

Copyright

by

Joshua Blake Brewster

2010

The Report Committee for Joshua Blake Brewster
Certifies that this is the approved version of the following report:

Dependency Based CCG Derivation and Application

APPROVED BY

SUPERVISING COMMITTEE:

Jason Baldridge

Katrin Erk

Supervisor:

Dependency Based CCG Derivation and Application

by

Joshua Blake Brewster, B.A.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Arts

The University of Texas at Austin

December 2010

 iv

Abstract

Dependency Based CCG Derivation and Application

Joshua Blake Brewster, M.A.

The University of Texas at Austin, 2010

Supervisor: Jason Baldridge

This paper presents and evaluates an algorithm to translate a dependency treebank

into a Combinatory Categorial Grammar (CCG) lexicon. The dependency relations

between a head and a child in a dependency tree are exploited to determine how CCG

categories should be derived by making a functional distinction between adjunct and

argument relations. Derivations for an English (CoNLL08 shared task treebank) and for

an Italian (Turin University Treebank) dependency treebank are performed, each

requiring a number of preprocessing steps.

In order to determine the adequacy of the lexicons, dubbed DepEngCCG and

DepItCCG, they are compared via two methods to preexisting CCG lexicons derived

from similar or equivalent sources (CCGbank and TutCCG). First, a number of metrics

are used to compare the state of the lexicon, including category complexity and category

growth. Second, to measures the potential applicability of the lexicons in NLP tasks, the

 v

derived English CCG lexicon and CCGbank are compared in a sentiment analysis task.

While the numeric measurements show promising results for the quality of the lexicons,

the sentiment analysis task fails to generate a usable comparison.

 vi

Table of Contents

List of Tables ... viii

List of Figures...ix

Chapter 1: Introduction ...1

1.1 Dependency Grammars..2
1.2 Combinatory Categorial Grammars..4

Chapter 2: Previous Work ..6

2.1 CCGbank...6

2.2 TutCCG...6
2.3 Turkish CCG ...7

2.4 Benefit of this Approach..7

Chapter 3: Extracting Categories from Dependency Trees..................................10
3.1 Current Data ..12

3.2 Derivation Algorithm...12

3.3 Basic Algorithm..13

3.3.1 Categorize Argument/Adjunct Relations..........................13
3.3.2 Assign Each Node’s POS Tag as Category13

3.3.3 Calculate Node Categories...13

3.4 Applying Compositional Rules to the Derivation.........................14

3.5 Reducing Categories ...17
3.6 Preprocessing Steps...17

3.6.1 CoNLL08 - Handling Coordination17

3.6.2 CoNLL08 – Money Issues...18

3.6.3 CoNLL08 - Hyphenated Constructions............................19
3.6.4 CoNLL08 - Tagging Errors ...19

3.6.5 TUT – Articles/Determiners ..20

3.6.6 TUT – Compressing Prepositions + Articles....................20

3.6.7 TUT – Pre-Noun Adjectives ..20

 vii

3.7 Final Algorithm ..20

Chapter 4: Evaluation...23
4.1 Comparison with Category Statistics ...23

4.1.2 Category Counts and Growth ...23

4.1.2 Category-Category Mapping ..32

4.1.3 Category Complexity ...34
4.2 Statistical Predictive Task – Sentiment Analysis37

4.2.1 Data ...38

4.2.3 Process...39

4.2.4 Results ...40
4.2.4.1 Full Dataset ..40

4.2.4.2 Movie Review Polarity Dataset Results42

4.2.4.3 Sentence Polarity Dataset Results44

4.2.4.4 Multi-Domain Sentiment Dataset Results46
4.2.5 Summary..48

Chapter 5: Conclusions ..50

Appendix A: CoNLL08 Dependency Relations ..52

Appendix B: TUT Dependency Relations...53

Appendix C: Comparison Category Mapping ..55

References ...56

 viii

List of Tables

Table 1: Ten tokens with highest category counts...26

Table 2: Ten Most Frequent Categories in the DepEngCCG and CCGbank........27

Table 3: Ten Most Frequent Categories in DepItCCG and TutCCG....................28

Table 4: Similarity Measures of Lexicons ..33

Table 5: Results of Sentiment Analysis Using Word-Categories as Features.......41

Table 6: Results of Sentiment Analysis Using Categories Only as Features........41

Table 7: Error Breakdown for Classification Using Word-Categories.................42

Table 8: Error Breakdown for Classification Using Categories Only42

Table 9: Classification Results on Movie Review Polarity Dataset44

Table 10: Classification Results on Sentence Polarity Dataset47

Table 11: Classification Results on Multi-Domain Dataset48

Table 12: CoNLL08 Adjunct Relations ..52

Table 13: CoNLL08 Argument Relations ...52

Table 14: TUT Adjunct Relations...53

Table 15: TUT Argument Relations ...54

Table 16: English Category Mapping ...55

Table 17: Italian Category Mapping ...55

 ix

List of Figures

Figure 1: Sample Dependency Relations within Sentence.....................................3

Figure 2: CCG Derivation of a Sample Sentence..5

Figure 3: Dependency Tree Structure of a Sample Sentence11

Figure 4: CCG Derivation Using Dependency Derived Categories11

Figure 5: Example of the adverb ‘quickly’ in an intransitive sentence.................15

Figure 6: Example of the adverb ‘quickly’ in a transitive sentence15

Figure 7: The adverb ‘quickly’ in a intransitive sentence with composition rules15

Figure 8: The word ‘quickly’ in a transitive sentence with composition rules16

Figure 9: Dependency trees showing analysis of dollar/$....................................18

Figure 10: Example of a Hyphenated Construction...19

Figure 11: English sentence from dependency and constituent-based derivational

processes ...21

Figure 12: Italian sentence from dependency and constituent-based derivational

processes ...22

Figure 13: Category growth for DepEngCCG...29

Figure 14: Category growth for CCGbank..30

Figure 15: Category growth for DepItCCG...31

Figure 16: Category growth for TutCCG..32

Figure 17: Category Complexity Distribution for DepEngCCG Derivations.......35

Figure 18: Category Complexity Distribution for CCGbank Derivations35

Figure 19: Category Complexity Distribution for DepItCCG Derivations...........36

Figure 20: Category Complexity Distribution for TutCCG Derivations36

 1

Chapter 1: Introduction

The ability to understand a document and extract meaningful data from text

requires the assignment of an underlying structure. Current methods use parsing models

trained on various grammar formalisms to attempt to tease apart the relationships

between words, determine constituency structure, and assign head/argument relations.

The creation of parsers usually requires the use of a large annotated corpus; the

Penn Treebank (Marcus, Santorini and Marcinkiewicz 1993; Marcus et al. 1994) has

become the de facto corpus for training and testing parsing models for English. Early

statistical methods of parsing on the Penn Treebank have met some success by use of

part-of-speech (POS) tags, yet these methods often times ignored the intrinsic syntactic

information offered the tags; for example, a word with the POS of JJ (adjective) will

usually modified a noun and therefore can infer the existence of one in the sentence.

Movement to capture the inherent syntactic structure of words resulted in a number of

formalisms that allow the underlying argument structure to be recovered; among these are

Lexical-Functional-Grammar (LFG) (Kaplan and Bresnan 1982), Tree-Adjoining-

Grammar (TAG) (Joshi and Schabes 1992), Head-driven Phrase-Structure Grammar

(HPSG) (Pollard and Sag 1994) and Combinatory Categorial Grammar (CCG) (Steedman

1996, 2000; Steedman and Baldridge (to appear)). As with any manual annotation task,

creating formalism-specific lexicons by hand is both labor and time intensive. A number

of approaches have been introduced to extract lexicons automatically from the Penn

Treebank into various formalisms: LFG (Cahill et al. 2002; O’Donovan et al. 2005; Shen

and Joshi 2005), HPSG (Miyao, Ninomiya and Tsujii 2004), TAG (Xia 1999, 2001; Xia,

Palmer and Joshi 2000; Chen and Vijay-Shanker 2000; Chen, Bangalore and Vijay-

 2

Shanker 2006) and CCG (Hockenmaier and Steedman 2003). In this paper, CCG

extractions will be the focus.

Combinatory Categorial Grammar is a lexicalized formalism that excels in

dealing with long and short-range dependencies. Due to the ability to do supertagging as

“almost parsing” (Bangalore and Joshi 1999), rapid parsing speeds have been achieved

(Clark and Curran 2004), making CCG lexicons particularly attractive for further parsing

applications, as well as other tasks that can take advantage of CCG supertags.1 In this

paper, I present a method to generate a CCG lexicon from a dependency treebank. I will

revisit and expand upon the implementation in Ponvert (2008), drawing motivation from

Hockenmaier & Steedman (2003) and Cakici (2005) to automatically induce and evaluate

CCG lexicons from two dependency treebanks: the English dependency treebank

extracted from the Penn Treebank and other sources that was used for the CoNLL-2008

shared task (Surdeanu et al. 2008) and the Italian Turin University Treebank (TUT).

