
  

 

 

 

 

 

 

 

 

Copyright 

by 

Vedhapriya Raman 

2017 

 

 



The Report Committee for Vedhapriya Raman 
Certifies that this is the approved version of the following report: 

 
 

A Dashboard-based Approach for Efficient Requirements Change 
Management 

 
 
 
 
 
 

 

 

APPROVED BY 
SUPERVISING COMMITTEE: 

 

 

 
Suzanne Barber 

Sarfraz Khurshid 

 

  

Supervisor: 



A Dashboard-based Approach for Efficient Requirements Change 
Management 

 

 

by 

Vedhapriya Raman, B.Tech. 

 

  

Report 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Master of Science in Engineering 

 

 

The University of Texas at Austin 
May 2017 

 

 

 



 iv 

 

Abstract 

 

A Dashboard-based Approach for Efficient Requirements Change 
Management 

 

Vedhapriya Raman, M.S.E. 

The University of Texas at Austin, 2017 

 

Supervisor:  Suzanne Barber 

 

Requirements gathering and documentation are important first steps for a 

successful software engineering project. The documented requirements act as a guideline 

for design and development of software products. Requirements also represent customer 

expectations for the end product. Since these documented requirements serve important 

purposes for many stakeholders, managing requirement changes effectively plays a major 

role in the overall success of any project. Changes in requirements are very common in 

software engineering and can occur during any phase of software development lifecycle 

(SDLC). Though the impact of requirement changes differs depending on the SDLC 

phase in which it occurred, there is almost always a setback that happens in terms of the 

project timeline. This scenario is common in projects that follow both Agile/Scrum 

methodology and ones that follow the more traditional Waterfall model. In this report, I 

will first present two case studies of how requirement changes impacted the timelines of 

two projects (one following Agile/Scrum methodology and another following Waterfall 



 v 

methodology). In the second part of this report, I will propose and design a user-friendly 

dashboard, which could be used to speed up the delays caused by changing requirements. 

 



 vi 

Table of Contents 

List of Figures ....................................................................................................... vii	

Introduction ..............................................................................................................1	

Background ..............................................................................................................4	

Case study ................................................................................................................8	
Case study 1 ....................................................................................................8	

Organizational structure .........................................................................8	
Software development methodology .....................................................9	
Change in requirements .......................................................................10	
What could have been different ...........................................................10	

Case study 2 ..................................................................................................11	
Organizational structure .......................................................................11	
Software development methodology ...................................................12	
Change in requirements .......................................................................13	
What could have been different ...........................................................13	

Summary .......................................................................................................14	

Proposed dashboard ...............................................................................................15	
Design specifications ....................................................................................15	
User interface ................................................................................................16	
Key Advantages ............................................................................................21	

Future work ............................................................................................................25	

Conclusion .............................................................................................................27	

References ..............................................................................................................28	

  



 vii 

List of Figures 

Figure 1: Organizational structure chart of company A for project A .....................9	

Figure 2: Organizational structure chart of company B for project B ...................12	

Figure 3: Home page of proposed requirements dashboard ..................................16	

  

 
 



 1 

Introduction 

Requirements gathering is the first and critically important phase of software 

development lifecycle (SDLC). Usually after the inception of a software development 

project, an organization’s executives decide on the budget to be allocated for the project 

and the time within which the project is to be completed based on its importance for the 

organization. After this initial executive meeting, the project idea is passed down to an 

appropriate software development manager and the SDLC begins. At the end of SDLC, 

the software product becomes ready for being delivered to the customer.  

Organizations strive to achieve customer satisfaction by delivering projects on 

time, within budget and according to customer expectations. A major challenge faced by 

organizations in achieving the above-mentioned goals is requirement changes. More than 

70% of software projects are delivered late due to change in requirements that happened 

during the SDLC. Is it often impractical to avoid requirement changes after the initial 

requirements phase of SDLC. Especially for projects that have a long timeline, changes 

are bound to happen to customer expectations, which in turn change the initial 

requirements. Hence, many organizations have a change management process that 

dictates how requirement changes will be handled. 

