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Computer Adaptive Testing (CAT), a form of computer-based testing that
selects and administers items that match the examinee’s trait levels, can be shorter
in length and maintain comparable or greater measurement precision than
traditional fixed-length paper-and-pencil testing. Administration of computer-based
patient reported outcome (PRO) measures has increased recently in the medical
field. Because PRO measures often have small item pools, small numbers of items
administered, and populations in poor health, the benefits of CATs are especially
advantageous. In CAT, Maximum Fisher information (MFI) is the most commonly
used item selection procedure since it is easy to use and computationally simple.
However, its main drawback is the attenuation paradox. If the estimated trait level
of the examinee is not the true trait level, the items selected will not maximize
information at the true trait level and the measurement is less precise. To address
this issue, alternative item selections methods have been proposed. In studies, these
alternatives have not performed better than MFI. Recently, Gradual Maximum
Information Ratio (GMIR) item selection method was proposed and previous

findings suggest GMIR could be beneficial for a short CAT.



This simulation study compared GMIR and MFI item selection methods under
conditions specific to the constraints of the PRO measures. GMIR and MFI are
compared under Andrich’s Rating Scale Model (ARSM) across two polytomous item
pool sizes (41 and 82), two population latent trait distributions (normal and
negatively skewed), and three combination maximum number of item and minimum
standard error stopping rules (5/0.54, 7/0.46, 9/0.40). The conditions were fully
crossed. Performance was evaluated in terms of descriptive statistics of the final
trait estimates, measurement precision, conditional measurement precision, and
administration efficiency. Results found GMIR had better measurement precision
when the test length was 5 items, with higher mean correlations between known
and estimated trait levels, smaller mean bias, and smaller mean RMSE. An effect of
item pool size and population latent trait distribution was not found. Across item
selection methods, measurement precision increased as the test length increase, but

with diminishing returns from 7 to 9 items.
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Chapter 1: Introduction

Computer Adaptive Testing (CAT) is a form of computer-based testing that
adapts to the examinee. Instead of administering an identical set of items to every
examinee like traditional fixed-length paper-and-pencil testing (P&P), the CAT
program selects and administers items that match the examinee’s trait levels, so
every examinee receives a unique set of items. If the examinee answers an item
incorrectly, which indicates the item was too difficult, the computer will administer
an easier item next. Conversely, if an examinee answers an item correctly, the
computer then administers a more difficult item.

Item response theory (IRT) is the psychometric approach on which computer
adaptive testing is based. IRT uses item properties or parameters and examinee’s
item responses to estimate examinee’s traits. IRT allows a person’s trait
measurement to only vary within a linear transformation, regardless of the level of
the trait and regardless of the item administered. A CAT can administer only a
subset of items from a larger item pool. IRT models predict the probability of a
response to an item, conditional on the person and item parameters. When the
response options are binary, dichotomous models are appropriate, and when there
are more than two response options, polytomous models are appropriate. Common
dichotomous models include the one, two, and three parameter logistic models
(Birnbaum, 1968; Rasch, 1960). Examples of polytomous models include the Graded
Response Model (Samejima, 1969), the Partial Credit Model (Masters, 1982), the
Generalized Partial Credit Model (Muraki, 1992), and Andrich’s Rating Scale Model

(1978).



CAT is used in a number of fields including education, business, military, and
medicine. Examples of CATs are the Graduate Record Examination (GRE), a number
of Microsoft Certified Professional exams, the Armed Services Vocational Aptitude
Test Battery (ASVAB), and the Patient-Reported Outcomes Measurement
Information System (PROMIS) Health Assessment Questionnaire Disability Index
(HAQ). Recently, in the health and medical fields, administration of computer-based
patient reported outcome (PRO) measures has increased and can be expected to
grow. Ware, Bjorner and Kosinski (2000) stated “the health case industry needs
more practical tools to monitor population health on a large scale as well as more
precise tools to identify those who need and are most likely to benefit from
treatment.” The National Institutes of Health (NIH) Roadmap Initiative is making a
systematic effort to develop and make available on a public web-based system
thousands of items and CAT systems for a large number of PRO assessment
measures, known as PROMIS (Reeve, 2006). The NIH is looking to solve the
problems of small clinical trials with small individual labs and small sample sizes.
Jette and Haley (2005) complain of the “data incompatibility across instruments”
and the “inability of different outcome assessments to talk to each other” as a
limitation of current methodology. Reeve (2006) states that the goals of PROMIS are
to electronically administer individually tailored PRO measures, collect the PRO
data for research, and provide immediate health reports to the patient, health care
provider, and/ or researcher. Since secrecy of items is not necessary in the health
care industry as it is in educational testing, collaboration and open sharing of items

is easier. Walker , Bohnke, Cerny and Strasser (2010) stated that PROMIS “aims to



revolutionize the way (PRO) tools are selected and used in clinical research and
practice evaluation.” The PROMIS Assessment Center contains item pools and scales
in a number of domains: global health, mental health (e.g. alcohol use), physical
health (e.g. pain interference), and social health (e.g. satisfaction with social roles
and activities)(PROMIS Full Domain Framework, 2016). CATs have been developed
that evaluate health outcomes in a variety of areas. CATs have been developed to
assess headache impact (Ware et al., 2003), depression (Fliege et al., 2005), anxiety
(Walter et al,, 2007), and many other health issues. Researchers in the medical field
have studied the use of CAT for patient-based health status measures and have
found the use of computer adaptive testing to be advantageous. Reeves stated in
2006 that it is “the brink of a new era for health outcomes measurement with the
availability of CAT-based tools which integrate the advances of modern computer
technology and the strengths of modern measurement theory.”

When compared to traditional testing, CAT has a number of benefits. Many of
these benefits are specifically advantageous to the health care PRO measures due to
unique characteristics of the PRO measures as compared to educational testing.
While educational testing measures can have item pools in the 100s, PRO measure
item banks are generally 50 items (Walker et al., 2010). CAT patient reported
outcome measures in current research, in contrast to lengthier educational
measures which are usually 20 items or more, often limit the number of items to five
to ten (Cook et al., 2008; Cook et al., 2007; Fliege et al., 2005; Ware et al., 2005). The
health care field has a different population than the educational testing field;

patients are often ill or have physical limitations. It is important for the medical field



to understand how a CAT performs under these specific conditions. The primary
focus of this study is the application to the specific constraints of and orientation to
the PRO measures.

Advantageously, the adaptive testing process increases the efficiency of the
test; CATs can be shorter in length and maintain comparable or greater
measurement precision. (Cook et al., 2008; Dodd, de Ayala, & Koch, 1995;
Embretson & Reise, 2000; Fliege et al., 2005; Wainer, 2000; Ware et al., 2003; Ware,
Gandek, Sinclair, & Bjorner, 2005). Tradition non-adaptive P&P testing administers
a larger number of items, many are too high for examinees with low trait values
many are too low for examinees with high trait values. In education for example, a
test would have questions that are too difficult for a low ability student to solve
correctly and questions that a high ability student could easily answer all correctly.
This results in an examinee being administered unnecessary items. An
unnecessarily long measure that takes needless time and energy can be a nuisance
in educational and professional settings, but particularly burdensome for patients in
a medical setting. Limiting this testing burden is especially advantageous for PROs
when the patient has physical limitations or a serious illness. Physicians may
monitor patients through repeated administrations of a PRO at appointments or
treatments, for cancer for example, where avoiding lengthy surveys would be
benevolent and precise measurement of changes across time are important.
Administration of a CAT instead of a P&P patient reported outcome measure allows
for so few items to be administered and can limit the testing burden while

maintaining or increasing measurement precision. Furthermore, specific conditions



of various CAT components may be ideal when such a short test length is
administered. Another advantage of CAT that is particularly relevant to the medical
field is that the number of patients needed for a clinical trial can be reduced, while
maintaining statistical power (Fries, 2006; Fries et al., 2014). This allows health care
research trials to proceed with fewer resources and less funding. Computer based
testing also benefits the health care industry since the evaluation results are easier
than P&P to integrate into patients’ electronic records (Walker et al., 2010). Systems
like PROMIS can improve patient-doctor communication and health-care provider
decision making. Electronic records for measures that can be compared across
research and practice settings could allow for better evaluation of the effectiveness
of treatments, provider, and organizations, which is of growing interest to
administrators. Also, NIH will gain a greater ability to monitor and understand
causes in disease progression (Reeve, 2006).

One critical component of CATs that increases the efficiency as compared to
P&P testing is the method of item selection. Through the item selection method, the
CAT can select a unique set of items from the larger item pool. Maximum Fisher
information (MFI) is the most commonly used item selection method for CATs
(Lord, 1980). MFI method selects the item that maximizes information, item
measurement precision, at a specific trait estimate. While the MFI method is easy to
use and computationally simple, its main drawback is the attenuation paradox (Lord
& Novick, 1968). If the specific estimated trait level is not the true trait level of the

examinee, the items selected do not maximize information at the true trait level. If



the items are less optimal, the estimates are inefficient and the measurement is less
precise. This is particularly an issue in the first few items of the CAT.

To address this weakness, a number of alternatives to MFI have been
developed. Veerkamp and Berger (1997) proposed interval information criterion
(IIC) and likelihood weighted information criterion (LWIC), which are extensions of
MFI. Chang and Ying (1996) proposed Kullback-Leibler (KL) information as an
alternative to Fisher information. Owen (1975) and van der Linden (1998)
proposed a number of different Bayesian approaches, which select items based on
the prior and posterior distributions of the trait estimates. In studies, these
alternatives methods have generally estimated trait levels comparably or more
poorly than MFI. Van Rijn, Eggen, Hemker, and Sanders (2002) found little
difference between IIC and MFI using the PCM. Veldkamp (2003) found KL and IIC
performance compared to MFI in terms of mean squared error and overlap of items
administered, using the GPCM. Lima Passos et al. (2007) found KL performed
comparably to MFI and IIC fluctuated more than MFI in terms of RMSE and bias.
Choi and Swartz (2009) found MFI, LWI, and Bayesian methods performed similarly
in terms of bias, Root Mean Squared Error (RMSE), and correlations with true 6
values, using the GRM. Ho (2010) also found MFI and Bayesian methods performed
comparably in terms of mean bias, RMSE, absolute average difference, and
correlations with true 6 values, using the GPCM and a number of 6 estimation
methods.

Han (2009) recently proposed gradual maximum information ratio (GMIR)

as the latest alternative item selection method to MFI. A few studies have compared



GMIR to MFI under the three-parameter logistic model (Han, 2009; Han, 2010) and
under the Generalized Partial Credit Model (Chang & Dodd, 2013). Han (2009)
found GMIR resulted in a smaller standard error of 6 estimate on average over 20
days of administration. Han (2010) found that GMIR, MFI, and KL outperformed IIC
and LWIC especially with a shorter test, 10-20 items. Chang and Dodd (2013) found
that GMIR had better measurement precision than MFI at extreme trait values and
in the early stages of the CAT. Differences were found in overall measurement
precision only at extreme 6 values. If patients with the illness of interest have
extreme trait values, poor shoulder functioning for example, greater measurement
precision at those values, would be extremely important. This would ensure the
patients’ functioning levels are measured precisely. Chang and Dodd also found the
differences between MFI and GMIR were present for the first 5-10 of the 20-item
measure. This increase in measurement precision in the first few items could be
especially advantageous in PRO measures, since very few items are administered.
GMIR could allow fewer items to be administered with greater measurement
precision. This dissertation research aims to extend the research of GMIR comparing
it to MFI in a CAT simulation under ARSM and conditions similar to health care PRO
measures: 5-10 items administered and matched and mismatched population
distributions. This study will use item parameter estimates from an operational PRO

measure item bank and simulated response data.



Chapter 2: Literature Review

The first section presents item response theory (IRT), it's advantages and
assumptions, and models appropriate for dichotomous and polytomous items. The
second section is a discussion of computer adaptive testing (CAT), its advantages,
and the major components of a CAT. The third section contains a review of CAT item
selection method research. The fourth section is the statement of problem and

research questions for the dissertation.

ITEM RESPONSE THEORY

Item response theory (IRT) is a model-based measurement approach that
uses examinee’s item responses and item properties to estimate latent traits, e.g.
ability, attitudes or functioning level. IRT is also called latent trait theory. Each
model includes a person parameter, which is the person’s latent trait score (8), and
one or more item parameters. Depending on the restrictiveness of the assumptions
of the model, item parameters can include the item difficulty, item discrimination,
and a pseudo-guessing parameter. The model, with these parameters included,
predicts the probability of a particular response to an item. The probability of a
response is a function of the person and item parameters, as defined by the model.
IRT models with binary responses, e.g. right or wrong, are called dichotomous
models and models with multiple-category responses, e.g. 1,2,3,4,5, are called
polytomous models.

One advantageous feature of IRT is parameter invariance. Regardless of the
items administered, the person’s trait measurements will vary only within a linear

transformation and regardless of the trait level of the people measured, the item



parameters will vary only within a linear transformation. In other words, a person’s
score would be the same across different sets of items administered, and item
calibrations would be the same across different populations of test takers,
accounting for sampling error.
Dichotomous IRT Models

Dichotomous IRT models predict the probability of a response to an item,
conditional on the person and item parameters, when the possible response options
are binary (e.g. right or wrong, 0 or 1). Frequently used, dichotomous IRT models
include the one-parameter-logistic model, two-parameter logistic model, and three-
parameter logistic model, all of which are named for the number of parameters
within each model. Each model is described below.
One-parameter logistic model

The one-parameter logistic model (1PL) or Rasch (1960) model is the
simplest model. It predicts the probability of a correct response based on only the
person’s trait estimate and the item difficulty parameter. The equation for the 1PL is

14 e®-bd)

P(u; = 1|6) =
Where u; is the examinee’s response to the item, 0 is the examinee’s trait estimate,
and b;is the difficulty parameter of item i. The item difficulty is defined as the 6
value at the point of inflection of the item characteristic curve, which is always .5 for
the 1PL model. Hence, when the 6 matches the item difficulty, the examinee has a .5

probability of answering the item correctly. The item difficulty parameters and trait

estimates are on the same scale, generally ranging from -3 to +3.



Two-parameter logistic model

Birnbaum’s (1968) two-parameter logistic model (2PL) includes two item
parameters: a difficulty parameter like the 1PL model as well as a discrimination
parameter. The model predicts the probability of a correct response based on the
examinee’s trait estimate, the item difficulty parameter, and the item discrimination
parameter. The equation for the 2PL is

eDai(e—bi) (2)
1+ eDai(e—bi)

P(u; =1|6) =

Where u; is the examinee’s response to the item, 0 is the examinee’s trait estimate, D
is the scaling constant 1.7, a; is the discrimination parameter of the item i, and b;is
the difficulty parameter of item i. A larger item discrimination parameter indicates
the item’s greater ability to discriminate between examinee’s trait estimate levels or
stronger relationship to an examinee’s level of a latent trait. It is also proportional to
the slope of the item characteristic curve at the point of inflection. The
discrimination parameter generally ranges from 0 to 2 in practice. When a;=1, the
2PL model simplifies to the 1PL model.
Three-parameter logistic model

Birnbaum’s three-parameter logistic model (3PL) includes the item difficulty
and discrimination parameters of the 2PL model and adds a pseudo-guessing or
pseudo-chance parameter. The model predicts the probability of a correct response

based on the person’s trait estimate, the item difficulty and discrimination

parameters, and the pseudo-chance parameter. The equation for the 3PL is
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eDai(e—bi) (3)
1+ eDai(e—bi)

Plu;=118) =c;+ (1 —¢;)
Where u; is the examinee’s response to the item, 0 is the examinee’s trait estimate, c;
is pseudo-chance level of item i, the D is the scaling constant 1.7, a; is the
discrimination parameter of the item i, and b;is the difficulty parameter of item i.
The pseudo-chance parameter is the lower asymptote of the item characteristic
curve, or the probability of an examinee with a very low trait level selecting the
correct response to a very difficult item. When ¢;=0, the 3PL model simplifies to the
2PL model.
Item Characteristic Curve.

[tem characteristic curves mathematically illustrate the relationship between
probability of a correct response and the person’s trait estimate, or 6. The
probabilities are plotted against the 0 values to produce the s-shaped item
characteristic curve. Because the 1PL, 2PL, and 3PL models differ in terms of

parameters, the item characteristic curves also differ; Figure 1 below shows typical

ICCS for each model.
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Figure 1. ICCs for 1PL, 2PL, and 3PL Models
Note: For the 1PL, b=0.0. For the 2PL, b=0.0 and a=2.0.
For the 3PL, b=0.0, a=2.0, and c=0.25.
ICCs for 1PL vary by the item difficulty parameter or the location of the curve along
the 0 scale. The b; value equals the 0 value at the point of inflection of the ICC, when
the probability of a correct response is .5. Items to the right on the 6 scale are more
difficult than items to the left. 1PL ICCs have identical slopes and lower asymptotes
at 0.0.

The ICCs for the 2PL vary by the item difficulty parameter, like the 1PL ICCs,

but the 2PL ICCS also vary by the item discrimination parameter. As with the 1PL,

the b; value equals the 6 value at the point of inflection of the ICC and the lower
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asymptote is at 0.0. The item discrimination parameter, a;, represents the difference
of items in discrimination. The slope for the item is 0.425 a..