These two treebanks have been selected as there are preexisting CCG lexicons from the

same or similar source that can be used as comparison.

Dependency trees encode both the linear ordering and dependencies that are

needed to induce a CCG lexicon. The goal of this paper is to determine the effectiveness

of dependency relations and dependency links in generating CCG categories without

assuming or creating any intermediate structure in the tree.

1.1 DEPENDENCY GRAMMARS

Dependency grammars give hierarchical structure between headwords and

dependents via dependency relationships. These relationships are usually based on some

notion of semantic or syntactic roles. A dependency tree is formed as an acyclic graph

1 For the purposes of this paper, I will use supertag and categories interchangeably. For origins of
supertags, see Bangalore and Joshi (1999).

 3

where nodes can only have one parent; dependency relations connect parent nodes to

daughter leaf nodes: see Figure 1. In this example, the word jumped is the root of the

sentence as there is no node that has jumped as its dependent. The node jumped has two

dependents, fox and over, that are connected via the relations NP-SUBJ and PP

respectively. These nodes, in turn, have their own dependents. This pattern continues

until the leaf nodes of the tree are reached. While a node can have more than one

dependent, only one parent node is permitted. See Nivre (2005) for a discussion on

theoretical dependency grammars and analyses.

Dependency parsing involves an algorithm to predict dependencies from a unique

headword to a dependent word, without having the benefit of syntactic structure. Two of

the more successful dependency parsers are MaltParser (Nivre and Hall, 2007) and

MSTParser (R. McDonald, 2005). MaltParser employs a left-to-right shift-reduce

algorithm to determine dependency links, whereas MSTParser measures the strength of a

link between words in conjunction with a search algorithm. With the induction of

supertags from dependency relations, a much more rich feature structure would replace

the simple POS tag, giving a better indication of syntactic structure and argument

relation/placement. The supertag could help predict the kind and amount of dependent

relations a given word may have.

Figure 1: Sample Dependency Relations within Sentence

 4

1.2 COMBINATORY CATEGORIAL GRAMMARS

Combinatory Category Grammar (CCG) has its roots in the classical lexicalist

theory of Categorial Grammar (Bar-Hillel 1953; Ajdukiewicz 1935; Lambek 1958). It is

a lexical grammar formalism in which the categories of words combine together by

means of a small number of defined rules. The combinatory nature of the categories

removes the necessity of movement and deletion rules found in other syntactic theories.

At the same time, the categories encode syntactic information following the Principle of

Compositionality of Frege (1923), in that syntax and interpretation are directly related.

These categories are derived of a series of atomic categories as well as the

functional slash operators \ and /. A category is given as an atomic category alone (e.g np,

n, s) or in the functional form of X “slash” Y, where the word looks in the direction of

the slash for something of the category Y and, if found, returns the category X.

Naturally, a category of the form X/Y expects a word with category Y to the right; a

category of the form X\Y expects a word with category Y to the left. The combinatory

rules are as follows:

1. Application:

a. A/B B ⇒ > A

b. B A\B ⇒ < A

2. Composition:

a. A/B B/C ⇒ >B A/C

b. B \C A\B ⇒ <B A\C

3. Cross Composition:

a. A/B B\C ⇒ >Bx A\C

b. B/C A\B ⇒ <Bx A/C

 5

Other rules, such as type-raising and substitution will not be discussed here. As

an example, the sentence from Figure 1 is shown below with CCG categories assigned to

each word. A derivation is given, showing that the sentence returns an s when all the

categories are successfully combined. For more details and extensions, see Steedman,

(2000).

Figure 2: CCG Derivation of a Sample Sentence

 6

Chapter 2: Previous Work

2.1 CCGBANK

Hockenmaier & Steedman (2003) converted phrase structure trees from the Penn

Treebank and derived CCG categories, using both the syntactic ordering and hierarchy

inherent in the sentence trees. Due to the fact that the Penn Treebank encodes trace and

null elements within the trees, this treebank was ideal to allow resolution of long-range

dependencies in relative clauses and extraction. Two wide-coverage parsers have been

created using CCGbank that are able to recover the long-range dependencies quickly and

efficiently (Clark, Hockenmaier and Steedman 2002; Hockenmaier and Steedman 2002;

Clark and Curran 2004, 2007).

At a high level, the derivational algorithm used to create the CCGbank translates

constituent-based sentence trees into binary-branching trees that model the combinatory

aspect of CCG. Categories are then derived for each word and word-to-word

dependencies were assigned in the end. While many details of Hockenmaier’s algorithm

are similar to the algorithm presented in this article, the fundamental difference is that the

presented algorithm requires as input a dependency tree; thus, it is dependency relations

and hierarchy rather than constituent structure that will drive category creation.

2.2 TUTCCG

An Italian CCGbank was similarly created using the Turin University Treebank

(TUT) by Bos, Bosco & Mazzei (2009). For this derivation, the TUT dependency

treebank (Bosco 2003) is converted to a constituency treebank, then follows the method

given by Hockenmaier for the English CCGbank.

This method resulted in an intermediary treebank called ConsTUT, for

Constituent Turin University Treebank. Each terminal node in ConsTUT can be mapped

 7

back to a node in the original TUT format; the resulting non-terminal structure represents

the projections of the terminal node in XBar theory. In this format, distinctions between

arguments and modifiers are determined at structural level. As with the English

CCGbank, each node is classified as a head, complement or adjunct and the derivation

process uses these distinctions to determine how to assign categories.

2.3 TURKISH CCG

Cakici (2005) further explores the derivation process, deriving a CCG lexicon

from a Turkish dependency treebank by assigning parts of speech corresponding to the

relationship to the parent node. The process recursively progresss through each word of

the sentence, using the dependency relation to derive an atomic category. For example, if

the dependency relation from the head to the dependent is OBJECT, then the dependent

is labeled as NP. Cakici mentions the possibility that dependency relations are too few to

make correct (sub)category choices automatically, in that words with vastly different

functions were bound under the same dependency relation. This potential set-back may

be remedied by use of a larger treebank, as the Turkish treebank used by Cakici was an

order of magnitude smaller than the Penn Treebank used by Hockenmaier, or perhaps by

using a more explicit relation set.

Cakici's approach induces a lexicon that manages to overcome obstacles of pro-

drop and subordination/relativization; results after the publishing of her paper showed

that parsing in Turkish did in fact improve.

2.4 BENEFIT OF THIS APPROACH

There are a few inherent characteristics that suggest that an approach employing

dependency trees rather than constituent structures may offer a better lexicon. As CCG

is a binary branching grammar, a conversion process is needed to convert Penn Treebank

 8

sentences into pseudo-binary branching trees. The automated conversion process allows

room for error. Using an inside-out combinatory aspect in conjunction with the one-to-

one relationship between dependents and heads, one can traverse a dependency tree in a

simulated binary fashion without creating an intermediate structure. Koller and

Kuhlman (2009) show this conversion is not one-way, creating a process to generate a

dependency tree by taking advantage of CCG sentence derivations’ natural dependency

structure.

The constituent Penn Treebank used to create the CCGbank has ambiguity at NP

structure. As example, the NP the hot pink roof is ambiguous as it is unclear if this NP

refers to a pink roof that is hot in temperature, or a roof that is the color of hot pink. As

no time was available for manual re-annotation, these NPs were converted into right

branching structure which were sometimes accurate and sometimes not (Hockenmaier,

2003). However, in Honnibal et al. (2010), the ambiguous noun phrases were corrected

in the CCGbank using the manual annotation from Vadas and Curran (2007). This

adaptation corrected 1.95% of the dependencies in CCGbank (Vadas and Curran 2008).

For dependency treebanks, this flat structure is not an issue, thus NPs and their respective

modifier structure will be accurate every time.

The use of dependency relations may offer better results in generating a lexicon,

as the relation shows the association between parent and daughter more explicitly than a

constituent structure approach. Furthermore, having various sets of dependency relations

allows greater potential in modification/customization of how the derivational approach

handles each relation.

This approach differs from Cakici’s approach in the manner that atomic

categories are assigned. Cakici used the dependency relations themselves to determine

the atomic categories of the dependent nodes. In contrast, this approach uses the part of

 9

speech tags assigned to the dependent nodes; the dependency relations will determine the

method in which atomic categories are combined to create factor categories.

 10

Chapter 3: Extracting Categories from Dependency Trees

A dependency tree can easily be converted to a CCG derivation. Given Figure 1,

we can redraw this graph in a more tree-like arrangement, given in Figure 3. In this

format, it is impossible to determine the original sentence order; however, many

treebanks supply indices so that the linear sentential order can be preserved.

