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Abstract 

 

Dependency Based CCG Derivation and Application 

 

 

 

 

Joshua Blake Brewster, M.A. 

The University of Texas at Austin, 2010 

 

Supervisor:  Jason Baldridge 

 

This paper presents and evaluates an algorithm to translate a dependency treebank 

into a Combinatory Categorial Grammar (CCG) lexicon.  The dependency relations 

between a head and a child in a dependency tree are exploited to determine how CCG 

categories should be derived by making a functional distinction between adjunct and 

argument relations.  Derivations for an English (CoNLL08 shared task treebank) and for 

an Italian (Turin University Treebank) dependency treebank are performed, each 

requiring a number of preprocessing steps. 

In order to determine the adequacy of the lexicons, dubbed DepEngCCG and 

DepItCCG, they are compared via two methods to preexisting CCG lexicons derived 

from similar or equivalent sources (CCGbank and TutCCG).  First, a number of metrics 

are used to compare the state of the lexicon, including category complexity and category 

growth.  Second, to measures the potential applicability of the lexicons in NLP tasks, the 
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derived English CCG lexicon and CCGbank are compared in a sentiment analysis task.   

While the numeric measurements show promising results for the quality of the lexicons, 

the sentiment analysis task fails to generate a usable comparison. 
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Chapter 1:  Introduction 

The ability to understand a document and extract meaningful data from text 

requires the assignment of an underlying structure.  Current methods use parsing models 

trained on various grammar formalisms to attempt to tease apart the relationships 

between words, determine constituency structure, and assign head/argument relations. 

The creation of parsers usually requires the use of a large annotated corpus; the 

Penn Treebank (Marcus, Santorini and Marcinkiewicz 1993; Marcus et al. 1994) has 

become the de facto corpus for training and testing parsing models for English. Early 

statistical methods of parsing on the Penn Treebank have met some success by use of 

part-of-speech (POS) tags, yet these methods often times ignored the intrinsic syntactic 

information offered the tags; for example, a word with the POS of JJ (adjective) will 

usually modified a noun and therefore can infer the existence of one in the sentence.  

Movement to capture the inherent syntactic structure of words resulted in a number of 

formalisms that allow the underlying argument structure to be recovered; among these are 

Lexical-Functional-Grammar (LFG) (Kaplan and Bresnan 1982), Tree-Adjoining-

Grammar (TAG) (Joshi and Schabes 1992), Head-driven Phrase-Structure Grammar 

(HPSG) (Pollard and Sag 1994) and Combinatory Categorial Grammar (CCG) (Steedman 

1996, 2000; Steedman and Baldridge (to appear)).  As with any manual annotation task, 

creating formalism-specific lexicons by hand is both labor and time intensive.  A number 

of approaches have been introduced to extract lexicons automatically from the Penn 

Treebank into various formalisms: LFG ( Cahill et al. 2002; O’Donovan et al. 2005; Shen 

and Joshi 2005), HPSG (Miyao, Ninomiya and Tsujii 2004), TAG (Xia 1999, 2001; Xia, 

Palmer and Joshi 2000; Chen and Vijay-Shanker 2000; Chen, Bangalore and Vijay-
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Shanker 2006) and CCG (Hockenmaier and Steedman 2003).  In this paper, CCG 

extractions will be the focus. 

Combinatory Categorial Grammar is a lexicalized formalism that excels in 

dealing with long and short-range dependencies. Due to the ability to do supertagging as 

“almost parsing” (Bangalore and Joshi 1999), rapid parsing speeds have been achieved 

(Clark and Curran 2004), making CCG lexicons particularly attractive for further parsing 

applications, as well as other tasks that can take advantage of CCG supertags.1 In this 

paper, I present a method to generate a CCG lexicon from a dependency treebank.  I will 

revisit and expand upon the implementation in Ponvert (2008), drawing motivation from 

Hockenmaier & Steedman (2003) and Cakici (2005) to automatically induce and evaluate 

CCG lexicons from two dependency treebanks:  the English dependency treebank 

extracted from the Penn Treebank and other sources that was used for the CoNLL-2008 

shared task (Surdeanu et al. 2008) and the Italian Turin University Treebank (TUT).  

These two treebanks have been selected as there are preexisting CCG lexicons from the 

same or similar source that can be used as comparison. 

Dependency trees encode both the linear ordering and dependencies that are 

needed to induce a CCG lexicon. The goal of this paper is to determine the effectiveness 

of dependency relations and dependency links in generating CCG categories without 

assuming or creating any intermediate structure in the tree.  

1.1 DEPENDENCY GRAMMARS 

Dependency grammars give hierarchical structure between headwords and 

dependents via dependency relationships. These relationships are usually based on some 

notion of semantic or syntactic roles. A dependency tree is formed as an acyclic graph 
                                                
1 For the purposes of this paper, I will use supertag and categories interchangeably.  For origins of 
supertags, see Bangalore and Joshi (1999). 
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where nodes can only have one parent; dependency relations connect parent nodes to 

daughter leaf nodes: see Figure 1.  In this example, the word jumped is the root of the 

sentence as there is no node that has jumped as its dependent.  The node jumped has two 

dependents, fox and over, that are connected via the relations NP-SUBJ and PP 

respectively.  These nodes, in turn, have their own dependents.  This pattern continues 

until the leaf nodes of the tree are reached.  While a node can have more than one 

dependent, only one parent node is permitted.  See Nivre (2005) for a discussion on 

theoretical dependency grammars and analyses. 

Dependency parsing involves an algorithm to predict dependencies from a unique 

headword to a dependent word, without having the benefit of syntactic structure. Two of 

the more successful dependency parsers are MaltParser (Nivre and Hall, 2007) and 

MSTParser (R. McDonald, 2005). MaltParser employs a left-to-right shift-reduce 

algorithm to determine dependency links, whereas MSTParser measures the strength of a 

link between words in conjunction with a search algorithm. With the induction of 

supertags from dependency relations, a much more rich feature structure would replace 

the simple POS tag, giving a better indication of syntactic structure and argument 

relation/placement. The supertag could help predict the kind and amount of dependent 

relations a given word may have.   

 

Figure 1: Sample Dependency Relations within Sentence 
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1.2 COMBINATORY CATEGORIAL GRAMMARS 

Combinatory Category Grammar (CCG) has its roots in the classical lexicalist 

theory of Categorial Grammar (Bar-Hillel 1953; Ajdukiewicz 1935; Lambek 1958).  It is 

a lexical grammar formalism in which the categories of words combine together by 

means of a small number of defined rules. The combinatory nature of the categories 

removes the necessity of movement and deletion rules found in other syntactic theories.  

At the same time, the categories encode syntactic information following the Principle of 

Compositionality of Frege (1923), in that syntax and interpretation are directly related.   

These categories are derived of a series of atomic categories as well as the 

functional slash operators \ and /. A category is given as an atomic category alone (e.g np, 

n, s ) or in the functional form of X “slash” Y, where the word looks in the direction of 

the slash for something of the category Y and, if found, returns the category X.  

Naturally, a category of the form X/Y expects a word with category Y to the right; a 

category of the form X\Y expects a word with category Y to the left.  The combinatory 

rules are as follows:  

1. Application:  

a. A/B B ⇒ > A  

b. B A\B ⇒ < A  

2. Composition:  

a. A/B B/C ⇒ >B A/C  

b. B \C A\B ⇒ <B A\C  

3. Cross Composition:  

a. A/B B\C ⇒ >Bx A\C  

b. B/C A\B ⇒ <Bx A/C  
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Other rules, such as type-raising and substitution will not be discussed here.  As 

an example, the sentence from Figure 1 is shown below with CCG categories assigned to 

each word. A derivation is given, showing that the sentence returns an s when all the 

categories are successfully combined.  For more details and extensions, see Steedman, 

(2000). 

 

 

 

 

 

 

 

 

 

Figure 2: CCG Derivation of a Sample Sentence 
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Chapter 2: Previous Work 

2.1 CCGBANK 

Hockenmaier & Steedman (2003) converted phrase structure trees from the Penn 

Treebank and derived CCG categories, using both the syntactic ordering and hierarchy 

inherent in the sentence trees. Due to the fact that the Penn Treebank encodes trace and 

null elements within the trees, this treebank was ideal to allow resolution of long-range 

dependencies in relative clauses and extraction.  Two wide-coverage parsers have been 

created using CCGbank that are able to recover the long-range dependencies quickly and 

efficiently (Clark, Hockenmaier and Steedman 2002; Hockenmaier and Steedman 2002; 

Clark and Curran 2004, 2007). 

