
  

 

 

 

 

 

 

 

 

 

 

Copyright 

by 

Ashley Michelle Johnson 

2004 

 

 



 

 

 

 

The Dissertation Committee for Ashley Michelle Johnson Certifies that this is the 

approved version of the following dissertation: 

 

 

Studies Toward the Development of an Electronically Switchable Ion 

Exchange System 

 

 

 

 

 
Committee: 
 

James A. Holcombe, Supervisor 

Lynn E. Katz 

Jennifer S. Brodbelt 

Karen S. Browning 

Keith J. Stevenson 



 

 

 

Studies Toward the Development of an Electronically Switchable Ion 

Exchange System 

 

 

by 

Ashley Michelle Johnson, B.S. 

 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 

August, 2004 



 

 

 

 

 

Dedication 

 

The body of this work, and perhaps more importantly the will to complete it, are 

dedicated to my family whose gifts of love and support have made me whole … 

 

…To the memory of my grandfather who had a smile for everyone and the purest soul I 

will ever know, to my grandmother whose beauty and strength are more inspiring than 

she will ever fully understand, to my sister for being my “shipmate” and sharing with me 

her passion and creativity, to my father for allowing the whole world to become my “little 

pink box” and to my mother for always encouraging me to look for pictures in the clouds. 

 



 v 

 

 

 

 

Acknowledgements 

 

I would like to begin by extending a big “Thank you!” to everyone who helped 

me scientifically along the way – Thomas Kreschollek, Tim Smith, Todd McEvoy and 

Keith Stevenson for their help in constructing the glassy carbon electrodes and obtaining 

AFM images; Bill Balsanek for always being so available when I needed to collect ICP 

data; Michelle Chaumont, Bob Michie and Alan Campion for teaching me to use their 

Raman microscope and Dwight Romanovicz for helping me acquire the SEM images.  

Thank you to Gulay for being my favorite Turk and for seeing only great things in my 

cup.  Thank you to Mike for the ice cream, the wine and, most importantly, your 

shoulder.  I would especially like to thank Lisa for being my partner in crime and for our 

innumerable “How exactly does that isotherm thing work again?” and “What do you 

think about this story?” conversations.  I would also like to thank Dr. Holcombe for his 

continued guidance over the past several years and for introducing me to the beauty of 

the “back-of-the-envelope” calculation – no matter how big an envelope might be needed 

to complete it.  Finally, I would like to extend a special thank you to Benvenuto Cellini 

for helping me finally figure out a good answer to the inescapable “What do you want to 

be when you grow up?” question.  



 vi 

 

 

Studies Toward the Development of an Electronically Switchable Ion 

Exchange System 

 

Publication No._____________ 

 

 

Ashley Michelle Johnson, Ph.D. 

The University of Texas at Austin, 2004 

 

Supervisor:  James A. Holcombe 

 

Early studies toward the development of a chemical-free means of reclaiming 

metals from an ion exchange system were begun by exploring the option of controlling 

metal-ligand interactions electrochemically.  Poly-L-cysteine (PLC), a soft acid cationic 

metal chelator, was explored as an option for an electroactive ligand for use as an 

electronically switchable ion exchange system.  Initial studies were conducted by 

immobilizing PLC onto a glassy carbon electrode creating a modified electrode.  The 

modified electrode was characterized using electrochemical techniques, atomic 

spectroscopy and molecular spectroscopy.   

Initial studies were conducted with poly-L-cysteine immobilized onto controlled 

pore glass and packed in a microcolumn for low pressure liquid chromatography 

experiments.  Flow parameters, as well as the ability of poly-L-cysteine to act as a 

preconcentration agent, were established. 
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Electrochemical methods, specifically cyclic voltammetry, were used to confirm 

polymer attachment and to estimate that near monolayer coverage on the glassy carbon 

electrode surface existed.  Further studies examined the kinetics of electron transfer 

through the use of large amplitude potential steps to demonstrate consistency with other 

types of modified electrodes.  The pKa of the polymer was determined to be between 7.5 

and 8 by using surface charge density as a function of pH. 

The poly-L-cysteine modified electrode, as well as an electrode modified with 

cysteine monomers, was evaluated for its metal binding capabilities.  Using Cd2+ as a 

target metal, optimal binding conditions were established.  Binding experiments were 

repeated with Co2+, Cu2+, Ni2+ and Pb2+, as well as competitive binding studies comprised 

of binding in the presence of all five metals.  Quantitative release of bound metals was 

achieved by repeatedly pulsing the potential from open circuit to a number of anodic 

potentials.    

Raman microscopy was used to probe the redox states of PLC, confirm the 

complexation of Cd2+ to the thiol groups of PLC and to establish an average formal 

reduction potential for PLC of -0.3 V vs. SHE.  The possibility of multiple formal 

potentials was explored through the use of mathematical models based on the Nernst 

equation.  The models suggest that many formal potentials do exist although the exact 

nature of the distribution could not be determined. 

As a plausible electronically switchable ion exchange option for heavy metal 

oxyanions, pyrrole was electropolymerized and investigated as a ligand for toxic 

chromate remediation.  Polypyrrole, which bears a structural similarity to poly-L-

histidine, a previously studied chromate chelator, was shown to have potential to both 

remediate and speciate Cr(VI) from Cr3+.    



 viii 

Table of Contents 

List of Tables .................................................................................................... xii 

List of Figures...................................................................................................xiv 

Chapter 1: Introduction ........................................................................................1 

1.1 Trace Metals as an Environmental and Medical Concern ....................1 

1.2 Trace Metal Fixation and Sequestration in Biological Systems...............2 

1.2.1 Proteins......................................................................................2 

1.2.2 Metallothioneins.........................................................................3 

1.3 Current Metal Remediation Technology ................................................5 

1.3.1 Bulk Methods.............................................................................6 

1.3.2 Ion Exchange .............................................................................7 

1.3.3 Electrodeposition .......................................................................8 

1.3.4 Electrical Ion Exchange..............................................................9 

1.4 Incorporation of Biologically-based Systems into Metal Remediation 
Technology.........................................................................................9 

1.4.1 Biological Organisms...............................................................10 

1.4.2 Immobilized Biologically-based Biopolymers ..........................11 

1.4.2.1 Poly-L-cysteine ............................................................11 

1.5 Electronically Switchable Ion Exchange System..................................14 

1.5.1 Remediation of Cationic Species ..............................................16 

1.5.2 Remediation of Anionic Species...............................................17 

1.6 Research overview...............................................................................18 

Chapter 2:  Flow Rate Studies and Preconcentration using Poly-L-Cysteine 
Immobilized onto Controlled Pore Glass ...................................................19 

2.1 Introduction .........................................................................................19 

2.2 Experimental .......................................................................................21 

2.2.1 Instrumentation ........................................................................21 

2.2.2 Reagents ..................................................................................23 

2.2.3 Effects of Loading Flow Rate on Column Capacity ..................25 

2.2.4 Effects of Stripping Flow Rate on Metal Recovery...................27 



 ix 

2.2.5 Preconcentration of Cd2+ using PLC-CPG ................................28 

2.3 Results and Discussion ........................................................................31 

2.3.1 Effects of Loading Flow Rate on Column Capacity ..................31 

2.3.2 Effects of Stripping Flow Rate on Metal Recovery...................33 

2.3.3 Preconcentration of Cd2+ using PLC-CPG ................................37 

2.4 Conclusions .........................................................................................38 

Chapter 3:  Electrochemical Studies of Immobilized Cysteine and Immobilized Poly-
L-Cysteine.................................................................................................40 

3.1 Introduction .........................................................................................40 

3.2 Experimental .......................................................................................41 

3.2.1 Instrumentation ........................................................................41 

3.2.2 Reagents ..................................................................................42 

3.2.3 Creation of Modified Electrodes...............................................42 

3.2.3.1 Fabrication of Glassy Carbon Electrodes ......................42 

3.2.3.2 Immobilization of Glycine, Cysteine and PLC ..............44 

3.2.4 Characterization of Modified Electrodes...................................46 

3.2.4.1 Atomic Force Microscopy ............................................46 

3.2.4.2 Cyclic Voltammetry .....................................................47 

3.2.4.3 Chronoamperometric Determination of Kinetic Rate 
Constants.........................................................................47 

3.2.4.4 Determination of the pKa of PLC and Cys.....................48 

3.3 Results and Discussion ........................................................................48 

3.3.1 Atomic Force Microscopy ........................................................48 

3.3.2 Cyclic Voltammetry .................................................................50 

3.3.3 Chronoamperometric Determination of Kinetic Rate Constants 53 

3.3.4 Determination of the pKa of PLC..............................................56 

3.4 Conclusion...........................................................................................60 

Chapter 4:  Evaluation of Metal Binding to Modified Electrodes........................61 

4.1 Introduction .........................................................................................61 

4.2 Experimental .......................................................................................62 

4.2.1 Instrumentation ........................................................................62 

4.2.2 Reagents ..................................................................................63 



 x 

4.2.3 Correlation of the Electrochemical Redox Method with a Chemical 
Redox Method..........................................................................63 

4.2.4 Evaluation of Cd2+ Binding to PLC-GCE and Cys-GCE...........66 

4.2.5 Effect of Reduction and Oxidation Voltage on Cd2+ Binding 
Capacity on PLC-GCE .............................................................67 

4.2.6 Evaluation of Cu2+, Co2+, Pb2+ and Ni2+ Single-metal and Mixed-
metal Solutions.........................................................................68 

4.3 Results and Discussion ........................................................................70 

4.3.1 Correlation of the Electrochemical Redox Method with a Chemical 
Redox Method..........................................................................70 

4.3.2 Evaluation of Cd2+ Binding to PLC-GCE and Cys-GCE...........71 

4.3.3 Effect of Reduction and Oxidation Voltage on Cd2+ Binding 
Capacity on PLC-GCE .............................................................74 

4.3.4 Evaluation of Cu2+, Co2+, Pb2+ and Ni2+ Single-metal and Mixed-
metal Solutions.........................................................................76 

4.3.5 Comparison of PLC-GCE with Previous Immobilized PLC Systems
.................................................................................................79 

4.4 Conclusion...........................................................................................81 

Chapter 5:  in situ Raman Microscopy Investigation of PLC-GCE......................83 

5.1 Introduction .........................................................................................83 

5.2 Experimental .......................................................................................85 

5.2.1 Instrumentation ........................................................................85 

5.2.2 Reagents ..................................................................................86 

5.2.3 Calibration of Raman Microscope ............................................86 

5.2.4 Depth Profile Analysis .............................................................87 

5.2.5 Observation of Oxidation and Reduction of PLC-GCE.............88 

5.2.6 Determination of Raman Band Intensities.................................88 

5.2.7 Verification of Cd2+ Binding to Thiols......................................89 

5.3 Results and Discussion ........................................................................89 

5.3.1 Depth Profile Analysis .............................................................89 

5.3.2 Observation of Oxidation and Reduction of PLC-GCE.............91 

5.3.3 Determination of an Average Formal Potential .........................98 

5.3.4 Verification of Cd2+ Binding to Thiols of PLC .......................106 

5.4 Conclusions .......................................................................................107 



 xi 

Chapter 6:  Exploratory Investigation of Polypyrrole Films as Conductive Anion 
Exchangers..............................................................................................109 

6.1 Introduction .......................................................................................109 

6.2 Experimental .....................................................................................112 

6.2.1 Instrumentation ......................................................................112 

6.2.2 Reagents ................................................................................113 

6.2.3 Formation of Ppy Films on Glassy Carbon Electrodes ............114 

6.2.4 Scanning Electron Microscopy of Ppy Films ..........................114 

6.2.5 Evaluation of Cr3+ and Cr(VI) Binding...................................114 

6.3 Results and Discussion ......................................................................115 

6.3.1 Scanning Electron Microscopy of Ppy Films ..........................115 

6.3.2 Evaluation of Cr3+ and Cr(VI) Binding...................................121 

6.4 Conclusions .......................................................................................123 

Chapter 7:  Conclusions and Future Work ........................................................125 

7.1 Overview...........................................................................................125 

7.2 Concerns for Scale-up........................................................................128 

7.3 Feasability of Other Possible Systems................................................129 

Appendix .........................................................................................................131 

Data Analysis Macro for Breakthrough Analysis .....................................131 

References .......................................................................................................136 

Vita… ..............................................................................................................148 



 xii 

 

List of Tables 

Table 1.1 Maximum Contaminant Levels, Health Effects and Man-made Sources of 
Various Metals in Water [1] ....................................................................................2 

Table 1.2 Enzymes and their Respective Inorganic Cofactors [2].....................................3 

Table 2.1 Calibration of peristaltic pump for 0.89 mm i.d. and 1.85 mm i.d. Pharmed 
tubing (Cole-Parmer).  The Varian SIPS 20 pump used has a maximum speed of 100 
rpm........................................................................................................................ 26 

Table 2.2 Time and volume required for 50%, 75%, 90% and 95% of the strip peak to be 
eluted from the column at 1, 3 and 5 mL/min......................................................... 37 

Table 2.3 Cd2+ recovery for control and experimental conditions listed following the 
loading of 200 µg of Cd2+. ..................................................................................... 38 

Table 3.1 Kinetic rate constants for electron migration in immobilized PLC.................. 56 

Table 4.1 ETV heating cycle used for metal analysis by ETV-ICPMS........................... 65 

Table 4.2 Argon plasma and quadrupole parameters for metal analysis ......................... 65 

Table 4.3 Isotopes monitored for multi-metal analysis by ETV-ICPMS......................... 69 

Table 4.4 Comparison of chemical and electrochemical treatment of 1.5 mm diameter 
PLC-GCE for Cd2+ binding capabilities.  For chemical treatments (0.01 M DTT, pH 
7; 0.1 M HNO3; 0.001 M o-IB, pH 7), the electrode was exposed for 1 min.  
Electrochemical potential steps were held for 30 s. ................................................ 70 

Table 4.5 Cd2+ binding analysis for Cys-GCE and PLC-GCE........................................ 72 

Table 4.6 PLC-GCE capacity for Cd2+ with decreasing reduction voltage...................... 74 

Table 4.7 Ionic radii of selected metal ions [64] ............................................................ 77 

Table 4.8 Metals per PLC chain, assuming d.p. ~50, and Cys residues per metal as 
determined by ETV-ICPMS................................................................................... 79 

Table 4.9 Metal Binding Capacities in nmol/cm2 from PLC immobilized on controlled 
pore glass [31], Carbopack-X [37] and a glassy carbon electrode.  No data was 
available for Co2+ binding to PLC immobilized onto Carbopack-X........................ 80 

Table 4.10 Formation constants of acetate and the metal ions studied [68]..................... 81 



 xiii 

Table 5.1 Literature values for the reduction of cystine.................................................. 98 

Table 5.2 Average formal potential of PLC as determined by Raman microscopy data (I), 
a linear distribution model of multiple Eos (II) and a Gaussian distribution model of 
multiple Eos (III). ................................................................................................ 105 

Table 6.1 Binding capacities for Cr3+ and Cr(VI) on the 4 ppy electrodes .................... 122 



 xiv 

 

List of Figures 

Figure 1.1 Sequence and Cadmium Binding Clusters for Rabbit Liver MT 2 [4].  Cysteine 
residues are notated by filled circles. .......................................................................5 

Figure 1.2 Proposed ESIE System ................................................................................. 16 

Figure 2.1 Structure of PLC .......................................................................................... 20 

Figure 2.2 Three valve FIA system used for sample introduction comprised of a six-way 
sample selection valve (Rheodyne) a SIPS 20 (Varian) peristaltic pump and two 
two-way slider valves (Rheodyne) in line with a microcolumn and flame atomic 
absorption spectrometer......................................................................................... 22 

Figure 2.3 Surface functionalities present on the CPG at each stage of the four step PLC 
immobilization procedure. ..................................................................................... 25 

Figure 2.4 Example of typical calibration scheme for preconcentration experiments...... 29 

Figure 2.5 Actual calibration procedure used for preconcentration of Cd2+ using PLC-
CPG ...................................................................................................................... 30 

Figure 2.6 Cu2+capacity at increasing loading flow rates.  1 mL/mi of 0.1 M HNO3 was 
used to strip the metal from the column in all cases................................................ 31 

Figure 2.7 Stripping efficiency for acid-activated column loaded to capacity with 10 ppm 
Cu2+ at 2 mL/min and stripped at 1, 2, 3, 4 and 5 mL/min.  Percentages indicate total 
recovery of the metal from the strip analysis as compared to the breakthrough 
capacity. ................................................................................................................ 34 

Figure 2.8 Strip profiles versus time.............................................................................. 35 

Figure 2.9 Strip profiles versus volume ......................................................................... 36 

Figure 3.1 Electrode construction showing (A) cross-section and (B) end view. ............ 44 

Figure 3.2 Electrode Modification Procedure ................................................................ 46 

Figure 3.3 8 µm x 8 µm Tapping-mode Atomic Force Microscopy Images of Polished 
Glassy Carbon Electrode (top) and PLC-modified Glassy Carbon Electrode (bottom)
.............................................................................................................................. 49 

Figure 3.4 Cyclic voltammograms of modified electrodes. ............................................ 51 

Figure 3.5 Peak current response to scan rate changes. .................................................. 53 



 xv 

Figure 3.6 Current as a function of time for potential steps from 0 mV vs. Ag/AgCl to 
either -600 mV or +600 mV vs. Ag/AgCl. ............................................................. 54 

Figure 3.7 Anodic CV at increasing pHs.  These CVs were used for both pKa 
determination methods........................................................................................... 57 

Figure 3.8 Voltammetric determination of pKa.  Data corresponding to PLC-GCE is 
connected by a solid line and plotted in reference to the left-hand axis.  Data 
corresponding to Cys-GCE is connected by a broken line and plotted in reference to 
the right-hand axis. ................................................................................................ 58 

Figure 3.9 Peak potentials of Immobilized PLC as a function of solution pH................. 60 

Figure 4.1 Experimental pathways for metal binding analysis........................................ 67 

Figure 4.2 Effects of oxidative pulsing on the release of Cd2+.  (A-30 1 s pulses, B-20 1 s 
pulses, C-10 1 s pulses, D-5 1 s pulses, E-1 30 s pulse).......................................... 75 

Figure 4.3 Multi-metal binding results from strip analysis as determined by ETV-ICPMS.  
Capacities for single metal and multi-metal solutions are shown.  Multi-metal 
binding was released by either 0.5 mL of 0.1 M HNO3 or 5 +600 mV potential steps 
into 0.5 mL 0.2 M KCl. ......................................................................................... 76 

Figure 5.1 Design of cell for in situ Raman microscopy studies..................................... 85 

Figure 5.2 Si calibration of Raman Microscope ............................................................. 87 

Figure 5.3 Optical images of the glassy carbon electrode surface obtained using a 5X 
objective, left, and a 20X objective, right............................................................... 90 

Figure 5.4 Sample Raman spectrum and difference spectra obtained by depth profile 
analysis. ................................................................................................................ 91 

Figure 5.5 Raman spectrum of a polished glassy carbon electrode................................. 92 

Figure 5.6 Sample Raman spectrum showing peaks of interest:  450 (disulfide), 800 
(thiol), 1360 (D band of GCE) and 1580 cm-1 (E2g band of GCE).  This spectrum 
was acquired while the working electrode was held at 0 V vs. SHE. ...................... 93 

Figure 5.7 Signal averaged Raman spectrum using raw data from Figure 5.6.  The curve 
was generated by performing a 50 point moving average to demonstrate to effective 
increase in the signal to noise ratio by averaging 50 data points. ............................ 94 

Figure 5.8 Background corrected Raman signals for the fully oxidized (solid line) and the 
fully reduced (dotted line) polymer, both shown after a 50 point moving average was 
performed.  The transition due to the disulfide bond can be seen at approximately 
440 cm-1.  The transition due to the reduced thiols can be seen at approximately 790 
cm-1. ...................................................................................................................... 95 



 xvi 

Figure 5.9 Observation of Reduced Thiols.  Normalized Raman intensity is shown as a 
function of electrode potential for the thiol transition, occurring at approximately 
800 cm-1 (average of 3 replicates). ......................................................................... 96 

Figure 5.10 Observation of Oxidized Disulfides.  Normalized Raman intensity as a 
function of electrode potential for the disulfide stretch, occurring at approximately 
450 cm-1 (average of 3 replicates). ......................................................................... 97 

Figure 5.11 Use of the Nernst equation for the thiol-disulfide system using Raman 
scattering of SH (820 cm-1) and SS (460 cm-1) to calculate values on the abscissa.
............................................................................................................................ 100 

Figure 5.12 Distribution of local sites used in simulations.  The solid line represents a 
uniform distribution of redox sites while the dashed line represents redox sites with 

a Gaussian distribution (� = 0.1, oE = -0.24)....................................................... 103 

Figure 5.13 Fractional concentrations of [SH] (�) and [SS] (�), as determined by Raman 
microscopy with resulting Eo distribution models.  The uniform distribution model is 
shown by a solid line and the Gaussian distribution model is shown by a dashed line.
............................................................................................................................ 104 

Figure 5.14 Cd2+ binding to thiol groups of PLC.  The solid line represents spectrum 
acquired in the presence of Cd2+.  Points represent a spectrum acquired in the 
absence of Cd2+. .................................................................................................. 107 

Figure 6.1 Chemical structures of histidine, left, and pyrrole, right. ............................. 110 

Figure 6.2 Charge storage mechanism for polypyrrole................................................. 112 

Figure 6.3 Electrode 1, grown with F- as the counterion.  Top image shows entire 
electrode.  Bottom image is a close-up view of the film itself............................... 116 

Figure 6.4 Electrode 2, grown with ClO4
- as the counterion.  Top image shows entire 

electrode surface seen from the side.  Bottom image is a close-up view of the film 
itself. ................................................................................................................... 117 

Figure 6.5 Electrode 3, grown with BF4
- as the counterion.  Top image shows an end 

view of the entire electrode surface.  Bottom image is a close-up view of the film 
itself. ................................................................................................................... 118 

Figure 6.6 Electrode 4, grown with p-toluenesulfonate as the counterion.  Top image 
shows the entire electrode surface seen from the side.  Bottom image is a close-up 
view of the film itself........................................................................................... 119 

Figure 6.7 Side view of the thickness of the film grown on electrode 1........................ 120 



 xvii 

Figure A.1 An example of a typical breakthrough curve collected by flow injection 
analysis-flame atomic absorption spectroscopy.................................................... 132 

Figure A.2 User input fields for report page of data analysis macro ............................. 133 

Figure A.3 Screen shot of the breakthrough worksheet within the macro.  Raw data 
collected by FIA-FAAS or FIA-ICPMS is entered in the first two columns.  The 
remaining calculations are completed by the macro. ............................................ 134 



 1 

 

 

 

 

Chapter 1: Introduction  

 

1.1 TRACE METALS AS AN ENVIRONMENTAL AND MEDICAL CONCERN 

 

 Heavy metals, unlike organic contaminants, represent a recirculating 

environmental problem.  Metals can not be degraded and therefore must be removed via 

isolation and recovery.  For many heavy metal contaminants, acceptable drinking water 

standards governed by the United States Environmental Protection Agency (USEPA) lie 

in the ppm to ppb range.  In many cases, the maximum contaminant levels (MCL) are set 

as such due to known health concerns for humans.  Most recently, the MCL for total 

arsenic was dropped from 50 ppb to 10 ppb.  All drinking water sources are required to 

be in compliance with this new level by January of 2006.  While the MCL reduction for 

total As is significant, the ultimate goal, as with most toxic contaminants, is to have 

drinking supplies containing no detectable levels of toxic metals.  The origin of these 

metal contaminants includes both the erosion of natural deposits and man-made sources.  