A broad description of the induction principle will be given below, with a more in

depth algorithm given at the end of the chapter. As a simple example, in this sentence the

root word jumped has two children: fox and over. Between the parent fox and the

dependent fox, there is a NP-SUBJ relationship. As this is an argument relation, jumped

can be viewed as something that is looking to the left for an NP-SUBJ argument: using

POS tags, it is a VBD that is looking to the left for an NN. We can thus assign the

category in (4a). Between the parent jumped and the descendent over, there is a PP

(Prepositional Phrase) relation. Since PP is an adjunct relation to the root, it will not be

included in the lexical category for jumped. As another example, the word over is an

adjunct or modifier of the root jumped; therefore over is something that is looking to its

right for the argument prepositional-object and to the left for a verb to modify. Therefore

the category of jumped is used as a subcategory in the category for over (4b). The same

process can be performed on each word in the tree.

Once all words are given a category, the sentence derivation given in Figure 4 is

possible..

4. Sample Derived Categories

a. jumped:= VBD\NN

b. over:= ((VBD\NN)\(VBD\NN))/NN

 11

Figure 4: CCG Derivation Using Dependency Derived Categories

Figure 3: Dependency Tree Structure of a Sample Sentence

 12

3.1 CURRENT DATA

The current work and analysis is being performed on two dependency treebanks.

The first is supplied by the CoNLL-2008 shared task. This treebank was created from the

Penn Treebank, BBNs named entity corpus, PropBank and NomBank (Surdeanu et al

2008). Each input corpus was translated from the constituent based formalism of the Penn

Treebank to a dependency formalism (Johansson and Nugues 2007). There are a total of

around 40,000 sentences.

The second treebank is the Italian TUT dependency treebank. It contains only

around 2,400 sentences. This treebank comes in two different formats: the native TUT

format and the adapted CoNLL format. This facilitates creating a single base algorithm

for the derivation.

One significant distinction from other treebanks, namely the Penn Treebank, is

that these treebanks do not encode trace or null elements that arise in movement scenarios

such as wh-questions and relative clauses. This stymies the ability to easily resolve long-

range dependencies and extraction via dependency structure and relations alone.

3.2 DERIVATION ALGORITHM

The algorithm traverses the dependency trees, creating categories as it passes

from head to dependent much like was done above for the lexical entries in (7). In

creating the CCG lexicon, the primary concerns are 1) whether a word is an argument or

an adjunct to its parent and 2) how to treat said adjuncts and arguments during the

conversion process. In very loose terms, an argument is a word that fulfills a certain

pivotal syntactic-semantic role, such as SUBJECT, OBJECT or BENEFICIARY.

Adjuncts play a slightly different role; their presence or lack thereof does not determine

“grammaticality,” but instead adds further information into the sentence; for example

adjectives and adverbs. Ponvert (2008) determines if a dependency link is an argument

 13

relation or an adjunct relation in theCoNLL08 shared task treebank. For simplicity's sake,

the previously derived sets of adjunct and argument links will be used. Dependency

relations for the CoNLL08 treebank and the TUT treebank are given in Appendices A

and B, respectively.

3.3 Basic Algorithm

The algorithm is as follows:

• Categorize parent-daughter relations as Adjunct or Argument.

• Assign each node’s POS tag as its category.

• Calculate category of node using dependencies and their relations.

3.3.1 Categorize Argument/Adjunct Relations

First, the relationship of each node to its parent node is determined. Quite simply,

for a given node, if the relationship to its parent is in the predefined set of Arguments,

then it is assigned an argument role. Conversely (and just as simply), if the relationship

to its parent is in the predefined set of Adjuncts, then it is assigned an adjunct role. This

hard-coded approach seems to work well.

3.3.2 Assign Each Node’s POS Tag as Category

This step is a brute force and computationally cheap way to ensures that argument

nodes without their own argument daughters will have a category. As an example, see the

words fox and dog in Figure 3.

3.3.3 Calculate Node Categories

The category of each node is assigned. The category assignment can be viewed as

a function of adjunct/argument relations, parenthood and POS tags. For each node that

has an adjunct daughter, calculate the current element's category before calculating any of

 14

the dependent's categories. This will ensure that no adjuncts are induced using a parent

node that has not yet been fully defined. Category assignment is accomplished using the

following heuristic.

 Starting at the root element and working down the tree:

• Adjunct: Given the current word w1 with category c1 and its dependent w2,

if R(w1, w2) ∈ AdjunctRoles, then w2's category is c1\c1 or c1/c1

• Argument: Given the current word w1 with category c1 and its dependent

w2 with category c2, if R(w1, w2) ∈ ArgumentRoles, then w1's category is

c1\c2 or c1/c2.

If w1 has multiple argument relations that precede it, first calculate the left-

most/first argument as determined by linear order, then each proceeding argument until

w1 is reached in linear order of the sentence. If w1 has multiple argument relations that

follow it, calculate first the right-most/last argument in linear order, the each preceding

argument until w1 is reached. If there are arguments that both precede and follow w1, first

calculate using those that preceded, then those that follow. This ordering will ensure the

same category structure used in CCGbank and TutCCG., and will be quite necessary once

logical forms can be involved in the derivational process.

3.4 Applying Compositional Rules to the Derivation

This simple algorithm does not extract an optimal lexicon; for example the

algorithm assumes that adjuncts relations can only modify their heads by using the

application rules of CCG. Thus, for the example adverb quickly, it would require two

different categories to be able to modify the intransitive and transitive verbs in Figure 5

and Figure 6.

 15

Figure 5: Example of the adverb ‘quickly’ in an intransitive sentence

Figure 6: Example of the adverb ‘quickly’ in a transitive sentence

Figure 7: The adverb ‘quickly’ in a intransitive sentence with composition rules

Hockenmaier & Steedman (2003) found that allowing/assuming the CCG

composition rules in the derivation process greatly reduced the number of categories in

the lexicon while working on CCG Bank. This would allow a single category for the

word quickly, for example, to modify verbs in general, as in Figure 7 and Figure 8.

 16

The algorithm needs to be quite selective when deriving categories assuming the

composition rules, otherwise words might be able to combine in ways that would not be

desired: an adverb combining with a noun, for example. The rule, therefore, is that

composition rules can only be assumed when the following conditions are met:

5. Conditions for Assuming Composition

a. The current word has an adjunct relation with its head.

b. The current word modifies an argument or the root of a sentence.

To derive such a category: if the current word modifies an argument/root, then the

category root is the modified argument's part of speech tag + "slash" + modified

arguments part of speech tag. If the current word has an argument dependent, calculate

the remainder of the category; otherwise, the category is complete.

As an example, take the word over from the sentence found in Figure 1.2 Over

meets the conditions of (5); its category root is therefore jump's POS tag + \ + jump's POS

tag, thus rendering VBD\VBD. It also has an argument relation with dog, thus it looks to

the right for an NN. The final category would then be (VBD\VBD)/NN. Compared to the

original category of ((VBD\NN)\(VBD\NN))/NN, the new category is much simpler and

concise, fulfilling the intuition that the preposition over tends to modify verbs in general,

as opposed to strictly verbs of the intransitive or transitive variety.

2 The quick brown fox jumped over the lazy dog.

Figure 8: The word ‘quickly’ in a transitive sentence with composition rules

 17

3.5 Reducing Categories

There is an inherent issue of redundancy across categories, due to the simple

existence of tense and plurality. For the basic intransitive verb like sleep, the following

categories will be potentially derived: VBG\NN, VBZ\NN and VBD\NN. One simple and

easy method to reduce a number of excess categories is to devise a mapping that

collapses similar tags to a single tag group. For example:

6. VB = { VDZ,VBD, ... }

7. NN = { NNS, NN, ... }

In theory, the agreement data lost due to this step should not affect performance in

statistical parsing models, as sequences that disagree in tense/plurality/gender will be

inhibited due to their low probability.

3.6 Preprocessing Steps

For each input corpus, a number of individualized preprocessing steps were

required.3 Ideally this would not be necessary, however annotation conventions and

inconsistencies argued otherwise.

3.6.1 CoNLL08 - Handling Coordination

The dependency treebank encodes coordination by use of two dependency

relations; coordinators are assigned the dependency relation COORD, while the conjuncts

are given the category CONJ. For simple constructions like Mary kissed John and Bill,

the algorithm is quite sufficient. However, the addition of more elements in the

coordination required a number of preprocessing steps. Extending Mary’s dubious

behavior, for the elements in Mary kissed Sam, John and Bill that are not directly

adjacent to the coordinator and, dependencies for the conjuncts needed to be reassigned

3 All changes were verified with CCGbank and TutCCG lexicons.

 18

and the commas needed to be reinterpreted as coordinating elements. Not only did this

step prevent incorrect categories,4 but it also helped model the underlying syntax of the

constructions.

3.6.2 CoNLL08 – Money Issues

Monetary constructions in the treebank such as “$ 100” were annotated with the

dollar sign as the head and 6 and billion as dependents. This was done to maintain the

same dependencies in the two trees in Figure 9. In each tree, the lemma for dollar is the

head and 100 is the dependent.