At a high level, the derivational algorithm used to create the CCGbank translates 

constituent-based sentence trees into binary-branching trees that model the combinatory 

aspect of CCG.  Categories are then derived for each word and word-to-word 

dependencies were assigned in the end.  While many details of Hockenmaier’s algorithm 

are similar to the algorithm presented in this article, the fundamental difference is that the 

presented algorithm requires as input a dependency tree; thus, it is dependency relations 

and hierarchy rather than constituent structure that will drive category creation.  

2.2 TUTCCG 

An Italian CCGbank was similarly created using the Turin University Treebank 

(TUT) by Bos, Bosco & Mazzei (2009).   For this derivation, the TUT dependency 

treebank (Bosco 2003) is converted to a constituency treebank, then follows the method 

given by Hockenmaier for the English CCGbank.   

This method resulted in an intermediary treebank called ConsTUT, for 

Constituent Turin University Treebank.  Each terminal node in ConsTUT can be mapped 
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back to a node in the original TUT format; the resulting non-terminal structure represents 

the projections of the terminal node in XBar theory. In this format, distinctions between 

arguments and modifiers are determined at structural level.  As with the English 

CCGbank, each node is classified as a head, complement or adjunct and the derivation 

process uses these distinctions to determine how to assign categories. 

2.3 TURKISH CCG 

Cakici (2005) further explores the derivation process, deriving a CCG lexicon 

from a Turkish dependency treebank by assigning parts of speech corresponding to the 

relationship to the parent node. The process recursively progresss through each word of 

the sentence, using the dependency relation to derive an atomic category. For example, if 

the dependency relation from the head to the dependent is OBJECT, then the dependent 

is labeled as NP.  Cakici mentions the possibility that dependency relations are too few to 

make correct (sub)category choices automatically, in that words with vastly different 

functions were bound under the same dependency relation. This potential set-back may 

be remedied by use of a larger treebank, as the Turkish treebank used by Cakici was an 

order of magnitude smaller than the Penn Treebank used by Hockenmaier, or perhaps by 

using a more explicit relation set. 

Cakici's approach induces a lexicon that manages to overcome obstacles of pro-

drop and subordination/relativization; results after the publishing of her paper showed 

that parsing in Turkish did in fact improve.  

2.4 BENEFIT OF THIS APPROACH 

There are a few inherent characteristics that suggest that an approach employing 

dependency trees rather than constituent structures may offer a better lexicon.   As CCG 

is a binary branching grammar, a conversion process is needed to convert Penn Treebank 
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sentences into pseudo-binary branching trees. The automated conversion process allows 

room for error.  Using an inside-out combinatory aspect in conjunction with the one-to-

one relationship between dependents and heads, one can traverse a dependency tree in a 

simulated binary fashion without creating an intermediate structure.   Koller and 

Kuhlman (2009) show this conversion is not one-way, creating a process to generate a 

dependency tree by taking advantage of CCG sentence derivations’ natural dependency 

structure. 

The constituent Penn Treebank used to create the CCGbank has ambiguity at NP 

structure. As example, the NP the hot pink roof is ambiguous as it is unclear if this NP 

refers to a pink roof that is hot in temperature, or a roof that is the color of hot pink. As 

no time was available for manual re-annotation, these NPs were converted into right 

branching structure which were sometimes accurate and sometimes not (Hockenmaier, 

2003).  However, in Honnibal et al. (2010), the ambiguous noun phrases were corrected 

in the CCGbank using the manual annotation from Vadas and Curran (2007).  This 

adaptation corrected 1.95% of the dependencies in CCGbank (Vadas and Curran 2008).  

For dependency treebanks, this flat structure is not an issue, thus NPs and their respective 

modifier structure will be accurate every time.  

The use of dependency relations may offer better results in generating a lexicon, 

as the relation shows the association between parent and daughter more explicitly than a 

constituent structure approach.  Furthermore, having various sets of dependency relations 

allows greater potential in modification/customization of how the derivational approach 

handles each relation.   

This approach differs from Cakici’s approach in the manner that atomic 

categories are assigned.   Cakici used the dependency relations themselves to determine 

the atomic categories of the dependent nodes. In contrast, this approach uses the part of 
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speech tags assigned to the dependent nodes; the dependency relations will determine the 

method in which atomic categories are combined to create factor categories. 



 10 

Chapter 3: Extracting Categories from Dependency Trees 

A dependency tree can easily be converted to a CCG derivation.  Given Figure 1, 

we can redraw this graph in a more tree-like arrangement, given in Figure 3. In this 

format, it is impossible to determine the original sentence order; however, many 

treebanks supply indices so that the linear sentential order can be preserved. 

A broad description of the induction principle will be given below, with a more in 

depth algorithm given at the end of the chapter. As a simple example, in this sentence the 

root word jumped has two children: fox and over.  Between the parent fox and the 

dependent fox, there is a NP-SUBJ relationship.  As this is an argument relation, jumped 

can be viewed as something that is looking to the left for an NP-SUBJ argument: using 

POS tags, it is a VBD that is looking to the left for an NN. We can thus assign the 

category in (4a). Between the parent jumped and the descendent over, there is a PP 

(Prepositional Phrase) relation.  Since PP is an adjunct relation to the root, it will not be 

included in the lexical category for jumped. As another example, the word over is an 

adjunct or modifier of the root jumped; therefore over is something that is looking to its 

right for the argument prepositional-object and to the left for a verb to modify. Therefore 

the category of jumped is used as a subcategory in the category for over (4b).  The same 

process can be performed on each word in the tree. 

Once all words are given a category, the sentence derivation given in Figure 4 is 

possible.. 

 

4. Sample Derived Categories 

a. jumped:= VBD\NN 

b. over:= ((VBD\NN)\(VBD\NN))/NN 
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Figure 4: CCG Derivation Using Dependency Derived Categories 

 

 

 

 

Figure 3: Dependency Tree Structure of a Sample Sentence 
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3.1 CURRENT DATA 

The current work and analysis is being performed on two dependency treebanks.  

The first is supplied by the CoNLL-2008 shared task. This treebank was created from the 

Penn Treebank, BBNs named entity corpus, PropBank and NomBank (Surdeanu et al 

2008). Each input corpus was translated from the constituent based formalism of the Penn 

Treebank to a dependency formalism (Johansson and Nugues 2007). There are a total of 

around 40,000 sentences. 

The second treebank is the Italian TUT dependency treebank.  It contains only 

around 2,400 sentences.  This treebank comes in two different formats: the native TUT 

format and the adapted CoNLL format.  This facilitates creating a single base algorithm 

for the derivation. 

One significant distinction from other treebanks, namely the Penn Treebank, is 

that these treebanks do not encode trace or null elements that arise in movement scenarios 

such as wh-questions and relative clauses.  This stymies the ability to easily resolve long-

range dependencies and extraction via dependency structure and relations alone. 

3.2 DERIVATION ALGORITHM 

The algorithm traverses the dependency trees, creating categories as it passes 

from head to dependent much like was done above for the lexical entries in (7). In 

creating the CCG lexicon, the primary concerns are 1) whether a word is an argument or 

an adjunct to its parent and 2) how to treat said adjuncts and arguments during the 

conversion process. In very loose terms, an argument is a word that fulfills a certain 

pivotal syntactic-semantic role, such as SUBJECT, OBJECT or BENEFICIARY. 

Adjuncts play a slightly different role; their presence or lack thereof does not determine 

“grammaticality,” but instead adds further information into the sentence; for example 

adjectives and adverbs. Ponvert (2008) determines if a dependency link is an argument 
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relation or an adjunct relation in theCoNLL08 shared task treebank. For simplicity's sake, 

the previously derived sets of adjunct and argument links will be used. Dependency 

relations for the CoNLL08 treebank and the TUT treebank are given in Appendices A 

and B, respectively. 

3.3 Basic Algorithm 

The algorithm is as follows: 

• Categorize parent-daughter relations as Adjunct or Argument. 

• Assign each node’s POS tag as its category.  

• Calculate category of node using dependencies and their relations.  

3.3.1 Categorize Argument/Adjunct Relations 

First, the relationship of each node to its parent node is determined.  Quite simply, 

for a given node, if the relationship to its parent is in the predefined set of Arguments, 

then it is assigned an argument role.  Conversely (and just as simply), if the relationship 

to its parent is in the predefined set of Adjuncts, then it is assigned an adjunct role.  This 

hard-coded approach seems to work well. 

3.3.2 Assign Each Node’s POS Tag as Category 

This step is a brute force and computationally cheap way to ensures that argument 

nodes without their own argument daughters will have a category. As an example, see the 

words fox and dog in Figure 3. 

3.3.3 Calculate Node Categories 

The category of each node is assigned. The category assignment can be viewed as 

a function of adjunct/argument relations, parenthood and POS tags.  For each node that 

has an adjunct daughter, calculate the current element's category before calculating any of 
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the dependent's categories.  This will ensure that no adjuncts are induced using a parent 

node that has not yet been fully defined.  Category assignment is accomplished using the 

following heuristic. 

