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A new method for predicting the uncertainty in a nonlinear dynamical system

is developed and analyzed in the context of uncertainty evolution for resident space

objects (RSOs) in the near-geosynchronous orbit regime under the influence of central

body gravitational acceleration, third body perturbations, and attitude-dependent so-

lar radiation pressure (SRP) accelerations and torques. The new method, termed the

splitting Gaussian mixture unscented Kalman filter (SGMUKF), exploits properties

of the differential entropy or Rényi entropy for a linearized dynamical system to de-

termine when a higher-order prediction of uncertainty reaches a level of disagreement

with a first-order prediction, and then applies a multivariate Gaussian splitting algo-

rithm to reduce the impact of induced nonlinearity. In order to address the relative

accuracy of the new method with respect to the more traditional approaches of the

extended Kalman filter (EKF) and unscented Kalman filter (UKF), several concepts

regarding the comparison of probability density functions (pdfs) are introduced and

utilized in the analysis.
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The research also describes high-fidelity modeling of the nonlinear dynami-

cal system which drives the motion of an RSO, and includes models for evaluation

of the central body gravitational acceleration, the gravitational acceleration due to

other celestial bodies, and attitude-dependent SRP accelerations and torques when

employing a macro plate model of an RSO. Furthermore, a high-fidelity model of the

measurement of the line-of-sight of a spacecraft from a ground station is presented,

which applies light-time and stellar aberration corrections, and accounts for observer

and target lighting conditions, as well as for the sensor field of view.

The developed algorithms are applied to the problem of forward predicting

the time evolution of the region of uncertainty for RSO tracking, and uncertainty

rectification via the fusion of incoming measurement data with prior knowledge. It

is demonstrated that the SGMUKF method is significantly better able to forward

predict the region of uncertainty and is subsequently better able to utilize new mea-

surement data.
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Chapter 1

Introduction

1.1 Motivation

Beginning with the launch of Sputnik I in October 1957, a catalog of space

objects has been maintained, first by the Naval Research Laboratory (NRL) and

subsequently by the Air Force Research Laboratory (AFRL) via a transfer of the

program from NRL to AFRL during 2003-2004.56 Since the launch of Sputnik I, the

number of objects in orbit coming from new launches, decommissioned satellites, and

debris created by collision of objects in orbit has posed an ever increasing challenge

to the cataloguing of space objects. As of 2006, there were approximately 9000 space

objects being tracked by the U.S. Space Surveillance Network and maintained in the

satellite catalog.38 This number will inevitably increase as more objects are launched

and as more collisions occur.

The proliferation of resident space objects (RSOs), both inactive and active,

leads to interest not only in the avoidance of collisions between objects, but also in

determining the intent of specific objects. However, since specific objects are not

constantly monitored, information relating to the current location/orientation of the

objects is limited. Limited availability of tracking data ultimately requires long-term

predictions of where objects will be in order to improve the probability of reacquiring

1



the object with followup tracking. Since the space environment is nonlinear by nature

and since uncertainty is inevitably present in the state (position, velocity, etc.) of

an RSO, long-term accurate prediction of the state and uncertainty of RSOs is a

nontrivial task.

1.2 Review of Existing Literature

The rapid advances in existing recursive algorithms which enable the track-

ing of RSOs originate with Kalman’s seminal paper on a state-space approach to

stochastic estimation via what is now known as the Kalman filter.28 In his paper,

Kalman outlined the general approach which permeates throughout the majority of

the estimation algorithms utilized from that time forward. This approach consists

of a two-step procedure, comprised firstly by a propagation stage in which the state

of a dynamical system along with its uncertainty are projected forward in time, and

secondly by an update stage in which new information that is made available via

incomplete and imperfect measurements of the state are utilized in such a way so as

to rectify the state and reduce the uncertainty if possible. The two-step procedure

is then repeated, making use of the measurements whenever they become available.

This repetition therefore establishes the recursive nature of the overall algorithm.

Introduction of the Kalman filter into the literature spawned rapid advances

in the applicability and implementation of recursive estimation to dynamical systems.

The first, and arguably most influential, advance in applicability was the introduction

of the extended Kalman filter (EKF) in Smith’s report.59 The EKF established an

approach to the estimation of nonlinear dynamical systems by proposing linearization

2



of the dynamical system and observational relationships about the current best esti-

mated state. The EKF was then subsequently applied to the problem of estimation

for space-borne platforms and ultimately to the ability for landing humans on the

Moon. However, the EKF is not without limitations. The utilization of linearization

in order to accomplish the recursive filtering limits the range of applications to those

in which the linearization holds with respect to the time-scale of the observations.

That is, if a nonlinear dynamical system is accurately described by a first-order lin-

earization approach over the time span between consecutive measurements, then the

EKF can be utilized to provide accurate estimates of the system’s state as well as the

uncertainty present in the state. To address the cases in which linearization of the

nonlinear dynamical system does not accurately reflect the nonlinear behavior and

higher-order effects begin to play a role, the second-order EKF scheme was described

by Athans,4 and has been shown to yield improvements (especially when consider-

ing the observational relationships) when applied to orbit estimation problems.20, 73, 75

While the second-order EKF does, as its names indicates, include the second-order

terms of a Taylor series expansion in both the propagation and update stages of the

Kalman filter structure, the governing equations for the second-order EKF are based

on the assumption of normality of the state errors, which limits the applicability.

More recently, a class of so-called sigma-point Kalman filters (SPKFs) has emerged,

chief among them the unscented Kalman filter (UKF)25, 26 and the central difference

Kalman filter (CDKF).21, 70 The UKF is based on the proposition that the distribu-

tion of a state is easier to approximate than it is to consider arbitrarily high order

terms in a Taylor series expansion of nonlinear equations.67 In both the EKF and

3



UKF approaches to recursive estimation, the implicit assumption is that the uncer-

tainty present in the state of the dynamical system is well represented by only the

first two statistical moments (i.e. the mean and covariance) of the distribution.

To relax the necessity of assuming that the first two statistical moments are suf-

ficient for an accurate description of the uncertainty, Sorenson introduced a Gaussian

mixture model (GMM) approach to the Bayesian estimation problem which allows

for the modeling of the distribution by a sum of Gaussian component distributions

and the application of parallel-operating filters.61 Alspach then utilized the GMM

approach of Sorenson to describe a nonlinear recursive estimation scheme in which

each component of the GMM distribution is filtered via an EKF.1 Subsequently,

the approach taken in Sorenson to apply the EKF to the components of the GMM

was modified so as to apply the UKF methodology to the components of the GMM.

Therefore, the same Kalman filtering paradigm can be applied to a nonlinear dynam-

ical system in which the total state uncertainty description is not well represented by

only the first two statistical moments. Recently, the Gaussian mixture approach has

been extended by Terejanu to adapt the GMM component weights during propagation

of the GMM probability density function (pdf)66 and applied to the orbit determi-

nation problem in the presence of solar radiation pressure (SRP) effects11 and drag

effects,12 both of which show improvements in the tracking of RSOs when compared

to implementation of the UKF.

Another class of recursive estimation strategies which circumvent the assump-

tion that the first two statistical moments are sufficient is based on higher-order mo-

ments and utilizing these moments during the propagation and update stages of the

4



filter. For instance, Park has described a method for utilizing state transition tensors,

which are higher-order state transition matrices, in order to nonlinearly map statistics

through the nonlinear dynamical system and observational relationships.48, 49 Build-

ing upon Park’s work, Majji derives differential equations for the statistical moments

of the state uncertainty beyond the first and second-order.41 In both cases, im-

plementation of the higher-order methods requires the computation of higher-order

derivatives to implement the Taylor series expansions. This requires either a analytic

formulation of the higher-order derivatives of nonlinear equations (which can become

quite cumbersome even for relatively benign nonlinear equations) or the implementa-

tion of numerical procedures such as finite differences,51 automatic differentiation,15

or complex-step derivatives62 to determine the requisite derivatives. In the case of the

latter option, Lai has implemented a complex-step derivative approach as an alterna-

tive method for applying second-order filters.32, 33 Recently, Lantoine has reported a

method for numerically computing higher-order derivatives based on the complex-step

derivative technique, which could be directly applied to the approaches of Park and

Majji. However, the inclusion of higher-order terms naturally requires significantly

more computational power and, as is the case of the complex-step derivative method,

the implementation of operator overloading in software. The advantage of the higher-

order methods is illustrated by Park49 wherein the implementation of state transition

tensors is better able to accurately account for nonlinearities in the transformation

of the statistical moments in order to better describe the uncertainty for spacecraft

navigation.
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1.3 Research Contributions

This work focuses on recursive methods which describe the state uncertainty

for the orbit determination problem. The main contribution of the dissertation is the

development of a new technique which makes use of a method for the detection of

nonlinearity during the time prediction of state uncertainty and subsequently utilizes

a splitting technique to decrease the errors made by low-order Taylor series approx-

imations of the nonlinear system. This new method is shown to be able to better

approximate the propagation of uncertainty through a nonlinear dynamical system

than standard approaches are capable of doing. The standard approaches rely on first

and second-order approximations in order to predict the uncertainty along a nominal

path; in doing so, these methods do not allow for cases in which the volume of uncer-

tainty becomes large enough that the low-order approximations are no longer valid.

Furthermore, the new method does not require the implementation of higher-order

schemes, such as that of Park48, 49 or Majji,41 thereby avoiding the numerical and

computational difficulties involved with higher-order methods.

To develop the technique of splitting, several other contributions are encoun-

tered, such as developing more generalized algorithms for the splitting and merging

of GMM distributions than currently exist in the literature. While the presented

method for splitting a distribution is not altogether new, a new approach which re-

lies on numerical minimization of closed-form measures of distance between pdfs is

presented and applied. Finally, as with all recursive filtering schemes, modeling of

the dynamical and observational relationships plays a central role. To this extent, a

thorough treatment of the gravitational acceleration imparted on a spacecraft by a
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central body is given, including a non-singular implementation for the evaluation of

high-fidelity spherical harmonics models. Also of interest in the dynamical systems

modeling is that of the SRP, which imparts both an acceleration and a moment.

Again, the core algorithms are extended from those found in the existing literature

to yield not only an acceleration due to SRP, but also a moment due to SRP, which

directly influences the evolution of the orientation of the vehicle. Each of these im-

provements in modeling is then applied to the new filtering scheme that is developed

based on splitting techniques.

1.4 Organization of the Dissertation

The organization of the dissertation is as follows: in Chapter 2, several con-

cepts relating to pdfs are presented. This discussion begins with the general spec-

ification of the Gaussian distribution via its pdf and the GMM distribution via its

pdf in Section 2.1. In Section 2.2 several measures for pdfs are presented, such as

the L2 and the normalized L2 distances between two pdfs which are characterized

by GMMs. Furthermore, a likelihood measure for determining how likely a GMM

pdf is with respect to a set of sample points is presented, and the average amount

of surprisal present in a Gaussian distribution is presented. Section 2.3 then utilizes

the L2 distance measure to develop a method for splitting a Gaussian distribution

into smaller Gaussian distributions, such that a single Gaussian distribution can be

approximated via a GMM. This approach to approximating a Gaussian distribution

by a GMM is first presented for a univariate Gaussian distribution and then extended

to the multivariate case. Finally, Section 2.4 presents a method for taking a GMM
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distribution and reducing the number of components to form a reduced-component

GMM via merging components of the original GMM.

Chapter 3 details the development of the recursive filtering strategies consid-

ered in this work. The EKF, which serves as the fundamental filtering scheme for

most all nonlinear systems is derived in Section 3.1. Additionally, the UKF, which is

a higher-order extension of the EKF, is described in Section 3.2. Sections 3.3 and 3.4

apply the strategies of the EKF and UKF, respectively, to the situation in which a

GMM is used to describe the uncertainty in the state. Finally, building upon the

prior developments of the chapter, Section 3.5 develops a splitting Gaussian mixtures

recursive filtering scheme in order to describe a method which attempts to approxi-

mate the forward evolution of uncertainty by online adaptation of the GMM which

describes the state uncertainty.

Chapter 4 presents the dynamical and observational relationships which are

necessary for the implementation of the recursive filtering strategies outlined in Chap-

ter 3. For the dynamics, the application of gravitational acceleration induced by a

central body is introduced in Section 4.1.1. The models presented for the central body

acceleration include: the point mass model in Section 4.1.1.1, the zonal harmonics

model in Section 4.1.1.2, and the spherical harmonics model in Section 4.1.1.3. Ad-

ditionally, the inclusion of gravitational acceleration caused by the presence of grav-

itating bodies other than the central body is discussed in Section 4.1.2. The final

dynamical model is that of the SRP, for which the acceleration model is given in Sec-

tion 4.1.3, and the moment model is given in Section 4.1.4. Next, the observational

relationships are given in Section 4.2. The observational relationship considered in
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this work is that of a line-of-sight given by angular observations, which is described in

Section 4.2.5. In conjunction with the angular observations, methods which account

for corrections to the measurements and conditions upon which measurements may

be made are described in Sections 4.2.1–4.2.4.

Chapter 5 presents the analysis and performance comparison of the developed

recursive filtering algorithms in the context of orbit uncertainty prediction and rec-

tification. The analysis is broken into three parts, each building upon the previous:

orbit uncertainty prediction using lower fidelity dynamics models, orbit uncertainty

prediction in using high fidelity dynamics models, and orbit uncertainty rectification

via processing of measurement data.

A summary of the results, as well as some conclusions and future directions of

research are given in Chapter 6.

9



Chapter 2

Concepts in Probability

2.1 The Gaussian and Gaussian Mixture Model Distribu-

tions

Given a continuous random vector, x ∈ R
n, the probability density function

(pdf) is a function which describes the relative likelihood of the random variable

across points in R
n. The pdf is a nonnegative function which when integrated over

its entire support set is one. The most widely used pdf is the Gaussian pdf. Let x be

a Gaussian random variable of dimension n, with mean and covariance denoted by

m ∈ R
n and P = P T > 0 ∈ R

n×n, respectively. Then, the pdf for x is defined as

pg(x ; m,P ) = |2πP |−1/2 exp

{

−1
2
(x−m)TP−1(x−m)

}

, (2.1)

where |·| represents the matrix determinant. The ubiquitous use of the Gaussian

pdf is motivated by its ability to model random events, such as noise. As is seen

in Eq. (2.1), the pdf is completely characterized by the mean and covariance, which

leads to the important property that the moments of a Gaussian random variable can

be written in terms of only the mean and the covariance. If two Gaussian pdfs are

multiplied together, the resultant product is a scaled Gaussian pdf given by44

pg(x ; m1,P1)pg(x ; m2,P2) = K(m1,m2,P1,P2)pg(x ; m3,P3) (2.2)
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where

m3 = P3

(

P−1
1 m1 + P−1

2 m2

)

P3 =
(

P−1
1 + P−1

2

)−1

K(m1,m2,P1,P2) = |2π(P1 + P2)|−1/2 (2.3)

× exp

{

−1
2
(m1 −m2)

T (P1 + P2)
−1(m1 −m2)

}

.

Eq. (2.2) serves to establish the important property of the Gaussian pdf (which will

utilized in the sequel) that the integral of the product of two Gaussian pdfs is given

by

∫

Rn

pg(x ; m1,P1)pg(x ; m2,P2)dx = K(m1,m2,P1,P2) (2.4)

where K(·) is given in Eq. (2.3).

A direct extension of the Gaussian pdf is the so-called Gaussian mixture pdf,

or Gaussian mixture model (GMM), which is given by a sum of weighted Gaussian

pdfs, i.e.

p(x) =
L
∑

i=1

wipg(x ; mi,Pi) . (2.5)

In Eq. (2.5), L represents the number of components of the GMM, wi are the weights

associated with each component, mi are the means associated with each component,

and Pi are the covariances associated with each component. To retain the properties

of a valid pdf (that is, to ensure positivity across the support of the pdf and to ensure

that the area under the pdf is one), the weights must all be positive and must sum
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to one, that is

wi ≥ 0 ∀ i ∈ {1, 2, . . . , L} and
L
∑

i=1

wi = 1 .

The GMM approach to describing a pdf retains the benefits of the easy character-

ization and interpretation of the Gaussian pdf, while simultaneously extending the

applicability of the Gaussian pdf since a large class of pdfs can be approximated using

the GMM approach. This point was illustrated by Sorenson61 where it was shown

that the approximation of a pdf by a GMM pdf converges uniformly as the number

of components in the GMM approximation increases without bound. This is a highly

intuitive result since each component of the GMM approaches an impulse function as

the component covariance decreases to zero. Therefore, by decreasing the component

covariance, increasing the number of components, and distributing the component

means properly, one can readily approximate the shape of a large class of pdfs.

2.2 Probability Density Function Measures

2.2.1 Distance Measure between Distributions

To develop a measure of distance between two pdfs, first consider the density

power divergence (DPD) given by6

DPDα (p1, p2) =

∫

Rn

{

p1+α
2 (x)−

(

1 +
1

α

)

p1(x)p
α
2 (x) +

1

α
p1+α
1 (x)

}

dx ,

where α is the control parameter of the DPD and p1(x) and p2(x) are the input

pdfs for which the DPD is computed. Furthermore, it is noted that for α = 0, the

integrand is undefined, and therefore DPD0 (p1, p2) is defined to be the Kullback-

12



Leibler divergence6, 31

KL (p1, p2) = lim
α→0

dα(p1, p2) =

∫

Rn

p1(x) log
p1(x)

p2(x)
dx .

In the case where α = 1, it is seen that the DPD becomes

L2 (p1, p2) =

∫

Rn

(p1(x)− p2(x))2 dx ,

which is simply the L2 distance between the surfaces described by the two pdfs.

Therefore the control parameter α gives a smooth bridge between the Kullback-Leibler

divergence and the L2 distance for 0 < α < 1.23, 24 It is worth nothing that while the

Kullback-Leibler divergence is not symmetric (i.e. KL (p1, p2) 6= KL (p2, p1)) and does

not satisfy the triangle inequality, it is readily observed that the L2 distance satisfies

both of these properties. Symmetry is guaranteed by the square in the integrand,

and satisfaction of the triangle inequality can be shown by observing that

L2 (p1, p2) =

∫

Rn

p21(x)dx+

∫

Rn

p22(x)− 2

∫

Rn

p1(x)p2(x)dx

= L2 (p1) + L2 (p2)− 2

∫

Rn

p1(x)p2(x)dx . (2.6)

Since p1(x) and p2(x) are both non-negative over the domain of integration,

∫

Rn

p1(x)p2(x)dx ≥ 0 , (2.7)

which, by substituting Eq. (2.7) back into Eq. (2.6), then gives the triangle inequality

as

L2 (p1, p2) ≤ L2 (p1) + L2 (p2) .
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2.2.1.1 L2 Distance between GMMs

Now, consider the L2 distance between two GMM pdfs. Recall that the L2

distance is defined as

L2 (p1, p2) =

∫

Rn

(p1(x)− p2(x))2dx ,

such that, upon expanding terms, we have the accumulation of three terms

L2 (p1, p2) =

∫

Rn

p21(x)dx+

∫

Rn

p22(x)− 2

∫

Rn

p1(x)p2(x)dx . (2.8)

Assume that the pdfs p1(x) and p2(x) are given by GMMs of the form

p1(x) =

k1
∑

i=1

w1,ipg(x ; m1,i,P1,i) (2.9a)

p2(x) =

k2
∑

j=1

w2,jpg(x ; m2,j,P2,j) . (2.9b)

Since all three terms in Eq. (2.8) are of the same form, that is they all appear as

integrals of the product of two GMMs up to scaling, the third term can be considered

and the results can be extended to the first two terms. Looking at only the final term

in Eq. (2.8) and substituting Eqs. (2.9) in place of the terms in the integrand yields

∫

Rn

p1(x)p2(x)dx =

∫

Rn

[

k1
∑

i=1

w1,ipg(x ; m1,i,P1,i)

][

k2
∑

j=1

w2,jpg(x ; m2,j,P2,j)

]

dx

=

∫

Rn

k1
∑

i=1

k2
∑

j=1

w1,iw2,jpg(x ; m1,i,P1,i)pg(x ; m2,j,P2,j)dx

=

k1
∑

i=1

k2
∑

j=1

w1,iw2,j

∫

Rn

pg(x ; m1,i,P1,i)pg(x ; m2,j,P2,j)dx

=

k1
∑

i=1

k2
∑

j=1

w1,iw2,jK(m1,i,m2,j,P1,i,P2,j) . (2.10)
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In the preceding development, the integral of the sum was replaced by the sum of the

integral in going from the second step to the third. This replacement is possible due

to the linearity of the integration operator. Similarly, by applying the same process

as used in developing Eq. (2.10), the first two terms in Eq. (2.8) are given by

∫

Rn

p21(x)dx =

k1
∑

i=1

k1
∑

j=1

w1,iw1,jK(m1,i,m1,j,P1,i,P1,j) (2.11)

and
∫

Rn

p22(x)dx =

k2
∑

i=1

k2
∑

j=1

w2,iw2,jK(m2,i,m2,j,P2,i,P2,j) . (2.12)

Therefore, by substituting the results of Eqs. (2.10)–(2.12) into Eq. (2.8), we arrive

at the final result for the L2 distance between two GMM pdfs as

L2 (p1, p2) =

k1
∑

i=1

k1
∑

j=1

w1,iw1,jK(m1,i,m1,j,P1,i + P1,j) (2.13)

+
k2
∑

i=1

k2
∑

j=1

w2,iw2,jK(m2,i,m2,j,P2,i + P2,j)

− 2

k1
∑

i=1

k2
∑

j=1

w1,iw2,jK(m1,i,m2,j,P1,i + P2,j)

It is seen that for GMMs, the L2 distance offers a completely closed-form expression

of the distance, whereas the same cannot be said for the Kullback-Leibler divergence,

in which case approximate values can be obtained by resorting to multi-dimensional

numerical integration techniques.13 This offers a significant advantage of the L2 ap-

proach to computing distance between GMM pdfs as it allows for rapid and accurate

calculation of the resultant distance. The L2 distance reaches its minimum value of

zero in the case where the two GMM pdfs are identical and its maximum value when

the overlap between the GMM pdfs is zero everywhere.72
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2.2.1.2 Normalized L2 Distance between GMMs

From the triangle inequality property of the L2 distance, it is known that

∫

Rn

(p1(x)− p2(x))2dx ≤
∫

Rn

p21(x)dx+

∫

Rn

p22(x) ,

which means that by defining the normalized L2 distance to be

NL2 (p1, p2) =

∫

Rn(p1(x)− p2(x))2dx
∫

Rn p
2
1(x)dx+

∫

Rn p
2
2(x)dx

, (2.14)

a distance measure which has a minimum value of zero and a maximum value of one

is obtained, i.e. 0 ≤ NL2 (p1, p2) ≤ 1.52 Expanding the numerator in Eq. (2.14) and

rearranging terms, it is seen that the normalized L2 can be written as

NL2 (p1, p2) = 1− 2
∫

Rn p1(x)p2(x)dx
∫

Rn p
2
1(x)dx+

∫

Rn p
2
2(x)dx

. (2.15)

Substituting the results of Eqs. (2.10)–(2.12) into Eq. (2.15), the NL2 distance between

two GMM pdfs is given by

NL2 (p1, p2) = 1− 2d1,2
d1,1 + d2,2

,

with

d1,2 =

k1
∑

i=1

k2
∑

j=1

w1,iw2,jK(m1,i,m2,j,P1,i + P2,j)

d1,1 =

k1
∑

i=1

k1
∑

j=1

w1,iw1,jK(m1,i,m1,j,P1,i + P1,j)

d2,2 =

k2
∑

i=1

k2
∑

j=1

w2,iw2,jK(m2,i,m2,j,P2,i + P2,j) .
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As was the case with the L2 distance, the NL2 distance offers a completely closed-

form expression of the distance between two GMM pdfs. The NL2 distance provides

a scale-invariant form of the L2 distance which can be viewed as a more intuitive

interpretation of the distance between the GMM pdfs. The NL2 reaches its minimum

value of zero in the case where the two GMM pdfs are identical and its maximum

value of one when the overlap between the GMM pdfs is zero everywhere.

2.2.2 Likelihood Agreement between Distributions

In cases where a sample of data points is to be compared against a represen-

tation of the pdf, the L2 distance or NL2 distance cannot be used as developed. Even

though a set of sample points can be considered as a Dirac mixture model (DMM)

representation of the pdf and a DMM is a limiting case of the GMM, the computa-

tions of the L2 and NL2 distances becomes ill-conditioned. To replace the distance

comparison methodology, consider instead a likelihood agreement measure between

two pdfs as

L (p1, p2) =

∫

Rn

p1(x)p2(x)dx . (2.16)

The likelihood measure, L, describes the amount of overlap between the two densities

and will therefore be larger for densities that are in greater agreement with one

another. Since we are, in this case, interested in the agreement between a set of

sampled data points and a probability density function, we let p1(x) be given by the

DMM

p1(x) =

k1
∑

i=1

w1,iδ(x−m1,i) , (2.17)
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where δ(x−m1,i) is a Dirac delta distribution centered at m1,i with weight w1,i, and

the Dirac delta is defined such that it is zero everywhere except at m1,i. Furthermore,

the Dirac delta satisfies the integral condition

∫

Rn

δ(x−m1,i)dx = 1 . (2.18)

From the integral property of the Dirac delta in Eq. (2.18) and the definition of the

DMM in Eq. (2.17) it is readily observed that the weights must satisfy
∑k1

i=1w1,i = 1,

where usually the sample points are equally weighted, that is w1,i = 1/k1 ∀ i ∈

{1, . . . , k1}. Substituting the DMM of Eq. (2.17) into the likelihood agreement mea-

sure of Eq. (2.16) yields

L (p1, p2) =

k1
∑

i=1

w1,i

∫

Rn

p2(x)δ(x−m1,i)dx .

Applying the sifting property of the Dirac delta,34 it is seen that the likelihood agree-

ment measure can be written as

L (p1, p2) =

k1
∑

i=1

w1,ip2(m1,i) ,

for any arbitrary comparison pdf p2(x). If the comparison pdf is given by a GMM of

the form

p2(x) =
k2
∑

j=1

w2,jpg(x ; m2,j,P2,j) ,

then the likelihood agreement measure can be rewritten explicitly in terms of the

individual weights, means, and covariances of the GMM as

L (p1, p2) =

k1
∑

i=1

k2
∑

j=1

w1,iw2,jpg(m1,j ; m2,j,P2,j) . (2.19)
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Therefore, given a set of sample points via a DMM and a GMM upon which to com-

pare the samples to, the likelihood that the DMM represents the same distribution as

the GMM can be computed via Eq. (2.19). A higher value of the likelihood agreement

will indicate that a given GMM was more likely to have generated the DMM, thereby

allowing multiple GMMs to be compared for accuracy to a single DMM, with the

most accurate GMM having the highest value of the likelihood agreement.