Like the 2PL ICCs, the ICCs for the 3PL vary by the item difficulty and
discrimination parameters, however the 3PL ICCs also vary by a pseudo-chance
parameter. The pseudo-chance parameter, c;, is the lower asymptote for the ICC.

Since the lower asymptote is no longer 0.0 as with the 1PL and 2PL, the point of
inflection is no longer .5. It is now % or half the distance between c;and 1. The b;

value still equals the 6 value at the point of inflection of the ICC.
Polytomous IRT Models

Polytomous IRT models predict the probability of a particular response to an
item, conditional on the person and item parameters, when there are more than two
possible response options (e.g. 0,1,2,3,4,5). These models could be used for example
for a Likert-type attitude scale or partial-credit scoring of a test item. Polytomous
models extend from dichotomous models; instead of a single item difficulty
parameter, polytomous models use multiple item step difficulty, category boundary
or item threshold parameters. Polytomous IRT models can be separated into two
classifications: difference models and divide-by-total models (Thissen & Steinberg,
1986).

Difference models include the Muraki’s (1990) Rating Scale Model (MRSM)
and the Samejima’s (1969) Graded Response Model (GRM). The GRM is appropriate
for essays and partial credit scoring. It includes a category boundary parameter and
an item discrimination parameter. The MRSM is a restricted case of the GRM and is

appropriate for attitude measurement. The MRSM expands the category boundary
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parameter of the GRM into a location parameter and a set of threshold parameters
for the entire scale. If there are only 2 response categories, both the GRM and MRSM
reduce to the 2PL model. For difference models, the conditional probability of a
scoring in a particular response category x, or Pix(0), is calculated in two steps. First,
calculate P"ix (0), the conditional probability of responding in category x or higher on
item i. This is generally an exponential divided by one plus the exponential. The
second step is to calculate Pix(6) by subtracting P*;x (6) for adjacent categories. For
example, with three response categories (x=0,1,2), the probability of responding in
category 1is Pi; (8)= P"i1 (0)- P'iz (6), where P"i1(0) is the probability of responding
in category 1 or 2 and P";; (0) is the probability of responding in category 2. The
probability of responding in or above the lowest category is P*io(6)=1, and the
probability of responding above the highest category is P*3(6)=0 by definition.

Divide-by-total models include Andrich’s (1978) Rating Scale Model (ARSM),
Rost’s (1988) Successive Intervals Model (SIM), Master’s (1982) Partial Credit
Model (PCM), Muraki’s (1992) Generalized Partial Credit Model (GPCM), and Bock’s
(1972) Nominal Response Model (NRM). In divide-by-total models, the conditional
probability of scoring in a particular response category x equals an exponential
divided by the sum of the exponentials for conditional probabilities for all
categories.

Under the PCM, the conditional probability of scoring in a category includes
only a set of item step difficulty parameters. The PCM assumes all items are equally
discriminating. Therefore, the PCM simplifies to the 1PL or Rasch model when there

are only two item responses. The GPCM expands the PCM by removing the equal
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discrimination assumption. So, when the discrimination parameter is 1.0, the GPCM
simplifies to the PCM. When there are only two response alternatives, the GPCM
simplifies to the 2PL model.

ARSM and SIM are both appropriate for attitude measurement. Both the
ARSM and the SIM are simplifications of the PCM. The SIM includes a dispersion
parameter, allowing the thresholds to vary among items across the scale. When this
dispersion parameter is 0.0, the SIM simplifies to the ARSM. Since most attitude
scale thresholds do not vary, the ARSM is generally sufficient. The NRM is the most
general divide-by-total model and is generally used with multiple-choice items,
when the detractors aren’t ordered in degree of correctness. When the slope
parameter of the NRM is constrained, the PCM is obtained (Thissen & Steinberg
1986). When there are only two response categories, the NRM simplifies to the 2PL.
The PCM and the ARSM, the models most relevant to this study, are described in
more detail below.
Partial Credit Model

Master’s (1982) PCM is appropriate for essay and partial-credit scoring. The
PCM assumes there is not guessing and no items differ in discrimination. While, the
PCM requires the item steps to be completed in order, but the steps do not need to
be in order along the 6 scale, from low to high or easiest to hardest. The equation

for the conditional probability of responding in category x for item i is

expIZ—o(0 — byl “)
Pix 9 = 7P
O = S P [Zr (0 — bi)]
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where bjx is the item step difficulty parameter associated with the transition from
one category to the next and m; is the number of step difficulties for item i. There are
m; +1 possible score responses for item i, (i.e., x=0,1,..., m)).
Andrich Rating Scale Model

Andrich’s (1978) Rating Scale Model is appropriate for items that share a
common rating scale, e.g. Likert-type scale items. It is a simplification of the PCM.
The item difficulty parameter can be decomposed into the location for each item on
the latent trait scale and one set of threshold parameters dividing categories for the
entire set of items in the scale. So, each item varies in relative easiness or difficulty,
but the set of thresholds between categories are constant for the entire scale. Using
a Likert-type scale example having response options 1= disagree, 2= neutral, and
3=agree, the relative locations of these response categories would be expected to
remain constant across an entire scale. The ARSM assumes all items to have equal
discrimination and does not include a pseudo-chance parameter. The equation for

the conditional probability of responding in category x for item i is

o [Kx+x(8=b)] (5)

P, (0) = Y elKn+h(@-b))]

Where Ky is the negative sum of thresholds passed, x is the category score, 6 is the
examinee’s trait estimate, b;is the difficulty parameter of item i, m;is the number of
categories, h is every category, and Ky=0. Since the ARSM is a Rasch model, assuming
equal discrimination and not including pseudo-chance, the raw score is a sufficient

statistic to estimate an examinee’s trait.
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Category Response Curves

Category Response Curves (CRC) illustrate the probability of an examinee
responding in a particular category, conditional on 6. The probabilities of
responding in the first and last categories are monotonic functions and the middle
category or categories are non-monotonic symmetric functions. Figure 2 below

displays CRCs for a polytomous item.
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Figure 2. CRCs for a Five-category Item
Note: 0,1,2, 3, and 4 are the category scores.
The shape and location of the curves are determined by the item parameters.

In general, a higher discrimination parameter results in more narrow and peaked
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CRCs and means higher differentiation among trait levels. The response
probabilities sum across categories to 1.0 for any fixed 6 value.
Assumptions

Unidimensional dichotomous and polytomous IRT models all involve three
assumptions: unidimensionality, local independence, and functional form. A test
that is unidimensional measures a single trait, or 6. If a test measures multiple traits
or constructs, this assumption is violated and a multidimensional IRT model would
be more appropriate. For more information about multidimensional IRT models, see
Reckase (2009). Local independence is achieved when the probability of a response
on any one item is independent of the outcome of any other item, controlling for 6
and the item parameters. Specifically, strong local independence means the item
responses are statistically independent, conditional on 6. Weak local independence
means the item responses are uncorrelated, conditional on 6. Item responses
should at least meet weak local independence. Local independence is violated if a
response to one item is related to other items; this could overestimate the precision
of measurement. For example, if an item gives information toward another item’s
response or items are linked by a common prompt, e.g. a reading passage; those
items would not be independent. If items are grouped according to a common
stimulus and dichotomously scored, the testlet response theory (TRT) model is
appropriate(Wainer, Bradlow, & Wang, 2007). To meet the functional form
assumption, item characteristic curves, for dichotomous models, and category
characteristic curves, for polytomous models, mathematically depict the

relationship between probability of a response and the person’s trait estimate, or 6.
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The curves illustrate how a change in an examinee’s trait estimate relates to a
change in the probability of a particular response. These curves vary only as a
function of the model’s specified item parameters, not across examinees.
ITEM AND TEST INFORMATION

An Item Information Curve (IIC) indicates the amount of Fisher information a
dichotomous or polytomous item provides across the latent-trait scale. The
equation for the amount of Fisher information provided by a dichotomous item at 6
IS

P'i(8) (6)
P,(8)(1 - P,(0))

1;(8) =

where P;(0) is the conditional probability of responding correctly to item i and P’i(0)
is the first derivative of P;(8) (Birnbaum, 1968). The equation for the amount of

Fisher information provided by a polytomous item at 0 is

(P (8))
K©=) 5

(7)

where Pix(0) is the conditional probability of responding in category x to item i and
P’ix(0) is the first derivative of Pix(6). The information denotes how effectively the
item measures the latent trait. The amount of information provided by an item is
maximized around the item-difficulty parameter for the 1PL and 2PL and slightly
below the item-difficulty parameter for the 3PL. If the item’s difficulty matches the
examinee’s ability on the 0 scale, the item information is greater. Additionally, for
dichotomous items, the higher the item-discrimination parameter, the greater the

information provided at that 6. The IIC with a higher item-discrimination parameter
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will appear more ‘peaked’, or higher and narrower than a lower item-discrimination
parameter, which would appear flatter and wider. For polytomous items when using
the PCM, items with a greater number of and larger magnitude of reversals in step
difficulties will appear more peaked (Dodd & Koch, 1987).

If items are calibrated on a common latent-trait scale, they can be added
across items within a test to calculate the test information. Test information is

therefore the sum of item information functions. The equation for test information is

TI(8) = Zilh(m (8)

i
where n is the number of items and 1(0) is the information provided by item i at a
given 0. The test information determines how effectively a set of items is measuring
a latent-trait. The test most precisely measures the 6 at the peak of the test
information curve. The test information has a direct relationship with the
examinee’s standard error of measurement. The equation for the standard error of

measurement at a given 0 estimate is

SE(0) = —— )

JTI(®)
The test information and standard error of measurement are inversely related; for
example, when the test information is high for a given 6, the standard error of
measurement is low.
COMPUTER ADAPTIVE TESTING
Computer Adaptive Testing (CAT) is a form of computer-based testing that
adapts to the examinee’s trait level. In contrast to traditional testing, which

administers an identical set of items as a particular form of the test to every
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examinee, the CAT program selects and administers items that match the
examinee’s currently estimated trait levels, essentially administering many forms of
the test.
Advantages of CAT

CAT has a number of advantages over traditional testing. The efficiency of the
test is increased by the adaptive process. As compared to traditional P&P tests, CATs
can be shorter in length while maintaining comparable or greater measurement
precision. (Dodd et al., 1995; Embretson & Reise, 2000; Fliege et al., 2005; Wainer,
2000; Ware et al., 2003; Ware et al., 2005). Examinees don’t waste time and energy
on items that are not appropriate, unlike tradition P&P testing that administers
items that match the examinees trait level as well as items that are a mismatch to
the examinee. For example, commonly-used non-adaptive, versions of shoulder
functioning scales contain only 8-20 items (Cook, Gartsman, Roddey, & Olson, 2001).
Items that are not a match to the examinees trait level, e.g. items that are too
difficult for a low functioning patient, do not provide any information about the
patient. Ware et al. (2003) found a 6 item CAT (CAT-HIT) correlated highly with a
54-item total item Headache Impact Test, while allowing a 90.8% reduction in
response burden. The CAT-HIT did not have ‘ceiling’ or ‘floor’ effects, had high
reliability estimates and clinical validity. The CAT-HIT was also more responsive at
monitoring changes in headache impact over time. Fries et al. (2014) also found
reduced ceiling and floor effects: the CAT covered 6.3 SD at a reliability of 0.90 or
better as opposed to only 2.4 and 4.8 for the classical measures and static IRT

measure respectively. Ware et al. (2005) evaluated the use of CAT to measure
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rehabilitation outcomes and concluded it could improve the measurement of
physical functioning in rehab settings. They also found patients preferred the self-
administered CAT to an interviewer-administered, static survey. Similarly, Koch,
Dodd, and Fitzpatrick (1990) found the majority of students preferred a CAT
administration and though it was more fun than the paper and pencil version of a
survey about alcohol attitudes. The majority also felt the computer survey method
would result in more honest answers.

Another advantage of CAT is that the number of patients needed for a clinical
trial can be reduced by using the most informative items in a CAT instead of an
identical set of items to every subject, while maintaining statistical power (Fries,
2006; Fries et al., 2014). Fries and colleagues compared a 10 item CAT to a 20 item
static short form (derived using IRT methods) and two “legacy” health measures, the
Health Assessment Questionnaire (HAQ) and the 10 item physical function
instrument (PF-10), which were developed and evaluated under classical test
theory. They found the CAT only required 100 subjects in order for statistical
significance at the p<0.05 level as opposed to 427 subjects. The reduction in the
number of subjects, allows for a reduction in resources and funding necessary for
research trials. Similarly, in a research setting and in practices, item, measures, and
evaluation results are easier than P&P to integrate into patients’ electronic records
and to share across institutions (Walker et al., 2010). Fewer resources are required
for better items, measures, and patient records to be stored and shared across

settings. Measures and results can more easily be compared across settings.
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[tem pool, item selection method, trait estimation, and stopping rule are the
four major components to a CAT, regardless of the IRT model used (Reckase, 1989;
Wainer, 2000).
Item Pool

A CAT item pool consists of the entire bank of items that were calibrated
using an IRT model and could be administered to an examinee. The size and
psychometric characteristics of the item pool influence the properties of the CAT.
The necessary size of the item pool, or number of items available to administer,
depends on the item response type (dichotomous or polytomous) and inclusion of
content balancing and exposure control procedures. CATs with dichotomously
scored items require a larger number of items in the pool than polytomously scored
items. Polytomous item pools can be smaller because each item provides more
information across a wider range of the trait scale (Dodd et al., 1995). Each pair of
adjacent categories of a polytomous item is equivalent to one dichotomous item.
While dichotomously scored item pools may need several hundred to over a
thousand items, polytomously scored item pools can be as small as 30 (Dodd, 1990;
Dodd & de Ayala, 1994). Van Rijn, Eggen, Hemker, and Sanders (2002) using the
GPCM to compare the maximum Fisher information and interval information
criteria methods found that a 500 item bank had resulted in a smaller RMSE of
ability estimates than the 150 item bank, but there was not an interaction between
the item bank size and the item selection methods. Lima Passos, Berger, and Tan
(2007), using the nominal response model, found item pool size and quality affected

the stability of the ability estimates in the first 5-10 items, especially at the
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extremes. Item pools with 600 items had reduced magnitude in fluctuations of
RMSE and BIAS compared to the 300 item pools, but the efficiency after all 15 items
did not differ between the two pool sizes. Additionally, the flat shaped item pools
had less magnitude in fluctuations than the bell shaped item pools mainly at the
extreme trait values. Item pool size in studies of PRO measures varies. Ware et al.
(2005) used a 77 item pool for a rehabilitation outcome study. Fliege et al. (2005)
ultimately used a 64 item pool developing a CAT for depression. Ware, Bjorner, and
Kosinski (2000) have 53 items in their item pool for the Headache Impact Test
(HIT). In a review of IRT-based CAT development for PRO measures studies, Walker
et al. (2010) found item banks contained between 12 and 282 items, with a median
of 50 items.

In high-stakes testing, where content validity and test security are important,
content balancing and item exposure control procedures can be used. Item pool
sizes under these constraints should be larger than unconstrained CAT item pools.
Davey and Nering (2002) state that CAT item pools should contain the equivalent of
5-10 conventional forms at a minimum. Studies have found that at least 100 to 120
polytomous items are necessary to achieve the desired exposure rates and avoid
overexposure (Davis, Pastor, Dodd, Chiang, & Fitzpatrick, 2003; LeRoux, Lopez,
Hembry, & Dodd, 2013; LeRoux & Dodd, 2014; McClarty, Sperling, & Dodd, 2006).
Additionally, if specific content areas contain very few items, more items may be
necessary to avoid overexposure of those items (Burt, Kim, Davis, & Dodd, 2003;

Davis & Dodd, 2003).
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In addition to the size of the pool, psychometric properties of the item pool
influence the properties of the CAT. The item pool information function is the sum of
the information functions for all the individual items in the pool. Commonly, CAT
item pools provide information for the average individual in the population, with
the most information in the middle of the trait scale. However, subpopulations
might have trait levels at the extremes of the scale. In specific assessment purposes
with targeted subpopulations, an item pool targeting the average individual in the
population could not be ideal. For example, testing in an educational setting
evaluates students with low abilities for remediation or high abilities for talented
and gifted programs. Similarly, examinees being tested for a medical outcome may
not align with the trait levels of the general population, or a post-treatment
assessment subpopulation might not match with the pretreatment assessment
values. Instead of pools that provide maximum information in limited ranges of 6,
ideally, the item pool would provide information across the entire 6 scale at the
extremes in addition to the middle. Some previous research found that a match
between the population distribution and the item pool distribution results in more
accurate 0 estimates using MFI, but others found this impact is minimal (Chang &
Dodd, 2013; Dodd, Koch, & de Ayala, 1993; Gorin, Dodd, Fitzpatrick, & Shieh, 2005;
Keng, 2008; Lee & Dodd, 2012). Lee and Dodd (2012) found that measurement
precision of the polytomous CAT using PCM was relatively robust to a mismatch
between item pool distributions and trait distributions. Chang and Dodd (2013)

found that whether the population distribution was normal or negatively skewed,
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when the item pool distribution was relatively normal, did not interact with the item
selection method.

