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Interactions of cells with their chemical microenvironments are critical to many 

polarized processes, including differentiation, migration, and pathfinding. To investigate 

such cellular events, tools are required that can rapidly reshape the microscopic chemical 

landscapes presented to cultured cells. Existing chemical dosing technologies rely on use 

of pre-fabricated chemical gradients, thus offering ―static‖ cell-reagent interactions. Such 

interactions are particularly limiting for studying migration and chemotaxis, during which 

cells undergo rapid changes in position, morphology, and intracellular signaling. This 

dissertation describes the use of laminar streams, containing cellular effector molecules, 

for precise delivery of effectors to selected subcellular regions. In this approach, cells are 

grown on an ultra-thin polymer membrane that serves as a barrier to an underlying 

reagent reservoir. By using a tightly-focused pulsed laser beam, micron-diameter pores 

can be ablated in the membrane upstream of desired subcellular dosing sites. Emerging 

through these pores are well-defined reagent streams, which dose the targeted regions. 

Multiple pores can be ablated to allow parallel delivery of effector molecules to an 

arbitrary number of targets. Importantly, both the directionality and the composition of 

the reagent streams can be changed on-the-fly under a second to present dynamically 
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changing chemical signals to cells undergoing migration. These methods are applied to 

study the chemotactic responses of neutrophil precursor cells. The subcellular 

localization of the chemical signals emerging through pores is found to influence the 

morphological evolution of these motile cells as they polarize and migrate in response to 

rapidly altered effector gradients. 
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Chapter 1:  Micro-Engineered Tools for Investigation of Cellular 
Behavior 

1.1 INTRODUCTION 

 
 Cells receive cues from the environment that trigger intracellular signaling 

cascades responsible for regulating various processes, including cell differentiation, 

growth, activity, and cell death (Figure 1.1). Although these cues can be of different 

types (e.g., electrical, chemical, mechanical, topographical) [1-10], chemical cues in 

particular are ubiquitous and perhaps the most important inputs in the microenvironment 

of cells with implications in an array of cellular processes [11-18]. Chemical dosing of 

cells in culture is, therefore, an indispensable tool in the study of cell function and 

differentiation. 

 Traditional chemical dosing methods involve exposing entire culture dishes of 

cells to desired reagents. Although these methods are commonly employed by the 

biological community, there is a growing need to exert greater spatio-temporal control 

over interactions between cells and chemical agents. This is particularly relevant in the 

study of polarized cellular events, such as differentiation [12], chemotaxis [13, 19, 20], 

and axonal pathfinding [14, 15], in which spatial heterogeneity in cell signaling is 

observed at the subcellular level in response to chemical gradients, underscoring the need 

for creating controlled gradients in culture. To address this need, the Shear laboratory and 

others have developed tools for introducing chemical agents into culture with subcellular 

resolution [13, 14, 21-29]. Two approaches for subcellular localization of chemical 
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dosing have been adopted as routine tools by the biological community. These include 

puffer pipet spritzing and photolytic cleavage of caged cellular effectors. 

 

 

Figure 1.1: Cell-environment interactions during migration and chemotaxis. To respond 
appropriately to chemical signals, cells contain membrane-bound receptors 
(blue) that bind with the chemical input (green spheres) and  transmit this 
information to the interior of the cell (red spheres). This triggers a variety of 
intracellular pathways that lead to signal interpretation and amplification, 
and in turn drive downstream processes, such as actin reorganization and 
polarity development, ultimately regulating cell migration. Adapted from 
[18]. 
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1.2 COMMON METHODS FOR LOCALIZED CHEMICAL DOSING IN CULTURE  

 
 Application of chemical dosants via a pulled glass pipette is commonly used for 

―micro-puffing‖ of small solution volumes, ranging from nanoliters to picoliters, at 

desired subcellular coordinates using high resolution micropositioners. This approach has 

been commonly employed in neuroscience for applications ranging from growth cone 

redirection [14] to localized cellular stimulation with neurotransmitters [30, 31]. Bourne 

and coworkers have also used this method for studying neutrophil polarization and 

chemotaxis [13, 19]. Some of the important advantages of this technique include the use 

of very small reagent volumes for dosing cells and few restrictions on the type of reagent 

that can be delivered, which could range from inorganic ions (Na
+
, K

+
, Ca

2+
) to small 

molecules, such as cyclic adenosine monophosphate (cAMP), to large biological 

compounds, such as hyaluronic acid. 

 Despite these advantages, puffer pipet expulsion suffers from important 

limitations. Parallel dosing of more than a few cellular sites is usually not feasible as it 

requires tandem positioning of bulky micromanipulators. Also, accessing new sites of 

interest requires repositioning the pipet, which cannot be achieved rapidly, leading to low 

temporal resolution. Lastly, the dosant gradients created using this method are typically 

shallow and hard to maintain for extended periods. 

 A second approach relies on the use of light for photolytic cleavage of caged 

cellular effectors [21-23]. Here, absorption of a photon initiates a photochemical process 

which leads to the release of the effector molecule (from a photocleavable group). 

Release of the effector can be rapid, generally occurring within microseconds to 
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milliseconds after photon absorption. Also, two-photon excitation using pulsed lasers can 

be used to confine the reaction bolus to dosant volumes as small as 1 fL [32]. In addition, 

because uncaging is initiated in a (caged) reagent that bathes the entire culture, the use of 

fast laser scanning systems allow release to be coordinated in multiple positions, either in 

parallel (using multiple lasers) or in rapid succession, thus eliminating some of the 

temporal resolution issues associated with puffer pipets. 

 The applicability of photolytic cleavage is limited mainly by the availability of 

caged precursor molecules. For every new dosant to be examined, a caged precursor has 

to be synthesized, which is often challenging and time-consuming. Moreover, synthesis 

of precursors becomes particularly challenging in case of large molecules, such as 

proteins, which may have multiple active sites requiring determination of the location of 

these sites and synthesis of multiple cages for masking activity. Protein folding and 

unfolding are other factors to consider while designing cages. Also, the attachment of 

photocleavable groups to the signaling molecule can often lead to reduced biological 

activity after uncaging. These limitations have resulted in development of only a few 

caged proteins (e.g., G-actin, myosin, thrombin) [33, 34], thus restricting the reagents that 

cells can be dosed with using this method. Finally, unintended dosing of cells due to 

thermal (i.e., non-photochemical) release of effectors is another limitation of using this 

approach [35], and as with puffer pipets, it typically is not feasible to generate sharp 

gradients that can be maintained for extended periods in culture. 

 To combat some of the limitations of puffer pipets and photolytic cleavage, recent 

advances have exploited laminar flow streams inside microfluidic environments for 

subcellular chemical dosing [24-28], a topic examined in the following section. 
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1.3 LAMINAR-FLOW APPROACHES FOR LOCALIZED CHEMICAL DOSING 

 Microfluidics deals with the behavior and precise manipulation of very small 

volumes of fluids, typically ranging from nanoliters to femtoliters. One of the important 

properties of fluids in the ―micro‖ domain are their low Reynolds numbers (usually less 

than 5), leading to a laminar regime in which two parallel fluid streams can flow next to 

each other without significant mixing. Multiple laminar flow systems have been used 

extensively in capillary electrophoresis for separation of ionic species [36-38] and in 

sensors [39]. The use of microfluidics became particularly popular following advances in 

micro-electromechanical systems (MEMS) that came about in the early 1980s, which in 

turn were fueled by strides in the semiconductor industry [40-43]. Whitesides and 

coworkers in 1999 published a paper in Science extending the application of laminar 

streams for fabrication of microstructures inside capillaries [44], a technique that was 

subsequently adopted for patterning cells and their microenvironments [45, 46]. In 

another report that followed soon after, the Whitesides laboratory used multiple parallel 

laminar streams to create stable concentration gradients [47]. Combined with the use of 

small solution volumes in microfabricated systems, which is particularly attractive for 

dosing cells with culture-grade reagents that are often very expensive, this has become a 

successful platform for localized chemical dosing in culture. 

 The Whitesides‘ method uses multiple inlet channels to deliver solutions to a 

main channel (Figure 1.2). The microfluidic device is fabricated using standard PDMS 

(polydimethylsiloxane) molding processes. In this approach, an elastomeric stamp is 

made by casting a prepolymer of PDMS against a master that is fabricated using 

microlithographic techniques. Heating the prepolymer allows curing and production of 
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the elastomeric stamp with a negative relief pattern compared to the master. The 

patterned stamp is then sealed irreversibly to glass to complete the flow chamber.  

 Due to the laminar flow conditions inside the main channel, sharp boundaries are 

formed at the interface between the flowing solutions with mixing limited to the small 

amount of diffusional transport. These interfaces can be targeted to selected subcellular 

regions by adjusting the relative amounts of fluid flowing through each inlet, thus 

allowing delivery of membrane-permeable effector molecules to selected microdomains 

(Figure 1.2) [24, 25]. Moreover, stable concentration gradients ranging from linear to 

more complex profiles, such as periodic, exponential and parabolic, have been generated 

using this technique by flowing multiple fluid streams, each carrying a different 

concentration of a chemical species, adjacent to each other [48, 49], and the generated 

gradients have been used for studying the migration of neutrophils and cancer cells in 

response to chemoattractant molecules [26, 27, 50, 51]. 
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Figure 1.2: Localized chemical dosing using multiple parallel laminar streams. 
Experimental set-up showing a close-up of the point at which the inlet 
channels combine into one main channel inside a microfluidic device. Due 
to the laminar flow conditions inside the main channel, the three streams 
flow next to each other without any significant mixing. The interfaces 
generated at the boundaries of the streams can be targeted to specific 
subcellular regions. Adapted from [24].  

 
 Despite its high resolution, the Whitesides‘ dosing approach is significantly 

constrained by the pre-determined design of the microfluidic device. This makes dosing 

more than a few independent cellular sites and dynamic targeting of individual 

subcellular features challenging because the method relies on the compatibility between 

the positions of cells and dosant streams. The flexibility to dynamically change dosing 

sites is vital in experiments with motile cells, especially over extended periods and with 

multiple reagents. Even though chemical gradients may be stable over the experimental 

duration when using pre-fabricated devices, multiple chemical dosings combined with 

parallel targeting of specific ―non-stationary‖ cells throughout the experiment will require 

rapid manipulation of flow streams, a capability that is difficult with a pre-determined 
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setup. The transient times reported for building and switching concentration profiles with 

this method are on the order of minutes [47-49], which is much slower than the timescale 

at which many intracellular signaling events transpire. Furthermore, although complex 

microfluidic devices can be fabricated using PDMS molding processes, changes in device 

design requires fabrication of new masters, which is often a time-consuming and 

expensive process. 

 More recently, attempts have been made to generate dynamically changing 

gradient signals in microfluidic chambers. Poznansky and coworkers were able to toggle 

between gradient profiles in ~5 s by incorporating microstructured membranes in their 

system to serve as valves for switching between two microfluidic gradient generators 

[52]. Beta and coworkers used a combination of two dosing methods, photolytic cleavage 

and microfluidics, to generate a variety of concentration profiles within a second [53]. 

Despite this high temporal resolution, this method can be used only with reagents for 

which caged precursors are available, as discussed in the previous section. 

 Furthermore, since the flow direction using this approach is pre-defined (i.e., 

oriented along the channel‘s longitudinal axis), access to certain cellular targets whose 

positions and orientations are parallel with the pre-set geometry of dosing streams may 

not be possible. For example, a neurite growing longitudinally in a channel would have to 

be dosed along its entire length or not at all. An ability to change the flow direction 

would also be advantageous for probing dynamic cellular events such as chemotaxis and 

axonal pathfinding.  
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 Lastly, the closed fluidic nature of this system does not allow for insertion of 

additional experimental apparati, such as patch electrodes, thus limiting the range of 

cellular assays that can be performed on cultures under study. 

 In a previous publication, the Shear laboratory reported a cell dosing strategy for 

overcoming some of the limitations of existing methods [28]. In this approach, cells were 

cultured on an ultra-thin polymer membrane that separated two stacked laminar flow 

chambers: one containing the cell culture and the other containing the reagent. By 

focusing a pulsed laser beam onto one or more selected polymer-membrane positions, 

micron-diameter pores could be ablated upstream of desired cellular targets. Drain 

pressures in the two chambers were pre-adjusted to direct stable reagent streams into the 

culture chamber through the ablated pores for dosing targeted regions (Figure 1.3). Pores 

could be ablated in direct proximity to a cellular feature, thus making the dosing of 

dendrites, growth cones, or cell bodies possible without dosing unwanted upstream 

features. The dosing of downstream sites could be minimized by tuning laminar flow 

velocities (to change the width of the reagent streams for reducing unintentional dosing) 

and through appropriate selection of ablation sites. Importantly, reagent streams could be 

shut off by photofabricating a protein plug over selected pores. Plugged pores could also 

be opened for re-initiating dosing at the same site. In contrast to other cell dosing 

techniques, this approach is amenable to creation of an arbitrary number of reagent flow 

streams for dosing multiple cellular regions in parallel as well as termination of reagent 

flow through selected pores when needed, permitting distinct cellular regions to be 

targeted with a chemical species for differing times. 
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Figure 1.3: Laminar-flow chemical dosing strategy reported by Nielson and Shear. This 
method uses photo-induced membrane ablation for creating micron-sized 
pores in an ultra-thin polymer membrane with cells attached to it. 
Production of a pore provides an entry route for a reagent on the opposing 
side of the membrane, which emerges as a well-defined laminar stream 
(green plume) inside the culture chamber dosing selected cellular regions. In 
this stacked-chamber configuration, cells were attached on the underside of 
the membrane and the reagent was flowed in  the upper chamber. Adapted 
from [28]. 
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 Figure 1.4a demonstrates the utility of this device for labeling specific subcellular 

regions in fibroblasts using a lipophilic fluorescence dye, 3,3'-dihexyloxacarbocyanine 

iodide (DIOC6). Although this dye is weakly fluorescent in water, its fluorescence is 

significantly enhanced when incorporated into organelles such as the mitochondria, 

nuclear membrane, and endoplasmic reticulum [54]. Because visualization of the dye 

relies on the continued functioning of cellular metabolic components and on a reasonably 

leak-free plasma membrane, use of this dye also serves the additional role of probing the 

viability of the labeled cells downstream of the ablated pores [55, 56].  

 The width of the reagent streams emerging from the ablated pores is a function of 

the volumetric flow rate in the cell-dosing chamber, which can be varied to manipulate 

the reagent gradient—created at the borders of the reagent streams and bulk medium—to 

influence cell activity.  

 Lastly, Figure 1.4b illustrates chemotactic guidance of motile human 

promyelocytic leukemia (HL-60) cells, a neutrophil precursor cell line, using low 

concentrations of a chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine 

(fMLP).  

 This chemical dosing approach makes dual use of lasers; firstly, for creation of 

micron-sized pores at selected membrane locations, and secondly, for fabrication of 

protein plugs to terminate flow through the ablated pores. The next section provides a 

brief overview of the mechanisms involved in these laser-induced processes.   
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Figure 1.4: Subcellular dosing using laminar flow streams. (a) Selective fluorescence 
labeling of subcellular features in 3T3 fibroblast cells with 1 µM DIOC6 

(3,3'-dihexyloxacarbocyanine iodide) by ablation of two pores upstream of 
the cells. The figure is a processed overlay of bright-field and fluorescence 
images acquired sequentially. Arrow indicates direction of flow in the 
dosing chamber. Scale bar, 10 µm. (b) Guiding motile cells using 
chemotactic laminar streams. Shown is a human promyelocytic leukemia 
(HL-60) cell dosed with a 100 nM fMLP (N-formyl-methionyl-leucyl-
phenylalanine) stream. Upon intersection with the fMLP stream, the cell 
changes its polarization, then gradually moves into the gradient. Scale bar, 
20 µm. Bovine serum albumin (BSA) was added to fMLP for visualization 
of reagent streams inside the cell-dosing chamber.  

 

 

b 

a 
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1.4 LASER-INDUCED MICROFABRICATION 

1.4.1 Multiphoton excitation-assisted additive microfabrication 

 Multiphoton excitation (MPE) is a photon absorption process that was first 

suggested by Maria Göeppert-Mayer in her doctoral thesis in 1931 [57], but was not 

observed experimentally until the invention of lasers in 1961 [58]. In single-photon 

excitation, the energy of the absorbed photons must equal the energy gap between the 

ground and excited states of the chromophore. However, the same excitation can be 

achieved by the near simultaneous absorption of two (or more) relatively low-energy 

photons. Absorption of the two photons is a sequential process in which the absorption of 

the first photon excites the chromophore to a virtual (or superposition) state which 

persists over femtosecond timescales, a time frame within which the second photon must 

be absorbed (Figure 1.5). Otherwise, the molecule relaxes back to the ground state, 

typically via elastic light scattering. Very high photon fluxes are needed to achieve MPE, 

a requirement often met through the use of femtosecond pulsed laser sources, such as the 

titanium-sapphire oscillator (Ti:S; 80 MHz). Due to the low duty cycle (defined as the 

fraction of time that the laser light is produced) of such pulsed laser sources, photons are 

concentrated into discrete temporal packets providing high instantaneous intensities at 

low average powers when the laser beam is tightly focused using high numerical aperture 

(NA) diffraction-limited optics [59]. 
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Figure 1.5: Excitation of chromophores by absorption of photons. In single-photon 
excitation, the absorption of one photon elevates the chromophore to the 
excited state. In two-photon absorption, the chromophore goes from the 
ground to the excited state by absorption of two photons separated by a 
virtual (or superposition) state. Adapted from [60]. 

 
 Both single and multiphoton absorption processes can be related in terms of a 

chemical reaction [60]: 

M + n(hν) ↔ M* 

Here, M and M* are the ground and excited states of the chromophore, respectively. hν is 

a photon and n is the number of absorbed photons needed to reach the excited state. The 

reaction rate for formation of M* can be stated in terms of reactant concentrations: 

d[M*]/dt = k[hν]
n 
[M] = δI

n
[M]  

Where, k is the forward rate constant, I is the instantaneous intensity and δ is the 

excitation cross section.  

 As seen from Equation 1.2, the excitation rate d[M*]/dt is proportional to I
n
.
 
This 

implies that for single-photon excitation (n = 1), the excitation is proportional to the 

intensity, whereas a quadratic dependence exists for multiphoton processes. This makes 

(1.1) 

(1.2) 
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MPE a non-linear absorption process in which excitation events dominate in planes 

nearest to the focal point producing femtoliter-sized reaction volumes (or voxels). MPE 

has been used to spatially define reaction chemistries to highly localized 3D coordinates 

for applications such as multiphoton fluorescence microscopy [60, 61], photolytic 

cleavage [32], and photocrosslinking (e.g., for fabricating protein plugs to occlude flow 

through pores) [10, 62, 63]. An important advantage of MPE is the reduced likelihood of 

damage from heating (due to the small voxel size), an important consideration for its use 

in live cell cultures.  

 Microfabrication of plugs can be described as an additive process which occurs by 

focusing laser light into a concentrated protein solution resulting in the formation of a 

solid matrix whose size can be restricted to the submicron dimensions of the focal 

volume. By scanning the laser focus in the protein solution, elaborate 3D microstructures 

can also be fabricated, details of which are discussed elsewhere [10, 28, 62, 63]. The next 

section summarizes the processes involved in laser-induced ablation of pores in polymer 

membranes.  

1.4.2 Subtractive microfabrication for ablation of pores in polymer membranes 

 Ablation of pores can be described as subtractive microfabrication. In this case, 

the laser beam is focused into a polymer membrane used as a substrate for attachment of 

cells and as a barrier between the stacked laminar flow chambers (Figure 1.3). The 

membrane is ionized at the laser focus resulting in heating, followed by melting, 

cavitation, and removal of material. The resulting micron-sized pore is used as a conduit 

for introduction of the reagent into the cell-dosing chamber.  
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 All ablation studies described in the subsequent chapters were conducted using a 

frequency-doubled (532 nm), diode-pumped, Q-switched Nd:YAG (neodymium yttrium 

aluminum garnet) laser (JDS Uniphase, NG-10320-110†), which has a pulse frequency of 

7.7 kHz and a pulse duration of 600 ps. The laser dimensions are ~3 cm x 4 cm x 15 cm 

(height x width x length), and the lasing system, including the power supply, is available 

for ~$5K. Although previous membrane ablation studies in the Shear laboratory [28] 

were done using a femtosecond Ti:S laser, this dissertation explored the use of Nd:YAG 

for production of pores in polymer membranes. Femtosecond pulsed laser sources, such 

as the Ti:S, remain cost-prohibitive ($150 – 200K) for most potential users in the 

biosciences, motivating the use of cheaper, less bulky sources for pore ablation. Ease of 

operation of YAG lasers is another attractive feature. Note that even though the Nd:YAG 

is a picosecond laser source, it produces sufficiently high instantaneous intensities 

(comparable to intensities produced by the Ti:S) to allow production of pores in cellular 

environments. Pore ablation using YAG lasers is explored in this dissertation to allow for 

easier dissemination of the laminar dosing technology. 

 Laser powers ranging from 10 − 15 mW were typically used for ablation of pores 

in 2.5 µm thick Mylar membrane, a polymer membrane often employed in the studies 

described in this dissertation. The laser output was directed by mirrors into a half-wave 

plate and beam-splitting cube, used for controlling the average power of the laser beam. 