Figure 9: Dependency trees showing analysis of dollar/$

 However, this would result in categories like $\$ for 100. Perhaps more

egregiously, the verb won in “I won $ 100” would be assigned a category like

(VB\NN)/$. A potential solution would have been to map the dollar sign to the category

NN to avoid the odd categories above.

The decision was made to reanalyze the last numeric item in the string to be the

root and have the dollar sign be a dependent; cases with the word dollar did not change.

While this loses the dependency similarities across similar constructions, it produces an

equivalent derivation to similar constructions in CCGbank.

4 Previously, elements in a list were all children of the first element. Thus John and Bill would be
dependents of Sam. This would result in John and Bill acting in an adjectival capacity modifying Sam.

 19

3.6.3 CoNLL08 - Hyphenated Constructions

Multiword compounds joined by hyphens are given special treatment in the

treebank. When annotating the treebank, information concerning the constituent structure

of the compounds was included as nodes in the dependency tree. These extraneous nodes

had to be removed, while reassigning correct dependency relations, POS tags and

parenthood links. See Figure 9 for an example of the NP “190-point plunge.” The tree

on the left is as annotated in the treebank. The tree on the right is the tree post processing

3.6.4 CoNLL08 - Tagging Errors

As the derivational algorithm takes advantage of the POS tags of words, the

accuracy of the derived CCG categories is affected by misannotations. While checking

POS tags manually is not within the scope of this project, errors are corrected when

found.

Figure 10: Example of a Hyphenated Construction.

 20

3.6.5 TUT – Articles/Determiners

Articles/determiners in the treebank tended to be analyzed as the head of an

Article-Noun combination. This results in nouns receiving categories like ART\ART.

This analysis is fixed to reflect the conventional linguistic theory that nouns are the heads

of noun phrases.

3.6.6 TUT – Compressing Prepositions + Articles

As in other Romance languages, certain sequences of preposition and article

combine to form a single word. In the treebank, the resulting combination is entered as

two individual sequential nodes in the dependency tree: the first to represent the

preposition and the second to represent the article. This is not representative of how the

language is actually used, nor does it aid in the development of a lexicon. The duplicate

entries are compressed and the correct head-dependent relations are established.

3.6.7 TUT – Pre-Noun Adjectives

In certain environments, adjectives that preceded nouns were labeled as the head

while the nouns were labeled the dependent. As adjectives are traditionally thought to

modify nouns, the head-dependent relationships were reversed when found.

3.7 Final Algorithm

The algorithm is as follows:

• Preprocesses

• Categorize parent-daughter relations as Adjunct or Argument.

• Assign each node’s POS tag as its category.

• Calculate category of node using dependencies and their relations.

o Allow application rules and composition rules

 21

Figure 11 shows a sample category assignment for the one of the sentences

common to Penn Treebank and the CoNLL08 shared task. The top sentence shows the

results from the dependency based approach and the bottom shows the results from the

constituent-based derivation of CCGbank. Note the differences found in the category

assignments for the word Section. The dependency categories show that Section modifies

89 whereas the constituent-based category shows that it is a noun modifier of the word

rules. Also note the lack of long-range dependencies in the dependency-based category

for the word lobbied; they are present in the constituent-based approach.

 Similarly, Figure 12 shows a derivation of an Italian sentence, with the top

sentence being derived via dependency relations and the bottom derivation from the

constituent-based derivation of TutCCG. Once again, the long-range dependencies are

missing in the dependency-based approach. Note the method in which TutCCG assigns

categories to punctuation, creating an overlaying category of t(ext). This is unique

among the approaches referenced in this paper.

Figure 11: English sentence from dependency and constituent-based derivational
processes

 22

Figure 12: Italian sentence from dependency and constituent-based derivational processes

 23

Chapter 4: Evaluation

Difficulty will arise when evaluation is required and no gold standard is present.

Such is the case for this task; no gold standard set of lexical categories exists that can

validate this approach. Instead, the resulting lexicons from this approach are compared

with their previously created counterparts. For ease in the evaluation, the lexicon

derived from the CoNLL08 treebank shall be referred to as DepEngCCG and the lexicon

derived from the TUT treebank shall be referred to as DepItCCG.

The comparison follows two different approaches. The first is purely metric

based, showing characteristics of the lexical datasets, such as category complexity and

category growth. The second compares the effectiveness of using DepEngCCG supertags

and CCGbank supertags as features in another task, namely sentiment detection.

4.1 COMPARISON WITH CATEGORY STATISTICS

Without context, a statistic is simply a number. The goal of these statistics is to

help answer a question, namely what makes a good lexicon? Following tradition,

Ockham’s razor, which rewards simplicity, is assumed. For this application, this means

that a small lexicon would rank higher than a large lexicon (with the assumption that the

smaller lexicon would adequately model the language), and simpler categories would

rank higher than more complex categories.

4.1.2 Category Counts and Growth

The resulting lexicon of DepEngCCG contains a total of 95,584 entries for 43,999

word types; there are a total of 1,952 different categories. As is expected, the majority of

words only have a small number of categories assigned to them, yet a small number of

functional words contained a high number of categories. This resultant lexicon is

 24

significantly larger than that of the CCGbank, with 74,669 entries and a total of 1,286

categories.

For DepItCCG, a count of 854 categories is derived across 8813 words, for a total

of 14925 entries. The number of categories derived for DepItCCG is a degree less than

the number found in TUTCCG, which was 1152 categories.

The ten words with the highest category count for each derivation are given in

Table 1. One can generalize that the dependency derivation for English is typically more

(perhaps overly) explicit, as counts for the same words are typically higher in

DepEngCCG. It appears DepItCCG and TutCCG are more on par in terms of category

counts, with values more tightly centralized. Tables 2 and 3 show the top ten most

frequent categories in terms of type. Token counts are also given. In each derivation, it

is not surprising that nouns and noun modifiers are the most frequent of categories. For

these categories, type counts from DepEngCCG to CCGbank and from DepItCCG to

TutCCG are quite close. This would hint that dependency and constituent-based

derivation processes have quite similar results for the classes of nouns and noun

modifiers. Conversely, the Tables 2 and 3 also show that the derivations for more

functional categories, like verbs, differ across methods. These differences can be seen as

limitations or constraints of the approach due to input source; as previously stated, the

dependency trees did not syntactically encode null or trace elements that were used in the

CCGbank and TutCCG derivations.

Figures 10-13 show the growth of the total number categories as the derivational

processes generate categories from the input sentences. All graphs give a similar shaped

plot, showing an initial period of rapid category growth whose rapidity slows over time.

As can be inferred from the category count differences for DepEngCCG and

CCGbank, DepEngCCG shows a trend of generating more categories given the same

 25

amount of input. At this point, it is unclear if this should signify a better approach

(constituent trees vs. dependency trees) or if the dependency approach simply has not yet

had as much focus on more idiosyncratic grammar constructions. However, both

approaches show a general trending plateau for categories that appear more than five

times. This lends credence to the idea of a Zipfian distribution: that after a certain

amount of input, only novel and unique categories would be generated; all the common

and frequent categories are generated in the initial amount of input.

The growth for the Italian categories (see Figures 12 and 13), on the other hand,

shows that while the dependency approach shows the category plateau, the trend for

TutCCG shows a constant slope; this could be alleviated by the addition of combinatory

rules for specific but common linguistic structures as well as abstracting over modifier

and conjunction categories (Bos, Bosco and Mazzei 2009).

 26

DepEngCCG CCGbank DepItCCG TutCCG

Word # Cats Word # Cats Word # Cats

Word # Cats

and 252 as 130 e 136 e 176

is 226 is 109 in 90 , 93

to 203 to 98 di 87 in 82

in 196 than 90 per 77 per 70

as 168 in 79 a 77 o 62

of 156 - 67 da 62 sono 58

are 151 ‘s 67 sono 49 ha 51

was 150 for 66 che 46 da 45

for 137 at 63 come 45 a 45

at 134 was 61 del 43 con 42

Table 1: Ten tokens with highest category counts

 27

DepEngCCG CCGbank

Cat Type

Count

Token

Count

Cat Type

Count

Token

Count
NN/NN 20141 216630 N/N 21485 152508

NN 20126 208413 N 20544 206312

(NN/NN)/(NN/NN) 4514 22842 (S[dcl]\NP)/NP 2360 16055

NN\NN 3968 17929 S[adj]\NP 1873 7974

VB/NN 3166 18490 (S[b]\NP)/NP 1530 13033

(NN\NN)/(NN\NN) 3138 12870 (N/N)/(N/N) 1414 5830

VB 3052 12377 S[pss]\NP 1293 6988

(VB\NN)/NN 1800 11312 (S[ng]\NP)/NP 1247 5838

VB/VB 1757 18009 N[num] 1144 8547

JJ 1660 8284 S[dcl]\NP 1092 5564

Table 2: Ten Most Frequent Categories in the DepEngCCG and CCGbank

 28

DepItCCG TutCCG

Cat Type

Count

Token

Count

Cat Type

Count

Token

Count
NN 3466 11833 n 3528 9977

NN\NN 1520 3065 n\n 1245 2559

NN/NN 696 5158 n/n 521 1212

VB/NN 557 875 n/pp 399 781

(NN\NN)\(NN\NN) 514 892 s:inf/np 237 328

VB\VB 359 1020 s:adj\np 219 319

NN/IN 357 647 (n\n)/pp 200 326

VB/VB 338 1566 (s:dcl\np)/np 186 302

VB 266 373 np 175 1306

JJ 1660 8284 S[dcl]\NP 1092 5564

Table 3: Ten Most Frequent Categories in DepItCCG and TutCCG

 29

Figure 13: Category growth for DepEngCCG

 30

Figure 14: Category growth for CCGbank

 31

Figure 15: Category growth for DepItCCG

 32

Figure 16: Category growth for TutCCG

4.1.2 Category-Category Mapping

To compare the lexical coverage given by the different derivation methods, a

category mapping attempts to align equivalent categories. For example, perhaps the word