Other studies have shown that trait estimates are more accurate when the
item pool information distribution aligns with the trait distribution of the examinees
(Dodd et al., 1993; Gorin et al., 2005; Keng, 2008). Dodd et al. (1993) found a match
between the distribution of examinee ability and the item pool resulted in more
accurate trait estimates based on the PCM with MLE. Also, nonconvergent cases
occurred more when there was a mismatch and MLE was used. With a normally
distributed participant population, larger numbers of nonconvergent cases occurred
for easy and hard item pools, as opposed to items that spanned the continuum or
included half easy and half hard items. Easy and hard items pools had information
functions peaked at the low end and high end of the trait dimension, respectively.
Item pools spanning the continuum and half easy, half hard item pools had
information functions peaked at the middle and bimodal, respectively.

Gorin et al. (2005) also found lower average standard errors, fewer items
administered on average, and higher correlations between known and estimated 0
values when the item pool information and the examinee trait distribution aligned
and the item pool covered the entire 08 range using the PCM. The item pool that
covered the entire range was compared to pools with only easy or hard items. This
was true for normal and skewed examinee trait distributions. Gorin et al. (2005)
found issues with nonconvergence with maximum likelihood estimation (MLE) and
weighted likelihood estimation (WLE) when the items did not cover the full 8 scale.

While MLE, WLE, and expected a posteriori (EAP) all performed poorly with a
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mismatched item pool for skewed distributed trait population, EAP performed well
for a normally distributed trait population with a misaligned item pool. However,
Keng (2008), investigating multi-stage testing and testlets in a constrained CAT, also
found that reducing the item pool from 46 to 31 testlets (1,008 and 741 items
respectively) did not affect the measurement precision, but he found that reducing
the item pool while also creating a mismatch between population ability and item
pool distribution resulted in increased bias and RMSE. This increase was more
pronounced when, additionally, the test length was reduced from 42 to 21 items.
Item Selection

CAT items can be selected based on their psychometric properties, content
balancing, and/or exposure control. Depending on the purpose of the test and the
proposed use of the scores, content balancing and exposure control may or may not
be necessary. Content balancing ensures that the content test specifications are met,
the correct proportion of items for different content areas. The most commonly
used content balancing procedure is the Kingsbury and Zara (1989), which
compares target content proportions from test specifications to the actual
proportions during the test administration. The next item administered comes from
the content area with the largest discrepancy between target and actual proportion.
When test security is an issue, exposure control ensures items are not overexposed
by being administered to a very large number of examinees (Boyd, Dodd, & Choi,
2010).

Exposure control methods fall into four types: randomization, conditional,

stratified and combination. Randomization procedures select a group of a certain
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number of maximally-informative or near maximally-informative items and
randomly select an item from that group to administer. Randomesque (Kingsbury &
Zara, 1989) and modified-within-.10-logits procedure (Davis & Dodd, 2003) are
randomization procedures. Sympson-Hetter (Sympson-Hetter, 1985) and
conditional Sympson-Hetter (Stocking & Lewis, 1998) are conditional procedures,
involving simulations to set exposure control parameters for each item to limit
exposure of the most likely to be administered items below the maximum exposure
rate. Stratified procedures divide items into strata based on the discrimination
parameter and additionally on the difficulty parameter, the a-stratified procedure
(Chang & Ying, 1999) and the a-stratified with b blocking procedure respectively.
Items with higher discrimination parameters are saved for later in the test when the
trait estimate is more accurate. Combined procedures are methods that combine
multiple procedures. For example, the progressive-restricted (Revuelta & Ponsoda,
1998) selects items on both information and a random component, relying more on
information as the test progresses, and restricts items if the maximum exposure rate
is surpassed. A second combined procedure, the enhanced stratified method (Leung,
Chang, & Hau, 2002) within a-stratified strata sets the Sympson-Hetter exposure
control parameters though simulations. When content balancing and or exposure
control are used in item selection, the CAT is a constrained CAT.

If items are selected only on the psychometric properties of the items, the
CAT is referred to as an unconstrained CAT. In the medical field, patient reported
outcome measure CATSs can select items solely on psychometric characteristics;

exposure control and content balancing procedures are not necessary. One example
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of a psychometric property of an item is the information an item provides at an
examinee’s given trait level. A variety of item selection methods have been
developed. Maximum Fisher information is the most commonly used method. Item
selection methods are discussed in more detail below.
Item Selection Methods

There are two general approaches to item selection methods: information-
based and Bayesian (van Rijn et al., 2002). Information-based item selection
methods chose the item that is most informative at a specific 6 estimate, based on
Fisher information or Kullback-Leibler information. Bayesian item selection
methods chose the item based on the prior and posterior distributions of 6
estimates. All item selection methods were originally developed and studied with
dichotomous items, but have been applied to polytomous items recently (Choi &
Swartz, 2009; Ho & Dodd, 2012; Penfield, 2006; van Rijn et al., 2002; Veldkamp,
2003). In this section, this proposal will describe information-based item selection
methods: maximum Fisher information, general weighted information, Kullback-
Leibler information, and gradual maximum information ratio. It will also describe
Bayesian item selection methods: Owen’s approximate Bayesian, maximum
posterior weighted information, maximum expected information, minimum
expected posterior variance, and maximum expected posterior weighted
information.
Maximum Fisher Information

The most commonly used item selection method for dichotomous and

polytomous CATs is maximum Fisher information (MFI) criterion (Lord, 1980). As
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discussed in the IRT section, Fisher item information /;(8) represents how
effectively or precisely the item measures the examinee’s trait level, for a given 6.
MFTI selects the item that maximizes the Fisher’s information at a given trait
estimate. While the MFI method is easy to employ, the main weakness of the method
is the attenuation paradox (Lord & Novick, 1968); the MFI depends on a match
between the current 8 and the true 0 of the examinee. A mismatch leads to
suboptimal item selection; the items selected are the most informative items for the
examinee’s interim 6, but not necessarily the examinee’s true 0. This leads to
inefficient 6 estimates. So, the CAT measurement precision is compromised. This is
especially problematic at the early stages of a CAT, when only a few items have been
administered or for a CAT with very few items. The interim 6 estimate at this point
might be far from the true 6. To overcome this weakness, alternative item selection
methods have been developed. These alternatives are discussed below.
General Weighted Information

To address the attenuation paradox, Veerkamp and Berger (1997) proposed
the general weighted information (GWI) criterion. The criterion is formulated as the
weighted average of the information function values over all possible 6 values:

v (10)
GWI;(8) = j W (x,,|0)1;(8)d0

& (a
GWI(®) = ) Wyl 6,)1:(8)
j=1
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Equation 9 is for a continuous 6 scale and equation 10 is for a discrete 6 scale.

W(xn|0) is a weighted function, where x, is the vector of responses. [;(0) is the
Fisher information for item i at a given 6. In equation 9, integral ffooo dO indicates the

area over all possible 0 values and in equation 10 k is the quadrature points. By
incorporating the information over a range of 6 values, the GWI incorporates the
uncertainty of the interim 6 estimate using a specific weight function. The GWI
criteria select the item that maximizes the GWI.

Veerkamp and Berger (1997) developed two variations of the GWI by
varying the W(8), interval information criterion (IIC) and the likelihood weighted
information criterion (LWIC). IIC uses a confidence interval around the true 6
estimate, weighting each 0 level in that confidence interval uniformly and values
outside the confidence interval as 0. The IIC is formulated as the area under the
Fisher information function from 81, to g, or,

) (12)
j 1;(8)de

6=0,
where 81, and Brare the left and right limits of the confidence interval, respectively.
The LWIC gives more weight to the information function when the interim 6
estimate is close to the true 6. The LWIC is the area that is the product of the Fisher
information and the likelihood function, or

r (13)

| L@l @)d0

—00

where Ln(0|Xy) is the likelihood function after administering n items with the
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response pattern Xp.

In dichotomous studies, Veerkamp and Berger (1997) and Chen, Ankenmann,
and Chang (2000) found the interval information criterion (IIC) 6 estimates had
poorer measurement precision on short tests. The IIC had larger bias, mean squared
error (MSE), root mean squared error (RMSE), and standard error (SE) at the early
stage of the CAT (1-10 items), especially at the extreme 6 values, under a 3PL model.
These differences decreased as the test length increased; after the first 10 items, the
performance was comparable. Han (2010) also found poorer measurement
precision by the IIC; it had inconsistent standard error of the 6 estimate (SEE) and
larger mean absolute error (MAE) in the middle of the 6 values. Han did find better
item pool usage by the IIC than MFI. Chen et al. (2000) found that MFI and IIC did
not select the same initial item for administration (item overlap), but proportion of
item overlap increased from .00 on the first item to .50 on a 5 item test and
ultimately to a .80 on a 20 item test, on average across 6 values. [tem overlap was
generally higher for higher 6 values, especially on shorter tests.

In polytomous studies, while IIC did not have poorer measurement precision,
it was not an improvement on MFI (van Rijn et al., 2002; Veldkamp, 2003). Under
the GPCM, these studies found comparable bias, MSE, and RMSE of 6 estimates on 10
item and 30 item tests. Using the GPCM, Veldkamp (2003) found high item overlap,
between 85-100%, and the small differences diminished as the item pool size and
average discrimination decreased. Lima Passos et al. (2007) found, under the NRM,
the RMSE and Bias for the IIC fluctuated more than the Kullback-Leibler information

and MFI for the first 5-10 items. This instability was especially at extreme 6 values
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and using the bell-shaped and smaller item pools as opposed to flat and larger pools.
While the IIC was less stable and less efficient at the first few items, the results
converged after 10-15 items.

Veerkamp and Berger’s (1997) second general weighted information
approach, likelihood weighted information (LWI), has shown mixed results. In
dichotomous studies, Veerkamp and Berger found the LWI outperformed the MFI at
the early stage of the CAT at the extreme 0 values using MLE estimation under a 3PL
model. Specifically, LWI had smaller bias and MSE values than MFI. Differences
decreased as the test length increased. Using EAP estimation, LWI performance was
comparable to MFI. Han (2010) found the LWI had larger SEE at the negative
extreme 0 values and larger MAE at both extremes, using MAP. However, Han found
the LWI had better level of item pool usage than the MFI across all test lengths.

In a polytomous study, Choi and Swartz (2009) found LWI performed
comparably to MFI and other approaches, using EAP 0 estimation and the GRM. The
item selection methods had similar overall bias, RMSE, and correlations with true 0
values; especially as the test length increased from 5 to 10 to 20 items. Even when
only 5 items were administered, there was not an item selection method that had
clearly better performance.

Kullback-Leibler Information
As an alternative to Fisher information, Chang and Ying (1996) proposed the

Kullback-Leibler (KL) information. KL information for item i can be expressed as

P;(8)
P;(0)

K;(6 11 89) = P;(6p) log[ + [1 = P,(8,)]log ll — Pi(6,) (14)

1-P;i(6)
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where 0 is the true 6 and the || signifies that 8 must be different from 6 ¢. The KL
information value represents how well an item differentiates between these two 6
levels. In contrast to the Fisher information, which represents the precision of
measurement at the examinee’s estimated 6, a single value, KL information
represents the precision across a range of 6 values. Chang and Ying (1996) noted

that the KL function is not symmetric, KLj (6 Il 8 ) # KLj (6 /Il 8). Also, when the two

0 values are equal, the KL information is 0; when they are different, the KL
information is greater than 0.

For item selection, the KL information criterion chooses the item with the
maximum area under the KL function within the confidence interval bound by 8.,

and Or. The KL function is expressed by

) (15)
j K01 6,)de

)
where 8, is the estimated 8 after n items. The criterion transitions from KL
information to Fisher information by the confidence interval decreasing, as the
number of items administered increases. Chang and Ying (1996) also proposed a
Bayesian item selection method that weights the KL information by the posterior 6
distribution. The Kullback-Leibler information with a posterior distribution (KLP) is
expressed by

o ) (16)
[ g@xK@ 1 8,40

— 00

where g(0|x,,) is the posterior distribution after administering n items with the

34



response pattern Xp.

In dichotomous CATs, criterion using Kullback-Leibler information, KL and
KLP, performed better than MFI in the early stages at extreme 6 values specifically.
(Chang & Yang, 1996; Chen et al.,, 2000). Chen et al. (2000) found KL and KLP had
smaller bias and SEs at extreme negative 6 values with 5 or fewer items. Bias and
SEs were larger for KL and KLP than MFI at 6 s near 0. Differences decreased as test
length increased. Item overlap was 0.00 for the 1 item test, but increased as the test-
length increased, to .8 on the 20 item test. Chang and Yang (1996) found average
bias and MSEs for item selection using KL than MFI at extreme negative 0 values.
This was most pronounced in the early stages; when there were more than 30 items,
there were not differences between the methods.

In polytomous CATs, studies have found KL information methods perform
comparably to MFI. (Lima Passos et al., 2007; Veldkamp, 2003). Lima Passos et al.
(2007) found comparable performance in terms of RMSE and bias using the NRM on
a 15 item test. Similarly, Veldkamp (2003) found MFI and KL information methods
had high overlap and comparable MSEs using the GPCM and a 20 item test.

Gradual Maximum Information Ratio.

Han (2009) proposed the gradual maximum information ratio (GMIR) as an
alternative to MFI criterion. GMIR uses the ratio of the expected information at the
interim 6 to the potential maximum information. Through a weight function, GMIR
uses this ratio of item efficiency for item selection in the earlier stage of the CAT and
then places more importance on the MFI, or item effectiveness, towards the end of

the CAT. GMIR selects the item that maximizes the equation
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(17)

where 0 is the interim 0 estimate, m-1 is the number of items administered so far, 0
*is a the point of the 0 scale where the maximum Fisher information is provided by

Ii[ém—l]

10 is the item efficiency ratio, or the ratio of the
i

item i, and M is the test length.

information at the interim estimate as compared to the potential peak of the

information function. 8 *is equal to b;when the c-parameter is equal to zero. The

ratio of %, the location within the test, determines if item efficiency or item
effectiveness receives more weight in the item selection calculation. In the early

stages of the CAT, when a few items have been administered, (1 — %) is larger than

% and the item efficiency ratio is given more weight. As the test progresses, %

becomes larger and the item effectiveness receives more weight.

While previous studies comparing GMIR and MF]I, have not found meaningful
differences in precision of measurement of final 0 estimates on 10-40 item tests
(Chang & Dodd, 2013; Han, 2009; Han, 2010), these studies have shown slightly
better measurement precision when GMIR was used. Chang and Dodd (2013) found
differences in standard error of estimate, bias and RMSE. These differences were
greater in magnitude when the CATs were shorter, at the early stages of the CAT,
and at extreme 6 estimates. In the early stage of the CAT, or items 1-5 or 1-10, the
GMIR places emphasis on the item efficiency and then places more importance on
the item effectiveness on subsequent items. By the end of the CAT, GMIR and MFI

will both select items with maximum effectiveness, or GMIR is essentially the MFI
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criterion at this point. When the items selected by the item selection methods
overlap greatly, the performance should be similar (Chen et al., 2000; Veldkamp,
2003). However, over the first few items, when the item selection methods place
emphasis on different aspects of the items, selection of different items between
GMIR and MFI, performance should vary.

In a dichotomous CAT, Han (2009, 2010) found no meaningful differences in
performance of 6 estimation between MFI and GMIR item selection methods. Using
a 3PL model in a constrained 40 item CAT, Han (2009) found the GMIR did result in
a slightly lower standard error of 6 estimates as compared to MFI. The mean
standard errors of estimates were smaller across 20 days of administration.
However, this difference was small and not meaningful. Standard error of estimates,
mean absolute error, and bias were similar across the 0 scale for MFI and GMIR.
Expanding to 10 item, 20 item, and 40 item CATs, Han found MFI, GMIR, and KL item
selection methods outperformed IIC, LWI, and a-stratified procedures. MFI, GMIR,
and KL had lower standard error of estimates. Differences among the item selection
procedure diminished for longer tests. Han (2009, 2010) also evaluated item pool
usage and found more balanced item pool utilization using the GMIR.

In a polytomous CAT, Chang and Dodd (2013) found using the GPCM that
GMIR and MFI had comparable overall measurement precision and administration
efficiency. Both item selection methods had grand means and standard deviations
near the values of the known 6s, grand mean of 0.00 and standard deviation of 1.00.
Additionally, the grand mean standard errors of the final 6 estimates were identical.

