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The American Cancer Society estimates that 212,920 women will be

diagnosed with breast cancer in the United States in 2006. Another 40,970

women will die of the disease. Early detection of breast cancer increases the

survival rate and increases the treatment options. Screening mammography,

radiographic imaging of the breast, is currently the most effective tool for

early detection of breast cancer. Radiologists visually search mammograms

for specific abnormalities. Some of the important signs of breast cancer that

radiologists look for are clusters of micro calcifications, masses, and architec-

tural distortions.

However, mammography is not perfect. Detection of suspicious abnor-

malities is a repetitive and fatiguing task. For every thousand cases analyzed

by a radiologist, only three to four are cancerous and thus an abnormality

may be overlooked. Radiologists fail to detect 10% to 30% of cancers and two
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thirds of these are evident retrospectively. Thus, computer-aided detection

(CADe) systems have been developed to aid radiologists in detecting mam-

mographic lesions that may indicate the presence of breast cancer. However,

it is widely known that these systems are more accurate for the detection of

micro-calcifications than spiculated lesions.

In this dissertation a new evidence-based algorithm is developed for the

detection of spiculated lesions on mammography. By evidence based, we mean

that we use the statistics of the physical characteristics of these abnormalities

to determine the parameters of the detection algorithm. Towards this goal, we

have shown that the properties of these lesions can be measured reliably and

we have created the first database of the physical properties of these lesions.

For the detection algorithm, we have invented a new class of linear fil-

ters and filter banks which we call Spiculation Filters and Spiculation Filter

banks. These filters were created specifically for the detection of spiculated

lesions and are highly specific narrowband filters, which are designed to match

the expected structures of these abnormalities. As a part of this algorithm,

we have also invented a novel technique to enhance spicules on mammograms.

This entails filtering in the Radon domain. All the parameters of the detec-

tion algorithm are based on measurements of physical properties of spiculated

lesions. The results of the detection algorithm are presented in the form of

FROC curves and are competitive with existing algorithms.
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Chapter 1

Introduction

1.1 Motivation

The American Cancer Society estimates that 212,920 women will be

diagnosed with breast cancer in the United States in 2006 [1]. Another 40,970

women will die of the disease. In the United States, breast cancer is the most

common form of cancer among women and is the second leading cause of can-

cer deaths after lung cancer [1]. Women in the United States have about a 1

in 8 lifetime risk of developing invasive breast cancer [2, 3]. Early detection of

breast cancer increases the survival rate and increases the treatment options.

Screening mammography, x-ray imaging of the breast, is currently the most

effective tool for early detection of breast cancer. Screening mammographic

examinations are performed on asymptomatic woman to detect early, clini-

cally unsuspected breast cancer. Two views of each breast are recorded; the

craniocaudal (CC) view, which is a top-to-bottom view, and a mediolateral

oblique (MLO) view, which is a side view taken at an angle. Examples of the

MLO and CC views are shown in Fig. 1.1.

Radiologists visually search mammograms for specific abnormalities.

Some of the important signs of breast cancer that radiologists look for are
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clusters of microcalcifications, masses, and architectural distortions. A mass

is defined as a space-occupying lesion seen in at least two different projections

[4]. Masses are described by their shape and margin characteristics. Cal-

cifications are tiny deposits of calcium, which appear as small bright spots

on the mammogram. They are characterized by their type and distribution

properties. An architectural distortion is defined as follows: “The normal ar-

chitecture is distorted with no definite mass visible. This includes spiculations

radiating from a point, and focal retraction or distortion of the edge of the

parenchyma” [4]. A typical example of each of these abnormalities is shown

in Fig. 1.2. Breast lesions are described and reported according to the Breast

Imaging Reporting and Data System (BI-RADSTM) [4]. BI-RADSTM is a lexi-

con developed by the American College of Radiology (ACR). The BI-RADSTM

lexicon for mammography includes descriptors such as the margin of a mass

and the distribution of calcifications and it defines final assessment categories

to describe the radiologists level of suspicion about the mammographic abnor-

mality. It has been demonstrated that the BI-RADSTM final assessment rating

is an indicator of the likelihood of malignancy [5]. If a suspicious abnormality

is detected, a diagnostic mammographic examination is carried out to decide

the future course of action required. Based on the level of suspicion of the

abnormality following the diagnostic examination, a recommendation is made

for routine follow-up, short-term follow-up, or biopsy.

Early detection via mammography increases breast cancer treatment

options and the survival rate [6]. However, mammography is not perfect.
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Detection of suspicious abnormalities is a repetitive and fatiguing task. For

every thousand cases analyzed by a radiologist, only three to four are cancerous

and thus an abnormality may be overlooked. As a result, radiologists fail to

detect 10% to 30% of cancers [7–9]. Approximately two thirds of these false-

negative results are due to missed lesions that are evident retrospectively [10].

Due to the considerable amount of overlap in the appearance of malignant and

benign abnormalities, mammography has a positive predictive value (PPV) of

less than 35% [11], where the PPV is defined as the percentage of lesions

subjected to biopsy that were found to be cancer. Thus, a high proportion

of biopsies are performed on benign lesions. Avoiding benign biopsies would

spare women anxiety, discomfort, and expense.

Computer-aided detection (CADe) systems have been developed to aid

radiologists in detecting mammographic lesions that may indicate the presence

of breast cancer. These systems act as a second reader and the final decision is

made by the radiologist. Recent studies have also shown that CADe detection

systems, when used as an aid, have improved radiologists accuracy of detection

of breast cancer [12–16]. However, recently there has been some controversy

in their use and a recent study by Gur et al. found no increase in the number

of cancers detected with current commercial CADe systems [17].

Computer-aided diagnosis (CADx) systems for aiding in the decision

between follow-up and biopsy are still in development. It is important to

realize that mammographic image analysis is an extremely challenging task

for a number of reasons. First, since the efficacy of CADe/CADx systems can
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have very serious implications, there is a need for near perfection. Second, the

large variability in the appearance of abnormalities makes this a very difficult

image analysis task. Finally, abnormalities are often occluded or hidden in

dense breast tissue, which makes detection difficult.

1.2 Computer-Aided Detection of Mammographic Ab-
normalities

The goal of CADe is to assist radiologists in locating abnormalities on

the mammogram. A flowchart showing the different steps involved in detection

algorithms is shown in Fig. 1.3.

The metrics used to report the performance of detection algorithms are

sensitivity (Equation 1.1) and the number of false positives per image (FPI;

Equation 1.1). A true positive mark is a mark made by the CAD system

that corresponds to the location of a lesion. A false-positive mark is a mark

made by the CAD system that does not correspond to the location of a lesion.

A plot of sensitivity versus FPI is called a free-response receiver operating

characteristic (FROC) plot and this is generally used to report the performance

of the detection algorithm. An example of an FROC plot is shown in Fig. 1.4.

There is some disagreement regarding the manner in which detection

results should be reported. While most authors report the performance in

terms of the detection of any “actionable” objects, some report it terms of

how many malignant masses were detected, since they believe that detection

of malignant masses is most important. Whatever the methodology used, it is
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necessary for researchers to clearly state the reporting method that has been

adopted. Until recently, FROC analysis has been limited by the fact that the

statistical analysis of FROC curves was less developed than that of traditional

receiver operating characteristic (ROC). Major advances have recently been

made in FROC analysis, particularly by Chakraborty and Berbaum [18]. How-

ever, despite the consistent use of evaluation methods in the literature, direct

comparison of systems for detecting mammographic abnormalities is difficult

because few studies have been reported on a common database.

Sensitivity =
Number of True-Positive Marks

Number of Lesions
(1.1)

FPI =
Number of False-Positive Marks

Number of Images
(1.2)

1.2.1 Detection of Masses

A mass is defined as a space-occupying lesion seen in at least two dif-

ferent projections [4]. Radiologists characterize masses by their shape and

margin properties. A number of researchers have worked on methods for de-

tecting masses in mammograms. Masses with spiculated margins have a very

high likelihood of malignancy and thus some methods have been developed

specifically for the detection of spiculated masses. A spiculated mass is char-

acterized by lines radiating from the margins of a mass [4]. However, since not

all malignant masses are spiculated, the detection of non-spiculated masses

is also important. Most mass detection algorithms consist of two stages: (a)

detection of suspicious regions on the mammogram and (b) classification of

suspicious regions as mass or normal tissue. These are described in Sections
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1.2.1.1 and 1.2.1.2, respectively.

1.2.1.1 Stage 1: Detection of Suspicious Regions

The first stage is designed to have a very high sensitivity and a large

number of false positives are acceptable since they are expected to be removed

in stage 2. Algorithms for stage 1 detection can generally be considered to be

of two types, pixel based or region based [19].

Pixel-based Detection Methods: In pixel-based methods, features are

extracted for each pixel and they are then classified as suspicious or normal.

The terminology “pixel-based” is misleading since for every pixel, features

are extracted from the local neighborhood of the pixel. This is followed by

a classification step in which pixels are classified as suspicious or not. This

may be done by simply applying a threshold to the feature image or by using

sophisticated classification techniques. Finally, suspicious pixels are grouped

together into regions, generally by collecting connected pixels.

It is important to emphasize that regions labeled as suspicious by the

detection algorithms are not necessarily malignant. The classification of de-

tected regions into malignant or benign categories is a different problem. A

brief summary of pixel based mass detection methods follows. A number of

detection methods have targeted particular subsets of masses. For example,

some researchers have focused on the detection of spiculated masses because

of their high likelihood of malignancy. The main idea behind the detection

of spiculated masses is as that since spiculated masses are characterized by
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spicules radiating in all directions, one should compute the edge orientations

at each pixel. Thus, each pixel is represented by a feature vector that repre-

sents the strongest edge orientation at the pixel. The edge orientation can be

computed in a variety of different ways.

Kegelmeyer et al. [20] developed a method to detect spiculated masses

using a set of 5 features for each pixel. They used the standard deviation

of a local edge orientation histogram (ALOE) and the output of four spatial

filters which are a subset of Laws texture features. The idea of using the

ALOE feature is that a normal mammogram exhibits a tissue structure that

radiates in a particular orientation (from the nipple to the chest). A spiculated

mass would change this trend and thus while normal tissue would have edge

orientations in a particular direction whereas, in suspicious regions containing

spiculated lesions, edges would exist in many different orientations. To detect

this difference Kegelmeyer et al. [20] computed edge orientations in a window

around each pixel and then generated a histogram of edge orientations. This

idea is depicted in Fig. 1.5. The ALOE feature was then defined as the

standard deviation of the bin heights of the histogram and is described by

equation 1.3.

ALOE(σij) =

∑255
n=0(histij(n) − hist(i, j))2

255
(1.3)

Where histij is the histogram of edge orientations in a window around the pixel

located at (i, j), and hist(i, j) is the average bin height of the histogram histij.

A binary decision tree was used to classify each pixel. The neighborhood size
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for computing the ALOE was chosen to be 4 cm so that it would encompass

all of the spiculated masses in the dataset.

Karssemeijer and te Brake [21] detected stellate distortions by a statis-

tical analysis of a map of pixel orientations. The orientation at each pixel was

computed from the response of three filter kernels, which are second-order,

directional derivatives of a Gaussian kernel in the directions (0, π/3, 2π/3).

These filters form a non-orthogonal basis and are shown in Fig. 1.6. They

used the relation that at a particular scale (σ), the output at any orientation

Wσ(θ) can be expressed as a weighted sum of the responses of the filters. This

is described in Equation 1.4, where Wσ(0), Wσ(π/3) and Wσ(2 ∗ π/3) are the

responses of the three filters. This relation was used to determine the orienta-

tion at each pixel and two features for each pixel were derived by a statistical

analysis of these pixel orientation maps. The pixels were then classified as

suspicious or normal. To account for the range of sizes of spiculations in their

dataset, edge orientations were computed at three spatial scales (σ = 1,2,3)

and the one with the maximum magnitude was used. We note that this is

equivalent to choosing local neighborhoods of varying sizes.

Wσ(θ) =
1

3
[1 + 2 · cos(2θ)](Wσ(0)

+
1

3
[1 − cos(2θ) +

√
3sin(2θ)](Wσ(π/3)

+
1

3
[1 − cos(2θ) −

√
3sin(2θ)](Wσ(2π/3)

(1.4)

Liu et al. [22] point out that in general, it is difficult to estimate the

size of the neighborhood that should be used to compute the local features
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of spiculated masses. Small masses may be missed if the neighborhood is

too large and parts of large masses may be missed if the neighborhood is too

small. To address this problem Liu et al. [22] developed a multiresolution algo-

rithm for the detection of spiculated masses. They generated a multiresolution

representation of a mammogram using the discrete wavelet transform. They

extracted four features at each resolution for each pixel. One of the features

they used was the ALOE feature described in Equation 1.3. Pixels were then

classified using a binary classification tree. The detection was carried out in

a top-down manner from the coarsest resolution to the finer resolutions. If a

positive detection was made and a pixel was classified as abnormal, no feature

extraction and detection were needed at the corresponding pixels at all finer

resolutions. This approach reduced the number of pixels to be classified.

In all of the three methods described above, the focus was on developing

sophisticated stage 1 detection techniques. These methods used very simple

techniques for the stage 2 task. For example, Karssemeijer and te Brake [21]

grouped suspicious regions and discarded regions that were smaller than 500

pixels. Other researchers have not restricted their efforts to the detection of

spiculated masses since many malignant masses are not spiculated. Li et al.

[19] developed a two-step process for detection of masses. In the first step,

adaptive gray-level thresholding was used to obtain an initial segmentation of

suspicious regions. The segmentation was iteratively improved using a mul-

tiresolution Markov random field (MRF) based segmentation method. The al-

gorithm was first applied at the coarsest resolution and the output was refined
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at the next finer resolution. This strategy helps to reduce the computational

complexity as mentioned above.

In the second stage, a fuzzy binary decision tree was used to classify the

segmented regions as masses or normal tissue using features based on shape,

region size, and contrast. Matsubara et al. [23] developed an adaptive thresh-

olding technique for the detection of masses. They used histogram analysis

techniques to divide mammograms into three categories ranging from fatty

to dense tissue. Potential masses were detected using multiple threshold val-

ues based on the category of the mammogram. A number of features such

as circularity, area, and standard deviation were used to reduce the number

of false positives. Li et al. [24] developed a method for lesion site selec-

tion using morphologic enhancement and stochastic modelbased segmentation

technique. A finite generalized Gaussian mixture distribution was used to

model histograms of mammograms. The expectation maximization algorithm

[25] was used to determine the parameters of the model. The segmentation

was achieved by classifying pixels using a new Bayesian relaxation labeling

technique. An underlying motivation for this technique was that it could in-

corporate neighborhood information into the classification process and that

this would help improve the process. They argued that for the purpose of

lesion site selection, sensitivity should be the sole criterion for evaluation and

thus did not incorporate a false-positive detection step. The primary advan-

tage of using pixel-based methods is that one has a large number of samples

to train a classifier. However, this class of methods also has inherent disad-
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vantages. It does not take into account the spatial arrangement of the pixels,

which is a very important factor to discriminate masses from normal tissue. A

different set of features would be required to describe different mass types. It

is computationally intensive and hence, most pixel-based methods must sub-

sample images before detection. The advantage of having many pixels per

image available for use in training supervised learning methods should not

be overstated. There are two problems regarding the use of multiple pixels.

First, pixels at the periphery of a mass and at the center of the mass belong

to the same class, but are not always homogeneous and maybe represented by

different feature values. This is a major limitation as, ideally, one would want

samples of a particular class to possess similar feature values. Second, multiple

pixels from a single mass represent only one particular lesion example. This

does not eliminate the need for a comprehensive database containing masses

that encompasses the range of natural variability of masses.

Region-based Detection Methods: In region based detection methods,

regions of interest are first extracted by a segmentation or filtering technique.

Features are then extracted for each region and the region is classified as suspi-

cious or otherwise. These features are designed to describe important diagnos-

tic information like shape and texture of the extracted regions. A number of

these methods are based on the idea of matched filtering. In these approaches,

the image is filtered with a filter that is used as a model for a mass. The idea is

that the output of the filtered image will be high near the center of the tumor

masses. Often the N largest outputs are selected as possible suspicious regions.
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This is followed by the extraction of ROIs around the N largest peaks. Fea-

tures are extracted from the ROI, and the ROIs are classified as containing a

mass or normal tissue. Here lies the main difference between pixel and region-

based detection methods. In the pixel-based methods, features were extracted

for each pixel, whereas in the region-based methods, features are extracted

for each region. A brief description of the region-based methods that used a

matched filtering approach is given below.

Kobatake et al. [26] modeled masses as rounded convex regions and

based on this idea, developed an “iris filter” to enhance and detect masses. The

iris filter was applied to a gradient image that was generated by Prewitt-type

operators. The output of the filter was computed by measuring the average

convergence of the gradient over the region of support of the filter. The peaks

of the output of the filter were selected as centers of tumor candidates. The

filter was then reapplied locally to detect the boundaries of candidate masses.

Finally, texture features were computed from the candidates and were used

to reduce false-positives. The authors showed that one of the advantages of

using this filter was that the output of the filter would be constant regardless

of the contrast between a rounded convex region and the background.

Petrick et al. [27] developed a two-stage algorithm for the enhancement

of suspicious objects. In the first stage, they proposed an adaptive density-

weighted contrast-enhancement (DWCE) filter to enhance objects and sup-

press background structures. The central idea of this filtering technique was

that it used the density value of each pixel to weight its local contrast. In the
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first stage, the DWCE filter and a simple edge detector (Laplacian of Gaussian)

were used to extract ROIs containing potential masses. In the second stage,

the DWCE was reapplied to the ROI. Finally, to reduce the number of false

positives, they used a set of texture features for classifying detected objects as

masses or normal. They further improved the detection algorithm by adding

an object-based region growing algorithm [28].

Polakowski et al. [29] used a single difference of Gaussian (DoG) filter

to detect masses. The DoG filter was designed to match masses that were

approximately 1 cm in diameter. ROIs were selected from the filtered image.

They used nine features based on size, contrast, circularity and Laws texture

features to reduce the number of false positives and to then classify ROIs as

malignant or normal. The DoG filter, which is a band-pass filter, has been

used by several researchers for the preliminary task of detection of potential

masses in an image. The DoG filter must be matched to the size of the mass.

Since the size of masses varies from a few millimeters to several centimeters

[30], a number of DoG filters would be required, which would increase the

computational complexity. Since the size of a potential mass is not known a

priori, several researchers have used multiscale region-based methods for the

detection of masses.

