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Over the past decade, stochastic geometric models, and most notably

the planar Poisson point process (PPP) model, have become popular for the

analysis of spectral efficiency in wireless networks, in both the D2D and the

cellular contexts [1]. By modeling base station (BS) and user locations as

spatial point processes, stochastic geometry has recently been recognized as

a tractable and efficient analytical tool to quantify key performance metrics.

This tool provides a natural way of defining and computing macroscopic prop-

erties of multiuser information theory. These properties are obtained by aver-

aging over all node patterns found in a large random network of the Euclidean

plane. For example, some key performance metrics such as signal to interfer-

ence and noise ratio and data rate depend on the network geometric config-

urations. This tool has thus been widely adopted for analyzing the network

performance and broadening network design.
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This thesis proposes new models to represent several new scenarios.

Three main scenarios are considered: 3-D inbuilding networks, MIMO ad-

hoc networks, and multihop communication under mmWave networks. To

do so, mathematical tools such as Poisson point processes, Poisson line pro-

cesses, Boolean models and Poisson bipolar models are used. Each model is

1) generative in that it has a clear physical interpretation, 2) leads to explicit

analytical representations of important wireless performance metrics, and 3)

highly parametric, with parameters expressing the geometric characteristic of

the elements of networks. Physical interpretations from these models are quite

different from previous results.

The core of this thesis is focused on the effects of correlated shadowing.

Shadowing is the effect that the received signal power fluctuates due to objects

obstructing the propagation path. By introducing an independent shadowing

term over links, it is possible to model the effect of shadow fading. Most

previous papers analyzing urban networks assume that shadowing fields are

independent over links. With this assumption, it is possible to derive simple

closed-form expressions of important network performance metrics. However,

this assumption cannot capture that shadowing fields are spatially correlated.

This thesis goes beyond the independent shadowing approximation and ana-

lyzes the effects of correlated shadowing on various performance metrics.
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Chapter 1

Introduction

In order to evaluate the performance of wireless networks, system level

simulation is crucial. By implementing a vast set of network topologies, wire-

less channel models, network protocols and traffic models, system level sim-

ulation can accurately evaluate key performance metrics. However, a major

limitation of simulations is that each wireless scenario should be simulated

separately when different system parameters are used. As networks become

complicated, system level simulation consumes much time and becomes ex-

pensive.

Thus, it is necessary to capture essential characteristics of wireless net-

works with high accuracy and low complexity. As an alternative to system

level simulation, stochastic geometry is now recognized as a tractable analyt-

ical tool for deriving key performance metrics of networks by utilizing spatial

point process to model the location of users and base stations. In this ap-

proach, the locations of the network elements are seen as the realizations of

some point processes. Stochastic geometry, in particular point process the-

ory, can provide an analytically approach for characterizing important key

metrics of wireless networks and for performing optimizations more efficiently
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than simulation. Over the last few decades, several studies in this field have

contributed to a better understanding of network behaviors.

The main goal of this thesis is to provide new insights on some physical

phenomena (e.g. correlated shadowing) and wireless network scenarios (e.g.

3-D in-building networks) which have not been discussed sufficiently in the

stochastic geometric framework.

This introductory chapter consists of four parts. Section 1.1 discusses

some effects of the shadowing in modern wireless networks whereas 1.2 dis-

cusses MIMO ad-hoc networks, respectively. Section 1.3 summarizes the key

contributions of this dissertation. Finally, Section 1.4 presents how the rest of

this dissertation is organized.

1.1 Analysis of Blockage Effects

The main focus below is on the penetration loss of radio signals due

to obstruction by obstacles. Such blockage effects make it hard to predict

network performances and become more severe in higher frequencies such as

millimeter-wave (mmWave) networks. Therefore, the modeling and analysis

of blockage are crucial in modern wireless networks.

Typically, blockage effects are incorporated into the shadowing field,

and shadowing of each link is often modeled by using a log-normal random

variable with some measured variance. However, this approach cannot capture

the effect of network topologies. To understand the effect of network topolo-
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Figure 1.1: An example of Boolean model. Triangles are centers of blockages and
squares are base stations.

gies, many previous papers took a stochastic geometry approach as in [2–4].

Especially, [4] proposed a new mathematical framework to model ran-

dom blockages and analyzed the impact on network performance. In this

paper, the authors modelled the obstacles by a Boolean model [5]. More pre-

cisely, obstacles have a random shapes and centers which form a homogenous

Poisson point process as in Figure 1.1. In this figure, the shape of obstacles is

a disc with a random radius and centers of disc (triangles) and users (squares)

form independent homogeneous Poisson point processes (PPP). By leverag-

ing the random shape theory, the authors obtained that the distribution of

the number of obstacles obstructing a link is a Poisson random variable with
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Figure 1.2: Comparison of the correlated shadowing model and the independent
shadowing model. A boolean model is generated per each link under the independent
model, while is generated per each user process under the correlated model.

mean which depends on its length of the link. By incorporating this result into

a path loss model, the authors analyzed the performance of cellular networks

such as coverage probability, and the average rate. This approach provides

significant intuitions to interpret network behaviors and the impact of shad-

owing effects. Also, important metrics are obtained by simple closed form

expressions.

Shadowing is spatially correlated. For example, let us consider two

nearby links with the same length as in Figure 1.2. If the probability that

one of these two line segments, AB, is not blocked by any obstacles is p, the

probability that both two links, AB and CD, are not blocked is almost p under
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the correlated shadowing model (or in real environment), while that proba-

bility is p2 in the independent shadowing model. So, the previous stochastic

models cannot capture this spatial shadowing correlation since they assign in-

dependent shadowing coefficients over links. Motivated by this, the first three

contributions of this dissertation investigate the effect of correlated shadowing

by proposing new models.

In Chapters 2, 3, and 4, I propose new mathematical models which aim

capturing the shadowing correlations. In Chapter 2, I propose a new model for

3-D in-building network, called the Poisson building. By leveraging Poisson

line processes, walls (obstacles) parallel to xy, yz, and zx planes are randomly

constructed. This model leads to explicit analytical representations of the

interference field and of its correlation induced by common obstacles. This

chapter shows that the distributions of interference of the correlated and the

independent shadowing are quite different. Chapter 3 focuses on the effect of

shadowing correlation on wireless network performance. I propose a concept of

Shadowing cell where base stations in the same Shadowing cell have the same

shadowing random variable. Interestingly, previous independent shadowing

approximation leads to pessimistic evaluation for a wide variety of metrics

such as coverage probability and Shannon throughput. Chapter 4 analyzes

connectivity of multihop communications in mmWave bands. This chapter

provides some connectivity results in the correlated and independent blockage

models.
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1.2 MIMO Communications in Ad-Hoc Networks

The capacity of MIMO mobile ad-hoc networks (MANET) has been

thoroughly analyzed. MANETs are self-organizing wireless networks in which

mobile devices do not need any infrastructure such as base stations and MIMO

is a method for multiplying the capacity of a wireless link. It has been stud-

ied where a finite number of transmitter and receiver pairs communicate in a

deterministic network topology. To increase the capacity, optimal power al-

location strategies were proposed in [6–8]. However, the common assumption

in these studies is that the distances between any two nodes in the network

are deterministic or identical. Thus, this approach cannot be used in large

random MANETs to evaluate the gain of MIMO transmission.

To model such large random MANETS, a Poisson network has been

considered, in which the locations of interferers form a realization of a ho-

mogenous PPP. Under this network model, the transmission capacity [9], which

quantifies the maximum allowable spatial density of successful transmissions

per unit area given an outage constraint, was characterized. With the trans-

mission capacity, [10] showed that interference cancellation techniques at a

receiver employing multiple antennas can provide a linear increase of the trans-

mission capacity with respect to the network density. In [11], it was shown

that a single stream transmission is optimal under the MIMO setting.

Transmission capacity is a natural and intuitive metrics for analyzing

wireless networks under such a Poisson configuration. However, it cannot

capture the effects of rate adaptation techniques. Motivated by this, Chapter
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5 defines Ergodic spectral efficiency under Poisson configuration with MIMO

transmission techniques and analyze network behaviors. Especially, Ergodic

spectral efficiency quantifies the achievable Shannon transmission rate while

transmission capacity computes a maximum successful transmission density

under a reliability constraint. Chapter 5 will show that a new insight such as

gains from spatial multiplexing transmission can be obtained with this new

performance metric.

1.3 Contributions

This dissertation mainly aims at utilizing stochastic geometry to model

and analyze wireless networks. The main technical contributions of this dis-

sertation are covered from Chapter 2 to 5, and can be summarized as follows.

Modeling a New 3-D In-building Wireless Networks with Cor-

related Shadowing

This topic is addressed in Chapter 2. In this work, I present a new

stochastic geometric model, namely Poisson building, for representing 3-D in-

building wireless networks.

The main technical challenge for obtaining a tractable 3-D spatial

model for in-building wireless networks lies in the proper handling of the shad-

owing correlation created by the static physical objects compared to the clas-

sical planar models such as [12]. As most of the planar models are designed

to study outdoor networks, the shadowing correlation is typically ignored and
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path loss is simply modeled through independent log-normal shadowing coef-

ficients [2,3] or distance-dependent function combined with independent shad-

owing random variables [4, 13].

The Poisson building model explicitly handles the shadowing correla-

tion. This model is compatible with the empirical lognormal shadowing model

in that the marginal shadowing component converges to lognormal distribution

as the link distance grows. Under this model, I demonstrate the tractability

by deriving the interference distribution and its spatial correlation. This leads

to analytical characterizations of the SINR distributions of D2D underlay net-

works and the coverage probability of in-building networks. I also consider a

couple of important variants, namely the finite Poisson building and the semi-

infinite Poisson building. The latter allows one to analyze the interference in

a window office, which is a boundary office in a large semi-infinite building.

The analysis of these variants further reveals fundamental differences between

3-D and 2-D correlated shadowing analysis.

On the Effect of Shadowing Correlation on Wireless Network

Performance

As I said above, many previous studies use independent shadowing ap-

proximation to analyze shadowing effects in model wireless networks since it

is possible to obtain simple exact expressions of network performances with

this approximation. Motivated by this, in Chapter 3, I investigate the ef-

fect of shadowing correlation on important wireless network performances to

complement the independent shadowing approximation.
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To do so, I propose a new shadowing field model to capture spatial cor-

relations. In order to represent the spatial correlation property, I provide two

intuitive network examples where shadowing variables are assigned based on

the network topology. With these network examples, I compute and compare

the interference distributions under the correlated and independent shadow-

ing models in the stochastic ordering sense. To provide a fair comparison,

the same marginal shadowing laws are used in both cases. I first compute

the Laplace transforms of the interference observed by the typical user under

both the correlated and the independent shadowing models. Then, I provide

stochastic ordering relation of three widely used metrics (coverage probabil-

ity, Shannon throughput, and local delay) which will be shown completely

monotone functions of interference between two shadowing models by using

well known results on the relation between the Laplace transform ordering and

completely monotone functions.

From these ordering relations, I conclude that when ignoring the spatial

correlations of shadowing, widely used metrics such as coverage probability,

Shannon throughput, local delay are systematically evaluated in a possibly

quite pessimistic way.

Multihop Connectivity of Millimeter-Wave Networks

Chapter 4 presents some connectivity results of mmWave multihop

communications. Even though multihop communication is a promising tech-

nique to improve coverage and network connectivity, it has not been sufficiently

analyzed under mmWave networks.

9



In Chapter 4, the main analysis is focused on network connectivity, and

it concerns both ad-hoc and cellular multihop networks. To model and analyze

the blockage effect, a Poisson-Boolean model is used. In order to get simple an-

alytical expressions, I first assume blockage process is independent over links,

and then consider effects of blockage correlation, which is closer to real en-

vironments. I refer to these as independent blockage model and correlated

blockage model, respectively. Under the independent blockage model, I obtain

exact expressions for the distributions of the users connected to the typical

user or to the typical base station. Especially, I provide exact expressions of

the mean numbers of k-hop paths starting from (or ending to) the typical user

and the distribution of users connected to the typical base station in 2 hops.

Then, the condition of the user density for having a cluster of infinitely many

connected users is obtained by using percolation properties of the random con-

nection model. Finally, the correlated blockage model is also considered. It

is shown that the mean numbers of users connected to the typical user, the

typical base station or any base stations in one hop are the same under the

independent and correlated blockage models. Unlike the independent blockage

model, even though the user density is high enough, there exists no cluster of

infinitely many connected users under certain blockage conditions.

Scaling Laws for Ergodic Spectral Efficiency in MIMO Ad-hoc

Poisson Networks

The benefits of multiple antenna communication in random wireless

networks are considered in Chapter 5. In many previous papers, MIMO ad-
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hoc networks have been analyzed in stochastic geometric model. Most of them

focused on transmission capacity as in [11] which is constrained by a reliability

condition, and not many papers analyzed Shannon throughput of MIMO ad-

hoc networks. Motivated by this, I analyze ergodic spectral efficiency of MIMO

ad-hoc networks under several network scenarios.

The setting is that of the Poisson bipolar model introduced in [14],

which is a natural model for ad-hoc and device-to-device (D2D) networks.

With knowledge of channel state information at receiver, I derive ergodic spec-

tral efficiencies with a function of the number of antennas, the node density,

and the path loss exponent, when a zero forcing receiver or a zero forcing

successive interference cancellation receiver are used.

The primary finding is that, with knowledge of channel state informa-

tion between a receiver and its associated transmitter, by zero-forcing suc-

cessive interference cancellation, and for appropriate antenna configurations,

the ergodic spectral efficiency can be made to scale linearly with both 1) the

minimum of the number of transmit and receive antennas, 2) the density of

nodes, and 3) the pathloss exponent. This linear gain is achieved by using the

transmit antennas to send multiple data streams (e.g. through an open-loop

transmission method) and by exploiting the receive antennas to cancel inter-

ference. Further, when a receiver can learn channel state information from a

certain number of near interferers, higher scaling gains can be achieved when

using a successive interference cancellation method. A major implication of

the derived scaling laws is that spatial multiplexing transmission methods are
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essential for obtaining better and eventually optimal scaling laws in multiple

antenna random wireless networks. This is a new insight which is not obtained

with transmission capacity view. Since transmission capacity is a performance

metric with a reliability constraint, transmitting one data stream is optimal

for enhancing reliability.

1.4 Organization

The rest of dissertation is organized as follows. Chapter 2 introduces

the Poisson building model, a 3-D tractable comprehensive 3-D spatial model

for in-building networks. Chapter 3 analyzes the effect of correlated shadow-

ing and provides the ordering of some important performance metrics under

spatially correlated and independent assumptions. Chapter 4 presents connec-

tivity results on multihop relaying in mmWave networks. Chapter 5 provides

new insights on MIMO ad-hoc networks using Ergodic spectral efficiency. The

dissertation is concluded in Chapter 6 by summarizing the key contributions

and discussing potential research directions.
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Chapter 2

A 3-D Spatial Model for In-building Wireless

Networks with Correlated Shadowing

In this chapter1, I propose Poisson building model which captures the

complex in-building shadowing correlations.

2.1 Introduction

Analyists predict in-building wireless networking to be one of the fastest

growing markets of the wireless industry. Since traffic increase is expected

to come from indoor networks, mobile operators are investigating in-building

network deployment in recent and upcoming years [18]. The potential of the

in-building wireless market largely comes from the complement it offers to

conventional outdoor network deployments, and from the exponential growth

of mobile traffic demand. On the contrary, the spatial modeling of in-building

wireless networks largely remains an uncharted area despite the great progress

in the planar (2-D) modeling of wireless networks over the past decade. This

contribution presents a first attempt toward getting a tractable comprehensive

1This chapter has been published in [15, 16]. I am the primary author of these works.
Coauthor Dr. Xinchen Zhang has provided many discussions and insightful feedbacks to
this work, and Dr. Françcois Baccelli is my supervisor.
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Figure 2.1: One realization of Poisson
grids for 2-D and 3-D. Typical room is
highlighted with a solid box.

1 2

Figure 2.2: Transmitter deployments in
2-D. Room 1 and 2 share one line seg-
ment but physically 2 transmitter pro-
cesses along that line are built and as-
signed one to room 1 and the other to
room 2.

3-D spatial model in this context.

2.1.1 Related Works

2.1.1.1 3-D Network Models

The 3-D Poisson building model is not the only 3-D model for wireless

networks; nor the simplest one. One obvious alternative is to generalize the

usual 2-D model directly by distributing nodes as a Poisson point process in the

3-D space and applying a distance-based path loss function [17,18]. This will

be referred to as the free-space 3-D model. While such a model is analytically

convenient, it may appear to be inadequate in some contexts. Distance-based

path loss models are usually derived using free space propagation assumptions

(Friis’ equation) and a simplified ground reflection model (e.g., the 2-ray model

or the Hata model [19, 20]). Therefore, applying this model to the 3-D in-

building context amounts to ignoring the major path loss contributor, namely

(spatially correlated) blockage. In contrast, the Poisson building model is built
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in order to represent blockage effects and to provide a compact mathematical

model for in-building networks with variable size rooms.

The free-space 3-D and the Poisson building are compared in Sect.

2.5.3, where important metrics pertaining to the distribution of interference

created by the very same collection of wireless nodes are shown to lead to

arbitrarily large discrepancies.

2.1.1.2 Ray-tracing

Accurate in-building network analysis can be achieved by 3-D ray-

tracing [21, 22]. As a site-specific approach, 3-D ray-tracing requires sophis-

ticated software packages and an exact building geometry. In contrast, the

stochastic geometric modeling approach of this chapter is based on analyzing

a random structure of obstacles with a small number of key parameters. It

thus works without a complete description of the propagation environment

and is more flexible in obtaining general design guidelines for 3-D in-building

networks. In fact, in the long term, this approach might provide a theoretically

justified and rather simple alternative to 3-D ray-tracing software platforms

which are often difficult to build and use.

2.1.2 Contributions

Compared to classical planar models, the main technical challenge for

obtaining a tractable 3-D spatial model for in-building wireless networks lies in

the proper handling of the shadowing correlation created by the static physical
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objects that shape the way wireless signal propagates and attenuates over the

Euclidean space. As most of the planar models are designed to study outdoor

networks on the scale of a city, the shadowing correlation is typically ignored

and path loss is simply modeled through independent log-normal shadowing

coefficients [2,3] or a distance dependent function combined with independent

fading/shadowing random variables [4, 13]. In contrast, in-building networks

are typically much denser and heavily-shadowed by physical objects (floors

and walls). The scale of these objects is comparable and often much larger

than inter-node distances, resulting in highly-correlated shadowing in space.

This work presents the Poisson grid model, which explicitly handles

the shadowing correlation, and is one of the main challenges of in-building

network modeling. The Poisson grid is dimension-scalable in that it can be

constructed and analyzed for 2-D, 3-D and even higher dimensional networks

in a consistent fashion (Sect. 2.3.1, 2.3.2). The prominent application of the

Poisson grid is its 3-D version, also referred as the Poisson building, which is

particularly useful to study the performance of 3-D wireless networks in large

buildings. This model is compatible with the empirically supported lognormal

shadowing model in that the marginal shadowing component converges to

lognormal distribution as the link distance grows (Sect. 2.3.3).

In this chapter, the tractability of the Poisson building model is pro-

vided by explicitly deriving the interference distribution and its spatial cor-

relation (Sect. 2.4, 2.5). This in turn leads to analytical characterizations of

the success probability (SINR distributions) of D2D underlay networks and
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the coverage probability of in-building cellular networks (Sect. 2.6). Finally,

a couple of important variants, namely the finite Poisson building and the

semi-infinite Poisson building (Sect. 2.7) are considered. The latter allows

one to analyze the interference in a window office, which is a boundary office

in a large semi-infinite building. The analysis of these variants further reveals

fundamental differences between 3-D and 2-D correlated shadowing analysis.

2.2 System Model

2.2.1 The Poisson Grid

The Poisson grid is constructed on the n-dimensional2 Euclidean space

Rn, n ∈ N∩ [2,∞). It consists of a collection of (hyper-)planes perpendicular

to the axes of the Euclidean space. This is a generalization of the (2-D) Man-

hattan Poisson Line Process (MPLP) [23]. n Cartesian axes are considered and

named them v1, v2, . . . , vn. Independent homogeneous Poisson Point Processes

(PPP) are built along the v1, v2, . . . , vn-axis, with intensities µ1, µ2, . . . , µn, re-

spectively. At each point of these processes, an infinite hyperplane grows per-

pendicular to the axis on which the point is located. This random structure

is denoted by Ψ =
⋃n
i=1 Ψi, where Ψi is the collection of hyperplanes grown

from the points on vi. This divides the space into infinitely many rectangular

boxes or rooms. Fig. 5.1 gives an example of the 2-D (MPLP) and the 3-D

(Poisson building) cases.

2Below, n will be 2 or 3, but since there is no cost handling the general case, this chapter
keeps n general in the model and most of the derivation.
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2.2.2 Transmitters on Room Corners and Ceiling Lines

To reflect realistic network deployments, it is assumed that all trans-

mitters (infrastructure nodes, also referred as BSs) are located on some of

the one dimensional facets of Ψ, as in [15, 24]. This is inspired by the fact

that most real-life wireless infrastructure nodes (small cell BSs or WiFi access

points) are often mounted along ceiling lines of rooms or placed at the corners

of rooms. Since each intersection line segment meets 2n−1 rooms, 2n−1 inde-

pendent transmitter processes are built along each line segment and assign

each of them to one adjacent room as in Fig. 2.2. For example, in 2-D as in

Fig 2.2, two transmitter processes are built on the wall between room 1 and

room 2, with the left one representing the one in room 1 and the right one in

room 2.

On the lines parallel to vi (i ∈ [n])3, the transmitters are distributed

as a homogeneous PPP with intensity λi.
4 The resulting point process (trans-

mitters) is denoted by Φ, which is a stationary Cox point process in Rn. The

3[n] is used to denote the set [1, n] ∩ N.
4Assuming each of the adjacent 2n−1 processes having the same density λi is only for

convenience and can be easily generalized. In fact, as will become obvious later in the
chapter, all of the results will stay the same if different densities λi,1, λi,2, . . . , λi,2n−1 to

these processes are applied but keep 2n−1λi =
∑2n−1

j=1 λi,j .
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mean number of BSs per unit volume5 is

λavg = (mean number of BSs in a room)
(mean volume of a room)

=
(∑n

i=1
2n−1λi
µi

)(∏n
j=1 µj

)
. (2.1)

2.2.3 Path Loss Model

2.2.3.1 Blockage-Based Path Loss Model

A blockage-based path loss model is considered, where the received sig-

nal power at y from the transmitter at x (x, y ∈ Rn) is

Px→y = Ptxh
n∏
i=1

KNi
i , (2.2)

where Ptx is the transmit power, h is the channel fading coefficient between x

and y, Ki ∈ [0, 1), i ∈ [n] is the penetration loss of the hyperplanes perpendic-

ular to the vi axis, and Ni, i ∈ [n] is the number of hyperplanes grown from the

point process on the vi axis between x and y. To be precise, Ni = |xy ∩ Ψi|,

where xy is the open line segment connecting x and y and | · | denotes the

cardinality of a set. Without loss of generality, Ptx = 1 is assumed, which does

not affect the SINR distribution after proper rescaling of the thermal noise

power.

One possible concern on this model is the absence of distance-based

path loss term. This is justified by the fact that blockage dominates distance-

5This will be used in Sect.2.5.3 to compare SIR distribution of our Cox point process
model in the Poisson grid and the previous PPP models in free-space. (2.1) is the ratio of
the mean number of BSs in one room to the mean size of a room.
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based loss in indoor environments, which aligns with intuition and is corrob-

orated by ray-tracing studies [25]. However, this path-loss model does not

neglect the distance at all. In fact, the exponents Nx, Ny, Nz are functions of

the distance between TX and RX. Especially, Nx is a Poisson random variable

with mean µxd cos(θx) where d is ‖TX − RX‖ and θx is angle between the

link and x-axis.

2.2.3.2 Compatibility with Log-normal Shadowing

For an arbitrary link x → y with given Euclidean length ‖x − y‖ =

d, and angle (w.r.t. vi, i ∈ [n]) ϑi, Ni is Poisson distributed with mean

µid cos(ϑi). Thus, the path loss can be rewritten as exp
(
−
∑n

i=1Ni log( 1
Ki

)
)

where log( 1
Ki

) > 0. As µi →∞ or as d→∞, Ni can be well approximated by

a normal random variable. In other words, combining a blockage-based path

loss model and the Poisson grid indoor geometry creates a marginal shadowing

distribution which is lognormal, and thus connects the model with the data

supported lognormal shadowing.

2.2.4 Coverage and Success Probability

This chapter considers two communication scenarios. The first is a

cellular downlink scenario, and deriving the coverage probability P[SINRc > θ]

is considred, where

SINRc ,
Pd→r∑

t∈Φ\{d} Pt→r + σ2
.
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Here, d is the serving BS, r the receiver, and σ2 the thermal noise power. This

is the probability that a chosen user observes an SINR higher than a threshold

θ. As a function of θ, P[SINRc > θ] can be interpreted as the complementary

cumulative distribution function (CCDF) of SINR.

A D2D underlay scenario is also considered, where a mobile user at-

tempts to connect to another user using the cellular spectrum. the success

probability, P[SINRs > θ], is analyzed where

SINRs ,
Plink∑

t∈Φ Pt→r + σ2
,

with Plink being the received power of the target D2D link.

2.3 Interference in the Typical Room

Define the total interference as the sum of the received power from all

transmitters. When the channel coefficients are h = 1 (i.e., without fading),

the interference is the same at any point of a given room according to our

model. Under Rayleigh fading, (i.e., h ∼ exp(1)), the interference measured

at two points in the typical room is almost surely different due to small-scale

fading, but the first moment of interference is the same. This section focuses

on the interference in the typical room (formally defined below), and give the

moments and the distribution of the total interference.

Precisely, the intersection points of n-orthogonal planes are considered.

This stationary point process is denoted by ξ and considered the Palm version

of ξ. Under its Palm version, ξ has a point at the origin of Rn. This part
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in the 3-D case

Distant Parameter: δ
0 1 2 3 4 5 6 7

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

0

0.2

0.4

0.6

0.8

1
Interference Correlation Coefficient

(0,0,0) & (0,0,δ), K = -10dB
(0,0,0) & (0,0,δ), K = -20dB
(0,0,0) & (0,0,δ), K = 0
(0,0,0) & (δ,δ,δ), K = -10dB
(0,0,0) & (δ,δ,δ), K = -20dB
(0,0,0) & (δ,δ,δ), K = 0

Figure 2.4: Interference Correlation Co-
efficient between the typical room and
room (0, 0, δ) (= ρ(0,0,δ)) and the typi-
cal room and room (δ, δ, δ) (= ρ(δ,δ,δ)) in

the 3-D case where ri = λi
µi

= 0.1 and
Ki = K for i = 1, 2, 3

labels rooms by integers of the form (i1, i2, . . . , in) ∈ Zn. (0, 0,. . . , 0) is the

one containing the origin and located in the positive orthant. This chapter

refers to this room as the typical room, and label the other rooms by their

relative position with respect to the typical room. Intuitively, the typical

room is a uniformly randomly chosen room in the Poisson grid.

In the case without fading, the interference observed in room (i1, i2, . . . , in)

is denoted by I(i1,i2,...,in) ,
∑

x∈Φ Px→r, where r is any point in room (i1, i2, . . . , in).
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2.3.1 Interference Moments

Proposition 1 (Mean Interference). In the absence of fading (h = 1), the

mean interference observed in the typical room is

E[I(0,0,...,0)] = 2n−1
(∑n

j=1
λj
µj

)(∏n
i=1

1+Ki
1−Ki

)
.

Proof. Let N(i1,i2,...,in) be the number of the BSs in room (i1, i2, . . . , in). Denote

the side lengths of this room by d1i1
, d2i2

, . . . , dnin where djij , (j ∈ [n]) are

independent exponential random variables with mean 1
µj

, denoting the length

of the side parallel to the vj-axis. For a given structure Ψ,

E[N(i1,i2,...,in)] = E[E[N(i1,i2,...,in)|Ψ]]

= E[2n−1
∑n

j=1 λjdjij ] = 2n−1
∑n

j=1
λj
µj
.

Since the attenuation from room (i1, i2, . . . , in) to the typical room is
∏n

j=1K
|ij |
j ,

E[I(0,0,...,0)] =
∑

(it)nt=1∈Zn
E[N(i1,i2,...,in)]

∏n
j=1K

|ij |
j

= 2n−1
(∑n

j=1
λj
µj

)(∏n
i=1

1+Ki
1−Ki

)
.

The last step comes from the fact that
∑

i∈ZK
|i| = 1+K

1−K .

Example 1. The mean interference observed in the typical room is

2
(∏2

i=1
1+Ki
1−Ki

)(∑2
i=1

λi
µi

)
for n = 2, and 4

(∏3
i=1

1+Ki
1−Ki

)(∑3
i=1

λi
µi

)
for n = 3.

In the 3-D case, when there are no BS along the v3 axis, (i.e. λ3 = 0), the ratio

of the interference in the 3-D typical room to that of the 2-D typical room is

2
(

1+K3

1−K3

)
. The factor 2 comes from the fact that there are twice more BSs in
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any of the v1, v2 directions in the 3-D model (e.g., those on the ceiling lines,

and those on the floor lines); 1+K3

1−K3
reflects the interference leaked from other

floors.

Fig. 2.3 illustrates the mean interference observed by the typical room

in the 2-D and the 3-D cases. This part assumes all penetration losses are the

same (i.e., Ki = K, ∀i) and the ratios of the transmitter density to the wall

density are identical (i.e. ri = λi
µi

= r, ∀i). Since there are more edges in a

higher dimensional room, the mean interference of 3-D is larger than that of

2-D, under the same K and r. Also, as K decreases, the mean interference in

3-D decreases faster compared to that of 2-D. As K goes to 0, the hyperplanes

shield the interference from other rooms perfectly. So, when K → 0, the mean

interference converges to the mean number of the transmitters in the typical

room of the Poisson grid.

Proposition 2 (Interference Joint Moment). In the absence of fading (i.e.,

h = 1), the joint moment of the interference between the typical room and

room (i1, i2, . . . , in) is

E[I(0,0,...,0)I(i1,i2,...,in)] = 2n−1
(∑n

j=1
λj
µj

)
(
∏n

l=1 bl(il))

+ 22n−2 (
∏n

l=1 al)

((∑n
j=1

λj
µj

)2

+
(∑n

j=1

λ2
j bj(ij)

µ2
jaj

))
,

where

ai =
(

1+Ki
1−Ki

)2

, bi(x) = K
|x|
i

(
|x|+ 1+K2

i

1−K2
i

)
,

for i ∈ [n].
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Proof. See Appendix 2.8.1.

Corollary 1 (Interference Variance). By Propositions 1 and 2 with (i1, i2, . . . , in) =

(0, 0, . . . , 0), the variance of the interference observed in the typical room is

Var[I(0,0,...,0)] = 2n−1
(∑n

j=1
λj
µj

)
(
∏n

l=1 bl(0))

+ 22n−2
(∑n

j=1

λ2
j bj(0)

µ2
jaj

)
(
∏n

l=1 al) .

Remark 1. Due to the stationarity of the Poisson grid, the correlation co-

efficient between the typical room and room (i1, i2, . . . , in) is ρ(i1,i2,...,in) =

Cov[I(0,0,...,0), I(i1,i2,...,in)]/Var[I(0,0,...,0)].

Fig. 2.4 shows the interference correlation coefficient in the 3-D case

(ρ(0,0,δ) and ρ(δ,δ,δ)) where δ ∈ N∪{0}. As expected, when the penetration loss

K goes from -10dB to 0 (-∞dB), ρ(0,0,δ) and ρ(δ,δ,δ) decrease. Furthermore, 1)

ρ(0,0,δ) does not go to zero when K = 0 (i.e., no interference leakage between

rooms), and 2) ρ(0,0,δ) does not go to zero even if δ goes to infinity. Both

observations can be explained by the correlation of the room sizes along the

corresponding axis directions. Intuitively, a large room is more likely next to

a large room due to the shared building frame. On the other hand, ρ(δ,δ,δ)

goes to zero if K goes to zero and δ goes to infinity as the typical room and

room (δ, δ, δ) do not share side(s). This intricate behavior of interference cor-

relations highlights the impact of room size correlation in a typical in-building

environment. This impact is well manifested in Fig. 2.4, but is impossible to

capture using conventional (free-space) models.
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Remark 2 (Scale-invariance). By Propositions 1, 2 and Corollary 1, the in-

terference moments of two Poisson grids are the same if the ratios of the trans-

mitter density to the wall density ri = λi
µi
, i ∈ [n] as well as the penetration

losses Ki, i ∈ [n] are identical.