kicked has the CCGbank category of (s\np)/np and the DepEngCCG category of

(VB\NN)/(NN). These categories would be considered equivalent as each atomic

category within the full functional category can be mapped to create an equivalent. The

CCGbank category np\np and the DepEngCCG category NN/NN would not considered

equivalent (due to the directionality of the slash operator). The mapping chart is given in

 33

Appendix C. This mapping does not take into account that a single atomic category may

be able to translate into a functional category. The similarity measure is calculated on a

word-category basis. The table below gives the similarity measures of the two

derivations, using CCGbank and TutCCG as gold standards for comparison.

Dataset Precision5 Recall6 F-Score7 # Unique

words
DepEngCCG 0.367 0.467 0.411 176
DepItCCG 0.460 0.469 0.464 1863

Table 4: Similarity Measures of Lexicons

Table 4 shows that nearly half of all word-categories derived by the process given

in this paper have an equivalent category in its sister lexicon. Through a sampled manual

comparison, a number of the non-matches are cases that could have been matches had the

dependency trees encoded null and trace elements to aid in the derivation categories that

predict long-range dependencies. While both approaches were able to encode that

relative clauses modify nouns, as an example, the encoding method was quite different.

Table 4 also shows that there were a number of unique words that were found in

the dependency-based derivations that were not found in the constituent-based

derivations. For DepEngCCG, this is not unexpected, as the Penn Treebank is but one of

a number of sources used to make the CoNLL08 shared task corpus. For DepItCCG,

however, the same input source of the TUT was used in both approaches. The

discrepancy lies in the fact that 23% of the sentences in TUT did not make it into the final

5 Precisions = (WCDep∩WCCons)/WCDep “Number of equivalent word-categories divided by the total number
of dependency generated word-categories.
6 Recall = (WCDep∩WCCons)/WCCons “Number of equivalent word-categories divided by the total number of
constituency generated word-categories.
7 F-score (harmonic) = 2*(Recall*Precision)/(Recall+Precision)

 34

version of TutCCG (Bos, Bosco and Mazzei 2009). For DepItCCG, only a small number

of sentences were not included.

4.1.3 Category Complexity

In Baldridge 2008, a probability distribution that states the probability of a

category is inversely proportional to its complexity is used to improve super-tagging

performance on highly ambiguous words. The complexity measure used is employed

here as well. The complexity measure simply counts the number of subcategories or

tokens contained in a category.

For example, the category for the word over (4b) has the category

((VBD\NN)\(VBD\NN))/NN. This category would have the complexity measure of 9: it

has VBD twice, NN three times, (VBD\NN) twice, (VBD\NN)/ (VBD\NN) once and the full

((VBD\NN)\(VBD\NN))/NN once.

Histograms showing the complexity distribution over categories for DepEngCCG

and CCGbank are given below in Figures 17 and 18 and for DepItCCG and TutCCG in

Figure 19 and 20.

 35

Figure 17: Category Complexity Distribution for DepEngCCG Derivations

Figure 18: Category Complexity Distribution for CCGbank Derivations

 36

Figure 19: Category Complexity Distribution for DepItCCG Derivations

Figure 20: Category Complexity Distribution for TutCCG Derivations

 37

All of the histograms demonstrate what is expected: the simpler the category, the

more often it occurs. Higher complexity categories are not only few in type, but also

few in occurrence. These categories could be due to very specialize linguistic

constructions or due to inadequacies in the derivational process.

The small hump in the tail end of the DepItCCG category types distribution in

Figure 19 can be attributed to the difficult sentence constructions that were dropped from

TUT. Note the high token count of categories with complexity of 3 for TutCCG. While

the other histograms show that 1-complexity categories appear more frequently than 3-

complexity categories, the opposite is true of TutCCG. This is due to the fact that

TutCCG is the only lexicon of the group that attempted to assign CCG functional

categories to punctuation.

Aside from the nuances mentioned above, the histograms model an ideal lexicon

well, showing similar shape for each language.

4.2 STATISTICAL PREDICTIVE TASK – SENTIMENT ANALYSIS

With the use of the web as a social and marketable business medium, sentiment

analysis is a growing area of research. The aim is to easily and automatically glean

consumer opinion on products, movies, restaurants etc. Consumers’ reviews can be

classified as positive or negative (Pang and Lee (2004), Pang et al. (2002), Turney

(2002)) or can be classified on a 1 to 5-star rating scale (Pang and Lee (2005), Snyder and

Barzilay (2007)).

In a typical sentiment classification task, a supervised learning method will read a

sentence/document as a bag of N-grams. In theory, the learning model would associate

“positive” words like like and good with a positive review, while associating words like

hate and bad with a negative review. This assumption works well for canonical displays

 38

of sentiment, however it is painfully obvious how easily words that predict one opinion

can be used to express the exact opposite.

8. Word meaning expressing sentiment

a. I love anything with a good plot.

b. This was a really bad movie.

9. Word meaning expressing opposite sentiment

a. I have no love for chick-flicks.

b. There was nothing bad about the movie.

Various methods have found suitable methods to attempt to cope with this issue.

For the sake of comparing the CCGbank to the lexicon derived in this paper, the CCG

categories for each word in the document are added as features to the statistical model

with the hypothesis that negative and positive usages of the same word have different

categories assigned to them.

Testing on the same datasets with two different category sets as features allows a

relatively easy and objective measure to differentiate the two category sets.

Classification of the documents without the categories as features allows comparison

with a baseline. It is important to stress that this will not be an effort to compete with

current sentiment analysis work, but rather an attempt to gauge the quality of two

lexicons via a modern and relevant task.

4.2.1 Data

For this experiment, a combined dataset from three different sources is assembled:

from Pang and Lee (2004),8 a collection of 2000 movie reviews; from Pang and Lee

(2005),9 a collection of 10,310 movie reviews in sentence/snippet form; and a set of 2000

8 Polarity Dataset v2.0
9 Sentence Polarity Dataset v1.0

 39

video reviews and 2000 DVD reviews from Blitzer et al. (2007).10 In total, this summed

to a sizable collection of over 16,000 documents with an even split between the negative

and positive classifications. The full dataset is then split into a development set of 2000

documents and a test set of the remaining 14310 documents. Any testing and parameter

setting is done using the development set.

4.2.3 Process

A Hidden Markov Model (HMM) supertagger11 is created for each dataset, using

as training data the CCG derivations from the CCGbank and the CCG derivations

presented in this paper. For an introduction/discussion to HMMs, see Rabiner (1989).

Such sequencing prediction modes have proven quite effective for the supertagging task

(Bangalore and Joshi, 1999; Nielsen, 2002). This HMM supertagger is then used to

assign CCG lexical categories to the movie review documents. Future improvements on

this tagging step could include verifying that the resulting supertags would fully combine

for each sentence.

Positive/negative classes are assigned to each document by use of a Maximum

Entropy classifier from the OpenNLP software package.12 For more information on

maximum entropy uses in natural language processing, see Berger et al. (1996) and

Ratnaparkhi (1998). A Gaussian prior distribution is assumed, using a sigma value of

0.01, which was calculated using the development set.

As features in the maximum entropy models, the following are tested: words only,

words with supertags, words with POS tags, supertags only and POS tags only. Words

with tags are created using the following format: word_tag.

10 Multi-Domain Sentiment Dataset v2.0
11 Thanks to Baldridge (2008) for use of the HMM.
12 http://maxent.sourceforge.net/

 40

4.2.4 Results

Ideally, a sentiment classifier should be able to accurately predict a polarity

regardless of the type of input. However, not all documents are created equally; a review

may contain a general plot summary with only a single concluding sentence containing

any opinion data or the entire review may be an opinionated rant or rave with no filler.