There are many shortcomings associated with existing change management 

processes and tools. Change management processes are usually lengthy and time 

consuming and in most cases, few of the stakeholders are left unaware of the changes 

happening to the project. Many organizations do not have a requirements engineer or 

change manager to take care of requirement changes. These changes are handled by the 

development team who are not aware of the best practices in requirements engineering. 

They also have project development deadlines and hence are unable to allocate sufficient 



 2 

time for managing requirement changes. There are some web based project management 

tools that could be used for initial requirements gathering and for the other phases of 

SDLC but not many of such tools have effective change management options. 

In the first part of my report, I present two actual case studies of software projects 

that were impacted by requirement changes. One of these projects followed the waterfall 

model of software development and the other one followed the more modern agile 

development practice. The case studies show how the organization was structured, how 

requirements were gathered and show how changes in requirements were handled. 

Finally, the case studies show how customer satisfaction and project timelines were 

affected by the requirement changes.  

After analyzing these two case studies, I identified the problems associated with 

requirements changes. Specifically, I took into account the following factors: 

1.  Nature of changes 

2. Phase of SDLC during which the changes happened  

3. How the organization was structured 

4. Any changes associated with respective requirements 

In the second part of my report, I present a user interface design of a dashboard to 

manage requirement changes efficiently. This dashboard is a web-based collaborative 

environment that is not only a space to document requirements, but also provides means 

to efficiently capture requirement changes and showcase the changes to all the 

stakeholders involved. The major functionality of this dashboard includes requirements 

documentation, stakeholder accountability, break-down of each requirement to 

compositional tasks, effective tracking of these compositional tasks until completion, 

ability to change requirements to the level of individual tasks impacted by change, 



 3 

prediction of time required to accommodate changes based on tasks impacted and 

requirement change approval and notifications. 

I conclude the report with suggestions of additional functionality that could be 

added to the dashboard in order to personalize it for each project. There is also more 

work to be done to effectively predict the time delay that a requirement change would 

cause based on prior experiences in the project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4 

Background 

Software development lifecycle (SDLC) refers to the various phases that a 

software development project goes through from inception to completion [1]. It usually 

starts with requirements phase. During the requirements phase of SDLC, various 

stakeholders like the customer, software development team including the manager, testers 

meet and come up with the requirements document. This requirements document usually 

lists the requirements along with their dependencies and priority. Once the requirement 

document has been approved by various stakeholders, the next phase of SDLC, software 

design and development begins. During this phase, the requirements captured during the 

previous SDLC phase acts as a guideline. After development of the software product, the 

next phase of SDLC, testing is done. Testers usually write test cases to determine if the 

requirements are met. Based on feedback from the testers, changes are made to the 

software product in order to meet customer requirements. 

In the waterfall model of software development [1], the steps of SDLC happen 

sequentially. Once each step is completed, the next step is initiated. Since there is usually 

no going back to previous steps, implementing a waterfall software development model 

requires meticulous planning and strong documentation. The obvious disadvantage of this 

method is that there is no room for change in requirements to happen directly. If any 

change happens, then it takes the project team back to the first phase of SDLC and all the 

steps have to be repeated. This sets the project back in time based on how impactful the 

impending change is. 

The agile method of software development [1] was introduced as a solution to the 

disadvantages caused by waterfall method. This method follows an incremental approach 

instead of a sequential approach. The requirements are broken down into small tasks and 



 5 

collections of requirements are packaged as modules. Team members work on these 

individual modules in weekly or monthly sprints. More work can be done by working 

parallel on independent modules. At the end of each sprint, the end results are evaluated 

and the teams are assigned new modules. Many agile teams meet daily to understand 

what each team member is working on and to tackle any obstacle the team members 

might have. This method is obviously more flexible in that it allows for change after 

initial planning. During any sprint, the module priorities can be changed and additional 

requirements can be evaluated and added. However, a major disadvantage of this 

approach is that it needs meticulous tracking of the sprints. Otherwise, projects can take 

on too many changes and evolve to an entirely different product from the product that 

was planned initially. Improper tracking can also lead to chaos in the project. 

