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Biomolecules, for example, DNA and enzymes, perform nearly all the 

chemical processes essential for life. Their functions are dependent though on 

their ability to fold and bind into precise three-dimensional conformations and 

assemblies. A variety of oligomers that adopt compact conformations in solution, 

termed foldamers, have been synthesized to elucidate strategies to control folding 

and binding akin to biomolecules. 

The Iverson group has been developing a class of foldamers, called 

aedamers, which employ the aromatic-aromatic complexation between electron-

rich 1,8-dialkoxy-naphthalene (Dan) and electron-deficient 1,4,5,8-naphthalene-
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tetracarboxylic diimide (Ndi) “building blocks”. It is expected that further work 

with these naphthyl oligomers will help establish aromatic interactions as a 

reliable tool for the construction of water-stable assemblies with tunable and 

predictable properties not found in nature. 

Overall, this dissertation describes the group’s first attempts to test the 

structural “designability” of naphthyl oligomers of previously unexplored 

sequences. Bottomline is that these studies have utilized the Dan:Ndi interaction 

to dictate intra- and  inter- molecular associations to afford distinct folding 

topologies and achieve selective binding, respectively. 

Chapter 2 reports the observation that a previously studied amphiphilic 

aedamer happens to be an effective refolding inhibitor of RNase thus introducing 

the prospect of aedamer-protein interactions, a long-standing aim for these 

molecules. Chapter 3 presents the “shuffling” of the aedamer sequence (DanNdi)n 

to afford naphthyl oligomers, of the form Dann+1Ndin, that adopt turn structures. 

The results here demonstrate the ability of foldamers to access various secondary 

structures through changes to their primary sequence analogous to proteins. 

Chapter 4 details the first hetero-duplex system to operate via aromatic 

interactions in aqueous solutions. Dann and Ndin complementary strands exhibit 

high binding affinities and chain discrimination. The ability of the Dan:Ndi 

association to direct binding is expected to be extensively used by the laboratory 

to create discrete assemblies. 

As a whole, these projects probe the folding and binding of naphthyl 

oligomers in a variety of situations to demonstrate the wide reach of directed 

aromatic interactions to create various architectures. With this level of control 

established, surface patterning for microarrays, functional artificial proteins, 

biomolecule-aedamer ensembles, and other application-driven pursuits using 

naphthyl oligomers are possible in the near future. 
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CHAPTER 1 

From Aedamers to Aromatic Interactions to Naphthyl Oligomers 

1.1 FOLDAMERS AS MODELS OF HIGHER-ORDER STRUCTURE 

Although biological molecules such as proteins and DNA are inherently 

complex due to the wide range of cellular functions they carry out, their primary 

architecture is surprisingly not at all that intricate. Most proteins and DNA are 

simply long chain molecules synthesized in the cell from a set of monomeric 

building blocks, twenty amino acids for proteins and a mere four nucleic acids for 

DNA. As shown in Figure 1.1, these string-like molecules can be thought of as 

necklaces in a way, with each amino acid residue (R) or nucleic acid base (B) 

acting as a bead along a strand. Though the linear (or primary) sequence of beads 

is important, these chain molecules are only functional after they adopt a three-

dimensional structure through specific folding and binding. For instance 

hemoglobin, a transport protein that delivers oxygen, is made up of four 

polypeptide chains that are folded and bound together. In another example, 

uncoiling a human chromosome, which is about five micrometers long, results in 

a piece of DNA 10,000 times that length. This piece of DNA can then be 

recognized as having the familiar double-helix conformation formed by two 

complementary strands. It is this higher-order structure (the precise folding and 

binding) that positions functional groups properly and endows biomolecules with 

their important properties. 

 1



 

 

Figure 1.1 A ribbon representation of a hemoglobin complex and a diagram 
of the unwinding of a chromosome (adapted from 
http://www.psc.edu/MetaCenter/MetaScience/Articles/Ho/Ho-
hemoglobin.html, Copyright 1993 University of Pittsburgh 
Supercomputing Department and http://www.accessexcellence 
.org/AB/GG/chromosome.html, Copyright 2004 the National 
Human Genome Research Institute. 
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The necessity for specific folding and selective binding in order to arrange 

the numerous functional groups of biomolecules into precise and chemically 

useful positions can hardly be overstated. To sum up: Structure is crucial for 

function in all biopolymers. Without the many types of noncovalent molecular 

attractions (hydrogen bonding, ionic interactions, metal-complexation, and 

aromatic stacking to name a few), which constitute the driving forces for folding 

and binding, a cell would closely resemble a disordered jewelry box of tangled 

necklaces. 

There have been significant efforts to understand the folding of natural 

biomolecules in relationship to its structure along with its function and 

malfunction (i.e. disease). More reliable three-dimensional structure prediction 

from the primary sequences of proteins may ultimately lead to widespread use of 

enzymes and antibodies with tailored activities. Scientists are also motivated to 

elucidate the folding mechanisms of particular proteins to provide a better 

understanding of illnesses such as Alzheimer's and Creutzfeldt-Jakob’s disease, 

both of which are neuro-degenerative diseases involving irreversible protein-

misfolding events (Buxbaum 2000). 

Rather than constructing derivatives of known proteins and natural DNA 

to create and study molecules with biological complexity, several chemistry 

research groups, both in academia and industry, are using a complementary 

approach to develop macromolecules possessing well-defined folding and in a 

growing number of cases, designed functions. Organic chemists have synthesized 

artificial folding chain-like molecules that promise to open up avenues to new 
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types of self-organizing polymers in part because they are not constrained to use 

the limited set of natural building blocks mentioned above (Hill 2001, Cubberley 

2001a). Also the reliance on reversible noncovalent interactions rather than 

covalent bonds to drive assembly allows for exploring many different chain 

conformations and could lead to distinct abiotic folding motifs, which may afford 

activities not necessarily evolved in nature. 

In classifying these folding molecules, Gellman first coined the term 

“foldamer” in a 1998 article “to describe any polymer with a strong tendency to 

adopt a specific compact conformation” (Gellman 1998). While proteins and 

DNA are by definition natural foldamers and their general structures have been 

elucidated more than fifty years ago, this account was extremely timely 

considering that nonnatural foldamers were emerging as useful tools for 

investigating the use of noncovalent interactions to access supramolecular 

structures. Since then there has been increased activity in the field and Moore, and 

co-workers have published a comprehensive review in 2001 entitled “A Field 

Guide to Foldamers” (Hill 2001). Here, they updated the definition of foldamers 

to, “any oligomer that folds into a conformationally ordered state in solution, the 

structures of which are stabilized by a collection of noncovalent interactions 

between nonadjacent monomer units. There are two major classes of foldamers: 

single-stranded foldamers that only fold (peptidomimetics and their abiotic 

analogues) and multiple-stranded foldamers that both associate and fold 

(nucleotidomimetics and their abiotic analogues).” The above definition is 
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appropriate for the purposes of this dissertation and the use of the term 

foldamer(s) will explicitly refer only to the synthetic, nonnatural variety. 

Research in foldamers has attracted scientists from many different fields. 

What engages scientists in organic and computational chemistry, biology, physics, 

engineering and many other disciplines is the mix of projects spanning basic 

research and applied science and the often serendipitous interplay between these 

two motivations. Whether the aims of these research programs are the basic 

understanding of interesting phenomena or the application of foldamers such as 

for molecular recognition, the foremost goal is to synthesize novel chain 

molecules that possess some type of stable secondary structure in solution based 

on noncovalent interactions. Natural biomolecules use this organizational strategy 

and provide a seemingly infinite number of examples of how to use secondary 

structures to tune chemical properties and impart function (Wang 2001, 

Venkatraman 2001, Anfinsen 1967). The prevalent secondary structures found in 

nature are the α-helices and the β-sheets along with the B-form helix of DNA. 

Illustrated in Figure 1.2 are a couple of the topologies (natural and artificial) that 

have been achieved by foldamers. 
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Figure 1.2 Examples of the different types of foldamer architectures. Boxed 
are the most prevalent natural secondary structures (adapted from 
Hill 2001). 

Reprinted with permission from Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. 
Chem. Rev. 2001, 101, 3893. Copyright 2001 American Chemical Society. 
 

Currently, the most widely studied foldamers include the β-peptides, the 

peptoids, and the oligo(m-phenylene ethynylene)s which all display helical 

secondary structure. The Iverson group has also been developing foldamers, 

called aedamers (described in detail later), constructed of electrostatically-paired 

naphthalenes that adopt not a spiral but a “pleated ribbon” pattern (Figure 1.2). 

These four systems represent a broad sampling of foldamer research since they 1) 

make use of several types of noncovalent interactions to control solution structure, 

2) can exhibit well-defined conformations in organic and/or aqueous solutions, 3) 

give examples of three classes of foldamers as first outlined by Zych: the 

biomimetic, transitional and bio-inspired foldamers (Zych 2001) and 4) span a 

wide range of properties and functions dependent on their secondary structure. 

Before examining each of these four foldamers briefly, it should be noted 

that the majority of the successes in this area of chemical research deal directly 

with the detailed characterization of secondary structure and the basic 

understanding of how different attractive forces add up and contribute to this 
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structure. Initial attempts though at tertiary structure (an association of distinct 

secondary structures on one strand) are beginning to be reported. By extension, 

quaternary structures (an ordered bundle made up of more than one strand like 

hemoglobin) are also being pursued. Finally, as this field matures and as chemists 

become more adept at fine-tuning folding and binding properties, more uses for 

foldamers will be discovered. Examples of these higher-order structures and 

published applications will be included in the descriptions of these four foldamers 

below. 

1.1.1 β-Peptides 

The artificial β-amino acids that make up β-peptides are structurally 

similar to natural α-amino acids and therefore have the benefit of well-established 

characterization techniques provided by decades of protein research. 

(Ramachandran 1968, Brandon 1999). The synthesis of many types of β-amino 

acids, including those with R groups identical to natural amino acids and those 

incorporating rigid cis or trans rings (Figure 1.3A), make it possible to construct a 

wide variety of β-peptides. The majority of β-peptide research has come 

independently from the Seebach (Seebach 1998) and Gellman (Appella 1996) 

groups and an informative review by DeGrado and Gellman entitled "β-Peptides: 

From structure to function" was published in 2001 (Cheng 2001). 
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Figure 1.3 A) A sampling of various nonnatural amino acids. B) Helical 
conformation of a representative β-peptide from crystallography 
data (from Appella 1996). C) β-peptide studied for its biological 
activity. 

Reprinted with permission from Appella, D. H.; Christianson, L. A.; Karle, I. L.; Powell, D. R.; 
Gellman, S. H. J. Am. Chem. Soc. 1996, 118, 13071. Copyright 1996 American Chemical Society. 
 

In terms of folding propensities, exquisite control of stable helix formation 

via hydrogen bonding (Figure 1.3B) has been demonstrated, originally in organic 

solvents. Even the number of units per turn (from 3.4 residues per turn to more 

compact turns) can be designed into the oligomer (Appella 1997). Because of the 

their close relation in chemical structure and conformation to naturally occurring 

peptides, β-peptides have been categorized as biomimetic foldamers (Zych 2001). 

Considering this, it is not surprising that β-peptides have been reported showing 

strong helix formation in aqueous solutions (Appella 2000). Additionally, groups 

are starting to rationally design β-peptides to mimic turns (Langenhan 2004), β-

sheet secondary structures (Seebach 1999), and tertiary structures (Cheng 2001) 

using exclusively β-amino acids. The ability of β-peptides to resist general 

enzymatic degradation (Frackenpohl 2001) makes them potential bioactive agents 

as well and animal studies have shown promising results (Weigard 2002). Other 

biological activities include inhibition of cholesterol and fat adsorption (Werder 
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1999) and antibiotic effects (Liu 2001) (Figure1.3C). Lastly, γ- and δ-peptides, 

though first studied long before Gellman's introduction of the term foldamer, have 

been recently reinvestigated in the context of foldamer development (Brenner 

2001). 

1.1.2 Peptoids 

In 1992, the Zuckermann research team from the Chiron Corporation 

introduced oligomers constructed of N-substituted glycines termed peptoids, 

(Simon 1992). Since then, many different pendant side groups have been attached 

to the amide nitrogen including those that incorporate chirality (Figure 1.4A). 

 

 

Figure 1.4 A) General structure of peptoids and side chain examples. B) 
Cationic 36-mer peptoid effective as a gene delivery reagent. 

Zuckermann's group has shown that peptoids adopt helical conformations 

in both aqueous and organic solvents (Kirshenbaum 1998). This helix formation 

occurs without the stabilization benefits of amide hydrogens participating in 

intramolecular hydrogen-bonding found in natural helical peptides and β-

peptides. Secondly, low energy conformations of the tertiary amides along the 

backbone exist in both the cis and trans isomer states, while peptide bonds that 

connect natural amino acids are almost exclusively in the trans state which aids in 
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the structural organization of natural peptides. It has been postulated that the 

steric limitations of peptoids with chiral bulky side chains limit the set of 

available conformations and general solvophobic interactions also contribute to 

the stability of peptoids (Armand 1997, Wu 2001a, b). These key differences from 

both α and β-peptides place peptoids in the transitional class of foldamers. Just as 

the β-peptides though, peptoids are resistant to proteases and analogues of natural 

peptide ligands have shown effective biological activity (Simon 1992). Peptoids 

have even been shown to have good transfection (specifically lipofection) 

activity, which is useful for gene delivery therapies (Murphy 1998, Figure 1.4B). 

1.1.3 Oligo(meta-Phenylene Ethynylene)s 

Moore and co-workers have published extensively on oligo(meta-

phenylene ethynylene)s, also known as oligo(m-PE)s (Figure  1.5A).  These 

foldamers also adopt helical conformations employing solvophobic interactions 

and local geometric constraints along the backbone to stabilize folding (Hill 2001) 

(Figure 1.5B). These molecules are considered to be in the bio-inspired class of 

foldamers in which there is little relation to any natural system and many times 

applications lean towards material science rather than protein emulation (Mio 

2000). The first generation of oligo(m-PE)s varied in length and pendant groups 

and demonstrated the manipulation of the conformational transition via changes in 

solvent and temperature (Nelson 1997).  Additionally, twist-sense preferences by 

means of a chiral perturbation in the side chains (Prince 2000a) or backbone (Gin 

1999) have also been reported. 
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Figure 1.5 A) Example of an oligo(m-PE). B) Proposed helical folding 
(from Hill 2001). C) Terpene examples used in molecular 
recognition studies. 

Reprinted with permission from Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. 
Chem. Rev. 2001, 101, 3893. Copyright 2001 American Chemical Society. 
 

Numerous analytical studies (UV-Vis, fluorescence, circular dichroism, 

and NMR spectroscopy) support the proposed helical conformation and observed 

twist-sense. These studies have even led to the design of properly sized cavities 

for molecular recognition. 12-mers can function as receptors for various 

monoterpenes displaying association strengths in the 103 M-1 range and modest 

selectivities in polar solvents (Prince 2000b, Figure 1.5C).  Other oligo(m-PE)s 

have been derivatized to accept rodlike guests as well, such as 

diphenylpiperazines, in order to template the growth of chains of specific length 

(Tanatani 2001). Finally, Moore and co-workers have recently published the 

synthesis of a new water-soluble oligo(m-PE) (Stone 2004).  

1.1.4 Aedamers 

In 1995 Lokey and Iverson described the first foldamers to make use of 

aromatic stacking interactions in water to direct folding (Lokey 1995). These 

molecules utilize the hydrophobically-driven face-to-face complexation between 
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electron-rich 1,5-dialkoxynaphthalene (Dan) and electron-deficient 1,4,5,8-

naphthalenetetracarboxylic diimide (Ndi) units to attain a compact conformation 

(Figure 1.6A). When these two moieties were linearly connected with 

appropriately flexible linkers, and in an alternating fashion, the resulting oligomer 

adopted an entirely abiotic secondary structure, a pleated fold conformation, in 

water (Figure 1.6B, Lokey 1995). These molecules were termed aedamers after 

the aromatic electron donor-acceptor interactions that direct folding, and just as 

the oligo(m-PE)s, these aromatic containing foldamers belong also to the bio-

inspired class of foldamers. 
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Figure 1.6 A) Chemical structure of an aedamer hexamer designed by 
Lokey and Iverson (Lokey 1995). B) Idealized model of the 
pleated folding pattern and absorption signatures (in the UV and 
visible range) that support face-centered stacking of aromatics. 
Dotted arrows indicate the change in the spectrum upon the 
denaturing of the aedamer hexamer caused by CTAB addition. 
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A prominent feature of aedmaers is the modular design that allows facile 

solid-phase synthesis plus the incorporation of a wide variety of linkers that might 

possibly be used to modify folding and binding properties. There are also useful 

spectroscopic handles that are consistent with aedamers adopting a folded 

conformation in solution. Hypochromism (such as that found with DNA base 

stacking) and the existence of a charge transfer band are consistent with face-to-

face ring stacking arrangements (Lokey 1995, 1997, Cantor 1980, Figure 1.6B). 

Under denaturing conditions such as with the addition of the cationic detergent 

cetyltrimethylammonium bromide (CTAB), these spectroscopic signatures are 

significantly altered to reflect approximately the superposition of the spectra of 

isolated Dan and Ndi monomer solutions (Figure 1.6B). Also, ring current effects 

caused by stacked π-systems, results in characteristic upfield chemical shifts of 

the Dan and Ndi aromatic hydrogens relative to the signals given by Ndi and Dan 

monomers separately (Zych 2000, 2002). 

Finally, the space-fill model in Figure 1.6B suggests that the adopted 

conformation creates a hydrophobic column with the potential to display 

functional groups along its periphery. Couple this well-defined scaffold and its 

ability to be easily derivatized with the fact that these foldamers are most stable in 

water, it is envisaged that aedamers that interact with biological systems can be 

constructed. 
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1.2 UPDATE: FOLDAMERS WITH AEDAMER-LIKE DESIGNS 

Since the original publication of aedamers appeared in 1995, several 

foldamers based on aromatic interactions have been reported. The use of aromatic 

interactions, in particular donor-acceptor type interactions, is emerging as a 

reliable strategy to build molecular scaffolds complementary to other non-

covalent forces.  

Figure 1.7 shows schematic representations of the most recent of these 

systems, all of which are reminiscent of the aedamer design. The N-methylated 

phenylguanidines developed by the Kagechika group is the only system of the 

four presented that operates in aqueous solutions (Tanatani 1998, Figure 1.7A). 

Impressively, x-ray crystal structures were obtained for both pentamers whose 

benzene rings were either attached at the meta or para positions, plus several 

derivatives afforded chiral crystals. The folded columnar superstructures of the 

Nuckolls group were an extension of their work on discotic-like liquid crystals 

(Zhang 2003, Figure 1.7.B). Their pleated-ribbon secondary structure is driven by 

a combination hydrogen bonding and π-stacking. A δ-peptide foldamer was 

developed using Dan and pyromellitic diimide (Pdi) units (Zhao 2004, Figure 

1.7C). Further description on this system from the Li group can be found in 

Chapter 3 in the context of peptide-turn mimics. Lastly, the Ramakrishnan group 

was able to polymerize Dan and Pdi units in an alternating fashion with 

hexa(ethylene oxide) linkages (Ghosh 2004, Figure 1.7D). They assert that 

charge-transfer, solvophobic, and metal binding effects leads to a strongly folded 
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state. This particular report is sure to be well cited as one of the first studies on 

polymeric foldamers. 

 

 

Figure 1.7 Cartoon representations of recent foldamers reminiscent of the 
aedamer design. A) Stacked structure using water-solubilizing 
guanidine linkers. (Tanatani 1998) B = m- or p-substituted 
benzene. B) System using hexasubstituted benzenes (Zhang 
2003). CA = crowded aromatic. C) Zipper-type system (Zhao 
2004). D = donor, A = acceptor. D) Aromatic stacking polymer 
with cation binding (Ghosh 2004). 
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1.3 CLOSER EXAMINATION OF AEDAMER AROMATIC INTERACTIONS 

1.3.1 Forces that Dictate Folding 

After reporting on a hexameric aedamer as a novel abiotic folding 

molecule (Lokey 1995), the Iverson group found it beneficial to study models at 

the monomer (Cubberley 2001) and dimer (Zych 2000) level to expound a much 

better description of aedamer folding. These investigations aimed to answer two 

important questions: 1) What are the fundamental forces responsible for Dan:Ndi 

association in aedamer folding? and 2) Can methods be developed to better 

describe the inter-ring orientations to give a more comprehensive picture of 

aedamer folding? Ultimately, these necessary fundamental studies paved the way 

for much of the work described in this dissertation.  

To elucidate the driving forces of aromatic stacking, Cubberley performed 
1H-NMR binding titrations to measure association constants of the complexation 

of Dan and Ndi neutral monomers as well as Ndi:Ndi and Dan:Dan associations 

(Cubberley 2001b, Figure 1.8). A sampling of the calculated association constants 

(M-1) in deuterated solvents covering a broad polarity range is shown in Figure 

1.8. The data in the solid-line box pointed to a strong desolvation (in particular a 

hydrophobic) effect for Dan:Ndi complexation since the strength of this 

association is 2-3 orders of magnitude greater in D2O than in organic solvents. 

This result is not surprising for the stacking of flat molecules with relatively 

nonpolar faces that self-organize to minimize contact with polar solvents. 
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Figure 1.8 Compounds used in the monomer study and their associations 
(M−1) in a few of the solvents reported (Cubberley 2001b). 

Unanticipated though was the data (in the dotted box, Figure 1.8) that 

revealed Ndi:Ndi and Dan:Dan association was 10 and 100 times less stable than 

Dan:Ndi complexation, respectively.  If desolvation were the lone important 

factor for association then it would be predicted that Dan:Ndi, Ndi:Ndi, and 

Dan:Dan associations would all be comparable due to the similar sizes of the 

hydrophobic aromatic surfaces of the Dan and Ndi rings. Therefore, this trend 

argued for an electrostatic driving force in which matching the electrostatic 

surface potentials would predict Dan:Ndi complexation to be the strongest 

scenario. 

Inspection of the X-ray crystal structures (Figure 1.9) nicely explained 

how hydrophobics and electrostatics act in concert. It appeared that the low 
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stability of Dan self-association stemmed form its inability to stack in a face-

centered manner due to putative repulsion of the electron-rich π-cloud of one Dan 

face with another. The resulting herringbone orientation thus tempers the extent of 

the desolvation driving force for Dan self-complexation. To explain the 

intermediate strengths of Ndi self-association, Cubberley and Iverson postulated 

that the preferred stacking geometry of Ndi also tempers desolvation effects. Ndi 

crystal data displayed a face-to-face but off-set stacking likely due to the electron 

repulsion of the electron-rich oxygen atoms of the carbonyl groups. Interestingly, 

the Hunter and Sanders model for aromatic stacking had previously described, 

albeit in a different context, edge-to-face geometries for electron-rich aromatics 

and slipped face-to-face stacking for electron-deficient aromatics that contain 

electron-rich heteroatoms (Hunter 1990, 2001). In summary, the dominant driving 

force was found to be the desolvation of the aromatic faces. However Cubberley 

and Iverson emphasized that “the magnitude of desolvation is modulated 

significantly by stacking geometry, which, in turn, is dictated by the electrostatic 

complementarity in predictable fashion (Cubberley 2001b).” 
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Figure 1.9 Calculated electrostatic surface potentials and chemical 
structures of compounds used to obtain X-ray quality crystals 
(adapted from Cubberley 2001b). From inspection the expected 
desolvation driving force is strongest in an equimolar mixture of 
Dan and Ndi. 

Reprinted with permission from Cubberley, M. S.; Iverson, B. L. J. Am. Chem. Soc. 2001, 123, 
7560. Copyright 2001 American Chemical Society. 
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In general, many factors can contribute to aromatic interactions including 

Van der Waal’s, charge-transfer, desolvation and electrostatic forces (Hunter 

2001). The findings of Cubberley and Iverson, coupled with seminal work from 

several other groups studying synthetic models, have added greatly to the 

understanding of aromatic interactions, which also includes π-π stacking. Figure 

1.10 briefly highlights three examples that have influenced how scientists view 

the fundamental basis of aromatic interactions. 

 

 

Figure 1.10 Early model systems to study aromatic interactions. A) Bicyclo-
cyclophane host/pyrene guest (from Smithrud 1991). B) 
Diarylnaphthalene system. X = various electron withdrawing and 
donating groups (Cozzi 1992). C) Diarylcarboxylate models. R = 
naphthalene or adenine (Newcomb 1994). 

Reprinted with permission from Smithrud, D. B.; Wyman, T. B.; Diederich, F. J. Am. Chem. Soc. 
1991, 113, 5420.Copyright 1991 American Chemical Society. 
 

Diederich’s group examined the stability of pyrene-cyclophane complexes 

in water and organic solvents by NMR and calorimetry (Smithrud 1990, 1991, 

Figure 1.10A). A model of solvation effects on apolar binding resulted from their 

work and interestingly they found that the strength of the complexation for their 

system could be predicted and controlled by solvent polarity. In an ingenious 
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method to probe aromatic interactions, Siegel and co-workers measured the 

barrier to rotation of 1,8-diarylnaphthalenes and showed that their system was 

sensitive to through-space polar interactions (Cozzi 1992, Figure 1.10B). Another 

intriguing study came from the Gellman group who gave a partial charge 

attraction explanation for the intramolecular stacking observed for the adenine-

naphthyl carboxylate but surprisingly stacking was not observed for the di-

naphthyl carboxylate (Newcomb 1994, Figure 1.10C). This report also put forth 

the curious concept of a nonclassical hydrophobic effect where it was postulated 

that water is not well suited to the solvation of partially charged atoms if those 

atoms are in an extended planar array.    

In the years following these early studies, it has become increasingly 

apparent that depending on the system, Van der Waal’s, charge-transfer, 

desolvation, electrostatic forces and other effects can subtly alter each other’s 

contributions to aromatic stacking. This complexity though is encouraging 

because it provides compelling evidence that aromatic interactions have the 

potential to be highly controllable in chemical (Waters 2002) and biological 

(Meyer 2003) systems. 

1.3.2 Detailed Picture of Folding 

To explore in-depth the degree of folding for aedmaers, Zych 

characterized the conformations of a diverse set of dimers (representing the 

minimal aedamer folding unit). This was accomplished by using modeling, NMR 

spectra analysis, and spectra prediction calculations applying a computer 

algorithm that was developed (Zych 2000, 2001). The impetus for this detailed 
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conformational analysis was the unique chemical shifts, displayed by the aromatic 

protons of dimers having different Dan/Ndi linkers of varying lengths and 

flexibilities. In effect, these shifts, upfield from the monomer aromatic signals 

(Figure 1.11), gave a distinct spectral fingerprint associated with specific ring- 

stacked conformations that Zych was able to predict by considering the many 

subtle ring current and carbonyl effects taking place with Dan:Ndi complexation. 