The previous information is summarized in Table 1.1 [1]. 
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Table 1.1 Maximum Contaminant Levels, Health Effects and Man-made Sources of 
Various Metals in Water [1] 

 

 MCL 
(mg/L) 

Potential Health Effects 
from Ingestion of Water 

Man-made Sources of 
Contaminant in Drinking Water 

As 
0.010 

as of 
01/06 

-Skin damage 
-Circulatory problems 
-Risk of cancer 

-Runoff from orchards and 
electronics production wastes 

Cd 0.005 -Kidney damage 
-Discharge from metal refineries 
-Runoff from waste batteries and 

paints 

Crtotal 0.1 -Allergic dermatitis 
-Discharge from steel and pulp 

mills 

Cu 1.3 
-Gastrointestinal distress 
-Liver or kidney damage 

-Corrosion of plumbing 

Pb 0.015 
-Developmental delays 
-Kidney Problems 

-Corrosion of plumbing 

Hg 
(inorganic) 0.002 -Kidney damage 

-Discharge from refineries and 
factories 

-Runoff from landfills and 
croplands 

Se 0.05 
-Hair or fingernail loss 
-Circulatory problems 

-Discharge from petroleum 
refineries and mines 

 

 

1.2 TRACE METAL FIXATION AND SEQUESTRATION IN BIOLOGICAL SYSTEMS 

1.2.1 Proteins 

 Many proteins, including at least 30% of all enzymes, require the coordination of 

an inorganic ion to function properly [2].  These proteins are often referred to as 

metalloproteins.  Metalloproteins exhibit a broad range of functions including acting as 
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electron carriers, metal storage and transport, oxygen binding, metal sensors and 

cofactors for enzymatic activity [3].  One of the most recognizable, and well-understood, 

metalloproteins is hemoglobin.  Hemoglobin, consisting of four subunits each containing 

an Fe2+ ion, serves as the primary transporter of oxygen in biological systems [2].  In 

addition to the previously mentioned functions, metals, specifically Ca2+ also play crucial 

roles in protien folding and structure [3].  In each of these cases, but particularly with 

enzymes, the metal ion necessary for function is quite specific.  Some common enzymes 

requiring inorganic cofactors are listed in Table 1.2. 

 

Table 1.2 Enzymes and their Respective Inorganic Cofactors [2] 

 

Cofactor Enzyme 

Fe2+ or Fe3+ Catalase 

Peroxidase 

Cu2+ Cytochrome oxidase 

Zn2+ Carbonic anhydrase 

Alcohol dehydrogenase 

Mg2+ Hexokinase 

Glucose-6-phosphatase 

Mn2+ Arginase 

Ribonucleotide reductase 

Ni2+ Urease 

 

1.2.2 Metallothioneins 

 Metallothioneins are a unique class of ubiquitous, low molecular weight 

(approximately 6000-7000 Da) proteins with several distinctive characteristics.  Most 
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notably, they have a high ratio of sulfur-containing residues (20 cysteine:60 total 

residues) and, when complexed, contain approximately 20% metal by weight (i.e. 7-12 

metal cations per protein).  Common functions of this subclass of metalloproteins include 

toxic metal sequestration and essential metal fixation.  While metallothioneins have 

relatively little structure as compared to many other proteins, they form two distinct α 

and β clusters when complexing a metal cation such as Cd2+ or Zn2+ as shown in Figure 

1.1.  Due in large part to their indiscriminate structure, metallothioneins can 

accommodate a number of coordination geometries upon introduction of a metal 

including linear, trigonal and tetrahedral.  When binding Cd2+, the α cluster forms as 

Cd4S11 and the β cluster forms a Cd3S9 [4].   

 

This arrangement is the favored thermodynamic state allowing all Cd2+ to be 

tetrahedrally coordinated.  In addition to Cd2+ and Zn2+, metallothioneins have been 

shown to complex Ag(I), Au(I), Cu(I), Cu(II), Hg(II), Pt(II) and Bi(III) in biological 

systems.  Unlike enzymes which rely on competitive release, metals bound to 

metallothioneins are easily extracted as well as readily exchanged with other cations.   

 

The metal-thiolate complexes formed within a metallothionein exhibit both rapid 

kinetics of metal exchange and a large thermodynamic affinity with log K values 

reaching 17 [4].   Although less common than single metal-metallothionein complexes, 

mixed metal-metallothionein complexes can exist especially during neonatal 

development and following heavy metal exposure.  Interestingly, as sequences can vary 

from species to species, certain amino acid residue motifs are conserved.  These are Cys-

Cys, Cys-X-Cys, and Cys-X-X-Cys, where X can be a number of other animo acid 

residues.          
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Figure 1.1 Sequence and Cadmium Binding Clusters for Rabbit Liver MT 2 [4].  Cysteine 
residues are notated by filled circles. 

 

 

1.3 CURRENT METAL REMEDIATION TECHNOLOGY 

 

 Initially, metal remediation from highly contaminated sources proceeds using 

bulk methods.  These methods, while successful in remediating large quantities of metal, 

can not bring many systems below regulatory levels mandated by agencies such as the 

USEPA.  In many cases, a second technology is required to bring the bulk-treated source 
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into compliance.  These technologies, referred to as “polishing” steps, often involve 

chemical extraction or adsorption to achieve required conformity with regulatory policy. 

 

1.3.1 Bulk Methods 

 The most common forms of physical treatment methods are phase separation, 

(e.g. filtration and sedimentation), phase transition, (e.g. distillation, evaporation or 

physical precipitation), and phase transfer, (e.g. extraction or sorption).  Phase separation 

methods are often aided by the inclusion of a chemical additive to act as a flocculating 

agent or coagulant resulting in a more effective filtration procedure.  Phase transition 

methods are primarily used for solvents and organic contaminants like waste oil.  

Common methods of phase transfer treatment include leaching, supercritical fluid 

extraction and sorption by activated carbon.  Some types of wastes, mainly organic 

pollutants, can be treated by incineration or biodegradation as well.   

 

 In addition to the aforementioned physical treatment methods, there are also 

chemical methods for the bulk treatment of water and wastewater.  These include 

neutralization, chemical precipitation, oxidation/reduction, electrolysis, hydrolysis, 

chemical extraction, ion exchange and photolysis.  Of these the most useful chemical 

treatment methods for inorganic contaminants are chemical precipitation, where the 

introduction of a chemical, most often hydroxide, induces precipitate formation of 

insoluble metal hydroxides; oxidation/reduction, where the oxidation state of the target 

metal is changed to a less toxic form; electrolysis, where metal ions can simply be plated 

onto an electrode; chemical extraction, where a metal can be made more mobile via a 

chemical reaction or complexed with a chelating agent, such as EDTA; and ion exchange, 

where a toxic metal ion is exchanged for an innocuous ion. 
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 Many treatment schemes include a combination of these physical and chemical 

techniques in order to maximize the effectiveness of the treatment process.  In many 

cases, some of these methods only target one major class of pollutants while the water 

may be contaminated with multiple classes of pollutants [5]. 

 

1.3.2 Ion Exchange 

 In the ion exchange process, one ion desorbs from a given substrate while another 

ion adsorbs.  The substrate can be derived from natural materials, such as clays or 

minerals, but more often they are synthetic polymer resins.  These resins are generally 

highly crosslinked to achieve a large surface area, but porous enough for solution flow.  

In addition, they are modified to include fixed, charged functional groups within the 

resin.    Functional groups can be either cation or anionic in nature depending on the 

charge of the ion of interest.  Common groups include sulfonates for cation exchange and 

quaternary amines for anion exchange.  Loosely bound counter ions of opposing charge 

are incorporated into the resin.  These counter ions are then able to be exchanged with 

target ions in solution.  Ion exchange can proceed as either heterovalent ion exchange, 

when the two exchanging ion have different formal charges, or as homovalent ion 

exchange, when the two exchanging ions have the same formal charge.  However, 

electroneutralaity of the resin must be conserved which requires more than two ions to be 

exchanged when heterovalent exchange takes place.   

 

The regeneration of an ion exchange column is essentially identical to the analyte 

adsoprtion process except the analyte is intentionally replaced by H+, OH- or in some 
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cases Na+ or Cl-.  For most ion exchange resins, adsorbate recovery is quite efficient, 

often exceeding 95%.  Although some adsorbates can irreversibly bond to the resin, it 

typically has little effect on analyte capacity [6]. 

 

Unfortunately, many current ion exchange systems lack the specificity often 

desired in a remediation technique.  In the case of a resin which can bind several metals, 

much of the total binding capacity is occupied by analytes which are not of interest.  This 

problem is often compounded in the presence of salty matrices like seawater.    

 

1.3.3 Electrodeposition 

 Electrodeposition, or electrolysis, is another commonly used remediation method 

for metal ions.  The metal ions are electrochemically reduced at a cathode while an 

oxidation reaction takes place at an anode.  Electrolysis is especially applicable towards 

the remediation of cadmium, copper, gold, lead, silver and zinc.  However, the presence 

of some anions, such as cyanide, can greatly reduce the effectiveness of electrolysis due 

to stabilization by complexation [5].   

 

 Bulk electrolysis can also be used in a flow mode where the solution is passed 

thorugh a large surface area electrode, usually porous in nature, such as fine mesh screens 

or packed carbon powders.  Flow electrolysis systems often offer both rapid conversions 

and high efficiencies of remediation.  Cell design for these large scale bulk electrolysis 

methods is more critical than many other electrochemical techniques primarily in order to 

minimize uncompensated resistance.  Ideally, these systems would simultaneouly 

minimize the length of the electrode while maximizing flow velocities.  Depending on the 

circumstances, electrolysis can be carried out by either controlled-potential, where the 



 9 

potential of the working electrode is held constant throughout treatment, or controlled-

current techniques, where the current through the cell is held constant.  Despite the large 

scale of these electrolysis cells, the basic electrochemical fundamentals governing 

reactions at electrode surfaces hold true [7].     

  

1.3.4 Electrical Ion Exchange 

 Interestingly, several of the problems inherent to the two previously mentioned 

techniques can be overcome by merging their advantageous qualities into a single 

method.  The earliest electrical ion exchange systems incorporated a resin into an 

electrode via a binder [8-11].  In these cases, an electrochemical potential promoted ion 

migration to the cathode surface where the ion exchange resin could then retain the metal 

ion.  The system could then be regenerated by a change in polarity thereby driving the 

metal cations away from the electrode surface.  Noted benefits of this type of system have 

included low energy operation as compared to electrolysis, high metal selectivity 

governed by the combination of potential and exchange properties, the ability to 

preconcentrate, the production of minimal waste volume and the prospect of continual 

operation [10].  However, despite the apparent advantages of electrical ion exchange, the 

efficiency of these systems is highly dependent on the matrix and its metal components.     

 

1.4 INCORPORATION OF BIOLOGICALLY-BASED SYSTEMS INTO METAL 
REMEDIATION TECHNOLOGY 

 

 Even with the development of ever increasing technological improvements to 

physical and chemical treatment of waters and wastewaters, it is seemingly logical to also 
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consider further exploring the mechanisms already incorporated into biological systems – 

particularly with the drive towards “environmentally-friendly” chemistry.  Some of these 

approaches have investigated the use of intact organisms while many others concentrate 

their efforts on isolating the constituent aspects of biological organisms that make them 

effective trace metal binders.      

   

1.4.1 Biological Organisms 

 Initially, many efforts in bioremediation centered on intact biological systems.  

Just a little over 20 years ago, researchers first began to notice the propensity of certain 

species of plants to uptake and accumulate abnormally high amounts of heavy metals.  

These plants, known as hyperaccumulators, have spurned the development of what has 

become known as phytoremediation.  In phytoremediation, plants known to be 

hyperaccumulators of a target analyte are introduced into a contaminated site providing 

low-cost, in situ, environmentally-friendly remediation.  Since the beginnings of 

phytoremediation, researchers have found species that can accumulate cadmium, lead, 

copper, mercury, cobalt, nickel, manganese, zinc, chromium and selenium (e.g. [12-18]). 

 

 Other attempts to harness the efficiency of bioremediation have focused on the 

use of single cell systems such as algae, yeast or bacteria which can each be immobilized 

onto a solid substrate for use in a flow scheme.  These studies have demonstrated the 

removal of copper, lead, nickel, zinc, iron, manganese, molybdenum, strontium, 

vanadium, selenium, arsenic and cobalt (e.g. [19-26]).      
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1.4.2 Immobilized Biologically-based Biopolymers 

 As an alternative to intact biological systems, other studies have explored the 

remediation capabilities of the components which likely dominate the metal binding 

mechanisms.  As discussed previously, proteins are perhaps the most effective metal ion 

binders within biological systems.  Since the function of proteins is directly derived from 

its predisposed tertiary structure, proteins which become denatured are no longer 

effective as metal binders.   However, the functionalities of the constituent amino acids of 

a protein will retain some degree of affinity for metal ions regardless of the loss of 

protein function.  These naturally occurring amino acids offer a variety of moieties for 

potential metal binding including carboxylate, as in glutamate and aspartate, amines, as in 

lysine, imidizoles, (e.g. histidine) and thiols, (e.g. cysteine).  More recent research has 

begun to exploit the power of biologically-based systems by using amino acid monomers 

as well as short chain amino acid homopolymers in hopes of achieving the capabilities of 

bioremediation without the drawbacks inherent to using entire organisms.  

 

1.4.2.1 Poly-L-cysteine 

 Poly-L-cysteine (PLC) was first synthesized chemically in the 1950s from 

monomers in solution [27].  More recently, PLC has been studied as a trace metal 

chelator both in batch solution experiments [28, 29] as well as immobilized onto a 

chromatographic support [29-34] or microfiltration membranes [35].           

 

 Batch work by Holcombe et al. established PLC to be a strong complexing agent 

for heavy metals such as cadmium, copper and zinc [28].  Formation constants, in the 

form log K, were spectroscopically determined to be at least 8 and 9.5 for Cd2+ and Zn2+, 
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respectively.   While these batch studies were able to provide early insight into the nature 

of PLC as a heavy metal chelator, the poor solubility of the polymer in neutral solutions 

presented problems for further study.  Subsequent research efforts using PLC as a metal 

remediation tool have focused on the development of bonded phase ion exchange 

systems.   

 

 With PLC covalently attached to silica substrates, such as controlled pore glass 

(CPG), low solubility is no longer a concern, and the robust nature of CPG provided an 

excellent substrate for peptide immobilization [33].  The PLC modified CPG particles 

were packed into small low pressure liquid chromatography columns supplying a system 

which could be used in conjunction with flow injection analysis.  PLC-CPG was 

investigated as a preconcentration agent for Cd2+ primarily due to the large log K values.  

Using Langmuir isotherms, the maximum log Kf (pH=7) for Cd-PLC was estimated to be 

13 although the majority of binding sites were shown to have log Kf values between 4 

and 11. 

 

 Further studies sought to compare the preconcentration capabilities of PLC with 

those of a more traditional system, 8-hydroxyquinoline (8HQ) [31].  Both chelators were 

immobilized onto CPG and packed into columns and successfully complexed ppb levels 

of Cd2+ and Pb2+ from a synthetic seawater sample.  The ability to bind ppb levels of 

heavy metal analytes despite the presence of a total of 12,050 ppm Na+, K+, Mg2+ and 

Ca2+ is due to their high selectivity against group IA and IIA metals.  PLC, however, 

demonstrated added selectivity of some heavy transition metals over others.  PLC was 

able to chelate ppb level amounts of Cd2+ and Pb2+ in the presence of 500 ppm Co2+ and 

Ni2+ matrices, while the 8HQ retained essentially no Cd2+ and very little Pb2+. 
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 An investigation into the effects of oxidation on the chelating abilities of PLC was 

also conducted previously [30].  The thiol groups of PLC are prone to oxidation to form 

disulfide bonds.  While thiol groups are excellent metal chelators, disulfides are not. 

Dramatic reductions in column capacity were seen when the column was exposed to such 

oxidizing agents as 1% H2O2, dissolved O2 and Cu2+.  Full column capacity could be 

regained by chemical reduction with dithiothreitol. 

 

 The physical response of PLC to differing chemical environments was explored 

using in situ liquid cell atomic force microscopy [36].  During the analysis, PLC was 

exposed to a reducing agent, a metal-containing solution and an acidic pH.  The average 

height of the polymer while in each of these environments led to a further clarification on 

the proposed binding mechanisms.  When reduced, i.e all disulfide bonds reduced to thiol 

groups, the polymer reached its maximum height of about 40 nm.  When exposed to 

Cd2+, the average polymer height was reduced to 20 nm indicating that the polymer was 

likely wrapping itself around the metal ions.  In acidic conditions, the polymer was 

reduced in height once again, to a height of 10 nm and consistant with expectations for a 

tight, α-coil confirmation.  It was postulated that below pHs of ~ 7, essentially all the 

thiol groups should be protonated, resulting in a fairly hydrophobic structure that assumes 

a conformation that minimizes its solvation.  

 

 Previous work with PLC also employed an alterntive to CPG as a 

chromatographic support [37].  PLC was covalently attached to porous carbon particles 

and packed into a column for flow injection analysis metal binding experiments.  These 

experiments further confirmed the behavior seen on CPG. 
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 For use in microfiltration membranes, silica and cellulose based membrane 

materials were functionalized by PLC [35].  The major advantage these membranes 

exhibited over the previously used CPG and porous carbon systems was high sorption 

capacities.  The PLC functionalized membranes could accommodate on the order of mg 

of metal per cm2 of surface area  as compared to µg of metal per cm2 of surface area for 

CPG [28-31, 33] and porous carbon [28-31, 33, 37].  Overall, these studies have 

generated a broad, fundamental understanding into the metal binding characteristics of 

PLC.  