2.3.2 Interference Distribution

Proposition 3 (Interference Distribution without Fading). Without fading

(i.e., h = 1), the Laplace transform of the interference observed in the typical

room is

LI(0,0,...,0)
(s) =

∏n
k=1 f

(
s, λk

µk
,
(
K(i+k)≡n

)n−1

i=0

)
,

where m ≡ n denotes m modulo6 n, and

f (s, x, (Ki)
n
i=1) = f(s, x,K1, K2, . . . , Kn) =∏

i1∈Z

(
1 + 2n−1x

∑
(ip)np=2∈Zn−1(1− e−s

∏n
q=1 K

|iq |
q )
)−1

.

Proof. The Laplace transform of the interference given Ψ is

LI(0,0,...,0)|Ψ(s) =
∏n

k=1 fc

(
s, λk,

(
K(i+k)≡n

)n−1

i=0

)
,

where

fc
(
s, x, (Ki)

n−1
i=0

)
=∏

i1∈Z

(
2n−1x

∑
(ip)np=2∈Zn−1(1− exp(−s

∏n
q=1 K

|iq |
q ))

)
.

6In this chapter, the range of modular operation by an integer N is 1 to N .
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Since the random variable dij are i.i.d. exponential, the Laplace transform by

deconditioning is obtained with respect to the Poisson grid.

Let Ĩ(i1,i2,...,in) be the interference in room (i1, i2, . . . , in) when the chan-

nel is subject to Rayleigh fading.

Proposition 4 (Fading). Under Rayleigh fading (h ∼ exp(1)), the Laplace

transform of the interference observed in the typical room is

LĨ(0,0,...,0)
=
∏n

k=1 f̃
(
s, λk

µk
,
(
K(i+k)≡n

)n−1

i=0

)
,

where

f̃ (s, x, (Ki)
n
i=1) = f̃(s, x,K1, K2, . . . , Kn)

=
∏

i1∈Z(1 + 2n−1x
∑

(ip)np=2∈Zn−1(1− 1

1+s
∏n
q=1 K

|iq |
q

))−1.

Proof. The proof is analogous to that of Proposition 3, except that the in-

terference from room (i1, i2, . . . , in) is the sum of i.i.d. exponential random

variables with mean
∏n

m=1K
|im|
m .

This part also provides the joint interference distribution at two rooms.

Characterizing the joint distribution is important for analyzing the Quality of

Service (QoS) of users when they travel across rooms and is non-trivial under

the previous stochastic geometric models.

Proposition 5 (Joint Laplace Transform). Under Rayleigh fading (i.e., h ∼

Exp(1)), the joint Laplace transform of the interference in the typical room
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and in room (l1, l2, . . . , ln) is

LĨ(0,0,...,0)Ĩ(l1,l2,...,ln)
(s1, s2)

=
∏n

k=1 f̃j

(
s1, s2,

λk
µk
,
(
K(i+k)≡n

)n−1

i=0
, (li)

n−1
i=0

)
,

where

f̃j (s1, s2, x, (Ki)
n
i=1 , (li)

n
i=1)

=f̃j(s1, s2, x,K1, K2, . . . , Kn, l1, l2, . . . , ln)

=
∏

i1∈Z ( 1 + 2n−1x
∑

(ip)np=2∈Zn−1(
1− 1

1+s1
∏n
q=1K

|iq |
q

1

1+s2
∏n
q=1 K

|iq−lq |
q

)

)−1

,

and the subscript j stresses the joint distribution.

The proof follows the line of thought in [26] and is omitted.

2.4 Interference at a Typical User

At the beginning of Section 2.3, the point process ξ is defined and

discussed its Palm distribution. This section is focused on the stationary

distribution case or equivalently takes the perspective of the typical user. The

typical user is located at the origin of the n-dimensional Euclidean space, and

the room containing origin has biased size, which is the 3-D analogue of the

1-D bus paradox [27]. Without fading (i.e., h = 1), the interference at the

typical user is denoted by Io ,
∑

x∈Φ Px→o, where o is the origin. It is denoted

by Ĩo under Rayleigh fading.
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Figure 2.5: Labeling system for Section 2.4

As indicated in Fig. 2.5, a different labeling system is used for the

stationary distribution of ξ. The main difference between this labeling system

and the one in Section 2.3 is that the size of edges of the room containing o

is the sum of two exponential random variables and this room is divided into

2n pseudo rooms. By construction, each of the pseudo rooms has identically,

exponentially distributed sides.

2.4.1 Interference Distribution

Proposition 6 (No fading). Without fading, i.e., h = 1, the Laplace transform

of the interference Io observed by a typical user is

LIo(s) =
∏n

k=1 g
(
s, λk

µk
,
(
K(i+k)≡n

)n−1

i=0

)
,
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where

g (s, x, (Ki)
n
i=1) = g(s, x,K1, K2, . . . , Kn)

=
∏

i1∈N

(
1 + 2n−1x

∑
(ip)np=2∈Zn−1(

1− exp(−s
∏n
q=1K

|iq |
q

K1
)
))−2

.

Proof. The proof is analogous to that of Proposition 3. The main difference

is that the edges of the typical room have lengths distributed like the sum of

two exponential random variables.

By differentiating the formula of Proposition 6, the following result is

obtained.

Proposition 7. In the absence of fading, the mean interference observed at

the typical user is

E[Io] = 2n−1
(∏n

i=1
1+Ki
1−Ki

)(∑n
j=1

λj
µj

2
1+Kj

)
.

Remark 3 (n-D Feller’s Paradox [27]). By comparing Propositions 1 and

7, the amount of interference observed by the typical user is larger than the

interference in the typical room. This result comes from the fact that the

size of the typical room is smaller than the room containing the typical user,

which makes the user “see” a larger number of strong (near) interferers. More

formally, the zero-cell (cell which contains the origin) is chosen with a size bias

with respect to the typical cell under Palm distribution, and this favors larger

cells, which have in turn more chance to cover a fixed point.
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Proposition 8 (Interference Distribution with Fading). Under Rayleigh fad-

ing, the Laplace transform of the interference Ĩo at the typical user is

LĨo(s) =
∏n

k=1 g̃
(
s, λk

µk
,
(
K(i+k)≡n

)n−1

i=0

)
,

where

g̃ (s, x, (Ki)
n
i=1) = g̃(s, x,K1, K2, . . . , Kn)

=
∏

i1∈N(1 + 2n−1x
∑

(ip)np=2∈Zn−1(1− K1

K1+s
∏n
q=1 K

|iq |
q

))−2.

Proof. The proof is analogous to that of Proposition 4 and is omitted.

2.4.2 Comparison of Correlated and Uncorrelated Shadowing

In classical stochastic geometric models, the shadowing coefficients of

different links are modeled using i.i.d. log-normal random variables [2, 3] or

depend only on the lengths of each link [4]. In these models, the shadowing

correlation is typically ignored. In this subsection, the statistical differences

between our correlated model and the distance-based uncorrelated shadowing

model are compared. 3-D case will be mainly considered 7, and denoted the

interference observed by the typical user under correlated and uncorrelated

shadowing by Io,cor and Io,unc, respectively.

2.4.2.1 Poisson Grid with Correlated and Uncorrelated Shadowing

For a fair comparison, the uncorrelated case with the same Cox node

distribution as in the Poisson grid model is considered. That is the transmitters

7It is possible to generalize this to the n-dimensional case.
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Figure 2.6: Uncorrelated Shadowing model. The number of v1-orthogonal walls
from the origin to p1 is Poiss(µ1x1), and to p2 is Poiss(µ1x2). With a positive
probability, Poiss(µ1x1) can be larger than Poiss(µ1x2).

are also distributed on the lines of a Poisson grid made of planes parallel to

the axes. In the uncorrelated model, the penetration losses of the transmitters

are independently sampled from the marginal distribution of the number of

walls that block their link.

Let us first focus on the nodes on the lines parallel to v1 and denote

these nodes by Φv1 . For each transmitter x ∈ Φv1 with v1-coordinate xv1 , the

number of planes orthogonal to v1 between this transmitter and the typical

user is a Poisson random variable with mean µ1|xv1|. To analyze the difference

between the correlated and the uncorrelated models, this section considers two

transmitters p1 and p2 with v1-coordinates x1 and x2 respectively and such that

0 < x1 < x2. In the correlated model, there are always fewer v1-orthogonal

walls between x1 and the typical user than between x2 and the typical user, a
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property which is not guaranteed under the uncorrelated model (See Fig. 2.6.)

The difference can result in non-trivial discrepancies in interference statistics.

2.4.2.2 Mean Interference

From Proposition 7,

Corollary 2. Without fading, in the 3-D case, the mean interference at the

typical user under correlated shadowing is

E[Io,cor] = 4
(∏3

i=1
1+Ki
1−Ki

)(∑3
j=1

λj
µj

2
1+Kj

)
.

Proposition 9. Under the 3-D uncorrelated shadowing model without fading,

the mean interference observed by the typical user is

E[Io,unc] = E[Io,cor]. (2.3)

Proof. For x ∈ Φv1 with v1 coordinate xv1 , the expectation of the power at-

tenuation by v1-orthogonal walls is

∞∑
n=0

Kn
1

(µ1|xv1|)n

n!
e−µ1|xv1 | = e−µ1|xv1 |(1−K1).

Since Φ is the union of independent PPPs, this chapter computes the interfer-

ence moments from one PPP and aggregate the contributions of all PPPs. By

Campbell’s formula [5], in the uncorrelated case, the mean interference from

the transmitters on one v1-parallel line such that that there is no v2 and v3

orthogonal wall between this line and the origin is

E[IΦv11
] = λ1

∫
R e
−µ1|x|(1−K1)dx = λ1

2
µ1(1−K1)

,
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when this chapter denotes these transmitters by Φv11 and the interference from

Φv11 by IΦv11
. If all transmitters are aggregated on the v1-parallel lines, the

mean interference is

E[IΦv1
] = E[IΦv11

]× 4
(∑

i∈ZK
|i|
2

)(∑
j∈ZK

|j|
3

)
= λ1

2
µ1(1−K1)

4
∏3

i=2

(
1+Ki
1−Ki

)
= 4

(∏3
i=1

1+Ki
1−Ki

)(
λ1

µ1

2
1+K1

)
.

(2.3) is obtained by using the same line of thought, for all transmitters (in-

cluding transmitters on the lines parallel to the v2-axis and the v3-axis).

2.4.2.3 Variance

From the formula of Proposition 6,

Corollary 3. For the correlated shadowing case, in the absence of fading, the

variance of the interference observed by the typical user in the 3-D case is

Var[Io,cor] =
(∏3

i=1
1+Ki
1−Ki

)2 (∑3
j=1

32(1−Kj)
(1+Kj)3

λ2
j

µ2
j

)
+
(∏3

i=1
1+K2

i

1−K2
i

)(∑3
j=1

8
1+K2

j

λj
µj

)
.

Proposition 10. For the 3-D uncorrelated shadowing case, the variance of

interference is

Var[Io,unc] = 4
(∏3

i=1
1+K2

i

1−K2
i

)(∑3
j=1

λj
µj

1+Kj
1+K2

j

)
.
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Proof. The expectation of the square of the interference from Φv11 is

E[I2
Φv11

] = E
[(∑

X∈Φv11
e−|X|µ1(1−K1)

)2
]

=E
[(∑

X∈Φv11
e−|X|µ1(1−K1)

)(∑
Z∈Φv11

e−|Z|µ1(1−K1)
)]

=E
[(∑

X∈Φv11
e−2|X|µ1(1−K1)

)]
+E

[∑X 6=Z
X,Z∈Φv11

e−(|X|+|Z|)µ1(1−K1)
]

=λ1

∫
R e
−2|x|µ1(1−K1)dx+ λ2

1

∫
R

∫
R e
−(|x|+|z|)µ1(1−K1)dxdz

=λ1

∫
R e
−2|x|µ1(1−K1)dx+

(
λ1

∫
R e
−|x|µ1(1−K1)

)2
.

So, the variance of interference from Φv11 is

Var[IΦv11
] = λ1

∫
R e
−2|x|µ1(1−K1)dx = λ1

µ1(1−K1)
.

Since the PPPs on different lines are independent, the variance of the inter-

ference from transmitters on the v1-parallel lines is

Var[IΦv1
] = Var[IΦv11

]× 4
(∑

i∈ZK
2|i|
2

)(∑
j∈ZK

2|j|
3

)
= λ1

µ1(1−K1)
4
(

1+K2
2

1−K2
2

)(
1+K2

3

1−K2
3

)
.

Remark 4. In general, the variances of the correlated and uncorrelated shad-

owing cases are different. If λ2, λ3 = 0, the variance ratio between the corre-

lated and uncorrelated cases can be simplified into

Var[Io,cor]

Var[Io,unc]
= 2

1+K1

(
1 + 4λ1

µ1

(1+K2)3

(1−K2)(1+K2
2 )

(1+K3)3

(1−K3)(1+K2
3 )

)
. (2.4)
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Equation (2.4) shows that the tail of Io,cor is heavier than that of Io,unc, which

aligns with the observation in [28, Corollary 3]. As λ1

µ1
decreases and K1 ap-

proaches 1,8 the variance ratio goes to 1. Intuitively this is explained by the

fact that in Fig. 2.6, if there is no penetration loss through v1-orthogonal

walls, and the probability that the path loss between the origin and p1 is

larger than that between the origin and p2 becomes 0. For a special case,

when K2, K3 = 0, (i.e., all v2, v3-orthogonal walls totally shield the signal

stemming from the next rooms), the ratio becomes 2
1+K1

(1 + 4λ1

µ1
). The factor

2
1+K1

shows the effect of the penetration loss of v1-orthogonal walls and λ1

µ1

represents the effect of correlated shadowing by common obstacles. As both

λ1 and µ1 can be arbitrarily configured, (2.4) shows that the two models can

yield arbitrarily different variances, highlighting the importance of including

correlation.

2.5 Success and Coverage Probabilities

This section derives the coverage probability under the cellular network

scenario and the success probability under the D2D underlay scenario, both

in Poisson grid networks. The main assumption is that all BSs (and also all

D2D links, in the D2D underlay scenario) share the same spectrum. In the

cellular network setting, the typical user associates with one of the BSs and

the other BSs act as interferers. In the D2D underlay setting, all signals from

8K1 can be arbitrarily close to but not equal to 1, as the derivation used the fact that∑
j∈ZK

|j|
1 = 1+K1

1−K1
.
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Figure 2.7: In-room link success prob-
ability (D2D transmission within room
(0, 0, 0)) under the 3-D case, with Pois-
son building parameters ri = λi

µi
= 0.1,

Ki = K for i = 1, 2, 3, and network pa-
rameter ν = 1 and σ2 = 0.
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Figure 2.8: In-room link joint suc-
cess probability (Two D2D links attempt
from (0, 0, 0) to itself) under the 3-D
case where Poisson building parameters
ri = λi

µi
= 0.1, Ki = K for i = 1, 2, 3, and

network parameter ν = 1, θ = θ′ and
σ2

1, σ
2
2 = 0.

BSs are considered interference.

For the D2D underlay scenario, the results on interference statistics

obtained in the previous sections can be directly applied. For the case of

cellular networks, the signal from the serving BS should be excluded from

interference. First, the D2D underlay case and then the cellular network case

under several association scenarios are considered. It is assumed that all D2D

transmit powers are equal to Ptx/ν (i.e., Plink = 1/ν).

2.5.1 Success Probability

2.5.1.1 Success Probability for a Single D2D Link

The labeling system of Section 2.3 is used.
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Figure 2.9: Conditional probability that the SINR of a in-room D2D link in room
(i1, i2, i3) is larger than 0dB given the SINR of a in-room D2D link in the typical
room is larger than 0dB (i.e. P[SINR2 > 1|SINR1 > 1]) when Ki = −10dB, ri = 0.1
for i = 1, 2, 3, and σ2

1, σ
2
2 = 0.

Proposition 11. Under Rayleigh fading, the success probability of a D2D

transmission from room (i1, i2, . . . , in) to room (0, 0, . . . , 0) is

P[SINRs > θ] = LĨ(0,0,,...,0)

(
νθ∏n

j=1K
|ij |
j

)
exp

(
− νθσ2∏n

j=1K
|ij |
j

)
,

where LĨ(0,0,...,0)
(·) is given in Proposition 4, θ is the SINR threshold and σ2 is

the thermal noise power.

Proof. Since the path loss model is (2.2), the interference power from room

(i1, i2, . . . , in) to the typical room is h
∏n

j=1 K
|ij |
j , where h is an exponential

random variable with mean 1, the success probability is

P
[
h
∏n
j=1 K

|ij |
j /ν

Ĩ(0,0,...,0)+σ
2 > θ

]
= E exp

(
−νθ(Ĩ(0,0,...,0)+σ

2)∏n
j=1K

|ij |
j

)
= LĨ(0,0,,...,0)

(
νθ∏n

j=1 K
|ij |
j

)
exp

(
− νθσ2∏n

j=1 K
|ij |
j

)
.
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Fig. 2.7 illustrates the in-room link success probability when the both

transceivers are in (0, 0, 0) in the 3-D case. ν = 1, Ki = K, ri = 0.1 for

i = 1, 2, 3 and σ2 = 0 are assumed. As K decreases from −10dB to 0 (−∞

dB), the interference power from other rooms is more attenuated and the

success probability increases. When K = 0, the success probability does not

converge to 0 as θ tends to∞ but converges to the probability that there exists

no BS in room (0, 0, 0).

2.5.1.2 Success Probability for Multiple D2D Links

Multiple D2D communications with normalized transmit powers are

considered. For a simple case, there are two D2D links and these links are

in-room links (i.e., a pair of TX and RX are in same room).

Proposition 12. Consider two in-room D2D links, one in (0, 0, . . . , 0) and the

other in (i1, i2, . . . , in) 6= (0, 0, . . . , 0). Under Rayleigh fading, the probability

that the SINRs of two D2D links are larger than θ and θ′, respectively, is

P[SINR1 > θ, SINR2 > θ′] = LĨ(0,0,...,0)Ĩ(i1,i2,...,in)
(νθ, νθ′)

× 1

1+νθ
∏n
m=1 K

|im|
m

1

1+νθ′
∏n
m=1 K

|im|
m

exp
(
− ν(θσ2

1 + θ′σ2
2)
)
,

where LĨ(0,0,...,0)Ĩ(i1,i2,...,in)
(·, ·) is given in Proposition 5, σ2

1 and σ2
2 are the ther-

mal noise powers of the first and the second link respectively. Here, SINR1

and SINR2 are the SINRs of the two D2D links. The first term represents the

interference from the BSs, the second and third terms the interference between

the two D2D links, and the last one the thermal noise, respectively.
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Figure 2.10: Nearest association. The
typical user associates with the BS in
a red dotted circle which is the (graph-
distance) nearest one.

Figure 2.11: Strongest association. The
thickness of arrows from BSs to the typi-
cal user implies power from each BS. The
typical user associates with the BS in
the red dotted circle which provides the
strongest power.

In Fig. 2.8, the joint in-room success probability of two D2D links is

plotted in the 3-D case. As in Fig. 2.7, the joint in-room success probability

also increases as K goes from −10dB to 0.

Fig. 2.9 illustrates the conditional probability that the second in-room

D2D link (in room (i1, i2, i3)) is successful (SINR2 > 0dB) given the first

D2D in-room link (in the typical room) is successful (SINR1 > 0dB). The

conditional success probability decreases as the room distance increase but

in a non-isotropic manner, and the same room distance does not necessarily

imply the same conditional success probability due to the intricate spatial

interference correlation.9

9If two D2D links are in the same room (0,0,0), this leads to severe interference between
these two links. Due to the randomness of channel fading coefficient, P[SINR1 > 0dB] does
not guarantee the highest P[SINR2 > 0dB] when the second link is in the room (0, 0, 0).
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2.5.2 Coverage Probability

In this part, the labeling system of Section 2.4 is used. Two scenarios

are considered: One is the strongest BS association and the other is the nearest

(graph-distance) BS association. If all Ki are the same and there is no fading

(h = 1), these two scenarios are the same. With fading, the nearest BS is not

always the strongest one. These scenarios are illustrated in Fig. 2.10 and 2.11.

2.5.2.1 Strongest BS Association

First, this part consider the case where the typical user associates to

the BS which provides the best (strongest) instantaneous signal.

Proposition 13. Under Rayleigh and strongest BS association, the coverage

probability is

∑n
k=1 p(θ, λi,

(
K(i+k)≡n

)n−1

i=0
, 2n−1

(
r(i+k)≡n

)n−1

i=0
), (2.5)

where θ > 1 and

p(θ, λ,
(
K(i)≡n

)n−1

i=0
,
(
r(i)≡n

)n−1

i=0
)

=p(θ, λ,K1, K2, . . . , Kn, r1, r2, . . . , rn)

=2nλ
∑

j1∈N
∑

(jt)nt=2∈Zn−1 exp(− K1θσ2∏n
m=1 K

|jm|
m

)

×
(

1 + ri
∑

(lt)nt=2∈Zn−1
1

1+
∏n
m=2 K

|jm|−|lm|
m /θ

)−1

×
∏n

m=1

(∏
lm∈N(1 + rm

∑
(lt)
6=m
t=1,...,m∈Zn−1

1/Km

1/Km+K
|j1|−|l1|−1
1

∏n
m=2 K

|jm|−|lm|
m /θ

)−2
)
.
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Here σ2 is the thermal noise power. If θ ≤ 1, the equality in (2.5) should be

replaced by ≤.

Proof (sketch). For any BS t ∈ Φ, let N1(t), N2(t), . . . , Nn(t) be the number

of hyperplanes between t and the typical user. Let d ∈ Φ be the serving

transmitter. The aggregated received power from all transmitters except d is

I !d =
∑

t∈Φ\{d} ht
∏n

m=1 K
Nm(t)
m ,

where ht is the channel fading coefficient between transmitter t and the typical

user. Then, the coverage probability is

P[SINRc > θ] = P(max
hd
∏n
m=1 K

Nm
m

I!d+σ2 > θ)

= E1(max
hd
∏n
m=1K

Nm
m

I!d+σ2 > θ)

(a)

≤ E
∑

d∈Φ 1(
hd
∏n
m=1 K

Nm
m

I!d+σ2 > θ)

= E[
∑

d∈Φ∪v̄1
1(

hd
∏n
m=1 K

Nm
m

I!d+σ2 > θ)

+ . . .+
∑

d∈Φ∪v̄n 1(
hd
∏n
m=1 K

Nm
m

I!d+σ2 > θ)],

where hd is the channel coefficient between d and the typical user, and v̄i, i ∈ [n]

are the line segments parallel to the vi axis. (a) comes from the fact that if

θ > 1, there is (almost surely) at most one BS serving SINR > θ [29]. If the

BSs on v1 are considered in the given structure Ψ, the conditioned expression

becomes

E[
∑

d∈Φ∪v̄1
1(

hd
∏n
m=1 K

Nm
m

I!d+σ2 > θ)|Ψ]

= 2n−1λ1

∑j1 6=0
(jt)nt=1∈Zn

l1iP(
hd
∏n
m=1 K

Nm
m

K1(I!d+σ2)
> θ),
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Figure 2.12: Coverage Probability under
the 3-D case and the strongest associa-
tion scenario. Ki = K, ri = λi

µi
= 0.1 for

i = 1, 2, 3 and σ2 = 0.
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Figure 2.13: Coverage Probability under
the 3-D case and the nearest association
scenario. Ki = K, and ri = λi

µi
= r for

i = 1, 2, 3 and σ2 = 0.

by Slivnyak’s theorem [5, 30] and the construction of the Poisson grid. It is

obtained that the result by deconditioning with respect to the Poisson grid,

the channel coefficients.

2.5.2.2 Nearest (Room-Distance) BS Association

In the case where the user connects to the BS with strongest average

signal, the BS selection process boils down to finding the nearest (w.r.t. room-

distance) BS. More precisely, let Ki = K, i ∈ [n], and define the graph distance

between two rooms as the number of hyperplanes between these rooms. The

typical user is associated to the minimal graph distance BS. Denote this dis-

tance by δ. If there are several BSs at distance δ, the user associates randomly

with one of them.

Remark 5. Given the Poisson grid Ψ and δ, one can compute the coverage
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probability in closed form. In the 3-D case, assume δ = 0 and define N to be

the number of BSs in the tagged room (or (0, 0, 0)). Then,

P[N = 1|δ = 0,Ψ] =
∑12

i=1 λi × exp(−
∑12

i=1 λi)/Ptot,

where λi, i ∈ [1, 12] is the mean number of BSs on the edges of the tagged

room and Ptot = P[δ = 0|Ψ]. For the cases N = 2, 3, . . ., it is possible to

compute these quantities. So, conditional on the given Poisson grid Ψ, the

Laplace transform E[e−sI |Ψ, δ = 0] can be computed using Proposition 8 and

P[N = n|Ψ, δ = 0]. The conditional interference Laplace transform under

these conditions is given in Appendix 2.8.2.

Proposition 14. Under Rayleigh fading, the coverage probability of a typical

user, P[SINRc > θ] is asymptotically equal to∑
m≥0 exp(− θσ2

Km )

×
(∏m

i=1 h1(m, 2n−1ri,
θ
Km )2 −

∏m
i=1 h2(m, 2n−1ri,

θ
Km )2

)
, (2.6)

as ri goes to infinity, where σ2 is the thermal noise power and

h1(m, r, s)

= (
∏

i1∈N 1 + r((1 + 2m−1(m+ 1− i1)(m− i1))

× Vm(i1) +
∑i1+

∑n
t=2 |it|≥n+1

(it)nt=2∈Zn−1 (1− K

K+sKi1+
∑n
t=2 |it|

)) )−1

h2(m, r, s)

= (
∏

i1∈N 1 + r((1 + 2n−1(m+ 2− i1)(m+ 1− i1))

× Vm+1(i1) +
∑i1+

∑n
t=2 |it|≥n+1

(it)nt=2∈Zn−1 (1− K

K+sKi1+
∑n
t=2 |it|

)) )−1 ,

and Vm(x) is 1 if x = 1, 2, . . . ,m and 0 otherwise.
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Proof (sketch). Assume there exists at least one BS on a specific line segment.

Denote the number of BSs on that line by N and the density by λ. Then,

P(N = n + 1|N > 0) = e−λ λn+1

(n+1)!(1−e−λ)
. As λ increases, this distribution

converges to P(N = n + 1), and P(N = 0) goes to 0. With this result and

Proposition 8, it is possible to obtain the asymptotic conditional coverage

probability given the Poisson grid, and then obtain (2.6) by deconditioning.

Fig. 2.13 describes the coverage probability under the nearest room-

distance BS association scenario in the 3-D case. It is assumed that Ki = K,

ri = r for i = 1, 2, 3 and σ2 = 0. As r increases, the gap between (2.6) and the

simulation result decreases. Fig. 2.13 shows that our expression (2.6) matches

well with the simulation result when r > 0.1.

Remark 6. For the case of K = −10dB, r = 0.1 in Figs. 2.12 and 2.13, the

coverage probability under the strongest BS association case is higher than

the nearest room distance BS association case, which is inline with intuition.

The difference between these two cases provides quantitative guidelines for

determining the worthiness of pursuing instantaneous cell reselection.

2.5.3 3-D Free-space and Poisson Building

This subsection provides a justification of our model for in-building net-

works, by comparing the SIR distribution of a classical stochastic geometric

model without correlated shadowing and our new model. Fig. 2.14 compares
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Figure 2.14: SIR coverage scaling over network density under the nearest BS
association cases for 3-D free space (PPP) and Poisson building (Cox Point process).
The x-axis represents λavg in (2.1) for Poisson building case and a density λ of a
3-D homogeneous PPP for the 3-D free space case.
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Figure 2.15: A Finite Size Poisson Building. The typical user is located at the ori-
gin. Along the vi-axis (i ∈ [1, 2, 3]), the size of the finite size building is [−dvi1 , dvi2 ]
and there are nvi1 and nvi2 walls in the positive and negative directions, respectively.
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the 3-D free space model with distance-based path loss function and the Pois-

son building with blockage-based path loss function under the nearest BS (or

nearest room-distance) association. The free space model is the 3-D extension

of the network model in [12] with path loss exponents α = 3.5, 4. The Poisson

building is constructed with µi = 1 and Ki = −10,− 20dB for i = 1, 2, 3. The

average BS density (2.1), λavg = µ1µ2µ3

∑3
i=1

4λi
µi

, the mean number of BSs

per cubic meter in the Poisson building is used.

In the free-space model, the SIR scale invariance, i.e., the fact that the

SIR at the typical user does not depend on the infrastructure density, which

was observed in 2-D in [12, 20], can be generalized in 3-D as shown in Fig.

2.14, whereas under the Poisson building model, the SIR coverage decreases

rapidly with the average BS density. Clearly, 3-D in-building model cannot be

reduced to a 3-D free-space model from the above observation.

2.6 Finite Poisson Structures

The analysis so far focuses on an infinite network, which circumvents

the boundary effects and thus brings extra tractability. While such a modeling

approach is justifiable for low dimensionality (2-D) networks, which represent

large cities, the boundary effects kick in much sooner in higher dimension (3-

D). Fortunately, the Poisson grid model can be tailored to analyze networks

of finite sizes (with acceptable loss of tractability). This section analyzes

the interference observed by the typical user and compare it with the results

Section 2.4.
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2.6.1 Finite Size 3-D Poisson Building

It is assumed that the dimension of the building is [−dv11 , dv12 ]×[−dv21 , dv22 ]×

[−dv31 , dv32 ] ∈ R3. As in Fig. 2.15 denote by nv11 (nv12 , nv21 , nv22 , nv31 , nv32 ,

resp.), the number of walls between the typical user and building boundary

toward −v1 (+v1, −v2, +v2, −v3, +v3, resp.)-axis direction.

Under the finite model as described above, first it is possible to char-

acterize the distribution of the interference measured at the typical user.

Proposition 15. Under Rayleigh fading, the Laplace transform of the inter-

ference at the origin in a finite size Poisson building given dvij(i ∈ [1, 2, 3], j ∈

[1, 2]) is E
[
e−sI |dvij , Ivij , (i ∈ [1, 2, 3], j ∈ [1, 2])

]
=

∑i=[1,2,3],j=[1,2]
nvij=1...∞ [

∏
(i,j)

1

1+sIvijK
nvij
i

l(µi, dvij , λi, nvij ,

nv(i+1)≡3,(j)≡2
, nv(i+1)≡3,(j+1)≡2

, nv(i+2)≡3,(j)≡2
, nv(i+2)≡3,(j+1)≡2

,

Ki, K(i+1)≡3, K(i+2)≡3, s) ],

where

l(µ, d, λ, nv11 , nv21 , nv22 , nv31 , nv32 , Kx, Ky, Kz, s)

= µnv11−1e−µd

2πj

∫ c+j∞
c−j∞ exp(zd)

∏nv11
i=1

1

z+4λ
∑nv22−1

j=−nv21+1

∑nv32−1

k=−nv31+1(1− 1

1+sK
|i|−1
1 K

|j|
2 K

|k|
3

)
dz.

Proof (sketch). See Appendix 2.8.3.
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Example 2. The special case is considered where dv12 , dv21 , dv22 , dv31 , dv32

=∞. By Proposition 8, Proposition 15 reduces to E
[
e−sI |dx1

]
=

∑∞
n=1

µn−1
1 e−µdv11

2πj

∫ c+j∞
c−j∞ exp(zdv11)

×
∏n

i=1

(
z + 4λ1

∑∞
j,k=−∞(1− K1

K1+sKi
1K
|j|
2 K

|k|
3

)

)−1

dz

×
∏∞

i=1

(
1 + 4λ1

µ1

∑∞
j,k=−∞(1− K1

K1+sKi
1K
|j|
2 K

|k|
3

)

)−1

×
∏∞

j=1

(
1 + 4λ2

µ2

∑∞
i,k=−∞(1− K2

K2+sK
|i|
1 Kj

2K
|k|
3

)

)−2

×
∏∞

k=1

(
1 + 4λ3

µ3

∑∞
i,j=−∞(1− K3

K3+sK
|i|
1 K

|j|
2 Kk

3

)

)−2

.

This is a simplified version of Proposition 15 with elements from Proposition

8. Fig. 2.16 illustrates the Laplace transform of the interference observed by

the typical user when dv11 = 3, dv12 , dv21 , dv22 , dv31 , dv32 = ∞, λ1, λ2, λ3 = 0.1,

µ1, µ2, µ3 = 1, K1, K2, K3 = K. Also it represents the success probability of a

D2D link if 1) when D2D link is in the same room with the typical user and

2) the thermal noise power is ignored.