A pair of lenses in the path of the laser output served as a telescope to expand and 

collimate the beam. The beam was then directed onto a dichroic mirror mounted inside a 

microscope, which aligned the laser with the microscope‘s optical train. The microscope   
†Teem Photonics acquired this line of MicroChip lasers from JDS Uniphase in August, 2005.  
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microscope, which aligned the laser with the microscope‘s optical train. The microscope 

and its attached CCD (charge-coupled device) camera were used to observe and record 

events at the focal plane of the objective (Figure 1.6). 

  

Figure 1.6: Schematic of the Nd:YAG (neodymium yttrium aluminum garnet) laser 
setup used for creation of micron-sized pores in polymer membranes. 
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 Assuming a Gaussian laser beam profile and a constant power during laser pulses, 

corresponding peak intensities at the focal point of the laser were calculated to range 

from 0.7 – 1.0 TW cm
-2 

using the following equation:  

I0 = 2 P0 /ω
 

Where, I0 is the peak intensity, P0 is the peak power, and ω0 is the beam waist. ω0 for a 

diffraction-limited focus can be described using the following equation: 

ω0 = 0.61 λ / NA 

Here, λ is the wavelength of the laser and NA is the numerical aperture of the objective 

used to focus the laser beam. 

 The other parameter necessary to estimate the intensity is the incident power of a 

laser pulse, also known as the peak power P0, which can be described using the equation 

below. 

P0 = Pavg φ / τω 

Here, Pavg is the average power measured at the back aperture of the objective, φ is the 

throughput of the objective (at 532 nm), τ is the laser pulse width, and ω is the pulse 

repetition rate. Typical functions describing the temporal variation of power during a 

laser pulse do not vary largely from the assumption of constant power during a square 

pulse [64]. Therefore, for simplicity, it is assumed here that the power is constant during 

a pulse, and the above equations are not written explicitly as functions of time. 

 Non-linear or multiphoton ionization typically occurs during subtractive 

microfabrication, processes that are essentially the same as MPE except the molecules are 

ionized instead of being electronically excited. Ionization processes often require higher 

transition energy than MPE, which implies a larger number of instantaneously absorbed 

(1.3) 

(1.4) 

(1.5) 
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photons. During the application of an intense laser pulse into a thin polymer membrane, 

such as Mylar, the material typically undergoes dielectric breakdown, and develops a 

conduction band of free electrons. These free electrons play an important role in 

deposition of laser energy into materials through avalanche ionization, a process in which 

the free electrons absorb photons and gain enough energy to promote a valence electron 

into the conduction band. Repetition of this event leads to an exponential growth of free 

electrons. Avalanche ionization operates on ―seed‖ electrons already in the conduction 

band, most likely produced by photoionization [65]. Inverse bremsstrahlung may also be 

involved in which radiation is absorbed by a free electron when it collides with a heavier 

particle [66]. In this manner, electrons can gain enough energy to ionize atoms during 

collisions leading to rapid multiplication of ionized electrons, and generation of a plasma 

in the region of the laser focus [67].  

 Whether photoionization or avalanche ionization plays a larger role in generation 

of the free electrons depends on the laser conditions. Pulses more than a few picoseconds 

in length (such as in case of the YAG laser used in this study) allow time for exponential 

growth of free electrons through avalanche ionization, making it the dominant process in 

dielectric breakdown of the material [68-71].   

 For high energy laser interactions, another mechanism of breakdown involves 

heat produced when the energy carried by free electrons is transferred to the medium. 

The result is damage to the substrate, known as optical or laser-induced breakdown [72]. 

The series of events involved include heating of the substrate, explosive expansion, and 

emission of a shock wave [67].  
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 In the studies described in this dissertation, pores were typically ablated in 2.5 µm 

thick Mylar membranes by the brief application of a train of focused laser pulses with 

extended delay between pulses. Insertion of delays provided an opportunity for the 

ablation site to dissipate heat between periods of brief and intense irradiation resulting in 

more regularly sized pores than were obtained using an unbroken train of laser pulses. 

 With the Ti:S laser, there was a threshold for apparent damage to the membrane, 

with intensities below 1.0 TW cm
-2 

not damaging the membrane under typical 

experimental conditions. This allowed for direct-writing of protein structures at laser 

intensities less than 1.0 TW cm
-2

 (and thereby, fabrication of protein plugs to terminate 

flow through the pores). It was not feasible to do so with the Nd:YAG laser in which 

damaged occurred to the membrane even at very low average powers. While the bulk 

optical properties of Mylar membranes are transparent at visible wavelengths, for 

packaging purposes they are coated with inorganic particles of proprietary composition. 

If these particles easily ionize at 532 nm, it would greatly enhance breakdown of the 

material by providing seed electrons for avalanche ionization, possibly the reason for 

absence of threshold [65]. 

 The events observed during pore formation include a visible flash and the 

formation of a small gas bubble. Finished pores were characterized using scanning 

electron microscopy (SEM) and optical microscopy. SEM is a type of microscopy where 

the sample surface is imaged by scanning it with a high-energy beam of electrons in 

a raster scan pattern. The electrons interact with the atoms that make up the sample, 

producing signals that contain information about the sample's surface topography, 

composition, and other properties such as electrical conductivity [73].  
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 SEM analysis of pores ablated in Mylar using a femtosecond Ti:S laser tuned to 

750 nm in previous studies showed pore diameters of 3 – 4 µm [28]. Analysis of the 

pores made with the Nd:YAG and Ti:S lasers using optical microscopy indicated that 

they had similar morphologies, consisting of a 3 – 4 µm diameter aperture rimmed with a 

raised burr of material (Figure 1.7). Notably, the diameter of the pore was much larger 

than the beam waist (= 433 nm, calculated using Equation 1.4), which indicates a 

transport of energy outwards from the region of highest intensity. A burr surrounding the 

pore implies that melting and resolidification had occurred. These features indicate that 

the ablation process likely involves both dielectric breakdown and an accompanying 

thermal process [74-77], with the primary mechanism possibly being the deposition of 

thermalized energy through avalanche ionization, which leads to melting and ablation of 

the polymer membrane. 

 

 

 

 

 
 
 

Figure 1.7: SEM of a pore created in 2.5 µm thick Mylar membrane by Nielson and 
Shear using a Ti:S (titanium-sapphire) laser. Scale bar, 2 µm. Adapted from 
[28]. 
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 This dissertation focuses on extending the capabilities of the above described 

chemical dosing approach [28], primarily on increasing its spatio-temporal resolution and 

on incorporation of multiple reagents, to enhance control over cell-dosant interactions. 

The power of this enhanced dosing methodology to specifically influence cellular 

behavior is demonstrated by guidance of motile HL-60 cells, a neutrophil precursor cell 

line, through extended migration paths specified using different effector molecules in an 

attempt to understanding neutrophil migration and chemotaxis. A brief discussion of 

neutrophil signaling and migration is warranted at this point before presenting a preview 

of the chapters in this dissertation. 

1.5 NEUTROPHIL SIGNALING AND CHEMOTAXIS 

 
 Neutrophils are a type of white blood cell involved in inflammatory response. 

They constitute approximately two-thirds of all white blood cells, and are one of the 

fastest migratory cells in the human body moving at speeds of 10 – 20 µm min
-1

 on glass, 

which is 5 − 10 times faster than the rate of crawling of keratocytes and macrophages, 

and almost 50 times faster than the rate at which fibroblasts move [78, 79]. These cells 

survive for 24 – 48 hours inside the human body. They travel passively through the blood 

stream until they sense the chemical traces of invading bacteria. At that point, they leave 

the blood stream, crawl through the vessel endothelial cell barrier to the site of 

inflammation, and digest the intruder. This is achieved by sensing gradients of 

chemotactic molecules and moving up the gradient (i.e., towards its highest 

concentration), a process called chemotaxis [20, 80, 81]. In addition to neutrophils, 

chemotaxis is exhibited by fibroblasts [82, 83] and keratocytes [84, 85] as well as by 
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other organisms, such as bacteria [86] and slime molds [87, 88], for detection of toxins, 

hunting for food, and mating.  

 The migration of neutrophils is directed by a number of chemotactic factors, such 

as bacterially-derived N-formylated peptides (e.g., fMLP), and host-derived products, 

such as interleukin-8 (IL-8) and leukotriene-B4 (LTB4) [89, 90]. Neutrophils are capable 

of detecting very shallow chemoattractant gradients, in many cases less than 1% 

concentration difference across its cell length [78]. 

 Chemotaxis is a complex process that involves morphological changes in a cell in 

response to a chemoattractant gradient and concomitant intracellular signaling [91]. 

When presented with a chemoattractant gradient, neutrophils respond with highly 

oriented polarity with their leading edges pointed towards the highest chemoattractant 

concentration across its body followed by directed migration up the chemical gradient 

[81]. G-protein-coupled receptors are responsible for transmitting the signal from the 

extracellular environment of a cell to its interior [20]. Activation of these receptors leads 

to an accumulation of phosphatidylinositol 3-kinase (PI3K) lipid products, such as 

phosphatidylinositol 3,4,5-triphosphate (PIP3), at the edge of the cell nearest to the 

chemoattractant [13, 92]. PIP3 activates Rho GTPases, such as CdC42 and Rac [93]. The 

activated forms of these molecules are implicated in bringing about an extension of the 

lamellipodia (or the leading edge) and polymerization of actin filaments [19, 94], which 

in turn activate a positive feedback loop, causing further production of PIP3 [95-97]. In 

addition, certain inhibitory mechanisms restrict the spatial pattern of PI3K activity and 

ruffling during chemotaxis to the leading edge of the cell. Negative regulators of PIP3 

accumulation, such as 3‘ lipid phosphatase and 5‘ lipid phosphatase, are considered 
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possible candidates for this inhibition [96]. Overall, this process, which involves changes 

in cellular morphology and signaling pathways, acts as a chemical compass allowing 

cells to effectively navigate themselves inside chemoattractant gradients. 

 Researchers study neutrophil signaling by exposing cells to various effector 

molecules that promote (e.g., chemoattractants such as fMLP and IL-8) or inhibit (e.g., 

Clostridium difficile toxin B and wortmannin) chemotaxis. Use of some of these effector 

molecules is explored in this dissertation.  

 In the absence of chemotactic factors or in the presence of uniform concentration 

of the chemoattractant molecules, neutrophils continue to sense their environment and 

exhibit random migration, during which they fail to develop and/or sustain highly 

polarized geometries, but still exhibit ruffling at the leading edges. Directed migration is 

absent, as expected.  

  In the experiments presented in this dissertation, HL-60 cells were used to 

demonstrate the utility of the improved laminar flow dosing technology. Differentiated 

HL-60 (dHL-60) cells (Figure 1.8), a neutrophil-like cell line, are considered a valid 

model system for studying neutrophil migration and chemotaxis. Chemotactic peptides, 

such as fMLP, have been found to induce a front-tail polarity in these cells comparable to 

that seen in primary neutrophils. It has also been reported that chemokinetic and 

chemotactic responses to chemotactic peptides are similar in both cell types, with respect 

to the mean speed of migration, the fraction of migrated cells, and the concentration of 

stimulus optimal for activation [98-100]. This cell line is a convenient alternative to the 

use of primary neutrophils, obtained from human blood, since in the case of the latter the 
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cell isolation procedure typically takes ~3 hours and the cells only survive for 4 − 6 hours 

following isolation.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.8: Differentiated HL-60 cells on fibronectin-coated Mylar membrane. The 
Mylar membrane was oxygen plasma-etched, then coated with 0.1 mg mL

-1
 

fibronectin. Gey‘s medium† with 0.5% BSA was flowed in the cell-dosing 
chamber. Scale bar, 10 μm.   

 
†6 mM KCl, 138 mM NaCl, 5 mM glucose, 1 mM Na2HPO4, 20 mM HEPES, 1 mM MgCl2 and 1 mM 
CaCl2, pH 7.4 
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1.6 PREVIEW OF CONTENT  

 This chapter provides an introduction to the techniques and concepts that have 

been described in this dissertation. It also outlines the motivation behind the work. 

 In the configuration reported by Nielson and Shear (Figure 1.3) [28], and as seen 

with most laminar-flow dosing approaches, the flow direction is pre-defined, making it 

impossible to target many subcellular features without also dosing regions upstream from 

the site of interest. This pre-assignment of flow direction also means that the position of a 

chemical signal originating from a given pore is fixed, making it difficult to investigate 

dynamic cellular behaviors, such as polarization and migration. Chapter 2 reports a 

strategy for rapid control of reagent stream directionality along discrete angles, the 

applicability of which is demonstrated by millisecond dosing of HL-60 cells.  

 In Chapter 3, the ability to dynamically modify the chemical microenvironment of 

cells is used to specifically influence cell activity by exposing HL-60 cells to fast 

chemoattractant gradient switches and studying the reorientation mechanisms adopted by 

motile cells during such chemical events. 

 In Chapter 2, the directionality of laminar flow streams can only be changed along 

pre-defined angles, making it difficult to guide cells along extended migration paths. 

Chapter 4 describes improved methods for changing stream directionality along arbitrary 

angles to truly offer dynamic control over reorientation of chemical gradients. 

 Incorporation of multiple reagents is the topic of Chapter 5, which would permit 

site-specific cellular dosing with multiple chemical species (or varying concentrations of 

the same species). The methods considered in this chapter allow targeting of selected 

subcellular regions with two dosing reagents, introduced in rapid succession, or present 
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simultaneously to allow parallel dosing with distinct dosing solutions on the same cell or 

on two different cells.  
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Chapter 2:  Steering Laminar Streams for Precise Chemical Targeting 
of Cells† 

  

2.1 INTRODUCTION 

To elucidate mechanisms by which chemical cues regulate cellular behavior, 

responses to stimuli often are studied in two-dimensional culture where the levels of 

soluble effectors can be independently varied. Although many in vitro experiments are 

conducted without regard for the spatial and temporal distributions of solutes, cells in 

vivo experience a broad range of dynamic chemical gradients believed to play critical 

roles in their behavior. As a consequence, techniques have been developed for 

introducing chemical agents into culture with subcellular resolution, aiding efforts to 

study polarized cellular events such as differentiation [4, 5], chemotaxis [6-8], and axonal 

pathfinding [9, 10].  

As discussed in Chapter 1, sub-nanoliter dosings of bioactive compounds are 

routinely applied to culture environments using micropositioned puffer pipets [6, 10-12], 

an approach capable of modulating chemical concentrations over distances of tens of 

micrometers. Greater spatial and temporal control of dosing is possible by photolytically 

activating caged reagents using focused laser light, particularly when performed using 

two-photon excitation [13-15]. A number of small, bioactive species (e.g., ions, 

neurotransmitters, adenosine triphosphate) can be focally released from photolabile, 

inactivating chemical groups within volumes as small as ~1 fL [13], and the absence of 

bulky micropositioners allows release to be coordinated at multiple positions either in  
†Adapted from Moorjani et al., Lab on a Chip, 2010 [1]. 
. 
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bulky micropositioners allows release to be coordinated at multiple positions either in 

parallel or in rapid succession. Unfortunately, challenges in designing caged compounds 

limit the generality of photolytic dosing. For delivery using either micropipets or 

uncaging, it typically is not feasible to establish steep concentration gradients that can be 

maintained for extended periods. 

Recent approaches for creating stable concentration gradients within cell cultures 

on the micrometer scale have relied on fluid-control capabilities of microfabricated 

systems [16-24]. In one approach, two or more laminar streams are directed into 

confluence, forming sharp interfacial boundaries that can be targeted to specific 

subcellular regions. Because the number, dimensions, and orientation of confluent 

streams are largely determined by the physical architecture of the microfabricated device, 

use of this approach generally relies on the ability to identify cultured cells whose 

positions and orientations are compatible with the pre-set geometry of dosing streams. In 

addition, the kinetics for altering chemical concentrations within laminar streams in such 

devices are relatively slow. In the best cases, gradient changes have required at least 

several seconds [25, 26], periods substantially longer than the timescales on which many 

intracellular signaling events take place.  

In a previous publication, the Shear laboratory described a strategy for stably 

dosing an arbitrary number of subcellular targets in parallel that avoided restrictions on 

the relative position of dosing sites [20].
 
This strategy was discussed in Chapter 1 

(Section 1.3), and is summarized here. In this approach, a focused laser beam was used to 

create pores in a polymer membrane that served as a substrate for cell adhesion. 

Production of a pore provided an entry route for a dosing reagent from a reservoir on the 
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opposing side of the membrane, and the reagent that crossed the membrane formed a 

well-defined dosing stream as a result of the laminar-flow conditions present in the 

culture chamber. Flow also could be terminated through one or more selected pores using 

a laser-induced pore-plugging method, allowing distinct cellular regions to be targeted 

with a chemical species for differing times.  

Unfortunately, as with the other laminar-flow dosing approaches, effector streams 

were aligned in a single pre-determined direction, making it impossible to target many 

subcellular features without also dosing regions upstream from the site of interest. This 

pre-assignment of flow direction also meant that gradients—created at the borders of 

reagent streams and bulk medium—could be generated only along a fixed vector path, 

and could not be dynamically re-oriented to probe polarized cellular behaviors.  

This chapter reports a strategy for controlling flow directionality—and thus, 

stream and gradient orientations—in real time with subsecond temporal resolution. Here, 

a cell-dosing chamber is outfitted with multiple pairs of solution sources and drains 

distributed along the chamber circumference. By selecting specific source/drain pairs 

using computer-controlled pinch valves, reagent streams can be redirected to dynamically 

recast the microscopic chemical landscape in which cells develop, migrate, and interact 

with each other. The application of this technology is demonstrated by site-specific 

chemical targeting of features of interest (e.g., leading and trailing edges of motile cells). 

Furthermore, the power of this approach to specifically influence cell activity is 

demonstrated in Chapter 3 by sustained guidance of motile HL-60 cells, a neutrophil 

precursor cell line [27-29], through arbitrary migration paths using low concentrations of 

a chemoattractant peptide.  
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2.2 EXPERIMENTAL METHODS 

2.2.1 Device design and fabrication 

 The cell-dosing device consisted of two flow chambers stacked on top of each 

other separated by a 2.5 µm thick Mylar membrane (SPI Supplies, catalog no. 100; West 

Chester, PA; Figure 2.1a). Each flow chamber was composed of a flow cell and its 

corresponding gasket. To construct flow cells, channels were cut in 0.12 mm Secure-Seal 

adhesive sheets (Grace Bio-Labs, SA-S-1L; Bend, OR), using a XL-12000 or X-660 laser 

cutter (Universal Laser Systems, Inc.; Scottsdale, AZ), available at the School of 

Architecture at UT Austin. The cut adhesive was aligned with Dura-Lar (0.003″ thick; 

Grafix Plastics, P03DC0912; Cleveland, OH) or polycarbonate (0.01″ thick; Grace Bio-

Labs, HS3838) coverslips, with holes in them to serve as entry and exit ports for fluid 

flow, to complete the flow cells. 

 For cutting adhesive sheets, appropriate laser power, speed, pulses per inch (PPI), 

and air flow were input into the software-driven 120 W XL-12000 or 60 W X-660 laser 

system. Flow cell geometries were designed in AutoCAD (Autodesk, Inc.; San Rafael, 

CA), and these drawings were input to the laser system. The ratio of the laser power to 

the speed of the laser head determines the cut‘s depth. For the flow cells used in this 

chapter, 12 – 18 W of laser power with a speed of 4.50 inches per second were used for 

cutting the adhesive sheets. An intermediate number of PPI (value = 500; used to specify 

the spacing between laser pulses) with air flow digitally set to 750 cubic feet per minute 

(CFM; in XL-12000) or manually to 30 psi (in X-660) were employed. Holes were 

drilled in plastic (Dura-Lar or polycarbonate) coverslips to serve as entry and exit ports 

for fluid flow. In case of Dura-Lar coverslips, holes were often cut (vs. manually drilled) 
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using the XL-12000 laser system. For cutting holes in Dura-Lar, 24 W of laser power 

with a speed set to 11.25 inches per second, PPI of 300, and air flow of 1500 CFM were 

used. The diameter of the holes was set equal to the channel width.  
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Figure 2.1:  Strategy for controlling stream orientation. (a) Device design. The flow 
device consisted of two stacked chambers with a 2.5 µm thick Mylar 
membrane sandwiched between them supporting cultured cells. A pulsed 
Nd:YAG laser beam was focused near the top surface of the membrane to 
ablate pores through which the reagent could pass from the lower chamber 
into the cell-dosing chamber. The resultant reagent streams were used to 
dose selected downstream targets. (b) Valve schematic for changing flow 
direction. Eight solenoid pinch valves were used to change flow direction in 
the cell-dosing chamber. Thick solid lines denote the feed tubes and  thinner 
lines denote drains. Each valve controlled one flow direction, yielding a 
total of eight possible directions. (c) Simplified valve schematic showing 
flow inside a single channel. The channel—one of the four channels of the 
asterisk flow cell that forms the cell-dosing chamber—is connected to two 
pinch valves, x and x*. When both pinch valves are closed, there is no flow 
through the channel (left panel). When pinch valve x is open (and x* is 
closed), the flow direction is towards the right (middle panel), and when x* 
is open (with x closed), the flow direction is to the left (right panel). 
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 The bottom (reagent) flow cell consisted of a single 31 mm long x 1 mm wide 

channel. The upper flow cell, which contained the cell medium, was composed of four 

intersecting channels arranged in an asterisk-like geometry. Each channel had the same 

dimensions as the reagent channel. Note that the height of the channels was determined 

by the thickness of the adhesive sheets used (0.12 mm). PDMS (GE Silicones, RTV 615; 

Niskayuna, NY) gaskets, containing access ports for inserting the feed and drain tubes, 

were used in conjunction with the flow cells to establish flow inside the channels.  