 

1.5 ELECTRONICALLY SWITCHABLE ION EXCHANGE SYSTEM 

 

 As discussed, PLC presents with some unique characteristics for trace metal 

preconcentration and remediation.  In addition to its metal binding trends, PLC exhibits a 

dramatic reduction in metal binding capacity when it is chemically oxidized.  It is 

conceivable that this change could also occur using electrochemical  methods, i.e. using 

voltages or currents instead of additional chemicals.  In this manner, an essentially 

“chemical-free” remediation system could be developed.  The system, if scaled up to a 

column-based system could be referred to as an electronically switchable ion exchanger 

(ESIE).  With ESIE in-line, a metal-contaminated liquid stream could be passed through 

the ion exchange column consisting of a strong redox active metal chelator system 

immobilized on a high surface area substrate that is electrically conducting.  In the 

absence of a potential placed between the column and an auxiliary electrode, the column 

functions like an ion exchanger with the metal binding characteristics of the immobilized 
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chelator.  The remediated effluent stream from the column then flows to the intended 

destination (e.g., discharge stream, water distribution system, etc.).  Eventually, the 

column binding capacity will be reached.  At this time a valve in the effluent stream 

redirects flow to a recovery tank, and an electrochemical potential is placed across the 

column to “spoil” the ligand binding capability resulting in the release of metals into the 

column’s mobile phase and passage to the recovery tank.  It is possible that efficient 

release could make the solution volume within the column containing the released metal 

as small as a single column dead volume.  After the metal is removed, the column is 

electrochemically “reactivated” (e.g., reduced) to restore it to the “binding mode”.  The 

potential is then removed, the effluent valve is switched and column again functions as an 

in-line metal extraction system.   

 

ESIE presents a novel, reversible, reusable method for metal extraction from 

waste streams by exploiting both the chelating and redox properties of the ion exchanger.  

Optimal flexibility is inherent to the system since the selection of the immobilized 

chelator provides the desired selectivity for metal removal while “spoiling” the Kf of the 

chelator through electrochemistry permits recovery with less dependence on the target 

metal.  A proposed model for the ESIE system is schematically represented in Figure 1.2.   
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Figure 1.2 Proposed ESIE System 

 

 

1.5.1 Remediation of Cationic Species 

 Initial work towards the development of a feasible ESIE system targeted toxic 

metal cations.  Due to both thorough previous characterization and redox characteristics, 

the first chelator chosen for ESIE was poly-L-cysteine (PLC).  Earlier work with PLC 

immobilized on surfaces such as controlled pore glass (CPG) [28, 30-32, 36] and carbon 

[28, 30-32, 36, 37] provided information regarding binding preferences, binding strength 
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and chemically-induced release efficiency. Additionally, studies focused on the role of 

oxidation and reduction chemistry into the binding capacities of PLC had been completed 

using chemical oxidizing (e.g. o-iodobenzoate, O2(g) and hydrogen peroxide) and 

reducing agents (e.g. dithiothreitol) [30].  In all cases, maximum metal binding capacities 

were seen when PLC was fully reduced and oxidation reduced the metal binding 

capacities. 

 

From this previous work, several important aspects of PLC were determined.  

PLC can be immobilized onto a variety of surfaces, including those which are 

conductive.  PLC is an effective metal cation chelator, particularly of the soft acid metals, 

reaching log K values of ~13 while maintaining fast, on-demand metal release.  

Immobilized PLC exhibits essentially no capacity for cations when oxidized to disulfides, 

but regains the original capacity once reduced. 

 

1.5.2 Remediation of Anionic Species 

 In addition to the development of a cationic ESIE system, studies were 

undertaken to create a prototype system for the chemical-free remedation of toxic anions, 

particularly the metal oxyanions.  Targeting these analytes, particularly Cr(VI) and 

As(V), can lead to a powerful speciation tool allowing for a more complete understanding 

into the distribution and bioavailability of particular species.  Previous work into the 

speciation and remediation of Cr(VI) and As(V) which took advantage of the benefits of 

biohomopolymers focused on poly-L-histidine (PLH) [38].  The functional side group of 

PLH consists of an imidazole ring which becomes positively charged upon protonation.  

This protonated form of PLH binds both CrO4
2- and AsO4

3- while demonstrating 

relatively little capacity towards Cr3+ and As3+ [38-40].   
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 Due to structural similarities as well as appealing electrochemical characteristics, 

polypyrrole (ppy) was chosen for further study as an anionic ESIE candidate.  Ppy has 

been extensively electrochemically characterized [41-46] and has also been investigated 

as a chromatographic support for electrochromatography [47-49].  In addition, pyrrole is 

easily polymerized in situ to a variety of conductive supports, including carbon [41, 44-

46].  

 

1.6 RESEARCH OVERVIEW  

 

 In order to proceed toward the development of an electronically switchable ion 

exchange system, previous work was expanded to include a variety of new studies.  

Initially, flow parameters were determined to maximize the preconcentration capabilities 

of PLC immobilized onto porous silica.  The subsequent studies involving PLC were 

conducted with PLC immobilized on a glassy carbon disk electrode.  A series of 

electrochemical experiments were undertaken to characterize the PLC-modified 

electrode.  Metal binding studies were completed to determine the capacity of the PLC-

modified electrode for 5 divalent cations.  Raman microscopy was used to explore the 

nature of the thiol-disulfide conversion.  Finally, polypyrrole was investigated as a 

potential ligand for the remediation of anionic species, specifically Cr(VI).  
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Chapter 2:  Flow Rate Studies and Preconcentration using Poly-L-
Cysteine Immobilized onto Controlled Pore Glass 

 

2.1 INTRODUCTION 

 

 Individually, preconcentration and flow injection analysis are both highly 

effective analytical tools.  When used together, they become even more powerful.  

Preconcentration can lower the practical limit of detection for a given instrument by 

enhancing the original signal.  The added benefit of matrix elimination improves the 

quality of analysis especially for some elemental analytical techniques, such as 

inductively coupled plasma mass spectrometry and electrothermal atomization atomic 

spectroscopy, which can be highly sensitive to matrix effects.  Incorporating flow 

injection can provide highly automated and rapid sample throughput to help decrease 

overall analysis time.  The capability for efficient analyte speciation as well as the 

reduction of waste volume is also of great interest for metal remediation.  The 

combination of preconcentration and flow injection analysis (FIA) also provides an 

effective tool to evaluate and characterize metal-binding systems including those 

composed of biologically-based polymers immobilized on a solid support.  An important 

parameter for FIA systems is the solution flow rate.  Flow rates can greatly impact 

adsorption behavior of analytes onto particles.   
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 Previously, a variety of solid supports from polymeric resins to activated carbon 

have been used as substrates for ion exchange and metal remediation systems.  One such 

support, controlled pore glass (CPG), has offered a more rugged alternative to resins 

which are subject to unfavorable solvent effects, such as shrinkage and swelling.  CPG is 

a porous silica substrate which is commercially available in a range of mesh sizes and 

pore diameters to accommodate a range of applications.  As an added benefit, CPG has a 

large surface area, (e.g. 50-200 m2/g) with average pore diameters ranging from 15-50 

nm.   

 

  Proteins and their constituent animo acids have long been known as effective 

metal binders.  The variety of chemical moieties available as R groups provides an array 

of metal binding affinities.  One of the more interesting amino acids is cysteine with its 

thiol side chain.  Thiols, by nature, are extremely chemically reactive in addition to being 

redox active.  L-cysteine can be chemically polymerized to form poly-L-cysteine [27], 

(Figure 2.1).  

 

Figure 2.1 Structure of PLC 
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 Poly-L-cysteine (PLC) provides the same metal binding affinity as L-cysteine but 

with increased binding strength due to the possibility of multi-dentate chelation, with log 

Kfs reaching 13 [30, 37].  PLC has been shown to be an excellent chelator of a suite of 

heavy metals, specifically the soft acid metals such as Cd and Pb [28-31, 33, 37].  

However, the metal binding capacity of PLC is greatly mitigated by the oxidation of the 

thiol groups to disulfides.  Oxidized PLC exhibits little to no affinity to heavy metal 

cations [30].  The binding strength of PLC contributes to its ability to act as an effective 

preconcentration agent.  Another important aspect of PLC that adds to its 

preconcentration efficacy is the propensity for facile, on-demand release of the bound 

metal.  Metal release is achieved by a combination of two mechanisms – proton 

displacement of the bound metal and a dramatic tertiary structure change of PLC.  Under 

acidic conditions the protonated thiols cause the PLC to be much more hydrophobic and 

subsequently force it to coil to the surface thereby disrupting its tertiary structure and 

releasing the bound metal.   

 

 

2.2 EXPERIMENTAL 

2.2.1 Instrumentation 

 A Varian model AA-875 atomic absorption spectrometer with an air/acetylene 

flame was used for Cu and Cd determinations.  The hollow cathode lamps were operated 

at the recommended currents.  The Cu and Cd absorption lines of 324.8 nm and 228.8 

nm, respectively, were employed with a monochrometer bandpass of 0.5 nm.  All pH 

measurements were made with a digital pH/mV/ORP meter (Cole-Parmer).  The flow 
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injection system that was used for these studies consists of a peristaltic pump (Varian 

SIPS), a pneumatic 6-port rotary valve (Rheodyne) for sample/reagent selection and two 

pnuematic 3-way slider valves (Rheodyne) (Figure 2.2).  All connections were made with 

0.76 mm i.d. PTFE tubing.  The system has been automated by in-house software 

controlling the pump, pneumatic valves and recording the analog data output at a rate of 

up to 10 Hz. 

 

 The modified CPG of interest was packed into a 3 mm i.d. x 25 mm long 

borosilicate column with 100 µm PTFE frits (Omnifit).  A Kel-F tee was used between 

the column and the nebulizer to provide air compensation.  

 

Figure 2.2 Three valve FIA system used for sample introduction comprised of a six-way 
sample selection valve (Rheodyne) a SIPS 20 (Varian) peristaltic pump and 
two two-way slider valves (Rheodyne) in line with a microcolumn and 
flame atomic absorption spectrometer.   
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2.2.2 Reagents 

 All reagent used were reagent grade, unless noted otherwise.  Deioninzed, 

distilled water was used in solution preparations.  All glassware was soaked overnight in 

4 M nitric acid prior to use.  Poly-S-CBZ-L-cysteine, PLC, (Sigma) [DP(vis) 50, 

MW(vis) 11,800] was used as received.  Controlled pore glass, CPG, (Sigma) with an 

average pore diameter of 22.6 nm and mesh size 80-120 was used.  Other reagents used 

included 3-aminopropyltriethoxysilane (98%), APS, (Sigma), gluteraldehyde (25%) 

(Sigma), DL-dithiothreitol, DTT, (Sigma), nitric acid, ammonium acetate (Aldrich), 

sodium hydroxide (Fisher Scientific) and glacial acetic acide (Fisher Scientific).  Stock 

solutions of 1000 ppm Cd2+ (Assurance) and Cu2+ (SCP Science) atomic absorption 

standards were used to prepare the 10 ppm solutions for the metal binding experiments as 

well as calibration standards.   

 

 PLC was purchased in the form Poly-S-CBZ-L-cysteine which required the 

removal of the carbobenzoxy-thiol blocking group prior to use as an immobilized 

chelator.  This was accomplished by using the procedure described by Berger [27] and 

modified by Miller and Holcombe [37].  In short combining 0.05 g of Poly-S-CBZ-L-

cysteine, 0.2 g phenol (EM Science), 0.1 g DTT and 5 mL of 99% trifluoroacetic acid, 

TFA, (Acros Organics) and then heating under reflux conditions for 2 hours.  After 

cooling to room temperature, 25 mL of a saturated solution of sodium acetate was added 

to precipitate the newly blocked PLC from the reaction mixture.  The precipitant was 

then collected via vacuum filtration, rinsed with acidified DI water and diethyl ether and 

dried overnight under N2(g).  
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 Two columns were packed – one for flow rate studies and one for the 

preconcentration studies.  The column used for the investigation of flow rate effects was 

prepared only by acid activation of the CPG.  The CPG surface was activated by heating 

under reflux conditions in 5% nitric acid for 1 hr., allowed to dry in a 95oC oven 

overnight and packed into a microcolumn.   

 

The CPG onto which PLC was to be packed and used for the examination of the 

preconcentration abilities of PLC was further modified through reactions illustrated in 

Figure 2.3, which have been described previously [50].  In brief, following an identical 

acid activation, the CPG was reacted with 5 mL of APS in 50 mL of water adjusted to pH 

3.5 with HCl, heated to 75oC for 150 min and filtered.  This process was repeated twice.  

The filtered glass was subsequently dried overnight in a 80oC oven.  The aminoalkylated 

glass was added to 50 mL of a 25% gluteraldehyde solution in pH 7.5 phosphate buffer 

and reacted under N2(g) for 1 hr.  Following vacuum filtration, 0.1 g of deblocked PLC 

was added to the glass in  0.1 M pH 8.5 phosphate buffer and reacted under N2(g) for 2 

hrs.  The PLC-CPG was filtered, rinsed with DI water and dried for 48 hrs under N2(g). 
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Figure 2.3 Surface functionalities present on the CPG at each stage of the four step PLC 
immobilization procedure. 

 

 

2.2.3 Effects of Loading Flow Rate on Column Capacity 

 The flow injection analysis setup shown in Figure 2.2 was used for all 

experiments.  All pumps and tubing were warmed up preceding each experiment.  Prior 

to use, two different i.d. tubings were used to calibrate the rpm of the pump to flow rate 

as summarized in Table 2.1.  The flow rate was determined by flowing an acid solution 

through the column into a 10 mL graduated cylinder for 4 min.   
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Table 2.1 Calibration of peristaltic pump for 0.89 mm i.d. and 1.85 mm i.d. Pharmed 
tubing (Cole-Parmer).  The Varian SIPS 20 pump used has a maximum 
speed of 100 rpm. 

 

Flow rate 
Pump speed (rpm) 
0.89 mm i.d. tubing 

Pump speed (rpm) 
1.85 mm i.d. tubing 

1 15 8 

2 31 13 

3 46 21 

4 61 29 

5 77 39 

6 92 50 

7 -- 62 

8 -- 76 

9 -- 91 

10 -- -- 

 

 

Before each binding experiment, the packed bed column was cleaned using 0.1 M 

HNO3 for 2 min at 1 mL per min followed by 0.05 M ammonium acetate at pH 7 for 

another 2 min at 1 mL per min.  In order to investigate the effects of loading flow rate on 

the capacity of an acid activated controlled pore glass, breakthrough curves were 

obtained at 1, 2, 3, 4 and 5 mL per min following a calibration at the corresponding flow 

rates using acidified metal standards that are not retained by the column.  Breakthrough 

was generally achieved in less than 20 min, although the exact time required for 

breakthrough was flow rate dependant.  In each case, the influent concentration was 10 

ppm Cu2+ in 0.05 M ammonium acetate at pH 7.  The in-house data collection software 

recorded the Cu absorbance as a function of time at a collection rate of 1 Hz.  After 

breakthrough was reached, i.e when effluent concentration was equal to influent 
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concentration, flow to the AA and data collection was stopped.  2 mL of 0.5 M 

ammonium acetate, with no Cu2+ present, was introduced into the lines and the column to 

purge any unbound metal from the system.  0.1 M HNO3 was then introduced on to the 

column to strip the bound metals.  The Cu2+ capacity was calculated using a previously 

designed macro in Excel (Microsoft) and confirmed by stripping the bound metal with 

0.1 M HNO3 at 1 mL per min into a 10 mL volumetric flask.  The strip solution was 

quantified by flame atomic absorption spectroscopy following a three point calibration 

curve made from Cu2+ standards in 0.1 M HNO3 solution.  Both the breakthrough and 

strip analysis for each flow rate were performed in triplicate.    

 

2.2.4 Effects of Stripping Flow Rate on Metal Recovery 

 In order to evaluate the effect of flow rate on the efficiency of metal recovery, the 

column was loaded to capacity at 2 mL per min using 10 ppm Cu2+ in 0.05 M ammonium 

acetate at pH 7.0.  The bound metal was then stripped by 0.1 HNO3 at 1, 2, 3, 4 and 5 mL 

per min into a 10 mL volumetric flask.  The strip solutions were quantified using flame 

atomic absorption as before.  These experiments were also completed in triplicate for 

each strip flow rate. 

 

 Strip profile peaks were also collected at strip flow rates of 1, 3 and 5 mL/min 

after loading a 10 ppm Cu2+ solution in 0.05 ammonium acetate (pH 7) for 3 min using a 

loading flow rate of 2 mL/min.  As before, prior to stripping the bound metal with 0.1 M 

HNO3 the lines were rinsed with 2 mL of 0.05 ammonium acetate (pH 7).  Instead of 

collecting the bound metal in a volumetric flask, the stripped metal was allowed to flow 

from the column directly into the flame of the AA.  Absorbance values were obtained 

with in-house software at a collection rate of 1 Hz.    
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2.2.5 Preconcentration of Cd2+ using PLC-CPG 

 A 25 cm microcolumn was packed with approximately 0.1 g of PLC modified 

controlled pore glass (CPG).  Prior to obtaining each breakthrough curve, 0.1 M DTT 

(pH 9) was introduced onto the column at 1 mL/min for 10 min to reduce any oxidized 

disulfide bonds before metal chelation.  CPG-immobilized PLC was used for the 

preconcentration of Cd2+ from a 20 ppb solution in 0.05 M ammonium acetate at pH 7.  

Cadmium was chosen due to the strong binding and significant capacity PLC has for that 

particular cation.  The 20 ppb solution was introduced onto the PLC column at 2 mL per 

min for 10 min.  After 10 min, the bound metal was stripped by 0.1 M HNO3 directly into 

the nebulizer of the flame atomic absorption spectrometer resulting in a transient strip 

peak.  The transient strip peak plotted as µg/mL Cd2+ vs. mL was intergrated to quantify 

the amount of Cd2+ present in the strip.   

 

 Typically, calibration standards for preconcentration experiments are made at the 

ppb level.  The standards are loaded and stripped from the preconcentration column in the 

same manner as the unknown resulting in a series of transient peaks.  The average peak 

heights are used to create a calibration curve.  This general scheme is demonstrated by 

Figure 2.4.  This process has several disadvantages – the calibration procedure is time 

intensive and the necessity for accurate ppb level standards can lead to concerns over 

metal loss to container walls.  In addition, this method is inadequate if incomplete metal 

release occurs.         
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Figure 2.4 Example of typical calibration scheme for preconcentration experiments 

 

 

 

 

 

 As an alternative to the previously discussed calibration protocol, acidified ppm 

level standards were used to quantify the mass of Cd2+ that was bound to the PLC 

column.  The calibration protocol used is demonstrated in Figure 2.5.  0, 0.5, 2 and 5 ppm 

Cd2+ in 0.1 M HNO3 were successively introduced onto the column for 1 min each at a 

flow rate of 1 mL per min.  The resultant absorbance was recorded by in-house data 

collection software at 1 Hz.  Following the calibration standards, 2 mL of 0.05 M 

ammonium acetate at pH 7 was introduced onto the column at 1 mL per min to condition 

the column to the proper pH for the metal binding interaction.   
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Figure 2.5 Actual calibration procedure used for preconcentration of Cd2+ using PLC-
CPG 

 

A 20 ppb Cd2+ solution in 0.05 M ammonium acetate at pH 7 was introduced onto 

the column at 1 mL per min for 10 min.  After loading, lines and column were purged of 

any unbound metal by rinsing with 2 mL of 0.05 M ammonium acetate at pH 7.  To strip, 

0.1 M HNO3 was introduced at 1 mL per min and the effluent was nebulized directly into 

the flame resulting in a transient strip peak.  The absorbance at each point on the transient 

was converted to µg/mL using the data from the acidified standard calibration curve.  The 

time component of the strip peak was converted to volume using the determined flow 

rate.  The peak was then integrated to determine the mass of Cd2+ in mg that had been 

retained on the column.  This process was performed in triplicate for the 1 mL per min 

loading rate.  A second analysis was also performed at 2 mL per min loading rate for 5 

min and 1 mL per min stripping rate.  This analysis was also conducted in triplicate.   
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2.3 RESULTS AND DISCUSSION 

2.3.1 Effects of Loading Flow Rate on Column Capacity 

 The metal binding capacities calculated by using both breakthrough and strip data 

for Cu2+ on acid activated glass at various flow rates are shown in Figure 2.6.  Using 

influent flow rates of 2 mL per min or less resulted in similar capacities.  However, 

influent flow rates of 3 mL per min and greater resulted in a diminished capacity.     

 

Figure 2.6 Cu2+capacity at increasing loading flow rates.  1 mL/mi of 0.1 M HNO3 was 
used to strip the metal from the column in all cases. 

 

 The binding of Cu2+ to the acid activated groups on the surface of controlled pore 

glass is fundamentally an adsorption process [6].  Adsorption processes generally proceed 
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as a combination of surface complexation reactions and phase transfer reactions.  Surface 

complexation reactions, or “site-binding” model, are often thought to contribute to 

mechanisms such as ion exchange.  Usually, the barriers to adsorption are equilibrium 

related as opposed to kinetic in nature.  Mass transfer must take place through three 

primary mechanisms – bulk diffusion, pore diffusion and surface diffusion.  The active 

zone of any packed bed column is the area where a dramatic concentration profile exists.  