2.2.3 Differential Entropy and Rényi Entropy of a Gaussian Distribution

One of the final pdf measure to be discussed is the differential entropy, which

is a measure of the average amount of surprisal in a random variable. Given any pdf

p(x), the differential entropy is defined by10, 30, 57

H (x) = −
∫

Rn

p(x) log p(x)dx ,

or, alternatively, this can be expressed in terms of the expected value with respect to

p(x) of the negative logarithm of p(x), yielding

H (x) = E {− log p(x)} .

Having the definition of the differential entropy in hand, we now develop an equation

for evaluating this quantity for a Gaussian pdf, which has the form

p(x) = |2πP |−1/2 exp

{

−1
2
(x−m)TP−1(x−m)

}

. (2.20)
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Therefore, by taking the negative logarithm (base e) of Eq. (2.20), it follows that

− log p(x) =
1

2
log |2πP |+ 1

2
(x−m)TP−1(x−m)

=
1

2
log |2πP |+ 1

2
trace

{

(x−m)TP−1(x−m)
}

=
1

2
log |2πP |+ 1

2
trace

{

(x−m)(x−m)TP−1
}

, (2.21)

where we have used the invariance under cyclic permutation property of the trace

operator.3 By then taking the expected value of Eq. (2.21) we find that

E {− log p(x)} = 1

2
log |2πP |+ 1

2
trace

{

PP−1
}

=
1

2
log |2πP |+ 1

2
n .

Noting that 1
2
n = 1

2
n log e and rearranging terms, the final form of the differential en-

tropy for a Gaussian distribution is given in terms of the logarithm of the determinant

of a scaled form of the covariance matrix, that is

H (x) =
1

2
log |2πeP | (2.22)

Alternatively, by noting that the determinant of the covariance matrix is given by the

product of the eigenvalues, Eq. (2.22) can be equivalently expressed as

H (x) =
1

2

n
∑

i=1

log(2πeλi) ,

where n is the dimension of the random variable x and λi is the i
th eigenvalue of P .

A generalization of the differential entropy is that of the Rényi entropy, which

allows for different averaging of probabilities through a control parameter κ. The
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Rényi entropy of order κ for a continuous random variable with pdf p(x) is defined

by53, 60, 77

Rκ (x) =
1

1− κ log

∫

Rn

p(x)κdx , (2.23)

for κ > 0, κ 6= 1, and

lim
κ→1

Rκ (x) = H (x) . (2.24)

Now, we consider the form of the Rényi entropy for the case of a Gaussian pdf, which

is defined as

p(x) = |2πP |−1/2 exp

{

−1
2
(x−m)TP−1(x−m)

}

. (2.25)

From Eq. (2.25), it is then straightforward to see that p(x)κ is

p(x)κ = |2πP |−κ/2 exp
{

−κ
2
(x−m)TP−1(x−m)

}

. (2.26)

Given that p(x) is a pdf and therefore when integrated across the support of the pdf

must be one, it is observed that

∫

Rn

exp
{

−κ
2
(x−m)TP−1(x−m)

}

dx = κ−n/2 |2πP |1/2 , (2.27)

where n is the dimension of the random variable x. Therefore, by Eqs. (2.26) and (2.27),

we have that

∫

Rn

p(x)κdx = κ−n/2 |2πP |−κ/2 |2πP |1/2 ,

which allows the Rényi entropy to be found for a Gaussian pdf from Eq. (2.23) to be

Rκ (x) =
1

2
log |2πP | − n

2(1− κ) log κ . (2.28)
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After some manipulation of Eq. (2.28), a more convenient form of the Rényi entropy

is given by the logarithm of the determinant of a scaled form of the covariance matrix,

that is

Rκ (x) =
1

2
log

∣

∣

∣
2πκ

1

κ−1P

∣

∣

∣
. (2.29)

In the same manner as the differential entropy, an alternative representation can be

found by noting that the determinant of the covariance matrix is given by the product

of the eigenvalues, such that Eq. (2.29) can be equivalently expressed as

Rκ (x) =
1

2

n
∑

i=1

log(2πκ
1

κ−1λi) ,

where n is the dimension of the random variable x and λi is the i
th eigenvalue of P .

It is worth noting that

lim
κ→1

κ
1

κ−1 = e ,

such that the claim in Eq. (2.24) is verified for a Gaussian pdf by a simple comparison

of the results obtained on differential entropy with those on Rényi entropy.

2.3 Splitting a Gaussian Distribution

Splitting a Gaussian distribution into “smaller” distributions is a subject that

has received more attention as GMMs have become more widely used. For instance,

Hanebeck illustrates a method for splitting a univariate Gaussian into two compo-

nents17 and a method for splitting a univariate Gaussian in multiple components.16

Li, on the other hand gives a method for splitting a multivariate Gaussian into two
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components.36, 37 Finally, Huber, building upon the work of Hanebeck, utilizes pre-

computed libraries of univariate multi-component splitting to develop a multivariate

Gaussian splitting technique.18 This technique enables reliable, accurate splitting

of multivariate Gaussian distributions into many components. Therefore, following

in the spirit of Huber’s method, univariate Gaussian splitting libraries are developed

and then applied to the multivariate Gaussian case. However, the approach presented

here for developing the univariate Gaussian splitting libraries is different than that of

Huber’s, and the application to the multivariate Gaussian case has been generalized

from previous approaches.

2.3.1 The Univariate Case

As a precursor to developing a method for splitting a multivariate Gaussian

distribution, consider first the splitting of a univariate Gaussian distribution. Without

loss of generality, since all univariate Gaussian distributions can be brought to the

so-called “standard” Gaussian distribution (that is a Gaussian distribution with zero

mean and unit variance) by a linear transformation, it is desired to approximate the

standard Gaussian distribution, p1(x), with a GMM distribution, p2(x). That is, we

want to approximate

p1(x) = pg(x ; 0, 1) (2.30)

by a GMM distribution of the form

p2(x) =

k2
∑

i=1

w̃ipg(x ; m̃i, σ̃
2) , (2.31)
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where it should be noted that the variances of the GMM components have been

constrained to be equal. If each component is allowed to have a different variance,

then situations arise in the splitting process where some components may take on a

very large variance and other components may take on a very small variance. The goal

therefore is to create a GMM approximation to the standard Gaussian distribution

where the “width” of all of the components is equal. In order to find the parameters

of the GMM distribution, we view this as a minimization problem where we wish to

minimize the distance between p1(x) and p2(x). Additionally, it is desired that the

single variance parameter σ̃2 is small, such that combining this condition with the

minimum distance condition, a performance index can be stated as

J = L2 (p1, p2) + λσ̃2 subject to

k2
∑

i=1

w̃i = 1 (2.32)

where λ is a weighting term that scales the importance of minimizing σ̃2 versus min-

imizing L2 (p1, p2). Finally, in Eq. (2.32), we have also noted the constraint imposed

by the GMM distribution weights; that is, the sum of the weights must be one in

order for p2(x) to be a valid pdf.

With the above method for splitting a standard Gaussian distribution we com-

pute the splitting libraries for k2 = 3, k2 = 4, and k2 = 5. The choice of the scaling

term λ, the achieved L2 distance between p1(x) and p2(x), and the value of σ2 are sum-

marized for each of the computed splitting libraries in Table 2.1. While the method

proposed is general for any value of k2, it is seen that as k2 grows larger, there is a

diminishing return in reducing the σ̃ value using higher-component splits as can be

seen in Table 2.1. For this reason, only splitting libraries up to k2 = 5 are presented.
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Table 2.1: Parameters and Performance of Splitting Libraries

k2 λ L2 (p1, p2) σ̃

3 0.0010 6.139× 10−5 0.6715662886640760

4 0.0020 9.566× 10−5 0.5276007226175397

5 0.0025 5.216× 10−5 0.4422555386310084

The computed values of the component weights, means, and standard devi-

ations is given for k2 = 3 in Table 2.2, for k2 = 4 in Table 2.3, and for k2 = 5 in

Table 2.4. Finally, to graphically illustrate the efficacy of the method, the original

target distribution (p1(x)), the individual computed components of the split distri-

bution, and the overall split distribution (p2(x)) are shown in Figures 2.1–2.3 for the

three values of k2 considered.

Table 2.2: 3-Component Splitting Library

i w̃i m̃i σ̃

1 0.2252246249136750 −1.057515461475881 0.6715662886640760

2 0.5495507501726501 0 0.6715662886640760

3 0.2252246249136750 1.057515461475881 0.6715662886640760
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Table 2.3: 4-Component Splitting Library

i w̃i m̃i σ̃

1 0.1238046161618835 −1.437464136328835 0.5276007226175397

2 0.3761953838381165 −0.455886223973523 0.5276007226175397

3 0.3761953838381165 0.455886223973523 0.5276007226175397

4 0.1238046161618835 1.437464136328835 0.5276007226175397

Table 2.4: 5-Component Splitting Library

i w̃i m̃i σ̃

1 0.0763216490701042 −1.689972911128078 0.4422555386310084

2 0.2474417859474436 −0.800928383429953 0.4422555386310084

3 0.3524731299649044 0 0.4422555386310084

4 0.2474417859474436 0.800928383429953 0.4422555386310084

5 0.0763216490701042 1.689972911128078 0.4422555386310084
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Figure 2.1: Components of the splitting libraries and their sum as compared to the
normal Gaussian distribution for k2 = 3.
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Figure 2.2: Components of the splitting libraries and their sum as compared to the
normal Gaussian distribution for k2 = 4.
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Figure 2.3: Components of the splitting libraries and their sum as compared to the
normal Gaussian distribution for k2 = 5.

2.3.2 The Multivariate Case

Consider the case where it is desired to replace a component of a GMM using

a splitting process. In this case, the goal is to find the N component weights, means,

and covariances which, when combined in a GMM, yield the same approximate pdf

as the original component, that is

wpg(x ; m,P ) ≈
N
∑

i=1

wipg(x ; mi,Pi) . (2.33)

To apply a univariate splitting library to the multivariate case, the approximation

must be applied in a specified direction. The best way to think of this is to consider

the principal directions of the covariance matrix (given by the eigenvectors of the

covariance matrix). Then, in the coordinate system described by the principal direc-

tions, the multivariate Gaussian distribution becomes a product of univariate Gaus-
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sian distributions, which allows for the easy implementation of a univariate splitting

technique to be applied to any one, several, or all of the elements in this product of

univariate Gaussian distributions. While thinking of the principal directions provides

nice physical insight into the problem, it is not required for describing the general

approach.

To apply the univariate Gaussian splitting technique, first find a square-root

factor S such that SST = P . Then, separate the square-root factor into its columns,

such that sk is the kth column of S. Select the square-root factor column upon which

the univariate splitting is to be performed, as well as the splitting library to be used

(e.g. a 3-component, 4-component, or 5-component library) which specifies values for

w̃i, m̃i, and σ̃. Then, when the splitting is performed along the kth axis of the square-

root factor, the component weights, means, and covariances to be used in Eq. (2.33)

are given by

wi = w̃iw

mi = m+ m̃isk

Pi = SiS
T
i ,

where Si is the square-root factor of the ith new component, which is

Si = [s1 , . . . , σ̃sk , . . . , sn] .

One downside of the general approach using an arbitrary square-root factor

is that the physical meaning of the directions along which the univariate splitting

is applied is lost. However, if we choose the specific square-root factor to be one
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formed by the eigenvalues and eigenvectors, then physical meaning is re-established.

Therefore, consider the spectral factorization of the covariance matrix P as

P = V ΛV T ,

for which the square-root factor can be readily determined as S = V Λ1/2. Since

Λ is diagonal, Λ1/2 is well defined. Using the spectral factorization, an eigenvector

(along which the splitting is to be done) is selected and the splitting library to be

used is selected. Applying the square-root factor from the spectral factorization to

the general case, it is seen that when the splitting is performed along the kth axis of

the spectral factorization, the component weights, means, and covariances to be used

in Eq. (2.33) become

wi = w̃iw

mi = m+
√
λkm̃ivk

Pi = V ΛiV
T ,

where vk is the kth eigenvector of P and Λi is the set of eigenvalues of the ith new

component, given by

Λi = diag
{

λ1 , . . . , σ̃
2λk , . . . , λn

}

.

Using the spectral factorization to generate the square-root factor leads to an algo-

rithm equivalent to that of Huber.18
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2.4 Merging Gaussian Distributions

With a GMM, the situation arises where multiple components become redun-

dant and can be alternatively well-represented by a single merged component. The

most common method of merging this set of redundant components is to compute

a distance measure between pairs of components, such as the Kullback-Leibler di-

vergence, the L2 distance, or the NL2 distance, and combine the two components

with the smallest distance into a single merged-component. This process is then

repeated on the new set of components until there are no more possible mergers (ei-

ther because no components are close enough together, or because there is only one

component left).72, 74 The procedure of iteratively combined components pair-wise

is known here as the “bottom-up method” since it works by considering all possible

merges of two components. An alternative method, which is referred to here as the

“top-down method,” approaches the problem from the consideration that perhaps

there is a set of more than two components which can be merged together. In this

approach a subset of components is proposed for possible merging and the distance

between the reduced GMM and the original GMM is computed and stored. Once

all subsets of equal subset size are considered, the proposed merge with the lowest

distance is taken as the accepted merge. The process is then repeated on the new

GMM until no acceptable merging remains.

2.4.1 Method of Moments

Before describing the top-down method for merging components, we first con-

sider how to merge multiple components. To accomplish this multiple component
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merging, the method of moments is detailed.63 Consider a GMM of the form

p(x) =
K
∑

k=1

wkpg(x ; mk,Pk) , (2.34)

where the component weights, means, and covariances are given, respectively, by wk,

mk, and Pk. The goal of merging is to replace the GMM of Eq. (2.34) with a single

component with weight wm, mean mm, and covariance Pm, that is

K
∑

k=1

wkpg(x ; mk,Pk) = wmpg(x ; mm,Pm) . (2.35)

The overall weight must remain the same, and therefore the merged weight wm is

given by the sum of the component weights, i.e.

wm =
K
∑

k=1

wk . (2.36)

Computing the expected value of both sides of Eq. (2.35) in order to determine the

merged weight yields

∫

Rn

x

K
∑

k=1

wkpg(x ; mk,Pk)dx =

∫

Rn

xwmpg(x ; mm,Pm)dx ,

or

n
∑

k=1

wk

∫

Rn

xpg(x ; mk,Pk)dx = wm

∫

Rn

xpg(x ; mm,Pm)dx . (2.37)

Making use of the properties of the Gaussian distribution, Eq. (2.37) reduces to

n
∑

k=1

wkmk = wmmm ,
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which is readily solved for the merged mean yielding

mm =
1

wm

K
∑

k=1

wkmk . (2.38)

In a similar manner, the method of moments considers the raw second moment of

both sides of Eq. (2.35) and equates them in to determine the merged covariance.

Computing the raw second moment of both sides of Eq. (2.35) gives

∫

Rn

xxT
K
∑

k=1

wkpg(x ; mk,Pk)dx =

∫

Rn

xxTwmpg(x ; mm,Pm)dx ,

or

K
∑

k=1

wk

∫

Rn

xxTpg(x ; mk,Pk)dx = wm

∫

Rn

xxTpg(x ; mm,Pm)dx . (2.39)

Again, applying the properties of the Gaussian distribution, Eq. (2.39) becomes

K
∑

k=1

wk(Pk +mkm
T
k ) = wm(Pm +mmm

T
m) ,

which is readily solved for the merged covariance, as

Pm =
1

wm

K
∑

k=1

wk(Pk +mkm
T
k )−mmm

T
m . (2.40)

Collecting the results of Eqs. (2.36) , (2.38) , and (2.40), the merged weight, mean,

and covariance of a GMM as determined by the method of moments are given by

wm =
n

∑

k=1

wk

mm =
n

∑

k=1

wk

wm

mk

Pm =

n
∑

k=1

wk

wm
(Pk +mkm

T
k )−mmm

T
m .
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2.4.2 Top-Down Merging Method

Consider a K1-component GMM distribution described by

p1(x) =

K1
∑

i=1

wipg(x ; mi,Pi) .

Merging of components seeks to determine a K2-component GMM distribution of the

form

p2(x) =

K2
∑

j=1

wjpg(x ; mj,Pj) ,

with K2 < K1, such that the distance between p1(x) and p2(x) is small. Let I1 =

{1, 2, . . . , K1}, such that p1(x) can be alternatively expressed as

p1(x) =
∑

i∈I1

wipg(x ; mi,Pi) .

Furthermore, if I2 ⊆ I1, then p1(x) can also be written as

p1(x) =
∑

i∈I2

wipg(x ; mi,Pi) +
∑

i∈I1\I2

wipg(x ; mi,Pi) , (2.41)

where I1\I2 represents the subtraction of I2 from I1. It is the first term in Eq. (2.41)

that is now considered for merging, implying that p2(x) is given by

p2(x) = wmpg(x ; mm,Pm) +
∑

i∈I1\I2

wipg(x ; mi,Pi) ,

where

wm =
∑

i∈I2

wi

mm =
∑

i∈I2

wi

wm
mi

Pm =
∑

i∈I2

wi

wm
(Pi +mim

T
i )−mmm

T
m .
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The top-down merging method begins with I2 = I1, meaning that the two sets also

have the same Cardinality, i.e. #I2 = #I1, computes the merged weights, means, and

covariances of the components in I2, and then computes the NL2 distance between

p1(x) and p2(x). If this distance is less than a specified tolerance, then the merge is

accepted and the process is complete since p2(x) will have only one component. If not,

then the process continues by considering all possible sets I2 such that #I2 = #I1−1,

which will give

c =
#I1!

#I2!(#I1 −#I2)!

possible sets of components for merging. The merged weights, means, and covariances

resulting from the components in each possible I2 are determined, followed by the

computation of the NL2 distance between p1(x) and p2(x). If any of the distances fall

under the specified tolerance, the minimum distance merger from the c candidates is

accepted and the process terminates. If none of the distances fall under the tolerance,

then the process continues by considering all possible sets I2 such that #I2 = #I1−2

in the same manner. This repeats until the Cardinality of I2 becomes 2. If desired,

the entire process may be repeated to find any other possible mergers by beginning

again using p2(x) as the starting GMM distribution.
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Chapter 3

Recursive Filtering Strategies

Many systems of interest fall under the broad classification of nonlinear sys-

tems. An estimation algorithm which exploits at least some characteristics of the

nonlinearities is preferable to retracting the problem to that of a linear one. Consider

the nonlinear dynamical system governed by the differential equation

ẋ(t) = f (x(t), t) , x(t0) = x0 , (3.1)

where x(t) is the state of the system, f (·) represents the sufficiently differentiable

nonlinear dynamics of the system, and x0 is the initial condition. The initial condi-

tion is assumed to be random with pdf p(x0). The lack of a process noise term in

Eq. (3.1) is justified on the basis of the nature of the problems that we will consider

in Chapter 5, wherein any noise that may be present is insignificant in comparison to

the natural dynamics of the problem. The state of the system is indirectly observed

by discrete-time nonlinear imperfect measurements at time tk, which are described

by

yk = h(xk, tk) + vk , (3.2)

where xk is the state of the system at time tk, h(·) represents the sufficiently dif-

ferentiable nonlinear measurement function, and vk is the measurement noise. The
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measurement noise is assumed to be a zero-mean white-noise sequence with first and

second moments given, respectively, by

E {vk} = 0 and E
{

vkv
T
k′

}

= Rkδkk′ ,

where δkk′ = 0 for k 6= k′ and δkk′ = 1 for k = k′.

3.1 The Extended Kalman Filter

3.1.1 Propagation

The propagation stage of the extended Kalman filter (EKF) implements differ-

ential equations for the time-wise evolution of the mean and covariance by utilizing a

first-order Taylor series expansion of the nonlinear dynamical system about a current

best estimate. The EKF implicitly assumes that the deviation of the true system

from the best estimate is a zero-mean process which can be well-represented by the

covariance centered on the best estimate. To arrive at the propagation equations for

the EKF, consider the expected value of the nonlinear dynamical system of Eq. (3.1);

that is

˙̂x(t) = E {ẋ(t)} = E {f (x(t), t)} .

Expanding the nonlinear dynamics in a first-order Taylor series about an estimate

x̂(t), and defining the error between the truth and the estimate to be e(t) = x(t)−

x̂(t), it follows that

˙̂x(t) = f (x̂(t), t) + E {F (x̂(t), t)e(t)} ,
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where the dynamics Jacobian, F (x̂(t), t) , is defined as

F (x̂(t), t) =

[

∂f (x(t), t)

∂x(t)

]

x(t)=x̂(t)

.

Assuming the estimate to be unbiased (equivalently, assuming that e(t) is a zero-mean

process) yields the state estimate propagation equation for the EKF:

˙̂x(t) = f (x̂(t), t) , x̂(tk−1) = x̂k−1 , tk−1 ≤ t ≤ tk . (3.3)

From the given definition of the error between the true state and the state estimate,

the linearized dynamics of the error are given by

ė(t) = ẋ(t)− ˙̂x(t) = F (x̂(t), t)e(t) ,

which has the solution55

e(t) = Φ(t, tk−1)e(tk−1) , (3.4)

where Φ(t, tk−1) is the state transition matrix satisfying

Φ̇(t, tk−1) = F (x̂(t), t)Φ(t, tk−1) , Φ(tk−1, tk−1) = I .

Since e(t) is a zero-mean process, the state estimation error covariance is found via

P (t) = E
{

e(t)eT (t)
}

,

such that, by substitution of Eq. (3.4), we have

P (t) = Φ(t, tk−1)P (tk−1)Φ
T (t, tk−1) , (3.5)

which guarantees that for positive definite, symmetric P (tk−1), P (t) remains sym-

metric and positive definite.35 Given a state estimate and covariance at time tk−1 as
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x̂k−1 and Pk−1, respectively, the propagation of the state estimate is accomplished

by numerically integrating Eq. (3.3), while the propagation of the covariance is ac-

complished by numerically integrating the state transition matrix with Eq. (3.4), and

then mapping the covariance forward using Eq. (3.5).

3.1.2 Update

At time tk, information is made available via the measurement yk. This in-

formation is used in conjunction with the prior information regarding the state, i.e.

the a priori state estimate x̂−
k and state estimation error covariance P−

k , to yield a

blending of the new information with the existing information. To this extent, assume

a linear update which blends the a priori state estimate with the measurement via

x̂+
k = Lkx̂

−
k +Kkyk . (3.6)

Let the a priori (denoted by superscript “−”) and a posteriori (denoted by superscript

“+”) estimation errors be defined as

e−
k = xk − x̂−

k and e+
k = xk − x̂+

k .

By the definition of e−
k and e+

k , the a posteriori state estimate is given by

x̂+
k = x̂−

k + e−
k − e+

k . (3.7)

Substituting Eq. (3.7) into Eq. (3.6), the linear update equation can be written as

−e+
k = Lkx̂

−
k +Kk (h(x(tk), tk) + vk)− e−

k + x̂−
k
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By taking the expected value of both sides, noting that the a priori state estimate

is unbiased (based on the previous discussion regarding the propagation phase of the

EKF) and forcing the a posteriori estimation error to be unbiased, it is found that

Lkx̂
−
k = x̂−

k −KkE {h(x(tk), tk)} ,

which can then be substituted into Eq. (3.6) yielding

x̂+
k = x̂−

k +Kk (yk − E {h(x(tk), tk)}) .

Expanding the nonlinear measurement function, h(·), in a first-order Taylor series

about the a priori state estimate and using the unbiased nature of the state estimate,

the linear update equation becomes

x̂+
k = x̂−

k +Kk

(

yk − h(x̂−
k , tk)

)

.

From the definition of the a posteriori state estimation error, it can be seen that

e+
k = e−

k −Kk

[

yk − h(x̂−
k , tk)

]

.

Substituting the measurement equation given in Eq. (3.2) and applying a first-order

Taylor series expansion yields

e+
k =

[

I −KkH(x̂−
k , tk)

]

e−
k −Kkvk , (3.8)

where the measurement Jacobian, H(x̂−
k , tk) , is defined as

H(x̂−
k , tk) =

[

∂h(xk, tk)

∂xk

]

xk=x̂
−

k

.
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Computing the a posteriori state estimation error covariance by taking the expected

value of Eq. (3.8) with its transpose then yields

P+
k =

[

I −KkH(x̂−
k , tk)

]

P−
k

[

I −KkH(x̂−
k , tk)

]T
+KkRkK

T
k , (3.9)

where it has been assumed that the a priori state estimation error and the measure-

ment noise are uncorrelated. Eq. (3.9) is the well-known Joseph form of the covariance

update, which is valid for any linear gain Kk.
14, 43 Up to this point, no form has been

given for the gain matrix, Kk. The gain matrix Kk is found such that the mean

square of the a posteriori state estimation error is minimized. Let the performance

index be

J = E
{

(e+
k )

T (e+
k )
}

= E
{

trace
{

(e+
k )(e

+
k )

T
}}

= trace
{

P+
k

}

.

The gain which renders the performance index stationary is

∂J

∂Kk

= −2
[

H(x̂−
k , tk)P

−
k

]T
+ 2Kk

[

H(x̂−
k , tk)P

−
k HT (x̂−

k , tk) +Rk

]

= 0 ,

which yields the Kalman gain as

Kk = P−
k HT (x̂−

k , tk)
[

H(x̂−
k , tk)P

−
k HT (x̂−

k , tk) +Rk

]−1
.

3.2 The Unscented Kalman Filter

In developing the governing relationships for the EKF, extensive use of lin-

earization for both the dynamics and the measurement equations was employed.

However, the Kalman filtering paradigm does not require that the models be linear.

In fact, all that is required is that we have consistent, minimum variance estimates
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such that the distribution can be well-represented by its first two moments, that the

measurement update be a linear scheme (that is it is a linear combination of the prior

state estimate and the measurement information), and that accurate predictions of

the first two moments can be made.70 Under these three requirements, it can then

be shown that the state estimate evolves as

˙̂x(t) = E {f (x(t), t)} ,

such that the second central moment can be computed via

P−
k = E

{

(xk − x̂−
k )(xk − x̂−

k )
T
}

.