 Masters for the reagent gasket were created by gluing two pieces of polyurethane-

coated wires (0.9-mm diameter) to the bottom of a Petri dish using cyanoacrylate (super 

glue) in an orientation initially normal to the surface. At a height of ~2 mm, the wires 

were bent parallel to the surface of the Petri dish. PDMS, mixed at a 10:1 ratio of 

monomer to curing agent, was poured into the Petri dish mold, and cured overnight in an 

oven at 60 ºC. The hardened polymer was separated from its master by pulling out the 

wires, and the mold was cut to its final form using a razor. The gasket for the cell-dosing 

chamber was fabricated in a similar fashion except sixteen pieces of thicker solder wires 

(1.27-mm diameter) were used to create the masters.  

 The entire device, consisting of the membrane sandwiched between the two flow 

cells with their corresponding gaskets, was assembled on a microscope stage, with one of 

the asterisk channels aligned with the reagent channel. A plexiglass plate with two screws 

was used to clamp the assembly tightly onto the stage, which helped in securing the seal 

between the flow cells and corresponding PDMS gaskets, thus preventing leaks. Screws 

were further tightened during the experiment if any leaks were observed. An intermediate 

borosilicate glass piece was placed between the top PDMS gasket and the plexiglass plate 
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to prevent any compression of the PDMS gasket that may result from clamping. This 

process yielded two flow chambers separated by the polymer membrane (Figure 2.1a).  

 Cells were cultured on the topside of Mylar membranes (Figure 2.1a). Pieces of 

membrane, stretched taut and affixed using permanent double-sided adhesive tape (3M, 

665; St. Paul, MN) to plastic frames, were washed multiple times with deionized water 

and ethanol, after which they were air-dried at room temperature and mounted between 

the two flow chambers (described above).  

 Feed and drain tubes were connected to both flow chambers. Solutions were 

supplied by syringes driven by electro-mechanical pumps (Braintree Scientific, BS-9000; 

Braintree, MA). Platinum-cured silicone tubing (0.8-mm inner diameter; Cole-Parmer, 

95802-01; Vernon Hills, IL), recommended for use with solenoid pinch valves (described 

below), was used to provide fluidic connection between the chambers and syringe pumps 

on the feed side and on the reagent drain line. The same type of tubing with a larger inner 

diameter (1.6 mm; Cole-Parmer, 95802-02) was used for the drain lines from the upper 

(dosing) chamber, a configuration that resulted in pressure-driven transfer of the reagent 

into the cell-dosing chamber. In addition, a small tube (~0.4-mm outer diameter) 

typically was inserted at the end of the reagent drain tube to create additional pressure 

within the reagent chamber. Separate syringe pumps delivered cell medium to the upper 

chamber and desired reagent to the bottom chamber. The feed line supplying the cell 

medium was split into eight lines using a PDMS manifold, fabricated using standard 

molding processes. Similarly, all of the drain lines from the cell-dosing chamber were 

connected via another PDMS manifold to a syringe driven by a third pump operated in 

the withdrawal mode to provide suction, a modification that was found useful in 
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preventing leaks within the upper chamber. The push and pull rates of the supply and 

suction pumps of the upper (cell-dosing) chamber were set to equal values. 

 Eight electrically-controlled solenoid pinch valves (Bio-Chem Fluidics, 100PD2; 

Boonton, NJ) were used to change the flow direction in the cell-dosing flow chamber 

(Figure 2.1b). The pinch valves were interfaced with the computer using a Desktop 

Connector Block (National Instruments, SCB-68; Austin, TX) to control the activation of 

valves using LabView software (National Instruments). Each channel of the cell-dosing 

chamber was connected to two pinch valves to obtain two flow directions, as shown in 

Figure 2.1c, yielding a total of eight flow directions from the four channels of the 

asterisk chamber. As seen from the figure, both feed and drain tubes were pinched to 

control flow directionality. To comply with the tubing diameter specified by the supplier 

of the pinch valves (0.8-mm inner diameter), a small piece of the 0.8-mm tubing (used in 

the feed lines) was inserted in each drain tube for the pinching action.  

Piezoresistive silicon pressure sensors (Freescale Semiconductor, MPVZ5010G; 

Austin, TX) were incorporated in the feed lines to monitor pressure in the two chambers. 

This was done by splitting a feed line using a PDMS T-splitter, such that one line was 

directed to the pressure sensor and the second to the appropriate channel. The pressure 

(p) inside the flow chambers can be modeled using the following equation [30]: 

3
12

wh

LQ
p


  

Where, Q is the volumetric flow rate, µ is the fluid viscosity, and L, w, and h are the 

length, width, and height of the channel, respectively. This equation describes the 

pressure inside a long, wide channel; i.e., for h/w (which is equal to 0.12 in this case) ≪ 1 

(2.1) 



 46 

and h/L (equal to 0.0039) ≪ 1. Even though the first condition was not fully met here, 

this equation provided a reasonable estimate of the pressure inside the flow chambers.  

 Using the above equation, the pressure in the two chambers was calculated to 

range between 0.4 − 2.7 kPa as Q varied between 0.10 − 0.50 mL min
-1

. Note that there is 

a ~7-fold change in pressure between the lower and higher values with a 5-fold change in 

the volumetric flow rate. This calculation assumes typical experimental conditions in 

which a 6% (w/v) bovine serum albumin (BSA) solution is flowed in the reagent chamber 

with cell medium in the dosing chamber. The higher viscosity of the 6% BSA solution 

(1.5 cP) [31] compared to the cell medium (1 cP; assumed to be same as the viscosity of 

water), with all the other parameters of Equation 2.1 remaining the same,  generate the 

higher pressure values. Given this pressure range, sensors with pressure outputs ranging 

from 0 − 10 kPa were used for recording. Pressures could be monitored in near real time 

using LabView as a result of the fast response time of the sensors (1 ms although this 

resolution may be affected by processing delays arising from LabView). Flow rates in the 

two chambers were manipulated to change the pressure gradient between them, providing 

an additional means to tune laminar stream characteristics.  
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2.2.1.1 Alternate device configuration 

 A simpler cross-shaped cell-dosing chamber was employed in some experiments 

(as indicated in the Results). In this configuration, the flow cell consisted of two channels 

aligned perpendicular to each other, and was used with a gasket containing four inlet and 

four outlet ports. In conjunction with four solenoid pinch valves, flow could be initiated 

in one of the four possible directions (Figure 2.2). This cell-dosing chamber geometry 

was used in experiments where additional flow directions were not required, or in some 

cases, as a simplified alternative for preliminary studies. The design of the reagent 

chamber remained unchanged. 

 
 

 
 
 
 
 
 
 
 

 

 

 

Figure 2.2: Valve schematic for changing flow direction inside a cross cell-dosing 
chamber. Four solenoid pinch valves were used to change flow direction in 
the cross cell-dosing chamber. The solid lines denote the feed tubes and the 
dashed lines denote drains. Each valve controlled one flow direction, 
yielding a total of four possible directions.  

valve 1* 
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2.2.2 Chemicals and reagents 

 KCl (P-9541), MgCl2 (M-8266), and fMLP (F3506) were purchased from Sigma-

Aldrich (St. Louis, MO). D-Glucose (4912) and CaCl2 (4225) were purchased from 

Mallinckrodt Baker, Inc. (Paris, Kentucky). HEPES sodium salt was obtained from Acros 

Organics (327260025; Morris Plains, NJ), Na2HPO4.7H2O from EM Science (SX0715-1; 

Gibbstown, NJ), and NaCl was purchased from Fisher Chemicals (S271; Fair Lawn, NJ). 

MitoTracker Green FM dye was obtained from Invitrogen (M7514; Carlsbad, CA). All 

chemicals were used without additional purification.  

2.2.3 Cell culture 

 HL-60 cells, kindly provided by Dr. O. D. Weiner (Department of Biochemistry, 

University of California at San Francisco), were cultured in RPMI-1640 medium 

(containing L-glutamine and HEPES; catalog no. 22400) supplemented with 10% (v/v) 

fetal bovine serum (FBS; 10082), all purchased from Invitrogen. Flasks were maintained 

at 37 °C in a 5% CO2 atmosphere. These cells have a doubling time of 36 − 48 hours. To 

induce differentiation, 1.3% (v/v) dimethyl sulfoxide (DMSO) was added to a culture 

flask containing ~0.1 x 10
6
 cells mL

-1
, and the cells were incubated for 3 – 4 days without 

changing the cell medium. On the day of an experiment, cells were centrifuged for 5 min 

at 300 x g, then washed three times in Gey‘s medium (6 mM KCl, 138 mM NaCl, 5 mM 

glucose, 1 mM Na2HPO4, 20 mM HEPES, 1 mM MgCl2 and 1 mM CaCl2, pH 7.4) 

containing 0.5 − 1% (w/v) BSA (Equitech-Bio, BAH64; Kerrville, TX), and resuspended 

in the same medium at densities ranging from 0.33 – 1.90 x 10
6
 cells mL

-1
. High purity 

grade BSA that was immunoglobulin and protease-free, obtained from Rockland 
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Immunochemicals, Inc. (BSA-50; Gilbertsville, PA), also was used in some experiments 

to eliminate the chemotactic effect of endotoxins on cell migration.  

2.2.3.1 Cell loading 

 Cleaned 2.5 µm thick Mylar membranes were reactive-ion etched using oxygen 

plasma for 200 s (March Plasma, CS1701F; Concord, CA). For the etching procedure, the 

instrument was operated using an oxygen pressure of 100 mTorr at 25 ºC and a power of 

100 W. Using contact angle measurements, it was found that the etching procedure made 

the membranes extremely hydrophilic, decreasing their contact angles from ~70º to 6.7º. 

The etched membranes were mounted between the two flow chambers, and incubated 

with 0.05 − 0.10 mg mL
-1

 human plasma fibronectin (Calbiochem, 341635; San Diego, 

CA) by pipetting the protein solution into the upper chamber of the assembled device. 

After protein incubation for 1.5 h at room temperature, 200 µL of the cell suspension was 

pipetted into the chamber (which replaced the fibronectin solution). Cells were allowed to 

attach to the coated substrates for ~30 min, after which vacuum degassed Gey‘s medium 

(with or without BSA) was flowed in the chamber, starting at a low volumetric flow rate 

of 0.01 mL min
-1

 that was gradually increased to 0.20 mL min
-1

 over the next 30 min. 

Addition of 0.5% − 1% (w/v) BSA in the Gey‘s medium promoted cell migration by 

inhibiting cell spreading on the protein-coated membranes [32].  

 Gey‘s medium was vacuum degassed for 2 h before introduction into the dosing 

chamber to minimize formation of air bubbles. It was found that the degassing procedure 

reduced the concentration of dissolved oxygen in the medium from 8.3 mg L
-1

, as 

measured before degassing, to 6.6 mg L
-1

, the dissolved oxygen concentration of 
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degassed media coming out at the drain end after flowing through the cell-dosing 

chamber. An oxygen meter (YSI Inc., 550A; Yellow Springs, OH) was used for these 

measurements. No gross deleterious effects on cells were observed in the experiments 

reported here over periods of up to 6 h, as assessed from morphology, attachment, and 

motility, probably due to the high oxygen permeability of PDMS [33, 34] and higher 

tolerance of neutrophils compared to many other cell types (such as neurons) to low 

oxygen levels [35-37].  

2.2.4 Membrane ablation 

 All studies described here were conducted using a frequency-doubled (532 nm), 

―MicroChip‖ Q-switched Nd:YAG laser (JDS Uniphase, NG-10320-110; San Jose, CA) 

with an average power output of greater than 25 mW, a pulse width of ~600 ps, and a 

repetition rate of 7.65 kHz. These values correspond to a laser peak power of ~7 kW and 

pulse energy of ~2 µJ. The laser output was attenuated to desired powers using a half-

wave plate/polarizer pair, and then aligned into an Axiovert 135 inverted microscope 

(Carl Zeiss, Inc.; Germany). The laser beam was collimated to under-fill the back 

aperture of a 40x air objective (Olympus UPlanFl; Center Valley, PA) with a NA of 0.75, 

producing a Gaussian focus. Under-filling the back aperture made the ablation process 

less sensitive to where the laser was focused within the membrane, leading to creation of 

pores in a reproducible manner. Laser powers ranging from 10 − 15 mW (measured 

before the back aperture of the objective) were used for ablation of pores. Assuming a 

Gaussian beam profile and a constant power during laser pulses, corresponding laser peak 
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intensities at the focal point were calculated to range from 0.7 – 1.0 TW cm
-2 

using the 

following equation:  

I0 = 2P0 /ω
 

Where, I0 is the peak intensity, P0 is the peak power, and ω0 is the beam waist (calculated 

value = 433 nm).   

 Pores were ablated by focusing the laser beam at desired positions, typically near 

the top surface of Mylar membranes, and irradiating the membranes with a pulse-train 

consisting of 10 exposures of 5 ms each, spaced by 50 ms intervals. Insertion of these 

extended ―dark‖ periods provided an opportunity for the ablation site to dissipate heat 

between periods of brief and intense irradiation resulting in more regularly sized pores 

than were obtained using an unbroken train of laser pulses. A range of ablation 

parameters were tested (laser powers, length of exposures and delays, and position of the 

laser focus within membranes), and it was found that ablations performed using the above 

parameters provided precise control over pore sizes (assessed using optical microscopy) 

with ~85% of the 60 ablated pores permitting solution flow across membranes. The 

average pore size in these measurements was found to be 5.5 ± 0.8 µm (including the 

surrounding burrs; mean ± standard deviation). Laser exposure periods were controlled 

using a Uniblitz UHS1 shutter (Vincent Associates, VMM-T1; Rochester, NY).  

  The finished pores consisted of a 3 – 4 µm diameter aperture with a prominent lip 

around the pore. These features indicated that the ablation process likely involved both 

dielectric breakdown, caused by non-linear multiphoton ionization processes (discussed 

in Chapter 1), and an accompanying thermal process [38-41]. It has been shown that once 

the pulse durations exceed the low picosecond time scale (as in the case of the Nd:YAG 

(2.2) 
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laser used in this study), threshold pulse energies for dielectric breakdown scale as 

(pulsewidth)
1/2

 [42].   

 Solution flow through pores and resultant formation of laminar flow streams were 

monitored either by flowing a fluorescent dye in the reagent chamber or by using 

solutions in the two chambers that had different refractive indices (e.g., by dissolving a 

high concentration of a protein, such as BSA, in one solution).  

 Pores were typically ablated with an empty lower (reagent) chamber by focusing 

the laser beam at desired positions, and the reagent was introduced into the lower 

chamber after production of the pores. When ablations were performed with aqueous 

solutions in both the upper and lower chambers, gas bubbles created from the ablation 

process often adhered to the lip surrounding the pores, obstructing the reagent streams 

from entering the cell-dosing chamber. Such blockage could be avoided by performing 

ablations with an air-filled reagent chamber, an approach that required the lower chamber 

to be refilled with the dosing reagent after formation of the pore. Another approach 

involved ablating pores with an ethanol-filled reagent chamber. Since ethanol can 

dehydrate and kill cells [20, 43-46], the drain pressures in the two chambers were varied 

by changing chamber flow rates and/or height of the drain tubes, such that the cell-dosing 

chamber was at a higher pressure than the reagent chamber before ablations were 

performed. This prevented ethanol from entering the cell-dosing chamber. The dosing 

reagent was re-introduced after formation of the pores.  

 



 53 

2.2.5 Microscopy 

 Light transmission photomicrographs were obtained on the Axiovert microscope 

using a Hamamatsu ORCA II scientific-grade CCD camera (C4742-98; Hamamatsu City, 

Japan) with MetaMorph software (Molecular Devices; Downingtown, PA), and 

processed using ImageJ (National Institutes of Health; Bethesda, MD) [47] and Adobe 

Photoshop (San Jose, CA). 

 To track laminar flow streams for assessment of stream switching times, a video 

CCD (Hitachi Denshi, Ltd., KP-M1U; Japan) was interfaced with the Axiovert, and a 

Sony video capture card with Sony Giga Pocket software was used to acquire images. 

Image stacks were processed using QuickTime Pro (Apple Inc.; Cupertino, CA) and 

Adobe ImageReady.    
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2.3 RESULTS AND DISCUSSION 

2.3.1 Controlling orientation of dosing streams 

To rapidly re-direct flow orientation, a cell-dosing chamber composed of an eight-

ported asterisk flow cell and a corresponding PDMS gasket, containing eight inlet and 

eight outlet ports (Figure 2.1a), was designed. A feed line supplying cell media to the 

flow chamber was split using a PDMS manifold, and computer-controlled solenoid pinch 

valves were used to direct solution to any one of the eight inlet ports. To designate flow 

direction, each valve also controlled flow through a drain line from a corresponding 

outlet port positioned 180° from the inlet (Figures 2.1b and 2.1c). Thus, release of an 

individual pinch valve initiated flow in one of the eight possible directions.  

Cells were cultured on the topside of a thin polymer (Mylar) membrane. Solutions 

containing dosing agents were directed through a two-port flow chamber on the underside 

of the membrane (Figure 2.1a), and could be induced by a pressure differential to pass 

into the cell-dosing chamber through pores ablated in the membrane positioned to target 

specific regions in culture.  

Agents that entered the cell-dosing chamber formed narrow streams whose 

orientation was determined by the direction of media flow in the chamber. The mean 1/e 

stream radius 10 µm downstream from the pore edge was measured to be ~5 µm when 

using a typical cell-dosing chamber flow rate of 0.20 mL min
-1

, although streams were 

observed to fan out more at lower flow rates in the cell-dosing chamber [20]. The small 

vertical profile of the cell-dosing chamber (120 µm) created laminar flow conditions 

(calculated Reynolds number ≈ 3†) [48] that minimized convective mixing, and produced 
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†Reynolds number, Re = ρνavgh/µ, where ρ is the solution density, µ is the viscosity, νavg is the average linear 
flow rate, and h is the height of the channel [2, 3]. 

relatively high linear flow rates even at positions close to the membrane surface. At the 

top surface of motile HL-60 cells (measured relative to the substrate), estimated to be 

~3.6 µm [49], the linear flow rate (νx) was calculated to be 4.9 mm s
-1 

when pumping 

solution through the cell-dosing chamber at a volumetric flow rate of 0.20 mL min
-1

, 

using the following equation [30]: 
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Where, h and w are the height and width of the channel, respectively, y is the distance 

from the center of the channel, and Q is the volumetric flow rate. Importantly, most 

motile cell types, including neutrophils, experience negligible deleterious effects under 

such flow conditions [50-52].  

 To further characterize the flow streams, the Péclet number (Pe), which is a 

dimensionless value that compares the typical time scale for diffusive transport to that for 

convective transport in a channel with a given height h, was calculated using the 

following equation [2]:  

Pe = vavgh /D 

Here, vavg is the average linear flow rate, and D is the diffusivity of the species of interest.  
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 For a typical cell-dosing chamber flow rate of 0.20 mL min
-1

, which corresponds 

to an average linear rate of 2.8 cm s
-1

, and D = 6 x 10
-7

 cm
2
 s

-1
 for BSA streams [3], the 

calculated Péclet number is ~55,000. This large value implies that convection is the 

dominant mode of transport with minimal diffusive transport along the flow direction. As 

a result, well-defined dosant streams could be established in the cell-dosing chamber that 

experienced little diffusional degradation over distances of tens of microns downstream 

from the pore (Figure 2.3a). 

Figure 2.3a shows an image overlay of the eight stream orientations obtained by 

changing flow directionality in the cell-dosing chamber. Here, streams emerged from a 

single central pore ablated in a 2.5 µm thick Mylar membrane using a tightly focused 

Nd:YAG laser. A solution of 6% (w/v) BSA was flowed through the pore to visualize 

streams based on refractive index discontinuities. As shown, the nominal angle between 

two successive flow orientations using this approach was 45º.  

To effectively target cells, it is critical that the direction of dosing streams be 

controlled accurately. The histogram of Figure 2.3b reveals the accuracy of stream 

directionality by showing the absolute angular difference between the expected and 

obtained directions in the absence of cells. Streams were switched to twenty-four 

positions in three separate experiments (eight distinct directions/experiment x three 

experiments). Each experiment was conducted on a different day using new flow cells 

outfitted with fresh sections of membrane. In 50% of the trials, this difference was 2° or 

less, and in no case did it deviate by more than 7°.  

