

Copyright

by

James Peter Giannoules

2014

The Report Committee for James Peter Giannoules

Certifies that this is the approved version of the following report:

ProxStor: Flexible Scalable Proximity Data Storage & Analysis

APPROVED BY

SUPERVISING COMMITTEE:

Adnan Aziz

David Chimitt

Supervisor:

ProxStor: Flexible Scalable Proximity Data Storage & Analysis

by

James Peter Giannoules, B.S.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2014

 Dedication

For

Breanna, Peter, Robert, and Lucas

 v

Acknowledgements

I would like to acknowledge the support of my professors at the University of

Texas who have graciously given their time and guidance over these past two years.

Professor Adnan Aziz has been particularly influential for me, including, but not limited

to, supervising this software engineering project and accompanying report.

 vi

Abstract

ProxStor: Flexible Scalable Proximity Data Storage & Analysis

James Peter Giannoules, M.S.E.

The University of Texas at Austin, 2014

Supervisor: Adnan Aziz

ProxStor is a cloud-based human proximity storage and query informational

system taking advantage of both the near ubiquity of mobile devices and the growing

digital infrastructure in our everyday physical world, commonly referred to as the

Internet of Things (IoT). The combination provides the opportunity for mobile devices to

identify when entering and leaving the proximity of a space based upon this unique

identifying infrastructure information. ProxStor provides a low-overhead interface for

storing these proximity events while additionally offering search and query capabilities to

enable a richer class of location aware applications.

ProxStor scales up to store and manage more than one billion objects, while

enabling future horizontal scaling to expand to multiple systems working together

supporting even more objects. A single seamless web interface is presented to clients

system.. More than 18 popular graph database systems are supported behind ProxStor.

Performance benchmarks while running on Neo4j and OrientDB graph database

systems are compared to determine feasibility of the design.