Irrespective of the SDLC methodology being followed, it has been observed that 

requirement changes always cause a delay in project completion. The impact that 

requirement changes have on project timeline depends on the severity of the change or 

the number of requirements impacted and the phase of SDLC in which the change occurs. 

Following are some common scenarios when requirement changes happen. 

1. Poorly defined requirements in requirement gathering: This is one of the most 

common causes of change in requirements later on in the SDLC. If there is no 

designated requirements engineer, usually team members lacking 

requirements engineering training such as developers or marketing team 

members are held responsible for defining and documenting requirements. 

This often leads to poorly define requirements. Another cause could be that 

some of the stakeholders could be missing in the requirements gathering 

meeting and hence requirements impacting their groups might need 

modification in the future. Poorly defined requirements could be averted by 



 6 

having a designated requirements engineer in the meeting and planning the 

requirement gathering sessions in order to take into account the inputs from all 

impacted stakeholders. 

2. Dependencies: Another leading cause of requirement changes is dependencies 

For example, if the project is dependent on a set of tools and technologies, and 

if few of the updated versions of the tools do not work with existing versions 

of other tools, then this would create changes in multiple requirements 

dependent on the tools impacted. 

3. Changing needs of customer: Almost all projects are required to consider the 

changing needs of the customer and how it impacts the initially documented 

requirements. This is especially the case for projects on a long timeline, 

during the course of which their customer needs might change. 

 

There are many software tools currently available that assist in project 

management tasks. Some examples are Microsoft Project and Project Kickstart. These 

tools help in task scheduling, resource management, project budget planning, etc. 

However, these tools are designed for the use of project managers to keep track of project 

timelines, budgets and other areas of project management. They offer a much broader 

perspective of projects as against being specifically designed for managing requirements. 

This project presents a tool which addresses this problem by being designed 

specifically for the use of requirements engineers to document requirements and 

requirement changes. Requirement changes are inevitable in both Waterfall and Agile 

development models and hence it would be immensely helpful to have a tool which could 

act as a requirement logging tool and document requirements and their constituent tasks. 

It would be all the more beneficial if the tool could act as a platform for collaboration 



 7 

between all the project stakeholders and send customized notifications whenever 

documented requirements are modified or task schedule slippage happens.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 8 

Case study 

The following case studies demonstrate how changing requirements impact 

project timelines and ultimately, the customer satisfaction for two real-time projects. 

Each case study details about the company’s organizational structure, the software 

development methodology followed by them specifically explaining how requirements 

were maintained, how and when change in requirements happened, impact of 

requirement changes and what could have been done differently. 

CASE STUDY 1 

Project A was an internal research project. The project plan was to create an 

internal tool to help a section of the company’s employees monitor their applications 

remotely. Thus, the company was the customer, its employees were the end users who 

would use the application developed by this project. Project A was planned as a six 

month long project initially including the time for initial requirements gathering and 

research.  

Organizational structure 

Project A had a team size of six members reporting to a project manager. The 

team included a team leader and five team members working from the same office 

location. The project manager’s (PM) base office location was the same as the team 

members but the PM also used to travel to other office locations frequently. He would 

work remotely during his official trips and was available over phone and email. As 

mentioned earlier, this project had no direct external customers. End users were also 

employees of the same company. Figure 1 shows the organizational structure of company 

A specifically for project A. Of the five team members, three were software developers 

and two were testers. 



 9 

 
 

Figure 1: Organizational structure chart of company A for project A 

Software development methodology 

Project A followed the agile development lifecycle and held a stand-up meeting 

every day to keep track of their work. Also, there was no designated requirements 

engineer on the team. Two requirements meeting were held at the beginning of the 

project with the end users and the project team. However, there was no formal business 

requirements document created. The team started working based on their understanding 

of the requirements. Though the team consisted of highly experienced Software 

Engineers, the team had a tough time designing and developing the tool due to the lack of 

a clear and documented requirements. The only instances of documentation that 

happened throughout this project were the application design documents created by the 

development team and the unit test plan created by the testing team.  