Then, when measurement updates are considered, we have the predicted measurement

as

ŷ−
k = E {h(xk, tk)} ,

which allows the state estimate and the covariance to be updated (assuming a linear

scheme for the update), yielding

x̂+
k = x̂−

k +Kk(yk − ŷ−
k )

P+
k = P−

k −KkPyK
T
k ,

where the Kalman gain is given by

Kk = E
{

(xk − x̂−
k )(yk − ŷ−

k )
T
}

E
{

(yk − ŷ−
k )(yk − ŷ−

k )
T
}−1

= PxyP
−1
y .
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Note that if the linearization procedures described in the development of the EKF are

implemented in the above relationships, then we recover the EKF. However, it is not

necessary to consider linearizations. One such method which forgoes linearization in

favor of a more accurate computation is the unscented Kalman filter (UKF).

3.2.1 The Unscented Transform

Consider a nonlinear function of the form

z = g(x) ,

where x is described by a known mean and covariance, respectively mx and Px. The

unscented transform (UT) seeks to approximate the transformation of the mean and

covariance of the output, z, which are denoted by mz and Pz.

Whereas linearization methods utilize a first-order Taylor series expansion to

approximate the transformation of the mean and covariance through a nonlinear

function, the UT approaches the problem under the philosophy that it is easier to ap-

proximate a probability distribution than it is to approximate an arbitrary nonlinear

function.67 To approximate the probability distribution, the UT considers a set of

deterministically chosen weighted sigma-points which are selected such that mx and

Px are exactly captured by the sigma-points. The sigma-points are then applied as

inputs to the nonlinear function to yield nonlinearly transformed sigma-points, which

can then be used to approximate a nonlinear transformation of the output mean and

covariance, mz and Pz.

Let the set of sigma-points be denoted by theK values ofX i and the associated
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weights by wi where i ∈ {1, . . . , K} and
∑K

i=1wi = 1. Then, the set of transformed

sigma-points are given by

Z i = g(X i) ∀ i ∈ {1, . . . , K} ,

which are then used to compute the transformed mean and covariance as

mz =

K
∑

i=1

wiZ i

Pz =
K
∑

i=1

wi(Z i −mz)(Z i −mz)
T .

Additionally, the cross-covariance between the input and the output can be computed,

if desired, as

Pxz =

K
∑

i=1

wi(X i −mx)(Z i −mz)
T .

Any selection of sigma-points that exactly describes the input mean and covariance

guarantees that the transformed mean and covariance is correctly calculated to second

order.25

Many possibilities exist for the selection of the sigma-points and the associated

weights, such as the simplex set, symmetric set, symmetric extended set, among

others.25 We restrict our attention to the symmetric set, which is given by the set of

K = 2n points chosen as

wi =
1

2n

X i = mx +
√
nsx,i

wi+n =
1

2n

X i+n = mx −
√
nsx,i ,
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for i ∈ {1, . . . , n}, where n is the dimension of the input x, Sx is a square-root factor

of Px such that Px = SxS
T
x , and sx,i is the i

th column of Sx. It is easily verified that

the symmetric set of sigma-points matches the mean and covariance of x, that is

mx =

K
∑

i=1

wiX i

Px =

K
∑

i=1

wi(X i −mx)(X i −mx)
T .

An appealing aspect of using the symmetric set of sigma-points is that no

tuning parameter is required in the selection of the points. The same cannot be said

for other sigma-point selection schemes. While the ability to tune the sigma-points to

achieve better accuracy is sometimes desired, there are only heuristic guidelines for

selecting the tuning parameters, and small changes in tuning parameters can signif-

icantly alter the computation of the transformed mean and covariance, which leads

to uncertainty in the choice of an “optimal” tuning. However, while the symmetric

sigma-point set does not require tuning, the sigma-points lie on the
√
n

th
covariance

contour and therefore tend to move far away from the mean as n grows large.67

3.2.2 Propagation

In order to apply the UT to the forward propagation of the estimate and co-

variance, the first step is to determine the square-root factor of the covariance matrix,

that is to find Sk−1 such that Pk−1 = Sk−1S
T
k−1, which can be readily accomplished

via a Cholesky factorization. Once the square-root factor is determined, the columns
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of the square-root factor, given by

Sk−1 = [s1,k−1 . . . sn,k−1]

are used to determine the set of K = 2n sigma-points which make up the symmetric

sigma-point set, such that for i ∈ {1, . . . , n}

X i,k−1 = x̂k−1 +
√
nsi,k−1

X i+n.k−1 = x̂k−1 −
√
nsi,k−1 .

Associated with each sigma-point is a corresponding weight wi. For the symmetric

sigma-point set, the weights are given by wi = 1/2n for all of the sigma-points.

Each sigma-point is then numerically integrated through the nonlinear dynamics for

t ∈ [tk−1 tk] with an initial condition of X i(tk−1) = X i,k−1, that is

Ẋ i(t) = f (X i(t), t) , X i(tk−1) = X i,k−1 .

The final condition on the numerical integration of the sigma-points is then given

for each sigma-point by X i,k = X i(tk), which can then be used to approximate the

nonlinear transformation of the estimate and the covariance using

x̂−
k =

K
∑

i=1

wiX i,k

P−
k =

K
∑

i=1

wi(X i,k − x̂−
k )(X i,k − x̂−

k )
T .

3.2.3 Update

Using the propagated sigma-points at time tk, the measurement-transformed

sigma-points are given by evaluating the nonlinear measurement function h(·) at each
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sigma-point, yielding the K transformed sigma-points as

Y i,k = h(X i,k, tk) .

The expected value of the measurement, the measurement covariance, and the cross-

covariance are found in terms of the transformed sigma-points as

ŷ−
k =

k
∑

i=1

wiY i,k

Py =
K
∑

i=1

wi(Y i,k − ŷ−
k )(Y i,k − ŷ−

k )
T +Rk

Pxy =
K
∑

i=1

wi(X i,k − x̂−
k )(Y i,k − ŷ−

k )
T .

In terms of the measurement covariance and the cross-covariance between the state

and the measurement, the Kalman gain is

Kk = PxyP
−1
y ,

and the associated updated state estimate and covariance are

x̂+
k = x̂−

k +Kk(yk − ŷ−
k )

P+
k = P−

k −KkPyK
T
k .

3.3 The Gaussian Mixture Extended Kalman Filter

Underlying the development of both the EKF and the UKF is the assumption

that the probability density function (pdf) is well described by the first two moments

only. While this assumption often leads to acceptable approximate nonlinear filter-

ing strategies, it can prove to be less than adequate in situations where the pdf is
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not adequately described by only the first two moments or where the measurements

are sparse, thereby limiting the application of both the EKF and UKF in situations

requiring long time-scales between measurements. To address some of the shortcom-

ings of the use of only the first two moments, the Gaussian mixture extended Kalman

filter (GMEKF) assumes that the initial pdf is not adequately determined by the first

two moments, but rather employs a Gaussian mixture model (GMM) of the initial

pdf, given by

p(x0) =

L
∑

`=1

α`,0pg(x0 ; x̂`,0,P`,0) ,

where the individual Gaussian component weights are constrained such that

0 ≤ α` ≤ 1 ∀ ` ∈ {1, . . . , L} and
L
∑

`=1

α` = 1 .

The parameters of the GMM, i.e. x̂`, α`, and P`, are typically interpreted as follows:

the mean values represent the regions in the state-space where the majority of the

probability mass is concentrated, the component weights represent the normalized

probability of the localized probability mass, and the covariance matrices are used to

limit the regions of the state-space about the means such that the each term in the

GMM is effectively zero outside of a neighborhood of the mean.

3.3.1 Propagation

Now, consider the time-propagation of the pdf, that is, considering the time

interval t ∈ [tk−1 tk], it is desired to approximate the conditional pdf at time tk via

p(xk |yk−1) =

L
∑

`=1

α−
`,kpg(xk ; x̂

−
`,k,P

−
`,k)

48



based on the starting condition at time tk−1

p(xk−1 |yk−1) =

L
∑

`=1

α+
`,k−1pg(xk−1 ; x̂

+
`,k−1,P

+
`,k−1) .

The notation yk−1 in the conditional pdf p(xk |yk−1) is used to represent the collection

of all measurement data up to and including time tk−1, i.e. y
k−1 = {y0 , y1 , . . . ,yk−1}.

This is the data upon which the conditioning of the state pdf is based, hence the

terminology of the conditional pdf for p(xk |yk−1). Furthermore, the use of the su-

perscript “−” indicates a value prior to an update, such that α−
`,k is the component

weight at time tk prior to incorporating measurement data. Similarly, the use of

the superscript “+” indicates a value after an update, such that α+
`,k−1 represents the

component weight at time tk−1 after measurement data at that time was incorporated.

Recalling that the covariance matrices of the components are used to limit

the region of the state-space about which each component is valid, the dynamical

system local to each component may be approximated via a first-order Taylor series

expansion, thereby allowing the implementation of an EKF propagation scheme for

each component while holding the component weights equal across the time-step.

That is, by integrating

α̇`(t) = 0 , α`(tk−1) = α+
`,k−1

˙̂x`(t) = f (x̂`(t), t) , x̂`(tk−1) = x̂+
`,k−1

Φ̇`(t, tk−1) = F (x̂`(t), t)Φ`(t, tk−1) , Φ`(tk−1, tk−1) = I

on the interval t ∈ [tk−1 tk], we have the weight, mean, and covariance for each
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component at time tk as

α−
`,k = α`(tk−1)

x̂−
`,k = x̂`(tk)

P−
`,k = Φ`(tk, tk−1)P`(tk−1)Φ

T
` (tk, tk−1) , P`(tk−1) = P+

`,k−1 .

It should be noted that the weights being constant across the time step relies on

the assumption that the covariances of the components is small enough such that

linearizing about the component means is a valid assumption.

3.3.2 Update

Following the approach of Alspach and Sorenson1 and Anderson,2 the a pos-

teriori density is determined via application of Bayes rule to yield

p(xk |yk) =
p(xk |yk−1)p(yk |xk)

∫

Rn p(xk |yk−1)p(yk |xk)dxk

. (3.10)

It is useful to note that for h(·), Rk, x̂
−
k , and P−

k of appropriate dimensions with

both Rk and P−
k positive definite, then22, 71

pg(yk ; h(xk, tk),Rk)pg(xk ; x̂
−
k ,P

−
k ) = βkpg(x ; x̂+

k ,P
+
k ) , (3.11)

where

βk = pg(yk ; ŷ
−
k , Py)

x̂+
k = x̂−

k +Kk(yk − ŷ−
k )

P+
k = P−

k −KkPyK
T
k

Kk = PxyP
−1
y
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and

ŷ−
k = E {h(xk, tk)}

Pxy = E
{

(xk − x̂−
k )(yk − ŷ−

k )
T
}

Py = E
{

(yk − ŷ−
k )(yk − ŷ−

k )
T
}

+Rk .

By linearizing the measurement about x̂−
k , it follows from the development of the

EKF equations that

ŷ−
k = h(x̂−

k , tk)

Pxy = P−
k HT (x̂−

k , tk)

Py = H(x̂−
k , tk)P

−
k HT (x̂−

k , tk) +Rk ,

and therefore, the parameters of the right-hand side of Eq. (3.11) can be written as

βk = pg(yk ; h(x̂
−
k , tk),H(x̂−

k , tk)P
−
k HT (x̂−

k , tk) +Rk)

x̂+
k = x̂−

k +Kk(yk − h(x̂−
k , tk))

P+
k =

[

I −KkH(x̂−
k , tk)

]

P−
k

[

I −KkH(x̂−
k , tk)

]T
+KkRkK

T
k

Kk = P−
k HT (x̂−

k , tk)
[

H(x̂−
k , tk)P

−
k HT (x̂−

k , tk) +Rk

]−1
.

From the propagation stage, the conditional pdf of the state given the previous

measurements is given by

p(xk |yk−1) =

L
∑

`=1

α−
`,kpg(xk ; x̂

−
`,k,P

−
`,k) . (3.12)

Furthermore, the conditional pdf of the current measurement given the state at time

tk is assumed to be Gaussian, such that

p(yk |xk) = pg(yk ; h(xk, tk),Rk) . (3.13)
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Note that the Gaussian assumption of p(yk |xk) is not necessary. As previously

discussed, any pdf may be approximated to arbitrary precision by a GMM, and

therefore the Gaussian assumption can be relaxed. However, for notational simplicity,

this generalization is not employed, and we instead proceed under the assumption that

p(yk |xk) is Gaussian. Looking now at the numerator of Eq. (3.10) and substituting

for p(xk |yk−1) from Eq. (3.12) and for p(yk |xk) from Eq. (3.13), it is seen that

p(xk |yk−1)p(yk |xk) =

[

L
∑

`=1

α−
`,kpg(xk ; x̂

−
`,k,P

−
`,k)

]

pg(yk ; h(xk, tk),Rk)

=

L
∑

`=1

α−
`,kpg(xk ; x̂

−
`,k,P

−
`,k)pg(yk ; h(xk, tk),Rk) .

Therefore, applying Eq. (3.11) to each of the components to update the component

means and covariances, yields the final form of the numerator of Eq. (3.10) as

p(xk |yk−1)p(yk |xk) =

L
∑

`=1

β`,kα
−
`,kpg(xk ; x̂

+
`,k,P

+
`,k) , (3.14)

where

β`,k = pg(yk ; h(x̂
−
`,k, tk),H(x̂−

`,k, tk)P
−
`,kH

T (x̂−
`,k, tk) +Rk)

x̂+
`,k = x̂−

`,k +K`,k(yk − h(x̂−
`,k, tk))

P+
`,k =

[

I −K`,kH(x̂−
`,k, tk)

]

P−
`,k

[

I −K`,kH(x̂−
`,k, tk)

]T
+K`,kRkK

T
`,k

K`,k = P−
`,kH

T (x̂−
`,k, tk)

[

H(x̂−
`,k, tk)P

−
`,kH

T (x̂−
`,k, tk) +Rk

]−1
.

Now, consider the denominator of Eq. (3.10), which is given by the integral of
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Eq. (3.14), yielding

∫

Rn

p(xk |yk−1)p(yk |xk)dxk =

∫

Rn

L
∑

`=1

β`,kα
−
`,kpg(xk ; x̂

+
`,k,P

+
`,k)dxk

=
L
∑

`=1

β`,kα
−
`,k

∫

Rn

pg(xk ; x̂
+
`,k,P

+
`,k)dxk

=

L
∑

`=1

β`,kα
−
`,k , (3.15)

where the fact that the integral of any valid pdf over its entire domain is one has been

used. Combining the results of Eqs. (3.14) and (3.15), therefore gives p(xk |yk) as

p(xk |yk) =
1

∑L
`=1 β`,kα

−
`,k

L
∑

`=1

β`,kα
−
`,kpg(xk ; x̂

+
`,k,P

+
`,k) ,

which can be rearranged yielding

p(xk |yk) =
L
∑

`=1

α+
`,kpg(xk ; x̂

+
`,k,P

+
`,k) ,

where the a posteriori component weights are now given by

α+
`,k =

β`,kα
−
`,k

∑L
j=1 βj,kα

−
j,k

.

3.4 The Gaussian Mixture Unscented Kalman Filter

The next step in extending the application of the general method of Gaussian

mixture approximations is to apply the UKF philosophy to the Gaussian mixture

approximation method detailed in the development of the GMEKF. In a similar

fashion to the development of the GMEKF, the Gaussian mixture unscented Kalman
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filter (GMUKF) assumes that the initial pdf is not adequately determined by the first

two moments, but rather employs a GMM of the initial pdf given by

p(x0) =
L
∑

`=1

α`,0pg(x0 ; x̂`,0,P`,0) ,

where the individual Gaussian component weights are constrained such that

0 ≤ α` ≤ 1 ∀ ` ∈ {1, . . . , L} and

L
∑

`=1

α` = 1 .

The parameters of the GMM, i.e. x̂`, α`, and P`, are interpreted as follows: the mean

values represent the regions in the state-space where the majority of the probability

mass is concentrated, the component weights represent the normalized probability

of the localized probability mass, and the covariance matrices are used to limit the

regions of the state-space about the means such that the each term in the GMM is

effectively zero outside of a neighborhood of the mean.

3.4.1 Propagation

Consider the time-propagation of the pdf. Given the time interval t ∈ [tk−1 , tk],

it is desired to approximate the conditional pdf at time tk via

p(xk |yk−1) =

L
∑

`=1

α−
`,kpg(xk ; x̂

−
`,k,P

−
`,k) (3.16)

based on the starting condition at time tk−1

p(xk−1 |yk−1) =

L
∑

`=1

α+
`,k−1pg(xk−1 ; x̂

+
`,k−1,P

+
`,k−1) .

Recalling that the covariance matrices of the components are used to limit the region

of the state-space about which each component is valid, the dynamical system local to
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each component may be approximated via the UT, thereby allowing the implementa-

tion of a UKF propagation scheme for each component while holding the component

weights equal across the time-step. To apply the UT to the forward propagation

of each component mean and covariance, first determine the square-root factor of

the component covariance matrix, that is, find S`,k−1 such that P+
`,k−1 = S`,k−1S

T
`,k−1,

which can be readily accomplished via a Cholesky factorization. Once the square-root

factor is determined, the columns of the square-root factor, given by

S`,k−1 = [s`,1,k−1 . . . s`,n,k−1]

are used to determine the set of K = 2n sigma-points which make up the symmetric

sigma-point set, such that for i ∈ {1, . . . , n}, each component sigma-points are given

by

X `,i,k−1 = x̂+
`,k−1 +

√
ns`,i,k−1

X `,i+n.k−1 = x̂+
`,k−1 −

√
ns`,i,k−1 .

Associated with each sigma-point is a corresponding weight wi. For the symmetric

sigma-point set, the weights are given by wi = 1/2n for all sigma-points. Each sigma-

point is then numerically integrated through the nonlinear dynamics for t ∈ [tk−1 , tk]

with an initial condition of X `,i(tk−1) = X `,i,k−1, that is

Ẋ `,i(t) = f (X `,i(t), t) , X `,i(tk−1) = X `,i,k−1 .

Additionally, to each component is the associated weight α`, which is held constant

across each time step, or for t ∈ [tk−1 , tk], we have

α̇`(t) = 0 , α`(tk−1) = α+
`,k−1 ,

55



with a final condition of α−
`,k = α`(tk). The final condition on the numerical integration

of the sigma-points is then given for each sigma-point by X `,i,k = X `,i(tk), which can

then be used to approximate the nonlinear transformation of the component means

and covariances using

x̂−
`,k =

K
∑

i=1

wiX `,i,k

P−
`,k =

K
∑

i=1

wi(X `,i,k − x̂−
`,k)(X `,i,k − x̂−

`,k)
T .

Combining the component means and covariance with the final condition on the nu-

merical integration of the component weights, the a priori GMM pdf can be evaluated

with Eq. (3.16).

3.4.2 Update

In the same manner as considered for the GMEKF, the a posterior pdf is

found by considering the composition of the a priori pdf and the measurement pdf

at time tk, and then normalizing the result, yielding

p(xk |yk) =
p(xk |yk−1)p(yk |xk)

∫

Rn p(xk |yk−1)p(yk |xk)dxk

. (3.17)

From the propagation stage, the conditional pdf of the state given the previous mea-

surements is given by

p(xk |yk−1) =
L
∑

`=1

α−
`,kpg(xk ; x̂

−
`,k,P

−
`,k) , (3.18)

where, the mean and covariance for each component are fully captured by the propa-

gated sigma-points, X `,i,k. Furthermore, the conditional pdf of the current measure-
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ment given the state at time tk is assumed to be Gaussian, such that

p(yk |xk) = pg(yk ; h(xk, tk),Rk) . (3.19)

The Gaussian assumption of p(yk |xk) is not necessary (as discussed before); how-

ever, for notational simplicity we proceed under the assumption that p(yk |xk) is

Gaussian. Considering the numerator of Eq. (3.17) and substituting for p(xk |yk−1)

from Eq. (3.18) and for p(yk |xk) from Eq. (3.19) yields

p(xk |yk−1)p(yk |xk) =

L
∑

`=1

α−
`,kpg(xk ; x̂

−
`,k,P

−
`,k)pg(yk ; h(xk, tk),Rk) .

Therefore, by applying Eq. (3.11) to each of the components to update the component

means and covariances, the final form of the numerator of Eq. (3.17) is

p(xk |yk−1)p(yk |xk) =

L
∑

`=1

β`,kα
−
`,kpg(xk ; x̂

+
`,k,P

+
`,k) , (3.20)

where

β`,k = pg(yk ; ŷ
−
`,k, P`,y) (3.21a)

x̂+
`,k = x̂−

`,k +K`,k(yk − ŷ−
`,k) (3.21b)

P+
`,k = P−

`,k −K`,kP`,yK
T
`,k (3.21c)

K`,k = P`,xyP
−1
`,y . (3.21d)

To compute the expected value of yk as well as its covariance and the cross covari-

ance between the a priori state and the measurement, the UT is utilized. In doing

so, the first step is to compute the measurement-transformed sigma-points for each

component as

Y`,i,k = h(X `,i,k, tk) .
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Then, for each component, ŷ−
`,k, P`,y, and P`,xy are found to be

ŷ−
`,k =

k
∑

i=1

wiY`,i,k

P`,y =
k

∑

i=1

wi(Y`,i,k − ŷ−
`,k)(Y`,i,k − ŷ−

`,k)
T +Rk

P`,xy =

k
∑

i=1

wi(X `,i,k − x̂−
`,k)(Y`,i,k − ŷ−

`,k)
T .

The component means and covariances can then be updated via Eqs. (3.21). To deter-

mine the update rule for the component weights, we must complete the development

of Eq. (3.17). To do this, consider the denominator of Eq. (3.17), which is given by

the integral of Eq. (3.20), yielding

∫

Rn

p(xk |yk−1)p(yk |xk)dxk =
L
∑

`=1

β`,kα
−
`,k . (3.22)

Combining the results of Eqs. (3.20) and (3.22) yields p(xk |yk) as

p(xk |yk) =
1

∑L
`=1 β`,kα

−
`,k

L
∑

`=1

β`,kα
−
`,kpg(xk ; x̂

+
`,k,P

+
`,k) ,

which can be rearranged to give

p(xk |yk) =

L
∑

`=1

α+
`,kpg(xk ; x̂

+
`,k,P

+
`,k) ,

where the a posteriori component weights are now given by

α+
`,k =

β`,kα
−
`,k

∑L
j=1 βj,kα

−
j,k

.
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3.5 The Splitting Gaussian Mixture Unscented Kalman Fil-

ter

The development of both the GMEKF and GMUKF filters relied on the

weights of the components of the GMM pdf to be held constant over the propa-

gation cycle. While this relies on linearization to be a valid approximation for the

GMEKF, the GMUKF is able to relax the linearization constraint due to its imple-

mentation of the UT methodology. However, even with the relaxation of the lineariza-

tion constraint, there is no method for either the GMEKF or GMUKF that allows

for online adaptation of the GMM components. The splitting Gaussian mixture un-

scented Kalman filter (SGMUKF) approaches the problem of adapting the weights

of the GMM pdf by monitoring nonlinearity during the propagation of the pdf, and

using a splitting algorithm to increase the accuracy of linearization, thereby allowing

the filter to modify the GMM components in such a way so as to avoid significant

linearization errors.

3.5.1 Detecting Nonlinearity during Propagation

Determination of the nonlinearity of a dynamical system has been previously

investigated by Junkins27 and then later by Park.48, 49 Junkins looked at nonlinearity

of a dynamical system from the perspective of investigating the nonlinearity of differ-

ent coordinate systems. By defining a nonlinearity index based on the state transition

matrix, it was shown that different coordinate systems used in orbital mechanics (i.e.

Cartesian, equinoctial, etc.) exhibit different levels of nonlinearity, thereby establish-

ing that by choosing a particular coordinate system, the effects of nonlinearity can
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be mitigated to some extent. Park extended Junkins’ approach by considering the

impact of higher-order dynamics by utilizing state transition tensors, which leads to

an indication of how well a lower-order (but not necessarily linear) approximation of a

nonlinear dynamical system follows the actual nonlinear dynamical system. In these

cases, while the impact of nonlinearity is examined, the mitigation of nonlinearity is

accomplished either via selection of an appropriate coordinate system or by inclusion

of progressively higher-order terms.

One approach to detecting nonlinearity during propagation is to directly com-

pare a linearized solution to a higher order solution. If the difference between these

two solutions becomes large (in some sense), then the implication is that the higher-

order terms are influencing the solutions. Consider then the implementation of an

GMEKF and a GMUKF estimation scheme during propagation. If both filters are

subjected to a linear dynamical system, then their component-by-component solutions

will be identical (neglecting any computational and numerical differences). However,

if the underlying dynamical system is nonlinear, then the solutions determined by the

two propagation schemes will begin to depart. Since both the GMEKF and GMUKF

operate on the mean and covariance of the components of a GMM distribution, the L2

or NL2 distance can be used to calculate how far apart the two solutions have become

for a single component. Once this reaches a specified tolerance for a component, the

propagation can be stopped, and the single component of the GMUKF distribution

can be broken down into multiple smaller components by a splitting algorithm. The

multiple smaller components then replace the single component, and the propagation

resumes. The process can then be repeated on the new set of GMM components,
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with component splitting occurring whenever the distance between the GMEKF and

GMUKF prediction of each component becomes larger than a specified tolerance.

Unfortunately, the utilization of the L2 or NL2 distance based splitting tech-

nique requires the simultaneous implementation of both the GMEKF and GMUKF,

which causes a higher computational demand than may be desired. To circumvent this

computational demand, we now present a method which exploits a property derived

from the differential entropy or Rényi entropy for linearized components that allows

for the use of linearization-based methods to be avoided. Recall that the differential

entropy for a Gaussian random variable x is given by

H (x) =
1

2
log |2πeP | , (3.23)

or, in terms of the eigenvalues of the covariance matrix,

H (x) =
1

2

n
∑

i=1

log(2πeλi) , (3.24)

where n is the dimension of the random variable x and λi is the ith eigenvalue of

P . Alternatively, the scaling terms inside of the logarithm of the determinant in

Eq. (3.23) can be moved out, and H (x) can be written as

H (x) =
n

2
log(2πe) +

1

2
log |P | . (3.25)

Similarly, the form of H (x) given by Eq. (3.24) which uses the eigenvalues of the

covariance matrix can be rewritten as

H (x) =
n

2
log(2πe) +

1

2

n
∑

i=1

log λi . (3.26)
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Consider now the temporal differentiation of the differential entropy. From the rela-

tionship3

d

dt
{|P |} = |P | trace

{

P−1Ṗ
}

,

it follows that the time derivative of Eq. (3.25) is given by

Ḣ (x) =
1

2
trace

{

P−1Ṗ
}

, (3.27)

where Ṗ is the temporal derivative of the covariance matrix. Starting from the form

of the differential entropy in Eq. (3.26), it is also readily observed that the time-rate

of the differential entropy is

Ḣ (x) =
1

2

n
∑

i=1

λ̇i
λi
,

where λ̇i is the temporal derivative of the ith eigenvalue of P , which can be computed

in terms of Ṗ and the ith eigenvector of the covariance matrix, ei, as
7

λ̇i = eT
i Ṗ ei . (3.28)

In the case of a linearized dynamical system, the covariance was shown to have the

propagation equation of Eq. (3.5), i.e.