 vii

Table of Contents

List of Tables .. xii

List of Figures .. xiv

Section 1: Introduction ...1

1.1 Vision ...1

1.2 ProxStor ...2

1.3 User Stories ..3

1.3.1 Story 1 - Friend Locator ..4

1.3.2 Story 2 - Restaurant Food Review ..5

1.3.2 Story 3 - Event Planning ...6

1.4 Contributions..7

1.5 Outline..7

Chapter 2: Requirements and Specifications ...9

2.1 Requirements ..9

2.1.1 Functional Requirements ..9

2.1.2 Non-Functional Requirements ..12

2.2 Specifications ..13

Chapter 3: System Design ..15

3.1 Technology Stack..15

3.2 ProxStor Design ..16

3.3 ProxStor Cloud Component ..17

3.3.1 ProxStor JAX-RS Resources ..17

3.3.2 ProxStor Data Access Layers ..17

3.3.3 ProxStor Graph Interface ..18

3.4 ProxStor Client Components ..18

3.4.1 ProxStor Connector ...19

3.4.1.1 Simple Connector API ..19

3.4.1.2 Class Definition API ...19

 viii

3.4.1.3 JUnit Test Suite ...20

3.5 Graph Relational Database ...21

3.5.1 Graph Models..21

3.5.1.1 User Knows User ...21

3.5.1.2 User Uses Device ..23

3.5.1.3 Location Contains Environmental23

3.5.1.4 Location Nearby/Within Location24

3.5.1.5 User Currently/Previously at Locality25

Chapter 4: REST API...27

4.1 HTTP Methods..27

4.1.1 GET ...28

4.1.2 POST ...28

4.1.3 PUT ...28

4.1.4 DELETE ...28

4.2 HTTP Responses ...28

4.2.1 OK (200) ...29

4.2.2 Created (201) ..29

4.2.3 No Content (204) ..29

4.2.4 Forbidden (403) ..29

4.2.5 Not Found (404) ..29

4.2.6 Server Error (500) ...30

4.2.7 Service Unavailable (503)...30

4.3 URIs ..30

4.4 Web API..31

4.4.1 Example – Device Check-in ...31

4.4.2 Example – Location Retrieval ..32

Chapter 5: Results ..34

5.1 Usage Assessment ...35

5.1.1 System Deployment ..35

5.1.2 Graph Database Connection ...35

 ix

5.1.3 Client Application ...36

5.2 Performance Metrics ...36

5.2.1 Static Testing ..36

5.2.2 Data Evolution ..41

5.2.3 Benchmarking ...43

5.3 Software Engineering Metrics ..46

Chapter 6: Conclusion..48

6.1 Lessons Learned..48

6.1.1 What Worked ..48

6.1.1.1 Design Patterns ...49

6.5.2 What Didn’t Work ..49

6.2 Relationship to Existing Work / Relationship to Prior Work50

6.3 Future Work ..50

6.3.1 Code Improvements ..51

6.3.2 Enhanced Testing ..51

6.3.3 Maintainability ..52

6.3.4 General Concerns ..52

6.5 Obtaining ProxStor ...53

Appendix A ..54

A.1 Fixed Components Web Services Interfaces ...54

A.1.1 User URI ..55

A.1.1.2 Create User ...56

A.1.1.2 Retrieve User..56

A.1.1.3 Update User..56

A.1.1.4 Delete User ...57

A.1.2 Knows URI ..57

A.1.2.1 Create Knows ...59

A.1.2.2 Retrieve Knows ..59

A.1.2.3 Retrieve Knows Reverse ..59

A.1.2.4 Update Knows ..59

 x

A.1.2.5 Delete Knows ...60

A.1.3 Device URI ..60

A.1.3.1 Create Device ...61

A.1.3.2 Retrieve User’s Devices ...62

A.1.3.3 Retrieve Device ..62

A.1.3.4 Update Device ..62

A.1.3.5 Delete Device ...63

A.1.4 Location URI..63

A.1.4.2 Create Location ..64

A.1.4.2 Retrieve Location ...64

A.1.4.3 Update Location ...65

A.1.4.4 Delete Location ..65

A.1.5 Within URI ...65

A.1.5.1 Create Within ...66

A.1.5.2 Retrieve Within ..66

A.1.5.3 Retrieve Within Reverse ..67

A.1.2.4 Test Within ...67

A.1.2.5 Delete Within ...67

A.1.6 Nearby URI ..67

A.1.6.1 Create Nearby ..68

A.1.6.2 Retrieve Nearby ...69

A.1.6.3 Test Nearby ..69

A.1.6.4 Update Nearby ...69

A.1.6.5 Delete Nearby ..70

A.1.7 Environmental URI ..70

A.1.7.1 Create Environmental ..71

A.1.7.2 Retrieve Location’s Environmentals72

A.1.7.3 Retrieve Environmental ...72

A.1.7.4 Update Environmental ...73

A.1.7.5 Delete Environmental ..73

 xi

A.1.8 Locality URI ..73

A.1.8.2 Create Locality ...74

A.1.8.2 Retrieve Locality ..75

A.1.8.3 Retrieve User’s Localities ..75

A.1.8.4 Update Locality ..76

A.1.8.5 Delete Locality ...76

A.1.9 Search URI ...76

A.1.9.1 Submitting Search ..77

A.1.10 Administration URI..78

A.1.10.1 Create Database Instance ...79

A.1.10.2 Retrieve Database Instance ..79

A.1.10.3 Shutdown Database Instance79

A.2 Dynamic Components Web Services Interfaces80

A.2.1 Device Check-in URI ...80

A.2.1.1 Device Check-in (Partial Environmental)81

A.2.1.2 Device Check-out (Partial Environmental)82

A.2.1.3 Device Check-in ...82

A.2.1.4 Device Check-out ...83

A.2.2 User Check-in URI...83

A.2.2.1 User Check-in ..84

A.2.2.2 User Check-out ..84

A.2.2.3 Retrieve User Locality ...84

A.2.3 Query ..84

A.2.3.1 Submit Query ...85

A.2.3.2 Building Query Requests ...85

References ..89

 xii

List of Tables

Table 1: Software Tested ...34