2.6.2 Window Office

In a real environment, even if interference does not penetrate the floors

(i.e., K3 = 0), the interference from other floors can enter a room through

paths outside the building, e.g., by reflecting on the neighboring buildings. To

analyze this type of interference, this chapter proposes a semi-infinite Poisson

building which is only deployed on the positive half plane of the v1-axis. This

building has a boundary wall at v1 = 0 and the rooms with this boundary wall
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Figure 2.16: Laplace transform of the interference distribution at the typical user
when dv11 = 3, dv12 = dv21 = dv22 = dv31 = dv32 =∞, λi = 0.1, µi = 1, and Ki = K
for i = 1, 2, 3.
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Figure 2.17: A Semi-infinite Poisson
Building with the signal paths from a
transmitter in room (i, j, k) to the typi-
cal window room (0, 0, 0). The left figure
describes that signal from a transmitter
passes to the outside through the shortest
path. The right one describes the graph-
distance based path loss model used in
the free-space region.
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Figure 2.18: In-room link Success Prob-
ability (D2D transmission attempts from
(0, 0, 0) to itself) in the typical window
room of semi-infinite Poisson building.
K1 = K2 = K, K3 = 0, l|x| = 0.5x, lw =
−3dB (except the reference curve with-
out interference from outside the build-
ing), ri = λi

µi
= 0.1 for i = 1, 2, 3, and

σ2 = 0.

will be referred as window rooms.

This part chooses a window room which contains the origin of the 3-

D Euclidean space and labels this room as (0, 0, 0) (this is the typical room

perspective as in Section 2.3), and labels the other rooms according to their

relative position with respect to room (0, 0, 0). This part only considers (short-

est) graph-distance paths of signals to the outside10. For example, if a BS is

in room (i, j, k), then a signal from this transmitter predominantly emits to

outside through a window room (0, j, k). See the left figure in Fig. 2.17. Since

10This is justified by the dominance of penetration loss over free-space loss in indoor.
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room sizes in our Poisson building model are random, here a hypothetical path

loss function is applied. This chapter defines the path loss from a window room

(0, j, k) to (0, 0, 0) through out of building paths to be l|j|+|k| ∈ [0, 1]11. Denot-

ing the window loss by lw, the signal from a BS in room (i, j, k), k 6= 0 to the

typical window room (0, 0, 0) is hl|j|+|k|l
2
wK

|i|
1 , where h is the fading coefficient.

Now consider a signal path from a BS on the floor of the typical window

room. It is considered that two paths from room (i, j, 0) to (0, 0, 0). The first

one is the direct path which penetrates the walls between room (i, j, 0) which

contains a BS and the typical window room. The second one is the indirect

path which radiates outside of the building through a window room (0, j, 0) and

then goes to (0, 0, 0) through the outside. So, the path loss model from room

(i, j, 0) to (0, 0, 0) becomes hdK
|i|
1 K

|j|
2 +hil|j|l

2
wK

|i|
1 where hd and hi are channel

fading coefficients. With this path loss model, the interference distribution

and the success probability can be computed as in Section 2.3 and 2.5.

Denote the interference measured in the typical window room (0, 0, 0)

11Since the Poisson grid is a discrete random structure, it is hard to combine distance-
based functions with it. Instead of this, a general path loss level-set function is taken using
graph distance as indicated in the right of Fig. 2.17.
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by Ĩf under Rayleigh fading. The Laplace transform of Ĩf is

LĨf (s) =
∏

i∈N∪{0}(1 + 4λ1

µ1

∑
j∈Z
∑

k∈Z

(1− 1

1+sK
|i|
1 K

|j|
2 K

|k|
3

1

1+sl|j|+|k|l2wK
|i|
1

))−1

×
∏

j∈Z(1 + 4λ2

µ2

∑
i∈N∪{0}

∑
k∈Z

(1− 1

1+sK
|i|
1 K

|j|
2 K

|k|
3

1

1+sl|j|+|k|l2wK
|i|
1

))−1

×
∏

k∈Z(1 + 4λ3

µ3

∑
i∈N∪{0}

∑
j∈Z

(1− 1

1+sK
|i|
1 K

|j|
2 K

|k|
3

1

1+sl|j|+|k|l2wK
|i|
1

))−1.

This is obtained by adjusting indices with the new path loss model in Propo-

sition 4. Since 00 = 1, the direct and indirect path losses can be combined as

above.

The success probability from room (i, j, k) to room (0, 0, 0) becomes

P[SINRs > θ] = LĨf

(
θ

K
|i|
1 K

|j|
2 K

|k|
3

)
exp

(
− θσ2

K
|i|
1 K

|j|
2 K

|k|
3

)
.

Fig. 2.18 plots the in-room link success probability when K1, K2 = K, K3 = 0,

r1, r2, r3 = 0.1, σ2 = 0, lx = 0.5x, and lw = −3dB. As K decreases, the to-

tal interference from all transmitters decreases and the success probability

increases. When K = 0, all walls and floors block signals perfectly and in-

terference comes through the outside of building only from transmitters in

window offices. For cases K = 0, K = −10dB, and K = −20dB, the success

probabilities are almost the same, which suggests that interference coming

through the outside dominates the interference coming through the walls in

the same floor. By ignoring the interference leakage from through outside of
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building paths (i.e., lw = 0), the success probability for K = −5dB is higher

than K = −20dB with interference from outside. This shows interference

leakage through outside of building paths is an important factor in the 3-D

case.

2.7 Conclusions

This chapter propose a Poisson grid based framework for analyzing

urban indoor networks. The Poisson grid allows one to model general n-

dimensional structures with randomly (but dependently) sized rooms, captur-

ing the fact that more users are located in larger rooms. While the indoor

propagation is dominated by shadowing and blockage, the framework facili-

tates the study of the correlated shadowing field and node distribution, which

are one of the distinctive aspects of urban indoor geometry. The interference

field associated to this environment is no more a shot noise field, because of

common randomness by the shared static obstacles in the Poisson grid.

This chapter obtains exact analytical expressions for the interference

field and characterizes the spectral efficiency of two basic communication sce-

narios in this context. This chapter compares our correlated shadowing field

and previous research (uncorrelated shadowing and free-space models) and

observe very different moments and scaling laws. Thanks to its finite-size or

semi-infinite size 3-D variants, the Poisson grid can be tailored for 1) comput-

ing the interference field given the building size and 2) analyzing interference

leakage through the outside of the Poisson structure.
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The nature of Poisson grid does not allow it to cover all possible build-

ing realizations. However, this model opens a new way of analyzing urban

indoor networks. Several variants can be derived from it to study more realis-

tic architectural scenarios and wireless technologies. One possible example is

representing more complex building structure by removing some line segments

in the Poisson grid. Another possible future direction might be considering

Matérn-type grids [5,30] for preventing 1) lots of transmitters in a given room

or 2) generating too small rooms.

2.8 Appendix

2.8.1 Proof of Proposition 2

Lemma 1. For all K ∈ [0, 1) and k ∈ N ∪ {0},

∑
i∈ZK

|i|+|i−k| = K |k|
(
|k|+ 1+K2

1−K2

)
,∑i 6=i′

(i,i′)∈Z2 K |i|+|i
′−k| =

(
1+K
1−K

)2 −K |k|
(
|k|+ 1+K2

1−K2

)
.

Leveraging this lemma, it is possible to obtain the joint moment of the inter-

ference between the typical room and room (i1, i2, . . . , in).

Let N(i1,i2,...,in) be the number of the BSs in room (i1, i2, . . . , in). Since

it is the sum of Poisson random variables, E[N(i1,i2,...,in)N(i′1,i
′
2,...,i

′
n)] =

2n−1
(∑n

j=1
λj
µj

)∏n
k=1 1ik=i′k

+ 22n−2
∑n

j=1

λ2
j

µ2
j
1ij=i′j

+ 22n−2
(∑n

j=1
λj
µj

)2

.
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By leveraging Lemma 1, E[I(0,0,...,0)I(i1,i2,...,in)] =

E[
∑

(jt)nt=1∈Zn
(
∏n

m=1K
|jm|
m N(j1,j2,...,jn))∑

(j′t)
n
t′=1
∈Zn(

∏n
m=1K

|j′m−im|
m N(j′1,j

′
2,...,j

′
n))]

=2n−1
(∑n

j=1
λj
µj

)
(
∏n

l=1 bl(il))

+22n−2 (
∏n

l=1 al)

((∑n
j=1

λj
µj

)2

+
(∑n

j=1

λ2
j bj(ij)

µ2
jaj

))
.

2.8.2 Interference Laplace Transform Conditioned on δ = 0 and Ψ

In this section, the proof of the formula for coverage probability under

the nearest room-distance BS association is provided, conditioned on δ = 0

and the given Poisson grid Ψ.

P[δ = 0|Ψ] =
∑∞

n=1 P[N = n|δ = 0,Ψ] = 1− e−
∑12
i=1 λi

P[N = 1|δ = 0,Ψ] = (
∑12

i=1 λi)× exp(−
∑12

i=1 λi)/Ptot . . .

Combining these results, the interference Laplace transform becomes

E[e−sI |δ = 0,Ψ]

=
∑∞

n=1 E[e−sI |N = n, δ = 0,Ψ]P[N = n|δ = 0,Ψ]

=
∑∞

n=1 e
−s
∑n−1
j=1 hjP[N = n|δ = 0,Ψ]

×
∏

i∈N,j,k∈Z,i+|j|+|k|≥2 e
−4λ1(xi+x−i)(1−shK|i|+j+|k|−1)

×
∏

j∈N,i,k∈Z,|i|+j+|k|≥2 e
−4λ2(yj+y−j)(1−shK|i|+j+|k|−1)

×
∏

k∈N,i,j∈Z,|i|+|j|+k≥2 e
−4λ3(zk+z−k)(1−shK|i|+j+|k|−1),

where xi, yj, zk are the dimension of room (i, j, k). The condition i+|j|+|k| ≥ 2

(or |i|+ j + |k| ≥ 2, |i|+ |j|+ k ≥ 2) implies considering the interference from
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the BSs out of the nearest room (δ = 0). By deconditioning w.r.t. the channel

coefficients h ∼ exp(1),

E[e−sI |δ = 0,Ψ] =
∑∞

n=1

(
1

1+s

)n−1 P[N = n|δ = 0,Ψ]

×
∏i+|j|+|k|≥2

i∈N,j,k∈Z exp(−2λh(xi + x−i)(1− 1
1+sK|i|+j+|k|−1 ))

×
∏|i|+j+|k|≥2

j∈N,i,k∈Z exp(−2λh(yj + y−j)(1− 1
1+sK|i|+j+|k|−1 ))

×
∏|i|+|j|+k≥2

k∈N,i,j∈Z exp(−4λs(zk + z−k)(1− 1
1+sK|i|+j+|k|−1 )).

2.8.3 Proof of Proposition 15

Lemma 2. Let t1, t2, · · · , tn−1 ∈ R be n− 1 i.i.d. random variables uniformly

distributed on [0, d], where d ∈ R+. These n − 1 points divide [0, d] into n

intervals of length y1, y2 · · · , yn, where y1 is the length of left-most interval and

yn is the right-most one. The Laplace transform of (y1, y2, . . . , yn) is

Ly1,y2,··· ,yn(s1, s2, . . . , sn)

= (n−1)!
dn−1

1
2πj

∫ c+j∞
c−j∞ ezd

∏n
i=1

1
z+si

dz,

where c > R{si},∀i ∈ [n].

Proof. The Laplace transform of (y1, y2, . . . , yn) is Ly1,y2,...,yn(s1, s2, . . . , sn) =

E
∏n

i=1 e
−siyi . Since the random variables {ti} are i.i.d. with pdf fti(x) =

1[0,d](x)/d, the n! possible orders of the n − 1 random variable happen with

equal probability and the Laplace transform can be written as

Ly1,y2,...,yn(s1, s2, . . . , sn) = (n−1)!
dn−1

∫ d
0

∫ xn−2

0

∫ xn−3

0
· · ·
∫ x2

0∏n
i=1 e

−si(xi−xi−1)dx1dx2 . . . dxn−1,
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where x0 = 0 and xn = d. Let gi(x) = e−six. Then,

Ly1,y2,...,yn(s1, s2, . . . , sn) = (n−1)!
dn−1 g1 ∗ g2 ∗ · · · gn(d),

where ∗ denotes convolution. Since Lgi(z) = 1
z+si

,

g1 ∗ g2 ∗ · · · ∗ gn(x) = 1
2πj

∫ c+j∞
c−j∞ ezd

∏n
i=1

1
z+si

dz,

where Mellin’s inversion formula is used for the inverse Laplace transform.

Due to the symmetricity of our network model, only interference coming

from the BSs on the line segments which are parallel and negative direction to

the v1-axis is considered and then it is extended to the result without loss of

generality. Let {x̄i} be the length of line segments divided by v1-orthogonal

walls. Given dv11 and nv11 which is the number of v1-orthogonal walls including

the outermost walls, the interference distribution from the transmitters on line

segments which are parallel to the v1-axis and located on the +v1 direction

(which is denoted by Ĩf11) becomes

E[e−Ĩf11 |dv11 , nv11 , {x̄i}] =
∏nv11

i=1 exp(−4λ1x̄i∑nv22−1

j=−nv21+1

∑nv32−1

k=−nv31+1(1− 1

1+sK
|i|−1
1 K

|j|
2 K

|k|
3

)),

and by deconditioning w.r.t. {x̄i},

E[e−Ĩf11 |dv11 , nv11 ] =
(nv11−1)!

d
nv11−1
v11

1
2πj

∫ c+j∞
c−j∞ ezdv11

∏nv11
i=1

1

z+4λ1
∑nv22−1

j=−nv21+1

∑nv32−1

k=−nv31+1(1− 1

1+sK
|i|−1
1 K

|j|
2 K

|k|
3

)
dz,
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where nv21 , nv22 , nv31 , nv32 are the numbers of walls along the−v2, v2,−v3 and v3

directions respectively. Since the probability mass function of nv11 is fnv11
(k) =

(µ1dv11 )k−1e−µ1dv11

(k−1)!
, by deconditioning w.r.t. nv11 and considering interference

from all transmitters, the result of Proposition 15 is obtained by considering

all BSs in a finite size Poisson building.
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Chapter 3

On the Effect of Shadowing Correlation on

Wireless Network Performance

This chapter1 proposes and analyzes a new shadowing field model meant

to capture spatial correlations. This chapter shows that the evaluation of the

considered metrics under the independent approximation is systematically pes-

simistic compared to the correlated shadowing model.

3.1 Introduction

3.1.1 Motivation

In wireless system level analysis, most models analyze propagation us-

ing distance-based path loss functions [32, 33]. Such a modeling is justified

in the free space case but does not capture real-world environments with ob-

stacles. By introducing a shadowing term, it is possible to model the effect

of obstacle blockage. This term accounts for the fact that the received signal

power is strongly attenuated by obstacles on the propagation path between

transmitter and receiver. For a single link, this attenuation is typically mod-

eled by a log-normal distribution [33], which is justified by the multiplicative

1This chapter has been published in [31]. I am the primary author of this work. Coauthor
Dr. Françcois Baccelli is my supervisor.
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blockage loss and the central limit theorem [34]. However, this does neither

capture the fact that nearby links are often blocked by common obstacles nor

the fact that the shadowing statistics highly depend on the spatial geometry

of obstacles.

Stochastic geometry has been widely studied to analyze the perfor-

mance of both infrastructure (e.g., cellular) and infrastructureless (e.g., D2D)

networks. The papers in this research field provide highly tractable perfor-

mance evaluation results in several scenarios. Since shadowing is a significant

part of wireless communication, it is important to incorporate this feature in

stochastic geometric models. However, as explained above, even though the

shadowing effect is spatially correlated in real networks [35], most previous

stochastic geometric models assume that shadowing is spatially independent

over links.

The main purpose of this chapter is to question this independence as-

sumption and to analyze the effect of correlated shadowing fields when using

stochastic geometry. For this, this chapter provides the Laplace transforms of

the interference associated with Poisson networks under spatially correlated

and independent shadowing assumptions, and prove general ordering relations

between them. Using the Laplace stochastic ordering [36], this chapter also

gives the ordering of some important performance metrics of the two shad-

owing models. Especially when the metric is coverage probability, Shannon

throughput or local delay, this chapter shows that the performance metric un-

der the independent shadowing is in fact always evaluated in a pessimistic way
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compared to the correlated case.

3.1.2 Related Works

3.1.2.1 Correlated Shadowing

In real networks, shadowing fields are spatially correlated [33]. How-

ever, few generative or tractable models have been proposed to represent this

correlation. Gudmundson proposed the first model of correlation [35] to model

the lognormal shadowing random process between a fixed base station and

a moving user by an autoregressive process with an exponentially decaying

autocorrelation. As a result, the spatial dependence of shadowing can be

formulated by joint Gaussian distributions. The multi-base station [37] and

multi-hop network [38] cases were also considered based on similar ideas. This

approach also forms the basis of the models suggested by the 3GPP [39] and

the 802.11 standardization groups [40].

These models have shortcomings. It is hard to give a clear physical

interpretation to the joint Gaussian distribution used to model spatially cor-

related shadowing. These models give limited intuition on large and dense

wireless networks. Also, complex simulation platforms are required.

3.1.2.2 Stochastic Geometry and Shadowing Models

Over the past decades, stochastic geometric models, and most no-

tably the planar Poisson point process (PPP) model, have become popular

for the analysis of network performance in wireless communications, in both
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the D2D [41–44] and the cellular contexts [12, 29, 45]. While an independent

shadowing field can easily be incorporated into the basic models [2–4], there is

no known approach to combine general stochastic geometry models with cor-

related shadowing where links at nearby locations can be blocked by the same

physical obstacles. Recently, by using a Poisson line process, correlated shad-

owing fields of urban networks [46,47] and inbuilding networks [16] have been

analyzed in a way taking this correlation into account. However, these models

use blockage-based path loss functions and fail taking the distance based-term

into account.

3.1.2.3 Comparison of Point Processes

Stochastic comparison tools have been used to investigate the cluster-

ing properties among point processes by evaluation of the Ripley K function,

the pair-correlation function or the empty space function [48]. To quantify the

impact of clustering properties among point processes, the directionally con-

vex order on point processes [49] and the properties of positive and negative

association [50,51] have been proposed. This was for instance used to compare

certain point processes with the Poisson point process [52].

This chapter considers a new type of comparison which is that of in-

terference fields when a shadowing random field is introduced to model the

blockage effects. The cases where this random field is spatially correlated or

not are compared. Other propagation effects such as reflection are not consid-

ered.
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3.1.3 Problem Statement and Main Contributions

As already explained, most of the previous research papers assigned

shadowing variables to links independently by using an empirical distribution

[33] or based on link length when topology is incorporated [2–4]. these models

will be called (spatially) independent shadowing models.

A typical instance of the independent shadowing model is provided

in [4]. Under this model, both the centers of blockages and the base stations

are deployed as Poisson point processes. The shadowing random variable of

a given link is determined by an independent Poisson random variable with

mean proportional to the length of the link.

In contrast, in this chapter, in order to represent the spatial correlation

property, some shadowing values based on the obstacle topology are assigned.

For example, in Fig. 3.1, obstacles are random segments and the plane is di-

vided into cells in which all base stations are blocked by the same number

of obstacles, when seen from the origin. Such cells are not necessarily con-

vex but connected. Another example is depicted in Fig. 3.2, when the base

stations form a cluster process. In this network, the same shadowing random

variable to the base stations which share the same mother point are assigned.

In contrast to the situation of Fig. 3.1, even very close-by points can have

different shadowing random variables. This is meant to model the situation

where each cluster is located at a different altitude and has different shadow-

ing properties. From these observations, this chapter introduce the concept of

Shadowing cell where base stations in the same Shadowing cell have the same
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shadowing random variable. Each base station should not belong to more than

one Shadowing cell.

The main question of this chapter is the comparison of the interference

distribution under the correlated and independent shadowing models in the

stochastic ordering sense. To provide a fair comparison, the same marginal

shadowing laws are used in both cases. This chapter computes the Laplace

transforms of the interference observed by the typical user which is located

at the origin under these two models, and then provides the ordering rela-

tion of the three metrics for the typical user, i.e., 1) coverage probability, 2)

Shannon throughput, and 3) local delay. These three metrics will be shown

completely monotone functions of the interference. From well known results

on the relation between the Laplace transform ordering and completely mono-

tone functions, the ordering relations are assigned under the two shadowing

assumptions.

For the case where base stations form either a homogeneous Poisson

point process or a Matérn cluster process on R2, exact expressions are pro-

vided for the Laplace transform of interference. These expressions are provided

conditioned on the Shadowing cells, but provide a general ordering relation of

the above metrics by deconditioning. Especially, if the Shadowing cells are

Matérn disks [30], further closed form expressions can be obtained by decon-

ditioning with respect to the Shadowing cells.

Our key findings can be summarized as follows:
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• This chapter provides closed-form expressions for the Laplace transform

of the interference measured at the origin under the two shadowing as-

sumptions for some generic network examples.

• This chapter investigates the Laplace transforms of interference and their

ordering relationship for point processes with the same point configura-

tion but different joint shadowing distributions.

• By using the Laplace stochastic ordering and the formalism of com-

pletely monotone functions, this chapter also give the ordering relation

of the three key performance metrics under the two different shadowing

assumptions.

3.2 Laplace Stochastic Ordering and Completely Mono-
tone Functions

This chapter first introduces some mathematical preliminaries. The

following results and definitions are borrowed from [53]. They will be used

to investigate the ordering of the network performance metrics in the next

sections.

Definition 1 (Laplace stochastic ordering). Let X and Y be random variables

in R+. X is said to be less than Y in the Laplace stochastic ordering (written

X ≤L Y ), if the Laplace transforms LX(s) = E[e−sX ] and LY (s) = E[e−sY ]

satisfy

LX(s) ≥ LY (s) for all s > 0. (3.1)
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Remark 7. For X, Y which satisfy LX(s) ≥ LY (s) for all s > 0, generally,

E[X] ≤ E[Y ] by definition of Laplace stochastic ordering relation. By using

Taylor expansion,

LX(s) = 1− sE[X] +
1

2
s2E[X2] + (higher order terms),

LY (s) = 1− sE[Y ] +
1

2
s2E[Y 2] + (higher order terms).

Since LX(s) ≥ LY (s) even for very small s > 0, we can obtain E[X] ≤ E[Y ].

On the contrary, if E[X] > E[Y ], it is counterintuitive by definition of Laplace

stochastic ordering.

Definition 2 (Completely monotone function). A real function f is called

completely monotone if all its derivatives f (n) exist and satisfy

(−1)nf (n)(x) ≥ 0 for all x and for all n = 0, 1, 2, . . . (3.2)

Example 3. The following functions are completely monotone:

e−αx, for α > 0;
1

(λ+ µx)ν
, for λ, µ, ν > 0;

ln

(
b+

c

x+ d

)
, for b ≥ 1, c, d ≥ 0.

Remark 8. If f(x) and g(x) are completely monotone functions, so are fol-

lowing functions:

af(x) + bg(x), with a, b ≥ 0,

f(x)g(x), f (2m)(x), − f (2m+1)(x).

The following theorem states the connection between the expectation

of completely monotone functions and the Laplace transform order.
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Theorem 1. X ≤L Y holds if and only if

Ef(X) ≥ Ef(Y ), (3.3)

for all functions f with a completely monotone derivative, for which the inte-

gral exists.

Proof. See [53].

3.3 System Model

3.3.1 Network Model, Signal Model and Interference

This chapter considers a generic point process which features an infinite

collection of base stations scattered on the 2-dimensional Euclidean space (R2).

Let Φ = {Xi} be the point process giving the locations of base stations.

This point process is assumed stationary and with intensity λ. A typical user

is located at the origin (o) of R2. To circumvent technical difficulties, it is

assumed that the serving base station of the typical user is not part of the

point process, Φ.

A path-loss model based on a distance-based power law is used. The

received signal power at y from x (x ∈ R2) is

Px→y = PTXhxySxyd
−α
xy , (3.4)

where PTX is the transmit power, hxy, Sxy and dxy are the channel fading

coefficient, the shadowing coefficient, and the length of the channel from x to

y, respectively. Here, α is the path-loss exponent. α > 2 is assumed. Without
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loss of generality, PTX = 1 is assumed, since this does not affect the signal

to interference power plus noise ratio (SINR) distribution after proper rescal-

ing of the thermal noise power. The fading coefficients of different links are

assumed independent and it is assumed that all links are subject to Rayleigh

fading, which is caused by multipath reception. The channel fading coefficients

are hence modeled as exponential random variables, (i.e., hxy ∼ exp(1)). A

separate term Sxy is introduced to model the blockage effect. Since this chap-

ter only computes the sum interference measured at o, for simple notation,

hx, Sx and dx are used for representing the fading coefficient, the shadowing

coefficient, and the distance of channel from x to o.

In previous wireless stochastic geometric research, the shadowing ran-

dom variable, Sx, is either following a log-normal distribution or is a function

of the length of that link which implicitly counts the number of obstacles.

However, these assumptions cannot capture common blockages by the same

obstacles. In contrast, the correlated shadowing model is obtained by assign-

ing the shadowing random variables in function of the obstacle topology. For

example, in Fig. 3.1, there are 2 common blockages between all points of region

R3 and the origin, which defines the correlated shadowing field. One of the

main simplifications in this chapter is to only consider blockage and to ignore

other effects such as scattering, reflection and so on.

Let {Ri}i∈N be the set of shadowing cells in which base stations share a

common shadowing random variable to the origin. One example is illustrated

in Fig. 3.1. In this example, the shadowing cells are determined by the position
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of the end points of the segments. Here, shadowing cells are connected but not

necessarily convex. Another example is given in Fig. 3.2, where Φ is a Matérn

cluster process. In this example, each Ri is a logical partition which is a set

of daughter points sharing a common mother point. It is assumed that each

mother point assigns a common shadowing variable to her daughter points.

Further, instead of the realization of obstacles, consider a network in which

the base stations with the same shadow are clustered. By assigning a shadow

random variable Ti which follows the distribution fTi(·) to all x in Ri, namely

by taking Sx = Ti for all x ∈ Ri, it is possible to give different shadowing

properties to different clusters.

For a fair comparison between the correlated and the independent shad-

owing fields, in both models, the same shadowing probability law is used for

the points in the same shadow cell. The main difference between these two

shadow assumptions is that the shadowing random variables are pathwise the

same for all points in the same shadowing cell under the correlated shadowing,

while they are i.i.d. under the independent shadowing model.

This chapter provides results for general Ti, but for computational anal-

ysis, some specific examples are considered. For example, this chapter will

consider the case where the shadowing random variable of all base station in

Ri by Ti = Kni where K(< 1) is the attenuation factor and ni is the number

of obstacles between the typical user and base stations in Ri. Another possible

scenario is that where this part picks a representative point for each Ri and

assign the shadowing random variable as a function of the link length between
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Figure 3.1: A network example with shadowing cells which are generated by line
obstacles. Base stations in the same cell share a common shadowing random variable
under the correlated shadowing model while base stations have i.i.d. shadowing
random variable under the independent shadowing model.

this point and the origin.

Associated with a point process Φ, the interference field measured at

the typical user is defined as

I(o) ,
∑
x∈Φ

Px→o =
∑
i

∑
x∈Φ∩Ri

hxTi,xd
−α
x ,

where Ti,x follows the distribution fTi(·). Ti,x is the shadowing coefficient of x

seen by the typical user when x is in Ri. Under the correlated model, Ti,x = Ti

for all x in Ri, while under the independent model, the random variables Ti,x

are i.i.d. The main comparison results bear on the difference of the distribution

of I(o) under independent and correlated Sx.
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Figure 3.2: A network example based on a Matérn cluster process. In this example,
shadowing cells are assumed as the Matérn disks.

3.3.2 SINR Distribution and Performance Metrics

The performance metrics considered in this part are all related to the

SINR of the typical user, which is defined as

SINRo =
Pδ→o∑

i

∑
x∈Φ∩Ri hxTi,xd

−α
x +N

. (3.5)

Here, δ is the serving base station which is not included in Φ and N is the

thermal noise power.

In this chapter, the following metrics are investigated.

3.3.2.1 Coverage Probability

The coverage probability of the typical user is

P [SINRo > T ] , (3.6)
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where T is some target SINR for reliable communication. This can be thought

as 1) the probability that the SINR of a random user exceeds T ; 2) the average

fraction of the network area within reliable communication at any time. This

is the complementary cumulative distribution function (CCDF) of the SINR.

3.3.2.2 Shannon Throughput

The coverage probability is an outage-based metric. However, if a trans-

mitter can adjust its coding rate with respect to the quality of its channel, in

the so called adaptive coding case, the Shannon throughput [14] is a more

relevant quantity. The Shannon throughput of the tagged user is

E [log(1 + SINRo)] . (3.7)

This can be thought as the expectation of the bit rate of a random user in the

network when adaptive coding is used.

3.3.2.3 Local Delay

A packet model is also considered. One of the important metrics in

this model is the mean time to transmit a packet, which is referred as the local

delay [14]. This model requires a time-space structure.

In this setting, the realization of the set of transmitters Φ remains un-

changed over time, while channel coefficients vary over time. More precisely,

for a sequence of time slots n = 1, 2, . . ., Φ(n) = Φ, where Φ(n) is the trans-

mitter process at time n but hxy(n) for all x,y ∈ R2 are i.i.d. channel random

variables with respect to n.
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The local delay given Φ is defined as the first n when the SINR of the

typical link at the n-th time is larger than some threshold T , i.e.,

LΦ = inf{n ≥ 1 : SINRo[n] ≥ T |Φ}. (3.8)

Here, SINRo[n] is the typical user’s SINR measured at time n:

SINRo[n] =
hδ[n]Tδd

−α
δ∑

i

∑
x∈Φ∩Ri hxTi,xd

−α
x +N

, (3.9)

where hy[n], Ty, dy are the fading coefficient of the link between y and the

typical user at time n, the shadowing random variable of y seen by the typical

user, and the link length between y and the typical user, respectively, where

y ∈ {x ∈ Φ, δ (serving base station)}.

3.4 Interference Field of Poisson Shadowing with Com-
mon Randomness

This section provides the Laplace transforms of the interference field

at the origin under Poisson assumptions for both the correlated and the inde-

pendent shadowing fields.

There are several types of Poisson networks modeling both cellular

and ad-hoc networks. Two types of networks are mainly considered where

Φ is modeled by 1) a homogeneous PPP or 2) a Poisson cluster process

(PCP). These point processes are widely used to model communication net-

works [12,54]. The interference measured at the origin under the homogeneous

PPP model with the independent and the correlated shadowing are denoted
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by Iind,p(o) and Icor,p(o), respectively, and by Iind,c(o) and Icor,c(o) under the

homogeneous PCP model. respectively.

3.4.1 Poisson Point Process Network Model

Consider the case where Φ is a homogeneous PPP.

Theorem 2. When Φ is a homogeneous PPP with intensity λ and the channels

are subject to Rayleigh fading, the conditional Laplace transforms of I(o) given

the shadowing cells {Ri} are

LIind,p(o)|{Ri}(s)

=
∏
i

exp

(
−λ
∫
Ri

(
1− ETi

[
1

1 + s‖x‖−αTi

])
dx

)
, (3.10)

under the independent shadowing assumption, and

LIcor,p(o)|{Ri}(s)

=
∏
i

ETi
[
exp

(
−λ
∫
Ri

(1− 1

1 + s‖x‖−αTi
)dx

)]
, (3.11)

under the correlated shadowing assumption.

Proof. See [55].

Corollary 4. The mean interferences observed by the typical user under the

correlated shadowing and the independent shadowing are the same.

E[Icor,p(o)] = E[Iind,p(o)]. (3.12)

The means of the interference fields under the two shadowing assump-

tions are the same. This substantiates the claim of fairness of the comparison

between the two shadowing assumptions.
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Corollary 5. The variance of the interferences observed by the typical user

under the correlated shadowing and the independent shadowing satisfy

var[Icor,p(o)] ≥ var[Iind,p(o)]. (3.13)

Proof. The mean and variance of a random variable can be obtained by dif-

ferentiating its Laplace transform at s = 0.