However, GMIR had a smaller mean standard error, mean bias, and mean RMSE than
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MFT at the early stages of the CAT. The largest differences occurred at items two and
three. GMIR also had smaller mean standard error, mean bias and mean RMSE at
extreme known 0 values, especially extreme negative 0 values. Chang and Dodd also
found that GMIR produced fewer nonconvergent cases than MFI. Across conditions,
on average, MFI produced over five times as many nonconvergent cases as GMIR.
They found the biggest differences in performance between MFI and GMIR occurred
in the variable conditions at items 2 and 3. Varying the population distribution
between normal and negatively skewed did not interact with the item selection
method under the conditions of the study.
Bayesian Approaches

As stated previously, Bayesian item selection approaches chose items based
on the prior and posterior distributions of 8 estimates. Owen (1975) proposed the
first Bayesian approach, an approximate Bayesian criterion based on a normal
approximation of the posterior distribution. His criterion was a normal
approximation because the fully Bayesian approach was too numerically complex
for the time. Owen selected the first item based on the mean of a normal prior
distribution. This prior is then multiplied by the likelihood of the observed response
to find the posterior distribution. The next item selected is the item that minimized
the expected variance of the posterior variance 6 distribution, given the interim 6.
Owen repeatedly approximated a new posterior and used it as the new prior for the
next item. This process is stopped when the variance is smaller than a pre-specified

value (van der Linden, 1998). Van der Linden (1998) introduced a number of
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Bayesian approaches using the true posterior distribution as alternates to the
approximate used by Owen (1975). These approaches are described below.

Maximum Posterior Weighted Information. The maximum posterior weighted

information (MPWI) criterion was proposed as an alternative to maximum
information (van der Linden, 1998). The MPWI weights the observed information
function by the posterior 0 distribution to account for the uncertainty of the interim
0 estimate. MPWI uses different weights across 0 levels, determined by the
posterior 6 distribution, as opposed to considering only one specific 8 or having a
uniform weight across a confidence interval. MPWI selects the item that maximizes

the expected value of the observed information over the posterior distribution, or

. 18
j]uj(e)g(6|ui1, ...,uik_l)de;] € Ry, (18)
where J(0) is the observed information measure, g(6|ui1, . uik_l)is the posterior
distribution, k is the location of the item on the test, and Ry is the set of unused items
in the item pool.

Maximum Expected Information. Van der Linden (1998) also proposed the

maximum expected information criterion (MEI), which weights the observed
information measure by a posterior predictive distribution. Initially, the expected
probability distribution for each response category U, conditional on 6, is calculated
for each item j € Ry. He then calculated the posterior predictive distribution,
pi(U=ujlu;,, ..., u;, ), using this expected probability distribution, p;(Uj=u,| 6), and

the posterior distribution, g(9|ui1, e uik—1)' MEI selects the item that maximizes the
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expected information over the probability distribution of the examinee’s responses

on each item j € Ry, or
(Uj = 0w er) 0 + (19)
pj(Uj Uiy s Wige_y Mgy iy, 05=0 Oug gy 0j=0

p](U] = 1|ui1’ LRI uik_l)]uil,...,uik_l,Uj=1 (euil,...,uik_l,Uj=1) l] € Rk

The observed information measures J(8) differ according to the 6 estimate based on
the item response.

Minimum Expected Posterior Variance. The minimum expected posterior

variance (MEPV) criterion, also introduced by van de Linden (1998), uses the
posterior variance of 0 for each category response, instead of the observed
information measures, like the MEI. So, the criterion selects the item that minimizes

the equation

p](U] = 0|ui1, ...,uik_l)Var (éuir""uik—l’uj:o) + (20)

~

pj(Uj = 1|ui1, ...,uik_l)Var (ewl.---.uik_l,UFl);j € Ry

Van der Linden proposed the MEPV criterion as a small-sample alternative to the
ME], since the reciprocal of the information is only an approximation to the true

variance of the posterior in large samples.

Maximum Expected Posterior Weighted Information. The maximum expected
posterior weighted information (MEPWI) criterion is a combination of the MPWI

and MEI (van der Linden, 1998). The MEPWI uses the integral used in the MPWI
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instead of the observed information measure used in the MEI. This integral differs
based on the item responses. So, the MEPWI criterion selects the item that

maximizes the equation

21
=0 (8) g(Olus, ..., us_, Uy = 0)d6 + (21)

k
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k

J € Ry

In a comparison of the four Bayesian methods using a 2PL model, van der
Linden (1998) found the MEI, MEPV, and MEPWI had the best function, lower bias
and MSEs, with MPWI next and MFI performing the worst, especially with fewer
than 20 items and even after 30 items. He claimed that the use of the posterior
predictive distribution of the item responses was the critical feature. Using the
posterior only for weighing observed information was not enough and additional
weighing of observed information did not result in benefits in efficiency.

Polytomous studies have shown varying results. Using the PCM, Penfield
(2006) found MEI and MPWI performed comparably and outperformed MFI. MEI
and MPWI had smaller RMSE and administered fewer items at extreme 0 values
than MFI, using a flat and peaked item bank. Differences were more pronounced
using the peaked item bank. However, these differences were not found when 6 = 0.
In contrast, Choi and Swartz (2009) found Bayesian methods and MFI performed
similarly, using the GRM and EAP 0 estimation. They showed that no method

performed better than other in terms of bias, RMSE, and correlations with true 6
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values. The small but not meaningful differences that did exist diminished as test
length increased from 5 to 10 to 20 items. Similarly, item overlap was high across
the methods, increasing as test length increased. Ho (2010) also found no practical
difference among MFI and Bayesian approaches, using GPCM and multiple 6
estimation methods: MLE, WLE, EAP with normal prior distribution, and EAP with
positively skewed prior distribution. Ho found comparable mean bias, RMSE,
absolute average difference, and intercorrelations of 6 values.

Trait Estimation

Computer adaptive testing begins with an initial trait estimate for the test
taker. The initial estimate can be the same for all test takers, the mean of the
population distribution, or it can be based on prior information. An item is selected
to maximize information at this initial 6 estimate. Next, based on the response to the
administered item, the test taker’s trait estimate is updated. A second item is
selected to maximize information at this new 0 estimate. This process continues
updating the 6 estimate after every selected item until the stopping rule is reached
and the test is terminated. The final trait estimate is ultimately calculated based on
all the examinee’s responses to the administered items.

CAT trait estimates are generally based on either the likelihood function or
the posterior distribution. The likelihood function is the likelihood of the set of
responses to the items for the range of 6 values, or L(0 |x»), where x; is the set of
item responses. It is calculated as the product of the conditional probabilities of the

item responses. The posterior distribution is the likelihood function times the prior
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distribution, the hypothesized population distribution from which the examinees
are sampled (Embretson & Reise, 2000).

CAT studies have used the following estimation procedures: maximum
likelihood estimation (MLE) and Warm’s (1989) weighted likelihood estimation
(WLE), based on the likelihood function; and expected a posteriori (EAP) estimation
(Bock & Mislevy, 1982) and maximum a posteriori (MAP) estimation (Bock, 1983),
based on the posterior distribution.

The maximum likelihood estimate is the 8 value where the likelihood
function has the highest value, or the maximum of L from the likelihood function.
This 6 value is located using a Newton-Raphson iteration. The WLE procedure
weights the 6 estimate and can reduce the standard error and bias in fixed-length
CATs, but does not reduce the bias and standard error in variable-length CATs
(Boyd et al., 2010, Wang, Hanson & Lau, 1999; Warm, 1989). Both the MLE and WLE
can be estimated after the first item in a polytomous CAT, if the response is not in an
extreme category. Similarly, MLE and WLE can be estimated in a dichotomous CAT
once there are correct and incorrect item responses. Until a 6 value can be
estimated, studies use a fixed- or variable-step-size procedure.

The variable-step-size procedure is the most commonly used. The variable-
step-size procedure generally works better than the fixed-step-size procedure,
resulting in fewer nonconvergent cases (Dodd, 1990). For a dichotomous CAT, the
interim 0 estimate is calculated as half the distance from the initial 6 to the smallest
or largest item difficulty value, for an incorrect or correct item respectively. In

polytomous CAT, the interim 0 estimate is calculated as half the distance from the

43



initial 0 to the lowest or highest step difficulty value, for the lowest or highest
category respectively. This procedure occurs until a dichotomous CAT has at least
one correct and one incorrect response, or for a polytomous CAT, there are
responses in two different categories (Dodd, 1990; Dodd et al., 1995).

Both EAP and MAP are Bayesian procedures based on the posterior distribution.
The EAP estimate is the 6 value associated with the mean of the posterior
distribution, located through a noniterative procedure. The MAP estimate is the 0
value associated with the mode of the posterior distribution, located through
Newton-Raphson iteration. Bayesian procedures can be estimated after the first
item, regardless of the response category.

Bayesian procedures tend to regress toward the mean of the prior
distribution (Baker & Kim, 2004; Bock & Mislevy, 1982; Weiss, 1982). Also,
incorrect or inappropriate prior distributions can bias the estimates, especially for
short tests (Mislevy & Stocking, 1989; Seong, 1990). The impact of the prior
distribution is greater in the early stages and decreases as more items are
administered (Wainer, 2000). However, Bayesian procedures will always result in 6
estimates, unlike MLE and WLE, in which the Newton-Raphson iterations may not
always converge (Embretson & Reise, 2000). Bayesian procedures also generally
decrease the standard errors associated with the trait estimates.

Based on a 3PL model, Wang and Vispoel (1998) found MLE produced lower
bias, higher standard errors, higher RMSE, lower fidelity, and lower administration
efficiency. Recently, in a comparison of MLE, EAP with a normal prior, and EAP with

a uniform prior estimation in a polytomous CAT based on the RSM, Chen, Hou,
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Fitzpatrick, and Dodd (1997) found MLE and EAP performed comparably in terms of
0 estimation. All three estimation methods performed comparably with a normal
and a negatively skewed population distribution. Performance of EAP was
comparable even when the prior did not match the underlying trait distribution.
Additionally, using EAP with a normal prior, regression to the mean occurred at the
extremes, but was minimal and not practically important.
Stopping Rule

Options for CAT termination are variable length method and fixed length
method. Additionally, a combination of these options can be used. The two mostly
commonly used stopping rules are the variable length and fixed length (Boyd et al.,
2010; Dodd et al., 1995; Wainer, 2000).
Fixed-Length Test

The fixed length method terminates a CAT when a pre-specified number of
items are administered, regardless of the standard error. Advantageously, it is easy
to explain since all participants take the same number of items, like a conventional
test. However, this method does not measure individuals at the same level of
precision. Typically measurement errors are larger at the extreme 6 s than at the
middle 0 s, where the typical item bank has more informative items. Measurement
error for a given 6 is proportional to the number of items with difficulty parameters
matching that 6 (Wainer, 2000). Another disadvantage is that for some examinees,
certain items may not contribute much information about their trait level, which is

not efficient testing.
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Variable-length Test

Variable length CATs seek a specific measurement precision, stopping
administration when either a pre-specified standard error or minimum information
rule is met, regardless of the number of items administered (Dodd et al., 1993). The
most commonly used, the standard error stopping rule, terminates a CAT once a
pre-specified standard error value, either a universal or conditional on the trait
estimate, is reached (Boyd et al., 2010; Wainer, 2000). The standard error stopping
method is common is medical outcome research (Ware et al., 2000; Ware et al.,
2005; Ware et al., 2003). In medical outcome research, a standard error value that
is conditional on the trait level allows for different precision across the range of trait
estimates. Individuals with more severe medical problems, higher 6 estimates, can
be measured with more precision than those with less severe medical problems.
Conversely, a higher standard error stopping rule can be used for individuals with
very low 0 estimates who are not clinically relevant (Ware et al., 2003). While
standard error methods measure individuals at the same predetermined levels of
precision, the number of items administered to individuals will vary. It may not
appear to test takers that they were measured accurately and/ or with enough
items.

Administering a minimum number of items can prevent this issue (Gershon,
2005). The standard error stopping rule may administer additional items even
when the predetermined standard error cannot be met, which can place undue
burden on the examinee. This could be especially undesirable for a brief medical

screening (Gardner et al., 2004). Conversely, the standard error stopping rule might
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limit the measurement precision to the predetermined SE by stopping the CAT when
additional informative items are available.

Using the minimum information stopping method, a CAT is terminated when
the items remaining in the item pool offer less than the minimum level of
information, at the current 6 estimate. The minimum information method prevents
unnecessary administration of items that contribute little information. However,
studies have found it resulted in too few items administered and therefore a large
number of nonconvergent cases using the NRM and GRM (De Ayala, 1989; Dodd,
Koch, & de Ayala, 1989). Also, studies have found that among the variable length
stopping rules, the standard error method performs better than the minimum item
information method with respect to the measurement precision, mean number of
items administered, correlation of known and estimated traits, and number of
nonconvergent cases using the NRM (De Ayala, 1992), the RSM (Dodd, 1990), the
PCM (Dodd et al.,, 1993), and the GRM (Dodd et al., 1989). Using the Rating Scale
Model, Dodd (1990) found the minimum information stopping rule resulted the CAT
terminating after three to four items for extreme 6, when an item with the minimum
information was not found, and ultimately in high standard errors.

The variable length stopping rule can be used in conjunction with the fixed
length stopping rule; a test will terminate after a pre-determined number of items if
the standard error was not met. This combination is often applied in practice
(Wainer, 2000). This combination of methods can prevent an individual from the
burden of a large number of items and the test from running out of items before the

pre-determined precision level is reached. However, this combination of variable
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and fixed length can limit the precision of measurement, or the SE from decreasing
below the predetermined value.

Research of PRO measures generally study tests with 5-10 items. Ware,
(2005) used 5 item and 10 item rehabilitation outcome measures in their simulation
study comparing these two CAT measures to a static survey. They suggest future
studies expand beyond the 5 and 10 item conditions, “to better understand the
optimal length of a dynamic CAT. Cook et al. (2007), in a simulation study of a 15-
item general distress pool, used a fixed stopping rule of 7 items and a variable
stopping rule with a 0.5 standard error cutoff, resulting in 8 items on average using
PCM and 11 using GPCM. Fliege et al. (2005) used a .32 standard error cutoff, which
resulted in 6 items on average for -2 0 to +2 6, in a simulation study comparing the
Depression-CAT to the full Beck Depression Inventory and an 8 item CES-D short
form. Ware et al. (2003) compared a 6 item CAT to a 6 item short fixed form and a
54 item total test of a Headache Impact Test in a simulation study.

STATEMENT OF PROBLEM

While MFI is still the most commonly used item selection method for CAT
due to its effectiveness and ease of use, alternative methods continue to try to
overcome the attenuation paradox drawback of MFI. The attenuation paradox,
which is especially problematic in the early stages of CAT, is particularly concerning
in health care patient reported outcome measures where fewer items can relieve
patient burden. Overall, most proposed alternatives to MFI had comparable or
poorer performance to MFI in most studies using polytomous CATs, especially on

shorter tests (Choi & Swartz, 2009; Ho, 2010; Lima Passos et al.,, 2007; van Rijn et
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al,, 2002; Veldkamp, 2003). Han (2009,2010) surmised GMIR selecting the most
efficient item could be more robust than the MFI selecting the most effective item
against the interim O instability in the early stages of CAT. While Han did not find
meaningful differences between MFI and GMIR, using dichotomous models, he did
find GMIR resulted in a smaller standard error of estimate over a 40 item CAT.
Similar to previously developed item selection methods, GMIR was

developed and initially studied with dichotomous items, under the 3PL model. Little
research has considered this item selection method with polytomous items. The
previous polytomous research showed that GMIR may perform better than MFI at
extreme trait values and in the early stages of the CAT. Both of these situations could
be especially advantageous in patient reported outcome measures. No existing
research has investigated GMIR under conditions similar to PRO measures, with
very few items, only 5-10 items. Also, previous research has only compared MFI and
GMIR selection methods using constrained CATs, employing content balancing
and/or exposure control. These conditions are not realistic and applicable for most
medical outcome measures. The previous polytomous research used the generalized
partial credit model, but for an attitude measure like a PRO, Andrich’s Rating Scale
Model (1978) is more appropriate. This model was developed for Likert-type
attitude scales and is more parsimonious.
This study will investigate the following research questions:

1) How do the MFI and GMIR item selection methods' performances compare

for CATs with small numbers of items?
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2) How do the item pool size, mismatch of item pool and population latent trait
distributions, and test length affect the measurement precision?

3) How do interactions among item pool size, mismatch of item pool and
population latent trait distributions, and test length affect the MFI and GMIR

item selection methods’ performance?
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Chapter 3: Methodology

DESIGN OVERVIEW

This CAT simulation study compares the performance of the MFI and GMIR
item selection methods under ARSM. Performance was evaluated in terms of
measurement precision and item administration efficiency. Four independent
variables were manipulated: item selection method, item pool size population
distribution, and test length. The resulting design isa 2 x 2 x 2 x 3 factorial design.

Only MFI and GMIR item selection methods were compared because MFI has
greater ease of use, and previous research with polytomous CATs has shown other
item selection methods do not perform better than MFI (Choi & Swartz, 2009; Ho,
2010; Lima Passos et al,, 2007; van Rijn et al., 2002; Veldkamp, 2003). The MFI and
GMIR performance was compared under two population latent trait level
distributions, one that is a match to the item pool distribution—a normal
distribution—and one that is a mismatch—a negatively skewed distribution. This
mismatch was included because previous research with polytomous CATs has found
less accurate trait estimates when there is a mismatch between the examinees’ trait
levels and item pool distributions (Dodd et al., 1993; Gorin et al., 2005). In health
measures, item pool and examinee trait levels might not match if the subpopulation
levels do not align with the general population or levels might match pretreatment,
but not match post treatment. Item selection methods were also evaluated under
two different item pool sizes. One item pool consisted of 41 polytomous items and
the other consisted of 82 polytomous items. Previous studies have shown that

polytomously scored item pools can have as few as 30 items (Dodd 1990; Dodd & de
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Ayala, 1994). The stopping rule was a combination of variable-length and fixed-
length. The CAT stopped either when the standard error of measurement of the
simulee’s 6 estimate was less than the prespecified standard error (0.40, 0.45, or
0.54) or when a set number of items had been administered (5, 7, or 9).