 

 

Figure 1.11 Aromatic region of the NMR spectra for a few of the compounds 
used for conformational analysis (Zych 2000). 
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A total of eleven dimers were investigated and for each, 100 computer- 

model conformations were generated from molecular dynamics simulation and 

geometry optimization. After 1) constructing conformational “maps” for all 

conformers and 2) applying equations to predict their chemical shifts, Zych found 

that, in most instances, an ensemble of predicted low-energy structures as 

opposed to one definitive conformer best described the experimentally acquired 

spectra. Thus, Zych and Iverson concluded that “folding” does not appear to 

follow a two-state unfolded/folded model with a rigid, unique conformation but 

follows a more dynamic model in which all the different folded conformers are 

related by having a face-to-face stacking arrangement. (Zych 2000). 

This study also revealed that the aedamer pleated structure was tolerant of 

a wide range of linkers. On the other hand, it has been proven difficult to 

substitute amino acids without inadvertently disrupting the structure of proteins 

(LaBrenz 1995, Quinn 1994). Thus, this may prove beneficial for the 

development of functional aedamers since ideally one could decouple properties 

from the overall architecture of the molecule (Zych 2001). 

Ultimately, larger aedmaers will have to be used to approach the size and 

functionality found in proteins but the type of detailed conformational analysis 

performed with dimers becomes prohibitive with increasing size. Therefore, in 

follow-up work, Zych and Iverson looked at the possibility that the conformations 

of larger aedamers are actually the “sum” of their component dimers (Zych 2002). 

Figure 1.12 illustrates the concept of this behavior that was designated as 

conformational modularity. For instance the Dan region of the NMR spectrum of 
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a Dan-Inp-Ndi-Dan trimer could be closely predicted by the chemical shifts found 

for its component dimers, Dan-Inp-Ndi and Ndi-Dan (Figure 1.12). In another 

situation, if a Dan unit was sandwiched in between two Ndi units in an assumed 

pleated fold stack, conformational modularity still held fairly true but only when 

ring current effects were considered to be additive. For instance, the delta 

chemical shifts found for the Dan unit in the tetramer, Dan-Asp-Ndi-Dan-Asp-

Ndi, nearly matched the sum of the delta chemical shifts for the Dan unit of Ndi-

Dan and Dan-Asp-Ndi. 

 

 

Figure 1.12 Illustrated concept of conformational modularity and chart 
showing the high accuracy of chemical shift prediction when this 
concept is applied to larger aedamers (Zych 2001, 2002).    

Certain trimers and tetramers were found though that did not follow the 

conformational behaviors of their component dimers. It was proposed that for 
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some aedamers steric clashes between the linkers shifted the expected orientations 

of the rings. Zych and Iverson pointed out that this insight would have been 

dramatically more difficult to obtain if a de novo conformational analysis of the 

larger structures were attempted. Nonetheless, most of the trimers and tetramers 

studied displayed this highly desirable feature of conformational modularity. 

Further refinement of this feature could greatly aid in the design of larger folding 

systems with predictable structure and function. 

As a whole, the meticulous studies into the fundamental basis of folding, 

done independently by Cubberley and Zych, laid a foundation for future aedamer 

work and their findings will probably increase in importance as aedamer research 

moves towards applications. In fact, only after these basic science studies were 

performed did this dissertation research begin to significantly move forward; 

where the reported strengths and directionality of the “directed” interactions of 

Dan and Ndi moieties could be utilized in previously unexplored ways. 

1.4 OVERVIEW OF NAPHTHYL OLIGOMER PROJECTS 

The projects in the Iverson laboratory dealing with aromatic interactions 

can all trace their beginnings to the original aedamer paper (Lokey 1995). Since 

then, research utilizing Dan and Ndi moieties has diversified to investigate varied 

aromatic interactions phenomena in areas spanning from molecular biology to 

materials science. Figure 1.13 organizes these projects roughly based on the size 

of the Dan/Ndi compounds synthesized and the general focus of the study. As 

presented above, several significant results have come from exploring monomer 

associations and dimer conformations. Currently the Iverson group is well 
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involved with studying systems at the oligomeric size regime and has even 

recently started investigating polymeric materials containing Dan and Ndi 

building blocks. 
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Figure 1.13 Projects in the Iverson laboratory designed to explore aromatic 
interactions. All work can trace its beginnings to Lokey’s 
aedamer paper. Results detailed in chapter 2, 3, and especially 4 
have led to several new research directions. 
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The focus of this dissertation is to illustrate the ability to exploit the 

Dan:Ndi interaction for creating novel folding and binding properties not 

previously accessed with naphthyl oligomers of the original “alternating” (Dan-

Ndi)n aedamer design. Quite simply, this dissertation documents the group’s 

initial attempts to extend the Dan:Ndi interaction to controlling other behaviors 

beyond driving a pleated fold conformation. Figure 1.14 is a cartoon illustrating 

this basic premise using “non-alternating” naphthyl oligomers, for example, 

compounds of such sequences as, Dann+1-Ndin, Dann and Ndin. 
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Figure 1.14 Cartoon representation of the naphthyl oligomers studied and the 
main question each project aimed to answer. Arrows indicate 
direction of growth for longer oligomers. 

The project described in Chapter 2: Intriguing Heat-Triggered 

Behavior of an Amphiphilic Aedamer involves work initiated by Nguyen, who 

discovered that amphiphilic aedamers could be thermally triggered to irreversibly 
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form stable aqueous gels (Nguyen 1999). Studies were done with a derivatized 

aedamer set to probe whether residue substitutions could modulate gelling 

properties. The amphiphilic aedamer (ungelled) was also shown to act as an 

effective refolding inhibitor of RNase. Inhibition studies testing several 

compounds and conditions were thus tested. Of interest to the Iverson group are 

the potentially selective interactions between the aromatic moieties of aedamers 

and the aromatic amino acids of proteins. This work represents the group’s first 

steps towards identifying aedamer-protein interactions. 

Many groups working with foldamers have shown that the secondary 

structures of their synthetic strands remain unchanged and are thus remarkably 

stable to a wide array of residue substitutions. The project described in Chapter 

3: Switching the Folding Patterns of Naphthyl Oligomers reports the first 

successful demonstration of a foldamer accessing significantly different abiotic 

secondary structures in water simply by rearranging their primary sequence 

analogous to proteins. Here synthetic strands of the new type (Dann+1-Ndin) were 

synthesized and found to adopt hairpin-type turn structures. The results presented 

in this chapter represent another checkmark on a list of properties that are 

possessed by natural biomolecules that foldamers can now emulate. The 

designability of these naphthyl oligomers is not only useful to create different 

folding topologies but is expected to provide a facile route to the development of 

larger, extremely stable hairpin structures with useful properties. 

Lastly, this dissertation will account the group’s entrance into the growing 

field of designed, synthetic duplexes. The project described in Chapter 4: 
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Naphthyl Oligomers that Form Hetero-Duplexes details several analytical 

methods that provided evidence of the first hetero-duplex system to form via 

aromatic interactions and operate in aqueous solutions. This system uses 

complementary Dann and Ndin strands to form robust artificial duplexes that 

exhibited high chain discrimination. Noteworthy was that even though these 

chains each possess substantial negative charge, they still associate with 

substantial affinities regardless of potential charge repulsion.  This work, which 

was also the first to demonstrate the strength and directionality of the Dan:Ndi 

association in an intermolecular format, has opened up several research paths 

dealing with orthogonal self-assembly of complementary species (Figure 1.13). 
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CHAPTER 2 

Intriguing Heat-Triggered Behavior of an Amphiphilic Aedamer 

2.1 CHAPTER SUMMARY 

Introduction. Due to the modular design of aedamers (Figure 2.1), 

synthesizing an amphiphilic aedamer with three aspartate and three leucines 

residues, instead of with six aspartates as in the original aedamer (Chapter 1), was 

straightforward. While studying this new aedamer, Nguyen and Iverson 

discovered unusual gelling properties in which an aqueous solution of this 

compound is irreversibly converted thermally to a viscous gel accompanied by a 

color change from purple to pale pink (Nguyen 1999). The original aedamer on 

the other hand was found to be resistant to this change in physical state. This 

chapter will describe aggregation studies on a set of different aspartate/leucine 

containing aedamers evaluated for their gelling propensities. It also appeared that 

heat-induced aggregation related to aqueous gel formation plays a role in the 

inhibition of the enzyme RNase (folding, not active-site, inhibition). It is proposed 

that RNase cannot refold properly after heat denaturation in the presence of the 

amphiphilic aedamer. When the original aedamer was tested, RNase recovered its 

full catalytic activity. This proof-of-concept study evaluating the possibility of 

strong aedamer-protein interactions will be discussed in the second half of this 

chapter. 
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Figure 2.1 Cartoon representation of the modular aedamer design showing 
the potential to decorate the periphery of the structure with 
chosen residues. X = amino acid side chain. SPPS = solid phase 
peptide synthesis. 

Goals. Experiments described in this chapter aimed to answer the 

question: What are the effects of linker substitutions on aedamer properties such 

as heat-responsive aqueous gel formation and enzyme inhibition? The short-term 

goal of this work was to investigate the structure-activity relationship of a set of 

aedamers by measuring their gelling kinetics and RNase refolding inhibition 

under different conditions. The long-term objective of this research is to gain a 

working knowledge of how to design naphthyl oligomers for use as materials with 

tunable properties. 

Approach. The aggregation state of four aedamers of varying 

aspartate/leucine content was analyzed at 25 and 80 °C using UV-Vis, NMR, and 

light scattering (LS) spectroscopy. Gelling curves were also constructed. The 

enzyme inhibition studies utilized a commercially available fluorometric assay to 

monitor the activity of RNase under different conditions.  
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Results. It was found that only a solution of the amphiphilic aedamer was 

able to undergo a conformational transition to form aqueous gels, while the 

aedamers with less than three leucine residues were unchanged when heated. At 

room temperature the amphiphilic aedamer exhibited a highly aggregated, yet 

soluble, state (by NMR and LS) but still displayed characteristics of being well-

folded in the expected pleated ribbon fashion (by UV-Vis). When heated, 

insoluble gels formed after an initial slow period followed by a rapid gelling 

phase. In the RNase studies, again the amphiphilic aedamer was found to exhibit 

unique properties. Only when RNase was heated in the presence of the 

amphiphilic aedamer did refolding inhibition occur (Gabriel 2004a). The original 

aedamer and even detergent had little effect. This result is encouraging for long-

term studies of selective aedamer-protein interactions. Mechanisms were thus 

proposed to explain both the unique gelling and enzyme inhibition properties of 

the amphiphilic aedamer. 

2.2 BACKGROUND: A FOLDAMER THAT FORMS STABLE GELS IN WATER  

Nguyen and Iverson previously reported on an aedamer hexamer in which 

three of the aspartate linkers in the original aedamer developed by Lokey and 

Iverson were replaced with hydrophobic leucine residues (Nguyen 1999, Lokey 

1995) (Figure 2.2).  This facially amphiphilic aedamer, once folded, presents one 

side with hydrophobic side chains and the other with hydrophilic aspartate side 

chains (Figure 2.3). Characterization of this compound gave unresolved NMR 

spectra and an apparent molecular weight of 400,000 g·mol-1 by dynamic light 

scattering indicating extensive aggregation in solution. When heated, in an 
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attempt to break up aggregates, the NMR sample, initially a purple aqueous 

solution, surprisingly became a pale pink gel. 

 

 

Figure 2.2 Chemical structure of the original aedamer hexamer (Lokey 
1995) and an amphiphilic derivative (Nguyen 1999). 

The resulting gel was quite stable in the sense that upon cooling and 

standing at room temperature for weeks it did not revert back to the properties of 

the original solution. Mass spectrometry and reverse phase liquid chromatography 

ascribed these properties to conformational changes and not covalent 

transformations of the chemical structure. The kinetics of the conformational 

transition is shown in Figure 2.3 showing the loss of the charge-transfer (CT) 

absorbance at 526 nm and loss of its intense purple color as the solution became 

more viscous. Interestingly, there was a lag period followed by a relatively rapid 

gelation phase suggesting that this transition is product promoted. This behavior 

was confirmed when 10% of pregelled aedamer was added to a solution before 

heating which resulted in complete transformation of the solution within 15 

minutes rather than 70 minutes (Figure 2.3). 
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Figure 2.3 Cartoon representation of the folded conformation. Graph of the 
kinetics of the conformational transition (dotted line) of the 
amphiphilic aedamer upon heating at 80° C, as monitored at the 
charge-transfer band absorbance of 526 nm (from Nguyen 1999). 
Solid line shows the kinetics of an identical solution except 10% 
of pregelled material was added before heating. 

Reprinted with permission from Nguyen, J. Q.; Iverson, B. L. J. Am. Chem. Soc. 1999, 121, 2639. 
Copyright 1999 American Chemical Society. 
 

A proposed mechanism of this behavior is shown in Figure 2.4.  In brief, 

heating causes partial unfolding of the aedamer that promotes a new type of 

hydrophobics-driven interaction where the aromatics screen their relatively non-

polar surfaces from water by forming tangled aggregates instead of refolding. 

Most importantly, this type of aggregation proceeds slowly at first because the 

concentration of unstacked molecules is initially low and collisions between these 

unstacked molecules are rare. It was proposed that the tangled aggregate becomes 

more and more efficient at capturing unstacked molecules as it increases in size, 

hence the relatively rapid gel phase after a perceived lag period. It was assumed 
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that the final viscous material is composed of a randomly tangled aggregate 

absent of the ordered face-to-face stacking of chromophore units responsible for 

the CT absorbance, hence the loss of color. It was also pointed out that the 

irreversibility of this transition stems from the near impossibility of untangling 

this aggregate, at least through temperature changes or dilution (Nguyen 1999). 

 

 

Figure 2.4 Proposed scheme for the thermal conversion of an aedamer 
solution to the tangled aggregate state (adapted from Nguyen 
1999). 

Reprinted with permission from Nguyen, J. Q.; Iverson, B. L. J. Am. Chem. Soc. 1999, 121, 2639. 
Copyright 1999 American Chemical Society. 
 

The data emphasized that an initial folded state at ambient temperatures 

should be assumed since any substantial population of significantly unfolded 

aedamer would lead to gel formation at room temperature. Also Nguyen and 

Iverson drew comparisons between the behavior of this aedamer and collagen, a 

biological polymer that forms gelatin when heated but is more than 40 times 

larger than the amphiphilic aedamer. As Gellman commented, “[this] behavior 

establishes a link between synthetic folding systems and materials science (Rouhi 

1999),” thus presenting a new motivation for foldamers which were previously 
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studied mainly with emulating proteins in mind. Ironically, the initial aim of 

Nguyen’s amphiphilic aedamer was to design a mimic of leucine zipper motifs for 

biological and not materials investigations. 

The Iverson group has been intent on understanding and hopefully 

controlling conformation-dependent behavior of these foldamers. In broader 

terms, the general field of hydrogels is finding applications in tissue engineering 

(for instance as biocompatible scaffolds), controlled drug delivery, bioadhesives 

(for wound healing), glucose sensors, and other biomaterials such as soft contact 

lenses and kidney dialyzers (Langer 2003). Hydrogels have been constructed from 

molecules of varying sizes from short oligopeptides (Pochan 2003) to polymers 

(Aamer 2003). Also there is a report of a thermally coaxed gel system developed 

by Tirrell and co-workers that interestingly employs two short leucine zipper 

domains (Petka 1998). Most recently, a coordination gelator that exhibits a 

chromatic and sol-gel transition for both thermal and chemical stimuli, has been 

reported as well (Kawano 2004). Even with these numerous examples, there is 

still a need for better modulation of hydrogel properties, including texture, 

strength, and water content. These issues were addressed in a comprehensive 

review published by Langer and Peppas (Langer 2003). 

With such activity currently in the hydrogel field it seemed logical to 

explore the possibility of tunable gels with the aedamer system. Specifically, the 

kinetic curves for gel formation in Figure 2.3 piqued the Iverson group’s interest 

in modulating such gelling parameters as the onset temperature, speed of 

transition, and overall strength of the resulting gel. 
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2.3 RESULTS AND DISCUSSION  

2.3.1 Synthesis of Aedamer Derivatives 

New aedamer hexamers, 2.2 and 2.3, were synthesized, as well as 2.1 and 

2.4 from previous studies, in order to probe how varying the number of aspartate 

and leucine side chains and thus changing the hydrophilic/phobic content, affects 

aqueous gel formation (Figure 2.5). 

 

 

Figure 2.5 Compounds synthesized for the gelling study. A.A. 1-6 
represents the amino acid linker positions along the backbone. 

Fmoc-based solid-phase peptide protocols (Chan 2000) were followed 

(Figure 2.6) to synthesize 2.1-2.4. Also shown in Figure 2.6 are the three amino 

acid adducts 2.5-2.7 synthesized in solution phase following analogous 

procedures previously described (Zych 2000 - 2.5, [2.6 by an analogous 

 40



procedure], Guelev 2001c - 2.7). These amino adducts were coupled sequentially 

onto Wang resin using PyBOP (Benzotriazole-1-yl-oxy-tris-pyrrolidino-

phosphonium-hexafluorophosphate) with Fmoc deprotections using 

piperidine/DMA (N,N-Dimethyacetamide)  between each coupling step. After the 

last Fmoc deprotection, the oligomer was then capped, in this case using acetic 

anhydride, to provide a N-terminal acetyl group. Aedamers were then fully 

deprotected and cleaved off the resin with 95/5 w/w TFA (Trifluoroactic acid) 

/phenol. Purification by FPLC (Fast protein liquid chromatography) using an 

aqueous ammonium acetate and CH3CN gradient afforded homogeneous samples 

in 40-50% yield based on the mmol/mg loading capacity of the resin. All 

compounds were soluble in 50 mM Na phosphate buffer, pH = 7 at up to 2.0 mM 

for 2.1 and up to 5.0 mM concentrations for 2.2-2.4 before a precipitate formed. 

Each compound gave satisfactory HPLC (High performance liquid 

chromatography) and mass spectrometry analysis.  
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Figure 2.6 Dan and Ndi amino acid adducts synthesized and used in the 
standard solid phase oligo synthesis cycle. Full structures can be 
found in the Experimental Section. Fmoc = 9-
fluoronylmethyloxycarbonyl. SPPS = solid phase peptide 
synthesis. LC = liquid chromatography. 

2.3.2 UV-Vis, NMR, and LS Comparisons at 25o C  

UV-Vis, NMR, and light scattering (LS) experiments were carried out at 

room temperature (25o C) to possibly gain insight into the aggregation state of 

2.1-2.4 prior to heat-triggered gelation. Nguyen’s report had already asserted that 

even though 2.1 is extensively aggregated, it still formed a stack of aromatics in 

an intramolecular fashion at room temperature with UV-Vis characteristics 
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indicative of the pleated folded structure attributed to aedamers (Nguyen 1999). 

Table 2.1 shows that solutions of all four compounds exhibited marked 

hypochromism (48-54%) that is fully consistent with substantial face-centered π-

stacking (Lokey 1995, Cantor 1980). The CT band absorbances (526-540 nm) for 

each compound that resulted in the solutions being purple to reddish purple in 

color indicated donor-acceptor aromatic stacking and were also seen previously 

with folded aedamers (Zych 2002, Lokey 1995). 

 

Table 2.1 Analyses at 25 oC for 2.1-2.4.   

 UV data  Vis data  NMR data 
Compound Hypo (%) a λCT (nm) b εCT (M-1·cm-1) c Linewidth (Hz) d 

2.1 54 540 1400 NS 
2.2 51 538 1500 10.8 
2.3 48 536 1500 5.3 
2.4 51 526 1500 2.8 

a Solutions at 40 µM concentrations. Hypo(chromism) = [1 - (absorbance at 382 nm without 
CTAB ÷ with excess CTAB)] × 100%. b λCT = wavelength of charge-transfer band. 
Concentrations at 1 mM c ε = extinction coefficient. d Solutions at 1.5 mM concentrations. 
Linewidth of singlet of the Gly methylene at the C-terminus. NS = no discernable signal. 

 

It could not be ruled out rigorously that the hypochromism and CT bands 

are derived entirely from intramolecular interactions because of aggregation. It is 

reasonable to believe though that these UV-Vis spectroscopic signatures were 

predominantly due to intramolecular interactions since the CT bands exhibited 

linear Beer’s law behavior below 2.0 mM. Likewise, Nguyen and Iverson 

contended that the spectral similarities between 2.1 and 2.4 argue against 
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intermolecular stacking effects playing a major role in the UV-Vis spectra for 2.1 

(Nguyen 1999). 

While the UV-Vis data suggested that the intramolecular interactions for 

2.1-2.4 are comparable, it was clear from NMR data that 2.1 was significantly 

aggregated compared to 2.2-2.4 as evidenced by the NMR spectra in Figure 2.7 

and the linewidth data in Table 2.1. Figure 2.7 shows that a solution of 2.1 failed 

to give resolved spectra diagnostic of a highly aggregated state (albeit a soluble 

aggregated state). On the other hand, although line broadening was observed, 

spectra of 2.2-2.4 gave distinguishable signals. Linewidths of NMR resonances 

have been shown to be sensitive to aggregate size (Whitford 1991). For instance, 

the methylene linewidths from spectra of phospholipid vesicles increase in a 

roughly linearly fashion with vesicle radius (Liao 1980). In spectra of 1.5 mM 

solutions of 2.2-2.4 the linewidths of the singlet assigned to the C-terminal 

methylene roughly doubles with the sequential replacement of aspartates on 2.4 

with leucines (Table 2.1). Thus, the effect of increasing leucine content on 

aggregation appeared to be somewhat additive for the series 2.4-2.2 with a 

dramatic jump in signal broadening for aedamer 2.1. 
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Figure 2.7 Aromatic region of 1H-NMR spectra. Concentrations were 1.5 in 
mM D2O. Even dilute solutions (0.1 mM) of 2.1 failed to give 
resolved spectra. 

Light scattering (LS) has been shown to be an effective tool for studying 

the aggregation properties of self-associating molecules including polymers 

(Nolan 1997), detergents (Perez-Rodriguez 1998), and bioactive molecules 

(Varela 1999). The use of LS is sure to expand as pharmaceutical companies 

examine more closely how aggregation enhances or decreases the effectiveness of 

certain drug formulations (Seidler 2003). A classic LS experiment is to probe for 

discontinuities in the amount of light scattered as a function of concentration to 

identify critical aggregation concentrations (CACs). An example is shown in 

Figure 2.8 from a study of the self-association of penicillin. For penicillin, 0.04 

and 0.25 m (molality) were identified by Mosquera and co-workers as critical 

concentrations for an observed monomer/trimer transition and a trimer/12-mer 

transition, respectively (Varela 1999). 
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Figure 2.8 Scattering ratio, S90, as a function of molality for penicillin in 
water. Dotted line below 0.04 m indicates the theoretical line for 
unassociated monomers and arrows denote the critical 
concentrations (Varela 1999). 

Reprinted with permission from Varela, L. M.; Rega, C.; Suarez-Filloy, M. J.; Ruso, J. M.; Prieto, 
G.; Attwood, D.; Sarmiento, F.; Mosquera, V. Langmuir 1999, 15, 6285. Copyright 1999 
American Chemical Society. 
 

Analogous graphs (Figure 2.9) were created for compounds 2.1 and 2.2, 

two compounds that differ by only one residue yet seemingly have drastically 

different room temperature aggregation states by NMR. The “discontinuity” 

shown by 2.1 was judged to be too slight and not compelling to suggest a CAC 

while the data for 2.2 fit a linear model well (R2 = 0.996) for all concentrations 

indicating size homogeneity (Figure 2.9). What was quite striking is that the 

scattered light intensity of 2.1 was more than an order of magnitude greater than 

2.2 corroborating NMR data implying the presence of large aggregates of 2.1 

even at low concentrations. 
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Figure 2.9 Scattered light intensity as a function of concentration. The 
failure to describe data from solutions of 2.1 with a linear fit is 
normally indicative of a shift in solute size but at this point the 
discontinuity cannot be interpreted as a critical concentration. 

The above graphs measured the time-average intensity of scattered light 

also known as static scattering. Dynamic light scattering (DLS) on the other hand 

measures the movements of isolated particles. With a large collection of 

measurements DLS can afford estimated molecular weights and yield 

hydrodynamic radii (Ruso 2000, Pecora 1985). Unfortunately, DLS results varied 

too much between separate measurements from trial to trial and even within 

single runs to allow for any confidence in the data acquired. This was likely due 

to the available fitting models that limit analyses to only systems with well-

defined monomodal or bimodal weight distributions. The aggregated state of 2.1 

at room temperature therefore likely spans a wide range of sizes and may be quite 

variable over time and sensitive to how solutions are handled. Future studies 
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obtaining sedimentation equilibrium data via analytical ultracentrifugation might 

lead to better descriptions of these aggregates of 2.1 (Raguse 2001).  

2.3.3 Evaluation of UV-Vis, NMR, and LS Data 

UV-Vis spectroscopy fully supported that all compounds had a similar 

folding pattern in solution, where the aromatics are stacked face-centered at 25 
oC. While the intramolecular folding of 2.1-2.4 appeared to be comparable to each 

other, it was clear from NMR and LS that 2.1 was drastically aggregated but in 

such a way that the Dan:Ndi intramolecular stacking appeared mostly unaffected. 