The full combined dataset is tested using ten-fold cross-validation to obtain a

general baseline on how well the classifier performs on a set of varying data. The dataset

is then broken up into their original subsets and tested again, allowing comparison with

the full dataset as well as with previous work on the subsets of data. The sigma value of

0.01 is also used on the subsets.

4.2.4.1 Full Dataset

The results of a ten-fold cross-validation over the test dataset with word-

categories as features are given below in Table 5. It is clear from the results that adding

supertags to the words in the documents does not aid in the classification tasks. This is

verified in Table 6, which shows that using only supertags as features in the maximum

entropy model only outperforms chance by a small margin. At the same time, it does not

appear that added supertags particularly hurt the accuracy to a large degree, losing only

0.3-0.5% accuracy; however, this small percentage is not statistically significant and

should most likely be attributed to noise.

 41

Positive Classification Negative Classification Feature
Lexicon

Accuracy
Precision Recall F-Score Precision Recall F-Score

DepEngCCG 78.7% 0.761 0.828 0.793 0.811 0.740 0.774
CCGbank 78.4% 0.763 0.831 0.796 0.815 0.743 0.777
POS 78.2% 0.760 0.823 0.791 0.807 0.741 0.773
Token only 78.9% 0.771 0.824 0.796 0.811 0.755 0.782

Table 5: Results of Sentiment Analysis Using Word-Categories as Features

Positive Classification Negative Classification Feature

Lexicon
Accuracy

Precision Recall F-Score Precision Recall F-Score
DepEngCCG 56.3% 0.543 0.792 0.644 0.617 0.336 0.434
CCGbank 57.7% 0.557 0.750 0.639 0.618 0.404 0.488
POS 56.6% 0.547 0.769 0.639 0.611 0.364 0.346

Table 6: Results of Sentiment Analysis Using Categories Only as Features

Table 7 shows the breakdown of the errors made for each classification analysis.

There is a clear trend that the majority of errors in classifications occur on negative

polarity documents. For the classifications that took word-categories or word tokens only

as input, this could be attributed to a number of documents using positive polarity items

in a sarcastic tone or by explaining what a good movie should be. Table 8 demonstrates

that this disparity occurs at the category/POS-tag level as well. The reasons for this are

not immediately clear and merit future investigation.

 42

Dataset % Error Pos % Error Neg

DepEngCCG 39.6% 60.4%
CCGbank 39.9% 60.1%

POS 40.6% 59.6%
Untagged 41.8% 58.2%

Table 7: Error Breakdown for Classification Using Word-Categories

Dataset % Error Pos % Error Neg

DepEngCCG 23.8% 76.2%
CCGbank 29.5% 69.5%

POS 26.5% 73.5%

Table 8: Error Breakdown for Classification Using Categories Only

 4.2.4.2 Movie Review Polarity Dataset Results

Previous work using this body of documents has shown success in accurately

identifying the sentiment of a given review. In Pang and Lee (2004), a classifier labels

each sentence in a document as either subjective or objective; the objective data is

removed and the resulting extract of subjective text is classified using Naïve Bayes (NB)

and Support Vector Machines (SVM) at the document level. This approach aims to

remove distracting text such as plot summaries that could otherwise mislead a

classification. Accuracies for classifiers trained on the subjective extracts achieved a

statically significant gain (from 82.8% to 86.4% for NB) or were able to maintain

accuracy (SVMs) when using an average of 60% of the original document

Work done by Boiy et al. (2007) expands on Pang and Lee (2004) to include a

maximum entropy classifier for the subjective extracts and attempts classifications using

bigrams and just the adjectives found within the documents. Three different

 43

classification models are tested (support vector machine, naïve Bayes and maximum

entropy) with four different feature sets (unigrams, unigrams with subjectivity extracts,

bigrams, adjectives). A maximum accuracy of 87.4% was reported using a unigram word

model of the subjectivity extracts as feature in a maximum entropy classifier.

Interestingly, the classification using only adjectives as features achieved a relatively

high accuracy of 82.0% for the Naïve Bayes classifier.

Results for the classification using the supertags as features is given in Table 9.

When compared to the results found in Table 6, it is clear maintaining a homogeneous

distribution of documents will improve classification accuracies; in this case, we see

around a 5% increase in accuracy. The results of the maximum entropy classifier trained

only on word tokens are consistent with the results found for the equivalent classifier in

Boiy et al (2007).

As before, the addition of supertags as features has not shown successful in aiding

the classification task.

 44

Positive Classification Negative Classification Feature Lexicon Accuracy
Precision Recall F-Score Precision Recall F-Score

DepEngCCG 83.8% 0.827 0.055 0.841 0.850 0.821 0.832
CCGbank 83.7% 0.827 0.853 0.840 0.848 0.821 0.834
POS 83.4% 0.825 0.846 0.836 0.842 0.821 0.831
Token only 84.2% 0832 .0856 0.839 0.852 0.827 0.839
Pang/Lee 2004
NB

82.8%

Pang/Lee 2004
NB+subj extract

86.4%

Pang/Lee 2004
SVM

87.2%

Boiy et al 2007
MaxEnt

84.8%

Boiy et al 2007
MaxEnt+subj
extract

87.4%

Boiy et al 2007
Maxent Bigrams

85.4%

Boiy et al 2007
NB Adj

82.0%

Table 9: Classification Results on Movie Review Polarity Dataset

4.2.4.3 Sentence Polarity Dataset Results

In comparison to many other datasets that contain multi-sentence documents, this

corpus is a collection of single sentence documents, annotated to show positive or

negative sentiment polarity. Created by Bo and Pang (2005), the sentences/snippets were

described to be “striking,” perhaps with the goal that a more striking sentence would

expand the distinctions between positive and negative polarity. Bo and Pang (2005)

used this dataset to develop a positive-sentence percentage (PSP) similarity measure that

increased accuracy when attempting to assign 3-4 star ratings to a movie reviews. As the

accuracy of sentence-level classification was not their primary focus, no information was

 45

given on the performance of the naïve Bayes classifier. However, it was shown that an

author’s rating for a movie and the review’s PSP of said movie were directly

proportional.

In Radovanoci and Ivanoci (2008), a number dimensionality reduction techniques

are compared. Unigrams, bigrams and trigrams are all used together as features. Using

the SIMPLS13 (de Jong 1993) supervised linear feature extraction algorithm to garner

features and employing the 25-nearest neighbor classification algorithm, the sentence

polarity dataset was classified with about14 76% accuracy using only seven features.

Naïve Bayes classification was found to have approximately 77% accuracy, while a

support vector machine achieved approximately 73%.

A Naïve Bayes classifier was tested in Andreevskaia and Bergler (2008).

Separate models were trained for unigrams, bigrams and trigrams. Results with ten-fold

cross-validation show that the unigram-trained classifier performed best with 77.4%

accuracy; bigram accuracy was second with 73.9% accuracy and trigrams came last with

65.4% accuracy. These results show a special property of sentence-level annotation:

greater sensitivity to sparseness. With higher order n-grams, there is a higher probability

of uniqueness, thus also increasing the chance of missing a sentiment marker in the

sentence.

The results from the current tests are given in Table 10. Despite the “striking”

quality of the sentence snippets, the results show that classifying sentence/snippets is less

accurate than a full-bodied review. The best results are achieved by the classifier that

trained only on words, yet still this is significantly less accurate than the results for the

13 An efficient Least Partial Squares (LPS) algorithm.
14 Values for accuracies are not expressly given in Radovanoci and Ivanoci (2008). Values are best
estimates given a results graph.

 46

naïve Bayes classifiers of Radovanovic and Ivanovic (2008) and Andeevskaia and

Bergler (2008). This difference may be attributed to the use of unigrams as opposed to

bigrams and trigrams. It is also possible that the sigma value determined on the

developments set is not optimized for these shorter length documents. However, due to

the greater sensitivity to sparseness, it is possible that recalculating sigma using only this

dataset would improve accuracy better than would the addition of bigrams or trigrams to

the model.

4.2.4.4 Multi-Domain Sentiment Dataset Results

Research using the Multi-Domain Sentiment dataset focuses on how to mitigate

the negative effects of training on one domain (movies) and testing on another (kitchen

appliances). Blitzer et al. (2007) calculate a measure of domain similarity that correlates

to how well one domain may be adapted for classifying a different domain. To calculate

this measure, a baseline is determined for each domain. For the DVD domain, a baseline

of 82.4% accuracy is reported. Dredze et al. (2008) follows the approach of Blitzer et al.

(2007) and applies it to confidence-weighted online learning methods. It is shown that

the faster and simpler online linear classifier algorithms (passive-aggressive algorithm of

Crammer et al. 2006) perform nearly as well as batch classifiers (MaxEnt, SVMs).

Classification in this paper joined the video and DVD domain datasets under the

assumption that the domains were nearly indistinguishable. While this could introduce

error, the classification accuracies from this paper match or exceed the classification

accuracies found in other papers. These results are given in Table 11. As with the other

tests in this paper, the addition of supertags has not increased the classification accuracy.