E[X] = − d

ds
LX(s)|s=0, (3.14)

var[X] = E[X2]− (E[X])2

=
d2

ds2
LX(s)|s=0 −

(
d

ds
LX(s)|s=0

)2

. (3.15)

By leveraging these relations, it is possible to obtain the conditional mean and

the variance of the interference given the shadowing cell {Ri}i∈N as

E[Icor,p(o)|{Ri}i∈N] = E[Iind,p(o)|{Ri}i∈N]

= λ
∑
i∈N

E[Ti]

∫
Ri

x−αdx, (3.16)

var[Iind,p(o)|{Ri}i∈N]

= 2λ
∑
i∈N

E[T 2
i ]

∫
Ri

x−2αdx+ λ2
∑
i∈N

E[Ti]
2

(∫
Ri

x−αdx

)2

, (3.17)

var[Icor,p(o)|{Ri}i∈N]− var[Iind,p(o)|{Ri}i∈N]

= λ2
∑
i∈N

var[Ti]

(∫
Ri

x−αdx

)2

≥ 0. (3.18)

(3.12) and (3.13) are obtained by deconditioning with respect to {Ri}i∈N.

Remark 9. When two random variables, X and Y have the same mean but

X has bigger variance, the Laplace transform of X is bigger than that of Y
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for very small s. This comes from a Taylor series expansion of e−x, and higher

order terms are neglected for small s. So, for small s, LIcor,p(s) ≥ LIind,p(s).

The following and stronger ordering relation are obtained in the next corollary.

Theorem 3. For all s > 0,

LIcor,p(o)(s) ≥ LIind,p(o)(s). (3.19)

Proof. This relation simply comes from Jensen’s inequality by comparing Equa-

tions (3.10) and (3.11). (3.19) is obtained by deconditioning with respect to

{Ri}i∈N+ .

Remark 10. From Corollary 5, the difference between var[Icor,p(o)|{Ri}i∈N]

and var[Iind,p(o)| {Ri}i∈N] is λ2
∑

i∈N var[Ti]
(∫

Ri
x−αdx

)2

. Since var[Ti] 6= 0,

equality holds if and only if
(∫

Ri
x−αdx

)2

. This is achieved when the sizes of

each Ri goes to zero. This relates to the fact that when all Ri are very small,

all points have independent shadowing random variables almost surely and the

model converges to the independent model.

3.4.2 Matérn Cluster Process Network Model

The PCP model is also widely used in wireless communications. Es-

pecially in urban networks, users tend to move to hot spot areas and this

is quite well represented by PCPs. In this model, it is assumed that the

shadowing cells are equivalent to the collection of daughter points sharing the

same mother point. This is a quite reasonable assumption since the mother

point can be thought as the representative point of that area. As already
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explained, two daughter points with different mother points may be close in

the Euclidean sense and yet have different shadows; this can be considered as

the situation where these transmitters are at different heights and hence have

different shadowing.

There are several types of PCP models. In what follows, this part

mainly considers the Matérn cluster process. In this model, the daughter

points are uniformly located in a disk with radius rd centered on its mother

point. However, the result may be generalized to other PCP models by chang-

ing the function f(·). The only assumption on f(·) is that
∫
R2 f(x)dx < ∞,

which means the mean number of daughter points per mother point is finite.

f(·) is used below to represent the density of the first moment measure of

daughter points relative to their mother point.

The density of the mother point process is denoted by λm, and each

mother point has some daughter point process which is a nonhomogeneous

point process with intensity λd
πr2
d

in a disk of radius rd centered on the mother

point, and 0 outside. So, the density of the PCP is λmλd.

Let Ty be the shadowing random variable of the shadowing cell centered

at y.

Theorem 4. In the Poisson cluster process with independent marks on each

cluster, under independent shadowing, the Laplace transform of the interfer-
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ence measured at the typical user is

LIind,c(o)(s)

= exp

(
− λm

∫
R2

[
1− exp

(
− λd∫

R2

(
1− ETy

[
1

1 + s(|x+ y|)−αTy

] )
f(x)dx

)]
dy

)
, (3.20)

where

f(x) =

{
1
r2
d
, if ‖x‖ ≤ rd

0, otherwise.
(3.21)

In the Poisson cluster process with under correlated shadowing, the Laplace

transform of the interference measured at the typical point is

LIcor,c(o)(s)

= exp

(
− λm

∫
R2

[
1− ETy

[
exp

(
− λd∫

R2

(
1− 1

1 + s(|x+ y|)−αTy
)
f(x)dx

)]]
dy

)
. (3.22)

Proof. See [55].

Theorem 5. As in Theorem 3, it is possible to obtain the following ordering

relation by Jensen’s inequality.

LIcor,c(o)(s) ≥ LIind,c(o)(s). (3.23)

Corollary 6. The mean interferences observed by the typical user under the
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correlated shadowing and the independent shadowing are

E[Icor,c(o)] = E[Iind,c(o)]

= λmλd

∫
R2

∫
R2

E[Ty]|x+ y|−αf(x)dxdy. (3.24)

Corollary 7. The variances of the interference observed by the typical user

under the correlated shadowing and the independent shadowing are

var[Iind,c(o)] = 2λmλd

∫
R2

∫
R2

ETy [T 2
y ]|x+ y|−2αf(x)dxdy

+ λmλ
2
d

∫
R2

∫
R2

|x+ y|−2αE[Ty]
2f(x)dxdy, (3.25)

var[Icor,c(o)] = var[Iind,c(o)]

+ λmλ
2
d

∫
R2

∫
R2

|x+ y|−2αvar[Ty]f(x)dxdy. (3.26)

Remark 11. When λ = λmλd is fixed, as λm increases (or equivalently as λd

decreases), the variances become the same. Since as λd decreases, the shad-

owing random variable of points become more independent and the correlated

model converges to the independent one.

3.5 Performance Metrics Analysis

3.5.1 Coverage Probability

In these network models, this chapter assumes that the serving base

station of the typical user, δ, is not included in Φ. It is assumed that the

distance between the typical user and δ is dlink. The links between x ∈ Φ

and the typical user are assumed to be subject to Rayleigh fading, whereas

the channel between δ and the typical user is subject to any of the following

fading conditions.

81



3.5.1.1 Rayleigh Fading

The instantaneous signal power is an exponential random variable with

mean 1. So, the coverage probability under Rayleigh fading is

P[SINRo > θ] = LI(o)(s)|s= θ
dα
link

. (3.27)

3.5.1.2 Rician Fading

Rician fading is similar to Rayleigh fading except for the existence of

a dominant component. This component, for instance, can be the line-of-

sight wave. When the power ratio of the dominant component over the other

component, the so called Rician factor, is κ, the coverage probability is

P[SINRo > θ] = e−κ
∞∑
n=0

n∑
l=0

(−1)l
κn

n!

sl

l!

dl

dsl
LI(o)(s)|s= θ

dα
link

, (3.28)

which comes from the CCDF of Rician distribution.

Since the Laplace transform of a random variable X, LX(s) = E[e−sX ],

is a completely monotone function, from Remark. 8, the expressions in Equa-

tions (3.27), (3.28) are also completely monotone functions. So, it is possible

to apply Theorem 1 to get the following ordering relations of coverage proba-

bilities under these fading cases.

Theorem 6. When the channel fading of the signaling link is Rayleigh or

Rician, the coverage probability under correlated shadowing is better than

under independent shadowing for all θ ≥ 0:

P[SINRo,cor > θ] ≥ P[SINRo,ind > θ], (3.29)
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where SINRo,cor and SINRo,ind are the SINR measured at the typical user under

the correlated and the independent shadowing field, respectively.

3.5.2 Shannon Throughput

Shannon throughput is one more example of completely monotone func-

tions of interference. The following ordering result then follows:

Theorem 7. The mean Shannon throughput is always larger under the cor-

related shadowing than under the independent shadowing, i.e.,

E[log2(1 + SINRo,cor)] ≥ E[log2(1 + SINRo,ind)]. (3.30)

3.5.3 Local Delay

Lemma 3. Let I =
∑

Xi∈Φ Gi/l(|Xi|) denote the spatial interference field

measured at the typical user, where Φ is some homogeneous PPP with intensity

λ on R2, {Gi} are i.i.d. random variables with Laplace transform LG(s) and

l(r) is any response function. Let LI(s|Φ) = E[e−sI |Φ] denote the conditional

Laplace transform of I given Φ. Then,

E
[

1

LI(s|Φ)

]
= exp

(
−2πλ

∫ ∞
0

v

(
1− 1

LG(s/l(v))

)
dv

)
. (3.31)

The proof can be found in [14].

The local delay expression is given under fast Rayleigh fading. Fast

Rayleigh fading is the case where fading coefficients are resampled at every

time slot.
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Theorem 8. Under the network Φ with fast Rayleigh fading, the local delay

of the tagged user is

E[LΦ] = exp(Nθd−αdlink
)
(
LI(o)(θdlink

−α)
)−1

, (3.32)

where N is the thermal noise power, l(·) is the path-loss function and dlink is

the distance between the typical receiver and its associated transmitter.

Proof. In the fast Rayleigh fading case,

P[Fd−αlink ≥ θ(N + I(o))] = exp(−Nθd−αlink)LI(o)(θd−αlink),

where F is the Rayleigh fading coefficient of the serving base station with

mean 1. So, the conditional expectation of the local delay given Φ is

E[LΦ] =
∑
n≥1

P[L ≥ n|Φ]

=
∑
n≥1

(1− exp(−Nθd−αlink)LI(o)(θd−αlink))n−1

= exp(Nθd−αlink)
(
LI(o)(θd−αlink)

)−1
. (3.33)

Corollary 8. From Theorem. 8, it is possible to conclude that

E[LIcor(o)] ≤ E[LIind(o)], (3.34)

since the local delay is proportional to the inverse of the Laplace transform.
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Figure 3.3: An example of random division of R2.

3.6 Computational Results

3.6.1 Comparison Settings

3.6.1.1 Poisson Point Process on Grid Shadowing Tessellations

For the shadowing tessellation case, this part focuses on the example

of Fig. 3.3, where {Ri} consists of squares with length ∆ and the origin is

located at the center of one square.

Three cases are considered: ∆ = 1, 5, 15 with α = 4, λ = 1, K = 0.1.

For the correlated shadowing model, as ∆ increases, more points will be in

a square, which implies more points will share the same shadowing random

variable. As ∆ goes to zero, the shadowing random variables of different points

become independent and the model converges to that in [4].
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Denote the square which contains the origin by R00, and label the other

squares by their relative positions with respect to R00 as on Fig. 3.3. The

shadowing random variable of Rij is assigned by Tij and assumed Tij = Krij ,

where 0 ≤ K ≤ 1 and rij is a Poisson random variable with mean λb∆
√
i2 + j2.

Here, K is the attenuation factor when signal crosses an obstacle, and rij is

the number of obstacles between the origin to any point in Rij. In numerical

evaluation, K = 0.1 is assumed. The underlying assumptions on rij are that

the number of obstacles is Poisson distributed for a given link, as in [4]; λb is

the implicit obstacle density and ∆
√
i2 + j2 is the distance between the center

of Rij which is the representative point of Rij and the origin. Here, λb = 1.

For the independent shadowing model, it is assumed that the shadowing

random variables of points in Rij are i.i.d. with distribution that of Krij

instead of assigning one Tij to all points in Rij.

Further, the distance from the typical user to its serving base station,

d, is assumed to be 0.5 and it is assumed that there is no obstacle between

the typical user and its serving base station. The Rayleigh fading case is only

considered.

In the following part, I provide the justification of how I chose the

values of each parameter.

First of all, K = 0.1 comes from the typical penetration loss of brick

walls at 1.8∼2.6GHz. The values of λb, λBS and d are not from real network

parameters. The followings are main rationale for choosing λb = 0.5, λBS = 1,
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and d = 0.5.

1. In Figure 3.3, R00 is LOS region when the shadowing probability law for

Rij is fRij(·) = Krij where rij is a Poisson random variable with a mean

λb∆
√
i2 + j2 where ∆ is the height of each square. Since I assume the

serving signal is not affected by the shadow, I want to locate the serving

base station in R00. Since the minimum ∆ in my presentation was 1, I

chose d = 0.5.

2. I designed ∆ to investigate the following cases: A) many base stations

share the same shadowing random variables and B) most base stations

do not share the same shadowing random variable. When λBS is fixed,

these cases can be generated by changing ∆. I assigned λBS = 1, and

it is possible to make the second case with ∆ = 1 and the first case

with larger ∆. Basically, I randomly chose λBS, ∆, and λb, but these

parameters are scalable especially for interference-limited networks.

Remark 12 (log-normal compatibility). With some examples of shadowing

cells, {Rij}, and their associated shadowing probability laws, fTij(·) including

the example in Figure 3.3, the path loss model is compatible with the lognormal

shadowing model in the following sense. The received power at the origin form

x ∈ Rij is

Px→o = Sxhx‖x‖−α

= Krijhx‖x‖−α

= exp(rij log(K))hx‖x‖−α,
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where rij is a Poisson random variable with a mean λb∆
√
i2 + j2. As λb or

i, j goes to infinity, rij can be well approximated by a normal random variable

and this model is hence compatible with a lognormal shadowing distribution

asymptotically.

3.6.1.2 Matérn Cluster Shadowing Cell

For the correlated shadowing model, the common shadowing random

variable of daughter points of the i-th mother point is denoted by Ti. Ti = Kri

is assumed where 0 ≤ K ≤ 1 and ri is a Poisson random variable with mean

λb|Xi| where |Xi| is the distance between Xi and the origin. As in Sec. 3.4.1,

the shadowing random variable of a daughter point of the i-th mother point is

an i.i.d. Poisson random variable with mean λb|Xi|. In numerical evaluation,

λb = 1 and K = 0.1 are assumed. For the link between the typical user and its

serving base station, it is assumed that its length is 0.5 and that it is subject

to Rayleigh fading with no blockage.

In order to compare interference among networks with the same density

but different amounts of the correlation, this part fixes the base station density

by taking λmλd = 1 and varies λd = 1, 5, 10. Under correlated shadowing, as

λd increases, more transmitters are in the same shadowing cell and the amount

of common randomness also increases. Further, rd = 1.
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Figure 3.4: Coverage Probability under the model in Sec. 3.4.1. The link distance
is 0.5 and ∆ = 1, 5, 15.
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Figure 3.5: Coverage Probability under the model in Sec. 3.4.2. The link distance
= 0.5 and λd = 1, 5, 10.
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Figure 3.6: Comparison of coverage probability for Fig. 3.1 under Monte Carlo
simulation and independent link assumption where λ = 1, K = 0.01, N = 0.

3.6.2 Interpretations of Simulation Results

3.6.2.1 Coverage Probability

Fig. 3.4 and 3.5 illustrate the coverage probabilities under the model

in Sec. 3.6.1.1 and Sec. 3.6.1.2, respectively. Two facts are observed from

these simulation results which are in line with or extending our mathematical

derivations:

• the coverage probability under the correlated shadowing is larger than

that under the independent shadowing, which confirm what is proven in

Theorem. 6, and

• the gap of coverage probabilities between correlated and independent

settings decreases as ∆ and λd decrease.
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Remark 13. In Remark 10 and 11, it was shown that the variance of the

correlated model converges to that of the independent model as the sizes of all

Ri or λm decrease. From Fig. 3.4 and 3.5, it is possible to observe more general

results about the convergence of higher order moments of interference between

the two shadowing assumptions. The coverage probability is proportional to

the Laplace transform with some positive argument when the link between the

typical user and the serving base station is subject to Rayleigh fading, since

P[
hd−αlink

I +N
> T ] = e−d

α
linkN × LI(s)|s=Tdαlink

,

where h ∼ exp(1) is the channel fading coefficient. In Fig. 3.4 and 3.5, the gap

of coverage probability between the two shadowing assumptions is reduced as

∆ (equivalently Ri) decreases or λd decreases. From these experimental results,

it is possible to see that the Laplace transforms (or equivalently higher order

moments) of the interference of the two shadowing models become asymptot-

ically similar.

Now, this chapter provides the coverage probability results of the well

known network example which is discussed in [4]. The base stations form a

homogeneous PPP with a density λ, and the obstacles are represented by a

Boolean model [5], where the centers of obstacles are distributed as a homoge-

neous PPP with intensity λb. It is assumed that the obstacles are line segments

with length l. See Fig. 3.1. For this network, the path loss model presented in

(3.4) is used under both the correlated and the independent shadowing. Fur-

ther, it is assumed that the shadowing random variable of base station x ∈ Φ
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seen by the typical user is KNx , where 0 < K < 1 is the attenuation factor

and Nx is the number of obstacles on the path between x and the typical user.

In Fig. 3.6, the simulation results on the independent setting and the

Monte Carlo simulation of the ground truth are given. Under the indepen-

dent setting, Nx is distributed as a Poisson random variable with a mean

λb×(link length of ox)
2π

. Under the Monte Carlo simulation, all base stations and

obstacles are deployed, and Nx is counted for each x ∈ Φ of the realized net-

work. For both cases, λ = 1, K = 0.01, N = 0 are assumed and the cases

with (λb, l) = (0.1, 5), (0.5, 5), and (0.5, 10) are considered. Also, it is assumed

that all channels are subject to Rayleigh fading. Further, dlink = 0.5 with no

obstacles is assumed.

Again, from Fig. 3.6, it is possible to see that the coverage probability

under the correlated model is better than that under the independent approxi-

mation. Also, as λb or l increase, the coverage probability becomes larger since

more interference power is blocked by obstacles. For a quantitative result, the

case with (λb, l) = (0.5, 5) is considered. In this case, the Monte Carlo simula-

tion of the ground truth compared to the independent approximation is 23%

better at 0dB and 79% better at 10dB.

3.6.2.1.1 Numerical Validation

Figures 3.7 and 3.8 show the comparison of coverage probabilities un-

der 1) the real obstacles (line segments with a length 2
π

for a fair comparison)

deployment 2) the independent shadowing field and 3) the correlated shadow-
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Figure 3.7: ∆ = 1
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Figure 3.8: ∆ = 0.1

ing field when ∆ = 1 and 0.1. For both figures, I assume d = 0.5, λb = 0.5,

λBS = 1 and K = 0.1. Again, fTij(·) = Krij where rij is a Poisson random

variable with mean λb∆
√
i2 + j2 which is the implicit number of blockages

between the origin and the center of rij.

When ∆ = 1, since the shadowing cell model is a two stage model (de-

signing Rij and assigning fTij(·)), coverage probabilities under the correlated

and independent shadowing models exceed that under the real deployment sce-

nario unlike the previous independent shadowing approximation. This comes

from the fact that 1) the shadowing cell is too big, so sampling the number

of obstacles at the center point of each cell cannot reflect the real situation

and 2) fTij(·) should be correlated to capture real networks as Dr. de Veciana

mentioned. However, at least for some effective region such as θ > 0dB, we
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can see that the coverage probability under the independent shadowing model

is evaluated pessimistically compared to both the correlated blockage model

and the real deployment scenario.

When ∆ = 0.1, the discrepancy between the two shadowing fields is

very small since the two shadowing models converge to the independent shad-

owing model as I explained in my defense. Under these two models, the cov-

erage probability is evaluated in a pessimistic way, but the correlated case is

slightly closer to the real deployment scenario.

My contribution is to provide mathematical rationale for why the inde-

pendent approximation provides pessimistic performance metrics. It is hard to

quantify the exact performance metrics under the correlated shadowing field.

Further, my model has certain amount of independence (shadowing over cells),

so it is hard to obtain the exact values. At least, my model provides answers on

the comparison of the previous independent approximation and the correlated

model closer to real network environments.

3.6.2.2 Shannon Throughput

The results for Shannon throughput under the models of Sec. 3.6.1.1

and 3.6.1.2 are summarized in Table. I. The network setting is the same as

that of Fig. 3.4 and Fig. 3.5. For both models, the mean Shannon throughput

under the correlated shadowing is larger than that under the independent

approximation as shown in Theorem. 7. As for the coverage probability, as ∆

and λd decrease, the Shannon throughput of the correlated case converges to
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PPP PCP
∆ cor ind λmλd = 1 cor ind
1 1.9370 1.8942 λd = 1 2.0180 1.9075
5 2.7300 1.6358 λd = 5 3.5615 2.9402
15 2.7737 1.6101 λd = 10 5.2018 4.1043

Table 3.1: Shannon Throughput

that of the independent approximation. Under the model in Sec. 3.6.1.1, the

mean Shannon rate of the correlated case compared to that of the independent

approximation is from 2% to 72% better as ∆ increases from 1 to 15, and

under the model in Sec. 3.6.1.2, the benefits of the correlated case over the

independent approximation ranges from 6% to 27% as λd increases from 1 to

10.

3.6.2.3 Local Delay

Fig. 3.9 and Fig. 3.10 illustrate the local delays under the models in-

troduced in Sec. 3.4.1 and Sec. 3.4.2. In both figures, the x-axis is in dB scale

for a better visualization, and the y-axis is the probability that the local delay

is larger than x. For example, in Fig. 3.9, when ∆ = 5 under the independent

case, the probability that the local delay is larger than 1 is 0.45. From this

interpretation, it is possible to see that the local delay under the correlated

case is less than that under the independent approximation. The probabilities

that the local delay is larger than 1 under the correlated case are from 3.3%

to 11.7% below those under the independent approximation when ∆ = 1, 15

in Fig. 3.9 and from 1.7% to 7.6% when λd = 1, 10 in Fig. 3.10.
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Figure 3.9: Local delay under the model in Sec. 3.4.1.

For both figures, it is possible to see that the probabilities that the

local delay exceeds 100 are nonzero. It is considered that if a network with a

given topology cannot succeed in transmitting a packet in 100 time slots, it is

possible to transmit packets in that topology.

3.7 Conclusions

In this chapter, the impact of correlated shadowing fields is analyzed

using stochastic geometry and stochastic ordering. It is shown that the Laplace

transform of the interference experienced by the typical user is always larger

than under the independent approximation. From this Laplace stochastic or-

dering, further ordering results on network performance are derived. The

main result is that when ignoring the spatial correlations of shadowing, widely
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Figure 3.10: Local delay under the model in Sec. 3.4.2.

used metrics such as coverage probability, Shannon throughput, local delay

are systematically evaluated in a pessimistic way. For better understanding

this physical phenomenon, this chapter has provided two network examples

by deriving the exact Laplace transform of the interference distribution under

the correlated and independent assumptions. By using the fact that the three

key metrics are completely monotone functions, this chapter could also prove

ordering results on these metrics under the two shadowing settings.

3.8 Appendix

3.8.1 Probability Generating Functional of a Poisson Point Process

A classical lemma is given for the a probability generating functional

(PGFL) [30] of a Poisson point process (PPP).
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Lemma 4. Let Φ be a homogeneous PPP with intensity λ on R2 and f(·) :

R2 → [0, 1]. Then,

E

[∏
Xi∈Φ

f(Xi)

]
= exp

(
−λ
∫
R2

(1− f(x))dx

)
. (3.35)

In Equation (3.35), Xi denotes both point Xi and its coordinate.

For the proofs in the next chapter, the definition of an independent

marking of a point process [5] and a lemma are used.

Definition 3 (Independently marked point process). A marked point process

is said to be independently marked if, given the location of the points, the

marks are mutually independent random vectors, and if the conditional distri-

bution of mark Mi of a point xi ∈ Φ depends only on the location of xi it is

attached to; i.e., P[Mi ∈ A|Φ] = P[Mi ∈ A|xi] = Fxi(dM) for some probability

kernel function.

Lemma 5. For an independently marked homogeneous PPP with density λ

on R2 and marks with distribution Fx(dm) on Rl, its Laplace transform is

LΦ(f) = E[e−
∑
i f̄(xi,Mi)]

= exp

[
−λ
∫
R2

(
1−

∫
Rl
e−f̄(x,M)Fx(dM)

)]
, (3.36)

for all functions f̄ : R2+l → R+.

From Lemma 4 and 5, it is possible to obtain the Laplace transform of

the interference fields of Poisson networks. There are several types of Poisson

networks modeling both cellular and ad-hoc networks. Two types of networks
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are mainly considered where Φ is modeled by 1) a homogeneous PPP or 2) a

Poisson cluster process (PCP). These are widely used point processes to model

communication networks. The interference measured at the origin under the

homogeneous PPP model with the independent and the correlated shadowing

is denoted by Iind,p(o) and Icor,p(o), respectively, and by Iind,c(o) and Icor,c(o)

under the homogeneous PCP model. respectively.

3.8.2 Proof of Theorem 2

When Φ is a homogeneous PPP with intensity λ, the conditional Laplace

transform of Iind,p(o) given {Ri} is

LIind,p(o)|{Ri}(s) = E[e−sIind,p(o)|{Ri}]

= E[e−s
∑
x∈Φ hxSxd

−α
x |{Ri}]

= E[e−s
∑
i

∑
x∈Φ∩Ri

hxTid
−α
x |{Ri}].

By deconditioning hx ∼ exp(1) and using Lemma 5, the conditional Laplace

transform of Iind,p(o) given {Ri} becomes

LIind,p(o)|{Ri}(s)

= exp

(
−λ
∑
i

∫
Ri

(
1− ETi,hx

[
e−shx‖x‖

−αTi
])
dx

)

= exp

(
−λ
∑
i

∫
Ri

(
1− ETi

[
1

1 + s‖x‖−αTi

])
dx

)

=
∏
i

exp

(
−λ
∫
Ri

(
1− ETi

[
1

1 + s‖x‖−αTi

])
dx

)
. (3.37)
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In the same manner, it is possible to obtain the Laplace transform of Icor,p(o)

as

LIcor,p(o)|{Ri}(s)

=
∏
i

ETi
[
e−s

∑
x∈Φ∩Ri

hxTid
−α
x |{Ri}

]
=
∏
i

ETi
[
exp

(
−λ
∫
Ri

(1− Ehx [e−shx‖x‖
−αTi ])dx

)
|{Ri}

]
=
∏
i

ETi
[
exp

(
−λ
∫
Ri

(1− 1

1 + s‖x‖−αTi
)dx

)]
. (3.38)

The main difference between (3.37) and (3.38) is the location of the

expectation, ETi .

3.8.3 Proof of Theorem 4

For a given mother point, its daughter points and their common shad-

owing random variable (for the correlated case) or their i.i.d. shadowing ran-

dom variables are independent mark of the mother point. So, by applying

Lemma 5, it is possible to obtain the Laplace transform of interference.

Let Φ be the Matérn cluster process with a Matérn radius Rd, the in-

tensity of mother Poisson point process λm, and the mean number of daughter

points per mother λd. The generating functional of Matérn process is also

given by [48,56]

E[
∏
x∈Φ

g(x)]

= exp

(
−λm

∫
R2

[
1−M

(∫
R2

g(x+ y)f(y)dy

)]
dx

)
, (3.39)
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where M(z) = exp(−λd(1− z)) and f(·) is in (3.21).

Under the independent shadowing field, the Laplace transform of Iind,c(o)

is

LIind,c(o)(s) = E[e−sIind,c(o)] = E[
∏
x∈Φ

e−shxSx‖x‖
−α

]

(a)
= exp

(
− λm

∫
R2

[
1−M

(
Ehx,Ty [

∫
R2

hxTy‖x+ y‖−αf(y)dy]
)]
dx

)
(b)
= exp

(
− λm

∫
R2

[
1− exp

(
− λd

∫
R2(

1− ETy
[

1

1 + s(|x+ y|)−αTy

])
f(x)dx

)]
dy

)
. (3.40)

where (a) comes from Lemma 5 and (3.39), and (b) is by deconditioning the

channel fading coefficient hx and the shadowing random variable Ty. In the

same manner, the Laplace transform of Icor,c(o) is obtained as

LIcor,c(o)(s)

= exp

(
− λm

∫
R2

[
1− ETy [exp

(
− λd∫

R2

(
1− 1

1 + s(|x+ y|)−αTy

)
f(x)dx

)
]
]
dy

)
. (3.41)

As in Theorem 2, the main difference is the location of the expectation of Ty

induced by common and independent random variables.
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Chapter 4

Multihop Connectivity of Millimeter-Wave

Networks

4.1 Introduction

Millimeter wave (mmWave) is the band of spectrum from 30 to 300GHz,

where wavelengths are from 1 to 10mm [57]. The main applications in this

band so far were radio astronomy, remote sensing, and radar. However, it is

currently being seriously considered for 5G wireless communication systems

[58], since the spectrum in the sub 3GHz bands is saturated and not sufficient

to meet the expected increase in wireless data traffic. Further, the mmWave

band is still rather underutilized and a huge bandwidth is available. Even

though the mmWave band has a great potential for the future 5G network,

there are many critical issues to overcome for commercial applications. For

example, the fact that mmWave signals cannot penetrate certain blockages

due to physical properties makes coverage one of the main challenges.

In multihop wireless networks, one or more nodes along a path receive

and forward data packets over wireless links. Compared to single hop net-

works, there are several benefits. First of all, multihop wireless networks can

extend coverage and improve connectivity [59, 60]. So, multihop relaying is
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essential in future mmWave communications. Also, transmitting over several

short links might use smaller transmit power than over a single long link.

This is particularly important since transmit power is one of main issues in

mmWave bands due to severe path loss and wide-band utilization. Further,

multihop communications enable higher data rates and efficient use of the

wireless medium. In addition, several paths are available which increases the

robustness of the network.

In this contribution, I propose a stochastic geometric approach to ana-

lyze mmWave multihop networks in the presence of blockages. The modeling

of blockage is critical for analyzing connectivity of mmWave networks. To

do so, I use a random Boolean model [5] for representing spatially distributed

blockages. More precisely, the centers of the blockages are modeled by a homo-

geneous Poisson point process (PPP) and the shapes of blockages are assumed

to be random.

I consider two blockage models: independent blockage model and cor-

related blockage model. The independent blockage model is considered in order

to get exact analytical expressions of connectivity results. In this model, the

blockage process is independent over links as in [4] even though two links are

close to each other. Then, I consider the correlated blockage model which is

induced by common blockages, and closer to real environments. I provide ex-

act expressions of connectivity results under the independent blockage setting

and compare some of these results between two blockage models since it is

hard to obtain exact expressions under the correlated blockage model. To the
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best of our knowledge, this comparison has not been discussed in the mmWave

multihop setting.

Further, I consider both ad-hoc and cellular networks. In ad-hoc net-

work model, there is only a single point process for representing users while

there are two independent point processes for modeling users and base sta-

tions in cellular network model. I mainly consider the distributions of users

connected to a typical user, a typical base station or any base stations. The

derived results shed light on the system capacity and cell planning in the

mmWave networks.

4.1.1 Related Works

4.1.1.1 Stochastic Geometry and Millimeter Wave Networks

In order to evaluate the performance of wireless networks, system level

simulation is crucial. However, a major limitation of simulations is that each

wireless scenario should be simulated separately when different system pa-

rameters are used. As networks become complicated, system level simulation

consumes much time and becomes expensive. As an alternative to system

level simulation, stochastic geometry is now recognized as a tractable analyt-

ical tool for deriving key performance metrics of networks by utilizing spatial

point process to model the location of users and base stations. With this

point process theory, it became possible to analyze the performance of cellu-

lar networks [12, 29, 45, 61] and ad-hoc networks [41–43] for legacy microwave

networks.
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However, these mathematical frameworks cannot directly be applied to

mmWave networks since the path loss models are quite different. Especially

at mmWave frequencies, Line-of-Sight (LOS) signals and Non Line-of-Sight

(NLOS) signals have very different distributions. In particular, a link subject

to blockages may be too weak to be established. Stochastic geometry has

already been used for system level performance of cellular networks [13,62,63]

and ad-hoc networks [64] under mmWave assumptions. In this literature,

blockages are modeled by Boolean models [4]. However, the analysis in these

works is restricted to a single hop transmission.

4.1.1.2 Multihop Communication and Connectivity

Multihop communication [33] is a basic technique to improve the per-

formance of wireless networks. It is used to extend coverage and improve

connection quality such as robustness with several available paths. Also, as

already mentioned, transmission over multiple short links requires less trans-

mit power and energy. These are essential in mmWave communications since

mmWave has several issues due to severe path loss.

Multihop communication networks have been analyzed under the stochas-

tic geometric approaches. The optimum transmission range maximizing through-

put in multihop packet radio networks was analyzed in [65, 66]. In [67], the

authors computed bounds on the end-to-end delay, the optimum hop lengths

in TDMA, and ALOHA multihop networks. Also, ALOHA type access control

mechanisms for mobile multihop wireless networks were analyzed in [42, 68].
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The optimization problem for the product of the successful transmission per

unit space by the average range of the transmission was also considered. Fur-

ther, the gain of opportunistic routing schemes compared to classical routing

schemes was analyzed in [69].