With a 2 x 2 x 2 x 3 factorial design, the study has 24 conditions total. Each
condition has 1000 simulees and was replicated 100 times. Variable step size and
MLE were used to estimate trait levels.

ITEM POOL AND TEST CHARACTERISTICS

An existing database was used to perform real-data simulations. The item
pool that was used in this study consists of 41 polytomous items, the developmental
form of the flexilevel shoulder functioning scale (Cook, Roddey, Gartsman, & Olson;
2003). Each item has five response categories, with higher score signifying better
shoulder function. The response categories and corresponding scores are “no
difficulty” 4, “little difficulty” 3, “some difficulty” 2, “much difficulty” 1, “I can’t do
this” 0, and “didn’t do before shoulder problem” not applicable. Dodd, Cook, and
Godin (2010) calibrated the 41 items according to the partial credit model (Master,
1982) using PARSCALE 4. Dodd et al. (2010) stated that they obtained the estimates
of the threshold and scale values for Andrich’s rating scale model (ARSM) from the
PARSCALE output using the procedures of Wright and Masters (1982). Item
responses were collected from 400 participants, who were recruited at 3 facilities:
an orthopedic surgeon’s office, a county Physical Therapy department, and the
Houston Veteran’s Affairs Medical Center Hospital. Using a procedure previous used

in CAT simulation studies (Dodd, Koch, & de Ayala, 1993), the item parameters for
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the 82 items were calibrated. The item pool was expanded to 82 by doubling the
original 41 item parameters. A calibration sample was generated using simulated
data for the doubled item pool, to introduce variability. These 82 items were
calibrated with PARSCALE 4. Responses from 1000 normally distributed simulees
were generated according the ARSM using the IRTGEN SAS macro program
(Whittaker, Fitzpatrick, Williams, & Dodd, 2003). Using these responses, new
threshold and scale value estimates were obtained from PARSCALE using the
procedures of Wright and Masters (1982). The step values were estimated using
standard marginal maximum likelihood estimation procedures. Specifically, for the
scale value, the step parameter estimates were averaged for the partial credit
model; for the thresholds, the deviation of the step parameter estimates from the
scale value across items were averaged. Descriptive statistics for item parameter
estimates are presented in Table 1. Scale values ranged from -2.14 to 1.32, and their
average was slightly negative (-0.64). An information plot for the item pool
calibrated according to the ARSM is presented in Figure 3. The first 41 items were

used for the 41 item item pool conditions.

Mean SD Minimum Maximum
Scale Value -0.64 .73 -2.14 1.32
Thresholds
1 -1.40
2 -0.75
3 0.68
4 1.46

Table 1. Descriptive Statistics for the [tem Parameter Estimates for the Shoulder
Functioning Data
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Figure 3. Information Function for the Shoulder Functioning Scale 82-Item Item

Pool Calibrated According to Andrich’s Rating Scale Model
DATA GENERATION

For the condition in which the latent trait distribution of the population

matches the item pool distribution, 1000 6 values were randomly drawn from a
normal distribution with a mean of 0 and a standard deviation of 1. This was
replicated 100 times to create 100 samples. For the condition in which the trait
distribution of the population is a mismatch to the item pool distribution, a
negatively skewed population distribution was simulated. The normal and skewed
population distributions were used since these are encountered most frequently in
practice. Since a positively skewed distribution is the mirror image of the negatively

skewed distribution, only one is used. Using the procedure used in previous
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polytomous CAT simulation studies (Davis, 2004; Davis & Dodd, 2003; Gorin et al.,
2005; Koch & Dodd 1989), the parameters of a beta distribution were set, a to 5.0
and B to 1.8, in order to obtain the negatively skewed shape of the distribution.
From this negatively skewed distribution, 1000 6 values for each of the 100
replications were randomly drawn. One of the negatively skewed distributions is
presented in Figure 4. The skew for the sample distribution shown in Figure 4 was
-0.66. The normally distributed and negatively skewed distributions were then

standardized to have a mean of 0 and standard deviation of 1.

10.0
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0.0
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Figure 4. Negatively Skewed Theta Distribution for One Sample

Item responses based on Andrich’s Rating Scale Model were generated using
the IRTGEN SAS macro program (Whittaker, Fitzpatrick, Williams, & Dodd, 2003).

For each simulee, given the known 0 and the item parameter estimates, the

55



probability of responding in each category score was calculated (see Equation 4).
These probabilities were summed to obtain cumulative subtotals for each category
score, category score boundaries. These subtotals or boundaries are then compared
to a number randomly drawn from a uniform distribution from 0 to 1. If the
randomly drawn number was less than or equal to the category boundary, the
simulee was assigned that category score. This comparison was successive from the
low category boundary to the high category boundary. These comparisons were
repeated for all items, all simulees, and all samples until all simulees had scores on
all items. These 100 generated-response data sets were used for each CAT
simulation.

CAT SIMULATION

For each condition, item response data and item pool characteristics were
input into a CAT program, which is an adaptation of the program created by Dodd,
Cook, and Godin (2005) for their study assessing the RSM and SIM with a medical
assessment measure. [tems were selected using two item selection procedures, MFI
and GMIR. While MFI is the default in the program, for the GMIR conditions, the MFI
item selection procedure was altered to include the ratio of item efficiency.

The item pool consisted of either the 41 or 82 items of the flexilevel shoulder
functioning scale. The initial 6 estimate was set to 0 for all simulees in all conditions
and used to select the first item for administration. A variable step size approach,
which sets the interim 0 estimate at half the distance between the previous 0
estimate and the extreme value in the item pool is recommended for polytomous

CAT (Koch & Dodd, 1989; Dodd, 1990). Once there are responses in two different
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categories, maximum likelihood estimation procedure was used to update the
estimate of shoulder functioning for all subsequent item responses.

The CAT simulations was terminated with a combination of variable-length
and fixed-length stopping rules. The CAT stopped either when the standard error of
measurement of the simulee’s 6 estimate was less than the prespecified standard
error or when a maximum number of items had been administered. Research of
patient reported outcome measures generally study tests with 5-10 items (Cook et
al,, 2008; Cook et al., 2007; Fliege et al., 2005; Ware et al., 2005). The CAT stopped at
a maximum of 5, 7, or 9 items administered or when the standard error reached
0.40, 0.46, or 0.54 respectively. The standard error appropriate for each number of
item administered was determined by finding the average item information per item
(for the item pool from 6 of -2.5 to 1.5). Using this average item information per
item and each number of items to be administered, the standard errors were
calculated using Equation 8. This combination stopping rule has performed well and
is recommended for CATs using various polytomous IRT models (Dodd et al., 1995).

Since Han’s (2009) GMIR method was developed for use with a fixed-length CAT, the

target SE

- . This modification
interim SE

weighting ratio % from equation (16) was replaced with

was used by McClarty et al. (2006) to modify the progressive-restrictive exposure

control procedure for use with variable length tests. The modified GMIR equation is

1,[6,,-1] (1 target SE ) N [é ] target SE (22)
1;[6%] interim SE m=interim SE
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DATA ANALYSIS

The test performance of the MFI and GMIR was examined in terms of the
number of nonconvergent cases, descriptive statistics, correlations, mean bias and
root mean squared error (RMSE) statistics, and conditional standard error and
mean bias statistics under each experimental condition. Also, the number of items
administered was used to evaluate the item administration efficiency.

Within each condition, before calculating outcome measure, listwise deletion
of nonconvergent cases was performed. A case was considered nonconvergent if
MLE is never reached or the final ability estimate was too extreme (equal to either -
4 or +4). The mean number of nonconvergent cases for each condition is reported.
Cases of nonconvergence that never reach MLE estimation are reported as
“nonconvergent”. Cases, in which the final ability estimate is too extreme, are
reported as “out of range”. These two types of nonconvergent cases are reported
separately for each condition. Each of the measures used to evaluate the conditions
were averaged across the 100 replications. In application, fewer nonconvergent
cases would mean that more patients receive PRO measure scores and assessments
of their functioning levels. The two types of nonconvergent cases are separated
because they differ in practical usefulness. A patient who received an out of range
nonconvergent score would know that his functioning was extremely poor or
extremely high, which provides information. However, a nonconvergent case that
did not reach MLE would not provide any information of functioning level. It would
be burdensome for a patient to spend the time to take a measure and not receive

this assessment of his functioning level.
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Descriptive statistics and comparison of the final 8 estimate to known 6
values were used to evaluate measurement precision. These statistics evaluate the
recovery of known 6 values. The grand mean, mean maximum, and mean minimum
of the final 0 estimates (8), and their standard errors (SE) are reported for each
condition. Mean, minimum, and maximum Pearson product-moment correlation
between known and estimated 0 values, mean bias, and root mean squared error
(RMSE) statistics were calculated for trait estimates produced by each CAT
condition. Bias is the average difference between the known and estimated 0 levels
and is an index of systematic error of measurement. RMSE is an index of the total

error of measurement. The equation for bias is

1B — 65) (23)
n

and the equation for RMSE is

(24)

1
Yr=1(8x — 0,)?]?
n

where 8, is the final trait estimate for patient k, 8  is the known trait level of patient
k, and n is the total number of patients.

These comparisons of the Pearson product-moment correlation between
known and estimated 0 values, mean bias, and RMSE across conditions using MFI
and GMIR shows how the item selection methods perform in terms of measurement
precision. Comparisons were made between different levels of the independent
variables to determine how these affected the measurement precision of the item

selection methods. To illustrate how the item pool size affects the measurement
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precision, conditions with 41 items and 82 items in the item pool were compared on
these outcome variables. Similarly, a contrast of these outcome variables was made
between conditions when the item pool and population latent trait distributions
match as compared to a mismatch to show how distribution mismatching affects the
measurement precision. Comparing outcome variables among the three test length
conditions demonstrates how the test length affects the measurement precision. To
determine how interactions among the item pool size, mismatch of item pool and
population latent distribution, and test length affect the measurement precision, cell
means of correlations, mean bias, and RMSE for each condition were compared.
Further, conditional plots of mean bias, mean RMSE, and grand mean
standard errors were generated to illustrate the precision of the final and interim 6
estimates across the range of 6 values and the length of the test, respectively. For
the final 0 estimates, the known 6 values of simulees were grouped into 0.5 intervals
from -4 to +4 so that midpoints of the groups are spaced equally from -4 to +4.
Outcome measures were calculated and plotted against the mean 6 for each group,
assessing the measurement precision across the range of trait values.
For the interim 0 estimates, simulees were pooled into five groups with midpoints
at0=-2,-1,0, 1, and 2, each group including those 0.5 standard deviations above
and below. Outcome measures were calculated and plotted against item number,
assessing the measurement precision at each item in the test. Additionally, the
grand mean, mean minimum, and mean maximum number of items administered
(NIA) are reported to evaluate the efficiency of the CAT, with smaller mean NIA

signifying greater efficiency.

60



Chapter 4: Results

NONCONVERGENT CASES

After all conditions were run and before statistics were calculated, listwise
deletion was performed. Two types of nonconvergent cases were deleted. Cases
were considered out of range nonconvergent if the 6 estimate was less than or equal
to -4 or greater than or equal to 4. Cases were considered nonconvergent if MLE
was not reached. Table 2 shows the mean number of out of range and
nonconvergent cases for each condition averaged across the 100 replications. On
average across replication and conditions, MFI resulted in fewer overall
nonconvergent cases, especially cases that were out of the 6 range from -4 to 4.
GMIR and MFI simulations averaged 7.27 and 1.42 out of range examinees
respectively and 2.35 and 1.95 nonconvergent cases respectively.

For out of range cases, GMIR simulations resulted in a larger range, averaging
from 1.81 (5 item stopping rule/normal/41 item pool) to 11.18 (7 item stopping
rule /negatively skewed/41 item pool). MFI simulations averaged from 1.09 (7 item
stopping rule /normal/41 item pool) to 1.75 (9 item stopping rule /normal /41 item
pool) out of range conconvergent cases. For nonconvergent cases that did not reach
MLE, GMIR simulations averaged 1.00 (9 item stopping rule /negatively skewed/41
item pool) to 6.48 (5 item stopping rule / negatively skewed/82 item pool). MFI
simulations averaged 1.00 (9 item stopping rule /negatively skewed/41 item pool)

to 4.37 (5 item stopping rule / normal/ 41 item pool).
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Both item selection methods had a greater number of nonconvergent cases
that did not reach MLE when fewer items were administered. Conditions usinga 5
item stopping rule averaged 4.593 and 3.43 cases not reaching MLE using GMIR and
MFI respectively, whereas conditions using a 7 or 9 item stopping rule averaged
fewer cases: 1.23 with GMIR and 1.21 with MFI. GMIR had a great number of
nonconvergent cases not reaching MLE in the 5 item condition when the 82 item
pool was also used as compared to the 41 item pool, 6.47 items as compared to 2.72.
MFI resulted in the opposite trend, with greater nonconvergent cases when the 41
item pool was used with the 5 item stopping rule, 4.00 as compared to 2.87 with the
82 item pool. MFI resulted in fewer nonconvergent cases when the population was
negatively skewed in the 5 and 7 item stopping rule conditions, with 3.72 and 1.32
cases as compared to 3.15 and 1.19 cases when the population was normally
distributed. For practical purposes, this is a half a cases or less on average. GMIR
conditions followed the same trend, but the differences were even smaller, around
one tenth of a case on average.

In contrast, for nonconvergent cases that were out of the 6 range, GMIR had
fewer cases in the 5 item stopping rule condition and MFI did not vary across test
length. GMIR simulations averaged only 2.603 out of range cases under 5 items, but
9.608 under 7 and 9 items. GMIR had more out of range cases in the conditions with
the negatively skewed population distribution that was a mismatch to the item pool
distribution, averaging 2.95, 10.17, and 10.05 in the 5, 7, and 9 item conditions. In
the normally distributed population conditions, there were only 2.26, 8.86, and 9.36

cases. MFI showed the same trend in the 5 and 7 item stopping rule conditions, with
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1.30, and 1.38 out of range cases in the normal condition and 1.52 and 1.47 in the
negatively skewed condition. In the 9 item stopping rule condition, the trend was
reversed, with 1.59 cases in the normal condition and only 1.27 cases in the

negatively skewed condition. However, all these differences in the MFI conditions

are too small to be practically important.
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Condition Out of Range Nonconvergent
Mean Min Max | Mean Min Max
5 item
GMIR 1.81 1 5 2.88 1 7
MFI 1.32 1 3 4.37 1 11
41 7 item
[tem GMIR 9.80 3 16 1.35 1 3
Pool MFI 1.09 1 2 1.43 1 3
9 item
Normally GMIR 9.72 4 15 1.19 1 2
Distributed MFI 1.75 1 4 1.14 1 2
Population > item
GMIR 2.70 1 7 6.45 1 14
MFI 1.28 1 4 3.06 1 7
82 7 item
[tem GMIR 7.91 1 14 1.48 1 5
Pool MFI 1.67 1 4 1.20 1 3
9 item
GMIR 9.00 2 15 1.19 1 2
MFI 1.43 1 4 1.06 1 2
5 item
GMIR 2.73 1 7 2.56 1 7
MFI 1.54 1 5 3.62 1 10
41 7 item
[tem GMIR 11.18 2 21 1.26 1 3
Pool MFI 1.51 1 4 1.22 1 4
9 item
Negatively GMIR 9.82 2 20 1.00 1 1
Skewed MFI 1.25 1 3 1.00 1 1
Population 5 item
Distribution GMIR 3.17 1 9 6.48 3 13
MFI 1.49 1 3 2.67 1 7
82 7 item
[tem GMIR 9.16 3 18 1.30 1 3
Pool MFI 1.42 1 4 1.16 1 2
9 item
GMIR 10.27 4 21 1.07 1 2
MFI 1.29 1 4 1.50 1 2

Table 2. Nonconvergent Cases Averaged Across 100 Replications
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ESTIMATED THETAS

Descriptive statistics illustrate how well the known 6 values are reproduced.
The grand mean and the mean of standard deviations of estimated 6s averaged
across 100 samples are in Table 3. The average minimum and maximum of the
estimated 0s as well as the mean, minimum, and maximum of the standard errors
are also in Table 3. The mean estimated 6s ranged from -0.031 to -0.015 with GMIR
and -0.082 to -0.014 with MFI, with the minimum means in the 5 item stopping
rule/ normal/82 item pool condition and the maximum means in the 9 item
stopping rule / negatively skewed/ 41 item pool. These are all slightly lower than
the known 6 mean of 0.0. Conditions using the 5 item stopping rule and MFI had
slightly lower average estimated 0s (-0.074) than conditions using 7 and 9 item
stopping rules and MFI (-0.022). GMIR was more consistent across stopping rules,
with 0 estimates all around -0.02. The 0 estimates did not vary by item pool size,
population distribution, or interactions among these conditions.

