution of the MRI in three-dimensional (3D)

Keplerian disks using both local shearing box and global approaches for differ-

ent configurations (unstratified and stratified, incompressible and compress-
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ible, with vertical and/or azimuthal magnetic fields having zero and nonzero

net fluxes) at different domain sizes and resolutions (see e.g., Armitage, 2011;

Fromang, 2013, for a review).

In this Chapter (related to (Gogichaishvili et al., 2017)), we consider a

local model of a disk threaded by a nonzero net azimuthal/toroidal magnetic

field. The linear stability analysis showed that only non-axisymmetric pertur-

bations can exhibit the MRI for this orientation of the background field (Balbus

& Hawley, 1992; Ogilvie & Pringle, 1996; Terquem & Papaloizou, 1996; Pa-

paloizou & Terquem, 1997; Brandenburg & Dintrans, 2006; Salhi et al., 2012;

Shtemler et al., 2012). Such perturbations are, however, sheared by the disk’s

differential rotation (shear) and as a result the MRI acquires a transient na-

ture, while the flow stays exponentially, or spectrally stable. Nevertheless,

as early seminal numerical simulations by Hawley et al. (1995) revealed, the

transient MRI in the presence of an azimuthal field in fact causes transition to

MHD turbulence. However, the transient growth itself, which in this case is the

only available source of energy for turbulence, cannot ensure a long-term sus-

tenance of the latter without appropriate nonlinear feedback. In other words,

the role of nonlinearity becomes crucial: it lies at the heart of the sustenance

of turbulence. Thus, the transition to turbulence in the presence of azimuthal

field fundamentally differs from that in the case of the vertical field, where

the MRI grows exponentially forming a channel flow, which, in turn, breaks

down into turbulence due to secondary (parasitic) instabilities (Goodman &

Xu, 1994; Hawley et al., 1995; Bodo et al., 2008; Pessah & Goodman, 2009;
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Latter et al., 2009; Pessah, 2010; Longaretti & Lesur, 2010; Murphy & Pessah,

2015).

The first developments of the MRI in magnetized disks in the 1990s co-

incided with the period of the breakthrough of the fluid dynamical community

in understanding the dynamics of spectrally stable (i.e., without exponentially

growing eigenmodes) hydrodynamic (HD) shear flows (see e.g., Reddy et al.,

1993; Trefethen et al., 1993; Farrell & Ioannou, 1996; Schmid & Henningson,

2001; Schmid, 2007). The nonnormality of these flows, i.e., the nonorthogonal-

ity of the eigenfunctions of classical modal approach, had been demonstrated

and its consequences – the transient/nonmodal growth of perturbations and

the transition to turbulence were thoroughly analyzed. There are no expo-

nentially growing modes in such flows and the turbulence is energetically sup-

ported only by the linear nonmodal growth of perturbations due to the shear

flow nonnormality.

Differentially rotating disks represent special case of shear flows and

hence the effects of nonnormality inevitably play a key role in their dynamics

(e.g., Chagelishvili et al., 2003; Mukhopadhyay et al., 2005; Zhuravlev & Raz-

doburdin, 2014; Razdoburdin & Zhuravlev, 2017). In particular, in magnetized

disks, the nonmodal/transient growth of the MRI over intermediate (dynam-

ical) times can be actually more relevant in many situations than its modal

growth (Mamatsashvili et al., 2013; Squire & Bhattacharjee, 2014). Since in

the present case of azimuthal field, the MRI exhibits only transient rather

than exponential growth, the resulting turbulence, like in spectrally stable HD
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shear flows, is expected to be governed by a subtle cooperation of this non-

modal growth and nonlinear processes. As is shown in previous Chapter, this

is indeed the case for an analogous two-dimensional (2D) MHD flow with linear

shear and magnetic field parallel to it and the flow configuration considered

here in fact represents its 3D generalization. So, our main goal is to investigate

the spectral properties and sustaining dynamics of MHD turbulence driven by

the transient amplification of the MRI in disks with a net nonzero azimuthal

field.

The dynamics and statistics of MRI-driven MHD turbulence in Kep-

lerian disk flows have been commonly analyzed and interpreted in physical

space rather than in Fourier space. This also concerns studies of disks with

nonzero net azimuthal magnetic field. Below we cite the most relevant ones.

Hawley et al. (1995); Guan et al. (2009); Guan & Gammie (2011); Nauman &

Blackman (2014); Ross et al. (2016) in the shearing box, and Fromang & Nel-

son (2006); Beckwith et al. (2011); Flock et al. (2011, 2012a); Sorathia et al.

(2012); Hawley et al. (2013); Parkin & Bicknell (2013) in global disk simula-

tions extensively investigated the dependence of the dynamics and saturation

of the MRI-turbulence without explicit dissipation on the domain size, resolu-

tion and imposed azimuthal field strength. Fleming et al. (2000) in local model

and Flock et al. (2012b) in global model addressed the influence of resistivity

and established a critical value of magnetic Reynolds number for the existence

of turbulence. Simon & Hawley (2009) and Meheut et al. (2015) included also

viscosity together with resistivity and showed that at fixed field strength the
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saturation amplitude mainly depends on the magnetic Prandtl number, that

is, the ratio of viscosity to resistivity, if the latter is larger than unity and

the Reynolds number is high enough. On the other hand, at Prandtl numbers

smaller than unity the turbulence sustenance is more delicate: it appears to be

independent of the Prandtl number and mainly determined by the magnetic

Reynolds number. Simon & Hawley (2009) attributed this behavior to the

small-scale resistive dissipation processes (reconnection), which are thought to

be central in the saturation process.

Part of these papers based on the local approximation (Hawley et al.,

1995; Fleming et al., 2000; Nauman & Blackman, 2014; Meheut et al., 2015)

do present analysis of energy density power spectrum, but in somewhat re-

stricted manner by considering either averaging over wavevector angle, i.e.,

averages over spherical shells of constant |k|, or slices along different directions

in Fourier space. However, there are several studies of MRI turbulence also in

the local approximation, but with nonzero net vertical magnetic flux (Lesur &

Longaretti, 2011) and with zero net flux (Fromang & Papaloizou, 2007; Simon

et al., 2009; Davis et al., 2010), which go beyond energy spectrum and describe

the dynamics of MRI- turbulence and associated energy injection (stresses) and

nonlinear transfer processes in Fourier space, but again in a restricted man-

ner by using shell-averaging procedure and/or reduced one-dimensional (1D)

spectrum along a certain direction in Fourier space by integrating in the other

two. However, as demonstrated by Hawley et al. (1995); Lesur & Longaretti

(2011); Murphy & Pessah (2015) for MRI-turbulence (with net vertical field)
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and in previous Chapter related to 2D MHD shear flow turbulence in Fourier

space, the power spectra and underlying dynamics are notably anisotropic due

to shear, i.e., depend quite strongly also on the orientation of wavevector k in

Fourier space rather than only on its magnitude |k|. This is in contrast to a

classical isotropic forced turbulence without background velocity shear, where

energy cascade proceeds along k only (Biskamp, 2003). This shear-induced

anisotropy also differs from the typical anisotropy of classical shearless MHD

turbulence in the presence of a (strong) background magnetic field (Goldreich

& Sridhar, 1995). It leads to anisotropy of nonlinear processes and particu-

larly to the nonlinear transverse cascade (see below) that play a central role

in the sustenance of turbulence in the presence of transient growth. Conse-

quently, the shell-averaging done in the above studies is misleading, because

it completely leaves out shear-induced spectral anisotropy, which is thus an

essential ingredient of the dynamics of shear MHD turbulence. The recent

works by Meheut et al. (2015) and Murphy & Pessah (2015) share a simi-

lar point of view, emphasizing the importance of describing anisotropic shear

MRI-turbulence using a full 3D spectral analysis instead of using spherical

shell averaging in Fourier space, which is applicable only for isotropic tur-

bulence without shear. Such a generalized treatment is a main goal of this

Chapter. In particular, Murphy & Pessah (2015) employ a new approach that

consists in using invariant maps for characterizing anisotropy of MRI-driven

turbulence in physical space and dissecting the 3D Fourier spectrum along the

most relevant planes, as defined by the type of anisotropy of the flows.
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As for the global disk studies cited above, relatively little attention is

devoted to the dynamics of MRI-turbulence in Fourier space. This is, how-

ever, understandable, since in contrast to the cartesian shearing box model,

global disk geometry makes it harder to perform Fourier analysis in all three,

radial, azimuthal and meridional directions, so that these studies only consider

azimuthal spectra integrated in other two directions.

Recently, we have numerically studied a cooperative interplay of linear

transient growth and nonlinear processes ensuring the sustenance of nonlinear

perturbations in hydrodynamic and 2D MHD plane spectrally stable constant

shear flows (Horton et al., 2010; Mamatsashvili et al., 2014, 2016). Perform-

ing the analysis of dynamical processes in Fourier space, we showed that the

shear-induced spectral anisotropy gives rise to a new type of nonlinear cascade

process that leads to transverse redistribution of modes in k-space, i.e. to a re-

distribution over wavevector angles. This process, referred to as the nonlinear

transverse cascade, originates ultimately from flow shear and fundamentally

differs from the canonical (direct and inverse) cascade processes accepted in

classical Kolmogorov or Iroshnikov-Kraichnan (IK) theories of turbulence (see

e.g., Biskamp, 2003). The new approach developed in these studies and the

main results can be summarized as follows:

– identifying modes that play a key role in the sustaining process of the tur-

bulence;

– defining a wavenumber area in Fourier space that is vital in the sustenance

of turbulence;
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– defining a range of aspect ratios of the simulation domain for which the

dynamically important modes are fully taken into account;

– revealing the dominance of the nonlinear transverse cascade in the dynamics;

– showing that the turbulence is sustained by a refined interplay between the

linear transient (nonmodal) growth and the nonlinear transverse cascade.

In this Chapter, with the same spirit and goals in mind, we take the

approach of Chapter 3 to investigate the dynamics and sustenance of MHD

turbulence driven by the transient growth of MRI with a net nonzero azimuthal

field in a Keplerian disk flow. We adopt the shearing box model of the disk

(see e.g., Hawley et al., 1995), where the flow is characterized by constant

shear rate, as that considered in that paper, except it is 3D, including rotation

(Coriolis force) and vertical thermal stratification. To capture the spectral

anisotropy of the MRI-turbulence, we analyze the linear and nonlinear dy-

namical processes and their interplay in 3D Fourier space in full without using

the above-mentioned procedure of averaging over spherical shells of constant

k = |k|. So, our study is intended to be more general than the above-mentioned

studies that also addressed the spectral dynamics of MRI-turbulence. One of

our goals is to demonstrate the realization and efficiency of the transverse cas-

cade and its role in the turbulence dynamics also in the 3D case, as we did

for 2D MHD shear flow. Although in 3D perturbation modes are more diverse

and, of course, modify the dynamics, still the essence of the cooperative inter-

play of linear (transient) and nonlinear (transverse cascade) processes should

be preserved.
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We pay particular attention to the choice of the aspect ratio of the sim-

ulation box, so as to encompass as full as possible the modes exhibiting the

most effective amplification due to the transient MRI. To this aim, we apply

the method of optimal perturbations, widely used in fluid dynamics for charac-

terizing the nonmodal growth in spectrally stable shear flows (see e.g., Farrell

& Ioannou, 1996; Schmid & Henningson, 2001; Zhuravlev & Razdoburdin,

2014), to the present MRI problem (see also Squire & Bhattacharjee, 2014).

These are perturbations that undergo maximal transient growth during the

dynamical time. In this framework, we define areas in Fourier space, where

the transient growth is more effective – these areas cover small wavenumber

modes. On the other hand, the simulation box includes only a discrete number

of modes and minimum wavenumbers are set by its size. A dense population

of modes in these areas of the effective growth in k-space is then achieved by

suitably choosing the box sizes. In particular, we show that simulations with

elongated in the azimuthal direction boxes (i.e., with azimuthal size larger

than radial one), do not fully account for this nonmodal effects, since the dis-

crete wavenumbers of modes contained in such boxes scarcely cover the areas

of efficient transient growth.

This Chapter is organized as follows. The physical model and derivation

of dynamical equations in Fourier space is given in Section 4.2. Selection of the

suitable aspect ratio of the simulation box based on the optimal growth calcu-

lations is made in Section 4.3. Numerical simulations of the MRI-turbulence

at different aspect ratios of the simulation box are done in Section 4.4. In
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this Section we present also energy spectra, we determine dynamically active

modes and delineate the vital area of turbulence, where the active modes and

hence the sustaining dynamics are concentrated. The analysis of the inter-

play of the linear and nonlinear processes in Fourier space and the sustaining

mechanism of the turbulence is described in Section 4.5. In this Section we

also reveal the basic subcycle of the sustenance, describe the importance of the

magnetic nonlinear term in the generation and maintenance of the zonal flow,

examine the effect of the box aspect ratio and demonstrate the universality of

the sustaining scheme. A summary and discussion are given in Section 4.6.

4.2 Physical model and equations

We consider the motion of an incompressible conducting fluid with

constant kinematic viscosity ν, thermal diffusivity χ and Ohmic resistivity

η, in the shearing box centered at a radius r0 and rotating with the disk at

angular velocity Ω(r0). Adopting the Boussinesq approximation for vertical

thermal stratification (Balbus & Hawley, 1991; Lesur & Ogilvie, 2010), the

governing equations of the non-ideal MHD become

∂U

∂t
+(U·∇)U = −1

ρ
∇P+

(B · ∇) B

4πρ
−2Ω×U+2qΩ2xex−ΛN2θ ez+ν∇2U,

(4.1)

∂θ

∂t
+ U · ∇θ =

uz
Λ

+ χ∇2θ, (4.2)

∂B

∂t
= ∇× (U×B) + η∇2B, (4.3)

∇ ·U = 0, (4.4)
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∇ ·B = 0, (4.5)

where ex, ey, ez are the unit vectors, respectively, along the radial (x), az-

imuthal (y) and vertical (z) directions, ρ is the density, U is the velocity, B is

the magnetic field, P is the total pressure, equal to the sum of the thermal and

magnetic pressures, θ ≡ δρ/ρ is the perturbation of the density logarithm (or

entropy, since pressure perturbations are neglected in the Boussinesq approx-

imation). Finally, N2 is the Brunt-Väisälä frequency squared that controls

the stratification. It is assumed to be positive and spatially constant, equal

to N2 = 0.25Ω2, formally corresponding to a stably stratified (i.e., convec-

tively stable) local model along the vertical z-axis (Lesur & Ogilvie, 2010).

For dimensional correspondence with the usual Boussinesq approximation, we

define a stratification length Λ ≡ g/N2, where g is the vertical component

of the gravity. Note, however, that Λ cancels out from the equations if we

normalize the density logarithm by Λθ → θ, which will be used henceforth.

So, here we take into account the effects of thermal stratification in a simple

way. Bodo et al. (2012, 2013) studied more sophisticated models of stratified

MRI-turbulence in the shearing box, treating thermal physics self-consistently

with dynamical equations. The shear parameter q = −d ln Ω/d ln r is set to

q = 3/2 for a Keplerian disk.

Equations (4.1)-(4.5) have a stationary equilibrium solution – an az-

imuthal flow along the y-direction with linear shear of velocity in the the

radial x-direction, U0 = (0,−qΩx, 0), with the total pressure P0, density

ρ0 and threaded by an azimuthal uniform background magnetic field, B0 =
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(0, B0y, 0), B0y > 0. This simple, but important configuration, which corre-

sponds to a local version of a Keplerian flow with toroidal field, allows us to

grasp the key effects of the shear on the perturbation dynamics and ultimately

on a resulting turbulent state.

Consider perturbations of the velocity, total pressure and magnetic field

about the equilibrium, u = U−U0, p = P−P0,b = B−B0. Substituting them

into Equations (4.1)-(4.5) and rearranging the nonlinear terms with the help of

divergence-free conditions (4.4) and (4.5), we arrive to the system (A.1)-(A.9)

governing the dynamics of perturbations with arbitrary amplitude that is given

in Appendix A. These equations are solved within a box with sizes (Lx, Ly, Lz)

and resolutions (Nx, Ny, Nz), respectively, in the x, y, z−directions. We use

standard for the shearing box boundary conditions: shearing-periodic in x

and periodic in y and z (Hawley et al., 1995). For stratified disks, outflow

boundary conditions in the vertical direction are more appropriate, however,

in the present study, as mentioned above, we adopt a local approximation in

z with spatially constant N2 that justifies our choice of the periodic boundary

conditions in this direction (Lesur & Ogilvie, 2010). This does not affect the

main dynamical processes in question.

4.2.1 Energy equation

The perturbation kinetic, thermal and magnetic energy densities are

defined, respectively, as

EK =
1

2
ρ0u

2, Eth =
1

2
ρ0N

2θ2, EM =
b2

8π
.
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From the main Equations (A.1)-(A.9) and the shearing box boundary condi-

tions, after some algebra, we can readily derive the evolution equations for the

volume-averaged kinetic, thermal and magnetic energy densities

d

dt
〈EK〉 = qΩ 〈ρ0uxuy〉−N2 〈ρ0θuz〉+

1

4π
〈B0u⊗∇b〉− 1

4π
〈bb⊗∇u〉−ρ0ν〈(∇u)2〉,

(4.6)

d

dt
〈Eth〉 = N2 〈ρ0θuz〉 − ρ0N

2χ〈(∇θ)2〉, (4.7)

d

dt
〈EM〉 = qΩ

〈
−bxby

4π

〉
+

1

4π
〈B0b⊗∇u〉+ 1

4π
〈bb⊗∇u〉 − η

4π
〈(∇b)2〉,

(4.8)

where the angle brackets denote an average over the box. Adding up Equations

(4.6)-(4.8), the cross terms of linear origin on the right hand side (rhs), pro-

portional to N2 and B0 (which describe kinetic-thermal and kinetic-magnetic

energy exchange, respectively) and the nonlinear terms cancel out because of

the boundary conditions. As a result, we obtain the equation for the total

energy density E = EK + Eth + EM ,

d〈E〉
dt

= qΩ

〈
ρ0uxuy −

bxby
4π

〉
−ρ0ν〈(∇u)2〉−ρ0N

2χ〈(∇θ)2〉− η

4π
〈(∇b)2〉.

(4.9)

The first term on the rhs of Equation (4.9) is the flow shear, qΩ, multiplied by

the volume-averaged total stress. The total stress is a sum of the Reynolds,

ρ0uxuy, and Maxwell, −bxby/4π, stresses that describe, respectively, exchange

of kinetic and magnetic energies between perturbations and the background

flow in Equations (4.6) and (4.8). Note that they originate from the linear
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terms proportional to shear in Equations (A.2) and (A.6). The stresses also

determine the rate of angular momentum transport (e.g., Hawley et al., 1995;

Balbus, 2003) and thus are one of the important diagnostics of turbulence. The

negative definite second, third and fourth terms describe energy dissipation due

to viscosity, thermal diffusivity and resistivity, respectively. Note that a net

contribution from the nonlinear terms has canceled out in the total energy evo-

lution Equation (4.9) after averaging over the box. Thus, only Reynolds and

Maxwell stresses can supply perturbations with energy, extracting it from the

background flow due to the shear. In the case of the MRI-turbulence studied

below, these stresses ensure energy injection into turbulent fluctuations. The

nonlinear terms, not directly tapping into the flow energy and therefore not

changing the total perturbation energy, act only to redistribute energy among

different wavenumbers as well as among components of velocity and magnetic

field (see below). In the absence of shear (q = 0), the contribution from the

Reynolds and Maxwell stresses disappears in Equation (4.9) and hence the

total perturbation energy cannot grow, gradually decaying due to dissipation.

4.2.2 Spectral representation of the equations

Before proceeding further, we normalize the variables by taking Ω−1

as the unit of time, the disk scale height H as the unit of length, ΩH as

the unit of velocity, ΩH
√

4πρ0 as the unit of magnetic field and ρ0Ω2H2 as

the unit of pressure and energy. Viscosity, thermal diffusivity and resistivity

are measured, respectively, by Reynolds number, Re, Péclet number, Pe, and
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magnetic Reynolds number, Rm, defined as

Re =
ΩH2

ν
, Pe =

ΩH2

χ
, Rm =

ΩH2

η
.

All the simulations share the same Re = Pe = Rm = 3200 (i.e., the magnetic

Prandtl number Pm = Rm/Re = 1). The strength of the imposed background

uniform azimuthal magnetic field is measured by a parameter β = 2Ω2H2/v2
A,

which we fix to β = 200, where vA = B0y/(4πρ0)1/2 is the corresponding

Alfvén speed. In the incompressible case, this parameter is a proxy of the

usual plasma β parameter (Longaretti & Lesur, 2010), since the sound speed

in thin disks is cs ∼ ΩH. In this non-dimensional units, the mean field becomes

B0y =
√

2/β = 0.1.

Our primary interest lies in the spectral aspect of the dynamics, so we

start with decomposing the perturbations f ≡ (u, p, θ,b) into spatial Fourier

harmonics/modes

f(r, t) =

∫
f̄(k, t) exp (ik · r) d3k (4.10)

where f̄ ≡ (ū, p̄, θ̄, b̄) denotes the corresponding Fourier transforms. Sub-

stituting decomposition (4.10) into perturbation Equations (A.1)-(A.9), tak-

ing into account the above normalization and eliminating the pressure (see

derivation in Appendix B), we obtain the following evolution equations for

the quadratic forms of the spectral velocity, logarithmic density (entropy) and

magnetic field:

∂

∂t

|ūx|2

2
= −qky

∂

∂kx

|ūx|2

2
+Hx + I(uθ)

x + I(ub)
x +D(u)

x +N (u)
x , (4.11)

114



∂

∂t

|ūy|2

2
= −qky

∂

∂kx

|ūy|2

2
+Hy + I(uθ)

y + I(ub)
y +D(u)

y +N (u)
y , (4.12)

∂

∂t

|ūz|2

2
= −qky

∂

∂kx

|ūz|2

2
+Hz + I(uθ)

z + I(ub)
z +D(u)

z +N (u)
z , (4.13)

∂

∂t

|θ̄|2

2
= −qky

∂

∂kx

|θ̄|2

2
+ I(θu) +D(θ) +N (θ), (4.14)

∂

∂t

|b̄x|2

2
= −qky

∂

∂kx

|b̄x|2

2
+ I(bu)

x +D(b)
x +N (b)

x , (4.15)

∂

∂t

|b̄y|2

2
= −qky

∂

∂kx

|b̄y|2

2
+M+ I(bu)

y +D(b)
y +N (b)

y , (4.16)

∂

∂t

|b̄z|2

2
= −qky

∂

∂kx

|b̄z|2

2
+ I(bu)

z +D(b)
z +N (b)

z . (4.17)

These seven dynamical equations in Fourier space, which are the basis for

the subsequent analysis, describe processes of linear, Hi(k, t), I(uθ)
i (k, t),

I(θu)(k, t), I(ub)
i (k, t), I(bu)

i (k, t),M(k, t), and nonlinear, N (u)
i (k, t),N (θ)(k, t),

N (b)
i (k, t), origin, where the index i = x, y, z henceforth. D(u)

i (k, t), D(θ)(k, t),

D(b)
i (k, t) describe the effects of viscous, thermal and resistive dissipation as

a function of wavenumber and are negative definite. These terms come from

the respective linear and nonlinear terms in main Equations (A.1)-(A.7) and

their explicit expressions are derived in Appendix B. In the turbulent regime,

these basic linear and nonlinear processes are subtly intertwined, so before

embarking on calculating and analyzing these terms from the simulation data,

we first describe them in more detail below. Equations (4.11)-(4.17) serve as

a mathematical basis for our main goal – understanding the character of the

interplay of the dynamical processes sustaining the MRI-turbulence. Since we

consider a finite box in physical space, the perturbation dynamics also depends
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on the smallest wavenumber available in the box (see Section 3), which is set

by its sizes Lx, Ly, Lz and is a free parameter in the shearing box.

To get a general feeling, as in Simon et al. (2009); Lesur & Longaretti

(2011), we derive also equations for the spectral kinetic energy, EK = (|ūx|2 +

|ūy|2 + |ūz|2)/2, by combining Equations (4.11)-(4.13),

∂EK
∂t

= −qky
∂EK
∂kx

+H + I(uθ) + I(ub) +D(u) +N (u), (4.18)

where

H =
∑
i

Hi =
q

2
(ūxū

∗
y + ū∗xūy),

I(uθ) =
∑
i

I(uθ)
i , I(ub) =

∑
i

I(ub)
i ,

D(u) =
∑
i

D(u)
i = −2k2

Re
EK , N (u) =

∑
i

N (u)
i

and for the spectral magnetic energy, EM = (|b̄x|2+|b̄y|2+|b̄z|2)/2, by combining

Equations (4.15)-(4.17),

∂EM
∂t

= −qky
∂EM
∂kx

+M+ I(bu) +D(b) +N (b), (4.19)

where

M = −q
2

(b̄xb̄
∗
y + b̄∗xb̄y), I(bu) =

∑
i

I(bu)
i = −I(ub),

D(u) =
∑
i

D(u)
i = − 2k2

Rm
EM , N (b) =

∑
i

N (b)
i .