Brzakovic et al. [31] use a two-stage multiresolution approach for detec-

tion of masses. First, they identified suspicious ROIs using Gaussian pyramids

and a pyramid linking technique based on the intensity of edge links. Edges

were linked across various levels of resolution. This was followed by a classifi-
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cation stage, where the ROIs were classified as malignant, benign, or normal

on the basis of features like shape descriptors, edge descriptors, and area.

Qian et al. [32] developed a multi-resolution and multi-orientation

wavelet transform for the detection of masses and spiculation analysis. They

observed that traditional wavelet transforms cannot extract directional infor-

mation, which is crucial for a spiculation detection task and thus, they intro-

duced a directional wavelet transform. Figure 1.7 shows the partitioning of

the frequency domain with the directional wavelet transform. We note that

in comparison, a conventional wavelet transform would produce a rectangu-

lar partitioning of the frequency domain. An input image was decomposed

into two output images using the directional wavelet transform. One was a

smoothed version of the original image and was used to segment the bound-

ary of the mass. The second contained the high-frequency information and

was used for directional feature extraction. The key ideas of the method were

that at coarser resolutions, features such as the central mass region can be

easily detected, whereas at finer resolutions, detailed directional features such

as spicules can be localized.

As was the case for pixel-based methods, some researchers have devel-

oped region-based methods that are focused on the detection of masses with

particular margin characteristics, such as circumscribed or spiculated masses.

Lai et al. [33] developed a simple template matching algorithm to detect

circumscribed masses only. They enhanced images using a modified median

filtering technique to remove background noise. To cope with variations in the
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size of masses various templates with radii ranging from three to 14 pixels were

used. To measure the similarity between a potential mass and the template,

the authors chose the normalized cross-correlation as a similarity metric. This

particular metric was chosen since it is invariant to the size of the template

and the average brightness of the image. They also developed two features to

reduce the number of false positives detected.

Groshong and Kegelmeyer [34] used the circular Hough transform for

the detection of circumscribed lesions. The Hough domain, for circular objects

consists of three parameters (x, y, and r) corresponding to the x and y centers

and radius (r) of the object. Thus, a point in the three dimensional Hough

domain maps to a circle in the image domain. They computed an edge image

using a Canny operator and selected a subset of the edges based on length and

intensity. This subset of edges was the input to a circular Hough transform.

The radius parameter search space ranged from 3 to 30 mm to account for

masses of different sizes. Two features were extracted from the Hough domain

for each pixel and ultimately these were classified as either belonging to a mass

or normal tissue.

Zhang et al. [35] noted that the presence of spiculated lesions led

to changes in the local mammographic texture. They proposed that such

a change could be detected in the Hough domain, which is computed using

the Hough transform. They partitioned an image into overlapping ROIs and

computed the Hough transform for each ROI. The Hough domain of each

ROI was thresholded to detect local changes in mammographic texture and to
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determine the presence or absence of a spiculated mass. Region-based methods

have a number of advantages. In contrast to pixel-based methods, region-

based detection takes into account the spatial information. Also, the features

are directly correlated to important diagnostic information like the shape and

margin of extracted regions. They are computationally less intensive than

pixel-based methods. The main disadvantage is that if a classifier is used,

there are fewer samples for training the classifier as compared to the pixel

based methods.

To conclude this section, we note that masses can have a range of sizes.

Thus, a major limitation of both pixel-based and region-based methods is that

the analysis is not done over a continuous range of scales. Cancerous lesions

are stochastic biologic phenomena that manifest in images as having various

structures occurring at different sizes and over ranges of spatial scales. For

example, masses occupy definite regions; this region occupancy can be ap-

proached at a coarse scale of description or processing. However, the bound-

aries of masses require a more localized approach, although the sharpness, and

hence the scales of interpretation of the lesion boundaries, can vary consid-

erably. Moreover, the spiculations that are associated with many cancerous

lesions occur with different widths, lengths, and densities, which suggests that

their characterization will require analysis over scales.
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1.2.1.2 Stage 2: Classification of Suspicious Regions as Mass or
Normal Tissue

A number of researchers have focused solely on the second stage of

detection in which suspicious regions are classified as mass or normal tissue.

The purpose of the second stage is to reduce the number of false positives that

were produced at the end of the first stage. A brief summary of stage two

methods follows.

Researchers have used texture features to discriminate between mass

and normal tissue. Sahiner et al. [36] proposed a convolution neural network

for this task. They extracted texture features from the ROIs. Wei et al. [37]

developed a classifier using texture features and linear discriminant analysis

for this task. They computed multiresolution texture features from spatial

gray-level dependence matrices. Wei et al. [38] also investigated the use of

global and local multiresolution texture features for this task and for reducing

the number of false-positive detections on a set of manually extracted ROI.

Radiologists use a number of image characteristics to discriminate be-

tween masses and normal tissue and researchers have attempted to emulate

that process. te Brake et al. [39] defined a number of features to discriminate

between lesions and normal tissue that were designed to capture image charac-

teristics like intensity, iso-density, location, and contrast. Kupinski and Giger

[40] studied a regularized neural network for this task. Masses were detected

using the bilateral subtraction scheme. Features based on geometry intensity

and the gradients of potential lesions were extracted. They also evaluated
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the effectiveness to minimize over training. Mutual information and a subre-

gion hotelling observer have also been tested for this classification problem.

Tourassi et al. [41] developed a template-matching technique for this problem.

Each ROI in the database served as a template and mutual information was

used a similarity metric to decide if a query ROI contained a mass. Baydush et

al. [42] proposed a subregion hotelling observer for detecting whether a given

ROI contained a mass or not.

1.2.1.3 Methods for the detection of architectural distortions

In comparison to the detection of masses there have been few studies

which have focused on the detection of architectural distortions (AD). This

section briefly reviews recent methods developed specifically for the detection

of AD. Hara et al. [43] developed a method to detect AD based on the con-

centration of the mammary gland. They used dynamic range compression as

a preprocessing step. The mean curvature, shape index and curvedness were

used to extract the mammary gland.

Rangayyan and Ayres [44] developed a technique for the detection of

AD which is based on the analysis of oriented texture through a linear phase

portrait model. To reduce the number of false-positives they constrained the

shape of the general phase portrait model.

Elmaghraby et al. [45] developed a scheme for the detection of AD

that focuses on the morphological effects of breast parenchyma due to cancer

infiltration. Their hypothesis was that ADs evolve in concentric layers around

a focal region. In their approach they first select potential seeds by identifying
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areas of increased concentric activity. Finally, only those seeds with a high

probability of malignancy are marked.

1.2.2 Commercial Computer-Aided Detection Systems

Three FDA-approved commercially available CADe systems have been

developed to aid radiologists in detecting mammographic abnormalities. Cur-

rently, there are no FDA-approved systems for CADx. A brief description of

each of these systems is given below.

1.2.2.1 R2 Technology, Inc.

R2 Technology’s Image CheckerTM was the first commercial mammo-

graphic CADe system approved by the FDA [46]. This device is designed to

search for signs that may be associated with breast cancer. Masses are marked

with an asterisk, while microcalcification clusters are marked with a triangle.

The detection accuracy of calcifications is reported as 98.5% sensitivity at 0.74

false positives per case (set of four images). The detection accuracy of masses

is reported as 85.7% at 1.32 false-positive marks per case.

1.2.2.2 Intelligent Systems Software, Inc.

The FDA approved the Intelligent System Software Inc. (ISSI) CADe

system MammoReaderTM in 2002. MammoReaderTM was designed to detect

primary signs of breast cancer in mammogram images including microcalci-

fication clusters, well- and ill-defined masses, spiculated lesions, architectural

distortions, and asymmetric densities. Masses are marked with crosshairs and
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microcalcification clusters with outlines [47]. The reported overall sensitivity

is 89.3% (91.0% in cases where microcalcifications are the only sign of cancer

and 87.4% in the remaining cases where malignant masses are present). The

system made 1.53 true-positive marks and 2.32 false positive marks per case

among cancer cases and 3.32 false positive marks among cases without cancer.

1.2.2.3 CADx Medical Systems

CADx Medical Systems was the third company to receive approval for

a mammographic CADe system called Second- LookTM [48]. SecondLookTM

was designed to mark areas of a mammogram that are indicative of cancer.

It marks masses with circles and microcalcification clusters with rectangles.

The sensitivity of the system is reported to be 85% for screening-detected

cancers (combination of masses and microcalcification clusters). Additionally,

it identified cancer locations in 26.2% of mammograms acquired within 24

months before cancer diagnosis. CADx did not report SecondLook’sTM false-

positive rate.

1.2.3 Independent Studies of Commercial Computer-Aided Detec-
tion Systems

Several large-scale independent trials of the R2 Image CheckerTM sys-

tem have been conducted to test the performance of this system in a clinical

setting. In a study conducted by Vyborny et al. [15], it was shown that the

R2 Image CheckerTM system detected 86% of the spiculated masses at 0.24

FPI on a dataset of 375 images whereas it had a detection sensitivity of 53%
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for nonspiculated masses. All of these masses were given a subtlety rating of

subtle, medium, or obvious by three radiologists. It is important to note that

of the 375 clearly spiculated masses, 271 were classified as “obvious”, 73 had

a subtlety rating of “medium”, and only 31 had a subtlety rating of “subtle”.

While the R2 Image CheckerTM system detected 94% of the obvious spiculated

masses, it detected only 70% of the medium spiculated masses and 52% of the

subtle spiculated masses. Though the overall results (86% at 0.24 FPI) for the

detection of spiculated masses are impressive, it is important to note that the

study used a large number of obvious masses and a much smaller number of

subtle masses. Thus, there is still room for improvement, even in the detection

of spiculated masses.

Freer and Ulissey [14] tested the performance of the R2 Image Checker

system on more than 12,860 patients in a community breast center. For the

first 20,624 radiographs, they observed that 14,214 computer cues or marks

were made by the CADe system. Of these, 13,846 marks (97.4%) were dis-

missed by the radiologist as false positives. This corresponds to a false-positive

rate of 0.671 FPI. The CADe system detected 67% (18 of 27) malignant masses

and 100% of the clustered calcifications (22 of 22). The authors argue that

dismissing the large number of false-positive marks was easy for a radiologist

to do [14]. However, another study claims that dismissing false-positive cues

can be difficult [49]. This study clearly showed that the R2 Image Checker

systemTM is better at the detection of calcifications than at the detection of

masses.

21



Baker et al. [50] studied the performance of two CADe systems for

the detection of architectural distortions on a set of 80 images. They observed

that the R2 Image CheckerTM system had a sensitivity of 38% at 0.7 FPI while

the CADx SecondLookTM system had a sensitivity of 21% at 1.27 FPI. They

concluded that the sensitivity of current systems for the detection of architec-

tural distortions is very low and that considerable improvements are needed

for this detection task. On the basis of these studies, radiologists tend to trust

the calcification cues more than the mass cues. This is also documented in the

literature and prominent radiologists like C. J. D’Orsi published papers saying

that “I would initially use only the calcification prompt and feel extremely

comfortable that I have not missed any substantial calcifications when no cues

for calcium are present” [51]. Thus, there is room for improvement in the

detection accuracy of architectural distortions.

All of the commercially available CADe systems perform much better

at detecting calcifications than at detecting masses or architectural distortions.

One also cannot make a direct comparison of these systems as there has been

no clinical study that compares the performance of these systems on the same

set of cases. Bowyer et al. [52] have argued that the fundamental advantage

of the pixel level detection step is that a large amount of data is available for

classifier training. They claim that extracting features from each pixel pro-

vides thousands of training samples to characterize normal/abnormal tissue.

However, despite the large number of training samples and more than 25 years

of research in mass and spiculated mass detection methods, there is significant
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room for improvement in the detection accuracy of these algorithms. The

detection sensitivity which ranges from 75% to 89% is much lower than the

detection sensitivity of calcifications which is at about 98%. This shows that

there is a pressing need for a new detection philosophy.

1.3 Overview of dissertation

In this dissertation, a new evidence-based method for the detection of

spiculated masses and architectural distortions was developed. By evidence

based, we mean that we use the statistics of the physical characteristics of

these abnormalities to determine the parameters of the detection algorithm.

Towards this goal, it was shown that the properties of these lesions can be mea-

sured reliably and we have created the first database of the physical properties

of these lesions.

The detection algorithm uses the basic definition of these lesions con-

sists of two steps, an enhancement step followed by a filtering step. In the

first step, a new technique for the enhancement of spiculations is developed, in

which a linear filter is applied to the Radon transform of the image. The goal

of the second step is to detect the spatial locations where these enhanced linear

structures converge. This is achieved by filtering the enhanced image with a

new class of linear image filters called Spiculation Filters. We have invented

these filters specifically for detecting spiculated masses and architectural dis-

tortions that are marked by converging lines or spiculations. These filters are

highly specific narrowband filters, which are designed to match the expected
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structures of these abnormalities and form a new class of wavelet-type filter-

banks derived from optimal theories of filtering. A key aspect of this work is

that each parameter of the filter has been designed to capture the variation in

physical characteristics of spiculated masses and architectural distortions and

that all of the parameters of the detection algorithm are determined by the

physical measurements. Techniques to reduce the number of false-positives

were developed and the results of the detection algorithm are presented in the

form of FROC curves.
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(a) Craniocaudal (CC) view (b) Mediolateral oblique (MLO) view

Figure 1.1: In screening mammography two views of each breast are recorded;
the craniocaudal (CC) view (left), which is a top-to-bottom view, and a medi-
olateral oblique (MLO) view (right), which is a side view taken at an angle.
The images were obtained from Digital Database for Screening Mammography
(DDSM), [62]
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(a) Spiculated mass (b) Micro-calcificatons (c) Architectural distortion

Figure 1.2: Examples of a spiculated mass (left), cluster of microcalcifications
(center), and architectural distortion (right). The images were obtained from
the DDSM, [62]
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Stage One

Stage Two

CADe

Input: Mammogram

Output: Likelihood of
Malignancy or
Management

Recommendation

CADx

Output: Lesions Detected
(Marks or ROIs)

(a)

Preprocessing

Feature Extraction

Feature Selection

Classification

(b)

Figure 1.3: A flowchart showing the main steps involved in the computer-aided
detection (CADe) and computer-aided diagnosis (CADx) of mammographic
abnormalities. Most detection algorithms consist of two stages. In stage 1,
the aim is to detect suspicious lesions at a high sensitivity. In stage 2, the aim
is to reduce the number of false positives without decreasing the sensitivity
drastically. The steps that are involved in designing algorithms for both stages
are shown in (b). We note that in some approaches some of the steps may
involve very simple methods or be skipped entirely. For example, in stage 1,
the classification step often is a simple size criteria (i.e., if the size of potential
lesion is suspicious only if its size is greater than N pixels). Most diagnosis
algorithms (CADx) begin with a region of interest (ROI) containing the abnor-
mality. Again, the steps typically involved in design such a system are shown
in (b). The output of a CADx system may be the likelihood of malignancy or a
management recommendation. Different research groups have worked on dif-
ferent components of the problem and human interaction may occur at various
stages. For example, many CADx algorithms start with manually segmented
ROIs. 27



Figure 1.4: Free-response receiver operating characteristic (FROC) curve: In
an FROC curve, sensitivity is plotted on the y-axis and the number of FPI is
plotted along the x-axis. FROC curves are used to report the performance of
detection studies.

Figure 1.5: (a) Directions of spicules of a spiculated lesion differ from the
directions of normal linear markings in a mammogram and the (b) standard
deviation of the gradient orientation histogram differentiates the area near a
spiculated lesion from normal. ( c©2006 IEEE).
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Figure 1.6: Three-directional second-order Gaussian derivatives used for esti-
mation of line orientation. The figure was obtained from Prof. Nico Karsse-
meijer ( c©2006 IEEE).
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Figure 1.7: Partitioning of the frequency domain achieved with the directional
wavelet transform ( c©2004 IEEE).
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Chapter 2

Measurement Studies: The reliability of

measuring physical characteristics of

spiculated masses on mammography

2.1 Introduction

The central theme of this dissertation is to develop an evidence-based

technique for the detection of spiculated lesions. To achieve this goal, measure-

ments of the salient physical parameters of these lesions were collected. This

chapter, describes the process of collecting measurements and the statistical

methodology used to analyze the measurement data. The goal of this analysis

was to assess the reliability of measurements of the physical characteristics of

spiculated masses on mammography.

It is widely acknowledged that current CADe systems detect micro-

calcifications more accurately than they detect masses, including spiculated

masses. One reason for this is that calcifications are typically much denser

than the surrounding tissue, whereas there is less contrast between masses

and the parenchyma. Moreover, from an image processing perspective, calci-

fications are easier to detect because they can be simply modeled as impulse

functions. In comparison, spiculated masses are difficult to model because of
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the great variability in their physical characteristics. The lack of statistical in-

formation on the physical properties of spiculated masses makes it difficult for

engineers to create mathematical models of these abnormalities. For instance,

there is no quantitative record of the physical characteristics of spiculated

masses, such as the typical length of spicules. This information would be

beneficial for the design of CADe algorithms [e.g., [53]], even though radiolo-

gists may not consciously use such information in detecting or characterizing

lesions.

All radiological measurements are subject to inter- and intra-observer

variability. A number of statistical methods are available to quantify inter-

and intra-observer agreement. The Bland-Altman technique, intraclass corre-

lation coefficient (ICC), Kappa statistic, and regression analysis are some of

the most frequently used methods. While we are unaware of any studies that

have focused on the reliability of measurements of mammographic lesions, sev-

eral studies have assessed the observer variability of rating data, as opposed to

measurement data, in mammographic interpretation. For example, consider-

able inter-observer variability has been reported in describing mammographic

masses using the BI-RADS lexicon ([50, 54]). By comparison, many studies

have evaluated the inter- and intra-observer variability of measurements in

non-mammography medical imaging applications (e.g., [55–61]).

This chapter presents the results of a study in which two experienced

radiologists measured the parameters of spiculated masses on mammography.

It is demonstrated that the physical properties of spiculated masses can be
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measured reliably on mammography and that the observer variability for this

task is comparable to what has been reported in other medical imaging mea-

surement studies.

2.2 Materials and Methods

2.2.1 Data Set

The images used in this measurement study were obtained from the Dig-

ital Database for Screening Mammography (DDSM), http://marathon.csee.usf.edu/

Mammography/Database.html [62]. The DDSM is the largest publicly avail-

able data set of digitized mammograms. The entire database consists of 2620

cases and each case consists of four mammograms: a CC and MLO view of

each breast. The mammograms were obtained from three institutions [62].