The mean standard deviations of estimated 0s ranged from 1.084 to 1.152
with GMIR in the 9 item stopping rule /negatively skewed/41 item pool and 5 item
stopping rule /normal/82 item pool respectively. With MFI, the standard deviations
ranged from 1.079 to 1.161 in the 9 item stopping rule /negatively skewed/82 item
pool and 5 item stopping rule /normal/41 item pool respectively. These are all
slightly higher than the standard deviation for the known 0s of 1. For both item
selection methods and across distributions and item pool conditions, the standard
deviation decreased slightly as the items administered increased, getting closer to 1.

The overall average standard deviations for the 5,7, and 9 item conditions were
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1.147, 1.104, and 1.084 respectively. Standard deviations did not vary by item pool
size, population distribution, or any interaction among these variables.

[llustrating the measurement precision, the standard errors (SE) of the
estimated 0s ranged from 0.397 to 0.532 with GMIR in the 9 item stopping rule /
negatively skewed /82 item pool and 5 item stopping rule /normal /82 item pool
conditions respectively. MFI mean SEs ranged from 0.389 to 0.514 in the 9 item
stopping rule / negatively skewed /82 item pool and 5 item stopping rule
/normal/41 item pool conditions respectively. Across all conditions with a stopping
rule of an SE of 0.54 or 5 items, the grand mean SE was 0.529 with GMIR and 0.511
with MFI. Across all conditions with a stopping rule of 0.46 or 7 items, the grand
mean SE was 0.457 with GMIR and 0.449 with MFI. Across all conditions with a
stopping rule of an SE of 0.40 or 9 items, the grand mean SE was 0.399 with GMIR
and 0.391 with MFI. There were not differences between the two population
distributions or the two item pool size simulations. There were also not

interactions among these variables.
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Final 6 Estimate

Standard Error

Condition MS;E?SD) Min Max | Mean  Min Max
5 item
GMIR -0.025(1.140) -3.343 3.735| 0.528 0.482 1.022
MFI  -0.072(1.161) -3.743 3.708 | 0.514 0.481 1.023
41 7 item
[tem GMIR -0.019(1.110) -3.702 3912 | 0458 0.414 1.015
Pool MFI  -0.021(1.109) -3.704 3.933 | 0.452 0.408 1.015
9 item
Normal GMIR -0.022(1.085) -3.676 3.992 | 0.401 0.368 1.013
Pop. MFI  -0.019(1.084) -3.988 3.353 | 0.394 0.360 0.861
Dist. > item
GMIR -0.031(1.152) -3.760 3.867 | 0.532 0.481 1.066
MFI  -0.082(1.155) -3.928 3.949 | 0.511 0.482 1.020
82 7item
[tem GMIR -0.028(1.110) -3.910 3.963 | 0.457 0.408 1.014
Pool MFI  -0.031(1.101) -3.884 3.459 | 0.449 0.409 0.866
9 item
GMIR -0.025(1.090) -3.967 3.640 | 0.397 0.360 0.894
MFI  -0.023(1.083) -3.827 3.648 | 0.391 0.360 0.866
5 item
GMIR -0.017(1.127) -3.343 3.736 | 0.525 0.482 1.022
MFI  -0.064(1.150) -3.743 3.709 | 0.511 0.481 1.023
41 7 item
Item GMIR -0.019(1.102) -3.702 3912 | 0456 0.414 1.015
Pool MFI  -0.018(1.097) -3.704 3.933 | 0.449 0.409 1.015
9 item
Neg. GMIR -0.015(1.084) -3.676 3.292 | 0.399 0.368 0.964
Skewed MFI  -0.014(1.082) -3.988 3.353 | 0.391 0.360 0.768
Pop. 5 item
Dist. GMIR -0.026(1.145) -3.760 3.867 | 0.530 0.481 1.066
MFI  -0.079(1.143) -3.928 3.949 | 0.508 0.482 1.020
82 7item
[tem GMIR -0.023(1.103) -3.910 3.963 | 0.456 0.408 1.014
Pool MFI  -0.027(1.098) -3.884 3.459 | 0.447 0.409 0.866
9 item
GMIR -0.022(1.086) -3.967 3.207 | 0.397 0.360 0.894
MFI  -0.020(1.079) -3.827 3.648 | 0.389 0.360 0.866

Table 3. Estimated Thetas and Standard Error Descriptive Statistics Averaged

Across 100 Replications
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OVERALL MEASUREMENT PRECISION

The Pearson product-moment correlations are shown in Table 4. The
correlations between the known and estimated 8s show how well the known 6s
were recovered. Correlations range from 0.873 to 0.923 using GMIR in the 5 item
stopping rule /negatively skewed /82 item pool and 9 item stopping rule/negatively
skewed /82 item pool conditions respectively. Using MFI, correlations range from
0.856 to 0.922 in the 5 item stopping rule /negatively skewed /82 item pool and 9
item stopping rule/ negatively skewed/41 item pool conditions respectively.
Conditions with more items administered had higher correlations. With the 5 item
stopping rule, GMIR and MFI simulations resulted in correlations on average of
0.875 and 0.859 respectively. When the test length increased with a stopping rule of
7 items, correlations increased to 0.902 for GMIR and 0.899 for MFI. Correlations
increased again to 0.923 with GMIR and 0.921 with MFI, when a stopping rule of 9
items was used. The correlation coefficients did not vary according to item pool size,
population distribution or interactions among these variables.

The Bias and RMSE are shown in Table 5. These comparisons of the final 0
estimates to the known 0 values evaluate the overall measurement precision of the
simulation conditions. Bias for simulations using GMIR ranged from 0.013 in the 7
item stopping rule /normal/41 item pool and 9 item stopping rule/ negatively
skewed/ 41 item pool conditions to 0.033 in the 5 item stopping rule / negatively
skewed /82 item pool condition. MFI simulation conditions resulted in a larger range
of bias, from 0.015 in the 9 item stopping rule/ normal/ 41 item pool condition to

0.084 in the 5 item stopping rule /negatively skewed/ 82 item pool condition. Bias
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for MFI 5 item conditions was on average 0.077 as compared to 0.026 and 0.019 for
7 and 9 item conditions respectively. Bias for GMIR was similar across 5, 7, and 9
item stopping rule conditions and all smaller than MFI at 0.029, 0.019, and 0.016
respectively. For both MFI and GMIR, bias was slightly larger when the 82 item pool
was used, especially when fewer items were administered. When 5 item stopping
rule and 82 item pool were used, bias was on average 0.058 as compared to 0.048
with the 41 item pool. Using the 7 item stopping rule and 82 item pool, bias was on
average 0.026 as compared to 0.018 with the 41 item pool. When the 9 item
stopping rule and 82 item pool were used, bias was on average 0.02 as compared to
0.014 with the 41 item pool. However, these differences are too small for practical
importance. Bias did not vary according to the population distribution, nor did the
distribution interact with any other variables.

RMSE ranged from 0.418 in the 9 item stopping rule/ negatively skewed/ 41
item pool condition to 0.560 in the 5 item stopping rule/ negatively skewed/82 item
pool condition with GMIR and 0.419 9 item stopping rule/ negatively skewed/ 82
item pool condition to 0.598 in the 5 item stopping rule/ negatively skewed/82 item
pool condition with MFI. RMSE was larger for conditions with fewer items
administered for both MFI and GMIR condition. RMSE values were slightly larger
using MFI than GMIR, with greater differences with fewer item administered. MFI
simulations resulted in RMSE values of 0.595, 0.483, and 0.424 for conditions with
5, 7,and 9 item stopping rules respectively. RMSE values of 0.554, 0.479,0.423 were

found for GMIR conditions with stopping rules of 5, 7,and 9 items respectively.
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RMSE values did not vary by item pool size or population distribution or

interactions among these variables.
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Correlation

Condition Mean Min Max
5 item
GMIR 0.877 0.857 0.891
MFI 0.862 0.847 0.880
41 7 item
Item GMIR 0.903 0.887 0.914
Pool MFI 0.899 0.890 0.908
9 item
GMIR 0.920 0.909 0.931
Normally MFI 0.921 0.906 0.930
Distributed ,
Population > item
GMIR 0.875 0.855 0.892
MFI 0.859 0.844 0.876
82 7 item
Item GMIR 0.901 0.883 0.914
Pool MFI 0.898 0.885 0.914
9 item
GMIR 0.922 0.912 0.932
MFI 0.919 0.907 0.929
5 item
GMIR 0.874 0.856 0.890
MFI 0.859 0.839 0.872
41 7 item
Item GMIR 0.901 0.889 0.916
Pool MFI 0.900 0.888 0.916
9 item
Negatively GMIR 0.921 0.912 0.930
Skewed MFI 0.922 0.910 0.931
Population 5 item
Distribution GMIR 0.873 0.854 0.887
MFI 0.856 0.833 0.881
82 7 item
Item GMIR 0.901 0.885 0.915
Pool MFI 0.899 0.885 0.917
9 item
GMIR 0.923 0.912 0.934
MFI 0.920 0.907 0.932

Table 4. Correlation Coefficient between Known and Estimated Thetas Averaged

across 100 Replications
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Condition Bias RMSE
Mean Min Max Mean Min Max
5 item
GMIR 0.026 -2.814 3.037 | 0.549 0508 0.591
MFI  0.072 -2.744 3.183 | 0.593 0.557 0.630
41 7 item
[tem GMIR 0.013 -2.563 3.092 | 0477 0.444 0.518
Pool MFI  0.021 -2.826 2.766 | 0.486 0.460 0.520
9 item
GMIR 0.014 -2.644 2758 | 0.426 0.399 0.454
Normally MFI  0.015 -2.245 2.820 | 0.424 0.397 0.450
Distributed -
Population > item
GMIR 0.030 -2.879 2992 | 0.559 0510 0.599
MFI  0.083 -2.629 3.085 | 0.596 0.558 0.630
82 7 item
[tem GMIR 0.023 -2463 3.215 | 0.482 0.447 0.519
Pool MFI  0.029 -2.109 3.074 | 0.486 0.458 0.519
9 item
GMIR 0.018 -2.291 2908 | 0.422 0391 0.450
MFI  0.022 -2.299 2.744 | 0.428 0.405 0.468
5 item
GMIR 0.025 -2.879 3.029 | 0.549 0.517 0.587
MFI  0.070 -2.931 3.349 | 0.593 0.555 0.631
41 7 item
Item GMIR 0.016 -2.510 3.065 | 0.477 0.444 0.509
Pool MFI  0.021 -2.505 2.840 | 0.479 0.440 0.507
9 item
Negatively GMIR 0.013 -2.138 2.732 | 0.424 0.394 0.448
Skewed MFI 0.015 -2.228 2.736 | 0.419 0.392 0.458
Population 5 item
Distribution GMIR 0.033 -2.669 3.114 | 0.560 0.525 0.587
MFI  0.084 -2.735 3.036 | 0.598 0.540 0.640
82 7 item
[tem GMIR 0.023 -2.571 2969 | 0480 0.440 0.517
Pool MFI  0.030 -1.856 2931 | 0482 0437 0.517
9 item
GMIR 0.018 -1.883 2966 | 0.418 0.389 0.449
MFI  0.022 -2.009 2.897 | 0423 0.390 0.451

Table 5. Bias and RMSE Averaged across 100 Replications
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CONDITIONAL MEASUREMENT PRECISION

Conditional plots of mean bias, mean RMSE, and grand mean SE averaged
across the 100 samples show the precision of the final theta across a range of known
0 values (-2, -1, 0, 1, 2) and the interim 0 values across the items of the test. Plots of
bias, RMSE, and SE conditional on known 6 illustrate how MFI and GMIR performed
in terms of measurement precision across the range of 6 values, from -3.5 to 3.5.
Bias values conditional on known thetas for each of the 12 simulated conditions are
shown in Figures 5 and 6. For most of the 6 scale, MFI and GMIR resulted in similar
bias values. However, at two points on the 6 scale one item selection method
outperformed the other. At 6=-3.5, the bias was larger in almost all of the GMIR
conditions. Around 6=0, the bias was larger in the MFI, 5 item stopping rule
conditions. There were not patterns across or among item pool or population
distribution conditions.

RMSE values displayed a generally consistent pattern across 0 values across
conditions, with RMSE values higher in GMIR conditions at the negative end of the 6
scale and higher in MFI conditions in the middle of the 0 scale, as shown in Figures 7
and 8. GMIR generally resulted in larger RMSE for Bs less than -1. This pattern
across 0 values could be explained by the information function of the item pool. The
item pool provides greater information in the middle of the 6 values and less
information at either end of the scale. Two conditions, the 5 and 9 item conditions
with a normally distributed population and a 41 item pool did show a larger RMSE
using MFI at 6=-3.5. Between 0s of -1 and 1.5, MFI generally resulted in larger RMSE,

with 5 item stopping rule conditions having the largest differences. When 6 was
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greater than 1.5, GMIR generally resulted in a similar or larger RMSE. In the 7
item/normal/82 pool and 9 item/normal/ 41 pool at 6=3.5, GMIR resulted in a
larger RMSE.

The SE conditional on the known 6 also displayed a consistent pattern across
simulation conditions, with SE values higher in most GMIR conditions at either end
of the 0 scale and comparable SE values in the middle of the 0 scale, as shown in
Figures 9 and 10. When the 0 was less than -1.5, GMIR resulted in a larger SE than
MFI, with the difference getting larger as the 6 was smaller. The difference was
greater when the 82 item pool and 5 or 9 item stopping rule was used. When the
normally distributed population was used and there were simulees with 0 values at
the upper end of the scale, GMIR resulted in a larger SE than MFI when 6 was
greater than 2.0/2.5 for half of the conditions: in the 5 item stopping rule/82 item
pool, 7 item stopping rule/82 item pool, and 9 item stopping rule/41 item pool
conditions. For the other normal conditions, the MFI and GMIR values were similar.

In the middle of the scale, MFI and GMIR resulted in similar SE values.
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5 Item Stopping Rule, Normally Distributed Data, 82 Item Pool

0.5

0.4

0.3

Bias

-0.3 4

-0.4 1

-0.5

-0.6

T
-40 -35 -30 -25 -20 15 10 -05 00 05 10 15 20 25 30 35 40
Known Theta

[ —e— MFI_bias — —+— GMIR_bias |

Figure 5A. Plots of Mean Bias Conditional on Known Theta for the 5 Item Stopping
Rule and Normally Distributed Population Conditions
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7 Item Stopping Rule, Normally Distributed Data, 41 Item Pool
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7 Item Stopping Rule, Normally Distributed Data, 82 Item Pool
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Figure 5B. Plots of Mean Bias Conditional on Known Theta for the 7 Item Stopping
Rule and Normally Distributed Population Conditions

76



9 Item Stopping Rule, Normally Distributed Data, 41 Item Pool
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9 Item Stopping Rule, Normally Distributed Data, 82 Item Pool
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Figure 5C. Plots of Mean Bias Conditional on Known Theta for the 9 Item Stopping
Rule and Normally Distributed Population Conditions
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5 Item Stopping Rule, Negatively Distributed Data, 82 Item Pool
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Figure 6A. Plots of Mean Bias Conditional on Known Theta for the 5 Item Stopping
Rule and Negatively Skewed Distributed Population Conditions
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7 Item Stopping Rule, Negatively Distributed Data, 82 Item Pool
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Figure 6B. Plots of Mean Bias Conditional on Known Theta for the 7 Item Stopping
Rule and Negatively Skewed Distributed Population Conditions
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9 Item Stopping Rule, Negatively Distributed Data, 82 Item Pool
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Figure 6C. Plots of Mean Bias Conditional on Known Theta for the 9 Item Stopping
Rule and Negatively Skewed Distributed Population Conditions
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5 Item Stopping Rule, Normally Distributed Population, 41 Item Pool
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Figure 7A. Plots of Mean RMSE Conditional on Known Theta for the 5 Item Stopping
Rule and Normally Distributed Population Conditions
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Figure 7B. Plots of Mean RMSE Conditional on Known Theta for the 7 Item Stopping
Rule and Normally Distributed Population Conditions
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9 Item Stopping Rule, Normally Distributed Population, 82 Item Pool
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Figure 7C. Plots of Mean RMSE Conditional on Known Theta for the 9 Item Stopping
Rule and Normally Distributed Population Conditions
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5 Item Stopping Rule, Negatively Distributed Population, 41 Item Pool
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Figure 8A. Plots of Mean RMSE Conditional on Known Theta for the 5 Item Stopping
Rule and Negatively Skewed Distributed Population Conditions
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7 Item Stopping Rule, Negatively Distributed Population, 82 Item Pool
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Figure 8B. Plots of Mean RMSE Conditional on Known Theta for the 7 Item Stopping
Rule and Negatively Skewed Distributed Population Conditions
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9 Item Stopping Rule, Negatively Distributed Population, 41 Item Pool
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9 Item Stopping Rule, Negatively Distributed Population, 82 Item Pool
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Figure 8C. Plots of Mean RMSE Conditional on Known Theta for the 9 Item Stopping
Rule and Negatively Skewed Distributed Population Conditions
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Figure 9A. Plots of Mean Standard Error (SE) Conditional on Known Theta for the 5
[tem Stopping Rule and Normally Distributed Population Conditions
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7 Item Stopping Rule, Normally Distributed Population, 82 Item Pool
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Figure 9B. Plots of Mean Standard Error (SE) Conditional on Known Theta for the 7
[tem Stopping Rule and Normally Distributed Population Conditions
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Figure 9C. Plots of Mean Standard Error (SE) Conditional on Known Theta for the 9
[tem Stopping Rule and Normally Distributed Population Conditions
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Figure 10A. Plots of Mean Standard Error (SE) Conditional on Known Theta for the 5
Item Stopping Rule and Negatively Skewed Distributed Population Conditions
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Figure 10B. Plots of Mean Standard Error (SE) Conditional on Known Theta for the 7
Item Stopping Rule and Negatively Skewed Distributed Population Conditions
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Figure 10C. Plots of Mean Standard Error (SE) Conditional on Known Theta for the 9
Item Stopping Rule and Negatively Skewed Distributed Population Conditions
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Plots of bias, RMSE, and SE conditional on the item number, illustrate how
MFI and GMIR performed in terms of measurement precision at each item
administered, averaged across the 100 samples. Examinees were divided into 5
groups according to their known 0: -2, -1, 0, 1, and 2. Conditional plots for each theta
group for each condition are reported in Figures 11 through 26. Conditions using
the stopping rule of 5 items or .54 SE, were plotted items 1 through 5. Conditions
using the stopping rule of 7 items or .46 SE were plotted items 1 though 7.
Conditions using the stopping rule of 9 items or .40 SE were plotted items 1 though
0.