The equation of the thermal energy, Eth = N2|θ|2/2, is straightforward to de-

rive by multiplying Equation (4.14) just by N2, so we do not write it here.
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Besides, we will see below that the thermal energy is much less than the mag-

netic and kinetic energies, so the thermal processes have a minor contribution

in forming the final picture of the turbulence. Similarly, we get the equation

for the total spectral energy of perturbations, E = EK + Eth + EM ,

∂E
∂t

= −qky
∂E
∂kx

+H+M+D(u) +N2D(θ) +D(b) +N (u) +N2N (θ) +N (b).

(4.20)

One can distinguish six basic processes, five of linear and one of nonlin-

ear origin, in Equations (4.11) and (4.17) (and therefore in energy Equations

4.18 and 4.19) that underlie the perturbation dynamics:

1. The first terms on the rhs of Equations (4.11)-(4.17), −qky∂(.)/∂kx, de-

scribe the linear “drift” of the related quadratic forms parallel to the

kx-axis with the normalized velocity qky. These terms are of linear

origin, arising from the convective derivative on the lhs of the main

Equations (A.1)-(A.7) and therefore correspond to the advection by the

background flow. In other words, background shear makes the spec-

tral quantities (Fourier transforms) drift in k−space, non-axisymmetric

harmonics with ky > 0 and ky < 0 travel, respectively, along and op-

posite the kx−axis at a speed |qky|, whereas the ones with ky = 0 are

not advected by the flow. This drift in Fourier space is equivalent to

the time-varying radial wavenumber, kx(t) = kx(0) + qΩkyt, in the lin-

ear analysis of non-axisymmetric shearing waves in magnetized disks

(e.g., Balbus & Hawley, 1992; Johnson, 2007; Pessah & Chan, 2012).
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In the energy Equations (4.18) and (4.19), the spectral energy drift, of

course, does not change the total kinetic and magnetic energies, since∫
d3k∂(kyEK,M)/∂kx = 0.

2. The second rhs terms of Equations (4.11)-(4.13), Hi, and Equation

(4.16),M, are also of linear origin associated with the shear (Equations

B.20-B.22 and B.34), i.e., originate from the linear terms proportional

to the shear parameter in Equations (A.2) and (A.6). They describe the

interaction between the flow and individual Fourier modes, where the

velocity components |ūi|2 and the azimuthal field perturbation |b̄y|2 can

grow, respectively, due to Hi and M, at the expense of the flow. In the

present case, such amplification is due to the linear azimuthal MRI fed

by the shear. In the presence of the mean azimuthal field, only non-

axisymmetric modes exhibit the MRI and since they also undergo the

drift in k−space, their amplification acquires a transient nature (Balbus

& Hawley, 1992; Papaloizou & Terquem, 1997; Brandenburg & Dintrans,

2006; Salhi et al., 2012; Shtemler et al., 2012). From the expressions

(B.20)-(B.22) and (B.34), we can see that Hi and M are related to the

volume-averaged nondimensional Reynolds and Maxwell stresses enter-

ing energy Equations (4.6) and (4.8) through

q〈uxuy〉 =

∫
Hd3k, q〈−bxby〉 =

∫
Md3k,

where H =
∑

iHi, and hence represent, respectively, the spectra of the

Reynolds and Maxwell stresses, acting as the source, or injection of ki-
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netic and magnetic energies for perturbation modes at each wavenumber

(see Equations 4.18 and 4.19) (see also Fromang & Papaloizou, 2007;

Simon et al., 2009; Davis et al., 2010; Lesur & Longaretti, 2011).

3. the cross terms, I(uθ)
i and I(θu) (Equations B.23 and B.28) describe,

respectively, the effect of the thermal process on the i-component of the

velocity, ūi, and the effect of the z-component of the velocity on the

logarithmic density (entropy) for each mode. These terms are also of

linear origin, related to the Brunt-Väisälä frequency squared N2, and

come from the corresponding linear terms in Equations (A.3) and (A.4).

They are not a source of new energy, as
∑

i I
(uθ)
i +N2I(θu) = 0, but rather

characterize exchange between kinetic and thermal energies (Equation

4.14 and 4.18), so they cancel out in the total spectral energy Equation

(4.20).

4. the second type of cross terms, I(ub)
i and I(bu)

i (Equations B.24 and B.35),

describe, respectively, the influence of the i-component of the magnetic

field, b̄i, on the same component of the velocity, ūi, and vice versa for

each mode. These terms are of linear origin too, proportional to the mean

field B0y, and originate from the corresponding terms in Equations (A.1)-

(A.3) and (A.5)-(A.7). From the definition it follows that I(ub)
i = −I(bu)

i

and hence these terms also do not generate new energy for perturbations,

but rather exchange between kinetic and magnetic energies (Equations

4.18 and 4.19). They also cancel out in the total spectral energy equation.
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5. The terms D(u)
i , D(θ) and D(b)

i (Equations B.25, B.29 and B.36) describe,

respectively, dissipation of velocity, logarithmic density (entropy) and

magnetic field for each wavenumber. They are obviously of linear ori-

gin and negative definite. Comparing these dissipation terms with the

energy-supplying terms Hi andM, we see that the dissipation is at work

at large wavenumbers k & kD ≡ min(
√

Re,
√

Pe,
√

Rm).

6. The terms N (u)
i , N (θ) and N (b)

i (Equations B.26, B.30 and B.37) origi-

nate from the nonlinear terms in main Equations (A.1)-(A.7) and there-

fore describe redistributions, or transfers/cascades of the squared am-

plitudes, respectively, of the i-component of the velocity, |ūi|2, entropy,

|θ̄|2, and the i-component of the magnetic field, |b̄i|2, over wavenumbers

in k−space as well as among each other via nonlinear triad interac-

tions. Similarly, the above-defined N (u), N2N (θ), N (b) describe nonlin-

ear transfers of kinetic, thermal and magnetic energies, respectively. It

follows from the definition of these terms that their sum integrated over

an entire Fourier space is zero,∫
[N (u)(k, t) +N2N (θ)(k, t) +N (b)(k, t)]d3k = 0, (4.21)

which is, in fact, a direct consequence of cancelation of the nonlinear

terms in the total energy Equation (4.9) in physical space. This implies

that the main effect of nonlinearity is only to redistribute (scatter) energy

(drawn from the background flow by Reynolds and Maxwell stresses) of

the kinetic, thermal and magnetic components over wavenumbers and
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among each other, while leaving the total spectral energy summed over

all wavenumbers unchanged. The nonlinear transfer functions (N (u),

N (θ), N (b)) play a central role in MHD turbulence theory – they deter-

mine cascades of energies in k-space, leading to the development of their

specific spectra (e.g., Verma, 2004; Alexakis et al., 2007; Teaca et al.,

2009; Sundar et al., 2017). These transfer functions are one of the main

focus of the present analysis. One of our main goals is to explore how

they operate in the presence of the azimuthal field MRI in disks and ulti-

mately of the shear. Specifically, below we will show that, like in 2D HD

and MHD shear flows we studied before (Horton et al., 2010; Mamat-

sashvili et al., 2014), energy spectra, energy-injection as well as nonlinear

transfers are also anisotropic in the quasi-steady MRI-turbulence, result-

ing in the redistribution of power among wavevector angles in k−space,

i.e., the nonlinear transverse cascade.

Having described all the terms in spectral equations, we now turn to

the total spectral energy Equation (4.20). Each mode drifting parallel to the

kx−axis, go through a dynamically important region in Fourier space, which

we call the vital area, where energy-supplying linear terms, H and M, and

redistributing nonlinear terms, N (u), N (θ), N (b) operate. The net effect of the

nonlinear terms in the total spectral energy budget over all wavenumbers is

zero according to Equation (4.21). Thus, the only source for the total perturba-

tion energy is the integral over an entire k-space
∫

(H+M)d3k that extracts

energy from a vast reservoir of shear flow and injects it into perturbations.

121



Since the terms H and M, as noted above, are of linear origin, the energy

extraction and perturbation growth mechanisms (the azimuthal MRI) are es-

sentially linear by nature. The role of nonlinearity is to continually provide,

or regenerate those modes in k-space that are able to undergo the transient

MRI, drawing on mean flow energy, and in this way feed the nonlinear state

over long times.

4.3 Optimization of the box aspect ratio – linear anal-
ysis

It is well known from numerical simulations of MRI-turbulence that its

dynamics (saturation) generally depends on the aspect ratio (Ly/Lx, Lx/Lz)

of a computational box (e.g., Hawley et al., 1995; Bodo et al., 2008; Guan

et al., 2009; Johansen et al., 2009; Shi et al., 2016). In order to understand

this dependence and hence appropriately select the aspect ratio in simulations,

in our opinion, one should take into account as fully as possible the nonmodal

growth of the MRI during intermediate (dynamical) timescales, because it

can ultimately play an important role in the turbulence dynamics (Squire &

Bhattacharjee, 2014). However, this is often overlooked in numerical studies.

So, in this Section, we identify the aspect ratios of the preselected boxes that

better take into account the linear transient growth process.

In fluid dynamics, the linear transient growth of perturbations in shear

flows is usually quantified using the formalism of optimal perturbations (Farrell

& Ioannou, 1996; Schmid & Henningson, 2001; Schmid, 2007). This approach
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has already been successfully applied to (magnetized) disk flows (Mukhopad-

hyay et al., 2005; Zhuravlev & Razdoburdin, 2014; Squire & Bhattacharjee,

2014; Razdoburdin & Zhuravlev, 2017). Such perturbations yield maximum

linear nonmodal growth during finite times and therefore are responsible for

most of the energy extraction from the background flow. So, in this frame-

work, we quantify the linear nonmodal optimal amplification of the azimuthal

MRI as a function of mode wavenumbers for the same parameters adopted in

the simulations.

In the shearing box, the radial wavenumber of each non-axisymmetric

perturbation mode (shearing wave) changes linearly with time due to shear,

kx(t) = kx(0) + qΩkyt. The maximum possible amplification of the total

energy E = EK + Eth + EM of a shearing wave, with an initial wavenumber

k(0) = (kx(0), ky, kz) by a specific (dynamical) time td is given by

G(k(td)) = max
f̄(0)

E(k(td))

E(k(0))
, (4.22)

where the maximum is taken over all initial conditions f̄(0) with a given en-

ergy E(k(0)). The final state at td and the corresponding energy E(k(td)) are

found from the initial state at t = 0 by integrating the linearized version of

spectral Equations (B.1)-(B.9) in time for each shearing wave and finding a

propagator matrix connecting the initial and final states. Then, expression

(4.22) is usually calculated by means of the singular value decomposition of

the propagator matrix. The square of the largest singular value then gives

the optimal growth factor G for this set of wavenumbers. The corresponding
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initial conditions, leading to this highest growth at td are called optimal per-

turbations. (A reader interested in the details of these calculations is referred

to Squire & Bhattacharjee (2014), where the formalism of optimal growth and

optimal perturbations in MRI-active disks, which is adopted here, is described

to a greater extent.) Reference time, during which to calculate the nonmodal

growth, is generally arbitrary. We choose it equal to the characteristic (e-

folding) time of the most unstable MRI mode, td = 1/γmax = 1.33Ω−1, where

γmax = 0.75Ω is its growth rate (Balbus, 2003; Ogilvie & Pringle, 1996), since

it is effectively a dynamical time as well.

Figure 4.1 shows G in (kx, ky)−plane at fixed kz as well as its value

maximized over the initial kx(0), Gmax = maxkx(0)G, represented as a function

of ky, kz. Because of the kx-drift, the optimal mode with some initial radial

wavenumber kx(0), at td will have the wavenumber kx(td) = kx(0) + qkytd. In

the top panel, G is represented as a function of this final wavenumber kx(td).

Because of the shear, the typical distribution at fixed kz is inclined towards

the kx-axis, having larger values on the kx/ky > 0 side (red region). The

most effective nonmodal MRI amplification occurs at smaller wavenumbers,

in the areas marked by dark red in both (kx, ky) and (ky, kz)-planes in Figure

4.1. Thus, the growth of the MRI during the dynamical time appears to favor

smaller kz (see also Squire & Bhattacharjee, 2014), as opposed to the transient

growth of the azimuthal MRI often calculated over times much longer than

the dynamical time, which is the more effective the larger is kz (Balbus &

Hawley, 1992; Papaloizou & Terquem, 1997). Obviously, the growth over such
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Figure 4.1: (upper panel) Optimal nonmodal growth factor, G, in (kx, ky)-
plane at td = 1.33 and kz/2π = 1 (which is the same as kz = 1 in new mode
number notations used in the next Sections). (lower panel) Maximized over
initial kx(0) growth factor, Gmax, as a function of ky and kz.

long timescales is irrelevant for the nonlinear (turbulence) dynamics.

In the simulation box, however, the wavenumber spectrum is inherently

discrete, with smallest wavenumbers being defined by the box size (Lx, Ly, Lz)

as ki,min = 2π/Li, while other wavenumbers being multiples of them. We

take Lz = 1 (i.e., Lz = H in dimensional units) and mainly consider four

aspect ratios (Lx, Ly, Lz) = (4, 4, 1), (2, 4, 1), (1, 4, 1), (4, 2, 1). Figure 4.2

shows the modes (black dots) in each box superimposed on the map of G in

(kx, ky)-plane from Figure 4.1 for the first vertical harmonics with kz,min, or

equivalently kz = 1 (in new notations used below). We see that from among

these four boxes, the box (4, 4, 1) contains the largest possible number of modes

in the area of the effective transient growth and therefore best accounts for
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Figure 4.2: Discrete modes (black dots) contained in each simulation box
superimposed on the distribution of G in (kx, ky)-plane from the upper panel
of Figure 4.1. From all the selected boxes, the box (4, 4, 1) contains most of
the effectively amplified modes.

the role of the nonmodal effects in the energy exchange processes in the case

of turbulence. Of course, further increasing Lx and Ly leads to larger number

of modes in the area of effective growth, however, as also seen from Figure 4.2,

already for the box (4, 4, 1) this area appears to be sufficiently well populated

with modes, i.e., enough resolution (measured in terms of ∆ki = 2π/Li) is

achieved in Fourier space to adequately capture the nonmodal effects. To

ascertain this, we also carried out a simulation for the box (8, 8, 1) and found

that the ratio of the number of the active modes (i.e., the number in the growth

area) to the total number of modes in this larger box is almost the same as for

the box (4, 4, 1). Consequently, these boxes should give qualitatively similar

dynamical pictures in Fourier space. For this reason, below we choose the box

(4, 4, 1) as fiducial and present only some results for other boxes for comparison
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at the end of Section 5.

4.4 Simulations and general characteristics

The main Equations (A.1)-(A.9) are solved using the pseudo-spectral

code SNOOPY (Lesur & Longaretti, 2007). It is a general-purpose code,

solving HD and MHD equations, including shear, rotation, stratification and

several other physical effects in the shearing box model. Fourier transforms

are computed using the FFTW library, taking also into account the drift of

radial wavenumber kx(t) in k-space due to shear in order to comply with the

shearing-periodic boundary conditions. Nonlinear terms are computed using

a pseudo-spectral algorithm (Canuto et al., 1988), and antialiasing is enforced

using the 2/3-rule. Time integration is done by a standard explicit third-

order Runge-Kutta scheme, except for viscous and resistive terms, which are

integrated using an implicit scheme. The code has been extensively used in the

shearing box studies of disk turbulence (e.g., Lesur & Ogilvie, 2010; Lesur &

Longaretti, 2011; Herault et al., 2011; Meheut et al., 2015; Murphy & Pessah,

2015; Riols et al., 2017).

We carry out simulations for boxes with different radial and azimuthal

sizes (Lx, Ly, Lz) = (4, 4, 1), (2, 4, 1), (1, 4, 1), (4, 2, 1), (8, 8, 1) and resolution

of 64 grid points per scale height H = 1 (Table 1). The numerical resolu-

tion adopted ensures that the dissipation wavenumber, kD, is smaller than

the maximum wavenumber, ki,max = 2πNi/3Li, in the box (taking into ac-

count the 2/3-rule). The initial conditions consist of small amplitude ran-
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Table 4.1: Simulation characteristics: box size, number of grid points, volume-
and time-averaged values (denoted by double brackets) of the perturbed ki-
netic, EK , magnetic, EM , and thermal, Eth, energy densities as well as the rms
values of the magnetic field components and the Reynolds, uxuy, and Maxwell,
−bxby, stresses in the fully developed turbulence.

(Lx, Ly , Lz) (Nx, Ny , Nz) 〈〈EK〉〉 〈〈EM 〉〉 〈〈Eth〉〉 〈〈b2x〉〉1/2 〈〈b2y〉〉1/2 〈〈b2z〉〉1/2 〈〈uxuy〉〉 〈〈−bxby〉〉
(8, 8, 1) (512, 512, 64) 0.0173 0.0422 0.0022 0.101 0.266 0.06 0.0037 0.0198
(4, 4, 1) (256, 256, 64) 0.0125 0.03 0.0019 0.086 0.224 0.05 0.0028 0.0146
(2, 4, 1) (128, 256, 64) 0.0116 0.0298 0.0019 0.085 0.223 0.05 0.0028 0.0144
(1, 4, 1) (64, 256, 64) 0.0111 0.0295 0.0018 0.085 0.222 0.05 0.0027 0.0143
(4, 2, 1) (256, 128, 64) 0.0056 0.012 0.0011 0.053 0.14 0.03 0.0013 0.0059

dom noise perturbations of velocity on top of the Keplerian shear flow. A

subsequent evolution is followed up to tf = 630 (about 100 orbits). The

wavenumbers kx, ky, kz are normalized, respectively, by the grid cell sizes of

Fourier space, ∆kx = 2π/Lx,∆ky = 2π/Ly and ∆kz = 2π/Lz, that is,

(kx/∆kx, ky/∆ky, kz/∆kz) → (kx, ky, kz). As a result, the normalized az-

imuthal and vertical wavenumbers are integers ky, kz = 0,±1,±2, ..., while

kx, although changes with time due to drift, is integer at discrete moments

tn = nLy/(q|ky|Lx), where n is a positive integer.

In all the boxes, initially imposed small perturbations start to grow

as a result of the nonmodal MRI amplification of the constituent Fourier

modes. Then, after several orbits, the perturbation amplitude becomes high

enough, reaching the nonlinear regime and eventually the flow settles down

into a quasi-steady sustained MHD turbulence. Figure 4.3 shows the time-

development of the volume-averaged perturbed kinetic, 〈EK〉, thermal, 〈Eth〉,

and magnetic, 〈EM〉, energy densities as well as the Reynolds, 〈uxuy〉, and

Maxwell −〈bxby〉 stresses for the fiducial box (4, 4, 1). For completeness, in
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Figure 4.3: Evolution of volume-averaged Reynolds and Maxwell stresses (top
row), kinetic, thermal and magnetic energy densities (second row), rms of ve-
locity (third row) and magnetic field (bottom row) components for the fiducial
box (4, 4, 1). Turbulence sets in after several orbits, with the magnetic energy
dominating kinetic and thermal energies, and the Maxwell stress the Reynolds
one. The azimuthal component of the turbulent magnetic field is larger than
the other two ones due to the shear. It is also about twice larger than the
mean field B0y = 0.1 (Table 4.1).
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Figure 4.4: Typical structure of the magnetic field in the fully developed quasi-
steady turbulent state at t = 550 for the box (4, 4, 1). Shown are the sections
in (y, x) and (y, z)-planes.

this figure, we also show the evolution of the rms values of the turbulent ve-

locity and magnetic field components. The magnetic energy dominates the

kinetic and thermal ones, with the latter being much smaller than the former

two, while the Maxwell stress is about 5 times larger than the Reynolds one.

This indicates that the magnetic field perturbations are primarily responsible

for energy extraction from the mean flow by the Maxwell stress, transporting

angular momentum outward and sustaining turbulence. In contrast to the

2D plane case (Mamatsashvili et al., 2014), the Reynolds stress in this 3D

case is positive and also contributes to the outward transport. The temporal

behavior of the volume-averaged kinetic and magnetic energy densities and

stresses is consistent with analogous studies of MRI-turbulence in disks with a

net azimuthal field (Hawley et al., 1995; Guan et al., 2009; Simon & Hawley,

2009; Meheut et al., 2015). For all the models, the time- and volume-averaged

quantities over the whole quasi-steady state, between t = 100 and the end of

the run at tf , are listed in Table 4.1. For the fiducial model, the ratios of the
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magnetic energy to kinetic and thermal ones are 〈〈EM〉〉/〈〈EK〉〉 = 2.4 and

〈〈EM〉〉/〈〈Eth〉〉 = 15.8, respectively, and the ratio of the Maxwell stress to the

Reynolds stress is 〈〈−bxby〉〉/〈〈uxuy〉〉 = 5.21. For other boxes, similar ratios

hold between magnetic and hydrodynamic quantities, as can be read off from

Table 4.1, with the magnetic energy and stresses being always dominant over

respective hydrodynamic ones. Interestingly, for all boxes in the quasi-steady

turbulent state, 〈EM〉 and 〈−bxby〉 closely follow each other at all times, with

the ratio being nearly constant, 〈EM〉/〈−bxby〉 ≈ 2 (see also Hawley et al.,

1995; Guan et al., 2009). From Table 4.1, we can also see how the level (inten-

sity) of the turbulence varies with the radial and azimuthal sizes of the boxes.

For fixed Ly = 4, the saturated values of the energies and stresses increase

with Lx, but only very little, so they can be considered as nearly unchanged,

especially after Lx > 1. By contrast, at fixed Lx = 4, these quantities are

more sensitive to the azimuthal size Ly, increasing more than twice with the

increase of the latter from Ly = 2 to Ly = 4. However, after Ly = 4 the

increase of the turbulence strength with the box size is slower, as evident from

the box (8, 8, 1). This type of dependence of the azimuthal MRI-turbulence

characteristics on the horizontal sizes of the simulation box is consistent with

that of Guan et al. (2009).

The structure of the turbulent magnetic field in the fully developed

quasi-steady turbulence in physical space is presented in Figure 4.4. It is

chaotic and stretched along the y-axis due to the shear, with by achieving

higher values than bx and bz. At this moment, the rms values of these com-
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ponents are, 〈b2
x〉1/2 = 0.079, 〈b2

z〉1/2 = 0.044, while 〈b2
y〉1/2 = 0.2 and is twice

larger than the background field B0y = 0.1. These values, as expected, are

consistent with the bottom panel of Figure 4.3. So, the turbulent field sat-

isfies 〈b2
z〉1/2 < 〈b2

x〉1/2 < B0y < 〈b2
y〉1/2, which in fact holds throughout the

evolution for all models (Table 4.1).

4.4.1 Analysis in Fourier space – an overview

A deeper insight into the nature of the turbulence driven by the az-

imuthal MRI can be gained by performing analysis in Fourier space. So,

following Horton et al. (2010); Mamatsashvili et al. (2014, 2016), we examine

in detail the specific spectra and sustaining dynamics of the quasi-steady tur-

bulent state by explicitly calculating and visualizing the individual linear and

nonlinear terms in spectral Equations (4.11)-(4.17), which have been classified

and described in Section 2, based on the simulation data. These equations

govern the evolution of the quadratic forms (squared amplitudes) of Fourier

transforms of velocity, thermal and magnetic field perturbations and are more

informative than Equations (4.18) and (4.19) for spectral kinetic and magnetic

energies. In the latter equations a lot of essential information is averaged and

lost. Therefore, energy equations alone are insufficient for understanding in-

tertwined linear and nonlinear processes that underlie the sustaining dynamics

of the turbulence. For this reason, we rely largely on Equations (4.11)-(4.17),

enabling us to form a complete picture of the turbulence dynamics. So, we

divide our analysis in Fourier space into several steps:
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I. Three-dimensionality, of course, complicates the analysis. Therefore,

initially, we find out which vertical wavenumbers are important by integrating

the spectral energies and stresses in (kx, ky)-plane (Figure 4.5). As will be

evident from such analysis, mostly the lower vertical harmonics, |kz| = 0, 1, 2,

(i.e., with vertical scales comparable to the box size Lz) engage in the turbu-

lence maintaining process.

II. Next, concentrating on these modes with lower vertical wavenumber,

we present the spectral magnetic energy in (kx, ky)-plane (Figure 4.6) and

identify the energy-carrying modes in this plane (Figure 4.7). From these

modes, we delineate a narrower set of dynamically important active ones,

which are central in the sustenance process. Based on this, we identify a

region in Fourier space – the vital area – where the basic linear and nonlinear

processes for these modes operate. Despite a limited extent of the vital area,

the number of the dynamically important modes within it appears to be quite

large and they are distributed anisotropically in Fourier space.