 Starting at the root element and working down the tree: 

• Adjunct: Given the current word w1 with category c1 and its dependent w2, 

if R(w1, w2) ∈ AdjunctRoles, then w2's category is c1\c1 or c1/c1 

• Argument: Given the current word w1 with category c1 and its dependent 

w2 with category c2, if R(w1, w2) ∈ ArgumentRoles, then w1's category is 

c1\c2 or c1/c2. 

If w1 has multiple argument relations that precede it, first calculate the left-

most/first argument as determined by linear order, then each proceeding argument until 

w1 is reached in linear order of the sentence. If w1 has multiple argument relations that 

follow it, calculate first the right-most/last argument in linear order, the each preceding 

argument until w1 is reached. If there are arguments that both precede and follow w1, first 

calculate using those that preceded, then those that follow. This ordering will ensure the 

same category structure used in CCGbank and TutCCG., and will be quite necessary once 

logical forms can be involved in the derivational process.    

3.4 Applying Compositional Rules to the Derivation 

This simple algorithm does not extract an optimal lexicon; for example the 

algorithm assumes that adjuncts relations can only modify their heads by using the 

application rules of CCG. Thus, for the example adverb quickly, it would require two 

different categories to be able to modify the intransitive and transitive verbs in Figure 5 

and Figure 6. 
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Figure 5: Example of the adverb ‘quickly’ in an intransitive sentence 

 

Figure 6: Example of the adverb ‘quickly’ in a transitive sentence  

 

Figure 7: The adverb ‘quickly’ in a intransitive sentence with composition rules 

 

 

Hockenmaier & Steedman (2003) found that allowing/assuming the CCG 

composition rules in the derivation process greatly reduced the number of categories in 

the lexicon while working on CCG Bank. This would allow a single category for the 

word quickly, for example, to modify verbs in general, as in Figure 7 and Figure 8. 
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The algorithm needs to be quite selective when deriving categories assuming the 

composition rules, otherwise words might be able to combine in ways that would not be 

desired: an adverb combining with a noun, for example. The rule, therefore, is that 

composition rules can only be assumed when the following conditions are met: 

5. Conditions for Assuming Composition 

a. The current word has an adjunct relation with its head. 

b. The current word modifies an argument or the root of a sentence. 

To derive such a category: if the current word modifies an argument/root, then the 

category root is the modified argument's part of speech tag + "slash" + modified 

arguments part of speech tag. If the current word has an argument dependent, calculate 

the remainder of the category; otherwise, the category is complete. 

As an example, take the word over from the sentence found in Figure 1.2 Over 

meets the conditions of (5); its category root is therefore jump's POS tag + \ + jump's POS 

tag, thus rendering VBD\VBD. It also has an argument relation with dog, thus it looks to 

the right for an NN. The final category would then be (VBD\VBD)/NN. Compared to the 

original category of ((VBD\NN)\(VBD\NN))/NN, the new category is much simpler and 

concise, fulfilling the intuition that the preposition over tends to modify verbs in general, 

as opposed to strictly verbs of the intransitive or transitive variety.  
                                                
2 The quick brown fox jumped over the lazy dog. 

 

Figure 8: The word ‘quickly’ in a transitive sentence with composition rules 
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3.5 Reducing Categories 

There is an inherent issue of redundancy across categories, due to the simple 

existence of tense and plurality. For the basic intransitive verb like sleep, the following 

categories will be potentially derived: VBG\NN, VBZ\NN and VBD\NN. One simple and 

easy method to reduce a number of excess categories is to devise a mapping that 

collapses similar tags to a single tag group. For example:  

6. VB = { VDZ,VBD, ... } 

7. NN = { NNS, NN, ... } 

In theory, the agreement data lost due to this step should not affect performance in 

statistical parsing models, as sequences that disagree in tense/plurality/gender will be 

inhibited due to their low probability. 

3.6 Preprocessing Steps 

For each input corpus, a number of individualized preprocessing steps were 

required.3  Ideally this would not be necessary, however annotation conventions and 

inconsistencies argued otherwise.  

3.6.1 CoNLL08 - Handling Coordination 

The dependency treebank encodes coordination by use of two dependency 

relations; coordinators are assigned the dependency relation COORD, while the conjuncts 

are given the category CONJ.  For simple constructions like Mary kissed John and Bill, 

the algorithm is quite sufficient.  However, the addition of more elements in the 

coordination required a number of preprocessing steps.  Extending Mary’s dubious 

behavior, for the elements in Mary kissed Sam, John and Bill that are not directly 

adjacent to the coordinator and, dependencies for the conjuncts needed to be reassigned 

                                                
3 All changes were verified with CCGbank and TutCCG lexicons. 
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and the commas needed to be reinterpreted as coordinating elements.  Not only did this 

step prevent incorrect categories,4 but it also helped model the underlying syntax of the 

constructions.  

3.6.2 CoNLL08 – Money Issues 

Monetary constructions in the treebank such as “$ 100” were annotated with the 

dollar sign as the head and 6 and billion as dependents.  This was done to maintain the 

same dependencies in the two trees in Figure 9.  In each tree, the lemma for dollar is the 

head and 100 is the dependent. 

Figure 9: Dependency trees showing analysis of dollar/$ 

 However, this would result in categories like $\$ for 100.  Perhaps more 

egregiously, the verb won in “I won $ 100” would be assigned a category like 

(VB\NN)/$.  A potential solution would have been to map the dollar sign to the category 

NN to avoid the odd categories above.  

The decision was made to reanalyze the last numeric item in the string to be the 

root and have the dollar sign be a dependent; cases with the word dollar did not change.  

While this loses the dependency similarities across similar constructions, it produces an 

equivalent derivation to similar constructions in CCGbank. 

                                                
4 Previously, elements in a list were all children of the first element.  Thus John and Bill would be 
dependents of Sam.  This would result in John and Bill acting in an adjectival capacity modifying Sam.  
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3.6.3 CoNLL08 - Hyphenated Constructions 

Multiword compounds joined by hyphens are given special treatment in the 

treebank.  When annotating the treebank, information concerning the constituent structure 

of the compounds was included as nodes in the dependency tree.  These extraneous nodes 

had to be removed, while reassigning correct dependency relations, POS tags and 

parenthood links.  See Figure 9 for an example of the NP “190-point plunge.”  The tree 

on the left is as annotated in the treebank.  The tree on the right is the tree post processing 

3.6.4 CoNLL08 - Tagging Errors 

As the derivational algorithm takes advantage of the POS tags of words, the 

accuracy of the derived CCG categories is affected by misannotations.  While checking 

POS tags manually is not within the scope of this project, errors are corrected when 

found. 

Figure 10: Example of a Hyphenated Construction.  

 

 



 20 

 

3.6.5 TUT – Articles/Determiners 

Articles/determiners in the treebank tended to be analyzed as the head of an 

Article-Noun combination.  This results in nouns receiving categories like ART\ART.   

This analysis is fixed to reflect the conventional linguistic theory that nouns are the heads 

of noun phrases.  

3.6.6 TUT – Compressing Prepositions + Articles 

As in other Romance languages, certain sequences of preposition and article 

combine to form a single word.  In the treebank, the resulting combination is entered as 

two individual sequential nodes in the dependency tree: the first to represent the 

preposition and the second to represent the article.  This is not representative of how the 

language is actually used, nor does it aid in the development of a lexicon.  The duplicate 

entries are compressed and the correct head-dependent relations are established. 

3.6.7 TUT – Pre-Noun Adjectives 

In certain environments, adjectives that preceded nouns were labeled as the head 

while the nouns were labeled the dependent.  As adjectives are traditionally thought to 

modify nouns, the head-dependent relationships were reversed when found. 

3.7 Final Algorithm 

The algorithm is as follows: 

• Preprocesses 

• Categorize parent-daughter relations as Adjunct or Argument. 

• Assign each node’s POS tag as its category.  

• Calculate category of node using dependencies and their relations.  

o Allow application rules and composition rules 
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Figure 11 shows a sample category assignment for the one of the sentences 

common to Penn Treebank and the CoNLL08 shared task.  The top sentence shows the 

results from the dependency based approach and the bottom shows the results from the 

constituent-based derivation of CCGbank.  Note the differences found in the category 

assignments for the word Section.  The dependency categories show that Section modifies 

89 whereas the constituent-based category shows that it is a noun modifier of the word 

rules.  Also note the lack of long-range dependencies in the dependency-based category 

for the word lobbied; they are present in the constituent-based approach. 