The bias by item did not vary between the normally distributed population
conditions and the negatively skewed population conditions for any theta value, so
only the normal conditions are shown, the negatively skewed plots and any other
plots not shown can be found in the Appendix A. In general, across theta values and
conditions, GMIR resulted in a larger bias value at the beginning of the test
(especially at the negative theta values) and MFI resulted in a larger bias at the end
of the test (especially with a longer test). Conditional plots of bias by item number
for theta =-2 are shown in Figures 11. Across all conditions for examinees in the
group of known, MFI resulted in less bias at items 2 and 3. When the 5 item stopping
rule was used, GMIR and MFI resulted in similar bias at the other items. When the 7
or item stopping rules were used, GMIR resulted in less bias at items 7 or 9
respectively. If the examinees were given all 7 or 9 items, this would be the final
item administered. Some examinees were only administered 6 or 8 items and

therefore would not be included in this average. This difference between GMIR and
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MFI was larger at item 9 than at item 7. Conditional plots of bias by item number for
theta=-1 are shown in Figures 12. Using the 5 item stopping rule, the bias by item
plots are similar for MFI and GMIR. When the 7 and 9 item stopping rules were used,
GMIR resulted in less bias at items 7 and 9 respectively. This difference was greater
when the 41 item pool was used than the 82 item pool. MFI and GMIR resulted in
similar bias at the other items.

Figures 13 show the conditional plots of bias by item number for theta=0.
MFI resulted in less bias at items 2 and 3 across all conditions, the largest difference
being at item 2. When the 7 item stopping rule was used, MFI resulted in a slightly
smaller bias than GMIR at item 7. Figures 14 show the conditional plots of bias by
item number for theta=1. Generally, across the items, MFI and GMIR resulted in
similar bias values. MFI bias was slightly smaller at item 2 across conditions and
also slightly smaller at item 1 when the 41 item pool was used. GMIR resulted in
slightly less bias at item 9 in the 9 item stopping rule/41 item pool conditions.
Conditional plots of bias by item number for theta=2 are shown in Figure 15. The
pattern of bias across items for theta=2 was consistent across stopping rule, item
pool, and population distribution conditions. Also, the item selection procedures
MFI and GMIR resulted in almost identical in bias value patterns in each condition.
Since the plots of all 12 conditions are similar, only the 9 item stopping rule/

normally distributed population/ 82 item pool condition is shown in the figure.
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Figure 11A. Plots of Mean Bias Conditional on Iltem Number for Known Theta = -2,
the 5 Item Stopping Rule, and Normally Distributed Populations
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Figure 11B. Plots of Mean Bias Conditional on Item Number for Known Theta = -2,
the 7 Item Stopping Rule, and Normally Distributed Populations
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Figure 11C. Plots of Mean Bias Conditional on Item Number for Known Theta = -2,
the 9 Item Stopping Rule, and Normally Distributed Populations
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Figure 12A. Plots of Mean Bias Conditional on Iltem Number for Known Theta = -1,
the 5 Item Stopping Rule, and Normally Distributed Populations
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Figure 12B. Plots of Mean Bias Conditional on Item Number for Known Theta = -1,
the 7 Item Stopping Rule, and Normally Distributed Populations
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Figure 12C. Plots of Mean Bias Conditional on Item Number for Known Theta = -1,
the 9 Item Stopping Rule, and Normally Distributed Populations
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Figure 13A. Plots of Mean Bias Conditional on I[tem Number for Known Theta = 0,
the 5 Item Stopping Rule, and Normally Distributed Populations
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Figure 13B. Plots of Mean Bias Conditional on Item Number for Known Theta = 0,
the 7 Item Stopping Rule, and Normally Distributed Populations
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Figure 13C. Plots of Mean Bias Conditional on Item Number for Known Theta = 0,
the 9 Item Stopping Rule, and Normally Distributed Populations
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Figure 14A. Plots of Mean Bias Conditional on I[tem Number for Known Theta =1,
the 5 Item Stopping Rule, and Normally Distributed Populations
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Figure 14B. Plots of Mean Bias Conditional on Item Number for Known Theta = 1,
the 7 Item Stopping Rule, and Normally Distributed Populations
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Figure 14C. Plots of Mean Bias Conditional on Item Number for Known Theta = 1,
the 9 Item Stopping Rule, and Normally Distributed Populations
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Figure 15. Plot of Mean Bias Conditional on Item Number for Known Theta = 2, the 9
Item Stopping Rule, Normally Distributed Population, and 82 Item Pool

The conditional plots of RMSE by item for thetas -2, -1, 0, 1, and 2 are shown
in Figures 16-21. The RMSE by item did not vary between the normally distributed
population conditions and the negatively skewed population conditions except for
simulees around theta=2. For theta groups -2, -1, 0, and 1 only the normal
conditions are shown, the negatively skewed plots can be found in the Appendix A.
Conditional plots of RMSE by item number for theta =-2 are shown in Figures 16.
MFI and GMIR resulted in similar RMSE values at items 1 and 9, if given. At items 2-
4, MFI RMSE values were higher, but then at items 5-8, GMIR RMSE values were
higher. The differences were greater at items 5 the 41 item pool was used. For
theta=-1, conditional plots of RMSE by item number are shown in Figures 17. RMSE

values followed a similar pattern across the conditions depending on the test length.

107



RMSE was slightly higher at items 1 and 2 when MFI was used. RMSE values were
the same for the remainder of the items in the 5 item stopping rule conditions. In the
7 and 9 item stopping rule conditions, GMIR was slightly higher from items 3 to
items 6 and 8 respectively. At the last item in the 7 and 9 item stopping rule
conditions, MFI resulted in a higher RMSE than GMIR.

Figures 18 show the conditional plots of RMSE by item number for theta=0.
Across conditions, GMIR results in a higher RMSE than MFI for items 2 and3. When
the 5 item stopping rule is used, RMSE values are similar for item 5. When the 7 or 9
item stopping rules are used, MFI RMSE values are higher than GMIR values for the
last 2-4 items. Conditions using the 41 item pool had a larger number of items at the
end of the test where GMIR outperformed MFI than the 82 item pool conditions did.
For theta=1, Figures 19 show the conditional plots of RMSE by item number.
Conditions using the 41 item pool and GMIR resulted in higher RMSE values than
MFTI for the first few items: items 1-3 in the 5 item stopping rule condition, items,
items 1-4 in the 7 item stopping rule condition, and items 1-5 in the 9 item stopping
rule condition. Conditions using the 82 item pool did not have a difference in RMSE
values between MFI and GMIR at item one, but GMIR conditions had higher values
for the next few items: items 2-4, 2-5, and 2-5 for the 5, 7, and 9 item stopping rules
respectively. In the 5 item stopping rule conditions, there was also a difference at
item 5, but MFI resulted in a higher RMSE than GMIR. RMSE values at the end of the
test for the 7 and 9 item conditions were comparable. Figures 20 and 21 show the
RMSE values by item for theta=2. Using the 41 item pool and GMIR, RMSE values

were slightly larger for items 1 and 2. The differences were larger for the negatively
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skewed population conditions than the normal population. The largest differences
were found using the 5 item stopping rule. The 82 item conditions varied by
population distribution, using the negatively skewed population distribution and
GMIR resulted in similar first items and then slightly higher RMSE values for all the
middle items. The normally distributed population and 82 item conditions resulted

in similar values using GMIR and MFI.
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Figure 16A. Plots of Mean RMSE Conditional on Item Number for Known Theta = -2,
the 5 Item Stopping Rule, and Normally Distributed Populations
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Figure 16B. Plots of Mean RMSE Conditional on Item Number for Known Theta = -2,
the 7 Item Stopping Rule, and Normally Distributed Populations
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Figure 16C. Plots of Mean RMSE Conditional on Item Number for Known Theta = -2,
the 9 Item Stopping Rule, and Normally Distributed Populations
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Figure 17A. Plots of Mean RMSE Conditional on Item Number for Known Theta = -1,
the 5 Item Stopping Rule, and Normally Distributed Populations
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Figure 17B. Plots of Mean RMSE Conditional on Item Number for Known Theta = -1,
the 7 Item Stopping Rule, and Normally Distributed Populations
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Figure 17C. Plots of Mean RMSE Conditional on Item Number for Known Theta = -1,
the 9 Item Stopping Rule, and Normally Distributed Populations
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Figure 18A. Plots of Mean RMSE Conditional on Item Number for Known Theta = 0,
the 5 Item Stopping Rule, and Normally Distributed Populations
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Figure 18B. Plots of Mean RMSE Conditional on Item Number for Known Theta = 0,
the 7 Item Stopping Rule, and Normally Distributed Populations
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Figure 18C. Plots of Mean RMSE Conditional on Item Number for Known Theta = 0,
the 9 Item Stopping Rule, and Normally Distributed Populations
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Figure 19A. Plots of Mean RMSE Conditional on Item Number for Known Theta = 1,
the 5 Item Stopping Rule, and Normally Distributed Populations
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Figure 19B. Plots of Mean RMSE Conditional on Item Number for Known Theta = 1,
the 7 Item Stopping Rule, and Normally Distributed Populations
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Figure 19C. Plots of Mean RMSE Conditional on Item Number for Known Theta =1,
the 9 Item Stopping Rule, and Normally Distributed Populations
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Figure 20A. Plots of Mean RMSE Conditional on Item Number for Known Theta = 2,
the 5 Item Stopping Rule, and Normally Distributed Populations
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Figure 20B. Plots of Mean RMSE Conditional on Item Number for Known Theta = 2,
the 7 Item Stopping Rule, and Normally Distributed Populations
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Figure 20C. Plots of Mean RMSE Conditional on Item Number for Known Theta = 2,
the 9 Item Stopping Rule, and Normally Distributed Populations
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Figure 21A. Plots of Mean RMSE Conditional on Item Number for Known Theta = 2,
the 5 Item Stopping Rule, and Negatively Skewed Distributed Populations
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Figure 21B. Plots of Mean RMSE Conditional on Item Number for Known Theta = 2,
the 7 Item Stopping Rule, and Negatively Skewed Distributed Populations
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Figure 21C. Plots of Mean RMSE Conditional on Iltem Number for Known Theta = 2,
the 9 Item Stopping Rule, and Negatively Skewed Distributed Populations
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In Figures 22-26, conditional plots of SE by item are shown for the following
theta groups: -2, -1, 0, 1, and 2. The SE by item plots did not vary between the
normally distributed population conditions and the negatively skewed population
conditions for any theta value. Only the normal conditions are shown below; the
negatively skewed plots and any conditions not shown can be found in the Appendix
A. In general, across all theta values, GMIR resulted in larger SE in items 2-4, but MFI
and GMIR resulted in similar SE values at the first and last few items. For theta=-2,
shown in Figures 22, GMIR conditions resulted in higher SE values at items in the
middle of the measure. Using the 41 item pool, values were higher from items 2-3
for the 5 item stopping rule and items 2-4 for the 7 and 9 item stopping rules. Using
the 82 item pool, SE values were higher from items 2-5 for the 5 item stopping rule
and items 2-6 for the 7 and 9 item stopping rules. SE values were similar for GMIR
and MFI at the first and last items for each condition.

Figure 23 shows the conditional SE values for each test items for theta=-1.
Across all conditions, GMIR simulation SE values were higher from items 2 to 4.
Since the plots of all 12 conditions are similar, only the 9 item stopping rule/
normally distributed population/ 41 item pool condition is shown in the figure.
GMIR and MFI simulations resulted in similar SE values for all other items.
Conditional SE values for each item for theta=0 are shown in Figure 24. GMIR
resulted in higher SE values at items 2 and 3 across all conditions. Since the plots of
all 12 conditions are similar, only the 9 item stopping rule/ normally distributed
population/ 41 item pool condition is shown in the figure. For theta=-1, conditional

SE values for each item are shown in Figure 25. Slightly higher SE values were
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found using GMIR than MFI at items 2 and 3. At the first item administered and any
items administered after 3, SE values were similar for GMIR and MFI. This pattern
was consistent across stopping rule, item pool, and population distribution
conditions, so only the 9 item stopping rule/ normally distributed population/ 82
item pool condition is shown in the figure. Conditional SE values for each item are
shown in Figure 26 for theta=2. GMIR produced higher SE values at items 2 and 3
for 41 item pool conditions and at items 2-4 for 82 item pool conditions. Since the
plots are similar across stopping rules, only the 9 item stopping rule and normally
distributed population with the 41 and 82 item pool conditions are shown in the

figure.
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Figure 22A. Plots of Mean SE Conditional on Iltem Number for Known Theta = -2, the

5 Item Stopping Rule, and Normally Distributed Populations
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Figure 22B. Plots of Mean SE Conditional on Item Number for Known Theta = -2, the

7 Item Stopping Rule, and Normally Distributed Populations
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Figure 22C. Plots of Mean SE Conditional on Item Number for Known Theta = -2, the

9 Item Stopping Rule, and Normally Distributed Populations
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Figure 23. Plot of Mean SE Conditional on Item Number for Known Theta = -1, the 9
Item Stopping Rule, Normally Distributed Population, and 41 Item Pool
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Figure 24. Plot of Mean SE Conditional on Iltem Number for Known Theta = 0, the 9
Item Stopping Rule, Normally Distributed Population, and 41 Item Pool
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Figure 25. Plot of Mean SE Conditional on Item Number for Known Theta = 1, the 9
Item Stopping Rule, Normally Distributed Population, and 82 Item Pool
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Figure 26. Plot of Mean RMSE Conditional on Iltem Number for Known Theta = -2,
the 9 Item Stopping Rule, Normally Distributed Population, and 82 Item Pool
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TEST EFFICIENCY

The mean, minimum, and maximum number of items administered (NIA) for
each condition averaged across 100 replications are shown in Table 6. When the
stopping rule was 5 items or an SE of .54, GMIR simulations administered 4.858
items on average and MFI simulations administered 4.99 on average. When the
stopping rule was 7 items or an SE of .46, GMIR administered 6.488 and MFI
administered 6.283. When the stopping rule increased to 9 items or and SE of .40,
GMIR conditions administered 8.578 items on average and MFI conditions
administered 8.223 items on average. For every condition with the 5 item stopping
rule, the minimum and maximum number of items administered were 4 and 5.
Likewise, for the 7 item stopping rule conditions, the minimum and maximum
number of items administered were 6 and 7. For all the 9 item stopping rule
conditions, the minimum and maximum number of items administered were 8 and
9. Using GMIR, the 7 and 9 item stopping conditions, and 41 item pool the number of
items administered was slightly greater than using the 82 item pool. The NIA was
8.74 and 8.41 on average for the 9 item stopping rule with the 41 and 82 item pools
respectively. The NIA was 6.56 and 6.42 on average for the 7 item stopping rule with

the 41 and 82 item pools respectively.
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Number of Items Administered

Condition Mean Min Max
5 item
GMIR 4.87 4 5
MFI 4.99 4 5
41 7 item
Item GMIR 6.57 6 7
Pool MFI 6.28 6 7
9 item
Normally GMIR 8.74 8 9
Distributed MFI 8.25 8 E
Population > item
GMIR 4.85 4 5
MFI 4.99 4 5
82 7 item
Item GMIR 6.42 6 7
Pool MFI 6.28 6 7
9 item
GMIR 8.43 8 9
MFI 8.19 8 9
5 item
GMIR 4.86 4 5
MFI 4.99 4 5
41 7 item
Item GMIR 6.55 6 7
Pool MFI 6.29 6 7
9 item
Negatively GMIR 8.75 8 9
Skewed MFI 8.26 8 9
Population 5 item
Distribution GMIR 4.85 4 5
MFI 4.99 4 5
82 7 item
Item GMIR 6.41 6 7
Pool MFI 6.28 6 7
9 item
GMIR 8.39 8 9
MFI 8.19 8 9

Table 6. Number of Items Administered Descriptive Statistics Averaged across 100
Replications
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Chapter 5: Discussion

This chapter contains three main sections, which discuss the study results. First, the
research questions are addressed based on the findings. Next, the practical
applications the conclusions are discussed. Finally, the limitations of the study and

future research directions are addressed.