Similar results were obtained when stream directions were switched in the 

presence of moderate surface densities of motile HL-60 cells. In these studies, two 
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separate experiments were performed in which 0.33 x 10
6
 and 0.43 x 10

6
 cells mL

-1
 were 

plated on the topside of Mylar
 
membranes mounted inside the flow-cell device (see 

Experimental Methods), giving densities of cells (150 – 400 cells mm
-2

) comparable to 

those typically used in neutrophil studies (O. D. Weiner, personal communication). In 6 

of the 10 trials, the accuracy of stream re-orientation was within 2° of the expected angle, 

and in only one instance did the deviation exceed 7°. At higher cell densities used (up to 

1.9 x 10
6
 cells mL

-1
), deviations could be significantly larger. Since the goal of 

experiments performed with the multi-directional flow device was to target single cell 

migration, the use of moderate cell densities (150 – 400 cells mm
-2

) does not pose any 

significant issues.  
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Figure 2.3: Controlling stream directionality in the cell-dosing chamber. (a) An  overlay 
of eight images of 6% BSA streams originating from a central pore, with 
orientations obtained by opening each valve individually. (b) Accuracy of 
stream directionality. The histogram shown reports the deviation angle, 
defined as the angular difference between the expected and obtained flow 
directions, measured from 24 reagent streams obtained by opening 
individual valves. The deviation was found to be 2.2 ± 2.3º (mean ± 
standard deviation). To minimize errors, the stream angles were measured 
~100 µm downstream from the pore. (c) An overlay of three images of 6% 
BSA streams demonstrating the increased angular resolution (less than 45°) 
achieved by opening two adjacent valves simultaneously. The two outer 
streams, separated by ~45°, were obtained by opening single valves (i.e., by 
activating a single pair of inlet and outlet ports), while the central stream 
was produced by activating these two valves simultaneously (i.e., two pairs 
of activated inlet and outlet ports). For both (a) and (c), PBS (phosphate-
buffered saline) solution was flowed in the cell-dosing chamber at a 
volumetric rate of 0.30 mL min

-1
, and 6% BSA was flowed at 0.15 mL min

-1 

in the reagent chamber. Scale bars in (a) and (c), 20 µm.  
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 The design of the multi-directional flow chamber relies on pairing of inlet and 

outlet ports oriented 180° from each other. Although fluid flow near the center of the 

chamber is expected to be colinear (i.e., parallel) with the vectors that connect each inlet 

and outlet pair, flow paths at more peripheral regions must deviate from this direction in 

order to converge at the flow chamber outlet. To investigate the extent of this effect, the 

stream directionality was characterized as a function of pore location along a diameter 

perpendicular to the nominal flow direction (i.e., along the center line of the flow 

chamber). For streams emerging from pores ablated at distances between ~0 − 350 µm 

from the center of the flow chamber perpendicular to the nominal flow direction, 

negligible differences were found between stream directions over their initial 100 µm 

(downstream from the pore)—a distance within which cells typically are dosed. Even for 

pore distances as great as 500 µm from the center, the deviation in the absolute flow 

angle for a dosing stream was less than 5º over the initial 100 µm (Figure 2.4a). Beyond 

this initial 100 µm, stream deviations could be significantly larger, especially in case of 

pores located at distances greater than 250 µm from the center, possibly a result of fluid 

leaks through closed pinch valves and/or misalignment of the multi-directional flow cell 

between the outlet hole (in the plastic coverslip) and the flow channel (Figure 2.4b). The 

data shown in Figure 2.4 was acquired using a simplified cross cell-dosing chamber (see 

Experimental Methods). This design (giving four possible orientations) was used to 

simplify the cell-dosing chamber setup for the analysis. Further experiments with the 

asterisk chamber are warranted for investigating the flow patterns inside the dosing 

chamber.      



 60 

 

 

 

 

 

Figure 2.4:  Deviation in stream directionality as a function of pore location. (a) The 
graph shows the deviation in reagent streams originating from photo-ablated 
pores along the center line of the cell-dosing chamber perpendicular to the 
activated flow orientation. All angles were measured ~100 µm downstream 
from the pore, and the deviation was calculated with respect to the center 
stream direction. Data were acquired for two different flow orientations, and 
the error bars represent the standard error of the mean of the 2 trials. (b) 
BSA streams originating from pores ablated along the center line of the 
dosing chamber. The lowermost pore position (asterisk) corresponds to the 
center of the chamber. As seen, bending of streams occurs at increasing pore 
distances from the center. For both (a) and (b), PBS solution was flowed in 
the cell-dosing chamber at 0.5 mL min

-1
, and 3% BSA was flowed in the 

reagent chamber at 0.15 mL min
-1

. Scale bar, 50 µm.  

 Another parameter evaluated was the reproducibility of stream directionality as a 

function of the switching angle needed to reach a target direction (in the absence of cells). 

In these studies, a given valve (regulating a single source/drain pair) was activated in 

conjunction with closing each of the seven remaining valves, allowing the final stream 

direction for each trial to be compared with the mean of the data set. This procedure was 

performed for four target directions. In 25 of the 28 trials, the final stream direction 

varied from the mean of the respective data set by less than 1º, with a mean magnitude of 

a 

* 

b 
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variation equal to 0.4 ± 0.5º (mean ± standard deviation; Figure 2.5). The variation in the 

directionality of the streams remained similarly low when the measurements were 

repeated 30 minutes later in the same flow-cell device.  

 

 

 

 

 

 

 

 

 

Figure 2.5: Reproducibility of stream directionality. To assess the reproducibility, a 
given valve was activated in conjunction with closing each of the seven 
remaining valves. The histogram reports the variation in the final stream 
direction obtained for each trial from the mean of the data set. This 
procedure was performed for four target stream directions providing 28 
reagent streams for the analysis. For these studies, PBS was flowed in the 
cell-dosing chamber at 0.10 mL min

-1
, and 3% BSA was flowed in the 

reagent chamber at 0.35 mL min
-1

. 
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To increase the angular resolution of possible stream orientations, the results of 

opening two adjacent valves simultaneously (i.e., giving two pairs of activated inlet and 

outlet ports) were evaluated. Assuming flow resistances in the two channels are equal, the 

resultant stream orientation ideally should lie in the center of the two activated flow 

vectors, providing an angular resolution of 22.5° (i.e., 16 possible directions). Although 

deviations from the expected flow orientations were larger when simultaneously 

activating two valves instead of one (likely the result of variability in resistances between 

channels), the improvement in angular resolution obtained by this approach (Figure 2.3c) 

was useful in studies of chemotactic guidance that will be presented in the next chapter. 

2.3.2 Speed of switching stream orientation 

 Polarized cellular processes, such as directional migration and axonal pathfinding, 

are controlled by dynamic chemical cues. In many instances, important variations in 

chemical signals take place on timescales of milliseconds to seconds, making it critical to 

develop techniques that not only have the ability to establish in vitro chemical landscapes 

with micrometer resolution, but can rapidly re-cast these landscapes. The capability to 

rapidly switch the direction of laminar flow streams would provide a means to expose 

cells briefly to reagents by simply changing the flow direction. This could also be useful 

in dosing alternate sites within a culture or on a single cell, and would provide insights 

into the time taken for intracellular processing and propagation of chemical signals. 

 To assess how rapidly the orientation of streams can be modified, video-rate 

imaging (i.e., at 30 fps) was performed using a commercial CCD video camera and a 

video capture card. Solution flow was initiated in a simplified cross cell-dosing chamber 
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(see Experimental Methods) by opening a given pinch valve, and was switched to a 

direction nominally 90° away by closing the valve and opening an alternate valve.  

Using this arrangement, streams could be directed through a 90º arc in ~300 ms 

with high reproducibility. Angular changes in flow streams proceeded in a continuous 

manner, though not at a constant speed, initially changing rapidly and then slowing as the 

cycle progressed (likely related to closing of valves; Figure 2.6). Because of rapid initial 

changes in stream orientation and the uncertainty in the start time of the valve switch 

relative to data acquisition (~1 frame), larger standard error bars were obtained during the 

initial portion of the 300 ms cycle. Notably, no gross bending of reagent streams 

downstream from the center of the pore was observed, at least over the 175 µm distance 

of assessment (even though reagent molecules close to the pore have to travel shorter arc 

distances compared to those further downstream). Importantly, although streams require 

~300 ms to cover an entire 90º arc, much smaller angular changes may be sufficient for a 

stream to initiate and then terminate dosing as it sweeps across or away from a cell many 

micrometers away from a pore.  
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Figure 2.6: Rapid switching of stream directionality. Time plot showing the path traced 
by 3% BSA streams when switched between flow orientations that were 90º 
apart. The plot reveals a rapid initial phase followed by a decline in angular 
velocity as the stream approaches its final position. Data were acquired from 
10 switching cycles using a video camera, and the error bars represent the 
standard error of the mean of the 10 trials. The rapid initial angular velocity 
made it difficult to image streams immediately after a switch was initiated 
(i.e., for t < 100 ms). As a result, data for 33.3 ms and 66.7 ms could not be 
included in the plot. The t = 0 point was arbitrarily assigned an angle of 0º. 
For these studies, PBS was flowed in the dosing chamber at 0.30 mL min

-1
, 

and 3% BSA was flowed in the reagent chamber at 0.20 mL min
-1

. 

 
The reagent streams could be switched even faster when the stream orientation 

was modified by opening a second valve (i.e., two pairs of activated inlets/outlets). Using 

this arrangement, the switching time was equal to be 129 ± 33 ms (mean ± standard 

deviation from 8 separate trials).  



 65 

Rapid angular control provided by this dosing approach may enable studies 

focused on temporal dynamics of cell polarization and migration. Gradient switches 

inside microfluidic chambers reported by other researchers have required, in the best 

cases, at least one second (using a combination of photolytic cleavage and microfluidics) 

[53], and usually substantially longer [25, 26]. Here, the temporal resolution for cell 

dosing was examined by sweeping a stream of 100 nM fMLP, a bacterially derived 

chemoattractant tri-peptide, through an angular path that intersected an HL-60 cell. 

Figure 2.7a is a processed overlay of two sequential video images showing an HL-60 

cell being dosed for the duration of a single frame period, 33.33 ms.  

Various factors, including the width of a dosing stream, the distance of a cell from 

the pore, and the position of a cell along the 90° switching arc, can be changed to tune the 

time that a cell or a subcellular feature is exposed to a dosing stream. Valving parameters 

can also be altered to slow down the time taken for the switch. This can be achieved by 

appropriate selection of the flow rate, pore location, valves and direction of switch, and 

the valve dwell time. Figure 2.7b shows the same cell, which was dosed for 33.33 ms in 

Figure 2.7a, now dosed 10 times longer (333.33 ms) simply by altering the direction of 

switch.   
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Figure 2.7: Millisecond dosing of HL-60 cells. (a) An overlay of two sequential images, 
each consisting of one BSA stream (and two cells),  showing an individual 
cell (see white asterisk) dosed for the duration of a frame (i.e., 33.33 ms) as 
the dosing stream moves in a clockwise fashion. (b) Image series showing 
the same cell—white asterisk in (a)—dosed 10 times longer (i.e., 333.33 ms) 
as the dosing stream moves in a counter-clockwise fashion (white arrow in 
6), dosing the cell during the slow phase of the switching cycle (Figure 2.6). 
The images are spaced 66.67 ms apart. For the fMLP concentrations and 
dosing periods used in these studies (four separate trials), no gross effects on 
cell position or polarity were observed. Gey‘s medium was flowed in the 
upper chamber at 0.30 mL min

-1
, and 6% BSA solution containing 100 nM 

fMLP was flowed in the reagent (lower) chamber at 0.25 mL min
-1

. Valving 
parameters were altered to allow 500 ms for the switch. Scale bars, 20 µm.   

a 

b 
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2.3.3 Application to neutrophil cultures  

 The ability to dose specific cells and subcellular regions with a labeling reagent 

was evaluated using a mitochondrial dye, MitoTracker Green FM, which is fluorescent 

principally when incorporated into lipid environments (e.g., organelles). dHL-60 cells 

were attached to fibronectin-coated Mylar membranes mounted inside the flow-cell 

device. After ablation of a pore in Mylar, 2 µM MitoTracker Green was flowed in the 

reagent chamber forming a well-defined fluorescence stream in the cell-dosing chamber, 

which could be directed at selected cellular targets.  

 Although low concentrations of MitoTracker Green (≤ 200 nM) have been 

reported by the reagent‘s supplier (Invitrogen) to selectively label mitochondria of cells, a 

higher concentration was used in these experiments to improve the signal-to-noise ratio. 

The presence of the dye in the lower chamber, Mylar autofluorescence, and adsorption of 

the dye to the Mylar membrane, all masked the fluorescence signal of interest (from the 

targeted cells). These problems could be reduced by using higher dye concentrations and 

extensive dye washouts (by replacing MitoTracker with buffer in the reagent chamber 

after dosing selected subcellular regions), as illustrated in the plot of Figure 2.8. At the 

dye concentration used in the following experiments (2 µM), MitoTracker has been 

reported by the reagent‘s supplier (Invitrogen) to show low cellular staining specificity, 

localizing to a variety of cellular structures. 
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Figure 2.8: Reducing background fluorescence during MitoTracker labeling 
experiments. To reduce background fluorescence obtained from Mylar 
membranes, which served as support for adherent HL-60 cells, extensive 
washouts were carried out. 3-way valves, commonly used in intravenous 
applications, were used to switch between three solutions flowed in the 
reagent chamber—4% BSA (for visualization of reagent streams), 2 µM 
MitoTracker, and Gey‘s medium (left panel). After formation of pores, BSA 
was flowed in the reagent chamber forming well-defined streams in the 
dosing chamber (plot inset). This led to a small increase in the fluorescence, 
which returned to baseline values after 10 – 20 min of washout with Gey‘s 
medium (indicated as BW in legend). Next, the dye was flowed in the 
chamber followed by another washout (DW). As can be seen, the 
fluorescence decreases to baseline values with longer dye washouts, but this 
also reduces the signal (4 peaks in the plot obtained from the 4 streams). All 
values were measured along the yellow profile line shown in the inset. 
Gey‘s medium was flowed in the dosing chamber. Both the cell medium and 
reagents were flowed at 0.15 mL min

-1
. Scale bar, 20 µm.    

To Waste 

To Reagent chamber 
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 As shown in Figure 2.9, following dosing with MitoTracker, there was a ~30% 

increase in emission (compared to baseline values) from a cell that was in the direct path 

of the reagent stream. The stream direction was controlled by activation of an individual 

valve (and thus, a particular source/drain pair). The only other significant emission was 

from the ablated pore. In Figure 2.10, two dHL-60 cells were dosed using a MitoTracker 

stream orientation obtained by opening two valves simultaneously (i.e., two source/drain 

pairs). Out of the two labeled cells, one showed a ~25% increase in emission (from 

baseline values), while the second showed a ~40% increase. All other cells in the field of 

view showed negligible changes in their fluorescence emission values. 

 Figure 2.11 shows two other examples of subcellular targeting of narrow regions 

of dHL-60 cells, such as the leading and trailing edges (extending ~10 µm), with BSA by 

choosing appropriate stream orientations.  

 These experiments demonstrate the feasibility of using this multi-directional flow 

device for subcellular targeting of small motile dHL-60 cells (typically, 20 − 30 µm 

long). By targeting the leading and trailing edges of these cells with chemotactic 

molecules, such as fMLP, cell migration can be affected to provide information on how 

motile cells perceive and respond to chemical gradients—a goal that was pursued in 

experiments presented in Chapter 3.    
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Figure 2.9: Selective labeling of HL-60 cells. The left panel shows a fluorescence 
intensity surface plot of the cell field (inset) after a 5-min exposure to 2 µM 
MitoTracker Green. The targeted cell (asterisk) is dosed using a reagent 
stream orientation obtained by activation of a single valve.  The right panel 
is an overlay of the bright field and fluorescence images (acquired at almost 
the same time). Arrows indicate direction of flow in the cell-dosing 
chamber. Gey‘s medium with 0.5% BSA was flowed in the cell-dosing 
chamber at 0.20 mL min

-1
, and the dye was flowed in the reagent chamber at 

0.18 mL min
-1

. Scale bars, 20 µm.        

 


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Figure 2.10: Laminar flow dosing of HL-60 cells. The left image is a fluorescence 
intensity surface plot of the cell field (top inset) after 10 minute exposure to 
2 µM MitoTracker Green dye followed by 5 minutes of dye washout. The 
asterisk denotes the labeled cells. The dye orientation was obtained by 
opening two valves simultaneously (i.e., two pairs of activated inlets and 
outlets). The right panel is an overlay of bright field and fluorescence 
images (acquired at almost the same time). Arrows represent direction of 
flow in the cell-dosing chamber. Gey‘s medium with 0.5% BSA was flowed 
in the cell-dosing chamber at 0.20 mL min

-1
, and the dye was flowed in the 

reagent chamber at 0.18 mL min
-1

. Scale bars, 20 µm. 
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Figure 2.11: Targeting leading and trailing edges of motile cells. By controlling the 
directionality of BSA dosing streams, the pseudopod (leading edge) of an 
HL-60 cell is dosed in the left panel, and the uropod (trailing edge) of 
another cell (from a different experiment) is dosed in the right panel. 
Reagent stream orientations were obtained by activation of single pinch 
valves. 6% BSA was flowed in the reagent chamber, and Gey‘s medium 
with 0.5% BSA was flowed in the cell-dosing chamber. Scale bar in the left 
panel, 10 µm, and in the right panel, 20 µm. 

2.4 CONCLUSION 

These studies demonstrate an approach for creating microscopic chemical streams 

whose direction of flow, and thus gradient orientation at stream boundaries, can be 

modified with high precision and accuracy. By incorporating signal-transduction 

effectors within these streams, chemical signals can be presented to adherent cells with 

high spatiotemporal control for probing the role of external cues on polarized cellular 

behaviors. The versatility of this dosing strategy, in which gradients of any water-soluble 

effector can be repositioned within milliseconds or sustained for hours, should enable 

investigation of processes that transpire over a wide range of timescales.  
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Investigations of polarized cellular processes depend on tools for recasting 

extracellular chemical landscapes on time scales faster than the cellular events under 

study. In particular, the mechanisms by which chemotactic, motile cells respond to 

changes in the chemical environment have been reported to depend on the speed at which 

the changes take place [25]. The capability to dose neutrophils with millisecond 

resolution opens possibilities for rapidly modulating alternate sites within a culture, such 

as multiple sites on the surface of a single cell, allowing studies to be carried out on the 

kinetics of intracellular processing and propagation of chemical signals.  

Reagent streams were directed at leading and trailing edges of motile HL-60 cells 

by choosing appropriate stream orientations, indicating the possibility of cell guidance, a 

topic that will be examined in Chapter 3.   

In the present configuration, discrete flow orientations are obtained by activation 

of solenoid pinch valves, which are either fully open or completely restrictive to flow. 

Use of valves that can partially occlude flow will permit reagent-stream orientations to be 

changed with smaller angular increments, to obtain, in principal, any desired stream 

orientation (a topic that will be discussed in Chapter 4). It also may be possible to reduce 

the cell-dosing time further by using faster valves, such as diaphragm-based valves (e.g., 

Bio-Chem Fluidics, 0.38 or 0.39 series), which generally have a response time of less 

than 5 ms. Here, valve action is achieved by motion of the diaphragm. This modification 

could be of particular value in studies on fast excitable cells such as cultured neurons.   

Finally, a laser cutter, available at the School of Architecture at UT Austin, was 

used for fabrication of the flow cells described in this chapter, offering an alternative to 

conventional microfabrication processes, such as photolithography and PDMS molding. 
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In the recent years, photolithography has been extensively used for the development of 

microfluidic chips with potential uses in distributed healthcare industry [54, 55]. 

Although commonly used for microfabrication, changes in chip designs using 

lithographic processes require fabrication of new masters, which is often time-consuming 

and expensive. Also, manufacturing facilities have to be contained within a cleanroom. 

On the other hand, the laser cutter offers a cheap and easy-to-use alternative for rapid 

prototyping and development of microfluidic devices. Its usability is further enhanced by 

its ease of maintenance, finding a common place in academic and commercial (e.g., 

CAD/CAM services) arenas. Although this chapter described fabrication of simple 1 mm 

wide channels, relatively intricate designs (helices, T- and Y-shaped channels), with 

feature sizes of ~400 µm have been cut (Chapter 5), a first step towards realizing a 

fabrication platform for more complex applications.      
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Chapter 3:  Directing Cell Migration by Dynamic Repositioning of 
Chemotactic Laminar Streams 

3.1 INTRODUCTION 

In 1981, Sally Zigmond and coworkers published a paper in the Journal of Cell 

Biology that examined the pattern of neutrophil locomotion in a homogeneous 

concentration of chemotactic factors, the response of these cells to increases in the 

homogeneous concentration, and most importantly, to changes in the direction of 

chemotactic gradients [1]. Although neutrophil chemotaxis had been previously studied, 

at least to a small extent, under homogeneous chemoattractant conditions by Zigmond 

and others [2-7], the investigation on cellular responses to chemoattractant gradient 

changes became one of the seminal works in the field to be often re-visited and re-

debated in the years to come. The 1981 paper presented a model on how neutrophils 

change their direction of migration in response to chemoattractant gradient reversals. The 

authors found that the front of a moving neutrophil was more responsive to stimulation 

by chemotactic factors than its tail, and in the event of gradient reversals, cells reoriented 

by responding at their front and ―walking around‖ in a circle. They proposed that the 

unresponsiveness of the tail could be due to the absence or inactivation of cellular 

machinery involved in transduction of chemotactic signals [1]. 