 

 

Project	
Manager	

Team	
member	1	

Team	
member	2	

Team	
member	3	

Team	
member	4	

Team	
member	5	

Team	Lead	



 10 

Change in requirements 

During the two requirement gathering sessions that were held at the beginning of 

the project, some of the end users were absent. As a result, throughout the project 

lifecycle, those end users kept changing the initial requirements which caused further 

confusion and lead to constant change in the design and architecture of the tool. Adding 

to the challenge was the fact that the project team had no concrete requirements 

document to start with so they had nothing to go back and reference in times of changing 

requirements. Ultimately the project could not be completed in 6 months as originally 

planned. Only a prototype version of the tool was released at the end of six months, 

which recieved a lot of negative feedback from the end users.  

What could have been different 

Following are some of the key shortcomings of project A. Had these processes 

been done differently, the project might have succeeded. 

1. There was no designated requirements engineer on the project team. The 

project team consisting of developers and testers were given the sole 

responsibility of maintaining requirements. Hence, there was no formal 

documentation of requirements. There was no way to compare to baseline 

requirements when requirements were changed. Documenting and 

maintaining requirements is the first step in order to make a project 

successful. The team would have greatly benefited by having a designated 

requirements engineer on the team. 

2. Some of the key end users were absent for the initial requirements gathering 

session. This lead to partial and ignored requirements for the project team to 

begin with. Clearly, in order to have their expectations for the tool met, all key 



 11 

end users should have been present in at least one among the two requirement 

gathering sessions. 

CASE STUDY 2 

Company B is an IT services company and project B was an ongoing maintenance 

and support project for one of its clients. Company B and its client are in a 

geographically distributed setting and their locations fall in different time zones. As part 

of the maintenance work, company B made enhancements to the legacy applications of 

the client. In addition to the maintenance work, the company also provides 24X7 

production support for the same applications.  

Organizational structure 

Project B had a team size of five members reporting to a client manager. The 

project team included a team leader and four team members working from the same 

office location. Only the client manager worked from the client location. Since the client 

was geographically separated from the project team, they met the team virtually every 

month in order to go over the tasks that the team was working on and discuss and 

prioritize the upcoming work to be done. The same project team provided production 

support for the client applications. The client would raise tickets for any issues that arose 

in their application and the project team would take care of the tickets using break fixes 

or code fixes on a daily basis. Apart from regular support, the team also provided 

weekend and month end support on rotational basis. There were no deemed developers or 

testers in this project. All four team members and the team leader assumed tasks on an 

ad-hoc basis. The tasks included development, testing and production support fixes. 

Figure 2 shows the organizational structure of company B specifically for project B.  



 12 

 
 

Figure 2: Organizational structure chart of company B for project B 

Software development methodology 

Project B followed the waterfall model for software development. This project 

also did not have a designated requirements engineer. The client manager would set up a 

project planning meeting with clients monthly to set forth a plan for project requirements 

to be completed that month. They also addressed spillovers from the previous month 

during that meeting. Based on the priorities assigned by the clients, the project team 

would start working on requirements. In most cases, there was no formal requirements 

specification document. The client manager would send the project team an email 

describing what feature in a specific application needs to be fixed/tweaked.  

With respect to the production support tasks, these were largely ad-hoc and the 

tickets usually had very little information about the ongoing issue. The team usually 

Client	Manager	
(located	in	a	

different	<me	zone)	

Team	member	1	 Team	member	2	 Team	member	3	 Team	member	4	

Team	leader	



 13 

contacted the appropriate customers on phone to understand what the issue was and offer 

fixes accordingly. There was rarely any documentation of these production support tasks.  

Change in requirements 

In cases when the client changed requirements for maintenance tasks, there was 

no formal change management process and the team was just expected to give in to the 

needs of the client. This not only delayed the delivery of the modules impacted by the 

changed requirements, but also other modules which were of lower priority for that 

month. This regularly caused task spillovers to consecutive months resulting in low 

customer satisfaction. 