This suggests that intermolecular interactions were significantly different between 

2.1 and 2.2-2.4. Possibly there are enough leucine-leucine intermolecular 

interactions to cause aggregation for 2.1. One must also consider charge effects as 

an explanation for the apparent differences between 2.1 and 2.2 whose five 

carboxylates in solution may have presented adequate intermolecular charge 

repulsion to prevent the rapid capture of partially unfolded aedamers. To address 

these parameters it would be worthwhile to synthesize hexamers with identical 

charges as 2.1 but with less hydrophobic residues, such as glycine, to probe 

whether the hydrophobicity of the linker side chains could truly be used to 

modulate aggregation properties. Finally, although 2.1 existed as large soluble 

aggregates in solution, HPLC and mass spectrometry conditions seemed to break 

up these aggregates for measurements of presumably monomeric species during 

these analyses. This observation indicates that the intermolecular interactions 

responsible for this aggregation state at ambient conditions are fairly weak and 

reversible.  
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2.3.4 Concentration Dependent Gelling Studies 

While it was important to characterize the aggregation state at room 

temperature, the main inquiry of this study is whether compounds 2.2-2.4 gel at 

elevated temperatures such as 2.1. Thermally-induced gelling experiments were 

performed and the data for 2.1 and 2.2 is shown in Figure 2.10 (compounds 2.3 

and 2.4 gave near identical results as 2.2). The gelling of 2.1 (1.5 mM) 

reproduced the results found previously (Nguyen 1999) while solutions of 2.2 at 

the same concentration did not gel. Attempts to “turn off” the gelling propensity 

of 2.1 by dilution were unsuccessful where even 0.1 mM solutions became 

viscous and pale pink although the onset of gelling was slightly delayed (Figure 

2.10). Likewise, raising the concentration of 2.2 up to 5.0 mM did not “turn on” 

the propensity for gelling. Originally it was thought that dilute solutions of 2.1 

could limit the intermolecular interactions that caused a highly aggregated state at 

room temperature, which in turn would inhibit gel formation. Also it was thought 

that 2.2 could be forced to mimic the leucine intermolecular associations 

supposedly occurring for 2.1 at room temperature just by increasing its 

concentration. At this point, these two compounds, whose aggregation properties 

appeared to be dictated by just one residue substitution, are resistant to any 

attempts to switch their gelling behaviors. 
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Figure 2.10 Kinetics of the conformational transition of 2.1 and 2.2 at 
different concentrations. The loss of the CT band absorbances for 
2.1 was a consequence of aedamer unfolding and "entangling" as 
a gel formed. For 0.1 mM solutions of 2.1, a 1 cm cuvette was 
necessary to increase the CT signal above baseline noise while a 
0.1 cm cuvette was used for the other solutions. 5.0 mM 
solutions of 2.2 had a CT corrected absorbance of 0.23 ± 0.04 at 
all times (not shown). Photographs of 2.1 and 2.2 after 150 min 
of heating are also included.  
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2.3.5 Discussion of Thermal Gelling Data 

Although the hope was to modulate gelling properties through residue 

substitution it appeared that gelation by aedamers was an all-or-none proposition 

with no gray area in which to observe intermediate differences in the time course 

of the slow and rapid phases of the conformational transition. Encouraging 

though, was that a lone residue substitution (Asp→Leu) was identified that in 

effect converted 2.2, which did not form aqueous gels, into 2.1, an effective 

gelator. A report from Rotello and co-workers may provide clues as to how to 

modulate the gelling properties of aedamers (Ilhan 1999). That report illustrated 

the use of small molecule intercalators to control the solution structures of their 

globular polymers via intra- and intermolecular aromatic stacking under varying 

temperatures. A more thorough knowledge of both the intra- and intermolecular 

interactions at play in the gel formation of aedamers would be indispensable in 

achieving the control of structure demonstrated by Rotello and co-workers. Direct 

measurements of the physical properties of the aedamer gels formed at different 

conditions would also advance this research. Worthwhile future experiments may 

include variable-temperature rheology (to calculate gel strengths and water 

loss/recovery while stressed) and transmission electron microscopy (to visualize 

gel morphology) (Menger 2003).  

2.3.6 Exploring Aedamer-Protein Interactions 

The ability of aedamers to adopt well-defined conformations in water 

stimulated the group to pursue aedamers that have useful interactions with natural 

molecules in biological systems. Recent papers, extending the seminal work of 
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Lokey and Iverson (Lokey 1997), have exquisitely shown that oligo(Ndi)s can 

intercalate different DNA sequences with remarkable specificity (Lee 2004, 

Guelev 2000, 2001b, 2002). The strength and selectively of binding was attributed 

in part to a) the aromatic interactions of the electron-deficient Ndi with the DNA 

bases and b) the linkers which were amenable to combinatorial library synthesis 

to create a diverse set of intercalators to screen. Aedamers might also have the 

same attributes in the context of protein binding especially considering that a) 

most proteins contain aromatic amino acids and b) aedamer folding remains 

robust with a wide range of linkers (Zych 2000) making combinatorial libraries 

possible. Therefore, in light of the group’s success investigating oligo(Ndi)-DNA 

interactions, a strong motivation grew to explore the possibility of oligo(Dan-

Ndi)s (i.e. aedamers) interacting with proteins.   

The proposed gelling mechanism shown in Figure 2.4 sparked thoughts of 

a proof-of-concept experiment in which enzyme capturing (and putative refolding 

inhibition) by 2.1 would be a good indicator of aedamer-protein interactions. It 

was expected that 2.1 would be most effective as an inhibitor under heating 

conditions (80 °C) in which its exposed hydrophobic aromatic units could trap a 

thermally denatured enzyme before both could properly refold back when the 

solution cooled to room temperature. Any aromatic interactions in proteins would 

be between residues with relatively electron-rich aromatics (phenylalanine, 

tyrosine, histidine, and tryptophan). It is reasonable to believe that donor-acceptor 

interactions between an Ndi moiety of an unfolded aedamer and a natural amino 

 52



acid would be very competitive with the donor-donor aromatic interactions found 

in proteins. 

Also proposed was to test aedamer 2.4, which remains highly folded at 80 

°C, on the off chance it would be able to capture unfolded enzyme just due to the 

availability of it terminal aromatic units or linker carboxylate functionalities. 

Lastly, it was not known whether aedamers inherently have elements that might 

endow these molecules with active site recognition capabilities in which case 

inhibition may not even require a heat-induced denature/trap route. 

It was decided that the enzyme RNase would present an interesting 

challenge because of its robust structure and its ability to renature efficiently even 

after heating to above 60 °C  (Figure 2.11). Plus, fluorometric assay kits called 

RNaseAlert can be purchased from Ambion (Austin, TX). These kits are used 

often by molecular biology laboratories to monitor RNase activity and to detect 

RNase contamination in solutions containing susceptible oligonucleotides. The 

RNase substrate probe emits a green fluorescence when cleaved (Figure 2.11). 

Lastly and most intriguing is that Ambion does indeed provide a storage solution 

called RNAsecure that inhibits present RNase only when heated to above 60 °C. 

Once cooled this solution does not produce any measurable downstream enzyme 

inhibition. The solution contains proprietary ingredients therefore the active 

molecules and mode of action cannot be speculated on. 
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Figure 2.11 Primary structure of ribonuclease (RNase) indicating polar 
(green), hydrophobic (orange), basic (blue), and acidic (red) 
residues. Schematic of fluorometric assay adapted from the 
manual of the RNaseAlert kit sold by Ambion. 

Compounds 2.1 and 2.4 at different concentrations were tested for their 

ability to inhibit RNase with and without a preheat treatment (Figure 2.12). 

Sodium dodecyl sulfate (SDS), an anionic detergent, was also tested. The general 

procedure for a “heat trial” involved heating the RNase enzyme solution (5 µL, 

activity = 0.01 U/mL) in the presence of aedamer or SDS (40 µL, various known 

concentrations) in (45 µL Na phosphate buffer) for 1 hour at 80 °C. Once the 

solution had cooled, probe (10 µL, 5 mM) was added. Solutions were then 

transferred to a 96-well plate and fluorescence measured (Ex/Em 485/516 nm) at 

30 minute time intervals. “Non-heat trials” were identical except the compound 

and RNase were mixed and left standing at room temperature for 1 hour before 
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the probe was added. High fluorescence readings indicate that RNase activity still 

remained and little inhibition had taken place (Figure 2.11). Negative controls 

contained only test compound, while positive controls contained only added 

RNase before probe was added. Lastly, it was observed that fluorescence 

quenching of the fully cleaved probe by Dan (2.8) or Ndi (2.9) monomers is 

insignificant. 

 

 

Figure 2.12 Compounds tested in the RNase refolding inhibition study. 

2.3.7 Fluorometric Assay of RNase Activity 

Figure 2.13 shows the fluorometric assay data obtained when 2.1 was used 

in the heat trial protocol described above. Keeping in mind that fluorescence is 

 55



proportional to enzyme activity, several trends from the bar graph are noteworthy. 

First, RNAsecure was astonishingly effective at RNase inhibition giving readings 

near identical to the negative control. Second, while 30 µM concentrations of 2.1 

exhibited moderate inhibitory effects, attempts to completely wipe out RNase 

activity with higher concentrations of 2.1 surprisingly did not translate into 

greater inactivation of RNase. Lastly, since full inhibition was not reached in the 

runs with 2.1, it is reasonable to assume that any active RNase remaining would 

demonstrate catalytic turnover and continue to cleave the probe leading to the 

observed rise in fluorescence with time. The positive control also showed this rise 

in fluorescence with time. Measurements after 48 hours gave readings of about 

250 emission units (judged to represent complete cleavage of probe) for all plate 

wells except for the “Neg” and “Secure” wells. Based on the promising results 

from this heat trial using 2.1, similar assays were carried out with the other test 

compounds, and without preheat treatments as well (Figure 2.4).  
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Figure 2.13 Fluorescence data of 2.1 at 120-0.15 µM concentrations 
measured at 30 minute time intervals. Runs with 2.1 afforded 
moderate refolding inhibition. Neg = negative control. Secure = 
Ambion’s commercially available RNase inhibitor, RNAsecure. 
Pos = positive control. 

Figure 2.14 exhibits more extensive data; specifically the heat and non-

heat trials using 2.1, 2.4, and SDS at different concentrations. Results at 105 

minutes were reported at which time cleavage of the probe was judged to have 

reached near completion for the positive control. Three runs were performed for 

each of the conditions and results were reproducible (within 10%). Overall, the 

results comparing 2.1, 2.4, and SDS can be simply summarized: RNase activity 

was significantly decreased only by 2.1 and only when RNase was heated in the 

presence of 2.1. Compound data from the other five bar graphs (grayed in Figure 

2.14) gave similar emission numbers as their respective positive controls. Data for 

monomers 2.8 and 2.9 and a 1:1 mixture at all concentrations studied had limited 

inhibition effect as well. This monomer data indicates that there is probably a 

 57



strong dependence on the structural elements of 2.1 rather than purely aromatic-

aromatic recognition events when 2.1 inhibits RNase. 

 

 

Figure 2.14 Fluorometric assay results for 2.1, 2.4, and SDS with and without 
preheat treatment measured at 105 minutes. Only the 2.1 heat 
trial gave dramatically different results (~75% inhibition for 30 
µM solutions) than the other compounds and conditions.     
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2.3.8 Discussion of Refolding Inhibition Data 

Results shown in Figure 2.13 indicate that heating RNase in the presence 

of 2.1 certainly does decrease its activity but still the fact that a 120 µM solution 

of 2.1 performed worse than a 30 µM solution needed to be addressed. A possible 

explanation is that at higher concentrations the presumably aggregating aedamer 

in effect “gets in its own way” and entangles itself more efficiently than trapping 

the unfolding RNase. It follows to argue that 30 µM solutions of 2.1 possibly 

allowed better contact between unfolded aedamer and unfolded RNase at elevated 

temperatures while at higher concentrations unfolded 2.1 traps itself before 

having a chance to capture unfolded RNase. Still one has to remember that a 120 

µM solution of 2.1 gave a modest 66% inhibition (a 30 µM solution gave ~80% 

inhibition) as compared to the positive control at 45 and 75 minutes (Figure 2.13). 

In additional experiments related to the proposed explanation above, 

heating RNase with “gelled” 2.1 inhibited RNase but was slightly less effective 

than when heating RNase with “ungelled” 2.1 (Figure 2.15). (Aedamer solutions, 

at these 30 µM concentrations, were determined as “gelled” when the purple color 

of the solution faded after heating. Recall, that to physically confirm a viscous gel 

as in experiments described in section 2.3.4 required solutions 100 times more 

concentrated.) The results in Figure 2.15 suggested that an aggregated 2.1 surface 

might not be required for capturing unfolded RNase. Unlike the Nguyen study 

where gel formation was accelerated by the addition of pregelled material 

(Ngyuen 1999), it did not seem this was the case for RNase inhibition. In 

Nguyen’s study, unfolded 2.1 was trapped much more efficiently when the 
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solution contained initially 10% gel product suggesting a high affinity of unfolded 

2.1 for the tangled aggregate (Graph in Figure 2.3 and schematic in Figure 2.4). In 

sum, unfolded RNase did not appear to have this same high affinity. Instead it 

appeared that when RNase and 2.1 unfold in the presence of each other this led to 

greater enzyme inhibition than when RNase unfolds in the presence of pregelled 

2.1 (Figure 2.15). Together, the results shown in Figures 2.13 and 2.15 imply that 

inhibition by 2.1 proceeded by a different mechanism than RNAsecure. Also it is 

clear that more investigation is required to approach the outstanding inhibitory 

effects of Ambion’s heat-activated RNase inhibitor solution. 

 

 

Figure 2.15 Conditions to determine if a preformed tangled aggregate of 2.1 
can enhance inhibition in the same manner that gelled 2.1 
enhances gelation through a product promoted mechanism. 

The results in Figure 2.14 comment quite persuasively on the special 

inhibitory properties of 2.1, but only when heated, as compared to 2.4, SDS, and 

unheated 2.1. This data bodes well for slight differences in aedamer chemical 

structure to modulate its physical properties and functions. A proposed 

mechanism of heat-triggered inhibition by 2.1 invokes a general, non-specific 
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association between the hydrophobic residues of the aedamer (in particular the 

electron-deficient Ndi moiety) and the RNase (and probably its electron-rich 

aromatics). Interestingly Ndi monomer 2.9 had no effect so it may be a 

combination of conformational effects and aromatic associations that ultimately 

give 2.1 its properties. The ability of 2.1 to aggregate appears to be important 

since 2.4, 2.8, and 2.9 (each of which do not form gels) had no significant effect. 

Still even with this proposed non-specific mode-of-action, one can envision future 

work taking advantage of the selective and opportunistic interactions between 

natural aromatic amino acids (phenylalanine, tyrosine, histidine, and tryptophan) 

and the naphthyl moieties of aedamers. In related research, screening of a peptide 

library has commenced to select sequences that strongly interact with a set of 

aedamers to identify high-affinity peptide tags. Hopefully these selection 

experiments will yield new insights into specific recognition elements and 

naphthyl oligomer-natural protein interactions. 

2.4 CHAPTER CONCLUSIONS 

Overall, the effects of linker substitutions on aedamer properties such as 

heat-responsive gelling and enzyme inhibition can be quite profound. Structure-

activity relationship studies on gelling showed that while 2.1 has essentially the 

same intramolecular structure as aedamers 2.2-2.4, apparently its intermolecular 

aggregation endows it with a propensity to form gels at elevated temperatures. 

This aqueous gel formation appeared to be an all-or-none situation where 2.1 gels 

but 2.2, which differed by only a leucine to aspartate residue change, did not, even 

at high concentrations. This study also demonstrated that intramolecular folding 
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could be decoupled from bulk properties. This potential attribute could aid in 

designing highly derivatized aedamers (to target different properties) but with 

folding features that make the placement of functional groups fully predictable in 

the final conformation. 

The investigation of 2.1 as an enzyme inhibitor further corroborated the 

unusual aggregation properties of 2.1 and emphasized that simple residue changes 

can have interesting effects. Only when RNase was heated in the presence of 2.1 

was enzyme inhibition observed. This inhibition is a strong indication that there 

exist considerable interactions between unfolded 2.1 and unfolded RNase, enough 

to affect its activity. Lastly, this study is encouraging for future experiments 

probing aedamer-protein interactions. 

2.5 IDEAS FOR FUTURE INVESTIGATIONS 

Future investigations focused on the in-depth characterization of aedamer 

aqueous gels would advance both the gelling and the enzyme inhibition project. A 

couple of experiments are proposed below with this goal in mind along with the 

fact that SPPS makes it easy to synthesize a range of aedamer/peptide hybrids. 

Constitutional isomers of the gelling aedamer and engineering 

techniques for hydrogel characterization. There is currently strong motivation 

to understand how to tune the properties of hydrogels to create biomaterials for 

tissue engineering and other applications (Langer 2003). Thus compounds 2.1-2.4 

with varied hydrophobicity/philicity were tested. Other hydrophobic residues 

besides leucine though could be employed in future analogues. It would also be 

worthwhile to take 2.1, which was the only aedamer shown to gel, and scramble 
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its primary sequence to see if leucine/aspartate position along the hydrophobic 

column could afford subtle differences in properties. Important for the success of 

these future studies though would be precise analytical techniques to monitor 

properties of these molecules in a wide range of conditions. The Chemical 

Engineering department at the University of Texas at Austin has such instruments 

as variable-temperature rheometers, light scatterers designed for large gels rather 

than proteins, and specialized microscopes that should prove to be extremely 

useful for this proposed study. 

Investigation of new aedamer-protein interactions. As stated before 

aedamer-peptide affinity studies have been initiated. Another related project that 

has been kicked around is to use the Dan:Ndi interaction to create pseudocyclic 

peptides. An example would be a tetrapeptide capped on one end with a Dan unit 

and the other end with a Ndi unit which might induce a molecular turn via the 

Dan:Ndi association. This potentially would create a new set of compounds with 

flexibilities in between that of linear and covalently looped cyclic peptides. 

Peptide-based enzyme inhibitors have been explored testing how rigidification 

affects their binding and it is possible that intermediate flexibilities may be most 

effective for some tetrapeptide drugs. With this being the case, 

aedamer/tetrapeptide hybrids may act favorably as protein ligands. The feasibility 

of this proposed study will become more apparent after the description of 

naphthyl oligomer turns (Chapter 3) and artificial hetero-duplexes (Chapter 4), 

both of which demonstrate the strength and specificity of the Dan:Ndi interaction 

to cause the formation of structures beyond a pleated-ribbon fold. 

 63



2.6 EXPERIMENTAL SECTION 

Solid phase peptide synthesis. A typical synthesis started with 0.10g 

(0.060 mmol) Fmoc-Gly-Wang resin (Advanced ChemTech, 100-200 mesh, 0.6 

mmol/g) placed in a 5 mL fritted polypropylene syringe (Torviq) and swelled in 4 

mL DMA (N,N-dimethyacetamide) using a wrist-action shaker at low speed for 

30 min. The DMA was drained and the Fmoc group removed by shaking with 4 

mL deprotection solution (25 vol% piperidine in DMA) for 20 min, drained and 

repeated. The resin was then rinsed with DMA (3 × 4 mL), iPrOH (3 × 4 mL), and 

again with DMA (3 × 4 mL) and this wash was repeated after each step. Coupling 

reactions consisted of 3 equivalents (0.18 mmol) of the particular amino acid 

adduct dissolved in 3 mL DMA and taken up by the syringe followed by 3 

equivalents (0.18 mmol) coupling reagent, PyBOP, (benzotriazole-1-yl-oxy-tris-

pyrrolidino-phosphonium-hexafluorophosphate) (Novabiochem) in 1 mL DMA 

and 6 equivalents (0.36 mmol) base (N-methylmorpholine). The resin was shaken 

for 60 min for each coupling reaction. Rinsing, deprotection, rinsing, and 

coupling were repeated until the desired length was obtained. Either a rotary or 

orbital shaker was used for long periods of shaking/agitation but each time new 

solvent of solution was added to the resin the reaction syringe was capped and 

vortexed for a couple of seconds to break up clumps of resin. This seemed to 

improve overall yields by at least 10%. 

After the last Fmoc deprotection the N-terminus of the oligomer was 

capped with an acetyl group by addition of 15 equivalents (0.9 mmol) DIEA 

(N,N-diisopropylethylamine) in 1.5 mL of DMA followed by 15 equivalents (0.9 
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mmol) acetic anhydride in 1.5 mL of DMA and shaken for 45 min. The oligomer 

was cleaved off the resin by shaking for 60 min with 4 mL TFA with 0.1g phenol 

as a cation scavenger and this solution also removed the t-butyl protecting group 

on the aspartate side chains. The TFA solution was collected and the resin was 

rinsed with additional TFA and CH2Cl2. The rinses were combined with the TFA 

solution and evaporated to an oil under reduced pressure at 60 °C. The oil was 

soncicated with heptane for 10 min and once again evaporated. The residue was 

then sonicated with diethyl ether for 5 min and cooled to 0 °C resulting in a 

granular precipitate that was collected by a glass fritted funnel and washed with 

additional cold diethyl ether. Crude solids were then dissolved through the vessel 

filter with a minimum amount of 50 mM sodium phosphate buffer, pH = 7.0 and 

subjected to fast protein liquid chromatography (FPLC) purification (details 

follow). Fractions judged pure by high performance liquid chromatography 

(HPLC) (details follow) were lyophilized and afforded 2.1-2.4 as airy purple 

solids. 

Purification by FPLC. Crude oligomers dissolved in 50 mM sodium 

phosphate buffer (pH = 7) were purified on a Pharmacia FPLC system equipped 

with LKB P-500 pumps, a GP250 Plus programmer, and 254 nm UV detection 

using a Pharmacia column filled with Source 15RPC reverse-phase media from 

Amersham Pharmacia. A solvent gradient of 95% 0.1 mM ammonium acetate / 

5% CH3CN to 50% 0.1 mM ammonium acetate / 50% CH3CN over 60 min was 

used. Solvents were degassed, filtered and were of high purity (double distilled 

H2O and spectrograde acetonitrile from EM Science). Purity of the collected 
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fractions was judged by HPLC using a 50 × 4.6 mm “Luna” 5 micron C18 column 

from Phenomenex and a Beckman Coulter HPLC system equipped with a 

photodiode array detector scanning between 190 nm and 600 nm. A solvent 

gradient of 95% 0.1 mM ammonium acetate / 5% CH3CN held for 1 min then 

ramped to 50% 0.1 mM ammonium acetate / 50% CH3CN over 14 min was used 

and gave good resolution. Appropriate fractions were pooled and lyophilized for 

48 hrs under a vacuum of < 10 microns. Pure compound was dissolved in H2O 

and desalted by adsorption onto a C18 Sep-Pak Plus cartridge from Waters 

followed by a H2O wash and recovery with a H2O/CH3CN mixture and then 

lyophilized again for 48 hrs prior to experiments. 

The recipe for the 50 mM sodium phosphate buffer, pH = 7.0, used in 

most experiments follows: Dissolve 8.16 g Na2HPO4·7H2O and 2.70 g 

NaH2PO4·H2O in 1L of dd H2O. 

Compound characterization (1D-NMR general methods). Samples 

were readily soluble in 50 mM sodium phosphate, pH = 7.0 D2O. Routine spectra 

of monomers and precursors were obtained on a Varian UNITY+ 300 MHz 

spectrometer. Spectra were recorded on a Varian INOVA 500 MHz spectrometer 

at 1 mM concentrations of compound and TSP-d4 (3-trimethylsilyl-propionic-

2,2,3,3-d4 acid, sodium salt) was used as a reference (δ = 0.00 ppm). Chemical 

shifts reported in ppm and abbreviations used are singlet (s), doublet (d), doublet 

of doublet (dd), triplet (t), quartet (q), multiplet (m) and complex multiplet of non-

equivalent protons (comp). J coupling constants (J) reported in Hz. 
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“AcHN-(LeuDanAspNdi)3Gly-OH” (2.1). (SPPS yield = 40%) 1H NMR (500 

MHz, D2O) Spectra gave prohibitively broadened signals. MALDI MS calcd for 

C142H151N19NaO39 [MH]+ 2771.8, found 2770.8. 

“AcHN-(LeuDanAspNdi)2AspDanAspNdiGly-OH” (2.2). (45% yield) 1H NMR 

(500 MHz, D2O) δ = 8.01-7.82 (12H), 6.80-6.42 (12H), 6.31-6.09 (6H), 4.68-4.64 

(4H), 4.26-4.05 (13H), 3.83-3.92 (26H), 2.83-2.54 (15H), 2.48-2.34 (6H), 2.09-

1.80 (15H), 1.55-1.46 (4H), 0.83 (d, J = 6.1, 3H), 0.78 (d, J = 6.1, 3H); FAB MS 

calcd for C140H146N19O41 [MH]+ 2749.0, found 2749.0.  

“AcHN-LeuDanAspNdi(AspDanAspNdi)2Gly-OH” (2.3). (49% yield) 1H NMR 

(500 MHz, D2O) δ = 8.05-7.83 (12H), 6.71-5.81 (18H), 4.66-4.64 (3H), 4.34-3.95 

(14H), 3.69- 3.30 (26H), 2.82-2.39 (20H), 2.02-1.89 (16H), 1.65-1.40 (8H), 0.92-

0.81 (12H); FAB MS calcd for C138H140N19O43 [MH]+ 2752.7, found 2752.7.  

“AcHN-(AspDanAspNdi)3Gly-OH” (2.4). (50% yield) 1H NMR (500 MHz, 

D2O) δ = 8.00-7.65 (12H), 6.81-6.59 (18H), 4.70-4.60 (5H), 4.52 (dd, J = 8.8, 5.0, 

1H), 4.25-4.40 (12H), 3.87-3.77 (6H), 3.73 (s, 2H), 3.70-3.40 (18H), 2.47-2.37 

(6H), 2.07-1.85 (6H), 1.93 (s, 3H); MALDI MS calcd for C136H133N19NaO45 

[MH]+ 2775.6, found 2775.7. 

“HO-Dan-Asp(OtBu)-NHFmoc” (2.5). 

 
1H NMR (300 MHz, DMSO-d6) δ = 12.17 (s, 1H OH), 8.03 (t, J = 5.4, 1H NH), 

7.86 (d, J = 7.5, 2H x), 7.73-7.67 (comp, 2H x, 2H n), 7.6 (d, J = 8.3, 1H NH), 
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7.41-7.28 (comp, 4H x, 2H o), 6.94 (d, J = 7.6, 1H p), 6.91 (d, J = 7.6, 1H p), 

4.35-4.28 (comp, 1H t, 1H w), 4.25-4.18 (m, 2H v), 4.15-4.10 (comp 2H m, 2H q), 

3.38-3.31 (comp, 2H s, 2H u), 2.65 (dd, J = 10.3, 5.7 1H k), 2.45 (m, 1H k), 2.10-

1.97 (comp, 2H l, 2H r), 1.35 (s, 9H y); 13C NMR (300 MHz, DMSO-d6) δ = 

174.1, 170.4, 169.4, 155.7, 153.9, 153.8, 143.8, 143.7, 140.7, 127.6, 127.0, 126.0, 

125.9, 125.3, 125.2, 120.1, 113.6, 113.5, 105.7, 80.0, 66.9, 65.7, 65.4, 64.9, 51.6, 

46.6, 37.7, 35.8, 30.4, 28.8, 27.6, 24.3, 15.1; CI HRMS calcd for C40H45N2O9 

[MH]+ 697.313, found 697.312. 

“HO-Dan-Leu-NHFmoc” (2.6). 

 
1H NMR (300 MHz, D2O) δ = 12.15 (s, 1H OH), 8.01 (t, J = 5.5, 1H NH), 7.87 

(d, J = 7.5, 2H x), 7.73-7.69 (comp, 2H x, 2H n), 7.4 (d, J = 8.3, 1H NH), 7.41-

7.28 (comp, 4H x, 2H o), 6.95 (d, J = 7.3, 1H p), 6.91 (d, J = 7.3, 1H p), 4.28 (m, 

1H w), 4.20 (m, 2H v), 4.15-4.11 (comp 2H m, 2H q), 3.99 (m, 1H t), 3.39-3.29 

(comp, 2H s, 2H u), 2.49-2.48 (m, 2H k), 2.10-1.95 (comp, 2H l, 2H r), 1.60-1.55 

(m, 1H y), 1.50-1.37 (m, 2H u), 0.84 (dd, J = 13.3, 6.6, 6H z); 13C NMR (300 

MHz, DMSO-d6) δ = 174.1, 172.3, 155.9, 153.9, 153.8, 143.9, 143.7, 140.7, 

127.6, 127.0, 126.0, 125.9, 125.3, 120.0, 113.6, 113.5, 105.7, 66.9, 65.5, 65.3, 

53.1, 46.7, 40.8, 35.6, 30.4, 28.8, 24.3, 24.2, 22.9, 21.5; CI HRMS calcd for 

C38H43N2O7 [MH]+ 639.307, found 639.306. 