Though much progress has been made in the study of neutrophil polarization and 

migration, especially with respect to the types of chemotactic molecules that cells can 

sense [8-11] and concomitant second messenger signaling [12-20], questions regarding 

how neutrophils reorient themselves when the direction of chemotactic gradients are 
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switched still remain unanswered, largely due to the lack of tools needed to carry out 

such investigations. These questions are of interest, not only to the study of the 

inflammatory process [21, 22], but also for understanding oriented cell movements that 

occur during morphogenesis [23, 24]. Misregulation of neutrophil chemotaxis can play 

critical roles in a variety of diseases. One example is atherosclerosis in which phagocytic 

cells migrate toward plaques inside blood vessels, effectively increasing the size of 

obstruction and the likelihood of myocardial infarction [25, 26]. A second area is cancer 

metastasis, where neutrophils aid migration of tumor cells that eventually leads to the 

spread of cancer to other tissues and organs [27-31]. Lastly, neutrophils also have been 

implicated in the rejection of scaffolds and implants [32], underscoring the importance of 

understanding the mechanisms by which these motile cells respond to their local 

chemical microenvironments. Such studies will ultimately help in developing therapeutic 

strategies that optimize microbial killing and minimize host tissue damage. 

 Transwell assay systems, such as the Boyden chamber [33-36], are commonly 

used for studying chemotaxis. In these two-chamber assays, cells are placed in one of the 

chambers and the cellular effector in the other, with a porous filter serving as a barrier 

between the two compartments. Motility is measured by counting the number of cells that 

migrate through the filter into the compartment containing the cellular effector. In spite of 

the popularity of transwell assays, a result of its simplicity of use, these techniques do not 

allow visualization of cellular migration paths or polarization changes that occur during 

directed motility, thus providing only an endpoint measurement—the number of 

migrating cells. 
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 A second approach for studying chemotaxis relies on the use of micropipettes for 

delivery of chemical agents, details of which were presented in Chapter 1. This approach 

has been commonly employed by Bourne and coworkers for studying neutrophil 

polarization and chemotaxis [14, 16, 37], and allows visualization of the motility process 

in single cells. An important limitation of this method is the inability to maintain 

concentration gradients over extended periods. Quantitative descriptions of gradient 

changes over time require complicated and time-consuming mathematical modeling. 

Lastly, the gradients created using this method are typically shallow. 

To address inquiries of polarized cellular events, such as chemotaxis, tools are 

required that can rapidly reshape the chemical environment in which cells migrate. 

Although confluent laminar streams inside pre-fabricated devices have been used for the 

study of chemotaxis (Chapter 1) [38-40], they rely on compatibility between position of 

cells and dosing streams, making it difficult to dynamically target motile cells over 

extended periods. In Chapter 2, a multi-directional flow device was used for creating and 

reorienting microscopic chemical gradients in vitro on millisecond timescales, providing 

new abilities to chemically interface with cells on spatiotemporal scales relevant to 

biological function. In this approach, dosing streams containing any water-soluble 

effector are created at desired sites in culture by using a focused laser to ablate pores in 

an ultra-thin polymer membrane that serves as a support for adherent cells and as a 

barrier to an underlying reservoir containing the dosing reagent. The reagents emerging 

through these pores are incorporated into sharp well-defined streams by the laminar flow 

conditions present within the cell culture environment and are directed toward desired 

targets by specifying the direction of flow using a series of computer-activated sources 
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and drains positioned along the perimeter of the culture chamber. The power of this 

approach to influence and probe cell activity is demonstrated in this chapter by guidance 

of human neutrophil precursor cells through migration paths specified by gradients of a 

chemoattractant peptide. Rapid repositioning of the peptide gradients is found to guide 

chemotaxis via intracellular remodeling that ranges from gradual pseudopod turning to 

complete polarity reversal, depending on the subcellular localization of the gradients. 

3.2 EXPERIMENTAL METHODS 

 This chapter describes the use of the multi-directional flow device presented in 

Chapter 2 for guidance of HL-60 cells along assigned migration paths. All device 

fabrication and cell culture procedures used here have already been described in the 

previous chapter. Although two cell-dosing chamber designs—asterisk and cross—were 

used in previous studies, only the asterisk cell-dosing chamber was used in the studies 

presented here.  
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3.3 RESULTS AND DISCUSSION 

The utility of controlling the orientation of steep, microscopic chemical gradients, 

using the strategy described in Chapter 2, was assessed by investigating dynamic 

repolarization and motility of dHL-60 cells, a model system for neutrophil migration and 

chemotaxis [41, 42]. Here, dHL-60 cells were attached to fibronectin-coated Mylar 

membranes mounted inside the flow-cell device. After pore formation, 100 nM of fMLP, 

a bacterially-derived chemoattractant, was flowed in the reagent chamber, producing a 

chemotactic laminar flow stream in the cell-dosing chamber that could be directed at 

selected cellular targets. As shown in Figure 3.1, targeted dHL-60 cells changed their 

direction of movement when an fMLP gradient was established in a direction opposed to 

cell migration. For the data shown in Figure 3.1, an fMLP stream was switched multiple 

times between two angular orientations achieved by leaving a single valve open at all 

times (and thus, a particular source/drain pair) and sequentially opening and closing an 

adjacent source/drain pair (thus yielding a switching angle less than 45°). Although some 

morphological changes were apparent within a single frame of the 0.5 Hz time-lapse 

acquisition (i.e., within 2 s) after stream reorientation, cells generally required several 

minutes to undergo complete repolarization. 
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Figure 3.1: Controlling polarization and motility of HL-60 cells using streams of a 
chemotactic peptide. Time sequence showing an HL-60 cell changing its 
direction in response to reorientation of a 100 nM fMLP stream. Two 
instances of cell repolarization are shown. Insets show placement of the cell 
inside the new stream immediately after the stream orientation was 
switched. The gradient switch generally occurred within a single 2 s long 
frame of the time-lapse video. To aid in visualizing polarization, the  leading 
and trailing edges of the cell are indicated by green and red, respectively. 
Time in minutes (from the time-lapse video) is denoted as t. Complete 
repolarization of cells occurred within 6 min after the peptide gradient flip. 
Throughout cell dosing, both Gey‘s medium and fMLP were flowed at a 
volumetric rate of 0.25 mL min

-1
. 3% BSA was added for visualization of 

the fMLP streams. Scale bar, 20 µm.     

 

Cells were observed to repeatedly track chemoattractant streams by changing their 

polarity, a process mediated by internal movement and reorganization of structural and 

adhesion molecules (e.g., F-actin, CD44) [16, 43-45]. Following a change in stream 

orientation, in most cases, a cell underwent an initial collapse of its pseudopod (or 

leading edge) and a rearward movement of cytoplasm toward its uropod (also known as 

the tail or the trailing edge). This collapse led to complete or partial cell depolarization. 

In case of the former, the cell became rounded, whereas in the latter occurrence, the cell 

retained some of its morphology before repolarization. Subsequently, a new pseudopod 

either emerged from an entirely new position on the cell (Figure 3.2), or in the case of 
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complete polarity reversal, at the site of the former uropod (Figure 3.3). On occasion, a 

cell was able to reorient to a new fMLP gradient most efficiently by turning (rather than 

fully collapsing) its pseudopod (Figure 3.4).  

Polarity reversals were characterized by a sequence of partially overlapping 

stages: an initial collapse of the existing protrusions at the front end of the cell, rearward 

movement of the cytoplasm toward the uropod, enlargement and formation of new 

protrusions at the (former) uropod, and contraction of the former front to form a new 

uropod (Figure 3.3) [46]. This reversal requires an internal movement and reorganization 

of structural molecules, including F-actin and α-actinin, at the newly formed leading 

portion of the cell [16, 43], and concentration of adhesion molecules, such as CD43 and 

CD44, at the new uropod [44, 45].  

A similar sequence of events occurred when the pseudopod emerged from an 

entirely new position on the cell (i.e., from the side). In this case, after the initial collapse 

of the pseudopod and rearward cytoplasmic movement, protrusions formed at a new site, 

which subsequently became the leading edge, often with some conservation of the uropod 

(Figure 3.2). In such cases, it has been reported that α-actinin and F-actin redistribute 

from the collapsed lamellipodia at the leading edge of the cell to the newly formed 

lamellipodia at the side, but not to the uropod [46].  

In contrast, cells that changed their direction by turning (rather than fully 

collapsing their pseudopod; Figure 3.4) maintained their polarity while gradually altering 

their migration direction to reorient themselves with the new fMLP gradient. This 

mechanism of reorientation probably requires minimal redistribution of structural 
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molecules, such as α-actinin and F-actin, with no internal movement of adhesion 

molecules since the uropod is conserved. 

 

Figure 3.2: HL-60 cell reorientation by formation of pseudopod at a new site. Time 
sequence showing an HL-60 cell changing its  direction in response to 
reorientation of a 100 nM fMLP stream. HL-60 cell reorientation inside the 
newly established fMLP gradient occurred by formation of a new 
pseudopod from the side of the uropod, with a partial conservation of the 
uropod. Time in minutes (from the time-lapse video) is denoted as t. The 
two angular orientations were achieved by activating two adjacent valves 
(and thus, two source/drain pairs) followed by closing one of the valves, 
respectively (thus yielding a switching angle less than 45°). Throughout 
dosing, both Gey‘s medium and fMLP were flowed at 0.25 mL min

-1
. 3% 

BSA was added for visualization of the fMLP streams. Scale bar, 20 µm.     
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Figure 3.3: HL-60 cell reorientation via polarity reversal. Time sequence showing an 
HL-60 cell changing its direction in response to reorientation of a 100 nM 
fMLP stream. Cell reorientation inside the newly established  fMLP gradient 
occurred by formation of a new pseudopod at the site of the former uropod 
preceded by the contraction of the former pseudopod to form a new uropod. 
Time in minutes (from the 0.5 Hz time-lapse video acquisition) is denoted as 
t. The two angular orientations were achieved by opening a given valve (and 
thus, a particular source/drain pair) followed by closing that valve and 
opening an adjacent valve. Throughout dosing, Gey‘s medium was flowed 
in the cell-dosing chamber at a volumetric rate of 0.20 mL min

-1
, and fMLP 

was flowed in the reagent chamber at 0.15 mL min
-1

. 3% BSA was added 
for visualization of the fMLP streams. Scale bar, 20 µm.     
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Figure 3.4: HL-60 cell reorientation via gradual turning. Time sequence showing an 
HL-60 cell changing its direction in response to reorientation of a 100 nM 
fMLP stream. Cell reorientation inside the newly established 
chemoattractant gradient occurred by gradual turning of the pseudopod in 
the direction of the new gradient while maintaining cell polarity. Time in 
minutes (from the time-lapse video acquisition) is denoted as t. The two 
angular orientations were achieved by activating two adjacent valves (i.e., 
two source/drain pairs) followed by closing one of the valves, respectively 
(thus yielding a switching angle less than 45°). Throughout dosing, both 
Gey‘s medium and fMLP were flowed at 0.25 mL min

-1
. 3% BSA was 

added for visualization of the fMLP streams. Scale bar, 20 µm.     

 

Out of a total of 16 gradient switches, it was found that in half of the cases, cells 

changed their direction by polarity reversals, in approximately one third of the cases (5 

out of 16), cells extended pseudopods from new sites, and in the remaining cases (3 out 

of 16), cells executed a turn to reorient themselves inside the new chemoattractant 

gradient (Table 3.1). This data was obtained from 6 different cells, some of which were 

exposed to multiple gradient switches.  
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ID Mechanism of reorientation Number of instances Example 

1 Formation of pseudopod at a new site 5 Figure 3.2 

2 Polarity reversal 8 Figure 3.3 

3 Turn 3 Figure 3.4 

 

Table 3.1: Cellular responses to fMLP gradient switches. HL-60 cells responded to 
gradient switches via three different reorientation mechanisms. The Number 
of instances column indicates the number of times a particular reorientation 
mechanism was adopted by cells out of a total of sixteen gradient switches. 

 

The mechanisms used by motile cells to reorient themselves following gradient 

switches have been debated for many years. In the 1981 paper published by Zigmond and 

coworkers that was discussed in the Introduction to this chapter, the researchers found 

that in the event of gradient reversals, achieved by placing a micropipette containing 

chemotactic peptide directly behind a moving cell (with reported gradient switching time 

of ~3 min), 5 out of the 8 observed cells responded by ―walking around‖ in a circle 

making a series of small turns initiated near the front of the cells. The remaining 3 cells 

rounded to such an extent that it was impossible to determine the location on the cell that 

gave rise to the new pseudopod (relative to the cell morphology before depolarization). 

Remarkably, the researchers found that cells never projected pseudopods from their tail. 

Furthermore, they reported that cells rarely projected new pseudopods from the posterior 

half of their body [1]. These findings were corroborated by experiments conducted by 

Bourne and coworkers. In their 2003 paper published in Cell, they proposed a model that 

attempted to explain why a neutrophil‘s pseudopod showed much greater responsiveness 

to the attractant than its sides or trailing edge, consequently resulting in cells following 
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their pseudopods and performing turns, instead of simply reversing their polarity during 

gradient flips [47].  

The observations made by Zigmond and Bourne [1, 47] are very different from 

the findings of the work reported in this chapter. In 50% of the gradient switches (8 out of 

16) reported here, it was found that cells changed their migration direction by reversing 

their polarity (Table 3.1). Even in the case of cells that developed pseudopods from 

entirely new positions (5 switches out of 16; Table 3.1), the new site, at least in two 

cases, was the side of the tail, and in another two, it involved both anterior and posterior 

regions of cells (Table 3.2). Although more studies need to be conducted to trace cellular 

reorientation pathways, the data in the two tables provides evidence for formation of new 

pseudopods from the tail and posterior region of cells in the event of gradient switches. 

 

ID Site of new pseudopod Number of instances 

1 Side of the front 1 

2 Side of the tail (e.g., Figure 3.2) 2 

3 Side of the cell involving both anterior and posterior regions 2 

 

Table 3.2: Sites of new pseudopods developed during fMLP gradient switches. HL-60 
cells responded to fMLP gradient switches via three different reorientation 
mechanisms, one of which was development of a pseudopod  from a new 
site (relative to the cell morphology before the switch). The new site 
involved the side of the cells. Shown is the specific location of the new site 
on the cells in five instances of reorientation using this mechanism. 
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The results obtained by Zigmond and coworkers [1] contradicted a study 

published by W. S. Ramsey in 1972, who investigated cellular responses to a moving 

micropipette (positioned using micromanipulators) containing Staphylococcus albus cells 

suspended in agar. Ramsey found that when the pipette containing the bacterial 

chemotactic stimulant was switched from one side of the cell to the other, the cell 

responded to the movement of the attractant by production of a new pseudopod on the 

side closer to the new location of the attractant, while the tail remained intact. If, 

however, the cell was moving directly toward the attractant before the gradient reversal, 

Ramsey found that the cell produced the new pseudopod at the region of the old tail and 

made a new tail in the region of the old pseudopod (i.e. a polarity reversal occurred) [48]. 

The findings of this chapter are qualitatively similar to those reported by Ramsey. 

Combined together they suggest that the neutrophil tail is not a permanent structure, and 

a cell is not always required to ―turn‖ around to change its direction (while maintaining 

its polarity). Rather the cell is capable of reversing its migration direction using other 

mechanisms, such as forming pseudopods from entirely new subcellular sites, involving 

(anterior and/or posterior) side of cells, or by reversing its polarity.  

Irimia et al. recently reported observing only polarity reversals during fast 

gradient switches (with switching time of ~5 s) that were always preceded by cell 

depolarization. No cell turning events were observed in their study [49]. This provides 

more evidence for the dynamic nature of cell reorientation processes during chemotactic 

gradient switches. 

Although more polarity reversals were seen in the study reported in this chapter in 

comparison to the other two mechanisms of reorientation, the response to gradient 
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switches is probably a dynamic process in which the decision to change direction by 

forming pseudopods at new locations, making a turn, or a reversal depend on the initial 

positioning of cells within the newly established chemoattractant gradient. The steepness 

of the gradient and the gradient switching times are other factors that may affect the path 

chosen by a cell reversing its direction, which may explain the variability in cellular 

reorientation mechanisms observed by neutrophil biologists. Qualitatively similar to 

previous results published by Ramsey [48], the present study found that polarity reversals 

were more common when the stream was switched between the leading and trailing 

edges of the cell, whereas cells changed their direction via formation of a pseudopod at a 

new position, or by turning their existing pseudopod, when the new stream orientation 

intersected the side of the cells.  

Lastly, the feasibility for directing dHL-60 cells over extended migration paths 

also was examined. Figure 3.5 shows guidance of a dHL-60 cell through ~90° in a 

clockwise arc by changing the orientation of a stream of 100 nM fMLP through a series 

of six steps. In this experiment, stream orientations were changed in increments smaller 

than 45°. For each of the six dHL-60 cells steered in this manner, cells continuously 

reinforced their polarity (and thus, movement) toward the gradient established by the 

chemoattractant streams.  
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Figure 3.5: Steering an HL-60 cell through a 90° arc. An HL-60 cell is directed in a 
clockwise path by changing the directionality of a 100 nM fMLP stream. No 
backward (counter-clockwise) cell movement was observed during the 
entire 15 minute long time-lapse acquisition. There is a split seen in some of 
the stream orientations, probably caused by remnants of membrane near the 
pore. Time, t is given in minutes (from the time-lapse video). Gey‘s medium 
with 1% BSA (to promote cell migration) [33] was flowed in the cell-dosing 
chamber at 0.25 mL min

-1
, and fMLP was flowed in the reagent chamber at 

0.20 mL min
-1

. 3% BSA was added for visualization of the fMLP streams. 
Scale bar, 20 µm.     
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3.4 CONCLUSION 

In these studies, streams of the bacterially derived peptide, fMLP were directed at 

HL-60 cells, allowing chemotaxis to be examined with true subcellular resolution. By 

rapidly and precisely modifying the orientation of resultant fMLP gradients relative to the 

migration direction of individual cells, a range of mechanisms for altering cellular 

migration paths were identified. In combination with molecular imaging of cytoskeletal 

reorganization [12, 15], these advances in chemical dosing will enable detailed studies 

into how neutrophils interpret gradients of soluble chemical factors secreted by invading 

bacteria and effectively navigate toward sites of infection. More generally, misregulation 

of neutrophil chemotaxis can play critical roles in a variety of diseases, including 

atherosclerosis and cancer metastasis [25, 27, 28], underscoring the importance of 

understanding the mechanisms by which motile cells respond to their local environments. 

 The studies described in this chapter also demonstrated capabilities for guiding 

motile cells through arbitrary migration paths with micrometer resolution (< 5 µm). Such 

abilities to dynamically assign the positions of individual cells within culture should be 

useful in creating and studying the properties of small, well-defined populations of 

numerous cell types, including neurons, glia, and stem cells. 

Notably, motile cells can sense flow-generated stress, and respond by preferential 

orientation and migration along the flow axis [50], making it harder to target subcellular 

features (like leading and trailing edges of cells) using traditional dosing approaches that 

have a fixed direction of solution flow. By dynamic repositioning of laminar flow streams 

containing chemoattractant peptides, cell guidance was achieved along defined migration 
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paths to obtain information on how neutrophils reorient themselves during gradient 

switches.  

The next chapter describes methods for changing the reagent stream orientation 

along arbitrarily desired angles. In the configuration described in Chapter 2, discrete flow 

orientations are obtained by activation of solenoid pinch valves, which are either fully 

open or completely restrictive to flow. Use of valves that can partially occlude flow will 

permit reagent stream orientations to be changed with smaller angular increments, to 

obtain, in principal, any desired stream orientation, further enhancing the spatial control 

obtained using this cell dosing approach. This will allow for cell guidance and precise 

control of motility along extended migration paths. 

 

 

 
 
 
 
 



 97 

3.5 REFERENCES 

[1] Zigmond SH, Levitsky HI, Kreel BJ. Cell polarity: an examination of its 
 behavioral expression and its consequences for polymorphonuclear leukocyte 
 chemotaxis. Journal of Cell Biology. 1981;89:585-92. 
 
[2] Allan RB, Wilkinson PC. A visual analysis of chemotactic and chemokinetic 
 locomotion of human neutrophil leucocytes. Use of a new chemotaxis assay with 
 Candida albicans as gradient source. Experimental Cell Research. 1978;111:191-
 203. 
 
[3] Nossal R, Zigmond SH. Chemotropism indices for polymorphonuclear 
 leukocytes. Biophysical Journal. 1976;16:1171-82. 
 
[4] Zigmond SH. Ability of polymorphonuclear leukocytes to orient in gradients of 
 chemotactic factors. Journal of Cell Biology. 1977;75:606-16. 
 
[5] Zigmond SH. Mechanisms of sensing chemical gradients by polymorphonuclear 
 leukocytes. Nature. 1974;249;450-2.  
 
[6] Rosen G. Chemotactic transport theory for neutrophil leukocytes. Journal of 
 Theoretical Biology. 1976;59:371-80. 
 
[7] Smith CW, Hollers JC, Patrick RA, Hassett C. Motility and adhesiveness in 
 human  neutrophils: Effects of chemotactic factors. Journal of Clinical 
 Investigation.  1979;63:221-9. 
 