III. Integrating in (kx, ky)-plane the quadratic forms of the spectral

velocity and magnetic field components (|ūi|2 and |b̄i|2) as well as the corre-

sponding linear and nonlinear terms on the rhs of Equations 4.11-4.17), we

obtain a first idea about the importance of each of them in the dynamics as

a function of kz (Figure 4.8). Note that the action of the linear drift terms

vanishes after the integration. Nevertheless, the universality and importance

of the linear drift is obvious in any case.

IV. Finally, we analyze the interplay of these processes/terms that de-
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termines the turbulence dynamics (Figures 4.9-4.14). As a result, we construct

the turbulence sustaining picture/mechanism by revealing the transverse na-

ture of the nonlinear processes – the nonlinear transverse cascade – and demon-

strating its key role in the sustenance.

Fromang & Papaloizou (2007); Simon et al. (2009); Davis et al. (2010);

Lesur & Longaretti (2011) took a similar approach of representing the MHD

equations in Fourier space and analyzing individual linear and nonlinear (trans-

fer) terms in the dynamics of MRI-turbulence. They derived evolution equa-

tions for the kinetic and magnetic energy spectra, which are similar to our

Equations (4.18)-(4.19) except for notation and mean field direction. As men-

tioned above, we do not make the shell-averages in Fourier space, as done in

these studies, that completely wipes out spectral anisotropy due to the shear

crucial to the turbulence dynamics.

Since our analysis primarily focuses on the spectral aspect of the dy-

namics, the SNOOPY code, being of spectral type, is particularly convenient

for this purpose, as it allows us to directly extract Fourier transforms. From

now on we consider the evolution after the quasi-steady turbulence has set in,

so all the spectral quantities/terms in Equations (4.11)-(4.17) are averaged in

time over an entire saturated turbulent state between t = 200 and the end of

the run. Below we concentrate on the fiducial box (4, 4, 1). Comparison of the

spectral dynamics in other boxes and the effects of the box aspect ratio will

be presented in the next Section.
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Ĥ

ÊM
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Figure 4.5: Integrated in (kx, ky)-plane time-averaged kinetic, ÊK , magnetic,

ÊM and thermal Êth energy spectra (upper panel) as well as Reynolds, Ĥ, and
Maxwell, M̂, stresses (lower panel) as a function of kz for the box (4, 4, 1).
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Figure 4.6: Logarithm of the spectral magnetic energy, log10EM , in (kx, ky)-
plane at kz = 0, 1, 2 for the box (4, 4, 1). The spectra is strongly anisotropic
due to the shear, having larger power on the kx/ky > 0 side at a given ky.
Dashed rectangles delineate the vital area of turbulence, where the sustaining
process is concentrated (see Figures 4.9-4.14).

4.4.2 Energy spectra, active modes and the vital area

Figure 4.5 shows the time-averaged spectra of the kinetic, magnetic and

thermal energies as well as the Reynolds and Maxwell stresses integrated in

(kx, ky)-plane, ÊK,M,th(kz) =
∫
EK,M,thdkxdky and (Ĥ(kz),M̂(kz)) =

∫
(H,M)dkxdky

as a function of kz. The magnetic energy is the largest and the thermal energy

the smallest, while the Maxwell stress dominates the Reynolds one, at all kz.

All the three energy spectra and stresses reach a maximum at small |kz| – the

magnetic and thermal energies as well as the stresses at |kz| = 1, while the

kinetic energy at kz = 0 – and rapidly decrease with increasing |kz|. As a

result, in particular, the magnetic energy injection into turbulence due to the

Maxwell stress takes place mostly at small kz, which is consistent with our

linear optimal

growth calculations (Section 3) and also with Squire & Bhattacharjee

(2014), but is in contrast to the accepted view that the purely azimuthal field

MRI is stronger at high kz (Balbus & Hawley, 1992; Hawley et al., 1995). The
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main reason for this difference, as mentioned above, is that the latter is usually

calculated over much longer times (spanning from tens to hundred dynamical

times), following the evolution of the shearing waves from initial tightly leading

to final tightly trailing orientation, whereas the optimal growth is usually

calculated over a finite (dynamical) time, which seems more appropriate in

the case of turbulence. Thus, the large-scale modes with the first few kz

contain most of the energy and hence play a dynamically important role.

To have a fuller picture of the energy spectra, in Figure 4.6 we present

sections of EM in (kx, ky)-plane again at first three vertical wavenumbers

kz = 0, 1, 2, for which it is higher (see Figure 4.5). The spectrum is highly

anisotropic due to the shear with the same elliptical shape and inclination to-

wards the kx−axis irrespective of kz. This indicates that modes with kx/ky > 0

have more energy than those with kx/ky < 0 at fixed ky. The kinetic en-

ergy spectrum shares similar properties and is not shown here. A similar

anisotropic spectrum was already reported in the shearing-box simulations of

MRI-turbulence with a nonzero net vertical field (Hawley et al., 1995; Lesur

& Longaretti, 2011; Murphy & Pessah, 2015). This energy spectrum, which

clearly differs from a typical turbulent spectrum in the classical case of forced

MHD turbulence without shear (Biskamp, 2003), arises as a consequence of a

specific anisotropy of the linear and nonlinear terms of Equations (4.11)-(4.17)

in k−space. These new features are not common to shearless MHD turbulence

and hence it is not surprising that Kolmogorov or IK theory cannot adequately

describe shear flow turbulence.
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Ĥx Î
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(bu)
y N̂

(b)
y

−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4
x 10

−3

k
z

̂|ūy|2
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Figure 4.8: Integrated in (kx, ky)-plane the quadratic forms of the spectral
velocity and magnetic field components together with the corresponding linear
and nonlinear terms from corresponding Equations (4.11)-(4.17) as a function
of kz.
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Having described the energy spectrum, we now look at how energy-

carrying modes, most actively participating in the dynamics, are distributed

in (kx, ky)-plane. We refer to modes whose magnetic energy reaches values

higher than 50% of the maximum spectral magnetic energy as active modes.

Although this definition is somewhat arbitrary, it gives an idea on where the

dynamically important modes are located in Fourier space. Figure 4.7 shows

these modes in (kx, ky)-plane at kz = 0, 1, 2 with color dots. They are obtained

by following the evolution of all the modes in the box during an entire quasi-

steady state and selecting those modes whose magnetic energy becomes higher

than the above threshold. The color of each mode indicates the fraction of

time, from the onset of the quasi-steady state till the end of the simulation,

during which it contains this higher energy. We have also checked that Figure

4.7 is not qualitatively affected upon changing the 50% threshold to either 20%

or 70%. Like the energy spectrum, the active modes with different duration

of “activity” are distributed quite anisotropically in (kx, ky)-plane, occupying

a broader range of radial wavenumbers |kx| . 12 than that of azimuthal ones

|ky| . 3. This main, energy-containing area in k-space represents the vital area

of turbulence. Essentially, the active modes in the vital area take part in the

sustaining dynamics of turbulence. The other modes with larger wavenumbers

lie outside the vital area and always have energies and stresses less than 50%

of the maximum value, therefore, not playing as much a role in the energy-

exchange process between the background flow and turbulence. Note that the

total number of the active modes (color dots) in Figure 4.7 is equal to 114,
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implying that the dynamics of the MRI-turbulence, strictly speaking, cannot

be reduced to low-order models of the sustaining processes, involving only a

small number of active modes (e.g., Herault et al., 2011; Riols et al., 2017).

4.4.3 Vertical spectra of the dynamical terms

Having identified the vital area, we now examine the significance of

each of the linear and nonlinear terms in this area first along the vertical kz-

direction in Fourier space. For this purpose, we integrate in (kx, ky)-plane the

quadratic forms of the spectral velocity and magnetic field components as well

as the rhs terms of Equations (4.11)-(4.13) and (4.15)-(4.17), as we have done

for the spectral energies and stresses above. We do not apply this procedure

to the linear drift term (which vanishes after such integration) and dissipation

terms, as their action is well known. The results are presented in Figure 4.8

(the spectral quantities integrated in (kx, ky)-plane are all denoted by hats),

which shows that:

I. The dynamics of |̂b̄x|2 is governed by Î(bu)
x and N̂ (b)

x , which are both

positive and therefore act as a source for the radial field at all kz.

II. The dynamics of |̂b̄y|2 is governed by M̂ and N̂ (b)
y , the action of Î(bu)

y

is negligible compared with these terms. The effect of M̂ is positive for all kz,

reaching a maximum, as we have seen before, at |kz| = 1. This implies that

the energy injection into turbulence from the background flow due to the MRI

occurs over a range of length scales, preventing the development of the proper

inertial range in the classical sense (see also Lesur & Longaretti, 2011). On
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the other hand, N̂ (b)
y is negative and hence acts as a sink for low/active kz,

but positive at large |kz|. So, the nonlinear term transfers the azimuthal field

component from these wavenumbers to large |kz| as well as (which is more

important) to other components.

III. The dynamics of |̂b̄z|2 is governed by Î(bu)
z and N̂ (b)

z , which are both

positive, with the latter being larger than the former at all kz. Note that |̂b̄z|2

is smaller compared to the other two components, while |̂b̄y|2 is the largest.

IV. The dynamics of ̂|ūx|2 is governed by Ĥx and N̂ (u)
x , the action of

the exchange terms, Î(uθ)
x and Î(ub)

x , are negligible compared to these terms.

The effect of Ĥx is positive for all kz, acting as the only source for ūx. By

contrast, N̂ (u)
x is negative (sink), opposing Ĥx, with a similar dependence of

its absolute value on kz. So, the nonlinear term transfers the radial velocity

to other components.

V. The dynamics of ̂|ūy|2 is governed by Ĥy, Î(ub)
y and N̂ (u)

y , the action

of Î(uθ)
y is negligible. The effects of N̂ (u)

y and Î(ub)
y are positive for all kz, while

Ĥy is negative. Special attention deserves the sharp peak of ̂|ūy|2 at kz = 0.

This peak is related to the formation of the zonal flow with |kx| = 1 and ky = 0

in the MRI-turbulence (Johansen et al., 2009), which will be analyzed below.

VI. The dynamics of |̂ūz|2 is governed by Ĥz, Î(uθ)
z and N̂ (u)

z , the action

of Î(ub)
z is negligible. |̂ūz|2 is the only term that explicitly depends on the

thermal processes. Note also that N̂ (u)
z is negative at |kz| ≥ 1, but becomes

positive at kz = 0, implying inverse transfer towards small kz. We do not go
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into the details of this dependence, as |̂ūz|2 is anyway smaller compared to the

other components. Besides, the thermal processes do not play a major role

in the overall dynamics, since their energy is much smaller than the magnetic

end kinetic energies (see also Figure 4.3).

It is seen from Figure 4.8 that all the dynamical terms primarily operate

at small vertical wavenumbers |kz| = 0, 1, 2. Some of them (N̂ (b)
x and N̂ (b)

z )

may extend up to |kz| = 3 − 6, but eventually decay at large |kz|. Similarly,

the spectra of the velocity and magnetic field have relatively large values also

at small |kz|. So, |kz| = 2 can be viewed as an upper vertical boundary of the

vital area in Fourier space.

4.5 Interplay of the linear and nonlinear processes in
the sustenance of the turbulence

We have seen above that the sustaining dynamics of turbulence is pri-

marily concentrated at small vertical wavenumbers, so now we present the

distribution of the time-averaged amplitudes of the spectral quantities ūi, b̄i

as well as the linear (kx-drift, Hi, Ii,M) and nonlinear (Ni) dynamical terms

in (kx, ky)-plane again at kz = 0, 1, 2 in Figures 4.9-4.14 (as noted before, we

omit here the thermal processes, θ̄, which play a minor role). These figures give

quite a detailed information and insight about all the linear and nonlinear pro-

cesses involved in Equations (4.11)-(4.17) and allow us to properly understand

their interplay leading to the turbulence sustenance. We start the analysis

of this interplay with a general outline of the figures. We do not show here
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Figure 4.9: Spectrum of the radial field, |b̄x|, and the maps of the corresponding
linear and nonlinear terms, governing its dynamics (Equation 4.15), in (kx, ky)-
plane at kz = 0(left), 1(middle), 2(right). The spectrum as well as the
action of these terms are highly anisotropic, (i.e., depend on the wavevector
azimuthal angle) due to the shear. These terms are appreciable and primarily
operate in the vital area |kx| . 12, |ky| . 3. The red and yellow (blue and
dark blue) regions in each panel correspond to wavenumbers where respective
dynamical terms are positive (negative) and hence act as a source (sink) for
|b̄x|2. In light green regions, outside the vital area, these terms are small,
although, as we checked, preserve the same anisotropic shape. In particular,
the nonlinear transfer term N (b)

x transversely redistributes |b̄x|2 from the blue

and dark blue regions, where N (b)
x < 0, to the red and yellow regions, where

N (b)
x > 0. These regions exhibit considerable variations with the azimuthal

angle of the wavevector and also depend on kz.
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Figure 4.10: Same as in Figure 4.9, but for the azimuthal field b̄y with the
corresponding dynamical terms from Equation (4.16). The dynamics of this
component is primarily determined by the combined action of the drift, the
Maxwell stressM, which is positive (energy injection) and the nonlinear term

N (b)
y , which is negative (sink) in the vital area. The linear exchange term I(bu)

y

is negligible compared with the above terms and is not shown here.

the viscous (D(u)
i ) and resistive D(b)

i terms, since their action is quite simple

– they are always negative and reduce the corresponding quantities, thereby

opposing the sustenance process. They increase with k, but in the vital area

are too small to have any influence on the dynamics.
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Figure 4.11: Same as in Figure 4.9, but for b̄z with the corresponding dynam-
ical terms from Equation (4.17). The transverse character of the nonlinear

redistribution, N (b)
z , is also evident. |b̄z| is small in comparison with |b̄x| and

|b̄y|.

A first glance at the plots makes it clear that all the spectra of the

physical quantities and processes are highly anisotropic due to the shear, i.e.,

strongly depend on the azimuthal angle in (kx, ky)-planes as well as vary with

kz, with a similar type of anisotropy and inclination towards the kx-axis, as

the energy spectrum in Figure 4.6. For the nonlinear processes represented

by N (u)
i and N (b)

i (bottom row in Figures 4.9-4.14), this anisotropy can not
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Figure 4.12: Spectra of |ūx| and the maps of the corresponding linear and
nonlinear terms governing its dynamics (Equation 4.11) in (kx, ky)-plane at
kz = 0(left), 1(middle), 2(right). The dynamics of this velocity component

is primarily determined by Hx (source) and N (u)
x (sink), the linear exchange

terms, I(uθ)
x and I(ub)

x , are negligible compared with the above terms and are
not shown here.

be put within the framework of commonly considered forms of nonlinear –

direct and inverse – cascades, since its main manifestation is the transverse

(among wavevector angles) nonlinear redistribution of modes in (kx, ky)-plane

as well as among different kz. In these figures, the nonlinear terms transfer the
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Figure 4.13: Same as in Figure 4.12, but for ūy with the corresponding dynam-

ical terms from Equation (4.12). The influence of the thermal process, I(uθ)
y ,

is negligible and not shown here. The spectrum of |ūy| reaches a maximum at
kx = ±1, ky = kz = 0, which corresponds to the zonal flow in physical space.

corresponding quadratic forms of the velocity and magnetic field components

transversely away from the regions where they are negative (N (u)
i < 0,N (b)

i <
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Figure 4.14: Same as in Figure 4.12, but for ūz with the corresponding dy-
namical terms from Equation (4.13). The influence of the linear magnetic

exchange term I(ub)
z is negligible and is not shown here. The nonlinear term

N (u)
z transfers |ūz|2 towards small kz (as it also seen in the corresponding panel

of Figure 4.8).

0, blue and dark blue) towards the regions where they are positive (N (u)
i >

0,N (b)
i > 0, yellow and red). These regions display quite a strong angular
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The basic subcycle of the turbulence sustenance

I
(bu)
x

M

N
(b)
x

ūy ūx

b̄x

b̄y

Figure 4.15: Sketch of the basic subcycle of the sustaining process (the solid

arrows within the rectangle): (i) generation of b̄x by the nonlinearity N (b)
x , (ii)

subsequent production of M from b̄x and (iii) of the azimuthal field energy
|b̄y|2 by M (the linear MRI stage) and finally (iv) the nonlinear feedback –

contribution of b̄y to N (b)
x . The other contributions (dashed arrows) of I(bu)

x to
the production of b̄x and the feedback of ūx, ūy, b̄x to N b

x (ūz and b̄z are small
and not shown), are a part of the overall sustaining scheme, but outside the
basic subcycle.
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variation in (kx, ky)-planes.

Similarly, the terms of linear origin Hi, Ii,M are strongly anisotropic

in (kx, ky)-plane. For the corresponding quantity, they act as a source when

positive (red and yellow regions) and as a sink when negative (blue and dark

blue regions). The linear exchange of energy with the background shear flow

(which is the central energy supply for turbulence) involves all the components

of the velocity perturbation through Hi terms in Equations (4.11)-(4.13) and

only the azimuthal y-component of the magnetic field perturbation through

the Maxwell stress term,M, in Equation (4.16). However, the other quadratic

forms can grow due to the linear exchange, Ii, and nonlinear, Ni, terms. The

growth of the quadratic forms and energy extraction from the flow as a result

of the operation of all these linear terms essentially constitutes the azimuthal

MRI in the flow.

The linear drift parallel to the kx-axis is equally important for all the

physical quantities. The plots depicting the drift (second row in Figures 4.9-

4.14), show that this process transfers modes with velocity |qky| along kx-axis

at ky > 0 and in the opposite direction at ky < 0. Namely, the drift gives the

linear growth of individual harmonics a transient nature, as it sweeps them

through the vital area in k-space. One has to note that the dynamics of

axisymmetric modes with ky = 0 should be analyzed separately, as the drift

does not affect them. Consequently, the drift can not limit the duration of

their amplification and if there is any, even weak, linear or nonlinear source of

growth at ky = 0, these harmonics can reach high amplitudes.
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Let us turn to the analysis of the route ensuring the turbulence sus-

tenance. First of all, we point out that it should primarily rely on magnetic

perturbations, as the Maxwell stress is mainly responsible for energy supply

for turbulence. From Figure 4.9, it is seen that the linear exchange term I(bu)
x

and the nonlinear term N (b)
x make comparable contributions to the generation

and maintenance of the radial field component |b̄x|. This is also consistent with

the related plots in Figure 4.8. The exchange term takes energy from the ra-

dial velocity ūx and gives to b̄x. The distribution of N (b)
x clearly demonstrates

transversal transfer of |b̄x|2 in (kx, ky)-plane for all considered kz = 0, 1, 2 as

well as among different components. The linear drift term also participates

in forming the final spectrum of |b̄x| in the quasi-steady turbulent state. It

opposes the action of the nonlinear term: for ky > 0 (ky < 0), N (b)
x , trans-

fers modes to the left (right), from the blue and dark blue region to the red

and yellow regions, while the drift transfers in the opposite direction. So, the

interplay of the drift, I(bu)
x and N (b)

x yields the specific anisotropic spectra of

|b̄x| shown in the top row of this figure. Particularly noteworthy is the role

of the nonlinear term at ky = 0, kz = 1, 2, because the drift and the linear

magnetic-kinetic exchange terms are proportional to ky and hence vanish. As

a result, axisymmetric modes with ky = 0 are energetically supported only by

the nonlinear term. (At ky = 0, although N (b)
x is positive both at kz = 1 and

kz = 2, its values at kz = 1 are about an order of magnitude smaller than

those at kz = 2 and might not be well represented by light green color in the

bottom middle panel in Figure 4.9.) So, b̄x, which is remarkably generated by
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the nonlinear term, in turn, is a key factor in the production and distribution

of the energy-injecting Maxwell stress, M, in Fourier space. Indeed, note the

correlation between the distributions of |b̄x| andM in (kx, ky)-plane depicted,

respectively, in the top row of Figure 4.9 and in the third row of Figure 4.10.

From Figure 4.10 it is evident that, in fact, the Maxwell stress, M,

which is positive in (kx, ky)-plane and appreciable in the vital area, is the only

source for the quadratic form of the azimuthal field component, |b̄y|2, and hence

for the turbulent magnetic energy, which is dominated by this component. The

linear exchange term, I(bu)
y , appears to be much smaller with this stress term

(and hence is not shown in this figure). The nonlinear term, N (b)
y , is negative

in the vital area (blue regions in the bottom row of Figure 4.10), draining

|b̄y|2 there and transferring it to large wavenumbers as well as among different

components. Thus, the sustenance of the magnetic energy is of linear origin,

due solely to the Maxwell stress that, in turn, is generated from the radial field

component. This stage constitutes the main (linear) part of the sustenance

scheme, which will be described in the next subsection, and is actually a

manifestation of the azimuthal MRI.

The dynamics of the vertical field component b̄z is shown in 4.11. This

components is smaller than b̄x and b̄y. The linear exchange term, I(bu)
z , acts

as a source, supplying b̄z from the vertical velocity ūz. The nonlinear term,

N (b)
z , also realizes the transverse cascade and scatters the modes in different

areas of (kx, ky)-plane (from the yellow and red to blue and dark blue areas in

the bottom row of Figure 4.11). However, as it is seen from the related plot
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in Figure 4.8, the cumulative effect of N (b)
z in (kx, ky)-plane is positive and

even prevails over the positive cumulative contribution of I(bu)
z in this plane at

every kz. As it is clearly seen from Figure 4.11, the linear drift term opposes

the action of the nonlinear term for b̄z, similar to that in the case of b̄x.

Figure 4.12 shows that the linear term Hx can be positive and act as

a source for the radial velocity |ūx|2 at the expense of the mean flow, while

the nonlinear term N (u)
x is negative and drains it. The exchange terms I(uθ)

x ,

I(ub)
x are also negative, giving the energy of the radial velocity, respectively, to

θ̄ and b̄x, but their contributions are negligible compared with Hx and N (u)
x

and hence not shown in this figure. So, the sustenance of |ūx| is ensured by

the interplay of the linear drift and Hx terms. Indeed, shifting the result of

the action of Hx by the linear drift to the right (left) for ky > 0 (ky < 0) gives

the spectrum of |ūx| presented in the top row this figure.

Figure 4.13 shows that the dynamics of the azimuthal velocity ūy is

governed primarily by Hy, I(ub)
y and N (u)

y . The action of I(uθ)
y is negligible

compared with these terms, in agreement with the corresponding plot of Figure

4.8, and is not shown in this figure. The contributions of I(ub)
y and N (u)

y can

be positive and hence these terms act as a source for |ūy|2. The distribution of

Hy at kz = 0 is quite complex with alternating positive and negative areas in

(kx, ky)-plane, while it is negative for kz = 1, 2. A interplay between these three

terms yields the spectrum of |ūy| shown in the top row of Figure 4.13. From this

spectrum, the harmonic with kx = 1, ky = kz = 0 has the highest amplitude.

Translating this result in physical space, it implies that the turbulence forms
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quite powerful azimuthal/zonal flow, which will be examined in more detail in

the next subsection.

Figure 4.14 shows that the contribution of the thermal I(uθ)
z in the

dynamics of the quadratic form of vertical velocity, |ūz|2, is mostly negative

(sink), but not so strong. The magnetic exchange term I(ub)
z also acts as a

sink, but is much smaller than I(uθ)
z and can be neglected. Of course, the role

of the linear drift term is standard and similar to those for other components

described above. The sustenance of |ūz| at kz = 0 is ensured by the combina-

tion of the linear drift and the positive nonlinear term N (u)
z , while at kz = 1, 2

it is maintained by the interplay of the linear drift and Hz, which provides a

source, now the nonlinear term N (u)
z acts as a sink.

4.5.1 The basic subcycle of the turbulence sustenance

As we already mentioned, the sustenance of the turbulence is the result

of a subtle intertwining of the anisotropic linear transient growth and nonlin-

ear transverse cascade processes, which have been described in the previous

section. The intertwined character of these processes is too complex for a

vivid schematization. Nevertheless, based on the insight into the turbulence

dynamics gained from Figures 4.9-4.14, we can bring out the basic subcycle

of the sustenance that clearly shows the equal importance of the linear and

nonlinear processes. The azimuthal and radial magnetic field components are

most energy-containing in this case. The basic subcycle of the turbulence sus-

tenance, which is concentrated in the vital area in Fourier space, is sketched
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in Figure (4.15) (solid arrows within a rectangle) and can be understood as

follows. The nonlinear term N (b)
x contributes to the generation of the radial

field b̄x through the transverse cascade process. In other words, N (b)
x provides

a positive feedback for the continual regeneration of the radial field, which,

in turn, is a seed/trigger for the linear growth of the MRI – b̄x creates and

amplifies the Maxwell stress, M, due to the shear (via linear term in Equa-

tion B.6 proportional to q). The positive stress then increases the dominant

azimuthal field energy |b̄y|2/2 at the expense of the mean flow, opposing the

negative nonlinear term N (b)
y (and resistive dissipation). Thus, this central en-

ergy gain process for turbulence, as mentioned before, is of linear nature and a

consequence of the azimuthal MRI. The linearly generated b̄y gives a dominant

contribution – positive feedback – to the nonlinear term N (b)
x , closing the basic

subcycle.