P (t) = Φ(t, tk−1)P (tk−1)Φ
T (t, tk−1) ,

which, when differentiated with respect to time yields the covariance time rate given

by

Ṗ (t) = F (x̂(t), t)P (t) + P (t)F T (x̂(t), t) ,
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which can then be substituted into Eq. (3.27) to yield the time rate of the differential

entropy for a linearized dynamical system as

Ḣ (x) =
1

2
trace

{

P−1(t)F (x̂(t), t)P (t) + P−1(t)P (t)F (x̂(t), t)T
}

=
1

2
trace

{

P−1(t)F (x̂(t), t)P (t)
}

+
1

2
trace

{

F T (x̂(t), t)
}

=
1

2
trace {F (x̂(t), t)}+ 1

2
trace

{

F T (x̂(t), t)
}

,

where the invariance under cyclic permutation property of the trace operator has

been used to eliminate P and P−1 from the first term. Then, from the fact that

trace {F (x̂(t), t)} = trace
{

F T (x̂(t), t)
}

, it follows that

Ḣ (x) = trace {F (x̂(t), t)} , (3.29)

which is a different form of a result given by Vallée.68, 69 Therefore, if a linearized

dynamical system has the property that trace {F (x̂(t), t)} = 0, then the differential

entropy is constant, that is

Ḣ (x) = 0 . (3.30)

Since the differential entropy is in fact a specific case of the Rényi entropy,

it stands to reason that a parallel result to Eq. (3.29) should exist. Recall that the

Rényi entropy for a Gaussian random variable x is given by

Rκ (x) =
1

2
log

∣

∣

∣
2πκ

1

κ−1P

∣

∣

∣
, (3.31)

or, in terms of the eigenvalues of the covariance matrix,

Rκ (x) =
1

2

n
∑

i=1

log(2πκ
1

κ−1λi) , (3.32)
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where n is the dimension of the random variable x and λi is the i
th eigenvalue of P .

The Rényi entropy for a Gaussian pdf has the same form as the differential entropy

for a Gaussian pdf, with only a change in the scaling of the covariance matrix inside

of the logarithm of the determinant. Therefore, since the scaling of the covariance

matrix is constant for a given Rényi entropy of order κ, the temporal derivative of

the Rényi entropy is the same as that of the differential entropy, that is the time rate

of change of Eq. (3.31) is given by

Ṙκ (x) =
1

2
trace

{

P−1Ṗ
}

, (3.33)

where Ṗ is the temporal derivative of the covariance matrix. In the same manner,

but by using Eq. (3.32), it is readily established that

Ṙκ (x) =
1

2

n
∑

i=1

λ̇i
λi
,

where λ̇i is the temporal derivative of the ith eigenvalue of P , which can be computed

in terms of Ṗ and the ith eigenvector of the covariance matrix, ei, via Eq. (3.28).

Continuing along the same line of reasoning as followed for the case of differential

entropy, and working from Eq. (3.33), it can be shown that for a linear system, the

temporal derivative of the Rényi entropy is

Ṙκ (x) = trace {F (x̂(t), t)} , (3.34)

which is also a different form of a result given by Vallée.69 Therefore, if a linearized

dynamical system has the property that trace {F (x̂(t), t)} = 0, then the Rényi en-

tropy, like the differential entropy, is constant, that is

Ṙκ (x) = 0 . (3.35)
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Having established the general relationships for the time rate of change of

the differential entropy and Rényi entropy for a linearized dynamical system via

Eqs. (3.29) and (3.34), respectively, the utilization of entropy for detection of non-

linearity is now discussed. The value of the entropy for a linearized system can be

determined by numerically integrating either Eq. (3.29) for differential entropy or

Eq. (3.34) for Rényi entropy with an appropriate initial condition, which requires

only the evaluation of the trace of the linearized dynamics Jacobian. In parallel, a

nonlinear implementation of the integration of the covariance matrix (such as is done

in the UKF) can be considered, which allows a nonlinear determination of the dif-

ferential entropy via Eq. (3.23) or the Rényi entropy via Eq. (3.31). Any deviation

in the nonlinear determination of the entropy therefore indicates that nonlinearity is

impacting the solution. This deviation can be detected by specifying a threshold and

monitoring the difference between the linearized and nonlinear predictions of the en-

tropy. In the special case that the linearized dynamical system has the property that

the trace of the dynamics Jacobian is zero, the process is even simpler since the value

of the entropy for the linearized system is constant (as demonstrated in Eq. (3.30)

for the differential entropy and Eq. (3.35) for the Rényi entropy). Therefore, in this

special case, only the nonlinear prediction of the entropy needs to be computed online

and the deviation is determined by comparing against the entropy at some reference

time (such as the initial time of the propagation). In either case, when the difference

between the linearized-predicted entropy and the nonlinear computation of the en-

tropy exceeds some threshold, nonlinearity has been detected in the propagation of

the dynamical system.
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3.5.2 Propagation

Consider the time-propagation of the pdf and consider the time interval t ∈

[tk−1 , tk]. It is desired to approximate the conditional pdf at time tk via

p(xk |yk−1) =

L′

∑

`=1

α−
`,kpg(xk ; x̂

−
`,k,P

−
`,k) (3.36)

based on the starting condition at time tk−1

p(xk−1 |yk−1) =
L
∑

`=1

α+
`,k−1pg(xk−1 ; x̂

+
`,k−1,P

+
`,k−1) .

It should be noted that the number of components in p(xk |yk−1), given by L′, may

now be different than the number of components in p(xk−1 |yk−1), given by L. The

change in the number of components reflects the ability of the SGMUKF to augment

the number of components in the GMM in order to maintain linearity across each

component during propagation.

In order to propagate the pdf forward, the first step is to determine the square-

root factor of the component covariance matrices at time tk−1, that is find S`,k−1

such that P+
`,k−1 = S`,k−1S

T
`,k−1, which can be readily accomplished via a Cholesky

factorization. Once the square-root factor is determined, the columns of the square-

root factor, given by

S`,k−1 = [s`,1,k−1 . . . s`,n,k−1] (3.37)

are used to determine the set of K = 2n sigma-points which make up the symmetric

sigma-point set, such that for i ∈ {1, . . . , n}, each component sigma-points are given
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by

X `,i,k−1 = x̂+
`,k−1 +

√
ns`,i,k−1 (3.38a)

X `,i+n,k−1 = x̂+
`,k−1 −

√
ns`,i,k−1 . (3.38b)

Associated with each sigma-point is a corresponding weight wi. For the symmetric

sigma-point set, the weights are given by wi = 1/2n for all sigma-points.

Let the time ts denote the time at which nonlinear effects (determined via the

differential entropy) grow larger than a specified bound for one of the components

of the GMM, thereby requiring a splitting step to be performed on the component.

Furthermore, let ts−1 denote the previous time at which a splitting step was per-

formed; initially, no splitting step has been performed, so ts−1 is initialized as tk−1.

Then, each sigma-point is numerically integrated through the nonlinear dynamics for

t ∈ [ts−1 , ts], with an initial condition of X `,i(ts−1) = X `,i,s−1, that is

Ẋ `,i(t) = f (X `,i(t), t) , X `,i(ts−1) = X `,i,s−1 . (3.39)

Additionally, to each component is the associated weight α`, which is held constant

across each time step, or for t ∈ [ts−1 , ts]

α̇`(t) = 0 , α`(ts−1) = α`,s−1 ,

with a final condition of α`,s = α`(ts). The final condition on the numerical integration

of the sigma-points for t ∈ [ts−1 , ts] is then given for each sigma-point by X `,i,s =

X `,i(ts), which can then be used to approximate the nonlinear transformation of the
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component means and covariances using

x̂`,s =
K
∑

i=1

wiX `,i,s

P`,s =

K
∑

i=1

wi(X `,i,s − x̂`,s)(X `,i,s − x̂`,s)
T .

If ts 6= tk, then a splitting step is performed on the component for which nonlinearity

was detected. That is, if nonlinearity was detected in the jth component, then the

jth component is replaced by

αj,spg(x ; x̂j,s,Pj,s) ≈
G
∑

r=1

αr,spg(x ; x̂r,s,Pr,s) , (3.40)

where the replacement component weights, means, and covariances are computed

using the splitting algorithm given in Section 2.3. We then generate a set of sigma-

points for the replacement components using Eqs. (3.37) and (3.38), and then return

to Eq. (3.39) with L← L+G− 1 components, and continue until ts = tk is reached.

Once ts = tk, the propagation step has been completed with L′ components having

weights α−
`,k, means x̂−

`,k, and covariances P−
`,k, which allows the a priori GMM pdf

to be evaluated via Eq. (3.36).

3.5.3 Update

The update stage of the SGMUKF remains unchanged from that of the GMUKF.

Therefore, the derivation of the update stage is not presented, but for completeness,

it is reviewed. The a posterior pdf is found by considering the composition of the

a priori pdf and the measurement pdf at time tk, and then normalizing the result,
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yielding

p(xk |yk) =
p(xk |yk−1)p(yk |xk)

∫

Rn p(xk |yk−1)p(yk |xk)dxk

. (3.41)

From the propagation stage previously discussed, the conditional pdf of the state

given the previous measurements is given by

p(xk |yk−1) =
L
∑

`=1

α−
`,kpg(xk ; x̂

−
`,k,P

−
`,k) , (3.42)

where, for each component the mean and covariance are fully captured by the propa-

gated sigma-points, X `,i,k. Furthermore, the conditional pdf of the current measure-

ment given the state at time tk is assumed to be Gaussian, such that

p(yk |xk) = pg(yk ; h(xk, tk),Rk) . (3.43)

Given the a priori sigma-points, that is the sigma-points at the end of the propagation

stage, the measurement transformed sigma-points are computed for each component

by

Y`,i,k = h(X `,i,k, tk) .

Then, for each component, ŷ−
`,k, P`,y, and P`,xy are determined as

ŷ−
`,k =

k
∑

i=1

wiY`,i,k

P`,y =

K
∑

i=1

wi(Y`,i,k − ŷ−
`,k)(Y`,i,k − ŷ−

`,k)
T +Rk

P`,xy =
K
∑

i=1

wi(X `,i,k − x̂−
`,k)(Y`,i,k − ŷ−

`,k)
T .
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The Kalman gain and weight gain can then be directly obtained via

K`,k = P`,xyP
−1
`,y (3.44)

β`,k = pg(yk ; ŷ
−
`,k, P`,y) (3.45)

which then allows the weight, mean, and covariance of the components to be updated

as

α+
`,k =

β`,kα
−
`,k

∑L
j=1 βj,kα

−
j,k

(3.46)

x̂+
`,k = x̂−

`,k +K`,k(yk − ŷ−
`,k) (3.47)

P+
`,k = P−

`,k −K`,kP`,yK
T
`,k (3.48)

3.6 Summary of Filter Algorithms

Having developed the governing equations for the EKF, UKF, GMEKF, and

GMUKF, we now summarize each of the preceding algorithms.

3.6.1 EKF Algorithm

Algorithm 1. EKF

System and Measurement Model

ẋ(t) = f (x(t), t)

yk = h(xk, tk) + vk
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Initialization

x̂0 = E {x(t0)}

P0 = E
{

(x(t0)− x̂0)(x(t0)− x̂0)
T
}

Definitions

F (x̂(t), t) =

[

∂f (x(t), t)

∂x(t)

]

x(t)=x̂(t)

H(x̂−
k , tk) =

[

∂h(xk, tk)

∂xk

]

xk=x̂
−

k

Propagation, t ∈ [tk−1 , tk]

1. Propagate mean and state transition matrix through the dynamics

˙̂x(t) = f (x̂(t), t) , x̂(tk−1) = x̂+
k−1 , x̂−

k = x̂(tk)

Φ̇(t, tk−1) = F (x̂(t), t)Φ(t, tk−1) , Φ(tk−1, tk−1) = I

2. Calculate propagated covariance

P (t) = Φ(t, tk−1)P (tk−1)Φ
T (t, tk−1) , P (tk−1) = P+

k−1 , P−
k = P (tk)

Update, tk ∀ k = 1, 2, . . .

1. Compute Kalman gain

Kk = P−
k HT (x̂−

k , tk)
[

H(x̂−
k , tk)P

−
k HT (x̂−

k , tk) +Rk

]−1

2. Update mean and covariance

x̂+
k = x̂−

k +Kk

(

yk − h(x̂−
k , tk)

)

P+
k =

[

I −KkH(x̂−
k , tk)

]

P−
k

[

I −KkH(x̂−
k , tk)

]T
+KkRkK

T
k

71



3.6.2 UKF Algorithm

Algorithm 2. UKF

System and Measurement Model

ẋ(t) = f (x(t), t)

yk = h(xk, tk) + vk

Initialization

x̂0 = E {x(t0)}

P0 = E
{

(x(t0)− x̂0)(x(t0)− x̂0)
T
}

Propagation, t ∈ [tk−1 , tk]

1. Determine sigma-points

P+
k−1 = Sk−1S

T
k−1

Sk−1 = [s1,k−1 . . . sn,k−1]

X i,k−1 = x̂+
k−1 +

√
nsi,k−1

X i+n.k−1 = x̂+
k−1 −

√
nsi,k−1

2. Propagate sigma-points through the dynamics

Ẋ i(t) = f (X i(t), t) , X i(tk−1) = X i,k−1 , X i,k = X i(tk)
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3. Calculate propagated mean and covariance

x̂−
k =

K
∑

i=1

wiX i,k

P−
k =

K
∑

i=1

wi(X i,k − x̂−
k )(X i,k − x̂−

k )
T

Update, tk ∀ k = 1, 2, . . .

1. Compute measurement-transformed sigma-points

Y i,k = h(X i,k, tk)

2. Compute estimated measurement, measurement covariance, and

cross-covariance

ŷ−
k =

K
∑

i=1

wiY i,k

Py =
K
∑

i=1

wi(Y i,k − ŷ−
k )(Y i,k − ŷ−

k )
T +Rk

Pxy =

K
∑

i=1

wi(X i,k − x̂−
k )(Y i,k − ŷ−

k )
T

3. Compute Kalman gain

Kk = PxyP
−1
y

4. Update mean and covariance

x̂+
k = x̂−

k +Kk(yk − ŷ−
k )

P+
k = P−

k −KkPyK
T
k
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3.6.3 GMEKF Algorithm

Algorithm 3. GMEKF

System and Measurement Model

ẋ(t) = f (x(t), t)

yk = h(xk, tk) + vk

Initialization

p(x0) =
L
∑

`=1

α`,0pg(x0 ; x̂`,0,P`,0)

Definitions

F (x̂`(t), t) =

[

∂f (x(t), t)

∂x(t)

]

x(t)=x̂`(t)

H(x̂−
`,k, tk) =

[

∂h(xk, tk)

∂xk

]

xk=x̂
−

`,k

Propagation, t ∈ [tk−1 , tk]

1. Propagate mean and state transition matrix through the dynamics

˙̂x`(t) = f (x̂`(t), t) , x̂`(tk−1) = x̂+
`,k−1 , x̂−

`,k = x̂`(tk)

Φ̇`(t, tk−1) = F (x̂`(t), t)Φ`(t, tk−1) , Φ`(tk−1, tk−1) = I

2. Calculate propagated covariance

P`(t) = Φ`(t, tk−1)P`(tk−1)Φ
T
` (t, tk−1) , P`(tk−1) = P+

`,k−1 , P−
`,k = P`(tk)
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Update, tk ∀ k = 1, 2, . . .

1. Compute Kalman gain and weight gain

K`,k = P−
`,kH

T (x̂−
`,k, tk)

[

H(x̂−
`,k, tk)P

−
`,kH

T (x̂−
`,k, tk) +Rk

]−1

β`,k = pg
(

yk ; h(x̂
−
`,k, tk),H(x̂−

`,k, tk)P
−
`,kH

T (x̂−
`,k, tk) +Rk

)

2. Update weight, mean, and covariance

α+
`,k =

β`,kα
−
`,k

∑L
j=1 βj,kα

−
j,k

x̂+
`,k = x̂−

`,k +K`,k

(

yk − h(x̂−
`,k, tk)

)

P+
`,k =

[

I −K`,kH(x̂−
`,k, tk)

]

P−
`,k

[

I −K`,kH(x̂−
`,k, tk)

]T
+K`,kRkK

T
`,k

3.6.4 GMUKF Algorithm

Algorithm 4. GMUKF

System and Measurement Model

ẋ(t) = f (x(t), t)

yk = h(xk, tk) + vk

Initialization

p(x0) =

L
∑

`=1

α`,0pg(x0 ; x̂`,0,P`,0)
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Propagation, t ∈ [tk−1 , tk]

1. Determine sigma-points

P+
`,k−1 = S`,k−1S

T
`,k−1 to find S`,k−1

S`,k−1 = [s`,1,k−1 . . . s`,n,k−1]

X `,i,k−1 = x̂+
`,k−1 +

√
ns`,i,k−1

X `,i+n.k−1 = x̂+
`,k−1 −

√
ns`,i,k−1

2. Propagate sigma-points through the dynamics

Ẋ `,i(t) = f (X `,i(t), t) , X `,i(tk−1) = X `,i,k−1 , X `,i,k = X `,i(tk)

3. Calculate propagated mean and covariance

x̂−
`,k =

K
∑

i=1

wiX `,i,k

P−
`,k =

K
∑

i=1

wi(X `,i,k − x̂−
`,k)(X `,i,k − x̂−

`,k)
T

Update, tk ∀ k = 1, 2, . . .

1. Compute measurement-transformed sigma-points

Y`,i,k = h(X `,i,k, tk)

2. Compute estimated measurement, measurement covariance, and

76



cross-covariance

ŷ−
`,k =

k
∑

i=1

wiY`,i,k

P`,y =
k

∑

i=1

wi(Y`,i,k − ŷ−
`,k)(Y`,i,k − ŷ−

`,k)
T +Rk

P`,xy =
k

∑

i=1

wi(X `,i,k − x̂−
`,k)(Y`,i,k − ŷ−

`,k)
T

3. Compute Kalman gain and weight gain

K`,k = P`,xyP
−1
`,y

β`,k = pg
(

yk ; ŷ
−
`,k,P`,y

)

4. Update weight, mean, and covariance

α+
`,k =

β`,kα
−
`,k

∑L
j=1 βj,kα

−
j,k

x̂+
`,k = x̂−

`,k +K`,k(yk − ŷ−
`,k)

P+
`,k = P−

`,k −K`,kP`,yK
T
`,k

3.6.5 SGMUKF Algorithm

Algorithm 5. SGMUKF

System and Measurement Model

ẋ(t) = f (x(t), t)

yk = h(xk, tk) + vk
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Initialization

p(x0) =

L
∑

`=1

α`,0pg(x0 ; x̂`,0,P`,0)

Propagation, t ∈ [tk−1 , tk]

1. Set ts−1 = tk−1, α`,s−1 = α+
`,k−1, x̂`,s−1 = x̂+

`,k−1, and P`,s−1 = P+
`,k−1

(a) Determine sigma-points at ts−1

P`,s−1 = S`,s−1S
T
`,s−1 to find S`,s−1

S`,s−1 = [s`,1,s−1 . . . s`,n,s−1]

X `,i,s−1 = x̂`,s−1 +
√
ns`,i,s−1

X `,i+n.s−1 = x̂`,s−1 −
√
ns`,i,s−1

(b) Propagate sigma-points through the dynamics until nonlinearity

detected at time ts on jth component

Ẋ `,i(t) = f (X `,i(t), t) , X `,i(ts−1) = X `,i,s−1 , X `,i,s = X `,i(ts)

(c) Calculate propagated mean and covariance for jth component

x̂j,s =
K
∑

i=1

wiX j,i,s

Pj,s =

K
∑

i=1

wi(X j,i,s − x̂j,s)(X j,i,s − x̂j,s)
T

(d) Replace weight, mean, and covariance of jth component by

splitting into G components

αj,spg(x ; x̂j,s,Pj,s) ≈
G
∑

r=1

αr,spg(x ; x̂r,s,Pr,s)
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(e) Return to Step 1 with ts−1 = ts, α`,s−1 = α`,s, x̂`,s−1 = x̂`,s, and

P`,s−1 = P`,s and continue until ts = tk

2. Calculate propagated mean and covariance

x̂−
`,k =

K
∑

i=1

wiX `,i,s

P−
`,k =

K
∑

i=1

wi(X `,i,s − x̂−
`,s)(X `,i,s − x̂−

`,s)
T

Update, tk ∀ k = 1, 2, . . .

1. Compute measurement-transformed sigma-points

Y`,i,k = h(X `,i,k, tk)

2. Compute estimated measurement, measurement covariance, and

cross-covariance

ŷ−
`,k =

k
∑

i=1

wiY`,i,k

P`,y =
k

∑

i=1

wi(Y`,i,k − ŷ−
`,k)(Y`,i,k − ŷ−

`,k)
T +Rk

P`,xy =
k

∑

i=1

wi(X `,i,k − x̂−
`,k)(Y`,i,k − ŷ−

`,k)
T

3. Compute Kalman gain and weight gain

K`,k = P`,xyP
−1
`,y

β`,k = pg
(

yk ; ŷ
−
`,k,P`,y

)
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4. Update weight, mean, and covariance

α+
`,k =

β`,kα
−
`,k

∑L
j=1 βj,kα

−
j,k

x̂+
`,k = x̂−

`,k +K`,k(yk − ŷ−
`,k)

P+
`,k = P−

`,k −K`,kP`,yK
T
`,k
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Chapter 4

Dynamics and Measurement Modeling

4.1 Dynamics Modeling

The dynamics of a spacecraft in orbit are governed by the first-order form of

Newton’s equations for translation as

ṙi = vi

v̇i =
∑

ai ,

where
∑

ai represents the summation of all active forces in the inertial frame. Ad-

ditionally, the rotational dynamics are governed by the first-order form of Euler’s

equations as

˙̄qb
i =

1

2
ω̄b

b/i ⊗ q̄b
i

ω̇b
b/i = J−1

(

∑

mb − ωb
b/i × Jωb

b/i

)

,

where ω̄b
b/i is the pure quaternion formed from the angular velocity vector ωb

b/i. and

⊗ represents the quaternion multiplication operation, defined such that the quater-

nions are multiplied in the same order as the equivalent rotation matrices would be.

Furthermore, J is the moment of inertia of the spacecraft and
∑

mb represents the

summation of all active moments in the body frame. Letting the active accelerations

be the central body gravity (denoted by ai
g), the third-body gravity (denoted by ai

3rd
),
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and the solar radiation pressure (SRP) (denoted by ai
srp), and letting the active mo-

ments be the SRP (denoted by mb
srp), the translational and rotational equations of

motion may be expressed as

ṙi = vi (4.1a)

v̇i = ai
g(r

i) + ai
3rd(r

i) + ai
srp(r

i, q̄b
i ) (4.1b)

˙̄qb
i =

1

2
ω̄b

b/i ⊗ q̄b
i (4.1c)

ω̇b
b/i = J−1

(

mb
srp(r

i, q̄b
i )− ωb

b/i × Jωb
b/i

)

, (4.1d)

where the functional dependencies of the acceleration and moment terms have been

included for completeness. If the state is defined by x = [(ri)T (vi)T (q̄b
i )

T (ωb
b/i)

T ]T ,

then Eqs. (4.1) represent the nonlinear dynamical system governing the time evolution

of the state, i.e. Eqs. (4.1) represent ẋ(t) = f (x(t), t). For linearization-based

filtering schemes, such as the extended Kalman filter (EKF) and Gaussian mixture

extended Kalman filter (GMEKF), the dynamics are evaluated at the current state

estimate, which gives the estimated translational and rotational to be

˙̂ri = v̂i

˙̂vi = ai
g(r̂

i) + ai
3rd(r̂

i) + ai
srp(r̂

i, ˆ̄qb
i )

˙̄̂qb
i =

1

2
ˆ̄ωb
b/i ⊗ ˆ̄qb

i

˙̂ωb
b/i = J−1

(

mb
srp(r̂

i, ˆ̄qb
i )− ω̂b

b/i × Jω̂b
b/i

)

.
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Now, define position, velocity, and angular velocity errors as the difference between

the truth and the estimate, yielding

δri = ri − r̂i

δvi = vi − v̂i

δωb
b/i = ωb

b/i − ω̂b
b/i .

The attitude errors are defined in a different manner since the subtraction of two

quaternions would yield a non-quaternion object. For this reason, the attitude error

is defined in a multiplicative sense, such that

[

1
2
δθb

i

1

]

= ˆ̄qb
i ⊗ (ˆ̄qb

i )
−1 ,

where δθb
i is three-parameter representation of the attitude error, and is typically

associated with a vector of small angles. With the definitions of the position, velocity,

attitude, and angular velocity errors, their linearized temporal derivatives can be

calculated, and are found to be

δṙi = δvi (4.2a)

δv̇i = (Ag +A3rd +Ar,srp) δr
i +Aθ,srpδθ

b
i (4.2b)

δθ̇b
i = −[ω̂b

b/i×]δθb
i + δωb

b/i (4.2c)

δω̇b
b/i = J−1Mr,srpδr

i + J−1Mθ,srpδθ
b
i + J−1

[

[Jω̂b
b/i×]− [ω̂b

b/i×]J
]

δωb
b/i (4.2d)
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where

Ag =

[

∂ai
g(r

i)

∂ri

]

ri=r̂i

A3rd =

[

∂ai
3rd

(ri)

∂ri

]

ri=r̂i

Ar,srp =

[

∂ai
srp(r

i, q̄b
i )

∂ri

]

ri=r̂i

q̄
b
i
=ˆ̄qb

i

Aθ,srp =

[

∂ai
srp(r

i, q̄b
i )

∂θb
i

]

ri=r̂i

q̄
b
i
=ˆ̄q

b
i

Mr,srp =

[

∂mb
srp(r

i, q̄b
i )

∂ri

]

ri=r̂i

q̄
b
i
=ˆ̄q

b
i

Mθ,srp =

[

∂mb
srp(r

i, q̄b
i )

∂θb
i

]

ri=r̂i

q̄
b
i
=ˆ̄q

b
i

.