 47

Positive Classification Negative Classification Feature Lexicon Accuracy
Precision Recall F-Score Precision Recall F-Score

DepEngCCG 70.2% 0.689 0.738 0.712 0.718 0.666 0.691
CCGbank 70.6% 0.691 0.745 0.717 0.724 0.667 0.695
POS 71.5% 0.701 0.750 0.725 0.732 0.680 0.705
Token only 72.5% 0.711 0.760 0.734 0.742 0.691 0.715
R&I 2008 – NB
(1,2,3)-grams

~77%

R&I 2008 –
SIMPLS+25NN

~76%

R&I 2008 –
SVM (1,2,3)-
grams

~72%

A&B 2008 –
NB unigram

77.4%

A&B 2008 –
NB bigram

73.9%

A&B 2008 –
NB trigram

65.4%

Table 10: Classification Results on Sentence Polarity Dataset

 48

Positive Classification Negative Classification Feature Lexicon Accuracy
Precision Recall F-Score Precision Recall F-Score

DepEngCCG 83.3% 0.832 0.836 0.834 0.835 0.832 0.833
CCGbank 82.9% 0.831 0.825 0.828 0.826 0.833 0.829
POS 82.9% 0.836 0.819 0.827 0.823 0.839 0.831
Token only 82.5% 0.834 0.811 0.822 0.816 0.839 0.827
Blitzer et al.
2007 (DVD)

82.4%

Dredze et al.
2008 (DVD) –
PA

80.4%

Dredze et al.
2008 (Video) -
PA

80.1%

Dredze et al.
2008 (DVD) –
MaxEnt

80.7%

Dredze et al.
2008 (Video) -
MaxEnt

80.5%

Table 11: Classification Results on Multi-Domain Dataset

4.2.5 Summary

While adding supertags as features can often reap benefits in statistical tasks, the

results in this paper exhaustively show that such is not the case for sentiment analysis.

At the same time, the supertags do not show much sign of causing a significant increase

in error, showing that the sentiment classification in this study is occurring purely at the

word level. Results from other studies showing increased accuracy from use of bigrams

suggest that future investigation may be warranted. Under a bag-of-words approach, the

use of bigrams or trigrams could realize the benefit of supertags, potentially being able to

 49

differentiate between phrases such as nothing bad and very bad. Conversely, this may

also introduce a higher degree of sparseness and hurt results.

However, accuracies and improvements upon sentiment analysis were not the end

goal of these tests. The attempt to measure the quality of the two CCG lexicons has met

inconclusive results: at most, the differences in accuracies between DepEngCCG and

CCGbank vary only by a fraction of a percentage. At best, it can only be said that

DepEngCCG and CCGbank were equally inadequate for the given task.

 50

Chapter 5: Conclusions

This paper has given a method to generate a CCG lexicon from a dependency

treebank, using only the dependency hierarchy and relations. At the heart of this process

is the distinction between argument and adjunct relations that drives category derivation.

As previously discussed, a dependency tree may better represent the relations between

heads and children in comparison to a constituent tree. Unlike a number of other similar

projects, this method does not project an intermediate syntactic level, decreasing the risk

of error and noise, while remaining true to the binary branching nature of CCG. While

the approach presented is meant to be universal to dependency treebanks, it is clear that

each treebank will have its own set of idiosyncrasies that will inhibit a plug and play

system; preprocessing and special cases will invariably be needed. More work is required

to further reduce the category count and deal with specific linguistic structure;

determining if each derived sentence can parse will aid in teasing out problems with the

derivation processes as well as confirm working derivations.

To measure quality of the process, this derivation algorithm was compared to the

lexicon given by Hockenmaier and Steedman (2002) for CCGbank, as well as the lexicon

for the Italian TutCCG by Bos, Bosco and Mazzei (2009). Comparing category counts,

growth and complexity trends, the dependency CCG lexicons have been shown to be

quite similar to their previously derived counterparts. The ideas of lexical simplicity and

Zipfian distributions drive these measures; both lexicons generated in this paper show

trends of quality lexicons. However, despite a number of metrics being better for

DepItCCG, it is clear that more development is required to account for special cases and

other linguistic phenomenon.

 51

To further analyze the quality of the derived lexicons, the DepEngCCG and

CCGbank were directly compared on a sentiment analysis task. The DepEngCCG

performed on par with CCGbank in the classification task, despite the fact that neither

CCGbank nor DepEngCCG actually improved results overall. Results for the application

study were inconclusive, with the supertags being overshadowed by the words

themselves. A future comparison analysis could compare the effectiveness of adding the

different category sets as features in a dependency parsing evaluation.

The basis of the algorithm need not be constrained to CCG style derivations; with

some work, the algorithm may be modified to generate other lexical formalisms (TAG,

HPSG) from dependency treebanks.

Future work could involve expanding the induction system to automatically

derive logical forms for each word and its category(ies). This would be done in a similar

fashion, but using the dependency relations to define the semantics. At this point, the

lack of null and trace elements to encode long-range dependencies may require a

reworking of the algorithm to capture the dependencies.

 52

Appendix A: CoNLL08 Dependency Relations

For more information on these relations, see Johansson and Nugues (2007).

 Adjunct Relations

ADV ADV-GAP AMOD AMOD-GAP APPO

DEP DEP-GAR GAP-MNR GAP-NMOD GAP-TMP

HMOD HYPH LOC LOC-MNR MNR

NMOD POSTHON PRN SUFFIX TITLE

TMP VOC PRP

Table 12: CoNLL08 Adjunct Relations

 Argument Relations

SUBJ OBJ PMOD ROOT P

COORD CONJ OPRD SUB IM

VC LGS DIR NAME EXT

PRD DTV PRT BNF PUT

EXTR

Table 13: CoNLL08 Argument Relations

 53

Appendix B: TUT Dependency Relations

For more information on these relations, see Bosco (2003).

 Adjunct Relations

MODIFIER RMOD RELCL

REDUC RMOD+RELCL RMOD+RELCL+REDUC

RMODPRED RMODPRED+SUBJ RMODPRED+OBJ

APPOSITION NOFUNCTION AUX

AUX+PASSIVE AUX+PROGRESSIVE AUX+TENSE

COORDINATOR COORD COORD+ADVERS

COORD+BASE COORD+COMPAR COORD+COND

COORD+CORRELAT COORD+ESPLIC COORD+RANGE

COORD+SYMMETRIC COORD2ND COORD2ND+ADVERS

COORD2ND+BASE COORD2ND+COMPAR COORD2ND+COND

COORD2ND+CORRELAT COORD2ND+ESPLIC COORD2ND+RANGE

COORD2ND+SYMMETRIC COORDANTEC COORDANTEC+COMPAR

COORDANTEC+CORRELAT CONTIN CONTIN+LOCUT

CONTIN+DENOM CONTIN+PREP EMPTYCOMPL

EMPTYLOC INTERJECTION VISITOR

VISITOR+ROBJ

Table 14: TUT Adjunct Relations

 54

 Argument Relations

DEPENDENT FUNCTION ARG SUBJ

OBJ INDOBJ INDCOMPL PREDCOMPL+SUBJ

PREDCOMPLE+OBJ EXTRAOBJ

Table 15: TUT Argument Relations

 55

Appendix C: Comparison Category Mapping

DepEngCCG CCGbank

TO s[to]

VB, R s s[.+]

EX np[thr]

IN PP

NN np, np[.+], n, n[.+]

Table 16: English Category Mapping

DepItCCG TutCCG

TO s[to]

VB, R s s:[.+]

EX np[thr]

IN PP

NN np, np:[.+], n, n:[.+]

Table 17: Italian Category Mapping

 56

References

Ajdukiewicz, Kazimierz. 1935. Die syntaktische Konnexität. In Polish Logic 1920-1939,
ed. Storrs McCall. Oxford University Press, 207-231. translated from Studia
Philosophica, 1, 1-27.

Andreevskaia, Alina and Sabine Bergler. 2008. When Specialists and Generalists Work
Together: Overcoming Domain Dependence in Sentiment Tagging. In
Proceedings of ACL-08. pages 290-298.

Baldridge, Jason. 2008. Weakly supervised supertagging with grammar-informed
initialization. In Proceedings of COLING-2008. Manchester, UK.

Bangalore, Srivinas and Aravind Joshi. 1999. Supertagging: an approach to almost
parsing. Computational Linguistics, 25(2): 237-265.

Berger, Adam, Stephen Della Pietra and Vincent Della Pietra. 1996. A Maximum
Entropy approach to Natural Language Processing. In Computational Linguistics,
vol. 22, pages 39-71.

Blitzer, John, Mark Dredze and Fernando Pereira. 2007. Biographies, Bollywood,
Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification.
Association of Computational Linguistics (ACL).