[8] Matsushima K, Morishita K, Yoshimura T, Lavu S, Kobayashi Y, Lew W, 
 Appella E, Kung HF, Leonard EJ, Oppenheim JJ. Molecular cloning of a human 
 monocyte-derived neutrophil chemotactic factor (MDNCF) and the induction of 
 MDNCF mRNA by interleukin 1 and tumor necrosis factor. Journal of 
 Experimental Medicine. 1988;167:1883-93. 
 
[9] Van Damme J, Van Beeumen J, Opdenakker G, Billiau A. A novel, NH2-terminal 
 sequence-characterized human monokine possessing neutrophil chemotactic, 
 skin-reactive, and granulocytosis-promoting activity. Journal of Experimental 
 Medicine. 1988;167:1364-76. 
 
[10] Yoshimura T, Matsushima K, Tanaka S, Robinson EA, Appella E, Oppenheim JJ, 
 Leonard EJ. Purification of a human monocyte-derived neutrophil chemotactic 
 factor that has peptide sequence similarity to other host defense cytokines. 
 Proceedings of the National Academy of Sciences of the United States of America. 
 1987;84:9233-7. 
 



 98 

[11] Nakamura H, Herzenberg LA, Bai J, Araya S, Kondo N, Nishinaka Y, Yodoi J. 
 Circulating thioredoxin suppresses lipopolysaccharide-induced neutrophil 
 chemotaxis. Proceedings of the National Academy of Sciences of the United 
 States of America. 2001;98(26):15143-8. 
 
[12] Millius A, Dandekar SN, Houk AR, Weiner OD. Neutrophils establish rapid and 
 robust WAVE complex polarity in an actin-dependent fashion. Current Biology. 
 2009;19:253-9. 
 
[13] Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR. Polarization 
 of chemoattractant receptor signaling during neutrophil chemotaxis. Science. 
 2000;287:1037-40. 
 
[14] Wang F, Herzmark P, Weiner OD, Srinivasan S, Servant G, Bourne HR. Lipid 
 products of PI(3)Ks maintain persistent cell polarity and directed motility in 
 neutrophils. Nature Cell Biology. 2002;4:513-8. 
 
[15] Weiner OD, Marganski WA, Wu LF, Altschuler SJ, Kirschner MW. An actin-
 based wave generator organizes cell motility. Public Library of Science Biology. 
 2007;5:2053-63. 
 
[16] Weiner OD, Servant G, Welch MD, Mitchison TJ, Sedat JW, Bourne HR. Spatial 
 control of actin polymerization during neutrophil chemotaxis. Nature Cell 
 Biology. 1999;1:75-81. 
 
[17] Kritikou E. Chemical detectors or polarity cues? Nature Reviews Molecular Cell 
 Biology. 2007;8:93. 
 
[18] Nishio M, Watanabe K, Sasaki J, Taya C, Takasuga S, Iizuka R, Balla T, 
 Yamazaki M, Watanabe H, Itoh R. Control of cell polarity and motility by the 
 PtdIns (3, 4, 5) P3 phosphatase SHIP1. Nature Cell Biology. 2006;9:36-44. 
 
[19] Ferguson GJ, Milne L, Kulkarni S, Sasaki T, Walker S, Andrews S, Crabbe T, 
 Finan P, Jones G, Jackson S. PI(3)Kγ has an important context-dependent role in 
 neutrophil chemokinesis. Nature Cell Biology. 2006;9:86-91. 
 
[20] Suire S, Condliffe AM, Ferguson GJ, Ellson CD, Guillou H, Davidson K, Welch 
 H, Coadwell J, Turner M, Chilvers ER. Gβγs and the Ras binding domain of p110 
 are both important regulators of PI3Kγ signalling in neutrophils. Nature Cell 
 Biology. 2006;8:1303-9. 
 
[21] Lloyd AR, Oppenheim JJ. Poly's lament: the neglected role of the 
 polymorphonuclear neutrophil in the afferent limb of the immune response. 
 Immunology Today. 1992;13:169-72. 



 99 

[22] Ratcliffe DR, Nolin SL, Cramer EB. Neutrophil interaction with influenza-
 infected epithelial cells. Blood. 1988;72:142-9. 
 
[23] Martin P, Parkhurst SM. Parallels between tissue repair and embryo 
 morphogenesis. Development. 2004;131:3021-34. 
 
[24] Gwira JA, Wei F, Ishibe S, Ueland JM, Barasch J, Cantley LG. Expression of 
 neutrophil gelatinase-associated lipocalin regulates epithelial morphogenesis in 
 vitro. Journal of Biological Chemistry. 2005;280:7875-82. 
 
[25] Zernecke A, Bot I, Talab YD, Shagdarsuren E, Bidzhekov K, Meiler S, Krohn R, 
 Schober A, Sperandio M, Soehnlein O. Protective role of CXC receptor 4/CXC 
 ligand 12 unveils the importance of neutrophils in atherosclerosis. Circulation 
 Research. 2008;102:209-17. 
 
[26] Scaccini C, Jialal I. LDL modification by activated polymorphonuclear 
 leukocytes: a cellular model of mild oxidative stress. Free Radical Biology and 
 Medicine. 1994;16:49-55. 
 
[27] Kim YJ, Borsig L, Varki NM, Varki A. P-selectin deficiency attenuates tumor 
 growth and metastasis. Proceedings of the National Academy of Sciences of the 
 United  States of America. 1998;95:9325-30. 
 
[28] Honn KV, Tang DG, Crissman JD. Platelets and cancer metastasis: a causal 
 relationship? Cancer Metastasis Review. 1992;11:325-51. 
 
[29] Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860-7. 
 
[30] Opdenakker G, Van Damme J. Cytokines and proteases in invasive processes: 
 molecular similarities between inflammation and cancer. Cytokine. 
 1992;4:251-8. 
 
[31] Weitzman SA, Gordon LI. Inflammation and cancer: role of phagocyte-generated 
 oxidants in carcinogenesis. Blood. 1990;76:655-63. 
 
[32] Eriksson C, Nygren H. Polymorphonuclear leukocytes in coagulating whole blood 
 recognize hydrophilic and hydrophobic titanium surfaces by different adhesion 
 receptors and show different patterns of receptor expression. Journal of 
 Laboratory and Clinical Medicine. 2001;137:296-302. 
 
[33] Boyden S. The chemotactic effect of mixtures of antibody and antigen on 
 polymorphonuclear leucocytes. Journal of Experimental Medicine. 1962;115:453-
 66. 
 



 100 

[34] Grotendorst GR, Seppä HE, Kleinman HK, Martin GR. Attachment of smooth 
 muscle cells to collagen and their migration toward platelet-derived growth factor. 
 Proceedings of the National Academy of Sciences of the United States of America. 
 1981;78:3669-72. 
 
[35] Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, 
 McEwan RN. A rapid in vitro assay for quantitating the invasive potential of 
 tumor cells. Cancer Research. 1987;47:3239-45. 
 
[36] Wilkinson PC. Assays of leukocyte locomotion and chemotaxis. Journal of 
 Immunological Methods. 1998;216:139-53. 
 
[37] Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, Takuwa Y, 
 Sugimoto N, Mitchison T, Bourne HR. Divergent signals and cytoskeletal 
 assemblies regulate self-organizing polarity in neutrophils. Cell. 2003;114:201-
 14. 
 
[38] Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM. Laminar 
 flows: Subcellular positioning of small molecules. Nature. 2001;411:1016. 
 
[39] Jeon NL, Baskaran H, Dertinger SKW, Whitesides GM, Van de Water L, Toner 
 M. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 
 formed in a microfabricated device. Nature Biotechnology. 2002;20:826-30. 
 
[40] Saadi W, Wang SJ, Lin F, Jeon NL. A parallel-gradient microfluidic chamber for 
 quantitative analysis of breast cancer cell chemotaxis. Biomedical Microdevices. 
 2006;8:109-18. 
 
[41] Hauert AB, Martinelli S, Marone C, Niggli V. Differentiated HL-60 cells are a 
 valid model system for the analysis of human neutrophil migration and 
 chemotaxis. International Journal of Biochemistry & Cell Biology. 2002;34:838-
 54. 
 
[42] Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC. Normal functional 
 characteristics of cultured human promyelocytic leukemia cells (HL-60) after 
 induction of differentiation by dimethylsulfoxide. Journal of Experimental 
 Medicine. 1979;149:969-74. 
 
[43] Keller HU, Niggli V. Colchicine-induced stimulation of PMN motility related to 
 cytoskeletal changes in actin, alpha-actinin, and myosin. Cell Motility and the 
 Cytoskeleton. 1993;25:10-8. 
 
[44] Seveau S, Eddy RJ, Maxfield FR, Pierini LM. Cytoskeleton-dependent membrane 
 domain segregation during neutrophil polarization. Molecular Biology of the Cell. 
 2001;12:3550- 62. 



 101 

[45] Vicente-Manzanares M, Sancho D, Yanez-Mo M, Sanchez-Madrid F. The 
 leukocyte cytoskeleton in cell migration and immune interactions. Inernational 
 Review of Cytology. 2002;216:233-89. 
 
[46] Zadeh AD, Keller H. Chemotactically directed redistribution of a-actinin precedes 
 morphological polarization and reversal of polarity in human polymorphonuclear 
 leucocytes (PMNs). European Jornal of Cell Biology. 2003;82:93-6. 
 
[47] Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, Takuwa Y, 
 Sugimoto N, Mitchison T, Bourne HR. Divergent signals and cytoskeletal 
 assemblies regulate self-organizing polarity in neutrophils. Cell. 2003;114:201-
 14. 
 
[48] Ramsey WS. Analysis of individual leucocyte behavior during chemotaxis. 
 Experimental Cell Research. 1972;70:129-39. 
 
[49] Irimia D, Liu SY, Tharp WG, Samadani A, Toner M, Poznansky MC. 
 Microfluidic system for measuring neutrophil migratory responses to fast 
 switches of chemical gradients. Lab on  a Chip. 2006;6:191-8. 
 
[50] Rainger GE, Buckley CD, Simmons DL, Nash GB. Neutrophils sense flow-
 generated stress and direct their migration through αVβ3-integrin. American 
 Journal of Physiology. 1999;276:H858-64. 
 
 
 



 102 

Chapter 4:  Changing Reagent Stream Directionality in a Continuous 
Manner 

4.1 INTRODUCTION 

 Cells have the capacity to sense extracellular chemical gradients that vary over 

microscopic scales. Numerous polarized behaviors, including chemotaxis [1-4], 

differentiation [5-8], and axonal pathfinding [9-12], are regulated by subcellular chemical 

cues, although the exact nature of how chemical microenvironments influence cellular 

behavior often is poorly understood. To address such questions, Chapter 2 described a 

technique for creating [13] and rapidly reorienting laminar dosing streams [14, 15], 

containing signal transduction effectors, inside cell-culture environment. The 

applicability of this approach to influence cellular behavior was demonstrated in Chapter 

3 by guidance of human neutrophil precursor cells through migration paths specified by 

gradients of a chemoattractant peptide. The subcellular localization of gradients was 

shown to influence the morphological evolution of cells as they repolarized in response to 

changes in reagent stream orientation [16]. 

 The chemical dosing strategy presented in Chapter 2 allows change of reagent 

stream orientation along defined angles using an asterisk-shaped cell-dosing chamber. In 

Chapter 3, dHL-60 cells, a neutrophil-like cell line [6, 17, 18], were steered along an arc 

by incremental changes in the orientation of a chemotactic laminar stream (Figure 4.1). 

Although feasibility for tracking and dosing motile cells was demonstrated, it was often 

difficult to target the small HL-60 cells (with lengths of attached cells ranging between 

10 − 30 μm) with this device over extended migration paths due to the low angular 



 103 

resolution of stream orientation, nominally 45º with a single pair of activated source and 

drain. This resolution was increased by simultaneously opening two valves (i.e., two pairs 

of activated sources and drains), but the deviations from expected flow directions were 

larger with two valves (compared to activation of individual solenoid pinch valves; 

Figure 4.2), making it difficult to predict, a priori, if the new stream orientation would 

intersect the cell. In cases in which a cell fell between two reagent stream orientations, 

waiting for the cell to move into the next stream was not a practical option as the 

―undosed‖ cell was often found, as expected, to move in random directions, with the 

possibility that the cell would enter the next stream being only a matter of chance. Even 

though the chemical dosing approach presented in the previous chapters offers greater 

spatio-temporal control compared to the Whitesides‘ parallel laminar-stream dosing 

method that has a single pre-defined flow orientation [19-23], it still suffers from 

limitations with respect to dynamic assignment of extended migration paths, a capability 

crucial to the understanding of oriented neutrophil movements that occur during 

chemotaxis. Neutrophils play important roles in host defense against several classes of 

infectious agents [24-26] and during morphogenesis [27, 28] but, paradoxically, these 

cells are also involved in the pathology of various inflammatory conditions [29-38]. 

Ultimately, unraveling chemotactic signaling pathways will help in developing 

therapeutic strategies that optimize microbial killing and minimize auto-immune damage.  



 104 

 

  

 

 
 
 
 

 

Figure 4.1: Steering chemotactic laminar flow streams in an asterisk-shaped 
microfluidic chamber directs chemotaxis of motile cells. The chemotactic 
stream orientation was changed incrementally between positions 1 and 2 
over a 15-min dosing period to guide a single HL-60 cell through ~90º. 
Scale bar, 20 µm.  

 

 Lastly, the asterisk-shaped cell-dosing chamber, used to generate the chemotactic 

gradient signals, is a cumbersome and time-consuming device to work with, consisting of 

8 solenoid pinch valves and 16 tubes running between two syringe pumps and the dosing 

chamber.  
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Figure 4.2: Reagent stream orientations obtained by opening two adjacent valves 
simultaneously. Both (a) and (b) are processed overlays of three images of 
6% BSA streams demonstrating the increased angular resolution (less than 
45°) achieved by opening two adjacent valves simultaneously. The two 
outer BSA streams, separated by ~45°, were obtained by opening single 
valves (i.e., by activating a single pair of inlet and outlet ports), while the 
central stream was produced by activating these two valves simultaneously 
(i.e., two pairs of activated inlet and outlet ports). Note that in both cases the 
resultant stream orientation (i.e., the central stream) lies closer to one of the 
outer streams, likely the result of variability in resistances between channels 
and/or fluid lines. Scale bars, 20 µm.  

   

 In the flow device configuration presented in Chapter 2, discrete flow orientations 

are obtained by activation of solenoid pinch valves, which are either fully open or 

completely restrictive to flow. To increase the angular resolution of reagent stream 

orientation without further increasing the complexity of the cell-dosing chamber, this 

chapter explores the use of valves that can partially occlude flow, permitting reagent-

stream orientations to be changed with smaller angular increments, to obtain, in principal, 

any desired stream orientation. Preliminary results of this endeavor will be presented 

here.   

a b 
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4.2 EXPERIMENTAL METHODS 

 The basic design of the cell-dosing device—consisting of two stacked laminar 

flow chambers separated by a 2.5 µm thick Mylar membrane—remained the same as 

described previously (Chapter 2), except a simplified cell-dosing chamber was used in 

these studies. Details of the design and construction of the cell-dosing chamber are 

presented below. Also, all ablation and microscopy procedures used in these studies were 

described in Chapter 2. 

4.2.1 Design and fabrication of the cell-dosing chamber 

 The cell-dosing chamber formed the upper chamber of the flow device and was 

composed of a flow cell and a PDMS gasket. The flow cell consisted of two intersecting 

channels arranged in a cross-shaped geometry (Figure 4.3), cut in 0.12-mm thick 

adhesive sheets using a laser cutter. Each channel was 31 mm long x 1 mm wide (i.e., 

same dimensions as the reagent channel). The cut adhesives were aligned with plastic 

coverslips with holes in them to serve as entry and exit ports for fluid flow. PDMS 

gaskets, containing access ports for inserting the feed and drain tubes, were used in 

conjunction with the flow cells to establish flow inside the channels.  

 Masters for the cell-dosing gasket were created by bending four pieces of solder 

wires (1.27-mm diameter) in a V-shaped geometry and gluing the pieces to the bottom of 

a Petri dish using cyanoacrylate. PDMS, mixed at a 10:1 ratio of monomer to curing 

agent, was poured into the Petri dish mold and cured overnight at 60 ºC. The hardened 

polymer was separated from its master by cutting the wires at the base of the V, then 

pulling them out. The mold was cut to its final form using a razor. 
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 The feed line supplying cell medium was split into four lines using a PDMS 

manifold, and computer-controlled solenoid pinch valves were used to deliver the 

solution to the four inlet ports of the dosing chamber (described below). It was not found 

necessary to use suction in the cell-dosing chamber due to the absence of leaks, 

eliminating the use of an extra syringe pump—another simplification of the asterisk flow 

device used in previous chapters. 

 Four electrically-controlled solenoid pinch valves were used to switch the flow 

direction in the cell-dosing chamber (Figure 4.3). The pinch valves were interfaced with 

the computer using a Desktop Connector Block to control the activation of valves using 

LabView software. Each channel of the cell-dosing chamber was connected to two pinch 

valves to obtain two flow directions, yielding a total of four flow directions from the two 

channels of the cross chamber. Additionally, a motorized pinch clamp was used for 

proportioning the flow rate to obtain intermediate flow directions. 
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Figure 4.3: Strategy for controlling stream orientation in a continuous manner. Four 
solenoid pinch valves are used to change flow direction in the cross-shaped 
cell-dosing chamber. Solid blue and black lines denote the feed tubes and 
dashed (blue and black) lines denote drains. Each valve controlled one flow 
direction, yielding a total of four directions, which can be further increased 
by proportioning flow using a pinch clamp (green pentagons). The solid 
green arrows indicate the flow orientations obtained by opening valves 1* 
and 2 individually, while the dashed green arrow indicates the flow direction 
obtained when the two valves are activated simultaneously. Pinching and 
un-pinching with the clamp is used to obtain intermediate directions 
between the dashed and horizontal green arrows. The position of the pinch 
clamp can be changed during an experiment (since it is not connected ―in-
line‖), and in conjunction with appropriate valves, can be used to obtain 
other intermediate directions.  
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 For proportioning flow, a 12 V DC stepper motor (Minebea, Astrosyn 17BB-

H132-11; Chatsworth, CA) was used to move a screw threaded to the lower jaw of a 

Delrin pinch clamp, fabricated in the Chemistry machine shop at UT Austin (Figures 4.3 

and 4.4). Movement of the screw served to open or close the lower jaw, thus pinching or 

un-pinching the tube inserted between the jaws, which in turn controlled the amount of 

flow through the tube. A driver circuit was used for powering the motor and for 

interfacing the motorized pinch clamp with a National Instruments data acquisition 

(DAQ) card (USB-6008), so that LabView software could be used for controlling the 

opening and closing of the clamp.  

  

 

 
 
 
 
 

 
 

 

 

 

Figure 4.4: Motorized pinch clamp. A 12 V DC stepper motor was used to control 
movement of the pinch clamp (white). The driver circuit (green chip) 
powered the motor and interfaced it with a data acquisition (DAQ) card, 
which allowed control of the clamp using a computer. 
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 In some cases, opening and closing of the pinch clamp was also mediated using a 

proportional-integral-derivative (PID) controller [39-42], designed in LabView. Real-

time values from the pressure sensors, incorporated in feed lines, were input to the PID 

controller, which also allowed the user to set desired pressure values. The controller then 

used the input values as feedback for changing the pressure by iterative movement of the 

clamp until the current pressure was equal to the set value. The LabView interface 

program, thus, served as a pressure monitor, a pressure controller, and a flow controller.  

4.2.2 Chemicals and reagents 

 
 Dulbecco‘s phosphate-buffered saline (DPBS) was obtained from Invitrogen 

(14190; Carlsbad, CA) and BSA was purchased from Equitech-Bio (BAH64; Kerrville, 

TX). Gey‘s medium (6 mM KCl, 138 mM NaCl, 5 mM glucose, 1 mM Na2HPO4, 20 mM 

HEPES, 1 mM MgCl2 and 1 mM CaCl2, pH 7.4; purchasing information for these 

chemicals was provided in Chapter 2) was also used in some studies. All chemicals and 

reagents were used without additional purification.  
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4.3 RESULTS AND DISCUSSION 

To change reagent stream orientation, a cell-dosing chamber composed of a four-

ported cross flow cell and a corresponding PDMS gasket, containing four inlet and four 

outlet ports, was designed. A feed line supplying cell media to the flow chamber was split 

using a PDMS manifold, and computer-controlled solenoid pinch valves were used to 

direct solution to any one of the four inlet ports. To designate flow direction, each valve 

also controlled flow through a drain line from a corresponding outlet port positioned 180° 

from the inlet (Figure 4.3). Thus, release of an individual pinch valve initiated flow in 

one of the four possible directions. Furthermore, two adjacent valves could be activated 

simultaneously to obtain additional orientations, yielding a total of eight discrete flow 

orientations (Figure 4.5). The cross cell-dosing chamber described here is a simplified 

modification of the asterisk chamber design discussed in Chapter 2 (Figure 2.1).  
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Figure 4.5: Controlling stream directionality in the cross cell-dosing chamber using 
solenoid pinch valves. Red arrows indicate the expected orientations of 3% 
BSA streams. Vertical and horizontal orientations were obtained by 
activation of individual pinch valves and the diagonal orientations were 
obtained by opening two adjacent valves simultaneously. BSA solution was 
flowed in the reagent chamber at a volumetric rate of 0.25 mL min

-1
 and 

DPBS (Dulbecco’s phosphate-buffered saline) was flowed in the cell-dosing 
chamber at 0.50  mL min

-1
. Scale bar, 20 µm.  
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Eight discrete flow orientations were obtained using solenoid pinch valves that are 

either fully open or completely restrictive to flow. The reagent stream orientation can be 

changed in a continuous manner using valves that can partially occlude or proportion 

flow through a pinched line. This was achieved by incorporating a motorized pinch clamp 

in the flow device (Figures 4.3 and 4.4). By opening two adjacent solenoid valves, and 

pinching one of the activated fluidic lines using the ―analog‖ pinch clamp, flow through 

the pinched line could be proportioned to obtain intermediate stream orientations 

(between the orientations obtained using the solenoid pinch valves alone). Similarly, 

gradual opening of the line by ―un-pinching‖ the tube could be used to proportion flow in 

the reverse direction.  