Table 2: Hardware Tested ..35

Table 3: Static Testing Response Time (ms) – OrientDB37

Table 4: Static Testing Response Time (ms) – Neo4j ...38

Table 5: Static Testing Response Time (ms) – TinkerGraph39

Table 6: ProxStor Internal Processing Times ..40

Table 7: ProxStor Dynamic Testing Results ..42

Table 8: ApacheBench Response Time (ms) – OrientDB44

Table 9: ApacheBench Response Time (ms) – Neo4j ...45

Table 10: ApacheBench Response Time (ms) – TinkerGraph45

Table 11: ProxStor SLOC by Type ..47

Table 12: ProxStor SLOC by Java Package ..47

Table 13: Git Repository Statistics ..47

Table 14: User URI Methods ...55

Table 15: Knows URI Methods ...58

Table 16: Device URI Methods ...61

Table 17: Location URI Methods ..63

Table 18: Within URI Methods ...66

Table 19: Nearby URI Methods ...68

Table 20: Environmental URI Methods ...71

Table 21: Locality URI Methods ...74

Table 22: Search URI Methods..77

Table 23: Admin URI Methods ...78

 xiii

Table 24: Device Check-in URI Methods ...81

Table 25: User Check-in URI Methods ...83

Table 26: Query URI Methods ..85

Table 27: Query Examples ...87

 xiv

List of Figures

Figure 1: Specified System ..14

Figure 2: ProxStor Components...16

Figure 3: User ‘Knows’ Relationship ..22

Figure 4: User ‘Uses’ Relationship ..23

Figure 5: Location ‘Contains’ Relationship ...24

Figure 6: Location ‘Within’ and ‘Nearby’ Relationship..25

Figure 7: User ‘Currently At’ and ‘Previously At’ Relationships26

Figure 8: Base URI ..30

Figure 9: Device Check-in URI ...32

Figure 10: Location Retrieval URI ..33

Figure 11: User URI...55

Figure 12: Knows URI ...57

Figure 13: Device URI ...60

Figure 14: Location URI ..63

Figure 15: Within URI ...65

Figure 16: Nearby URI ..67

Figure 17: Environmental URI ..70

Figure 18: Locality URI ...74

Figure 19: Search URI ...76

Figure 20: Admin URI ...78

Figure 21: Device Check-in URI ...80

Figure 22: User Check-in URI ...83

Figure 23: Query URI ..85

 xv

Figure 24: Query Class ..86

Figure 25: Example Query JSON ..86

 1

Section 1: Introduction

1.1 VISION

Motivated by the proliferation of mobile devices and the expansion of digital

fingerprints residing in fixed infrastructure [1] it is should now possible to maintain a

repository of digital fingerprints and the locations associated with them. These

fingerprints may include unique identifying information from a WiFi access point, a

Bluetooth device, Bluetooth Low Energy beacons [2], Near-Field Communication

devices, or any future technology. Because these fingerprints are typically fixed in place

within a location it is possible to create a software service which can infer the location of

a mobile device based upon the device observations of these fingerprints. The process of

reporting is engineered as a low-overhead operation and thus enabled for even the class

of low-power IoT devices of the future.

While certain high-power mobile devices, such as today’s smart phones, are

capable of determining their location, this envisioned system has two advantages. The

primary is that these fingerprints may provide location information in environments

where traditional systems such as Global Positioning System (GPS) cannot operate due to

an obstructed view of the sky. The second advantage is that by sending these

observations into a service, a whole wealth of data mining opportunities open up. For

example, the system can determine where your closest acquaintances currently are

locations, or provide a listing of the places and people who are within walking distance

from you at this moment. History can be maintained and important data such as the

typical days and time that certain individuals frequent a business can be provided. This is

the power of using the data of not only the one single device, but all participating devices.

 2

A secondary benefit is achieved from maintaining the association between a

fingerprint and a location in one central location as opposed to delegating the

responsibility to each device.

The database to maintain such information potentially needs to support tens of

millions of locations with each location containing dozens of fingerprints. Additionally

the database must support information on hundreds of millions of users and their devices.

Each user’s encounter with a location should be stored persistently, thus a single system

and associated database instance need to maintain and manage billions of records.