Eqs. (4.2) are the linearized dynamics of the estimation error, and therefore represent

the elements of the Jacobian matrix for the nonlinear system, which is defined to be

F (x̂(t), t) =

[

∂f (x(t), t)

∂x(t)

]

x(t)=x̂(t)

,

which, using Eqs. (4.2) yields

F (x̂(t), t) =











0 I 0 0

Ag +A3rd +Ar,srp 0 Aθ,srp 0

0 0 −[ω̂b
b/i×] I

J−1Mr,srp 0 J−1Mθ,srp J−1
[

[Jω̂b
b/i×]− [ω̂b

b/i×]J
]











.

(4.3)

The remainder of this section is devoted to determining relationships for the evalua-

tion of the accelerations, moments, and their required derivatives so that Eqs. (4.1)

and Eq. (4.3) can be evaluated.
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4.1.1 Central Body Gravitational Acceleration

We present three methods for describing the gravitational acceleration due

to the central body: the point mass model, the zonal harmonics model, and the

spherical harmonics model. In each of the methods, we give the form of the model for

the gravitational potential and then derive the gravitational acceleration vector and

Jacobian matrix. For all of the methods, the gravitational potential can be expressed

in functional form as

U = U(rf , θ) , (4.4)

where rf = T
f
i r

i is the fixed-frame position of the satellite, T f
i is the transformation

of the inertial reference frame to the fixed reference frame, ri is the inertial position

of the satellite, and θ is the collection of the model parameters (e.g. the gravitational

parameter of the central body) into a parameter vector. The first expression of interest

is that of the gravitational acceleration. By taking the gradient of Eq. (4.4) with

respect to the inertial position, it is readily observed that the inertial gravitational

acceleration vector is given by

ai
g = T i

fa
f
g (r

f , θ) , (4.5)

where

af
g (r

f , θ) =

[

∂U(rf , θ)

∂rf

]T

. (4.6)

Furthermore, by taking the gradient of Eq. (4.5) with respect to the inertial position,

it is found that

Ag =
∂ai

g

∂ri
= T i

fG(rf , θ)T f
i , (4.7)
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where

G(rf , θ) =
∂g(rf , θ)

∂rf
. (4.8)

In the following developments, the form of af
g (r

f , θ) and G(rf , θ) will be derived for

each of the associated models of the gravitational potential.

4.1.1.1 Point Mass Gravitational Acceleration

In the point mass model of the gravitational field, the potential is given by

U =
µ

r
,

where µ is the gravitational parameter of the body and r = ‖ri‖ = ‖rf‖ is the

magnitude of the position vector of the satellite with respect to the center of the

body. It is then straightforward to show that the gravitational acceleration vector

described in Eq. (4.6) is given by

af
g (r

f , θ) = − µ
r3
rf , (4.9)

and that the Jacobian matrix described in Eq. (4.8) is given by

G(rf , θ) =
µ

r5
(

3rf(rf)T − r2I
)

. (4.10)

Typically, in the implementation of a point mass model of the gravitational field, the

orientation of the gravitating body is not utilized since the orientation plays no role

in the description of the gravitational field (due to the fact that the model assumes

all mass concentrated at a single point and therefore independent of orientation). As

such, it straightforward to show that

ai
g = −

µ

r3
ri , (4.11)
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and that

∂ai
g

∂ri
=

µ

r5
(

3ri(ri)T − r2I
)

, (4.12)

both of which are seen to be orientation independent.

4.1.1.2 Zonal Harmonics Gravitational Accleration

For a gravitational field modeled with zonal harmonics, the gravitational po-

tential is given by65

U = −µ
r

∞
∑

n=0

(ae
r

)n

Pn(u)Jn , (4.13)

where µ is the gravitational parameter of the body, ae is the reference distance of the

body (usually taken to be the equatorial radius), r is the distance from the center of

the body to the satellite, u = sinφ, φ is the spherical latitude of the satellite, Jn is

the nth zonal harmonic of the body, and Pn(u) is the Legendre polynomial of degree

n. The Legendre polynomials are defined as

Pn(u) =
1

2nn!

dn

dun
(u2 − 1)n ,

and can be shown to satisfy the recursions50, 65

Pn(u) =
2n− 1

n
uPn−1(u) =

n− 1

n
Pn−2(u) (4.14a)

dPn+1(u)

du
= (n+ 1)Pn(u) + u

dPn(u)

du
. (4.14b)

Application of the definition of the Legendre polynomials and their recursion rela-

tionships allows us to formulate the functional form of the Legendre polynomials, as

is shown in Table 4.1 for degrees 0 to 5.
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Table 4.1: Legendre Polynomials and their Derivatives

Degree
Legendre
Polynomial

Derivative

0 1 0

1 u 1

2 1
2
(3u2 − 1) 3u

3 1
2
(5u3 − 3u) 3

2
(5u2 − 1)

4 1
8
(35u4 − 30u2 + 3) 5

2
(7u3 − 3u)

5 1
8
(63u5− 70u3+15u) 5

8
(63u4 − 42u2 + 3)

In practical applications, the infinite summation is truncated to enable com-

putation. Typically, low degree representations of the zonal harmonics potential are

implemented so as to capture the dominant effects due to asphericity of the body

without involving overburdening computation. In the sequel, we will restrict our

treatment of the zonal harmonics model to a maximum degree of 4, that is we trun-

cate the infinite summation at 4 to develop equations for the gravitational acceleration

vector and Jacobian matrix. However, it should be noted that truncation at a higher

degree is merely an extension of the given treatment. In the subsequent develop-

ments we leave this as an infinite sum with the understanding that the sum is to be

truncated for implementation.

Having established the form of the gravitational potential in Eq. (4.13), we
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now turn towards developing a relationship for

af
g (r

f , θ) =

[

∂U(rf , θ)

∂rf

]T

. (4.15)

Let the fixed-frame position vector be given by rf = [x y z]T , which yields the rela-

tionship that u = z/r, and define

g1 =
∂U(rf , θ)

∂x
, g2 =

∂U(rf , θ)

∂y
, and g3 =

∂U(rf , θ)

∂z
,

such that Eq. (4.15) becomes

af
g (r

f , θ) =





g1
g2
g3



 . (4.16)

Differentiating the potential in Eq. (4.13) with respect to x, y, and z then yields

g1 =
µx

r3

∞
∑

n=0

(ae
r

)n
(

(n+ 1)Pn(u) + u
dPn(u)

du

)

Jn (4.17a)

g2 =
µy

r3

∞
∑

n=0

(ae
r

)n
(

(n+ 1)Pn(u) + u
dPn(u)

du

)

Jn (4.17b)

g3 =
µz

r3

∞
∑

n=0

(ae
r

)n
(

(n + 1)Pn(u) + u
dPn(u)

du

)

Jn (4.17c)

− µ

r2

∞
∑

n=0

(ae
r

)n dPn(u)

du
Jn .

Utilizing the recursion relationship in Eq. (4.14b), Eqs. (4.17) may be rewritten more

compactly as

g1 =
µx

r3

∞
∑

n=0

(ae
r

)n dPn+1(u)

du
Jn (4.18a)

g2 =
µy

r3

∞
∑

n=0

(ae
r

)n dPn+1(u)

du
Jn (4.18b)

g3 =
µz

r3

∞
∑

n=0

(ae
r

)n dPn+1(u)

du
Jn −

µ

r2

∞
∑

n=0

(ae
r

)n dPn(u)

du
Jn . (4.18c)
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Substituting for the Legendre polynomial derivatives from Table 4.1 into Eqs. (4.18),

noting that for all gravitational fields J0 = −1, and that J1 = 0 provided that the

center of mass coincides with the origin of the coordinate system, it can be shown

that the acceleration vector in Eq. (4.16) is given by

af
g (r

f , θ) = − µ
r3
rf +

∞
∑

n=2

µaneJn
r2n+3

rJn , (4.19)

where, for n = 2, n = 3, and n = 4, we have

rJ2 =
3

2





5xz2 − xr2
5yz2 − yr2
5z3 − 3zr2



 , rJ3 =
1

2





35xz3 − 15xzr2

35yz3 − 15yzr2

35z4 − 30z2r2 + 3r4



 and

rJ4 =
5

8





63xz4 − 42xz2r2 + 3xr4

63yz4 − 42yz2r2 + 3yr4

63z5 − 70z3r2 + 15zr4



 .

Similar to the acceleration vector, the gravity Jacobian matrix may be found as

G(rf , θ) =
µ

r5
(

3rf(rf )T − r2I
)

−
∞
∑

n=2

µaneJn
r2n+5

(

(2n+ 3)rJn(r
f)T − r2GJn

)

, (4.20)

where, for n = 2, n = 3, and n = 4, it can be shown that

GJ2 =
3

2





5z2 − 2x2 − r2 −2xy 8xz
−2xy 5z2 − 2y2 − r2 8yz
−6xz −6yz 9z2 − 3r2





GJ3 =
1

2





35z3 − 30x2z − 15zr2 −30xyz 75xz2 − 15xr2

−30xyz 35z3 − 30y2z − 15zr2 75yz2 − 15yr2

−60xz2 + 12xr2 −60yz2 + 12yr2 80z3 − 48zr2





GJ4 =
5

8





63z4 − 84x2z2 − 42z2r2 + 12x2r2 + 3r4

−84xyz2 + 12xyr2

−140xz3 + 60xzr2

−84xyz2 + 12xyr2 168xz3 − 72xzr2

63z4 − 84y2z2 − 42z2r2 + 12y2r2 + 3r4 168yz3 − 72yzr2

−140yz3 + 60yzr2 175z4 − 150z2r2 + 15r4



 .
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Therefore, given the fixed-frame position of the satellite, the determination of the

gravitational acceleration vector is accomplished via Eq. (4.19) and the gravity Jaco-

bian via Eq. (4.20).

Numerical Considerations The appearance of r2n+3 in the denominator of af
g (r

f , θ)

in Eq. (4.19) and r2n+5 in the denominator of G(rf , θ) in Eq. (4.20) can potentially

present numerical issues when r is large. As such, it is desirable to reformulate

Eqs. (4.19) and (4.20) to avoid this situation. Let us define s = x/r, t = y/r, and

recall that u = z/r. The gravity vector can be written as

af
g (r

f , θ) = − µ
r2
uf +

∞
∑

n=2

µJn
r2

(ae
r

)n

uJn , (4.22)

where

uf =





s
t
u



 ,

and, for n = 2, n = 3, and n = 4, we have

uJ2 =
3

2





5su2 − s
5tu2 − t
5u3 − 3u



 , uJ3 =
1

2





35su3 − 15su
35tu3 − 15tu

35u4 − 30u2 + 3



 and

uJ4 =
5

8





63su4 − 42su2 + 3s
63tu4 − 42tu2 + 3t
63u5 − 70u3 + 15u



 .

Similarly, the gravity Jacobian matrix of Eq. (4.20) may be rewritten as

G(rf , θ) =
µ

r3
(

3uf(uf)T − I
)

−
∞
∑

n=2

µJn
r3

(ae
r

)n
(

(2n+ 3)uJn(u
f )T −UJn

)

,

(4.23)
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where, for n = 2, n = 3, and n = 4, it can be shown that

UJ2 =
3

2





5u2 − 2s2 − 1 −2st 8su
−2st 5u2 − 2t2 − 1 8tu
−6su −6tu 9u2 − 3





UJ3 =
1

2





35u3 − 30s2u− 15u −30stu 75su2 − 15s
−30stu 35u3 − 30t2u− 15u 75tu2 − 15t

−60su2 + 12s −60tu2 + 12t 80u3 − 48u





UJ4 =
5

8





63u4 − 84s2u2 − 42u2 + 12s2 + 3 −84stu2 + 12st
−84stu2 + 12st 63u4 − 84t2u2 − 42u2 + 12t2 + 3
−140su3 + 60su −140tu3 + 60tu

168su3 − 72su
168tu3 − 72tu

175u4 − 150u2 + 15



 .

Thus, to avoid the potential numerical difficulties associated with computation of the

gravitational acceleration vector of Eq. (4.19) and the gravity Jacobian of Eq. (4.20),

it is recommended to use Eqs. (4.22) and (4.23) instead.

4.1.1.3 Spherical Harmonics Gravitational Acceleration

The form of the spherical harmonics model of the gravitational potential used is

that given by Pines.50 It is known as the uniform representation of the gravitational

potential because it serves to remove nonuniform behavior (singularities) from the

gravitational acceleration. The uniform representation of the gravitational potential

is given by

U =
µ

r

∞
∑

n=0

n
∑

m=0

(ae
r

)n

Ān,m(u)
[

C̄n,mrm(s, t) + S̄n,mim(s, t)
]

, (4.25)

where µ is the gravitational parameter, ae is the reference radius (usually taken as the

equatorial radius), and C̄n,m and S̄n,m are the normalized spherical harmonics mass
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coefficients of the gravitating body. Furthermore, r is the magnitude of the position

vector from the center of mass of the gravitating body to the spacecraft, and s, t, and

u make up the directions of the unit vector pointing to the spacecraft from the center

of the body, such that the position unit-vector (expressed in planet-fixed coordinates)

is given by

rf

r
=





s
t
u



 =





cos φ cosλ
cosφ sinλ

sin φ



 ,

where φ and λ are the body-centric spherical latitude and longitude, respectively.

Ān,m(u) is the set of normalized derived Legendre polynomials given by

Ān,m(u) = Nn,mAn,m(u) where An,m(u) =
1

2nn!

dn+m

dun+m

(

u2 − 1
)n
. (4.26)

Here, Nn,m is a normalizing factor which serves to aid in the numerical computation

of the spherical harmonics expansion, and is given by

Nn,m =

[

(n−m)! (2n+ 1) (2− δ0,m)
(n+m)!

]1/2

, δ0,m =

{

1 , m = 0
0 , m > 0

.

Finally, the terms rm(s, t) and im(s, t) are

rm(s, t) = Re {(s+ jt)m} and im(s, t) = Im {(s+ jt)m} , (4.27)

where Re {·} and Im {·} indicate the real and imaginary parts of the input complex-

valued number and j =
√
−1 is the imaginary number. In practical implementations,

the infinite sum in Eq. (4.25) is replaced by a finite sum. In subsequent developments

we leave this as an infinite sum with the understanding that the sum will be truncated.
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Recursion Relationships In order for the uniform representation of the gravita-

tional potential to be utilized via computational means, it is necessary to formulate

recursion relationships for quantities such as Ān,m(u), rm(s, t), and im(s, t). These

recursions then allow for faster, more reliable computation of the desired parameters

for use in simulation.

Recursions for Ān,m(u) A more detailed development of the recursion for-

mulas for the non-normalized derived Legendre polynomials is given by Pines50 and

a development of the recursion formulas for the normalized derived Legendre polyno-

mials is given by Lundberg.39 We can think of the terms Ān,m(u) as the elements of

a lower-triangular matrix. It is a lower-triangular matrix because all elements which

would lie along the diagonal do not involve the parameter u and hence all elements

to the right of diagonal will be zero as seen by the definition of the derived Legen-

dre polynomial. This helps in establishing recursions as “diagonal,” “off-diagonal,”

or “column.” Thus Ā0,0 would be the upper leftmost element, increasing n would

increase the row index, and increasing m would increase the column index. A numer-

ically stable recursion for a column (fixed m and varying n) is given by39

Ān,m(u) =

[

(2n + 1)(2n− 1)

(n +m)(n−m)

]1/2

uĀn−1,m(u) (4.28)

−
[

(2n+ 1)(n+m− 1)(n−m− 1)

(2n− 3)(n+m)(n−m)

]1/2

Ān−2,m(u) .

Note that this recursion requires the terms Ān−1,m(u) and Ān−2,m(u) in order to

calculate the term Ān,m(u). This means that the two previous elements of the column

must be present in order to calculate the current element, such that if given the
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diagonal element and the element immediately below it, one entire column of the

“matrix” may be determined. Assuming that the diagonal element is known, it can

be shown that the element immediately below the diagonal element is given by

Ān+1,n(u) = [(2n+ 3)]1/2 uĀn,n(u) . (4.29)

Therefore, if the diagonal of the matrix can be populated then the first off-diagonal

can be populated and the above column recursion can be utilized to complete the

matrix one column at a time. It can be shown that the diagonal elements of the

matrix are determined via the recursion

Ān,n(u) =

[

Sn
(

1 +
1

2n

)]1/2

Ān−1,n−1(u) , Sn =

{

2 , n = 1
1 , n > 1

, (4.30)

which is initialized with Ā0,0(u) = 1. Given the value of Ā0,0(u), the diagonal terms

may be populated using Eq. (4.30), the first off-diagonal terms may be populated

using Eq. (4.29) and the columns may be populated one at a time using Eq. (4.28),

and therefore the entire set of the normalized derived Legendre polynomials can be

obtained for a given value of u.

Recursions for rm(s, t) and im(s, t) From the definitions of rm(s, t) and

im(s, t) given in Eq. (4.27) and manipulation to relate the mth terms to the previous

terms, it can be shown that rm(s, t) and im(s, t) satisfy the recursions

rm(s, t) = srm−1(s, t)− tim−1(s, t) and im(s, t) = sim−1(s, t) + trm−1(s, t) ,

which are initialized via

r0(s, t) = 1 and i0(s, t) = 0 .
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Derivative Relationships Before computing the actual derivatives of the poten-

tial, it is convenient to establish relationships on the derivatives of the terms Ān,m(u),

rm(s, t), and im(s, t). These relationships will then be used to establish more general

derivatives in the subsequent developments.

Derivatives of Ān,m(u) The set of normalized derived Legendre polynomials

is functionally dependent on the parameter u alone; therefore, the only derivative

which will be required is the derivative of the normalized polynomials with respect

to the parameter u. From the definition of the derived Legendre polynomials in

Eq. (4.26), it is seen that

∂

∂u
{An,m(u)} = An,m+1(u) .

Therefore, utilizing the normalization factor to find the derivative of the normalized

derived Legendre polynomials yields

∂

∂u

{

Ān,m(u)
}

=
∂

∂u
{Nn,mAn,m(u)} = Nn,mAn,m+1(u) =

Nn,m

Nn,m+1
Ān,m+1(u) .

Define a parameter λn,m to be the ratio of the Nn,m normalization factor to the Nn,m+1

normalization factor. Thus,

λn,m =
Nn,m

Nn,m+1
= [Sm(n−m)(n +m+ 1)]1/2 , Sm =

{

1
2

, m = 0
1 , m > 0

,

and the derivative may be written as

∂

∂u

{

Ān,m(u)
}

= λn,mĀn,m+1(u) . (4.31)
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Derivatives of rm(s, t) and im(s, t) The terms rm(s, t) and im(s, t) depend

functionally only on the parameters s and t, and so each terms derivative with re-

spect to the parameters s and t must be obtained. From the definition of rm(s, t) in

Eq. (4.27), it is seen that

∂ rm(s, t)

∂s
=

∂

∂s
{Re {(s+ jt)m}} = Re

{

m (s+ jt)m−1} = mrm−1(s, t) . (4.32)

Similarly, the remaining derivative relationships can be found as

∂ rm(s, t)

∂t
= −mim−1(s, t) ,

∂ im(s, t)

∂s
= mim−1(s, t) , (4.33a)

and
∂ im(s, t)

∂t
= mrm−1(s, t) . (4.33b)

The Gravitational Acceleration Vector Following the process of Pines,50 it can

be shown that the gravitational acceleration vector of Eq. (4.6) is given by

g(rf , θ) =





g1 + sg4
g2 + tg4
g3 + ug4



 . (4.34)

Define a set of combined mass coefficients as

D̄n,m(s, t) = C̄n,mrm(s, t) + S̄n,mim(s, t)

Ēn,m(s, t) = C̄n,mrm−1(s, t) + S̄n,mim−1(s, t)

F̄n,m(s, t) = S̄n,mrm−1(s, t)− C̄n,mim−1(s, t)

Ḡn,m(s, t) = C̄n,mrm−2(s, t) + S̄n,mim−2(s, t)

H̄n,m(s, t) = S̄n,mrm−2(s, t)− C̄n,mim−2(s, t) .
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Then, making use of the derivative relationships described by Eqs. (4.31)–(4.33), it

can be shown that the gravity coefficients are

g1 =
µ

r2

∞
∑

n=0

n
∑

m=0

(ae
r

)n

mĀn,m(u)Ēn,m(s, t) (4.35a)

g2 =
µ

r2

∞
∑

n=0

n
∑

m=0

(ae
r

)n

mĀn,m(u)F̄n,m(s, t) (4.35b)

g3 =
µ

r2

∞
∑

n=0

n
∑

m=0

(ae
r

)n

λn,mĀn,m(u)D̄n,m(s, t) (4.35c)

−g4 =
µ

r2

∞
∑

n=0

n
∑

m=0

(ae
r

)n
[

(n+m+ 1)Ān,m(u) + λn,muĀn,m+1(u)
]

D̄n,m(s, t) ,

(4.35d)

where we recall that

λn,m = [Sm(n−m)(n +m+ 1)]1/2 , Sm =

{

1
2

, m = 0
1 , m > 0

.

Note that the g1 and g2 are the same as shown by Pines50 due to the fact that the

normalization procedure affects only the derivatives of terms involving the parameter

u. Therefore, while g1 and g2 remain the same (modulo the difference caused by

normalization) the terms g3 and g4 are different.

The Gravitational Jacobian Matrix Similar to the development of the gravita-

tional acceleration vector, following the method described in Pines,50 it can be shown

that the gravitational Jacobian of Eq. (4.8) is given by

G(rf , θ) =





g11 + 2sg41 + s2g44 + g4/r g12 + tg41 − sg42 + stg44
g12 + tg41 − sg42 + stg44 −g11 + 2tg42 + t2g44 + g4/r
g13 + ug41 + sg43 + sug44 g23 + ug42 + tg43 + tug44

(4.36)

g13 + ug41 + sg43 + sug44
g23 + ug42 + tg43 + tug44
g33 + 2ug43 + u2g44 + g4/r



 .
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Again, making use of the derivative relationships in Eqs. (4.31)–(4.33), it can be

shown that

g11 =
µ

r3

∞
∑

n=0

n
∑

m=0

(ae
r

)n

m(m− 1)Ān,m(u)Ḡn,m(s, t)

g12 =
µ

r3

∞
∑

n=0

n
∑

m=0

(ae
r

)n

m(m− 1)Ān,m(u)H̄n,m(s, t)

g13 =
µ

r3

∞
∑

n=0

n
∑

m=0

(ae
r

)n

mλn,mĀn,m+1(u)Ēn,m(s, t)

g23 =
µ

r3

∞
∑

n=0

n
∑

m=0

(ae
r

)n

mλn,mĀn,m+1(u)F̄n,m(s, t)

g33 =
µ

r3

∞
∑

n=0

n
∑

m=0

(ae
r

)n

mζn,mĀn,m+2(u)D̄n,m(s, t)

−g41 =
µ

r3

∞
∑

n=0

n
∑

m=0

(ae
r

)n
[

m(n +m+ 1)Ān,m(u) +mλn,muĀn,m+1

]

Ēn,m(s, t)

−g42 =
µ

r3

∞
∑

n=0

n
∑

m=0

(ae
r

)n
[

m(n +m+ 1)Ān,m(u) +mλn,muĀn,m+1

]

F̄n,m(s, t)

−g43 =
µ

r3

∞
∑

n=0

n
∑

m=0

(ae
r

)n
[

(n +m+ 1)λn,mĀn,m+1(u) + ζn,muĀn,m+2

]

D̄n,m(s, t)

g44 =
µ

r3

∞
∑

n=0

n
∑

m=0

(ae
r

)n
[

(n +m+ 1)(n+m+ 3)Ān,m(u)

+(2n+ 2m+ 4)λn,muĀn,m+1(u) + ζn,mu
2Ān,m+2(u)

]

D̄n,m(s, t) ,

where

ζn,m = [Sm(n−m)(n−m− 1)(n+m+ 1)(n+m+ 2)]1/2 , Sm =

{

1
2

, m = 0
1 , m > 0

.
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4.1.2 Third-Body Gravitational Acceleration

Beyond the effect of the central body gravitational acceleration, a satellite

experiences the effects of the gravitational acceleration of the Sun, Moon, and the

planets. While less dominant than the central body gravitational acceleration, the

third-body effect can produce perturbations to the satellite orbit. The third-body

gravitational acceleration is modeled as65

ai
3rd =

k
∑

j=1

µj

(

di
j

d3j
−

ri
j

r3j

)

, (4.37)

where µj is the gravitational parameter of body j, di
j = ri

j−ri is the position of body

j with respect to the satellite, ri
j is the position of body j with respect to the central

body, ri is the position of the satellite with respect to the central body, and k is the

number of bodies under consideration. As with the central body acceleration, it is also

of interest to develop a relationship for the Jacobian of the third-body gravitational

acceleration with respect to the inertial position of the satellite, that is

A3rd =
∂ai

3rd

∂ri
.

Differentiating Eq. (4.37) with respect to the inertial position of the satellite yields

the n-body Jacobian as

A3rd =

k
∑

j=1

µj

d5j

(

3di
j(d

i
j)

T − d2jI
)

. (4.38)
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4.1.3 Solar Radiation Pressure Acceleration

The acceleration due to SRP acting on a body with n flat plates can be ex-

pressed as8

ai
srp = −sff

(

rau
rs/o

)2 n
∑

k=1

Ak

m
cosφk

[

(1− ρk)ui
sun + 2

(

1

3
δk + cosφkρk

)

ui
n,k

]

,

(4.39)

where sf is the solar flux constant, f ∈ [ 0, 1 ] is a shadowing factor (see Section 4.1.5)

that accounts for solar eclipsing by the Earth, rau is the distance of one astronomical

unit, rs/o = ‖ri
sun − ri‖ is the distance of the Sun with respect the satellite, m is

the total satellite mass, Ak is the area of the kth plate, ρk is the specular reflection

coefficient of the kth plate, δk is the diffuse reflection coefficient of the kth plate,

ui
n,k = T i

bu
b
n,k, where ub

n,k is the unit vector normal to the kth plate expressed in the

satellite body reference frame, and φk is the angle of incidence of the sunlight with

respect to the plate normal, such that

cosφk = ui
n,k · u

i
sun .