 Similarly, Figure 12 shows a derivation of an Italian sentence, with the top 

sentence being derived via dependency relations and the bottom derivation from the 

constituent-based derivation of TutCCG.  Once again, the long-range dependencies are 

missing in the dependency-based approach.  Note the method in which TutCCG assigns 

categories to punctuation, creating an overlaying category of t(ext).  This is unique 

among the approaches referenced in this paper. 

 

 

Figure 11: English sentence from dependency and constituent-based derivational 
processes 
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Figure 12: Italian sentence from dependency and constituent-based derivational processes 
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Chapter 4: Evaluation 

Difficulty will arise when evaluation is required and no gold standard is present.  

Such is the case for this task; no gold standard set of lexical categories exists that can 

validate this approach.   Instead, the resulting lexicons from this approach are compared 

with their previously created counterparts.   For ease in the evaluation, the lexicon 

derived from the CoNLL08 treebank shall be referred to as DepEngCCG and the lexicon 

derived from the TUT treebank shall be referred to as DepItCCG. 

The comparison follows two different approaches.  The first is purely metric 

based, showing characteristics of the lexical datasets, such as category complexity and 

category growth.  The second compares the effectiveness of using DepEngCCG supertags 

and CCGbank supertags as features in another task, namely sentiment detection.  

4.1 COMPARISON WITH CATEGORY STATISTICS 

Without context, a statistic is simply a number.   The goal of these statistics is to 

help answer a question, namely what makes a good lexicon?  Following tradition, 

Ockham’s razor, which rewards simplicity, is assumed.  For this application, this means 

that a small lexicon would rank higher than a large lexicon (with the assumption that the 

smaller lexicon would adequately model the language), and simpler categories would 

rank higher than more complex categories.  

4.1.2 Category Counts and Growth 

The resulting lexicon of DepEngCCG contains a total of 95,584 entries for 43,999 

word types; there are a total of 1,952 different categories.   As is expected, the majority of 

words only have a small number of categories assigned to them, yet a small number of 

functional words contained a high number of categories.  This resultant lexicon is 
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significantly larger than that of the CCGbank, with 74,669 entries and a total of 1,286 

categories.   

For DepItCCG, a count of 854 categories is derived across 8813 words, for a total 

of 14925 entries.  The number of categories derived for DepItCCG is a degree less than 

the number found in TUTCCG, which was 1152 categories.   

The ten words with the highest category count for each derivation are given in 

Table 1.  One can generalize that the dependency derivation for English is typically more 

(perhaps overly) explicit, as counts for the same words are typically higher in 

DepEngCCG.  It appears DepItCCG and TutCCG are more on par in terms of category 

counts, with values more tightly centralized.   Tables 2 and 3 show the top ten most 

frequent categories in terms of type.  Token counts are also given.  In each derivation, it 

is not surprising that nouns and noun modifiers are the most frequent of categories.  For 

these categories, type counts from DepEngCCG to CCGbank and from DepItCCG to 

TutCCG are quite close.  This would hint that dependency and constituent-based 

derivation processes have quite similar results for the classes of nouns and noun 

modifiers.  Conversely, the Tables 2 and 3 also show that the derivations for more 

functional categories, like verbs, differ across methods.  These differences can be seen as 

limitations or constraints of the approach due to input source; as previously stated, the 

dependency trees did not syntactically encode null or trace elements that were used in the 

CCGbank and TutCCG derivations.  

Figures 10-13 show the growth of the total number categories as the derivational 

processes generate categories from the input sentences.  All graphs give a similar shaped 

plot, showing an initial period of rapid category growth whose rapidity slows over time.   

As can be inferred from the category count differences for DepEngCCG and 

CCGbank, DepEngCCG shows a trend of generating more categories given the same 
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amount of input. At this point, it is unclear if this should signify a better approach 

(constituent trees vs. dependency trees) or if the dependency approach simply has not yet 

had as much focus on more idiosyncratic grammar constructions. However, both 

approaches show a general trending plateau for categories that appear more than five 

times.  This lends credence to the idea of a Zipfian distribution: that after a certain 

amount of input, only novel and unique categories would be generated; all the common 

and frequent categories are generated in the initial amount of input.  

The growth for the Italian categories (see Figures 12 and 13), on the other hand, 

shows that while the dependency approach shows the category plateau, the trend for 

TutCCG shows a constant slope; this could be alleviated by the addition of combinatory 

rules for specific but common linguistic structures as well as abstracting over modifier 

and conjunction categories (Bos, Bosco and Mazzei 2009). 
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DepEngCCG CCGbank DepItCCG TutCCG 

Word # Cats Word # Cats Word # Cats 
  

Word # Cats 

and 252 as 130 e 136 e 176 

is 226 is 109 in 90 , 93 

to 203 to 98 di 87 in 82 

in 196 than 90 per 77 per 70 

as 168 in 79 a 77 o 62 

of 156 - 67 da 62 sono 58 

are 151 ‘s 67 sono 49 ha 51 

was 150 for 66 che 46 da 45 

for 137 at 63 come 45 a 45 

at 134 was 61 del 43 con 42 

Table 1: Ten tokens with highest category counts 
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DepEngCCG CCGbank 

Cat Type 

Count 

Token 

Count 

Cat Type 

Count 

Token 

Count 
NN/NN 20141 216630 N/N 21485 152508 

NN 20126 208413 N 20544 206312 

(NN/NN)/(NN/NN) 4514 22842 (S[dcl]\NP)/NP 2360 16055 

NN\NN 3968 17929 S[adj]\NP 1873 7974 

VB/NN 3166 18490 (S[b]\NP)/NP 1530 13033 

(NN\NN)/(NN\NN) 3138 12870 (N/N)/(N/N) 1414 5830 

VB 3052 12377 S[pss]\NP 1293 6988 

(VB\NN)/NN 1800 11312 (S[ng]\NP)/NP 1247 5838 

VB/VB 1757 18009 N[num] 1144 8547 

JJ 1660 8284 S[dcl]\NP 1092 5564 

Table 2: Ten Most Frequent Categories in the DepEngCCG and CCGbank 

 

 

 

 

 

 

 

 

 



 28 

DepItCCG TutCCG 

Cat Type 

Count 

Token 

Count 

Cat Type 

Count 

Token 

Count 
NN 3466 11833 n 3528 9977 

NN\NN 1520 3065 n\n 1245 2559 

NN/NN 696 5158 n/n 521 1212 

VB/NN 557 875 n/pp 399 781 

(NN\NN)\(NN\NN) 514 892 s:inf/np 237 328 

VB\VB 359 1020 s:adj\np 219 319 

NN/IN 357 647 (n\n)/pp 200 326 

VB/VB 338 1566 (s:dcl\np)/np 186 302 

VB 266 373 np 175 1306 

JJ 1660 8284 S[dcl]\NP 1092 5564 

Table 3: Ten Most Frequent Categories in DepItCCG and TutCCG 
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Figure 13: Category growth for DepEngCCG 
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Figure 14: Category growth for CCGbank 
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Figure 15: Category growth for DepItCCG 
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Figure 16: Category growth for TutCCG 

 

4.1.2 Category-Category Mapping 

To compare the lexical coverage given by the different derivation methods, a 

category mapping attempts to align equivalent categories.  For example, perhaps the word 

kicked has the CCGbank category of (s\np)/np and the DepEngCCG category of 

(VB\NN)/(NN).  These categories would be considered equivalent as each atomic 

category within the full functional category can be mapped to create an equivalent. The 

CCGbank category np\np and the DepEngCCG category NN/NN would not considered 

equivalent (due to the directionality of the slash operator).   The mapping chart is given in 
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Appendix C. This mapping does not take into account that a single atomic category may 

be able to translate into a functional category.  The similarity measure is calculated on a 

word-category basis.  The table below gives the similarity measures of the two 

derivations, using CCGbank and TutCCG as gold standards for comparison. 

 
Dataset Precision5 Recall6 F-Score7 # Unique 

words 
DepEngCCG 0.367 0.467 0.411 176 
DepItCCG 0.460 0.469 0.464 1863 

Table 4: Similarity Measures of Lexicons 

Table 4 shows that nearly half of all word-categories derived by the process given 

in this paper have an equivalent category in its sister lexicon.  Through a sampled manual 

comparison, a number of the non-matches are cases that could have been matches had the 

dependency trees encoded null and trace elements to aid in the derivation categories that 

predict long-range dependencies.  While both approaches were able to encode that 

relative clauses modify nouns, as an example, the encoding method was quite different.    