However, there are not many attempts to analyze mmWave multihop

communications in the spatial network modeling context. [70] provides the

connection probability between two points with given Euclidean distance, but

it only considers one hop paths and no multiple users or base stations. To

the best of our knowledge, this paper is the first to provide general multihop

connectivity results for both ad-hoc and cellular networks in the mmWave

context.

4.1.1.3 Correlated Shadowing (Blockage)

Even though shadowing fields are spatially correlated [33], only few

tractable models have been proposed to represent this correlation. In [35],

Gudmundson proposed the first model of correlation between a fixed base sta-

tion and a moving user by using an autogressive process with an exponential

decaying autocorrelation. The correlation effect was also considered in the mul-

tiple base station setting [37] and for multihop networks [38]. The 3GPP [39]

and IEEE 802.11 standardization groups [40] also suggest models for corre-

lated shadowing based on similar ideas. However, these models give limited

intuition on large and dense wireless networks. Also, complex simulation tools

are required.
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Over the past decades, the shadowing field was incorporated into ba-

sic planar PPP models, but the field was assumed independent over wireless

links since this approximation leads to simple analytical expressions [2–4]. A

first approach to combine correlated shadowing and stochastic geometry was

proposed in [46, 47] for urban networks and in [16] for in-building networks.

These models analyzed the correlation effect in the special case of blockages

represented by Poisson line processes. They are however restricted to blockage

based path loss functions and do not allow one to use a distance based term in

the path loss function. In [31], a new stochastic geometric model for capturing

the spatial correlations was suggested, and the effect of correlation on wireless

performance metrics was discovered under single hop communications.

4.1.2 Main Contributions

In this paper, I propose a new mathematical framework for analyzing

connectivity of mmWave multihop communications, and more generally in all

situations where obstructing by blockages is critical. Under the stochastic

geometric framework, the distributions of users connected to the typical user,

the typical base station or any base stations are investigated.

I consider the independent and correlated blockage models. Under the

independent blockage model, the blockage process is generated per link. So,

the blockage process is independent over links. The independent blockage

model can be analyzed in terms of the random connection model [71] in which

the blockage probability of a link is a function of its length. Using well known
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results on this random connection model, it is possible to obtain exact ex-

pressions on network connectivity. However, it is hard to provide exact forms

of metrics under the correlated blockage model. The main new results on the

matter are comparing results between the independent and correlated blockage

models.

I summarize our contributions as follows.

• I first consider the independent blockage model, which is an approxi-

mation of real networks allowing one to derive closed form analytical

expressions. Under this model, the connectivity results of multihop ad-

hoc networks are analyzed by leveraging classical results of the random

connection model [71]. I randomly choose a user and refer to this user

as the typical user. It is shown that users connected to the typical user

in one hop form an inhomogeneous PPP. From this result, I obtain 1)

the mean number of users connected to the typical user in a single hop

and 2) the distribution of the distance between the typical user and its

nearest connected user. Further, by leveraging classical results on the

random connection model, I provide the mean number of k-hop paths

starting from (or ending to) the typical user. Finally, I will discuss the

critical user density for the existence of an infinite cluster of connected

users by using percolation theory [72].

• Under the independent blockage model, I also analyze the multihop cellu-

lar networks [73]. Similar to the definition of the typical user, I randomly
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choose a base station and refer to this base station as the typical base

station. I first compute the distribution of base stations connected to the

typical user in one hop and that of users connected to the typical base

station in one hop. Then, I provide exact expressions of the distributions

of users which are connected to any base stations in exactly one hop and

two hops, which have not been discussed in previous studies. Also, I

derive the distribution of isolated users, neither connected to any base

stations nor to any other users. Finally, I also consider a multihoming

scenario for a user in an infinite cluster of connected users.

• I also consider the connectivity results of the correlated blockage model.

I show that the mean numbers of users connected to the typical user,

the typical base station or any base stations in one hop are the same

under two blockage models. I also discuss the existence of an infinite size

cluster of connected users under the correlated blockage model. Unlike

the independent blockage model, there exists no critical user density

under some blockage conditions. As in the independent blockage model,

a multihoming scenario for a user in a cluster of infinitely many connected

users is considered if such cluster exists.

4.2 System Models

4.2.1 Network Model: Ad-hoc Networks and Cellular Networks

In this contribution, I consider two network architectures: ad-hoc net-

works and cellular networks. In ad-hoc networks, there is only one network
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element type, namely mobile users, while in cellular networks, there are two

types of network elements, mobile users and base stations. All network ele-

ments may act as a source, a relay, and a destination. As in most previous

papers on the modeling of wireless networks using stochastic geometry, such

network entities are modeled as independent homogeneous PPPs [5]. I also

assume that mobile users and base stations form independent homogeneous

PPPs in the 2-dimensional Euclidean space (R2) with positive and finite in-

tensities λu and λBS, respectively. Let Φu and ΦBS denote the locations of the

mobile users and the base stations.

In order to represent blockages, I consider a Boolean model [5]. Let Ψb

be the set of blockages; each element s ∈ Ψb represents an blockage. Let Φb

be the center points of Ψb, which forms a homogeneous PPP with intensity

λb. Each blockage has a random shape. In this paper, I mainly consider two

examples which are 1) line segments with isotropic orientation and length lb

and 2) balls with radius rb.

4.2.2 Connectivity in Millimeter Wave Networks with Multi-Hop
Communications

4.2.2.1 Line-of-Sight (LOS)

In this paper, I assume that NLOS mmWave signals are too weak to

reach receivers, and LOS is needed for a link connection. Although it has

been shown that high data rate can be supported by NLOS links through

reflected paths in mmWave networks [74], there still could be a considerable

performance degradation compared to LOS links. It becomes more crucial
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to maintain a LOS link for users requiring very high data rate to support

the 5G immersive experiences [75]. In this paper, I mainly consider the LOS

connectivity of mmWave networks and will remain the NLOS connectivity for

future works.

4.2.2.2 Signal-to-Noise Ratio

Due to the directivity of mmWave signals, signal-to-noise (SNR) ratio

might be more appropriate than signal-to-interference-plus-noise ratio (SINR)

in order to measure the quality of wireless connections. Instead of using SNR

threshold for a link connection, I equivalently consider a communication range

from transmitters. For a link connection, the link distance should be less than

R.1 I assume transmit powers from all users are the same.

The validity of this SNR-based model under mmWave systems is pre-

sented by [59,76–78] which showed that thermal noise dominated interference.

The simulation studies in [59] showed the noise-limited nature of these net-

works and [63] provided similar obsevation in analytical approaches.

4.2.2.3 Multihop Communications

I assume that a link is connected if a) that link is LOS and b) the length

of that link is less than R. In the ad-hoc network model, I mainly consider the

1In cellular networks, the transmit power of base stations is usually much larger than
that of mobile users. However, a cell size is determined by the uplink RF coverage for link
connection. So, R can be understood as the maximum reachable range from a mobile user.
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(a) Ad-hoc network model with ball blockages.
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(b) Cellular network model with line segment block-
ages.

Figure 4.1: Network model

distributions of users connected to the typical user located at the origin2. A

point in Φu is defined as a k-th order connected user (to the typical user) if it

can reach the origin in k-hops and not in less. Similarly, in cellular networks,

I define k-th order connected users as users in Φu which are connected to any

base stations in k-hops and not in less. See Figure 4.1.

4.2.3 Correlated and Independent Blockage Models

I analyze networks under the correlated and independent blockage mod-

els. Under the independent blockage model, each link is independently blocked

with a probability function which only depends on its length. This is an ex-

2By Slivnyak’s theorem [5], it is possible to add the typical user at the origin.
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ample of independent shadowing approximations which ignore blockage corre-

lations.

I define a LOS probability function, L(a, b), which is the probability

that the link connecting a and b is LOS under the independent blockage model.

Depending on the shape of blockages, there are different L(a, b) functions.

Example 4. When the blockages are line segments with isotropic orientation

and length lb, the probability that a given link between a and b is LOS is

L(a, b) = exp (−µ1‖a− b‖) , where µ1 = 2λblb
π

. Also, when the blockages are

balls with radius rb, L(a, b) = exp(−λbr2
bπ) exp (−µ2‖a− b‖) , where µ2 =

2rbλb.

Proof. The probability function L(a, b) with line segment blockages is derived

in [4]. For ball blockages, let us consider a link connecting O and A with

length x as in Figure 4.2. With ball blockages, this link is LOS if and only if

there exists no point of Φb in the shadowed region of Figure 4.2. Since Φb is a

homogeneous PPP with intensity λb and the width of the shadowed region is

2rbx+r2
bπ, the probability that the link is LOS is exp(−λb× (2rbx+r2

bπ)).

I will use a connectivity probability function C(a, b) = L(a, b)1‖a−b‖<R

for the independent blockage model. Here, 1argument is the indicator function

which takes value 1 if the argument is true and 0 otherwise. With this function,

I will analyze the connectivity of networks under the independent shadowing

model.
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Figure 4.2: Link OA is LOS if and only
if no points of Φb lies on the shadowed
region under the independent shadowing
field with ball blockages.

�

�

�

�

Independent Correlated
Connected

Not connected

Figure 4.3: Comparison of shadowing
models. Under the independent shadow-
ing model, even though two links, A and
B are very close, it is possible that one
of them is only connected and the other
is not.

This independent blockage model is a good approximation if the size

of blockages is small or the density of blockages are low, since correlations in-

duced by common blockages are reduced. However, this independent blockage

model cannot capture the spatial correlations of networks. Figure 4.3 shows

a comparison between the correlated and independent blockage models. Let

us assume that two line segments A and B are very close to each other with

the same length. Assume that one of them is blocked by blockages with prob-

ability p. Then, the probability that both links are blocked is p2 under the

independent blockage model while is almost p under the correlated blockage

model. So, the independent blockage model may provide limited intuitions

on real networks even though it is possible to obtain simple expressions of

important wireless performance metrics.
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4.3 Independent Blockage Model

I first consider the independent blockage model. As explained above,

a link between a, b ∈ R2 is connected with a probability C(a, b) which only

depends on the link distance, ‖a− b‖. So, the model used in this section is an

instance of the random connection model [72].

4.3.1 Ad-Hoc Networks

A first interesting question is how many users are connected to the

typical user in one hop or in multiple hops. To analyze this, I use Palm

calculus [5] and focus on the typical user which is located at the origin (o) of

R2. The distribution of users connected to the typical user provides insights

on the connectivity properties of the whole ad-hoc network.

4.3.1.1 First Order Connected Users Process

The next lemma provides the distribution of the first order connected

users to the typical user.

Lemma 6 (Connected user process). The first order connected users to the

typical user form an inhomogeneous PPP with intensity measure

Λa(B) =

∫
B

λuC(x, o)dx, B ∈ B(R2).

Proof. This theorem can be proven by the independent thinning of PPPs [5].

The retention function of the independent thinning is pa(x) = C(x, o) for

x ∈ R2. Since Φu is a homogeneous PPP with intensity measure λudx, I can
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obtain the intensity measure of the first order connected users as

Λa(B) =

∫
B

pa(x)λudx =

∫
B

λuC(x, o)dx, B ∈ B(R2).

Since the first order connected users forms a PPP, the number of users

connected to the typical user in one hop is a Poisson random variable with a

mean Λa(R2).

Corollary 9. The mean number of first order connected users to the typical

user is Λa(R2), and the probability that there are no connected users to the

typical user is exp(−Λa(R2)).

Before I give an example, I define a function to be used in the remaining

of this paper:

m(a, b, c) =
2πa

b2

(
1− 1 + bc

exp(bc)

)
,

and especially, when c =∞,

m(a, b,∞) =
2πa

b2
,

since exp(bc) = 1 + bc+ c2
∑∞

i=2
bici−2

i!
.

Example 5. When the blockages are line segments with isotropic orientation

and length lb, the mean number of first order connected users to the typi-

cal user is m(λu, µ1, R) and the probability that no user is connected to the

116



typical user is exp(−m(λu, µ1, R)). When the blockages are balls with ra-

dius rb, the mean number of first order connected users to the typical user is

m(λu exp(−λbr2
bπ), µ2, R) and the probability that there is no connected user

is exp(−m(λu exp(−λbr2
bπ), µ2, R)).

I can obtain the statistics of LOS users to the typical user by plugging

in R =∞ since when R =∞, C(x, o) = L(x, o)1‖x−o‖<∞ = L(x, o).

Corollary 10. The LOS users from the typical user’s view form an inhomo-

geneous PPP with intensity measure

ΛLOS,a(B) =

∫
B

λuL(x, o)dx, B ∈ B(R2).

Also, the mean number of LOS users from the typical user’s perspective is

ΛLOS,a(R2), and the probability that there exists no LOS user to the typical

user is exp(−ΛLOS,a(R2)).

Example 6. When the blockages are line segments with isotropic orientation

and length lb, the mean number of LOS users with respect to the typical

user is m(λu, µ1,∞) = 2πλu
µ2

1
and the probability that there is no LOS user to

the typical user is exp(−m(λu, µ1,∞)) = exp
(
−2πλu

µ2
1

)
. When the blockages

are balls with radius rb, the mean number of LOS users with respect to the

typical user ism(λu exp(−λbr2
bπ), µ2,∞) = 2πλu

exp(λbr
2
bπ)µ2

2
and the probability that

there is no LOS user to the typical user is exp(−m(λu exp(−λbr2
bπ), µ2,∞)) =

exp
(
− 2πλu

exp(λbr
2
bπ)µ2

2

)
.

The next interesting property is the distribution of the distance between

the typical user and its nearest connected user.
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Figure 4.4: Distribution of the distance between the typical user and its near-
est connected user. In this figure, blockages are line segments with length lb and
uniformly random orientation.

Corollary 11. The distribution of r1 which is the distance between the typical

user and its nearest connected user is

P[r1 ≤ r] = 1− exp (−Λa(B(0, r − (r −R)1r>R))) ,

where B(x, d) is a ball centered at x and with radius d.

Proof. Since the first order connected users form an inhomogeneous PPP,

P[r1 > r] = P[no connected user in B(o, r)] = exp (−Λa(B(o, r − (r −R)1r>R))) .
(4.1)

Some examples of the distribution of r1 are illustrated in Figure 4.4. For

all cases, the cumulative distribution functions do not converge to 1 since the
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typical user may not have any connected users under some PPP configurations.

Further, as the density of users decreases or the size of blockages increases,

the horizontal asymptote, which is the probability of the existence of at least

one connected user, also decreases.

Remark 14. Corollary 11 is related to the result in Corollary 9 which provides

the probability that no users are connected to the typical user. By plugging

in r = R in (4.1), I get

P[r1 > R] = exp (−Λa(B(o,R)))

= exp

(
−
∫
B(o,R)

λuC(x, o)dx

)
(a)
= exp

(
−
∫
R2

λuC(x, o)dx

)
= exp

(
−Λa(R2)

)
,

which is the probability of no connected users. (a) is by the fact that C(x, o) =

0 for ‖x‖ > R. With r = R = ∞, (4.1) becomes the probability of no LOS

users to the typical user in R2.

4.3.1.2 Mean number of k-th order multihop paths

A k-th order multihop path is a path with k hops between a k-th order

connected user and the typical user. By definition, a k-th order connected user

may have more than one k-th order path to the typical user. The following

lemma is a classical result for counting k-hop paths in random connection

model.
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Lemma 7 (k-th order multihop paths). The mean number of k-th order mul-

tihop paths starting from the typical user is

λku

∫
R2

· · ·
∫
R2

( ∏
i=0,...,k−1

C(Xi+1, Xi)

)(
i+1<j≤k∏
i=0,...,k−2

(1− C(Xj, Xi))

)
dX1dX2 . . . dXk,

(4.2)

where X0 = o.

Proof. I focus on the case with k = 2, and it can be easily extended to k > 2.

The mean number of the second order multihop paths is

E

 Xi 6=Xj∑
Xi,Xj∈Φu

1Xi and o are connected.1Xj and o are not connected.1Xi and Xj are connected.


(4.3)

In (4.3), Xj is a second order connected user and Xi is a relay between xj

and the typical user, respectively. (4.3) considers all such Xi, and Xj pairs.

So (4.3) is the mean number of 2-hop paths to the typical user. (4.2) with

k = 2 is obtained by leveraging Campbell’s formula for higher order moment

measures of PPPs [5].

For general k, (4.2) counts the paths starting from X0 = o, X1, ... to

Xk with the same manner.

Remark 15. The mean number of the second order multihop paths starting

from the typical user, (4.3), is an upper bound on the mean number of second

order connected users to the typical user since one second order user may have

several second order paths. However, I can obtain tighter upper bound to
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Figure 4.5: Mean numbers of second order multihop paths with line segment block-
ages when R =∞.

the mean number of second order connected users by removing some of these

paths.

E

[
Xi 6=Xj ,Xj 6=Xk,Xk 6=Xi∑

Xi,Xj ,Xk∈Φu

1Xi and o are connected.1Xj and o are not connected.1Xk and o are connected.

1Xj and Xk are connected.1Xj and Xk are connected.1‖Xi−Xj‖<‖Xk−Xj‖

]

=λ3
u

(∫
R2

∫
R2

∫
y∈R2:{y:‖x−y‖<‖z−y‖}

C(x, o)[1− C(y, o)]C(z, o)C(x, y)C(y, z)dydxdz

)
.

(4.4)

In (4.4), Xj is the second order user and Xi, Xk are connected to both the

typical user and Xj, and I remove a second order multihop path connecting

o, Xk and Xj by multiplying by 1‖Xi−Xj‖<‖Xk−Xj‖. This expression is still not

the exact value but is tighter. However, if the blockage process is very dense or

the size of the blockages is large enough, (4.3) and (4.4) converge to the mean
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number of second order connected users since the probability that a second

order connected user has multiple second order paths will decrease.

4.3.1.3 Percolation

In this part, I focus on a global property of networks related to perco-

lation theory [72]. The most common percolation model is to take a regular

lattice and make it into a random network by randomly occupying sites (ver-

tices) or bonds (edges) with an independent probability p. When p is larger

than a critical threshold po, large clusters and long-range connectivity appears

and po is called the percolation threshold. Several studies considered percola-

tion problem under networks generated by PPP instead of a regular lattice.

In terms of connectivity, I are interested in multihop paths supporting

infinite long distance communication and this question would reduce to a bond-

percolation problem [79] under the independent blockage model. Generally,

the connectivity funcion C(·, ·) is a decreasing function with respect to the

length. So, I can expect that there exists an infinite cluster of connected users

when the density of users is very high. In this part, I present the existence

of a critical density 0 < λc < ∞ such that, if λu > λc, then an infinite

connected component of users exists with probability one whereas if λu < λc,

no infinite cluster exists almost surely. This phenomenon is the percolation

phase transition [5] of the random connection model [72].

The following theorem is the phase transition of the existence of an

infinite cluster of connected users under the random connection model.
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Theorem 9 (Percolation for ad-hoc networks). There exists a critical density

λac ∈ (0,∞) such that

λac ≥
1∫

R2 C(x, o)dx
,

where if λu > λac , then the there exists almost surely an infinite cluster of users

while if λu < λac , there is almost surely no infinite cluster of connected users.

Proof. See Appendix 4.6.1.

Remark 16. In Theorem 9, I assume that all users may work as a repeater

for delivering other’s messages. However, in some case, a user may not be

willing to work as a repeater for other users. Let pa be the probability that

each user works as a repeater.3 There is a critical value pac = λac
λu

such that if

pa > pac , then there exists almost surely an infinite cluster of idle users while if

pa < pac , there is almost surely no infinite cluster of idle connected users. From

the independent thinning of PPPs, users who can work as repeaters form a

homogeneous PPP with intensity paλu. So by Theorem 9, if pa > pac = λac
λu

, i.e.,

paλu > λac , then there exists an infinite size user cluster with probability 1,

while if pa < pac , there exists almost surely no infinite connected component.

4.3.2 Cellular Networks

Now, I consider the multihop cellular network model [73]. I recall that

in this model, there are two network entities, base stations and users, which

form independent homogeneous PPPs with intensity λBS and λu, respectively.

3So Theorem 9 is the case with pa = 1.
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In this part, I define a connected user as a user connected to any base

stations. Further, a k-th order connected user is a user connected with any

base stations in k-hops and not in less.

4.3.2.1 Typical User and Typical Base Station

I start to analyze connectivity of the typical user and typical base sta-

tion. As in Section 4.3.1.1, distributions of users connected to the typical base

station in one hop and base stations connected to the typical user in one hop

can be obtained from the next lemma.

Lemma 8. Under the Palm probability of Φu, the point process of base sta-

tions connected to the typical user in one hop is an inhomogeneous PPP with

intensity measure

Λc(B) =

∫
B

λBSC(x, o)dx,

where B ∈ B(R2). So, the mean number of connected base stations to the

typical user in one hop is Λc(R2) and the probability that no base stations are

connected to the typical user in one hop is exp(−Λc(R2)). Similarly, under

the Palm probability of ΦBS, users connected to the typical base station in one

hop is an inhomogeneous PPP with intensity measure

Λa(B) =

∫
B

λuC(x, o)dx,

as in Lemma 6. So, the mean number of connected users to the typical base

station in one hop is Λa(R2) and the probability that no users are connected

to the typical base station in one hop is exp(−Λa(R2)).
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Proof. This theorem is a rephrasing of Lemma 6.

Remark 17. From Lemma 8, it is possible to obtain 1) the mean number of

base stations connected to the typical user, 2) the probability that no users are

connected to the typical base station, and 3) the distribution of the distance

between the typical base station and its nearest connected user as the results

in Corollaries 9 and 11.

4.3.2.2 First Order Connected Users Process

From now, I will investigate properties of the user process. In this part,

I focus on the first order connected users. Denote the first order connected

users by Φ1
u and the other users by Φ1+

u . So, Φ1
u ∪ Φ1+

u = Φu.

Theorem 10 (Distribution of Φ1
u and Φ1+

u conditioned on ΦBS). Conditioned

on ΦBS = {Xi}i∈N, Φ1
u and Φ1+

u are independent inhomogeneous PPPs. The

conditional intensity measures of Φ1
u and Φ1+

u given ΦBS are

Λ1
c|ΦBS

(B) =

∫
B

λu

(
1−

∏
Xi∈ΦBS

(1− C(x,Xi))

)
dx, (4.5)

and

Λ1+
c|ΦBS

(B) =

∫
B

λu
∏

Xi∈ΦBS

(1− C(x,Xi))dx, (4.6)

with B ∈ B(R2), respectively.

Proof. Conditioned on ΦBS = {Xi}i∈N, a user located at x is connected to any

base station with probability 1−
∏

Xi∈ΦBS
(1−C(x,Xi)). By the independent
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thinning theorem of PPPs, I can obtain the conditional intensity measures of

Φ1
u and Φ1+

u as (4.5) and (4.6).

Next, I give the distribution of Φ1
u and Φ1+

u after deconditioning with

respect to ΦBS.

Theorem 11 (Distribution of Φ1
u, Φ1+

u ). Φ1
u and Φ1+

u are stationary point

processes with intensities

λ1
u = λu

(
1− exp

(
−Λc(R2)

))
,

and

λ1+
u = λu exp

(
−Λc(R2)

)
,

respectively.

Proof. First, I will show that Φ1
u is a stationary point process. For A ∈ B(R2),

P[Φ1
u(A) = k] = P[Φ1

u(A+ t) = k],

for any t ∈ R2 and k ∈ N∪{0}, since Φu and ΦBS are homogeneous PPPs and

the same connectivity function is used for both Φ1
u(A) and Φ1

u(A+ t). Further,

under the independent blockage model, the connectivity function only depends

on the link distance. So Φ1
u is a stationary point process. Similarly, Φ1+

u is a

stationary point process.

From Lemma 8, the Palm probability that the typical user is connected

to any base stations in one hop is 1 − exp(−Λc(R2)). It follows from results
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in Palm calculus [80] that the densities of Φ1
u and Φ1+

u are the product of the

user intensity, λu, and the Palm probability that the typical user is connected

in one hop or not, respectively.

Remark 18. Conditioned on ΦBS, Φ1
u and Φ1+

u are independent PPPs. How-

ever, after deconditioning with respect to ΦBS, Φ1
u and Φ1+

u are no more PPPs.

Φ1
u and Φ1+

u are Cox point processes [48] after deconditioning.

4.3.2.3 Second Order Connected Users Process

Let Φ2
u be the second order connected users. Since Φ1+

u = Φ \ Φ1
u, I

have Φ2
u ⊂ Φ1+

u .

Theorem 12 (Distribution of Φ2
u conditioned on ΦBS). Conditioned on ΦBS =

{Xi}i∈N, the intensity measure of Φ2
u is

Λ2
u|ΦBS

(B) = λu

∫
B

(
1− exp(−

∫
R2

(1− C(x, y))dy)

) ∏
Xi∈ΦBS

(1− C(x,Xi))dx,

where B ∈ B(R2).

Proof. See Appendix 4.7.

In next theorem, I give the distribution of Φ2
u after deconditioning ΦBS.

Theorem 13 (Distribution of Φ2
u). Φ2

u is a stationary point process and its

density is

λ2 = λu

∫
B
e−λBS

∫
R2 C(z,x)dxdz − λu

∫
B
e−λu

∫
R2 C(z,y)dy

[
∞∑
k=0

λku
k!

∫
R2

. . .

∫
R2

C(z, y1) . . . C(z, yk)

× e−λBS

∫
R2(1−

∏k
j=1(1−C(yj ,x))(1−C(z,x)))dxdy1 . . . dyk

]
dz,
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where B is any Borel set with |B| = 1.

Proof. From Theorem 11, Φ1
u and Φ1+

u are stationary point processes. Since I

use the independent connectivity function over links, I obtain that

P[Φ2
u(A) = k] = P[Φ2

u(A+ t) = k],

for any t ∈ R2 and k ∈ N ∪ {0} and this implies that Φ2
u is a stationary point

process.

For the density of Φ2
u, see Appendix 4.7.1.

4.3.2.4 Isolated User

I define a totally isolated user as a user which is not connected to any

base station or any other users.

Theorem 14 (Isolated users). The probability that the typical user is totally

isolated is

exp
(
−(Λa(R2) + Λc(R2))

)
.

Proof. As in Lemmas 6 and 8, base stations and users connected in one hop

to the origin form an inhomogeneous PPP with intensity measure∫
B

(λu + λBS)C(x, o)dx = Λa(B) + Λc(B),

for B ⊂ R2, since the superposition of ΦBS and Φu is a homogeneous PPP

with intensity λBS + λu. Since the number of users or base stations connected
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to the user at the origin is a Poisson random variable, the probability that this

user is isolated is exp (−(Λa(R2) + Λc(R2))).

Corollary 12. Denote the isolated user process by Φiso
u . Then Φiso

u is a sta-

tionary point process and its density is λu exp (−(Λa(R2) + Λc(R2))).

Proof. I will skip the proof of the stationarity but it is similar with the proof

of Theorem 11. Since Φiso
u is a stationary stationary point process, its intensity

is λu exp (−(Λa(R2) + Λc(R2))) as in Theorem 11.

4.3.2.5 Multihoming

This part is motivated by multihoming [81]. For enhancing reliability,

users try to maintain multiple simultaneous associations with different base

stations and this is referred to as multihoming. In this part, I assume there

exists an infinite cluster of connected users, i.e., λu is larger than λac in Theorem

9. I focus on a user in this infinite size cluster and answer how many base

stations are connected to this user using multihop connections. For obvious

reason, I only consider multihop paths from this user to base stations with no

intermediate base station node. Simply, I might think base stations are end

nodes of multihop links starting from the considered user.

Theorem 15 (Multihoming for a user in an infinite user cluster). If λu > λac ,

there exists a cluster of infinitely many connected users. Then, each user in

this infinite cluster are connected to infinitely many base stations.
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Proof. To prove this theorem, I will show that infinitely many base stations

are connected to the infinite user cluster for any given realized user process.

Denote by U the set of users in the infinite user cluster. Among U , I can

select infinitely many users such that the distance between any pair is larger

than 2R. Denote the set of these users by Us. Since the communication range

is R, a base station cannot be connected in one hop to more than two users in

Us. Since the probability that each user in Us is connected to any base station

in one hop is positive and the cardinality of Us is infinite, there are infinitely

many base stations connected to Us, which means infinitly many base stations

can support multihoming service to users in this infinite cluster.

4.4 Effects of Blockage Correlation

In this section, I revisit the results in Section 4.3 under the correlated

blockage setting. As in Section 4.3, blockages are modeled by a Boolean model.

In Section 4.3, blockage process is independently generated for each link, but

not in this section.

I present three results in this section. First, I will show that the mean

numbers of the connected links given any n links are the same under the cor-

related and independent blockage models. Then, I will investigate percolation

under the correlated blockage model. Finally, multihoming result under the

correlated blockage model is presented.
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Figure 4.6: Under the independent blockage model with ball blockages, Rxy ∪Rwz
is not considered.

4.4.1 Preliminary

Before I compare the connectivity results between the correlated and

independent blockage models, I present the following theorem.

Theorem 16. Given n links, the probability that these n links are either all

LOS or all NLOS is less than under the independent blockage model that under

the correlated blockage model. Further, the probability that these n links are

either all connected or all non connected is less under the independent blockage

model than under the correlated one.

Proof. I start from the case n = 2. A link connecting a and b is denoted by

ab. I prove when blockages are balls with radius rb but it can be extended to

the case with line segments.

Let us consider xy and wz with their lengths lxy, lwz, respectively. Also,

let Rxy and Rwz be regions for determining xy and zw are LOS or NLOS as
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in Figure 4.2. If the blockages are balls, then, the areas of Rxy and Rwz are

r2
bπ + 2rblxy, r

2
bπ + 2rblxz, respectively. See Figure 4.6.

Under the correlated blockage model, the probability that both links

are LOS is

P[no Φb in Rxy ∪Rwz] = exp (−λb|Rxy ∪Rwz|)≥ exp (−λb(|Rxy|+ |Rwz|)) ,

which is that under the independent blockage model.

The probability that both links are NLOS under the correlated blockage

model is

P[Both xy and wz are NLOS.]

(a)
= 1− exp(−λb(|Rxy ∩Rwz|))

+ exp(−λb(|Rxy ∩Rwz|))(1− exp(−λb(|Rxy ∩Rc
wz|)))(1− exp(−λb(|Rc

xy ∩Rwz|)))

= 1− exp(−λb|Rxy|)− exp(−λb|Rwz|) + exp(−λb|Rxy ∪Rwz|)

≥ (1− exp(−λb|Rxy|))(1− exp(−λb|Rwz|)),

which is that under the independent blockage model. The first line of (a)

means considering the case that at least one center of blockage is in Rxy ∩Rwz

and the second line of (a) is considering the case that no center of blockage is

in Rxy ∩Rwz.

The case with general n can be proved by induction. Let us assume

that the case with n = k is proved. I will add one new link where k links are

deployed. Denote the region for the existing k links is Rk and the region for
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the new link is Rk+1. In order to prove the case with n = k + 1, it is enough

to follow the above arguments by plugging Rk into Rxy and Rk+1 into Rwz. So

the statement is proved for general n by induction.

Since the connectivity condition consists in satisfying both 1) the LOS

condition and 2) that the link distance is less than R, the connectivity part

can be naturally extended by considering links with a length less than R.

4.4.2 Connectivity of the Typical User/Base Station

In the next theorem, I show that the mean numbers of connected links

for given n links are the same for both blockage models.

Theorem 17 (Blockage model comparison: mean number of the connected

links). For given n links ((xi,yi), i = 1, . . . , n, xi 6= yi∀i), the mean numbers

of the connected links are ∑
i=1,...,n

C(xi, yi),

under the two blockage models.

Proof. See Appendix 4.7.2.

Corollary 13. In the ad-hoc network model, the mean numbers of users

connected to the typical user are the same under the independent and the

correlated blockage models when xi is the typical user and yi are the other

users. Similarly, in the cellular network model, the mean numbers of users

connected to any base stations are the same under two blockage models when

xi are users and yi are base stations.
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Remark 19. In Lemma 6, I show that users connected to the typical user in

one hop form an inhomogeneous PPP under the independent blockage model.

However, from Theorem 16 and Corollary 13, it is no more PPP under the

correlated blockage model since the distributions of the first order connected

users are different for both blockage models.

4.4.3 Percolation

The existence of the critical density for percolation, λac , is investigated

under the independent blockage model in Section 4.3. By Theorem 9, under the

independent blockage model, when λu > λac , there exists almost surely a cluster

of infinitely many connected users for any size and density of blockages. The

next theorem results that there is no infinite user cluster under the correlated

blockage model when the volume fraction of blockages exceeds a certain value.

In this part, I assume that blockages are balls with a radius rb. As

in [82,83], I consider the void space which is a space not occupied by blockages.