This is only a main part of the complete and more intricate sustaining

scheme that involves also the velocity components. In this sketch, the dashed

arrows denote the other, extrinsic to the basic subcycle, processes. Namely, b̄x,

together with the nonlinear term, is fueled also by the linear exchange term,

I(bu)
x , which takes energy from the radial velocity ūx, while the azimuthal

velocity ūy gets energy from b̄y via the linear exchange term I(ub)
y . These are

all linear processes, part of the MRI. (The vertical velocity does not explicitly

participate in this case.) All These components of the velocity ūx, ūy, ūz and

the magnetic field b̄x, b̄z then contribute to the nonlinear feedback through

the nonlinear term for the radial field, N (b)
x , which is the most important
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one in the sustenance (see Equations B.37), but still the contribution of b̄y

in this nonlinear term is dominant. This feedback process is essentially 3D:

we verified that modes with |kz| = 1, 2 give the largest contribution to the

horizontal integral in the expression for the nonlinear term N (b)
x (not shown

here).

It is appropriate here to give a comparative analysis of the dynamical

processes investigated in this Chapter and those underlying sustained 3D MRI-

dynamo cycles reported in Herault et al. (2011) and Riols et al. (2015, 2017),

despite the fact that these papers considered a magnetized Keplerian flow with

different, zero net vertical flux, configuration and different values of parameters

(smaller resolution, box aspect ratio, smaller Reynolds numbers) than those

adopted here. These apparently resulted in the resistive processes penetrating

into the vital area (in our terms) and reducing a number of active modes to only

first non-axisymmetric ones (shearing waves) with the minimal azimuthal and

vertical wavenumbers, ky = 2π/Ly, kz = 0, 2π/Lz, which undergo the transient

MRI due to the mean axisymmetric azimuthal (dynamo) field. By contrast,

the number of the active modes in our turbulent case is more than hundred

(Figure 4.7). Regardless of these differences, we can trace the similarities in

the sustenance cycles – the energy budget equations for these modes derived

in those papers in fact show that a similar scheme underlies the sustenance

as in the present case. The energy of the radial field b̄x of new leading non-

axisymmetric modes is supplied by the joint action of the induction term (i.e.,

I(bu)
x in our notations) and redistribution by the nonlinear term, however, a
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summation over kx as used in those energy budget equations does not permit

to see how this nonlinear redistribution of modes over kx due to the transverse

cascade actually occurs in their analysis. As for the energy of b̄y, it is amplified

by the Maxwell stress during the transient MRI phase (also called the Ω-effect)

and is drained by the corresponding nonlinear term. Since in the turbulent

state considered here there are much more active modes, representing various

linear and nonlinear dynamical terms in (kx, ky)-plane has a definite advantage

over such low-mode-number models in that gives a more general picture of

nonlinear triad interactions among all active modes. Such a comparison raises

one more point for thought: for a correct consideration of nonlinear triad

interactions, we gave preference to boxes symmetrical in (x, y)-plane, while,

all simulations in those papers are carried out in azimuthally elongated boxes.

4.5.2 Zonal flow

Excitation of zonal flows by the MRI-turbulence was previously ob-

served by Johansen et al. (2009) and Bai & Stone (2014) in the case of zero

and nonzero net vertical magnetic flux, respectively. We also observe it here in

the case of the net azimuthal field. As noted above, the mode corresponding

to the zonal flow is axisymmetric and vertically constant, ky = kz = 0, with

large scale variation in the radial direction, |kx| = 1. The divergence-free (in-

compressibility) condition (B.8) implies that the radial velocity is zero, ūx = 0,

for this mode and hence Hy = 0 at all times, also the magnetic exchange term

is identically zero at ky = 0, I(ub)
y = 0. Therefore, a source of the zonal flow
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Figure 4.16: Evolution of the large-scale mode k0 = (1, 0, 0), which corre-
sponds to the axisymmetric zonal flow. Shown are the amplitudes of the
azimuthal |ūy| (black) and the vertical |ūz| (blue) velocities (upper panel) as

well as the magnetic N (u,mag)
y (black) and hydrodynamic N (u,kin)

y (green) parts

of the nonlinear term N (u)
y (lower panel). The dominant azimuthal velocity

(i.e., zonal flow) is driven by the magnetic part of the nonlinear term and is
characterized by remarkably slower time variations.
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can be only the nonlinear term N (u)
y in Equation (4.12). We can divide this

term into the magnetic, N (u,mag)
y , and hydrodynamic, N (u,kin)

y , parts,

N (u)
y = N (u,mag)

y +N (u,kin)
y . (4.23)

For the dominant mode k0 = (1, 0, 0), these two parts in Equation (4.23) have

the forms:

N (u,mag)
y (k0, t) =

i

2
ū∗y(k0, t)

∫
d3k′b̄y(k

′, t)b̄x(k0 − k′, t) + c.c.,

with the integrand composed of the turbulent magnetic stresses and

N (u,kin)
y (k0, t) = − i

2
ū∗y(k0, t)

∫
d3k′ūy(k

′, t)ūx(k0 − k′, t) + c.c.,

with the integrand composed of the turbulent hydrodynamic stresses. To

understand the nature of the zonal flow, in Figure 4.16 we present the time-

development of the azimuthal and vertical velocities as well as the driving

nonlinear terms for this mode. |uy(k0, t)| is characterized by remarkably

longer timescale (tens of orbits) variations and prevails over rapidly oscillat-

ing |uz(k0, t)|, i.e., the dominant harmonic indeed forms a slowly varying in

time axisymmetric zonal flow. Comparing the time-development of |ūy(k0, t)|

with that of the corresponding nonlinear terms in the lower panel of Figure

4.16, we clearly see that it is driven primarily by the magnetic nonlinear term,

N (u,mag)
y (k0, t), which physically describes the effect of the total azimuthal

magnetic tension (random forcing) exerted by all other smaller-scale modes on

the large-scale k0 mode, whereas N (u,kin)
y (k0, t), corresponding to the net effect
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of the hydrodynamic stresses, is much smaller than the magnetic one. The im-

portant role of the magnetic perturbations in launching and maintaining the

zonal flow is consistent with the findings of Johansen et al. (2009).

4.5.3 Effect of the aspect ratio and the universality of the turbu-
lence sustenance scheme

The main advantage of the box (4, 4, 1) analyzed in the previous sub-

section is that (i) it is symmetric in physical (x, y)-and Fourier (kx, ky)-planes,

where the effects of shear are most important, (ii) the modes contained in

this box densely cover the vital area in (kx, ky)-plane and sufficiently comprise

effectively growing (optimal) harmonics (see the panel for the box (4, 4, 1) in

Figure 4.2). In the three asymmetric boxes – (1, 4, 1), (2, 4, 1) and (4, 2, 1) – the

modes less densely cover the vital area (Figure 4.2). As for the box (8, 8, 1),

as mentioned above, the results qualitatively similar to the box (4, 4, 1) are

expected. In this subsection, we examine how the box aspect ratio influences

the turbulence dynamics, and in particular, the distribution of the linear and

nonlinear process in Fourier space.

A general temporal behavior of the volume-averaged energies, stresses

and rms values of the velocity and magnetic field components is similar to that

for the box (4, 4, 1) represented in Figure 4.3 (see also Table 4.1) and we do

not show it here, but concentrate instead on the differences in Fourier space.

Figure 4.17 juxtaposes the spectra of the magnetic energy, Maxwell stress and

the magnetic nonlinear term N (b)
x for all the boxes. From this figure it is
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evident that the skeleton of the balances of the various linear and nonlinear

processes and, in particular the basic subcycle, underlying the sustenance of

the azimuthal MRI-turbulence are qualitatively the same in all the simulated

boxes and quite robust – the variations in box sizes do not affect its effec-

tiveness. Changes in box aspect ratios lead to variation of the inclinations,

shapes and intensities of the energy spectra as well as the distribution of linear

and nonlinear dynamical terms in (kx, ky)-plane. It is seen in Figure 4.17 that

this variation is minimal between the symmetric in (x, y)-plane boxes (4, 4, 1)

and (8, 8, 1) – they have similar spectral characteristics with identical inclina-

tion angles – but is more remarkable among the asymmetric boxes, (4, 2, 1),

(2, 4, 1), (1, 4, 1). Specifically, in the latter boxes, the spectral characteristics

are somewhat deformed and have different inclinations compared to those in

the symmetric boxes. The reason for this is the reduction of the active modes’

number/density along the kx- and ky-axis in these boxes in contrast to the

symmetric ones (see Figure 4.2).

4.6 Summary and discussion

In this Chapter, we elucidated the essence of the sustenance of MRI-

driven turbulence in Keplerian disks threaded by a nonzero net azimuthal

field by means of a series of shearing box simulations and analysis in 3D

Fourier (k-)space. It is well known that in the linear regime the MRI in

the presence of a azimuthal field has a transient nature and eventually decays

without an appropriate nonlinear feedback. We studied in detail the linear and
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nonlinear dynamical processes and their interplay in Fourier space that ensure

such a feedback. Our first key finding is the pronounced anisotropy of the

nonlinear processes in k-space. This anisotropy is a natural consequence of the

anisotropy of linear processes due to the shear and cannot be described in the

framework of direct and inverse cascades, commonly considered in the classical

theory of HD and MHD turbulence without shear, because the main activity of

the nonlinear processes is transfer of modes over wavevector orientation (angle)

in k-space, rather than along wavevector that corresponds to direct/inverse

cascades. This new type of nonlinear process – the transverse cascade – plays a

decisive role in the long-term maintenance of the MRI-turbulence. Our second

key result is that the sustenance of the turbulence in this case is ensured as a

result of a subtle interplay of the linear transient MRI growth and nonlinear

transverse cascade. This interplay is intrinsically quite complex and refined.

Nevertheless, one can isolate the basic subcycle of the turbulence sustenance,

which is as follows. The linear exchange of energy between the magnetic field

and the background flow, realized by the Maxwell stress,M, supplies only the

azimuthal field component b̄y. As for the radial field b̄x, it is powered by the

linear exchange I(bu)
x and the nonlinear N (b)

x terms. So, b̄x and b̄y have sources

of different origin. However, one should bear in mind that these processes are

intertwined with each other: the source of b̄y (i.e., the Maxwell stress, M) is

created by b̄x. In its turn, the production of the nonlinear source of b̄x (i.e.,

N (b)
x ) is largely due to b̄y. Similarly intertwined are the dynamics of other

spectral magnetic and kinematic components. This sustaining dynamics of
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the turbulence is concentrated mainly in a small wavenumber area of k-space,

i.e., involves large scale modes, and is appropriately called the vital area.

The spectra of the kinetic and magnetic energies that are established

in the turbulent state as a result of such interplay are consequently also

anisotropic and fundamentally differ from classical Kolmogorov or IK spectra.

So, the conventional characterization of nonlinear MHD cascade processes in

shear flows in terms of direct and inverse cascades, which ignores the shear-

induced spectral anisotropy and the resulting important transverse cascade

process, is generally incomplete and misleading. For this reason, we exam-

ined the dynamical processes in 3D Fourier space in full without making the

shell-averaging, which has been commonly done in previous studies of MRI-

turbulence and smears out the anisotropy. We also showed that the turbulence

is accompanied by a large scale and slowly varying in time zonal (azimuthal)

flow, which is driven by the turbulent magnetic stresses.

The proposed scheme of the turbulence sustenance based on the in-

tertwined cooperated action of the linear and nonlinear processes in the vital

area is quite robust – it is effective for different aspect ratios of the simula-

tion box. For all the box configurations considered, (4, 4, 1), (1, 4, 1), (2, 4, 1),

(4, 2, 1) and (8, 8, 1), the scheme is essentially universal, although there are

quantitative differences. The anisotropy of the box in (kx, ky)-plane is super-

posed on the intrinsic shear-induced anisotropy of the dynamical process and

somewhat deforms the picture of the turbulence, but the sustaining scheme is

not changed. In any case, an isotropic distribution of modes in (kx, ky)-plane
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Figure 4.17: Spectra of EM ,M and N (b)
x in (kx, ky)-plane at kz = 1 for all the

boxes: (4, 2, 1) (top row), (4, 4, 1) (second row), (8, 8, 1) (third row), (2, 4, 1)
(fourth row) and (1, 4, 1) (bottom row). In all the panels, the general struc-
ture of these spectral terms is quite similar, that indicates the universality
and the robust character of the turbulence sustaining scheme. At the same
time, the symmetric boxes (4, 4, 1) and (8, 8, 1) have similar spectral pictures
with identical inclinations, while in the asymmetric in (x, y)-plane boxes, the
spectral characteristics are somewhat deformed and have different inclinations
compared to the symmetric boxes.
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seems preferable for studying the own anisotropy of the shear flow system,

which is naturally achieved for equal radial and azimuthal sizes, Lx = Ly, of

the box.

In this Chapter, we considered a spectrally stable (i.e., without purely

exponential MRI) magnetized disk flow with an azimuthal field, where the

energy for turbulence can only be supplied via linear transient growth of

the MRI. Being associated with shear, it seems obvious that the vital area

and nonlinear transverse cascade should be also present in disk flows with a

nonzero net vertical magnetic field, which can give rise to the exponentially

growing MRI (Balbus & Hawley, 1991; Goodman & Xu, 1994; Pessah & Good-

man, 2009). In this case, besides purely exponentially growing axisymmetric

(channel) modes, energy supply and transport via (transient) growth of non-

axisymmetric (ky 6= 0) modes are also important (Longaretti & Lesur, 2010;

Mamatsashvili et al., 2013; Squire & Bhattacharjee, 2014). The latter, leading

to anisotropic nonlinear dynamics (Murphy & Pessah, 2015), can inevitably

effect the nonlinear transverse cascade process. However, as it is shown in

Chapter 5, the presence of the purely exponentially growing modes alter the

scheme of the interplay of the dynamical processes that we studied here in the

case of the azimuthal field.
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Chapter 5

Active modes and dynamical balances in

MRI-turbulence of Keplerian disks with a net

vertical magnetic field

5.1 Introduction

Anisotropic turbulence offers a means of enhanced transport of angular

momentum in astrophysical disks (Shakura & Sunyaev, 1973; Lynden-Bell &

Pringle, 1974), whereas isotropic turbulence is unable to ensure such a trans-

port. It is not surprising that from the 1980s, research in astrophysical disks

focused on identifying sources of turbulence and understanding its statistical

characteristics. The turning point was the beginning of the 1990s, when a

linear instability mediated by a weak vertical magnetic field in differentially

rotating conducting fluids (Velikhov, 1959; Chandrasekhar, 1960) was redis-

covered for sufficiently ionized astrophysical disks by Balbus & Hawley (1991)

and subsequently named as the magnetorotational instability (MRI). MRI is a

robust dynamical instability that leads to exponential growth of axisymmetric

perturbations, gives rise to and steadily supplies with energy magnetohydro-

dynamic (MHD) turbulence, as was demonstrated in earlier numerical simu-

lations shortly after the importance of linear MRI in disks had been realized

(e.g., Hawley & Balbus, 1991, 1992; Hawley et al., 1995; Brandenburg et al.,
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1995; Balbus & Hawley, 1998).

The generic nonnormality (non-self-adjointness) of a strongly sheared

Keplerian flow of astrophysical disks provides an additional important linear

mechanism of energy supply to the turbulence - transient, or nonmodal growth

of perturbations (Lominadze et al., 1988; Chagelishvili et al., 2003; Yecko,

2004; Afshordi et al., 2005; Tevzadze et al., 2008; Shtemler et al., 2011; Salhi

et al., 2012; Pessah & Chan, 2012; Mamatsashvili et al., 2013; Zhuravlev &

Razdoburdin, 2014; Squire & Bhattacharjee, 2014; Razdoburdin & Zhuravlev,

2017). Although the latter is generally less powerful than the classical (expo-

nentially growing) MRI, it is nevertheless capable of driving quite robust MHD

turbulence in the absence of the classical MRI, for instance, in disks threaded

by a purely azimuthal/toroidal magnetic field (e.g., Hawley et al., 1995; Fro-

mang & Nelson, 2006; Simon & Hawley, 2009; Guan et al., 2009; Guan &

Gammie, 2011; Flock et al., 2012b; Nauman & Blackman, 2014; Meheut et al.,

2015; Gogichaishvili et al., 2017). In such spectrally, or modally stable mag-

netized disk flows lacking exponentially growing MRI modes, nonlinear pro-

cesses are vital for turbulence sustenance. In this situation, the canonical –

direct and inverse – cascade processes (accepted in classical Kolmogorov or

Iroshnikov-Kraichnan theories of turbulence) are not capable of sustaining the

turbulence – this role is taken over by a new type of the cascade processes,

so-called the nonlinear transverse cascade (Horton et al., 2010; Mamatsashvili

et al., 2014). What is the physical reason for the emergence of the transverse

cascade in shear flows and its specific nature? The thing is that the anisotropy
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of the nonnormality/shear-induced linear dynamics entails the anisotropy of

the nonlinear processes: transverse, or angular redistribution of perturbation

harmonics in Fourier (wavenumber) space. In spectrally stable shear flows, in

which the only mechanism for the energy supply to perturbations is the linear

transient growth process, the nonlinear transverse cascade continually repop-

ulates with perturbation harmonics those areas in Fourier space, where they

can undergo transient amplification, and in this way ensures a long-term sus-

tenance of the turbulence (Mamatsashvili et al., 2014, 2016). In the absence of

such a feedback, non-axisymmetric modes that undergo in this case the most

effective nonmodal growth, get later sheared away and eventually decay. In

the context of disks, this process was studied in detail in paper (Gogichaishvili

et al., 2017) (see Chapter 4) for a Keplerian flow with a net azimuthal mag-

netic field by combining direct numerical simulations and, based on them, the

subsequent analysis of the dynamical processes in Fourier space. It was shown

that the nonlinear transverse cascade does ensure continual regeneration of

transiently growing harmonics, thereby yielding sustained robust subcritical

turbulence in the disk flow. Thus, in spectrally stable MHD shear flows, the

existence of turbulence is due to a subtle interplay of linear transient growth

and the nonlinear transverse cascade processes.

In this Chapter, we consider a local model of a weakly ionized Keplerian

disk threaded by a net vertical magnetic field, where there exists classical

MRI with a steady exponential growth of axisymmetric modes (Balbus &

Hawley, 1991, 1998; Wardle, 1999; Pessah et al., 2006; Lesur & Longaretti,
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2007; Pessah & Chan, 2008; Longaretti & Lesur, 2010; Latter et al., 2015;

Shakura & Postnov, 2015). Because of this, there is no deficit in energy supply

and the role of nonlinearity in the sustenance of perturbations is not as vital

as in the case of azimuthal field. However, at the same time, MRI also owes

its existence to the shear of disk flow and therefore is inevitably subject to

nonmodal effects (Mamatsashvili et al., 2013; Squire & Bhattacharjee, 2014).

As demonstrated in this Chapter (related to (Gogichaishvili et al., 2018)), this

has two important consequences. First, the nonmodal MRI growth of both

axisymmetric and non-axisymmetric modes during finite times are in fact more

relevant and important in the energy supply process of turbulence, because the

time scales involved are of the order of dynamical/orbital time (Walker et al.,

2016), than the modal (exponential) growth of axisymmetric modes prevalent

at large times (see also Squire & Bhattacharjee, 2014). Second, underlying

nonlinear processes are necessarily anisotropic in Fourier space as a result of

the inherent anisotropy of linear nonmodal dynamics due to the shear. This

anisotropy above all gives rise to the nonlinear transverse cascade and one of

the main goals of the present Chapter is to vividly demonstrate its importance

in forming the overall dynamical picture of net vertical field MRI-turbulence.

Recently, Murphy & Pessah (2015) investigated the saturation of MRI

in disks with a net vertical field and the properties of the resulting MHD

turbulence both in physical and Fourier space. Their study was mainly de-

voted to characterizing the anisotropic nature of this turbulence. They also

pointed out a general lack of analysis of the anisotropy in the existing stud-
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ies of MRI-turbulence: “Although there have been many studies of the linear

phase of the MRI and its nonlinear evolution, only a fraction have explored

the mechanism responsible for its saturation in detail, and none have focused

explicitly on the evolution of the degree of anisotropy exhibited by the magne-

tized flow as it evolves from the linear regime of the instability to the ensuing

turbulent state”. The main reason for overlooking the anisotropic nature of

MRI-driven turbulence in most of previous works focusing on its spectral dy-

namics (e.g., Fromang & Papaloizou, 2007; Simon et al., 2009; Davis et al.,

2010; Lesur & Longaretti, 2011) was a somewhat misleading mathematical

treatment, specifically, spherical shell-averaging procedure in Fourier space

(borrowed from forced MHD turbulence studies without shear flow, see e.g.,

Verma, 2004; Alexakis et al., 2007), which had been employed to extract sta-

tistical information about the properties of MRI-turbulence. Obviously, the

use of the shell-averaging, which, in fact, smears out the transverse cascade, is,

strictly speaking, justified for isotropic turbulence, but by no means for shear

flow turbulence and therefore for, its special case, MRI-turbulence “nourished”

in a sheared environment of disk flow. Thus, the shell-averaging is not an op-

timal tool for analyzing spectral energy distributions as well as dynamical

processes in MRI-driven turbulence that is far from isotropic due to the shear

(see also Hawley et al., 1995; Nauman & Blackman, 2014; Lesur & Longaretti,

2011; Murphy & Pessah, 2015; Gogichaishvili et al., 2017). This fact also calls

into question investigations based on the shell-averaging that aim to identify

a power-law character and associated slopes of turbulent energy spectrum, be-
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cause the anisotropy of the energy spectrum itself, a direct consequence of the

transverse cascade, is wiped out in these cases. This is probably the reason

why the kinetic and magnetic energy spectra do not generally display a well-

defined power-law behavior in MRI-turbulence in disk flows with a net vertical

field (Simon et al., 2009; Lesur & Longaretti, 2011; Meheut et al., 2015; Walker

et al., 2016).

In view of the above, in this work we focus on the dynamics and bal-

ances of MRI-turbulence in disks with a net vertical/poloidal magnetic field.

We adopt the local shearing box model of the disk with constant vertical

thermal stratification. The analysis is performed in three-dimensional (3D)

Fourier space in full, i.e., without doing the above-mentioned averaging of

spectral quantities over spherical shells of constant wavenumber magnitude

k = |k|. This allows us to capture the spectral anisotropy of MRI-turbulence

due to the shear and the resulting nonlinear angular redistribution of perturba-

tion modes in Fourier space, i.e., transverse cascade, thereby getting a deeper

understanding of spectral and statistical properties of the turbulence. In pre-

vious relevant studies on a net vertical field MRI (e.g., Goodman & Xu, 1994;

Hawley et al., 1995; Sano & Inutsuka, 2001; Lesur & Longaretti, 2007; Bodo

et al., 2008; Latter et al., 2009, 2010; Simon et al., 2009; Pessah & Goodman,

2009; Longaretti & Lesur, 2010; Pessah, 2010; Bai & Stone, 2014; Murphy &

Pessah, 2015), this angular redistribution (scatter) of modes in Fourier space

was attributed to secondary, or parasitic instabilities. Specifically, the most

unstable, exponentially growing axisymmetric MRI modes (channels) are sub-
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ject to secondary instabilities of non-axisymmetric modes with growth rates

proportional to the amplitude of these channel solutions. In this way, the

parasitic instabilities redistribute the energy from the primary axisymmetric

channel modes to non-axisymmetric parasitic ones, halting the exponential

growth of the former and leading to the saturation of MRI. Several approxi-

mations are made in this description: 1. the large amplitude channel mode is a

time-independent background off which the small-amplitude parasitic modes

feed and 2. the effects of the imposed vertical field, the Coriolis force, and

the basic Keplerian shear are all usually neglected. These assumptions clearly

simplify the analysis of the excitation and dynamics of the non-axisymmetric

parasitic modes, but, more importantly, because of neglecting the basic flow

shear, omit independent from the primary MRI modes source of their sup-

port - the transient/nonmodal growth of non-axisymmetric modes, which, as

discussed above, is an inevitable linear process in shear (disk) flows.