Table 4 also shows that there were a number of unique words that were found in 

the dependency-based derivations that were not found in the constituent-based 

derivations.  For DepEngCCG, this is not unexpected, as the Penn Treebank is but one of 

a number of sources used to make the CoNLL08 shared task corpus.  For DepItCCG, 

however, the same input source of the TUT was used in both approaches.  The 

discrepancy lies in the fact that 23% of the sentences in TUT did not make it into the final 

                                                
5 Precisions = (WCDep∩WCCons)/WCDep “Number of equivalent word-categories divided by the total number 
of dependency generated word-categories. 
6 Recall = (WCDep∩WCCons)/WCCons “Number of equivalent word-categories divided by the total number of 
constituency generated word-categories. 
7 F-score (harmonic) = 2*(Recall*Precision)/(Recall+Precision) 
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version of TutCCG (Bos, Bosco and Mazzei 2009).  For DepItCCG, only a small number 

of sentences were not included. 

4.1.3 Category Complexity 

In Baldridge 2008, a probability distribution that states the probability of a 

category is inversely proportional to its complexity is used to improve super-tagging 

performance on highly ambiguous words.   The complexity measure used is employed 

here as well.  The complexity measure simply counts the number of subcategories or 

tokens contained in a category. 

For example, the category for the word over (4b) has the category  

((VBD\NN)\(VBD\NN))/NN.  This category would have the complexity measure of 9: it 

has VBD twice, NN three times, (VBD\NN) twice, (VBD\NN)/ (VBD\NN) once and the full 

((VBD\NN)\(VBD\NN))/NN once.   

Histograms showing the complexity distribution over categories for DepEngCCG 

and CCGbank are given below in Figures 17 and 18 and for DepItCCG and TutCCG in 

Figure 19 and 20. 
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Figure 17: Category Complexity Distribution for DepEngCCG Derivations 

 

 

 

Figure 18: Category Complexity Distribution for CCGbank Derivations 
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Figure 19: Category Complexity Distribution for DepItCCG Derivations 

 

 

 

Figure 20: Category Complexity Distribution for TutCCG Derivations 
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All of the histograms demonstrate what is expected: the simpler the category, the 

more often it occurs.   Higher complexity categories are not only few in type, but also 

few in occurrence.  These categories could be due to very specialize linguistic 

constructions or due to inadequacies in the derivational process.   

The small hump in the tail end of the DepItCCG category types distribution in 

Figure 19 can be attributed to the difficult sentence constructions that were dropped from 

TUT.   Note the high token count of categories with complexity of 3 for TutCCG.  While 

the other histograms show that 1-complexity categories appear more frequently than 3-

complexity categories, the opposite is true of TutCCG.  This is due to the fact that 

TutCCG is the only lexicon of the group that attempted to assign CCG functional 

categories to punctuation. 

Aside from the nuances mentioned above, the histograms model an ideal lexicon 

well, showing similar shape for each language. 

4.2 STATISTICAL PREDICTIVE TASK – SENTIMENT ANALYSIS 

With the use of the web as a social and marketable business medium, sentiment 

analysis is a growing area of research.  The aim is to easily and automatically glean 

consumer opinion on products, movies, restaurants etc.   Consumers’ reviews can be 

classified as positive or negative (Pang and Lee (2004), Pang et al. (2002), Turney 

(2002)) or can be classified on a 1 to 5-star rating scale (Pang and Lee (2005), Snyder and 

Barzilay (2007)). 

In a typical sentiment classification task, a supervised learning method will read a 

sentence/document as a bag of N-grams.  In theory, the learning model would associate 

“positive” words like like and good with a positive review, while associating words like 

hate and bad with a negative review.  This assumption works well for canonical displays 
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of sentiment, however it is painfully obvious how easily words that predict one opinion 

can be used to express the exact opposite. 

8. Word meaning expressing sentiment 

a. I love anything with a good plot. 

b. This was a really bad movie.  

9. Word meaning expressing opposite sentiment 

a. I have no love for chick-flicks. 

b. There was nothing bad about the movie. 

Various methods have found suitable methods to attempt to cope with this issue.  

For the sake of comparing the CCGbank to the lexicon derived in this paper, the CCG 

categories for each word in the document are added as features to the statistical model 

with the hypothesis that negative and positive usages of the same word have different 

categories assigned to them. 

Testing on the same datasets with two different category sets as features allows a 

relatively easy and objective measure to differentiate the two category sets.  

Classification of the documents without the categories as features allows comparison 

with a baseline.  It is important to stress that this will not be an effort to compete with 

current sentiment analysis work, but rather an attempt to gauge the quality of two 

lexicons via a modern and relevant task. 

4.2.1 Data 

For this experiment, a combined dataset from three different sources is assembled: 

from Pang and Lee (2004),8 a collection of 2000 movie reviews; from Pang and Lee 

(2005),9 a collection of 10,310 movie reviews in sentence/snippet form; and a set of 2000 
                                                
8 Polarity Dataset v2.0 
9 Sentence Polarity Dataset v1.0 
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video reviews and 2000 DVD reviews from Blitzer et al. (2007).10 In total, this summed 

to a sizable collection of over 16,000 documents with an even split between the negative 

and positive classifications.  The full dataset is then split into a development set of 2000 

documents and a test set of the remaining 14310 documents.  Any testing and parameter 

setting is done using the development set. 

4.2.3 Process 

A Hidden Markov Model (HMM) supertagger11 is created for each dataset, using 

as training data the CCG derivations from the CCGbank and the CCG derivations 

presented in this paper.  For an introduction/discussion to HMMs, see Rabiner (1989).   

Such sequencing prediction modes have proven quite effective for the supertagging task 

(Bangalore and Joshi, 1999; Nielsen, 2002). This HMM supertagger is then used to 

assign CCG lexical categories to the movie review documents.  Future improvements on 

this tagging step could include verifying that the resulting supertags would fully combine 

for each sentence. 

Positive/negative classes are assigned to each document by use of a Maximum 

Entropy classifier from the OpenNLP software package.12  For more information on 

maximum entropy uses in natural language processing, see Berger et al. (1996) and 

Ratnaparkhi (1998).  A Gaussian prior distribution is assumed, using a sigma value of 

0.01, which was calculated using the development set.  

As features in the maximum entropy models, the following are tested: words only, 

words with supertags, words with POS tags, supertags only and POS tags only.  Words 

with tags are created using the following format:  word_tag. 

                                                
10 Multi-Domain Sentiment Dataset v2.0 
11 Thanks to Baldridge (2008) for use of the HMM. 
12 http://maxent.sourceforge.net/ 
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4.2.4 Results 

Ideally, a sentiment classifier should be able to accurately predict a polarity 

regardless of the type of input.  However, not all documents are created equally; a review 

may contain a general plot summary with only a single concluding sentence containing 

any opinion data or the entire review may be an opinionated rant or rave with no filler. 

The full combined dataset is tested using ten-fold cross-validation to obtain a 

general baseline on how well the classifier performs on a set of varying data.  The dataset 

is then broken up into their original subsets and tested again, allowing comparison with 

the full dataset as well as with previous work on the subsets of data.  The sigma value of 

0.01 is also used on the subsets.   

4.2.4.1 Full Dataset 

The results of a ten-fold cross-validation over the test dataset with word-

categories as features are given below in Table 5.  It is clear from the results that adding 

supertags to the words in the documents does not aid in the classification tasks.  This is 

verified in Table 6, which shows that using only supertags as features in the maximum 

entropy model only outperforms chance by a small margin.  At the same time, it does not 

appear that added supertags particularly hurt the accuracy to a large degree, losing only 

0.3-0.5% accuracy; however, this small percentage is not statistically significant and 

should most likely be attributed to noise.  
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Positive Classification Negative Classification Feature 
Lexicon 

Accuracy 
Precision Recall F-Score Precision Recall F-Score 

DepEngCCG 78.7% 0.761 0.828 0.793 0.811 0.740 0.774 
CCGbank 78.4% 0.763 0.831 0.796 0.815 0.743 0.777 
POS 78.2% 0.760 0.823 0.791 0.807 0.741 0.773 
Token only 78.9% 0.771 0.824 0.796 0.811 0.755 0.782 

Table 5: Results of Sentiment Analysis Using Word-Categories as Features 

 

 
Positive Classification Negative Classification Feature 

Lexicon 
Accuracy 

Precision Recall F-Score Precision Recall F-Score 
DepEngCCG 56.3% 0.543 0.792 0.644 0.617 0.336 0.434 
CCGbank 57.7% 0.557 0.750 0.639 0.618 0.404 0.488 
POS 56.6% 0.547 0.769 0.639 0.611 0.364 0.346 

Table 6: Results of Sentiment Analysis Using Categories Only as Features 

 

Table 7 shows the breakdown of the errors made for each classification analysis.  