Especially, the void percolation problem is investigated for the existence of

infinitely connected void space.

Theorem 18 (Percolation in the Correlated Blockage Model). When there

is no infinite connected void space, there is no cluster with infinitely many

connected users when the density of users is finite. In other words, there

exists no finite critical user density.

Proof. By the connection rule, two network elements are connected only when
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(a) independent, λu = 0.1, R = 20, λb =
0.01, rb = 9

(b) correlated, λu = 0.1, R = 20, λb =
0.01, rb = 9

Figure 4.7: User percolation model: In above figures, lines are connected links,
dotted circles in Figure 4.7b are blockages and points are users.

these are on the same connected void space. Since λu is finite, there is no

infinite size cluster of connected users on any finite size connected void space.

Remark 20. The void percolation problem has been investigated numerically

in several papers. Especially, when the blockages are spheres with the same

radius, there is simulation evidence there exists no infinitely connected void

space when the volume fraction of blockages is larger than 0.968± 0.004 [82].

Figures 4.7a and 4.7b illustrate this case. In these figures, the same realized

point process is used when the volume fraction of blockages is larger than

0.968 ± 0.004. Unlike the independent case (Figure 4.7a), there is no infinite

cluster of connected users since each void space is surrounded by blockages in

the correlated case (Figure 4.7b).
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Figure 4.8: User critical density vs blockage density (λb)

In the next part, I will present the case when there exists an infinite

size connected void space.

Conjecture 1. When there exists an infinite size connected void space with

dominant blockage effects, the independent blockage model has more chance

to have an infinite size connected users cluster than the correlated blockage

model under the same network parameters.

Remark 21. Figure 4.8 illustrates the user critical densitiy λcu with respect to

the blockage density, λb, under the correlated and independent blockage mod-

els. I obtained λcu when the radius of blockages rb = 5, and considered three

cases: λb = 0.001 (low blockage effect), 0.004 (intermediate blockage effect),

and 0.007 (dominant blockage effect). For the correlated blockage model, I
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generated 100 blockage processes and obtained user critical density for each

blockage process. Since I consider [−100, 100]× [−100, 100] networks, I assume

that there exists an infinite connected user cluster if there exists at least one

multihop path connecting from leftmost to rightmost and at least one multihop

path from bottom to top. As it can be shown in Figure 4.8, when the block-

age effect is dominant, the user critical density under the independent case is

smaller than that under the correlated case. Further, it is harder to check the

ordering relation of critical densities between the correlated and independent

model when the blockage effect is small. Nevertheless, this simulation result

supports the conjecture in my thesis.

In the above methodology, I changed λb under fixed rb for investigating

the blockage effects on the user percolation problem. Another way to observe

the blockage effects is changing rb under fixed λb. Even though the latter case

may provide interesting physical intuition, the former case is more relevant to

the real wireless network environments.

4.4.4 Multihoming

I revisit the multihoming scenario. In Theorem 15, I showed that in-

finitely many base stations are connected to a user in a cluster of infinitely

many connected users under the independent blockage model. The following

theorem answers the same question but under the correlated one.

Theorem 19 (Multihoming under the correlated blockage model). If there

exists a cluster of infinitely many connected users under the correlated blockage
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model, infinitely many base stations are connected to a user in this cluster.

Proof. Theorem 15 shows that the number of connected links between a user in

an infinite cluster and a base station is infinite under the independent blockage

model, and Theorem 17 states that the mean numbers of connected links

among any set of links are the same under the two blockage models. So, I can

conclude that infinitely many base stations are connected to this cluster under

the correlated one.

4.5 Conclusion

I investigated the connectivity results of multihop mmWave commu-

nication using stochastic geometry. Under the independent blockage model,

I provided general results on the distribution of connected users to the typi-

cal user or the typical base station by leveraging classical results in random

connection model. By using the percolation theory of the random connection

model, the condition for existing an infinite connected user cluster is presented.

For the cellular network model, I obtained the distribution of users connected

to any base stations in one hop and two hops, and considered multihoming

scenario where an infinite users cluster exists. Finally, the correlated blockage

model is considered. I showed that the mean numbers of the connected links

to the typical user/base station are the same for both blockage models. Unlike

the independent blockage model, under a certain condition of blockages, there

is no infinite connected user cluster. Multihoming scenario in the correlated
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blockage setting is also considered.

4.6 Appendix

4.6.1 Lemma for Theorem 9

Lemma 9 (Percolation for the random connection model). Let Φ be a homo-

geneous PPP in R2 of intensity λ > 0 and f : R+ → [0, 1] be a nonincreasing

function. Assume that each pair of points x, y ∈ Φ is connected with proba-

bility f(‖x− y‖), independently of other pairs. Then, this graph has a critical

density λf ∈ (0,∞)

λf ≥
1

2π
∫∞

0
rf(r)dr

,

such that, if λ > λf , then there exists a.s. an infinite connected component in

this graph while, if λ < λf , then there is a.s. no infinite connected component.

The details of proof are in [72]. By plugging our connectivity func-

tion C(·, ·) and changing integral range from polar coordinate to Cartesian

coordinate, Theorem 9 is obtained.

4.7 Proof of Theorem 12

The conditional intensity measures of Φ1
u and Φ1+

u given ΦBS = {Xi}i∈N

are

Λ1
c|ΦBS

(B) =

∫
B

λu

(
1−

∏
Xi∈ΦBS

(1− C(x,Xi))

)
dx,
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and

Λ1+
c|ΦBS

(B) =

∫
B

λu
∏

Xi∈ΦBS

(1− C(x,Xi))dx,

as in (4.5) and (4.6).

So by independent thinning of PPPs, the conditional intensity measure

of Φ2
u given ΦBS = {Xi}i∈N and Φu = {Yj}j∈N is

Λ2
c|ΦBS,Φ1

u
(B) = λu

∫
B

∏
Yj∈Φ1

u

(1− C(x, Yj))
∏

Xi∈ΦBS

(1− C(x,Xi))dx,

where B ∈ B(R2).

Finally, the conditional intensity meausre of Φ2
u given ΦBS = {Xi}i∈N

is

Λ2
u|ΦBS

(B) = λu

∫
B

(
1− exp(−

∫
R2

(1− C(x, y))dy)

) ∏
Xi∈ΦBS

(1− C(x,Xi))dx,

and obtained by Laplace functional of PPPs [5].

4.7.1 Proof of Theorem 13

To compute the density of Φ2
u, λ2, the expectation of the number of

points of Φ2
u in B will be computed where |B| = 1. Since ΦBS and Φ1

u are PPP
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conditioned on ΦBS, the properties of PPP are used for computing λ2.

λ2
(a)
= E

 ∑
z∈Φ1+

u

1z∈B

1−
∏
yj∈Φ1

u

(1− C(z, yj))


= EΦBS

E
 ∑
z∈Φ1+

u

1z∈B

1−
∏
yj∈Φ1

u

(1− C(z, yj))

 |ΦBS


(b)
= EΦBS

EΦ1+
u

 ∑
z∈Φ1+

u

1z∈B

1− EΦ1
u

 ∏
yj∈Φ1

u

(1− C(z, yj))

 |ΦBS

 .

(4.7)

In (a),
(

1−
∏

yj∈Φ1
u
(1− C(z, yj))

)
is the probability that z is connected to at

least one point of Φ1
u. (b) comes from the fact that Φ1

u and Φ1+
u are condition-

ally independent. By probability generating functional (PGFL) of a PPP [30],

the expectation term over Φ1
u in (4.7) becomes

EΦ1
u

 ∏
yj∈Φ1

u

(1− C(z, yj))

 (c)
= e

−
∫
R2 (1−(1−C(z,y)))Λ1

c|ΦBS
(dy)

= e
−
∫
R2 C(z,y)Λ1

c|ΦBS
(dy)

. (4.8)
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(c) comes from the fact that Φ1 is a PPP conditioned on ΦBS, and Λ1
c|ΦBS

(·) is

defined in (4.5). By plugging (4.8) into (4.7),

λ2 = EΦBS

EΦ1+
u

 ∑
z∈Φ1+

u

1z∈B

(
1− e−

∫
R2 C(z,y)Λ1

c|ΦBS
(dy)
)
|ΦBS


= EΦBS

[∫
B

(
1− e−

∫
R2 C(z,y)Λ1

c|ΦBS
(dy)
)

Λ1+
c|ΦBS

(dz)

]
= EΦBS

[∫
B

(
1− e−

∫
R2 C(z,y)λu(1−

∏
xi∈ΦBS

(1−C(y,xi)))dy
)
λu

∏
xi∈ΦBS

(1− C(z, xi))dz

]
(d)
= λu

∫
B
EΦBS

[(
1− e−λu

∫
R2 C(z,y)(1−

∏
xi∈ΦBS

(1−C(y,xi)))dy
) ∏
xi∈ΦBS

(1− C(z, xi))

]
dz

= λu

∫
B
EΦBS

[ ∏
xi∈ΦBS

(1− C(z, xi))

]
dz

− λu
∫
B
EΦBS

[
e−λu

∫
R2 C(z,y)(1−

∏
xi∈ΦBS

(1−C(y,xi)))dy
∏

xi∈ΦBS

(1− C(z, xi))

]
dz

(e)
= λu

∫
B
e−λBS

∫
R2 C(z,x)dxdz

− λu
∫
B
e−λu

∫
R2 C(z,y)dyEΦBS

[
eλu

∫
R2 C(z,y)

∏
xi∈ΦBS

(1−C(y,xi))dy
∏

xi∈ΦBS

(1− C(z, xi))

]
dz.

(4.9)

(d) is by Fubini’s theorem and Λ1+
c|ΦBS

(·) is defined in (4.6). (e) is by PGFL of

a homogeneous PPP [30].
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The expectation term over ΦBS in (4.9) is

EΦBS

[
eλu

∫
R2 C(z,y)

∏
xi∈ΦBS

(1−C(y,xi))dy
∏

xi∈ΦBS

(1− C(z, xi))

]
(f)
=EΦBS

[
∞∑
k=0

(λu
∫
R2 C(z, y)

∏
xi∈ΦBS

(1− C(y, xi))dy)k

k!

∏
xi∈ΦBS

(1− C(z, xi))

]

=
∞∑
k=0

1

k!
EΦBS

(λu ∫
R2

C(z, y)
∏

xi∈ΦBS

(1− C(y, xi))dy

)k ∏
xi∈ΦBS

(1− C(z, xi))

 .

(f) is by Taylor’s expansion.

The k-th order term is

λku
k!

EΦBS

(∫
R2

C(z, y)
∏

xi∈ΦBS

(1− C(y, xi))dy

)k ∏
xi∈ΦBS

(1− C(z, xi))


=
λku
k!

EΦBS

[∫
R2

. . .

∫
R2

C(z, y1) . . . C(z, yk)
∏

xi∈ΦBS

(
(1− C(y1, xi)) . . . (1− C(yk, xi))

×(1− C(z, xi))

)
dy1 . . . dyk

]

=
λku
k!

∫
R2

. . .

∫
R2

C(z, y1) . . . C(z, yk)e
−λBS

∫
R2(1−

∏k
j=1(1−C(yj ,x))(1−C(z,x))dx)dy1 . . . dyk.

(4.10)

By plugging (4.10) into (4.9),

λ2 = λu

∫
B
e−λBS

∫
R2 C(z,x)dxdz

−λu
∫
B
e−λu

∫
R2 C(z,y)dy

[
∞∑
k=0

λku
k!

∫
R2

. . .

∫
R2

C(z, y1) . . . C(z, yk)

×e−λBS

∫
R2(1−

∏k
j=1(1−C(yj ,x))(1−C(z,x)))dxdy1 . . . dyk

]
dz,
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where |B| = 1.

4.7.2 Proof of Theorem 17

n links with length less than R are considered and let Ri be the region

for determining the i-th link is connected as in Figure 4.2. Then, the mean

numbers of the connected links among them are

∑
i=1...n

exp(−|Ri|),

for both the correlated and the independent cases.

The proof is simple for the independent case, since the i-th link is

connected with probability exp(−|Ri|) and the connectivity is independent

over links.

Now let us consider the correlated case. The i-th link is connected if

and only if any points in Φb are not in Ri. The probability that only the k

links with length L1, L2, . . . , Lk are connected is

P

[∣∣∣∣∣Φb ∩
⋃

i=1,...,k

Ri

∣∣∣∣∣ = 0, and |Φb ∩Rl| ≥ 1 for l = (k + 1), . . . , n

]

= exp

(
−λb

∣∣∣∣∣ ⋃
i=1,...,k

Ri

∣∣∣∣∣
)
−

∑
j1∈{1,...,n}\{1,...,k}

exp

(
−λb

∣∣∣∣∣ ⋃
i=1,...,k

Ri ∪Rj1

∣∣∣∣∣
)

+ . . .+ (−1)n−k
∑

j1,...,jn−k∈{1,...,n}\{1,...,k}

exp

−λb
∣∣∣∣∣∣
⋃

i=1,...,k

Ri ∪
⋃

j=j1,...,jn−k

Rj

∣∣∣∣∣∣
 ,

(4.11)

when there exists n links.
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(4.11) can be proven by induction. The case with n = 1 is simple since

the probability that k = 1 is exp(−λb|R1|) and the probability that k = 0 is

1 − exp(−λb|R1|). Now, it is assumed that (4.11) holds for k ∈ {0, 1, . . . ,m}

for n = m. Now, (4.11) for the case with k ∈ {0, 1, . . . ,m+ 1} for n = m+ 1

will be proven.

First, the case with k ∈ {1, . . . ,m+ 1} is considered when n = m+ 1.

The probability that only k links with L1, L2, . . . , Lk are connected is

P

[∣∣∣∣∣Φb ∩
⋃

i=1,...,k

Ri

∣∣∣∣∣ = 0, and |Φb ∩Rl| ≥ 1 for l = (k + 1), . . . ,m+ 1

]

= P

[∣∣∣∣∣Φb ∩
⋃

i=1,...,k

Ri

∣∣∣∣∣ = 0

]
× P

[∣∣∣∣∣Φb ∩ (Rl ∩

( ⋃
i=1,...,k

Ri

)c

)

∣∣∣∣∣ ≥ 1 for l = (k + 1), . . . ,m+ 1

]
(a)
= exp

(
−λb

∣∣∣∣∣ ⋃
i=1,...,k

Ri

∣∣∣∣∣
)
×

(
1−

∑
j1∈{k+1,...,m+1}

exp

(
−λb

∣∣∣∣∣Rj1 ∩

( ⋃
i=1,...,k

Ri

)c∣∣∣∣∣
)

+ . . .+ (−1)m+1−k
∑

j1,...,jm+1−k∈{k+1,...,m+1}

exp

−λb
∣∣∣∣∣∣

⋃
j=j1,...,jm+1−k

(
Rj ∩

( ⋃
i=1,...,k

Ri

)c)∣∣∣∣∣∣
)

= exp

(
−λb

∣∣∣∣∣ ⋃
i=1,...,k

Ri

∣∣∣∣∣
)
−

∑
j1∈{1,...,m+1}\{1,...,k}

exp

(
−λb

∣∣∣∣∣ ⋃
i=1,...,k

Ri ∪Rj1

∣∣∣∣∣
)

+ . . .+ (−1)m+1−k
∑

j1,...,jm+1−k∈{1,...,m+1}\{1,...,k}

exp

−λb
∣∣∣∣∣∣
⋃

i=1,...,k

Ri ∪
⋃

j=j1,...,jm+1−k

Rj

∣∣∣∣∣∣
 ,

where Ac is the complement set of A. (a) is obtained by the induction assump-

tion with index changing.
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Under the case for k = 0 when n = m+ 1,

P [(no link is connected)] = 1−
m+1∑
j=1

P[(j links are connected.)]

= 1−
∑

j1∈{1,...,m+1}

exp (−λb |Rj1|)

+ . . .+ (−1)m+1
∑

j1,...,jm+1∈{1,...,m+1}

exp

−λb
∣∣∣∣∣∣

⋃
j=j1,...,jm+1

Rj

∣∣∣∣∣∣
 .

More precisely, the coefficient of a randomly chosen term

exp

(
−λb

∣∣∣∣∣ ⋃
i=i1,i2,...,il

Ri

∣∣∣∣∣
)

,

for l ≤ m+ 1 and {i1, . . . , il} ∈ {1, . . . ,m+ 1} is

−
(

1−
(
l

1

)
+

(
l

2

)
− . . .+ (−1)l−1

(
l

l − 1

))
= −(1− 1)l + (−1)l = (−1)l.

(4.12)

In (4.12),
(
l
i

)
comes from the probability of the sum of l − i connected links.

Now, it will be shown that the mean number of connected links un-

der the correlated shadowing is
∑

i=1,...,n exp(−λb|Ri|). The mean number of

connected links is

n∑
s=1

s
∑

l1,...,ls∈{1,...,n}

P [j1, . . . , js-th link are connected.]

=
n∑
s=1

s

[ ∑
l1,...,ls∈{1,...,n}

(
exp

(
−λb

∣∣∣∣∣ ⋃
i=l1,...,ls

Ri

∣∣∣∣∣
)
−

∑
j1∈{1,...,n}\{l1,...,ls}

exp

(
−λb

∣∣∣∣∣ ⋃
i=l1,...,ls

Ri ∪Rj1

∣∣∣∣∣
)

+ . . .+ (−1)n−s
∑

j1,...,jn−s∈{1,...,n}\{l1,...,ls}

exp

−λb
∣∣∣∣∣∣
⋃

i=l1,...,ls

Ri ∪
⋃

j=j1,...,jn−s

Rj

∣∣∣∣∣∣
)]

(b)
=

∑
s=1,...,n

exp(−λb|Rs|).
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(b) is obtained since the coefficient of

exp

(
−λb

∣∣∣∣∣ ⋃
j=j1,...,jk

Rj

∣∣∣∣∣
)

,

for k ≥ 1 is

k −
(
k

1

)
(k − 1) +

(
k

2

)
(k − 2)− . . .+ (−1)k−1

(
k

k − 1

)
= k

(
1−

(
k − 1

1

)
+

(
k − 1

2

)
− . . .+ (−1)k−1

(
k − 1

k − 1

))
= k(1− 1)k−1 = 0,

and the coefficient of exp(−λb|Ri|) is 1 which is obtained the probability of

only i-th link is connected.
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Chapter 5

Scaling Laws for Ergodic Spectral Efficiency in

MIMO Poisson Networks

This chapter1 considers MIMO ad-hoc networks modeled by a Poisson

bipolar network. This chapter shows that spatial multiplexing transmission

methods are essential for obtaining better ergodic spectral efficiency in random

wireless networks with multiple antennas.

5.1 Introduction

A multiple-input-multiple-output mobile ad hoc network (MIMO-MANET)

is an infrastructure-less network in which a large number of transmit-and-

receive pairs, each with multiple antennas, communicate by sharing some com-

mon spectrum [85,86]. Such networks are fundamental in a variety of applica-

tions including car-to-car and device-to-device communication systems [87–89].

It is therefore of great importance to characterize the system-level performance

of such networks [6, 7, 90].

Despite extensive research over a few decades, analytical expressions

1This chapter has been published in [84]. I am the primary author of these works.
Coauthor Dr. Namyoon Lee has provided many discussions and insightful feedbacks to this
work, and Dr. Françcois Baccelli is my supervisor.
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for the spectral efficiency of such systems are still missing. The principal

difficulty has been the lack of a tractable model quantifying uncoordinated

inter-node interference together with inter-stream interference at a receiver

equipped with multiple antennas. In this chapter, this chapter leverages two

analytical tools to cope with this difficulty. The first one is stochastic geome-

try which models the locations of links as Poisson dipoles [14] and allows one

to compute the distribution of the interference power. The second one is ran-

dom matrix theory [91], which is exploited for calculating the distribution of

inter-stream interference power under different MIMO detection techniques.

Combining these tools, this chapter characterizes the ergodic spectral effi-

ciencies and the scaling laws of a super-dense MIMO-MANET system, under

Poisson assumptions on the node locations, and when considering two types

of channel knowledge at receivers. By leveraging the integral-form expressions

which are derived, this chapter highlights the interplay among four key system

parameters determining the scaling laws, namely the number of antennas at

the transmitter, the number of antennas at the receiver, the node density, and

the path-loss exponent.

5.1.1 Related Works

There has been extensive work on the capacity of MIMO-MANETs.

MIMO-MANETs can be modeled as MIMO interference networks in which

a finite number of transmit-and-receiver pairs communicate by sharing the

same spectrum, without transmitter cooperation. [6] studied the capacity of

149



a MIMO-MANET by treating inter-node interference as additional noise at

a receiver, and derived the optimal power allocation strategy for the MIMO

transmission. For instance, in a certain range of interference-to-noise ratios,

it turns out that allocating the whole power to one antenna (i.e., using a sin-

gle stream transmission) is optimal. [7] and [8] extended the result of [6], and

demonstrated that the asymptotic spectral efficiency is improved by sending

multiple data streams. A common assumption of these studies is that the

distances between any two nodes in the network are deterministic [6] or iden-

tical [7], which is unrealistic to model MANETs in practice. This approach

cannot be used to assess which MIMO transmission techniques provide the

highest gains in large random MANETs.

When considering more realistic random network topology assump-

tions, the rates achievable in MANETs have been studied in [85, 90, 92–96].

The study of scaling laws within this context was initiated by Gupta and

Kumar’s seminal paper [85]. Under the assumption that n nodes are ran-

domly located in the unit disk, Gupta and Kumar showed that multihop

routing based on a decode-and-forward scheme can reach to a total through-

put which scales as Θ(
√
n/ log n). By using percolation theory, it was later

shown in [92] that a better scaling law of order Θ(
√
n) is achievable. Sub-

sequently, improved scaling results were derived in MANETs, assuming that

some specific additional assumptions hold on mobility [94], bandwidth [95],

or node-cooperation [90]. The main differences between our work and this

line of research are the following: (1) our model is based on Poisson dipoles
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and assumes that source-destination pairs communicate with each other rely-

ing upon single-hop transmissions, i.e., neither multi-hop routing schemes nor

node-cooperation are allowed (in a sense, this chapter is more focussed on D2D

than on MANETs). (2) this chapter focuses on the use of multiple antennas

at both transmitters and receivers, while this line of research was centered on

the scenario with a single antenna at both transmitters and receivers. (3) our

performance metric is spatially-averaged ergodic spectral efficiency, while the

work alluded to above focused on transport capacity. (4) even if new scaling

laws are our main results, our approach also provides exact formulas for the

mean Shannon rate of a typical link and the spectral efficiency per unit area

(see e.g. Theorems 20 and 21 below), and goes hence beyond the scaling law

setting.

This chapter assumes that the interferer locations are Poisson dis-

tributed over the plane [5, 97], which is an appropriate model for e.g. D2D,

where transmitters are randomly located in an uncoordinated manner. Using

this model, the transmission capacity of ad hoc networks, which quantifies

the maximum allowable spatial density of successful transmissions per unit

area, subject to a given outage probability constraint, was characterized in

certain settings. For example, the transmission capacity expressions of ad

hoc networks were found when adopting spread spectrum techniques [9, 98],

interference cancellation [99–101], and multiple-antenna transmission meth-

ods [10, 11, 102–107]. In particular, in [10], it was demonstrated that inter-

ference cancellation techniques at a receiver employing multiple antennas can
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provide a linear increase of the transmission capacity of ad hoc networks with

the node density. In [11], it was shown that for a MIMO setting, a single stream

transmission is optimal in terms of transmission capacity, when all the degrees

of freedom of the receive antennas are used for interference cancellation.

Arguably, a common shortcoming of the transmission capacity metric

is that it cannot capture the effects of rate adaptation techniques, which are

the key features used in many modern wireless systems to track and exploit

channel variations [108]. The main novelty of this chapter compared to this

line of thought is the analysis of the ergodic spectral efficiency (rather than

transport capacity), which quantifies the achievable Shannon transmission rate

per unit area when adapting the rate to the different local conditions. For a

single-input-multiple-output (SIMO) setting, the recent work in [109] showed

that the sum spectral efficiency can increase linearly with both the density and

the path loss exponent provided the number of antennas is a linear function of

the density. For a MIMO setting, however, it is still unknown whether spatial

multiplexing transmission techniques [110] can improve the scaling laws of the

sum spectral efficiency. This chapter recalls that spatial multiplexing consists

in transmitting different data streams on the transmit antennas and in iden-

tifying/discriminating between these streams at the receiver, while transmit

diversity consists in sending the same data symbols over multiple transmit

antennas to enhance the reliability. The main qualitative achievement of this

chapter is a proof that the answer to this question is positive and more pre-

cisely the identification of the network densities and antenna configurations
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for which spatial multiplexing strategies achieve higher sum spectral efficiency

per unit area than the methods based on transmit diversity.

5.1.2 Main Contributions

This chapter considers a random network with a topology modeled by

a Poisson bipolar network [14] with density λ on R2. In this model, each

transmitter has its receiver at some random distance. Also, each transmitter

has Nt antennas and is assumed to send Nt data streams to its associated

receiver which has Nr(≥ Nt) antennas. Our key findings can be summarized

as follows:

• This chapter first considers the case where each receiver has knowledge

of the state of the channel between its transmitter and itself only. This

chapter refers to this channel knowledge assumption as direct channel

state information (CSI) at receiver (DCSIR). Under the premise of this

channel knowledge, and under zero-forcing (ZF) detection and ZF-based

successive interference cancellation (ZF-SIC) detection respectively, this

chapter derives analytical expressions for the sum spectral efficiency as

a function of 1) the network density λ, 2) the number of transmit and

receive antennas (Nt and Nr), 3) the path-loss exponent α, and 4) the

signal-to-noise ratio (SNR). By deriving closed forms of lower and upper

bound on this sum spectral efficiency, this chapter shows that, as λ goes

to infinity, when Nt = c1λ
β1 , Nr = c2λ

β2 for some constants c1, c2 > 0,

β1 ≤ β2 and α > 2, the scaling laws of the ergodic spectral efficiency per
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link is

Θ(λβ1 log2(1 + λβ2−β1−α2 )),

for both ZF and ZF-SIC. One important implication of this scaling law is

that when β2 ≥ β1 + α
2
, transmitting multiple streams is more beneficial

in the scaling law sense than sending just a single stream, which strongly

contrasts with the result derived on transmission capacity [11]. In fact,

this result agrees with the intuition that it should be possible to improve

the data rates per link by having Nt = c1λ
β1 and by transmitting mul-

tiple data streams (multiplexing gain), provided the remaining degrees

of freedom at the receiver are sufficient to cancel both inter-stream in-

terference and inter-node interference and to discriminate between the

independent data streams. Furthermore, this scaling law expression gen-

eralizes the result for the SIMO case derived in [109] to the MIMO case.

• This chapter also considers the case where each receiver is able to learn

the CSI of its L-nearest interferers with (0 < L ≤ bNr

Nt
c − 1)2, which

is referred to here as local CSI at receiver (LCSIR)3. Using a ZF-SIC

detection technique for suppressing both inter-stream and inter-node in-

terference, this chapter gives an exact expression of the sum spectral

2bxc denotes the largest integer no more than x.
3This assumption can be justified by a practical protocol, FlashlinQ [111]. FlashlinQ

operates using a protocol, in which each transmitter sends pilot signals using orthogonal re-
sources across neighbors and the receivers estimate the neighbors’ channel state information
to perform the SIR-aware scheduling, which is referred to as transmit and receive yieldings.
It was showed that the protocol can successfully discover up to a few thousand devices over
a 1 km radius. By leveraging this protocol, the receiver is able to learn CSIR locally.
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efficiency. By leveraging this expression, an achievable scaling law of the

sum spectral efficiency per link is obtained as:

Ω(λβ1(log2(1 + λ(β2−β1−1)α
2 ))),

when Nt = c1λ
β1 and Nr = c2λ

β2 , for some constants c1, c2 > 0 and

β1 ≤ β2, α > 2, and for L = bNr

Nt
c − 1. This result also demonstrates

that MIMO transmission improves the scaling law of the ergodic spectral

efficiency per link by increasing multiplexing gains, provided β2 ≥ β1 +1.

Comparing to DCSIR, it is possible with LCSIR to increase the sum

spectral efficiency when acting on both the path-loss exponent and the

number of transmit antennas. This multiplicative gain in the achievable

scaling law comes from the fact that the receiver exploits LCSIR.

This chapter is organized as follows. The network model, the perfor-

mance metrics, and the receiver schemes are discussed in Section 5.2. The

exact expression and the scaling law for ergodic spectral efficiency are pro-

vided in Section 5.3 in the DCSIR case and in Section 5.4 in the LCSIR case.

This chapter concludes in Section 5.5.

5.2 System Model

5.2.1 Network Model

This chapter considers a Poisson bipolar network model which features

an infinite number of transmitter-receiver pairs scattered in the Euclidean

plane. Let Φ = {Xi}i∈N denote the locations of the transmitters, which are
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Figure 5.1: A snapshot of bipolar MANET where λ = 0.00004/m2 and Rd = 50m.

assumed to form some realization of a homogeneous Poisson point process

(PPP) with positive and finite intensity λ on R2. Let Φ̄ = {Yi}i∈N denote the

locations of the receivers. Yi, the receiver of Xi, is assumed to be uniformly

distributed on a ring with inner radius 1 and outer radius Rd centered at

Xi, where Rd > 1. Fig. 5.1 provides a snapshot of network topology with

Rd = 50m and λ = 0.000004/m2. This chapter assumes that each receiver

is equipped with a fixed number of Nr antennas, whereas transmitters have

a random number Nt in [1, Nr] ∈ N of antennas. The probability of having

k transmit antennas is denoted by pk, where
∑Nr

k=1 pk = 1. The number of

transmit antennas is assumed independent and identically distributed (i.i.d.)

over links.
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5.2.2 Signal Model

A transmitter Xk ∈ Φ communicates with its associated receiver Yk,

and sends a signal sk ∈ CNt,k×1 when Xk has Nt,k antennas, (1 ≤ Nt,k ≤ Nr),

with power constraint E[‖sk‖2] = P . Here, it is assumed that the transmit

power is equally allocated to all antennas. Assuming a frequency-flat channel,

the received signal at the k-th receiver, yk ∈ CNr×1 is

yk =
∑
l,Xl∈Φ

d
−α

2
k,l Hk,lsl + zk, (5.1)

where Hk,l ∈ CNr×Nt,l is the channel matrix and dk,l the distance from Xl

to Yk, respectively. Moreover, zk ∈ CNr×1 is the noise vector at receiver Yk.

Furthermore, it is assumed that all entries of Hk,l are i.i.d. complex Gaussian

random variables with zero mean and unit variance, i.e. CN (0, 1), and that

all entries of zk are i.i.d. CN (0, σ2), where σ2 is the noise variance.

5.2.3 Receive Filters and Performance Metrics

It is assumed that receiver Yk can measure CSI from its associated

transmitter Xk and from the Lk nearest transmitters, i.e. {Xki}
Lk
i=1, where

0 ≤ Lk ≤ max{n|
∑n

i=1Nt,ji ≤ Nr −Nt,k}4. It will be assumed that Xk sends

Nt,k data streams without using any precoding, i.e., that an open-loop MIMO

transmission is used, and also that the receiver uses linear receive filters to

4With this condition, the number of received data streams at Yk is no larger than Nr.
This assumption is necessary for decoding the independent data streams in ZF and ZF-SIC.
If all transmitters are equipped with Nt antennas, Lk = bNr

Nt
c− 1,∀k ∈ K. Further, the j-th

nearest interferer from Yk is denoted by Xkj .
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detect the desired data symbol by eliminating the inter-stream interference

and the inter-node interference.

Let vk(m) ∈ CNr×1, m = 1, . . . , Nt,k, denote the receive filter vector

used at Yk for detecting the m-th data stream from its transmitter. Then,

the resulting signal-to-interference-and-noise ratio (SINR) for the m-th data

stream of the k-th link is

SINRk(m) =
Hk,k(m)d−αk,k

Ik1(m) + Ik2(m) + Ik3(m) +
Nt,kσ2

P

, (5.2)

where

Hk,k(m) = ‖v∗k(m)Hk,k(:,m)‖2,

Ik1(m) =

i 6=m∑
i=1,...,Nt,k

‖v∗k(m)Hk,k(:, i)‖2d−αk,k ,

Ik2(m) =
∑

l∈{k1,k2,...,kLk}

‖v∗k(m)Hk,l‖2d−αk,l ,

Ik3(m) =
∑

l,Xl∈{Φ\Xk,Xk1
,Xk2

,...,XkLk
}

‖v∗k(m)Hk,l‖2d−αk,l .