Along with the digitized mammograms, the DDSM contains “boundary” files

of the abnormalities. The outlines of the abnormalities, as indicated by a

radiologist, are stored in ’chain code’ in these files. From this ’chain code’

borders of the abnormalities can be reconstructed. In this study, observers

primarily worked with a region of interest (ROI) from each image, though the

full mammogram was always available to them. The ROI was defined such

that the central mass and all spicules were visible. In particular, the ROI was

taken as the smallest rectangle in which the boundary specified in the DDSM

database could be inscribed, plus 500 pixels in each direction.

For this study, the MLO views of cases of spiculated masses were

randomly selected from the DDSM. Cases were selected from a single scan-
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Total No. No. of malig- Minimum Average Maximum
of cases nant cases Density Density Density

Training 12 10 1 2 3
Set

Measure- 21 21 1 2 3
ment Set

Table 2.1: Properties of the two sets of images used in this study. A set of 12
cases was used for observer training and measurements were collected using a
second, distinct set of 21 cases.

ner, and we confirmed that a range of density ratings, subtlety ratings, and

pathologies were represented by the sample. A set of 12 cases was used for

observer training and measurements were collected using a second, distinct

set of 21 cases. The characteristics of the measurement set are summa-

rized in Table 2.1. A list of the DDSM cases numbers is given in Appen-

dix A and the ROI images used in this study are available on our website

www.bme.utexas.edu/research/informatics.

2.2.2 Observer Training and Measurement Protocol

The physical measurements were made by two experienced radiologists.

For the rest of the paper, we will refer to these radiologists as R1 and R2. Ra-

diologist R1 was the senior radiologist and had more experience in breast

imaging. R1 was trained as a breast-imaging fellow for 1 year and has been

reading mammograms since 1990. Currently, radiologist R1 reads 7,000 of

mammograms per year. Radiologist R2 was trained as a breast-imaging fellow

for 1 year and has been reading mammograms since 1994. Currently, radiol-
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ogist R2 reads 3,000 of mammograms per year. We used the ROI Manager

plugin of NIH ImageJ (http://rsb.info.nih.gov/nih-image/) to enable the radi-

ologists to measure physical properties of spiculated lesions on mammograms

(Figure 2.1). Using a straight line tool, the radiologists marked the principal

axes of the central mass, the width of each spicule at its base where it meets

the mass, and traced each spicule in order to measure its length. Since the

resolution of the images was known, the pixel measurements were converted

into physically meaningful quantities (e.g., mm). In addition, the radiologists

counted the spicules associated with each lesion. The measurements were

made on ROIs, but the radiologists were allowed to view the full mammogram

at any time and could adjust the display as desired (e.g., zoom). The images

were displayed on a standard laptop computer in a darkened room and the

radiologists were allowed unlimited time for the measurement task. All of the

images with the radiologists’ markings overlaid are available on our website

www.bme.utexas.edu/research/informatics.

Measuring spiculated lesions is not part of routine clinical practice.

Thus, we conducted a training stage in which the radiologists discussed the

results of measurements made independently on a training set of images. Each

radiologist independently measured the properties of a training set of 12 spic-

ulated masses. Their markings were overlaid on the original ROIs (Figure

2.2(a)) and they discussed areas of agreement and disagreement in their mea-

surements. Following the training phase, the two radiologists independently

measured the properties of 21 images of spiculated masses. There was no
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Figure 2.1: NIH ImageJ Interface for obtaining measurements of key charac-
teristics of spiculated masses.

overlap between the training and the measurement sets. Because of time and

scheduling constraints, these measurements were carried out in two sessions.

In the first session (a few weeks after the training session), the properties of

12 images were measured and in the second session (a few months after the

training session) the properties of the remaining 9 images were analyzed. To

assess the intra-observer variability, one radiologist (R1) re-measured the first
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set of 12 images after an interval of 5 months. Thus, a total of 21 images were

used for the analysis of the inter-observer agreement and a set of 12 images

was used to compute the intra-observer agreement.

(a) Example measurements made by the two
radiologists during the training phase

(b) Example measurements made by the two
radiologists during the measurement phase

Figure 2.2: Examples of the measurements made by radiologists R1 and R2
before and after the training stage. The measurements made by R1 are shown
in blue and those made by R2 are shown in green.
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2.2.3 Statistical Analysis

We believe that it is important to assess the degree of agreement using

multiple statistical methods. This view is also shared by Luiz et al.. [63] who

noted that for the analysis of measurement studies it is desirable to report the

degree of agreement using multiple statistical methods as no method is fool-

proof and each has its own limitations. The degree of agreement between the

measurements of radiologists R1 and R2 was evaluated using a hypothesis test

for equivalence, the intraclass correlation (ICC) coefficient [64], and Bland-

Altman statistics [65, 66]. In testing for equivalence, the null hypothesis is that

the measurements of the two radiologists are not equivalent and the alternative

hypothesis is that they are equivalent [67]. Note that the more familiar paired

t-test for a null hypothesis of equal values vs. an alternative hypothesis of not

equal values is not an appropriate test for establishing equivalence. Failing

to reject a null hypothesis does not prove that the null hypothesis is correct;

in particular, a failure to reject the null hypothesis can arise from a lack of

power. Thus, a hypothesis test specifically intended for assessing equivalence

was used.

The test statistic (t) for assessing equivalence is:

t =
x̄ ± δ

s
(2.1)

Where x̄ and s are the mean and standard deviation respectively of the dif-

ferences between the measurements of the two readers. The value of δ is

computed as a factor multiplied by the mean of the more experienced reader’s
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measurements. In this study, the factor was 0.20, 0.25, or 0.30. The variable

δ accounts for the expected variability in the measurements made by the two

radiologists. A smaller value of δ implies stricter criteria for demonstrating

that the measurements of the two radiologists are equivalent.

The ICC coefficient is also used to report the degree of agreement be-

tween multiple readers. A number of different models can be used for comput-

ing the ICC value [64]. In this study, to report the inter-observer agreement,

a two-way random model was used since the set of images is a random subset

of images from the class of mammographic images and the radiologists are also

randomly selected from the population of radiologists. The ICC coefficient is

defined as follows:

ICC =
MSE − MSR

MSR + (k − 1) · MSE + k
n
· (MSC − MSE)

(2.2)

Where k denotes the number of readers, n denotes the number of images, MSR

is the mean square error between images, MSE is the residual mean square

error, and MSC is the mean square error between readers. For the computation

of the intra-observer agreement, a two-way mixed model was used as the set

of images is considered as a random subset of images from all mammographic

images but the measurements are made by a single radiologist and thus the

rater (radiologist) is considered as a fixed effect in the ICC model [64].

Different guidelines exist for the interpretation of ICC, but one reason-

able scale is that an ICC value of less than 0.40 indicates poor reproducibility,

ICC values in the range 0.40 to 0.75 indicate fair to good reproducibility, and
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an ICC value of greater than 0.75 shows excellent reproducibility [68].

Bland-Altman analysis (also known as the method of differences) has

been proposed for measuring the degree of agreement [65, 66]. In this method,

the differences in the measurements made by two readers are plotted against

the average values of these measurements. According to Bland and Altman

[65, 66], if 95% of the differences are within ± 1.96 standard deviations of the

mean of the differences, then this denotes good agreement between the two sets

of measurements. These limits are also known as the “limits of agreement”.

Note that hypothesis testing for equivalence and the ICC method provide

quantitative measures of the agreement between the measurements whereas

the Bland-Altman analysis technique provides a qualitative assessment.

2.3 Results

The inter- and intra-observer variability of measurements of spiculated

masses was evaluated using a hypothesis test for equivalence, the ICC co-

efficient, and the Bland-Altman technique. For an equivalence level of 30%

of the mean of R1’s first measurement (Table 2.2), equivalence was achieved

between R1’s and R2’s measurements (N = 21) for average spicule length

(p < 0.01), average spicule width (p = 0.03), and the count of the number

of spicules (p < 0.01). For comparing the major axis measurements, one case

was removed since R2 inadvertently measured the minor axis; with N = 20,

equivalence was achieved for the length of the major axis (p < 0.01).

Similarly, Table 2.3 shows the degree of agreement between the mea-
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Total no. Delta Major Spicule Spicule No. of
of cases Axis Width Length Spicules

R1’s mean R1’s mean R1’s mean R1’s mean
= 3.78 = 0.278 = 2.44 = 17.57

R2’s mean R2’s mean R2’s mean R2’s mean
= 3.73 = 0.221 = 2.39 = 18.48

21 $ δ = 0.30 · mean of p < 0.01 p = 0.03 p < 0.01 p < 0.01
R1’s measurement

21 $ δ = 0.25 · mean of p < 0.01 p = 0.18 p < 0.01 p < 0.01
R1’s measurement

21 $ δ = 0.20 · mean of p < 0.01 p = 0.54 p < 0.01 p < 0.01
R1’s measurement

Table 2.2: This table provides the summary statistics and the results of the
hypothesis test for equivalence between the measurements of radiologists R1
and R2. The null hypothesis was that the two radiologists are not equivalent.
Thus, if we obtain a p-value of less than 0.05 (bold type), we can reject the
null hypothesis and say that the measurements of the two radiologists are
equivalent. ($ One observer measured minor axis by mistake, so that image
was removed for the major axis calculation only.)
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Total no. Major Spicule Spicule No. of
of cases Axis Width Length Spicules

21$ ICC = 0.801 ICC = 0.561 ICC = 0.770 ICC = 0.780

Table 2.3: (Inter-Observer agreement) Intra-class correlation coefficients for
the measurements made by radiologist R1 and R2. ($ One observer mea-
sured minor axis by mistake, so that image was removed for the major axis
calculation only.)

surements of the radiologists R1 and R2 using the ICC method. Our analysis

shows that there is “excellent” inter-rater agreement between R1’s and R2’s

measurements (N = 21) for average spicule length (ICC = 0.770), and the

count of the number of spicules (ICC = 0.780). “Fair to good agreement”

was obtained for the average spicule width (ICC = 0.561). For comparing

the major axis measurements, one case was removed and with N = 20. “Ex-

cellent” inter-rater agreement was observed for the length of the major axis

(ICC = 0.801). The inter-observer agreement was also analyzed using the

Bland-Altman technique. Bland and Altman suggested that if 95% of the dif-

ferences were within the “limits of agreement” then this denoted good agree-

ment between the two sets of measurements. According to the Bland-Altman

method, good inter-observer agreement is obtained for all four parameters

measures (Figure 2.3).

We studied the intra-observer variability based on re-measurement of

12 images by the senior radiologist R1. For an equivalence level of 30%, equiv-

alence was achieved between R1’s first and second measurements (N = 12) for

all properties (Table 2.4): average spicule length (p < 0.01), average spicule
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Total no. Delta Major Spicule Spicule No. of
of cases Axis Width Length Spicules

12 δ = 0.30 · mean of p = 0.00 p = 0.00 p = 0.00 p = 0.00
R1’s measurement

12 δ = 0.25 · mean of p = 0.00 p = 0.00 p = 0.02 p = 0.02
R1’s measurement

12 δ = 0.20 · mean of p = 0.01 p = 0.00 p = 0.26 p = 0.09
R1’s measurement

Table 2.4: Results of the hypothesis test for equivalence between the first and
second set of measurements made by radiologists R1. The null hypothesis
was that the two sets of the measurements made by radiologist R1 are not
equivalent. Thus, if we obtain a p-value of less than 0.05 (bold type), we
can reject the null hypothesis and say that the two sets of measurements are
equivalent.

width (p < 0.01), length of major axis (p < 0.01), and the count of the number

of spicules (p = 0.01). Moreover, equivalence was demonstrated even at the

stricter level of 25% of the mean of R1’s first measurement.

The intra-observer agreement between the two sets of measurements

made by radiologist R1 (N = 12) using the ICC method were also very good

(Table 2.5). The intra-observer agreement was “excellent” for the length of the

major axis (ICC = 0.951), average spicule length (ICC = 0.852), and the av-

erage spicule width (ICC = 0.896). “Fair to good agreement” was observed for

the count of the number of spicules (ICC = 0.641). The intra-observer agree-

ment was also analyzed using the Bland-Altman technique. Bland and Altman

suggested that if 95% of the differences were within the “limits of agreement”

then this denoted good agreement between the two sets of measurements.

Figure 2.4 show that for all of four parameters measured, good intra-observer
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Total no. Major Spicule Spicule No. of
of cases Axis Width Length Spicules

12$ ICC = 0.951 ICC = 0.896 ICC = 0.852 ICC = 0.641

Table 2.5: (Intra-Observer agreement) Intra-class correlation coefficients for
the two sets of measurements made by radiologist R1

agreement is obtained according to the Bland-Altman technique.

2.4 Discussion

In this chapter, it was shown that it is feasible to make reliable measure-

ments of the physical properties of spiculated masses on mammography. The

properties measured were the length and width of all spicules and length of the

major axis of the central mass region. The count of the total number of spicules

was also assessed. In this study, we obtained good inter- and intra-observer

agreement for the measurement of these properties of spiculated masses. This

was demonstrated with a hypothesis test for equivalence, the intraclass corre-

lation coefficient, and the Bland-Altman analysis. Since such a measurement

task is not a part of the radiologists’ regular clinical duties, the training stage

was crucial for this measurement study. In the training phase, the radiologists

discussed measurements that they had made independently (Figure 2.2(a)).

While it was difficult for them to verbalize a consensus measurement proto-

col, the discussion was clearly fruitful since the data collected for the training

process did not show equivalence (except for major axis), but equivalence was

demonstrated for all four physical parameters in the measurement study after

the training was complete.
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Two interesting points are evident from a visual inspection of the

marked images from the training and measurement phases of the study. First,

some of the changes to their measurement protocol can be surmised; before

the training, R2 typically marked spicules as being much longer than R1, but

R2 marked the spicule lengths similarly to R1 after the training phase. Sec-

ond, we noticed was that if the two readers picked the same spicule, their

measurements for that spicule were nearly identical. Thus, the primary source

of variability appears to be the identification of structures as “spicules” rather

the task of measuring a spicule after it is located. Both of these points are

observed in Figure 2.2, where the measurements made by the two radiologists

are overlaid on the original image. Figure 2.2(a) shows the measurements

made on an image during the training stage and (Figure 2.2(b)) shows the

measurements on an image from the second set of spiculated masses.

To the best of our knowledge, no prior study has measured the physical

properties of masses on mammograms or assessed the observer variability of

such a task. However, researchers have reported the inter- and intra-observer

agreement for various measurements tasks in other areas of medical imag-

ing (e.g., [55–61]). Though several statistical methods can be used to report

the inter-observer agreement, the most common approach has been to use

the ICC. The ICC values reported in prior medical imaging measurement

studies range from 0.570 to 0.820; thus, the ICC values observed this study

(0.561 to 0.951) are within the range defined by previous work. Thus, we have

demonstrated that properties of spiculated masses can be reliably measured on
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mammography, within the level of inter- and intra-observer variability typical

of other measurement tasks in radiology.
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(a) Bland-Altman analysis for the major axis
of the spiculated masses
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(b) Bland-Altman analysis for the spicule
width
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(c) Bland-Altman analysis for the spicule
length
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(d) Bland-Altman analysis for the number of
spicules of the spiculated masses

Figure 2.3: Bland-Altman analysis for the inter-observer agreement for each
of the four physical characteristics that were measured by radiologists R1 and
R2. The parameters measured were: (a) major axis of the spiculated masses,
(b) the width of the spiculations, (c) the length of the spiculations, and (d)
the number of spiculations.
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(a) Bland-Altman analysis for the major axis
of the spiculated masses
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(b) Bland-Altman analysis for the spicule
width
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(c) Bland-Altman analysis for the spicule
length
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(d) Bland-Altman analysis for the number of
spicules of the spiculated masses

Figure 2.4: Bland-Altman analysis for the intra-observer agreement for each
of the four physical characteristics that were measured twice by the senior ra-
diologist R1. The parameters measured were: (a) major axis of the spiculated
masses, (b) the width of the spiculations, (c) the length of the spiculations,
and (d) the number of spiculations.
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Chapter 3

Detection Algorithm

3.1 Introduction

This chapter presents the detection algorithm that was developed dur-

ing the course of this dissertation. The detection algorithm consists of three

main components, which are:

1. Spiculation filtering to detect the spatial locations where spicules con-

verge.

2. Detection of the central mass region of the spiculated masses.

3. Suppressing false-positive due to normal linear structures.

Each of these components targets a specific aspect of spiculated lesions. The

first component, Spiculation filtering is aimed towards determining the spatial

locations where spicules converge. The second component uses Gaussian filters

to detect the central mass regions of spiculated masses. It was observed that

normal linear structures such as blood vessels, ducts and connective tissue can

cause false-positives. The last component was geared toward suppressing false-

positives due to these linear structures. Figure 3.1 shows the block diagram of
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the proposed detection algorithm and each of the components of the detection

algorithm are described in detail in sections 3.2, 3.3 and 3.4 respectively.

Detect
Central Mass

Regions

Suppress
Linear

Structures

Detect Where
Spiculations

Converge

Original
Image

Overall
Detection

Result

W1(+) W2(+) (-) W3

Figure 3.1: This figures shows the block diagram of the detection algorithm.
This algorithm consists of three components. The first component aims to
detect the spatial locations where spicules converge. The second component is
designed to detect the central mass regions of the spiculated masses and the
third component aims to reduce false-positives due to normal linear structures.

3.2 Overview of Spiculation Filtering

The sections presents the details of the spiculation filtering algorithm

which aims to fins the spatial locations where spicules converge. The spic-

ulation filtering algorithm for the detection of spiculated lesions is based on
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measurements of their physical characteristics and consists of two steps: an

enhancement step followed by a filtering/detection step. The enhancement

step uses a new technique for the enhancement of spiculations in which a lin-

ear filter is applied to the Radon transform of the image. In the second step,

the enhanced images are filtered with a new class of linear image filters, which

we call Spiculation Filters. These filters have been invented specifically for

detecting spiculated lesions, which are characterized by converging lines or

spiculations. The filter parameters for both steps were determined based on

measurements made on a set of spiculated masses and architectural distortions.

3.2.1 Enhancement of Spiculations

The most prominent feature of spiculated masses and architectural dis-

tortions is the presence of spicules radiating in all directions. The goal of this

step is to enhance spicules which are approximated as linear structures. Specif-

ically, we model spicules as lines of widths that fall within a predetermined

range determined by prior physical measurements on real spicules.