1.2 PROXSTOR

ProxStor is an instantiation of the above envisioned system. It answer the question

of how such as system should be built, explores how the system should be used, and

reveals how the system will perform.

ProxStor is a service, not an end-user application. Applications and services make

use of ProxStor to enrich their user experience.

ProxStor uses a client-server model where the clients are mobile devices detecting

and reporting these fingerprints. The knowledge of the association between fingerprint

and location is maintained in ProxStor’s web service. The device only needs to send

ProxStor the breadcrumb detected - whether ProxStor knows of the breadcrumb a priori

is not the client’s concern. This model enables very low-power devices to participate by

simply adopting a model of “send and forget”.

 Inherent to ProxStor is the association between a device and its user. If a device

detects a breadcrumb then ProxStor places the user of the device in the location

associated with the breadcrumb.

 3

The server portion of ProxStor is a web application managing both a database

repository and servicing the client queries. ProxStor defines the database schema and

provides well defined interfaces for adding, updating, removing, and retrieving

information. ProxStor defines how to access the database through a well-defined

interface, but it does not define the conditions for when to do this other than the requisite

that something must exist before it can be accessed. The expectation is that any service

building upon ProxStor addresses this dilemma in a manner appropriate for its users. One

possibility is a form of crowdsourcing. Every time an unknown breadcrumb is found the

user of a high-power interactive device is prompted to fill in the necessary information.

 ProxStor leverages the power of an emerging class of NoSQL databases known

as Graph Relational Databases [3] specifically to support billions of data objects while

still rapidly satisfying user queries. The data models used for various objects in ProxStor

are designed to enable this evaluation, but themselves are not as data rich as a real-world

application would require. This should not impact the feasibility assessment, but should

be noted before using ProxStor in any real-world deployment.

Lastly, being a demonstration of feasibility, ProxStor does not address security

concerns that naturally arise when storing and processing people’s movements. The need

to address this topic is highlighted at the conclusion of the report in the Future Work

section.

1.3 USER STORIES

To demonstrate how ProxStor can enable a richer class of location aware

applications the following user stories are presented. These stories introduce Bob, a

fictitious user of various imagined mobile applications. These stories assume that a

running instance of ProxStor is available on the Internet and furthermore that the

 4

database behind ProxStor has been populated with necessary data to satisfy the particular

story including records defining the user Bob, his associated device(s), and his

relationship to other users of the system. The scenarios also assume populated data on

locations, their relationship between each other, and the breadcrumbs contained within.

The functionality of ProxStor described in each story exists today.

1.3.1 Story 1 - Friend Locator

On a whim Bob decides to head into a busy downtown district to spend his

evening with his friends. Bob isn’t entirely certain where his friends are currently – they

have the habit of roaming about. He opens his “friend locator” application to view which

of his friends might be nearby. As Bob has hoped, the application displays a nearby close

friend who is within walking distance. Using an on-screen walking map Bob heads off in

the friend’s direction while the application automatically messages his friend notifying

that Bob is on his way.

This imagined “friend locator” application used ProxStor in three important ways:

1. Upon launching the application ProxStor was used to “check in” and

therefore to determine Bob’s current location. Bob’s location is also

now recorded within ProxStor for current and future queries.

2. The application sent a query asking which of Bob’s closest friends are

here (or nearby)? The query may have been limited to only a radius

the application interpreted as ‘walking distance’. A second query could

have been used to extend the radius beyond walking distance. The

application then applied its logic for best fit, taking into account the

degree of friendship and the distance Bob specified he was willing to

travel.

 5

3. Once the target friend was identified, ProxStor provided the “friend

locator” application with his/her current location, which combined

with Bob’s current location, provided the starting and ending points

used to generate the on-screen walking directions map.

1.3.2 Story 2 - Restaurant Food Review

A restaurant Bob only occasionally frequents has recently changed its menu, to

his dismay. He opens his favorite “food review” application to check what his friends

who have recently dined here ordered, and what they thought of the food. The nice thing

about this application is that even if his friends did not leave behind a written review Bob

has the option of contacting them directly to ask his questions. Bob is pleased to see

several of his friends have been here just in the past month. Since Bob knows which of

these friends have compatible palates he is better able to make his dining selection.