Here, the conjugate transpose is denoted by ∗ and the i-th column of the matrix

A by A(:, i). As can be seen in (5.2), the total amount of interference at the

receiver can be decomposed into three factors: 1) the inter-stream interference

Ik1, 2) the inter-node interference from the Lk-dominant interferers, Ik2, and

3) the inter-node interference, Ik3, which is the interference from the other

nodes. Then, the achievable rate of the k-th link is

Ck =

Nt,k∑
m=1

Ck(m) =

Nt,k∑
m=1

log2(1 + SINRk(m)).
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The main target performance metric in this chapter is ergodic spectral

efficiency. The sum spectral efficiency per unit area is defined by

C = 1
|A|CA = 1

|A|E
[∑

k,Yk∈ACk

]
= λE0

[
Nt,0∑
m=1

log2(1 + SINR0(m))

]
, (5.3)

where for any A ⊂ R2, |A| is the area of A, CA is the sum spectral efficiency

of A, and E0 denotes the Palm expectation [5] of the receiver PPP. The fact

that the last expression does not depend on the choice of A results from the

stationarity assumptions [5]. Here, SINR0 denotes the SINR measured at the

receiver located at the origin5. Furthermore, the spectral efficiency of the

typical link, or equivalently the spectral efficiency per link is defined by

Clink =
1

λ
C = E0

[
Nt,0∑
m=1

log2(1 + SINR0(m))

]
.

Here, for the above quantities, the terms ergodic spectral efficiency or ergodic

spectral efficiency per link will be used, respectively. The ergodicity is over

both the time-domain (averaging over the small-scale multipath fading) and

over space (averaging over all Poisson configurations).

The sum spectral efficiency per unit area will be denoted by CZF under

ZF, and by CSIC under ZF-SIC, the sum spectral efficiency in region A ⊂

5By Slivnyak’s theorem [5], it is possible locate the typical receiver at the origin. the
typical transmitter and the typical receiver are labelled by X0 and Y0 = 0, respectively.
The distance between Y0 and {Xk}k∈{0}∪N, the channel matrix H0,l, l ∈ {0} ∪N, the linear
receiver filter v0(m), I0(m), and the j-th nearest interferers from Y0, i.e., X0j are defined
similarly.
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R2 with ZF by CZF
A under ZF and by CSIC

A under ZF-SIC, and the spectral

efficiency per link by CZF
link under ZF by CSIC

link under ZF-SIC.

5.2.3.1 ZF detection

The main idea of the ZF-decorrelator [110] is to construct vk(m) so as

to remove both Ik1(m) and Ik2(m) simultaneously by projecting the received

signal vector onto the subspace orthogonal to that spanned by the vectors

Hk,k(:, 1), . . . ,Hk,k(:,m − 1),Hk,k(:,m + 1), . . . ,Hk,k(:, Nt,k), and the column

vectors of Hk,k1 , . . . ,Hk,kLk
. Let Uk(m) be the null space of these column

vectors; the dimension of Uk(m) is Nr × (Nr − (Nt,k − 1) −
∑Lk

i=1 Nt,ki) with

probability 1.6 By definition of Lk, Nr − (Nt,k − 1)−
∑Lk

i=1Nt,ki ≥ 1.

This chapter considers maximizing the desired signal power by choosing

vk(m) in the space spanned by Uk(m). More precisely, vk(m) is designed for

maximizing |v∗k(m)Hk,k(:,m)|2. If the columns of Uk(m) are orthonormal

bases of the null space, then the following filter maximizes |v∗k(m)Hk,k(:,m)|2:

vk(m) = Uk(m)U∗k(m)Hk,k(:,m).

By applying this filter, Ik1(m) and Ik2(m) are suppressed and the resulting

SINR becomes

SINRZF
k (m) =

Hk,k(m)d−αk,k

Ik(m) +
Nt,kσ2

P

,

6Nt,k−1 comes from the dimension of the subspace spanned by Hk,k(:, 1), . . . ,Hk,k(:,m−
1),Hk,k(:,m+1), . . . ,Hk,k(:, Nt,k) and

∑Lk

i=1Nt,ki from the dimension of Hk,k1 , . . . ,Hk,kLk
.
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where

Ik(m) = Ik3(m) =
∑

l,Xl∈{Φ\Xk,Xk1
,Xk2

,...,XkLk
}

Hk,l(m)d−αk,l

and Hk,k(m) = ‖v∗k(m)Hk,k‖2 is a Chi-squared random variable7 with 2(Nr −

Nt,k −
∑Lk

l=1Nt,kl + 1) degrees of freedom [110] and Hk,l(m) = ‖v∗k(m)Hk,l‖2

is distributed as a Chi-squared with 2Nt,l degrees of freedom [110]. Since

ZF receivers does not change the interference power distribution from each

interferer, interference is the sum of i.i.d. Nt,l exponential random variables.

This is the main reason why the interferemce measured at the typical receiver

is the sum of X2Nt,l . The sum spectral efficiency per unit area hence becomes

CZF = λCZF
link = λE0

[
Nt,0∑
m=1

log2(1 + SINRZF
0 (m))

]
. (5.4)

5.2.3.2 ZF-SIC detection

The key idea of ZF-SIC decoding [110] is to recover and to subtract

a data stream successively for obtaining the remaining data streams. This

provides a power gain as well as an interference cancellation gain. For decoding

the m-th data stream of the k-th link, the 1st to (m− 1)-th data streams are

7The probability density function of the Chi-square distribution with 2n degrees of free-

dom, X 2
2n, is fX 2

2n
(x) = xn−1e−x

(n−1)! . Further, since the decoding procedure is performed at

each receiver with known information, the randomness of the number of transmit antenna
Nt,k disappears. Therefore, it is possible to conclude that Hk,k(m) is a Chi-squared random
variable.
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subtracted off from the received vector yk and the decorrelator for the m-th

data stream is applied to the subtracted vector for suppressing the (m+1)-th to

Nt,k-th streams of the k-th link. In other words, the corresponding projection

is onto the subspace orthogonal to Hk,k(:,m+1), . . . ,Hk,k(:, Nt,k) (say Ũk(m)),

as opposed to being to the subspace orthogonal to Hk,k(:, 1), . . . ,Hk,k(:,m −

1),Hk,k(:,m + 1), . . . ,Hk,k(:, Nt,k) and the column spaces of Hk,k1 , . . . ,Hk,kLk

in the previous subsection. By choosing ṽk(m) in Ũk(m) to maximize the

signal power, the resulting SINR becomes

SINRSIC
k (m) =

H̃k,k(m)d−αk,k

Ĩk(m) +
Nt,kσ2

P

,

where

Ĩk(m) = Ik3(m) =
∑

l,Xl∈{Φ\Xk,Xk1
,Xk2

,...,XkLk
}

H̃k,l(m)d−αk,l ,

and H̃k,k(m) = ‖ṽ∗k(m)Hk,k‖2 is a Chi-squared random variable with 2(Nr −

Nt,k +m) degrees of freedom8 and H̃k,l(m) = ‖ṽ∗k(m)Hk,l‖2 is distributed as a

Chi-squared with 2Nt,l degrees of freedom.

Similarly, the sum spectral efficiency per unit area achieved by the ZF-

SIC is given by

CSIC = λCSIC
link = λE0

[
Nto∑
m=1

log2(1 + SINRSIC
0 (m))

]
. (5.5)

8With the SIC structure, the subspace spanned by Hk,k(:,m + 1), . . . ,Hk,k(:, Nt,k) is
suppressed for recovering the m-th data stream.
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Even though neither ZF nor ZF-SIC are optimal in the information theoretic

sense, these are quite commonly used and in addition amenable to analysis.

With these receiving architectures, the exact expressions of the sum spectral

efficiency and the corresponding scaling laws are given in the following sections.

5.2.4 Transmision Capacity and Ergodic Spectral Efficiency

The definitions of transmission capacity and ergodic spectral efficiency

are as follows:

• Transmission capacity (TC): Maximal spatial density of successful trans-

missions per unit area (λ) subject to a given outage probability constraint

P[SIR < θ] < ε

• Ergodic spectral efficiency (ESE): achievable Shannon transmission rate:

E[
Nt∑
i=1

log2(1 + SIR(i))], (5.6)

where Nt is number of transmit antennas and SIR(i) is the SIR of the

i-th data stream.

Both metrics are used to analyze wireless networks. TC is more focused on the

amount of simultaneous successful transmit links whereas ESE is more focused

on achievable information theoretical capacity.
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5.3 Direct CSIR

In this section, the exact analytical expressions of the sum spectral

efficiency for both ZF and ZF-SIC detection are obtained with DCSIR, i.e.,

Lk = 0 for all Xk ∈ Φ. Then, a lower and an upper bounds are derived with

closed-forms. The announced scaling laws will be obtained from these closed

from expressions.

In our closed-form expressions, the Gamma function is used, which is

defined as Γ(x) =
∫∞

0
tx−1e−tdt.

.

5.3.1 Sum Spectral Efficiency

Theorem 20 (ZF with DCSIR). When using ZF detection, the sum spectral

efficiency per unit area of DCSIR is

CZF =
∑Nr

v=1
αλvpv
2 ln 2

∫ Rd
1

∫∞
0

e
− vσ

2

P

(
λπ
∑Nr
k=1 pk

Γ(k+ 2
α )Γ(1− 2

α )

Γ(k)u

)−α2
−u

u

(
1−

(
1+

(
λπr2

∑Nr

k=1 pk
Γ(k+ 2

α
)Γ(1− 2

α
)

Γ(k)u

)−α
2
)−Nr+v−1

)
du 2r

R2
d−1

dr. (5.7)

Proof. See Appendix 5.6.2.

Theorem 21 (ZF-SIC with DCSIR). When using ZF-SIC detection, the sum
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spectral efficiency per unit area of DCSIR is

CSIC =
∑Nr

v=1

[
αλpv
2 ln 2

∫ Rd
1

∫∞
0

e
− vσ

2

P

(
λπ
∑Nr
k=1

pk
Γ(k+ 2

α )Γ(1− 2
α )

Γ(k)u

)−α2
−u

u

∑v
m=1

(
1−

(
1+

(
λπr2

∑Nr

k=1 pk
Γ(k+ 2

α
)Γ(1− 2

α
)

Γ(k)u

)−α
2

)−Nr+v−m
)
du 2r

R2
d−1

dr

]
. (5.8)

Proof. See Appendix 5.6.2.

Corollary 14. When all transmitters have Nt antennas, i.e. pNt = 1, (5.7)

simplifies to

CZF = αλNt

2 ln 2

∫ Rd
1

∫∞
0

e
−Ntσ

2

P

(
λπ

Γ(Nt+ 2
α )Γ(1− 2

α )

Γ(Nt)u

)−α2
−u

u

(
1−

(
1 +

(
λπr2 Γ(Nt+

2
α

)Γ(1− 2
α

)

Γ(Nt)u

)−α
2

)−Nr+Nt−1
)
du 2r

R2
d−1

dr, (5.9)

and (5.8) reduces to

CSIC = αλ
2 ln 2

∫ Rd
1

∫∞
0

e
−Ntσ

2

P

(
λπ

Γ(Nt+ 2
α )Γ(1− 2

α )

Γ(Nt)u

)−α2
−u

u

∑Nt

m=1(
1−

 1

1+

(
λπr2 Γ(Nt+ 2

α )Γ(1− 2
α )

Γ(Nt)u

)−α2
Nr−Nt+m)

du 2r
R2
d−1

dr. (5.10)

These explicit formulas show how the sum spectral efficiency is de-

termined by the system parameters. Fig. 5.2 plots the sum spectral effi-

ciency of transmitters in region A ⊂ R2 for a path-loss exponent α = 4,

|A| = π5002(m2), Rd = 50m, P = −20dBm, pNt = 1 and σ2 = −104dBm.
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Figure 5.2: The sum efficiency with DCSIR when |A| = π5002(m2), α = 4, Rd =
50(m), P = −20(dBm), σ2 = −104(dBm), pNt = 1
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The gain of the SIC decorrelator can be found by comparing the two figures

in Fig. 5.2.

Remark 22. A drawback of ZF-SIC is error propagation. In the high SNR

regime, however, ZF-SIC detection always provides a higher sum spectral effi-

ciency than ZF detection, as can be checked in Fig. 5.2.

One of the interesting observations is that increasing the number of

streams Nt for a given Nr and λ does not necessarily increase the sum spectral

efficiency. On the one hand, for a small node density λ, it is possible to

increase the sum spectral efficiency per area linearly with the number of spatial

multiplexing streams Nt. On the other hand, the sum spectral efficiency per

area increases sub-linearly with λ as shown in Fig. 5.2. This implies that, for

fixed Nt and Nr, increasing λ will degrade the spectral efficiency per link due

to large interference.

To further obtain insights from the derived expressions, it is instructive

to consider some examples:

Example 7. When dk,k = d for all k ∈ K and pNt = 1, Equations (5.9) and
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(5.10) can be simplified as follows

CZF =
λαNt

2ln2

Nr−Nt+1∑
n=1

(
Nr −Nt + 1

n

)

×
∫ ∞

0

e−u

u

( Γ(Nt)u

λΓ(Nt+
2
α

)Γ(1− 2
α

)πd2 )n
α
2

(1 + ( Γ(Nt)u

λΓ(Nt+
2
α

)Γ(1− 2
α

)πd2 )
α
2 )Nr−Nt+1

du (5.11)

CSIC =
λα

2ln2

Nt∑
m=1

Nr−Nt+m∑
n=1

(
Nr −Nt +m

n

)

×
∫ ∞

0

e−u

u

( Γ(Nt)u

λΓ(Nt+
2
α

)Γ(1− 2
α

)πd2 )n
α
2

(1 + ( Γ(Nt)u

λΓ(Nt+
2
α

)Γ(1− 2
α

)πd2 )
α
2 )Nr−Nt+m

du, (5.12)

in the interference-limited case (σ2 = 0). This simplified single integral form

provides a better intuition on the impact of network design parameters on

sum spectral efficiency. For example, increasing Nr always provides higher

performance, and optimizing Nt for fixed Nr is an important and interesting

question.

Example 8. Following Example 7, it is assumed that Nt = Nr, α = 4. In this

case, the sum spectral efficiency per unit area with the ZF-receiver is

CZF =
2λNt

ln 2

{
sin (κ)

(π
2
− Si (κ)

)
− cos (κ)Ci (κ)

}
, (5.13)

where κ =
πλd2Γ(Nt+

1
2

)Γ( 1
2

)

Γ(Nt)
, Si(z) =

∫ z
0

sin(t)
t
dt and Ci(z) = −

∫∞
z

cos(t)
t
dt are

the sine integral and cosine integral functions, respectively.

In Example 8, if d =
√

Γ(Nt)

2λΓ(Nt+
1
2

)Γ( 1
2

)
, which means that the distance of

communication links is of order of λ−
1
2 , the sum spectral efficiency per unit
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area becomes

CZF =
2λNt

ln 2

(π
2
− Si

(π
2

))
' 0.5772λNt. (5.14)

So, if the assumptions in Example 8 and the above relation of d and λ hold,

it is possible to guarantee that the sum spectral efficiency per unit area is at

least 0.5772Ntλ.

Throughout this chapter, the main scaling is that of the number of

transmit and receive antennas with respect to the network density λ, while

this example scales the link distance with respect to λ. In what follows, the

distance d will be kept fixed.

5.3.2 Scaling Law

This section provides both a lower and an upper bound with a closed-

form on the sum spectral efficiency. This allows us to obtain the announced

scaling law. This part focuses on the case where pNt = 1.

Theorem 22 (Direct CSIR, ZF, Scaling Law). Assume that pNt = 1, Nt =

c1λ
β1 , Nr = c2λ

β2 , for some constants c1, c2 > 0, and that β1 ≤ β2. Then, in

the interference limited regime,

CZF = Θ(λβ1+1 log2(1 + λβ2−β1−α2 )). (5.15)

Proof. See Appendix 5.6.3.
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Theorem 23 (Direct CSIR, Scaling Law, ZF-SIC). Under the same assump-

tions as in Theorem 22, in the interference limited regime,

CSIC = Θ(λβ1+1 log2(1 + λβ2−β1−α2 )). (5.16)

Proof. See Appendix 5.6.3.

CZF and CSIC are functions of λ but here this chapter just uses them

instead of CZF (λ) and CSIC(λ) for simple notations and the consistency with

the previous notations.

Remark 23. The first observation is that, in the DCSIR case, the sum spec-

tral efficiency per unit area is identical for ZF and ZF-SIC in a scaling law

sense. This is because the signal power of the m-th data stream under ZF is

E[Hk,k(m)] ' Nr − Nt + 1 and under ZF-SIC is E[H̃k,k(m)] ' Nr − Nt + m

with m ≤ Nt. Consequently, in our setting, the array gain obtained by ZF-SIC

detection, m− 1 = (N−Nt +m)− (Nr−Nt + 1)(≤ c1λ
β1), is negligible in the

scaling law sense since Nr(= c2λ
β2) is dominant. To obtain a gain from the

SIC structure, the signal power gain by ZF-SIC should be at least the order

of Nr, and this will actually be the case for LCISR (see Section 5.4).

This scaling law can be explained intuitively from the definition of the

ergodic spectral efficiency. The ergodic spectral efficiency

E0

[
Nt∑
m=1

log2(1 + SINR(m))

]
with independent Nt data streams, is approximated by Nt log2(1 + SINR(1)).

Since the signal power is χ2
2(Nr−Nt+1) and the interference power scales as Ntλ

α
2 ,
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the ergodic spectral efficiency scales as Nt log2

(
1 + Nr−Nt+1

Ntλ
α
2

)
. As λ goes to

infinity with the assumption β2 ≥ β1 which leads Nr −Nt + 1 ' Nr, (5.16) is

obtained.

The next corollary, on per link spectral efficiency, follows immediately

from the two theorems stated above.

Corollary 15. When the receive scheme is ZF or ZF-SIC, under DCSIR, the

scaling law of the sum spectral efficiency per link is

Θ(λβ1 log(λ)) for β2 − β1 −
α

2
> 0, (5.17)

Θ(λβ1) for β2 − β1 −
α

2
= 0, (5.18)

Θ(λβ2−α2 ) for β2 − β1 −
α

2
< 0. (5.19)

Here are important observations following from this corollary.

• Whenever β2−β1−α
2
≥ 0, the spectral efficiency per link is determined by

Nt or β1 alone. So, in this regime, spatial multiplexing, namely increasing

the number of data streams, is beneficial; to the best of our knowledge,

this result is new.

• Whenever β2 − β1 − α
2
< 0, the spectral efficiency per link scales with

order of Θ(λβ2−α2 ). So the scaling law can be in super-linear region

(β2 >
α
2
), linear region (β2 = α

2
), or sub-linear region (β2 <

α
2
).

• For given β2 and α, the optimal scaling law is acheived when β1 = β2− α
2
,

and the corresponding scaling law is Θ(λβ2−α2 ).
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• For fixed Nt and Nr, (i.e. β1, β2 = 0), the scaling law is Θ(λ−
α
2 ).

Remark 24. For fixed Nt and Nr, the signal-to-interference ratio (SIR) scale

invariance, i.e., the fact that the SIR at the typical user does not depend on

the infrastructure density, was observed in cellular network with the nearest

base station association scenario and with power law attenuation [12]. So, one

could expect that the ergodic spectral efficiency, which is a function of SIR, to

be also constant in the present situation, but this is not compatible with our

scaling result Θ(λ−
α
2 ). The main difference between the model in [12] and ours

is that there is no interferer closer than the serving base station (i.e., there is

a guard zone) in the cellular network model of [12] while the closest interferer

in our model may be very close as λ increases.

Example 9. Assume that pNt = 1. For fixed values of Nt, Nr and α, what

is the optimal node density in our model? This part answers this question in

a heuristic way by maximizing the lower bounds obtained above. For the ZF

case, the density maximizing the lower bound of the sum spectral efficiency

per unit area in (5.30) is9

λ∗ZF = arg max
λ

2λNt

α
log2

(
1+

(
2Γ(Nt)

Γ(Nt+
2
α

)Γ(1− 2
α

)

)α
2

η

)
,

where η = Nr−Nt

(λπ(R2
d+1))

α
2

. For large x, since log2(1 + x) ' log2(x), the optimal

link density in the high SIR regime is

λ∗ZF =
Γ(Nt)

2ln 2−1Γ(Nt + 2
α

)Γ(1− 2
α

)

(Nr −Nt)
2
α

π(R2
d + 1)

.

9Here, ε is ignored.
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Hence, the optimal medium access probability under the spatial Aloha protocol

[14] is

p∗ZF = min(1,
λ∗ZF

λ
).

For the ZF-SIC case, by using the lower bound in (5.35) and the relation

log2(1 + x) ' log2(x) for large x, the optimal λ given Nt, Nr, and λ in high

SIR regime is

λ∗SIC = arg max
λ

2λ

α

Nt∑
m=1

log2

(
1 +

( 2Γ(Nt)

Γ(Nt + 2
α

)Γ(1− 2
α

)

)α
2 Nr −Nt +m− 1

(λπ(R2
d + 1))

α
2

)

' arg max
λ

2λ

α
log2

(( 2Γ(Nt)

Γ(Nt + 2
α

)Γ(1− 2
α

)π(R2
d + 1)

)αNt
2

×
Nt∏
m=1

(Nr −Nt +m− 1)λ−
αNt

2

)

=
Γ(Nt)

2ln 2−1Γ(Nt + 2
α

)Γ(1− 2
α

)π(R2
d + 1)

(
Nt∏
m=1

(Nr −Nt +m− 1)

) 2
Ntα

,

and the optimal medium access probability under the spatial Aloha protocol

is

p∗SIC = min(1,
λ∗SIC

λ
).

Example 10. Assume pNt = 1. For fixed Nr, λ, and α, What is the optimal

value for Nt? This can be obtained by using the formulas in Theorem 20 and

21. A simple way consists in maximizing the lower bounds as in Example 9.

By using the Gamma function relation(
Γ(Nt)

Γ(Nt + 2
α

)Γ(1− 2
α

)

)α
2

≥ 1

Nt

,
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Equation (5.30), which is the lower bound of sum spectral efficiency per unit

area when ZF-receiver is applied, becomes fZF
LB(Nt) where

fZF
LB(x) =

2λx

α
log2

(
1 + b

Nr − x
x

)
, (5.20)

when

b ,

(
2

Γ(1− 2
α

)

)α
2 1

(λπR2
d)

α
2

.

One interesting case is b = 1, i.e., λ = 2
πR2

dΓ(1− 2
α

)
. Since fZF

LB(x) is a concave

function, the optimal Nt is bNr

e
c or bNr

e
c + 1. Another intersting case is that

b ' 0 or equivalently λ is very big. By using a relation log(1 + x) ' x for

a small x, fZF
LB(x) ' 2λb

α
(Nr − x). So, the optimal Nt is 1. This means, for

a very dense network, transmitting one data stream is the best strategy for

enhancing the reliability.

Remark 25. The physical meaning of scaling law can be obtained as follows.

The scaling law of ESE of the typical link with respect to the network density

is

Θ(λβ1 log2(1 + λβ2−β1−α2 )).

Since my target performance metric, ergodic spectral efficiency, is defined as

E0[
∑Nt

i=1 log2(1+SIR(o))], this is approximately Nt log2(1+Nr−Nt+1
I

) in the in-

terference limited regime. The interference distribution of Poisson field under

distance-based power law is α-stable10. In other words, the interference distri-

bution with network density λ is λ
α
2 times that with density 1. Furthermore,

10Here, α is not the path-loss exponent
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since each interferer send Nt independent data streams from the same location,

by plugging Ntλ
α
2 into I, we obtain the above scaling law, since Nr − Nt + 1

is approximated by Nr when λ→∞.

Remark 26. One of the results in [10] is that network throughput can be made

to scale linearly with the number of receive antennas in the SIMO setting.

However, in [10], the main different assumptions with are 1) using partial

zero forcing receiver to obtain the optimal scaling law 2) when each receiver

knows all channel state information. If I use a partial zero forcing receiver for

achieving the optimal scaling law in SIMO setting (i.e., β1 = 0), the scaling

law of ESE per link will become

Ω(λβ1 log2(1 + λ(β2−β1−1)α
2 )) = Ω(log2(1 + λ(β2−1)α

2 )), (5.21)

and the linear gain (constant per-link performance) can be achieved when β2

= 1. This result can be connected with one of the results in [10].

Remark 27. Also in [11], the authors claim that no multiplexing gain is

obtained under the transmission capacity view. Both this contribution and [11]

compute the post-processed SIR distribution of a certain data stream. So,

the interference power when k data streams are sent will be k times larger

compared to transmitting just 1 data stream. Under the TC view, due to the

outage probability constraint which is

P[SIR < θ] < ε,

transmitting multiple data streams will reduce the maximal density of trans-

mitting nodes concurrently. In other words, the outage constraint under TC
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can be thought as a reliability condition. For increasing the reliability of each

stream, transmitting one stream is the optimal strategy. ESE does not con-

sider this reliability. There is no term related to guaranteed SINR in ESE.

Remark 28. Under the cellular network scenario with the nearest BS asso-

ciation [12], the coverage probability improves as α increases which is counter

intuitive to the scaling law Θ(λ−
α
2 ) when Nt and Nr are fixed. However, under

the cellular network scenario, there is no interferer closer than the serving base

station (i.e., there is a guard zone). So, in interference-limited networks, SIR

ratio will be improved for fixed as increases. However, in my ad-hoc network

setting, there is no guard zone. So, when α is big, the closest interfer may be

very close which explains why increasing α will be detrimental.

5.4 Local CSIR

LCSIR denotes the situation where Lk > 0, i.e., Yk knows the Lk-

nearest interferer CSIs in addition to the CSI of its own channel. Through

this section, it is assumed that all transmitters are equipped with Nt antennas

(i.e., pNt = 1) and Lk = L for all Yk ∈ Φ̄ with 1 ≤ L ≤ bNr

Nt
c − 1.

5.4.1 Sum Spectral Efficiency

In the LCSIR case, the sum spectral efficiencies per unit area are de-

noted by CZF
L under ZF and by CSIC

L under ZF-SIC.

Theorem 24. In the LCSIR case, under ZF detection, the achievable sum
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spectral efficiency per unit area with L dominant interferer CSI is

CZF
L =

λNt

ln 2

∫ Rd

1

∫ ∞
0

1

se
Ntσ

2s
P(

1− 1

(1 + sx−α)Nr−(L+1)Nt+1

)
LĨk(L; s)ds

2x

R2
d − 1

dx, (5.22)

where

LĨk(L; s) =

∫ ∞
0

exp

(
− πλ

∫ ∞
u=r2

1−
(

1

1 + su−
α
2

)Nt

du

)
2(λπr2)L

rΓ(L)
e−λπr

2

dr.

Proof. See Appendix 5.6.4.

Theorem 25. In the LCSIR case, the achievable sum spectral efficiency per

unit area with L dominant interferer channel information using ZF-SIC detec-

tion is

CSIC
L =

Nt∑
m=1

λ

ln 2

∫ Rd

1

∫ ∞
0

1

se
Ntσ

2s
P

×

(
1− 1

(1 + sx−α)Nr−Nt+m

)
LĨk(L; s)ds

2x

R2
d − 1

dx,

where

LĨk(L; s) =

∫ ∞
0

exp

(
−πλ

∫ ∞
u=r2

1−
(

1

1 + su−
α
2

)Nt

du

)

× 2(λπr2)L

rΓ(L)
e−λπr

2

dr.

Proof. See Appendix 5.6.4.

Here as in the DCSIR case, the sum spectral efficiency increases with

the network density, for both ZF and ZF-SIC. This can be checked in Fig. 5.3

where the sum capacity increases sub-linearly with the average number of links.
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Figure 5.3: The sum spectral efficiency with LCSIR when |A| = π5002(m2), α = 4,
Rd = 50(m), P = −20(dBm), σ2 = −104(dBm) with L = bNr

Nt
c − 1.
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Remark 29. For the ZF case, the fading power of the desired signal is lower

for LCSIR than for DCSIR because the remaining degrees of freedom at the

receiver are used to suppress the inter-node interference from the L-dominant

interferers. Therefore, leveraging all channel information is not always benefi-

cial. This can be checked in the first figures of Fig. 5.2 and Fig. 5.3. For the

ZF-SIC case, however, utilizing all information is always beneficial, since the

fading power of the m-th data stream of the k-th link is χ2
2(Nr−Nt+m), rather

than χ2
2(Nr−(L+1)Nt+1) in ZF. This observation can be checked on the second

figures of Fig. 5.2 and Fig. 5.3.

5.4.2 Scaling Law

In this section, L = bNr

Nt
c − 1 which is the maximum possible number

for nulling the interference from other nodes.

Theorem 26 (Local CSIR, Scaling Law, ZF). Assume that pNt = 1, and

Nt = c1λ
β1 , Nr = c2λ

β2 with with some constants c1, c2 > 0 and β1 ≤ β2.

Then, under ZF detection, the sum spectral efficiency per unit area scales as

CZF
L = Ω(λβ1+1 log2(1 + λ(β2−β1−1)α

2
−β2)), (5.23)

when L = bNr

Nt
c − 1.

Proof. See Appendix 5.6.5.

Remark 30. When α = 4, under ZF, the scaling law of spectral efficiency

per link is Θ(λβ1 log2(1 + λβ2−β1−1)) for DCSIR, whereas it is Ω(λβ1 log2(1 +
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λβ2−2β1−2)) for LCSIR In this case, it can be observed that nulling all inter-

ference from other nodes is not useful in the sense of scaling laws. This is

because the receiver wastes the spatial degrees of freedom to cancel the near-

est inter-node interference. This chapter concludes that, when ZF detection is

employed, in the scaling law sense, treating the nearest inter-node interference

as noise is a better strategy than canceling it.

Theorem 27 (Local CSIR, Scaling Law, ZF-SIC). The assumptions for the

number of antenna configurations are the same as in Theorem 26. When

L = bNr

Nt
c− 1, the sum spectral efficiency per unit area with ZF-SIC detection

scales as

CSIC
L = Ω(λβ1+1 log2(1 + λ(β2−β1−1)α

2 )). (5.24)

Proof. See Appendix 5.6.5.

The main difference between (5.23) and (5.24) is the recovered degrees

of freedom of signal power by the successive cancellation architecture.

Corollary 16. Under ZF-SIC and LCSIR, the scaling law of the ergodic spec-

tral efficiency per link is

Ω(λβ1 log(λ)) for β2 − β1 − 1 > 0

Ω(λβ1) for β2 − β1 − 1 = 0

Ω(λβ1+(β2−β1−1)α
2 ) for β2 − β1 − 1 < 0.
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The conclusions are similar to those of Corollary 15. In particular, for

given β2 and α, the best β1 in the scaling law sense is hence β∗1 = β2 − 1,

and the corresponding scaling law is Ω(λβ2−1). Since α > 2 is assumed, by

comparing with the scaling law in Corollary 15, LCSIR can achieve higher

performance than DCSIR case in the ergodic spectral efficiency per link in the

scaling law sense. 11

Example 11. When Nt, Nr, λ, and L are given, the density maximizing the

lower bounds in (5.37) for ZF and (5.38) for ZF-SIC under LCSIR can be

obtained as follows. As in Example 9, in the high SIR regime, the optimal

densities for ZF and ZF-SIC are

λ∗ZF,L =

 Nr − (L+ 1)Nt

2(1−R2−α
d )

(α−2)(R2
d−1)

(2π)
α
2Nt

(L− α

2
)
α
2
−1

 2
α

1

2ln 2

λ∗SIC,L =

 (L− α
2
)
α
2
−1

2(1−R2−α
d )

(α−2)(R2
d−1)

(2π)
α
2Nt

 2
α ( Nt∏

m=1

(Nr −Nt +m− 1)

) 2
Ntα 1

2ln 2
,

and the optimal medium access probabilities under the spatial Aloha are

p∗ZF,L = min

(
1,
λ∗ZF,L

λ

)
p∗SIC,L = min

(
1,
λ∗SIC,L

λ

)
.

11Even though LCSIR achieves higher scaling law over DCSIR, a large amount of CSI is
required, which is the cost of the enhanced scaling law. As λ goes to infinity, the required
amount of CSI also goes to infinity in asymptotic region.
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5.5 Conclusions

This chapter considered a random wireless network with multiple trans-

mit and receive antennas and examined the benefits of using MIMO techniques

for obtaining multiplexing gains from the ergodic spectral efficiency point-of-

view. Assuming two different types of CSI at receivers, this chapter gave exact

analytical expressions and scaling laws for the ergodic spectral efficiency. The

main finding is that the scaling of the ergodic spectral efficiency can be made a

function of both the density of nodes and the number of transmit streams, pro-

vided that the number of antennas scales in a particular polynomial function

with the density. Especially, when LCSIR with ZF-SIC detection is employed,

the scaling law is enhanced compared to that of DCSIR case.