The Radon domain is a convenient space in which to detect lines. To

enhance spicules, we have developed a novel algorithm in which we compute the

Radon transform of the image and then perform filtering in the Radon domain

to enhance linear structures that fall within a specified, evidence-based range

of widths.
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The Radon transform of a continuous function f(x, y) is defined as [69] :

g(ρ, θ) =

∫ ∞

−∞

∫ ∞

−∞

f(x, y)δ(ρ − x cos(θ) − y sin(θ))dx dy (3.1)

where δ(r) is the Dirac delta function [70]. In equation (3.1), ρ and θ are

parameters of the Radon domain. As can be seen from Fig. 3.2, for any given

line in an image, ρ is the length of a perpendicular line segment from the

origin to the line and ρ is the orientation of the line segment with respect to

the x -axis. The corresponding discrete Radon transform for an N -by-N image

is:

ĝ(ρ, θ) =

N/2
∑

y=−N/2

N/2
∑

x=−N/2

f(x, y)δ(ρ − x cos(θ) − y sin(θ)) (3.2)

where δ(r) is the Kronecker delta function [70]. The center of the image is at

(0, 0) and the x and y co-ordinates extend from −N/2 to N/2. The parameter

θ was varied from 0 to 179 degrees and the parameter ρ was varied from

−N/
√

2 to N/
√

2. The Hough transform is closely related to the discrete

Radon transform. The Hough transform can be viewed as the discrete Radon

transform of a binary image [71]. The term δ[ρ − x cos(θ) − y sin(θ)] in (3.1)

computes the integral of f(x, y) along the line (ρ = x cos(θ) + y sin(θ)) and

thus the value of g(ρ, θ), for any (ρ, θ) is the integrated density of f(x, y) along

this line. Thus, a line in the image space f(x, y) produces or maps to a point

in the Radon domain.

Also note that lines of different thickness will have different represen-

tations in the Radon domain. Figures 3.2(a) and 3.2(b) show two lines of
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different thickness and their corresponding Radon transforms. In Fig. 3.2(a),

the line is 1 pixel thick, and in Fig. 3.2(b), the line is 4 pixels thick. For

simplicity, it is assumed that the two lines have the same length of 255 pixels

and that each pixel on the line has a uniform intensity of 1. In the Radon

domain, the row values correspond to the different values of ρ and the column

values represent the different θ values. Thus, a single pixel thick line would

be represented by a point in the Radon domain, whereas a 4 pixel thick line

would be represented by 4 points along a column in the Radon domain. Thus

by enhancing sharp changes or “local peaks” along the columns in the Radon

domain, it is possible to detect the corresponding lines in the image.

To do so, a peak detection algorithm needs to be applied. While many

approaches might be taken to identify peaks, one approach is to simply fil-

ter the columns of the Radon transform with an appropriate bi-valued one-

dimensional linear filter with an impulse response that is a rectangle of width

agreeing with the maximum spicule width to be highlighted. This approach

has the advantages of both directness and simplicity. Application of this simple

filter to the Radon domain, followed by an inverse Radon transform, will yield

an enhanced image with amplified linear structures (spicules) of the requisite

widths, with all other structures being suppressed. The particular filter was

chosen based on the thickness of the spicules obtained from our preliminary

measurement studies. More details on the selection of this filter are given in

Section 3.5.2.
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(a) Image with Single Pixel thick Line (b) Image with Four Pixel thick line

Figure 3.2: These images show lines of different widths and the corresponding
section of their Radon transforms. For simplicity, we assume that each of these
lines is 255 pixels long and the intensity at each pixel is one. Thus, peaks of
value 255 occur in the Radon domain. A key point is that lines of different
widths have different representations in the Radon domain.

For our application, the filter: [−1 − 1 1 1 1 1 1 − 1 − 1 − 1]T , was

used to detect peaks along the columns in the Radon domain. This is achieved

by convolving each column with this filter. Note that the coefficients at the

center of the filter are positive, while those at the periphery are negative and

the sum of coefficients of the filter is zero. Thus, the response of this filter to

an area of constant or slowly varying values will be zero or very small. After

filtering in the Radon domain, the inverse Radon transform is computed using

the filtered back-projection algorithm [72] to obtain an image in which linear
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structures have been enhanced:

f(x, y) =

∫ π

0

Qθ( x · cos(θ) + y · sin(θ) ) dθ (3.3)

Qθ(t) =

∫ ∞

−∞

Sθ(w)|w|ej·2πwt dw (3.4)

The enhanced image f(x, y) is obtained using (3.3), where Qθ(t) is

defined in (3.4) and Sθ(w) is the 1-D Fourier transform of gθ(r) [72]. The

corresponding equations for the inverse discrete Radon transform (DRT) are:

f̂(x, y) =
π

K

K
∑

i=1

Q̂θi
( x · cos(θi) + y · sin(θi) ) (3.5)

Q̂θ

(

k

2W

)

≈ 2W

N

N/2
∑

m=−N/2

Sθ

(

m · 2W

N

) ∣

∣

∣

∣

m
2W

N

∣

∣

∣

∣

ej2π(mk/N) (3.6)

Where f̂(x, y) is the image obtained by computing the inverse DRT. It is

assumed that Sθ(w) is bandlimited and is zero outside the interval (−W,W )

for all values of θ. Thus, the output of the enhancement stage is a line-

enhanced image and all subsequent processing is performed on this image. It

is known that reconstructing images from a few projections causes artifacts

[73]. To avoid reconstruction artifacts, the parameter θ was varied from 0 to

179 degrees in increments of 0.1 degrees during the computation of the Radon

transform.

The Radon transform and the Hough transform have been applied for

the detection of spiculated masses by other researchers [35]. However, the

key engineering innovation of our enhancement algorithm is the filtering of
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the coefficients in the Radon domain. To the best of our knowledge, this

has not been proposed in CADe or other image processing applications. This

allows the enhancement of lines of different widths by choosing the appropriate

parameters of the filter. Figure 3.3 shows the various steps of the enhancement

algorithm.

Radon
Transform

Filtering
(Radon
Domain)

Inverse
Radon

Transfrom

Input
Image

Enhanced
Image

Figure 3.3: Flow-chart of the Enhancement Algorithm: First, the Radon trans-
form of an image is computed. The Radon domain is then filtered with a col-
umn filter. Finally, the enhanced image is obtained by computing the inverse
Radon transform.

3.2.2 Detection Using Spiculation Filters

The goal of the enhancement stage described in Section 3.2.1 was to

enhance spiculations on mammograms. The aim of this stage is to detect the

spatial locations where these spiculations converge. For this purpose, we have

invented a new class of wavelet-type filter banks that are specifically tuned to

match the physical structures that define spiculated lesions. These new filters,

which we have recently conceived [53, 74] are quite unique in that they are

designed to match the physical structure of spiculated lesions. These filters

were parameterized using data collected from our preliminary study on the

quantitative morphology of spiculated lesions.
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The fundamental idea is to design a “matched filter” for a spiculated

lesion. That is, once the enhanced image is processed with these filters, a

large output would be obtained when the filters are “tuned to” or “match” a

spiculated lesion. The filters are a new class of complex quadrature Spiculation

Filters (SFs) that are specifically responsive to spicule groupings, having a

distribution of orientations and positions such that they converge to a central

region or radiate from that region. The complex SF has the advantage that

the sum of the squared responses of the two quadrature components is phase

independent. Thus, the filter will have the same response to a spiculation even

if it has been rotated.

A Spiculation Filter (SF) has a filter impulse response with an ap-

pearance entirely different from anything previously conceived of: a Gaussian-

modulated sine torus. The SF consists of quadrature components which are the

so-called cosine SF (fcosine(r, θ; r0, σ, ω)) and the sine SF (fsine(r, θ; r0, σ, ω)).

These components are shown in Fig. 3.4 and are defined as follows:

fcosine(r, θ; r0, σ, ω) = g(r; r0, σ) ∗ cos(ωθ) (3.7)

fsine(r, θ; r0, σ, ω) = g(r; r0, σ) ∗ sin(ωθ) (3.8)

g(r; r0, σ) = exp[−(r − r0)
2/(2 ∗ σ2)] (3.9)

where: r =
√

x2 + y2, θ = arctan(y/x) and σ is the standard deviation in

pixels. The parameter r0 is a size parameter measured in pixels, and ω is the

modulation frequency measured in cycles per circumference. The Gaussian

torus is defined by equation (3.4(c)). The SFs can also be written in the
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overall phasor form as follows:

h(r, θ; r0, σ, ω) = fcosine(r, θ; r0, σ, ω) + j ∗ fsine(r, θ; r0, σ, ω) (3.10)

Also note that the RMS value
√

(f 2
cosine + f 2

sine) of the quadrature components

is equal to the toroidal Gaussian envelope function g(r; r0, σ).

The toroidal Gaussian in Fig. (3.4(c)), is responsive to structures that

intersect a circular spatial band at any point in the image. A perfect “match”

to such a filter would be a similar band occurring anywhere in the image. The

key modification to the filter is the sinusoidal modulation, which creates the

alternating bands in the Gaussian. The period or frequency of the bands is con-

trolled by the parameter ω. The physical significance of the alternations is that

each filter now becomes responsive to oscillatory structures occurring along cir-

cles in the image. Such a filter will be responsive to a band passing through

a spiculated lesion candidate. Ideally, we would like the SF to match the

spiculated lesions exactly, but this is not possible since real spiculated lesions

present highly random arrangements of spicule spacings and spicule widths.

Nevertheless, the SF do possess important optimality properties: since they are

Gaussian modulated sinusoids, they have excellent spatial localization proper-

ties, as well as excellent spectral localization among filters that can be written

in the form h(r, θ; r0, σ, ω) = fcosine(r, θ; r0, σ, ω) + j ∗ fsine(r, θ; r0, σ, ω). They

are, in a sense, radial Gabor functions, which optimize the space-frequency un-

certainty tradeoff in achieving maximum conjoint resolution; because of this,

Gabor functions have proven to be exceedingly effective for image analysis

58



(a) cosine SF with σ =
2, f = 10

(b) sine SF with σ = 2, f =
10

(c) Gaussian torus σ = 2

Figure 3.4: Example of a Spiculation Filter (SF): Figures 3.4(a) and 3.4(b)
show the two quadrature components of the SF, namely, the cosine SF and
the sine SF, respectively. The toroidal Gaussian envelope of the SF is shown
in Fig. 3.4(c).

applications [75–78].

Like Gabor filters (as applied to “standard” image textures), SFs can be

expected to extract relevant spiculation features (quantified as SF responses)

with the maximum possible spatial resolution, for a given filter bandwidth

(frequency domain coverage). Thus, not only are SFs optimally matched to

the expected shapes of spiculations (as defined by our model), but they will

also detect these shapes with optimal resolution (positional accuracy and detail

sensitivity).

The response of a SF to a spiculated lesion is important, but it supplies

incomplete information regarding the pattern. Instead, only a band of a given

radius is analyzed. However, by combining multiple SF in a filter bank, overall

spiculated lesion responses may be obtained. Thus, the next innovation that

59



we have developed is the concept of a Spiculation Filter bank (SFB). Two such

SFBs are shown in Fig. 3.5.

(a) SFB σ = 2, ω = 15 (b) SFB σ = 3, ω = 15

Figure 3.5: Spiculation FilterBanks (SFBs): Two Spiculation Filter banks,
each composed of five SF of progressively increasing radii and matching radial
frequencies, ω. The SFB in Figs. 3.5(a) and 3.5(b) have the same inner radius
but different outer radii. These would correspond to lesions where the central
mass is the same size but the spicule lengths differ.

Here, the constituent SF have progressively increasing radii but the

same frequencies. In such a filter bank, the radius of the central region,

whether a radio-opaque mass or not, can be made to match the SFB by ap-

propriate selection of the inner filter radius. Likewise, spicule length can be

matched to the SFB by appropriate selection of the inner and the outer filter

radii, the difference between these corresponding to spicule length. Of course,

the physical parameters of a particular lesion cannot be known beforehand,

and hence a single appropriate SFB cannot be predetermined. However, we

use the measurement data (Chapter 2), taken from a large, ongoing study in-
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volving multiple radiologists, to support the selection of the inner and outer

radii rinner and router for each SFB, as well as the frequency ω of each SFB.

We will then be supplied with a collection of SFB which can be applied to

each mammographic image with a high certainty that the SFB being applied

will match the physical characteristics of any existing spiculated lesion in the

breast image.

In the SFB pictured in Fig. 3.5, the filters were chosen such that the

component toroidal Gaussian envelopes intersect each other at their half-peak

values, a strategy that ensures that there will be no gaps in the responses

along the radial directions. This approach has been shown to be efficacious in

numerous studies involving Gabor filter applications [75, 76].

Thus, the relationship between the radii of two adjacent SF of a SFB

is given by the following: Let the radius of a single SF be r1 and the toroidal

component of that filter is given by g(r; r1, σ). Let r2 be the radius of the next

SF in the filter bank. Then r2 can be computed by the following equation:

r2 = r1 + 2.3548 ∗ σ (3.11)

Figure 3.6(a) shows the toroidal components of two SFs of a filter bank and

Fig. 3.6(b) shows a cross-section through these components.

We now describe how a SFB can be used for the detection of spiculated

lesions. First, the enhanced image is filtered with each SFB. The normalized

cross correlation (NCC) was used for filtering the enhanced image with each

SFB. Let T be a SFB of size M ×M and let I be the image of size L×L such
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(a) The Gaussian toroidal compo-
nents of two filters
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(b) A cross sectional view through
those two components

Figure 3.6: Figure 3.6(a) shows the toroidal components of two SFs of a filter-
bank and Fig. 3.6(b) shows a cross-section through these components. The
filters are chosen such that the component toroidal Gaussian envelopes inter-
sect each other at their half-peak values, a strategy that ensures that there
will be no gaps in the responses along the radial directions.

that M << L. The NCC is defined as follows:

NCC(i, j) =
1

σT · σI

M
∑

k=1

M
∑

m=1

{(T (k,m) − µT ) (I(i + k − 1, j + m − 1) − µI(i, j))}

(3.12)

σT =

√

√

√

√

M
∑

k=1

M
∑

m=1

(T (k,m) − µT )2

σI =

√

√

√

√

M
∑

k=1

M
∑

m=1

(I(i + k − 1, j + m − 1) − µI(i, j))
2

Where µT is the mean of the template and µI(i, j) is the mean of the sub-image

centered at (i, j).

Let OPsin and OPcos be the outputs obtained after filtering the en-

hanced image with the two quadrature components of the SFB (cosine and
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sine SFBs). The magnitude response OPmag and the phase response OPphase

of the SFB are defined as:

OPmag =
√

OPcos
2 + OPsin

2 (3.13)

OPphase = arctan(OPsin/OPcos) (3.14)

If the filter bank “matches” a spiculated lesion, a peak would be ob-

tained at the spatial location corresponding to the center of the spiculated

lesion. Thus, suspicious regions can be identified by detecting the local peaks

in the overall output. Note that the larger the overall output at a particular

spatial location, the higher the likelihood that the spatial location corresponds

to the center of a spiculated lesion.

The procedure described above is repeated for all filter-banks and these

are combined to form a new image (SFB Maxima) in the following way. Let

SFB1, SFB2, . . . SFBN denote the N SFBs. In the SFB Maxima image

the value at each spatial location corresponds to the maximum filter-bank

output (across all SFBs).

SFB Maxima(x, y) = max {SFB1(x, y), SFB2(x, y), . . . , SFBN(x, y)} (∀x, y)

(3.15)

In the SFB Maxima image, the first N marks are selected as the possible

locations of suspicious masses. The aim in this step is to detect as many

suspicious regions as possible in order to achieve a high detection sensitivity.

This may lead to a large number of FPI. This is acceptable, since additional

steps will subsequently be taken to reduce the number of FPI.
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3.3 Detecting central mass regions

It is known that all spiculated masses have a central mass region and

thus the second component of the detection algorithm is geared towards the

detection of central mass regions. To detect these regions we used Gaussian

filters. Gaussian filters have been previously used for detection of masses.

However, the key differences in our approach are that the size of these filters

were selected from the measurement data and that a bank of Gaussian filters

were used.

The proposed central mass region detection algorithm was as follows:

Each image was filtered using a bank of 2-D Gaussian filters. The sigmas

are chosen such that the half-peak radii (HPR) of the Gaussian filters are 10,

10·
√

2, 20, and 20·
√

2 and 40 pixels respectively. The HPR was the distance

where the value of the Gaussian filter falls to half it’s maximum value. These

radii are reflective of the measurement data. As the half peak value occurs

at 1.1774 · σ, each sigma value was computed as follows : σ = HPR/1.1774.

The filter-size was set to be 6 · σ. These filters are shown in figure 3.7. The

original image is filtered with each of these Gaussian filters and at each pixel,

the maximum output value across all Gaussian filters is computed. The pixels

with a high output represent presence of mass. Let this output be image C. As

the coefficients in image C indicate the presence of a mass, these are summed

with the coefficients from the filter-bank outputs. Thus the combined output

(Op) is now defined as: (Op = A − B + C).
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(a) (b) (c) (d)

Figure 3.7: This figure shows the set of 4 Gaussian filters used. The half-peak
radius of these filters are 10·

√
2, 20, 20·

√
2, and 40 pixels respectively.

3.4 Suppression of linear structures

In the spiculation filtering component described in section 3.2, the focus

was on the enhancement of spicules, followed by locating the spatial locations

where the spicules converge. In addition to the spicules, the enhancement tech-

nique also enhances linear structures such as blood vessels, ducts other other

linear structures in the tissue parenchyma. The Spiculations FBs responds

to the criss-crossings of these structures and thus lead to false-positives. To

remove the false-positives due to these linear structures, we used oriented

difference-of-Gaussian filters to identify the locations of these linear structures

and then suppressed the false-positives at these locations using the following

strategy.

At each spatial location (i, j) in the image, the local orientation θi,j was

computed as:

θi,j = arctan (Gy/Gx) (3.16)

Where Gx and Gy are the gradients in the x and y directions respectively.
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At each spatial location the image was filtered with an elongated and

oriented Difference-of-Gaussian (DoG) filter. The orientation of this filter was

the local orientation at that spatial location as computed from equation 3.16.

A subset of such oriented DoGs are shown in Figure 3.8. The oriented DoGs

were created as the difference of two oriented Gaussian filters. These oriented-

DoG filters are also evidence-based since the width of the central lobe is greater

than the largest width of the spicules that was measured. In addition, their

was length is greater than the maximum spicule length that was measured.