The situation was made even worse for production support tasks. Since there were 

less details about requirements on the customer tickets and no documentation was created 

by the project team for resolved tickets, if any ticket was reopened with changed/ added 

requirements, it always caused confusion. Additionally, since the requirements were 

primarily given to a single team member over phone, there was no way other team 

members could know the requirements and this process increased dependencies in the 

project team. 

What could have been different 

Following are some of the key shortcomings of project B. Had these processes 

been done differently, the project might have been successful. 

1. There was no designated requirements engineer on the project team. The 

project team was given the sole responsibility of maintaining requirements. 

Hence, there was no formal documentation of requirements. In particular, 

there was no way to know the actual requirements for production support 



 14 

tickets. The team too, would have greatly benefited by having a designated 

requirements engineer on the team. 

2. Project team was following waterfall development lifecycle for maintenance 

tasks and hence suffered from the inherent disadvantages of this method. It 

would have benefitted the team to meet more often and break down 

requirements into group of small tasks. 

3. There were a lot of dependencies in this team. The work done by each of the 

team members was not transparent to each other and hence, the team members 

were alone in resolving their obstacles. Everyone was keen on completing 

only the tasks assigned to them and hence the team lacked team spirit to come 

together to resolve issues. Following an agile development process would 

have been greatly beneficial since each team member would then know 

exactly what the other team members are working on. It is also the best way to 

resolve obstacles and move forward as a team. 

 

SUMMARY 

In summary, the case studies presented above illustrated how important it is to 

manage requirements and requirement changes for the successful completion of a project. 

One of the major deficiencies of both Project A and Project B is that there was no 

designated requirements engineer on either teams. The projects also lacked requirements 

documentation and a collaborative platform for the stakeholders to communicate. Had 

there been better collaboration amongst project teams and proper documentation of the 

requirements, both projects could have been completed successfully on time 

 



 15 

 

Proposed dashboard 

Considering the shortcomings of the previous projects, this project designed a 

dashboard that could be used to effectively document, track and maintain requirements 

and any changes in requirements in a transparent manner. Following are the design 

specifications for this interactive dashboard. 

DESIGN SPECIFICATIONS 

1. Ability to add project team members and their profiles. All project team 

members must have access to view information on the dashboard. 

2. Ability to maintain requirements log according to release numbers of project. 

3. Each requirement in the requirements log should be expandable to its 

constituent tasks and information about priority of each task and number of 

days required to complete each task. 

4. Each task should be assigned to a project team member. 

5. Each task should show percentage of work completed in the form of a slide 

bar. 

6. Ability to capture dependencies between requirements (and in turn the 

constituent tasks). 

7. A graphical representation of project’s timeline goals and whether the team is 

on schedule. 

8. Ability to set up email notifications in case of missed schedule, requirement 

changes, etc. 

9. In case of change in requirements, ability to identify the requirements and 

specifically, tasks impacted. 



 16 

10. Ability to predict the delay any requirement change will cause based on the 

project’s historical data. 

USER INTERFACE 

Following the design specifications outlined above, the user interfaces for the 

proposed dashboard was designed. The balsamiq desktop tool was used to design these 

mock-ups. Figure 3 shows the home page of this proposed dashboard. The dashboard 

home displays important aspects of the project in a consolidated format. 

 

 
 

Figure 3: Home page of proposed requirements dashboard 

The home page has a line graph showing the expected rate of task completion to 

meet the project deadline as planned against the real-time task completion rate. This 

graph can be used to get an insight of how the project team is doing with respect to the 

project timeline goals. There is also a list of project statistics displayed below this line 

graph detailing the percentage of tasks completed, time remaining until release due date, 



 17 

etc. This data could be used to send email notifications to project team in case of lapse in 

schedule. The remainder of the home page displays the photos of the project team and 

customer representatives. Each of these images is a clickable link to that person’s profile 

showing their role in this project. Additionally, this page could be configured with ways 

to set up email notifications for various events like missed schedule, change in 

requirements, etc. 