“HO-Ndi-Asp(OtBu)-NHFmoc” (2.7). 
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1H NMR (300 MHz, D2O) δ = 12.39 (s, 1H OH), 8.58 (s, 4H d), 8.05 (t, J = 5.9 

1H NH), 7.83 (d, J = 4.2, 1H k), 7.82 (d, J = 4.2, 1H k), 7.61 (d, J = 7.6, 1H k), 

7.58 (d, J = 7.6, 1H k), 7.44 (d, J = 8.5, 1H NH), 7.37 (t, J = 7.6, 1H k), 7.36 (t, J 

= 7.6, 1H k), 7.25 (t, J = 6.9, 1H k), 7.23 (t, J = 7.6, 1H k), 4.26-4.17 (comp, 1H g, 

1H j, 2H i), 4.14-4.03 (conp, 2H c, 2H f), 3.54-3.35 (m, 2H e), 2.61 (t, J  = 7.6, 2H 

h), 2.55-2.31 (m, 2H b), 1.31 (s, 9H l); 13C NMR (300 MHz, DMSO-d6) δ = 

172.3, 170.8, 169.3, 162.7, 162.3, 155.6, 143.7, 143.5, 140.6, 140.5, 130.2, 127.6, 

127.5, 127.0, 126.9, 126.4, 126.1, 126.0, 125.9, 125.2,125.1, 120.0, 119.9, 127.6, 

127.5, 127.0, 126.9, 126.4, 126.1, 126.0, 125.9, 125.2, 125.1; 80.0, 65.7, 51.4, 

46.4, 37.4, 37.3, 36.6, 36.0, 32.0; CI HRMS calcd for C42H39N4O11 [MH]+ 

775.262, found 775.261. 

“Dan monomer” (2.8). 

 

3-acetylamino-N-(3-{5-[3-(carboxymethyl-carbamoyl)-propoxy]-naphthalen-

1-yloxy}-propyl)-succinamic acid (2.8). (SPPS yield = 91%) 1H NMR (300 

MHz, D2O) δ = 7.88 (d, J = 8.4, 1H n), 7.84 (d, J = 8.6, 1H n), 7.50 (m, J = 2H o), 

7.07 (t, J = 7.6, 2H p), 4.47 (dd, J = 5.2, 3.4, 1H t), 4.29-4.25 (comp, 2H m, 2H q), 

3.69 (s, 2H j), 3.50 (t, J = 6.7, 2H s), 2.60 (dd, J = 5.2, 7.8, 1H u), 2.58 (t, J = 7.0, 
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2H k), 2.50 (dd, J = 8.6, 7.4, 1H u), 2.24 (m, 2H l), 2.13 (m, 2H r), 1.89 (s, 3H v); 
13C NMR (300 MHz, D2O) δ = 178.2, 176.5, 174.6, 174.2, 154.5, 126.7, 126.6, 

114.8, 114.6, 107.7, 107.3, 52.7, 47.1, 43.9, 39.5, 37.2, 33.6, 28.6, 25.4, 22.3; CI 

HRMS calcd for C25H32N3O9 [MH]+ 518.214, found 518.213. 

“Ndi monomer” (2.9). 

 

3-acetylamino-N-(2,{7-[2-(carboxymethyl-carbamoyl)-ethyl]-[1,3,6,8-

‘tetraoxo-3,6,7,8-tetrahydro-1H-benzo[lmn][3,8]phenanthrolin-2-yl}]-ethyl)- 

succinamic acid (2.9). (94% yield) 1H NMR (300 MHz, D2O) δ = 8.56 (AA’BB’ 

J = 7.6, 5.6, 4H d), 4.43 (t, J = 7.1, 2H c), 4.36 (dd, J = 4.8, 4.4, 1H g), 4.30 (m, 

2H f), 3.73 (s, 2H a), 3.61 (t, J = 5.7, 2H e), 2.74 (t, J = 7.1, 2H b), 2.45 (dd, J = 

4.8, 11.2, 1H h), 2.33 (dd, J = 9.2 and 6.8, 1H h), 1.86 (s, 3H i); 13C NMR (300 

MHz, D2O) δ = 177.4, 176.4, 173.9, 173.6, 173.2, 163.9, 163.7, 131.1, 

131.0,125.9, 125.8, 125.6, 51.6, 42.3, 39.6, 38.6, 37.3, 33.9, 21.6; CI HRMS calcd 

for C27H26N5O11 [MH]+ 596.163, found 596.163. 

UV-Vis spectroscopy. UV-Vis spectra were taken on a temperature 

regulated Hewlett Packard 8452A diode array spectrophotometer. Concentration 

of stock solutions used for UV studies was initially determined by NMR 

integration of a known concentration of TSP-d4 added to an aliquot. Solutions of 

compound (40 µM in buffered H2O) were measured in a 1 cm pathlength cuvette 

equipped with a microstirrer. 
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 Light scattering (LS). A DynaPro-801 light scatterer from Protein 

Solutions was used with the accompanying software. All data points represent the 

average of > 20 measurements per dilution. Aedamer solutions were made with 

50 mM Na phosphate buffer six hours before measurements. Solutions were 

filtered through a 0.02 mm pore 13 mm Anodisc membrane filter from Whatman 

with no evidence of clogging or adsorbed compound just before filling a 12 µL 

cuvette and measurements taken. It usually took an equilibration time of 5 

minutes before the average intensity of light scattered remained sufficiently 

steady (± 10%). Only data taken after this equilibration were used in the analysis. 

Data of the average intensity of light scattered were reproducible from trial to 

trial, sizing data though gave high errors and were not considered in this 

dissertation.  

Thermally-triggered gelling. Solutions were placed in a 0.1 cm 

pathlength cuvette and plugged with a sliver of rubber. The cuvette was placed in 

the Hewlett Packard 8452A diode array spectrophotometer whose cuvette holder 

had been heated to 80 °C by a water bath. After 1 minute to heat the cuvette 

through, measurements were taken every five minutes with manual shaking in 

between each UV-Vis spectrum taken. The CT band absorbance was monitored 

and corrected as previously describe (Figure 2 and 3 from Nguyen 1999). In brief, 

as the solution became more viscous the baseline in the visible region of the 

spectrum rose indicating increased light scattering of the tangled aggregate. The 

absorbance at the CT wavelength of the fully gelled material was subtracted form 

CT band absorbance during the heating. 
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Fluorometric assay. Material and supplies were purchased from Ambion 

unless otherwise noted (product numbers included). The bench surface, pipettors, 

and gloves were treated with RnaseZap (#9780). A bunsen burner flame was left 

running as well. Na phosphate buffer was made with nuclease-free water (non 

DEPC treated, #9937). Pre-sterilized, 200 µL size pipet tips from ART Molecular 

Bioproducts were used. Test compound solutions were made and 40 µL were 

pipetted into RNase-free microfuge tubes (#12350). 45 µL of Na phosphate buffer 

was added along with 5 µL of RNase (activity = 0.01 U/mL, included in 

RNaseAlert kit #1964). For heat trials, the microfuge tube was placed in a 80 °C 

oil bath for 1 hour with strong agitation by vortex and then centrifuged every 20 

minutes. For non-heat trials the samples stood at room temperature but were stil 

agitated. Meanwhile the probe (aliquots were lyophilized in microfuge tubes by 

Ambion) was suspended with 10 µL of provided buffer (probe and buffer include 

in RNaseAlert kit). The samples were brought to room temperature and pipetted 

into the probe, agitated, and transferred to a 96 well assay plate from Corning 

(#3610). Large air bubbles were popped using disposable needles and 

fluorescence measurements were made at 30-minute time intervals. All samples, 

including the negative and positive controls contained a total of 100 µL of 

solution and concentrations reported in the data figures represent concentrations 

of these 100 µL solutions. 
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CHAPTER 3 

Switching the Folding Patterns of Naphthyl Oligomers 

3.1 CHAPTER SUMMARY  

Introduction. While Chapters 1 and 2 focused on aedamers, which have 

an alternating sequence of the form (Dan-Ndi)n, this chapter will describe work 

with non-alternating naphthyl oligomers of the sequence Dann+1-Ndin (Figure 3.1). 

These naphthyl oligomers are expected to fold with a different topology than the 

pleated ribbon folds exhibited by aedamers. Therefore this project represents the 

group’s first attempts to diverge from the original aedamer design in order to 

explore the strength and specificity of the Dan:Ndi interaction to direct more 

challenging folding. While natural α-peptides and nucleotides can form different 

secondary structures based on their primary sequence, β-peptides are the only 

foldamers that possess this same ability with reported examples of β-peptide 

helices and turns (Langenhan 2004) in literature. These systems employ hydrogen 

bonding and though helices have been shown to be stable in water, the reported 

turn structures are only stable in non-aqueous solvents. The work presented here 

with naphthyl oligomers demonstrates a strategy to control distinctly different 

folding patterns in water. 
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Figure 3.1 Cartoon representation of two different folding patterns. Arrows 
indicate direction of growth with longer oligomers.  

Goals. Experiments described in this chapter aimed to answer the 

question: Can naphthyl oligomers be rationally designed to adopt hairpin 

structures based on directed aromatic stacking? The short-term goal of this work 

was to demonstrate the ability of non-alternating naphthyl oligomers to adopt 

stable folding patterns, in particular turn motifs, as an alternative to the pleated 

secondary structures of aedamers. The long-term objective of this research is to 

use various folding patterns to possibly increase the stability of the hydrophobic 

column and eventually exploit this stability and predictive manipulation of folding 

to design complex functional molecules. 

Approach. Trimers of the type Dan-(X)-Dan-Ndi, varying in linker length 

(X), were probed by UV-Vis spectroscopy for the formation of a turn motif where 

the Ndi unit folds back into the trimer and inserts in between the two Dan units. A 

structural analysis of the best turn candidate, along with control compounds, was 

then accomplished using 2D NMR techniques and computer modeling. 
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Results. Overall, the work described in this chapter demonstrated that two 

simple, but discrete, folding patterns can be created just by changing the sequence 

of linked Dan and Ndi units (Gabriel 2004b). Data from unfolding investigations, 

NOESY spectroscopy and computer modeling supported conformational 

interpretations of a pleated fold for a Dan-Ndi-Dan trimer and an “intercalative” 

fold for a Dan-Dan-Ndi trimer. Appropriate control compounds were also useful 

for this investigation. This intercalative trimer was incorporated into a Dan3-Ndi2 

pentamer to test if the turn motif can aid in templating hairpin-type structures. 

Preliminary NMR studies were promising and encouraged further use of the 

predictable and strong Dan:Ndi association to study different binding patterns 

(Chapter 4). Lastly, the creation of different folding patterns via the facile 

shuffling of two aromatic monomer types may also provide insights into the 

general role of aromatic interactions in stabilizing structures. 

3.2 BACKGROUND: MIMICS OF BIOLOGICAL HAIRPIN STRUCTURES 

The continued pursuit of controlling molecular topology, whether through 

the development of foldamers, peptidomimetics or other chemical models, may 

lead to a greater understanding of the folding and binding properties associated 

with biomolecules (Brandon 1999).  One of the key oligomeric conformations in 

biology is the hairpin structure of a single-stranded biomolecule, which 

incorporates a U-shaped turn motif. These structures are ubiquitous in 

oligonucleotides such as DNA loops, ribozymes (catalytic RNA) (Liley 1999), 

and aptamers, (RNA with molecular recognition properties) (Marshall 1997). 

Research on hairpin nucleotidomimetics has led to the discovery of extremely 
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compact DNA fragments (Hirao 1994) and a fuller knowledge of the 

thermodynamics of DNA folding (Soto 2000). 

Concerning peptides, the β-sheet secondary structure found in many 

proteins is controlled by a collection of hairpin folds. While researchers 

synthesizing peptidomimetics are actively engaged in using artificial turns to 

design β-sheet mimics (Kemp 1990, Nowick 2000), researchers designing 

foldamers have also created synthetic β-sheets and examples were presented in 

Chapter 1. Also, a comprehensive review on peptide models of β-hairpin structure 

has been published (Searle 2001). Though there are many noteworthy examples of 

models of molecular turns, this introduction will touch briefly upon the work of 

two particular groups, Waters and Li that have specifically utilized aromatic 

interactions to probe turn conformations. 

Waters and co-workers have synthesized structural mimics to investigate 

β-hairpin peptide stability and to understand how aromatic interactions contribute 

to peptide structure and binding specificity (Tatko 2002, Butterfield 2002). A 

substantial data set has been built from which to elucidate the driving forces for 

folding and molecular recognition of β-hairpin peptides with specific residue 

substitutions (Figure 3.2). They have also developed models to probe “diagonal” 

C-H···π interactions that are distinct from the noncovalent interactions driven by 

the hydrophobic effect (Tatko 2004). With rigorous NMR and thermal 

denaturation experiments they have found interesting geometries of the 

interacting residues and have parsed the energy of the folding of a β-hairpin 

peptide into its enthalpic and entropic components. 
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Figure 3.2 Hairpin peptides synthesized by Waters and co-workers (Tatko 
2002, 2004). X = various sidechains to explore aromatic-
aromatic and C-H···π interactions.  

 Detailed investigations into the energetics of noncovalent interactions are 

growing in importance since it has been demonstrated that many proteins are 

stable by only 5-10 kcal per mol over misfolded states (Tatko 2002). So, although 

isolated noncovalent interactions are weak, the combination of these many subtle 

attractive forces and their binding geometries can have a pronounced effect on 

stability and structure, respectively. This information will be significant for de 

novo protein design. As expected, their meticulous studies into the basic science 

of noncovalent interactions have indeed accelerated the development of functional 

peptides with tunable properties including ATP recognition (Butterfield 2003) and 

flavin redox potential modulation (Butterfield 2004). 

Li and coworkers have developed δ-peptide foldamers that adopt a turn-

type conformation using a donor-acceptor interaction between electron-rich 1,5-

dialkoxynaphthalene (identical to the Dan moiety) and an electron-deficient 

pyromellitic diimide (Pdi) (Zhao 2004). There are two main differences between 
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δ-peptide foldamers and the naphthyl oligomer foldamers from the Iverson group. 

One is that δ-peptides present the aromatic rings as side chains projecting along 

the backbone while the aromatic rings in naphthyl oligomers are incorporated 

within the backbone. This arrangement is predicted to cause a weaving scenario 

for naphthyl oligomers (Figure 3.1) rather than a zipper-type situation for the Li 

system (Figure 3.3). Another important distinction is that the δ-peptide system 

operates in chloroform and DMF while naphthyl oligomers are water-soluble and 

are anticipated to fold most stably in aqueous solutions. 

 

 

Figure 3.3 Donor-acceptor δ-peptides synthesized by Li and co-workers and 
a cartoon representation of their asserted “zipper” structure 
(Zhao 2004). 

 It is predicted that the Dan:Ndi interaction can be used to design similar 

turn structures predicated on the idea that the aromatic units will arrange 

themselves to maximize the number of Ndi:Dan face-to-face contacts, even if it 

required the chain molecule to fold back on itself. Evidence of this hairpin fold 

would represent further control of secondary structures through the fairly simple 

means of shuffling the naphthyl primary sequence. 

Also, there is a possibility that hairpin structures will stabilize the naphthyl 

hydrophobic column further. First, it was postulated that the mechanism of 
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unfolding a pleated stack of naphthyl units starts at the exposed ends, analogous 

to DNA fraying (Lokey 1997). Second, work done by Zych has shown that folded 

conformations go through fairly dynamic motions with aedamers actually 

surveying many folded states (Zych 2000, 2002). The proposed hairpin naphthyl 

oligomer has the potential of rigidifying the hydrophobic core due to the weaving 

of the two halves of the strand. It also reasonable to expect that for longer 

oligomers, this weaving pattern, rather than a pleated ribbon pattern, would make 

it more difficult for the chain to unravel considering the large amount of 

concerted conformational rearrangements required to fully unfold.  

If promising, this initial work would lead an effort toward accessing more 

intricately folded structures that approach the size and functionality of 

biomolecules. These architectures should be amenable to substantial 

functionalization without disruption of structure as well. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Synthesis of Non-Alternating Naphthyl Trimers 

A critical element in a proposed naphthyl pentamer hairpin (Figure 3.4A) 

is the bend in the middle of the molecule formed by the -Dan-Dan-Ndi- central 

section, which can be thought of as the minimal turn unit for this hairpin structure. 

In this portion of the molecule, the Ndi residue is expected to insert itself, in a 

sense intercalate, in between the two Dan rings to satisfactorily desolvate both of 

its planar faces. 

 

 79



 

Figure 3.4 Design of a proposed hairpin pentamer. 

A set of trimers with different length linkers was therefore synthesized to 

investigate the feasibility of this, so-called, intercalative-type of fold and to 

compare it with aedamers, which adopt instead a pleated fold (Figure 3.1, 3.5). 

Here, the linker between the two Dan units was an important design 

consideration, and must allow an Ndi unit to lie parallel in between the two Dan 

rings in order to adopt a Dan/Ndi/Dan face-centered stack. This linker also has to 

account for the conservative estimate of ~ 3.5 Å as the “thickness” of an Ndi 

moiety as predicted by computer models. Aedamer 3.1 was synthesized as a 

suitable control for Dan/Ndi/Dan intramolecular stacking while 3.2 was used as 

an example of putative Dan/Ndi stacking. (Zych 2002, Lokey 1997). For these 

compounds, all linkers between each of the naphthalenes were 13 atoms long. 

Compounds 3.3-3.6 varied the length of the linker connecting the two Dan 

naphthalenes by 16, 13, 10 and 8 atoms, respectively. Modeling suggested 

compound 3.6, the trimer with presumably the most restrictive linker, would be 

precluded from folding into a trimeric stack due to geometric constraints.  

Therefore, 3.6, was considered a potential control compound, specifically a trimer 

of the same general sequence as 3.3-3.5, yet unable to form a stable intercalative 

fold. Modeling indicated that the Dan/Dan linkers for the other three candidates 
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for the intercalative fold were theoretically long enough but rigorous energy 

calculations were reserved until UV-Vis studies were performed. 

 

 

Figure 3.5 Compounds synthesized for folding studies. 

 The synthesis of these compounds proceeded smoothly using monomers 

and SPPS protocols previously described in chapter 2. Purification via FPLC 

(>98% pure judged by HPLC peak area) followed by desalting via a C18 Sep-Pak 

cartridge and freeze-drying afforded soft pale purple samples. 
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3.3.2 UV-Vis Spectroscopy 

When aedamers were first being developed, Lokey and Iverson identified 

extremely useful UV-Vis spectroscopic handles to monitor the complexation of 

the Ndi and Dan moieties in folded oligomers (Lokey 1995). These spectroscopic 

signatures for interacting Dan/Ndi chromophores included a charge-transfer (CT) 

band, characteristic extinction coefficients (ε) and hypochromism for the naphthyl 

moieties, all of which changed dramatically upon unfolding of the oligomer by 

addition of CTAB (Chapter 1). It was envisaged that UV-Vis data would provide 

a qualitative indication of the types of folding occurring for the previously 

unexplored non-alternating trimers, 3.3-3.6. In other words, it was thought that 

this data might shed light on whether a) these trimers adopt a Dan/Ndi/Dan stack 

such as aedamer 3.1 or b) their Dan-Dan-Ndi sequences force them into 

alternative conformations. 

UV-Vis data was acquired for solutions of 3.1-3.6 in 50 mM Na phosphate 

buffer H2O, pH = 7 (Table 3.1). A CT band appeared for all solutions between 

510 and 532 nm, and resulted in a purple color that did not exist with solutions of 

Dan monomer or Ndi monomer, both of which were colorless. Table 3.1 reports 

the ε of each compound at two wavelengths, at the CT band absorbance and at the 

Ndi moiety absorbance at 382 nm. The absorbance of the Ndi unit was the more 

reasonable of the two types of naphthyl units to monitor since 3.1-3.6 had one Ndi 

moiety each and there was actually very little absorbance overlap between the 

Dan and Ndi moiety around the maximum Ndi absorbance of 382 nm. Also an 

Ndi ring flanked on one face by a Dan unit was expected to give distinctive 
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spectroscopies compared to an Ndi unit with both of its faces in close contact with 

the Dan ring systems. The ε at elevated temperatures (80o C) was measured as 

well to detect any possible temperature dependence on the UV spectrum which 

would presumably reflect any ring orientation or oligomer conformation 

dependence on temperature too. Finally, Table 3.1 reports percent hypochromism 

at 382 nm, using unstacked monomeric Ndi values for comparison. 

 

Table 3.1 UV-Vis data for 3.1-3.6. a   

Compound b εCT and (λCT) c ε382 nm ε382 nm (80 oC) ∆ ε382 nm
 d % Hypo e

Alternating trimer and dimer 
3.1 (13)  700 (532) 12200 12400 200 57 
3.2 (13) 380 (526) 14600 15300 700 45 

Non-alternating trimers 
3.3 (16) 680 (532) 11300 12700 1400 54 
3.4 (13) 670 (532) 11200 11800 600 60 
3.5 (10) 500 (512) 13000 15100 2100 49 
3.6 (8) 490 (510) 13200 15200 2000 48 

a Extinction coefficients (ε) reported in M-1·cm-1, at 25 oC, and using solutions at 40 µM 
concentrations, unless otherwise noted. b Parentheses indicate the number of atoms between the 
naphthyl units for 3.1 and 3.2 and between the Dan naphthalenes for 3.3-3.6. c Solutions at 1 
mM concentrations. d ∆ ε382 nm

 = ε382 nm (80o C) - ε382 nm (25 oC)   d % Hypo(chromism) = 100% × 
[1 - (absorbance at 382nm without CTAB ÷ with excess CTAB)]. 

 

3.3.3 Evaluation of UV-Vis Data 

Overall, UV-Vis experiments qualitatively showed that all compounds 

have interacting π-systems arranged in a face-to-face orientation in water (Lokey 

1995, Cantor 1980). First, the percent hypochromism, measured at 382 nm, was a 
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good indication that multiple rings are stacked in a parallel fashion similar to 

DNA whose bases, within a double helix, display a hypochromism of about 50% 

(Cantor 1980). Second, solutions of 3.3 and 3.4 gave values of 680 and 670 M-

1·cm-1, respectively for the ε of the CT absorbance, both close to the value found 

for solutions of 3.1 (700 M-1·cm-1) that was previously designed to adopt a 

Dan/Ndi/Dan stack (Lokey 1995, 1997). On the other hand, 3.5 and 3.6 exhibited 

significantly lower values implicating a ring arrangement deviated from a 

Dan/Ndi/Dan stack. The Dan-Ndi dimer 3.2 gave a much lower εCT value of 380 

M-1·cm-1 as well. Third, the 532 nm maximum wavelength of the CT band for 3.3 

and 3.4, was identical to 3.1, which also suggested that their rings arrange in a 

Dan/Ndi/Dan stack which can reasonably be explained with the proposed 

intercalative fold conformation while once again 3.5, and 3.6 deviated from this 

wavelength and presumably from this trimeric stack arrangement. Thus far it had 

appeared only 3.3 and 3.4 were promising as non-alternating trimers that can 

adopt a Dan/Ndi/Dan stacked order analogous to 3.1. 

The ε at 382 nm was also useful since for some compounds these 

measurements changed significantly when the solution was heated. For instance, 

the ε382nm of 3.1 was raised by 200 M-1·cm-1 when heated to 80o C compared to an 

unusually large increase of 700 units for 3.2. Besides a likely slight perturbation 

of intramolecular folding, it was argued that intermolecular aggregates or 

specifically multimeric stacking might possibly be occurring for 3.2 (Figure 

3.6A). This intermolecular stacking could be broken up at elevated temperatures 

(based on entropy arguments), leaving the presumably stronger intramolecular 
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interactions relatively unchanged. This multimeric stacking was observed 

previously with monomers (Cubberley 2001b) and was indeed expected for these 

chains of nonpolar residues and especially for chain systems that, once folded, 

still presented opportunities for Dan:Ndi complexation albeit in an intermolecular 

fashion (Figure 3.6A). The strength of the interaction between separate chains 

though is expected to become weaker with longer, more unwieldy oligomers as 

evidenced by multimeric stacking appearing with monomers and dimers but not 

observed with hexamers (Lokey 1997). Furthermore, it can be argued that trimer 

3.1 has a decreased driving force for intermolecular stacking since this situation 

would require Dan:Dan face-to-face association which has been proven to be 

relatively unfavorable (Chapter 1, Cubberley 2001b, Figure 3.6B). 
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Figure 3.6 Cartoon representation showing A) the likelihood of some type 
of intermolecular stacking for 3.2 driven by the Dan:Ndi 
association and B) that intermolecular Dan:Ndi associations are 
not available if 3.1, 3.3, and 3.4 fold in the asserted manner. 
Double-headed arrows represent repulsion of the electron-rich π-
clouds of two Dan units. C) Possible explanation of how trimers 
3.5 and 3.6 could afford UV spectra similar to dimers. 

As Figure 3.6B shows (right structures), the general non-alternating trimer 

design was fortunate in the sense that, if folded correctly, the whole structure 

would be “capped” by two Dan units, just as with the alternating trimer 3.1, with 

no exposure of an Ndi surface to propagate intermolecular interactions. Although, 

if a prohibitively short linker does indeed prevent a stable Dan/Ndi/Dan stack, 

then it would be possible that significant aggregation may occur. This appeared to 

be the case for 3.5 and 3.6, whose ε382nm increased by around 2100 and 2000 M-

1·cm-1, respectively when their solutions were heated. Figure 3.6C is a cartoon 

representation of a postulated explanation of this change in UV spectra. 

Interestingly 3.5, 3.6, and dimer 3.2 displayed surprisingly close UV spectra with 
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ε382nm (80o C) values of 15100, 15200, and 15300 M-1·cm-1, respectively. Upon 

heating, it seemed that the UV absorbances of trimers 3.5 and 3.6 become more 

attributable to just the intramolecular association between the Ndi unit and only 

one Dan residue giving rise to “dimer-like” spectra (Figure 3.6C). This data 

provided evidence that the shortened Dan/Dan linker of both 3.5 and 3.6 

precluded them from being candidates for intercalative folding but demonstrated 

their usefulness as negative controls. 

Lastly, it was unexpected that the non-alternating trimer with the longest 

Dan/Dan linker 3.3 also had a relatively large shift in ε382nm when heated 

compared to that of 3.4. It is possible that solutions of 3.3 are conformationally 

heterogeneous (i.e. different aggregated species exist) due to intermolecular 

interactions, such as claimed for 3.5 and 3.6. There could also be distinctly 

dissimilar intramolecular conformations that are favorable at room and not at 

elevated temperatures and vice versa due to a longer linker making it possible to 

survey many different structural orientations dependent on temperature. 

Examining how heat effects these conformations is a difficult problem and this 

supposed discrepancy of conformations might make further structure analysis of 

3.3 difficult. 