(As the goal is to suppress linear structures that are not spicules.) This gives

us an image in which curvi-linear structures such as ducts and blood-vessels

are enhanced. Let this image be B. Figure 3.9 shows examples of images where

these linear structures have been enhanced. As we want to suppress any FP’s

that occur at these locations, this output is combined with the output of the

SFBs in the following way. Let A be the image of the maximum of the filter-

bank outputs at each spatial (obtained by finding the maximum at each spatial

location). The combined output (Op) is now defined as: (Op = A − B).

3.5 Methods

3.5.1 Data Description

The images for testing the detection algorithm were obtained from the

Digital Database for Screening Mammography (DDSM) [62]. The DDSM is

the largest publicly available dataset of digitized mammograms. The entire

database consists of 2,620 cases. Each case consists of four mammograms: a
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.8: This figure shows a subset of the elongated and oriented DoG
filters used. The output of these filters was used to suppress the FPs due to
linear structures such as blood vessels and ducts.
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: This figure shows examples of images in which the linear struc-
tures were enhanced using the oriented DoG filters. Figures 3.9(a), 3.9(b) and
3.9(c) show the original images and figures 3.9(d), 3.9(e) and 3.9(f) show the
respective enhanced images.
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CC and MLO view of each breast. Along with the digitized mammograms,

the DDSM contains “boundary” files of the abnormalities. The outlines of the

abnormalities are stored in “chain code” in these files. From this “chain code”,

borders of the abnormalities can be reconstructed. After reconstructing the

border, the interior of the outline is filled to create a “mask” of the mass. The

mask can be regarded as the “ground truth”. In addition, images of spiculated

lesions from the Mammography image analysis society (MIAS) database [79]

were also used.

To report the performance of the detection algorithm, Free-response

Receiver Operating Characteristic (FROC) curves ([18]) were generated for

each set of images. A FROC curve is obtained by plotting sensitivity on the

y-axis and the number of false positives per image on the x-axis. For this

study, the different points on the FROC curve are obtained as follows. The

N largest values in the magnitude response of all filter banks are marked as

suspicious regions. The value of N was varied from 1 to 30. For each value of

N , the sensitivity and the number of FPI were plotted to obtain the FROC

curve.

3.5.2 Selection of Detection Algorithm Parameters Based on Mea-
surement Data

Chapter 2 describes the measurement study conducted and the various

parameters measured. These parameters include the length of the major axis

of the central mass region, the width and length of all spicules, and the number
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of spicules. In this section, we describe how the physical measurements are

used to set the parameters of the detection algorithm. From our measurements

of the physical parameters of spiculated masses and architectural distortions,

we observed that the average width of spicules is 20 pixels. For computational

efficiency, in this study we decimated the images by a factor of four and thus

the average width of the spicules is approximately 5 pixels. Thus, to detect

peaks, each column of the Radon domain is convolved with the following filter:

[−1 − 111111 − 1 − 1 − 1]T .

To account for variability in the shape and the structure of spiculated

lesions, filter banks with different parameters are used. An estimate of the

joint probability density function of the three variables (central mass region

radius, length of spicules, and the number of spicules) was estimated. This was

computed using a non-parametric density estimation method using Gaussian

kernels. The joint estimate was then randomly sampled to select the parame-

ters of the filter-banks. 25 filter-banks were created using these parameters

and these are shown in Fig. 3.10.

In our preliminary studies, the algorithm marked the top N strongest

matches per image. A pixel was only marked as detected if it was more than a

fixed distance from the previously marked points; the distance was set as the

average radius of the central region of a mass as measured in our measurement

study. (This distance was 17 pixels for SM and 16 pixels for AD). By varying

N, the tradeoffs in sensitivity and FPI can be visualized as an FROC curve.
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Figure 3.10: The set of 25 SFBs used for the detection of SM. To select the
parameters of these SFBs an estimate of the joint pdf of the central mass
region radius, length of spicules and number of spicules was obtained. This
joint estimate of the pdf was then randomly sampled to select the parameters
of the filter-banks.

71



3.6 Results

The detection algorithm described in the preceding sections were tested

on various data-sets and the results were represented in the form of FROC

curves. We tested this technique on multiple data-sets. The first two consisted

of 50 spiculated masses and 46 architectural distortions from the DDSM data-

base. The third set consisted of 19 spiculated masses from the Mammographic

Image Analysis Society (MIAS) database ([79]) and finally the fourth set con-

sisted of all malignant spiculated masses from the MIAS database. The third

and fourth data-sets were specifically used as other researchers Liu et al. [22]

and Karssemeijer et al. [21] have used these sets to test their algorithms on

spiculated masses. Note that all of the measurement studies were conducted

on a separate set of images from the DDSM database and there was no over-

lap between the measurement dataset and the testing dataset. The names

of the all of the images used for the measurement study and for testing the

performance of the detection algorithm are listed in Appendices A and B.

The results of applying the algorithm on the spiculated masses and

architectural distortions from the DDSM dataset are shown in figure 3.11. For

the spiculated masses, a sensitivity of 80% at 2.3 FPI was achieved and a

sensitivity of 80% at 10.7 FPI was obtained for the architectural distortions.

The results on the set of images used by Karssemeijer et al. [21] are

shown in figure 3.12(a). Karssemeijer achieved 90% sensitivity at 1 FPI and

100% sensistivity at more than 4 FPI. In comparison, we achieved a sensitivity

of 90% at 1.3 FPI and a sensitivity of 100% at 2 FPI. Karssemeijer et al. also
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included 31 normal images in the test set. If normal images are added to this

set of spiculated masses, the number of false-positives per image will increase.

The blue curve in figure 3.12(b) shows the FROC curve when the data-set

contained images of both spiculated masses and 31 normal images. When

these 31 normal images were included, a sensitivity of 90% at 2 FPI and a

sensitivity of 100% at 2.8 FPI.

Similarly, figure 3.13(a) shows the results on the set of images used

by Liu et al. [22]. Liu et al. achieved 84.2% sensitivity at 1 FPI and in

comparison, we achieved a sensitivity of 84.2% at 3.1 FPI. Liu et al. also

included 19 normal images in the test set. The blue curve in figure 3.13(b)

shows the FROC curve when the data-set contained images of both spiculated

masses and 19 normal images. When these 19 normal images were included,

a sensitivity of 84.2% at 3.5 FPI was acheived.

3.7 Discussion

3.7.1 Comparison with previous studies

In this section we compare the performance of our algorithm with previ-

ous studies. Table 3.1 summarizes the results of prior studies for the detection

of the spiculated masses and/or architectural distortions. Table 3.1 shows the

number of training and testing images used in each study and the number of

spiculated masses and/or architectural distortions present in the training and

testing sets. From this table, we see that the number of spiculated masses

used to test the detection algorithm is quite small. The major disadvantage
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Author Total # Total # # Training # Testing Sens FPI
of of SM & Images (# Images (#

images AD of SM/AD) of SM/AD)
Kegelmeyer [20] 330 68 165(34) 165(34) 100 –
Karssemeijer [21] 50 19 none 50(19) 90 1

Delp [22] 38 19 19(9) 19(10) 84.2 1
Zwiggelaar [80] 54 27 Leave-one-out classi- 70 0.01

fication method used

Table 3.1: This table summarizes the performance of prior algorithms devel-
oped for the detection of spiculated masses and architectural distortions. It
also presents the number of training and testing images used in each study.

of testing an algorithm on a small set of images is that the natural variations

among the spiculated masses and architectural distortions are not seen by the

algorithm.

To the best of our knowledge the experiments carried out in this dis-

sertation are the largest detection studies (in terms of the number of images

of spiculated lesions used) on any database. The accuracy of our detection

algorithm may be improved further by including a classifier to differentiate

between the spiculated lesions and normal tissue.
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(a) FROC curve: Spiculated Masses
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(b) FROC curve: Architectural Distortions

Figure 3.11: FROC Curves: The performance of the detection algorithm is
reported using FROC curves. The y-axis of the FROC curve corresponds to
the sensitivity of the algorithm and the x-axis corresponds to the number of
FPI per image. Figures 3.11(a) and 3.11(b) shows the FROC curve for the
set of 50 spiculated masses and 46 architectural distortions from the DDSM
database, respectively. 75
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(a) FROC curve for spiculated masses only
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(b) FROC curves for spiculated masses with normal images

Figure 3.12: FROC Curves: Figure 3.12(a) shows the results on the set of
images used by Karssemeijer et al.. If normal images are added to this set
of spiculated masses, the number of false-positives per image will increase.
The blue curve in figure 3.12(b) shows the FROC curve when the data-set
contained images of both spiculated masses and 31 normal images.
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(a) FROC curve for spiculated masses only
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(b) FROC curves for spiculated masses with normal images

Figure 3.13: FROC Curves: Figure 3.13(a) shows the results on the set of
images used by Liu et al.. If normal images are added to this set of spiculated
masses, the number of false-positives per image will increase. The blue curve
in figure 3.13(b) shows the FROC curve when the data-set contained images
of both spiculated masses and 19 normal images.
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Chapter 4

Comparison of Spicule Enhancement

Algorithms

4.1 Introduction

In Chapter 3, (section 3.2.1) a new algorithm for the enhancement of

spicules was described. In this method, the Discrete Radon Transform (DRT)

of an image is computed and a filter is applied in the Radon domain. The

enhanced image is obtained by computing the Inverse DRT.

Recently, the Fast Slant Stack (FSS) method ([81]) was developed to

compute the DRT of an image. This algorithm is one-to-one and is invertible

on its range, and it is computationally efficient. In this chapter, we compare

the effect of using the traditional implementation of the DRT versus the FSS

implementation of the DRT in our spicule enhancement algorithm.

4.2 Materials and Methods

4.2.1 Brief review of spicule enhancement algorihtm

In this section, we provide a description and the intuition behind the

Radon-based approach to enhancing spicules. The most natural mathematical

framework for enhancing and detecting straight line structures in images is the
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Radon Transform [69]. The Discrete Radon Transform ĝ(ρ, θ), of an N-by-N

image f(x, y) is given by:

ĝ(ρ, θ) =

N/2
∑

y=−N/2

N/2
∑

x=−N/2

f(x, y)δ(ρ − x cos(θ) − y sin(θ)) (4.1)

Where δ(r) is the Kronecker impulse function, which is zero everywhere except

when r = 0. Hence, the term δ[ρ − x cos(θ) − y sin(θ)] contributes summed

values of f(x,y) only along the line [ρ−x cos(θ)−y sin(θ)] and thus the value of

ĝ(ρ, θ) for any (ρ, θ) is the sum of values of f(x, y) along this line. An important

property of the Radon Transform is that a line in the image space f(x, y) maps

to a unique peak in the Radon domain.In addition, lines of different thickness

have different representations in the Radon domain.

Figure 3.2 in Chapter 3, shows two lines of different thickness and

their corresponding Radon Transforms. A single pixel thick line would be

represented by a point in the Radon domain whereas a 4 pixel thick line would

be represented by 4 points along a column in the Radon domain. Thus, by

detecting “local peaks” along the columns in the Radon domain, it is possible

to detect the corresponding lines in the image. To do so, a number of peak

detection algorithms can be used. While many approaches might be taken to

identify peaks, our approach is to simply filter the rows of the Radon Transform

with an appropriate bi-valued one-dimensional linear filter with an impulse

response that is a rectangle of width agreeing with the maximum spicule width

to be highlighted. This approach has the advantages of both directness and

simplicity. Application of this simple filter to the Radon image, followed by
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an Inverse Radon Transform, will yield an enhanced image with amplified

linear structures (spicules) of the requisite widths, all other structures being

suppressed.

4.2.2 Experimental Setup

The images for this study were obtained from the Digital Database for

Screening Mammography (DDSM), ([62]). Thirty MLO images, each contain-

ing a single spiculated mass were selected. A region-of-interest containing the

abnormality was cropped and used for all further analysis. The 30 images

were enhanced using two versions of our spicule enhancement algorithm. In

the first version (Method 1), we used the traditional implementation of the

DRT and in the second version (Method 2), we used the FSS implementation

of the DRT. To study the advantages of using the FSS over the traditional

implementation of the DRT, we followed the following procedure. We con-

ducted multiple 2-alternative-forced choice (2 AFC) observer studies. In the

first study, the observer was an expert radiologist (R1) with extensive expertise

in breast imaging. In the second observer study, 10 engineering students from

our research lab were selected as observers. For each image, the original image

and the two enhanced images (from Method 1 and Method 2) were shown to

all of the observers and they were asked to choose the image in which the

spicules were enhanced more prominently. We also measured the total time

for obtaining 30 enhanced images using methods 1 and 2. Both methods were

implemented in MATLAB (The MathWorks, Natick, MA). Figure 4.1 shows
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this experimental setup. The image in the center is the original image. In this

example, the enhanced image obtained with Method 1 is shown on the left

and the enhanced image obtained with Method 2 is shown on the right. The

positions of the enhanced images (left or right) were randomly selected so that

the observers would not be able to tell by which method enhanced image was

generated.

4.2.3 Results

The results of the 2 alternative-forced choice (2 AFC) observer study

are presented in Table 4.1. For each observer, we counted the number of im-

ages for which he/she felt that the spicules were more apparent in the image

enhanced by Method 2 as compared to the image enhanced by Method 1. The

radiologist preferred the enhanced images generated by Method 2 for 28 out of

the 30 images (98.33%). Moreover, most of the engineering observers also pre-

ferred the enhanced images of Method 2 over that of Method 1. On average,

for 74.6% (standard deviation = 21.1%) of the images all of 10 engineering

observers felt that enhancement results of Method 2 were visually more ap-

pealing. There were only two images for which the radiologist, as well as most

of the novice observers, preferred the enhanced image generated by Method 1

to that generated by Method 2 (Fig. 4.2). This was most likely due to the

fact that the radiologist reported that he preferred images where edges were

enhanced. He felt he could see more spicules in Figure 4.2(c) as compared to

Figure 4.2(a). In addition, he could see more detail in the region of the mass
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Obs. Obs. Obs. Obs. Obs. Obs. Obs. Obs. Obs. Obs.
1 2 3 4 5 6 7 8 9 10

93% 47% 87% 67% 93% 70% 100% 60% 90% 40%
(28/ (14/ (26/ (20/ (28/ (21/ (30/ (18/ (27/ (12/
30) 30) 30) 30) 30) 30) 30) 30) 30) 30)

Table 4.1: This table shows the results of the two-forced alternative choice
(2-AFC) experiment. For each observer, the percentage of images where the
observer felt the spicules were enhanced more prominently by Method 2 (which
used the FSS technique) is shown. On average, for 74% of images the observers
felt that Method 2 produced better enhancement results. In comparison, the
radiologist preferred the images generated by Method 2, for 28 out of the 30
images (98%).

in Figure 4.2(d) as compared to Figure 4.2(f). Similarly, three examples of im-

ages where most observers preferred the enhanced image generated by Method

2 are shown in Figure 4.3. Method 2 was computationally more efficient than

Method 1. The total time required to run Method 1 on 30 images was 29.5

minutes whereas the total time required running Method 2 on 30 images was

only 4.7 minutes. Thus, Method 2 was six times faster than Method 1.

4.3 Discussion

In Chapter 3, a novel algorithm for the CADe of spiculated lesions is

described and an important component of this algorithm is a spicule enhance-

ment strategy. In this method, we employ the DRT of an image and filter

in the Radon domain. In this chapter, we have compared the effect of using

the traditional implementation of the DRT (Method 1) versus the FSS imple-

mentation of the DRT (Method 2) in our spicule enhancement algorithm. The
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results show that observers with and without experience in radiology found im-

ages enhanced by Method 2 to be more visually appealing. Moreover, Method

2 was computationally more efficient than Method 1 as it utilized the FSS

implementation of the DRT whereas, Method 1 utilized the traditional imple-

mentation of the DRT algorithm. In future work, additional observer studies

could be conducted to analyze the effect of the enhancement algorithms on

detection performance. One could assess if the enhancement techniques help

observers to detect more spiculated lesions. The effect of the enhancement

methods on CADe algorithms could also be studied. The initial evaluation of

CADe algorithms is typically in terms of FROC curves [82] of the algorithms

acting independently (i.e., no human observer). However, as CADe algorithms

are ultimately used to assist radiologists, confirmatory studies of the perfor-

mance of the radiologist with and without the use of CADe would also be

needed.
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Figure 4.1: This figure shows a screenshot of the observer experiments carried
out. The image in the center is the original image and the images on the
left and right are the enhanced images obtained with the two enhancement
methods. The observer is asked to choose which enhanced image they found
most visually appealing. For the 2-AFC observer studies experiments the
observers were not told from which method a particular enhanced image was
generated and the images were shown in random order.
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(a) Method 1 (b) Original Image (c) Method 2

(d) Method 1 (e) Original Image (f) Method 2

Figure 4.2: The only two images where most of the readers liked Method
1 better than Method 2. These were also the only two images where the
radiologist found the enhanced image created with Method 1 more visually
appealing.
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(a) Method 1 (b) Original Image (c) Method 2

(d) Method 1 (e) Original Image (f) Method 2

(g) Method 1 (h) Original Image (i) Method 2

Figure 4.3: Three images where most of the readers liked the images enhanced
with Method 2 better than the images enhanced with Method 1.
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Chapter 5

Similarity Metrics for Binary Images:

Comparing Segmentations on Medical Imaging

5.1 Introduction

Accurate image segmentation is critical for the detection and classifi-

cation of objects-of-interest in medical images. Image segmentations may be

generated by human observers or by computer algorithms. In Chapter 2, it

was shown how various statistical techniques such as ICC were used to quan-

tify inter- and intra-observer variability in the measurement of the physical

characteristics of spiculated lesions. During the course of this work it was ob-

served that the existing statistical techniques have a limitation when used to

compare segmentations of linear structures. Specifically, they do not account

for the spatial location of these linear structures.

In this chapter, similarity metrics were empirically compared, with an

emphasis on their value for comparing segmentations of linear structures (e.g.,

spicules on mammographic lesions). Intensity-based similarity metrics (e.g.,

Dice) assume that the two images being compared are registered and so their

similarity is determined from a comparison of the intensity associated with

pixels with the same coordinates in the two images. Spatial-based methods
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(e.g., PCM) first match pixels between the two images based on intensity

and the similarity of the two images is determined from a comparison of the

spatial coordinates of the corresponding pixels in the two images. Alterna-

tively, one could design metrics in the wavelet domain that are less sensitive

to small geometric distortions such as translation and rotation. The Complex-

Wavelet Structural Similarity Index (CW-SSIM) was originally developed for

gray-scale image quality assessment and it has not been previously used in

medical imaging. The key idea behind the CW-SSIM method is that certain

image distortions lead to consistent phase changes in the local wavelet coeffi-

cients and that a consistent phase shift of the coefficients does not change the

structural content of the image.