To keep an analysis general and self-consistent, together with the gen-

eral nonmodal growth process, we employ the concept of the nonlinear trans-

verse cascade in the present problem of MRI with a net vertical magnetic field

that naturally encompasses the secondary instabilities. This unifying frame-

work enables us to correctly describe the interaction between the channel and

non-axisymmetric parasitic modes when the above assumptions break down

– the amplitudes of these two mode types become comparable, so that it is

no longer possible to clearly distinguish between the channel as a primary

background and parasites as small perturbations on top of that. This is the
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case in the developed turbulent state of vertical field MRI, where channels

undergo recurrent amplifications (bursts) and decays (e.g., Sano & Inutsuka,

2001; Lesur & Longaretti, 2007; Bodo et al., 2008; Simon et al., 2009; Murphy

& Pessah, 2015). This decay phase is usually attributed to the linear non-

axisymmetric parasitic instabilities, however, in the fully developed turbulent

state it is more likely governed by nonlinearity. As is shown in this Chapter,

the transverse cascade accounts for the transfer of energy from the axisymmet-

ric channel modes to a broad spectrum of non-axisymmetric ones (referred to

as the rest modes here) as well as to the axisymmetric zonal flow mode, which

appears to commonly accompany MRI-turbulence (Johansen et al., 2009; Si-

mon et al., 2012; Bai & Stone, 2014). The nonlinear transverse cascade may

not be the vital source of the energy supply to turbulence in the presence

of purely exponentially growing MRI, but still it shapes the dynamics, sets

the saturation level/strength and determines the overall “design” of the tur-

bulence the “building blocks” of which are these three types of perturbation

modes analyzed in this Chapter.

In the spirit of works (Horton et al., 2010; Mamatsashvili et al., 2014,

2016; Gogichaishvili et al., 2017, 2018), here we investigate in detail the roles

of underlying different anisotropic linear and nonlinear dynamical processes

shaping the net vertical field MRI-turbulence. Namely, we first perform direct

numerical simulations of the turbulence and then, using the simulation data,

explicitly calculate individual linear and nonlinear terms in spectral equations

and analyze them and their interplay in detail. The present study is a gen-
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eralization of the related works by Simon et al. (2009); Lesur & Longaretti

(2011), where the dynamics of vertical field MRI-turbulence – the spectra of

energy, injection and nonlinear transfers – were analyzed in Fourier space,

however, using a restrictive approach of shell-averaging, which misses out the

shear-induced anisotropy of the turbulence and hence the interaction of ax-

isymmetric channel and non-axisymmetric modes. It also extends the study

of Murphy & Pessah (2015), who focused on the anisotropy of vertical field

MRI-turbulence in both physical and Fourier space and examined, in particu-

lar, anisotropic spectra of the magnetic energy and Maxwell stress during the

linear growth stage of the channel solutions and after saturation, but not the

action of the linear and nonlinear terms governing their evolution.

This Chapter is organized as follows. The physical model and deriva-

tion of dynamical equations in Fourier space is given in Section 5.2. The linear

nonmodal growth of MRI with a net vertical field is analyzed in Section 5.3.

Numerical simulations of the ensuing MRI-turbulence and its general charac-

teristics, such as time-development, energy spectra and the classification of

dynamically active modes are given in Section 5.4. In this section we also give

the main analysis of the individual dynamics of the active modes and their in-

terdependence in Fourier space that underlie the dynamics of the turbulence.

Conclusions are given in Section 5.5.
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5.2 Physical model and basic equations

We use a shearing box model to investigate the essence of MHD tur-

bulence driven by the classical MRI in Keplerian disks. The shearing box

represents a local Cartesian coordinate frame centered at a fiducial point that

co-rotates with the disk at angular velocity Ω (Hawley et al., 1995). In this

frame, we consider the flow of an incompressible conducting fluid with con-

stant kinematic viscosity ν, thermal diffusivity χ and Ohmic resistivity η. The

flow is thermally stratified in the vertical direction. Adopting the Boussinesq

approximation for the vertical stratification (Balbus & Hawley, 1991; Lesur &

Ogilvie, 2010), the basic equations of non-ideal MHD become

∂U

∂t
+(U·∇)U = −1

ρ
∇P+

(B · ∇) B

4πρ
−2Ω×U+2qΩ2xex−ΛN2θ ez+ν∇2U,

(5.1)

∂θ

∂t
+ U · ∇θ =

uz
Λ

+ χ∇2θ, (5.2)

∂B

∂t
= ∇× (U×B) + η∇2B, (5.3)

∇ ·U = 0, (5.4)

∇ ·B = 0, (5.5)

where ex, ey, ez are the unit vectors along the cartesian coordinates (x, y, z),

respectively, in the radial, azimuthal and vertical directions, ρ is the density,

U is the velocity, B is the magnetic field, P is the total pressure, equal to the

sum of the thermal and magnetic pressures, θ ≡ δρ/ρ is the perturbation of

the density logarithm, or entropy. The shear parameter q = −d ln Ω/d ln r is
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set to q = 3/2 for a Keplerian disk. N2 is the Brunt-Väisälä frequency squared

that controls the stratification in the Boussinesq approximation. The effects

of thermal stratification are taken into account here in a simple manner, that

is, N2 is assumed to be positive and spatially constant, equal to 0.25Ω2, in

the considered stably stratified local model along the z-axis (Lesur & Ogilvie,

2010). We define a stratification length Λ ≡ g/N2, where g is the vertical

component of the gravity. This length cancels out from the main equations if

we normalize the density logarithm by Λθ → θ, which is used henceforth.

Equations (5.1)-(5.5) have a stationary equilibrium solution – an az-

imuthal flow along the y-direction with linear shear of velocity in the the

radial x-direction, U0 = −qΩxey, with the total pressure P0, density ρ0 and

threaded by a vertical uniform magnetic field, B0 = B0zez, B0z = const > 0.

Consider now perturbations of the velocity, total pressure and magnetic field

about the equilibrium, u = U − U0, p = P − P0,b = B − B0. Substitut-

ing them into Equations (5.1)-(5.5) and rearranging the nonlinear terms with

the help of divergence-free conditions (5.4) and (5.5), we arrive at the system

(C.1)-(C.9) governing the dynamics of perturbations with arbitrary amplitude

that is given in Appendix C. These equations form the basis for our numerical

simulations below to get a complete data set of the perturbation evolution in

the turbulent state.

We normalize the variables by taking Ω−1 as the unit of time, the disk

thickness H as the unit of length, ΩH as the unit of the velocity, ΩH
√

4πρ0

as the unit of the magnetic field and ρ0Ω2H2 as the unit of the pressure and
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energy. Viscosity, thermal diffusivity and resistivity are measured, respectively,

by the Reynolds number, Re, Péclet number, Pe, and magnetic Reynolds

number, Rm, which are defined as

Re =
ΩH2

ν
, Pe =

ΩH2

χ
, Rm =

ΩH2

η
,

which are taken to be equal Re = Pe = Rm = 3000 (i.e., the magnetic Prandtl

number Pm = Rm/Re = 1). The strength of the background uniform vertical

magnetic field is measured by the parameter β = 2Ω2H2/v2
A, which we fix

to β = 103, where vA = B0z/(4πρ0)1/2 is the corresponding Alfvén speed.

In the incompressible case, this parameter is a proxy of the usual plasma β

parameter, since sound speed in thin disks is cs ∼ ΩH (Longaretti & Lesur,

2010). In this non-dimensional units, the mean field is B0z =
√

2/β = 0.0447.

We carry out numerical simulations of the main Equations (C.1)-(C.9)

using the publicly available pseudo-spectral code SNOOPY (Lesur & Lon-

garetti, 2007). It is a general-purpose code, solving HD and MHD equations

with various physical effects, such as shear, rotation, stratification, etc. The

code is based on a spectral implementation of the shearing box model with

the standard boundary conditions: periodic in the y- and z-directions, but

shear-periodic in the x-direction. Fourier transforms are computed using the

FFTW library, taking also into account the drift of modes in k-space for con-

sistency with these boundary conditions. Nonlinear terms are computed using

a pseudo-spectral algorithm (Canuto et al., 1988), and antialiasing is enforced

using the 2/3-rule. Time-integration is done by a third-order Runge-Kutta
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scheme, except for viscous and resistive terms, which are integrated using an

implicit scheme. The code has been extensively used in the shearing box stud-

ies of disk turbulence (e.g., Lesur & Ogilvie, 2010; Longaretti & Lesur, 2010;

Lesur & Longaretti, 2011; Herault et al., 2011; Meheut et al., 2015; Murphy

& Pessah, 2015).

Our numerical box has sizes (Lx, Ly, Lz) = (4, 4, 1) (in units of H)

and resolutions (Nx, Ny, Nz) = (256, 256, 128), respectively, in the x, y, z-

directions. This chosen aspect ratio of the box is most preferable, as it is

itself isotropic in the (x, y)-plane and avoids “numerical deformation” of the

generic anisotropic dynamics of MRI-turbulence. (Such a numerical deforma-

tion at different aspect ratios, Ly/Lx, is analyzed in detail in Gogichaishvili

et al. (2017) for disk flows with a net azimuthal field). Boxes with the same

aspect ratio was adopted also in other related studies of a net nonzero vertical

field MRI-turbulence (Bodo et al., 2008; Longaretti & Lesur, 2010; Lesur &

Longaretti, 2011; Bai & Stone, 2014; Meheut et al., 2015) to diminish the re-

current bursts of the channel mode, however, as we show below, they still play

an important role in the turbulence dynamics even in this extended box. The

initial conditions consist of small amplitude random noise perturbations of ve-

locity on top of the Keplerian shear flow. A subsequent evolution was followed

up to tf = 700 (about 111 orbits). The data accumulated from the simula-

tions, in fact, represents complete information about the MRI-turbulence in

the considered flow system. We analyze this data in Fourier (k-) space in order

to grasp the interplay of linear and nonlinear processes underlying the turbu-
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lence dynamics. Obtaining the simulation data is just the first, preparatory

stage of the main part of our study that focuses on the dynamics in Fourier

space. This second stage involves derivation of evolution equations for phys-

ical quantities (for the amplitudes of velocity and magnetic field) in Fourier

space and subsequent analysis of the right hand side terms of these spectral

dynamical equations.

5.2.1 Equations in Fourier space

We start the analysis of the spectral dynamics by decomposing the

perturbations f ≡ (u, p, θ,b) into spatial Fourier harmonics/modes

f(r, t) =

∫
f̄(k, t) exp (ik · r) d3k (5.6)

where f̄ ≡ (ū, p̄, θ̄, b̄) denotes the corresponding Fourier transforms. The

derivation of spectral equations of perturbations is a technical task and pre-

sented in Appendix C: substituting decomposition (5.6) into perturbation

Equations (C.1)-(C.9), we obtain the evolution equations for the spectral ve-

locity (Equations C.25-C.27), logarithmic density (entropy, Equation C.13)

and magnetic field (Equations C.14-C.16). Below we give the final set of the

equations for the quadratic forms of these quantities in Fourier space. Mul-

tiplying Equations (C.25)-(C.27), respectively, by ū∗x, ū
∗
y, ū

∗
z, and adding up

with their complex conjugates, we obtain

∂

∂t

|ūx|2

2
= −qky

∂

∂kx

|ūx|2

2
+Hx + I(uθ)

x + I(ub)
x +D(u)

x +N (u)
x , (5.7)

∂

∂t

|ūy|2

2
= −qky

∂

∂kx

|ūy|2

2
+Hy + I(uθ)

y + I(ub)
y +D(u)

y +N (u)
y , (5.8)
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∂

∂t

|ūz|2

2
= −qky

∂

∂kx

|ūz|2

2
+Hz + I(uθ)

z + I(ub)
z +D(u)

z +N (u)
z , (5.9)

where the terms of linear origin are

Hx =

(
1− k2

x

k2

)
(ūxū

∗
y + ū∗xūy) + 2(1− q)kxky

k2
|ūx|2, (5.10)

Hy =
1

2

[
q − 2− 2(q − 1)

k2
y

k2

]
(ūxū

∗
y + ū∗xūy)− 2

kxky
k2
|ūy|2 (5.11)

Hz = (1− q)kykz
k2

(ūxū
∗
z + ū∗xūz)−

kxkz
k2

(ūyū
∗
z + ū∗yūz), (5.12)

I(uθ)
i = N2

(
kikz
k2
− δiz

)
θ̄ū∗i + θ̄∗ūi

2
, (5.13)

I(ub)
i =

i

2
kzB0z(ū

∗
i b̄i − ūib̄∗i ), (5.14)

D(u)
i = − k

2

Re
|ūi|2, (5.15)

and the modified nonlinear transfer functions for the quadratic forms of the

velocity components are

N (u)
i =

1

2
(ūiQ

∗
i + ū∗iQi). (5.16)

Here the index i = x, y, z henceforth, δiz is the Kronecker delta and Qi (given

by Equation C.28) describes the nonlinear transfers via triad interactions for

the spectral velocities ūi in Equations (C.25)-(C.27). It is readily shown that

the sum of Hi is equal to the Reynolds stress spectrum multiplied by the shear

parameter q, H = Hx +Hy +Hz = q(ūxū
∗
y + ū∗xūy)/2.

Next, multiplying Equation (C.13) by θ̄∗ and adding up with its com-

plex conjugate, we get

∂

∂t

|θ̄|2

2
= −qky

∂

∂kx

|θ̄|2

2
+ I(θu) +D(θ) +N (θ), (5.17)
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where the terms of linear origin are

I(θu) =
1

2
(ūz θ̄

∗ + ū∗z θ̄), (5.18)

D(θ) = − k
2

Pe
|θ̄|2 (5.19)

and the modified nonlinear transfer function for the quadratic form of the

entropy is

N (θ) =
i

2
θ̄∗(kxN

(θ)
x + kyN

(θ)
y + kzN

(θ)
z ) + c.c., (5.20)

where N
(θ)
i (given by Equation C.20) describes the nonlinear transfers for the

entropy θ̄ in Equation (C.13).

Finally, multiplying Equations (C.14)-(C.16), respectively, by b̄∗x, b̄
∗
y, b̄
∗
z,

and adding up with their complex conjugates, we obtain

∂

∂t

|b̄x|2

2
= −qky

∂

∂kx

|b̄x|2

2
+ I(bu)

x +D(b)
x +N (b)

x (5.21)

∂

∂t

|b̄y|2

2
= −qky

∂

∂kx

|b̄y|2

2
+M+ I(bu)

y +D(b)
y +N (b)

y (5.22)

∂

∂t

|b̄z|2

2
= −qky

∂

∂kx

|b̄z|2

2
+ I(bu)

z +D(b)
z +N (b)

z , (5.23)

where M is the Maxwell stress spectrum multiplied by q,

M = −q
2

(b̄xb̄
∗
y + b̄∗xb̄y), (5.24)

I(bu)
i = −I(ub)

i =
i

2
kzB0z(ūib̄

∗
i − ū∗i b̄i) (5.25)

D(b)
i = − k2

Rm
|b̄i|2 (5.26)
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and the modified nonlinear terms for the quadratic forms of the magnetic field

components are

N (b)
x =

i

2
b̄∗x[kyF̄z − kzF̄y] + c.c., (5.27)

N (b)
y =

i

2
b̄∗y[kzF̄x − kxF̄z] + c.c., (5.28)

N (b)
z =

i

2
b̄∗z[kxF̄y − kyF̄x] + c.c., (5.29)

where F̄x, F̄y, F̄z (given by Equations C.21-C.23) are the fourier transforms of

the respective components of the perturbed electromotive force and describe

nonlinear transfers for the spectral magnetic field components in Equations

(C.14)-(C.16).

Our analysis is based on Equations (5.7)-(5.9), (5.17) and (5.21)-(5.23),

which describe the processes of linear [Hi(k, t), I(uθ)
i (k, t), I(θu)(k, t), I(ub)

i (k, t),

I(bu)
i (k, t), M(k, t)] and nonlinear [N (u)

i (k, t), N (θ)(k, t), N (b)
i (k, t)) origin.

D(u)
i (k, t), D(θ)(k, t), D(b)

i (k, t) describe, respectively, the effects of viscous,

thermal and resistive dissipation as a function of wavenumber and are neg-

ative definite. These basic dynamical equations in Fourier space and, hence

the above terms, formally coincide with the corresponding ones in the case

of a net azimuthal magnetic field derived in Chapter 4 (Equations 4.11-4.17),

which also gives the description/meaning of each dynamical term in these

spectral equations. The only difference is in the kinetic-magnetic cross terms

I(ub)
i (k, t) = −I(bu)

i (k, t), however, this difference drastically changes the dy-

namical processes. This cross terms describe, respectively, the influence of the

i-component of the magnetic field (b̄i) on the same component of the velocity

183



(ūi) and vice versa for each mode. These terms are of linear origin and in the

present case with vertical magnetic field, I(ub)
i (k, t) ∝ kzB0z, while in the case

with azimuthal magnetic field, I(ub)
i (k, t) ∝ kyB0y. Consequently, in the pres-

ence of vertical field, this mutual influence is nonzero for axisymmetric (with

ky = 0) modes, which are not sheared by the flow, leading to their exponential

growth, i.e., to the classical MRI. As discussed in Introduction, in the given

magnetized disk shear flow, in addition to this exponential growth, which dom-

inates in fact at large times, there exists shear-induced linear nonmodal growth

of non-axisymmetric (with ky 6= 0) as well as axisymmetric modes themselves,

which dominates instead at finite (dynamical) times (Mamatsashvili et al.,

2013; Squire & Bhattacharjee, 2014). Assessment of relative roles of the ax-

isymmetric and non-axisymmetric modes in the vertical field MRI problem is

a key question of our study. We note in advance that despite the transient

nature of the nonmodal growth, it is not of secondary importance in the main-

tenance of the turbulence and in forming its spectral characteristics. In the

case of azimuthal magnetic field, the course of events is somewhat different:

the cross terms for axisymmetric modes vanish that leads to the disappear-

ance of the classical MRI and the only source of energy for the turbulence

maintenance remains linear transient growth of non-axisymmetric modes (see

also Balbus & Hawley, 1992; Papaloizou & Terquem, 1997; Brandenburg &

Dintrans, 2006).

Although our analysis is based on the above dynamical equations for

quadratic forms of physical quantities in Fourier space, for completeness, as in
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Simon et al. (2009); Lesur & Longaretti (2011); Gogichaishvili et al. (2017), we

also present equation for the normalized spectral kinetic energy of modes/harmonics,

EK = (|ūx|2 + |ūy|2 + |ūz|2)/2:

∂EK
∂t

= −qky
∂EK
∂kx

+HE + I(uθ)
E + I(ub)

E +D(u)
E +N (u)

E , (5.30)

which is obtained by summing of Equations (5.7)-(5.9). Right hand side terms

of the above equation is the sum of the related terms:

HE =
∑
i

Hi = q(ūxū
∗
y + ū∗xūy)/2,

I(uθ)
E =

∑
i

I(uθ)
i , I(ub)

E =
∑
i

I(ub)
i ,

D(u)
E =

∑
i

D(u)
i = −2k2

Re
EK , N (u)

E =
∑
i

N (u)
i .

Similarly, we can get equation for the normalized spectral magnetic energy of

modes, EM = (|b̄x|2 + |b̄y|2 + |b̄z|2)/2, by summing Equations (5.21)-(5.23),

∂EM
∂t

= −qky
∂EM
∂kx

+M+ I(bu)
E +D(b)

E +N (b)
E , (5.31)

where

M = −q(b̄xb̄∗y + b̄∗xb̄y)/2, I(bu)
E =

∑
i

I(bu)
i = −I(ub)

E ,

D(b)
E =

∑
i

D(b)
i = − 2k2

Rm
EM , N (b)

E =
∑
i

N (b)
i .

The equation of the normalized thermal energy of modes, Eth = N2|θ|2/2, is

straightforward to derive by multiplying Equation (5.17) just by N2. We do

not give it here, as the thermal energy is always small compared to the kinetic

and magnetic energies (see below).
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One can easily write also the equation for the total normalized spectral

energy of modes, E = EK + Eth + EM ,

∂E
∂t

= −qky
∂E
∂kx

+HE +M+D(u)
E +N2D(th) +D(b)

E +N (u)
E +N2N (θ) +N (b)

E .

(5.32)

In the simulation box, wavenumbers are inherently discrete, with the

smallest wavenumbers being defined by the box size Li as ki,min = 2π/Li

and the largest one by the resolution ki,max = 2πNi/3Li (taking into account

the 2/3-rule used in pseudo-spectral codes), while other wavenumbers being

multiples of ki,min, where the index i = x, y, z. For convenience, we nor-

malize wavenumbers by the grid cell sizes of Fourier space, ∆ki = 2π/Li,

that is, ki/∆ki → ki. As a result, the normalized azimuthal and vertical

wavenumbers are integers ky, kz = 0,±1,±2, ..., while kx changes with time

due to drift (Hawley et al., 1995) and is integer only at discrete moments

tn = nLy/(q|ky|Lx), where n is a positive integer.

5.3 Linear dynamics – optimal nonmodal growth

Before embarking on the nonlinear study, we first outline the character-

istic features of the linear dynamics of nonzero vertical flux MRI based on the

linearized set of spectral Equations (C.10-C.18). As distinct from the related

linear studies with classical modal treatment (e.g., Balbus & Hawley, 1991;

Lesur & Longaretti, 2007; Pessah & Chan, 2008; Longaretti & Lesur, 2010),

the main goal of our linear analysis is to quantify the nonmodal growth of
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axisymmetric and non-axisymmetric modes during dynamical (characteristic

nonlinear, of the order of orbital) time and thereby to identify dynamically ac-

tive modes which have the highest influence on the balances in the turbulence.

These energy-carrying active modes naturally form the vital area in Fourier

space, i.e., the region of wavenumbers where most of the energy supply from

the basic flow to perturbation modes occurs. It is this nonmodal physics of the

MRI, taking place at finite times, that is more relevant for turbulence dynam-

ics and its energy supply process, because they have characteristic timescales

of the order of orbital time (see also Squire & Bhattacharjee, 2014). Following

Chapter 4, where is done a similar nonmodal analysis for the azimuthal field

MRI, here for this purpose we also use the nonmodal approach combined with

the formalism of optimal perturbations (Farrell & Ioannou, 1996; Schmid &

Henningson, 2001; Zhuravlev & Razdoburdin, 2014). This approach is more

general than the modal one, capturing the evolution of perturbation modes

at all times, from intermediate (dynamical) times, when nonnormality/shear-

induced nonmodal effects (growth) dominate, to large times when modal (ex-

ponential) MRI growth of axisymmetric modes prevails. The optimal per-

turbations yield maximum, or optimal nonmodal growth during finite times

and therefore are responsible for most of the energy extraction from the back-

ground flow. This analysis is useful in nonlinear simulations for understanding

energy supply processes and balances in the turbulence.

In the shearing box, the radial wavenumber of each non-axisymmetric

mode (shearing wave) changes linearly with time, kx(t) = kx(0) + qΩkyt, due
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Figure 5.1: Optimal nonmodal growth factor, G, in (kx, ky)-plane at td = 1.33
and different kz = 0, 1, 2, 3 calculated with the linearized version of the main
Equations (C.1)-(C.9). The superimposed black dots represent discrete modes
contained in the simulation box. The chosen box size (4, 4, 1) ensures that the
vital area of wavenumbers, where the most effective nonmodal growth occurs
(red and yellow), is sufficiently densely populated with the modes contained
in the simulation box.
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Figure 5.2: The upper panel shows the nonmodal growth factor, Gm (solid
line), of the axisymmetric and radially uniform (kx = ky = 0) modes vs. kz
at td = 1.33 together with the modal growth factor of the energy, exp(2γtd)
(dashed line), of these modes for the same time. Here γ is the corresponding
modal (exponential) growth rate at kx = ky = 0 and the same values of
β,Re,Rm, which is plotted in the lower panel vs. kz. In both panels, kz is in
units of 2π and dots indicate the growth factors and growth rate at discrete
kz = 1, 2, 3, ... present in the box.
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to the shear, but is constant for axisymmetric modes, kx(t) = kx(0). The max-

imum possible amplification of the total energy, E , for a mode with wavenum-

bers (kx(0), ky, kz) by a specific time td is given by

G(td) = max
f̄(0)

E(td)

E(0)
, (5.33)

where the maximum is taken over all initial conditions f̄(0) with a given to-

tal energy E(0). The final state at td with the energy E(td) are found from

the initial state at t = 0 by solving the linearized evolution equations. Then,

expression (5.33) is usually calculated by means of the singular value decom-

position of the propagator, which transfers the initial state into final one (see

Farrell & Ioannou, 1996; Schmid & Henningson, 2001, for details). The cor-

responding initial conditions, leading to this highest growth at td are called

optimal perturbations. The reference time, td, during which to calculate the

nonmodal growth, is usually of the order of the orbital time. For definiteness,

here we take it equal to the characteristic (e-folding) time of the most unsta-

ble MRI mode in the ideal case, td = 1/γmax = 1.33 (in units of Ω−1), where

γmax = 0.75Ω is its growth rate (Balbus & Hawley, 1991), since it is effectively

of the order of the dynamical time as well.