The requirements log page maintains all the existing requirements for a project 

release in a tabular format. Figure 4 shows the mock-up of requirements log page. The 

columns of the table include requirement number (to be used for mapping dependencies), 

description, number of constituent tasks, estimated time to complete all tasks associated 

with this requirement in days, priority and an indicator of completion. 

 
 

 
 

Figure 4: Requirements log page 



 18 

The requirement description column can be expanded to show each requirement’s 

constituent tasks. Finally, there is a checkbox to indicate whether each requirement is 

complete or not. This checkbox can be marked to show completion when all the 

constituent tasks for a requirement are completed. This checkbox will be reset every time 

a requirement change is submitted. 

Each task in the requirements log page is in the form of a clickable link, clicking 

which opens task view page. Figure 5 shows the task view page showing tasks 

constituting a particular requirement. 

 

 
 

Figure 5: Task view page 

The task view page is also in a tabular format with columns comprising of task 

number (for mapping dependencies), task description, assignee, estimated time to 

complete task in days, dependency and an indicator of completion. The project team 

members’ names appear on the dropdown and an assignee for each task can be chosen. 



 19 

The dependency indicates the requirement numbers and task numbers on which any 

particular tasks depends.  

This dashboard was designed to work well with agile software development 

methodology. As outlined earlier in this report, in agile methodology, project team meets 

every day to discuss their individual tasks and the overall progress of the project. In order 

to work with this model, a day view page was designed, which can be used during the 

daily stand-up meetings. Figure 6 shows a sample of this day view page. 

 

 

Figure 6: Day view page 

The day view page includes a calendar view showing today’s date and the 

progress of various tasks. Each project team member is assigned a task for the day. The 

tasks are displayed along with photos of the assignees, so that everyone attending the 

stand-up meeting has an idea of what every other person is working on. There is also a 

progress bar for each task showing percentage of task completed. During stand-up 



 20 

meeting, teams can also discuss potential obstacles and their impact on specific tasks. 

Tasks can be marked as completed by the team members as needed.  

Finally, a change management page was designed which can be used to change, 

add or delete existing requirements. Figure 7 shows the change management page 

designed for the proposed dashboard. 

 

 

Figure 7: Change management page 

In order to change an existing requirement, first the constituent tasks are to be 

considered for identification of tasks impacted by this change. The requirement number 

and impacted task numbers are to be entered followed by a brief description of changes to 

the requirement. Clicking on the estimate button would return an alert with a 

precomputed delay that this change would cause. On accepting the alert, the requirement 

change would be submitted along with an email notification to the project team. In order 

to add a new requirement, all constituent tasks should be added using the “add task” 

button. The information required to add a new task includes a task number (for mapping 



 21 

dependencies), task description, assignee, estimated time to complete task in days and 

dependency with other requirements/tasks. 

In order to estimate the delay caused by a change in requirement, the dashboard 

could include a backend API. The API can be designed to analyze historical change data 

for the project along with the information about tasks impacted in order to come up with 

a delay estimate. The change request would then go through approvals of certain 

members of the project team in order to be added to the release. The release due date 

would be adjusted accordingly. The permissions for various team members can be 

controlled to allow edit access to just a few members of the project team, while the 

dashboard would be viewable by all members of the project team. 

KEY ADVANTAGES 

Since the proposed dashboard was designed taking into consideration the case 

studies presented earlier in the report, dashboard has specific functionality to address the 

major shortcomings of those projects. Following are some of the key advantages of using 

this dashboard. 

1. The dashboard acts as a common platform for all stakeholders of the project. 

Each stakeholder can be added to the dashboard along with their role in the 

project. Hence, the possibilities of any of the stakeholders staying out of loop 

from the project plans and actions are avoided. 