Additionally, ui
sun is the unit vector from the satellite to the Sun expressed in the

inertial reference frame, which is given by

ui
sun =

ri
sun − ri

‖ri
sun − ri‖ ,

where ri
sun is the position of the Sun with respect to the Earth, and ri is the position

of the satellite with respect to the Earth. In the sequel it will be useful to rewrite

Eq. (4.39) as

ai
srp = −sff

(

rau
rs/o

)2 n
∑

k=1

Ak

m
cos φku

i
srp,k , (4.40)
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where

ui
srp,k = (1− ρk)ui

sun + 2

(

1

3
δk + cosφkρk

)

ui
n,k .

Taking the partial derivative of ai
srp in Eq. (4.40) with respect to the satellite

position, ri yields

Ar,srp =
∂ai

srp

∂ri
= −sff

n
∑

k=1

Ak

m
cos φku

i
srp,k

∂

∂ri

{

(

rau
rs/o

)2
}

(4.41)

− sff
(

rau
rs/o

)2 n
∑

k=1

Ak

m
ui

srp,k

∂ cosφk

∂ri

− sff
(

rau
rs/o

)2 n
∑

k=1

Ak

m
cosφk

∂ui
srp,k

∂ri
,

where it is noted that the shadowing factor variation due to position variations is

not included. This term is omitted since there should be no variation in the SRP

acceleration when the satellite is in either full sunlight or full shadow, which would be

contradicted by including a variation of the shadowing function when computing the

derivative of the acceleration with respect to position. The three partial derivatives

appearing in Eq. (4.41) can readily be determined as

∂

∂ri

{

(

rau
rs/o

)2
}

= 2

(

rau
rs/o

)2
1

rs/o
(ui

sun)
T (4.42a)

∂ cos φk

∂ri
= (ui

n,k)
T ∂u

i
sun

∂ri
(4.42b)

∂ui
srp,k

∂ri
=

[

(1− ρk)I + 2ρku
i
n,k(u

i
n,k)

T
] ∂ui

sun

∂ri
. (4.42c)

Additionally, the derivative of the unit vector from the satellite to the Sun with

respect to the position is given by

∂ui
sun

∂ri
=

1

rs/o

[

−I + ui
sun(u

i
sun)

T
]

=
1

rs/o
[ui

sun×]2 . (4.43)
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Substituting Eqs. (4.42) and (4.43) into Eq. (4.41) then yields the derivative of the

SRP acceleration with respect to the position to be

Ar,srp = −2sff
(

rau
rs/o

)2
1

rs/o

n
∑

k=1

Ak

m
cosφku

i
srp,k(u

i
sun)

T

− sff
(

rau
rs/o

)2
1

rs/o

n
∑

k=1

Ak

m
ui

srp,k(u
i
n,k)

T [ui
sun×]2

− sff
(

rau
rs/o

)2
1

rs/o

n
∑

k=1

Ak

m
cosφk

[

(1− ρk)I + 2ρku
i
n,k(u

i
n,k)

T
]

[ui
sun×]2 .

Taking the partial derivative of ai
srp in Eq. (4.40) with respect to the three-

dimensional rotation vector, θb
i yields

Aθ,srp =
∂ai

srp

∂θb
i

= −sff
(

rau
rs/o

)2 n
∑

k=1

Ak

m
ui

srp,k

∂ cosφk

∂θb
i

(4.44)

− sff
(

rau
rs/o

)2 n
∑

k=1

Ak

m
cos φk

∂ui
srp,k

∂θb
i

.

The two partial derivatives appearing in Eq. (4.44) are given by

∂ cosφk

∂θb
i

= (ui
sun)

T
∂ui

n,k

∂θb
i

(4.45a)

∂ui
srp,k

∂θb
i

=

[

2

(

1

3
δk + cos φkρk

)

I + 2ρku
i
n,k(u

i
sun)

T

]

∂ui
n,k

∂θb
i

. (4.45b)

Additionally, it can be shown that the derivative of the plate-normal unit vector with

respect to the rotation vector is given by

∂ui
n,k

∂θb
i

= −T i
b [u

b
n,k×] . (4.46)

Substituting Eqs. (4.45) and (4.46) into Eq. (4.44) then yields the derivative of the
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SRP acceleration with respect to the rotation vector to be

Aθ,srp = sff

(

rau
rs/o

)2 n
∑

k=1

Ak

m
ui

srp,k(u
i
sun)

TT i
b [u

b
n,k×] (4.47)

+ sff

(

rau
rs/o

)2 n
∑

k=1

Ak

m
cosφk

[

2

(

1

3
δk + cosφkρk

)

I + 2ρku
i
n,k(u

i
sun)

T

]

× T i
b [u

b
n,k×] .

4.1.4 Solar Radiation Pressure Moment

In order to compute the moment induced on the satellite by SRP we consider

at the force acting on the satellite due to the SRP, which is given in the inertial frame

by multiplying the acceleration in Eq. (4.40) by the total satellite mass, such that

f i
srp = −sff

(

rau
rs/o

)2 n
∑

k=1

Ak cosφku
i
srp,k .

Since Euler’s equations require the moment in the satellite body reference frame we

then express the force in the body reference frame as f b
srp = T b

i f
b
srp, or

f b
srp = −sff

(

rau
rs/o

)2 n
∑

k=1

Ak cosφku
b
srp,k ,

where

ub
srp,k = (1− ρk)ub

sun + 2

(

1

3
δk + cosφkρk

)

ub
n,k .

Here, ub
sun = T b

i u
i
sun and the definition given previously for ui

sun remains valid. Sim-

ilarly, it is noted that ub
n,k does not need to be rotated into the inertial frame as

was necessary for the computation of the acceleration. Furthermore, since the angle

of incidence of the sunlight with respect to the plate normal is not affected by the
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reference frame, we rewrite cosφk in terms of the body frame plate-normal unit vector

and the body frame unit vector to the Sun from the satellite, yielding

cosφk = ub
n,k · u

b
sun .

The moment due to SRP is the computed as the sum of moments on each plate via

mb
srp = −sff

(

rau
rs/o

)2 n
∑

k=1

Ak cosφk(r
b
p,k × ub

srp,k) , (4.48)

where rb
p,k is the position of the kth plate with respect to the satellite center of mass

as expressed in the body reference frame.

Taking the partial derivative of mb
srp in Eq. (4.48) with respect to the satellite

position, ri yields

Mr,srp =
∂mb

srp

∂ri
= −sff

n
∑

k=1

Ak cosφk(r
b
p,k × ub

srp,k)
∂

∂ri

{

(

rau
rs/o

)2
}

(4.49)

− sff
(

rau
rs/o

)2 n
∑

k=1

Ak(r
b
p,k × ub

srp,k)
∂ cosφk

∂ri

− sff
(

rau
rs/o

)2 n
∑

k=1

Ak cosφk[r
b
p,k×]

∂ub
srp,k

∂ri
.

As with the acceleration, we omit the variation in the SRP moment due to shadowing

variations, that is we do not include the partial derivative of the shadowing function

with respect to the satellite position. The three partial derivatives appearing in

Eq. (4.49) can readily be determined as

∂

∂ri

{

(

rau
rs/o

)2
}

= 2

(

rau
rs/o

)2
1

rs/o
(ui

sun)
T (4.50a)

∂ cos φk

∂ri
= (ub

n,k)
T ∂u

b
sun

∂ri
(4.50b)

∂ub
srp,k

∂ri
=

[

(1− ρk)I + 2ρku
b
n,k(u

b
n,k)

T
] ∂ub

sun

∂ri
. (4.50c)
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Additionally, the derivative of the body-frame unit vector from the satellite to the

Sun with respect to the position is given by

∂ub
sun

∂ri
= T b

i

∂ui
sun

∂ri
=

1

rs/o
T b
i

[

−I + ui
sun(u

i
sun)

T
]

=
1

rs/o
T b
i [u

i
sun×]2 . (4.51)

Substituting Eqs. (4.50) and (4.51) into Eq. (4.49) then yields the derivative of the

SRP moment with respect to the position to be

Mr,srp = −2sff
(

rau
rs/o

)2
1

rs/o

n
∑

k=1

Ak cos φk(r
b
p,k × ub

srp,k)(u
i
sun)

T

− sff
(

rau
rs/o

)2
1

rs/o

n
∑

k=1

Ak(r
b
p,k × ub

srp,k)(u
b
n,k)

TT b
i [u

i
sun×]2

− sff
(

rau
rs/o

)2
1

rs/o

n
∑

k=1

Ak cos φk[r
b
p,k×]

[

(1− ρk)I + 2ρku
b
n,k(u

b
n,k)

T
]

× T b
i [u

i
sun×]2 .

Taking the partial derivative of mb
srp in Eq. (4.48) with respect to the three-

dimensional rotation vector, θb
i yields

Mθ,srp =
∂mb

srp

∂θb
i

= −sff
(

rau
rs/o

)2 n
∑

k=1

Ak(r
b
p,k × ub

srp,k)
∂ cosφk

∂θb
i

(4.52)

− sff
(

rau
rs/o

)2 n
∑

k=1

Ak cosφk[r
b
p,k×]

∂ub
srp,k

∂θb
i

.

The two partial derivatives appearing in Eq. (4.52) are given by

∂ cosφk

∂θb
i

= (ub
n,k)

T ∂u
b
sun

∂θb
i

(4.53a)

∂ub
srp,k

∂θb
i

=
[

(1− ρk)I + 2ρku
b
n,k(u

b
n,k)

T
] ∂ub

sun

∂θb
i

. (4.53b)
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Additionally, it can be shown that the derivative of the body-frame unit vector to the

Sun with respect to the rotation vector is given by

∂ub
sun

∂θb
i

= [ub
sun×] . (4.54)

Substituting Eqs. (4.53) and (4.54) into Eq. (4.52) then yields the derivative of the

SRP moment with respect to the rotation vector to be

Mθ,srp = −sff
(

rau
rs/o

)2 n
∑

k=1

Ak(r
b
p,k × ub

srp,k)(u
b
n,k)

T [ub
sun×]

− sff
(

rau
rs/o

)2 n
∑

k=1

Ak cosφk[r
b
p,k×]

[

(1− ρk)I + 2ρku
b
n,k(u

b
n,k)

T
]

[ub
sun×] .

4.1.5 Models for the Shadow Factor

4.1.5.1 Cylindrical Model

The simplest model for the shadow factor is a cylindrical shadow model. The

cylindrical model assumes that the Sun in infinitely far away from the Earth, thus

causing the light rays to be completely parallel which yields a cylindrical shadow

extending behind the Earth with respect to the Sun, as shown in Figure 4.1. Consider

now two vectors: the position of the Sun with respect to the Earth, ri
sun, and the

position of the satellite with respect to the Earth, ri. Let the angle between these

two vectors be ψ, such that

cosψ =
ri · ri

sun

‖ri‖ ‖ri
sun‖

. (4.55)

Then, if cosψ ≥ 0, the satellite is on the Sun side of the Earth, meaning that it is

illuminated. As such, the shadow factor for the cylindrical model in this case will be
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Figure 4.1: Cylindrical Shadow Model

fc = 1. However, if cosψ < 0 then the satellite is on the shadow side of the Earth, but

not necessarily in shadow. In this case, if the perpendicular distance of the satellite

from the Sun-Earth line is greater than the Earth radius, then the satellite is again

illuminated, that is if

‖ri‖2(1− cos2 ψ) ≥ R2
e , (4.56)

then the shadow factor for the cylindrical model is fc = 1. If cosψ < 0 and the

condition in Eq. (4.56) is not met, then fc = 0. The cylindrical shadow factor can

therefore be summarized as

fc =

{

0 , cosψ < 0 and ‖ri‖2(1− cos2 ψ) < R2
e

1 , otherwise
.

4.1.5.2 Conic Model

A level of refinement above the cylindrical model introduces the utilization

of cones to model the umbra/penumbra shadowing of the Sun due to the presence

of the Earth. This model does not assume that the rays of light emitted by the
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Sun are parallel, and is therefore able to more realistically characterize the nature of

shadowing. As the Sun moves behind the Earth (i.e. as the satellite moves into the

penumbra), the geometry is defined as shown in Figure 4.2.

Figure 4.2: Geometry of the Penumbra Phase

Let the radius of the Earth be Re, the radius of the Sun be Rs, the position

of the Sun with respect to the Earth be ri
sun, and the position of the satellite with

respect to the Earth be ri. It can be shown that γ, τ , and ε as defined in Figure 4.2

are given by19

γ = sin−1 Re

‖ri‖ , τ = sin−1 Rs

‖ri
sun − ri‖ and ε = cos−1 (ri

sun − ri) · ri

‖ri
sun − ri‖ ‖ri‖ .

Then, we compute s and k via

s =
1

2
(τ + γ + ε) and k =

√

s(s− τ)(s− γ)(s− ε) ,

such that the angles δ and β (shown in Figure 4.2) may be determined as

δ = tan−1 4k

ε2 + γ2 − τ 2 and β = tan−1 4k

ε2 + τ 2 − γ2 .
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Then, the shadow factor for the conic model is given by

fdc = 1− 1

π

[

(γ

τ

)2
(

δ − 1

2
sin 2δ

)

+

(

β − 1

2
sin 2β

)]

.

4.2 Measurement Modeling

The optical observation of a satellite from a telescope is given by the right as-

cension and declination angles of the line-of-sight from the telescope to the satellite.

This is a straightforward computation given the position of the satellite and of the

telescope; however, key effects must be considered in order to properly determine the

line-of-sight, and subsequently, the right ascension and declination angles. The effects

that must be considered are the light time correction, stellar aberration correction,

satellite lighting condition, telescope lighting condition, and field of view condition.

In the following developments, we discuss each of these effects individually, culminat-

ing in a combination of the effects to comprise a model for the right ascension and

declination measurements made of a satellite by an optical telescope. After describ-

ing the model, we develop the first-order derivative relationships associated with the

measurement model.

4.2.1 Light Time Correction

Due to the finite velocity of light, the time at which photons are reflected off of

a satellite differs from that at which they are received at a telescope tracking station.

That is, if light reflected from a satellite reaches the telescope at time tk, then that

light actually reflected off of the satellite at time tk − λ, where λ is the one-way light

time. This effect should be accounted for so that the actual position of the satellite
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may be used in the computation of the observed line-of-sight. An in-depth discussion

of the light time correction including relativistic effects may be found in Refs. 46,47.

For the purposes here, we will ignore the relativistic corrections and focus only on a

purely Newtonian approach. Therefore, the light time λ is the unique value which

satisfies5

λ =
1

c

∥

∥

[

ri(tk − λ)− ri
ssb(tk − λ)

]

−
[

ri
stn(tk)− ri

ssb(tk)
]
∥

∥ , (4.57)

where c is the speed of light, ri is the position of the satellite with respect to the

Earth, ri
ssb is the position of the solar system barycenter with respect to the Earth,

and ri
stn is the position of the telescope with respect to the Earth. Each of the position

vectors is time-dependent as indicated by the argument following each of the terms

in Eq. (4.57). It is assumed that ri
ssb is available in an ephemeris file, such that it

can evaluated at time tk as well as at time tk − λ. To arbitrary precision λ may be

computed as5

λi =
1

c

∥

∥

[

ri(tk − λi−1)− ri
ssb(tk − λi−1)

]

−
[

ri
stn(tk)− ri

ssb(tk)
]
∥

∥ , (4.58)

for i = 1, 2, 3, . . ., which is initialized with λ0 = 0. Typically, λ = λ1 is sufficient

since, so long as the satellite and telescope are less that 50 astronomical units apart,

the error in the computation of the light time via λ1 is less than one millisecond.

That is, λ is well approximated as

λ ≈ 1

c

∥

∥ri(tk)− ri
stn(tk)

∥

∥ . (4.59)

If λ is desired to more precision than offered by the use of λ1, then it is merely a

matter of applying Eq. (4.58). However, it is evident from Eq. (4.58) that the position

of the satellite with respect to the Earth at time tk − λ is required.
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Typically, the time, tk, at which the photons are received by the telescope is

known, but not the time at which the photons were reflected from the spacecraft,

which precedes tk. For this reason, when using the convergence method of Eq. (4.58)

it is necessary to propagate the satellite position backwards in time by an amount

of λi. Since the time scales involved with the calculation of λ are quite small, the

dominant effect on the change in position over that time period is the central body

gravitational acceleration, and more importantly the point mass component of the

gravitational acceleration. Therefore, to propagate the satellite position backwards

by λi, we simply employ numerical integration of a simplified set of equations of

motion utilizing only the point mass component of the central body gravitational

acceleration. On the other hand, if only an approximation to λ is required and

Eq. (4.59) is used, then no numerical integration is required in the computation of λ,

but since the position of the satellite at time tk − λ is needed, this can be obtained

by numerically integrating the simplified equations of motion backwards in time by

λ.

Once the light time correction has been applied to obtain the satellite location

at the time the photons were reflected, the line-of-sight vector at time tk from the

telescope to the satellite is given by

ui(tk) =
ri(tk − λ)− ri

stn(tk)

‖ri(tk − λ)− ri
stn(tk)‖

. (4.60)

4.2.2 Stellar Aberration Correction

Stellar aberration is the apparent shift in the direction of incoming light due

to the velocity of the observer. In our case, this means that since the telescope is
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moving (whether it be on the Earth or in orbit) there is a change in the direction

of the light coming from a satellite due to the motion of the telescope. This is often

referred to as the “raindrop effect” in which raindrops appear to be coming from

a different direction than they actually are while you are in motion. The apparent

line-of-sight of the satellite at time tk is given by45, 47

ui
app(tk) =

ui(tk) +
1
c
vi
stn(tk)

∥

∥ui(tk) +
1
c
vi
stn(tk)

∥

∥

, (4.61)

where ui(tk) is the light time corrected line-of-sight at the time photons were received

at the telescope which is given by Eq. (4.60), c is the speed of light, and vi
stn(tk) is

the velocity of the telescope at the time the photons were received at the telescope.

The velocity of the telescope (assuming it to be ground-based) is

vi
stn(tk) = T i

f (tk)(ω
f
f/i × r

f
stn) ,

where T i
f (tk) is the orientation of the Earth-fixed reference frame with respect to the

inertial reference frame at time tk, ω
f
f/i is the angular velocity of the Earth with

respect to the inertial reference frame, and r
f
stn is the location of the telescope in the

Earth-fixed reference frame.

4.2.3 Lighting Conditions

In order for line-of-sight measurements to be taken, two lighting conditions

must be met: the satellite must be in sunlight at the time when photons are reflected

off of the satellite (that is at time tk − λ) and the observer must be in shadow at the

time when the reflected photons are received at the telescope (that is at time tk).
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4.2.3.1 Satellite Lighting Condition

As the Sun moves behind the Earth (i.e. as the satellite moves into the penum-

bra), the geometry is defined as shown in Figure 4.2. Let the radius of the Earth be

Re, the radius of the Sun be Rs, the position of the Sun with respect to the Earth at

the time at which photons left the Sun be ri
sun(tk − λs) where λs is the one-way light

time from the Sun to the Earth, and the position of the satellite with respect to the

Earth at the time at which photons were reflected off of the satellite be ri(tk −λ). It

can be shown that γ, τ , and ε as defined in Figure 4.2 are given by19

γ = sin−1 Re

‖ri(tk − λ)‖
, τ = sin−1 Rs

‖ri
sun(tk − λs)− ri(tk − λ)‖

and

ε = cos−1 [ri
sun(tk − λs)− ri(tk − λ)] · ri(tk − λ)

‖ri
sun(tk − λs)− ri(tk − λ)‖ ‖ri(tk − λ)‖

.

Therefore, by Figure 4.2, if

ε > γ + τ ,

then the satellite was in full sunlight at time tk − λ. It may be that photons are also

reflected for some period during the time when the satellite is in the penumbra of

the Earth; however, it is sufficient to assume that measurements are only generated

during full sunlight for the current work.

4.2.3.2 Observer Lighting Condition

Similar to the case of determining if the satellite was in full sunlight, we must

also determine if the telescope was in shadow at the time of reception of the photons

(that is at time tk). For this case, we apply the same analysis as for the satellite

114



except that we are now interested in the telescope being in umbra. Let the radius of

the Earth be Re, the radius of the Sun be Rs, the position of the Sun with respect

to the Earth at the time at which photons left the Sun be ri
sun(tk − λs), and the

position of the telescope with respect to the Earth be at the time at which photons

were received at the telescope be ri
stn(tk). It can be shown that γ, τ , and ε as defined

in Figure 4.2 are given by19

γ = sin−1 Re

‖ri
stn(tk)‖

, τ = sin−1 Rs

‖ri
sun(tk − λs)− ri

stn(tk)‖
and

ε = cos−1 [ri
sun(tk − λs)− ri

stn(tk)] · r
i
stn(tk)

‖ri
sun(tk − λs)− ri

stn(tk)‖ ‖ri
stn(tk)‖

.

It suffices to determine if the station was in umbra at the time photons were received

at the telescope, that is at time tk. This case is met provided that

τ + ε < γ ,

as is readily observed from Figure 4.2.

4.2.4 Field of View Condition

One final condition must be checked to determine if line-of-sight measurements

are to be taken at time tk. That condition is that the light time corrected line-of-

sight given in Eq. (4.60) must have been in the field of view of the telescope at time

tk. In order to compute the field of view condition, it is necessary to determine the

focal plane angles of the line-of-sight vector and determine if these are within the

field of view of the telescope. This, in turn, requires us to know the pointing of the

telescope in order to compute the focal plane angles. As such, we assume that the
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orientation of the sensor platform (denoted hereafter by p) is known with respect to a

local surface frame (denoted hereafter by s) at time tk. Then, the line-of-sight vector

in the telescope reference frame is given by a coordinate transformation of Eq. (4.60),

that is

us(tk) = T p
s (tk)T

s
f T

f
i (tk)u

i(tk) . (4.62)

It is worth noting that in Eq. (4.62) while the surface-to-platform and inertial-to-fixed

transformations are time dependent, the fixed-to-surface transformation is not; this

is due to the fact that the two reference frames are fixed (in time) with respect to

one another and the transformation depends only on the latitude and longitude of

the telescope. From Eq. (4.62) we can extract focal plane angles as

ζ = tan−1 ux
uz

and η = tan−1 uy
uz
,

where us(tk) = [ux uy uz]
T . Now, assume that the field of view of the telescope

is defined by ζmax and ηmax, which represent the maximum values of ζ and η which

allow the line-of-sight to be within view of the telescope. Then, if |ζ | ≤ ζmax and

|η| ≤ ηmax, the satellite is within the field of view of the telescope, and line-of-sight

measurements are allowed.

4.2.5 Right Ascension and Declination Measurements

Provided that the lighting conditions of Section 4.2.3 and the field of view

condition of Section 4.2.4 are met, then the right ascension and declination are readily

computed from the apparent line-of-sight in Eq. (4.61) as

αk = tan−1 uapp,y
uapp,x

and δk = tan−1 uapp,z
dapp

, (4.63)
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where ui
app(tk) = [uapp,x uapp,y uapp,z]

T and d2app = u2app,x + u2app,y. Then, concatenat-

ing the right ascension and declination at time tk, given respectively by αk and δk,

we can formulate the measurement of right ascension and declination at time tk as

yk =

[

αk

δk

]

+ vαδ,k , (4.64)

where vαδ,k is the measurement noise which is assumed to be a white-noise sequence

with mean and covariance

E {vαδ,k} = 0 ∀ k and E
{

vαδ,kv
T
αδ,k′

}

= Rαδ,kδk,k′ ,

with δk,k′ representing the Kronecker delta.

In computing the derivatives of the right ascension and declination, we do not

need to consider the lighting conditions or the field of view condition since these serve

only to determine if measurements were taken at time tk. That is, when processing

measurements of right ascension and declination, these conditions are not checked

since they would have been met in generating the measurements.

To compute the derivative of the right ascension and declination with respect

to the satellite position, we utilize the chain rule applied to Eq. (4.64) and find that

∂yk

∂ri(tk)
=

∂

∂ui
app

{[

αk

δk

]}

∂ui
app(tk)

∂ui(tk)

∂ui(tk)

∂ri(tk − λ)
∂ri(tk − λ)
∂ri(tk)

. (4.65)

From Eq. (4.63), it can be shown that the first derivative term in Eq. (4.65) is given

by

U =
∂

∂ui
app

{[

αk

δk

]}

=









−uapp,y
d2app

uapp,x
d2app

0

−uapp,xuapp,z
dapp

−uapp,yuapp,z
dapp

dapp









. (4.66)
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Similarly, the second and third derivative terms in Eq. (4.65) are readily found to be

∂ui
app(tk)

∂ui(tk)
= − 1

‖ui(tk) +
1
c
vi
stn(tk)‖

[ui
app(tk)×]2 (4.67a)

∂ui(tk)

∂ri(tk − λ)
= − 1

‖ri(tk − λ)− ri
stn(tk)‖

[ui(tk)×]2 . (4.67b)

The final derivative term in Eq. (4.65) is related to the state transition matrix, which

maps variations across time, that is, the state transition matrix is defined as

Φ(tk, tm) =
∂x(tk)

∂x(tm)
.

The final derivative term in Eq. (4.65) is the upper 3 × 3 block of Φ(tk − λ, tk)

provided that the states are ordered with the satellite position as the first 3 elements.

Furthermore, the state transition matrix satisfies the differential equation

Φ̇(σ, tk) = F (σ)Φ(σ, tk) , (4.68)

where F (σ) represents the matrix of first derivatives of the nonlinear dynamics (i.e.

the Jacobian matrix) which in this case is used to relate errors in the state at time tm

to errors in the state at time tk. Furthermore, we let σ be related to the running time

variable, t via σ = t− λ and we consider the range of t as t ∈ [tk + λ , tk]. Applying

an Euler integration scheme to the state transition matrix differential equation of

Eq. (4.68), which is valid since the change in time required is small, it is found that

Φ(tk − λ, tk) = Φ(tk, tk) + F (tk)(tk − tk − λ) = I − λF (tk) . (4.69)

Therefore, by the properties of the tangent linear dynamics (i.e. F (tk)), it is seen

that

∂ri(tk − λ)
∂ri(tk)

= I . (4.70)
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Substituting Eqs. (4.66)–(4.67) and Eq. (4.70) into Eq. (4.65), we find that the deriva-

tive of the right ascension and declination measurement with respect to the satellite

position is given by

∂yk

∂ri(tk)
=

1

‖ui(tk) +
1
c
vi
stn(tk)‖

1

‖ri(tk − λ)− ri
stn(tk)‖

U [ui
app(tk)×]2[ui(tk)×]2 .