This area is where the majority of mass transfer occurs and is referred to as the mass 

transfer zone.  The mass transfer zone has two primary characteristics – its shape and its 

velocity.  The shape of the mass transfer zone, which ultimately is the shape of the 

breakthrough curve, is dictated by the extent of dispersion and adsorption kinetics, 

particularly when equilibrium is slow to establish.  Parameters affecting the shape, i.e. the 

broadness, of the mass transfer zone are, to some degree, dependent on solution flow 

rates.  The velocity of the mass transfer zone is controlled by the binding strength and the 

maximum adsorption capacity, neither of which should be flow rate dependant.  Ideally, a 

packed bed column would be characterized by a short, slow mass transfer zone. 

 

 Previous work with CPG packed bed columns for use as metal chelators has 

establish that binding equilibrium is not achieved within the time frame of a breakthrough 

experiment [32].  Unfortunately, packed bed columns exhibiting slow equilibrium are 

very difficult to model.  There are ways, however, to empirically discuss the steps 

involved in the adsorption process and those most likely contributing to non-ideal 

behavior.  For systems which are slow to establish equilibrium, mass transfer proceeds 

via the following four steps:  
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1) transport of the analyte through the bulk solution to the outer edge of the particle 

boundary layer; 

2) external mass transfer, or transport from the outer edge of the boundary layer to 

the particle surface; 

3) initial adsorption reaction; and  

4) internal mass transfer, or the migration of the adsorbed analyte to the interior 

surfaces of the particle. 

 

The final step is also sometimes referred to as surface diffusion or pore diffusion.  

Steps one and three generally offer very little resistance to the adsorption process.  Steps 

two and/or four are most often responsible for slow equilibration.  In the case of 

controlled pore glass, the pores of which are considered quite tortuous, it is the internal 

mass transfer most likely liable for the greatest resistance to equilibration.  In many cases, 

slow equilibration results in a mass transfer zone which spans the length of the column 

and leads to almost immediate detection of analyte in the effluent [6].  It is conceivable 

that at faster influent flow rates the slow equilibration process is magnified by both the 

barrier to internal pore diffusion and a lengthening of the mass transfer zone. 

 

2.3.2 Effects of Stripping Flow Rate on Metal Recovery 

 Following loading to capacity, the adsorbed Cu2+ was stripped by 0.1 M HNO3 at 

influent flow rates of 1, 2, 3, 4 and 5 mL/min into 10 mL volumetric flasks and quantified 

by AA.  The capacity as determined by the strip analysis was compared to the capacity 

determined by the breakthrough curves to evaluate the efficiency of metal reclamation.  

The results are shown in Figure 2.6.  Quantitative metal recovery was achieved in all 
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cases regardless of the rate at which the metals were stripped.  These results are contrary 

to the process of metal adsorption which did demonstrate flow rate dependence.  This 

indicates that the mechanism for metal removal is probably not limited by equilibrium or 

kinetic barriers. 

 

Figure 2.7 Stripping efficiency for acid-activated column loaded to capacity with 10 ppm 
Cu2+ at 2 mL/min and stripped at 1, 2, 3, 4 and 5 mL/min.  Percentages 
indicate total recovery of the metal from the strip analysis as compared to 
the breakthrough capacity. 

 

 To determine whether flow rate affects the stripping process, transient strip peaks 

were collected by the AA after loading 10 ppm Cu2+ for 3 min.  The resulting absorbance 

values was plotted in two ways – as a function of time, Figure 2.7, and as a function of 
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volume based on the solution flow rate, Figure 2.8.  Because these peaks were not 

actually used for quantification and only for empirical discussion of stripping behavior, 

the y-axis remains as absorbance.  If quantification were desired, a calibration of 

sensitivity as a function of flow rate would be necessary as nebulization efficiencies 

increase with decreasing flow rates.  As expected, the faster flow rates generate narrower 

peaks that elute faster than the peak generated by 1 mL/min stripping rate.     

 

Figure 2.8 Strip profiles versus time 

 

 A consequence of an increase in solution flow rate for metal removal is the 

amount of volume required for stripping at higher flow rates.  Although using a 5 mL/min 

flow rate to release bound metals can strip faster, more volume is required to accomplish 

this goal.  Minimizing the volume required, not the time required, is the primary goal of 

preconcentration efforts.  In addition, it is also an important parameter for stripping a 
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reuseable ion exchange column when reclamation is one objective.  Table 2.2 

summarizes the time and volume requirements for stripping metals at 1, 3 and 5 mL/min.   

 

Figure 2.9 Strip profiles versus volume 
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Table 2.2 Time and volume required for 50%, 75%, 90% and 95% of the strip peak to be 
eluted from the column at 1, 3 and 5 mL/min. 

 

Time 
(s) 

Volume 
(mL) Flow Rate 

(mL/min) 
50% 75% 90% 95% 50% 75% 90% 95% 

1 14 18 25 34 0.23 0.30 0.42 0.57 

3 9 11 15 18 0.45 0.55 0.75 0.90 

5 8 10 13 16 0.67 0.83 1.08 1.33 

 

 

 According to the data presented in Table 2.2, while the elution of the strip peak at 

1 mL/min requires, on average, twice as long with respect to time, less than half the 

volume of acid is need for the same degree of elution.  These results have tangible 

consequences for preconcentration and remediation applications.  The volume of waste 

solution is reduced when low flow rates are used for remediation and preconcentration; 

the preconcentration factor increases by a factor of 2.3 when stripping with 1mL/min vs. 

5mL/min flow rates. 

 

2.3.3 Preconcentration of Cd2+ using PLC-CPG 

 The optimized loading and stripping flow rates were used to perform a 

preconcentration experiment using immobilized PLC to chelate Cd2+ at the 20 ppb level, 

which is four times the maximum contaminant level governed by the current EPA 

drinking water standards [1].  Since it was determined that loading flow rates could be 

increased to 2 mL/min without sacrificing capacity and that a strip flow rate of 1 mL/min 
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is the most efficient for metal removal, these flow rates were used for Cd2+ 

preconcentration.  A control experiment was run at previously studied flow rates (i.e. 1 

mL/min for loading and 1 mL/min for stripping) for confirmation.  For both flow rate 

conditions, quantitative recovery of the Cd2+ was observed.  Considering the estimated 

volume needed for strip, the PLC column was able to preconcentrate 10 mL of a 20 ppb 

solution down to 0.6 mL of a 2 ppm solution in less 7 min decreasing the amount of 

waste by a factor of 17.         

  

Table 2.3 Cd2+ recovery for control and experimental conditions listed following the 
loading of 200 µg of Cd2+. 

 

 
Load Flow Rate 

(mL/min) 

Strip Flow Rate 

(mL/min) 
Cd2+ Recovery 

Control 1 1 98 ± 2 % 

Experimental 2 1 103 ± 6 % 

 

 

2.4 CONCLUSIONS 

 

 Studies were conducted to obtain the most efficient flow parameters for the 

preconcentration of a toxic heavy metal by immobilized PLC.  Acid activated controlled 

pore glass was used to establish the optimal flow rates.  Those flow rates were then 

applied to Cd2+ preconcentration.  When the flow rate was increased greater than 2 

mL/min, capacity decreased.  However, breakthrough experiments could be conducted at 
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2 mL/min without sacrificing metal binding capacity thereby reducing the tine required 

for an experiment by half.  It was also determined that, while slower stripping flow rates 

required more time, the resulting volume could be minimized.  The validity of the use of 

these flow rates was confirmed by using a previously characterized chelator and 

obtaining quantitative recovery of the analyte metal.      
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Chapter 3:  Electrochemical Studies of Immobilized Cysteine and 
Immobilized Poly-L-Cysteine 

 

3.1 INTRODUCTION 

 

 As a prerequisite for developing an electronically switchable ion exchange 

column, prototype materials were investigated in a small scale environment.  Because 

PLC had successfully been immobilized onto carbon surfaces previously [37], the chosen 

ligand, poly-L-cysteine (PLC), was immobilized to a glassy carbon disk creating a 

modified electrode.  The deliberate modification of electrode surfaces has led to a vast 

assortment of materials which are available as electrochemical substrates for researchers.  

The earliest research into electrode surface modification dates back to 1973 [51].  As 

opposed to a column-based system, the use of a PLC-modified electrode allows for the 

possibility of a thorough electrochemical characterization using traditional 

choroamperometric and voltammetric methods.   

 

 Modified electrodes are generally characterized by the manner in which they were 

created.  There are four basic categories of modification: 

 

(1) Sorption, either physisorption or chemisorption; 

(2) Covalent attachment; 

(3) Homogenous multilayer;  

(4) Heterogeneous multilayer. 
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The most common examples of electrodes modified via sorption techniques are self 

assembled monolayers (SAMs).  SAMs, particularly thiol-terminated molecules sorbed 

onto gold, have become a simple and reliable method for electrode modification.  In the 

case of covalent attachment, a molecule is covalently bound to a surface group of the 

electrode, most commonly carbon, by standard organic reactions.  This method of 

attachment, however, is limited by the constraints of the monolayer.  The electroactive 

area can be increased through the use of polymeric reagents.  Electroresponsive polymers 

can be attached to the electrode surface by covalent modification, coordinated attachment 

or electrostatic attachment.  In other cases, a nonconductive polymer, or other substrate, 

can serve as a platform for the incorporation of redox molecules, such as ferrocene [52].  

 

 In this case, PLC is covalently attached to an oxidized glassy carbon disc 

electrode for further study. 
  

 

3.2 EXPERIMENTAL 

3.2.1 Instrumentation 

A three-electrode potentiostat (Cypress Systems Omni-101) with a Ag/AgCl 

reference electrode (Cypress Systems) and a platinum wire auxiliary electrode (Cypress 

Systems) were used for all electrochemical experiments.  Working electrodes were 

constructed in-house using 5 mm diameter type II glassy carbon (Alfa-Aesar).  All 

electrochemical experiments were conducted under a nitrogen environment.  All 

electrochemical data were obtained through commercially available software (Cypress 
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Systems Aquire-101).   Atomic force microscopy images were collected using a Digital 

Nanoscope IV AFM. 

 

3.2.2 Reagents 

All reagents used were reagent grade unless noted.  Deionized distilled water was 

used to prepare solutions, and all glassware was soaked overnight in 4 M HNO3 prior to 

use.  Poly-S-CBZ-L-cysteine (Sigma) [DP(vis) 50, MW (vis) 11,800] , L-cysteine 

(Sigma) and glycine (Sigma) were used as received.  Other reagents included 1-ethyl-3-

[3-(dimethylamino)propyl] carbodiimide (EDC) (Sigma); 4-morpholineethane sulfonic 

acid (MES), nitric acid (Sigma), ammonium acetate (Aldrich); sodium hydroxide (Fisher 

Scientific); disodium hydrogen phosphate (Fisher Scientific), potassium chloride (EM 

Science).   

 

3.2.3 Creation of Modified Electrodes 

3.2.3.1 Fabrication of Glassy Carbon Electrodes 

 Glassy carbon (GC) of 5mm (0.2 in) diameter was chosen to act as the working 

material of the electrode.  The overall diameter of the electrode was chosen to be 0.65 

cm.  Drinking straws were collected and measured to ensure the proper size for mold 

material.  The straw was compared to a pre-made electrode and cut to the proper length. 

 

The glassy carbon rod, shipped in a length of 50 mm, was cut into approximately 

five 10 mm thick disks using a diamond blade.  Four electrodes were constructed from 

the 50 mm rod.  Figure 3.1 illustrates the final electrode design.  Using a diamond 

grinding bit, a small depression was ground into one of the flat sides of the GC disk.  
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Gold plated electrical contact pins were purchased locally.  The pins functioned as 

external electrical contact for the potentiostat.  With the carbon cut and the pins 

purchased, a solid copper wire could be cut to the proper length required to take up the 

difference in length from the bottom of the depression in the carbon rod to the base of the 

pin.   

 

The wire was affixed to the carbon rod using conductive silver epoxy.  The epoxy 

was prepared according to label directs and heat cured.  The wire was attached to the pin 

with regular electronic solder.  The copper wire was cleaned with resin flux to remove 

oxidation from the surface.  The rob-wire-pin combination was tested to confirm 

electrical conductivity via a volt-ohm meter.  The connections were also checked for 

mechanical connections to prevent corruption of the electrode after fabrication. 

 

The molds for the electrodes were made to have all points of the wall of the straw 

equidistance from any point on the longitudinal axis of the mold.  Once the epoxy was 

mostly cured, the rod-wire-pin assembly was placed in the straw and centered using a 

small piece of wire wrapped around the pin.  A 10% w/w resin-hardener mixture was 

made.  The epoxy was poured slowly down the inner wall of the straw to prevent air from 

being trapped at the bottom, near the rod.  Once the straw was full, the rod-wire-pin 

assembly was re-centered and secured.  The epoxy was allowed to cure over night at 

room temperature and pressure.  After curing, the straw was cut from the electrode, and 

the surface of the electrode prepared as desired for use.   
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Figure 3.1 Electrode construction showing (A) cross-section and (B) end view. 

 

 

 

 

3.2.3.2 Immobilization of Glycine, Cysteine and PLC 

Initially, three modified electrodes were made – one with poly-L-cysteine, one 

with the cysteine monomer and the last with the glycine monomer.  Prior to 

immobilization, the carbobenzoxy group on the PLC was deblocked using a procedure 

described previously [37].  Before electrode modification each glassy carbon electrode 

was polished using 0.5 µm alumina slurry.  Three 5 mm diameter glassy carbon 

electrodes were initially oxidized by a +1.8 V potential step in dilute sulfuric acid to 

create active surface groups.  Activation of the acid groups on the carbon surface was 

performed by exposing the electrode surface to a 25 mL aqueous solution of 0.04 M 1-
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ethyl-3-[3-(dimethylamino)propyl] carbodiimide (EDC) adjusted to pH 5.5 containing 

0.050 M 4-morpholineethane sulfonic acid (MES) [37].  This solution was prepared 

immediately prior to use.  The MES buffer was used to stabilize the EDC reagent.  The 

electrodes were exposed to this solution for approximately 20 min.  The electrodes were 

then removed from the EDC solution.  One electrode was then introduced to a new 

solution containing 0.01 g PLC dissolved in 50 mL of 0.05 M MES buffer at pH 5.  The 

second electrode was exposed to 0.01 g Cys in 50 mL 0.05 M MES buffer at pH 5.  The 

third electrode was exposed to 0.01 g Gly in 50 mL 0.05 M MES buffer at pH 5.  Each  

electrode was exposed to its respective solution for 1 h to ensure peptide bond formation 

between the surface active groups and the amine terminus of the PLC, cysteine and 

glycine to create one poly-L-cysteine (PLC-GCE), one cysteine (Cys-GCE) and one 

glycine (Gly-GCE) modified glassy carbon electrode.  After immobilization, the 

electrodes were rinsed with deionized water. 
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Figure 3.2 Electrode Modification Procedure 

 

 

3.2.4 Characterization of Modified Electrodes 

3.2.4.1 Atomic Force Microscopy 

 In order to confirm attachment of PLC as well as general coverage characteristics, 

atomic force microscopy was undertaken.  A 5 mm glassy carbon electrode (GCE) was 

polished with 0.5 µm alumina slurry for use as a control.  AFM images of both the 

polished GCE and the PLC-GCE were collected using tapping mode under ambient 

conditions.   
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3.2.4.2 Cyclic Voltammetry 

After the modified electrodes were created, initial experiments were undertaken to 

electrochemically characterize the immobilized species.  Cyclic voltammograms of a 

polished glassy carbon electrode (GCE), a glycine modified glassy carbon electrode (Gly-

GCE), a cysteine modified glassy carbon electrode (Cys-GCE) and a poly-L-cysteine 

modified electrode (PLC-GCE) were obtained by scanning from +1 V to –1 V (vs. 

Ag/AgCl) at 100mV/s in 0.2 M KCl at pH 7.  Approximate coverages of immobilized 

cysteine species were calculated by integrating the Faradaic component of the 

voltammograms.  To confirm the presence of surface redox processes as opposed to 

solution redox species, peak currents were determined for various scan rates on both the 

Cys-GCE and the PLC-GCE.  The supporting electrolyte used for these experiments was 

0.2 M KCl adjusted to pH 7 with concentrated KOH and concentrated HCl.  Cyclic 

voltammograms were obtained at 10, 25, 50, 100, 150, 200, 250, 400 and 500 mV/s.  The 

cathodic and anodic peak currents were collected in triplicate and then plotted as a 

function of scan rate.     

 

3.2.4.3 Chronoamperometric Determination of Kinetic Rate Constants 

Kinetic rate constants for electron transfer in PLC was evaluated by performing 

large potential steps, +600 mV and –600 mV in 0.2 M KCl at pH 7, and calculating a first 

and second order rate constant of electron exchange.  The potential was stepped from 0 

mV to -600 mV and from 0 mV to +600 mV while monitoring the current as a function 

of time for a total time of 30 s each.  In each case, the potential steps were repeated 15 

times and the results were averaged.  
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3.2.4.4 Determination of the pKa of PLC and Cys 

In order to electrochemically determine the pKa of the immobilized species, 

anodic portions of cyclic voltammograms at pHs between 4 and 9 were integrated and a 

surface charge density was calculated.  The voltammograms were obtained by scanning 

from +1 V to –1 V (vs. Ag/AgCl) at 100 mV/s in 0.05 M ammonium acetate whose pH 

was adjusted by adding either glacial acetic acid or 10 M ammonium hydroxide.  The 

actual pHs, in 0.5 pH unit increments were determined using a digital pH/mV/ORP meter 

(Cole-Parmer).   A second method of determining the pKa of PLC based on the voltage at 

which the peak current appears in the cyclic voltammograms as a function of pH was 

used as well for further confirmation.     

 
 

3.3 RESULTS AND DISCUSSION 

3.3.1 Atomic Force Microscopy 

 The collected tapping-mode AFM images for both polished GCE and PLC-GCE 

are shown in Figure 3.3.  The images shown are 8 µm by 8 µm.  Using commercially 

available image analysis software, the average roughness of the GCE and PLC-GCE 

electrodes were determined to be 5-10 nm and 18-25 nm, respectively.  The difference 

corresponds to the estimated height of PLC in a random coil confirmation [36].  

Additionally, the surface of PLC-GCE appears to be fairly uniform in height indicating 

the possibility of near-monolayer coverage of PLC on the surface. 
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Figure 3.3 8 µm x 8 µm Tapping-mode Atomic Force Microscopy Images of Polished 
Glassy Carbon Electrode (top) and PLC-modified Glassy Carbon Electrode 
(bottom) 
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3.3.2 Cyclic Voltammetry 

Initial electrochemical experiments on the three modified electrodes were carried 

out both to confirm the presence of each attached ligand and to characterize the 

electrochemical nature of the immobilized ligands.  Cyclic voltammograms were 

obtained for both the Cys-GCE and the PLC-GCE, as well as for Gly-GCE.  As seen in 

Figure 3.4, oxidation and reduction waves are present for both the Cys-GCE and PLC-

GCE, occurring between 0 mV and +400 mV in both cases.  These redox potentials 

correlate reasonably well with those previously reported E values for various disulfide 

bonds [53].  The peak-to-peak separation exhibited in the cyclic voltammagrams is most 

likely a function of kinetic limitations or the contributions of multiple Eos.  Also shown in 

this Figure is the cyclic voltammagram for the unmodified GCE and the Gly-GCE.  There 

are no appreciable electrochemical features for the Gly-GCE, aside double-layer 

charging.   

 

In ideal circumstances, when using modified electrodes, cyclic voltammetry 

results in a symmetric response with a ∆Epeak equal to 0.  In reality, however, many 

characteristics of modified films, particularly polymeric films, lead to a variety of 

voltammetric peak shapes.  The four most often discussed contributors to non-ideal 

voltammetric behavior include electron transfer and transport especially to physically 

remote sites, movement of polymer chains, movement of charge compensating ions and 

movement of solvent molecules [51].   
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Figure 3.4 Cyclic voltammograms of modified electrodes. 

 

 In order to approximate the surface coverage of each electroresponsive ligand, the 

Faradaic portion of the cyclic voltammagram was integrated.  The approximate 

microscopic surface areas of the Cys-GCE and the PLC-GCE were estimated to be 2 cm2 

and 5 cm2, respectively, based on the capacitance of the oxidized elelctrode as 

determined by cyclic voltammetry [7].  Assuming a 2 electron transfer per disulfide bond, 

the surface coverage of the cysteine monomer on the electrode surface was calculated to 

be ~4 x 1013 molecules cm-2 for Cys-GCE and ~1 x 1012 molecules cm-2 for PLC-GCE, 

assuming an average of 50 Cys residues per PLC chain and complete oxidation of all 
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thiols.  Since complete oxidation of all thiols is assumed in the calculations, the reported 

coverage values represent lower limit.  Considering the increased steric hindrance 

associated with the attachment of a 50-mer as compared to a monomer, it is not 

unexpected that there is a significant decrease in surface coverage.  Additionally, the 

calculated coverage of Cys and PLC is not unreasonable when compared with the 6 x 

1013 molecules cm-2 value for monolayer coverage of a covalently attached film [51].   