A segmentation is represented as a binary image where all pixels on

and inside the indicated boundary are assigned a value of one and zero oth-

erwise. For dense objects, e.g., tumors, the segmentation may contain many

pixels. By comparison, for linear structures, e.g., blood-vessels, the segmen-

tation can be sparse. Similarly, small dense objects are represented by a few

pixels (sparse segmentations). For example, consider a spiculated mass as seen

on mammography (Fig. 5.1(a)). In Fig. 5.1(b) the central region of the mass,

a dense object, has been segmented, whereas in Fig. 5.1(c) the spicules of the

mass, linear structures, have been segmented.

Segmentation generators are evaluated in terms of three qualities: pre-

cision (reproducibility), accuracy (agreement with truth), and efficiency (time

taken) [83]. A surrogate of truth and a metric for assessing the similarity be-
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tween it and a given segmentation are needed to assess accuracy. Similarity

metrics are also needed to quantify the variability between image segmenta-

tions created by different segmentation generators. An image is a function

f(x, y) of intensity over spatial coordinates (x, y). Thus, a similarity metric

for images in this representation must account for similarity in both intensity

and space, and metrics can be classified according to how they handle these

two properties. One class of approaches assumes that the two images being

compared are registered and so their similarity is determined from a compari-

son of the intensity associated with pixels with the same (x, y) coordinates in

the two images. We will refer to such metrics as “intensity-based”. Alterna-

tively, pixels may first be matched between the two images based on intensity

and the similarity of the two images is determined from a comparison of the

spatial coordinates of the corresponding pixels in the two images. We will refer

to such metrics as “spatial-based”.

When evaluating the similarity of segmentations of dense objects, it

is natural to think of the degree of the spatial overlap, and so metrics for

the evaluation of segmentations of dense objects tend to be “intensity-based”.

In comparison, the similarity of two segmentations of linear structures can

be expressed in terms of the spatial distances between linear structures in

the two images. Thus, metrics for the evaluation of segmentations of linear

structures tend to be “spatial-based”. In medical imaging the segmentation of

dense objects is encountered more frequently and so many metrics have been

developed for the comparison of segmentations of dense objects. However, few
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metrics have been proposed for or tested on segmentations of linear structures

in medical images.

We will now summarize the intensity-based metrics that are commonly

used in medical image processing. Since we are concerned with image segmen-

tations that are represented as binary images, the intensity f(x, y) can only

take on the values 0 or 1. Thus, the simplest of the intensity-based metrics

quantify “spatial overlap” by applying Boolean operations to the correspond-

ing pixel intensities. Examples of these straightforward and easy to implement

metrics include the Dice [84], Jaccard [85], Simpson [86], Ochiai [87], Braun-

Blanquet [88], and Sokal-Sneeth [89] similarity metrics. Among them, the

Dice similarity coefficient [84] and the Jaccard metric [85] are widely used in

medical imaging. Notice that as a consequence of their design, these metrics

penalize segmentations that are different by even just one pixel. While this

property is probably desirable for applications where the goal is to compare

segmentations of dense objects encompassing many pixels, it is of questionable

value for assessing the similarity of tracings of linear structures comprised of

relatively few pixels.

Another commonly used intensity-based similarity metric is the Mean

Square Error (MSE) [69]. It is computed by averaging the squared intensity

differences of the two images. Note that while other intensity-based metrics

report agreement between two images, the MSE is designed as a measure of

the error or disagreement. In general, the MSE is zero when the two images

are identical and has no upper bound. By comparison, most intensity-based
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metrics are designed so that they have an upper-bound of one and a lower-

bound of zero (representing completely dissimilar images). For binary images,

it can be shown that the MSE is a linear function of the Simple Matching

metric [90] (Table 5.3): MSE = 1 − Simple Matching.

The Simultaneous Truth and Performance Level Estimation (STAPLE)

algorithm was recently developed by Warfield et al. [91] for the evaluation of

dense object segmentations. Given a set of segmentations (at least 3-5) of

the same object, the STAPLE algorithm provides a robust statistical frame-

work which simultaneously and iteratively generates statistical estimates of

the ground truth and the accuracy of each segmentation in terms of sensitiv-

ity and specificity. The STAPLE algorithm is unique in that it provides a

probabilistic estimate of the hidden ground truth. The accuracy of each seg-

mentation in measured in terms of sensitivity and specificity. The sensitivity is

defined as the fraction of the pixels labeled as one in the ground truth that are

also labeled as one in the segmentation being assessed. The specificity is the

fraction of the pixels labeled as zero in the ground truth that are also labeled

as zero in the segmentation being assessed [91]. Thus, the STAPLE algorithm

uses intensity-based similarity metrics to compare each segmentation to the

ground truth.

All intensity-based metrics discussed so far use a pixel-level comparison

to compute a measure of similarity. They do not take advantage of the “local”

information around each pixel. The recently developed Structural Similarity

(SSIM) index proposed by Zhou et al. [92] uses the “local” structural informa-
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tion to define a similarity metric. The structural information in an image is

defined as those attributes that represent the structure of objects in the scene,

independent of the mean intensity and contrast. Thus, the SSIM metric com-

pares local patterns of pixel intensities that have been normalized for mean

intensity and contrast. It has been shown that the SSIM metric is superior

to existing metrics used for image quality assessment [92]. To the best of our

knowledge, SSIM has not been used in medical imaging applications.

Intensity-based metrics have limitations when observers outline/trace

linear structures. It is very likely that outlines which represent the same struc-

tures, but were traced by different observers, are a few pixels apart. However,

intensity-based metrics do not account for “spatial proximity” in these sit-

uations. One possible approach to overcome this limitation is to dilate the

the outline images before computing an intensity-based metric. For example,

Jomier et al. proposed a method in which they combine the STAPLE algo-

rithm with morphological operators (dilation) to compare segmentations of

vascular structures (e.g., vessels) [93].

Alternatively, one could compare segmentations of linear structures us-

ing spatial-based similarity metrics that have been proposed in the image

processing literature to quantify the similarity of edge images. “Edges” are

characterized by sharp transitions in intensity between two regions and seg-

mentations of linear structures can be viewed as edges of a predefined width.

Since these metrics assess spatial proximity rather than assuming images are

registered in space, they are better suited than intensity-based metrics for
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comparing segmentations of linear structures. To the best of our knowledge,

these metrics have not previously been used for medical imaging applications.

Spatial-based similarity metrics include the Figure of Merit (FOM) [94],

Closest Distance Metric (CDM) [95, 96], and Pixel Correspondence Metric

(PCM) [96]. All of these metrics allow for a small localization error (user-

specified) and so an edge pixel does not have to be at the exact same spatial

location as the ground truth pixel to be classified as a correct segmentation. In

essence, each of the pixels in the edge image has to be “matched” or “mapped”

with a pixel in the ground truth image. Some metrics (e.g., FOM) allow more

than one detected edge pixel to correspond to the same ground truth pixel

(many-to-one mapping). This is undesirable and thus CDM and PCM were

designed such that a one-to-one mapping between pixels in the edge image

and the ground truth is enforced. Prieto et al. reported that PCM produces

a more accurate matching than CDM [96]. Finally, while most spatial-based

metrics account only for the distance of edges, a few metrics (e.g., PCM) also

account for the “strength” or intensity of edges (this has an advantage for

applications in which gray-scale images are compared).

All metrics discussed above are designed in the spatial domain. Some

assume that the images are registered and compute a metric based on image

intensities. Otherwise, if the images are not registered, then a matching step

is required where each pixel in one image is matched to a pixel in the ground

truth image. This process can be computationally intensive.

Alternatively, one could design metrics that are less sensitive to geo-
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metric distortions. It is often easier to perform such analyses in the Fourier

or Wavelet domains. For example, translation and rotation invariant shape

descriptors have been defined in the Fourier domain [97]. Developing a metric

in the Wavelet domain (rather than the Fourier domain) has numerous ad-

vantages, since the Wavelet domain provides localization in both space and

frequency.

SSIM has been extended to the complex-wavelet domain [98]. The key

idea behind the CW-SSIM method is that certain image distortions lead to

consistent phase changes in the local wavelet coefficients and that a consistent

phase shift of the coefficients does not change the structural content of the

image. The CW-SSIM index analyzes phase consistency to achieve robust-

ness to small geometric distortions. CW-SSIM was originally developed for

general-purpose gray-scale image quality assessment and pattern recognition

applications and it has not been previously used in medical imaging applica-

tions. We show that CW-SSIM is a good metric for assessing similarity of

segmentations of linear structures because it is robust to small geometric dis-

tortions. Whether a metric is robust to small geometric distortions is probably

not important when segmentations of large, dense objects are compared, but

may become crucial when segmentations of linear structures are assessed. For

example, consider the case when an expert twice traces a linear structure in an

image and the resulting two outlines are displaced by a single pixel. The ex-

pert may have intended these to be outlines of the same structure and visually

the two measurements may appear very similar. However, an intensity-based
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similarity metric would indicate that the two segmentations are very different.

In principle, spatial-based metrics are better suited to quantify the similarity

of measurements of linear structures. However, spatial-based metrics tend to

have high computational complexity and require parameters to be set upfront.

The purpose of this study was to investigate metrics for assessing the

similarity of segmentations, with an emphasis on their value for comparing seg-

mentations of linear structures. For this study, the metrics have been tested

on two sets of data. The first set consists of simulated images to which geo-

metric transformations like rotation and translation were applied. The second

set consists of outlines of linear structures on images from mammography.

5.2 Metrics

5.2.1 Intensity-Based Similarity Metrics

The simplest of the intensity-based similarity metrics are based on the

direct measurement of spatial overlap of segmentations. Consider the case

when two segmentations of an object, created by different segmentation gen-

erators, are to be compared. Let a represent the number of pixels that are

non-zero in both binary segmentation images. Note that, the greater the spa-

tial overlap, the greater the value of the term a. The term c represents the

number of pixels marked as one by segmentation generator #1 only and b

represents the number of pixels marked as one by segmentation generator #2

only. Finally, d represents the number of pixels that were labeled as zero by

both segmentation generators. The terms a, b, c, and d form a two-by-two con-
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tingency table as shown in Table 5.1. Metrics designed to measure the spatial

overlap between two segmentations are computed by dividing the term a by a

normalizing factor so that the values are in the range 0 to 1. The normalizing

factor is formed by a combination of the terms a, b, c and d. A compre-

Segmentation 1
One Zero Total

Segmentation 2 One a b a+b
Zero c d c+d
Total a+c b+d a+b+c+d

Table 5.1: Two-by-two contingency table: The goal is to compare two segmen-
tations of the same object. A pixel that lies on or inside the boundary of the
segmented object is labeled one and zero otherwise. In this table a represents
the number of pixels that are non-zero in both images. The term b represents
the number of pixels marked as one by segmentation generator #1 only and c
represents the number of pixels marked as one by segmentation generator #2
only. Finally, d represents the number of pixels that were labeled as zero by
both segmentation generators.

hensive review of spatial-overlap metrics was published by Shi [99]. Several

spatial-overlap based metrics are summarized in tables 5.2 and 5.3. The Dice

and Jaccard metrics are commonly used in medical imaging, while the other

metrics (Tables 5.2 and 5.3) are routinely used in other fields [99–101].

From a conceptual viewpoint, spatial overlap metrics can be divided

into two categories. The metrics in Table 5.2 do not use the term d (Table

5.1) whereas the metrics in Table 5.3 do. For purposes of evaluating similarity

of segmentations, the measures in Table 5.2 are more intuitively appealing than

those in Table 5.3 because d represents the number of pixels that were labeled

as zero in both segmentations. In other words, most users would probably
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prefer that a similarity measure for image segmentations be independent of

the size of the background. Of course, the metrics in Table 5.3 may be suitable

for other applications where both agreement variables (a and d) are equally

informative.

The Dice similarity coefficient [84] is commonly used in medical imaging

studies to quantify the degree of overlap between two segmented objects, e.g.,

[102–104]. In terms of the quantities in Table 5.1, Dice is defined as:

Dice =
(2 × a)

(2 × a + b + c)
(5.1)

If the two segmentations overlap completely then Dice = 1 and if there is

no overlap then Dice = 0. Although a Dice value of greater than 0.7 is taken to

indicate “excellent” agreement [103] it is difficult to analyze the absolute value

of Dice since “similarity” is application dependent and represents different

things in different contexts.

Another metric commonly used in medical imaging is the Jaccard met-

ric [85]. However, the Jaccard and Dice metrics are closely related: Dice =

(2× Jaccard)/(Jaccard + 1). Thus, the Jaccard metric does not provide inde-

pendent information in addition to the Dice metric and so we do not compute

both metrics in this study. Moreover, since all the metrics listed in Table 5.2

are all closely related, some are equivalent under certain circumstances. For

example, if (b = c) then the Dice, Kulczynski2, Braun-Blanquet, Simpson,

and Ochiai metrics are equivalent and simplify to the formula a/(a + b). This
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example corresponds to the case in which the total number of pixels marked

in each of the two segmentations are equal.

Name of Metric Source and Year Formula Range
Dice Dice, 2 · a

2 · a + b + c

0 to 1
1945 [84]

Jaccard Jaccard, a

a + b + c
0 to 1

1912 [85]
Kulczynski1 Kulczynski, a

b + c
0 to inf

1928 [105]
Kulczynski2 Kulczynski, (a/2) · (2 · a + b + c)

(a + b) · (a + c)

0 to 1
1928 [105]

Simpson Simpson, a

min(a + b, a + c)
0 to 1

1960 [86]
Ochiai Ochiai, a

((a + b) · (a + c))1/2

0 to 1
1957 [87]

McConnaughey Hubalek, a2 − b · c
(a + b) · (a + c)

−1 to 1
1982 [106]

Braun-Blanquet Braun and Blanquet, a

max(a + b, a + c)
0 to 1

1932[88]
Sokal & Sneath(2) Sokal & Sneath a

a + 2 · b + 2 · c
0 to 1

1963 [89]

Table 5.2: Similarity metrics for binary data: These are a set of metrics that
are defined based on the terms a, b, and c only (from Table 5.1). The Dice
and Jaccard metrics have been commonly used in medical imaging applications
whereas the remaining metrics are more popular in other fields. These metrics
are all closely related.

5.2.2 Spatial-Based Similarity Metrics

In applications where readers outline/trace linear structures, the bi-

nary representations of the segmentation can be modeled as edges in the im-

age. Thus, another group of relevant metrics are those that were originally
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Name of Metric Source and Year Formula Range
Russell and Rao Russel and Rao, a

a + b + c + d
0 to 1

1940 [107]
Simple Matching Sokal & Michener, a + d

a + b + c + d

0 to 1
1958 [90]

Yule Yule, (a · d) − (b · c)
(a · d) + (b · c)

0 to 1
1900 [108]

Rogers and Tanimoto Rogers & Tanimoto, a + d

a + d + 2 · (b + c)

0 to 1
1960 [109]

Sokal and Sneath (1) Sokal & Sneath, 2 · (a + d)

2 · (a + d) + b + c

0 to 1
1963 [89]

Table 5.3: Metrics for binary data: These are a set of metrics that are defined
based on the terms a, b, c, and d (from Table 5.1). Note that for image
segmentation similarity, d represents the number of pixels that were labeled
as zero in both segmentations. Thus, these metrics may not be as desirable as
those in Table 5.1 since they depend on the size of the background surrounding
the segmented objects.

proposed in the image processing literature to quantify the similarity of edge

images. These include the Figure of Merit (FOM,[94]), Closest Distance Met-

ric (CDM,[95]), and Pixel Correspondence Metric (PCM,[96]). Edge-based

similarity metrics are suitable for assessing the similarity of outlines of linear

structures on medical images since they take into account the spatial proxim-

ity of the outlines created. In this study, FOM was not used because it has a

number of limitations [96]. The major limitation of the FOM metric is that it

allows more than one edge pixel in one image to match or correspond to the

same pixel in the other image and thus may provide an unrealistic measure

of image similarity. PCM and CDM avoid this issue by forcing a one-to-one

matching between the edge pixels in the two images. The difference between
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PCM and CDM lies in the manner in which the matching is done. While CDM

uses a simple closest distance measure, PCM uses a sophisticated technique

from graph theory.

5.2.2.1 Pixel Correspondence Metric (PCM)

The PCM was proposed by Prieto et al. [96]. Let f and g represent

two images that are to be compared. Let f(i, j) represent a particular pixel

in f and g(k, l) represent the corresponding pixel in g. For every pixel f(i, j),

the PCM algorithm tries to find its match within a neighborhood of radius

η of the corresponding pixel g(k, l). This idea is shown schematically in Fig.

5.2. The metric is given by the following equation:

PCMη(f, g) = 100 ·
(

1 − C(Mopt(f, g))

|f ∪ g|

)

(5.2)

where C(Mopt(f, g)) is the cost of optimal matching between the images, η

denotes the localization error allowed between the pixels and |f ∪ g| is the

total number of pixels that are not zero in f or g. (Note that in in terms of

the quantities described in Table 5.1, |f ∪ g| = a + b + c). The search for the

optimal matching is a complex problem and is solved by modeling the task

as a weighted matching task in bipartite graphs. A number of solutions have

been proposed. A detailed description of the PCM algorithm can be obtained

in [96].
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5.2.2.2 Closest Distance Metric (CDM)

The CDM was proposed by Bowyer et al. [95]. Let f and g denote

the two images. The goal is to find a possible match in g (within a certain

neighborhood), for every pixel f(i, j) in images f . If multiple matches exist,

then the edge pixel g(k, l) that is closest to f(i, j) is selected. Finally, the

number of matched and unmatched pixels are counted. The metric is computed

as:

CDMη(f, g) = 100 ·
(

1 − C(Mcd(f, g))

|f ∪ g|

)

(5.3)

where CDMη(f, g) is the cost of the matching obtained using the closest-

distance condition, η is the neighborhood radius used in the matching, and

|f ∪ g| is the total number of pixels that are not zero in f or g. (Note that in

in terms of the quantities described in Table 5.1, |f ∪ g| = a + b + c).