This imagined food review application used ProxStor in two important ways:

1. Upon entering the restaurant ProxStor was used to “check in” and

therefore to determine and store Bob’s location. This provided the

“food review” application with the necessary physical context. Note

that this “check in” also allows other users of ProxStor, even

independent from the users of the food review application, to know the

whereabouts of Bob.

2. ProxStor answered the proximity aware query which of Bob’s friends

have been here recently? This information was used in turn by the

imagined application to reference its food review specific database to

extract relevant reviews. To extend the power of such a query the

application could have further requested ProxStor to return friends of

 6

Bob’s friends who have also dined here recently. Such a potential

enhancement operates under the assumption that even people one

further degree separated from Bob will still have similar food tastes.

1.3.2 Story 3 - Event Planning

Bob is planning a week long business trip to Austin and he knows he will have

some free time in the evenings. He opens his favorite “event planning” application and

informs it that he will be heading to Austin. The application then shows him the top

activities his friends in the Austin area typically are up to, broken down by day of the

week. With a tap Bob extends the scope of the displayed information to include his

friend’s closest friends as well. Using the application’s recommendations as a guide Bob

schedules activities for several of his evenings in Austin.

This imagined event planning application used ProxStor in two important ways:

1. ProxStor answered the query where were my friends on the evening of

a specific day of the week? ProxStor already knows who Bob’s friends

are, and further filters results to provide only the listing of locations

for the requested time period. Note that in this example the query is

repeated for each day of the week because the range of interest is

limited to evenings. Each day breaks the continuity and disallows one

large date range query.

2. The “event planning” application also used to answer whether the

query result location(s) were within an acceptable radius of where Bob

planned to be (e.g. downtown). This acceptable area was either defined

by Bob or calculated by the application.

 7

1.4 CONTRIBUTIONS

The primary contributions contained in this report are:

 A complete coherent client application programming interface (API) for

implementing the envisioned system is provided. Consideration is given to

both low- and high-powered devices.

 A working example of the envisioned system, ProxStor, is documented.

This includes documenting the system design features, both macro and

micro in scale. In many cases the rationale for decisions is also provided.

 The feasibility of the envisioned system, based on experimentation with

ProxStor, is provided.

It is hoped that the work contained herein can be a starting point for future work

in area of spatiotemporal database data and processing.

1.5 OUTLINE

This remainder of this report describes ProxStor’s system design, its application

programming interface. The rationale for key design points is provided.

Chapter 2 of the report contains the requirements and specifications necessary to

successful implement the envisioned system. This includes functional and non-functional

requirements as well as high-level design specifications.

Chapter 3 explores the internal design of the ProxStor implementation including

all the technologies brought together to build a successful system. The chapter also

describes the overall system design, and the user-exposed object types, and the ProxStor

connector used to enable Java client application connectivity. The web interface is

explored including how the system accesses the back-end database.

 8

Finally, the chapter concludes with a discussion of the rationale for electing to use

a graph relational database including the data model for some common usage scenarios.

Chapter 4 documents all of the possible HTTP response statuses and how the

HTTP methods map into the RESTful web API. Two example exchanges over the web

API are provided. This chapter highlights the consistent and simple ProxStor API, which

is a key contribution of this report.

Chapter 5 includes the results of building and testing the prototype. This includes

performance benchmarking across a variety of operations and system configurations.

Software engineering metrics and lessons learned are also included.

Chapter 6 summarizes what was learned from this exercise as well as outlining

planned future work.

 9

Chapter 2: Requirements and Specifications

This chapter covers both what ProxStor should do and how it should do it. These

are presented as both functional and non-functional requirements as well as design

specifications. The implementation internals are described in Chapter 3.