 Compound 3.4, on the other hand, displayed comparable values for εCT 

(λCT), ε382nm (at 25 and 80º C), and percent hypochromism as 3.1 without the 

unusually high, and currently unexplained, ∆ε382nm shown by 3.3. These 

similarities suggested that 3.4 did exhibit Dan/Ndi/Dan trimeric stacking, as 3.1, 

even though it was not biased by a primary sequence of alternating Dan and Ndi 
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residues. The slight differences in the UV-Vis data between 3.1 and 3.4 likely 

stemmed from the inherently dynamic nature of folded naphthyl oligomers and 

the fact that these spectroscopic properties are very sensitive to the stacking 

orientation of the aromatic rings (Zych 2001, 2002). Also the difference in linker 

topologies between a pleated fold and an intercalative fold would be expected to 

alter the ring-to-ring geometries enough to give distinct spectra. Although these 

UV-Vis measurements by no means gave a crystal clear picture of folding, it did 

point to compound 3.4 as a reasonable candidate for more comprehensive 

structural analysis to investigate intercalative folding that would afford a turn-type 

conformation. 

In summary, this initial study determined that trimer 3.4 would be a good 

candidate for rigorous 2D NMR analysis that could reveal specific aromatic H-H 

contacts. Also compound 3.1 would be an appropriate “positive” control for 

Dan/Ndi/Dan stacking. As mentioned previously 3.6 could act as a “negative” 

control. It was suggested, based on the UV-Vis studies, that the terminal Dan unit 

of 3.6 is likely energetically prevented from completely “swinging around” to 

shield the other face of the Ndi ring due to a shortened linker thus preventing a 

Dan/Ndi/Dan stack (Figure 3.7). 
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Figure 3.7  Compounds analyzed by 2D NMR and idealized cartoon 
representations of possible solution conformations. Letter 
designation for NMR peak assignments for the Dan and Dan* 
units are given. Also shown is a design of a hairpin structure 
incorporating an intercalative fold (dotted boxed). 

Compounds 3.1, 3.4, and 3.6 were chosen for NOESY and modeling 

studies (Figure 3.7). It was hoped that structural analysis would reveal 3.1 and 3.4 

are related by a similar Dan/Ndi/Dan ring stacked arrangement even though the 

required type of folding to achieve this arrangement would have to be different. 

Conversely, even though 3.4 and 3.6 are related by an identical Dan-Dan-Ndi 
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primary sequence, it was anticipated that they would adopt different 

conformations. Figure 3.7 illustrates these expected folding patterns. 

3.3.4 Unfolding Studies by UV Spectroscopy 

As alluded to before, more stable structures may be a possible upshot from 

folding manipulation studies. Obtaining unfolding profiles, shown in Figure 3.8, 

was a step towards developing a method to analyze the stability of the different 

folds that have been, and will be, attained in the future. Unfolding traces could 

also possibly reflect the total number of aromatic units in the stacked hydrophobic 

core with conformations that have comparable ring arrangements displaying 

similar curves. 

 

 

Figure 3.8  Unfolding curves displayed in two different forms. 

The unfolding of 3.1, 3.4, and 3.6 was monitored via the rise of 

absorbance with the addition of CTAB, a detergent that was found to denature 

aedamers (Lokey 1997). Solutions of trimers were initially at 40 µM before the 

titration of a 2.7 µM (0.1 w/v %) solution of CTAB. Absorbances were adjusted 

 90



for volume changes and the concentrations of CTAB reported in w/v %. As more 

CTAB was added the absorbance increased (same as stating that the 

hypochromism decreased) as aromatic stacking was disrupted (Figure 3.8, left 

graph). Complete unfolding appeared at around 0.03 w/v % CTAB. At excess 

CTAB, the Ndi absorbance for each compound still varied slightly from each 

other even at identical concentrations. This was expected since different linkers 

and residue sidechains still affect, in subtle ways, the Ndi absorbance even in the 

absence of π-stacking (Gabriel 2002). Therefore to visualize the percent of 

unfolded trimer as CTAB was added, the hypochromism was calculated for each 

data point and related to the hypochromism of the initial solution (Figure 3.8, 

right graph). As an example, at 0.01 w/v % CTAB the hypochromism of 3.4 was 

calculated to be 18% compared to 60% of the initial solution and this translates to 

about 70% [1 - (0.18 ÷ 0.60) × 100%] unfolded trimer. 

It seemed that the unfolding pathways of the three compounds were not 

overwhelmingly different from each other. However, Figure 3.8 (right graph) did 

indicate that 3.6 (the trimer that cannot adopt a full Dan/Ndi/Dan stack) was 

folded slightly less stably than 3.1 and 3.4 under these denaturing conditions. 

Also, this study provided strong evidence that 3.1 and 3.4 share a similar trimeric-

stacked arrangement signified by the near identical stabilities. Indeed, it had been 

observed earlier that the absorbance traces from detergent-induced denaturation of 

aedamer dimer, tetramers, and hexamers were near identical (Lokey 1997). So, 

even as Lokey increased the length of the aedamers, the stability remained 

unchanged because these molecules had the same pleated structure conformation 
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and therefore presumably a similar unfolding mechanism. It was encouraging that 

oligomers with a previously unexplored naphthyl sequence still gave easily 

interpretable curves (for both 3.4 and 3.6). Even though the apparent strength of 

folding was comparable for 3.1 and 3.4, a hairpin structure (Figure 3.4) may still 

have potential to a give markedly stable conformation due to the anticipated 

entwined arrangement of the proposed molecule. 

3.3.5 NMR Techniques for Proton Assignment 

It was anticipated that the most direct evidence for folding and the specific 

aromatic-aromatic contacts that guide this folding would come from 2D-NMR 

experiments. When naphthyl oligomers with linkers greater than eight atoms were 

modeled in extended conformations, aromatic protons on different rings were at 

least 10 Å from each other, much too far apart to expect through-space coupling 

with NOESY spectroscopy. A co-crystal X-ray structure indicated the planes 

defined by the Ndi and Dan monomer units are separated by approximately 3.5 Å 

(Lokey 1995). It was reasonable to expect that hydrophobics-driven aromatic 

stacking would orient these rings close enough to each other, excluding water, and 

bring particular protons on different aromatic rings within 4-5 Å of each other, a 

practical range for NOESY spectroscopy. 

This NMR technique though becomes truly valuable for these folding 

systems only if the naphthyl protons can be unambiguously assigned. 

Unfortunately there was extensive overlap (Figure 3.9) of the two sets of Dan 

aromatic protons that would complicate matters in differentiating specific 

aromatic-aromatic contacts between the Ndi and Dan and/or Dan* residue 
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(Dan/Dan* notation in Figure 3.7). So while the oligomeric nature of our 

molecules allowed for facile synthesis of a set of foldamers with altered 

sequences, rigorous assignment of the hydrogens of repeat units (in this case the 

Dan hydrogens) became quite challenging. 

 

 

Figure 3.9  Proton NMR spectra of the aromatic region representing 16 
hydrogens for each spectrum. Spectra were taken at 1 mM 
concentrations in 50 mM Na phosphate D2O. 

This general problem is also encountered with the proton assignment of 

peptides with repeat sequences and has been solved mostly by NOESY 

experiments ran in 90% H2O in D2O, rather than in pure D2O to keep 

exchangeable protons observable. These experiments made it possible to “walk” 
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along the backbone chain using the amide hydrogen to form a continuous 

correlation across the carbonyls of the amide bond. Naphthyl oligomers though 

presented a special challenge not seen with peptides. The Ndi and Dan 

naphthalene moieties essentially were isolated spin systems that “act as insulators 

along the backbone” (Zych 2001). Fortunately, TOCSY (total correlated 

spectroscopy) methods, which afforded long-range through-bond correlations for 

Ha-Hd and Ha-Hf, were previously established for aromatic systems (Martin 1994, 

Johnston 1989) (Figure 3.10). Zych tested TOCSY methods in the context of our 

aedamer systems with much success, the details of which have been reported 

(Zych 2001, 2002). Figure 3.10 summarizes the helpful NOE connections and 

long-range TOCSY correlations used by this study. 

 

 

Figure 3.10 Method of “walking” from the terminus of 3.4 in order to assign 
the Dan and Dan* hydrogen chemical shifts. Examples of key 
through-space (solid line) and through-bond (dotted line) H-H 
correlations are marked. 

Overall, attaining resonance assignments for the Dan protons of each 

compound required NOESY or ROESY (rotational nuclear Overhauser effect 

spectroscopy) spectra taken in 90% H2O in D2O and TOCSY spectra taken in 

100% D2O. For some cases, several mixing times had to be tried along with other 

parameter changes during acquisition and processing performed by Sorey of the 
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NMR facility at the University of Texas at Austin (Gabriel 2004b). 

Concentrations were at 1 mM of compound and the solvents were buffered with 

50 mM Na phosphate, pH = 7. Sparky v3.85, an online visualization program, 

facilitated the imaging and interpretation of 2D NMR spectra (Goddard 2000). 

Interpretation of these spectra led to the peak assignments for the Dan and 

Dan* aromatic hydrogens. As Figure 3.10 shows, the four Ndi protons are 

isolated in that they are more than 5 Å away from the closest methylenes and 

NOEs were not observed. Also, TOCSY type couplings between these aromatic 

protons were not observed since these protons are not attached to the same π 

system as in the case of the Dan residues (Figure 3.10). Therefore the AA'BB' 

signals in the Ndi region of the spectra (Figure 3.9) could not be assigned to 

specific protons. Regardless, accurate conformational analysis using the Dan 

resonances and computer modeling can still be carried out.    

3.3.6 NOESY Spectroscopy 

Once sufficient assignment of the naphthyl hydrogens was accomplished, 

NOESY experiments, for the purposes of identifying specific H-H contacts 

between the aromatic rings, were performed. NOE patterns were considerably 

different for each compound and NOESY spectra expansions exhibited cross 

peaks between the Ndi and one or both Dan units (Figures 3.11-3.13). Dan proton 

signals a-f and a*-f* are labeled and the cross peaks that provided strong evidence 

of interactions between the Ndi and these Dan aromatic hydrogens are boxed with 

a dotted line. Interpretations of the observed cross peaks for each NOESY 

spectrum were discussed in Section 3.3.9. 
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Figure 3.11 Expansion of NOESY spectrum for 3.1. 
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Figure 3.12 Expansion of NOESY spectrum for 3.4. 
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Figure 3.13  Expansion of NOESY spectrum for 3.6. 

3.3.7 Computer Modeling 

Fairly conservative procedures were used for computer modeling, taking 

care not to make unreasonable assumptions. To expedite calculations, models of 

3.1, 3.4, and 3.6 were used with the side chains removed. It was shown previously 

that these modifications did not compromise the modeling of naphthyl oligomers 

where the predominant driving force for folding is the aromatic interactions of the 
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Ndi and Dan moiety (Zych 2001). Also important to note is that the goal of these 

computations was not an exhaustive survey of conformational space since there 

was already strong spectroscopic evidence that the compounds do fold to some 

extent. The aim of computer modeling was simply to see if energy minimized 

structures corroborate the general aromatic stacking of a new type of intercalative 

fold for these naphthyl oligomers. 

All modeling simulations and geometry optimizations utilized the 

HyperChem software bundle (HyperCube, Inc. 1996) set to employ the MM+ 

force field. Twenty diverse, unfolded conformers were generated for each initial 

model using molecular dynamics. Each of the twenty structures was then allowed 

to go through simulated annealing from a temperature of 1000 to 300 K applying 

weak distance restraints. Lastly and most importantly, each structure was 

subjected to geometry optimization without any restraints to afford low energy 

conformers and to probe subtle differences in stacking orientations. This strategy 

to obtain families of low-energy structures, rather than using prohibitively long 

molecular dynamics simulations to obtain one assumed lowest energy structure, 

was proven to be extremely successful for aedamers (Zych 2002). 

Since the four Ndi protons of each compound could not be unequivocally 

assigned, distance restraints for all models were defined from the center of the 

Ndi ring rather than from a particular hydrogen. For models of 3.1, a general 

restraint between the Ndi ring and the center of both Dan naphthalenes was 

applied that was reasonable based on detailed studies on aedamer trimer structure 

previously reported (Lokey 1997, Zych 2002). For models of 3.4, restraints 
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between the Ndi ring and Dan hydrogens c, c*, and a* (these gave medium 

strength NOEs with Ndi protons) were used. Finally for models of 3.6, only two 

distance restraints were defined, those relating the center of the Ndi ring to 

protons f* and to d*, again keeping restraints fairly conservative. Only after 

geometry optimization without restraints would the low-energy conformers be 

probed for corroboration of the NOE couplings from 2D NMR experiments 

(Figure 3.14). 

 

 

 Figure 3.14 Side view of the lowest energy conformers of 3.1 and 3.4 and 
axis view of the same conformers showing the general topology 
of the linkers. Arrows indicate the Dan/Dan* linkage. Hydrogens 
omitted (except for the aromatic of the side views) for clarity. 

While most final structures were “folded” with clear face-centered 

aromatic stacking, it was also satisfying that this computational protocol led to 

other diverse structures (owing to the relatively unbiased nature of this modeling 
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strategy) that revealed folding “defects”. Such conformations that deviated from a 

Dan/Ndi/Dan parallel stack included off-set and non-parallel stacking, 

Dan/Dan/Ndi stacking and cis amide bond orientations, all of which were between 

2 and 10 kcal·mol-1 higher in energy than the lowest energy conformer calculated 

for each compound. In this was families of low-energy conformers could be 

identified. 

3.3.8 Evaluation of NMR Data and Computer Modeling 

The spectrum for 3.1 (Figure 3.11) exhibited HDan-HNdi cross peaks along 

the entire range of Dan resonances indicative of the Ndi unit making contacts with 

both Dan rings. Also, Zych previously showed that when there was only a slight 

chemical shift difference between the AA' and BB' signals of the Ndi unit, as was 

the case for 3.1, it often signified that the Ndi unit is well centered between two 

Dan units. (Zych 2001, 2002). Additionally, aedamer trimers such as 3.1 have 

been extensively investigated in several different contexts and all studies 

including this one supported a pleated fold interpretation of their solution 

structure (Lokey 1997, Zych 2002). 

For compound 3.4, several unambiguous H-H correlations were observed 

between the Ndi and both Dan groups as well (Figure 3.12). In the spectra for 3.4 

there were explicit Ndi contacts with both Dan and Dan* hydrogens (c, c*, e, and 

a* - medium intensity; b and f* - weak intensity). These NOEs were consistent 

with a structure having the Ndi unit insert in between the Dan rings, implicating 

an intercalative fold. Interestingly, several cross peaks could be attributed to a 

specific pair of Ndi protons since the AA' and BB' signals were more separated 
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for 3.4 (Figure 3.12) than seen for 3.1 (Figure 3.11). For instance protons c and c* 

only had coupling with the Ndi doublet (representing 2 of the 4 Ndi protons) near 

8.1 ppm while protons e* and f* showed exclusive coupling with the other 

doublet near 8.0 ppm. Interpretation of the modeled conformations (presented 

later) did allow assignment of the Ndi protons thus giving an even clearer picture 

of 3.4 folding. In sum, the spectrum of 3.4 strongly supported an intercalative fold 

that forms a Dan/Ndi/Dan stack just as 3.1 but with a different folding topology. 

The NOESY spectrum of 3.6 indicated an interaction between the Ndi unit 

with the Dan* residue only, consistent with the expected interrupted folding 

pattern of this molecule. It was rather apparent that 3.6 had a significantly 

different inter-ring geometry from 3.1 and 3.4 especially when inspecting the 

cross peak(s) near 6.5 ppm and lower in each of the dotted boxes of Figures 3.11-

3.13. It can reasonably be assumed based on relative cross peak intensities that 

protons a, a*, d, and d* of 3.1 and 3.4 coupled to the Ndi unit. On the other hand, 

there were absolutely no clear cross peaks involving any of the protons of the Dan 

(non-asterisked) residue of 3.6 and specifically couplings with protons a and d 

were noticeably absent (Figure 3.13). This spectral interpretation is consistent 

with 3.6 unable to form a trimeric stack corroborating UV-Vis studies.   

While the NOESY spectra were consistent with a pleated fold structure for 

3.1 and an intercalative fold for 3.4, it was important to consider alternative 

interpretations. For example it is possible to imagine a conformation for 3.4 in 

which edges of both Dan rings make contacts (and thus NOEs) with the same face 

of the Ndi unit, in a roughly triangular geometry. Such a scenario was unlikely, 
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however, in light of the UV-Vis data that strongly supported a face-to-face 

stacking geometry of the aromatic units. Moreover such a triangular geometry 

would have had significantly different ring current effects and therefore 

dramatically different chemical shifts of the aromatic protons for 3.4 compared 

with 3.1. Such differences were not observed, and in fact, the chemical shifts for 

the aromatic regions of the spectra for 3.1 and 3.4 were comparable. 

Computer modeling also corroborated the proposed Dan/Ndi/Dan stacking 

for 3.1 and 3.4 (Figure 3.14). In earlier investigations, Zych and Iverson rejected a 

rigid two-state unfolded/folded model for aedamers and provided evidence that 

there exists families of stably folded structures, but importantly, all of these 

conformers were characterized by face-centered stacking (Zych 2000, 2002). The 

same was found to be true for trimers 3.1 and 3.4 where all structures within 1 

kcal·mol-1 of the most stable conformation assumed a tri-aromatic parallel stack 

that maximized Dan:Ndi interactions. Although no lone structure satisfied all the 

NOEs found, when considered together, these low energy conformers 

representing 3.1 and 3.4 supported the H-H correlations from the NOESY 

experiments. 

For 3.4, modeling did suggest an assignment of the Ndi protons as 

postulated above. Low energy conformers helped identify the Ndi doublet at 7.98 

ppm, which coupled explicitly with protons f* and e*, as the pair of protons closer 

to the terminus (HB in Figure 3.15). The internal pair of Ndi hydrogens (HA in 

Figure 3.15), which coupled unmistakably with protons c and c*, were assigned 

as the doublet at 8.08 ppm based on low energy structures (Figure 3.12, 3.15). 
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Figure 3.15 The assignment of the AA'BB' Ndi protons shown in a partial 
spectrum and chemical structure of 3.4.  

Low-energy conformers for 3.6 gave mostly structures having the Ndi and 

Dan* residues stacked but with the terminal Dan unit in several different 

positions, sometimes in an edge-to-face orientation but none resulting in face-to-

face Dan/Ndi/Dan or even Dan/Dan/Ndi stacking. In fact by inspection of the 

structures and relative energies, there seemed to be no obvious consensus for the 

most favorable placement of that Dan residue. As expected for this designed 

control compound, 2D NMR and modeling indicated that 3.6 did not adopt any 

conformation even close to a Dan/Ndi/Dan stack.   

Lastly, it initially seemed unusual that a Dan/Dan* linker length of 13 

atoms, equal to that of aedamers, worked so well for 3.4 considering it had to 

extend over an entire naphthyl ring (Figure 3.7). The axis view of the lowest 

energy conformers of 3.1 and 3.4 shown in Figure 3.14 plainly displays the 

topologies of the linkers (all of which were 13 atoms long) compatible for a 

pleated or an intercalative fold. For 3.1 to stack adjacent Dan and Ndi units, the 

linker appeared to have to accommodate a quarter turn. This was observed for 
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both linkers for 3.1 and the Ndi/Dan* linker of 3.4. The Dan/Dan* linker 

apparently did not have to provide this turn since the points of attachment were 

approximately lined up on the same face of the folded structure (Figure 3.14). As 

a result all linkers spanned similar distances in the folded state even if the two 

folding patterns of 3.1 and 3.4 were fundamentally different. 

3.3.9 Preliminary Studies of a Potential Hairpin Pentamer 

Recently, a non-alternating pentamer 3.8 was synthesized incorporating 

the newly developed intercalative fold of 3.4 to possibly create stable hairpin 

structures in water. Aedamer pentamer 3.7 was synthesized for future 2D spectral 

comparisons though the 1D spectrum had comparable shifts with that of 3.8 

indicating, at least qualitatively, that 3.8 has significant intramolecular aromatic 

stacking (Figure 3.16).   

 

 

Figure 3.16 Pentamers used for preliminary studies on hairpin structures. 
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The NOESY spectrum of 3.8 (Figure 3.17) suggests that both Ndi units, 

make contacts with the Dan units. This was assumed since the resonances of the 

two Ndi units were distinguishable from each other (though not assignable at this 

point). In other words the Ndi signals at 7.8 and 8.0 ppm could be reasonably 

attributed to protons on separate Ndi moieties, as denoted in Figure 3.17. Both of 

these signals were responsible for cross peaks in the Dan region of the spectrum 

(e.g. H(7.8ppm)-H(6.4,6.2ppm) and H(8.0ppm)-H(6.7,6.2,5.9ppm)). This suggests that 3.8 can 

turn back on itself in solution to allow the terminal Ndi to interact with a Dan 

unit. Unfortunately overlap of resonances representing 18 Dan hydrogens plus 

line broadening hampered attempts to assign proton signals. Line broadening is a 

strong indication that the molecule experienced significant fluctuations in its 

conformation. Line broadening can also indicate though restricted motion (where 

low energy conformers do not interconvert quickly), which is indeed expected for 

the proposed weaving hairpin fold.  

 

 

Figure 3.17 Aromatic region of NOESY spectrum. 
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3.4 CHAPTER CONCLUSIONS 

In summary, UV-Vis spectroscopy, unfolding studies, NMR, and 

modeling investigations are fully consistent with the interpretation that both 

naphthyl trimers 3.1 and 3.4 adopt a Dan/Ndi/Dan face-to-face stack in aqueous 

solution. The consequence of this ring arrangement is a pleated fold for 3.1 and an 

intercalative fold for 3.4. It thus appears that these folding patterns were predicted 

by the linear sequence of two residue types owing to the strong directionality of 

the Dan:Ndi association and the designability of naphthyl oligomers. This work 

also demonstrates that foldamers for the first time can emulate natural proteins in 

the sense that significantly different abiotic secondary structures can be accessed 

with carefully chosen residue substitutions. Lastly, this intercalative fold may 

represent an alternative to stabilizing turns or bends in water using aromatic 

interactions an aim of many research groups. 

3.5 IDEAS FOR FUTURE INVESTIGATIONS 

Two research directions are proposed below to address the difficulties in 

interpreting NMR spectra of naphthyl oligomers longer than trimers. 

Deuterated aromatic units as an indispensable tool for proton 

assignment and structure analysis. The hairpin pentamer conformation can be 

greatly supported by proving the terminal Dan and Ndi units, which are distant in 

an extended conformation, end up adjacent to each other in the folded structure. 

By selective deuteration certain cross peaks found in Figure 3.17 can be 

eliminated and thus attributed to specific aromatic-aromatic contacts, something 
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that cannot be easily done currently. The pentamer in Figure 3.18 (top structure) 

would be one of several compounds that would be synthesized to aid in proton 

assignment and ultimately structure determination. Interestingly, deuteration of 

the Dan amino acid (98% conversion) was extremely easy by heating with D2SO4 

in D2O/DMF and precipitation with cold H2O. Unfortunately deuterium is 

replaced with hydrogen just as easily with TFA under conditions used in the 

cleavage of oligomer from resin. Cleavage by deuterated TFA would not be 

useful since all aromatic rings would then be deuterated.  

Cyclic naphthyl oligomers with locked structures. Another way to 

prove that the terminal units of a hairpin structure are close in space is to utilize a 

cyclization strategy that supposedly would not be efficient if the molecule does 

not fold in the expected fashion. Cysteine amino acids have been utilized to 

convert acyclic peptides into cyclic peptides through an easily formed disulfide 

bond. The oligomer in Figure 3.18 (bottom structure), if cyclized, would 

effectively lock-in a folded structure. It would be extremely exciting if this 

resulted in sharpened proton signals and more intense cross peaks as well. 

 

 

Figure 3.18 Proposed oligomers for future study. 
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3.6 EXPERIMENTAL SECTION 

 Synthesis. General methods, full protocols for solid phase peptide 

synthesis and FPLC/HPLC purification used for oligomers 3.1-3.8 were detailed 

in chapter 2. Synthesis, followed by purification, desalting, and freeze-drying 

afforded soft pale purple solids for all compounds.  

Compound characterization (1D-NMR general methods). Samples 

were readily soluble in 50 mM sodium phosphate, pH = 7.0 D2O. Spectra were 

recorded on a Varian INOVA 500 MHz spectrometer at 1 mM concentrations of 

compound and TSP-d4 (3-trimethylsilyl-propionic-2,2,3,3-d4 acid, sodium salt) 

was used as a reference (δ = 0.00 ppm). Chemical shifts reported in ppm and 

abbreviations used are singlet (s), doublet (d), doublet of doublet (dd), triplet (t), 

quartet (q), multiplet (m) and complex multiplet of non-equivalent protons 

(comp). J coupling constants (J) reported in Hz. 

“AcHN-AspDanAspNdiAspDan*Gly-OH” (3.1). (SPPS yield = 91%) 1H NMR 

(500 MHz, D2O) δ = 8.04 (q, J = 10.0 and 7.6, 4H), 7.22 (d, J = 8.4, 2H), 6.97-

6.94 (comp, 2H), 6.92 (d, J = 8.0, 1H), 6.86 (t, J = 7.6, 1H), 6.82 (t, J = 7.6, 1H), 

6.72 (d, J = 8.4, 1H), 6.54-6.53 (comp, 2H), 6.34-6.30 (comp, 2H), 4.72 (dd, J = 

5.6 and 2.2, 1H), 4.63 (dd, J = 5.4 and 2.4, 1H), 4.52 (dd, J = 5.0 and 3.8, 1H), 

4.37-4.33 (m, 1H), 4.29-4.23 (m, 2H), 4.16-4.13 (m, 1H), 4.02-4.01 (m, 2H), 

3.93-3.91 (m, 2H), 3.83-3.52 (comp, 9H), 3.49 (t, J = 6.8, 2H), 3.41-3.38 (m, 1H), 

2.78-2.74 (m, 2H), 2.72-2.51 (comp, 6H), 2.45 (t, J = 7.4, 2H), 2.42-2.37 (m, 2H), 

2.10-1.96 (comp, 8H), 1.94 (s, 3H); ESI MS calcd for C69H74N9O23 [MH]+ 1397, 

found 1395. 
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“AcHN-AspDanAspNdiGly-OH” (3.2). (93% yield) 1H NMR (500 MHz, D2O) 

δ = 8.33 (q, J = 10.0 and 7.5, 4H), 7.02 (d, J = 8.4, 1H), 6.98 (t, J = 8.4, 1H), 6.93 

(d, J = 8.4, 1H), 6.90 (t, J = 7.7, 1H), 6.59 (d, J = 7.0, 1H), 6.29 (d, J = 7.6, 1H), 

4.65 (dd, J = 8.1 and 5.2, 1H), 4.40-4.25 (m. 4H), 4.15 (t, J = 5.7, 1H), 4.01 (m, 

2H), 3.80-3.70 (m, 2H), 3.73 (s, 2H), 3.63 (m, 3H), 3.52 (m, 1H), 2.78-2.72 (m, 

3H), 2.65 (dd, J = 16.0 and 8.2, 1H), 2.51-2.44 (m, 3H), 2.35 (dd, J = 16.0 and 

9.2, 1H), 2.08 (m, 4H), 1.89 (s, 3H); ESI MS calcd for C48H49N7NaO17 [MH]+ 

1019, found 1019. 