 

 To further verify that the voltammetric responses seen were a result of surface 

immobilized species and not freely diffusing solution species, a scan rate analysis was 

done for each of the electrodes.  Because immobilized species have a different response 

to scan rate changes than solution species  [7], a scan rate analysis can easily differentiate 

between the two situations using the Randles-Sevcik equation [7].  

 

ip = (2.69 x 105)n3/2AD1/2Cv1/2  (3.1) 

 

where ip is the peak current, n is the number of electrons, A is the area of the electrode, D 

is the diffusion coefficient, C is the concentration and v is the scan rate.  As shown in 

equation 3.1, the peak current of a solution species is proportional to the square root of 

the scan rate.  The peak current of immobilized species can be related to scan rate by 

equation 3.2 [51],   

 

v
RT

Fn
i p 4

22 Γ=      (3.2) 

 

where F is Faraday’s constant, Γ is surface coverage, R is the rate constant and T is 

temperature.  In this case, the peak current is directly proportional to the scan rate.  
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Voltammograms were collected for scan rates of 10, 25, 50, 100, 150, 200, 250 and 500 

mV/s.  The relationship of peak current to scan rate could then be determined by the plot 

shown in Figure 3.5.  Since the peak currents of both the Cys-GCE and the PLC-GCE 

exhibit a linear relationship with scan rate, the voltammetric responses were established 

to be those of surface-confined species.    

 

Figure 3.5 Peak current response to scan rate changes. 

 

 

3.3.3 Chronoamperometric Determination of Kinetic Rate Constants 

In most modified polymer electrode systems, electron propagation is thought to 

occur by means of electron self-exchange reactions between oxidized and reduced 

neighbors within the film.  Kinetics of this electron transfer through the polymer chain 
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was obtained for PLC-GCE by a series of large potential steps (∆ 600 mV).  The potential 

step curves used for all the kinetic calculations are shown in Figure 3.6.   

 

Figure 3.6 Current as a function of time for potential steps from 0 mV vs. Ag/AgCl to 
either -600 mV or +600 mV vs. Ag/AgCl. 

 

 

 

Because electrons move in a diffusion-like manner [54], an electron diffusion 

coefficient, DE, can be determined via the Cottrell equation.  After determining that DE ≈ 

1.3 x 10-12 cm2/s, first (kHOP) and second (kEX) order electron transfer rate constants for 

electron hopping were calculated using eq. 3,  
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    DE = kHOP δ 2/6 = kEX δ 2C/6   (3.3) 

 

where kHOP and kEX are the first and second order electron transfer rate constants, 

respectively, δ is the effective distance of a single electron hop which was estimated to be 

0.43 nm for intrachain hops, calculated based on bond lengths and angles [2], and 0.58 

nm for interchain hops, calculated based on approximate polymer surface density, and C 

is the concentration of redox centers which was estimated to be 10-2 moles.cm-2, 

calculated based on the estimated number of thiols present [55]. 

 

Rates for intrachain electron transfer as well as rates for interchain electron 

transfer were determined.  Because of the near monolayer surface coverage, intrachain 

and interchain electron transfer rates, shown in Table 3.1, were roughly the same 

indicating that electron transfer could proceed with equal probability by either 

mechanism.  In comparing the electron diffusion coefficient to those of other polymer 

systems, the DE for the PLC-GCE system was relatively low [54].  This is mostly likely 

due to the fact that PLC, while immobilized, is not rigid and thereby exhibits some 

degree of solution-like behavior in its motion.  Also, heterogeneous electron transfer may 

additionally contribute to the lower diffusion coefficient [54].  This sluggish electron 

transfer determined by the kinetic analysis may also explain why the peak-to-peak 

separation seen in the cyclic voltammograms is larger than one would expect for surface 

immobilized species.  However, some contention exists regarding the accuracy of using 

large potential steps to measure kinetic information.  Because the determined value of DE 

also includes a contribution due to physical movement of redox centers and counterions, 

the calculated value may be at erroneously high representing an upper limit.   
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Table 3.1 Kinetic rate constants for electron migration in immobilized PLC. 

 

3.3.4 Determination of the pKa of PLC 

Cyclic voltammograms were obtained at pHs ranging from 1 to 12.  The anodic 

fractions of the CVs are shown with a vertical offset in Figure 3.7.  A gradual shift in the 

peak current towards more positive values at low pHs can be seen.  Determining the pKa 

of a polymer such as PLC in homogeneous solution presents experimental challenges 

due, in large part, to the insolubility of the fully protonated polymer.  A method described 

previously for a carboxycilic acid terminated self-assembled monolayer on gold was 

employed to investigate PLC-GCE.  White et al. [56] presented a novel method for the 

voltammetric determination of the pKa of surface immobilized acid groups.  Cyclic 

voltammograms were obtained for both Cys-GCE and PLC-GCE at pHs from 4 to 9.  The 

anodic portion of the voltammogram was integrated and a surface charge density was 
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calculated.  The local maxima on the charge density plot provide estimates of the pKa 

values [56].  The surface charge density variation with pH is shown in Figure 3.8.    

 

Figure 3.7 Anodic CV at increasing pHs.  These CVs were used for both pKa 
determination methods. 
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Figure 3.8 Voltammetric determination of pKa.  Data corresponding to PLC-GCE is 
connected by a solid line and plotted in reference to the left-hand axis.  Data 
corresponding to Cys-GCE is connected by a broken line and plotted in 
reference to the right-hand axis. 
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As shown in Figure 3.8, both Cys-GCE and PLC-GCE show the same maximum 

at pH ~ 4.5.  This most likely corresponds to the pKa of the terminal carboxylate of both 

the monomer and the polymer. The nearly 15-fold increase in Cys surface coverage 

would predict a similar increase on the carboxylate charge density.  However, because 

the surface coverage of the PLC-GCE is not as dense as the Cys-GCE, it is possible that 

some unreacted surface carboxylates of the GCE are contributing to the magnitude of the 
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surface charge density for the PLC-GCE.  The Cys-GCE exhibits a second maximum 

corresponding to the pKa of the thiol group at pH ~ 7.  This represents a decrease from 

free Cys in solution that exhibits a pKa of ~ 8 [2].  In the case of the PLC-GCE, the peak 

corresponding to the thiols of the polymer does not reach a maximum until pH ~ 8.  This 

peak is also slightly broader than the analogous peak for Cys-GCE.  The location of the 

thiol peak for PLC-GCE indicates that the overall pKa has shifted as a result of the 

differing environment of the constituent thiol groups combined with a reduction of the 

surface influence.  The broadened peak may indicate that there is not a single pKa, but 

many pKas since each thiol within the chain is contained within a different local 

environment. 

 

By plotting the voltage at which the peak current appears as a function of pH 

(Figure 3.9), several pieces of information can be elucidated.  It has been previously 

noted for thiol-containing compounds that the oxidation peak potentials become more 

negative with an increase in pH at a rate of roughly 60 mV/pH, as governed by the Nernst 

equation, at pHs less than the pKa [57].  When the solution pH becomes greater than the 

pKa of the thiols, there is no correlation between the rate of decrease in peak potential and 

solution pH.  This transition in immobilized PLC can be seen at a pH ~ 8, a value 

consistent with the results from the surface charge density method.  Additionally, the 

slope of the line at pHs less than the pKa is equal to 80 mV/pH.  Although this value is 

higher than the expected 60 mV/pH, it may indicate the presence of repulsive forces 

within the molecule [54].      
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Figure 3.9 Peak potentials of Immobilized PLC as a function of solution pH. 
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3.4 CONCLUSION 

 

 Through the use of standard chronoamperometric and voltammetric analysis, 

physical and electrochemical characteristics of PLC-GCE, ranging from approximate 

coverage and pKa to electron transfer kinetics, were determined.  Results were consistent 

with the traits of a polymeric system with relatively slow electron transfer.  Based on the 

previous electrochemical evaluation, PLC immobilized on carbon should be a viable 

system for electrochemically-mediated metal binding studies.     
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Chapter 4:  Evaluation of Metal Binding to Modified Electrodes 

 

4.1 INTRODUCTION 

 

 Poly-L-cysteine (PLC) can be obtained as a short chain bio-homopolymer 

consisting of approximately 50 repeating cysteine residues.  PLC was first studied as a 

potential metal remediation tool [28] as a synthetic analog of the naturally occurring 

metallothioneins which are proteins with a disproportionately high number of cysteine 

residues [58].  The ability of Cys and PLC to act as an effective metal chelator has been 

reported previously [28, 31, 59-62].  The binding characteristics of PLC have been 

studied in homogeneous solution [28] as well as on substrates such as controlled pore 

glass where flow injection analysis (FIA) experiments using microcolumns were 

conducted [30-32].  PLC exhibited strong binding as well as on-demand release of metals 

such as Cd2+, Pb2+, Zn2+ and Cu2+.  The binding of Cd2+ to PLC is strong enough to 

effectively pull Cd2+ from EDTA as a consequence of a stability constant of ca. 1013 [37].  

The primary group responsible for cation binding is the thiol group of the constituent 

cysteine residues.  Because thiol groups are capable of interacting with each other to form 

disulfide bonds, the nature of the PLC will change under certain conditions.  When all the 

side groups are in the reduced (i.e., thiol) form, maximum metal binding is achieved.  

However, when the thiol groups are oxidized and engaged in disulfide bonds, binding is 

minimal.  Previously, oxidizing agents ortho-iodobenzoate and hydrogen peroxide or a 

reducing agent, dithiothreitol [30], were used with the FIA to alter the oxidation state of 

PLC.  After the column was reduced and metal bound to the chelator, rapid metal release 

was achieved by acid elution [32].  In addition to proton displacement, atomic force 
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microscopy was used to validate that a significant tertiary structure change of the PLC to 

a tight random coil was also a key contributor to the metal release [36].  By dropping the 

pH significantly below the polymer’s pKa, the thiol groups are protonated and this more 

hydrophobic structure coils to the surface thereby ejecting the metal completely.    

 

 Recognizing that oxidized PLC exhibits poor metal binding and should also 

represent a relatively hydrophobic structure, this paper explores the feasibility of ligand 

modifications using electrochemical potentials rather than chemical reagents for altering 

the binding character of PLC.  In order to evaluate the ligand’s response to different 

electrochemical environments, PLC was immobilized onto the surface of a glassy carbon 

electrode (GCE).  Initially, the modified electrode was electrochemically characterized to 

determine redox behavior, electron transfer kinetics and approximate pKa.  After being 

electrochemically modified, the polymer was allowed to bind Cd2+.  The Cd2+ was then 

released both chemically and electrochemically.  The capacity to bind and release Cd2+ 

was then quantified through the use of flame atomic absorption spectroscopy.           

 

4.2 EXPERIMENTAL 

4.2.1 Instrumentation 

An atomic absorption spectrophotometer (Varian SpectrAA 300) with an 

air/acetylene flame was used for solution analysis to determine the amount of metal 

binding to the electrode surface.  A hollow cathode lamp was operated at the current 

recommended by its manufacturer.  The 228.8 nm line was used in conjunction with a 

monochromator bandpass of 0.5 nm. 
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For the remaining metal binding studies, a Varian UltraMass ICPMS with 

commercially available software was used with a modified Varian GTA-95 ETV for 

sample introduction.  All samples were quantitatively diluted in 1% nitric acid containing 

100 ppb of In for use as an internal standard.  A 10 µL aliquot of each sample was 

introduced into the ETV and pulse heated to 2900oC.  Samples were analyzed in 

triplicate.  Two isotopes of each analyte element were monitored to verify the absence of 

any isobaric interferences.      

 

4.2.2 Reagents 

All reagent used were reagent grade, unless noted otherwise.  All glassware used 

was soaked overnight in 4M nitric acid.  Deioninzed, distilled water was used in solution 

preparations.  Stock solutions of 1000 ppm Cd2+ (Assurance), Co2+ (SCP Science), Cu2+ 

(SCP Science), Ni2+ (SCP Science), Pb2+ (SCP Science) and In2+(SCP Science) atomic 

absorption standards were used to prepare the 10 ppm solutions for the metal binding 

experiments as well as calibration standards.  Other reagents used included potassium 

chloride (EM Science), potassium hydroxide (Fisher Scientific), hydrochloric acid 

(Fisher Scientific), dithiothreitol, DTT (Fisher Scientific) and ortho-iodobenzoate, o-IB 

(Fisher Scientific).      

 

4.2.3 Correlation of the Electrochemical Redox Method with a Chemical Redox 
Method 

 To confirm the efficacy of the electrochemical oxidation and reduction of PLC, 

Cd2+ binding studies were conducted using both electrochemical and previously used 

chemical ligand preparation.  For these studies, a commercially purchased 1.5 mm glassy 



 64 

carbon electrode (Cypress Systems) was modified with PLC using the previously 

described procedure.  The electrode was placed in a 0.01 M DTT solution at pH 7 and 

allowed to sit for 1 min, rinsed briefly with DI water and introduced into a 10 ppm Cd2+ 

solution adjusted to pH 7.  After rinsing with DI water to remove excess, unbound Cd2+, 

the bound metal was released by exposure to 0.5 mL of 0.1 M HNO3.  The electrode was 

then reduced by a 30 s -600 mV potential step, metal was allowed to bind and the bound 

metal was released as before.  A second set of experiments were performed to evaluate 

electrochemical and chemical oxidation of PLC as a mechanism for metal release.  The 

electrode was prepared for metal binding by a 30 s -600 mV potential step and Cd2+ was 

allowed to bind.  The bound metal on electrode was released by either exposure to 0.5 

mL of 0.001 o-IB at pH 7 or a 30 s +600 mV potential step into 0.5 mL of 0.2 M KCl at 

pH 7.  Each set of experimental conditions were performed in triplicate.  In all cases, a 10 

µL aliquot of the released metal was quantified by inductively coupled mass 

spectrometry using electrothermal vaporization for sample introduction.  Instrumental 

parameters used for analysis are listed in Tables 4.1 and 4.2.      
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Table 4.1 ETV heating cycle used for metal analysis by ETV-ICPMS 

 

Temperature 
(oC) 

Time 
(s) 

Dosing Hole 
Position 

120 20 Open 

200 10 Open 

200 10 Closed 

2200 1.2 Closed 

2200 3.0 Closed 

50 11 Closed 

2900 1.5 Open 

2900 3.0 Open 

50 14 Open 

 

 

Table 4.2 Argon plasma and quadrupole parameters for metal analysis 

 

Plasma flow 15 L/min 

Auxiliary flow 1.4 L/min 

Nebulizer flow 0.8 L/min 

Sampling depth 11 mm 

RF Power 1.2 kW 

Dwell time 10000 µs 

Scan time 240 ms 
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4.2.4 Evaluation of Cd2+ Binding to PLC-GCE and Cys-GCE 

In order to evaluate the metal binding capabilities of the immobilized polymer as 

well as the two monomers, the ligands were subjected to a series of electrochemical and 

chemical environments.  For PLC and Cys, the ligand was first prepared for binding by 

either a reduction (negative potential step from 0 to –600 mV vs. Ag/AgCl) or an 

oxidation (positive potential step from 0 to +600 mV) in 0.2 M KCl.  After initial ligand 

preparation, the electrode was placed in 50 mL of a 10 ppm Cd2+ solution in 0.01 M 

phosphate buffer adjusted to pH 7 with stirring for 1 min.  The electrode was briefly 

rinsed with DI water to remove any weakly sorbed metal.  The bound metal was 

subsequently released by one of three mechanisms for quantitation.  The first release 

method involved soaking the electrode in 0.5 mL of 0.1 M HNO3 for 1 min.  Because Gly 

required no electrochemical preparation, the Gly-GCE was simply exposed to excess 

Cd2+ followed by a quantitative release in 0.1 M HNO3.  The experimental combinations 

are detailed in Figure 4.1.  
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Figure 4.1 Experimental pathways for metal binding analysis.  

 

 

 The released metal was quantified by discreet nebulization flame atomic 

absorption spectroscopy.  The 0.5 mL aliquots were nebulized and their resulting peaks 

integrated.  Calibration was achieved by integrating peaks of 0.5 mL of matrix-matched 

calibration standards.  All metal binding experiments were repeated for a total of 5 times. 

 

4.2.5 Effect of Reduction and Oxidation Voltage on Cd2+ Binding Capacity on PLC-
GCE 

The effect of the reduction and oxidation voltage was evaluated by repeating the 

metal binding experiments at decreasing reduction (i.e. –800 mV, -600 mV, -400 mV, -



 68 

200 mV and –100 mV) and oxidation (i.e. +600 mV, +400 mV and +200 mV) voltages.  

For the decreasing reduction voltage experiments, the electrode was reduced by a 

potential step from 0 mV to each of the above negative voltages for 30 s.  The PLC 

modified electrode was then removed from the 0.2 M KCl electrolyte solution and 

immersed in a 10 ppm Cd2+ solution at pH 7 and allowed to bind for 1 min.  The 

electrode was rinsed with DI water to remove excess Cd2+.  The strongly bound Cd2+ was 

released by immersing the PLC-CGE in 0.5 mL of 0.1 M HNO3.  For the decreasing 

oxidation experiments, the electrode was first reduced by a potential step from 0 mV to -

600 mV for 30 s.  The PLC modified electrode was then removed from the 0.2 M KCl 

electrolyte solution and immersed in a 10 ppm Cd2+ solution at pH 7 and allowed to bind 

for 1 min.  The electrode was rinsed with DI water to remove excess Cd2+.  The strongly 

bound Cd2+ was released into 0.2 M KCl at pH 7 by using a 30 s potential step from 0 

mV to the above positive voltages.  The final method utilized multiple 1 s positive 

potential steps (+600 mV, +400 mV and +200 mV) in 0.5 mL of 0.2 M KCl every second 

for 30 s, 20 s, 10 s or 5 s. All released Cd2+ was quantified using discrete nebulization 

flame atomic absorption spectrometry and a matrix-matched calibration curve.  All of the 

above metal binding experiments were repeated for a total of 5 times.     

 

4.2.6 Evaluation of Cu2+, Co2+, Pb2+ and Ni2+ Single-metal and Mixed-metal 
Solutions 

 To further study PLC as a potential electroresponsive chelator, the modified 

electrode was exposed to 10 ppm single metal solutions of Cu2+, Co2+, Ni2+ and Pb2+ for 1 

min following a 30 s – 600 mV reduction pulse.  The bound metal was then released in 

0.50 mL of 1% HNO3 for 1 min, quatitatively diluted 2% HNO3 containing 200 ppb In 
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and analyzed by electrothermal vaporization inductively coupled mass spectrometry 

(ETV-ICPMS). 

 

 In order to investigate competitve effects, the PLC-modified electrode was 

exposed to a solution containing 10 ppm of each of the previously studied metals, Cd2+, 

Cu2+, Co2+, Ni2+ and Pb2+ for 1 min following a 30 s – 600 mV reduction pulse.  The 

bound metals were stripped one of two ways:   the metals were released into 0.5 mL of 

1% nitric acid for 1 min; or, the metals were released by a series of five 1 s + 600 mV 

pulses into 0.50 mL of a 0.2 M KCl at pH 7. In each case, the 0.5 mL samples were 

quantitatively diluted with 0.50 mL of 2% nitric acid containing 200 ppb of In and 

analyzed by ETV-ICPMS.  The ETV temperature cycle used for sample vaporization is 

shown in Table 4.1.  ICP method parameters and isotopes used for analysis are listed in 

Table 4.2 and Table 4.3 respectively.  For all analyte metals, with the exception of Co, 

two isotopes were monitored to confirm correct isotopic ratios.  Co only has one isotope 

to monitor. 

 

Table 4.3 Isotopes monitored for multi-metal analysis by ETV-ICPMS 

 

Co 59 

Ni 60, 62 

Cu 63, 65 

Cd 111, 112 

In 115 

Pb 207, 208 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Correlation of the Electrochemical Redox Method with a Chemical Redox 
Method 

 Electrochemical methods, specifically potential step experiments, were compared 

to previously used chemical means of reduction and oxidation of PLC using capacity for 

Cd2+ as an indicator.  Results, tabulated in Table 4.4, indicate that the electrochemical 

reduction yields essentially the same Cd2+ capacity as the 0.01 M DTT, a previously 

used[30] chemical reducing agent.  Similar results were seen for the effectiveness of the 

electrochemical oxidation as compared to 0.001 M o-IB.  Together these results indicate 

that potential steps, both reductive and oxidative, can be used to successfully reduce and 

oxidize the thiol groups of PLC.     