Figure 5.1 shows the optimal nonmodal growth factor G in (kx, ky)-

plane at different vertical wavenumbers kz = 0, 1, 2, 3 and the dynamical time

td = 1.33. It is represented as a function of the final wavenumber kx(td) =

kx(0) + qkytd, which an optimal mode with some initial radial wavenumber

kx(0) has at time td. Although the maximum of the nonmodal amplifica-

tion in (kx, ky)-plane, Gm, at fixed kz, comes at axisymmetric modes with
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kx = ky = 0, there is a broad range of non-axisymmetric modes achieving

comparable growth (red and yellow areas). These regions are inclined towards

the kx-axis due to the shear. At kz = 0, the linear magnetic and velocity

perturbations are decoupled: there are two separate amplification regions, the

right corresponding to magnetic perturbations and the left to kinetic ones,

both with growth factors smaller than that at kz = 1. This maximum non-

modal growth, Gm, as a function of kz is shown in Figure 5.2. For the sake of

comparison, this figure also shows the modal (exponential) growth rate, γ, of

these horizontally uniform kz = ky = 0 modes, which are known to exhibit the

fastest growth also in the modal theory of MRI (e.g., Pessah & Chan, 2008)1,

and the corresponding modal growth factor at td, exp(2γtd), as a function

of kz for the same values of β,Re,Rm. It is evident that the nonmodal and

modal growths exhibit different dependencies on kz: Gm achieves a maximum

at around kz = 1 and decreases with increasing kz, whereas γ and the related

modal growth factor reaches a maximum near kz = 3 and decrease at small

and large kz. Note also in the upper panel of Figure 5.2 that the nonmodal

growth is always larger than the modal one at all kz, especially at the dynam-

ically active small kz = 0, 1. We will see below that the axisymmetric mode

kx = ky = 0, kz = 1, which exhibits the largest nonmodal amplification and is

referred to as the channel mode, is in fact the most active participant in the

nonlinear (turbulence) dynamics as well. Of course, in the turbulent state,

1Here, this growth rate has been found by solving a standard dispersion relation of non-
ideal MRI with viscosity and Ohmic resistivity (see e.g., Pessah & Chan, 2008; Longaretti
& Lesur, 2010).
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the nonlinear terms qualitatively modify the dynamical picture, resulting in

a somewhat different behavior with kz (see e.g., Figure 5.4), still the linear

analysis presented here gives a preliminary feeling/insight into process of the

energy exchange with the basic flow and, most importantly, vividly shows

substantial influence of the disk flow nonnormality on the growth factors of

spectrally/modally unstable modes.

We stress that the nonmodal growth phenomenon – mathematically

the nonnormality (non-self-adjointness) of linear evolution operators – is in-

herently caused by shear and, according to the above calculations, is significant

for both non-axisymmetric and axisymmetric (channel) modes in MRI-active

disks with a net vertical field. Specifically, the channel modes, which are

stronger in this case, grow purely exponentially only at asymptotically large

times, whereas their growth during finite/dynamical time is governed by non-

modal physics and can have growth factors larger than the modal one during

these times (Figure 5.2). In the case of (net vertical flux) MRI-turbulence,

the characteristic timescales of dynamical processes are evidently of the order

of orbital/shear time (Walker et al., 2016). Therefore, it is necessary to take

into account nonmodal effects on the channel mode dynamics and not rely

solely on its modal growth in order to properly understand saturation and

energy balance processes of the turbulence. This point regarding the impor-

tance of nonmodal physics in the dynamics of (axisymmetric) modes in MRI-

turbulence was also emphasized by Squire & Bhattacharjee (2014). So, it is

important that simulation box sufficiently well encompasses these nonmodally
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most amplified modes for a complete representation of the dynamical picture.

In the simulation box, however, the wavenumber spectrum is inherently dis-

crete, with smallest wavenumbers being defined by the box size (Lx, Ly, Lz)

as ki,min = 2π/Li, with other wavenumbers being multiples of them. These

discrete modes contained in the adopted box (4, 4, 1) are shown as black dots

superimposed on the map of G in Figure 5.1. It is seen that they sufficiently

densely cover the yellow and red areas of efficient nonmodal growth. There-

fore, the box (4, 4, 1) can well account for the nonmodal effects in the energy

exchange processes in the case of turbulence, which, in turn, justifies its choice.

5.4 Numerical simulations and characteristic features
of the turbulence

Random small perturbations imposed at the beginning on the flow start

to grow mainly as a result of the nonmodal mechanism, which later contin-

ues into the exponential growth. Consequently, after several orbits, the flow

settles into a fully developed MHD turbulence that persists till the end of the

run. Figure 5.3 shows the evolution of the volume-averaged perturbed kinetic,

〈EK〉, thermal, 〈Eth〉, and magnetic, 〈EM〉, energy densities as well as the

Reynolds, 〈uxuy〉, and Maxwell −〈bxby〉 stresses. In this figure, we also show

the rms of the turbulent velocity and magnetic field components as a function

of time. The magnetic energy is on average larger than the kinetic one by a

factor of about 2 and both dominate the thermal energy, while the Maxwell

stress is about 5.5 times larger than the Reynolds one. The azimuthal compo-
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Figure 5.3: Evolution of volume-averaged Reynolds and Maxwell stresses (top
row), kinetic, thermal and magnetic energy densities (second row), rms of
velocity (third row) and magnetic field (bottom row) components. After sev-
eral orbits, sustained turbulence sets in, characterized by recurrent bursts of
these quantities all along the evolution, as is characteristic for vertical field
MRI-turbulence. Magnetic energy is on average about twice larger than the
kinetic one and both dominate the thermal energy, while the Maxwell stress
dominates the Reynolds one on average by a factor of 5.5. The azimuthal
components of the turbulent velocity and magnetic field are larger due to the
shear and exhibit more pronounced bursts with peaks higher than those for
the respective other two components. For reference, dashed line in the bottom
panel corresponds to the background vertical field B0z = 0.0447.

194



−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

k
z

 

 

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9
−0.02

0

0.02

0.04

0.06

0.08

0.1

k
z

 

 

ÊM

ÊK
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Figure 5.4: Integrated in (kx, ky)-plane time-averaged kinetic, ÊK , magnetic,

ÊM , and thermal, Êth, spectral energy densities (upper panel) as well as spectral
Reynolds, Ĥ, and Maxwell, M̂, stresses (lower panel) as a function of kz.

nents of the velocity and magnetic field are always larger than the other two

respective ones due to shear; the imposed vertical field is dominated by the

turbulent magnetic field with the time-averaged rms values 〈b2
x〉1/2 = 8B0z,

〈b2
y〉1/2 = 16B0z, 〈b2

z〉1/2 = 4.9B0z. As seen in Figure 5.3, the main characteris-

tic feature of the temporal evolution of all these volume-averaged quantities is

a burst-like behavior with intermittent peaks and quiescent intervals, as is typ-

ical of MRI-turbulence in disks with a net vertical field (Lesur & Longaretti,

2007; Bodo et al., 2008; Longaretti & Lesur, 2010; Murphy & Pessah, 2015).

The peaks are most pronounced/intensive in the azimuthal velocity and mag-

netic field, inducing corresponding peaks in the magnetic energy and Maxwell

stress. As a result, these bursts yield enhanced rates of angular momentum
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transport. On a closer examination, one can notice that the peaks in the rms

of uz and bz follow just after the respective stronger peaks in the rms of uy

and by (see also Murphy & Pessah, 2015). We show below that these bursts

are in fact closely related to the manifestations of the dynamics of two modes:

– the channel mode with wavenumber kc = (0, 0,±1), which is horizontally

uniform varying only on the largest z-vertical scale in the domain, and

– the zonal flow mode with wavenumber kzf = (±1, 0, 0) varying only on the

largest x-radial scale in the domain.

Namely, the burst-like growth of the channel mode due to MRI amplifies x-

and, especially, y-components of velocity and magnetic field (the channel mode

itself does not have the z-components of these quantities). In turn, its non-

linear interaction with other dynamically active non-axisymmetric modes (re-

ferred to as parasitic modes in the literature) shortly afterwards gives rise to

the peaks of the z-components of these quantities. Below we show that this

nonlinear interaction is mainly manifested as the transverse cascade in k-space.

The role of the channel mode and hence the intensity of bursts depend

on the box aspect ratio Lx/Lz, being more pronounced when the aspect ra-

tio is around unity, but becoming weaker as it increases (Bodo et al., 2008).

Nevertheless, as we demonstrate in this Chapter, the channel mode is a key

participant in the dynamics of a net vertical field MRI-turbulence. In partic-

ular, the adopted here box (4, 4, 1) would exhibit only relatively weak bursts

according to Bodo et al. (2008), while as we found here, the amplification

of the channel mode can nevertheless influence the behavior of other active
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modes and ultimately the total stress and energy.

5.4.1 Energy spectra

Figure 5.4 shows the spectra of the kinetic, magnetic and thermal ener-

gies as well as the Reynolds and Maxwell stresses integrated in (kx, ky)-plane,

ÊK,M,th(kz) =
∫
EK,M,thdkxdky and (Ĥ(kz),M̂(kz)) =

∫
(H,M)dkxdky as a

function of kz, which have been averaged over time from t = 100 till t = 650

in the fully developed turbulent state. At all kz, the spectral magnetic energy

is larger than the kinetic one except at kz = 0, where they are comparable,

and both dominate the spectral thermal energy, while the spectral Maxwell

stress is larger than the Reynolds one. The maximum of the magnetic energy

as well as both stresses comes at |kz| = 1, corresponding to the channel mode

kc = (0, 0, 1). Thus, most of magnetic and kinetic energy injection due to the

stresses takes place at small |kz| rather than at |kz| = 3 that corresponds to

the most unstable axisymmetric mode of MRI in the modal approach (lower

panel of Figure 5.2). This is consistent with the above linear nonmodal growth

calculations, which have demonstrated how the nonnormality eliminates the

dominance of the |kz| = 3 mode in preference to lower kz modes during finite

times (Figures 5.1 and 5.2). This result supports again the statement made

above that the nonmodal growth over short, dynamical/orbital time is more

relevant for energy exchange processes in the turbulence. A maximum of the

kinetic energy spectrum is at kz = 0 and is a bit higher than the magnetic

energy at this kz. It corresponds to the axisymmetric zonal flow mode with
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Figure 5.5: Slices of the logarithmic 3D spectra of the kinetic, log10EK (upper
row), and magnetic, log10EM (lower row), energies in (kx, ky)-plane at kz =
0, 1, 2. Both spectra are strongly anisotropic due to the shear with similar
overall shape and inclination towards kx-axis. The maximum of the kinetic
energy spectrum comes at the zonal flow mode kzf = (±1, 0, 0), while that of
the magnetic energy spectrum at the channel mode kc = (0, 0,±1).

kzf = (±1, 0, 0). Thus, the large-scale modes with the first few kz contain

most of the energy and hence play a dynamically important role.

Having examined the dependence of the energy and stress spectra on

the vertical wavenumber, we now present in Figure 5.5 slices of the 3D spectra

of the kinetic, EK , and magnetic, EM , energies in (kx, ky)-plane at first three

vertical wavenumbers kz = 0, 1, 2, for which these energies are relatively high

(see Figure 5.4). Both spectra are highly anisotropic due to the shear with a

similar overall elliptical shape and inclination towards the kx-axis at these kz.

This inclination implies that for a given ky, trailing waves (kx/ky > 0) have
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larger power than leading (kx/ky < 0) ones. We checked that this spectral

anisotropy in fact extends to larger wavenumbers, up to dissipation scale. The

maximum of the kinetic energy spectrum comes at the wavenumber kzf =

(±1, 0, 0) of the zonal flow mode, while that of the magnetic energy spectrum at

the channel mode wavenumber kc = (0, 0,±1). These spectra also demonstrate

that there is a broad range of trailing non-axisymmetric modes (red areas) with

energies, on average, comparable to that of the channel mode and hence taking

an active part in the turbulence dynamics (see also Longaretti & Lesur, 2010).

A more detailed analysis of the relative roles and dynamics of the channel,

zonal flow and other (non-axisymmetric) modes is made below. Although not

shown here, the slices of the 3D spectrum of the Maxwell stress in (kx, ky)-plane

have a similar shape and type of anisotropy as the magnetic energy spectrum

in Figure 5.5. Similar anisotropic energy spectra were already reported in

the shearing box simulations of MRI-turbulence with a nonzero net vertical

field (Hawley et al., 1995; Lesur & Longaretti, 2011; Murphy & Pessah, 2015).

These spectra, which clearly differ from a typical turbulent spectrum in the

classical case of forced MHD turbulence without shear (Biskamp, 2003), arise

as a consequence of a specific anisotropy of the linear and nonlinear terms of

Equations (5.30) and (5.31) in k-space in the presence of the shear.

5.4.2 Active modes in k-space

The dynamically important modes with most effective amplification

have been identified above based on the optimal nonmodal growth calculations
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Figure 5.6: Distribution of the active modes in k-space at kz = 0, 1 computed
separately for the kinetic [panels (a) and (b)] and magnetic [panels (c) and
(d)] components. The color dots in these panels represent the modes whose
spectral kinetic (magnetic) energy reaches more than 50% of the maximum
value of the kinetic EK,max (magnetic EM,max) energy at the same time. The
colors indicate the fraction of time each mode maintains this higher energy
compared to the entire duration of the turbulence in the simulation. The zonal
flow mode kzf = (±1, 0, 0) and the channel mode kc = (0, 0,±1) [denoted by
bigger red dots, respectively, in panels (a) and (d)] clearly stand out against
other modes, as they retain, respectively, higher kinetic and magnetic energies
most of the time. 200



(Figure 5.1), i.e., on the analysis of the linear dynamics. However, the overall

dynamical picture of the turbulence is formed as a result of the refined interplay

of linear and nonlinear processes. So, it is reasonable to introduce the notion

of active modes in k-space – energy-carrying modes playing a major role in

the dynamics – separately for the kinetic and magnetic components. The

active kinetic (magnetic) modes are labeled those modes whose spectral kinetic

(magnetic) energy grows more than 50% of the maximum spectral kinetic

energy EK,max (magnetic energy EM,max) at the same time. Both types of active

modes in Fourier space at kz = 0, 1 are shown in Figure 5.6 with color dots.

They are obtained by following the evolution of all the modes in the box during

the whole simulation and selecting out those modes whose kinetic or magnetic

energy becomes higher than the above threshold. The color of each mode

indicates the fraction of the total evolution time tf during which it retains

this higher energy. These dynamically active modes, with different “periods

of activity”, are distributed anisotropically in (kx, ky)-plane and concentrated

in the region of small wavenumbers, |kx| ≤ 6, |ky| ≤ 2, of k-space, constituting

the so-called vital area of the turbulence. In this area, the most powerful

dynamical processes are concentrated that define the strength and statistical

characteristics of the turbulence. There are two – the channel kc and the

zonal flow kzf – modes (bigger red dots, respectively, in panels (a) and (d)

of Figure 5.6) that clearly stand out against other modes, as they retain,

respectively, higher magnetic (the channel mode) and kinetic (the zonal flow

mode) energies most of the time. As a result, these two modes play a key
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role in shaping the turbulence dynamics and deserve a more detailed separate

analysis, which is given in the following subsections. Apart from the channel

and zonal flow modes, there are a sufficient number other active modes (blue

dots in Figure 5.6) that individually are not so significant, since they retain

the higher kinetic or magnetic energies for much less a time than the channel

and zonal flow modes. However, the combined action of the multitude of these

modes is competitive to the channel and zonal flow modes. We label them as

the rest modes and devoted to them a subsection 5.4.5 below. The other modes

with larger wavenumbers, including those with |kz| ≥ 2 (not shown in Figure

5.6), lie outside the vital area and always carry energies and stresses smaller

than 50% of the maximum value (or even much less). Therefore, they do not

play as much a role in the energy-exchange process between the background

flow and turbulence.

5.4.3 The channel mode

We have seen above that the channel mode – the harmonic with wavenum-

ber kc = (0, 0,±1) that is uniform in the horizontal (x, y)-plane and has

the largest vertical wavelength (correspondingly, the smallest wavenumber,

kz = ±1) in the domain – is a key participant in the turbulence dynamics.

It carries higher energy most of the time in the turbulent state among other

active modes in the vital area and corresponds to the maximum of the spectral

magnetic energy and stresses in Fourier space at each moment (see Figure 5.9

below). So, first we analyze the dynamics of this mode and then move to the
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Figure 5.7: Evolution of the main spectral amplitudes of the magnetic field,
|b̄x(kc)|, |b̄y(kc)|, and velocity, |ūx(kc)|, |ūy(kc)|, of the channel mode with
kc = (0, 0,±1) as well as the corresponding time-histories of the linear –
stresses, M(kc), H(kc), and exchange, I(ub)(kc), I(bu)(kc) – and nonlinear,
N (u)(kc), N (b)(kc), terms, which govern the dynamics of this mode. The
channel mode is supported by the linear processes – the action of the stresses
and the linear exchange terms describe its amplification due to MRI, while the
nonlinear terms mostly oppose this growth, resulting in the recurrent bursts
in the evolution of the magnetic field and velocity. |b̄x| and |b̄y| are amplified,

respectively, by I(bu)
x and M, as they are always positive, and then drained,

respectively, by the nonlinear terms N (b)
x and N (b)

y , which are always negative,
transferring energy to other wavenumbers and components (see Figures 5.10
and 5.12). Consequently, the negative peaks of these terms a bit lag the
corresponding peaks of the linear terms. This azimuthal field component is also
drained to a lesser degree by I(bu)

y , giving its energy to |ūy|. |ūx| is amplified by

positive Hx and drained by negative N (u)
x and, to a lesser degree, by I(ub)

x – the
peaks of the latter two sink terms lag those of the linear source term Hx. |ūy|
is amplified by I(ub)

y and drained by always negative Hy. N (u)
y alternates sign,

as distinct from the other nonlinear terms, providing for |ūy| either source,
when positive, or sink, when negative. The influence of the nonlinear terms is
maximal at the peaks of |b̄x(kc)| and |b̄y(kc)| – they halt the MRI-growth and
lead to a fast drain of the channel mode over a few orbital times.
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zonal flow and the rest modes.

Figure 5.7 shows the evolution of the main spectral amplitudes of the

magnetic field, |b̄x(kc)|, |b̄y(kc)|, and velocity, |ūx(kc)|, |ūy(kc)| of the channel

mode. Also plotted are the time-histories of the corresponding linear – stresses,

M(kc), H(kc) and exchange I(ub)(kc), I(bu)(kc) – and nonlinear, N (u)(kc),

N (b)(kc), terms in the above spectral Equations (5.7)-(5.8) and (5.21)-(5.22),

which govern the dynamics of this mode. The action of the stresses M(kc),

H(kc) and exchange terms, I(ub)(kc), I(bu)(kc) describe together the (non-

modal) effect of MRI on the channel mode and are mainly responsible for its

amplification. The action of the nonlinear terms, N (u)(kc), N (b)(kc), describe,

in turn, interaction of the channel mode with other active modes with different

wavenumbers and components (this process is covered in detail in subsection

5.4.6, see also Figures 5.10 and 5.12 below). These linear and nonlinear terms

jointly determine the temporal evolution of the channel mode’s velocity and

magnetic field with characteristic recurrent bursts seen in Figure 5.7. It is clear

from this figure that the typical variation, or dynamical time of the nonlinear

terms is indeed of the order of the orbital time, indicating again that the non-

modal physics of MRI is more relevant in the state of developed turbulence.

Analysis of these terms allows us to understand nuances of the channel mode

dynamics and ultimately the behavior of the total stress and the energy (Fig-

ure 5.3), because, as we will see below (subsection 5.4.5), the channel mode

bursts manifest themselves in the time-development of the volume-averaged

magnetic energy and the Maxwell stress. These terms operate differently for
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velocity and magnetic fields.

Let us first consider the magnetic field components in Figure 5.7. |b̄x|

and |b̄y| are amplified, respectively, by I(bu)
x and M, as they are always pos-

itive, and then drained, respectively, by the nonlinear terms N (b)
x and N (b)

y ,

which are always negative, transferring energy to other wavenumbers and com-

ponents. Consequently, the negative peaks of these nonlinear terms a bit lag

the corresponding peaks of the linear terms. This azimuthal field, which is

a dominant field component in the channel mode, is also drained to a lesser

degree by the negative exchange term I(bu)
y , transferring its energy to |ūy|. As

for the velocity components, |ūx| is amplified by positive Hx, then drained

mostly by N (u)
x , which is always negative and, to a lesser degree, by also neg-

ative I(ub)
x – the peaks of the latter two sink terms lag corresponding peaks of

the linear source term Hx. Finally, |ūy| is mostly amplified by I(ub)
y , taking

energy from |b̄y|, and is drained by always negative Hy. N (u)
y acts differently

from the above nonlinear terms – it alternates sign, providing for |ūy| either

source, when positive, or sink, when negative. So, other modes via nonlinear

interaction occasionally reinforce the growth of the channel mode’s azimuthal

velocity, which is primarily due to MRI and is represented by the exchange

term I(ub)
y which is always positive.

In conclusion, the channel mode is supported by the linear – nonmodal

MRI growth – processes, while nonlinear processes mostly oppose this growth.

The effect of the nonlinear terms is maximal during the peaks of |b̄x(kc)| and

|b̄y(kc)| – they halt the growth and lead to a fast drain of the channel mode en-
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ergy, redistributing this energy to other modes. Thus, in a strict self-consistent

approach of the net vertical field MRI-turbulence, this redistribution of the

channel mode energy to other modes is actually due to the nonlinear processes

(in the form of the transverse cascade, Figures 5.10 and 5.12). However, in

previous studies, the channel mode has been considered, for simplicity, not

as a variable/perturbation mode itself, but as a part of the basic/stationary

dynamics (see e.g., Goodman & Xu, 1994; Pessah & Goodman, 2009; Latter

et al., 2009; Pessah, 2010). In those analysis, the redistribution of the channel

mode energy to other modes is classified as a linear process – called parasitic

instability – and these modes (parasites, in our terms “the rest modes”), which

feed on the channel mode, are assumed to have smaller amplitudes than that

of the latter. This simplified approach definitely gives a good feeling of the

broadening of perturbation spectrum at the expense of the channel mode. At

the same time, this simplification might somewhat suffer from inaccuracy in

the case of the developed turbulence, since the channel mode, on the contrary,

is not stationary and consists of a chaotically repeated processes of bursts and

subsequent drains – chaotic are both the values of the peaks as well as time

intervals between them.