There are many interesting directions left as future work. One possible

direction is to consider antenna correlation effects in both transmit and receive

antennas, and to analyze how the correlation effects change the scaling laws.

Assuming a MIMO random network with finite feedback, it would also be

interesting to investigate the benefits of a closed-loop MIMO transmission

technique over the open-loop transmission method examined here. Another

direction is to assume a MIMO heterogeneous network and to investigate the

optimum number of data streams as a function of the density of nodes.

5.6 Appendix

5.6.1 A Lemma for Capacity Analysis

The following lemma presented in [112] will be useful below.
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Lemma 10. Let x1, . . . , xN , y1, . . . , yM be arbitrary non-negative random vari-

ables. Then

E

[
ln

(
1 +

∑N
n=1 xn∑M

m=1 ym + 1

)]
=

∫ ∞
0

My(z)−Mx,y(z)

z
exp(−z)dz,

where My(z) = E
[
e−z

∑M
m=1 ym

]
and Mx,y(z) = E

[
e−z(

∑N
n=1 xn+

∑M
m=1 ym)

]
.

Proof. See [112].

The following lemma, proved in [109, Appendix B], will also be used:

Lemma 11. Let X > 0 and Y > 0 be independent non-negative random

variables such that E[X] <∞, E[Y ] <∞, and E[ 1
Y

] <∞. Then,

log2

(
1 +

exp(E[ln(X)])

E[Y ]

)
≤ EX,Y

[
log2

(
1 +

X

Y

)]
≤ log2

(
1 + E[X]E

[
1

Y

])
.

5.6.2 Proof of Theorem 20 and 21

Let X and Y be two independent non-negative random variables with

a ∈ R+, Lemma 10 becomes

E
[
ln

(
1 +

X

Y + a

)]
=

∫ ∞
0

e−az

z
(1− E[e−zX ])E[e−zY ]dz. (5.25)

Theorem 20 is proven first. Given d0,0 = d for the typical link and Nt,0 = t,

applying (5.25), the ergodic spectral efficiency for the m-th data stream of the
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typical link is

E

[
log2

(
1 +

H0,0(m)

dα0,0I0(m) +
dα0,0Nt,0σ2

P

)
|d0,0 = d,Nt,0 = t

]

=
1

ln 2

∫ ∞
0

e−
dαtσ2

P
z

z
(1− E[e−zH0,0(m)])E[e−zd

αI0(m)]dz. (5.26)

Let us define I0(m) = Ī01(m) + Ī02(m) + . . . + Ī0Nr(m), where Ī0k(m) comes

from nodes with k-transmit antennas. Then, the Laplace transform of the

interference I0(m) is

LI0(m)(s) = E[e−sI0(m)] = E[e−s
∑Nr
k=1 Ī0k(m)]

=
Nr∏
k=1

E[e−sĪ0k(m)] =
Nr∏
k=1

LĪ0k(m)(s).

The Laplace transform of Ī0i(m) is

LĪ0k(m)(s)

(a)
= exp

(
−
∫
R2

Ep[1− e
−s p

(
√
x2+y2)

α
]λpkdxdy

)
(b)
= exp

(
−λpk

∫ 2π

0

∫ ∞
0

Ep[1− e−s
p
rα ]rdrdθ

)
(c)
= exp

(
−2πλpkEp[

∫ ∞
0

(1− e−s
p
rα )rdr]

)
(d)
= exp

(
−πλpkEp[(sp)

2
α

∫ ∞
0

(1− e−u)−2

α

1

u1+ 2
α

du]

)
(e)
= exp

(
−πλpkEp[(sp)

2
α

∫ ∞
0

e−uu−
2
αdu]

)
(f)
= exp

(
−πλpkΓ(1− 2

α
)Ep[(sp)

2
α ]

)
(g)
= exp

(
−πλpks

2
αΓ(1− 2

α
)
Γ(k + 2

α
)

Γ(k)

)
.
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(a) comes from the thinning, the displacement theorem, the independent mark-

ing of PPP, and the probability generating functional (PGFL) of PPP [5]; p

is the inter-node interference power when v0(m) is applied. (b) is obtained by

changing from Cartesian coordinates to polar coordinates; (c) is by Fubini’s

theorem. (d) follows from the change of variable u = sp
rα

; (e) comes from the

integration by part; (f) is by the definition of the Gamma function and (g)

comes from the fact that p is a Chi-squared random variable with 2k degrees

of freedom.

So, the Laplace transform of the interference I0(m) at zdα is

E[e−zd
αI0(m)] =

Nr∏
k=1

exp

(
−πλpkd2z

2
α

Γ(k + 2
α

)

Γ(k)
Γ(1− 2

α
)

)
, (5.27)

which comes from the independent thinning and the superposition of PPP. By
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plugging (5.27) into (5.26),

1

ln 2

∫ ∞
0

e−
dαtσ2

P
z

z
(1− E[e−zH0,0(m)])

× exp

(
−πλd2z

2
α

Nr∑
k=1

pk
Γ(k + 2

α
)

Γ(k)
Γ(1− 2

α
)

)
dz

(a)
=

α

2 ln 2

∫ ∞
0

e
− d

αtσ2

P

(
λπd2

∑Nr
k=1 pk

Γ(k+ 2
α )Γ(1− 2

α )

Γ(k)u

)−α2
−u

u(
1− E

[
e
−
(
λπd2

∑Nr
k=1 pk

Γ(k+ 2
α )Γ(1− 2

α )

Γ(k)u

)−α2
H0,0(m)

])
du

(b)
=

α

2 ln 2

∫ ∞
0

e
− d

αtσ2

P

(
λπd2

∑Nr
k=1 pk

Γ(k+ 2
α )Γ(1− 2

α )

Γ(k)u

)−α2
−u

u

(
1− 1

1 +
(
λπd2

∑Nr

k=1 pk
Γ(k+ 2

α
)Γ(1− 2

α
)

Γ(k)u

)−α
2


Nr−t+1)

du, (5.28)

where (a) comes from a variable change, and (b) follows from deconditioning

H0,0(m) which is a Chi-squared random variable with 2(Nr− t+ 1) degrees of

freedom. Since Yk is uniformly distributed in the ring centered at Xk, (5.9) is

obtained by considering all data streams and deconditioning with respect to

the number of transmit antennas of the typical link.

For the ZF-SIC detection method, the main difference in the proof is

that H̃0,0(m) is distributed as a Chi-squared with 2(Nr − t + m) degrees of
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freedom, and (5.28) is changed to

α

2 ln 2

∫ ∞
0

e
− d

αtσ2

P

(
λπd2

∑Nr
k=1 pk

Γ(k+ 2
α )Γ(1− 2

α )

Γ(k)u

)−α2
−u

u(
1−

 1

1 +
(
λπd2

∑Nr

k=1 pk
Γ(k+ 2

α
)Γ(1− 2

α
)

Γ(k)u

)−α
2


Nr−t+m)

du,

and (5.10) is obtained similarly.

5.6.3 Proof of Theorem 22 and 23

Proof. The lower and upper bounds of (5.9) will be derived first. By applying

Lemma 11, the sum spectral efficiency over the network is lower bounded as

follows:

λE0

[
Nt∑
m=1

log2(1 + SINRZF
0 (m))

]

= λ
Nt∑
m=1

EH0,0(m),d0,0,I0(m)

[
log2

(
1 +

H0,0(m)d−α0,0

I0(m)

)]

≥ λ
Nt∑
m=1

Ed0,0,I0(m)

[
log2

(
1 +

eE[ln(H0,0(m))]

dα0,0I0(m)

)]
.

Since H0,0(m) is a Chi-square random variable with 2(Nr−Nt + 1) degrees of

freedom,

E[ln(H0,0(m))] = ψ(Nr −Nt + 1),

where

ψ(n) = −γ +
n−1∑
j=1

1

j
,
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with γ ' 0.577, Euler’s constant. By [113, Theorem 3.1],

eψ(x) > x− 1, (5.29)

and

eE[ln(H0,0(m))] > Nr −Nt + ε,
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where ε is some positive number12. Thus, the lower bound of the sum spectral

efficiency per unit area is

λ
Nt∑
m=1

Ed0,0,I0(m)

[
log2

(
1 +

Nr −Nt + ε

dα0,0I0(m)

)]
(a)
=

λ

ln 2

Nt∑
m=1

∫ ∞
0

1

z
(1− e−z(Nr−Nt+ε))Ed0,0,I0(m)[e

−zdα0,0I0(m)]dz

(b)
=

λ

ln 2

Nt∑
m=1

∫ ∞
0

1

z
(1− e−z(Nr−Nt+ε))Ed0,0

[
exp

(
−λπd2

0,0z
2
α

Γ(Nt + 2
α

)Γ(1− 2
α

)

Γ(Nt)

)]
dz

(c)

≥ λ

ln 2

Nt∑
m=1

∫ ∞
0

1

z
(1− e−z(Nr−Nt+ε)) exp

(
−λπE[d2

0,0]z
2
α

Γ(Nt + 2
α

)Γ(1− 2
α

)

Γ(Nt)

)
dz

(d)
=

λα

2 ln 2

Nt∑
m=1

∫ ∞
0

1

u
e−u

1− e
−
(

2Γ(Nt)

Γ(Nt+ 2
α )Γ(1− 2

α )

)α
2 Nr−Nt+ε

(λπ(R2
d

+1))
α
2
u
α
2

 du

(e)

≥ λ

ln 2

Nt∑
m=1

∫ ∞
0

1

u
e−u

α
2

1− e
−
(

2Γ(Nt)

Γ(Nt+ 2
α )Γ(1− 2

α )

)α
2 Nr−Nt+ε

(λπ(R2
d

+1))
α
2
u
α
2

 du

(f)
=

2λNt

α
log2

(
1 +

(
2Γ(Nt)

Γ(Nt + 2
α

)Γ(1− 2
α

)

)α
2 Nr −Nt + ε

(λπ(R2
d + 1))

α
2

)
(g)

≥ 2λNt

α
log2

(
1 +

1

Nt

(
2

Γ(1− 2
α

)

)α
2 Nr −Nt + ε

(λπ(R2
d + 1))

α
2

)
, (5.30)

where (a) follows from Lemma 10, (b) comes from the expression for the in-

terference of the Laplace functional of PPP, (c) follows from Lemma 11, (d)

comes from a variable change and the fact that E[d2
k,k] =

R2
d+1

2
, (e) comes

from the fact that e−u ≥ 2
α
e−u

α
2 when u ≥ 0 and α > 2, (f) is obtained by

12With a numerical approach, the gap of eψ(x) and x − 1 is lower bounded by 0.4. For
obtaining lower bound of the sum spectral efficiency (and scaling law of it), ε is put to
prevent the lower bound becoming 0.
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∫∞
0

1
u
e−u

α
2 (1− e−b×u

α
2 )du = 2

α
log(1 + b), and (g) comes from

Γ(Nt)

Γ(Nt + 2
α

)
≥ N

− 2
α

t .

Using the assumption that Nt = c1λ
β1 and Nr = c2λ

β2 ,

lim
λ→∞

CZF = Ω(λβ1+1 log2(1 + λβ2−β1−α2 )), (5.31)

as λ goes to infinity.

In the interference limited regime,

λE

[
Nt∑
m=1

log2(1 + SINRZF
0 (m))

]

= λ
Nt∑
m=1

EH0,0(m),d0,0,I0(m)

[
log2

(
1 +

H0,0(m)d−α0,0

I0(m)

)]
(a)

≤ λNt log2

(
1 + E[d−α0,0 ]E[H0,0(m)]E

[
1

I0(m)

])
(b)
= λNt log2

(
1 +

2(1−R2−α
d )

(α− 2)(R2
d − 1)

1

Rα
d

(Nr −Nt + 1)
Γ(1 + 2

α
)Γ(Nt)

α
2

(λπΓ(Nt + 2
α

)Γ(1− 2
α

))
α
2

)
,

(5.32)

where (a) comes from Lemma 11, and (b) follows from E[d−α0,0 ] =
2(1−R2−α

d )

(α−2)(R2
d−1)

,

E[H0,0(m)] = Nr −Nt + 1, and the relation of E
[

1
X

]
= E

[∫∞
0
e−sXds

]
for any

positive random variable X. The negative moment of I0(m) is

E
[

1

I0(m)

]
=

∫ ∞
0

E[e−sI0(m)]ds

=

∫ ∞
0

e
−λπ Γ(Nt+ 2

α )Γ(1− 2
α )

Γ(Nt)
s

2
α
ds

=
Γ(1 + 2

α
)Γ(Nt)

α
2

(λπΓ(Nt + 2
α

)Γ(1− 2
α

))
α
2

.
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Therefore, the upper bound on the sum spectral efficiency per unit area is

CZF = λNt log2

(
1 +

2(1−R2−α
d )

(α− 2)(R2
d − 1)

(Nr −Nt + 1)
Γ(1 + 2

α
)Γ(Nt)

α
2

(λπΓ(Nt + 2
α

)Γ(1− 2
α

))
α
2

)

≤ λNt log2

(
1 +

2(1−R2−α
d )

(α− 2)(R2
d − 1)

(Nr −Nt + 1)
Γ(1 + 2

α
)

(λπΓ(1− 2
α

))
α
2

(
(Nt − 1)−

2
α

)α
2

)
,

where the last inequality comes from

Γ(x)

Γ(x+ 2
α

)
≤ (x− 1)−

2
α . (5.33)

By letting λ tend to infinity,

lim
λ→∞

CZF = O(λβ1+1 log2(1 + λβ2−β1−α2 )). (5.34)

Equations (5.31) and (5.34) conclude the proof of Theorem 22.

The proof of Theorem 23 is analogous to that of Theorem 22. The

main difference consists in changing H0,0(m) ∼ χ2
2(Nr−Nt+1) to H̃0,0(m) ∼

χ2
2(Nr−Nt+m). The lower bound of the sum spectral efficiency per unit area

becomes

λE

[
Nt∑
m=1

log2

(
1 + SINRSIC

0 (m)
)]

>
2λ

α

Nt∑
m=1

log2

(
1 +

(
2Γ(Nt)

Γ(Nt + 2
α

)Γ(1− 2
α

)

)α
2 Nr −Nt +m− 1 + ε

(λπ(R2
d + 1))

α
2

)

>
2λNt

α
log2

(
1 +

1

Nt

(
2

Γ(1− 2
α

)

)α
2 Nr −Nt + ε

(λπ(R2
d + 1))

α
2

)
, (5.35)
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and the upper bound becomes

λE

[
Nt∑
m=1

log2

(
1 + SINRSIC

0 (m)
)]

≤ λ

Nt∑
m=1

log2

(
1 +

2(1−R2−α
d )

(α− 2)(R2
d − 1)

(Nr −Nt +m)
Γ(1 + 2

α
)Γ(Nt)

α
2

(λπΓ(Nt + 2
α

)Γ(1− 2
α

))
α
2

)

< λNt log2

(
1 +

2(1−R2−α
d )

(α− 2)(R2
d − 1)

Γ(1 + 2
α

)

(πΓ(1− 2
α

))
α
2

Nr

(
Γ(Nt)

Γ(Nt + 2
α

)

)α
2

λ−
α
2

)

≤ λNt log2

(
1 +

2(1−R2−α
d )

(α− 2)(R2
d − 1)

Γ(1 + 2
α

)

(πΓ(1− 2
α

))
α
2

Nr

Nt − 1
λ−

α
2

)
,

where the last inequality comes from (5.33). With the foregoing assumptions,

the scaling law of the sum spectral per unit area with respect to the density

becomes Θ(λβ1+1 log2(1 + λβ2−β1−α2 )).

5.6.4 Proof of Theorem 24 and 25

Lemma 10 is used again. First, the ZF-receiver case is derived. Con-

ditioned on dk,k = d, the spectral efficiency of the m-th data stream of the

typical link is

E

[
log2

(
1 +

H̃0,0(m)d−α0,0

Ĩ0(m) + Ntσ2

P

)
|d0,0 = d

]

=
1

ln 2

∫ ∞
0

e−
Ntσ

2

P
z

z
(1− E[e−zH0,0(m)d−α])

× E[e
−z
∑∞
j=L+1 H̃0,0j

(m)d−α0,0j ]dz, (5.36)

by Lemma 10. Since H̃0,0(m) is Chi-square distributed with 2(Nr−(L+1)Nt +

1) distributed,

E
[
e−zH̃0,0(m)d−α

]
=

1

(1 + zd−α)Nr−(L+1)Nt+1
.
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The Laplace transform of Ĩ0(m) for the given L is

LĨ0(m)(L; z) = E
[
e
−z
∑∞
j=L+1 H̃0,0j

(m)d−α0,0j

]
.

Under the condition that the L-th nearest interferer’s distance is r, the Laplace

transform is obtained as

LĨ0(m)|d0,0L
=r(L; z)

= E
[
e
−z
∑∞
j=L+1 H̃0,0j

(m)d−α0,0j |d0,0L = r
]

(a)
= E

 ∏
d0,0j

∈Φ\B(0,r)

1

(1 + zd−α0,0j
)Nt
|d0,0L = r


(b)
= exp

(
−πλ

∫ ∞
u=r2

1− 1

(1 + zu−
α
2 )Nt

du

)
,

where (a) comes from the fact that H̃0,0j(m) ∼ χ2
2Nt

and (b) follows from

PGFL. The distribution of r is given in [114] and by unconditioning with

respect to it,

LĨ0(m)(L; z) =

∫ ∞
0

exp(−πλ
∫ ∞
u=r2

1− 1

(1 + zu−
α
2 )Nt

du)

× 2(λπr2)L

rΓ(L)
e−λπr

2

dr.

Thus, the sum spectral efficiency conditioned on dk,k = d can be written as

E

[
log2

(
1 +

H̃0,0(m)d−α

Ĩ0(m) + σ2Nt

P

)
|{d0,0 = d}

]

=
1

ln 2

∫ ∞
0

e−
sNtσ

2

P

s

[
1− 1

(1 + zd−α)Nr−(L+1)Nt+1

]
LĨ0(L; s)ds.

It is obtained that the announced result when using the fact that d0,0 is uni-

formly distributed in a ring with radii (1, Rd).
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The result for ZF-SIC follows by the same arguments, using the fact

that H̃0,0(m) is Chi-square random variable with 2(Nr − Nt + m) degrees of

freedom.

5.6.5 Proof of Theorem 26 and 27

Proof. First, the proof of Theorem 26 is considered. The lower bound of (5.22)

is

λE

[
Nt∑
m=1

log2(1 + SINRZF
0,L(m))

]

= λ
Nt∑
m=1

EH̃0,0d0,0,Ĩ0(m)

[
log2

(
1 +

H̃0,0(m)d−α0,0

Ĩ0(m)

)]
(a)

≥ λ
Nt∑
m=1

log2

(
1 +

eE[ln(H̃0,0(m))]

E[d−α0,0 ]E[Ĩ0(m)]

)
(b)
> λ

Nt∑
m=1

log2

1 +
Nr − (L+ 1)Nt + ε

2(1−R2−α
d )

(α−2)(R2
d−1)

E[Ĩk(m)]

 ,

where (a) comes from Lemma 11, and (b) comes from the inequality (5.29),

E[d−α0,0 ] =
2(1−R2−α

d )

(α−2)(R2
d−1)

. The expectation of Ĩ0 conditioned on d0,0L = r is

E[Ĩ0(m)|d0,0L = r] =
2πλNt

2− α
r2−α.

By unconditioning with respect to d0,0L whose distribution is given in [114],

E[Ĩ0(m)] =
2πλNt

2− α

∫ ∞
0

r2−α2(λπr2)L

rΓ(L)
e−λπr

2

dr

= (2πλ)
α
2Nt

Γ(1− α
2

+ L)

Γ(L)
.
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By leveraging

Γ(L)

Γ(1− α
2

+ L)
≥ (L− α

2
)
α
2
−1,

the lower bound becomes

λE

[
Nt∑
m=1

log2(1 + SINR
ZF
0,L(m))

]

> λNt log2

(
1 +

Nr − (L+ 1)Nt + ε
2(1−R2−α

d )

(α−2)(R2
d−1)

Γ(L)

(2πλ)
α
2NtΓ(1− α

2
+ L)

)

≥ λNt log2

1 +
Nr − (L+ 1)Nt + ε
2(1−R2−α

d )

(α−2)(R2
d−1)

(2πλ)
α
2Nt

(L− α

2
)
α
2
−1

 . (5.37)

By plugging Nt = c1λ
β1 , Nr = c2λ

β2 into (5.37),

lim
λ→∞

CZF
L = Ω(λβ1+1 log2(1 + λ(β2−β1−1)α

2
−β2)),

since L = bNr

Nt
c − 1.

The proof of Theorem 27 is almost identical to the proof of Theorem

26. The main difference is in the distribution of H̃0,0(m). The lower bound

becomes

λE

[
Nt∑
m=1

log2(1 + SINRSIC
0,L (m))

]

> λ

Nt∑
m=1

log2

1 +
Nr −Nt +m− 1 + ε

2(1−R2−α
d )

(α−2)(R2
d−1)

(2πλ)
α
2Nt

(L− α

2
)
α
2
−1

 . (5.38)

With the foregoing assumptions,

lim
λ→∞

CSIC
L = Ω(λβ1+1 log2(1 + λ(β2−β1−1)α

2 )).
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Chapter 6

Conclusion

This dissertation mainly aims at using stochastic geometry to model

and analyze emerging wireless networks. The first contribution of this disser-

tation is the development of new mathematical models for studying wireless

networks scenarios which have not been discussed sufficiently. Chapter 2 pro-

posed the Poisson building for 3-D in-building networks using Poisson line

processes. Chapter 3 introduced the concept of shadowing cell where base

stations in the same shadowing cell have the same shadowing random vari-

able. The second contribution of this dissertation is the analysis of correlated

shadowing in stochastic geometry models. The new mathematical models in

Chapters 2, 3 allow one to study the impact of spatially correlated shadowing

fields. Especially, Chapter 3 showed that widely used performance metrics are

evaluated in a pessimistic way under the independent shadowing assumption.

Chapter 4 investigated multihop communications in mmWave networks and

compared some connectivity results between the correlated and independent

shadowing models. Finally, Chapter 5 showed that spatial multiplexing is

beneficial under MIMO ad-hoc networks with a newly defined metric, Ergodic

spectral efficiency.
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In the rest of this chapter, I summarize the main contributions and

discuss the prospective future works.

6.1 Summary

In Chapter 2, I proposed a new 3-D spatial model for in-building wire-

less networks which capture spatial shadowing correlation created by the static

physical walls. Most previous models studied outdoor networks on the scale of

a city and the shadowing correlation is typically ignored and path loss is sim-

ply modeled through independent log-normal shadowing coefficients [2, 3] or

a distance dependent function combined with independent fading/shadowing

random variables [4, 13]. These models ignore shadowing effects generated by

spatial geometry.

This new 3-D model for in-building wireless networks is the Poisson

building model, which explicitly handles the shadowing correlation. This

model is compatible with the empirically supported lognormal shadowing model

in that the marginal shadowing component converges to lognormal distribu-

tion as the link distance grows. The tractability of the Poisson building model

is provided by explicitly deriving the interference distribution and its spatial

correlation. Under this model, analytical characterizations of the coverage

probability of in-building cellular networks. The analysis of these variants

further reveals fundamental differences between 3-D and 2-D correlated shad-

owing analysis.

In Chapter 3, I proposed a new network model, Shadowing cell to
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analyze the correlated shadowing field in general outdoor wireless networks.

The Poisson building model can capture the correlated shadowing field, but

it is limited to in-building wireless networks and blockage-based path loss

function. As already explained, most of the previous research papers used the

independent shadowing approximation to analyze the shadowing effects. In

contrast, in order to represent the spatial correlation property, some shadowing

values are assigned based on the obstacle topology. Especially, base stations

in the same Shadowing cell have the same shadowing random variable.

The main contribution is the comparison of the interference distribution

between the correlated and independent shadowing models in the stochastic

ordering sense. Chapter 3 computed the Laplace transforms of the interfer-

ence observed by the typical user which is located at the origin under these

two models, and then provides the ordering relation of the three metrics for

the typical user, i.e., 1) coverage probability, 2) Shannon throughput, and 3)

local delay. These three metrics were shown completely monotone functions of

the interference. From well known results on the relation between the Laplace

transform ordering and completely monotone functions, the ordering relations

were obtained between the two shadowing assumptions. One interesting obser-

vation in this Chapter was that the evaluation of the considered metrics under

the independent approximation was systematically pessimistic compared to

the correlated shadowing model.

In Chapter 4, I proposed a new stochastic geometric approach to an-

alyze mmWave multihop networks in the presence of blockages. The multi-

198



hop connectivity under the mmWave networks has not been widely discussed

in previous papers. I considered two blockage models: independent blockage

model and correlated blockage model. The independent blockage model was

considered in order to get exact analytical expressions of connectivity results.

In this model, the blockage process is independent over links even though two

links are close to each other. Then, I considered the correlated blockage model

which is closer to real environments. I provided exact expressions of connectiv-

ity results under the independent blockage setting and compare some of these

results between two blockage models since it is hard to obtain exact expres-

sions under the correlated blockage model. To the best of my knowledge, this

comparison has not been discussed in the mmWave multihop setting.

Further, I provided new percolation results under the correlated block-

age model. Under the independent blockage model, there always exists a user

critical density for the existence of an infinite size connected user cluster. How-

ever, under the correlated blockage model, the critical user density does not

exist under certain blockage conditions. This comparison provides new insight

of percolation theory under the more realistic network scenarios.

In Chapter 5, I analyzed MIMO ad-hoc networks modeled by a Pois-

son bipolar network. In previous works, under this setting, the transmission

capacity which quantifies the maximum allowable spatial density of successful

transmissions per unit area subject to a given outage probability constraint

was characterized. However, a common shortcoming of the transmission ca-

pacity metric is that it cannot capture the effects of rate adaptation techniques,
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which are the key features used in many modern wireless systems to track and

exploit channel variations. The main novelty of this contribution compared to

this line of thought is the analysis of the ergodic spectral efficiency (rather than

transport capacity), which quantifies the achievable Shannon transmission rate

per unit area when adapting the rate to the different local conditions.

For a MIMO setting, I derived the exact expressions of ergodic spectral

efficiency under a Poisson bipolar setting. One key message in this chapter

was that spatial multiplexing transmission techniques [110] can improve the

scaling laws of the sum spectral efficiency which cannot be obtained under the

transmission capacity view.

6.2 Future Directions

Based on the stochastic geometry frameworks in this dissertation, vari-

ous performance metrics of wireless networks can be analyzed with fundamen-

tal approaches. As wireless networks evolve with more features, this mathe-

matical tool can still serve as an important analytical tool. These advanced

features lead more challenging stochastic geometry analysis such as new net-

work scenarios and new physical phenomena. Motivated by these, I propose

some prospective research directions that extends contributions in this disser-

tation.
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6.2.1 Effects of the Shadowing Correlation: Quantifying, Multihop
Networks, mmWave Networks

One core result of this dissertation is the analysis of the effect of corre-

lated shadowing using stochastic geometry. I proposed new models (Poisson

building and Shadowing cell) and presented some network connectivity results

in mmWave multihop networks for understanding the impact of the shadow-

ing correlation. Especially, the main result of Chapter 3 is that when ignoring

the spatial correlations of shadowing, widely used metrics such as coverage

probability, Shannon throughput, local delay are systematically evaluated in a

pessimistic way. This was proved by using stochastic ordering and completely

monotone functions. This result is new and provides a better qualitative un-

derstanding of the effect of shadowing correlation. However, Chapter 3 does

not quantify how much different these metrics are under the independent and

the correlated shadowing. From this point, one interesting possible direction

would be to quantify the impact of correlated shadowing on the important

metrics.

Another possible research direction is to understand the effect of shad-

owing correlation in multihop networks. All results in Chapter 3 are focused

on the typical user’s performance under single-hop networks. By investigating

this effect under multihop scenarios, it should be possible to analyze the im-

pact of correlated shadowing on other important results such as connectivity

(partly discussed in Chapter 4), delay and so on. Since multihop communi-

cation is a promising technique to extend coverage in emerging 5G networks,
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understanding the impact of the correlated shadowing on this type of commu-

nications is particularly important.

In Chapter 3, the path-loss model is exactly that used in [4] and con-

nected to the blockage-based path loss model in [16, 115, 116]. The results in

this contribution can be directly applied for lower frequencies networks. In the

path loss model used in this chapter, the channel path loss exponent is fixed.

In the analysis of mmWave networks using stochastic geometry, different path-

loss exponents are used for LOS and NLOS signals. So, the results cannot be

directly applied to general mmWave networks. However, if we admit inde-

pendence between NLOS and LOS signals as in previous papers, by assuming

interference to be the sum of two independent interference process (LOS and

NLOS signals), it is possible to extend our results to general mmWave net-

works. In this case, since LI(s) = LILOS(s)×LINLOS(s), the ordering relations

of some performance metrics between the correlated and independent shad-

owing models will be the same. The analysis of the correlation between LOS

and NLOS signals can be another interesting research direction in connection

with mmWave networks.

6.2.2 mmWave Multihop Communications: More Metrics, MAC
Protocols, NLOS signals, and Interference

As already mentioned, multihop communication is a very promising

technique in emerging 5G networks in terms of coverage extension. Chapter 4 is

motivated by this and mainly presented the connectivity results by leveraging
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stochastic geometry tools.

In classical studies on multihop networks, the following metrics are

typically considered.

1. Per-hop transmission success probability [14]: The probability that the

SINR at the receiver is above a particular threshold;

2. Normalized average forward progress [117]: The average distance trav-

eled by the packet towards its final destination;

3. End-to-end delay [14]: the time taken for a packet to be transmitted

across a network from source to destination.

One particularly interesting research direction would consist in analyzing the

above metrics under multihop communications in mmWave networks. Com-

bined with the connectivity results in Chapter 4, the analysis of these perfor-

mance metrics will provide a way to progress on network management and cell

planning. Further, it would be quite useful to use this framework to design

new MAC protocols which aim at reducing or preventing collisions by limiting

interference in these networks.

In Chapter 4, I only analyzed the LOS connectivity of mmWave net-

works. However, it is known that high data rate can be supported by NLOS

links through reflected paths [74]. So, analyzing the connectivity of NLOS

signals which support the 5G immersive experiences [75] will be another in-

teresting future direction. Further, the connectivity results in Chapter 4 are
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analyzed under the noise-limited networks. However, interference is not neg-

ligible with certain network parameters. It should be stressed that when con-

sidering interference, the connection rules become more complicated functions

of network topology.

6.2.3 Network Analysis under Clustered Poisson Networks

In classical stochastic geometrical models, the underlying node distri-

bution is often assumed to be the homogeneous Poisson point process, which is

equivalent to assuming complete spatial randomness for node locations. This

assumption neglects the dependencies among node locations in practical sys-

tems [118]. I analyze the correlated shadowing effect under the Matérn cluster

process in Chapter 3. Similarly, it is possible to analyze MIMO ad-hoc net-

works modeled by clustered networks such as Poisson cluster process as in

Chapter 5.

The Matérn cluster process, an example of Poisson cluster processes,

consists of mother homogeneous PPP of intensity λm and daughter points,

which are marks of each mother point with parameter λd. The daughter points

are uniformly distributed in a circle centered at their mother point and with

radius Rd. Two scenarios are applicable for this Matérn cluster process: 1)

body area network and 2) vehicular ad-hoc networks. It is possible to assume

that the daughter points (potential transmitters) transmit to their mother

points (potential receivers), see Figure 6.1. So, each person (or each monitor)

can be thought as a mother point and its body networks can be thought of as
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daughter points. Another appropriate scenario is that of vehicular networks.

The roadside units (RSU) are distributed as a homogeneous PPP (mother pro-

cess) and cars in communication range from a certain RSU can be modeled as

a finite-size PPP (daughter process). This network model is highly correlated

with the model in Chapter 5. The main differences are 1) the number of the

potential data streams for each receiver is not fixed and 2) the sources of data

streams are spatially separated.

The expected results in this research direction are: 1) comparing the

ergodic spectral efficiency under PPP and PCP networks to understand the

clustered networks 2) examining the benefits of using MIMO techniques in

PCP networks and 3) connecting the results to the previous results such as

Laplace ordering of point processes [49,119].
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Figure 6.1: Matérn cluster process
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