 

 

Table 4.4 Comparison of chemical and electrochemical treatment of 1.5 mm diameter 
PLC-GCE for Cd2+ binding capabilities.  For chemical treatments (0.01 M 
DTT, pH 7; 0.1 M HNO3; 0.001 M o-IB, pH 7), the electrode was exposed 
for 1 min.  Electrochemical potential steps were held for 30 s. 

 
Ligand 

Preparation 
Metal Release 

Cd2+ Released 
(ng) 

DTT HNO3 64  ± 17 

- 600 mV HNO3 52 ± 10 

- 600 mV + 600 mV 16 ± 5 

- 600 mV o-IB 22 ± 5 
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4.3.2 Evaluation of Cd2+ Binding to PLC-GCE and Cys-GCE 

In order for PLC or Cys to be used as an effective metal chelator, sufficient 

electrochemical control of the ligand redox state must be obtained.  The chelator needs to 

be activated, or “turned on”, to achieve maximum binding capacity, and deactivated, or 

“turned off”, to eliminate binding capacity.  Ideally, the bound metal should be rapidly 

released upon ligand deactivation.  To evaluate whether these control mechanisms could 

be realized by altering the electrochemical potential, Cd2+ was initially chosen as a target 

metal ion for binding to the modified electrode system.  The glycine modified electrode 

served as a control for the metal binding studies because of its lack of a metal binding 

side chain.  The capacity for Gly-GCE was <20 ng of Cd2+, and even this limited capacity 

is likely attributable to the metal binding capability of the terminal carboxylate. 

 

From previous studies, it is known that maximum capacity for PLC and Cys were 

obtained when all disulfide bonds were reduced, and very little capacity remained after 

the disulfide bonds were formed.  Additionally, using the fully reduced form for binding, 

rapid and quantitative metal release could be achieved with exposure to 0.1 M nitric acid 

[30].  For this study, the ligands were initially prepared by either a reductive -600 mV 

potential step to activate the chelator or an oxidative +600 mV potential step to deactivate 

the chelator.  After preparation, the electrodes were immersed in a 50 mL solution of 10 

ppm Cd2+ and allowed to bind.  The Cd2+ was subsequently released into 0.5 mL of clean 

solution by one of three mechanisms: a nitric acid rinse, a single oxidative potential step 

or a series of 30 oxidative potential steps.  All results are presented in Table 4.5.  
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Table 4.5 Cd2+ binding analysis for Cys-GCE and PLC-GCE. 

 

 

 To establish a baseline for optimal binding with quantitative release, the ligands 

were prepared by a negative potential step, and the bound Cd2+ was released by exposure 

to acid (See results for protocol I in Table 4.5).  The acid strip solution for PLC-GCE 

contained 118 ± 15 ng of Cd2+ which corresponds to approximately 11 metal atoms per 

polymer chain.  The acid strip for Cys-GCE contained 140 ± 20 ng of Cd2+ corresponding 

to <1 metal atom per Cys.  By oxidizing the thiols with a positive potential step (II) 

before exposure to Cd2+, the ligand should be “inactive”, i.e. non-binding.  The acid strip 

solution for PLC-GCE contained no detectable metal indicating that very little to no Cd2+ 

binding occurred.  The acid strip for Cys-GCE, however, did contain detectable levels of 
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Cd2+ (79 ng), indicating that Cys retains ~ 56% of its maximum capacity even under 

oxidizing conditions due, in part, to the availability of the carboxylates which are 

unaffected by redox state as well as possible steric inhibitions which prevent all the thiols 

from being involved in disulfide bond formation.  

 

 In order to study the effectiveness of electrochemical release, the ligand was 

“activated” by a negative pulse and the metal was released by one of two electrochemical 

methods – a single 30 s positive pulse or multiple positive pulses for a total of 30 s.  It 

was initially hypothesized that the oxidative pulse would cause disulfide formation for 

those thiols not involved in metal binding.  It was expected that the sulfides chelated to 

Cd2+ would not be oxidized by the small anodic voltage used (i.e. ca. 100-300 mV anodic 

of oxidative voltages for metal-free PLC.)  However, it was initially anticipated that the 

nearby disulfide formation would impact the binding cavity, possibly through added 

strain placed by the disulfide-induced distortion.  This might then “spoil” the metal-

PLCys formation constant as the peptide proceeds to “zip up” as disulfides form.  

However, this was not the case. After one pulse (III), 68 ± 13 ng of metal (~ 60%) were 

released from the immobilized PLC and 61 ± 2 ng (~ 44%) were released from 

immobilized Cys.  However, when pulses were repeated in quick succession for the same 

time period (IV in Table 4.5), quantitative release was achieved for PLC-GCE, but not 

for Cys-GCE.  It is possible that by repeating the oxidation process many tertiary 

structure rearrangements are able to take place thereby significantly disturbing the metal 

binding pockets and releasing the bound metal ions – a process that would not be 

effective for the immobilized Cys monomer. 
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4.3.3 Effect of Reduction and Oxidation Voltage on Cd2+ Binding Capacity on PLC-
GCE 

In order to optimize both reduction and oxidation conditions for the respective 

“turning on” of the binding mode and stripping the metal-loaded immobilized polymer, 

the corresponding voltages were varied.  In the case of using pulsed oxidation for metal 

release, the number of pulses was also varied.  The reduction voltages examined were –

800 mV, -600 mV, -400 mV, -200 mV and –100 mV.  As shown in Table 4.6, voltages 

more positive than –600 mV were less effective in optimizing the binding capacity, 

probably as a result of incomplete reduction of the sulfurs on the Cys residues.   

 

Table 4.6 PLC-GCE capacity for Cd2+ with decreasing reduction voltage. 
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The oxidation voltages used were +600 mV, +400 mV and +200mV.  1.0 s pulses 

at these potentials were applied.  The number of pulses within a given release evaluation 

were 30, 20, 10 and 5. Additionally, one 30 s pulse was also evaluated for its 

effectiveness in releasing the bound metal.  These results are shown in Figure 4.2.  

Quantitative release could be achieved by a balance of the oxidation voltages and the 

number of oxidations, i.e. 30 pulses at +200 mV or 5 pulses at +600 mV.  It is possible 

that with successive oxidations thiols which were not in close enough proximity to form 

disulfide bonds become more sterically favored for the formation of disulfide bonds.   

 

Figure 4.2 Effects of oxidative pulsing on the release of Cd2+.  (A-30 1 s pulses, B-20 1 s 
pulses, C-10 1 s pulses, D-5 1 s pulses, E-1 30 s pulse) 
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4.3.4 Evaluation of Cu2+, Co2+, Pb2+ and Ni2+ Single-metal and Mixed-metal 
Solutions 

 Results for metal binding studies for other metals are summarized in Figure 4.3.  

In all cases, the binding trend remained the same (Cu2+ > Cd2+ > Ni2+ > Pb2+ > Co2+).  

This trend, with the exception of Pb2+, closely corresponds with typical soft acid metal 

binding preferences that are expected of a soft acid base such as a thiol [63].  

Additionally, rapid metal-thiolate exchanges have been seen in biological systems, most 

often with metallothioneins, in which a harder acid metal, such as Zn2+, is easily replaced 

with Cd2+ which in turn can be easily replaced with Cu+  [4].    

 

Figure 4.3 Multi-metal binding results from strip analysis as determined by ETV-ICPMS.  
Capacities for single metal and multi-metal solutions are shown.  Multi-
metal binding was released by either 0.5 mL of 0.1 M HNO3 or 5 +600 mV 
potential steps into 0.5 mL 0.2 M KCl. 
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In the case of Pb2+, it has been observed previously that rates of exchange often 

show a decrease as ionic size increases [4].  Ionic radii of Pb2+ is 20- 200% larger than 

the other ions studied as shown in Table 4.7 [1], which may account for the observed 

discrepancy.   

 

Table 4.7 Ionic radii of selected metal ions [64] 

 

Metal Ion Ionic Radii (pm) 

Cd2+ 78 

Co2+ 75 

Cu+ 46 

Cu2+ 57 

Ni2+ 69 

Pb2+ 119 

 

Cu2+ introduces an interesting case for study.  It is widely accepted that Cu(II)-

thiolate complexes can be unstable and it is often assumed that Cu2+ enters into a redox 

couple with the thiols in which the Cu2+ is reduced to Cu+ and the thiol is oxidized to a 

disulfide.  Although this mechanisms is thermodynamically preferred, the conversion 

takes place via a binuclear Cu2(SR)2 intermediate which requires steric alignment that 

does not always occur favorably [4].  And while, cystine generally binds transition metals 
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quite weakly, Cu2+ has been demonstrated to bind successfully to cystines [65].  The 

observed strong binding of Cu2+ needs additional studies to better elucidate its 

interactions when binding to PLC and, in general, thiols. 

 

The determined metal binding capacity of each metal studied was converted to 

units of metals atoms per chain and cysteine residue per metal, both shown in Table 4.8.  

These calculations are derived from knowing the number of PLC molecules immobilized 

onto the surface based on electrochemical data [66] and the average degree of 

polymerization of PLC based on the manufacturer specification.    The number of 

cysteine residues per metal atom can indicate the nature of the metal-ligand coordination.  

In the case of Cu2+, the metal is able to be bound by only 2 cysteine residues probably in 

a linear coordination geometry.  Previous spectroscopic work with the so-called “blue 

copper proteins” indicates that the number of cysteine residues per Cu2+ could range from 

one to six [65].  As for Cd2+, evidence based on Cd2+ bound to metallothioneins indicates 

that Cd2+ prefers to bind in the tetrahedral coordination geometry to 4 cysteine residues 

[4].  
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Table 4.8 Metals per PLC chain, assuming d.p. ~50, and Cys residues per metal as 
determined by ETV-ICPMS. 

 

 
Metal atoms per 

PLC chain 
Cysteine residues per 

metal atom 

Cu2+ 23 2 

Cd2+ 12 4 

Pb2+ 6 8 

Ni2+ 8 6 

Co2+ 4 14 

 

 

 It is particularly interesting that the capacities for each metal remain, when 

evaluated in the absence of other binding metals exhibits nearly the same capacity as that 

observed when four other competing metal ions are present.  This indicates that these 

binding experiments are confined to the linear portion of the Langmuir isotherm.  As 

shown in Figure 4.3, the identical electrochemical oxidation procedure can be used to 

quantitatively release a variety of different metals.  Thus, the redox character needed to 

bind and release complexed cations becomes independent of the analyte metal and is only 

a function of the ligand.     

 

4.3.5 Comparison of PLC-GCE with Previous Immobilized PLC Systems 

 Immobilized PLC has been used previously as a heavy metal chelator.  Earlier 

studies used PLC immobilized on controlled pore glass [28, 29, 67] and a porous carbon, 

Carbopack-X [37].  Metal binding capacities determined for these systems as compared 
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to the PLC immobilized onto a glassy carbon electrode surface are summarized in Table 

4.9. 

 

Table 4.9 Metal Binding Capacities in nmol/cm2 from PLC immobilized on controlled 
pore glass [31], Carbopack-X [37] and a glassy carbon electrode.  No data 
was available for Co2+ binding to PLC immobilized onto Carbopack-X. 

 

 Controlled Pore Glass Carbopack-X Glassy Carbon 
Electrode 

Cd 0.0064 0.0067 0.231 

Co 0.0014 N/A 0.071 

Cu 0.0159 0.0092 0.452 

Ni 0.0032 0.0058 0.164 

Pb 0.0085 0.0063 0.128 

 

 

The values shown in Table 4.9 result in the following metal binding capacity 

trends: 

 

  CPG:   Cu > Pb > Cd > Ni > Co 

  Carbopack-X:  Cu > Cd > Pb > Ni 

  GCE:   Cu > Cd > Ni > Pb > Co. 

 

 While the trends exhibit some variation, there is a general agreement and source 

of some of the inconsistency could be due to experimental error.  Another variable that is 

not an insignificant consideration is differences in the experimental parameters, 
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specifically solution composition.  The work on CPG and Carbopack-X was done in 0.05 

M ammonium acetate while the modified electrode work was conducted using 0.2 M 

KCl.  As shown in Table 4.10, acetate does have a significant formation constant for the 

metal ions in these studies which could artificially skew the binding results for 

experiments conducted in acetate.  

 

Table 4.10 Formation constants of acetate and the metal ions studied [68] 

 

Metal Ion 
(M) 

log Kf 
(L=acetate) 

Co2+ ML 1.5 

Ni2+ ML 1.4 

Cu2+ ML 2.2 
ML2 3.6 

Pb2+ ML 2.7 
ML2 4.1 

Cd2+ ML 1.9 
ML2 3.2 

 

 

4.4 CONCLUSION 

 

 At this point, it is plausible to use PLC as an effective metal chelator using only 

electrochemical potentials, as opposed to the addition of chemicals, to reversibly control 

the activity of the ligand without altering the redox state of the metal.  Additionally, the 
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binding/release character of the ligand can be controlled by potentials that are 

independent of the metal involved in the chelation process.  This is unlike, for example, 

remediation approaches that use bulk electrolysis where the potentials are dependent on 

both the analyte metal and its complexed form in solution.  In short, the ligand can be 

easily and efficiently “turned on”, “turned off” and the metal can be completely released. 

While Cys offers some of the desired metal binding characteristics, it does not offer 

complete electrochemical control, making PLC the better choice for an 

electrochemically-modifiable metal binding ligand.     
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Chapter 5:  in situ Raman Microscopy Investigation of PLC-GCE 

 

5.1 INTRODUCTION 

 

 Poly-L-cysteine has become a well-established ligand for trace metal chelation 

and remediation.  Work with PLC and the metal binding characteristics of the cysteine 

moity began as early as the 1950s [27, 60].  Since then, interest in the metal binding 

capabilities of amino acids and their respective homopolymers has continually increased 

[69-82].  These homopolymers have provided a robust alternative to the delicate nature of 

intact proteins.  PLC, in particular, presents an interesting case due to the reactivity of it 

constituent thiol groups.  These thiol groups have proven to be excellent chelators of a 

suite of heavy metals including Cu, Cd and Pb [28-33, 35-37, 50, 59-61, 63, 83, 84].  

Additionally, the thiol group of cysteine is naturally redox active.  The formation of 

cystine, the oxidized version of cysteine, is crucial in biological systems contributing 

functions such as establishing protein quaternary structure and directing the protein 

folding process.  Unfortunately, the high reactivity of the thiol group causes much 

difficulty in studying the system electrochemically. 

 

 Literature values for the formal potential of the reduction of cystine to two 

cysteines, shown in equation 5.1 where R represents HC(NH2)(COOH)CH2, range from -

0.14 to -0.39 V vs. SHE [53, 85].       
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RSSR + 2e- + 2H+� 2RSH   (5.1) 

 

Several obstacles exist in attempting to determine the electrochemical properties of both 

cysteine and PLC.  First, the solubility of cysteine, and especially PLC, confines research 

and synthesis to either strongly acidic or strongly alkaline conditions which may not be 

ideal for the intended application or experiment [86].  Other experimental dificulties 

when studying cysteine in homogeneous solution include slow equilibration and sluggish 

electron transfer, adsorption of dissolved cysteine to solid electrodes and complicated 

reaction mechanisms on liquid mercury electrodes [86, 87].  At some carbon surfaces, it 

has been determined that the oxidation of dissolved L-cystine is electrochemically 

irreversible [88].  It has been previously concluded that the reversible reduction and 

oxidation of cysteine systems could only proceed at reasonable rates if both reactants 

were adsorbed to the electrode surface [89].  To overcome the previously mentioned 

problems, which are magnified by polymerization, PLC was covalently attached to a 

glassy carbon electrode surface for further characterization. 

 

 As an alternative to elucidating redox information based on electrochemical data 

only, the PLC-modified GCE (PLC-GCE) was investigated spectroscopically using 

Raman microscopy.  Raman microscopy has become a preferred technique for the 

investigation of modified electrodes [90-98] for several reasons, most notably the ability 

for in situ work in aqueous environments.  Furthermore, Raman techniques are sensitive 

to the region of the spectra providing characteristic information for thiol groups [64], 

disulfides [99] as well as metal-thiol ligand bonds [100-105]. 
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  5.2 EXPERIMENTAL 

5.2.1 Instrumentation 

 The glassy carbon electrode was fabricated in-house and modified with a 

monolayer of PLC using a previously described procedure.  The potential on the PLC-

modified electrode was governed by a standard microprocessor-controlled three electrode 

potentiostat (Omni-101).  A Pt wire auxiliary electrode was used in conjunction with a 

Ag/AgCl reference electrode (Cypress Systems) for all measurements.  All Raman 

spectra were collected on an inVia Reflex Raman Microscope (Renishaw) using a 785 

nm high power diode laser (Renishaw) and a 50x microscope objective.  A custom-made 

Teflon cell was fabricated to house the three electrodes and the supporting electrolyte 

solution (Figure 5.1) that was then mounted on the microscope stage.     

 

Figure 5.1 Design of cell for in situ Raman microscopy studies 
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5.2.2 Reagents 

 All reagents used were reagent grade unless noted.  Deionized distilled water was 

used to prepare solutions, and all glassware was soaked overnight in 4 M HNO3 prior to 

use.  Poly-S-CBZ-L-cysteine (Sigma) [DP(vis) 50, MW (vis) 11,800] , L-cysteine 

(Sigma) and glycine (Sigma) were used as received.  Other reagents included 1-ethyl-3-

[3-(dimethylamino)propyl] carbodiimide (EDC) (Sigma); 4-morpholineethane sulfonic 

acid (MES), nitric acid, ammonium acetate (Aldrich); sodium hydroxide (Fisher 

Scientific); disodium hydrogen phosphate, potassium chloride (EM Science).  Stock 

solutions of 1000 ppm Cd2+ (Assurance) atomic absorption standards were used to 

prepare the 10 ppm solutions for the metal binding experiments. 

 

5.2.3 Calibration of Raman Microscope  

 Prior to each use, the microscope was calibrated using an internal silicon standard 

using the laser parameters for each experiment.  The experiment did not commence until 

the standard appeared at the correct transition, 521 cm-1, and the number of counts 

exceeded 50,000.  A sample calibration spectrum is shown by Figure 5.2.  
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Figure 5.2 Si calibration of Raman Microscope  
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5.2.4 Depth Profile Analysis 

 In order to ensure there was no changes observed in the acquired spectra due to 

the vertical positioning of the working electrode as compared to the microscope 

objective, a depth profile experiment was completed.  The microscope stage was initially 

positioned 5 µm below optical focus.  A spectrum was collected at 10 different points 

along the Z-axis in 1 µm increments.  The Raman spectra were collected at each of the 

above vertical distances in the range of 200-1750 cm-1.  For these experiments, the laser 

power was set to 10% of the maximum and 3 20 s acquisitions were averaged by 

commercially available software (WiRE 2.0) to generate each spectra.  One of the spectra 

was plotted as obtained.  The remaining spectra were plotted as difference spectra, i.e. 
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each was subtracted from the sample spectra and that difference was plotted as a function 

of wavenumber.  This analysis served only to confirm that the vertical positioning of the 

stage was not critical.  The electrode was not immersed in any solvent or exposed to a 

potential.  

  

5.2.5 Observation of Oxidation and Reduction of PLC-GCE 

 In order to monitor the oxidation and reduction of PLC, the electrode was first 

placed in 0.2 M KCl at pH 7.0 in the Teflon cell.  The electrode was held at various 

potentials, +0.4, +0.2, 0, -0.4, -0.6, -0.8 and -1.0 V vs. SHE, by performing a potential 

step from -0.2 V and held for 30 s at the desired potential prior to the onset of spectral 

acquisition.  Throughout the acquisition time, the potential was continuously held at the 

desired potential.  The Raman spectra were collected at each of the above potentials in 

the range of 200-1750 cm-1.  For these experiments, the laser power was set to 10% of the 

maximum and 3 20 s acquisitions were averaged by commercially available software 

(WiRE 2.0) to generate each spectra.  This process was repeated two additional times at 

different sites on the electrode surface resulting in a series of spectra at three spatially 

distinct regions of the electrode surface. 

 

5.2.6 Determination of Raman Band Intensities 

 Due to variations in the laser intensity during data acquisition, the intensities of 

each spectrum were normalized to the 1360 cm-1 carbon peak.  In addition, the spectra 

were each baseline subtracted using a function supplied by Origin 7.0.  Because both 

disulfides and thiols are present to some degree at each potential, a simple blank could 

not be used.  A range of approximately 50 cm-1 containing the transitions of interest were 
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further analyzed to obtain the corrected intensities for both the disulfide bond (450-500 

cm-1) and the thiol group (800-850 cm-1).  The corrected experimental intensity at the 

determined wavenumber was used for further analysis.  Although Raman spectroscopy is 

not frequently used for elucidating quantitative information, the potential for exploring 

this technique to provide additional mechanistic insight to the disulfide and thiol 

exchange seemed worthwhile to pursue further.   