5.4.4 The zonal flow mode

The second mode that also plays an important role in the turbulence

dynamics is the zonal flow mode – the harmonic with wavenumber kzf =

(±1, 0, 0) that is independent of the azimuthal and vertical coordinates (i.e.,
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Figure 5.8: Evolution of the azimuthal magnetic field, b̄y(kzf ), and velocity,
ūy(kzf ), components of the zonal flow mode with kzf = (±1, 0, 0) as well as the

corresponding nonlinear terms N (b)
y (kzf ), N (u,kin)

y (kzf ), N (u,mag)
y (kzf ), which

drive this mode. The azimuthal velocity ūy is dominant in this mode. It is

produced by the magnetic part N (u,mag)
y , as it is mostly positive, and drained

by the hydrodynamic part N (u,kin)
y , which is always negative.

is axisymmetric and vertically uniform) and has the largest radial wavelength

(correspondingly, the smallest wavenumber, kx = ±1) in the domain. Exci-

tation of zonal flows in MRI-turbulence with zero and nonzero net vertical

magnetic flux was previously observed by Johansen et al. (2009); Bai & Stone

(2014); Simon & Armitage (2014), however, its dynamics was usually ana-

lyzed based on the simplified models. Here we trace the zonal flow evolution

in Fourier space self-consistently, without invoking such models, by examining

its governing dynamical terms in the main spectral equations directly from the

simulation data.
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We have seen in Figure 5.6 that in the turbulent state the zonal flow

mode carries higher kinetic energy most of the time among other active modes

and corresponds to the maximum of the spectral kinetic energy in Fourier

space (see Figure 5.9 below). However, this mode does not contribute to

the spectral Reynolds and Maxwell stresses, because its radial velocity and

magnetic field components are identically zero, ūx(kzf ) = b̄x(kzf ) = 0, due

to incompressibility (C.17) and divergence-free (C.18) conditions. Besides,

we checked that the vertical velocity, ūz(kzf ), and magnetic field, b̄z(kzf ),

components are also much smaller than the respective azimuthal ones. So, in

Figure 5.8 we present only the evolution of the dominant spectral amplitudes

of the azimuthal magnetic field, |b̄y(kzf )|, and velocity, |ūy(kzf )|, of the zonal

flow mode. |uy(kzf )| is characterized by noticeably longer timescale (tens

of orbits) variations, i.e., this mode indeed forms a slowly varying in time

axisymmetric zonal flow in physical space, while |by(kzf )| together with longer

timescale variations also exhibits shorter timescale changes. It is readily seen

that the linear – stresses and exchange – terms are identically zero for the zonal

flow mode in governing Equations (5.8) and (5.22), Hy(kzf ) = M(kzf ) =

0, I(ub)
y (kzf ) = I(uθ)

y (kzf ) = 0. Thus, the linear processes (i.e., MRI) do

not affect this mode. Therefore, it can be supported only by the nonlinear

terms N (u)
y ,N (b)

y . Since ūy is the dominant component in this mode, we look

more into its nonlinear term in order to pin down a mechanism of zonal flow

generation. This term consists of the magnetic, N (u,mag)
y , and hydrodynamic,
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N (u,kin)
y , contributions,

N (u)
y = N (u,mag)

y +N (u,kin)
y , (5.34)

which for kzf = (±1, 0, 0), have the following forms:

N (u,mag)
y (kzf ) =

i

2
ū∗y(kzf )

∫
d3k′b̄y(k

′)b̄x(kzf − k′) + c.c.,

with the integrand composed of the turbulent magnetic stresses and

N (u,kin)
y (kzf ) = − i

2
ū∗y(kzf )

∫
d3k′ūy(k

′)ūx(kzf − k′) + c.c.,

with the integrand composed of the turbulent hydrodynamic stresses. The

time-histories of these hydrodynamic and magnetic nonlinear parts as well as

N (b)
y are also shown in Figure 5.8. It is seen that N (b)

y (kzf ) changes sign,

acting for |b̄y| as a source, when positive, and as a sink, when negative. On

the other hand, the magnetic part is positive most of the time, producing and

amplifying |ūy|. Thus, the zonal flow is supported by N (u,mag)
y (kzf ), which

physically describes the effect of the total azimuthal magnetic tension exerted

by all the rest modes on the large-scale kzf mode. This important role of the

small-scale magnetic perturbations in launching and maintaining the zonal

flow is consistent with the findings of Johansen et al. (2009). By contrast, the

hydrodynamic part N (u,kin)
y (kzf ), describing the effect of the total azimuthal

hydrodynamic tension exerted by all other modes on the zonal flow mode, is

always negative and drains |ūy|. As a result, its peaks a bit lag the peaks of

the magnetic part, which initiates the growth of the azimuthal velocity.
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Figure 5.9: The left panel shows the evolution of the total magnetic energy,
〈EM〉 (dashed blue), the magnetic energy of the channel mode, EM,c (red), the
total magnetic energy of the rest modes, EM,r ≈ 〈EM〉 − EM,c (green) and the
maximum value of the spectral magnetic energy, EM,max (dashed black), which
always coincides with the energy of the channel mode. The right panel shows
the evolution of the total kinetic energy, 〈EK〉 (dashed blue), the kinetic energy
of the channel mode, EK,c (red), and of the zonal flow mode, EK,zf (cyan) the
total kinetic energy of the rest modes, EK,r ≈ 〈EK〉 − EK,c − EK,zf (green)
and the maximum value of the spectral kinetic energy, EK,max (dashed black),
which always coincides with either the kinetic energy of the channel mode or
the zonal flow mode, whichever is larger in a given time. It is also seen that the
peaks of the magnetic (kinetic) energy of the rest modes tend to mainly follow
the respective peaks of the magnetic (kinetic) energy of the channel mode,
because, this mode nonlinearly transfers energy to the rest modes (Figure
5.10), causing their subsequent amplification (peak). Note also that often the
zonal flow energy increases when the channel mode energy decreases and vice
versa.
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5.4.5 The rest modes

So far we have identified and described two – the channel and zonal

flow – modes that are the main participants of the dynamical processes. In

addition to these modes, as classified in subsection 5.4.2, there are a sufficient

number of active modes in the system (blue dots in Figure 5.6), which are not

individually significant, but collectively have sufficiently large kinetic and mag-

netic energies - more than channel or/and zonal flow modes. Consequently,

the combined influence of these modes on the overall dynamics of the turbu-

lence becomes important. This set of active modes has been labeled as the

rest modes, which, as mentioned above, are also called parasitic modes in the

studies of net vertical field MRI-turbulence. As we checked, the contribution

of other larger wavenumber modes, whose kinetic (magnetic) energy always

remains less than 50% of the maximum spectral kinetic (magnetic) energy, in

the energy balances is small compared to that of these three main types of

modes and therefore is neglected below.2 Figure 5.9 allows us to compare the

total magnetic, EM,r (left panel), and kinetic, EK,r (right panel), energies of

the rest modes with the corresponding energies of the channel and zonal flow

modes at different stages of the evolution. The magnetic energy of the zonal

flow mode, EM,zf = EM(−kzf ) + EM(kzf ) ≈ 0, is small compared to that of

the channel and the rest modes and is not shown in the left plot. In this case,

the total volume-averaged magnetic energy is approximately the sum of the

2For this reason, in this subsection, these energy balances are written with approximate
equality sign.
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magnetic energies of the channel mode, EM,c = EM(−kc) + EM(kc), and the

rest modes, 〈EM〉 ≈ EM,c + EM,r (neglecting the very small contribution from

the zonal flow mode), whereas in the total kinetic energy, all the three types

of modes contribute: 〈EK〉 ≈ EK,c+EK,zf +EK,r with EK,c = EK(−kc)+EK(kc)

and EK,zf = EK(−kzf ) +EK(kzf ) being the kinetic energies of the channel and

zonal flow modes, respectively. In Figure 5.9, EM,max and EK,max are, respec-

tively, the maximum values of the spectral magnetic and kinetic energies3. The

left panel shows that this maximum value of the magnetic energy falls on the

channel mode, i.e., EM,max = EM,c, during an entire course of the evolution. In

other words, the channel mode is always magnetically the strongest among all

the active rest modes, although the total magnetic energy of the latter modes

dominates the magnetic energy of the channel mode, EM,r > EM,c, especially

in the quiescent intervals between the bursts, when the magnetic energy of

the channel mode is relatively low. This points to the importance of the rest

modes in the turbulence dynamics. Despite this dominance, however, it is seen

in the left panel of Figure 5.9 that the peaks of the rest modes’ magnetic en-

ergy always occur shortly after the corresponding peaks of the channel mode’s

magnetic energy, indicating that the former increases, or is driven by the latter

(see subsection 5.4.6). Thus, the typical burst-like behavior of the nonzero the

net vertical field MRI-turbulence is closely related to the manifestation of the

channel mode dynamics.

3Actually, Figure 5.9 shows these maximum energies with factor 2 to match the definition
of the channel and zonal flow mode energies.
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The role of the rest modes is also seen in the evolution of the kinetic

energies in the right panel of Figure 5.9. As is in the case of the magnetic

energy, the contribution of the total kinetic energy of the rest modes, EK,r,

in the volume-averaged total kinetic energy is always dominant. The kinetic

energy of the zonal flow mode, EK,zf , is comparable to the kinetic energy of

the rest modes only occasionally, while the contribution of the kinetic energy

of the channel mode, EK,c, in the overall balance of the total kinetic energy is

even less. However, also in this case, the maximum value of the spectral kinetic

energy, EK,max, always coincides with either the kinetic energy of the channel

mode or the zonal flow mode, whichever is larger at a given moment. Moreover,

on a closer inspection of the kinetic energy curves, it appears that the peaks

of the total kinetic energy of the rest modes in fact tends to mainly follow the

corresponding peaks of the channel mode, because, as demonstrated in the next

subsection, this mode transfers energy to the rest modes via the nonlinear

transfers, causing their subsequent amplification. Note also that often the

zonal flow energy increases and has a peak when the channel mode energy

decreases and has a minimum, that is, the zonal flow tends to grow when the

channel mode is at its minimum and vice versa. This anti-correlation between

the zonal flow and magnetic activity, which was also reported in Johansen

et al. (2009), is further explored in Fourier space in the next subsection.
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5.4.6 Interdependence of the channel, zonal flow and rest modes

So far we have separately described the dynamics of the main – the

channel, the zonal flow and the rest modes. Now we move to the analysis of

their interlaced dynamics in Fourier space, which determines the properties

and balances of MRI-turbulence with net vertical magnetic field. First of all

it is a characteristic burst-like behavior of the volume-averaged energies and

stresses (Figures 5.3), which is related to the manifestations of these modes’

activity and nonlinear interaction. As was discussed in subsection 5.4.3, the

short bursts of the channel mode arise as a result of the competition between

the linear nonmodal MRI-amplification and nonlinear redistribution of the

channel mode’s energy in k-space.

Each such burst event starts with the linear amplification, which ini-

tially overwhelms the nonlinear redistribution to other modes and therefore the

energy of the channel mode increases. At the same time, the effect of the non-

linear terms on the channel mode, described by N (b)(kc),N (u)(kc), increases

as well, as it gradually loses its energy to the rest modes due to nonlinear

transfers. At a certain amplitude of the channel mode, these nonlinear terms

become comparable to the linear ones responsible for MRI, halt the further

growth of the channel mode and start its fast drain (Figure 5.7).

This moment, corresponding to the peak, is a critical stage in the chan-

nel mode’s evolution and therefore it is important to examine in more detail

how nonlinear processes redistribute/transfer the energy of the channel mode

in Fourier space. For this purpose, we present the map of the nonlinear transfer
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Figure 5.10: Spectra of the nonlinear transfer terms in (kx, ky)-plane at kz =
0(left), 1(middle), 2(right) at around t = 294, when the channel mode energy

has a peak. At kz = 1 the nonlinear transfer terms N (b)
x , N (b)

y , N (u)
x strongly

peak near kx = ky = 0 and are negative, while N (u)
y has a positive peak at

kx = ±1, ky = 0, but is negative for the channel mode. So, all these nonlinear
terms act as a sink for the channel mode at its highest point, transferring its
energy to a wide spectrum of the rest modes at kz = 0 and higher |kz| > 1;
however, the zonal flow does not receive energy in this process. The yellow
and red areas in each plot show exactly which modes receive energy and hence
are being excited at this time due to the nonlinear transfers as a result of the
decline of the channel mode. This set of modes belong to the class of the rest
modes, as discussed in the text. For kz = 0, 2 shown here, these transfers are
notably anisotropic due to shear, i.e., depend on the polar angle of wavevector,
being mainly concentrated in the first and third quadrants of (kx, ky)-plane and
are a consequence of the transverse cascade process.
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Figure 5.11: The nonlinear transfer term N (u)
y in (kx, ky)-plane at kz = 0, 1,

when the channel mode energy is at the minimum, i.e., at the end (“bottom”)
of the burst at there different moments, t = 296, 311, 383. This term is positive
at the wavenumber of the zonal flow mode, kzf , but negative at the wavenum-

ber of the channel mode, kc, at all these moments. Hence, N (u)
y at the end

of the channel mode burst acts as the source for the zonal flow mode. Thus,
the formation of the zonal flow mode starts after the end of the channel mode
burst.

terms in (kx, ky)-plane at kz = 0, 1, 2 at two key stages of the burst dynamics

– first when the channel mode energy has a peak (Figure 5.10) and when its

energy is at a minimum (Figure 5.11). The nonlinear redistribution quite dif-

fer from each other at these “top” and “bottom” points of the channel mode

bursts. In both moments they are notably anisotropic due to the shear, i.e.,

depend on a wavenumber polar angle, being preferably concentrated in the

first and third quadrants, and thus realize the transverse cascade of the modes

in Fourier space. Figure 5.10, corresponding to the “top” in the vicinity of the

moment t = 294 of the highest magnetic energy peak of the channel mode,

shows strong negative peaks of the nonlinear transfer terms N (b)
x , N (b)

y , N (u)
x
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Figure 5.12: Time-averaged nonlinear term N (b)
x in (kx, ky)-plane at kz =

0(left), 1(middle), 2(right). As in a single instant shown in Figure 5.10, the
action of this term is highly anisotropic due to the shear, i.e., strongly depend
on the wavevector polar angle. However, this time-averaged distribution is
much smoother than its instantaneous counterpart and clearly shows transfer
of modes over wavevector angles, that is, the transverse cascade of |b̄x|2 from

the blue regions, where N (b)
x < 0 and acts as a sink for it, to the red and

yellow regions, where N (b)
x > 0 and acts as a source/production. In light green

regions, these terms are small, although, as we checked, preserve the same
anisotropic shape. As in Figure 5.10, at kz = 1, N (b)

x peaks again at kx =
ky = 0, implying that also in the time-averaged sense, the dominant nonlinear
process at kz = 1 is draining of the channel mode energy and transferring it
to the rest modes with other kz (mainly kz = 0, 1).

for the channel mode (i.e., at kx = ky = 0, kz = 1), as the nonlinearity leads

its fast drain at this moment. The red and yellow areas in this figure represent

the subset of the rest modes, mostly with kz = 0, 2, which receive energy via

nonlinear transfers at this moment of the channel mode’s peak activity. Note

that at this time, the nonlinearity transfers the channel mode energy not to

the zonal flow mode (since N (u)
y (kzf ) < 0 at this moment), but to the rest

modes. In other words, the rest modes can be considered as the main “cul-

prits/parasites” in the decline of the channel mode in the developed turbulent

state. The action of the above nonlinear terms in Fourier space during other

peaks of the channel mode are qualitatively similar to that given in Figure 5.10
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at around t = 294, however, concretely which modes, from the total set of the

rest modes, receive energy is, of course, different for each burst. Thus, this

unifying approach – the analysis of the dynamics and the nonlinear transfer

functions in Fourier space – enables us to self-consistently describe the inter-

action between the channel and the rest (parasitic) modes when the standard

assumptions in the usual treatment of these modes (Goodman & Xu, 1994;

Pessah & Goodman, 2009) break down: the amplitudes of these two mode

types become comparable, so that one can no longer separate the channel as a

primary background and parasites as small perturbations on top of that. Over-

all, the rest (parasitic) modes play a major role in the channel mode decline.

After each its burst, the transverse cascade determines a specific spectrum of

the parasitic modes in the turbulent state, which mostly gain energy as a result

of draining the channel mode.

Quite differently acts the nonlinearity at the “bottom” point when the

channel mode is at its minimum. In this case, the main effect is the production

of the zonal flow mode, so that in Figure 5.11 we show only the nonlinear

transfer term for the azimuthal velocity, N (u)
y , at the end (“bottom”) of the

channel burst at there different moments. It is seen that this term is positive

at the wavenumber of the zonal flow mode, kzf , at all there moments (red dots

at kx = ±1, ky = 0 on the plots with kz = 0), acting as the source for the zonal

flow mode. As a result, the formation of the zonal flow mode starts after the

end of the channel mode burst. For the channel mode wavenumber kc, N (u)
y is

negative at these moments, acting as a sink. As for the other nonlinear terms
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at the “bottom” points (not shown here), they look qualitatively similar to

those in Figure 5.10, except that they no longer have a prominent negative

peak at kc, since the rest and the zonal flow modes dominate instead in the

dynamics at these times.

We have seen from Figures 5.10 and 5.11 that the shear-induced anisotropy

of nonlinear transfers in Fourier space lie at the basis of the balances of dynam-

ical processes in vertical field MRI-turbulence. In particular, they determine

the drain of the channel mode and the resulting anisotropic spectrum of the

rest modes which gain energy from the channel mode after each peak. However,

the snapshots of the spectral dynamics of the modes shown in these figures,

being at separate moments, are still irregular, somewhat obscuring this generic

spectral anisotropy of the MRI-turbulence due to the shear. They convey only

a short-time behavior of the turbulence. The spectral anisotropy of MRI-

turbulence with a net vertical field was demonstrated by Hawley et al. (1995);

Lesur & Longaretti (2011) and recently in more detail by Murphy & Pessah

(2015), who, however, characterized only the anisotropic spectra of the mag-

netic energy and Maxwell stress in k-space, but not the nonlinear processes.

This inherent anisotropic character of the dynamical process of shear flows in

Fourier space is best identified and described by considering a long-term evo-

lution of the turbulence, i.e., by averaging the spectral quantities over time, as

was done in the above studies. Such an averaging in the present case with a

net vertical field indeed shows the dominance of the nonlinear transverse cas-

cade, i.e., the angular (i.e., over wavevector angles) redistribution of the power
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in Fourier space in the overall dynamical balances (nonlinear interactions) be-

tween the channel and the rest modes, which is a main process underlying the

turbulence. Previously, Lesur & Longaretti (2011) also investigated the non-

linear transfers in a net vertical field MRI-turbulence, however, they applied,

together with time-averaging, also shell-averaging of the linear and nonlinear

dynamical terms in k-space that naturally smears out the spectral anisotropy

and hence the transverse cascade.

We demonstrate the anisotropic nature of the nonlinear transfers on

longer time-scale on the example of the radial component of the magnetic field,

for which it is most apparent. Figure 5.12 shows the corresponding nonlinear

term N (b)
x in (kx, ky)-plane at different kz = 0, 1, 2 averaged in time from

t = 100 till t = 650. Like in a single instant shown in Figure 5.10, the action

of this term is highly anisotropic in its dependence on the azimuthal angle in

(kx, ky)-plane due to the shear. However, this time-averaged distribution is

much smoother than its instantaneous counterpart and clearly shows transfer

of modes over wavevector angles, i.e., the transverse cascade of |b̄x|2 from

the blue regions, where N (b)
x < 0 and acts as a sink for it, to the red and

yellow regions, where N (b)
x > 0 and acts as a source/production. In light green

regions (outside the vital area) these terms are small, although preserve the

same anisotropic shape. As in Figure 5.10, at kz = 1, N (b)
x has a pronounced

negative peak again at kx = ky = 0 in Figure 5.12, implying that in this time-

averaged sense too the dominant nonlinear process at kz = 1 is draining of

the channel mode energy. This energy is transferred transversely to the rest
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modes with other kz (mainly kz = 0, 1) and a range of kx, ky indicated by

the red and yellow areas in Figure 5.12 where N (b)
x > 0. Since time-averaging

procedure spans the whole duration of the turbulence in the simulations, these

smooth regions in fact enclose all the rest modes ever excited during the entire

evolution.

5.4.7 On the effect of stratification

It is well-known from simulations of zero net flux MRI-turbulence that

vertical stratification favors notable dynamo action in magnetized disks, where

a large-scale azimuthal magnetic field is generated and exhibits a “butterfly”

diagram – regular

quasi-periodic spatio-temporal oscillations (reversals) (e.g., Branden-

burg et al., 1995; Johansen et al., 2009; Davis et al., 2010; Gressel, 2010; Shi

et al., 2010; Simon et al., 2011; Bodo et al., 2012, 2014; Gressel & Pessah,

2015). By contrast, although large-scale azimuthal field generation can still

take place in unstratified zero net flux MRI-turbulence in vertically sufficiently

extended boxes, the spatio-temporal variation of this field is still more inco-

herent/irregular in the form of wandering patches (Lesur & Ogilvie, 2008; Shi

et al., 2016). A detailed physical mechanism of how stratification brings about

such an organization of the magnetic field is not fully understood and requires

further studies. This is an important topical question, as it closely bears on

the convergence problem in zero net flux MRI-turbulence simulations in strat-

ified and unstratified shearing boxes, which is currently under debate (see e.g.,
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Figure 5.13: Space-time diagram of the azimuthal field averaged in the horizon-
tal (x, y)-plane, 〈by〉, in the unstratified N2 = 0 (top) and stratified N2 = 0.25
(bottom) boxes. In contrast to the unstratified case, the stratification results
in a remarkable organization of the average azimuthal field, which is dominated
by the kz = ±1 modes, into a relatively coherent pattern in the (t, z)-plane
with a regular phase variation. Each box has been stacked with identical boxes
from top and bottom to simplify perception of this pattern.
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Bodo et al., 2014; Shi et al., 2016; Ryan et al., 2017, and references therein).

Despite the fact that the present problem, containing a nonzero net vertical

flux, differs from the case of zero net flux usually considered in the context of

MRI-dynamo, here we also observe a notable spatio-temporal organization of

the large-scale azimuthal field in the turbulent state (see below). Somewhat

analogous an ordered cyclic behavior of the horizontally averaged azimuthal

magnetic field was found previously in MRI-turbulence with a net vertical

magnetic flux in the shearing box, but with more complex isothermal vertical

stratification (Bai & Stone, 2013; Fromang et al., 2013; Simon et al., 2013;

Salvesen et al., 2016).

The considered here disk flow configuration is based on the Boussi-

nesq approximation, where vertical stratification enters the governing per-

turbation Equations (C.25)-(C.27) in a simpler manner than in the above

studies – through buoyancy-induced terms, proportional to the vertically uni-

form Brunt-Väisälä frequency squared, N2. Still, this simplification has an

advantage in that one could simply put only N2 to zero in these dynamical

equations without altering other parameters and equilibrium configuration of

the system. This allows us to directly compare to the unstratified case and

more conveniently isolate the basic role of stratification in the dynamo action.

In the linear regime, stratification has only a little influence on the dynamics

of vertical field MRI (Mamatsashvili et al., 2013). Moreover, it is easily seen

that the effect of stratification identically vanishes for the most effectively am-

plified channel mode with kx = ky = 0, whose azimuthal field, equal to the
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Figure 5.14: Evolution of the volume-averaged rms of by and Maxwell stress
multiplied by q, q〈−bxby〉, in the stratified fiducial run at N2 = 0.25 (blue)
and unstratified N2 = 0 run (green). In the presence of stratification, both
these quantities are larger and exhibit more pronounced burst-like behavior
compared to those in the unstratified case.
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averaged in the horizontal (x, y)-plane total azimuthal field, in fact constitutes

the large-scale dynamo field. So, the effect of stratification on the dynamo ac-

tion is solely attributable to nonlinearity, which modifies the electromotive

force.

Figure 5.13 shows the space-time diagrams of the horizontally averaged

azimuthal magnetic field, 〈by〉, in the stratified fiducial case with N2 = 0.25 as

used in the Chapter and unstratified, N2 = 0, case for the same other param-

eters. It is clearly seen that stratification causes a remarkable organization of

the azimuthal field into a coherent wave-like pattern in contrast to the unstrat-

ified case. In both cases, however, this horizontally averaged field is dominated

by the kz = ±1 harmonics,4 i.e., it is associated with the dominant channel

mode analyzed above, but its phase variation with t and z in the stratified

case is much more regular than that in the unstratified one. The amplitude

of this averaged azimuthal field is about an order of magnitude larger than

that of the background vertical field B0z. Figure 5.14 shows that the rms of

the azimuthal field and the volume-averaged Maxwell stress in the stratified

case are larger, with stronger/higher and more frequent bursts, than those in

the unstratified case. Clearly, the space-time diagram shown in Figure 5.13

in the stratified case with periodic vertical boundary conditions differs from

a typical “butterfly” observed in the case of isothermal stratification in the

4The magnetic field of the large-scale modes kx = ky = 0, kz = ±1 gives the dominant
contribution to the horizontally averaged dynamo field and therefore is a central focus of
study in the zero net flux MRI-dynamo problem (see e.g., Lesur & Ogilvie, 2008; Davis
et al., 2010; Herault et al., 2011; Shi et al., 2016; Riols et al., 2017).
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above mentioned studies. This difference can be attributable to the different

nature of the buoyancy term and vertical boundary conditions used, which

jointly cause elevation of the azimuthal flux from the midplane. Neverthe-

less, this comparison clearly demonstrates the capability of stratification to

order/regularize the spatio-temporal variation of the mean azimuthal field –

the main field component in accretion disk dynamo. Here, we have presented

only a primary manifestation of the effect of stratification in the net vertical

field MRI-turbulence. In its own right, it is a subject of a detailed and refined

investigation.