There is a clear trend that the majority of errors in classifications occur on negative 

polarity documents.  For the classifications that took word-categories or word tokens only 

as input, this could be attributed to a number of documents using positive polarity items 

in a sarcastic tone or by explaining what a good movie should be. Table 8 demonstrates 

that this disparity occurs at the category/POS-tag level as well.  The reasons for this are 

not immediately clear and merit future investigation. 
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Dataset % Error Pos % Error Neg 

DepEngCCG 39.6% 60.4% 
CCGbank 39.9% 60.1% 

POS 40.6% 59.6% 
Untagged 41.8% 58.2% 

Table 7: Error Breakdown for Classification Using Word-Categories 

 
Dataset % Error Pos % Error Neg 

DepEngCCG 23.8% 76.2% 
CCGbank 29.5% 69.5% 

POS 26.5% 73.5% 

Table 8: Error Breakdown for Classification Using Categories Only 

 4.2.4.2 Movie Review Polarity Dataset Results 

Previous work using this body of documents has shown success in accurately 

identifying the sentiment of a given review.  In Pang and Lee (2004), a classifier labels 

each sentence in a document as either subjective or objective; the objective data is 

removed and the resulting extract of subjective text is classified using Naïve Bayes (NB) 

and Support Vector Machines (SVM) at the document level.  This approach aims to 

remove distracting text such as plot summaries that could otherwise mislead a 

classification.  Accuracies for classifiers trained on the subjective extracts achieved a 

statically significant gain (from 82.8% to 86.4% for NB) or were able to maintain 

accuracy (SVMs) when using an average of 60% of the original document  

Work done by Boiy et al. (2007) expands on Pang and Lee (2004) to include a 

maximum entropy classifier for the subjective extracts and attempts classifications using 

bigrams and just the adjectives found within the documents.  Three different 
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classification models are tested (support vector machine, naïve Bayes and maximum 

entropy) with four different feature sets (unigrams, unigrams with subjectivity extracts, 

bigrams, adjectives).  A maximum accuracy of 87.4% was reported using a unigram word 

model of the subjectivity extracts as feature in a maximum entropy classifier.  

Interestingly, the classification using only adjectives as features achieved a relatively 

high accuracy of 82.0% for the Naïve Bayes classifier. 

Results for the classification using the supertags as features is given in Table 9.  

When compared to the results found in Table 6, it is clear maintaining a homogeneous 

distribution of documents will improve classification accuracies; in this case, we see 

around a 5% increase in accuracy.  The results of the maximum entropy classifier trained 

only on word tokens are consistent with the results found for the equivalent classifier in 

Boiy et al (2007).     

As before, the addition of supertags as features has not shown successful in aiding 

the classification task. 
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Positive Classification Negative Classification Feature Lexicon Accuracy 
Precision Recall F-Score Precision Recall F-Score 

DepEngCCG 83.8% 0.827 0.055 0.841 0.850 0.821 0.832 
CCGbank 83.7% 0.827 0.853 0.840 0.848 0.821 0.834 
POS 83.4% 0.825 0.846 0.836 0.842 0.821 0.831 
Token only 84.2% 0832 .0856 0.839 0.852 0.827 0.839 
Pang/Lee 2004  
NB 

82.8%       

Pang/Lee 2004  
NB+subj extract 

86.4%       

Pang/Lee 2004 
SVM 

87.2%       

Boiy et al 2007 
MaxEnt 

84.8%       

Boiy et al 2007  
MaxEnt+subj 
extract 

87.4%       

Boiy et al 2007 
Maxent Bigrams 

85.4%       

Boiy et al 2007 
NB Adj  

82.0%       

Table 9: Classification Results on Movie Review Polarity Dataset 

 

4.2.4.3 Sentence Polarity Dataset Results 

In comparison to many other datasets that contain multi-sentence documents, this 

corpus is a collection of single sentence documents, annotated to show positive or 

negative sentiment polarity.  Created by Bo and Pang (2005), the sentences/snippets were 

described to be “striking,” perhaps with the goal that a more striking sentence would 

expand the distinctions between positive and negative polarity.   Bo and Pang (2005) 

used this dataset to develop a positive-sentence percentage (PSP) similarity measure that 

increased accuracy when attempting to assign 3-4 star ratings to a movie reviews.  As the 

accuracy of sentence-level classification was not their primary focus, no information was 
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given on the performance of the naïve Bayes classifier.  However, it was shown that an 

author’s rating for a movie and the review’s PSP of said movie were directly 

proportional. 

In Radovanoci and Ivanoci (2008), a number dimensionality reduction techniques 

are compared.  Unigrams, bigrams and trigrams are all used together as features.  Using 

the SIMPLS13 (de Jong 1993) supervised linear feature extraction algorithm to garner 

features and employing the 25-nearest neighbor classification algorithm, the sentence 

polarity dataset was classified with about14 76% accuracy using only seven features.  

Naïve Bayes classification was found to have approximately 77% accuracy, while a 

support vector machine achieved approximately 73%. 

A Naïve Bayes classifier was tested in Andreevskaia and Bergler (2008).  

Separate models were trained for unigrams, bigrams and trigrams.  Results with ten-fold 

cross-validation show that the unigram-trained classifier performed best with 77.4% 

accuracy; bigram accuracy was second with 73.9% accuracy and trigrams came last with 

65.4% accuracy.   These results show a special property of sentence-level annotation: 

greater sensitivity to sparseness.  With higher order n-grams, there is a higher probability 

of uniqueness, thus also increasing the chance of missing a sentiment marker in the 

sentence. 

The results from the current tests are given in Table 10.  Despite the “striking” 

quality of the sentence snippets, the results show that classifying sentence/snippets is less 

accurate than a full-bodied review.  The best results are achieved by the classifier that 

trained only on words, yet still this is significantly less accurate than the results for the 

                                                
13 An efficient Least Partial Squares (LPS) algorithm. 
14 Values for accuracies are not expressly given in Radovanoci and Ivanoci (2008).  Values are best 
estimates given a results graph. 
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naïve Bayes classifiers of Radovanovic and Ivanovic (2008) and Andeevskaia and 

Bergler (2008).  This difference may be attributed to the use of unigrams as opposed to 

bigrams and trigrams.  It is also possible that the sigma value determined on the 

developments set is not optimized for these shorter length documents.  However, due to 

the greater sensitivity to sparseness, it is possible that recalculating sigma using only this 

dataset would improve accuracy better than would the addition of bigrams or trigrams to 

the model. 

4.2.4.4 Multi-Domain Sentiment Dataset Results 

Research using the Multi-Domain Sentiment dataset focuses on how to mitigate 

the negative effects of training on one domain (movies) and testing on another (kitchen 

appliances).  Blitzer et al. (2007) calculate a measure of domain similarity that correlates 

to how well one domain may be adapted for classifying a different domain.  To calculate 

this measure, a baseline is determined for each domain.  For the DVD domain, a baseline 

of 82.4% accuracy is reported.  Dredze et al. (2008) follows the approach of Blitzer et al. 

(2007) and applies it to confidence-weighted online learning methods.  It is shown that 

the faster and simpler online linear classifier algorithms (passive-aggressive algorithm of 

Crammer et al. 2006) perform nearly as well as batch classifiers (MaxEnt, SVMs).  

Classification in this paper joined the video and DVD domain datasets under the 

assumption that the domains were nearly indistinguishable.  While this could introduce 

error, the classification accuracies from this paper match or exceed the classification 

accuracies found in other papers.  These results are given in Table 11.  As with the other 

tests in this paper, the addition of supertags has not increased the classification accuracy. 
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Positive Classification Negative Classification Feature Lexicon Accuracy 
Precision Recall F-Score Precision Recall F-Score 

DepEngCCG 70.2% 0.689 0.738 0.712 0.718 0.666 0.691 
CCGbank 70.6% 0.691 0.745 0.717 0.724 0.667 0.695 
POS 71.5% 0.701 0.750 0.725 0.732 0.680 0.705 
Token only 72.5% 0.711 0.760 0.734 0.742 0.691 0.715 
R&I 2008 – NB 
(1,2,3)-grams 

~77%       

R&I 2008 – 
SIMPLS+25NN 

~76%       

R&I 2008 – 
SVM (1,2,3)-
grams 

~72%       

A&B 2008 – 
NB unigram 

77.4%       

A&B 2008 – 
NB bigram 

73.9%       

A&B 2008 – 
NB trigram 

65.4%       

Table 10: Classification Results on Sentence Polarity Dataset 
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Positive Classification Negative Classification Feature Lexicon Accuracy 
Precision Recall F-Score Precision Recall F-Score 

DepEngCCG 83.3% 0.832 0.836 0.834 0.835 0.832 0.833 
CCGbank 82.9% 0.831 0.825 0.828 0.826 0.833 0.829 
POS 82.9% 0.836 0.819 0.827 0.823 0.839 0.831 
Token only 82.5% 0.834 0.811 0.822 0.816 0.839 0.827 
Blitzer et al. 
2007 (DVD) 

82.4%       

Dredze et al. 
2008 (DVD) – 
PA 

80.4%       

Dredze et al. 
2008 (Video) - 
PA 

80.1%       

Dredze et al. 
2008 (DVD) – 
MaxEnt 

80.7%       

Dredze et al. 
2008 (Video) - 
MaxEnt 

80.5%       

Table 11: Classification Results on Multi-Domain Dataset 

 

4.2.5 Summary 

While adding supertags as features can often reap benefits in statistical tasks, the 

results in this paper exhaustively show that such is not the case for sentiment analysis.   