   

5.2.7 Verification of Cd2+ Binding to Thiols 

 Following a 30 s reduction at -1.0 V to ensure complete reduction any cystine 

groups present, the electrolyte solution was drained from the cell and a 10 ppm (8.9 x 10-5 

M) Cd2+ solution in 0.2 M KCl (pH 7.0) was introduced.  The metal was allowed to bind 

for 1 min before spectral acquisition commenced.  The binding of Cd2+ to the thiol groups 

of PLC was verified by evaluating the Raman spectrum from 140-300 cm-1 using 100% 

laser power and three 20 s acquisitions.  As before, this process was repeated three times 

at different sites on the surface.  Although some Raman spectrometers have difficulty 

acquiring data below 200 cm-1, the manufacturer confirmed that the holographic notch 

filter used to block the intensity of the 785 nm excitation laser allowed data collection as 

low as 100 cm-1, or up to 791 nm. 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 Depth Profile Analysis 

 Prior to performing the depth profile analysis, optical images were obtained of the 

electrode surface using 2 different microscope objectives, 5X and 20X.  These images are 
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presented in Figure 5.3.  The optical focus was used as a reference point for spectral 

acquisition as a function of position on the Z-axis. 

 

 

Figure 5.3 Optical images of the glassy carbon electrode surface obtained using a 5X 
objective, left, and a 20X objective, right. 

 

    

 

 

 

 As seen in Figure 5.4, there are no spectral changes, other than noise, as the 

microscope stage was moved over 10 µm in the Z direction.  This indicates that working 

at or very near optical focus should ensure that there are no additional or absent spectral 

features due to the vertical position of the microscope stage.  All spectra for subsequent 

experiments were obtained at optical focus. 
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Figure 5.4 Sample Raman spectrum and difference spectra obtained by depth profile 
analysis. 

 

 

 

 

5.3.2 Observation of Oxidation and Reduction of PLC-GCE 

 To serve as a blank, a spectrum of polished glassy carbon was collected as well 

(Figure 5.5).  An example of raw Raman data for partially oxidized PLC on GCE is 

shown in Figure 5.6 as an example.  The two pronounced peaks at 1360 and 1580 cm-1 
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correspond to the D and E2g bands, respectively, of glassy carbon surface [97, 106].  The 

smaller two peaks, centered at approximately 450 and 800 cm-1, correspond to transitions 

of disulfides and thiol groups, respectively [64, 99]. 

 

 

 

 

Figure 5.5 Raman spectrum of a polished glassy carbon electrode  
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Figure 5.6 Sample Raman spectrum showing peaks of interest:  450 (disulfide), 800 
(thiol), 1360 (D band of GCE) and 1580 cm-1 (E2g band of GCE).  This 
spectrum was acquired while the working electrode was held at 0 V vs. 
SHE. 
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Figure 5.7 Signal averaged Raman spectrum using raw data from Figure 5.6.  The curve 
was generated by performing a 50 point moving average to demonstrate to 
effective increase in the signal to noise ratio by averaging 50 data points.   
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 The region of interest (300-900 cm-1) has been expanded in Figure 5.8 to 

demonstrate the two extremes, a fully oxidized polymer and a fully reduced polymer. 

Additional spectral features, though lower in intensity, are most likely attributable to 

other transitions within cysteine, such as the C-S stretch [64, 99]. 

 

Figure 5.8 Background corrected Raman signals for the fully oxidized (solid line) and the 
fully reduced (dotted line) polymer, both shown after a 50 point moving 
average was performed.  The transition due to the disulfide bond can be seen 
at approximately 440 cm-1.  The transition due to the reduced thiols can be 
seen at approximately 790 cm-1. 
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 The normalized intensities at wavenumbers corresponding to the reduced thiol are 

shown in Figure 5.9 as a function of electrode potential.  As demonstrated by Figure 5.9, 

the Raman intensity at these two wavenumbers reaches a maximum shortly after -0.4 V 

and appears to remain constant through the remaining studied potentials.  The uncertainty 

in the data makes it difficult to say whether a maximum is reached at more negative 

potentials or a slight rise exists.  At oxidative potentials, however, the Raman intensity 

falls consistently through +0.6 V indicating a loss of active thiol groups at these 

potentials. 

 

Figure 5.9 Observation of Reduced Thiols.  Normalized Raman intensity is shown as a 
function of electrode potential for the thiol transition, occurring at 
approximately 800 cm-1 (average of 3 replicates). 
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 A similar plot was constructed for the range of wavenumbers corresponding to the 

disulfide stretch and is shown in Figure 5.10.  At negative potentials, the Raman signal 

for the disulfides reached a minimum and increased steadily at more anodic potentials 

indicating the formation of disulfide bonds.  These data confirm the expected 

complimentary reactions leading to the formation and reduction of disulfide bonds and 

the corresponding change in thiol groups.      

 

Figure 5.10 Observation of Oxidized Disulfides.  Normalized Raman intensity as a 
function of electrode potential for the disulfide stretch, occurring at 
approximately 450 cm-1 (average of 3 replicates). 
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5.3.3 Determination of an Average Formal Potential 

 Previous efforts to estimate the formal potential of the cystine reduction has led to 

a wide spread of formal potentials.  Inconsistencies are generally though to be due to the 

fact that cysteine strongly adsorbs to metal surfaces.  Published literature values are 

summarized in Table 5.1. 

 

Table 5.1 Literature values for the reduction of cystine 

Eo Reference 

-0.14 [85] 

-0.21 [85] 

-0.22 [85] 

-0.222 [86] 

-0.33 [85] 

-0.333 [86] 

-0.336 [86] 

-0.34 [53] 

-0.39 [85] 

-0.40 [53] 

 

 

 In order to determine an average formal potential for immobilized PLC using 

spectroscopic information, Raman intensities for both disulfides and thiols were 

converted into respective fractional concentrations of each component with the 

assumptions that all sulfurs present were either present as a thiol or a disulfide and that in 
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the fully reduced state the activity of the thiols was equal to 1.  Assuming an activity of 1 

for the fully reduced polymer ensures the validity of the following treatment, regardless 

of the absolute value for monolayer surface coverage of the polymer.  The fractional 

concentrations as a function of cell potential were analyzed using the Nernst equation, 

shown in Equation 5.2, where α represents the fractional concentration of thiol groups.  

The denominator in the logarithmic term of Equation 5.2 represents the disulfide 

concentration, [SS], while the numerator is proportional to [SH]2, i.e., the reduced form 

of the sulfurs.   
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Since it is reasonable to assume that α is proportional to [SH] and (1-α)/2 is 

proportional to [SS], this equation can be used with the Raman signal intensities to 

approximate [SS] and [SH] to construct the plot in Figure 5.11.  Full error propagation 

using the 90% confidence intervals from the data shown in Figures 5.9 and 5.10 was 

conducted to determine the error bars in Figure 5.11.  The intercept suggests Eo = -0.3 V 

while the slope of -0.31 V implies n = 0.05 for the number of electrons transferred, a 

value which does not represent a physical reality.  Because PLC is a polymeric system, it 
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is possible that the experimental slope is representative of a series of closely-spaced 

localized formal potentials rather than a singularly valued formal potential.  This has 

been suggested previously for redox centers within a polymeric matrix where subtle 

variations in structure, solvation and environment were attributed to shifts in the local 

formal potential [51].      

 

 

Figure 5.11 Use of the Nernst equation for the thiol-disulfide system using Raman 
scattering of SH (820 cm-1) and SS (460 cm-1) to calculate values on the 
abscissa. 
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Assuming for a given local environment i that αi = 1 when all the sulfurs are in 

the reduced form, Equation 5.2 can be rearranged to solve for the fractional amount of 

[SH] groups at any give potential E: 
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and Ei
o is the local formal potential and ni = 2 for reduction of the disulfide.  It follows 

that the total number of SH and SS groups in the polymer is dependent on the potential 

and the fraction of the sites fi associated with any given Ei
o.  Two distributions were 

considered in the simulation:  a uniform distribution and a Gaussian distribution.  The 

uniform distribution possesses a flat distribution of sites between two potentials E1
o and 

E2
o. 
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where k is a constantbetween E1
o and E2

o and k=0 outside of this range of possible local 

formal potentials.  The Gaussian distribution can be expressed by 
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where σ is the standard deviation of the profile and 
oE is the point where a maximum 

concentration of sites exist.   

 

Using the two different distributions, Equation 5.3 can be solved for the various 

sites to allow for a simulation of the final distribution of reduced and oxidized thiols, 

recognizing that 
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Simulations for both types of site distributions were run, and the “shape 

parameters” (e.g., σ, oE , E1
o and E2

o) varied in an attempt to locate a distribution that 

provided a slope and intercept in a Nerstian plot that was equal to that found 

experimentally from Figure 5.9.  The simulation was run for potential settings between –
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1.0 and +1.0 V vs. SHE.  The distributions that gave the best fit are shown in Figure 5.12 

and a comparison of experimental data and that predicted in the two simulations are 

shown in Figure 5.13.  

 

Figure 5.12 Distribution of local sites used in simulations.  The solid line represents a 
uniform distribution of redox sites while the dashed line represents redox 

sites with a Gaussian distribution (� = 0.1, oE = -0.24).  

 

  

While both simulations fit the experimental data reasonably well, the uncertainty 

in the experimental data does not permit a definitive conclusion to be drawn regarding the 

“correct distribution”.  However, it may be more likely that the actual distribution of 

formal potentials would be more similar a Gaussian distribution.  Other similar 
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electroactive polymeric systems have been modeled with a Gaussian distribution of local 

formal potentials previously, although previous models have only dealt with single 

electron transfer systems [107-110].  

     

Figure 5.13 Fractional concentrations of [SH] (�) and [SS] (�), as determined by Raman 
microscopy with resulting Eo distribution models.  The uniform distribution 
model is shown by a solid line and the Gaussian distribution model is shown 
by a dashed line. 
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The average formal potentials of PLC immobilized on glassy carbon calculated by 

each of the above methods are summarized in Table 5.2.  As noted, the uncertainty 
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associated with the spectroscopic data does not permit the precise elucidation of the site 

distribution function, but the results do support the presence of multiple formal potentials. 

 

Table 5.2 Average formal potential of PLC as determined by Raman microscopy data (I), 
a linear distribution model of multiple Eos (II) and a Gaussian distribution 
model of multiple Eos (III). 

 

 Eo average 

I -0.3 ± 0.2 

II -0.16 

III -0.24 

 

 

 In these experiments, the physical surface coverage of PLC appeared to be 

relatively a constant across the surface.  However, it is possible that the local surface 

coverage and/or nonuniform coverage across the surface could occur with a different 

substrate or a different preparation technique for GCE.  This could impact the resulting 

average formal potential and the distribution for a multi-site model. 

 

Because of the fairly uniform surface coverage in these experiments, it is assumed 

that both interchain as well as intrachain disulfides can be formed.  As an example, it is 

conceivable that if the surface coverage was non-uniform, i.e., more concentrated in some 

areas and more diffuse in others, a shift would be seen towards intrachain interactions for 

the dispersed species that might yield multiple CV peaks and a difference in formal 
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potentials for closely packed chains and those which have greater chain-to-chain spacing 

on the surface.  

 

5.3.4 Verification of Cd2+ Binding to Thiols of PLC 

 It is generally accepted that the binding strength associated with cysteine-

containing biomolecules and heavy metals is due to the chelation of the metal ion by the 

sulfurs of the thiol group.  This interaction has been spectroscopically observed 

previously with cysteine monomers in solution [102] and chemical analogs of cysteine 

monomers [103] as well as in intact proteins [65].  Because these metal-ligand stretching 

vibrations are quite low in frequency, Raman spectroscopy becomes an ideal technique 

for probing that interaction.  Previous work has shown that frequencies associated with 

the Cd-thiol stretch range from 190-300 cm-1 depending on the chelating ligand [100, 

102, 103], and the range of frequencies may reflect the strength of the Cd-S interaction.  

For example, the band location for crystalline CdS(s) appears at wavenumbers greater than 

300 cm-1 [111-115]. 

 

 

 The Raman spectra shown in Figure 5.14 were acquired at pH 7 both in the 

absence of Cd2+ and in the presence of 10 ppm Cd2+.  In both cases, distinct peaks were 

seen at approximately 145 and 165 cm-1.  Both of these peaks can be attributed to features 

of cysteine [102].  In the spectrum acquired in the presence of 10 ppm Cd2+, an additional 

peak at approximately 185 cm-1 appears.  The appearance of Cd-S at the low end of the 

previously observed stretching region (i.e., 190-300 cm-1) suggests a weaker ligand bond.  
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While PLC formation constants for Cd2+ can reach 1013, the majority of binding sites are 

considerably weaker (i.e. 103-108) [31, 37].  

 

Figure 5.14 Cd2+ binding to thiol groups of PLC.  The solid line represents spectrum 
acquired in the presence of Cd2+.  Points represent a spectrum acquired in 
the absence of Cd2+. 

 

 

5.4 CONCLUSIONS 

 

Poly-L-cysteine (PLC), a synthetic biohomopolymer which has been studied 

previously as a metal chelator, was immobilized onto a glassy carbon working electrode 

1000 counts 
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and studied in situ using Raman microscopy.  Previous attempts to electrochemically 

determine the formal potential of cystine reduction have resulted in a broad span of 

values.  By taking advantage of the in situ capabilities of Raman microscopy as well as 

the benefits of modified electrodes, the average formal potential an otherwise challenging 

system was able to be determined.  The analysis of the experimental data resulted in an 

average Eo of -0.3 ± 0.2 V.  The resulting data was then modeled using a both a linear 

distribution of Eos as well as a Gaussian distribution of Eos.  Using these models, the 

average Eo was found to be -0.16 and -0.24 V, respectively.  In addition, the redox 

behavior of cystine and cysteine was able to be verified spectroscopically.  Using Raman 

microscopy, fractional concentrations of both thiol groups and disulfide groups were 

determined at various cell potentials confirming the presumed conversion of disulfides to 

thiol groups at negative potentials.  Because metal-ligand bonds have low energy 

transitions, Raman microscopy proved to be an ideal tool for probing the nature of these 

interactions.  Cd2+ binding to the thiol groups was confirmed by a Raman transition at 

approximately 185 cm-1 which was absent without the presence of Cd2+.   
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Chapter 6:  Exploratory Investigation of Polypyrrole Films as 
Conductive Anion Exchangers 

 

6.1 INTRODUCTION 

 

Previous efforts centered around electrochemical ligand modification have 

focused on polypyrrole, a well-characterized conducting polymer which can be 

electrochemically polymerized in situ in aqueous solution [41-46, 116].  In some cases, 

the redox state of polypyrrole was used to alter the characteristics of a chromatographic 

stationary phase [48, 117].  Polypyrrole is an appealing choice for several reasons 

including excellent, and predictable, charge-transfer properties as well as two unique 

charge states – one neutral and one positively charged.  The positively charged state also 

makes polypyrrole and ideal system for use as an anion-exchange membrane[118].  

Others have made use of polypyrrole as either a solid-phase microextraction system for 

the adsorption and desorption of target analytes[47] or as a redox reaction cell for the 

conversion of a toxic compound to its less toxic reduced form[49].  Some of the anions 

explored as target analytes have included the following:  Cl- [118]. PO4
-2 [118]. 

anthracene [48], caffeine [48], AMP [117], ATP [117], Cr(VI) [49], glutamate [47], 

perchlorate [47], dopamine [47]. 

 

In all cases, the polypyrrole is prepared for experimentation electrochemically by 

either potential steps or linear potential sweeps.  Analyte release is achieved by 

chromatographic elution [48, 117], chemical elution [49, 118] or electrochemical 



 110 

potentials [47].  Collectively, these previous studies have demonstrated the plausibility of 

constructing an ion-exchange system based on the electrochemical manipulation the 

component ligand.  One aspect left unexplored by the body of previous work is further 

investigation of this polypyrrole system, or other feasible systems, as an avenue for toxic 

metal sequestration and remediation at the trace and ultra-trace levels, including, but not 

limited to, Cd2+, Pb2+, Hg2+, Co2+, Ni2+, As(V) and Se(VI).             

 

Polypyrrole (Ppy) was chosen for these studies for several reasons.  Pyrrole is 

easily polymerized in situ to form the polymeric film.  Also, Ppy provides an interesting 

organic analog to a previously studied biologically-based polymeric system, poly-L-

histidine (PLH).  Monomeric unit of both histidine and pyrrole are shown in Figure 6.1.     

 

Figure 6.1 Chemical structures of histidine, left, and pyrrole, right. 

 

                               

 

 

 Pyrrole is structurally similar to the primary metal binding moiety of histidine, 

namely its imidizole ring.  Because PLH has a pKa of approximately 6, at pHs more 

acidic than about 5, the imidizole rings are essentially all protonated resulting in a 
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positively charged species.  Interestingly, at pH 7 the deprotonated imidizole ring is 

actually able to bind cationic species such as Cu2+.  The protonated form of PLH 

demonstrated a significant capacity for Cr(VI), which is dominated by CrO4
2- at 10 ppm, 

while exhibiting very little capacity towards Cr3+ providing a very powerful chromium 

speciation tool [38].  It was hoped that Ppy could present an electroactive analog to the 

success seen with PLH.  Ppy, like PLH, has two distinct charge states.  In the case of Ppy, 

however, the charge state can be controlled by electrochemical potentials.  The reduced 

form of Ppy is electronically neutral while the oxidized form of Ppy is positively charged.   

 

 Polypyrrole, an inherently conductive polymer, has a unique charge storage 

mechanism which is shown in Figure 6.2.  Ppy must be polymerized in the presence of a 

supporting anion, notated as A, which functions as reductive dopant.  An electron from 

the backbone of the neutral Ppy chain is removed thereby resulting in a free radical and a 

spinless positive charge, which are together referred to as a polaron.  As the oxidation 

process is continued, the free radical reacts with a nearby dopant molecule leaving a 

second spinless positive charge.  The two spinless positive charges together are known as 

a bipolaron.  The two polarons are generally thought to be spaced over four residues as 

shown.  The localization of charge, as in the case of polarons, is often thought to be less 

energy efficient for the molecule than charge delocalization.  In conducting polymers, 

however, the localization of charge leads to a significant decrease in ionization energy 

and appreciable increase in electron affinity which allow the molecule to store a greater 

number of charges than if the charge were delocalized throughout the π-system [119].                
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Figure 6.2 Charge storage mechanism for polypyrrole 

 

 

6.2 EXPERIMENTAL 

6.2.1 Instrumentation 

 A three-electrode potentiostat (Cypress Systems Omni-101) with a Ag/AgCl 

reference electrode (Cypress Systems) and a platinum wire auxiliary electrode (Cypress 

Systems) were used for all electrochemical experiments.  Glassy carbon working 

electrodes (1.5 mm diameter) were commercially obtained (Cypress Systems).  All 

electrochemical experiments were conducted under a nitrogen environment.  All 
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electrochemical data were obtained through commercially available software (Cypress 

Systems Aquire-101).    

 

An atomic absorption spectrophotometer (Varian SpectrAA 300) with a fuel rich 

air/acetylene flame was used for solution analysis to determine the amount of metal 

binding to the electrode surfaces.  A hollow cathode lamp was operated at the current 

recommended by its manufacturer.  The 357.8 nm line was used in conjunction with a 

monochromator bandpass of 0.5 nm for all Cr determinations. 

 

 All scanning electron mircoscope images were obtained using a LEO 1530 

Scanning Electron Microscope.     

 

6.2.2 Reagents 

 All reagents used were reagent grade unless noted.  Deionized distilled water was 

used to prepare solutions, and all glassware was soaked overnight in 4 M HNO3 prior to 

use.  Pyrrole (Acros Organics) was used as received.  Four different charge compensating 

counter ions were used during film growth: lithium perchlorate (Acros Organics), 

tetrabutylammonium fluoride (Acros Organics), tetrabutylammonium tetrafluoroborate 

(Acros Organics) and p-toluenesulfonic acid (Acros Organics).  Stock solutions prepared 

in house of 1000 ppm Cr3+ from chromic acid and 1000 ppm Cr(VI) from K2CrO4 atomic 

absorption standards were used to prepare the 10 ppm solutions for the metal binding 

experiments.  Any pH adjustments were made with either potassium hydroxide (Sigma) 

or hydrochloric acid (Fisher).  In all cases, the supporting electrolyte for electrochemical 

experiments following film growth was potassium chloride (Sigma). 
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6.2.3 Formation of Ppy Films on Glassy Carbon Electrodes 

 Four glassy carbon electrodes were prepared each with an electrochemically 

polymerized ppy film grown with a different charge compensating counterion in aqueous 

conditions.  The procedures used were developed from previously reported reaction 

conditions [42, 44, 46, 116, 120, 121].  In each case, the electrode was prepared by 

performing a +1.8 V vs. Ag/AgCl potential step in 0.1 M H2SO4 for 2 min.  For all films 

following initial oxidation, the electrode was immersed in an aqueous solution of 0.1 M 

pyrrole monomer and 0.2 M supporting electrolyte and held at +0.8 V vs. Ag/AgCl for 

3min.  After film growth, the electrodes were stored under N2(g) to limit exposure to O2(g).  