Boiy, Erik, Pieter Hens, Koen Deschacht, and Marie-Francine Moens. 2007. Automatic
Sentiment Analysis in On-line Text. In Proceedings of the 11th International
Conference on Electronic Publishing. Vienna, Austria.

Bosco, Cristina. 2003. A Grammatical Relation System for Treebank Annotation. PhD
Thesis. University of Torino.

Bos J., Bosco, C., and Mazzei, A. 2009. Converting a Dependency-Based Treebank to a
Categorial Grammar Treebank for Italian. In Proceedings of TLT8, Milan.

Cahill, Aoife, Mairead McCarthy, Josef van Genabith and Andy Way. 2002. Automatic
annotation of the Penn Treebank with LFG F-structure information. In LREC
2002 Workshop on Linguistic Knowledge Acquisition and Representation –
Bootstrapping Annotated Language Data. Las Palmas, Spain.

Chen, John, Srinivas Bangalore and K. Vijay-Shanker. 2006. Automated extraction of
Tree-Adjoining Grammars from treebanks. Natural Language Engineering,
12(03):251-299.

Chen, John and K. Vijay-Shanker. 2004. Extraction of TAGs from Treebank. In H. Bunt,
J. Caroll, and G.Satta, editors, New Developments in Parsing Technology.

Clark, Stephen and James R. Curran. 2004. The importance of supertagging for wide-
coverage CCG parsing, In Proceedings of the 20th international conference on
Computational Linguistics, p.282-es. Geneva, Switzerland.

 57

Clark, Stephen and James R. Curran. 2007. Formalism-Independent Parser Evaluation
with CCG and DepBank. In Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics, pages 328-334, Philadelphia, PA.

Clark, Stephen, Julia Hockenmaier, and Mark Steedman. 2002. Building deep
dependency structures using a wide-coverage CCG parser. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics, pages 327-
334, Philadelphia, PA.

Crammar, K, O. Dekel, J. Keshet, S. Shalev-Shwartz and Y. Singer. 2006. Online
passive-aggressive algorithms. JMLR, 7.

Frege, G. (1923), Logische untersuchungen. dritter teil: Gedankenfuge, in ‘Beitr¨age zur
Philosophie des Deutschen Idealismus’, Vol. III, pp. 36–51. Reprinted in I.
Angelelli (ed.), Gottlob Frege. Kleine Schriften, Georg Olms, Hildeheim, 1967,
pp. 378-394. Translated as Compound thoughts in P.T.Geach & R.H. Stoothoff
(transl.), Logical investigations. Gottlob Frege, Basil Blackwell, Oxford, 1977,
pp. 55-78.

Hockenmaier, Julia and Mark Steedman. 2002. Generative models for statistical parsing
with Combinatory Categorial Grammar. In Proceedings of the 40th Annual
Meetings of the Association for Computational Linguistics, pages 335-342,
Philadelphia, PA.

Hockenmaier, Julia. 2003a. Data and Models for Statistical Parsing with Combinatory
Categorial Grammar. Ph.D. thesis, School of Informatics, University of
Edinburgh.

Hockenmaier, Julia. 2003b. Parsing with generative models of predicate-argument
structure. In Proceedings of the 41st Annual Meetings of the Association for
Computational Linguistics, pages 359-366, Sapporo, Japan.

Honnibal, Matthew, James Curran and Johan BOs. 2010. Rebanking CCGbank for
improved NP interpretation. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, pages 207-215. Uppsala, Sweden.

Johansson, Richard and Pierre Nugues. 2007. Extended Constituent-to-Dependency
Conversion for English. In Proc. of NODALIDA.

de Jong, Sijmen. 1993. SIMPLS: An alternative approach to partial least squares
regression. Chemometrics and Intelligent Laboratory Systems. 18(3), pages 251-
263.

Joshi, Aravind and Yves Schabes. 1992. Tree Adjoining Grammars and lexicalized
grammars. In M. Nivat and M. Podelski editors, Tree Automata and Languages.
North-Holland, pages 409-432.

 58

Kaplan, Ronald and Joan Bresnan. 1982. Lexical-Functional Grammar: A formal system
for grammatical representation. In The Mental Representation of Grammatical
Relations. MIT Press, Cambridge, MA, pages 173-291.

Koller, Alexander and Marco Kuhlman. 2009. Dependency trees and the strong
generative capacity of CCG. In Proceedings of the 12th Conference of the
European Chapter of the ACL, pages 460–468. Athens, Greece.

Lambek, Joachim. 1958. The Mathematics of Sentence Structure. American
Mathematical Monthly, pages 65:154–170.

Miyao, Yusuke, Takashi Ninomiya and Jun’ichi Tsujii. 2004. Corpus-oriented grammar
development for acquiring a Head-driven Phrase Structure Grammar from the
Penn Treebank. In Proceedings of the First International Joint Conference on
Natural Language Processing (IJCNLP-04), pages 684-693, Hainan Island,
China.

Nieslsen, Leif. 2002. Supertagging with combinatory categorial grammar. In Proceedings
of the Seventh ESSLLI Student Session, pages 209-220.

Nivre, Joakim. 2005. Dependency grammar and dependency parsing. Technical Report
MSI report 05133, Vaxjo University: School of Mathematics and Systems
Engineering.

O’Donovan, Ruth, Michael Burke, Aoife Cahill, Josef van Genabith and Andy Way.
2005. Large-scale induction and evaluation of lexical resources from the Penn-II
and Penn-III Treebanks. Computational Linguistics, 31(3):329-365.

Pang, Bo and Lillian Lee. 2004. A Sentimental Education: Sentiment Analysis Using
Subjectivity Summarization Based on Minimum Cuts. In Proceedings of ACL, pp.
271--278.

Pang, Bo and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales. In Proceedings of the Association for
Computational Linguistics. pp. 115–124.

Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? Sentiment
Classification using Machine Learning Techniques. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 79—86.

Ponvert, Elias. 2008, Partial Induction of a Categorial Grammar from a Dependency
Treebank. Unpublished paper. University of Texas, Austin.

Pollard, Carl and Ivan Sag. 1994. Head Driven Phrase Structure Grammar.
CSLI/Chicago University Press, Chicago, IL.

Rabiner, Lawrence. 1989. A tutorial on Hidden Markov Models and selected
applications in speech recognition. In Proceedings of the IEEE, 77(2):2257-286.

 59

Radovanovic, Milos and Mirjana Ivanovic. 2008. Text mining: approaches and
applications. Nov Sad J Math 38(3).

Ratnaparkhi, Adwait. 1998. Maximum entropy models for natural language ambiguity
resolution. Ph.D. Dissertation, University of Pennsylvania. IRCS Tech Report
IRCS-98-15.

Shen, Libin and Aravind Joshi. 2005. Building an LTAG Treebank. Technical Report
MS-CIS-05-15, CIS, University of Pennsylvania, Philadelphia, PA.

Snyder, Benjamin and Regina Barzilay. 2007. Multiple Aspect Ranking using the Good
Grief Algorithm. In Proceedings of the Joint Human Language Technology/North
American Chapter of the ACL Conference. pp 300–307.

Steedman, Mark. 1996. Surface Structure and Interpretation. MIT Press, Cambridge,
MA.

Steedman, Mark. 2000. The Syntactic Process. MIT Press, Cambridge, MA.
Steedman, Mark and Jason Baldridge. Combinatory Categorial Grammar. To appear in

Robert Borsley and Kersti Borjars (eds.) Constraint-based approaches to
grammar: alternatives to transformational syntax. Oxford: Blackwell.

Surdeanu, Mihai, Richard Johansson, Adam Meyers, Lluis Marquez and Joakim Nivre.
2008. The CoNLL-2008 shared task on join parsing of syntactic and semantic
dependencies. In Proceedings of the Twelfth Conference on Computational
Natural Language Learning. Manchester, United Kingdom.

Turney, Peter. 2002. Thumbs up or thumbs down? Semantic orientation applied to
unsupervised classification of reviews. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics. pp. 417–424.

Vadas, David and James Curran. 2007. Adding noun phrase structure to the Penn
Treebank. In Proceedings of the 45th Annual Meeting of the Association of
Computational Linguistics, pages 240-247. ACL, Prague, Czech Republic.

Vadas David and James Curran. 2008. Parsing noun phrase structure with CCG. In
Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics, pages 335-343. ACL, Columbus, Ohio, USA.

Xia, Fei. 1999. Extracting Tree Adjoining Grammars from bracketed corpora. In
Proceedings of the 5th Natural Language Processing Pacific Rim Symposium
(NLPRS-99), pages 398-403, Beijing, China.

Xia, Fei. 2001. Automatic Grammar Generation from two different perspectives. Ph.D.
thesis, University of Pennsylvania.

Xia, Fei, Martha Palmer and Aravind Joshi. 2000. A uniform method of grammar
extraction and its applications. In Proceedings of the 2000 Conference on
Empirical Methods in Natural Language Processing, pages 53-62, Hong Kong.