At the same time, the supertags do not show much sign of causing a significant increase 

in error, showing that the sentiment classification in this study is occurring purely at the 

word level.  Results from other studies showing increased accuracy from use of bigrams 

suggest that future investigation may be warranted.  Under a bag-of-words approach, the 

use of bigrams or trigrams could realize the benefit of supertags, potentially being able to 



 49 

differentiate between phrases such as nothing bad and very bad.  Conversely, this may 

also introduce a higher degree of sparseness and hurt results.   

However, accuracies and improvements upon sentiment analysis were not the end 

goal of these tests.  The attempt to measure the quality of the two CCG lexicons has met 

inconclusive results: at most, the differences in accuracies between DepEngCCG and 

CCGbank vary only by a fraction of a percentage.  At best, it can only be said that 

DepEngCCG and CCGbank were equally inadequate for the given task. 
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Chapter 5: Conclusions 

This paper has given a method to generate a CCG lexicon from a dependency 

treebank, using only the dependency hierarchy and relations.  At the heart of this process 

is the distinction between argument and adjunct relations that drives category derivation. 

As previously discussed, a dependency tree may better represent the relations between 

heads and children in comparison to a constituent tree.  Unlike a number of other similar 

projects, this method does not project an intermediate syntactic level, decreasing the risk 

of error and noise, while remaining true to the binary branching nature of CCG.  While 

the approach presented is meant to be universal to dependency treebanks, it is clear that 

each treebank will have its own set of idiosyncrasies that will inhibit a plug and play 

system; preprocessing and special cases will invariably be needed. More work is required 

to further reduce the category count and deal with specific linguistic structure; 

determining if each derived sentence can parse will aid in teasing out problems with the 

derivation processes as well as confirm working derivations. 

To measure quality of the process, this derivation algorithm was compared to the 

lexicon given by Hockenmaier and Steedman (2002) for CCGbank, as well as the lexicon 

for the Italian TutCCG by Bos, Bosco and Mazzei (2009).  Comparing category counts, 

growth and complexity trends, the dependency CCG lexicons have been shown to be 

quite similar to their previously derived counterparts.  The ideas of lexical simplicity and 

Zipfian distributions drive these measures; both lexicons generated in this paper show 

trends of quality lexicons.  However, despite a number of metrics being better for 

DepItCCG, it is clear that more development is required to account for special cases and 

other linguistic phenomenon.   
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To further analyze the quality of the derived lexicons, the DepEngCCG and 

CCGbank were directly compared on a sentiment analysis task. The DepEngCCG 

performed on par with CCGbank in the classification task, despite the fact that neither 

CCGbank nor DepEngCCG actually improved results overall.  Results for the application 

study were inconclusive, with the supertags being overshadowed by the words 

themselves.  A future comparison analysis could compare the effectiveness of adding the 

different category sets as features in a dependency parsing evaluation. 

The basis of the algorithm need not be constrained to CCG style derivations; with 

some work, the algorithm may be modified to generate other lexical formalisms (TAG, 

HPSG) from dependency treebanks.     

Future work could involve expanding the induction system to automatically 

derive logical forms for each word and its category(ies). This would be done in a similar 

fashion, but using the dependency relations to define the semantics.  At this point, the 

lack of null and trace elements to encode long-range dependencies may require a 

reworking of the algorithm to capture the dependencies. 
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Appendix A: CoNLL08 Dependency Relations 

For more information on these relations, see Johansson and Nugues (2007). 

 

  Adjunct Relations   

ADV ADV-GAP AMOD AMOD-GAP APPO 

DEP DEP-GAR GAP-MNR GAP-NMOD GAP-TMP 

HMOD HYPH LOC LOC-MNR MNR 

NMOD POSTHON PRN SUFFIX TITLE 

TMP VOC PRP   

Table 12: CoNLL08 Adjunct Relations 

 

 

  Argument Relations   

SUBJ OBJ PMOD ROOT P 

COORD CONJ OPRD SUB IM 

VC LGS DIR NAME EXT 

PRD DTV PRT BNF PUT 

EXTR     

Table 13: CoNLL08 Argument Relations 
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Appendix B: TUT Dependency Relations 

For more information on these relations, see Bosco (2003). 

 

 Adjunct Relations  

MODIFIER RMOD RELCL 

REDUC RMOD+RELCL RMOD+RELCL+REDUC 

RMODPRED RMODPRED+SUBJ RMODPRED+OBJ 

APPOSITION NOFUNCTION AUX 

AUX+PASSIVE AUX+PROGRESSIVE AUX+TENSE 

COORDINATOR COORD COORD+ADVERS 

COORD+BASE COORD+COMPAR COORD+COND 

COORD+CORRELAT COORD+ESPLIC COORD+RANGE 

COORD+SYMMETRIC COORD2ND COORD2ND+ADVERS 

COORD2ND+BASE COORD2ND+COMPAR COORD2ND+COND 

COORD2ND+CORRELAT COORD2ND+ESPLIC COORD2ND+RANGE 

COORD2ND+SYMMETRIC COORDANTEC COORDANTEC+COMPAR 

COORDANTEC+CORRELAT CONTIN CONTIN+LOCUT 

CONTIN+DENOM CONTIN+PREP EMPTYCOMPL 

EMPTYLOC INTERJECTION VISITOR 

VISITOR+ROBJ   

Table 14: TUT Adjunct Relations 
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 Argument Relations  

DEPENDENT FUNCTION ARG SUBJ 

OBJ INDOBJ INDCOMPL PREDCOMPL+SUBJ 

PREDCOMPLE+OBJ EXTRAOBJ   

Table 15: TUT Argument Relations 
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Appendix C:  Comparison Category Mapping  

 

 

DepEngCCG CCGbank 

TO s[to] 

VB, R s  s[.+] 

EX np[thr] 

IN PP 

NN np, np[.+], n, n[.+] 

Table 16: English Category Mapping 

 

 

DepItCCG TutCCG 

TO s[to] 

VB, R s  s:[.+] 

EX np[thr] 

IN PP 

NN np, np:[.+], n, n:[.+] 

Table 17: Italian Category Mapping 

 

 

 



 56 

References 

Ajdukiewicz, Kazimierz. 1935. Die syntaktische Konnexität. In Polish Logic 1920-1939, 
ed. Storrs McCall. Oxford University Press, 207-231. translated from Studia 
Philosophica, 1, 1-27. 

Andreevskaia, Alina and Sabine Bergler. 2008.  When Specialists and Generalists Work 
Together: Overcoming Domain Dependence in Sentiment Tagging. In 
Proceedings of ACL-08. pages 290-298. 

Baldridge, Jason. 2008. Weakly supervised supertagging with grammar-informed 
initialization. In Proceedings of COLING-2008. Manchester, UK. 

Bangalore, Srivinas and Aravind Joshi. 1999. Supertagging: an approach to almost 
parsing. Computational Linguistics, 25(2): 237-265. 

Berger, Adam,  Stephen Della  Pietra and Vincent Della Pietra. 1996. A Maximum 
Entropy approach to Natural Language Processing.  In Computational Linguistics, 
vol. 22, pages 39-71. 

Blitzer, John, Mark Dredze and Fernando Pereira. 2007.  Biographies, Bollywood, 
Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. 
Association of Computational Linguistics (ACL). 

Boiy, Erik, Pieter  Hens, Koen Deschacht, and Marie-Francine  Moens. 2007. Automatic 
Sentiment Analysis in On-line Text. In Proceedings of the 11th International 
Conference on Electronic Publishing. Vienna, Austria. 

Bosco, Cristina. 2003. A Grammatical Relation System for Treebank Annotation. PhD 
Thesis.  University of Torino. 

Bos J., Bosco, C., and Mazzei, A. 2009. Converting a Dependency-Based Treebank to a 
Categorial Grammar Treebank for Italian. In Proceedings of TLT8, Milan. 

Cahill, Aoife, Mairead McCarthy, Josef van Genabith and Andy Way. 2002. Automatic 
annotation of the Penn Treebank with LFG F-structure information. In LREC 
2002 Workshop on Linguistic Knowledge Acquisition and Representation – 
Bootstrapping Annotated Language Data. Las Palmas, Spain. 

Chen, John, Srinivas Bangalore and K. Vijay-Shanker. 2006. Automated extraction of 
Tree-Adjoining Grammars from treebanks. Natural Language Engineering, 
12(03):251-299. 