5.2.3 Complex Wavelet Structural Similarity (CW-SSIM)

The structural similarity (SSIM) index was originally proposed for the

prediction of human preferences in evaluating image quality [92]. The under-

lying assumption of this approach is that the human visual system (HVS) is

highly adapted to extract structural information from the visual scene and thus

a measure of structural similarity should provide a good estimate of perceived

image quality. It has been demonstrated that the SSIM index is successful

in predicting the quality of images degraded with a wide variety of distortion

types and levels. However, the complex wavelet SSIM (CW-SSIM) index [98]

has proven to be more robust than the baseline SSIM index to small geometric
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distortions. In previous work, both the baseline SSIM index and the CW-SSIM

index were developed and tested for the comparison of gray-scale images only.

Here we propose to use the CW-SSIM index as a binary image similarity met-

ric, where the binary images are treated as gray-scale images in which image

pixels take either the maximal or the minimal intensity values only.

Two observations motivate the use of complex wavelet coefficients.

First, it has long been known that phase contains more structural informa-

tion than magnitude in typical natural images [110]. Second, rigid translation

of image structures leads to consistent phase shift. Based on these observa-

tions, it is preferable to design a metric that 1) separates the measurement

of magnitude and phase distortions; 2) is more sensitive to phase than mag-

nitude distortions; and 3) is insensitive to consistent relative phase distor-

tions. In the complex wavelet transform domain (see [111] for an example),

let cx = {cx,i|i = 1, ..., N} and cy = {cy,i|i = 1, ..., N} be two sets of coeffi-

cients extracted at the same spatial location (e.g., within a local window) in

the same wavelet subbands of the two images being compared, respectively.

The CW-SSIM index is defined as:

S̃(cx, cy) =
2 |

∑N
i=1 cx,i c

∗
y,i| + K

∑N
i=1 |cx,i|2 +

∑N
i=1 |cy,i|2 + K

, (5.4)

where c∗ denotes the complex conjugate of c and K is a small positive constant.

The CW-SSIM index can be written as a product of two components:

S̃(cx, cy) =
2

∑N
i=1 |cx,i||cy,i| + K

∑N
i=1 |cx,i|2 +

∑N
i=1 |cy,i|2 + K

·
2 |∑N

i=1 cx,i c
∗
y,i| + K

2
∑N

i=1 |cx,i c∗y,i| + K
. (5.5)
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The first component is completely determined by the magnitudes of

the coefficients and the maximum value 1 is achieved if and only |cx,i| = |cy,i|

for all i’s. This is a relatively insensitive measure. For example, scaling the

magnitude of all coefficients by a factor of 10% only causes reduction of the

CW-SSIM value from 1 to 0.9955 when K = 0 and the reduction is even less

when K > 0. By contrast, the second component is fully determined by the

consistency of phase changes between cx and cy. It achieves the maximum

value 1 when the phase difference between cx,i and cy,i is a constant for all i’s.

On the other hand, when the phase change between cx,i and cy,i is significantly

different for different i’s, this measure gives a value far less than 1. In other

words, the second component penalizes changes in image structures (inconsis-

tent phase shift) and is robust to image translations (consistent phase shift).

When the metric is applied locally, the robustness to translation also results

in robustness to small rigid geometrical distortions such as rotation and scal-

ing, because small geometrical distortions can be locally approximated with

translations [98].

To implement the CW-SSIM index for the comparison of images, we

first decompose the images using a complex version of a 2-scale, 4-orientation

steerable pyramid decomposition [111], which is a type of redundant wavelet

transform that avoids aliasing in subbands. The CW-SSIM indices are then

computed locally using a sliding 7x7 window that moves across each wavelet

subband. Finally, the resulting CW-SSIM index map is combined into a scalar

similarity measure using a weighted summation. The weights are obtained
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using a Gaussian profile with a standard deviation equaling a quarter of the

image size.

5.3 Data Description and Experimental Design

Similarity metrics were compared on a set of simulated images and on

tracings of linear objects on mammograms made by two experienced radiol-

ogists. To generate the simulated images, a binary image was created (Fig.

5.3). The simulated image represents an idealized model of a spiculated mass

as seen on mammography. Variants of the test image were created by rota-

tion, translation, and adjusting the edge thickness. The original image was

compared to each of the rotated and translated images and similarity metrics

were computed. These pairs of images model the case in which two readers

trace linear structures on images, but their markings are off by a few pixels.

In the first experiment, the original image was rotated from 0 to 4

degrees in increments of 0.4 degrees. Translation was not applied to these

images and the edge width was fixed at one pixel. Three images that have

been rotated by 1, 2 and 4 degrees are shown in Figs. 5.3(a), 5.3(b), and

5.3(c) respectively.

In the second experiment, spatial translation was applied to the original

image by shifting in the x or y directions by a few pixels. Let xshift and yshift

denote the amount of spatial translation applied in the x and y directions.

The Euclidean distance is =
√

(xshift
2 + yshift

2). Ten spatial translations of 1

to 7 pixels (Euclidean distance) were applied to the original image. Rotation
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was not applied to these images and the edge width was fixed at one pixel.

Three images that have been translated by (3,0), (5,1) and (7,2) pixels in the

horizontal and vertical directions are shown in Figs. 5.4(a), 5.4(b), and 5.4(c)

respectively.

In the third experiment, the effect of the width on the similarity metrics

was studied. For this experiment, the line segments in the Fig. 5.5(a) were

dilated once and twice with a 3-by-3 window. The two dilated images are

shown in Figs. 5.5(b) and 5.5(c) respectively. A rotation of 4 degrees was

applied to the images and the images were not translated.

The second set of images for this study were obtained from the Digi-

tal Database for Screening Mammography (DDSM) [62], the largest publicly

available dataset of digitized mammograms. The outlines of the abnormalities

are available in the database as “chain codes”. From this “chain code”, an ROI

containing a lesion can be extracted. Two radiologists (R1 and R2) marked

linear structures of interest on the images (spicules). To compute an esti-

mate of the intra-observer agreement, R1 repeated the process. The analysis

was conducted on regions-of-interest (ROIs) using the ROI Manager plugin of

NIH ImageJ. The radiologists traced all spiculations on a set of 12 spiculated

masses.
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5.4 Results

5.4.1 Results on Simulated Data

5.4.1.1 Effect of rotation

We analyzed the effect of small rotations on intensity-based, spatial-

based, and CW-SSIM metrics. In the simulation, the original image is rotated

from 0 to 4 degrees in increments of 0.4 degrees and the original image is

compared to each of the rotated images. Since the intensity-based metrics

(Table 5.2) are all closely related, some are equivalent in our simulation. For

the simulated images (b = c) and the Dice, Kulczynski2, Braun-Blanquet,

Simpson, McConnaughey, and Ochiai metrics are equivalent and simplify to

the formula a/(a + b). Thus, Figure 5.3(d) shows the effect of rotation on the

Dice and Sokal and Sneath(2) metrics. The values of the Dice and Sokal and

Sneath(2) metrics decrease drastically as the amount of rotation is increased

(Figs. 5.3(d)). In this simulation, the value of both metrics is zero for any

rotation greater than 1.6 degrees. For example, the reported similarity between

the original image and copy that is rotated 2 degrees (Fig. 5.5(b)) is the same

as that between the original image and a copy that is rotated 4 degrees (Fig.

5.5(c)). Yet, there is certainly a perceptible difference between these scenarios

and one may desire a metric that can quantify that difference. In comparison,

the PCM has a greater dynamic range than the Dice metric does over rotational

distortions. PCM is 0.67 for 2 degrees of rotation and 0.13 for 4 degrees of

rotation (Fig. 5.3(e)). Similarly, the dynamic range of CW-SSIM is larger

than that of PCM. The CW-SSIM metric has a value of 0.81 for 2 degrees of
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rotation and a value of 0.65 for 4 degrees of rotation (Fig. 5.3(f)). A wider

dynamic range may be advantageous in some applications. For example, the

perceptible difference between the two simulations in Figs. 5.5(b) and 5.5(c) is

slight. However, the PCM is 81% lower for the latter over the former, whereas,

in comparison the CW-SSIM metric decreases by only 20% as the rotation

increases from 2 to 4 degrees. Finally, note that the response of the CW-SSIM

metric is linear, whereas it is not linear for Dice and PCM for these simulation

settings. Human observer studies would be needed to determine if a linear or

non-linear response better matches human perception of similarity for a given

segmentation task. However, in the absence of such observer studies, the fact

that the CW-SSIM values are easier to interpret is intuitively appealing.

5.4.1.2 Effect of translation

We analyzed the effect of small translations on intensity-based, spatial-

based, and CW-SSIM metrics. For the simulated data, ten spatial translations

of 1 to 7 pixels (Euclidean distance) were applied to the original image. The

original image was then compared to each of the translated images. For the

same reasons as given above, only the Dice and Sokal and Sneath(2) metrics

are plotted. Both the Dice metric and the Sokal and Sneath(2) metric decrease

significantly as the amount of translation is increased (Figs. 5.4(d)). In this

simulation, the value of both metrics is zero for any translation greater than 3

units (Euclidean distance). For example, the reported similarity between the

original image and a copy that is translated by approximately 5 units (Fig.
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5.4(b)) is the same as that between the original image and a copy that is

translated by approximately 7 units (Fig. 5.5(c)). Thus, the intensity-based

metrics can’t quantify such a difference in similarity. As was the case for

rotational distortions, PCM has a greater dynamic range than the Dice metric

does over translational distortions. For example, PCM is 0.43 for the first case

and 0.22 for second case (Fig. 5.4(e)). Again, the dynamic range of CW-SSIM

is larger than that of PCM. The CW-SSIM metric has a value of 0.70 for the

first case and a value of 0.56 for the second (Fig. 5.4(f)). There is only a

small perceptible difference between the two simulations in Figs. 5.4(b) and

5.4(c), yet the PCM decreases by 49% for the second case. In comparison the

CW-SSIM metric decreases by only 20%. Finally, note that as was the case

for the rotation simulation, the response of the CW-SSIM metric is linear as

a function of translation, whereas it is not linear for Dice and PCM for these

simulation settings.

5.4.1.3 Effect of width of edges

We analyzed the effect of width of edges on intensity-based, spatial

based, and CW-SSIM metrics. In this experiment, only the width of the edges

is changed, with the rotation fixed at 4 degrees and no translation applied.

For the same reasons as given above, only the Dice and Sokal and Sneath(2)

metrics are plotted. Both intensity-based (Fig. 5.5(d)) and spatial-based (Fig.

5.5(e)) metrics are very sensitive to the width of edges whereas the CW-SSIM

metric is more robust to the changes in the width of edges (Fig. 5.5(f)).
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We also studied the effect of the width of edges in combination with

rotations or translations. The performance of the metrics for three different

edge widths and various rotations are depicted in Figs. 5.6(b), 5.6(d) and

5.6(f). Similarly, the performance of the metrics for three different edge widths

and various translations are depicted in Figs. 5.7(b), 5.7(d) and 5.7(f). The

behavior of the Dice and PCM metrics as a function of rotation or translation

depends on the width used to represent the segmentations. For smaller values

of the edge-width, the responses of both Dice and PCM are non-linear. By

comparison, for larger values of the edge-width, the responses of both Dice and

PCM metrics appear linear. Additionally, the CW-SSIM metric has a larger

dynamic range than Dice and PCM for all simulation conditions.

5.4.2 Results on Mammography Data

The two radiologists (R1 and R2) measured the properties of 12 spic-

ulated masses. To compute the intra-observer agreement, R1 measured these

properties twice. Quantitative measures of both the intra- and inter-observer

agreement were computed using the Dice, PCM, and CW-SSIM metrics.

Two sets of outlines of spiculations made by one radiologist (R1) on

four spiculated masses are shown in Fig. 5.8. Each row in this figure shows

the original image, the two set of outlines generated by R1, and the values of

the three metrics. By visual inspection, it is apparent that there is substan-

tial intra-observer agreement in the segmentations of some images (e.g., Fig.

5.8(a)). However, low values of the Dice metric are obtained (e.g., Dice = 0.29
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for Fig. 5.8(a)); note that a Dice value of greater than 0.7 is considered to de-

note “excellent” agreement [103]. In contrast, the PCM and CW-SSIM values

are much higher for segmentations of images displaying obvious intra-observer

agreement (e.g., PCM = 0.36 and CW-SSIM = 0.54, for Fig. 5.8(a)).

On the other hand, the relative values of all three metrics are generally

consistent with subjective assessments. For example, by visual inspection, we

can see that the intra-observer agreement in the segmentations of the spicu-

lated mass shown in Fig. 5.8(a) is more than that for the spiculated mass in

Fig. 5.8(m). This difference is apparent from each of the metrics: Dice =

0.29 vs. 0.09, PCM = 0.36 vs. 0.20, and CW-SSIM = 0.54 vs 0.34. However,

there are some images for which the intra-observer agreement in segmentation

was clearly greater than for other images, yet only the CW-SSIM metric cap-

tured this difference. For example, by visual inspection, we can see that the

intra-observer agreement in the segmentations of the spiculated mass shown

in Fig. 5.8(e) is more than that for the spiculated mass in Fig. 5.8(m). This

difference is not apparent from the Dice and PCM metrics, but is captured

by the CW-SSIM metric: Dice = 0.07 vs. 0.09, PCM = 0.19 vs. 0.20, and

CW-SSIM = 0.48 vs. 0.34.

Two sets of outlines of spiculations made by two radiologists (R1 and

R2) on four spiculated masses are shown in Fig. 5.9. Each row in this figure

shows the original image, the outlines generated by R1 and R2, and the values

of the three metrics. Again, low values of Dice are obtained despite subjec-

tively obvious agreement. For example, the inter-observer agreement for the
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spiculated mass shown in Fig. 5.9(i) is only 0.16 by Dice. In comparison, PCM

(0.26) and CW-SSIM (0.49) indicate more substantial agreement. As was the

case for intra-observer agreement, all metrics generally captured the trends in

the inter-observer agreement expected from visual inspection. For example,

by visual inspection, we can see that the inter-observer agreement in the seg-

mentations of the spiculated mass shown in Fig. 5.9(i) is more than that for

the spiculated mass in Fig. 5.9(m). All three metrics reflect this observation:

Dice = 0.16 vs. 0.10, PCM = 0.26 vs. 0.25, and CW-SSIM = 0.49 vs. 0.34.

Finally, one would expect that the intra-observer agreement should be

higher than the inter-observer agreement. All of the metrics exhibit this trend

for most of the segmentation pairs. The Dice and PCM values are greater for

intra-observer agreement than for the corresponding inter-observer agreement

for 8 out of the 12 mammography cases and the CW-SSIM values are greater for

intra-observer vs. inter-observer for 9 out of the 12 of the images of spiculated

masses.

5.5 Discussion

In this chapter, we have compared metrics for assessing the similar-

ity of segmentations of linear structures. The metrics include intensity-based

measures such as Dice and spatial-based approaches such as PCM. We have

introduced the use of the CW-SSIM to quantify image similarity. Simulations

were conducted to study the effect of small geometric distortions such as ro-

tation and translation on these similarity metrics. Likewise, the effect of the
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thickness of edges was studied. The similarity metrics were also compared for

the task of quantifying intra- and inter-observer agreement of segmentations

of linear structures on mammograms.

Dice and other intensity-based metrics are simple and intuitive. They

can be implemented easily and have low computational overhead. Conse-

quently, intensity-based metrics are widely used in medical imaging. However,

as we have shown with a number of experiments in this study, intensity-based

metrics have a small dynamic range for comparing segmentations of linear

structures.

Spatial-based metrics such as CDM and PCM have advantages over the

intensity-based metrics for evaluating the segmentations of linear structures.

In this study, we have demonstrated that spatial-based metrics have a larger

dynamic range than intensity-based metrics. However, spatial-based metrics

require one to specify a search neighborhood and it is difficult to do so upfront.

In this analysis, a search neighborhood of 2 pixels was used in order to be

consistent with a prior study by the developers of PCM [96]. It is likely that

a using larger search neighborhood would help improve the performance of

CDM and PCM for evaluating similarity of segmentations of linear structures.

However, increasing the search area would also increase the computational

complexity. As CDM and PCM perform exhaustive searches for matching

pixels of the boundaries, the main limitation of these metrics is that they are

computationally intensive.

In our simulations, CW-SSIM had the largest dynamic range for quanti-
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fying dissimilarity due to small geometric transformations such as rotation and

translation. Likewise, while the dynamic range of CW-SSIM did not depend

on the edge width, the dynamic ranges of Dice and PCM were very sensitive

to the edge width. Moreover, the responses of Dice and PCM as a function

of rotational and translational distortion was nonlinear for small edge widths.

In comparison, the response of CW-SSIM was linear for all edge widths (Figs.

5.6 and 5.7).

The Dice, PCM, and CW-SSIM metrics were also applied to mammog-

raphy images in which observers traced spicules on spiculated masses. Both

the intra- and inter-observer agreement was quantified. One would expect

that the intra-observer agreement should be higher than the inter-observer

agreement. All of the metrics exhibit this trend for most of the segmentation

pairs. However, note that as with the simulated data, the absolute values of

the Dice metric for the intra- and inter-observer agreement are low relative

to the reported cutoff of 0.7 for “excellent” agreement. The absolute values

of the PCM and CW-SSIM metrics are larger, but it is not possible to make

definite conclusions about the dynamic range of these metrics on real data.

Assessing the similarity of segmentations is a challenging problem.

While it is easy to define a multitude of potential metrics, it is difficult to

evaluate their performance since there is not a “ground truth” for the concept

of similarity. Through careful simulations and demonstrations with real data,

such as we have presented in this study, one can provide some insight into

the relative strengths and weakness of different similarity metrics. However,
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how to best interpret the values computed for a given similarity metric re-

mains elusive. In contrast, evaluation scales have been developed for metrics

for assessing similarity or agreement in other tasks. For example, there are

established scales for interpreting the intra-class correlation coefficient (ICC),

which is used to assess observer agreement in measurements studies (e.g., com-

pare observers’ measurements of mass size), and the Kappa statistic, which is

used to assess observer agreement in rating studies (e.g., compare observers’

descriptions of mass margin). To the best of our knowledge, Dice is unique

among similarity metrics for comparing segmentations in that a cut-off (0.7)

for “excellent” similarity has been proposed (by Zijdenbos et al. [103]). The

justification of the 0.7 cut-off for Dice is based on an appeal to its relation-

ship with Kappa. However, as Zijdenbos et al. acknowledge, interpreting the

absolute value of Dice is still difficult, even given a defined cut-off for excel-

lent agreement. Thus, future work is needed to increase the interpretability of

similarity metrics for comparing image segmentations.
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(a) Original Image (b) Segmentation of a dense
object

(c) Segmentation of linear
structures

Figure 5.1: This figure shows examples of the two extremes of segmentations.
In Fig 5.1(b) the central mass region (dense object) of a spiculated mass is
segmented. In Fig. 5.1(c) the spicules (linear structures) are outlined. The
segmentations are represented by setting the pixels on or inside the boundary
to one and zero otherwise.