“AcHN-AspDanAspAspDan*AspNdiGly-OH” (3.3). (80% yield) 1H NMR (500 

MHz, D2O) δ = 8.00 (d, J = 7.6, 2H), 7.91 (d, J = 7.6, 2H), 7.13 (d, J = 8.3, 1H), 

6.89 (d, J = 8.1, 1H), 6.84-6.82 (comp, 2H), 6.80-6.67 (comp, 4H), 6.48 (d, J = 

7.5, 1H), 6.30 (d, J = 7.9, 1H), 6.27 (d, J = 7.5, 1H), 6.24 (d, J = 6.9, 1H), 4.61 

(dd, J = 5.9 and 1.6, 1H), 4.44-4.39 (m, 2H), 4.24-4.13 (comp, 4H), 3.95 (d, J = 

2.1, 1H), 3.91 (d, J = 6.6, 2H), 3.83 (s, 2H), 3.74-3.62 (comp, 7H), 3.48-3.45 (m, 

1H), 3.40 (t, J = 6.2, 2H), 3.36-3.32 (m, 2H), 3.06 (dd, J = 5.5 and 0.1, 1H), 2.69-

2.63 (m, 3H), 2.58-2.25 (comp 12H), 2.03-2.00 (comp, 4H), 1.97-1.82 (comp 

4H); ESI MS calcd for C73H78N10NaO26 [MH]+ 1534, found 1534. 

“AcHN-AspDanAspDan*AspNdiGly-OH” (3.4). (86% yield) 1H NMR (500 

MHz, D2O) δ = 8.07 (d, J = 7.5, 2H), 7.99 (d, J = 7.5, 2H), 7.18 (d, J = 8.5, 1H), 

6.97 (d, J = 8.5, 1H), 6.93 (t, J = 7.9, 1H), 6.85 (t, J = 7.7, 1H), 6.80-6.77 (comp, 

2H), 6.75 (t, J = 8.3, 1H), 6.64 (d, J = 8.3, 1H), 6.55 (d, J = 7.5, 1H), 6.36-6.32 

(comp, 3H), 4.51 (dd, J = 5.2 and 3.6, 1H), 4.37-4.30 (comp, 3H), 4.27-4.23 (m, 

1H), 4.05-4.00 (comp, 3H), 3.91-3.65 (comp, 11H), 3.62-3.58 (m, 1H), 3.47-3.42 
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(comp, 3H), 2.82-2.44 (comp, 11H), 2.40-2.35 (m, 1H), 2.13-1.95 (comp, 8H), 

1.92 (s, 3H); ESI MS calcd for C69H73N9NaO23 [MH]+ 1419, found 1420. 

“SucHN-AspDanDan*AspNdiGly-OH” (3.5). (83% yield) 1H NMR (500 MHz, 

D2O) δ = 7.90 (d, J = 7.5, 2H), 7.78 (d, J = 7.5, 2H), 7.07 (d, J = 8.3, 1H), 6.96 (d, 

J = 8.5, 1H), 6.86 (t, J = 8.2, 1H), 6.76-6.65 (comp, 5H), 6.58 (d, J = 7.8, 1H), 

6.38 (d, J = 7.5, 1H), 6.12 (d, J = 7.8, 1H), 6.05 (d, J = 7.6, 1H), 4.44 (dd, J = 5.1 

and 4.1, 2H), 4.39-4.31 (comp, 2H), 4.24-4.17 (comp 3H), 4.12-4.03 (m, 2H), 

3.89 (t, J = 5.2, 2H), 3.74 (m, 1H), 3.63-3.45 (comp, 6H), 3.34 (m, 1H), 3.25 (m, 

2H), 2.74-2.65 (comp, 4H), 2.61-2.39 (comp, 6H), 2.34-2.27 (comp, 6H), 2.14-

2.07 (comp, 4H), 1.91-1.82 (comp, 4H); ESI MS calcd for C69H72N8NaO24 [MH]+ 

1420, found 1420. 

“SucHN-AspDan(8atoms)Dan*AspNdiGly-OH” (3.6). (84% yield) 1H NMR (500 

MHz, D2O) δ = 8.03 (d, J = 7.6, 2H), 7.77 (d, J = 7.4, 2H), 7.49 (d, J = 8.8, 1H), 

7.21-7.19 (comp, 2H), 7.14 (t, J = 8.2, 1H), 7.05-7.02 (comp, 2H), 6.99 (t, J = 8.0, 

1H), 6.81-6.78 (comp, 2H), 6.53 (d, J = 7.6, 1H), 6.47 (d, J = 7.8, 1H), 6.33 (d, J 

= 7.4, 1H), 4.63 (dd, J = 5.4 and 2.6, 1H), 4.54 (d, J = 2.2, 2H), 4.48-4.45 (m, 

2H), 4.24-4.21 (comp, 6H), 3.79-3.70 (comp, 7H), 3.45-3.43 (m, 1H), 3.36-3.32 

(m, 2H), 2.73-2.66 (m, 6H), 2.65-2.56 (m, 2H), 2.45-2.34 (comp, 4H), 2.27-2.18 

(m, 2H), 2.00-1.91 (comp, 6H); ESI MS calcd for C67H67N8O24 [M]- 1368 

(negative mode), found 1368. 

“AcHN-AspDan(AspNdiAspDan)2Gly-OH” (3.7). (68% yield) 1H NMR (500 

MHz, D2O) δ = 7.81-7.73 (comp, 8H), 6.86-6.81 (comp, 2H), 6.71-6.58 (comp, 

7H), 6.52-6.48 (comp, 3H), 6.33 (d, J = 7.8, 1H), 6.24 (d, J = 7.1, 1H), 6.17 (d, J 
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= 7.2, 1H), 6.09 (d, J = 7.8, 1H), 6.05 (d, J = 7.9, 1H), 5.94 (broad d, 1H), 4.59-

4.52 (comp, 3H), 4.42 (dd, J = 4.9 and 4.0, 1H), 4.10-4.04 (comp, 7H) 3.96 (m, 

1H), 3.82-3.76 (comp, 4H), 3.64-3.26 (comp, 22H), 2.73-2.40 (comp, 14H), 2.33-

2.28 (comp, 7H), 1.96-1.82 (comp, 15H); ESI MS calcd for C113H115N15NaO37 

[MH]+ 2298, found 2298. 

“AcHN-(AspDan)3(AspNdi)2Gly-OH” (3.8). (61% yield) 1H NMR (500 MHz, 

D2O) δ = 7.88 (d, J = 7.6, 2H), 7.81-7.77 (comp, 2H), 7.70 (d, J = 7.2, 2H), 6.95 

(broad, 1H), 6.78-6.63 (comp, 3H), 6.59-6.52 (comp, 3H), 6.44 (broad, 1H), 6.33 

(comp, 3H), 6.16-6.11 (comp, 4H), 5.94 (broad, 1H), 5.84 (broad d, 1H), 5.78 

(broad d, 1H), 4.62-4.58 (comp, 2H), 4.38 (dd, J = 5.1 and 4.0, 1H), 4.22-3.95 

(comp, 8H), 3.85-3.78 (broad, 2H), 3.71-3.42 (comp, 18H), 3.40-3.22 (comp, 4H), 

2.70-2.23 (comp, 20H), 1.92-1.78 (comp, 16H); ESI MS calcd for 

C113H115N15NaO37 [MH]+ 2298, found 2298. 

UV-Vis spectroscopy. UV-Vis spectra were taken on a temperature 

regulated Hewlett Packard 8452A diode array spectrophotometer. Concentration 

of stock solutions used for UV studies was initially determined by NMR 

integration of a known concentration of TSP-d4 added to an aliquot. Unfolding 

studies were carried out by monitoring the increase in the UV absorbance at 382 

nm with the addition of cetyltrimethylammonium bromide detergent (CTAB). 

Solutions of compound (40 µM in buffered H2O) were measured in a 1 cm 

pathlength cuvette equipped with a microstirrer as a solution of 0.1 w/v % CTAB 

in buffered H2O was added in 0.025-0.050 mL increments. Complete unfolding of 
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the naphthyl trimers was determined to be around 0.03 w/v % CTAB in the 

cuvette. When graphed, absorbances were corrected for dilution. 

2D-NMR spectroscopy. For proton assignment purposes several 2D-

NMR spectra were taken for 3.1, 3.4, and 3.6, all at 1 mM concentrations of 

compound in sodium phosphate buffered solvents as above. Representative 

spectra with acquisition parameters are shown in Figures 3.19-3.25. Samples in 

90/10 buffered H2O/D2O were prepared for 2D NMR spectra which were 

acquired at different mixing times, 200-800 milliseconds (ms) for NOESY spectra 

and 50-150 ms for TOCSY spectra. Since the molecular weight of the compounds 

fell in between the 800-1500 MW range where the negative/positive transition of 

NOEs may occur, a ROESY, (which give always positive ROESY peaks and 

negative exchange peaks) was required when NOESY afforded unexpectedly 

weak NOEs. Depending on the conditions, this switch resulted sometimes in 

clearer (more intense) cross peaks, other times not. Other considerations for 

spectra acquisition were solvent suppression methods (1-1 jump-return 

suppression sequence for ROESY and presaturation for NOESY and TOCSY 

spectra) and filtering parameters, such as “gf” and “gfs”, during processing. 

Only NOESY spectra taken in 100% buffered D2O with a mixing time of 

800 ms was used for structural analysis. SPARKY, an online visualization 

program, facilitated the imaging and interpretation of 2D-NMR spectra (Goddard 

2000). 

Molecular modeling. Computations were performed with the HyperChem 

software using the MM+ force field. A set of twenty random starting 
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conformations of models for 3.1, 3.4, and 3.6 were generated using unrestrained 

molecular dynamics at 1000 K. Each of the twenty diverse structures was then 

allowed to anneal with a weak distance restraint as the simulation temperature 

was lowered from 1000 K to 300 K over 10 ps. After annealing, a final geometry 

optimization was performed without restraints using Fletcher-Reeves conjugate 

gradient, 0.01 kcal·mol-1. The lowest energy conformer for both 3.1 (relative 

energy = -18.97 kcal·mol-1) and its sequence isomer 3.4 (-19.27 kcal·mol-1) 

afforded a structure that adopts a parallel Dan/Ndi/Dan stack.         
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Figure 3.19 “Water” ROESY spectrum of 3.1. 
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Figure 3.20 Expansion of “water” ROESY spectrum of 3.1. 
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Figure 3.21 “Water” TOCSY spectrum of 3.4. 
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Figure 3.22 Expansion of “water” TOCSY spectrum of 3.4. 

 118



 

Figure 3.23 NOESY spectrum of 3.1. 
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Figure 3.24 NOESY spectrum of 3.4. 
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Figure 3.25 NOESY spectrum of 3.6. 
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CHAPTER 4 

Naphthyl Oligomers that Form Hetero-Duplexes 

4.1 CHAPTER SUMMARY 

Introduction. The previous chapter illustrated that the Dan:Ndi 

interaction can dictate intramolecular folding of intercalative turns, a more 

challenging topology than the pleated structures exhibited by aedamers. This 

chapter will discuss work showing that the Dan:Ndi interaction can also direct 

intermolecular binding and bring together Dann and Ndin chains to form hetero-

duplexes (Figure 4.1). Chemists have utilized, quite successfully, hydrogen 

bonding and metal-coordination to construct duplex-forming oligomers with 

desirable properties such as high binding affinities/stabilities and good chain 

recognition. Examples of duplexes that use predominantly aromatic interactions 

are few and examples that work in water mainly through aromatic stacking were, 

to the best of our knowledge, non-existent prior to the system described in this 

chapter. Synthetic hetero-duplexes that can operate in aqueous solutions could 

possibly be exploited in a wide range of fields ranging from materials (high 

strength fibers processible in water, a fairly benign solvent) to medicine 

(diagnostic kits that require robust biomolecule immobilization). Next-generation 

duplex systems that can self-sort large chain populations, can exhibit reversible 

binding triggered by various stimuli, and can operate in a range of solvents and on 

solid phase would also be very attractive. 
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Figure 4.1 Cartoon representation of a proposed hetero-duplex formed to 
maximize Dan:Ndi associations in an intermolecular fashion and 
critical questions answered in this project. 

Goals. Experiments described in this chapter aimed to answer the 

question: Can the Dan:Ndi interaction be exploited in an intermolecular fashion 

to form stable hetero-duplexes with high affinities and chain recognition? The 

short-term goals of this work were to develop a first-generation water compatible 

hetero-duplex system formed from complementary oligo-Dan and oligo-Ndi 

molecular strands and to investigate their binding behavior. The long-term 

objective of this research is to create hetero-duplex systems with affinities and 

binding selectivities sophisticated enough to be used possibly for building well-

defined aedamer assemblies with dramatically larger size domains and for 

exploring surface patterning applications. 

Approach. Binding stoichiometries and association constants were 

determined by NMR and isothermal titration calorimetry (ITC) at different 

temperatures. The thermodynamics of binding was also investigated. Size 

exclusion chromatography (SEC) and polyacrylamide gel electrophoresis (PAGE) 
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experiments were carried out to further test the robustness of the complexes 

formed. 

Results. Overall, the work described in this chapter demonstrated the 

assembly of oligo-Dan and oligo-Ndi strands into stable hetero-duplexes (Gabriel 

2002). NMR and ITC investigations were consistent with a 1:1 binding ratio. ITC 

revealed that tetra-Dan and tetra-Ndi chains (tetrameric system) formed hetero-

duplexes with a stability constant of 350,000 M–1 at T = 318 K, three orders of 

magnitude higher than the binding constant of the monomeric system. 

Additionally, ITC analysis calculated a heat capacity between –50 and –94 

cal·mol–1·K–1 depending on the temperature range studied. Furthermore, 

duplexation was enthalpically favored and an enthalpy-entropy compensation 

effect was seen with the dimeric system. SEC chromatographs showed that a 1:1 

molar mixture of tetra-Dan:tetra-Ndi resulted in material that eluted 

approximately when a hetero-dimer would be expected to elute relative to 

retention times of uncomplexed tetra-Dan and tetra-Ndi chains. Lastly, discrete 

hetero-duplex formation for the tetrameric system was observed under PAGE 

conditions even when one component was in slight excess over the other further 

signifying a strong and discriminating inter-chain interaction. 

4.2 BACKGROUND: SELF-ASSEMBLY OF MOLECULAR STRANDS 

Natural chain molecules, or biopolymers, possess a range of functions due 

largely to the organization of linear precursors into defined assemblies such as 

multistranded complexes for proteins and duplexes in the case of DNA 

(Venkatraman 2001, Wang 1991). Nearly 10 years after the review “Interlocked 
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and Intertwined Structures and Superstructures" was published (Amabilino 1995), 

the field of self-assembly has continued to expand and has led to emerging 

research programs in “bottom-up engineering" (Stoddart 2001), dynamic covalent 

chemistry (Rowan 2002), and supramolecular protein assemblies (Yeates 2002). 

The development of artificial chains that self-assemble into defined 

complexes, in particular into duplexes, has drawn active interest recently. 

Synthetic assemblies, where binding is based on recognition between two 

complementary chains, could potentially afford capabilities for information 

storage and transfer, reminiscent of DNA. Strands of protein, which form 

biological fibers such as muscle (von Kiedrowski 1994) and spider silk (Vollrath 

2000, Kubik 2002), have set high standards for materials considered for their 

mechanical properties. Another protein example is the hetero-dimerization of 

leucine zipper transcription factors that bind specific sequences of DNA (Glover 

1995). Finally, molecular strands with orthogonal binding and self-sorting 

capacities would nicely complement existing patterning and immobilization 

technologies (Wilchek 1990). 

  While certain hydrogen bonding patterns are responsible for the secondary 

structures of proteins and the base-pairing specificities of DNA, several groups 

have reported impressive results using significantly different hydrogen bonding 

strategies for their nonnatural duplex oligomers (Gong 2001, Archer 2000). For 

instance, Krische and co-workers have synthesized oligomers applying a 

“covalent casting” strategy to link amino-dichlorotriazines to design duplex 

oligomers with predefined hydrogen bonding patterns (Archer 2002a, b). These 
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oligomers exhibited up to nanomolar binding affinities and a strong cooperative 

effect was observed upon extension from monomer to dimer to trimer. Also at the 

forefront of hydrogen bonded duplexes, is the work from Gong and co-workers 

who have established specific recognition with their “hydrogen bonded tapes” 

through the precise placement of hydrogen bonding donors and acceptors (Zeng 

2001, 2002).  

 The wealth of hydrogen bonding donor and acceptor precursors has no 

doubt been key for the investigation of a variety of bonding patterns and creative 

design strategies. Though the use of hydrogen bonds has afforded synthetic 

duplex systems with high binding strengths and selectivities, a discussion of 

artificial duplexes would not be complete without referencing complexes based on 

metal-coordination (Albrecht 2001). In 1987 Lehn introduced the term “double-

stranded helicates” for the complexes between oligobipyridine and copper(I) 

cations that were shown by x-ray crystallography to form double helices (Lehn 

1987). Studies with double-stranded helicates continue to this day with recent 

examples showing special features, for instance, stereoselective self-assembly 

(Telfer 2004) and synergism of metal coordination and hydrogen bonding effects 

(Chowdhury 2004). 

In close relation to the work presented in this chapter, duplexes having an 

aromatic interactions component have also been reported. Probably the earliest 

published report of an aromatic donor-acceptor hetero-duplex system came from 

Stoddart's group using oligomers of linked hydroquinol and linked bipyridinium 

units (Figure 4.2). Structure characterization from this pioneering effort was not 
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conclusive for double-helical conformations, as hoped for by the authors, since 

low temperature NMR did not seem to significantly freeze out a unique structure. 

Nonetheless, this groundbreaking study put forth the idea of using aromatic 

stacking that is, in a sense, less geometrically rigid than hydrogen bonding and 

metal coordination. 

 

 

Figure 4.2 Aromatic π-π stacking system from Stoddart’s laboratory 
(Ashton 1992). 

The Stoddart group has continued to do important work in the field of 

supramolecular chemistry (Philp 1996) mainly focusing on the development of 

aromatic donor-acceptor based catenanes and rotaxanes (rather than hetero-

duplexes) for use in nanoscale devices (Stoddart 2001, Feynman 1960). This 

research program has been tremendously prolific and most recently, in a 

milestone achievement in molecular topology, they reported the self-assembly of 

the first wholly synthetic Borromean rings (Chichak 2004, Mao 1997). 

The next two examples described used a combination of hydrogen 

bonding and aromatic interactions. Lehn and co-workers have synthesized a 

family of oligo(pyridylamide)s that exhibited dynamic exchange between single 
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and double helices (Berl 2000, 2001). In general, intramolecular hydrogen bonds 

were responsible for the helical conformations while aromatic stacking stabilized 

dimerizations (Figure 4.3). 

 

 

Figure 4.3 X-ray crystal structure of Lehn’s oligopyridinecarboxamide (R1 
= R2 = H, R3 = OtBu) showing interstrand aromatic stacking and 
hydrogen bonding which includes two bridging NH-O hydrogen 
bonds. Crystals grown from CH3CN/DMSO. (Berl 2000). 

The “molecular zippers” designed by Hunter and co-workers were 

prepared form isophthalic acid and bisanaline derivatives (Bisson 1994, 2000, 

Hunter 2003). Hydrogen bonding was determined to be the main driving force for 

complexation but interestingly aromatic interactions that had edge-to-face 

orientations also existed (Figure 4.4). For this system, recognition properties 

between unlike strands seemed to rely simply on the length of the oligomers. 
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Figure 4.4 Proposed structure of zipper complex between two different 
aromatic amide oligomers showing hydrogen bonding and edge-
to-face aromatic interactions (from Bisson 2000). 

Reprinted with permission from Bisson, A. P.; Carver, F. J.; Eggleston, D. S.; Haltiwanger, R. C.; 
Hunter, C. A.; Livingstone, D. L.; McCabe, J. F.; Rotger, C.; Rowan, A. E. J. Am. Chem. Soc. 
2000, 122, 8856. Copyright 2000 American Chemical Society. 
 

Li and co-workers have reported a π-stacking duplex system that is very 

similar to the Iverson duplexes (Gabriel 2002) except for a few key design 

elements (Zhou 2003). First, the electron-deficient pyromellitic diimide (Pdi) ring 

was used instead of the naphthalene diimide (Ndi) unit. Second, and more 

interesting, is the comb-type architecture of Li’s molecules that projects the 

aromatic rings from the backbone leading to a zipper-like association (Figure 4.5) 

versus an intertwined association (Figure 4.1) proposed for Iverson’s hetero-

duplexes whose aromatics are within the backbone. How architecture differences 

affect the entropy and enthalpy components of binding is certainly an intriguing 

question. Direct comparisons will have to wait though due to the solubility 

differences of the Iverson duplexes (soluble in water) and the Li duplexes (soluble 

in chloroform). 
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Figure 4.5 A donor-acceptor tetrameric hetero-duplex formed with comb-
type naphthyl oligomers (Zhou 2003). 

As mentioned above, the hetero-duplexes introduced by the Iverson 

laboratory were soluble in aqueous solutions and previous studies have shown 

that the Dan:Ndi interaction was overwhelmingly stronger in water than in 

organic solvents (Cubberley 2001b). On the other hand, all of the synthetic 

duplexes presented above were studied in organic solutions in which extremely 

strong associations were typically obtained. In studies that tested the addition of 

polar protic solvents such as methanol (Bisson 2000) and water (Berl 2000), 

duplex formation was disrupted. Structure characterization of most of these 

systems though has benefited greatly from x-ray quality crystals grown from 

organic solutions. Attempts to grow crystals of water-soluble naphthyl oligomers 

have been unsuccessful. Thus the synthesis of organic-soluble analogues is 

another pursuit of the Iverson laboratory (Cubberley 2000). Nonetheless, the 

water solubility of the hetero-duplexes presented in the following sections may 

confer its own advantages (long-term), most promising of which is the possibility 

to construct duplex foldamers compatible with biological systems. 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Synthesis of Homo-Naphthyl Oligomers 

The synthesis of 4.1-4.8 (Figure 4.6) used monomers and SPPS protocols 

previously described in Chapter 2. While the incorporated aspartate residues 

provided the much desired solubility in water buffered to pH = 7, consequently, 

the desired hetero-duplex formation might experience significant charge repulsion 

involved with the assembly of like-charged chains. Purification via FPLC (>98% 

pure judged by HPLC peak area) was straightforward for all compounds except 

4.7, which required multiple FPLC runs at 50% longer gradients since a small 

amount of the 4.5, formed as a deletion side-product, had similar retention times 

on the reverse-phase column. Final desalting via a C18 Sep-Pak cartridge and 

freeze-drying afforded soft solids (white and pale yellow in color for the oligo-

Dan and oligo-Ndi series, respectively). 

 

 

Figure 4.6 Compounds synthesized and studied in Chapter 4. 13-atom 
linkers between naphthyl moieties were used. 
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Figure 4.7 shows an idealized model of the dimeric (4.3:4.4) duplex. As 

previously seen with computer modeling of the intercalative fold topology 

(Chapter 3, Section 3.3.7), a 13-atom linkage between naphthyl units would allow 

“sandwiching” of an aromatic ring for intertwining chains also (Figure 4.7). 

Geometry optimization of a 10-atom linker indicated that it was too short to allow 

ideal face-centered stacking in which the aromatic rings are parallel and ~ 3.5 Å 

apart (approximate inter-ring distance based on van der Waals radii. Modeling of 

dimers with a 16-atom linkage resulted in structures with markedly kinked 

linkers, which would be expected to lower binding affinities. Although far from 

rigorous, modeling still provided a good starting point for the design of 

intertwining strands of oligo-Dan and Ndi chains.  

 

 

Figure 4.7 Computer generated space-filled model (right structure is rotated 
by 90°) of the duplex formed from truncated 4.3 (black) and 4.4 
(white). Linker atoms not along backbone path omitted for 
clarity. 

4.3.2 NMR Job Plots and Titrations 

Foremost, a one-to-one complex between oligo-Dan and oligo-Ndi 

molecules had to be established. Although detailed complexation studies have 

been previously performed for uncharged, but aqueous-soluble monomers (Zych 
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2000, Cubberley 2001b), 4.1 and 4.2 were designed to be multi-charged in water 

akin to the longer oligomers of this study and thus required their own NMR 

analysis. NMR experiments were also performed for the dimeric duplex complex 

4.3:4.4. The chemical shifts of the Ndi unit(s) in 4.1 and 4.3 conveniently allowed 

the determination of binding stoichiometry by the Job’s method (Connors 1987, 

Gil 1990). One can use Job plots to distinguish between one-to-one from higher-

order binding simply by inspection (Figure 4.8). The Ndi chemical shifts also 

permitted calculation of binding constants, Ka(4.1:4.2) and Ka(4.3:4.4), using 

titration data (Macomber 1992, Figure 4.8). Quantitative analysis of titration data 

was accomplished using the HOSTEST program developed by Wilcox and 

Glagovich (Wilcox 1997). 
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Figure 4.8 NMR Job plots and titration curves for evaluating the 
complexation of monomers (4.1:4.2) and dimers (4.3:4.4) at T = 
318 K.   

4.3.3 Evaluation of One-to-One Binding 

The Job plots for both the monomeric and dimeric system gave broad 

maxima at equimolar ratios consistent with a binding stoichiometry that followed 

a 1:1 mode for 4.1:4.2 and 4.3:4.4 complexation (Figure 4.8). Using a 1:1 binding 

model to fit NMR titrations resulted in binding constants of Ka(4.1:4.2) = 130 M–1 

and Ka(4.3:4.4) = 2,800 M–1. These values were from NMR experiments carried 

out at T = 318 K for comparison with the trimeric (4.3:4.4) and tetrameric 

(4.3:4.4) systems that behaved much better at elevated temperatures as judged by 
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ITC data (more on this behavior in the following sections). As expected, binding 

constants increased when the monomeric and dimeric complexes were analyzed at 

T = 298 K affording a Ka(4.1:4.2) = 300 M-1 and Ka(4.3:4.4) = 7,500 M-1 , more 

than twice the value measured a t T = 298 K.. Thus the binding stoichiometry and 

binding constants of the monomeric and dimeric systems were determined and the 

results are summarized in Table 4.1.   

4.3.4 Isothermal Titration Calorimetry (ITC) 

Reliable binding analysis of NMR titration data is dependent on tracking a 

particular proton signal, but this task became increasingly difficult with longer, 

unit-repeating oligomers due to the shifting of severely overlapped signals. There 

was little confidence placed in data based on following the intractable Ndi signals 

for 4.5 and 4.7 in titration experiments. Thus a new method had to be identified to 

obtain Ka(4.5:4.6) and Ka(4.7:4.8) for trimeric and tetrameric duplexation, 

respectively. 