2. The ability to set up email notifications is another great way for the project 

stakeholders to stay in loop. A default notification is triggered to all 

stakeholders whenever a requirement change request is submitted. This 

ensures that everyone in the project team is made aware of changes happening 



 22 

to requirements, so that if any team member has concerns regarding the 

change, they can take it up with rest of the project team. 

3. The dashboard homepage also contains line graphs showing planned and 

actual project timelines. Apart from the graphs, this page also displays project 

statistics like percentage of tasks completed, number of days until project due 

date, etc. These numbers and the line graphs are updated in real time based on 

status updates from project team members. A look at this graph and the 

project statistics is enough for the project team members and other 

stakeholders to understand if they are on schedule. Automated email 

notifications are triggered whenever there is schedule slippage in the project, 

so that the issues causing schedule slippage can be addressed immediately. 

4. The project requirements are clearly documented in the requirements log 

page. The documented requirements act as the guidelines for the project 

development and testing teams. The requirements are broken down into 

constituent tasks so that the dependencies can be addressed effectively. In 

addition to this, each requirement has attributes such as priority and number of 

days required to complete all tasks pertaining to a requirement. All these 

details reduce confusion and are essential to the project team to plan and 

execute the project effectively. 

5. There is also a task view page that displays the constituent tasks of any given 

requirement. There is ability to document dependencies and assign tasks to 

any of the project team members. The assignees can mark the tasks as 

completed as needed. Once all the constituent tasks of a requirement are 

completed, the requirement itself is marked as complete. The project statistics 

in the homepage are updated according to the percentage of requirements 



 23 

marked as complete. All these functionalities help ensure schedule tracking. 

This dashboard is designed to help manage requirements, change in 

requirements and work in progress in an agile development setting. 

6. Another way to track work in progress using this dashboard is the day view 

page. This page displays any given day at a glance. It shows all the tasks that 

are currently in progress and the person working on each individual task. The 

task assignees have the ability to update the progress of their tasks using the 

slider next to their tasks. This functionality would be especially useful for 

daily stand up meetings in an agile development model. During stand up 

meetings, the project team can pull up the day view page and will be 

immediately shown the list of tasks in progress and the assignees. Each team 

member can take turns to go over their assigned task and move the task 

progress slider to indicate what portion of their task has been completed. This 

would also enable the team to analyze and resolve any obstacles any team 

member might face in order to finish a task. 

7. Finally, this dashboard also provides ability to add new requirements or 

change existing requirements. In order to add a new requirement, a 

stakeholder has to enter requirement description in detail, break down the 

requirement into its constituent tasks, and specify attributes like number of 

days required to complete tasks, dependencies with other requirements/tasks, 

task assignees, priority of requirement, etc. Having to add all these details 

ensures that any new requirement that gets added after project initiation is 

thoroughly scrutinized. Also, an automated notification is triggered to all 

stakeholders and project team members informing them of this new additional 

requirement. The project timeline is also adjusted accordingly. This makes 



 24 

sure that the project team has enough time to complete all requirements and is 

not forced to complete the added requirements within the original project 

deadline. 

8. Changes to requirements also go through a similar structured process to 

ensure there are no disruptions to the project schedule. In order to submit a 

change request, a stakeholder must enter the details of the requirement that 

needs to be changed, like dependencies, description of change, etc. The 

dashboard would then analyze historical data and come up with a time 

estimate to account for this change. This estimate can be changed later for 

individual tasks as needed. The dashboard only allows one change at a time so 

that the requirement dependencies can be addressed better. Hence, the change 

management page of this dashboard prevents potential disruptions to the 

project and keeps the project team up-to-date with the project requirements. 

 

 

 

 

 

 

 

 

 

 

 

 



 25 

 

Future work 

Potential future work could involve improvements to the existing functionality of 

the requirements dashboard. In addition to day view page, it would be nice to be able to 

see tasks in progress in weekly and monthly views. Since each task has a set number of 

days estimated, the tasks could span across days according to their estimated length. 