5.5 Conclusion

In this Chapter, we investigated the dynamical balances underlying

MRI-driven magnetohydrodynamic turbulence in Keplerian disks with a nonzero

net vertical magnetic field and vertically uniform thermal stratification using

shearing box simulations. Focusing on the analysis of the turbulence dynamics

in Fourier (k-) space, we identified three key types of modes – the channel,

the zonal flow mode and the rest modes – that are the main “players” in the

turbulence dynamics. We described the dynamics of these modes separately

and then their interdependence, which sets the properties of the nonzero net

vertical field MRI-turbulence. The processes of linear origin are defined pri-

marily by nonmodal, rather than modal, growth of MRI due to disk flow

nonnormality/shear. This is because the dynamical time of the turbulence is

of the order of the orbital/shear time during which the nonmodal effects are
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important. In the turbulent state, higher values of the stresses and magnetic

energy fall just on those active modes that exhibit the largest nonmodal MRI

growth and not on the modally (exponentially) most unstable modes. In other

words, the properties of the turbulence are determined mostly by nonmodal

physics of MRI rather than by the modal one. From all the active modes, the

one that exhibits the maximum nonmodal growth is the channel mode, which

is horizontally uniform with the largest vertical scale in the domain. As for

the nonlinear processes, it can be confidently stated that the decisive agent

in forming and maintaining the statistical characteristics of the net vertical

field MRI-turbulence is the nonlinear transverse cascade – redistribution of

modes over wavevector angles in Fourier space by nonlinear transfers – aris-

ing from the presence of the shear and hence being a generic phenomenon

in shear flows. Specifically, the nonlinear transverse cascade redistributes the

energy of the channel mode, which is nonmodally most amplified one, to the

rest modes and, subsequently, the energy of the rest modes to the zonal flow

mode. (One has to note that the rest modes receive energy not only due to

the nonlinear transfers, but they also undergo nonmodal MRI growth, how-

ever, less than the channel mode does). The combined action of these linear

and nonlinear processes leads to the channel mode exhibiting recurrent bursts

of the energy and stresses. The nonlinear transfer of its energy to the rest

modes causes the decline of the channel mode after each burst and subsequent

abrupt increase of the energy of the rest modes. This, in turn, induces similar,

burst-like evolution of the integral characteristics of the turbulence – the total
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volume-averaged energies and stresses.

The rest modes here, playing the main role in draining the channel

mode, were referred to as parasitic modes in previous studies of net vertical

field MRI. However, there is an important distinction. These parasitic modes

are often assumed to be small compared with the channel mode and are treated

as linear perturbations imposed on the latter (Goodman & Xu, 1994; Pessah &

Goodman, 2009; Latter et al., 2009, 2010; Pessah, 2010). Besides, the effect of

shear and hence the nonmodal physics are neglected with respect to parasitic

modes. In the turbulent state, however, the rest modes can reach energies

comparable to the channel mode, as has been demonstrated in this Chapter, so

one can no longer separate the channel as a primary background and parasites

as small perturbations on top of that. As a result, the complex interaction

between these two mode types belongs to the domain of nonlinearity. Our

general/unifying approach – the analysis of the dynamics in 3D Fourier space

– allows us to self-consistently characterize this mode interaction. In this

case, the transverse cascade defines the spectrum of the rest modes, which

precipitate the decline of the channel mode after each burst.

As we found in this study, the net vertical field MRI-turbulence is ro-

bust and, in addition, multifarious – determined by the interdependent/interlaced

dynamics of three qualitatively different modes. Consequently, in order to

properly quantify the relative contribution of each of these modes in the tur-

bulence characteristics, one has to capture the main aspects of their dynamics

in numerical simulations. First of all, this concerns the selection of relevant
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sizes (aspect ratio) of the simulation box (which is actually arbitrary in the

shearing box framework) and resolutions, so that the discrete modes in the

selected box densely enough cover the vital area in (kx, ky)-plane and maxi-

mally comprise effectively growing (optimal) modes (see Figure 5.1). Besides,

one should also avoid artificial/numerical anisotropyzation of nonlinear pro-

cesses. As was shown in Chapter 4, the anisotropy of the simulation box in

(kx, ky)-plane introduces artificial anisotropy of nonlinear processes and some-

what “deforms” the overall dynamical picture of MRI-turbulence in Fourier

space. In the present case, this artificial deformation could result in a change of

the relative importance of the above-classified modes in the overall dynamics,

for instance, could reduce the effectiveness of the channel mode compared to

other modes and hence weaken its manifestation in the turbulence dynamics

(see e.g., Bodo et al., 2008). In particular, changing the role of the large-scale

channel mode likely affects the generation of the mean azimuthal magnetic

field, or the dynamo action, since this field is directly associated with this

mode. Susceptibility of the latter to specific factors of the dynamics is clearly

shown in Figure 5.13: although the vertical stratification makes only negligible

contribution to the turbulence energy, it remarkably enhances the generation

of the mean azimuthal magnetic field and regularizes its spatiotemporal char-

acteristics. The latter process is significant and represents the subject of a

special detailed investigation.
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Chapter 6

Conclusions and future work

In this thesis two key phenomena in MHD shear flows are investigated

– the flows nonnormality induced linear transient dynamics/growth of pertur-

bations and nonlinear transverse cascade – and their refined interplay ensuring

onset and self-sustenance of turbulence. Nonuniform/shear flows are univer-

sally non-normal and, consequently, the flow’s nonnormality induced linear

transient dynamics of perturbations is inevitable. At the same time, the linear

transient dynamics being anisotropic in spectral space directly results in the

anisotropic nature of nonlinear processes. This circumstance gives birth to a

new type of nonlinear cascade – nonlinear transverse cascade – which is fun-

damentally different from the known nonlinear anisotropic cascades. Overall,

the nonnormality induced linear and nonlinear phenomena are inevitable in

shear flows and essentially determine perturbations dynamics - “the fate of

these flows”. Here one should note again, that shear flows are ubiquitous both

in nature and laboratory. They occur in atmospheres, oceans, solar winds,

stars, astrophysical disks, pipe flows, tokamak reactors, etc. Complex dynam-

ics of these systems is, in many respects, a consequence of their nonuniform

kinematics. In the end, investigated in this thesis phenomena have quite wide

range of applications.

230



Performed investigations have natural extensions to other configura-

tions of astrophysical/Keplerian disks. Specifically, the study of:

– Sustenance of zero-net flux MRI-turbulence and dynamo action both in un-

stratified and stratified cases,

– MRI turbulence in the presence of compressibility – generation of density

waves by magnetic perturbations.

All these are certainly relevant to the understanding of subcritical tur-

bulence in other sheared engineering flows and complex environments such

as MHD winds, geophysical magnetic fields, fusion plasma etc. First of all we

would like to emphasize the perspective of the extension of the performed inves-

tigations to fusion plasma, specifically – to sheared mean E×B plasma fusion

flows. Point is that the importance of nonmodal physics and the formed by

the hydrodynamic community in 1990s trend have been successfully adopted in

atmospheric flow and astrophysical disk flow researches. However, up to now,

the trend has limited impact on the plasma and magnetic fusion communities.

Filling this gap looks productive, moreover, – it seems necessary.
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Appendix A

Perturbation equations in physical and Fourier

space in Keplerian disks with an azimuthal

magnetic field (Chapter 4)

Equations governing the evolution of the velocity, total pressure and

magnetic field perturbations, u, p,b, about the equilibrium Keplerian flow

U0 = (0,−qΩx, 0) with net azimuthal field B0 = (0, B0y, 0) are obtained from

the basic Equations (5.1)-(5.5) and componentwise have the form:

Dux
Dt

= 2Ωuy−
1

ρ0

∂p

∂x
+
B0y

4πρ0

∂bx
∂y

+
∂

∂x

(
b2
x

4πρ0

− u2
x

)
+
∂

∂y

(
bxby
4πρ0

− uxuy
)

+

+
∂

∂z

(
bxbz
4πρ0

− uxuz
)

+ ν∇2ux, (A.1)

Duy
Dt

= (q−2)Ωux−
1

ρ0

∂p

∂y
+
B0y

4πρ0

∂by
∂y

+
∂

∂x

(
bxby
4πρ0

− uxuy
)

+
∂

∂y

(
b2
y

4πρ0

− u2
y

)
+

+
∂

∂z

(
bzby
4πρ0

− uzuy
)

+ ν∇2uy (A.2)

Duz
Dt

= − 1

ρ0

∂p

∂z
−N2θ+

B0y

4πρ0

∂bz
∂y

+
∂

∂x

(
bxbz
4πρ0

− uxuz
)

+
∂

∂y

(
bybz
4πρ0

− uyuz
)

+

+
∂

∂z

(
b2
z

4πρ0

− u2
z

)
+ ν∇2uz (A.3)

Dθ

Dt
= uz −

∂

∂x
(uxθ)−

∂

∂y
(uyθ)−

∂

∂z
(uzθ) + χ∇2θ (A.4)
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Dbx
Dt

= B0y
∂ux
∂y

+
∂

∂y
(uxby − uybx)−

∂

∂z
(uzbx − uxbz) + η∇2bx, (A.5)

Dby
Dt

= −qΩbx+B0y
∂uy
∂y
− ∂

∂x
(uxby − uybx)+

∂

∂z
(uybz−uzby)+η∇2by, (A.6)

Dbz
Dt

= B0y
∂uz
∂y

+
∂

∂x
(uzbx − uxbz)−

∂

∂y
(uybz − uzby) + η∇2bz, (A.7)

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0, (A.8)

∂bx
∂x

+
∂by
∂y

+
∂bz
∂z

= 0, (A.9)

where D/Dt = ∂/∂t − qΩx∂/∂y is the total derivative along the background

flow.
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Appendix B

Derivation of spectral equations for quadratic

terms in Keplerian disks with an azimuthal

magnetic field (Chapter 4)

Here we derive evolution equations for velocity, entropy and magnetic

field perturbations in Fourier space. Substituting decomposition (5.6) into

Equations (A.1)-(A.9) and taking into account the normalization made in the

text, we arrive at the following equations governing the dynamics of pertur-

bation modes in Fourier space(
∂

∂t
+ qky

∂

∂kx

)
ūx = 2ūy−ikxp̄+ikyB0y b̄x−

k2

Re
ūx+ikxN

(u)
xx +ikyN

(u)
xy +ikzN

(u)
xz ,

(B.1)(
∂

∂t
+ qky

∂

∂kx

)
ūy = (q−2)ūx−ikyp̄+ikyB0y b̄y−

k2

Re
ūy+ikxN

(u)
xy +ikyN

(u)
yy +ikzN

(u)
yz ,

(B.2)(
∂

∂t
+ qky

∂

∂kx

)
ūz = −ikzp̄−N2θ̄+ikyB0y b̄z−

k2

Re
ūz+ikxN

(u)
xz +ikyN

(u)
yz +ikzN

(u)
zz ,

(B.3)(
∂

∂t
+ qky

∂

∂kx

)
θ̄ = ūz −

k2

Pe
θ̄ + ikxN

(θ)
x + ikyN

(θ)
y + ikzN

(θ)
z , (B.4)(

∂

∂t
+ qky

∂

∂kx

)
b̄x = ikyB0yūx −

k2

Rm
b̄x + ikyF̄z − ikzF̄y, (B.5)(

∂

∂t
+ qky

∂

∂kx

)
b̄y = −qb̄x + ikyB0yūy −

k2

Rm
b̄y + ikzF̄x − ikxF̄z (B.6)
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(
∂

∂t
+ qky

∂

∂kx

)
b̄z = ikyB0yūz −

k2

Rm
b̄z + ikxF̄y − ikyF̄x (B.7)

kxūx + kyūy + kzūz = 0, (B.8)

kxb̄x + ky b̄y + kz b̄z = 0, (B.9)

where k2 = k2
x + k2

y + k2
z and B0y =

√
2/β is the normalized background az-

imuthal field. These spectral equations contain the linear as well as the non-

linear (N
(u)
ij (k, t), N

(θ)
i (k, t), F̄i(k, t), i, j = x, y, z) terms that are the Fourier

transforms of the corresponding linear and nonlinear terms in the original

Equations (A.1)-(A.9). The latter are given by convolutions

N
(u)
ij (k, t) =

∫
d3k′

[
b̄i(k

′, t)b̄j(k− k′, t)− ūi(k′, t)ūj(k− k′, t)
]
, (B.10)

N
(θ)
i (k, t) = −

∫
d3k′ūi(k

′, t)θ̄(k− k′, t) (B.11)

where i, j = x, y, z and F̄x, F̄y, F̄z are the fourier transforms of the respective

components of the perturbed electromotive force F = u× b,

F̄x(k, t) =

∫
d3k′

[
ūy(k

′, t)b̄z(k− k′, t)− ūz(k′, t)b̄y(k− k′, t)
]

F̄y(k, t) =

∫
d3k′

[
ūz(k

′, t)b̄x(k− k′, t)− ūx(k′, t)b̄z(k− k′, t)
]

F̄z(k, t) =

∫
d3k′

[
ūx(k

′, t)b̄y(k− k′, t)− ūy(k′, t)b̄x(k− k′, t)
]

and describe the contribution from nonlinearity to the magnetic field pertur-

bations. In the case of classical forced MHD turbulence without background

shear flow, these nonlinear transfer terms in k-space were also derived in Verma
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(2004). From Equations (B.1)-(B.3) and the divergence-free conditions (B.8)

and (B.9) we can eliminate pressure

p̄ = 2i(1− q)ky
k2
ūx − 2i

kx
k2
ūy + iN2 kz

k2
θ̄ +

∑
(i,j)=(x,y,z)

kikj
k2

N
(u)
ij (B.12)

Substituting it back into Equations (B.1)-(B.3) we get(
∂

∂t
+ qky

∂

∂kx

)
ūx = 2

(
1− k2

x

k2

)
ūy+2(1−q)kxky
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ūx+N

2kxkz
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Re
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(B.14)(
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kxkz
k2

ūy−N2

(
1− k2

z

k2

)
θ̄+ikyB0y b̄z−
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Re
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(B.15)

where

Qi = i
∑
j

kjN
(u)
ij − iki

∑
m,n

kmkn
k2

N (u)
mn, i, j,m, n = x, y, z. (B.16)

Multiplying Equations (B.13)-(B.15), respectively, by ū∗x, ū
∗
y, ū

∗
z, and

adding up with their complex conjugates, we obtain

∂

∂t

|ūx|2

2
= −qky

∂

∂kx

|ūx|2

2
+Hx + I(uθ)

x + I(ub)
x +D(u)

x +N (u)
x , (B.17)

∂

∂t

|ūy|2

2
= −qky

∂

∂kx

|ūy|2

2
+Hy + I(uθ)

y + I(ub)
y +D(u)

y +N (u)
y , (B.18)

∂

∂t

|ūz|2

2
= −qky

∂

∂kx

|ūz|2

2
+Hz + I(uθ)

z + I(ub)
z +D(u)

z +N (u)
z , (B.19)

where the terms of linear origin are

Hx =

(
1− k2

x

k2

)
(ūxū

∗
y + ū∗xūy) + 2(1− q)kxky

k2
|ūx|2, (B.20)
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Hy =
1

2

[
q − 2− 2(q − 1)

k2
y

k2

]
(ūxū

∗
y + ū∗xūy)− 2

kxky
k2
|ūy|2 (B.21)

Hz = (1− q)kykz
k2

(ūxū
∗
z + ū∗xūz)−

kxkz
k2

(ūyū
∗
z + ū∗yūz), (B.22)

I(uθ)
i = N2

(
kikz
k2
− δiz

)
θ̄ū∗i + θ̄∗ūi

2
, (B.23)

I(ub)
i =

i

2
kyB0y(ū

∗
i b̄i − ūib̄∗i ), (B.24)

D(u)
i = − k

2

Re
|ūi|2, (B.25)

and the modified nonlinear transfer functions for the quadratic forms of the

velocity components are

N (u)
i =

1

2
(ūiQ

∗
i + ū∗iQi). (B.26)

Here i = x, y, z and δiz is the Kronecker delta. It is readily shown that the

sum of Hi is equal to the Reynolds stress spectrum multiplied by the shear

parameter q, H = Hx +Hy +Hz = q(ūxū
∗
y + ū∗xūy)/2

Similarly, multiplying Equation (B.4) by θ̄∗ and adding up with its

complex conjugate, we get

∂

∂t

|θ̄|2

2
= −qky

∂

∂kx

|θ̄|2

2
+ I(θu) +D(θ) +N (θ), (B.27)

where the terms of linear origin are

I(θu) =
1

2
(ūz θ̄

∗ + ū∗z θ̄), (B.28)

D(θ) = − k
2

Pe
|θ̄|2 (B.29)
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and the modified nonlinear transfer function for the quadratic form of the

entropy is

N (θ) =
i

2
θ̄∗(kxN

(θ)
x + kyN

(θ)
y + kzN

(θ)
z ) + c.c. (B.30)

Multiplying Equations (B.5)-(B.7), respectively, by b̄∗x, b̄
∗
y, b̄
∗
z, and adding

up with their complex conjugates, we obtain

∂

∂t

|b̄x|2

2
= −qky

∂

∂kx

|b̄x|2

2
+ I(bu)

x +D(b)
x +N (b)

x (B.31)

∂

∂t

|b̄y|2

2
= −qky

∂

∂kx

|b̄y|2

2
+M+ I(bu)

y +D(b)
y +N (b)

y (B.32)

∂

∂t

|b̄z|2

2
= −qky

∂

∂kx

|b̄z|2

2
+ I(bu)

z +D(b)
z +N (b)

z , (B.33)

where M is the Maxwell stress spectrum multiplied by q,

M = −q
2

(b̄xb̄
∗
y + b̄∗xb̄y), (B.34)

I(bu)
i = −I(ub)

i =
i

2
kyB0y(ūib̄

∗
i − ū∗i b̄i) (B.35)

D(b)
i = − k2

Rm
|b̄i|2 (B.36)

and the modified nonlinear terms for the quadratic forms of the magnetic field

components are

N (b)
x =

i

2
b̄∗x[kyF̄z−kzF̄y]+c.c., N (b)

y =
i

2
b̄∗y[kzF̄x−kxF̄z]+c.c., N (b)

z =
i

2
b̄∗z[kxF̄y−kyF̄x]+c.c.

(B.37)
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Appendix C

Perturbation equations in physical and Fourier

space in Keplerian disks with a net vertical

magnetic field (Chapter 5)

Equations governing the evolution of the velocity, total pressure and

magnetic field perturbations, u, p,b, of arbitrary amplitude about the equi-

librium Keplerian flow U0 = −qΩxey with a net vertical magnetic field B0 =

B0zez are obtained from the basic Equations (5.1)-(5.5) and componentwise

have the form (in dimensional units):

Dux
Dt

= 2Ωuy −
1

ρ0

∂p

∂x
+

B0z

4πρ0

∂bx
∂z

+
∂

∂x

(
b2
x

4πρ0

− u2
x

)
+

+
∂

∂y

(
bxby
4πρ0

− uxuy
)

+
∂

∂z

(
bxbz
4πρ0

− uxuz
)

+ ν∇2ux, (C.1)

Duy
Dt

= (q − 2)Ωux −
1

ρ0

∂p

∂y
+

B0z

4πρ0

∂by
∂z

+
∂

∂x

(
bxby
4πρ0

− uxuy
)

+

+
∂

∂y

(
b2
y

4πρ0

− u2
y

)
+

∂

∂z

(
bzby
4πρ0

− uzuy
)

+ ν∇2uy (C.2)

Duz
Dt

= − 1

ρ0

∂p

∂z
−N2θ +

B0z

4πρ0

∂bz
∂z

+
∂

∂x

(
bxbz
4πρ0

− uxuz
)

+

+
∂

∂y

(
bybz
4πρ0

− uyuz
)

+
∂

∂z

(
b2
z

4πρ0

− u2
z

)
+ ν∇2uz (C.3)
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Dθ

Dt
= uz −

∂

∂x
(uxθ)−

∂

∂y
(uyθ)−

∂

∂z
(uzθ) + χ∇2θ (C.4)

Dbx
Dt

= B0z
∂ux
∂z

+
∂

∂y
(uxby − uybx)−

∂

∂z
(uzbx − uxbz) + η∇2bx, (C.5)

Dby
Dt

= −qΩbx+B0z
∂uy
∂z
− ∂

∂x
(uxby − uybx)+

∂

∂z
(uybz−uzby)+η∇2by, (C.6)

Dbz
Dt

= B0z
∂uz
∂z

+
∂

∂x
(uzbx − uxbz)−

∂

∂y
(uybz − uzby) + η∇2bz, (C.7)

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0, (C.8)

∂bx
∂x

+
∂by
∂y

+
∂bz
∂z

= 0, (C.9)

where D/Dt = ∂/∂t − qΩx∂/∂y is the total derivative along the background

flow.

Next, we derive evolution equations for velocity, entropy and magnetic

field perturbations in Fourier space. Substituting decomposition (5.6) into

Equations (C.1)-(C.9) and taking into account the normalization made in the

text, we arrive at the following equations governing the dynamics of pertur-

bation modes in Fourier space(
∂

∂t
+ qky

∂

∂kx

)
ūx = 2ūy−ikxp̄+ikzB0z b̄x−

k2

Re
ūx+ikxN

(u)
xx +ikyN

(u)
xy +ikzN

(u)
xz ,

(C.10)(
∂

∂t
+ qky

∂

∂kx

)
ūy = (q−2)ūx−ikyp̄+ikzB0z b̄y−

k2

Re
ūy+ikxN

(u)
xy +ikyN

(u)
yy +ikzN

(u)
yz ,

(C.11)(
∂

∂t
+ qky

∂

∂kx

)
ūz = −ikzp̄−N2θ̄+ikzB0z b̄z−

k2

Re
ūz+ikxN

(u)
xz +ikyN

(u)
yz +ikzN

(u)
zz ,

(C.12)(
∂

∂t
+ qky

∂

∂kx

)
θ̄ = ūz −

k2

Pe
θ̄ + ikxN

(θ)
x + ikyN

(θ)
y + ikzN

(θ)
z , (C.13)
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(
∂

∂t
+ qky

∂

∂kx

)
b̄x = ikzB0zūx −

k2

Rm
b̄x + ikyF̄z − ikzF̄y, (C.14)(

∂

∂t
+ qky

∂

∂kx

)
b̄y = −qb̄x + ikzB0zūy −

k2

Rm
b̄y + ikzF̄x − ikxF̄z (C.15)(

∂

∂t
+ qky

∂

∂kx

)
b̄z = ikzB0zūz −

k2

Rm
b̄z + ikxF̄y − ikyF̄x (C.16)

kxūx + kyūy + kzūz = 0, (C.17)

kxb̄x + ky b̄y + kz b̄z = 0, (C.18)

where k2 = k2
x + k2

y + k2
z and B0z =

√
2/β is the normalized uniform back-

ground vertical field. These spectral equations contain the linear as well as

the nonlinear (N
(u)
ij (k, t), N

(θ)
i (k, t), F̄i(k, t), where i, j = x, y, z) terms that are

the Fourier transforms of the corresponding linear and nonlinear terms in the

original Equations (C.1)-(C.9). The latter are given by convolutions

N
(u)
ij (k, t) =

∫
d3k′

[
b̄i(k

′, t)b̄j(k− k′, t)− ūi(k′, t)ūj(k− k′, t)
]
, (C.19)

N
(θ)
i (k, t) = −

∫
d3k′ūi(k

′, t)θ̄(k− k′, t) (C.20)

and F̄x, F̄y, F̄z, which are the fourier transforms of the respective components

of the perturbed electromotive force F = u× b,

F̄x(k, t) =

∫
d3k′

[
ūy(k

′, t)b̄z(k− k′, t)− ūz(k′, t)b̄y(k− k′, t)
]

(C.21)

F̄y(k, t) =

∫
d3k′

[
ūz(k

′, t)b̄x(k− k′, t)− ūx(k′, t)b̄z(k− k′, t)
]

(C.22)

F̄z(k, t) =

∫
d3k′

[
ūx(k

′, t)b̄y(k− k′, t)− ūy(k′, t)b̄x(k− k′, t)
]

(C.23)
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describe the effect of nonlinearity on the magnetic field perturbations. In the

case of classical forced MHD turbulence without background shear flow, these

nonlinear transfer terms in k-space were also derived in Verma (2004). From

Equations (C.10)-(C.12) and the divergence-free conditions (C.17) and (C.18)

we can eliminate pressure

p̄ = 2i(1− q)ky
k2
ūx − 2i

kx
k2
ūy + iN2 kz

k2
θ̄ +

∑
(i,j)=(x,y,z)

kikj
k2

N
(u)
ij (C.24)

Substituting it back into Equations (C.10)-(C.12) we get(
∂

∂t
+ qky

∂

∂kx

)
ūx = 2

(
1− k2

x

k2

)
ūy+2(1−q)kxky

k2
ūx+N

2kxkz
k2

θ̄+ikzB0z b̄x−
k2

Re
ūx+Qx,

(C.25)(
∂

∂t
+ qky

∂

∂kx

)
ūy =

[
q − 2− 2(q − 1)

k2
y

k2

]
ūx−2

kxky
k2

ūy+N
2kykz
k2

θ̄+ikzB0z b̄y−
k2

Re
ūy+Qy,

(C.26)(
∂

∂t
+ qky

∂

∂kx

)
ūz = 2(1−q)kykz

k2
ūx−2

kxkz
k2

ūy−N2

(
1− k2

z

k2

)
θ̄+ikzB0z b̄z−

k2

Re
ūz+Qz,

(C.27)

where

Qi = i
∑
j

kjN
(u)
ij − iki

∑
m,n

kmkn
k2

N (u)
mn, i, j,m, n = x, y, z. (C.28)
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