Similar to the derivative with respect to satellite position, to compute the

derivative of the right ascension and declination with respect to the satellite velocity,

we utilize the chain rule applied to Eq. (4.64) and find that

∂yk

∂vi(tk)
=

∂

∂ui
app

{[

αk

δk

]}

∂ui
app(tk)

∂ui(tk)

∂ui(tk)

∂ri(tk − λ)
∂ri(tk − λ)
∂vi(tk)

. (4.71)

The first three derivative terms have already been determined and are given by

Eqs. (4.66)–(4.67). The final derivative term comes from a similar path as previ-

ously taken, and is again related to the state transition matrix Φ(tk − λ, tk), except

that it is the first 3 rows and second set of 3 columns for the satellite velocity, pro-

vided that the satellite velocity is the second set of 3 elements in the state vector.

Again, we arrive at Eq. (4.69) as the form of the state transition matrix, and by the

properties of the tangent linear dynamics, we find that

∂ri(tk − λ)
∂vi(tk)

= −λI . (4.72)

Therefore, substituting Eqs. (4.66)–(4.67) and Eq. (4.72) into Eq. (4.71), we find that

the derivative of the right ascension and declination measurement with respect to the

satellite velocity is given by

∂yk

∂vi(tk)
= −λ 1

‖ui(tk) +
1
c
vi
stn(tk)‖

1

‖ri(tk − λ)− ri
stn(tk)‖

U [ui
app(tk)×]2[ui(tk)×]2 .
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Chapter 5

Results

To evaluate the performance of the proposed splitting Gaussian mixture un-

scented Kalman filter (SGMUKF) algorithm with respect to the more standard ex-

tended Kalman filter (EKF) and unscented Kalman filter (UKF) algorithms, the

problem of tracking a resident space object (RSO) in a near-geosynchronous orbit

is considered. The models for the nonlinear dynamical system which describes the

time-evolution of the position, velocity, attitude, and angular velocity of an RSO

were presented in Chapter 4. Similarly, the models representing the observational

relationships which describe the measurement of the line-of-sight of an RSO from a

ground station were also presented in Chapter 4. In order to systematically approach

the evaluation of the SGMUKF, a simplified tracking model is first considered. As

was shown in Cook,9 the most dominant spacecraft acceleration in a geosynchronous

orbit is that of the point mass gravitational acceleration. This is demonstrated via

a summary of the typical spacecraft accelerations given in Table 5.1, which shows

that for an object with an area-to-mass ratio of 0.01m2/kg that the point mass grav-

itational acceleration is several orders of magnitude larger than any other common

acceleration.
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Table 5.1: Magnitude of Typical Spacecraft Accelerations9

Perturbation
Acceleration (in m/s2) for
Geosynchronous Spacecraft
with A/m = 0.01m2/kg

Earth Point Mass 2.2× 10−1

Earth’s Oblateness (J2) 7.4× 10−6

Lunar Third Body 7.3× 10−6

Solar Third Body 3.3× 10−6

Solar Radiation Pressure 4.6× 10−8

Therefore, before considering the full tracking model as described by the mod-

els in Chapter 4, we first consider a simplified tracking model as applied to the

propagation of uncertainty for a circular and an eccentric planar orbit. We then pro-

ceed to consideration of the propagation of uncertainty in the full tracking model,

and finally conclude with the implementation of the inclusion of measurement data

for the update in the full tracking model.

5.1 Propagation in a Simplified Tracking Model

For the simplified tracking model, the rotational motion of the vehicle is ne-

glected and the only active acceleration modeled is that of the central body gravity.

Making these adjustments to the full tracking model equations of motion yields the

simplified tracking model equations of motion to be

ṙi = vi
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v̇i = ai
g(r

i) ,

where ai
g(r

i) is the central body acceleration, which is modeled by the point mass

approximation, given by

ai
g = −

µ

r3
ri .

Furthermore, the simplified tracking model assumes that the motion of the vehicle

is confined to the equatorial plane, which allows the position to be described by two

scalar values, x and y, and the velocity to be described by two scalar values ẋ and

ẏ. Therefore, the state vector and equations of motion that describe the nonlinear

dynamical system are

x(t) =









x
y
ẋ
ẏ









and f (x(t), t) =









ẋ
ẏ
−µx

r3

−µy
r3









,

where µ is the gravitational constant of the central body, and r =
√

x2 + y2 is the

distance from the central body to the vehicle. The linearized dynamics Jacobian

is also modified from the full tracking model to yield the simplified tracking model

Jacobian as

F (x(t), t) =

[

0 I

Ag 0

]

, (5.1)

where

Ag =
∂ai

g

∂ri
=

µ

r5
(

3ri(ri)T − (ri)TriI
)
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By again confining the motion to the equatorial plane, Ag may be written explicitly

in terms of the state variables as

Ag =
µ

r3

[

3
(

x
r

)2 − 1 3x
r
y
r

3x
r
y
r

3
(

y
r

)2 − 1

]

.

Finally, since the SGMUKF recursive filtering scheme relies on the implementation

of either differential entropy or Rényi entropy, it is worth noting that the trace of

the linearized dynamics Jacobian for the simplified tracking model is zero, which is

readily verified by inspection of Eq. (5.1). This means that the differential entropy and

the Rényi entropy are constant for the linearized dynamical system, which simplifies

the implementation of the SGMUKF by allowing the predicted entropy to compared

against some reference value without needing to implement a differential equation to

solve for the entropy of the linearized system.

Two orbits are considered for testing the SGMUKF method, with the first

orbit characterized by a semi-major axis of 42000 [km] and zero eccentricity and the

second orbit characterized by a semi-major axis of 35000 [km] and an eccentricity of

0.2. The second orbit’s eccentricity was chosen so that the orbit has an apoapse of

42000 [km]. The nominal orbits are shown in Figure 5.1.
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Figure 5.1: Nominal trajectories for the circular (in blue) and eccentric (in red) test
cases in the simplified tracking model.

In each case, the initial uncertainty on the position is taken to be 1 [km], and

the initial uncertainty on the velocity is taken to be 1 [m/s], such that the initial

covariance is given by

P0 =









1 0 0 0
0 1 0 0
0 0 1× 10−6 0
0 0 0 1× 10−6









,

with the units being km2 and (km/s)2 for the position and velocity coordinates,

respectively.
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5.1.1 Circular Orbit Test Case

To provide a relative measure of the performance of the filters, the likelihood

agreement measure is computed using samples from a monte carlo simulation and the

predicted probability density functions (pdfs) from the EKF, UKF, and SGMUKF.

The likelihood measures of the EKF and UKF are normalized by the value for the

SGMUKF so as to provide a relative measure with respect to the SGMUKF; that

is, if the normalized likelihood of the EKF or UKF were to exceed unity, it would

be better performing than the SGMUKF. Unfortunately, the covariance for the EKF

becomes ill-conditioned with respect to matrix inversion within a short period of time;

therefore, its likelihood agreement measure cannot be computed and it is excluded

in the results. However, should the EKF not be near-singular, the analysis would

be similar to that of the UKF. This analysis is summarized in Figure 5.2, wherein

it can be observed that the UKF is clearly outperformed by the SGMUKF. The

rapid departure of the likelihood agreement of the UKF from that of the SGMUKF

which occurs after approximate 12 hours of propagation is the same point at which

the SGMUKF first detects nonlinearity in the propagation and begins the process of

splitting.
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Figure 5.2: Likelihood agreement measure for the UKF and SGMUKF, normalized
by the value for the SGMUKF

Figures 5.3–5.10 show the position and velocity pdf contours at four times: the

initial time, one time period of the nominal orbit, two time periods of the nominal

orbit, and three time periods of the nominal orbit. In each figure, the pdf contours are

shown for the EKF, the UKF, and the SGMUKF methods along with samples derived

from a monte carlo simulation, which is run by propagating samples drawn from the

initial distribution. Figures 5.3 and 5.4 show the position and velocity pdf contours

at the initial time, and can be seen to be identical for each filtering method since all of

the filters are initialized with the same mean and covariance. Figures 5.5 and 5.6 show

the position and velocity pdf contours after one time period of the nominal circular
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orbit. At this point, the SGMUKF has already begun its splitting process, enabling

it to better map the curvature exhibited by the monte carlo samples. Furthermore,

while both the EKF and UKF cannot achieve the curvature shown by the SGMUKF,

it can be seen that the UKF has contours which capture more of the monte carlo

samples than the EKF. The better representation of the monte carlo samples by

the UKF is further shown in Figures 5.7 and 5.8, where it can be seen that the

EKF contours have become even thinner, leading to a poorer representation of the

monte carlo samples. The SGMUKF has continued evolving into more components

via the splitting process, and continues its matching of the curvature of the samples.

Finally, Figures 5.9 and 5.10 show the position and velocity contours at three time

periods of the nominal circular orbit, wherein the previous described characteristics

have continued to become even more pronounced.
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Figure 5.3: Position pdf contours with monte carlo samples at epoch.
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Figure 5.4: Velocity pdf contours with monte carlo samples at epoch.
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Figure 5.5: Position pdf contours with monte carlo samples at one period of the
nominal orbit.
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Figure 5.6: Velocity pdf contours with monte carlo samples at one period of the
nominal orbit.
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Figure 5.7: Position pdf contours with monte carlo samples at two periods of the
nominal orbit.
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Figure 5.8: Velocity pdf contours with monte carlo samples at two periods of the
nominal orbit.
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Figure 5.9: Position pdf contours with monte carlo samples at three periods of the
nominal orbit.
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Figure 5.10: Velocity pdf contours with monte carlo samples at three periods of the
nominal orbit.

5.1.2 Eccentric Orbit Test Case

As was done with the circular orbit test case, a relative measure of the per-

formance of the filters is computed via the likelihood agreement measure, which is

determined using the samples from a monte carlo simulation and the predicted pdfs

from the EKF, UKF, and SGMUKF. The likelihood measures of the EKF and UKF
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are normalized by the value for the SGMUKF so as to provide a relative measure

with respect to the SGMUKF. Similar to the previous test case, the EKF covari-

ance becomes ill-conditioned with respect to matrix inversion within a short period

of time, once again rendering the likelihood agreement measure for the EKF incalcu-

lable. The normalized likelihood agreement measure for the UKF and SGMUKF are

shown in Figure 5.11, which shows the UKF being very clearly outperformed again

by the SGMUKF.
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Figure 5.11: Likelihood agreement measure for the UKF and SGMUKF, normalized
by the value for the SGMUKF

Figures 5.12–5.19 show the position and velocity pdf contours at four times:

the initial time, one time period of the nominal orbit, two time periods of the nominal
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orbit, and three time periods of the nominal orbit. In each figure, the pdf contours are

shown for the EKF, the UKF, and the SGMUKF methods along with samples derived

from a monte carlo simulation, which is run by propagating samples drawn from the

initial distribution. In the same manner as described in the circular orbit test case,

it can be seen that as the time progresses, the EKF contours become increasingly

less representative of the monte carlo samples, the UKF contours manage to capture

some number of the monte carlo samples but are not able to match the curvature

of the samples, and the SGMUKF contours are able to match the curvature of the

samples through the splitting process.
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Figure 5.12: Position pdf contours with monte carlo samples at epoch.
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Figure 5.13: Velocity pdf contours with monte carlo samples at epoch.
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(c) SGMUKF

Figure 5.14: Position pdf contours with monte carlo samples at one period of the
nominal orbit.
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Figure 5.15: Velocity pdf contours with monte carlo samples at one period of the
nominal orbit.
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Figure 5.16: Position pdf contours with monte carlo samples at two periods of the
nominal orbit.
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Figure 5.17: Velocity pdf contours with monte carlo samples at two periods of the
nominal orbit.
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Figure 5.18: Position pdf contours with monte carlo samples at three periods of the
nominal orbit.
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Figure 5.19: Velocity pdf contours with monte carlo samples at three periods of the
nominal orbit.

5.2 Propagation in the Full Tracking Model

In order to extend the range of testing for the developed methods, a more

complex tracking model, termed the full tracking model, is now considered. For the

full tracking model, the rotational motion of the vehicle is considered, the active

accelerations modeled are that of the central body gravity, third body gravity, and
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solar radiation pressure (SRP), and the active moment modeled is that of SRP.

Therefore, the full tracking model equations of motion are given by

ṙi = vi

v̇i = ai
g(r

i) + ai
3rd(r

i) + ai
srp(r

i, q̄b
i )

˙̄qb
i =

1

2
ω̄b

b/i ⊗ q̄b
i

ω̇b
b/i = J−1

(

mb
srp(r

i, q̄b
i )− ωb

b/i × Jωb
b/i

)

,

Defining the state vector of the nonlinear dynamical system to be the combination of

the position, velocity, attitude, and angular velocity of the SRP, the state vector and

equations of motion which describe the nonlinear dynamical system may be written

as

x(t) =









ri

vi

q̄b
i

ωb
b/i









and f (x(t), t) =











vi

ai
g(r

i) + ai
3rd

(ri) + ai
srp(r

i, q̄b
i )

1
2
ω̄b

b/i ⊗ q̄b
i

J−1
(

mb
srp(r

i, q̄b
i )− ωb

b/i × Jωb
b/i

)











.

As was shown in Chapter 4, the linearized dynamics Jacobian for the full tracking

model is given by

F (x̂(t), t) =











0 I 0 0

Ag +A3rd +Ar,srp 0 Aθ,srp 0

0 0 −[ω̂b
b/i×] I

J−1Mr,srp 0 J−1Mθ,srp J−1
[

[Jω̂b
b/i×]− [ω̂b

b/i×]J
]











.

(5.2)

Since the SGMUKF recursive filtering scheme relies on the implementation of either

differential entropy or Rényi entropy, it is worthwhile to show that the trace of the

linearized dynamics Jacobian for the full tracking model is zero. From Eq. (5.2), it
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follows that

trace {F (x̂(t), t)} = trace
{

−[ω̂b
b/i×]

}

+ trace
{

J−1
[

[Jω̂b
b/i×]− [ω̂b

b/i×]J
]}

. (5.3)

From the fact that [ω̂b
b/i×] is a skew-symmetric matrix by definition, the first term

in Eq. (5.3) is zero. Therefore, we need only consider the second term of Eq. (5.3),

which is given by

trace {F (x̂(t), t)} = trace
{

J−1
[

[Jω̂b
b/i×]− [ω̂b

b/i×]J
]}

= trace
{

J−1[Jω̂b
b/i×]

}

− trace
{

J−1[ω̂b
b/i×]J

}

(5.4)

= trace
{

J−1[Jω̂b
b/i×]

}

− trace
{

[ω̂b
b/i×]

}

, (5.5)

where the invariance under cyclic permutation property of the trace operator has been

used to eliminate J and J−1 in the second term of Eq. (5.4). Again, since [ω̂b
b/i×] is

a skew-symmetric matrix, the second term in Eq. (5.5) is zero, yielding

trace {F (x̂(t), t)} = trace
{

J−1[Jω̂b
b/i×]

}

. (5.6)

For any A ∈ R
3×3 and b ∈ R

3, with Ai,j representing the ith row and jth column of

matrix A, it is readily observed that

trace {A[b×]} = (A2,3 −A3,2)b1 + (A3,1 − A1,3)b2 + (A1,2 − A2,1)b3 .

Therefore, for any symmetric A, that is A = AT , it is seen that

trace {A[b×]} = 0 . (5.7)

Since the moment of inertia matrix, J is symmetric, so then is its inverse, and since

Eq. (5.7) is of the same form as the right-hand side of Eq. (5.6), it immediately follows
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that

trace
{

J−1[Jω̂b
b/i×]

}

= 0 ,

which yields the desired result that the linearized dynamics Jacobian for the full

tracking model has zero trace, i.e.

trace {F (x̂(t), t)} = 0 .

This means that the differential entropy and the Rényi entropy are constant for the

linearized dynamical system, which simplifies the implementation of the SGMUKF

by allowing the predicted entropy to compared against some reference value without

needing to implement a differential equation to solve for the entropy of the linearized

system.

The orbit considered for testing the SGMUKF method is described by the

Keplerian elements

a = 42165.91 km , e = 0.0002429 , i = 0.83◦ , Ω = 0◦ , ω = 0◦ , M = 0◦ ,

and is shown in Figure 5.20.
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(a) Top view (b) 3D view

(c) Side view

Figure 5.20: Nominal trajectory for the full tracking model.

Furthermore, the initial uncertainty on the position is taken to be 1 [km],

the initial uncertainty on the velocity is taken to be 1 [m/s], the initial attitude

uncertainty is taken to be 1◦, and the initial angular velocity uncertainty is taken to

be 0.1 [deg/hr]. The computation of the SRP acceleration and moment depends on

implementation of a specific flat plate model for the object, which for the scenario

under consideration is described by a hexagonal prism (developed by Rose54) as shown

in Figure 5.21. This is an 8-plate model with the body-frame unit vectors defined by

the unit vector triad {b1, b2, b3}. Additionally, the plate normal, denoted for the kth
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plate by ub
n,k, is depicted in Figure 5.21. The area, Ak, and position from the object

center, rb
p,k, of each plate are fully determined by specifying the side length, a, and

the prism height, h. These were chosen so as to represent a typical spacecraft bus size,

and are taken to be a = 2 [m] and h = 4 [m]. The total object mass was again chosen

to be representative of a typical spacecraft mass and is given by m = 2688.7 [kg].

Based upon the mass, side length, and prism height, the moment of inertia can be

found to be a diagonal matrix of the form

J =





J1,1 0 0
0 J2,2 0
0 0 J3,3



 ,

where the elements of J are given by

J1,1 = m

(

a2

6
+
d2

3
+
h2

12

)

J2,2 = m

(

a2

6
+
d2

3
+
h2

12

)

J3,3 = m

(

a2

6
+
d2

3

)

.
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(a) 3D view (b) End view

Figure 5.21: Hexagonal prism flat plate model, adapted from [54].

The specification of the diffuse reflectivity and specular reflectivity values for

each plate to be used in the SRP acceleration and moment calculations are taken

from a TDRS-05 macro plate model described by Lyon.40 These values, along with

the area equations for each plate are given in Table 5.2. The plates in Table 5.2 are

specified by the direction in which they are in the body-frame from the center of the

object, with +x denoting the plate that lies along the positive b1, +x,−y denoting

the plate that lies along the positive b1 and negative b2 axis, and so on.
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Table 5.2: Plate Property Specification for the Hexagonal Prism Model

Plate Area
Diffuse

Reflectivity
Specular

Reflectivity

+x ah 0.19 0.34

+x,+y ah 0.20 0.24

−x,+y ah 0.20 0.21

−x ah 0.20 0.23

−x,−y ah 0.18 0.45

+x,−y ah 0.20 0.22

+z 3
√
3a2/2 0.29 0.08

−z 3
√
3a2/2 0.21 0.05

In addition to the SRP acceleration and moments, an 8 × 8 subset of the

GGM03C gravity model64 is implemented, and third body perturbations due to the

Sun and Moon are included.

The EKF, UKF, and SGMUKF recursive filtering strategies are then applied

to the problem of propagating the initial uncertainty forward in time for one period

of the nominal orbit. In applying the SGMUKF methodology, two implementations

are considered: one of the implementations uses the 3-component splitting library in

the splitting process and the other implementation uses the 5-component splitting

library in the splitting process. These are referred to as the 3-component SGMUKF

and 5-component SGMUKF, respectively.

To provide a relative measure of the performance between each of the filters,
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the likelihood agreement measure is computed using samples from a monte carlo

simulation and the predicted pdfs from the EKF, UKF, 3-component SGMUKF,

and 5-component SGMUKF. The likelihood measures of the EKF, UKF, and 3-

component SGMUKF are normalized by the value for the 5-component SGMUKF

so as to provide a relative measure with respect to the 5-component SGMUKF; that

is, if the normalized likelihood of the EKF, UKF, or 3-component SGMUKF were

to exceed unity, it would be better performing than the 5-component SGMUKF.

The covariance for the EKF becomes ill-conditioned with respect to matrix inversion

within a short period of time; therefore, its likelihood agreement measure cannot be

computed and it is excluded in the plotted results. However, should the EKF not

be near-singular, the analysis would be similar to that of the UKF and 3-component

SGMUKF. This analysis is summarized in Figure 5.22, wherein it can be observed

that the UKF and 3-component SGMUKF are outperformed by the 5-component

SGMUKF.
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Figure 5.22: Likelihood agreement measure for the UKF, 3-component SGMUKF,
and 5-component SGMUKF, normalized by the value for the 5-component SGMUKF

Figures 5.23–5.25 show the position contours at one period of the nominal orbit

for each of the planar projections (x−y, x−z, and y−z). In each figure, the projected

pdf contours are shown for the EKF, the UKF, the 3-component SGMUKF, and the

5-component SGMUKF methods along with samples derived from a monte carlo

simulation, which is run by propagating samples drawn from the initial distribution.

In both the x− y and x− z projections in Figures 5.23 and 5.24, it can be seen that

both of the implemented SGMUKF approaches are able to match the curvature that

is exhibited by the monte carlo samples. In the y − z projection, it can been seen

that no significant non-Gaussian behavior occurred, yielding the same approximate
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results for all of the filtering schemes applied.

Similarly, Figures 5.26–5.28 show the velocity contours, Figures 5.29–5.31 show

the attitude contours, and Figures 5.32–5.34 show the angular velocity contours at one

period of the nominal orbit for each of the three projections possible. The projected

pdf contours are shown for the EKF, the UKF, the 3-component SGMUKF, and

the 5-component SGMUKF methods along with samples derived from a monte carlo

simulation. The velocity projections show the beginning of non-Gaussian behavior,

most specifically in the x − y projection. Based on the results of Section 5.1, this

non-Gaussian behavior would continue growing as the time-scale of the propagation

extended. However, in the case of the attitude and angular velocity contours, non-

Gaussian behavior has not yet become dominant for this set of initial conditions,

yielding very similar performance between the EKF, UKF, and SGMUKF methods

with only slight differences between contours for each method.
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Figure 5.23: Position (x − y projection) pdf contours with monte carlo samples at
one orbit period.
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Figure 5.24: Position (x − z projection) pdf contours with monte carlo samples at
one orbit period.
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Figure 5.25: Position (y−z projection) pdf contours with monte carlo samples at one
orbit period.
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Figure 5.26: Velocity (x − y projection) pdf contours with monte carlo samples at
one orbit period.
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Figure 5.27: Velocity (x−z projection) pdf contours with monte carlo samples at one
orbit period.
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Figure 5.28: Velocity (y−z projection) pdf contours with monte carlo samples at one
orbit period.
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Figure 5.29: Attitude (roll-pitch projection) pdf contours with monte carlo samples
at one orbit period.
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Figure 5.30: Attitude (roll-yaw projection) pdf contours with monte carlo samples at
one orbit period.
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Figure 5.31: Attitude (pitch-yaw projection) pdf contours with monte carlo samples
at one orbit period.
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Figure 5.32: Angular Velocity (body-frame x−y projection) pdf contours with monte
carlo samples at one orbit period.
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Figure 5.33: Angular Velocity (body-frame x−z projection) pdf contours with monte
carlo samples at one orbit period.
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Figure 5.34: Angular Velocity (body-frame y−z projection) pdf contours with monte
carlo samples at one orbit period.

5.3 Update in the Full Tracking Model

In order to complete the testing and comparison of the SGMUKF methodology

against other methods, we restrict our attention to processing measurement data in

the UKF and 5-component SGMUKF which were previously implemented for prop-
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agation of uncertainty. The data considered are that of topocentric right ascension

and declination angles as detailed in Section 4.2.5. The ground station utilized is

given in terms of latitude, longitude, and altitude by

φ = 20.708074◦ , λ = −156.257486◦ , and h = 3060.74 [m] .

To test the efficacy of the SGMUKF and UKF methods, a single sample from the

monte carlo run was selected, as shown by the circled point in Figure 5.35. This

sample was chosen to be a stressing case for both algorithms in order to address

any improvements that may be observed in the SGMUKF with respect to the UKF.

From this sample, an arc of 61 measurements of right ascension and declination were

generated. The measurements were generated once every 20 seconds for a duration

of 20 minutes starting at the same time the propagation phase (as detailed in the

previous section) ended. Each of the measurements is subjected to a Gaussian, white-

noise sequence with a standard deviation of 1 [arc-second] on both the right ascension

and declination angles. The a priori pdf at the time of the first measurement, as well

as the a posteriori pdfs after 1, 2, 10, and 61 measurements were then plotted and

are given in Figures 5.36–5.40.
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Figure 5.35: Selected point for study of the update in the full tracking model.

To assess the performance of the SGMUKF and UKF methods when processing

incoming measurement data, the projected pdf surfaces are plotted in Figures 5.36–

5.40. However, instead of the contours of the marginal pdfs, the surfaces of the

marginal pdfs are now viewed. Additionally, the true state is plotted in each of the

figures to indicate how representative of the true state each pdf is. In order to be

able to directly compare the performance of the SGMUKF against that of the UKF,
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each projection utilizes the same scale, so that a one-to-one comparison can be made

between the marginal pdf that is obtained from the SGMUKF and the one that is

obtained from the UKF.

From Figure 5.36 it is seen that the initial pdf indicates a low probability of the

true state. However, the SGMUKF predicts curvature of the pdf that leads towards

the true state, whereas the UKF pdf does not. Figure 5.37 shows the marginal pdf

surfaces and the true state immediately after the first measurement is processed.

In each of the SGMUKF marginals, it is observed that after one update the pdf

becomes highly Gaussian and no longer retains its curvature. This is to be expected

since the measurement pdf is Gaussian and the state pdf is being conditioned upon

the measurement pdf. Moreover, since the true state lies on the periphery of the a

priori distribution, there are very few Gaussian mixture model (GMM) components

in the SGMUKF which are surrounding the true state. If the true state had been

encompassed by many GMM components, it would have been more likely that a single

measurement update would not have led directly to a distinctly Gaussian a posteriori

state pdf. Also in Figure 5.37 it is observed that the UKF a posteriori marginal pdfs

are larger than the corresponding SGMUKF ones and less representative of the true

state.