),( jif ),( lkg

r

Figure 5.2: A schematic explanation of the PCM algorithm. Let f and g
represent the two segmentation images that are to be compared. Let f(i, j)
represent a particular pixel in f and g(k, l) represent the corresponding pixel
in g. For every pixel f(i, j), the PCM algorithm tries to find its match within
a neighborhood of radius r of the corresponding pixel g(k, l).
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Figure 5.3: This figure shows the effect of rotation on similarity metrics. Note
that the edges widths are fixed and no translation is applied. In Figs. 5.3(a),
5.3(b), and 5.3(c) the original image is displayed with solid lines. The locations
of the lines of the image that was obtained after applying a rotation is shown
in these images with dotted lines. In Figs. 5.3(a), 5.3(b), and 5.3(c) rotations
of 1, 2, and 4 degrees were applied respectively. Figure 5.3(d) shows the effect
of rotation on the intensity-based metrics whereas Fig. 5.3(e) compares the
performance of the spatial-based metrics for different rotations. The perfor-
mance of the Dice (intensity-based), PCM (spatial-based), and CW-SSIM are
compared in Fig. 5.3(f).
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Figure 5.4: This figure shows the effect of translation on similarity metrics.
Note that the edges widths are fixed and no rotation is applied. In Figs. 5.4(a),
5.4(b), and 5.4(c) the original image is displayed with solid lines. The locations
of the lines of the image that was obtained after applying a translation is
shown in these images with dotted lines. In Figs. 5.4(a), 5.4(b), and 5.4(c)
translations of 3.00, 5.10, and 7.28 units (Euclidean distance) were applied
respectively. Figure 5.4(d) shows the effect of translation on the intensity-
based metrics whereas Fig. 5.4(e) compares the performance of the spatial-
based metrics for different translations. The performance of Dice (intensity-
based), PCM (spatial-based), and CW-SSIM are compared in Fig. 5.4(f).
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Figure 5.5: This figure shows the effect of edge width on similarity metrics.
Note that a fixed rotation of 4 degrees was applied to the original image and no
translation was applied in this simulation. In Fig. 5.5(a) the edge width was
one pixel, whereas the simulated image was dilated by factors of 1 and 2 in Figs.
5.5(b) and 5.5(c) respectively. Figure 5.5(d) shows the effect of edge width on
the intensity-based metrics whereas Fig. 5.5(e) compares the performance of
the spatial-based metrics for different edge widths. The performance of Dice
(intensity-based), PCM (spatial-based), and CW-SSIM are compared in Fig.
5.5(f).
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Figure 5.6: This figure shows the effect of edge width on the similarity metrics
as a function of rotation distortion. The original image was rotated from 0
to 4 degrees in increments of 0.4 degrees. The locations of the lines of the
image that was obtained after applying a rotation are shown with dotted lines
(for example, in Fig. 5.6(a), the original image is rotated by 4 degrees). The
original image was compared to each of the rotated images and for each pair
of images the similarity metrics were computed. To study the effect of the
edge width, the image was dilated and the metrics were recalculated. Figures
5.6(c) and 5.6(e) show the simulated images after dilation by factors of 1 and
2 respectively and Figs. 5.6(d) and 5.6(f) show the similarity metrics as a
function of rotation.
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Figure 5.7: This figure shows the effect of edge width on the similarity metrics
as a function of translation distortion. The original image was translated in
the x and y directions by different amounts. The locations of the lines of the
image that was obtained after applying spatial translations are shown with
dotted lines (for example, in Fig. 5.7(a) a translation of 7 pixels to the right
and 2 pixels to the bottom is applied). The original image was compared
to each of the translated images and for each pair of images the similarity
metrics were computed. To study the effect of the edge width on the metrics,
the image was dilated and the metrics recalculated. Figures 5.7(c) and 5.7(e)
show the simulated images after dilation by factors of 1 and 2 respectively and
Figs. 5.7(d) and 5.7(f) show the similarity metrics as a function of translation.
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Figure 5.8: Intra-observer agreement: This figure shows two sets of outlines
of spicules created by a radiologist (R1) for four spiculated masses. The first
column shows the original images and the first and second sets of outlines
made by R1 are displayed in columns two and three. Column four shows the
Dice, PCM, and CW-SSIM metrics for each pair of segmentations.
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Figure 5.9: Inter-observer agreement: This figure shows the outlines of spicules
created by two radiologists (R1 and R2) for four spiculated masses. The first
column shows the original images and the second and third columns show the
outlines made by R1 and R2 respectively. Column four shows the Dice, PCM,
and CW-SSIM metrics for each pair of segmentations.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation a new evidence-based detection algorithm for the

detection of spiculated lesions on mammography was developed. By evidence-

based we mean that we used the statistics of the physical characteristics of

spiculated lesions to select the parameters of the detection algorithm.

For this task, a measurement study was conducted in which, for the

first time, measurements on the physical properties of spiculated lesions were

collected and used to guide the design of the detection algorithm. To the

best of our knowledge, this is the first time the parameters of a detection

algorithm have been selected from scientific data rather than from anecdotal

impressions or empirically selected to optimize performance of a particular

dataset. In this dissertation, measurements taken from this study were used

to demonstrate the engineering principles that we have proposed. It was also

shown (with various statistical techniques) that the properties of these lesions

can be reliably measured and the first database of the physical properties of

spiculated lesions was created.

In the development of the detection algorithm, we have made several
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novel contributions. We have invented a new class of filter banks to detect the

spatial location where these spicules converge. We refer to these as Spicula-

tion Filter banks (SFBs). In our approach the SFBs are designed to explicitly

match the expected structure of the spiculations (viz., the SFs look like ideal-

ized spiculated lesions) while they also have desirable optimal spatio-spectral

localization properties. Beyond this, the SFBs are not only designed to match

the spiculated lesions to be encountered, but they are configured, based on the

scientific data from the measurement studies, to have sizes, frequencies, and

extents derived from actual physical measurements.

A new Radon-domain technique for enhancing spicules in mammograms

was invented. The enhancement is achieved by computing the Radon trans-

form of the image and filtering in the Radon domain. The parameters of the

filter are chosen based on the width of spicules obtained from the measurement

studies.

6.2 Future Work

6.2.1 Relations to Spiculation filter-banks to wavelet theory

Through appropriate selection of the Spiculation filter-banks (SFB) pa-

rameters, the SFB can be made to implement a specific type of wavelet trans-

form. Thus, it is appropriate to think of the filters as Spiculation Wavelets and

which can be used to compose Spiculation Wavelet Transforms. Many wavelet-

based approaches for analyzing mammograms have been reported [22, 112–114]

and the use of wavelets has proven to be a significant advance, owing to the
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good approximation properties of appropriate wavelet functions. However,

the wavelet basis functions used previously were standard wavelets, such as

the Daubechies 9/7 [115, 116] which were not matched to the structures to be

detected. Because of this, prior approaches could only use the wavelet out-

puts/coefficients as generic features for training a standard classifier, with the

user hoping that the results would be adequate. To date, the results have not

been adequate for spiculated lesions. We believe that taking a direct model-

ing approach will greatly increase the utility of wavelet-based algorithms and

allow simple classification algorithms to be effective. In our approach, the

wavelet functions are designed to explicitly match the expected structure of

the spiculations (viz., the SF look like idealized spiculated lesions) while they

also have desirable optimal spatio-spectral localization properties. Further,

the SFB are not only designed to match the spiculated lesions to be encoun-

tered, but they are configured to have sizes, frequencies, and extents derived

from actual physical measurements. Since SFs comprise a radically different

wavelet basis with properties and appearances that have never been explored

previously or exploited before, this will offer an important avenue of study

that may contribute significantly to wavelet theory.

6.2.2 Local Radon Transform

The new spicule enhancement algorithm presented here uses the Radon

transform which can be viewed as a “global” transform. (Since image inten-

sities are summed along lines and not along line segments.) Recently, a local-
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ized Radon transform has been developed [117–119]. We plan to investigate

whether localized Radon transforms help to improve the accuracy of the overall

detection method by more selective, local feature enhancement.

6.2.3 Measuring properties of other linear structures in mammo-
grams

In this dissertation, the physical properties of spiculated lesions were

measured and used. A number of other linear structures such as blood vessels,

ducts and fibrous tissue and connective tissue can mimic the appearance of

spicules. Some researchers have tried to distinguish spicules from such linear

structures. For example, Zwiggelaar et al. proposed a technique in which var-

ious linear structures detected on mammograms were classified into categories

such as spicules, vessels, fibrous tissue, etc [120]. However, currently, there

are no data on the properties of linear structures such as vessels, ducts, and

connective tissue that are commonly seen on mammograms. Measuring these

properties would help to select the parameters of classification algorithms in

a principled manner.

6.2.4 Collection of measurement data on spiculated lesions

In this work, measurements were made by two radiologists on a set of 21

spiculated masses and 15 architectural distortions. I believe it would be ben-

eficial to collect measurements on a much larger set of spiculated masses and

architectural distortions and from multiple radiologists. Once we have these

measurements, these should be made available to the research community.
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A comprehensive set of statistics of the physical parameters of spicu-

lated lesions could be used be used not only for improving detection algorithms

but also for more localized tasks such as diagnosis and reduction of false pos-

itives. I strongly believe that the systematic study and quantification of the

physical parameters of these lesions would not only be useful for our devel-

opmental efforts but also for those of future researchers in computer-aided

detection and diagnosis.
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Appendix A

List of images used for measurement study

This appendix provides the details of the images used for the measure-

ment studies. The names of the spiculated masses used for the measurement

studies are provided in Table A.1 and the names of the architectural distor-

tions used are shown in Table A.2. All of these images were obtained from the

DDSM database [62].
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B 3135 1.RIGHT MLO.LJPEG C 0016 1.RIGHT MLO.LJPEG
B 3071 1.LEFT MLO.LJPEG B 3405 1.RIGHT MLO.LJPEG
C 0095 1.RIGHT MLO.LJPEG C 0158 1.LEFT MLO.LJPEG
C 0139 1.RIGHT MLO.LJPEG C 0175 1.LEFT MLO.LJPEG
C 0339 1.RIGHT MLO.LJPEG C 0180 1.LEFT MLO.LJPEG
C 0081 1.LEFT MLO.LJPEG C 0069 1.RIGHT MLO.LJPEG
C 0103 1.LEFT MLO.LJPEG C 0181 1.RIGHT MLO.LJPEG
C 0188 1.LEFT MLO.LJPEG C 0096 1.RIGHT MLO.LJPEG
C 0110 1.RIGHT MLO.LJPEG C 0165 1.LEFT MLO.LJPEG
B 3016 1.RIGHT MLO.LJPEG C 0004 1.RIGHT MLO.LJPEG
C 0358 1.LEFT MLO.LJPEG

Table A.1: This table lists the set of spiculated masses used in the measure-
ment studies. Each radiologist measured the properties of these spiculated
masses.

C 0020 1.RIGHT MLO.LJPEG B 3425 1.LEFT MLO.LJPEG
C 0481 1.LEFT MLO.LJPEG C 0032 1.RIGHT MLO.LJPEG
B 3139 1.LEFT MLO.LJPEG C 0137 1.LEFT MLO.LJPEG
C 0101 1.RIGHT MLO.LJPEG B 3475 1.LEFT MLO.LJPEG
C 0070 1.LEFT MLO.LJPEG B 3514 1.LEFT MLO.LJPEG
C 0183 1.RIGHT MLO.LJPEG C 0026 1.LEFT MLO.LJPEG
C 0073 1.RIGHT MLO.LJPEG C 0171 1.LEFT MLO.LJPEG
B 3093 1.LEFT MLO.LJPEG A 1674 1.LEFT MLO.LJPEG

Table A.2: This table lists the set of architectural distortions used in the
measurement studies. Each radiologist measured the properties of these archi-
tectural distortions.
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Appendix B

List of images used for the detection algorithm

This appendix provides the details of the images used to test the perfor-

mance of the detection algorithm. Table B.1 lists the names of the spiculated

masses and Table B.2 lists the names of the architectural distortions used.

All of these images were obtained from the DDSM database [62]. Images of

spiculated masses from the MIAS database ([79]) were also used. Table B.3

lists the names of these image.
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B 3012 1.RIGHT MLO.LJPEG B 3041 1.LEFT MLO.LJPEG
B 3046 1.LEFT MLO.LJPEG B 3057 1.RIGHT MLO.LJPEG
B 3065 1.RIGHT MLO.LJPEG B 3084 1.RIGHT MLO.LJPEG
B 3398 1.RIGHT MLO.LJPEG B 3411 1.RIGHT MLO.LJPEG
B 3492 1.LEFT MLO.LJPEG C 0003 1.RIGHT MLO.LJPEG
C 0004 1.RIGHT MLO.LJPEG C 0009 1.RIGHT MLO.LJPEG
C 0015 1.RIGHT MLO.LJPEG C 0018 1.LEFT MLO.LJPEG
C 0028 1.LEFT MLO.LJPEG C 0034 1.RIGHT MLO.LJPEG
C 0047 1.LEFT MLO.LJPEG C 0050 1.LEFT MLO.LJPEG
C 0059 1.LEFT MLO.LJPEG C 0064 1.RIGHT MLO.LJPEG
C 0074 1.LEFT MLO.LJPEG C 0075 1.LEFT MLO.LJPEG
C 0079 1.LEFT MLO.LJPEG C 0085 1.RIGHT MLO.LJPEG
C 0096 1.RIGHT MLO.LJPEG C 0100 1.RIGHT MLO.LJPEG
C 0103 1.LEFT MLO.LJPEG C 0110 1.RIGHT MLO.LJPEG
C 0112 1.LEFT MLO.LJPEG C 0116 1.LEFT MLO.LJPEG
C 0121 1.RIGHT MLO.LJPEG C 0141 1.LEFT MLO.LJPEG
C 0158 1.LEFT MLO.LJPEG C 0165 1.LEFT MLO.LJPEG
C 0166 1.RIGHT MLO.LJPEG C 0170 1.LEFT MLO.LJPEG
C 0180 1.LEFT MLO.LJPEG C 0181 1.RIGHT MLO.LJPEG
C 0187 1.LEFT MLO.LJPEG C 0192 1.RIGHT MLO.LJPEG
C 0194 1.RIGHT MLO.LJPEG C 0196 1.LEFT MLO.LJPEG
C 0225 1.RIGHT MLO.LJPEG C 0226 1.RIGHT MLO.LJPEG
C 0339 1.RIGHT MLO.LJPEG C 0340 1.RIGHT MLO.LJPEG
C 0358 1.LEFT MLO.LJPEG C 0424 1.RIGHT MLO.LJPEG
C 0432 1.LEFT MLO.LJPEG C 0457 1.RIGHT MLO.LJPEG

Table B.1: This table lists the set of spiculated masses used in the detection
studies. The detection algorithm is applied to each of these images and results
are reported as FROC curves.
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A 1127 1.RIGHT MLO.LJPEG A 1140 1.LEFT MLO.LJPEG
A 1203 1.LEFT MLO.LJPEG A 1217 1.LEFT MLO.LJPEG
A 1222 1.RIGHT MLO.LJPEG A 1260 1.LEFT MLO.LJPEG
A 1282 1.LEFT MLO.LJPEG A 1388 1.RIGHT MLO.LJPEG
A 1401 1.RIGHT MLO.LJPEG A 1410 1.LEFT MLO.LJPEG
A 1436 1.LEFT MLO.LJPEG A 1467 1.RIGHT MLO.LJPEG
A 1478 1.LEFT MLO.LJPEG A 1504 1.RIGHT MLO.LJPEG
A 1505 1.LEFT MLO.LJPEG A 1517 1.RIGHT MLO.LJPEG
A 1577 1.RIGHT MLO.LJPEG A 1587 1.LEFT MLO.LJPEG
A 1592 1.RIGHT MLO.LJPEG A 1628 1.LEFT MLO.LJPEG
A 1720 1.LEFT MLO.LJPEG A 1720 1.RIGHT MLO.LJPEG
A 1777 1.LEFT MLO.LJPEG A 1804 1.LEFT MLO.LJPEG
A 1835 1.RIGHT MLO.LJPEG A 1847 1.RIGHT MLO.LJPEG
A 1906 1.RIGHT MLO.LJPEG B 3123 1.LEFT MLO.LJPEG
B 3440 1.RIGHT MLO.LJPEG B 3477 1.LEFT MLO.LJPEG
B 3495 1.LEFT MLO.LJPEG B 3501 1.RIGHT MLO.LJPEG
C 0006 1.LEFT MLO.LJPEG C 0142 1.LEFT MLO.LJPEG
C 0230 1.RIGHT MLO.LJPEG C 0283 1.LEFT MLO.LJPEG
C 0418 1.RIGHT MLO.LJPEG D 4059 1.RIGHT MLO.LJPEG
D 4077 1.LEFT MLO.LJPEG D 4102 1.RIGHT MLO.LJPEG
D 4137 1.LEFT MLO.LJPEG D 4142 1.RIGHT MLO.LJPEG
D 4143 1.LEFT MLO.LJPEG D 4150 1.RIGHT MLO.LJPEG
D 4160 1.LEFT MLO.LJPEG D 4173 1.LEFT MLO.LJPEG

Table B.2: This table lists the set of architectural distortions used in the
detection studies. The detection algorithm is applied to each of these images
and results are reported as FROC curves.
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mdb145.pgm mdb148.pgm
mdb175.pgm mdb178.pgm
mdb179.pgm mdb181.pgm
mdb184.pgm mdb186.pgm
mdb188.pgm mdb190.pgm
mdb191.pgm mdb193.pgm
mdb195.pgm mdb198.pgm
mdb199.pgm mdb202.pgm
mdb204.pgm mdb206.pgm
mdb207.pgm

Table B.3: This table lists the set of spiculated massses (from the MIAS
database) used in the detection studies. The detection algorithm is applied to
each of these images and results are reported as FROC curves.
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