Analysis of titration data collected with ITC experiments is an attractive 

alternative on several fronts (Wiseman 1989). ITC measures the heat evolved or 

absorbed by a system during a titration run and uses these values as its data set 

rather than chemical shifts. If an injection of titrant results in the system absorbing 

heat an upward spike is observed indicating the instrument had to add energy to 

the system to maintain a constant heat signal. If the injection of titrant results in 

heat being evolved (i.e. an exothermic process) then the heat signals spike 

downward. ITC provides an efficient means of obtaining Ka, enthalpy (∆H), and a 

stoichiometry (N = molar equivalent of titrant) of binding. With equation 1, free 

 135



energy (∆G) and entropy ∆S of binding can be calculated hence the 

thermodynamic parameters associated with the binding event can be determined 

in a single titration. For further discussion, a review of the advantages and 

limitations of ITC has been published (Wadso 1997).      

     ∆G° = –RT lnKa = ∆H° – T∆S°                     (1) 

Unfortunately, monomeric complexation of 4.1 with 4.2 was below the 

sensitivity limit of microcalorimetry (see explanation in Experimental Section, 

Wiseman 1989). ITC though was carried out appropriately for the dimeric (whose 

Ka values can be compared with those derived from NMR), the trimeric, and 

tetrameric systems. A VP-ITC MicroCalorimeter instrument and the analysis 

software provided with it were used in these experiments (Microcal, Inc. 1999). 

When examining the tetrameric system it could be clearly seen that the 

isotherms collected at T = 298 K 1) did not satisfactorily exhibit binding 

saturation and 2) did not fit any of the Microcal binding models well (Figure 4.9, 

left isotherm). Comparing the experimental data to a best-fit theoretical curve 

gave a chi-square fitting analysis of 250,000 (unitless). In personal 

communications, ITC technicians recommended using data with chi-square values 

closer to 50,000 or lower (Microcal, Inc 1999). Similar problems were 

encountered with the trimeric system at this temperature (Isotherm of trimeric 

system at T = 298 K in Experimental Section). Although the average chi-square 

of 55,000 was better than that calculated for the isotherm of the tetrameric system 

at identical conditions, the trimer isotherm did not show sufficient saturation 
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(arbitrary judgment based on the amount of heat still being released at the end of 

the titration). 

 

 

Figure 4.9 Binding isotherms for the titration of 4.7 with 4.8 at two different 
temperatures. Top panels display, the raw isotherm or the total 
heat evolved (µcal/sec) per injection of 4.8 (40 injections total). 
Data points in the bottom panels represent the heat evolved 
(kcal/mol) after correcting for heats of dilution. ITC data 
collected at T = 298 K did not fit theoretical curves (line in 
bottom panels). Data collected at T = 318 K on the other hand 
fitted predicted curves well according to a chi-square error 
analysis (Wiseman 1989, Microcal, Inc. 1999). 

Faced with these initial difficulties, reverse titrations and sectional 

titrations where the whole binding isotherm was pieced together from several ITC 

runs were tried. These setups though were unsuccessful. Fortunately, when 
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identical runs were performed at T = 318 K (Figure 4.9, right isotherm), well-

behaved, 1:1 binding isotherms were acquired that fit the predicted curves 

accurately (Chi-square = 35,000 for the tetrameric system and 18,000 for the 

trimeric system). These results suggested that alternate modes of association, such 

as 1:2, 2:1 binding and problematic homomeric aggregation, possibly exist at 

ambient conditions but are disfavored at elevated temperatures. Also more telling 

is the apparent non-saturation of isotherms obtained at ambient conditions near 

the end of the titration run where the oligo-Dan is in molar excess which may 

signal possibly “off-register” binding to provide desolvation of added oligo-Dan. 

Importantly, results were consistent over multiple trials conducted at T = 318 K 

and the fit of the curves, calculated by the analysis software, were entirely 

acceptable based on chi-square error analysis (Figure 4.9, see Experimental 

Section for supporting isotherms with corresponding thermodynamic parameters 

analyses.   

With experimental conditions set, isotherms were collected for dimer 

(4.3:4.4), trimer (4.5:4.6), and tetramer (4.7:4.8) duplexation. Three trials were 

performed for each system. Figure 4.10 shows representative isotherms. The 

predicted curves varied the N value and for all cases the best fits were obtained 

when N = 1 ± 0.1 molar equivalent of titrant. 
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Figure 4.10 Representative binding isotherms at T = 318 K. Three trials were 
performed for each system. Fitted line was based on 40 injection 
data points but only every other point is shown for clarity. 
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Table 4.1 reports the binding constants and provides a thermodynamic 

profile for 1:1 binding of each of the pairings. Before a discussion of the binding 

constants takes place, several points need to be made about the table. First, NMR 

and ITC values at T = 298 K are absent for the trimeric and tetrameric systems for 

reasons mentioned before. Second, only the dimeric system had binding constants 

within the practical range of both NMR and ITC analysis. These values will be 

considered shortly. Third, while the binding thermodynamics were parsed into 

their enthalpy (∆H) and entropy (∆S) components for ITC experiments, a 

published report on the pitfalls of using the van’t Hoff method of obtaining ∆H 

and ∆S from NMR data led to the decision to pass on additional experiments to 

calculate these thermodynamic parameters (Naghibi 1995). In this report several 

examples were cited where significant discrepancies were found between 

enthalpies derived by the van’t Hoff method and enthalpies directly measured by 

ITC. The rule of thumb presented was that ∆H and ∆S should not be derived from 

NMR data if enthalpy of the system is significantly temperature dependent. This 

dependence was shown for the dimeric system 4.3:4.4 with ITC experiments 

conducted at four different temperatures (Figure 4.11, this data is presented in the 

context of heat capacity discussed in Section 4.3.6). 
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Table 4.1 Summary of hetero-duplex binding data. a   

Complex b Ka (T=298 K) ∆G° ∆H° ∆S° N value 
 4.1:4.2 (Mono-NMR) 3.0 × 102 −3.4 NA NA 1 c 

 4.3:4.4 (Di-NMR) 7.5 × 103 −5.3 NA NA 1 c 

 4.3:4.4 (Di-ITC) 7.6 × 103 −5.3 −10.4 −17.2 1.01 
 Ka (T=318 K)     
 4.1:4.2 (Mono-NMR) 1.3 × 102 −3.1 NA NA 1 c 

 4.3:4.4 (Di-NMR) 2.8 × 103 −5.0 NA NA 1 c 

 4.3:4.4 (Di-ITC) 2.7 × 103 −5.0 −12.3 −23.0 0.91 
 4.5:4.6 (Tri-ITC) 4.5 × 104 −6.8 −17.7 −34.2 0.97  
 4.7:4.8 (Tetra-ITC) 3.5 × 105 −8.1 −19.3 −35.3 0.91 
a Ka (M–1), ∆G° (kcal·mol–1), ∆H° (kcal·mol–1), ∆S° (cal·mol–1·K–1). Complete hetero-duplex 
binding data and experimental errors for the measured values of Ka, ∆H°, and N can be found 
in the experimental section. ∆G° and ∆S° were calculated from averaged Ka and ∆H° values, 
respectively. b Size of oligomers used and method of analysis in parentheses. c A binding 
stoichiometry of 1:1 was determined by inspection of Job plots. NA = Not applicable for NMR 
analysis (see text for explanation). 

 

4.3.5 Summary of Binding Data 

Results in Table 4.1 were gratifying for two main reasons. First, binding 

constants from separate analyses for the dimeric system (4.3:4.4) were in 

agreement. NMR indicated a Ka
(T=298K)

 = 7,500 M−1 and Ka
(T=318K)

 = 2,800 M−1 

while ITC corroborated these numbers with a Ka
(T=298K)

 = 7,600 M−1 and Ka
(T=318K)

 

= 2,700 M−1. Also, fitted curves point to discrete one-to-one binding (N values in 

Table 4.1). Raising the temperature 20 degrees K leds to more than a 50% 

decrease in association constants for the dimeric system. Even for the trimeric 

system at 298 K (whose data is just outside of the chi-square error window) the 

fitting analysis pointed to Ka(4.5:4.6)s above 10,000 M−1 versus 45,000 M−1 at 
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318 K. It would not be unreasonable to believe that with the proper design 

adjustments longer oligomer would give discrete hetero-duplexes at ambient 

conditions with much higher binding constants than those observed at elevated 

temperatures. Second, association improved with increasing chain length, with 

free energy (∆G°) of duplex formation being roughly additive, with a change of 

−1.3 to −1.9 kcal·mol−1 per additional aromatic unit. Though the increasingly 

favorable free energy with increasing length is promising, future design 

improvements are hoped to lead to “cooperative binding effects” (Ercolani 2003) 

with longer oligomers. 

ITC clearly revealed that association was enthalpically favored with 

∆H°(T=318K) values ranging from −12 to −19 kcal·mol−1. Though this data is 

irrefutable, any explanation as to why a process is enthalpically (and/or 

entropically) favored has to proceed with caution to avoid confusion.  

Typically, favorable changes in solvent-solvent cohesion interactions 

(presuamably an increase in hydrogen bonding in the case where water is the 

solvent) are ascribed to the favorable enthalpies seen with binding systems 

operating on desolvation (or the hydrophobic effect). In other words the solvent 

rather than the binding molecules (or solutes) is mainly responsible for the 

observed favorable enthalpies (once again in the cases with a strong hydrophobic 

driving force). The hydrophobic effect though should not automatically be 

synonymous with an “enthalpy-driven” process. Desolvation in fact has been 

implemented in entropically favored binding events where there is an entropy 

gain by the solvent since supposedly there is less solute surface required to be 
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solvated by highly ordered solvent molecules after an apolar binding event. A 

classic example would be micelle formation in water driven by the desolvation of 

apolar surfaces. After micelle formation, water is simply more disordered 

(solvation of more apolar areas means more ordered water molecules) hence this 

particular process is entropically favored. It is this situation most often attributed 

to the hydrophobic effect (Tanford 1980).  

One could imagine that this scenario would also apply to the Iverson 

duplex system predicated on the hydrophobically-driven interaction between the 

Dan and Ndi units. ITC though indicated that entropy was unfavorable with 

∆S°(T=318K) values ranging from −23 to −35 cal·mol−1. For comparison, Diederich 

and co-workers who have studied, in detail, aromatic ring inclusion by 

cyclophanes in water, have found similar favorable enthalpy values ranging from 

−8 to −13 kcal·mol−1 and unfavorable entropy values ranging from −6 to −22 

cal·mol−1·K−1 depending on the nature of the aromatic guests used (Smithrud 

1991). Diederich and co-workers characterized these apolar binding processes as 

being driven by hydrophobic bonding and proposed that the degrees of freedom 

lost by the bound molecules masked any positive entropic benefit experienced by 

the solvent due to the hydrophobic effect (Smithrud 1991). Therefore, there is no 

contradiction in stating that tight host-guest complexation in water, which is often 

observed to be enthalpically favored (∆H° << 0, T∆S° < 0) and “less tight” 

micelle formation, which is often entropically favored (∆H° ≈ 0, T∆S° > 0) can 

both be considered hydrophobically-driven processes (Smithrud 1991). The larger 

entropic cost for the assembly of the Iverson duplexes as compared to the 
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Diederich cyclophane system is thus expected since the ordering of flexible 

strands into an entwined duplex likely results in more degrees of freedom lost 

than when cyclic hosts bind small molecule guests in general.   

Returning to the evaluation of binding affinities, it was most satisfying to 

observe that the hetero-duplex 4.7:4.8 displayed an association constant of 

350,000 M-1, three orders of magnitude larger than 4.1:4.2, despite presumably 

larger charge repulsion between the longer chains. This result emphasizes the 

relatively strong driving force for duplex formation present in oligo-naphthyl 

systems. In fact, negative charge along the backbone of both oligomers may 

confer an important advantage over neutral strands. As is thought for DNA, 

intramolecular charge repulsion might keep oligomer chains “spread out” and 

more available to interact with a complementary chain (Benner 2002). Secondly, 

having like-charged strands, instead of complementary charged chains, kept the 

final hetero-duplex water-soluble as was required for NMR and ITC binding 

analysis. 

4.3.6 Examination of Heat Capacity 

To elucidate the underlying thermodynamic parameters of binding, 4.3:4.4 

association was reexamined from T = 288 to 318 K (Figure 4.11) to obtain heat 

capacities. The change in the heat capacity, ∆Cp, (∆Cp = δ∆H° / δT) associated 

with binding is often reported for biological systems in order to determine the 

extent of hydrophobic driven recognition (Murphy 1999). There are still questions 

though whether heat capacity can be correlated accurately with the change in the 

amount of buried surface area for a binding event (Guinto 1996, Gill 1985). 
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Notwithstanding this debate, heat capacity still remains an important 

thermodynamic quantity to measure differences in solvent-solute interactions and 

can lead to insights into conformational changes of the binding partners (Murphy 

1999). 

 

 

Figure 4.11 Graph of the thermodynamic parameters taken from ITC 
experiments of 4.3:4.4 binding and table of the corresponding 
free energies. 

 A change in heat capacity (∆Cp) is typically reported in cal·mol−1·K−1 and 

is defined as the amount of heat required to increase the temperature of a 

substance (or solution) by 1 Kelvin. In essence, it represents a change in the way 

the solvent solvates the solute. Therefore, ∆Cp is a convenient term to compare 

not only other different binding systems, but also folding systems. A simple 

example is when a protein unfolds there is a positive change in the heat capacity. 

The same effect is seen when hydrophobic solutes are added to water; the 

observed ∆Cp is positive. The converse is true as well and protein folding, 
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protein-protein binding, and adding ionic solutes in water almost always afford 

negative ∆Cp values. 

ITC experiments revealed a significant temperature dependence of 

enthalpy ∆H° (Figure 4.11) that is not linear thus precluding determination of a 

single ∆Cp value over the whole temperature range investigated (Gill 1985). 

Linear-fitting over narrower temperature ranges gives ∆Cp values between −50 (at 

lower temperature ranges) and −95 cal·mol−1·K−1 (at higher ranges). Note, that this 

does not imply that the overall stability of the duplex is greater at elevated 

temperatures. It could indicate that there exists a larger difference in exposed 

surface area between unbound single strands and duplexes at higher temperatures 

versus lower temperatures. The Diederich studies with cyclophane hosts reported 

∆Cp values up to −130 cal·mol−1·K−1 for the binding of relatively polar guests 

(nitrophenol) and smaller negative values (−20 cal·mol−1·K−1) for less polar guest 

such as p-xylene (Ferguson 1991, Smithrud 1991).   

Finally, while evaluating data in the context of heat capacity 

determination, an apparent enthalpy-entropy compensation effect (Liu 2001) was 

observed with ∆G°(4.3:4.4) values that decrease only slightly with increasing 

temperature (Figure 4.11). Another way of stating this is ∆∆G° ≈ 0 while ∆∆H° 

and ∆∆S° were significant but compensatory. In Figure 4.11 the compensation 

occurred with one constant system (the dimeric system) studied at various 

temperatures. Often though the phenomenon of enthalpy-entropy compensation 

arises in studies that vary the system slightly, such as in the case of rigidification 

of ligands to possibly improve the entropic component of ligand-protein binding. 
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Explanations for this compensation have been debated. Some reports 

simply, and quite reasonably, state, “a stronger intermolecular interaction or 

bonding (related to enthalpy) will lead to a greater reduction of the 

configurational freedom…(Liu 2001)” The review written by Liu and Guo give 

other numerous explanations some choosing to focus on the thermodynamic 

parameters of the solvent rather than the interlocking molecules (Liu 2001). 

Counterpoints though exist in such articles entitled, “Entropy-enthalpy 

compensation: fact or artifact?” (Sharp 2001) and “Enthalpy-entropy 

compensation: a phantom phenomenon” (Cornish-Bowden 2002). Invariably, 

more studies will be reported supporting one explanation over the other, but 

hopefully a working knowledge of how to improve ∆G° of binding through 

molecular designs that favorably affect both enthalpy and entropy will also come 

forth from these investigations. 

4.3.7 Size Exclusion Chromatography (SEC) 

With binding constants and the thermodynamic profiles of hetero-duplex 

formation well in hand the following two analyses (size exclusion 

chromatography, SEC, and polyacrylamide gel electrophoresis, PAGE) were 

carried out to gain further insight as to the robustness of the complexes under 

other experimental conditions. 

A 1:1 solution of 4.7:4.8 resulted in two separate signals when passed 

through a C18 reverse-phase column using the HPLC conditions that were used to 

purify naphthyl oligomers. The two signals corresponded to the retention times of 

pure 4.7 and pure 4.8 indicating that the putative tetrameric duplex did not survive 
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these conditions. In brief, the HPLC column separates oligomers by hydrophobic 

interactions with the packing material. Samples are usually loaded onto the 

column with predominantly water (>9:1 ratio of H2O:CH3CN). As the percentage 

of acetonitrile is increased the solvent (mobile phase) competes with the packing 

material (stationary phase) for interactions with the compound (duplex) and thus 

elutes the sample. Most likely the increase in organic solvent disrupts duplex 

formation. In pure water runs the compound did not migrate at all through the 

column and in isocratic runs (at a constant H2O:CH3CN composition) still only 

separation of chains was observed.     

On the other hand, SEC runs (using a proprietary Bio-Sil column, Bio-Rad 

Inc., Hercules, CA 94547) afforded a different retention profile for a 1:1 mixture 

than both pure 4.7 and pure 4.8 (Figure 4.12). SEC, synonymous with gel 

filtration chromatography, separates compounds based on diffusion in and around 

highly porous silica beads. Retention is more dependent on the size and shape of 

the molecules rather than their hydrophobicity and charge, although these 

properties can play an important role. Since large molecules are sterically 

excluded and pass around the beads these molecules elute fastest (at lower 

retention volumes). SEC columns are usually more amenable than HPLC columns 

to isocratic runs ideal for separating proteins and nucleic acids that have 

molecular weights of 2,000-1,000,000 g·mol−1. 
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Figure 4.12 UV chromatograph  (270 nm) showing that solutions of 4.7 are 
aggregated (at the SEC conditions) but are effectively broken up 
by the addition of 4.8 as seen by the trace give the 1:1 molar 
mixture. Also the 1:1 mixture results in a complex with a 
distinctly different retention volume than either strand. 

Dr. Thomas Mourey from the Eastman Kodak Company (Rochester, NY 

14650) performed all the SEC studies discussed with runs using Na phosphate 

buffered water. The chromatograph in Figure 4.12 indicated that 4.7 was 

aggregated (retention volume 1.4 mL). The 4.7 species at retention volume 2.7 

mL was probably in the monomeric form considering that 4.8 showed no sign of 

forming large aggregates and its retention volume was similar at 3.0 mL. Most 

interestingly was that the addition of 4.8 to 4.7 appeared to significantly break up 

the 4.7 aggregates. It is important to remember that ITC analyses at T = 318 K 

were not hampered by aggregates. If aggregates under these ITC conditions were 

significant then reproducibility of measurements and curve-fitting to afford N 
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values near 1 molar equivalent definitely would have been problematic and 

substantial errors reported. With that being the case, aggregation was not 

prohibitive to the interpretation of SEC results. 

The trace for the 1:1 mixture showed the appearance of one new signal 

with a lower retention volume (2.5 mL) than either 4.8 or 4.7. This retention 

volume is consistent with a complex, larger than either strands, presumed to be a 

tetrameric 4.7:4.8 duplex. These encouraging SEC results will be evaluated along 

with the PAGE results presented next.  

4.3.8 Polyacrylamide Gel Electrophoresis (PAGE) 

Due to the physical similarity of the Iverson duplexes to DNA (both are 

mulit-anionic unit-repeating duplexes formed by complementary strands 

containing aromatic units), PAGE was used to separate naphthyl oligomer species 

of different sizes analogous to DNA. PAGE, in practice, separates DNA pieces 

based on size (since charge density is constant regardless of length) with smaller 

strands migrating through the gel faster. For the naphthyl duplexes though it could 

be expected that the 1:1 complex, if stacked in a relatively compact fashion, might 

have a higher charge density than unbound single strands that are in a more 

extended conformation absent of Dan:Ndi stacking. Therefore the duplex, though 

more massive, may migrate farther than single chains due to a higher charge 

density.   

Figure 4.13 shows both the tetrameric and trimeric system run on the same 

gel and visualized under a UV lamp after a Coomassie Blue stain/destain 

treatment (Sambrook 2001). Compounds were loaded in wells atop a vertical gel 
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(19:1 crosslinker ratio [acrylamide:bis], 20% w/v% acrylamide solution). The 

photograph in Figure 4.13 is of a 3 cm swath about two thirds of the way down 

from the top of the gel (height of gel = 11 cm). Each of the 12 lanes loaded with 

compound had visible bands. Concentrations of solutions in each lane are given 

(Figure 4.13). For instance Lane 1 was loaded with a solution of 0.4 mM 4.7 

while Lane 2 was loaded with a 2:1 4.7:4.8 solution with a final concentration of 

0.4 mM 4.7 and 0.2 mM 4.8. 

 

 

Figure 4.13 Photograph of gel from PAGE experiments. Arrow indicates 
direction of band migration. 

For the trimeric system, Lanes 7-12 in Figure 4.13 indicated good 

complex formation when 4.5 and 4.6 were mixed. Lane 8, which contained a 2:1 

ratio of 4.5:4.6, had two bands one of which correlated with uncomplexed 4.5 

(Lane 7) while the band below it was taken to be some type of complex. Lane 9 

suggested that this complex was probably a duplex since the 1:1 molar mixture of 

Lane 9 resulted in essentially a single band with the same migration as the faster 
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migrating band in Lane 8. There was a bit of a shadow in Lane 9 indicating a band 

of single-stranded 4.5, but it was a relatively tiny amount according to the 

intensity of the band. There should be a small amount of uncomplexed 4.6 as 

well, but probably this material was not visible since oligo-(Dan)s were observed 

to stain less intensely than oligo-(Ndi)s. 

For the tetrameric system, Lanes 1-6 in Figure 4.13 indicated even better 

formation of a discrete 1:1 complex. Notice that a 1:1 molar mixture of 4.7 and 

4.8 resulted in only one band (with no faint second band present). When one 

component was in slight excess as in Lane 2 and 4 the duplex still appeared to be 

formed with the seemingly complete exclusion of the excess strand that remained 

unbound. This exclusion underscored the high degree of chain discrimination with 

the tetrameric system and its ability to maintain a hetero-duplex formation in the 

presence of unbound naphthyl oligomers that one might think would be driven to 

hydrophobic collapse with the complex. Once again the highly negative charge 

surrounding the duplex may be fortuitous in this regard. 

4.3.9 Discussion of SEC and PAGE Results 

SEC data was consistent but not exclusive of a 1:1 complex forming. The 

absence of standards that are known to mimic the shapes of these proposed 

complexes makes conclusive sizing determination difficult. It is extremely 

unlikely though that 2:2, 3:3, and higher complexes with a ratio of 1:1 exists 

considering the retentions of pure samples of 4.7 and 4.8. 

PAGE studies were also quite persuasive supporting the formation of 

discrete hetero-duplexes and were successful on other fronts too. The detection of 
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unbound oligomers in mixtures containing a slight excess of one component was 

impressive. Even the band intensities seemed to fully support claims of the 

creation of a high-affinity duplex system. Notice that the duplex bands in lanes 3, 

4, and 5 had similar intensities and theoretically under perfect 1:1 complexation 

the concentration of the duplex should be the same (0.4 mM). Lane 2, which 

would have a duplex concentration of 0.2 mM, had a duplex band with an 

intensity, judged by eye, of half that observed for Lanes 3, 4, and 5. 

One feature of PAGE is the belief that there is a cage effect where once a 

complex enters the gel, the gel matrix forms a “cage”. If the complex then 

dissociates during the running of the gel the components have a better opportunity 

to rebind than if dissociation had taken place in solution. The opposite effect 

probably occurs during an HPLC run where once a duplex dissociates, rebinding 

actually is less likely as the strong resolving abilities of HPLC separates the 

chains even further. A consequence of the cage effect for gels is that the bands 

approximate the distribution of bound and unbound species present in solution 

just before PAGE is performed. Another advantage in using gels to analyze 

species distributions is that a typical experiment requires about a thousand times 

less material than NMR, ITC, or SEC. 

Based on these results it is expected that both SEC and PAGE analyses 

will become standard procedures in the Iverson laboratory for characterizing the 

binding and self-assembly properties of naphthyl oligomers.  

 153



4.4 CHAPTER CONCLUSIONS 

In general, this study is another example of the attractive designability of 

naphthyl oligomers due to the predictable association of Dan and Ndi moieties. 

Specifically, a first-generation duplex system, based on aromatic stacking, has 

been designed that forms discrete hetero-duplexes in aqueous solutions from 

complementary oligo-Dan and oligo-Ndi strands. The 1:1 association occurs with 

strong binding affinities and high chain discrimination according to ITC, SEC, 

and PAGE analyses. ITC indicated that this binding is enthalpically favored and 

entropically disfavored and the longer the chains the more stable the formed 

hetero-duplexes. Though the multi-anionic charge of the oligomers conferred 

water solubility and probably prevented intra-chain collapse, this investigation 

sparked ideas of new duplex designs to decrease putative inter-chain charge 

repulsion. ITC, SEC, and PAGE protocols optimized for the facile analysis of 

naphthyl oligomers have been devised for future work as well. 

In summary, the observed discrimination ability and high affinity between 

like-charged chains of complementary aromatic donors and acceptors illustrated 

the potential of this approach for modulating molecular recognition in aqueous 

solution. This new approach is encouraging for future development of assemblies 

with highly programmable modes of binding in solution or on surfaces. 

4.5 IDEAS FOR FUTURE INVESTIGATIONS 

As mentioned before, hetero-duplexes with cooperative binding, triggered 

reversible binding, and self-sorting capabilities are current pursuits. To draw 

closer to these goals binding will need to be improved beyond that of the near-
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micromolar affinities of these current naphthyl oligomer duplexes. Still, this 

system is extremely good considering it operates in aqueous solutions and with 

highly negatively charged strands. With this in mind, ideas for future work can be 

lumped into the following section. 

New compounds for new analyses. The affinities of the tetrameric 

system place them outside the practical binding constant range for NMR analyses 

(1-104 M−1). Maybe future systems invented by the Iverson group will exhibit 

affinities beyond the capabilities of ITC (103-109 M−1). One priority, to reach 

ultra-high affinity duplexes, will be to pin down the true effects of charge 

repulsion. Unfortunately several oligomers containing positive charges were 

investigated without success due to possible intramolecular folding and seemingly 

non-specific aggregation. Another idea would be to synthesize water-soluble 

comb-architecture versions of the current duplex system. This comb-architecture 

appears to preorganize the single strand and on the surface, might lead to 

improved entropies of binding. Speaking of surfaces, biotinylated oligomers can 

be attached to a surface and be amenable to surface plasmon resonance (SPR) 

technology used to profile the thermodynamics and the kinetics of extremely 

strong binding events. Finally, with fluorescently labeled oligomers, fluorescence- 

activated cell sorting (FACS) could potentially be used for binding affinity 

studies. 