After two measurement updates the UKF and SGMUKF both seem to be rep-

resenting the true state relatively well, as can be seen in Figure 5.38. However, it

is also observed that the SGMUKF yields a smaller region of uncertainty than does

the UKF. This occurrence is a direct result of the smaller size of the components in

the GMM of the SGMUKF. Since the UKF only has one component in its distri-
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bution, the single component must represent the entire distribution and is therefore,

by necessity, larger. This, in turn, leads to less reduction in the uncertainty when

processing measurements as it leads to higher levels of uncertainty in the predicted

measurements.

Figure 5.39 shows the UKF and SGMUKF marginal pdfs after ten measure-

ments have been processed. The UKF has become less representative of the true

state as illustrated by the true state being near the edge of the UKF distribution.

The SGMUKF on the other hand is in excellent agreement with the true state and

exhibits a substantially smaller region of uncertainty than does the UKF.

Finally, in Figure 5.40, the marginal pdfs are plotted after all of the measure-

ments from the measurement arc have been processed, a total of 61 measurements.

The earlier indications of the superior performance of the SGMUKF to that of the

UKF is even more clear as the UKF region of uncertainty still barely retains the true

state while the SGMUKF shows good agreement with the truth and a much smaller

region of uncertainty.

One byproduct of the measurement conditioning process for the SGMUKF is

that it down-weights the components of the GMM distribution which are not in sta-

tistical agreement with the measurements. This means that as data are processed, the

weights of the components which are not representative of the actual measurement

receive successively less weight. By introducing a tolerance on the minimum weight

that is retained, the measurement data can be used to prune out the statistically in-

significant components of the SGMUKFs GMM model, thereby reducing the number

of components implemented in following update or propagation cycles.
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Figure 5.36: Projected position pdf surfaces with true state before any updates.
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Figure 5.37: Projected position pdf surfaces with true state after one update.
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Figure 5.38: Projected position pdf surfaces with true state after two updates.
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Figure 5.39: Projected position pdf surfaces with true state after ten updates.
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Figure 5.40: Projected position pdf surfaces with true state after all updates.
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Chapter 6

Conclusions

6.1 Research Summary

The development of a new method, termed the splitting Gaussian mixture

unscented Kalman filter (SGMUKF), based on the splitting of Gaussian distributions

and the detection of nonlinearity has been presented. The SGMUKF method has

been applied to the problem of orbit uncertainty prediction and rectification using

low fidelity and high fidelity dynamical models.

Several concepts relating to probability and more specifically operations on

probability density functions (pdfs) were presented. Several measures relating to pdfs

were detailed, such as the L2 and NL2 distances, the likelihood agreement measure to

describe the overlap of two pdfs, and the differential and Rényi entropies. Methods

for the splitting of univariate and multivariate Gaussian distributions were extended

from those available in the literature and subsequently utilized in the application of

the SGMUKF.

Models for the simulation of the gravitational acceleration of a central body,

the gravitational acceleration due to other celestial bodies, and the acceleration/torques

that result from solar radiation pressure (SRP) acting on a macro plate-model of

an resident space object (RSO) were presented and utilized in the analysis of the
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SGMUKF.

The SGMUKF methodology, along with the more traditional approaches of

the extended Kalman filter (EKF) and unscented Kalman filter (UKF), was applied

to several problems in orbit uncertainty propagation, including circular orbit and

eccentric orbit test cases in a simplified tracking model and a geosynchronous-type

orbit in a higher fidelity tracking model. In each test case, the SGMUKF was shown

to outperform existing methods. As a final test of the SGMUKF, the rectification

of uncertainty via measurement was analyzed and the SGMUKF performance was

compared against that of the UKF. Once again, it was shown that the SGMUKF

significantly outperformed the existing method.

6.2 Future Research Considerations

In developing the SGMUKF approach, the propagation stage of the Gaussian

mixture unscented Kalman filter (GMUKF) was modified by detecting nonlinearity

during propagation and then applying a multivariate Gaussian distribution splitting

algorithm. The update stage, however, was left untouched from that of the GMUKF.

While the propagation stage of the SGMUKF ensures that each component remains

small enough that linearization can accurately describe the local nonlinear dynamical

system, it may be such that the measurement function is still significantly nonlinear

with respect to the state variables. To this extent, it would be beneficial to investigate

further modifications to the proposed SGMUKF that implement a measurement re-

finement step to ensure that the a priori state pdf is well-represented by linearization

over each component.

178



One benefit of utilizing a Gaussian mixtures approach in general is that it still

allows for the conventional understanding of uncertainty volumes that are expressed

using mean and covariance, which cannot necessarily be said for a higher-moment

algorithm. Additionally, since only the mean and covariance are implemented in

the SGMUKF, it is readily adapted to square-root methods, which may allow for

increased numerical stability and accuracy in the implementations. The square-root

methods can even be used with the differential entropy or Rényi entropy. To see this,

recall the Rényi entropy as

Rκ (x) =
1

2
log

∣

∣

∣
2πκ

1

κ−1P

∣

∣

∣
.

Then, define the square-root factor S such that P = SST , such that

Rκ (x) =
1

2
log

∣

∣

∣
2πκ

1

κ−1SST
∣

∣

∣

= log

∣

∣

∣

∣

√

2πκ
1

κ−1S

∣

∣

∣

∣

.

Only the Rényi entropy was presented here, but the same process holds for the dif-

ferential entropy. Therefore, given a square-root application, the Rényi entropy or

differential entropy can be implemented in the same manner for nonlinearity detec-

tion.
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Appendix A

Attitude Considerations

Unlike representations of translational position in which there are only but a

few options, the options for representing the rotational state of an object are quite

numerous. The methods commonly employed in this work are that of the rotation

matrix and the quaternion. For a more in-depth treatment of attitude representations,

see Shuster.58 The aim herein is to establish the basics of the representations of

attitude as well as discuss alterations to some previously presented algorithms when

using quaternions.

Since the rotation matrix is commonly utilized in the mapping of vectors from

one frame to another, the quaternion is often converted to a rotation matrix in order

to accomplish the frame rotation. First of all, a comment on notation is needed.

Quaternion are denoted by bold lowercase symbols with overbars. Furthermore, the

vector part of the quaternion is given by the same symbol in bold with no overbar

and the scalar part of the quaternion is given by the same symbol in non-bold with

no overbar. That is, for a quaternion q̄, we have

q̄ =

[

q

q

]

,

where q is the vector part of the quaternion and q is the scalar part of the quaternion.
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With this convention, the conversion of a quaternion to a rotation matrix is given by

T = I − 2q[q×] + 2[q×]2 . (A.1)

Quaternion multiplication (i.e. the composition of rotations) for any two arbitrary

quaternions, p̄ and r̄ is defined such that multiplication of the respective rotation

matrices occurs in the same order, and is given by

p̄⊗ r̄ =

[

p

p

]

⊗
[

r

r

]

=

[

pr + rp− p× r

pr − pTr

]

,

where the symbol ⊗ is used to denote quaternion multiplication. In the special case

that the quaternion is used to represent a small rotation, it is such that the small

angle quaternion δq̄ is given by

δq̄ =

[

1
2
δθ
1

]

,

where δθ is a vector of small angles.

A.1 Averaging Quaternions

In many of the previously presented algorithms (i.e. the unscented trans-

form (UT) and the method of moments), the average value of state variables is

required, for instance the weighted average of the sigma-points in the UT, or the

weighted average of the means in the method of moments. When the state includes

a quaternion, the simple implementation of a normalized weighted sum no longer

provides an average that retains the properties of a quaternion. Therefore, an aver-

aging algorithm for quaternions must be implemented. In the cases mentioned, the
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problem is to determine an average quaternion given a set of n quaternions q̄i with

associated scalar weights wi. As Markley42 notes, the simple procedure of determining

the average quaternion via

q̄avg =
1

wtot

n
∑

i=1

q̄i where wtot =
n

∑

i=1

wi (A.2)

presents two notable issues. First, the average quaternion is not necessarily unit norm.

And second, since q̄i and −q̄i represent the same attitude, an averaging algorithm

should not be susceptible to sign changes in q̄i, which Eq. (A.2) is. Markley42 fully

addresses the problem of determining a proper average quaternion; therefore, the

details of the derivation are omitted and only the final results are given. To determine

the average quaternion, first compute a matrix M ∈ R
4×4 as

M =

n
∑

i=1

wiq̄iq̄
T
i .

Then, it can be shown that the average quaternion is given by the maximization

problem

q̄avg = argmax
q̄∈S3

q̄TMq̄ . (A.3)

The maximization problem of Eq. (A.3) can then be case in terms of finding q̄ that

maximizes the performance index

J = q̄TMq̄ . (A.4)

However, the constraint on the norm of the quaternion must be accounted for, which

can be accomplished by adjoining the unit norm constraint to the performance index

183



with a Lagrange multiplier, λ, such that the augmented performance index is given

by

J ′ = q̄TMq̄ + λ(q̄T q̄ − 1) .

It is then straightforward to show that the first-order optimality conditions lead to

an eigenvalue problem of the form29

Mq̄ = λq̄ ,

and that the performance index of Eq. (A.4) is given by

J = λ .

Therefore, since the goal is the maximize the performance index, the average quater-

nion is given by the eigenvector of M corresponding to the largest eigenvalue of M .

It is noted then that this procedure not only leads to an average quaternion which is

unit norm, but also leads to a process that is not affected by a sign change in any of

the q̄i terms since the performance index is in quadratic form.

A.2 The Gaussian and Gaussian Mixture Model Distribu-

tions

Since computation of either the Gaussian probability density function (pdf) or

the Gaussian mixture model (GMM) pdf that were presented in Section 2.1 require

the subtraction of the random vector from its mean, adaptation of the computation

of the Gaussian pdf must be considered when attitude is part of the random variable.

Since the GMM pdf encompasses the case of a single Gaussian pdf, only the GMM
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pdf will be considered. Recall the GMM pdf from Section 2.1, which was given by a

weighted sum of Gaussian pdfs to be

p(x) =

L
∑

i=1

wipg(x ; mi,Pi) , (A.5)

where each Gaussian component has the form

pg(x ; mi,Pi) = |2πPi|−1/2 exp

{

−1
2
(x−mi)

TP−1
i (x−mi)

}

.

Furthermore, to retain the properties of a valid pdf (that is, to ensure positivity across

the support of the pdf and to ensure that the area under the pdf is one), the weights

must all be positive and must sum to one, that is

wi ≥ 0 ∀ i ∈ {1, 2, . . . , L} and

L
∑

i=1

wi = 1 .

To adapt the evaluation of the GMM pdf of Eq. (A.5) for use with quaternions, let

the random variable x and the set of means mi be broken into non-quaternion and

quaternion parts, such that

x =

[

x1

x̄2

]

and mi =

[

m1,i

m̄2,i

]

.

Furthermore, define di = x−mi, and let it be broken into parts as

di =

[

d1,i

d̄2,i

]

.

Since d1,i involves subtraction of the non-quaternion parts of x andm1,i, no alteration

needs to be made. However, to compute d2,i, consider the rotational difference of x̄2

from m̄2,i as given by

δq̄i = x̄2 ⊗ m̄−1
2,i . (A.6)
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Then, assuming that δq̄i can be well represented by a small angle quaternion yields

δq̄i =

[

1
2
δθi

1

]

,

such that the vector of small rotation angles described by δθi can be computed as

twice the vector part of δq̄i, or

δθi = 2 vec
(

x̄2 ⊗ m̄−1
2,i

)

,

where vec (·) denotes taking only the vector part of the quaternion argument. The

distance d2,i is then taken to be this representation of the rotational difference between

x̄2 and m̄2,i, such that di is given in full by

d1,i = x1 −m1,i

d2,i = 2 vec
(

x̄2 ⊗ m̄−1
2,i

)

.

By the definition of di, the Gaussian pdf can be reformulated as

pg(x ; mi,Pi) = |2πPi|−1/2 exp

{

−1
2
dT
i P

−1
i di

}

,

which enables computation of the GMM pdf via Eq. (A.5).

A.3 Splitting a Multivariate Gaussian Distribution

One of the central algorithms utilized in the splitting Gaussian mixture un-

scented Kalman filter (SGMUKF) is that of splitting a multivariate Gaussian dis-

tribution, which is summarized as: given a component of a GMM pdf represent by

weight, mean, and covariance w, m, and P respectively, a set of new components
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is generated by splitting along the kth column of the square-root matrix, S, of the

covariance matrix, and so the splitting procedure follows as

wi = w̃iw (A.7a)

mi = m+ m̃isk (A.7b)

Pi = SiS
T
i , (A.7c)

where sk is the kth column of the square-root factor, S, and Si is the square-root

factor of the ith new component, which is

Si = [s1 , . . . , σ̃isk , . . . , sn] .

Furthermore, w̃i, m̃i, and σ̃i, are dictated by the univariate splitting library chosen

for the multivariate splitting process. Since the algorithm relies on adding an offset

to the original component mean, some adaptation for the case where a quaternion is

present in the state must be considered. As such, let the original mean, m be broken

into its non-quaternion and quaternion parts as

m =

[

m1

m̄2

]

.

Similarly, let the kth column of the square-root factor be broken into s1,k and s2,k as

sk =

[

s1,k
s2,k

]

,

where s1,k corresponds to the non-quaternion part and s2,k corresponds to the quater-

nion part. Note, however, that s2,k is not a quaternion. Since the uncertainty for

attitude is typically represented in a lower-dimensional space of small angles, s2,k

187



actually represents the portion of sk corresponding to this small-angle space. Then,

if the ith new component mean is given by non-quaternion and quaternion parts as

mi =

[

m1,i

m̄2,i

]

,

it is readily observed that by Eq. (A.7b), m1,i is

m1,i = m1 + m̃isk . (A.8)

The m̄2,i term is found by considering the rotational addition of m̃is2,k to the quater-

nion m̄2. Since m̃is2,k is a vector of small angles, this rotational additional is accom-

plished via quaternion multiplication as

m̄2,i =

[

1
2
m̃is2,k
1

]

⊗ m̄2 . (A.9)

Then, since m̄2,i will not in general be unit norm, the resultant quaternion is nor-

malized, yielding

m̄2,i =
m̄2,i

‖m̄2,i‖
. (A.10)

Splitting of the weight and covariance does not require any modification since no

quaternion operations are employed, which is readily observed from Eqs. (A.7a) and (A.7c).

Therefore, only the splitting of the mean requires modification, and from the preced-

ing developments, the ith new component mean is given by Eqs. (A.8) and (A.9), with

the additional need to ensure the unit norm requirement via Eq. (A.10).
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A.4 The Method of Moments

Recall the method of moments approach to combining components of a GMM

pdf, which was presented in Section 2.4.1, and is given by

wm =

n
∑

k=1

wk (A.11a)

mm =
n

∑

k=1

wk

wm

mk (A.11b)

Pm =
n

∑

k=1

wk

wm

(Pk +mkm
T
k )−mmm

T
m . (A.11c)

To adapt the method of moments approach for the inclusion of attitude quaternions,

first note that the equations for the method of moments may be rewritten as

wm =
n

∑

k=1

wk (A.12a)

mm =
n

∑

k=1

wk

wm

mk (A.12b)

Pm =
n

∑

k=1

wk

wm

[

Pk + (mk −mm)(mk −mm)
T
]

, (A.12c)

where it is seen that the only term changed in the new version is that of Pm. The

equality of Eq. (A.12c) to Eq. (A.11c) is established by starting from Eq. (A.12c) and

expanding the outer product of the term (mk −mm) with itself, which yields

Pm =

n
∑

k=1

wk

wm

(

Pk +mkm
T
k −mmm

T
k −mkm

T
m +mmm

T
m

)

.

Then, by breaking the summation into parts and using Eq. (A.11b), it is found that

Pm =

n
∑

k=1

wk

wm
(Pk +mkm

T
k )− 2mmm

T
m +

n
∑

k=1

wk

wm
mmm

T
m . (A.13)
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Since, from Eq. (A.11a), wm =
∑n

k=1wk, it follows that
∑n

k=1
wk

wm
= 1, such that

Eq. (A.13) becomes

Pm =

n
∑

k=1

wk

wm
(Pk +mkm

T
k )−mmm

T
m ,

and the desired result that Eq. (A.12c) is equivalent to Eq. (A.11c) is established.

With Eqs. (A.12) as the relevant equations for the method of moments, we

now consider the situation in which an attitude quaternion is present. In this case,

the implementation of Eq. (A.12a) poses no difficulty and is left unchanged. However,

since Eq. (A.12b) requires the averaging of the component means, the approach must

be adapted for the presence of quaternions. As such, let each of the n means, mk be

broken down into a non-quaternion part and a quaternion part as

mk =

[

m1,k

m̄2,k

]

.

Similarly, let the merged mean mm be broken down into a non-quaternion part and

a quaternion part as

mm =

[

m1,m

m̄2,m

]

.

Then, m1,m can be determined by the standard approach of Eq. (A.12b), i.e.

m1,m =

n
∑

k=1

wk

wm
m1,k .

The quaternion part of mm is simply an average quaternion. Therefore, m̄2,m can

be found using the approach of Section A.1 with the kth quaternion in the averaging

process being given by m̄2,k and an associated weight wk

wm
.
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To determine the merged covariance Pm, define the difference from the kth

mean to the merged mean to be dk = mk −mm. Again, separate dk into a non-

quaternion part and a quaternion part as

dk =

[

d1,k

d̄2,k

]

.

The non-quaternion part of dk is readily found from simple vector subtraction, and

the quaternion part of dk can be defined as twice the vector part of m̄2,k ⊗ m̄−1
2,m,

yielding dk as

dk =

[

m1,k −m1,m

2 vec
(

m̄2,k ⊗ m̄−1
2,m

)

]

.

Then, by substituting the definition of dk into Eq. (A.12c), the merged covariance is

found by

Pm =
n

∑

k=1

wk

wm

(

Pk + dkd
T
k

)

.

A.5 The Kalman Filter Update

The next issue to be addressed when utilizing quaternions is that of the update

under the Kalman filter paradigm. Recall that the state update is given by

x̂+
k = x̂−

k +Kk(yk − ŷ−
k ) ,

where x̂+
k is the a posteriori state estimate, x̂−

k is the a priori state estimate, Kk

is the Kalman gain, yk is the incoming measurement data, and ŷ−
k is the filter’s

prediction of the measurement using the a prior state distribution. Let the a prior
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and a posteriori state estimates be broken in non-quaternion and quaternion parts as

x̂−
k =

[

x̂−
1,k

ˆ̄x−
2,k

]

and x̂+
k =

[

x̂+
1,k

ˆ̄x+
2,k

]

.

Furthermore, let ∆xk be defined as

∆xk = Kk(yk − ŷ−
k ) ,

such that it too may be broken into parts as

∆xk =

[

∆x1,k

∆x2,k

]

.

Similar to the discussion of the modified splitting algorithm, ∆x2,k represents an

attitude update in a small-angle space which is to be added onto the a priori quater-

nion estimate. It is clear that the non-quaternion portion of the update remains

unchanged, and therefore

x̂+
1,k = x̂−

1,k +∆x1,k .

The quaternion portion of the update, however, is found by considering the rotational

addition of ∆x2,k to the a priori quaternion estimate ˆ̄x−
k . Since ∆x2,k is a vector of

small angles, this rotational additional is accomplished via quaternion multiplication

as

ˆ̄x+
k =

[

1
2
∆x2,k

1

]

⊗ ˆ̄x−
k .

Then, since ˆ̄x+
k will not in general be unit norm, the resultant quaternion is normal-

ized, yielding

ˆ̄x+
k =

ˆ̄x+
k

∥

∥ ˆ̄x+
k

∥

∥

.
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This ad-hoc re-normalization procedure is in fact equivalent to considering a con-

strained optimization problem (which accounts for the unit norm constraint on the

quaternion) for determining the Kalman update.76

A.6 The Unscented Transform

The final algorithmic alteration for the inclusion of attitude is that of the UT,

which was given in its standard form in Section 3.2.1. To adapt the UT for attitude,

consider a nonlinear function of the form

z = g(x) ,

where x is described by a known mean and covariance, respectively mx and Px.

The UT seeks to approximate the mean and covariance of the output, z, which are

denoted by mz and Pz. To facilitate the inclusion of attitude, let the input x and its

associated mean mx be given by a non-quaternion part and a quaternion part, such

that

x =

[

x1

x̄2

]

and mx =

[

m1,x

m̄2,x

]

.

Accordingly, the set of K sigma-points associated with the input are also given by a

non-quaternion and a quaternion part, yielding

X i =

[

X 1,i

X̄ 2,i

]

,

and the weights associated with the sigma-points are given by wi where i ∈ {1, . . . , K}

and
∑K

i=1wi = 1. Then, the set of transformed sigma-points are given by

Z i = g(X i) ∀ i ∈ {1, . . . , K} ,
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where, for generality, it is assumed that the transformed sigma-points are comprised

of a non-quaternion part and a quaternion part, or

Z i =

[

Z1,i

Z̄2,i

]

.

Since, in general, the transformed sigma-points have both non-quaternion and quater-

nion parts, so then does the transformed mean, such that mz is given by

mz =

[

m1,z

m̄2,z

]

.

Recalling from the standard form of the UT that the transformed mean is given by the

weighted sum of the transformed sigma-points, it follows then that the non-quaternion

part of the mean is

m1,z =
K
∑

i=1

wiZ1,i .

As previously discussed, the simple implementation of a normalized weighted sum of

the quaternion part of the transformed sigma-points no longer provides an average

that retains the properties of a quaternion. Therefore, m̄2,z is determined by ap-

plying the averaging algorithm for quaternions given in Section A.1 with Z̄2,i as the

quaternions to be averaged, and wi as their associated weights. Now, let the difference

between the transformed sigma-points and the transformed mean be defined by dz,i,

such that

dz,i =

[

d1,z,i

d2,z,i

]

.

Since d1,z,i involves subtraction of the non-quaternion parts of Z and mz, no alter-

ation needs to be made. However, to compute d2,zi, consider the rotational difference
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of Z̄2,i from m̄2,z as given by

δq̄i = Z̄2,i ⊗ m̄−1
2,z,i .

Then, assuming that δq̄i can be well represented by a small angle quaternion yields

δq̄i =

[

1
2
δθi

1

]

,

such that the vector of small rotation angles described by δθi can be computed as

twice the vector part of δq̄i, or

δθi = 2 vec
(

Z̄2,i ⊗ m̄−1
2,z,i

)

,

where vec (·) denotes taking only the vector part of the quaternion argument. The

distance d2,i is then taken to be this representation of the rotational difference between

Z̄2,i and m̄2,z,i, such that di is given in full by

d1,z,i = Z1,i −m1,z

d2,z,i = 2 vec
(

Z̄2,i ⊗ m̄−1
2,z

)

.

Then, the covariance of the output of the nonlinear function is found using dz,i as

Pz =

K
∑

i=1

widz,id
T
z,i .

Additionally, if it desired to compute the cross-covariance between the input and the

output, define dx,i to be the difference between the sigma-points and their associated

mean. Then, let dx,i be given by

dx,i =

[

d1,x,i

d2,x,i

]

.
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Following the same process as developed for dz,i, it follows that

d1,x,i = X 1,i −m1,x

d2,x,i = 2 vec
(

X̄ 2,i ⊗ m̄−1
2,x

)

,

such that the cross-covariance between the input and the output of the nonlinear

function is

Pxz =
K
∑

i=1

widx,id
T
z,i .

As with the standard UT algorithm, the selection of the sigma-points and

their associated weights is chosen in accordance with the symmetric sigma-point set.

Let the sigma-points, denoted by X i be comprised of a non-quaternion part and a

quaternion part as

X i =

[

X 1,i

X̄ 2,i

]

.

The standard symmetric sigma-points are found by adding the ith scaled column of

the square-root factor of Px to the mean, mx. In the case of the non-quaternion part

of X i, this process requires no modification, and so the K = 2n values of X 1,i and

their associated weights are given by

wi =
1

2n

X 1,i = m1,x +
√
ns1,x,i

wi+n =
1

2n

X 1,i+n = m1,x −
√
ns1,x,i ,
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for i ∈ {1, . . . , n}, where n is the dimension of the input x, Sx is a square-root factor

of Px such that Px = SxS
T
x , and sx,i is the i

th column of Sx. Furthermore, s1,x,i is the

portion of the ith column of the square-root factor of Px which represents the non-

quaternion related elements of the square-root matrix (and consequently covariance

matrix), which is given by breaking sx,i into parts as

sx,i =

[

s1,x,i
s2,x,i

]

.

To generate the quaternion part of X i, we consider the rotational addition (or sub-

traction) of
√
ns2,x,i to the quaternion part of the mean, m̄2,x. Since

√
ns2,x,i is

a vector of small angles, this rotational additional is performed using quaternion

multiplication, such that the quaternion part of the sigma-points and the associated

weights are given by

wi =
1

2n

X̄ 2,i =

[

1
2

√
ns2,x,i
1

]

⊗ m̄2,x

wi+n =
1

2n

X̄ 2,i+n =

[

−1
2

√
ns2,x,i
1

]

⊗ m̄2,x .

Then, since the generated quaternion elements of the sigma-points, X̄ 2,i, will not in

general be unit norm, the resultant quaternions are normalized, yielding

X̄ 2,i =
X̄ 2,i

∥

∥X̄ 2,i

∥

∥

,

for i ∈ {1, . . . , 2n}.
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[53] Alfréd Rényi. On measures of entropy and information. In Jerzy Neyman,

editor, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics

and Probability, volume 1 of Contributions to the Theory of Statistics, pages 547–

561. University of California Press, June-July 1961.

204



[54] Ben Rose. Resident space object models. Technical report, Emergent Space

Technologies, Inc., 2010.

[55] Wilson J. Rugh. Linear System Theory. Prentice Hall, Upper Saddle River,

NJ, 2nd edition, 1996.

[56] Paul W. Schumacher, Jr. US naval space surveillance upgrade program 1999-

2003. Fifth European Conference on Space Debris, March 2009.

[57] Claude E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27:379–423, 623–656, July, October 1948.

[58] Malcolm D. Shuster. A survey of attitude representations. The Journal of the

Astronautical Sciences, 41(4):439–517, 1993.

[59] Gerald L. Smith, Stanley F. Schmidt, and Leonard A. McGee. Application

of statistical filter theory to the optimal estimation of position and velocity on

board a circumlunar vehicle. Technical Report R-135, NASA, 1962.
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