Being able to see weekly and monthly views would help the project team plan their work 

around holidays and their schedule. It would also be beneficial to have the ability to tag 

resources used to complete individual tasks to the tasks page. For example, if a particular 

programming language and database were used to fulfill a requirement, then the names of 

that programming language and database could be tagged to all the tasks constituting that 

requirement. This would be helpful when the team reflects about the work they did for a 

given project. They would be able to get insights like which tools and technologies were 

easier to use and which were causing delays in task completion based on historical data. 

It would also be a great way to document resources needed to complete a given task. The 

project team members can refer to an old project to find out exactly what resources they 

need if they encounter similar tasks in the future. 

Another area in which future work could potentially be done is the 

implementation of the features presented in the dashboard design. In addition to creating 

a web-based application with a user interface similar to the features presented in the 

design, it would be beneficial to develop a mobile application with similar features. The 

mobile application could be connected to the same back-end web services as the web-

based application so that these applications can share data and updates. Using a mobile 

application would be much easier for the project team. The notifications for schedule 



 26 

slippage, requirement changes, addition and deletion of requirements, etc. would have 

much more reach if sent from a mobile application. The combination of web and mobile 

based applications can be utilized effectively by project team members who work 

remotely.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 27 

Conclusion 

In this report, I have analyzed how requirement changes impacts project 

timelines. I first presented case studies of two different projects and explained how they 

were negatively impacted by change in requirements. One of the projects followed the 

waterfall model of software development and the other followed an agile methodology. 

However, both projects lacked a requirements engineer and had a multitude of other 

issues impacting the project schedule. 

In the second part of my report, I proposed a requirements dashboard which was 

designed based on the shortcomings of the two projects presented in the case studies. 

This dashboard was designed as a common platform for all stakeholders of a project to 

collaborate and has the ability to document requirements, requirement changes and the 

impact of those changes. The dashboard has many advantages like being transparent to all 

stakeholders and project team members, having the ability to set up email notifications, 

sending automated email notifications in case of requirement changes, etc. This 

dashboard would provide realistic delay estimates in case of requirement changes and 

would be immensely beneficial to project teams. 

 

 

 

 

 

 

 

 



 28 

 

References 

1. Kute S., Thorat S. A Review on Various Software Development Life 

Cycle(SDLC) Models, IJRCCT, 2014 

2. A.Aurum, C.Wohlin. Engineering & Managing Software Requirements. 

Berlin, London: Springer, 2005.  

3. Leffingwell, Dean. Managing Software Requirements: Use Case Approach- 

2003. Boston: Addison-Wesley, 2003.  

4. Yana Selioukova. Business Process Modeling in Software Requirement 

Engineering. 2002.  

5. Peter Oriogun. Innovations in Teaching and Learning in Information and 

Computer Sciences. University of North London, UK. 

6. Jain Wang. Object – Oriented Analysis Methodology. University Of Missouri, 

St.Louis, 2001. 

7. Ilia Bider. Choosing Approach to Business Process Modeling-Practical 

Perspective. Research Report, Ibis soft, 2002. 

8. E. Smith. Re-Engineering a Trash/Recycling Collection Vehicle Based on 

Challenging Customer Requirements. Clemson University College of 

Engineering and Science, Clemson, South Carolina, 2010. 

9. E. Hull, K. Jackson, J. Dick. Requirements Engineering, 3rd ed., London, UK: 

Springer, 2011. 

10. J. Terninko, Step-by-step QFD: Customer-driven Product Design, Boca 

Raton, Florida: St. Lucie, 1997. 



 29 

11. Linda Westfall. Software Requirements Engineering; What, Why, Who, 

When, & How. 

12. Roland Kaschek, Heinrich C Mayer. Characteristics of Object Oriented 

Modeling Methods. University of Klagenfurt. 

13. Dragan, Milicev. Model Driven Development with executable UML. 

Indianapolis, IN: Wrox/Wiley, 2009. 

14. Jones, Caper. The Economics of Software Maintenance In The Twenty First 

Century, 2015. 

15. Anton, Annie L., and Colin Potts. The Use of Goals to Surface Requirements 

for Evolving Systems, 2015. 
 