As can be seen many options are available and it would be very interesting 

to see what research directly falls from this first study dealing with hetero-

duplexes formed via directed aromatic interactions. Already, preliminary results 
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from offshoots of this project dealing with protein-naphthyl oligomer binding 

(mentioned in Chapter 2) and the assembly of polymers have been intriguing. 

4.6 EXPERIMENTAL SECTION 

Synthesis. General methods, full protocols for solid phase peptide 

synthesis and FPLC/HPLC purification used for compounds 4.1-4.8 were detailed 

in chapter 2. Synthesis, followed by purification, desalting, and freeze-drying 

afforded soft solids for all compounds.  

Compound characterization (1D-NMR general methods). Samples 

were readily soluble in 50 mM sodium phosphate, pH = 7.0 D2O. Spectra of 

monomers were obtained on a Varian UNITY+ 300 MHz spectrometer. Spectra of 

oligomers were recorded on a Varian INOVA 500 MHz spectrometer at 1 mM 

concentrations of compound and TSP-d4 (3-trimethylsilyl-propionic-2,2,3,3-d4 

acid, sodium salt) was used as a reference (δ = 0.00 ppm). Chemical shifts 

reported in ppm and abbreviations used are singlet (s), doublet (d), doublet of 

doublet (dd), triplet (t), quartet (q), multiplet (m) and complex multiplet of non-

equivalent protons (comp). Coupling constants (J) reported in Hz. 

 “Ndi monomer” (4.1).  

 

3-acetylamino-N-(2,{7-[2-(carboxymethyl-carbamoyl)-ethyl]-[1,3,6,8-

‘tetraoxo-3,6,7,8-tetrahydro-1H-benzo[lmn][3,8]phenanthrolin-2-yl}]-ethyl)- 

succinamic acid (4.1). (SPPS yield = 94%). ε(w/o CTAB) 24700 M-1·cm-1 at λmax 384 

nm; ε(w/ CTAB) 23900 M-1·cm-1 at λmax 382 nm; no hypochromism at 382 nm; 1H 
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NMR (300 MHz, D2O) δ = 8.56 (AA’BB’ q, J = 7.6, 5.6, 4H d), 4.43 (t, J = 7.1, 

2H c), 4.36 (dd, J = 4.8, 4.4, 1H g), 4.30 (m, 2H f), 3.73 (s, 2H a), 3.61 (t, J = 5.7, 

2H e), 2.74 (t, J = 7.1, 2H b), 2.45 (dd, J = 4.8, 11.2, 1H h), 2.33 (dd, J = 9.2, 6.8, 

1H h), 1.86 (s, 3H i); 13C NMR (300 MHz, D2O) δ = 177.4, 176.4, 173.9, 173.6, 

173.2, 163.9, 163.7, 131.1, 131.0,125.9, 125.8, 125.6, 51.6, 42.3, 39.6, 38.6, 37.3, 

33.9, 21.6; CI HRMS calcd for C27H26N5O11 [MH]+ 596.163, found 596.163. 

“Dan monomer” (4.2). 

 

3-acetylamino-N-(3-{5-[3-(carboxymethyl-carbamoyl)-propoxy]-naphthalen-

1-yloxy}-propyl)-succinamic acid (4.2). (91% yield). ε(w/o CTAB) 8100 M-1·cm-1 at 

λmax 296 nm; ε(w/ CTAB) 7900 M-1·cm-1 at λmax 298 nm; no hypochromism at 298 

nm; 1H NMR (300 MHz, D2O) δ = 7.88 (d, J = 8.4, 1H n), 7.84 (d, J = 8.6, 1H n), 

7.50 (m, 2H o), 7.07 (t, J = 7.6, 2H p), 4.47 (dd, J = 5.2, 3.4, 1H t), 4.29-4.25 

(comp, 4H m and q), 3.69 (s, 2H j), 3.50 (t, J = 6.7, 2H s), 2.60 (dd, J = 5.2, 7.8, 

1H u), 2.58 (t, J = 7.0, 2H k), 2.50 (dd, J = 8.6, 7.4, 1H u), 2.24 (m, J = 6.2, 2H l), 

2.13 (m, J = 6.1 2H r), 1.89 (s, 3H v); 13C NMR (300 MHz, D2O) δ = 178.2, 

176.5, 174.6, 174.2, 154.5, 126.7, 126.6, 114.8, 114.6, 107.7, 107.3, 52.7, 47.1, 

43.9, 39.5, 37.2, 33.6, 28.6, 25.4, 22.3; CI HRMS calcd for C25H32N3O9 [MH]+ 

518.214, found 518.213. 

HO-Gly(NdiAsp)2-NHAc “Ndi dimer” (4.3). (88% yield). ε(w/o CTAB) 37000 M-

1·cm-1 at λmax 364 nm; ε(w/ CTAB) 53000 M-1·cm-1 at λmax 382 nm; hypochromism 

~ 39% at 382 nm; 1H NMR (500 MHz, D2O) δ = 8.58 (AA’BB’ q, J = 5.1, 2.6, 
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4H), 8.39 (AA’BB’ q, J = 14.1, 7.9, 4H), 4.69 (dd, J = 5.3 and 3.2, 1H),  4.47-

4.31 (comp, 3H), 4.12 (t, J = 7.5, 2H), 4.07-4.01 (m, 2H), 3.90-3.84 (m, 2H), 

3.79-3.72 (m, 2H), 3.67 (s, 2H), 3.66 (t, J = 6.2, 2H), 3.57 (dd, J = 9.5 and 6.4, 

1H), 2.74 (dd, J = 11.7, 5.1, 1H), 2.68-2.44 (comp, 6H), 1.88 (s, 3H); ESI MS 

calcd for C50H44N5O15 [MH]+ 1074.3, found 1074.3. 

HO-Gly(DanAsp)2-NHAc “Dan dimer” (4.4). (79% yield). ε(w/o CTAB) 18700 M-

1·cm-1 at λmax 298 nm; ε(w/ CTAB) 19300 M-1·cm-1 at λmax 298 nm; no 

hypochromism at 298 nm; 1H NMR (500 MHz, D2O) δ = 7.73-7.67 (m, 3H), 7.61 

(d, J = 8.4), 7.40-7.33 (m, 3H), 7.29 (d, J = 8.1), 6.90 (d, J = 7.6, 1H), 6.85 (d, J = 

7.6, 2H), 6.73 (d, J = 7.6, 1H), 4.58 (t, J = 6.4, 1H),  4.48 (dd, J = 5.2, 3.5, 1H), 

4.07-3.76 (comp, 8H), 3.68 (s, 2H), 3.35 (t, J = 6.7, 2H), 3.27-3.23 (m, 1H), 2.97-

2.92 (m, 1H), 2.64-2.40 (comp, 6H), 2.35-2.06 (comp, 4H), 2.00-1.85 (comp, 3H), 

1.91 (s, 3H), 1.84-1.75 (m, 3H);  ESI MS calcd for C46H56N5O15 [MH]+ 918.4, 

found 918.4. 

HO-Gly(NdiAsp)3-NHAc “Ndi trimer” (4.5). (78% yield). ε(w/o CTAB) 52800 M-

1·cm-1 at λmax 364 nm; ε(w/ CTAB) 79100 M-·cm-1 at λmax 382 nm; hypochromism ~ 

41% at 382 nm; 1H NMR (500 MHz, D2O) δ = 8.59 (d, J = 7.7, 2H), 8.47 (d, J = 

7.5, 2H), 8.38-8.34 (comp, 6H), 8.29(d, J = 7.7, 2H), 4.56-4.51 (m, 2H), 4.39-4.30 

(comp, 3H), 4.25-4.18 (comp, 6H), 4.10 (t, J = 6.3, 2H), 3.99 (t, J = 6.9, 2H), 3.78 

(m, 1H), 3.73 (s, 2H), 3.68-3.64 (m, 2H), 3.56 (t, J = 5.9, 3H), 2.68-2.43 (comp, 

10H), 2.35 (d, J = 9.0, 1H), 2.31 (d, J = 9.0, 1H), 1.87 (s, 3H); ESI MS calcd for 

C73H62N13O27 [MH]+ 1552.4, found 1552.4. 
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HO-Gly(DanAsp)3-NHAc “Dan trimer” (4.6). (70% yield). ε(w/o CTAB) 21400 M-

1·cm-1 at λmax 298 nm; ε(w/ CTAB) 22900 M-1·cm-1 at λmax 298 nm; no hypochromism 

at 298 nm; 1H NMR (500 MHz, D2O) δ = 7.61-7.55 (m, 6H), 7.23-7.13 (m, 6H), 

6.73-6.63 (m, 4H), 6.53 (d,  J = 7.7, 2H), 4.59 (t, J = 6.4, 2H),  4.48 (dd, J = 5.1, 

3.8, 1H), 3.90-3.67 (comp, 12H), 3.65 (s, 2H), 3.25 (t, J = 6.2, 2H), 3.20-3.08 (m, 

2H), 2.93-2.84 (m, 2H), 2.67-2.44 (m, 6H), 2.35-2.22 (m, 6H), 2.01-1.84 (comp, 

8H), 1.90 (s, 3H), 1.68-1.62 (m, 4H); ESI MS calcd for C67H80N7O21 [MH]+ 

1318.5, found 1318.6. 

HO-Gly(NdiAsp)4-NHAc “Ndi tetramer” (4.7). (69% yield). ε(w/o CTAB) 63800 

M-1·cm-1 at λmax 366 nm; ε(w/ CTAB) 113100 M-1·cm-1 at λmax 382 nm; 

hypochromism ~ 50% at 382 nm; 1H NMR (500 MHz, D2O) δ = 8.51-8.37 (comp, 

14H), 8.21 (d, J = 6.9, 2H), 4.56-4.50 (m, 2H), 4.41-4.01 (comp, 18H), 3.74-3.52 

(comp, 8H), 3.76 (s, 2H), 2.68-2.43 (comp, 14H), 2.33 (d, J = 9.3, 1H), 2.30 (d, J 

= 9.2, 1H), 1.87 (s, 3H); ESI MS (neg mode) calcd for C96H77N17O35 [M]2– 1014.4 

(m/z), found 1014.4. 

HO-Gly(DanAsp)4-NHAc “Dan tetramer” (4.8). (58% yield). ε(w/o CTAB) 30000 

M-1·cm-1 at λmax 298 nm; ε(w/ CTAB) 32600 M-1·cm-1 at λmax 298 nm; no 

hypochromism at 298 nm; 1H NMR (500 MHz, D2O) δ = 7.59 (d, J = 8.7, 4H), 

7.55-7.53 (m, 4H), 7.24-7.22 (m, 4H), 7.12 (t, J = 8.2, 4H), 6.72 (d, J = 8.3, 2H), 

6.67-6.65 (m, 3H), 6.52 (t, J = 7.2, 3H), 4.58 (t, J = 7.4, 3H), 4.48, (dd, J = 5.1, 

4.5, 1H), 3.99-3.69 (comp, 16H), 3.64 (s, 2H), 3.24 (t, J = 6.4, 2H), 3.17-3.06 (m, 

3H),  2.92-2.75 (m, 3H), 2.66-2.43 (m, 8H), 2.34-2.33 (m, 8H), 2.01-1.83 (comp, 
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10H), 1.89 (s, 3H), 1.68-1.58 (m, 6H); ESI MS (neg mode) calcd for 

C88H102N9O27 [M]– 1716.7, found 1716.6. 

 NMR analysis. Stock solutions were prepared using 50 mM sodium 

phosphate pH = 7.0 D2O with TSP-d4 as a 0.0 ppm reference (Previous 

experiments showed no indication that trace amounts of TSP affected the stacking 

of aromatic units.) Concentrations were confirmed by extinction coefficients. A 

microanalytical syringe was used to transfer aliquots to dry NMR tubes. For both 

Job plot and titration experiments, at least 7 samples of varying ratios were made. 

All NMR samples contained a minimum amount of solution (0.75 mL) to avoid 

excessive convection effects, which were initially problematic at T = 318 K and 

all NMR spectra were acquired on a 300 MHz Varian spectrometer. Chemical 

shift data is provided in Table 4.2. 
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Table 4.2. NMR data for Job plots and titrations. 

Chemical shift, δ (ppm), data for Job plots (T=298 K). [4.1] + [4.2] = [4.3] + [4.4] = 0.375 mM  

Sample [4.1] [4.2] δ of 4.1 Sample [4.3] [4.4] δ of 4.3 

1 0.375 0 8.748 8 0.375 0 8.600 

2 0.300 0.075 8.745 9 0.300 0.075 8.511 

3 0.250 0.125 8.743 10 0.250 0.125 8.428 

4 0.188 0.188 8.740 11 0.188 0.188 8.305 

5 0.125 0.250 8.737 12 0.125 0.250 8.231 

6 0.075 0.300 8.735 13 0.075 0.300 8.184 

7 0.042 0.333 8.732 14 0.042 0.333 8.163 

 

Chemical shift, δ (ppm), data for titration curves. [4.1] = [4.3] = 0.375 mM for all samples 

Sample [4.2] δ of 4.1 (T=298 K) (T=318 K) Sample [4.4] δ of 4.3 (T=298 K) (T=318 K) 

15 0 8.748 8.764 22 0 8.600 8.598 

16 0.094 8.738 8.759 23 0.094 8.501 8.537 

17 0.188 8.727 8.753 24 0.188 8.408 8.478 

18 0.375 8.708 8.741 25 0.375 8.255 8.393 

19 0.750 8.671 8.719 26 0.750 8.144 8.287 

20 1.500 8.615 8.684 27 1.500 8.080 8.200 

21 3.000 8.544 8.624 28 3.000 8.026 8.133 

 

For Job plots, stock solutions of 4.1-4.4 (0.375 mM) were prepared and 

mixed in various ratios so that [4.1] + [4.2] = [4.3] + [4.4] = 0.375 mM. The most 

upfield chemical shift of the Ndi unit for each of the 7 samples was tracked.  

For NMR titrations, the concentration of the Ndi containing compound for 

each sample was held constant at 0.375 mM while the concentration of the Dan 

containing compound ranged from 0.0 mM to 3 mM (0 to 8 molar equivalents). 

Data was analyzed using the HOSTEST curve fitting program (v5.60) developed 
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by Glagovich and Wilcox at the University of Pittsburgh, Pittsburgh, PA. The 

HOSTEST program can apply a number of different models to the chemical shift 

data. The reported association constants were obtained using a 1:1 binding model 

as in previous studies (Cubberley 2000). Standard deviations of the association 

constants, Ka, calculated by the HOSTEST program were reasonable and R2 for 

the fitted curves, for all experiments, exceeded a 0.999 value. Examples of the 

program outputs are in Figure 4.14 (binding between monomers) and 4.15 

(between dimers). 

 

 

Figure 4.14 Representative HOSTEST output for (4.1:4.2) binding at T = 318 
K. 
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Figure 4.16 Representative HOSTEST output for (4.3:4.4) binding at T = 318 
K. 

ITC. Experiments were performed on a VP-ITC microcalorimeter from 

Microcal Inc. (Northhampton, MA 01060) and followed the experimental setups 

detailed in literature (Wiseman 1998). Three trials were performed for each 

system. Complete binding data is shown in Table 4.3. All solutions were made in 

50 mM sodium phosphate buffer and degassed for 15 minutes and stock solution 

concentrations were confirmed by extinction coefficients. For a typical 

experimental run a solution of the Ndi containing compound was placed in the 

instrument chamber at a relatively dilute concentration (4.3, 0.375 mM; 4.5, 0.250 

mM; 4.7, 0.188 mM).  Relatively concentrated solutions of the Dan containing 

compound were taken up in the 250 µL injection syringe (4.4, 3.21 mM; 4.6, 2.11 

mM; 4.8, 1.59 mM). After a 10 minute equilibration time injections were started 
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with the first being 2.0 µL and the next 39 being 6.3 µL with 5 minutes between 

each injection. After the final injection the molar ratio ([oligo-Dan] / [oligo-Ndi]) 

reached greater than 1.5 and this was sufficient for analysis by the ORIGIN 

software provided with the ITC instrument. Each experiment was performed three 

times and the first data point (injection # 1) of each trial was not considered in the 

analyses. Also for each experiment, blanks were run where oligo-Dan was 

injected into buffer and buffer was injected into oligo-Ndi. Although heats of 

dilution were near zero these were still subtracted from raw titration data to 

account for any slight heat effects from dilution. Integrated data from titration 

runs were fit using a single site model with Ka, ∆H° allowed to vary. The 

stoichiometry of binding (N) was not assumed and this value was allowed to vary 

as well during the fitting process. In all cases N indicated 1:1 binding with values 

within 10 % of 1.00. The c value, as defined in the Wiseman article, fell within 

the acceptable range for the determination of accurate binding constants 

(Wiseman 1998). As mentioned before the monomeric system (4.1:4.2) could not 

be analyzed by ITC due to sensitivity limits. The c value dictated that 

concentrations needed to be prohibitively high to achieve an acceptable signal to 

noise ratio for heat measured. 
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Table 4.3. Complete hetero-duplex binding data.a 

Complex T Conc 
d Ka N value e ∆G° ∆H° ∆S° 

4.1:4.2b 318 0.375 1.3 (0.1) × 102 1 –3.2 (0.01) NA NA 

4.3:4.4 b 318 0.750 2.8 (0.3) × 103 1 –5.1 (0.02) NA NA 

4.3:4.4 c 318 0.750 2.7 (0.1) × 103 0.91 (0.01) –5.0 (0.02) –12.3 (0.3) –23.0 (0.9) 

4.5:4.6 c 318 0.750 4.5 (0.1) × 104 0.97 (0.02) –6.8 (0.02) –17.7 (0.1) –34.2 (0.3) 

4.7:4.8 c 318 0.750 3.5 (0.1) × 105 0.91 (0.01) –8.1 (0.03) –19.3 (0.2) –35.3 (0.6) 

4.1:4.2 b 298 0.375 3.0 (0.1) × 102 1 –3.2 (0.02) NA NA 

4.3:4.4 b 298 0.750 7.5 (0.5) × 103 1 –5.3 (0.03) NA NA 

4.3:4.4 c 288 0.750 1.2 (0.1) × 104 0.98 (0.01) –5.4 (0.01) –10.1 (0.2) –16.4 (0.6) 

4.3:4.4 c 298 0.750 7.6 (0.1) × 103 1.01 (0.04) –5.3 (0.07) –10.4 (0.2) –17.2 (0.5) 

4.3:4.4c 308 0.750 4.7 (0.1) × 103 0.99 (0.01) –5.2 (0.03) –11.1 (0.2) –19.2 (0.1) 
a Units are T (K), Ka (M–1), ∆G° (kcal·mol–1), ∆H° (kcal·mol–1), ∆S° (cal·mol–1·K–1). For 
NMR data, errors represent standard deviations calculated by the HOSTEST program (Wilcox 
1997). For ITC data, errors represent the standard deviation of three trials. b Analyzed by 
NMR. c Analyzed by ITC. d This is the initial concentration (mM), pre-titration, of the Ndi 
unit as oppose to the concentration of the Ndi containing compound. e For titrations analyzed 
by NMR, a binding stoichiometry of 1:1 was determined by inspection of Job plots. For ITC 
analysis the N values represents the best fit stoichiometry of binding (oligo-Dan:oligo-Ndi 
ration) calculated by the ORIGIN software (Microcal, Inc. 1999). NA = Not Applicable since 
1:1 fitting model was used and goodness of fit was used to judge accuracy of calculated 
binding constants. NA = Not applicable. ∆H° and ∆S° derived from the van’t Hoff equation is 
not applicable since enthalpy for our system was shown to be significantly temperature 
dependent. (Naghibi 1995). 

Figures 4.17-4.22 are representative isotherms showing additional 

important ITC data collected during these studies. These are meant to give a 

general idea of the curve shapes, trends, chi-square values, and thermodynamic 

quantities for these oligomers and may provide a helpful reference as to the 

magnitude of heats absorbed or evolved that one could expect when studying 

future naphthyl oligomers. 
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Figure 4.16 Typical buffer into buffer titration that results in extremely small 
heats (0.05-0.30 kcal/mole) released per injection. For 
comparison the first couple of injections (same volume) in a 
tetramer run released 20 kcal/mole of heat. 
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Figure 4.17 Typical tetra-Dan injections into buffer. The small heats 
absorbed were taken into account when processing the tetramer 
runs where tetra-Dan 4.8 was injected into tetra-Ndi 4.7. For all 
ITC data reported, heats of dilutions were subtracted from the 
titration runs to afford the heats associated with binding. 
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Figure 4.18 Unsuccessful reverse titration at T = 298 K where tetra-Ndi 4.7 
was injected into tetra-Dan 4.8. Even a two-sites binding model 
could not accurately describe the experimental data. All reported 
ITC data used a one-site binding model where the N value was 
allowed to vary. 
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Figure 4.19 A representative trimeric system run at T = 298 K. Though the 
chi-square value is 55,000 the fit appeared to be fairly accurate. 
On average the Ka(4.5:4.6) was 1.1 × 105 M-1 for the trimeric 
system at T = 298 K, more than twice as large as that measured 
at T = 318 K.  
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Figure 4.20 A tetrameric system run at T = 298 K. A chi-square value of 
250,000 indicated an inability to describe the binding with a one 
sites model. Only about three-fourths of the curve fit the model 
possibly indicating a switch in binding stoichiometry at excess 
titrant (tetra-Dan 4.8) at room temperature. 
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Figure 4.21 Representative isotherm that afforded excellent results for the 
tetrameric system (T = 318 K). Notice the chi-square value was 
below 50,000 and the N value was within a 10% error of 1.0. 
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SEC. All of the SEC runs were performed by Dr. Thomas Mourey from 

the Eastman Kodak Company (Rochester, NY 14650). Initially, samples of tetra-

Ndi, 4.7, were tested on glycerol propyl bonded-phase Synchropak columns 

(4000, 1000, 500 and 100 Angstrom pore size). Though this type of column is 

silica-based and usually works well for small anionic polymers, samples did not 

elute after 3 injections. A 60 Angstrom 7.8 x 80 mm Bio-Sil guard column (just 

the guard column) was ultimately chosen for SEC runs, which provided minimal 

size separation but near complete sample elution. UV (270 nm) and light 

scattering (90 degrees) were used for detection. Injections were 0.22 mM in 

concentration for each strand and mixtures were heated at 60 °C for 15 minutes 

and injected 10 minutes later. 

Additional chromatographs (with figure captions by Dr. Mourey) is 

included here for future reference should SEC become a standard analytical tool 

in the investigations of water-soluble naphthyl oligomers and possibly polymers. 

The author thanks his labmate, Joseph Reczek for initiating the correspondence 

with Dr. Mourey. In the following chromatographs compound 4a = tetraNdi 4.7 

and 4b = tetraDan 4.8. 
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Figure 4.22   90 degree light scattering chromatograms of individual 
components and 1:1 molar mixture.  Note that the intensity of the 
aggregate peak (1.5 mL) for the 1:1 mixture is less than half that 
of sample 4A, implying that some of the aggregates are broken 
during complex formation. 
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Figure 4.23    90 degree light scattering chromatograms of 1:1 molar complex 
10 minutes after preparation (15 minute of heating, 60°C) 
(green), 24 min (cyan), 79 min (red), 93 min (blue).  The peak at 
1.5 mL is attributed to aggregates; peak at 2.7 mL is from the 
complex. (Author’s comments – magnitude of 90 degree light 
scattered is dependent on size of aggregate or complex. See 
Figure 4.12 for a better quantitative idea of the amount of 
presumed 1:1 complex to aggregate.)  

PAGE. Compounds were dissolved in 50 mM Na phosphate buffer, pH = 

7.0, and the duplexes were heated for 5 minutes at 45˚ C and then left at room 

temperature before loading into lanes. Non-denaturing polyacrylamide gels were 

made (19:1 crosslinker ratio [acrylamide:bis], 20% w/v% acrylamide solution 

from Bio-Rad Inc., Hercules, CA 94547). The gel measured 11 cm in vertical 

height, with a 1 mm spacer between glass plates. 12 µL of oligomer solution was 
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loaded into each well along with 3 µL of 30% glycerol and gels were ran 

vertically at 300V for approximately 2 hr leading to migrations down 

approximately two-thirds the length of the gel. Bands were only faintly visible by 

UV so the gel was subjected to standard Coomassie staining/destaining followed 

by visualization with UV shadowing over a fluorescent TLC plate. 
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CHAPTER 5 

Final (Personal) Remarks  

  
You see things; and you say, “Why?” 

But I dream things that never were; and I say, “Why not?” 
-George Bernard Shaw 

 

After the groundbreaking, lab-making work of R. Scott Lokey creating the 

first aedamer and after the preliminary study of their gelling properties by John 

Nguyen, a good deal of foresight was shown by Mark Cubberley and Andy Zych 

who took it upon themselves to study the fundamental reasons of why and how 

linked Dan and Ndi units “become” aedamers. Though the paths of combinatorial 

library synthesis and supramolecular chemistry must have been tempting them to 

synthesize a whole host of super-sized aedamer derivatives, instead they looked 

towards more modest sized, but ultimately invaluable molecules. 

 While Mark found out why aedamers fold, elucidating the driving forces 

of Dan:Ndi monomer association, Andy probed the minimal folding unit to 

uncover how dimers truly look like when folded. The results of these meticulous 

basic science type of projects still impresses. These studies have expanded our 

thinking of aromatic interactions and revealed that chemists have tremendous 

opportunities to control, more so than previously believed, these noncovalent 

interactions for use in molecular assembly. Due to their conclusions, many 
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aedamer projects were being workshopped shortly after their graduation as we 

were only limited by our imagination and not the properties of our molecules. 

After the studies of Cubberley and Zych there was a promise of 

“designablility” based on their rules of association (Chapter 1). In this dissertation 

it was shown that the same interaction that caused a string of beads to zig-zag 

could also weave the string into a turn (designed folding) and unite two different 

strings together (designed binding). Even the gelling properties (folding) and 

enzyme refolding inhibition (binding) may be revealed, with better analyses, to be 

dependant on (and possibly controllable by) directed aromatic interactions. 

Alas, the subtleties of how to fully manipulate these particular properties 

have thus far eluded us. Keep in mind though that this was the lab’s first pass at 

trying to take advantage of the designability of naphthyl oligomers. Though the 

rules of aromatic association have served me well, true mastery of these systems 

will likely require constant revision of these rules and several leaps of faith; into 

mindsets contrary to previous thinking, into experiments that none of your 

labmates believe will work, and into areas where no one in the group has 

ventured. 

 
Waiting for the time when I can finally say 

That this has all been wonderful but now I'm on my way. 
But when I think it's time 

To leave it all behind 
I try to find a way 

But there's nothing I can say 
To make it stop. 

-Lyrics by Tom Marshall 
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