Chen, John and K. Vijay-Shanker. 2004.  Extraction of TAGs from Treebank. In H. Bunt, 
J. Caroll, and G.Satta, editors, New Developments in Parsing Technology. 

Clark, Stephen and James R. Curran. 2004. The importance of supertagging for wide-
coverage CCG parsing, In Proceedings of the 20th international conference on 
Computational Linguistics, p.282-es.  Geneva, Switzerland. 



 57 

Clark, Stephen and James R. Curran. 2007.  Formalism-Independent Parser Evaluation 
with CCG and DepBank. In Proceedings of the 45th Annual Meeting of the 
Association for Computational Linguistics, pages 328-334, Philadelphia, PA. 

Clark, Stephen, Julia Hockenmaier, and Mark Steedman. 2002. Building deep 
dependency structures using a wide-coverage CCG parser.  In Proceedings of the 
40th Annual Meeting of the Association for Computational Linguistics, pages 327-
334, Philadelphia, PA. 

Crammar, K, O. Dekel, J. Keshet, S. Shalev-Shwartz and Y. Singer. 2006.  Online 
passive-aggressive algorithms. JMLR, 7. 

Frege, G. (1923), Logische untersuchungen. dritter teil: Gedankenfuge, in ‘Beitr¨age zur 
Philosophie des Deutschen Idealismus’, Vol. III, pp. 36–51. Reprinted in I. 
Angelelli (ed.), Gottlob Frege. Kleine Schriften, Georg Olms, Hildeheim, 1967, 
pp. 378-394. Translated as Compound thoughts in P.T.Geach & R.H. Stoothoff 
(transl.), Logical investigations. Gottlob Frege, Basil Blackwell, Oxford, 1977, 
pp. 55-78.  

Hockenmaier, Julia and Mark Steedman.  2002. Generative models for statistical parsing 
with Combinatory Categorial Grammar. In Proceedings of the 40th Annual 
Meetings of the Association for Computational Linguistics, pages 335-342, 
Philadelphia, PA. 

Hockenmaier, Julia. 2003a. Data and Models for Statistical Parsing with Combinatory 
Categorial Grammar. Ph.D. thesis, School of Informatics, University of 
Edinburgh. 

Hockenmaier, Julia. 2003b. Parsing with generative models of predicate-argument 
structure. In Proceedings of the 41st Annual Meetings of the Association for 
Computational Linguistics, pages 359-366, Sapporo, Japan. 

Honnibal, Matthew, James Curran and Johan BOs.  2010. Rebanking CCGbank for 
improved NP interpretation. In Proceedings of the 48th Annual Meeting of the 
Association for Computational Linguistics, pages 207-215. Uppsala, Sweden. 

Johansson, Richard and Pierre Nugues. 2007. Extended Constituent-to-Dependency 
Conversion for English. In Proc. of NODALIDA. 

de Jong, Sijmen.  1993. SIMPLS: An alternative approach to partial least squares 
regression. Chemometrics and Intelligent Laboratory Systems. 18(3), pages 251-
263. 

Joshi, Aravind and Yves Schabes. 1992. Tree Adjoining Grammars and lexicalized 
grammars. In M. Nivat and M. Podelski editors, Tree Automata and Languages. 
North-Holland, pages 409-432. 



 58 

Kaplan, Ronald and Joan Bresnan. 1982. Lexical-Functional Grammar: A formal system 
for grammatical representation. In The Mental Representation of Grammatical 
Relations. MIT Press, Cambridge, MA, pages 173-291. 

Koller, Alexander and Marco Kuhlman. 2009. Dependency trees and the strong 
generative capacity of CCG.  In Proceedings of the 12th Conference of the 
European Chapter of the ACL, pages 460–468. Athens, Greece. 

Lambek, Joachim. 1958. The Mathematics of Sentence Structure. American 
Mathematical Monthly, pages 65:154–170. 

Miyao, Yusuke, Takashi Ninomiya and Jun’ichi Tsujii. 2004.  Corpus-oriented grammar 
development for acquiring a Head-driven Phrase Structure Grammar from the 
Penn Treebank. In Proceedings of the First International Joint Conference on 
Natural Language Processing (IJCNLP-04), pages 684-693, Hainan Island, 
China. 

Nieslsen, Leif. 2002. Supertagging with combinatory categorial grammar. In Proceedings 
of the Seventh ESSLLI Student Session, pages 209-220. 

Nivre, Joakim. 2005. Dependency grammar and dependency parsing.  Technical Report 
MSI report 05133, Vaxjo University: School of Mathematics and Systems 
Engineering. 

O’Donovan, Ruth, Michael Burke, Aoife Cahill, Josef van Genabith and Andy Way.  
2005.  Large-scale induction and evaluation of lexical resources from the Penn-II 
and Penn-III Treebanks. Computational Linguistics, 31(3):329-365. 

Pang, Bo and Lillian Lee. 2004. A Sentimental Education: Sentiment Analysis Using 
Subjectivity Summarization Based on Minimum Cuts. In Proceedings of ACL, pp. 
271--278. 

Pang, Bo and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for sentiment 
categorization with respect to rating scales. In Proceedings of the Association for 
Computational Linguistics. pp. 115–124. 

Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? Sentiment 
Classification using Machine Learning Techniques. In Proceedings of the 
Conference on Empirical Methods in Natural Language Processing (EMNLP), 
pp. 79—86. 

Ponvert, Elias. 2008, Partial Induction of a Categorial Grammar from a Dependency 
Treebank. Unpublished paper. University of Texas, Austin.  

Pollard, Carl and Ivan Sag. 1994. Head Driven Phrase Structure Grammar. 
CSLI/Chicago University Press, Chicago, IL. 

Rabiner, Lawrence. 1989.  A tutorial on Hidden Markov Models and selected 
applications in speech recognition.  In Proceedings of the IEEE, 77(2):2257-286. 



 59 

Radovanovic, Milos and Mirjana Ivanovic. 2008. Text mining: approaches and 
applications. Nov Sad J Math 38(3). 

Ratnaparkhi, Adwait. 1998. Maximum entropy models for natural language ambiguity 
resolution. Ph.D. Dissertation, University of Pennsylvania. IRCS Tech Report 
IRCS-98-15. 

Shen, Libin and Aravind Joshi.  2005.  Building an LTAG Treebank.  Technical Report 
MS-CIS-05-15, CIS, University of Pennsylvania, Philadelphia, PA. 

Snyder, Benjamin and Regina Barzilay. 2007. Multiple Aspect Ranking using the Good 
Grief Algorithm. In Proceedings of the Joint Human Language Technology/North 
American Chapter of the ACL Conference. pp 300–307. 

Steedman, Mark. 1996. Surface Structure and Interpretation. MIT Press, Cambridge, 
MA. 

Steedman, Mark. 2000. The Syntactic Process. MIT Press, Cambridge, MA. 
Steedman, Mark and Jason Baldridge. Combinatory Categorial Grammar. To appear in 

Robert Borsley and Kersti Borjars (eds.) Constraint-based approaches to 
grammar: alternatives to transformational syntax. Oxford: Blackwell. 

Surdeanu, Mihai, Richard Johansson, Adam Meyers, Lluis Marquez and Joakim Nivre.  
2008.  The CoNLL-2008 shared task on join parsing of syntactic and semantic 
dependencies. In Proceedings of the Twelfth Conference on Computational 
Natural Language Learning.  Manchester, United Kingdom.  

Turney, Peter. 2002. Thumbs up or thumbs down? Semantic orientation applied to 
unsupervised classification of reviews. In Proceedings of the 40th Annual Meeting 
of the Association for  Computational Linguistics. pp. 417–424.  

Vadas, David and James Curran. 2007.  Adding noun phrase structure to the Penn 
Treebank. In Proceedings of the 45th Annual Meeting of the Association of 
Computational Linguistics, pages 240-247. ACL, Prague, Czech Republic. 

Vadas David and James Curran.  2008. Parsing noun phrase structure with CCG. In 
Proceedings of the 46th Annual Meeting of the Association for Computational 
Linguistics, pages 335-343. ACL, Columbus, Ohio, USA. 

Xia, Fei. 1999.  Extracting Tree Adjoining Grammars from bracketed corpora. In 
Proceedings of the 5th Natural Language Processing Pacific Rim Symposium 
(NLPRS-99), pages 398-403, Beijing, China. 

Xia, Fei. 2001. Automatic Grammar Generation from two different perspectives. Ph.D. 
thesis, University of Pennsylvania. 

Xia, Fei, Martha Palmer and Aravind Joshi. 2000. A uniform method of grammar 
extraction and its applications. In Proceedings of the 2000 Conference on 
Empirical Methods in Natural Language Processing, pages 53-62, Hong Kong. 