RESEARCH QUESTIONS
How do the MFI and GMIR item selection methods' performances compare for CATs
with small numbers of items?

A number of differences were found between the performance of MFI and
GMIR item selection methods; some of these differences favored MFI and some
favored GMIR. When using MF], there were three times fewer overall nonconvergent
cases as compared to GMIR, with 9.6 and 3.4 total nonconvergent cases on average.
This finding is inconsistent with the findings of Chang and Dodd (2013) who found
more conconvergent case with MFI than with GMIR. While the number of
nonconvergent cases using GMIR was consistent with Chang and Dodd’s results,
they found over ten times as many nonconvergent cases with MFI than found in the
present study. This difference is probably due to fewer items being administered in
the current study; 20 items were administered in the Chang and Dodd(2012) study.
While the cases not reaching MLE were more similar, there were 5 times as many
out of range cases with GMIR than with MFIL. Both MFI and GMIR simulations
resulted in mean 0 estimates that were close to 0. GMIR was less consistent,

resulting in a wider range of mean 6 estimates, but had a mean final 6 estimate
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closer to 0 in the 5 item condition. The standard deviations of the 6 estimates were
both close to 1 and the SE values were comparable using MFI and GMIR. Mean 6
estimates close to 0 and SD close to 1 for both GMIR and MFI is consistent with
previous research (Chang and Dodd, 2013; Han, 2009; Han, 2010).

Measurement precision was better using GMIR when the 5 item stopping rule
was used and fewer items were administered. Mean correlation coefficients were
0.875 and 0.859, mean bias values were 0.029 and 0.077, and mean RMSE values
were 0.554 and 0.595 for GMIR and MFI respectively. At the 7 and 9 item stopping
rules, the measurement precision values were comparable between the two item
selection methods. These results are consistent with and expand on the findings of
previous studies (Chang and Dodd, 2013; Han, 2009). Chang and Dodd found GMIR
had slightly smaller mean SE, mean bias, and mean RMSE at the early stages of CAT
and when the CATs were shorter, across an NIA range of 12-20 items. Interestingly,
this study did not find GMIR outperforming MFI in the 7 and 9 item conditions,
which are objectively short tests even though they were the medium and long test
conditions in this study. Han (2009) found GMIR resulted in a slightly smaller SE
compared to MFL.

To further investigate the measurement precision of the two item selection
methods, MFI and GMIR were compared across known 6 values. Item selection
method performance varied across the 0 scale and by outcome measure. At the
extreme negative end of the 0 scale, at 6=-3.5, GMIR resulted in a larger bias and SE,
but MFI resulted in a larger RMSE under certain conditions (5 or 9 item/normal /41

pool). When -3.5< 6<-1, GMIR resulted in larger RMSE and SE values. Around 6=0, in
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the middle of the scale, MFI resulted in a larger RMSE and bias, especially in the 5
item conditions. On the positive end of the 6 scale, GMIR resulted in larger RMSE
and SE values in some of the conditions, for other conditions the item selection
methods performed comparably. These results are inconsistent with previous
studies. This study found GMIR bias was larger at the extreme negative 6, while
Chang and Dodd (2013) found GMIR was smaller at the extreme 6 values and
comparable across the rest of the 6 scale. Han (2009) found GMIR and MFI
measurement precision was comparable across the 6 scale. This inconsistency could
be due to the number of items administered. Chang and Dodd used a stopping rule
that resulted 18-19 items on average and Han used a 40 item stopping rule. In the
current study, most differences across the 0 scale were larger at the 5 item
condition, decreasing as more items were administered.

Comparing MFI and GMIR across item number, generally MFI results in
better measurement precision at the beginning of the test and GMIR results in better
measurement precision towards the end of the test. Across 6 groups, using MF]I, bias
was smaller in the first few items, but slightly larger in the last item, especially in the
7th and 9t item. Across all five 8 groups, MFI SE was smaller from around items 2 to
4 and then SE values were comparable for the remainder of the test items. RMSE
values varied across items more across 0 groups; no clear pattern of performance
emerged that favored GMIR or MFI. This finding is inconsistent with the previous
findings of Chang and Dodd (2013) who found GMIR simulations to have smaller SE,
bias and RMSE at the early stages of CAT. Chang and Dodd found these differences

in measurement precision were largest at =2, where in this study, differences were
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smallest at 6=2. This could be due to the shape of the item pool information. When
compared to the item pool used in Chang and Dodd (Davis, 2004), the item pool
used for this study had similar information at 6=2, but provides less information
along other parts of the 0 scale.

How do the item pool size, mismatch of item pool and population latent trait
distributions, and test length affect the measurement precision?

The item pool size was found to have minimal affect on the outcome
variables reported. This result is consistent with the findings that item pool size can
be as small as 30 items (Dodd, 1990; Dodd & de Ayala, 1994). No difference was
found in the number of nonconvergent cases, descriptive statistics of the final 6
estimates, standard errors, correlations coefficients, or mean RMSE values.
Conditions using GMIR and MFI resulted in slightly higher mean bias values using
the 82 item pool than with the 41 item pool, especially in the 5 item condition, but
these differences were too small to have practical importance. When using the GMIR
item selection procedure and the 7 and 9 item stopping rules, the NIA was slightly
larger, by .33 and .14 items, using the smaller item pool than with the larger item
pool. These differences are too small to have practical importance.

The mismatch of item pool and population latent trait distribution was also
found to have minimal affect on the outcome variables. No differences were found in
descriptive statistics of the mean 6 estimates, mean standard errors, mean bias,
mean RMSE, mean correlations, or mean NIA. The mismatch of item pool and
populations distributions was found to slightly affect the number of nonconvergent

cases. The negatively skewed population conditions resulted in one more out of
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range case and one more case that did not reach MLE than the normally distributed
population when using GMIR. These finding are consistent with Lee and Dodd
(2012) who found that the measurement precision of a polytomous CAT using the
PCM was relatively robust to the mismatch between item pool and trait distribution.
The test length was found to affect number of nonconvergent cases, the mean
final O estimates and mean standard deviations, and the measurement precision.
The number of nonconvergent cases not reaching MLE was four times greater with
the 5 item condition that with the 7 or 9 item conditions. Similarly, using MFI, the
mean final 0 estimates were closer to zero with the 7 and 9 item conditions than
with the 5 item conditions, -0.07 as compared to -0.02. The mean standard
deviations were slightly closer to 1 as the number of item increased. The correlation
coefficients, mean bias, and mean RMSE values all showed better measurement
precision when more items were administered. When MFI was used, the mean bias
was higher using the 5 item stopping rule than with the 7 and 9 item stopping rule,
0.077 as compared to 0.023. While the 5 item stopping rule correlation of 0.867 is a
high positive correlation, when the 7 or 9 item stopping rules were used, correlation
coefficients were greater than or equal to .9, which constitutes a very high positive
correlations (Hinkle, Wiersma, & Jurs, 2003). RMSE decreased from the 5 item to 7
item to the 9 item stopping rule, with values of 0.58, 0.48 and 0.42. Looking at the
plots across 0 values, MFI resulted in a larger bias and RMSE values around 6=0,
especially with the 5 item stopping rule. The difference in RMSE was 0.1, 0.5, and
0.35 in the 5 item, 7 item, and 9 item stopping rule conditions and the difference in

bias was 0.1 in the 5 item stopping rule condition. Item selection method
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performance in terms of test efficiency varied according to test length. GMIR
administered slightly fewer items on average when the 5 item stopping rule was
used, 4.86 as compared to 4.99 with MFI. However, using the 7 and 9 item stopping
rules, MFI outperformed GMIR in terms of test efficiency. MFI administered 6.28
and 8.22 items on average as compared to 6.49 and 8.58 items on average.

How do interactions among item pool size, mismatch of item pool and population
latent trait distributions, and test length affect the MFI and GMIR item selection
methods’ performance?

A few interactions among the item pool size, mismatch of item pool and
population distribution, and test length were found to affect the item selection
method’s performance in terms of nonconvergence, NIA, and plots of measurement
precision across 0 values. The number of nonconvergent cases varied by item pool
size, test length, and item selection method. Using GMIR item selection method,
there were more nonconvergent cases when the 5 item test was combined with the
larger item pool. There were 4 more cases not reaching MLE in the 5 item stopping
rule and 82 item pool condition than the 5 item stopping rule and 41 item pool
condition. However, using MFI, there was one more case of nonconvergence when
the 5 item stopping rule was combined with the 41 item pool condition versus the
82 item pool condition. Using the GMIR item selection method, the number of items
administered was slightly higher by .1 and .3 items in the 7 and 9 item conditions
when the 41item pool was used versus the 82 item pool. Using MFI or when using
GMIR in the 5 item stopping rule condition this was not the case, NIA was similar

across item pool sizes.

142



The plots of RMSE and SE across known 6 values showed interaction effects
at specific 0 values. At 6=-3.5, GMIR resulted in smaller RMSE values by 0.1 than MFI
when the population was a match to the item pool and the 5 or 9 item stopping rule
and the 41 item pool was used. This difference was due to MFI performing worse
using the smaller item pool, 5 and 9 item stopping rules, and GMIR performing
better when the population matched the item pool distribution using the 41 item
pool. MFI resulted in smaller SE values by .03 to .15 when 6 was less than -1 than
GMIR. The difference in performance between the item selection procedures was
because GMIR resulted in higher SE values when the 82 item pool and 5 or 9 item
stopping rules were used.

While interactions were found for two individual outcome variables, no clear
pattern of interaction emerged across variables and item selection methods. This
study did not find the interaction found in Keng (2008). Keng found increase bias
and RMSE when the item pool was smaller, a mismatch occurred between item pool
and population, and the test was shorter. Here the maximum bias and RMSE values
were found in the shortest test length and mismatch between population and item
pool distributions, but these values were maximized when the larger item pool was
used. Also, the values are comparable to the condition when the population and item
pool distributions are matching.

PRACTICAL APPLICATIONS

Recently, in the health care and medical fields, computer-based PRO

measures have become increasingly more common. With the NIH’s investment in

and development of PROMIS, computer adaptive testing is at the forefront of
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modern PRO measurement in clinical research and medical practices. A number of
the advantages of CAT make it especially beneficial for PRO measures and
understanding the implications of various CAT components within the orientation
and constraints of PRO measures is important to the health care field.

This study found that the smaller item pool with 41 items performed as well
as the 82 item pool. When item pool development is difficult and requires many
resources, the ability to use a smaller pool of items is beneficial (Reeve, 2006). Since
the median item pool for PRO measure is 50 items, this result that 41 items is
sufficient indicates many current PRO item pools will perform as well as a larger
pool (Walker et al., 2010).

Consistent with previous research, the results of this study indicate that a
mismatch between the item pool and population latent trait distribution does not
negatively affect the measurement precision. In health care, patients may return for
numerous treatments and repeated measures of functioning as the level of illness or
functioning progresses. As this population distribution shifts, it is important that the
PRO measure continues to adequately assess the patients. This finding is
encouraging to health care providers looking to continue to precisely measure their
patients across numerous treatments.

This study demonstrates the varying levels of measurement precision and
item selection method performance across test length. Ware and colleagues (2005)
suggested that test length be investigated beyond the 5 and 10 item. This study
supported the concept that a greater number of item administered results in more

precise measurement. However, all three stopping rules resulted in acceptable
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measurement precision. The mean SE for the 5 item stopping rule when using GMIR,
0.529, is close to the SE used as the stopping rule in some previous PRO studies
(Cook et al., 2007; Cook et al., 2008). The results of this study suggest that the 5 item
stopping rule is acceptable, but increasing the item number to 7 resulted in greater
measurement precision. However, the benefits of administering more items may
decrease after 7 items. While the bias of the 7 item stopping rule was an
improvement over the 5 item rule, it was comparable to the 9 item stopping rule.
There was less decrease in RMSE from 7 to 9 than from 5 to 7 and both of the
correlation values for the 7 item and 9 item stopping rules were at or above 0.90. In
terms of item selection method, GMIR displayed better measurement precision than
MFI when only 5 items were administered. In future studies, research, or provider
practice, using GMIR as opposed to MFI when 5 items are administered could
improve the precision of patient assessment. This study did not show an advantage
of GMIR over MFI when 7 or more items were administered, so MFI might be
preferable for ease of use.
LIMITATIONS AND FUTURE RESEARCH

The findings of this study indicate that the smaller item pool of 41 items was
sufficiently large. Conclusions are limited to the conditions of the current study.
Investigation into different PRO item pools and different PRO item pool sizes would
be beneficial to the health care field. While Walker and colleagues (2010) found a
median item pool of 50, they also found a range of item pools from 12 to 282. With

the current PROMIS initiative, item pools are being created and adapted from static
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measures. More information about the optimal item pool size could allow for fewer
resources to be directed to this task.

Combination stopping rules of 5 items or .54 SE, 7 items or .46 SE, and 9
items or .40 SE were used for this study. While these stopping rules illustrate the
performance of the CAT under these conditions, study of additional test lengths
could inform the PRO development. When so few items are administered, one more
item can meaningfully decrease the measurement error. Future research should
investigate the performance of a CAT using 6 and 8 item stopping rules. The current
study used three different SE values in combination with item length for stopping
rules, but these SE were used uniformly across examinees of different 0 levels. In
medical outcome research, a SE value that is conditional on the 0 level has been
used to allow different precision across the range of 6 estimates (Ware et al., 2000;
Ware et al,, 2005; Ware et al., 2003). Further investigation into the performance of
the CAT using variable SE stopping rules would benefit the PRO research field.
Additionally, this study only used MLE to estimate the examinee trait levels since a
combination stopping rule was used. If PRO studies employ a fixed-item stopping
rule for a specific measure or to test different item lengths, the use of WLE in
combination with the fixed-length could be beneficial. Previous studies have shown
reduced bias and SE in fixed-length CATs (Boyd et al., 2010, Wang et al., 1999;

Warm, 1989).
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APPENDIX A: PLOTS OF BIAS, RMSE, AND SE CONDITIONAL ON ITEM NUMBER
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Figure A.1. Plots of Mean Bias Conditional on Item Number for Known Theta = -2 for
Negatively Skewed Population Distributions
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Figure A.2. Plots of Mean Bias Conditional on Iltem Number for Known Theta = -1 for
Negatively Skewed Population Distributions
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Figure A.3. Plots of Mean Bias Conditional on Item Number for Known Theta = 0 for
Negatively Skewed Population Distributions
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Figure A.4. Plots of Mean Bias Conditional on Iltem Number for Known Theta = 1 for
Negatively Skewed Population Distributions
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Figure A.5. Plots of Mean Bias Conditional on Iltem Number for Known Theta = 2 for
Normally Distributed Population
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Figure A.6. Plots of Mean Bias Conditional on Item Number for Known Theta = 2 for
Negatively Skewed Population Distributions
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Figure A.7. Plots of Mean RMSE Conditional on Iltem Number for Known Theta = -2
for Negatively Skewed Population Distributions
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Figure A.8. Plots of Mean RMSE Conditional on Iltem Number for Known Theta = -1
for Negatively Skewed Population Distributions
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Figure A.9. Plots of Mean RMSE Conditional on Iltem Number for Known Theta =0
for Negatively Skewed Population Distributions
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Figure A.10. Plots of Mean RMSE Conditional on Item Number for Known Theta = 1
for Negatively Skewed Population Distributions
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Figure A.11. Plots of Mean SE Conditional on Item Number for Known Theta = -2 for
Negatively Skewed Population Distributions
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Figure A.12. Plots of Mean SE Conditional on Item Number for Known Theta = -1 for

Normally Distributed Populations
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Figure A.13. Plots of Mean SE Conditional on Item Number for Known Theta = -1 for
Negatively Skewed Population Distributions
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Figure A.14. Plots of Mean SE Conditional on I[tem Number for Known Theta = 0 for

Normally Distributed Populations
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Figure A.15. Plots of Mean SE Conditional on Iltem Number for Known Theta = 0 for

Negatively Skewed Population Distributions
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Figure A.16. Plots of Mean SE Conditional on Iltem Number for Known Theta = 1 for

Normally Distributed Populations
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Figure A.17. Plots of Mean SE Conditional on I[tem Number for Known Theta = 1 for

Negatively Skewed Population Distributions
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Figure A.18. Plots of Mean SE Conditional on I[tem Number for Known Theta = 2 for

Normally Distributed Populations
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