Figure 4.6 illustrates flow proportioning using the motorized pinch clamp to 

incrementally change the reagent-stream orientation between 0 − 23º. Here, two solenoid 

valves were activated simultaneously, then the motorized pinch clamp was engaged to 

gradually pinch one of the activated feed lines, which permitted intermediate stream 

orientations between fully open and completely flow restrictive positions of the pinch 

clamp. The two outermost angles of the plot (0 and 23º) represent the stream orientations 

corresponding to the fully open and completely restrictive clamp positions, orientations 

that can also be obtained using the solenoids alone, while the intermediate angles were 

obtained by the gradual pinching action of the motorized clamp. Each angular change 

using the pinch clamp occurred within a single 3 s long frame of the acquired time-lapse 

data. The angle covered during a single step only exceeded 5º in 3 instances out of 49 

angular changes that occurred during four closing trials from three independent 

experiments (i.e., two of the trials were from the same experiment), with each experiment 
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conducted on a different day using new flow cells outfitted with fresh sections of 

membrane. Notably, a single motorized clamp can be used to proportion multiple fluidic 

lines without disrupting the experiment since it is not an ―in-line‖ restriction device. 

Proportioning of flow to increase the angular resolution of stream orientation can be used 

to dynamically guide motile cells along extended migration paths. 
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Figure 4.6: Changing stream directionality in a continuous manner. Path traced by 3% 
BSA streams between 0 − 23º. Data were acquired by activating two 
solenoid pinch valves simultaneously, followed by gradual closing of one of 
the activated feed lines using a motorized pinch clamp to obtain 
intermediate angles between the fully open and completely restrictive 
positions of the clamp (0 and 23º, respectively). The error bars represent the 
standard error of the mean of 4 trials (from 3 independent experiments). 
Note that the total angle covered during this process (nominally 45º) was 
~23º, possibly a result of the variability in resistances between the two 
activated channels and fluidic lines, which affects the angle corresponding 
to the fully open clamp position, combined with incomplete restriction of 
flow obtained by pinching the feed lines alone (due to fluid leaks through 
the un-pinched drain line), which affects the stream angle corresponding to 
the fully restrictive clamp position. To minimize errors, stream angles were 
measured ~100 µm downstream from the center of the pore (in ImageJ). The 
starting point (fully open clamp position) was arbitrarily assigned an angle 
of 0º. For these studies, Gey‘s medium was flowed in the cell-dosing 
chamber, and BSA was flowed in the reagent chamber. 
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 Overall, the system response was unpredictable. In Figure 4.6, data from four 

closing trials with similar angles covered between fully open and completely restrictive 

pinch clamp positions (20.7 ± 1.7º; mean ± standard deviation) were pooled together to 

generate the plot. It was found that similar angles were covered during individual motor 

steps when the total angle (i.e., the angular difference between fully open and completely 

closed clamp positions) was similar. This may be due to the fixed number of motor steps 

for a given diameter tubing, implying that when the angular difference between the two 

outermost clamp positions was larger, the motor would have to cover relatively larger 

angles during individual steps to make up for the angular difference. Even so, the motor 

response for larger total angles (data not shown) couldn‘t be predicted from the data at 

smaller total angles, indicating that pinching of tubes using the motorized pinch clamp 

was inherently a non-linear process. Also, the clamp operation was not reversible, i.e., 

different individual angles were covered when the cycle was reversed to allow gradual 

un-pinching of tubes. Lastly, as seen from the plot, steps were not equiangular. These 

response characteristics are probably symptomatic of the non-linear nature of pinching 

tubes for restriction of flow. Generating look-up tables (LUTs) for a range of total angles 

can be cumbersome and time-consuming, and as seen from the plot (Figure 4.6), large 

error bars exist at every step, making the LUTs of little value to the user in predicting, a 

priori, the output angle.  

 To address some of these limitations, a feedback controller was developed. 

Pressure values from piezoresistive sensors were input into LabView software, which 

also allowed the user to set a desired pressure value. Using PID control programming 
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[43], the pressure was changed by pinching or un-pinching tubes inserted between the 

jaws of the motorized pinch clamp until the current pressure was equal to the set value. 

 A PID controller is a closed-loop control system, where the controller determines 

the input signal to a given process based on the reference signal (e.g., set values of a 

given variable) and the measurement of the output (which serves as the feedback signal). 

The function of feedback control is to keep the process variable close to the desired value 

in spite of disturbances and variations in process dynamics. Applying the PID control law 

consists of properly applying the sum of three types of control actions: a proportional 

action, an integral action, and a derivative action [43] (Figure 4.7). Implementation of 

PID controllers requires selection of three PID parameters, the proportional, integral, and 

derivative gains (Kp, Ki, and Kd, respectively), a process referred to as tuning of PID 

controllers, and is a crucial issue in the overall controller design [39-45]. Proper selection 

of PID gains is critical for controlling the accuracy, response time, and stability of the 

output. 

 As shown in Figure 4.7, the proportional control action is proportional to the 

current control error, which is the difference between the output and the set values. The 

integral action is proportional to the integral of the control error, thus accounting for past 

values of the error. Finally, the derivative control is proportional to the derivative of the 

error. Increasing the proportional gain leads to a faster but more oscillatory output. 

Conversely, increasing the integral gain leads to a slower but more stable response, and 

lastly, increasing the derivative gain provides a damping effect on the system response. 

More details on the workings of PID controllers can be found in [43].                                                                       
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Figure 4.7: Structure of a proportional-integral-derivative (PID) Controller. The  output 
of a PID controller is a summation (Σ) of the proportional (P), integral (I), 
and derivative (D) actions. The control error—which is the difference 
between the output and the set values—is input to the P, I, and D modules, 
and the modular outputs are summed to determine the PID output, which 
serves as a feedback signal for calculation of the error. The iterative action 
of PID controllers is used for achieving desired system responses. 

 
 Using the PID controller, the stream orientation could be changed in an 

incremental manner by activating two adjacent pinch valves, then varying the pressure in 

one of the activated lines by controlled movement of the lower jaw of the motorized 

pinch clamp, thus pinching or un-pinching the tube inserted between the jaws. When a 

single feed line supplying media to the cross cell-dosing chamber was split into four lines 

(to feed the four inlets), activation of two adjacent valves—one connected to the 

horizontal channel, and the other, to the vertical—followed by restriction of flow through 

one of the lines simply diverted the flow to the un-restricted line without a significant 

change in the pressure. A pressure difference was required to enable the PID controller, 
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which was achieved by feeding media to the cell-dosing chamber using two syringe 

pumps—one for feeding the two inlets of the horizontal channel, and the other for the 

vertical channel. Using this setup, a buildup of pressure obtained from restriction of flow 

was used to change the reagent stream orientation (Figure 4.8). The angular changes 

typically occurred within 5 s.  

 The stability of reagent stream orientation was often affected by oscillations in the 

PID output. These oscillations resulted when the set pressure fell between two discrete 

motor steps, in which case, the controller was found to toggle between the two steps to 

reach the set value, leading to output oscillations. Using a higher resolution stepper motor 

may help to reduce this problem.  
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Figure 4.8: Changing orientation of a 3% BSA stream by incremental closing using 
PID. After activation of two adjacent solenoid pinch valves, the pressure in 
one of the activated lines was gradually increased, allowing small changes 
in the reagent stream orientation (left panel). The right panel is a plot of the 
stream movement data shown in the left panel. For these studies, PID gain 
values of Kp = 7, Ki = 0.18, and Kd = 22 were used, and both feed and drain 
tubes were pinched to obtain complete restriction of flow. Pressure changes 
were not equiangular (i.e., for the same pressure change, different angular 
outputs were obtained), a result of the non-linear nature of the pinching 
process. To minimize errors, stream angles were measured ~100 µm 
downstream from the center of the pore. Notably, although the total dosing 
flow rate is reduced to half at 9.3 kPa (compared to the flow rate at 1.9 kPa), 
no significant widening of the BSA stream is observed within 100 µm from 
the pore. It is possible that widening of the stream occurs further 
downstream (i.e., at distances greater than 100 µm). DPBS was flowed in 
the dosing chamber using two syringe pumps, each set at 0.25 mL min

-1
, and 

BSA was flowed in the reagent chamber at 0.30 mL min
-1

. Scale bar, 20 µm. 
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4.4 CONCLUSION 

In these studies, a motorized pinch clamp was used to proportion flow in the cell-

dosing chamber for changing the orientation of reagent streams in a continuous manner. 

The increased resolution obtained using this approach, coupled with the capabilities 

demonstrated in Chapters 2 and 3, offers on-the-fly control for assignment of cellular 

migration paths. Such advances will enable studies into how motile cells perceive and 

respond to their chemical microenvironments. 

The studies described in this chapter used a cross-shaped cell-dosing chamber, 

consisting of two perpendicular channels connected to four solenoid pinch valves. This is 

a simpler modification of the asterisk flow device discussed in Chapters 2 and 3. The 

asterisk device is a cumbersome and time-consuming experimental setup to work with, 

making this modification an important advantage from a practical standpoint. The 

reduction in complexity should also allow for easier dissemination of the chemical dosing 

technology.  

Although increased angular resolution of stream orientation was demonstrated 

using a simplified flow device (relative to the asterisk design), much work needs to be 

done to change the stream orientation with higher accuracy and precision, which would 

allow the user to predict, a priori, the pressure or step input needed to achieve a desired 

output angle. Modifications such as the use of higher resolution stepper motors or a servo 

motor may help, especially in reducing some of the stream oscillations found using the 

PID controller. Other options, such as the incorporation of restriction devices that do not 

rely on pinching of tubes, e.g., proportional valves, which restrict flow by decreasing the 

diameter of an internal orifice, may also be explored for increasing device accuracy.  



 122 

Finally, in place of using pressure as the feedback variable, angular input to the 

PID controller will allow for change of reagent-stream orientation along user-defined 

trajectories. Control loops consisting of detection of stream position, computation, and 

actuation will have to be designed. To achieve angular control, stream positions will be 

identified by an optical system and the data will be transferred to an image processing 

algorithm for measuring the (current) stream angle. PID can then be used for iterative 

movement of the motorized pinch clamp to move the streams to their desired positions. 

Such control systems have been used before for electro-osmotic actuation in microfluidic 

channels [46]. Their incorporation in the multi-directional flow device discussed in this 

dissertation will provide an invaluable tool for truly dynamic changes of reagent-stream 

orientations. 

This chapter concludes development of functionality for the cell-dosing chamber. 

In Chapters 2 – 4, all studies were conducted with a single reagent in the lower flow 

chamber. The capability to change the cellular effectors within reagent streams would 

increase the versatility of this dosing approach. Combined with the ability to change the 

orientation of reagent streams, a number of cell-dosing studies, such as sequential or 

simultaneous dosing of neutrophils with a chemoattractant and an inhibitor, can be 

envisioned. Incorporation of multiple reagents is the topic of Chapter 5.  
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Chapter 5:  Multiple Dosing Agents within Laminar Flow Devices 

5.1 INTRODUCTION 

 The previous chapters of this dissertation described strategies for on-the-fly 

control of chemical gradients, offering unparalleled spatial and temporal precision for 

dynamic interactions with cells [1, 2]. The multi-directional flow devices presented in 

these chapters overcome most of the limitations of the Whitesides‘ method [3-7] and 

offer important new chemical dosing capabilities. These capabilities were exploited in 

Chapter 3 for investigating cellular reorientation mechanisms adopted by neutrophil-like 

HL-60 cells during chemoattractant gradient switches, a step towards solving the 

mysteries of gradient sensing and directed migration. Cell motility and chemotaxis [8-15] 

play an important role in many biological processes, including inflammation [16-18], 

wound healing [19-22], and cancer metastasis [23-26]. Ultimately, unraveling 

chemotactic gradient sensing mechanisms has the promise for finding new approaches to 

combat acute and chronic inflammation in human disease.  

 Despite the advantages of the multi-directional chemical dosing devices, 

limitations exist with respect to the number of dosants. The flow devices presented in the 

previous chapters are designed to supply only a single dosing solution, i.e., all reagent 

streams emerging through pores ablated in polymer membranes are necessarily of 

identical composition. Supplying the same dosing solution to multiple, highly resolved 

sites have enabled important insights into chemotactic responses (Chapter 3). However, 

far more detailed characterizations would be possible by selectively dosing subcellular 
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regions with distinct solutions. For example, by dosing one site with a chemoattractant 

and a second site with an inhibitor, properties of signal integration between the two 

pathways could be evaluated. Furthermore, a tunable mixture of these two cellular 

effectors could be supplied through ablated pores. Cellular responses under such diverse 

conditions could provide valuable insights into the interactions between various signaling 

pathways that effectively allow cell navigation inside chemical gradients.  

 This chapter reports two strategies for adapting the flow devices to a multiple-

reagent format. The first method relies on incorporation of confluent parallel laminar 

streams in the reagent chamber, a design similar to the Whitesides‘ approach [3]. By 

incorporating different signal transduction effectors in the parallel reagent streams, and 

moving the interfacial boundaries created between them, the composition of streams 

emerging through ablated pores can be controlled. A multi-directional flow chamber 

(similar to the designs described in Chapters 2 and 4) will be used to form the cell-dosing 

compartment, which in conjunction with the multi-reagent flow chamber, will allow for 

creation and rapid reorientation of steep gradients of more than one chemical species, 

thus permitting parallel dosing of selected subcellular regions with different effector 

molecules. Also, laminar streams containing varying concentrations of a single chemical 

species can be used to subject cells to a more gradual gradient. A second method 

discussed in this chapter permits rapid sequential dosing of subcellular sites with multiple 

reagents, a format which can be extended to generate arbitrary chemical waveforms.  
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5.2 EXPERIMENTAL METHODS 

5.2.1 Device design and fabrication 

 The basic design of the cell-dosing device—consisting of two stacked laminar 

flow chambers separated by a 2.5 µm thick Mylar membrane—remained the same. Each 

flow chamber was composed of a flow cell and its corresponding gasket, as described in 

Chapter 2. To construct flow cells, channels were cut in 0.12 mm thick adhesive sheets 

using a laser cutter. The cut adhesives were aligned with plastic coverslips with holes 

drilled in them to serve as entry and exit ports for fluid flow. The diameter of the holes 

was set equal to the channel width. 

 Three types of flow cells were used in this chapter—single-channel, cross-shaped, 

and multi-stream flow cells. For the single-channel and cross flow cells, 12 – 18 W of 

laser power with a laser head speed of 4.50 inches per second was used for cutting the 

adhesive sheets. An intermediate number of PPI (value = 500) with air flow set to 30 psi 

were used. For cutting the multi-stream flow cells, 30 W of laser power with a laser head 

speed of 2.25 inches per second and maximum PPI (value = 1000) were used. 

 The upper flow cell, which contained the cell medium, was composed of either a 

single 31 mm long x 1 mm wide channel or two intersecting channels of the same 

dimensions arranged in a cross-shaped geometry. Single-channel and cross flow cells 

were also used to form the reagent (lower) chamber in some experiments. In addition, 

multi-stream flow cells—two-stream and four-stream formats—were also used in the 

reagent chamber. In the two-stream flow cells, the inlet channels were 0.5 mm wide, and 

in the four-stream design, they were 0.4 mm wide. The main channel, where the reagent 

streams became confluent, was 1 mm wide in both cases (Figure 5.1). PDMS gaskets, 
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containing access ports for inserting the feed and drain tubes, were used in conjunction 

with the flow cells to establish flow inside the channels.  

 Masters for the reagent gasket were created by gluing pieces of polyurethane-

coated wires (0.9-mm diameter) to the bottom of a Petri dish using cyanoacrylate in an 

orientation initially normal to the surface. For fabrication of the cross reagent gasket, four 

pieces of wires were used to form 2 inlet and 2 outlet ports (i.e., an inlet/outlet pair for 

each channel). Similarly, for the single-channel reagent gasket, two pieces of wires were 

used (1 inlet, 1 outlet). For the two-stream and four-stream designs, three pieces (2 inlets, 

1 outlet) and five pieces (4 inlets, 1 outlet) of the same wires were used, respectively. At 

a height of ~2 mm, the wires were bent parallel to the surface of the Petri dish. PDMS, 

mixed at a 10:1 ratio of monomer to curing agent, was poured into the Petri dish mold, 

and cured overnight at 60 ºC. The hardened polymer was separated from its master by 

pulling out the wires, and the mold was cut to its final form using a razor. The gasket for 

the cross cell-dosing chamber was fabricated in a similar fashion except eight pieces of 

thicker solder wires (1.27-mm diameter) were used to create the masters to form 4 inlet 

and 4 outlet ports (i.e., two inlet/outlet pairs for each channel). Lastly, the single-channel 

dosing gasket consisted of 1 inlet and 1 outlet port fabricated using the solder wires. 
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Figure 5.1: Multi-stream reagent flow cells. Two-stream and four-stream flow cells (top 
view) were used to form the reagent chamber. The flow cells were 
constructed by aligning channels cut in adhesive sheets with holes drilled in 
polycarbonate coverslips. In both cases, the main channel, where the laminar 
streams became confluent, was 1 mm wide. 

  

 The entire device, consisting of the membrane sandwiched between the two flow 

cells with their corresponding gaskets, was assembled on a microscope stage, with the 

dosing channel (vertical channel in case of cross dosing flow cells) aligned with the 

reagent channel, which was the main channel in the multi-stream flow cells and the 

vertical channel when cross flow cells were used to form the reagent chamber. A 

plexiglass plate with two screws was used to clamp the assembly tightly onto the stage. 

An intermediate borosilicate glass piece was placed between the upper PDMS gasket and 

the plexiglass plate. This process yielded two flow chambers separated by the polymer 

membrane.  

 Feed and drain tubes were connected to both flow chambers. Solutions were 

supplied by syringes driven by electro-mechanical pumps. Platinum-cured silicone tubing 

Main 

channel 

Inlet channels 
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(0.8-mm inner diameter) provided fluidic connection between the chambers and syringe 

pumps on the feed side and on the reagent drain line. The same type of tubing with a 

larger inner diameter (1.6 mm) was used for the drain lines from the upper chamber, a 

configuration that resulted in pressure-driven transfer of the reagent into the cell-dosing 

chamber. In addition, a small diameter tube (~0.4-mm outer diameter) typically was 

inserted at the end of the reagent drain tube to create additional pressure within the 

reagent chamber. Separate syringe pumps delivered cell medium to the upper chamber 

and desired reagents to the lower chamber. For supplying media to the cross cell-dosing 

chamber, the feed line was split into four lines using a PDMS manifold to deliver solution 

to the four inlet ports of the dosing chamber.  

 Four electrically-controlled solenoid pinch valves were used to switch the flow 

direction in the cross cell-dosing chamber. The pinch valves were interfaced with the 

computer using a Desktop Connector Block to control the activation of valves using 

LabView software. Each channel of the cell-dosing chamber was connected to two pinch 

valves to obtain two flow directions, yielding a total of four flow directions from the two 

channels of the cross chamber (Figure 5.2a). Cross flow chambers were also used to 

form the lower (reagent) chamber in some experiments. The flow chamber design 

remained the same, except the PDMS gasket in this case consisted of two inlet and two 

outlet ports (i.e., a single inlet/outlet pair for each channel), which in conjunction with 

two pinch valves allowed unidirectional flow in each cross channel (Figure 5.2b). This 

setup was used for delivering two different chemical species, using syringe pumps, to the 

two cross channels. Lastly, to rapidly switch between the two chemical species, two 

additional solenoid pinch valves—one per reagent feed line—were incorporated to direct 
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the reagents to a waste reservoir when they were not delivered to the chamber. With these 

additional valves, the reagents could be directed either to the chamber or to the waste 

reservoir with the syringe pumps running at all times (Figure 5.3). Although syringe 

pumps could be used to switch between the two reagents (by simply stopping the pump to 

prevent flow of the reagent it was supplying), the process took 30 – 40 s due to the slow 

response times of the pumps. Using the pinch valves, reagents could be switched in less 

than 1 s. Thus, a total of eight solenoid pinch valves—four in the cell-dosing chamber 

and four in the reagent chamber—were used when the flow device consisted of two 

stacked cross chambers. Note that no valves were used with single-channel flow chamber 

configurations. 
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Figure 5.2: Valve schematic for cell-dosing and reagent flow chambers. (a) Four 
solenoid pinch valves were used to change flow direction in the cross cell-
dosing chamber. Each channel was connected to two valves to obtain two 
flow directions, giving a total of four directions. (b) Solenoid pinch valves 
were used in the reagent chamber to switch between two different chemical 
species. Each channel was connected to a pinch valve, thus allowing 
unidirectional flow in the channels. The solid lines denote the feed tubes and 
the dashed lines denote drains.  