For ease of discussion, the electrodes will be referred to by number.  Electrode 1 contains 

a film grown using tetrabutylammonium fluoride.  Electrode 2 contains a film grown 

using lithium perchlorate.  Electrode 3 contains a film grown using tetrabutylammonium 

tetrafluoroborate.  Electrode 4 contains a film grown using p-toluenesulfonic acid.    

         

6.2.4 Scanning Electron Microscopy of Ppy Films 

 The images were obtained by affixing the electrodes to the sample mounting 

platform.  A ground connection was made by connecting a copper wire to each electrode 

pin and the sample platform.  Individual instrumental parameters are listed with each 

image. 

 

6.2.5 Evaluation of Cr3+ and Cr(VI) Binding 

 In order to evaluate the metal binding capabilities of the polymer films, 

the electrodes were subjected to a series of electrochemical environments.  For each of 
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the ppy modified electrodes, the films were first prepared for binding by an oxidation 

(positive potential step from 0 to +600 mV) in 0.2 M KCl.  After initial preparation for 

binding, the electrode was placed in 50 mL of either a 10 ppm Cr3+ solution or a 10 ppm 

Cr(VI) solution each adjusted to pH 7 with stirring for 1 min.  The electrode was briefly 

rinsed with DI water to remove any weakly sorbed metal.  The bound metal was 

subsequently released by a reduction (negative potential step from 0 to -600 mV) into 0.5 

mL of 0.2 M KCl adjusted to pH 7.    

 

 The released metal was quantified by discreet nebulization flame atomic 

absorption spectroscopy.  The 0.5 mL aliquots were nebulized and their resulting peaks 

integrated.  Calibration was achieved by integrating peaks of 0.5 mL of matrix-matched 

calibration standards.  All metal binding experiments were repeated for a total of 5 times. 
 

 

6.3 RESULTS AND DISCUSSION 

6.3.1 Scanning Electron Microscopy of Ppy Films 

Scanning electron microsopy (SEM) is a commonly used technique for the 

characterization of ppy films [121, 122].  The SEM images can provide information 

about film morphology as well as film thickness, as both features are highly dependent on 

growth conditions.  SEM images for this study were obtained for two primary reasons: 

confirmation of film growth and measurement of film thickness.  Two images for each 

electrode are shown below.  The parallel views for each set of images were obtained 

using similar instrument parameters making the scale bars fairly consistent for analogous 
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views.  The specific instrument parameters as well as the scale bars are detailed on each 

image.     

 

Figure 6.3 Electrode 1, grown with F- as the counterion.  Top image shows entire 
electrode.  Bottom image is a close-up view of the film itself. 
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Figure 6.4 Electrode 2, grown with ClO4
- as the counterion.  Top image shows entire 

electrode surface seen from the side.  Bottom image is a close-up view of 
the film itself. 
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Figure 6.5 Electrode 3, grown with BF4
- as the counterion.  Top image shows an end 

view of the entire electrode surface.  Bottom image is a close-up view of the 
film itself. 

 

 

 

 



 119 

Figure 6.6 Electrode 4, grown with p-toluenesulfonate as the counterion.  Top image 
shows the entire electrode surface seen from the side.  Bottom image is a 
close-up view of the film itself.  
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The film morphologies for the four electrodes are quite different, specifically the 

size of the dominant features.  In addition, as can be seen from the preceding images, the 

films grown on electrodes 2, 3 and 4 actually grew beyond area of the 1.5 mm glassy 

carbon disk for the same growth time.  Because the PEEK portion of the electrode surface 

was to be used as a baseline for height measurements, height information could not be 

obtained for electrodes 2, 3 and 4 where the film was obscuring the PEEK surface.  

Additionally, the films on electrodes 2, 3 and 4 were not of uniform height adding more 

difficulty in determining film thicknesses.  The thickness of the film on electrode 1 was 

estimated to be ~4 µm by obtaining a side view of the film (Figure 6.7).  Although actual 

film thicknesses could not be accurately estimated using the SEM images for electrodes 

2, 3 and 4, it was evident that those three films were considerably thicker than the film 

grown with ClO4
-.           

 

Figure 6.7 Side view of the thickness of the film grown on electrode 1. 
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6.3.2 Evaluation of Cr3+ and Cr(VI) Binding 

 Binding experiments were carried out on all four ppy films for both the +3 

oxidation state of Cr and the +6 oxidation state of Cr, which is present primarily as 

CrO4
2- in neutral conditions for a total Cr concentration of 10 ppm.  All four films 

exhibited similar behavior in Cr binding which are presented in Table 6.1.  No film 

bound a detectible amount of Cr3+.  The limit of detection for Cr in these experiments 

was found to be ~15 ppb using discreet nebulization atomic absorption spectroscopy with 

a sample volume of 0.5 mL.  All four of the films did bind an appreciable amount of 

Cr(VI) ranging from 26 to 44 ng.  Because the range of data for Cr(VI) is not too broad, 

all four salts used for film growth seem to be valid choices.  Although, more information 

regarding the density of the bound metals (i.e. ng/cm3) could be ascertained with more 

precise film thickness results.  It is possible that analyzing the binding data in these terms 

may expose some more pronounced differences in the capacity of these four films to bind 

Cr(VI).       

 

 Like poly-L-histidine (PLH) [38], ppy films do have the capability to speciate two 

form of Cr based on the oxidation state.  As opposed to PLH, ppy has the added benefit 

of facilitating metal binding and release without the addition of chemicals.  Although this 

study only explored a single oxidation and reduction voltage, ligand preparation and 

metal release were achieved solely through electrochemical means.   
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Table 6.1 Binding capacities for Cr3+ and Cr(VI) on the 4 ppy electrodes 

Electrode Salt used during film growth 

 
Cr3+ capacity (ng) 

(n=5) 
 

Cr(VI) capacity 
(ng) 

(n=5) 

1 

 

ND 27 ± 4 

2 

 

ND 26 ± 3 

3 

 

ND 44 ± 5 

4 

 

ND 35 ± 4 
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Previous efforts to use ppy, or other similar polymers like polyaniline, as an anion 

exchanger have focused on their use as a chromatographic support [47, 118, 123] not 

exploring its potential to for retention of materials as opposed to elution.  Rodriguez et al. 

[49] did present the possibility that ppy films could retain Cr.  However, their study used 

ppy in the reduced form and Cr(VI).  They determined that Cr(VI) could oxidize the ppy 

film while reducing the Cr(VI) to the less toxic Cr3+ which was then incorporated into the 

film.  Their study did not, however, address the reclamation of Cr3+ from the film. 

 

The ppy films created in this study on the electrode surfaces of glassy carbon have 

the potential to compensate for the shortcomings of work presented by Rodriguez et al.  

While Rodriguez was able to remediate Cr(VI) from the source, the reclamation and 

disposal of the generated Cr3+ waste was not addressed. The currently studied system 

presented here is able to retain and release Cr(VI) on demand providing both a means of 

toxic metal reclamation and the option of prreconcentration. 

 

6.4 CONCLUSIONS 

 

 Like the previously studied biohomopolymer, PLC, ppy presents an intriguing 

option for use as an electrochemically switchable ion exchanger.  The existence of two 

distinct charge states provides predictable complexation behavior.  As an added benefit, 

ppy can be easily polymerized electrochemically in situ.  In order to completely evaluate 

the effectiveness of ppy for ESIE capabilities, further studies should be conducted.  The 

determination of the most effective voltages for both the reduction and the oxidation of 

the ppy films as well as a study to evaluate the effective useable lifetime of the films.  It 

is hoped that the success demonstrated with Cr(VI) could be extended to other similar 
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oxyanions such as AsO4
- and SeO4

-.  Although the four salts used for film growth in this 

study produced functioning films that were able to bind Cr(VI), a number of other salts 

could also be considered that have been used previously for the formation of ppy films 

for other purposes. 
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Chapter 7:  Conclusions and Future Work 

 

7.1 OVERVIEW 

  

 At this point, the development of a chemical-free remediation system using 

potential and current to operate an ion exchange systems seems plausible.  Glassy carbon 

has proven to be a cost-effective, rugged substrate for ligand immobilization.  Two 

electroresponsive ligands were studied for use in a prototype electronically switchable 

ion exchange (ESIE) system.  The first, poly-L-cysteine, was investigated as a chelator of 

cationic heavy metals.  Previous work with immobilized PLC had established it as a soft 

acid metal binder capable of preconcentrating trace metals from complex matrices, yet 

still able to achieve on-demand metal release.  Prior work had also demonstrated the 

importance of the redox state of PLC on metal binding capacity.  Maximum metal 

capacity was achieved when PLC was fully reduced.  Oxidized PLC exhibited very little 

capacity toward any metal studied.  Earlier work used chemicals, such as dithiothreitol 

and ortho-iodobenzoate, to reduce and oxidize the thiol groups of PLC.  However, earlier 

work had never demonstrated that an oxidizing solution was capable of quantitatively 

removing a bound metal.  The ability to reduce and oxidize PLC electrochemically would 

eliminate the need for additional chemicals for trace metal remediation.  As an ESIE 

chelator, the drastically different metal binding character of each redox state can be used 

to govern the metal-ligand interactions.  Unique to other electrochemically-based 

remediation techniques, the applied potential required is not dependent on the metal 

cation.  It is dependent only on the ligand, PLC.   
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 These studies have demonstrated the reproducible use of PLC as a heavy metal 

chelator using only electrochemical potentials for ligand modification.  By immobilizing 

PLC to an electrically conductive surface, in this case, glassy carbon, a microscale 

remediation system was created.  The system exhibited strong binding for each of the 

metals studied as well as effective binding within a competitive environment.  Because 

the metal binding can be effectively “shut down” on-demand using oxidative potentials, it 

can be assumed that the disulfide bonds are indeed forming.   

 

Electrochemical and spectroscopic studies were undertaken to further characterize 

the immobilized PLC system.  Immobilized PLC, as expected, exhibited many 

characteristics inherent to electrodes modified with a polymeric molecule.  Although 

some differences due to the differences in the nature of this system and those previously 

studied were present.  Many previously studied systems are self assembled monolayers 

(SAMs) comprised of closely packed hydrophobic chains.  In this case, each polymer is 

most likely well-solvated due to their surface coverage thereby resulting in slightly 

different electrochemical and pH-dependant characteristics.  Approximate surface 

coverages for both immobilized PLC and immobilized Cys were determined by 

integrating the Faradaic current arising from cyclic voltammagrams further confirming 

the oxidation and reduction of the sulfur species.  These values were consistent with 

immobilized molecules for each of the respective molecular sizes.  The peak current for 

cyclic voltammetry experiments scaled linearly with scan rate.  Rate constants for 

electron transfer were determined via chronoamperometry to be consistent with those of 

immobilized polymers.  The sluggish electron transfer exhibited by immobilized PLC 

was spectulated to originate from a combination of counter ion migration, polymer 
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movement and electron hopping.  The pKa of immobilized PLC shifted approximately 

one pH unit from that of immobilized Cys monomer. 

 

 Using Raman microscopy, spectra were acquired at various electrode potentials to 

determine approximate ratios of thiols-to-disulfides.  These ratios were ultimately 

converted into a Nernst plot to extract an average formal potential for the immobilized 

PLC system.  In addition, Raman spectroscopy provided an ideal tool for probing the 

nature of the metal-ligand bond for this particular system, which was shown to be a Cd-S 

bond; albeit an apparently weak interaction. 

 

 Metal binding experiments exhibited consistency with previously used 

immobilized PLC systems that relied on chemical ligand preparation and metal release.  

Metals were able to bind and subsequently be released without the addition of previously 

required chemicals, such as reducing agents or acids.  The reproducibility of these metal 

binding experiments allow for the system to be considered for scale-up to a column-type 

system.   

 

 One additional system that was explored was electrochemically synthesized 

polypyrrole.  Polypyrrole is easily polymerized in situ under oxidizing conditions in the 

presence of a supporting electrolyte.  The positively-charged pyrrole moieties provided 

electrochemically active anion binding capabilities suggesting its potential as a speciation 

tool for systems containing species such as chromates.     
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7.2 CONCERNS FOR SCALE-UP 

 

In order for the system to be scaled-up to a larger flow-through style remediation 

system, an appropriate substrate must be selected.  Although carbon is an obvious choice, 

many types of carbon, both porous and nonporous exist and must be considered.  Several 

porous carbon substrates are currently being evaluated. A rayon-based activated carbon 

fabric has been studied in our laboratory, and the proposed work will characterize other 

forms of activated carbon and porous glassy carbon media onto which the biopolymer is 

immobilized. The primary criteria used to evaluate the support materials are surface 

coverage of the metal chelator, capacitive surface area and structure of the support itself.  

A few selected carbon supports should be tested in a lab-scale column setup.  Column 

and electrode geometry will play a large role in the power requirements, so comparisons 

of different column configurations will be run.  Also, overall process control schemes for 

the operation and regeneration of a column will be studied.  Capacitive power usage from 

electrochemical modification of the column can be recovered with appropriately designed 

charge and discharge schemes between several columns. 

 

The effect of several process variables such as pH and background electrolyte 

concentration on the column setup need to be evaluated.  Background electrolyte 

concentration has an inverse relation with the electrochemical resistance of the column, 

and can greatly affect the power usage and heating of the column.  An evaluation of the 

sensitivity of the chelating ability of the column as a function of pH will be necessary to 

find the range of influent streams in which the column can effectively function.  Fouling 

of the column by irreversible binding and chemical degradation of the biopolymers are 

two important characteristic which affect the service life of the column, although some of 
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these concerns have been addressed previously in our lab for poly-L-aspartate [124].  

Those processes will need to be addressed for poly-L-cystiene as well.  Remediation of 

several synthetic and non-synthetic waters will then have to be tested in column-based 

studies.  Synthetic mixed wastes with several metals of interest are likely the next step in 

order to assess competitive metal binding under real world conditions.  In addition, 

industrial wastewaters and natural waters will need to be evaluated on the lab-scale 

column. 

 

7.3 FEASABILITY OF OTHER POSSIBLE SYSTEMS 

 

Through previous work, novel biologically-based metal chelators have been 

developed [30-32, 34, 36, 38].  While immobilized PLC has proven to be a viable system, 

it is hoped that the ESIE concept can be generalized to incorporate the use of other 

previously studied short chain biopolymers such as poly-L-aspartate [34, 67, 124, 125], 

poly-L-glutamate and poly-L-histidine [38] which release metals by a pH induced tertiary 

stucture change.  Viability of such an assertion rests partly on previous studies showing 

that protonation and deprotonation of surface-bound acid species can be driven 

voltammetrically [56].  In addition, early work with electronic ion exchange induced the 

reduction of water thereby increasing  the pH of the environment within the exchange 

resin [8-11].  A proposed research direction would expand on this body of work and 

exploit this local pH change to release metals from biopolymer system without the need 

for additional chemicals as is currently required for elution-based reclamation.   

 

To optimize the efficient use of any ion exchange column, it is essential to ensure 

complete loading before reclamation is initiated.  This necessitates the need to determine 
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when the column is at capacity or to detect the first onset of breakthrough.  It would be 

enabling in the final embodiment of a chemical-free remediation/reclamation system to 

sense breakthrough with the expense and operator-based use of atomic spectrochemical 

analysis of the effluent stream.  To this end, the incorporation of an immobilized 

colormetric indicator detector system which could complex a variety of heavy metals 

would be a logical approach for breakthrough determination [126-130].  One such dye 

which has been used as a general cationic detector is alizarine complexone [126-146]. 

 

Because alizarine complexone absorbs in the visible region of the electromagnetic 

spectrum, a simple photodiode system could be employed for detection of metal binding 

to the alizarine complexone.  A small column containing immobilized alizarine 

complexone, or other similar chromophoric chelator, could be placed on the effluent side 

of the binding column to detect the beginnings of breakthrough.  Calibration can then be 

done to correlate the transmitted intensity through the immobilized of the alizarine 

complexone-metal complex and the effluent metal concentration. 
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Appendix 

 

  

DATA ANALYSIS MACRO FOR BREAKTHROUGH ANALYSIS 

 

All column-based metal binding analysis is conducted through the use of 

breakthrough curves and their subsequent strip quantification.  Breakthrough curves, 

shown in Figure A.1, are simply a graphical representation of effluent analyte 

concentration as a function of either time or volume.    The breakthrough curve represents 

the change in the amount of metal in the column effluent as an influent concentration of 

10ppm of metal is introduced onto the column. The change in absorbance of the metal 

versus time is measured directly as it flows through the column.  Corresponding 

information can also be obtained using bulk methods in the absence of a flow injection 

analysis system by changing the solution concentration.  Breakthrough curves can also 

provide insights into the nature of the metal binding interaction when used in conjunction 

with flow injection analysis.  The baseline of the curve represents the hard (or strong) 

sites of the chelator.  The sloped region of the curve represents binding to the sort or 

weaker sites.  The overall capacity of the column for the target metal is represented by 

the area above the curve.  The curve can be easily converted to the more familiar 

Langmurian isotherm. 
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Figure A.1 An example of a typical breakthrough curve collected by flow injection 
analysis-flame atomic absorption spectroscopy. 

 

 

 

Visual Basic was used to create a macro for automated analysis of column breakthrough 

data within Microsoft Excel.  The file template conFigured for triplicate analysis consists 

of 8 worksheets – labeled Report, Calibration 1-3, Breakthrough 1-3 and Strip – and the 

macro code.  The report page, an excerpt is shown in Figure A.2, allows the user to enter 

constants needed for the macro to run as well cells programmed to calculate results based 

on the output of the macro.  Cells labeled A and C are primarily for user identification 

and are not required for the macro to operate.  Cells labeled B and D-H are required for 

the calculations within the macro.  Column weight in grams is placed in the cell labeled 

B; the molecular weight (g/mol) of the metal used is placed in the cell labeled D; the 

solution flow rate (mL/min) is placed in the cell labeled E; the time required for an 

unretained sample to be detected, known as the dead volume time (s), is placed in the cell 
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labeled F; the volume of the strip solution (L) is placed in the cell labeled G; the data 

collection rate, in s/point, is placed in the cell labeled H.  Cells labeled I-K are calculated 

based on the macro output on the corresponding breakthrough worksheet.  Cells labeled 

L-N are calculated based on user input from strip data.        

 

Figure A.2 User input fields for report page of data analysis macro 

 

 

 For breakthrough analysis, raw data, in the form of a two-dimensional array 

consisting of the time point and its resultant absorbance reading, is entered on one of the 

three breakthrough worksheets.  The macro simultaneously corrects for the dead volume 

time and baseline drift, converts time into volume based on the flow rate, calculates an 
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effluent concentration for each absorbance using a calibration curve from the 

corresponding calibration worksheet and plots the data as effluent concentration (ppm) 

versus influent volume (mL).  This process is repeated two additional times for triplicate 

analysis.  A screen shot of this worksheet is shown in Figure A.3.   

 

Figure A.3 Screen shot of the breakthrough worksheet within the macro.  Raw data 
collected by FIA-FAAS or FIA-ICPMS is entered in the first two columns.  
The remaining calculations are completed by the macro. 
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Visual Basic Code is as follows: 

 

Sub BreakthroughAnalysis() 

' 
' BreakthroughAnalysis Macro 
' Macro recorded 07/06/2000 by Ashley M. Johnson 
' 
' Keyboard Shortcut: Ctrl+b 
 
Range("A2").Select 
Selection.End(xlDown).Select 
s = Selection.Value 
 
Range("Z6").Select 
r = Selection.Value 
 
n = s / r 
  
Range("c2").Select 
ActiveCell.FormulaR1C1 = "=RC[-2]-R3C26" 
Range("D2").Select 
ActiveCell.FormulaR1C1 = "=(RC[-2]-(AVERAGE(R2C2:R12C2)))" 
Range("e2").Select 
ActiveCell.FormulaR1C1 = "=RC[-2]/60*R2C26" 
Range("F2").Select 
ActiveCell.FormulaR1C1 = "=(RC[-2]-R4C26)/R5C26" 
Range("G2").Select 
ActiveCell.FormulaR1C1 = "=RC[-2]/1000" 
Range("c2:g2").Select 
Selection.Copy 
Range("c3", Range("g3").Offset(rowoffset:=(n - 1))).Select 
ActiveSheet.Paste 
Range("H2").Select 
ActiveCell.FormulaR1C1 = "=((MAX(R2C6:R2000C6)-RC[-2]))" 
Selection.Copy 
Range("h2", Range("h2").Offset(rowoffset:=n)).Select 
ActiveSheet.Paste 
 
End 
Sub 
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