 

a b 
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Figure 5.3: Valve schematic for rapid switching between chemical species. Solenoid 
pinch valves were used to direct a reagent to the lower chamber of the flow 
device or to a waste reservoir. The incorporation of valves prevented delays 
arising from the slow response time of syringe pumps and allowed for rapid 
switching between reagents. Note valve 1 is the same valve from Figure 
5.2b. The same setup was also used on the feed side of the second reagent. 

 
 

 Reagents were delivered using syringe pumps (described above) or gravity. For 

delivery using gravity, syringes (with their plungers removed) were connected to ring 

stands, using clamps, such that the syringe outlets were at a greater height than the height 

of the reagent chamber inlets to establish a hydrostatic head. In order to minimize fluidic 

resistance, the larger diameter silicone tubing (1.6 mm) was used to provide fluidic 

connection between the syringes and the reagent chamber. Also, 3-way valves, 

commonly used in intravenous applications, were connected to the syringe outlets to 
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provide a means to stop flow when needed. Delivery using gravity was typically used 

when multi-stream flow cells (Figure 5.1) formed the reagent chamber.  

Lastly, all solutions were vacuum degassed for 2 – 3 h before introduction into the 

flow chambers to minimize formation of air bubbles. 

5.2.2 Chemicals and reagents 

 In addition to the chemicals and reagents used in previous chapters, two 

fluorescent dyes, fluorescein (Acros Organics, 119241000; Fairlawn, NJ) and rhodamine 

B (Alfa Aesar, A13572; Ward Hill, MA), were used. All chemicals and reagents were 

used without additional purification. 

5.2.3 Cell culture 

 All culture procedures used for growth, differentiation, and attachment of HL-60 

cells are described in Chapter 2. 

5.2.4 Membrane ablation 

 All studies described here were conducted using a frequency-doubled (532 nm), 

Q-switched Nd:YAG laser, also used in the work reported in previous chapters. Laser 

powers ranging from 10 − 15 mW (measured before the back aperture of the objective) 

were used for ablation of pores. 

 In the studies described in previous chapters, micron-sized pores were typically 

ablated with an empty reagent chamber by focusing the laser beam at desired positions, 

typically near the top surface of Mylar membranes, and irradiating the membranes with a 

train of 10 exposures of 5 ms each, spaced by 50 ms intervals. For production of pores in 

the presence of aqueous solutions in both the upper and lower chambers, the reagent 
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solution was replaced with air or ethanol before performing ablations, an approach that 

required re-introduction of the reagent solution after pores were ablated. 

 The studies described in this chapter and on-going experiments with multiple 

reagents often require rapid ablation of pores and creation of reagent streams in the 

presence of aqueous solutions in both flow chambers. Ablations performed with an air-

filled or ethanol-filled lower chamber, in addition to being cumbersome and time-

consuming due to multiple fluid exchanges (between air/ethanol and dosant solution), 

often caused membrane flexing. This was especially prevalent with an air-filled lower 

chamber, resulting in formation of air bubbles in the dosing chamber and consequent 

detachment of cells. Ablations performed with an ethanol-filled lower chamber posed 

other issues. BSA solutions, typically used in the reagent chamber, precipitate in ethanol, 

requiring flow of an intermediate buffer solution (e.g., PBS) between BSA and ethanol†. 

This process often required several minutes for ablation of pores and creation of laminar 

flow streams, a solution that was impractical for targeting motile cells that often migrated 

away before introduction of the reagent streams in the dosing chamber. 

  

 

 

 

 
†The procedure consisted of first introducing the buffer solution in the reagent chamber to remove the BSA, 
then flowing ethanol and performing ablations, followed by flow of buffer again to remove the ethanol, and 
then re-introduction of the BSA solution in the reagent chamber. 
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 To overcome some of these limitations, other strategies were explored in these 

studies for ablation of pores in the presence of aqueous solutions in both chambers of the 

flow device. A range of ablation parameters was tested, such as varying the pressure 

gradient across membranes, increasing the length of laser exposures and/or reducing the 

delay between exposures, and positioning of the laser focus within membranes. It was 

found that 10 exposures of 5 ms each, spaced by 10 ms intervals resulted in more 

regularly sized pores compared to the other investigated parameters. The reduction in 

delay (compared to the 50 ms delay used in ablations with an empty reagent chamber) 

possibly prevented dissipation of heat between exposures that allowed for dielectric 

breakdown to occur resulting in pore formation. 

 Solution flow through pores, and resultant formation of laminar reagent streams, 

were monitored visually using solutions in the two chambers that had different refractive 

indices (e.g., by dissolving 3 – 6% BSA in one of the solutions) or by flowing a 

fluorescent dye in the reagent chamber.  
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5.3 RESULTS AND DISCUSSION 

5.3.1 Rapid switching between two chemical species 

To rapidly change the chemical species emerging through pores ablated in Mylar 

membranes, a reagent chamber composed of a four-ported cross flow cell and a 

corresponding PDMS gasket, containing two inlet and two outlet ports (i.e., an 

inlet/outlet pair per channel), was designed (Figure 5.2b). Syringe pumps were used to 

deliver two different reagents to the two perpendicular channels of the cross chamber (to 

have a reagent per channel). Each reagent feed line was split using a PDMS T-splitter, 

and computer-controlled solenoid pinch valves were used to direct solutions to either the 

reagent chamber or to a waste reservoir (Figure 5.3). Rapid switching between the two 

reagents occurred by opening a given reagent valve (with its waste valve closed) in 

conjunction with opening the second waste valve (and closing the corresponding reagent 

valve). Figure 5.4 is an overlay of fluorescein and rhodamine B streams emerging 

through the same pore into the cell-dosing chamber. In these studies, a cross flow 

chamber, similar to the reagent chamber but with two additional inlet and outlet ports, 

was used to form the dosing chamber (Figure 5.2a). Note that the reagent stream 

orientations are determined by the flow direction of the cross cell-dosing chamber and are 

independent of the flow direction in the reagent chamber. The reagent chamber, on the 

other hand, serves as a reservoir for the fluorescent dyes and determines which chemical 

species emerges through the ablated pores.   
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Figure 5.4: Switching orientation and composition of laminar streams. (a) Delivery of 
solutions to the reagent chamber. Two fluorescent dyes, fluorescein and 
rhodamine B, were flowed in the reagent chamber (a dye through each 
channel). (b) Processed overlay of two images—each  consisting of a single 
dye stream—acquired by flowing fluorescein and rhodamine B sequentially 
through separate channels of the cross reagent chamber. The stream 
orientations were obtained by changing the flow direction in the dosing 
chamber and the composition of the streams was determined by the flow 
conditions of the reagent chamber. Both dyes were flowed at 0.15 mL min

-1
. 

DPBS was flowed in the cell-dosing chamber at the same volumetric flow 
rate. Scale bar, 20 µm.  

 

 
 The plot of Figure 5.5 shows that the composition of reagent streams can be 

changed in less than 500 ms. This assessment was made by initially flowing only 

rhodamine B in the reagent chamber and then switching to fluorescein by closing the 

valve directing fluorescein to the waste reservoir (and opening the fluorescein chamber 

valve) in conjunction with opening the valve that directed rhodamine to the waste 

reservoir (and closing the rhodamine chamber valve). The plot shows fluorescein 

b a 
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intensity values measured 15 µm downstream from the pore. The reagents could be 

switched within a single frame of the 2 Hz time-lapse acquisition.  

 Since the reagent channels were primed before the start of the time-lapse 

acquisition, the reagent switching time should depend on the reagent dead volume, which 

is the volume of the central mating region of the cross channels, the reagent flow rate, 

and the time taken by the reagent stream to travel 15 µm downstream from the pore. At a 

nominal cell-dosing flow rate of 0.15 mL min
-1 

(which corresponds to ~2 mm s
-1 

calculated
 
2 µm above the membrane) and at an equal reagent volumetric flow rate, this 

switching time was calculated to be ~60 ms, almost an order of magnitude smaller than 

the duration of a single frame period. The switching time can be slowed by experimental 

factors, such as the response time of the solenoid pinch valves used to switch between the 

reagents and delays from the LabView software used to control the activation of valves. 

Faster imaging (e.g., using a video CCD) should provide more accurate measurements of 

reagent switching times. 
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Figure 5.5: Subsecond switching of composition of reagent streams. Reagent switching 
times were assessed by first flowing rhodamine B in one of the cross 
channels followed by flowing fluorescein in the other channel (and stopping 
rhodamine flow). The time plot shows fluorescein intensity data acquired 
from 3 switching cycles, inside the same flow-cell device, using a CCD 
camera at 2 Hz. The fluorescein intensity values were measured 15 µm 
downstream from the pore. Both dyes were flowed at 0.15 mL min

-1
. DPBS 

was flowed in the cell-dosing chamber at the same volumetric flow rate.  

 
 
 Lastly, the two dyes can also be flowed simultaneously in the reagent chamber. 

By incorporating the motorized pinch clamp, discussed in Chapter 4, to control reagent 

flow rates, it may be possible to generate tunable mixtures, containing varying 

proportions of the two reagents, which can then be supplied to the cell-dosing chamber 

via ablated pores. Future work will involve modeling and/or experimentally evaluating 
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the mixing conditions inside the mating area between the cross channels to generate 

predictable reagent concentrations inside tuned mixtures.  

5.3.2 Simultaneous dosing of cells with two different chemical species 

 In this dissertation, several examples of dosing HL-60 cells, a neutrophil 

precursor cell line [9, 27-29], with chemoattractant molecules have been demonstrated. In 

all these chemical dosing instances, only one selected subcellular region was dosed at a 

time. Often the dosing sites were switched between two cellular regions (e.g., the leading 

and trailing edges of cells), but once again, only a single subcellular site was chemically 

stimulated at a given time. Out of a lab ―brainstorming‖ session came the idea of dual 

chemical stimulation of cells, i.e., parallel dosing of two subcellular regions (on the same 

cell) with chemoattractant streams. Such experiments would provide insights into how 

long-range communication works in neutrophils and if ―bipolarity‖ is possible in this cell 

type.  

Figure 5.6 shows chemoattractant streams dosing two sites on an HL-60 cell. In 

these studies, differentiated HL-60 cells were attached to fibronectin-coated Mylar 

membranes mounted inside the flow-cell device. After formation of two pores, 100 nM of 

fMLP, a bacterially-derived chemoattractant, was flowed in the reagent chamber, 

producing two chemotactic laminar flow streams in the cell-dosing chamber targeted to 

selected subcellular regions. Initially, the HL-60 cell showed ruffling on both subcellular 

sites that were inside the chemotactic streams, followed by a stage during which it 

appeared that the cell exhibited bipolarity, showing protrusions and pseudopod-like 

features on both the dosed sites, a stage that lasted for ~3 min (2
nd

 panel of the figure). 
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This was followed by a gradual thinning of the left (dosed) edge of the cell and 

development of a defined polarity—the right edge forming the front of the cell and the 

left forming its tail—with the cell ultimately migrating into the right stream.     

 

 

Figure 5.6: Parallel dosing of subcellular sites of an HL-60 cell. Time sequence 
showing an HL-60 cell changing its polarization in response to 100 nM 
fMLP streams emerging through two pores ablated in Mylar membrane. 
Time in minutes (from the 26-min time-lapse video) is denoted as t. In these 
studies, single-channel flow chambers formed both the upper and lower 
chambers of the flow device. Throughout dosing, Gey‘s medium with 0.5% 
BSA was flowed in the cell-dosing chamber at 0.15 mL min

-1 
and fMLP was 

flowed in the reagent chamber at 0.20 mL min
-1

. 3% BSA was added for 
visualization of the fMLP streams. A heated microscope stage was used to 
maintain cells at ~37 ºC. Scale bar, 20 µm.    
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 This data provides insights into how HL-60 cells respond when they are faced 

with similar gradient conditions on opposing sides of their bodies. Other dosing 

experiments, such as parallel dosing with two chemo-inhibitor streams or with a 

chemoattractant and an inhibitor or two chemoattractant streams of different 

concentrations, can be easily envisioned. Also, introducing the second stream after a 

short delay would provide insights into whether the first activated site establishes 

dominance or only the current levels of stimulation affect cellular responses†. The 

capabilities presented thus far in this dissertation do not allow for parallel dosing with 

two different reagents. The flow devices presented in the previous chapters were 

designed to supply only a single dosing solution, i.e., all reagent streams emerging 

through pores ablated in polymer membranes were necessarily of identical composition. 

Development of methodologies to achieve parallel dosing with two different reagents is 

the last topic of this dissertation.  

Simultaneous dosing with multiple cellular effectors requires a means to introduce 

and arbitrarily change the individual locations of multiple components in the reagent flow 

chamber to selectively deliver the reagents through different pores to distinct regions of a 

cell or to a group of cells. To achieve this end, a simple and versatile solution has been 

devised, which involves incorporating a previously described chamber design by 

Whitesides and coworkers. In the Whitesides‘ chamber, multiple reagents are supplied 

through separate inlet channels that converge into a main channel. Due to laminar flow 

conditions inside the main channel, the reagent streams flow adjacent to each other with 

mixing limited to the small amount of diffusional transport across the boundaries between  
 
†Such experiments will require rapid ablation of pores and creation of reagent streams in the presence of 
aqueous solutions in both the upper and lower chambers of the flow device. This was achieved by 
manipulation of laser ablation parameters (see Experimental Methods).  
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mixing limited to the small amount of diffusional transport across the boundaries between 

the streams [26, 28, 33]. By incorporating this confluent channel design to form the 

reagent chamber of the flow device described in previous chapters and maintaining a 

reasonably high chamber flow rate (e.g., 4 – 8 mm s
-1

), diffusional mixing can be 

minimized over the several millimeter distance that the streams flow adjacent to each 

other. By ablating pores on opposing sides of the sharp solution boundaries, reagent 

streams of different compositions can be introduced in the cell-dosing chamber via the 

pores (Figure 5.7a). Moreover, it is possible to move the position of the boundaries by 

changing the relative flow rates of the two supply lines, thus permitting dynamic 

targeting of subcellular regions with different effector molecules, achieved by combining 

the capabilities developed in this dissertation with previously described microfluidic 

dosing technologies.  

In preliminary studies, the feasibility of this approach has been confirmed in two 

reagent chamber designs—two-pronged and four-pronged Ys (Figure 5.1)—housing two 

and four reagent streams, respectively. Distinct interfaces were seen between adjacent 

streams (Figure 5.7b), with the width of the interface being a function of the flow rate in 

the reagent chamber. By controlling the volumetric rates of the syringe pumps supplying 

the reagents, interfaces between streams could be moved (Figure 5.8) to control the 

chemical composition of reagent streams emerging through ablated pores.  
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Figure 5.7:  Dosing distinct subcellular microdomains with different chemical species. 
(a) Schematic illustrating subcellular dosing by delivery of two reagents to 
the inlet channels of a Y-shaped reagent chamber. The reagent streams flow 
adjacent to each other separated by a sharp interfacial boundary. By ablating 
pores on opposing sides of the boundary, combined with the capability of 
changing the directionality of the reagent streams emerging through these 
pores, distinct regions of a cell can be dosed with two different chemical 
species. Adapted from illustration made by J. B. Shear. (b) Image of the 
boundary region (boxed region in (a)) showing the interface between DPBS 
and 6% BSA streams. DPBS was flowed at 0.03 mL min

-1
 and BSA was 

flowed at 0.10 mL min
-1 

in the reagent chamber. Scale bar, 100 µm.  

 

b a 
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Figure 5.8: Moving interfaces between laminar flow streams. Fluorescein streams of 
two different concentrations—0.75 µM (light green) and 1.50 µM (dark 
green)—were flowed in an alternating manner in the main channel of a four-
stream reagent chamber (plot inset). Shown are the fluorescence intensity 
values of a given coordinate (red circle in inset) that initially fell inside the 
rightmost (1.50 µM fluorescein) stream. In these studies, the flow rate of 
0.75 µM fluorescein was maintained at a constant value and the flow rate of 
1.5 µM fluorescein was incrementally decreased, which caused a gradual 
widening of the 0.75 µM fluorescein streams, with movement of the 
interfaces towards the right. The intensity at the shown coordinate, initially 
inside the 1.50 µM fluorescein stream, reduced as the adjacent 0.75 µM 
fluorescein stream widened and the interfaces moved to the right. The 
increase in intensity as the flow rate of 1.50 µM fluorescein was further 
decreased is due to movement of the middle interface to the right, with the 
shown coordinate gradually falling inside the middle interfacial region. This 
data was extracted from a fluorescence time-lapse video. Throughout the 
experiment, 0.75 µM fluorescein was flowed at 0.10 mL min

-1
. 
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The interfaces in our experiments can undergo lateral movement of up to 15 µm 

in both the two-stream and four-stream configurations. Pulsations arising from the 

stepper motor-driven syringe pumps used to deliver reagents could be contributing to 

interfacial instability, a common problem encountered in microfluidic systems [30, 31]. 

Notably, in these studies, the middle interface in the four-stream configuration was found 

to be very stable with interfacial movement less than 1 µm (possibly a result of the out-

of-sync syringe pump pulsations cancelling out). The mean interfacial movement of the 

middle interface was found to be 0.9 ± 1.8 µm (mean ± standard deviation) measured 

over nine 15-min observation periods from 3 independent experiments. Each experiment 

was conducted on a different day with new flow cells outfitted with fresh pieces of Mylar 

membranes. More experiments need to be done to improve the interfacial stability of the 

other interfaces. Possible solutions include delivery of reagents using gravity (see 

Experimental Methods), which is an ongoing investigation showing promising early 

results.  

5.4 CONCLUSION 

The chemical dosing devices presented in previous chapters were fundamentally 

limited in that the reagent chamber was capable of supplying only a single dosing 

solution. This chapter described two approaches for incorporation of multiple reagents. A 

multi-reagent format would significantly enhance the utility and versatility of this 

chemical dosing platform, increasing its appeal to the biological community. 

The first approach relied on the use of a multi-channel flow chamber to house 

distinct chemical species in different channels. In these studies, subsecond switching 
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between chemical species was demonstrated, which would allow for rapid sequential 

delivery of different effector molecules to selected subcellular regions. This approach 

also offers promise for generation of reagent mixtures containing varying proportions of 

individual components. By incorporating tunable mixtures in laminar streams emerging 

through ablated pores, dynamically changing chemical signals could be presented to 

adherent cells in a temporally-defined manner. 

The second approach presented in this chapter used multiple parallel laminar-flow 

streams of different compositions in the reagent chamber. By judicious selection of 

relative position of pores and reagent stream orientation, this approach should allow for 

simultaneous delivery of different chemical species to distinct selected regions on the 

same cell or on a group of cells.  

These studies provide a foundation for a highly versatile chemical dosing platform 

that may enable currently inaccessible problems in neutrophil biology to be addressed. 

For instance, the ability to dose two edges of a cell in a differential manner, e.g., with a 

chemoattractant and an inhibitor, is an important step towards understanding how long 

range communication works in motile cells. Current strategies for defining chemical 

interactions in vitro largely rely on pre-fabricated gradient generators. By providing what 

is essentially a static cell-reagent interaction, ‗pre-determined‘ gradient generator 

technologies are unable to achieve the temporal and spatial dexterity offered by the flow 

devices described in this dissertation. Such capabilities are necessary for dynamic 

interactions with cells undergoing migration.  

Finally, fabrication of the flow devices discussed in this dissertation using 

alternative approaches, such as PDMS molding technologies, can be envisioned. This will 
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permit integration of ―on-chip‖ valves and pumps [32-34]. Such future developments will 

allow device miniaturization, reduction in cost and bulkiness, and easier dissemination in 

the biological community.   
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Appendix: List of Abbreviations 

 
cAMP: cyclic adenosine monophosphate  

DIOC6: 3,3'-dihexyloxacarbocyanine iodide  

HL-60: human promyelocytic leukemia  

fMLP: N-formyl-methionyl-leucyl-phenylalanine  

BSA: bovine serum albumin  

MPE: multiphoton excitation  

Ti:S: titanium-sapphire  

NA: numerical aperture  

Nd:YAG: neodymium yttrium aluminum garnet 

CCD: charge-coupled device 

SEM: scanning electron microscopy  

IL-8: interleukin-8  

LTB4: leukotriene-B4  

PI3K: phosphatidylinositol 3-kinase  

PIP3: phosphatidylinositol 3,4,5-triphosphate  

dHL-60: differentiated human promyelocytic leukemia  

MEMS: micro-electromechanical systems  

PDMS: polydimethylsiloxane 

PPI: pulses per inch  

CFM: cubic feet per minute  

FBS: fetal bovine serum  
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DMSO: dimethyl sulfoxide  

PBS: phosphate-buffered saline 

DAQ: data acquisition  

PID: proportional-integral-derivative  

DPBS: Dulbecco‘s phosphate-buffered saline  

LUT: look-up table  
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