2.1 REQUIREMENTS

2.1.1 Functional Requirements

The following functional requirements must be met to enable the necessary basic

operations of ProxStor:

 Data Representation: the system shall represent the following data types and

provide the capability to create, retrieve, update, and delete each. Additionally

each object shall be uniquely addressable:

o Users

o Locations

o Location environmental items (“breadcrumbs”)

o Devices

o Sensors within devices

 Data Relationship: the system shall provide the capability to create and

dissolve the following associations:

o A user uses a particular device

o A user knows another user

o A devices contains sensor(s)

o A location is contained within another location

o A location is within a specified distance of another location

 10

o A location is identified by unique environmental elements which it

contains

 Data Query: the system shall provide the capability to query based on the

following relationships between objects:

o Retrieve users known by specified user

o Retrieve users who know specified user (the reverse direction of the

above)

o Retrieve devices owned by specified user

o Retrieve locations within specified location

o Retrieve locations which contain specified location (the inverse of

above)

o Retrieve locations within specified distance of another location

o Retrieve all environmentals within specified location

 Administration: the system shall expose basic administrative operations:

o Instantiate a new database

o Connect to existing database

o Report usage (administrative) statistics

 Persistence: All data objects remain persistently within the system until a

delete operation is performed, regardless of the age or inactivity of the object.

A full history of a user’s movements is retained. No pruning of older data

shall be performed.

 Current Location: the system shall support a concept of each user’s current

location, implying a temporal processing aspect to the system.

 11

 Environmental-based Movements: the system shall support the concept of

accepting client reported check-in and check-out operations based on a device

sensing an environmental:

o A check-in indicates that a device has just detected the environmental

and thus the associated user’s current location shall be updated

accordingly.

o A check-out indicates that a device has just ceased detection of the

environmental and thus the associated user’s current location shall

become unknown.

 Manual Movements: the system shall support the user manually specifying his

or her current location.

 Data Processing: The user’s current location shall be used for a class of

queries

o Retrieve user’s current location

o Retrieve those users in the user’s current location

o Retrieve

 Data Set: the system shall handle arbitrarily large data sets with no pre-

defined upper limit. Data sets of billions of entries shall be possible.

 Concurrency: the system shall gracefully and coherently handle multiple

concurrent client accesses. If more than one client attempts access to the same

database object the system must ensure ordering and atomicity of operations.

 Data Exchange Format: the system shall exchange information in a standard

data format easily understood by clients.

 12

 Data Exchange Interface: the system shall exchange data over a standard

network protocol interface to ease implementation of support by client

systems.

2.1.2 Non-Functional Requirements

The following are the non-functional requirements goals for ProxStor. Striving for

these goals is done as a best effort.

 Scalability: The system should be designed to easily scale both vertically and

horizontally to support increased user load.

 Extensibility: The system should permit extending capabilities with minimal

impact to the existing code. These extensions should be possible in a manner such

that the external interface remains coherent.

 Interoperability: The system should support a wide range of both client devices

and of data center deployments. This applies to both the machine running

ProxStor as well as the persistent storage solution. The ideal system hardware

platform is x86.

 Availability: Because of the nature of check-in and check-out events the system

should be available continuously with no downtime.

 Capacity: The system should permit billions of records accessed by millions of

users concurrently.

 Speed: The client devices accessing ProxStor will vary widely in their computing

power, battery life, and network connectivity. The system should accept, process,

and respond to requests as quickly as possible. Note that efficiency is not a

requirement.

 13

 Privacy: This is non-requirement. Privacy is not a concern of the ProxStor project.

It is acknowledged that a real world deployment of a ProxStor-like system would

require stringent privacy measures.

2.2 SPECIFICATIONS

The above requirements combined with the current state of mainstream

computing lead to the following specifications.

 The system should be accessible over the Internet to provide ubiquitous client

accessibility.

 The web presence component of the system should be flexible enough in

nature to be deployed in one of the many web container architectures in use

today.

 The web presence component should exchange data with clients using

JavaScript Object Notation (JSON).

 The web presence components should reduce potential downtime by

providing redundancy.

 The web presence component should be based on HTTP.

 The persistent data store should be inaccessible to the clients.

 The web presence should support a multitude of persistent data store

solutions.

 A client should only need to comprehend basic HTTP communications and

basic object [de]serialization.

 14

The following is a high-level diagram of the specified system.

Mobile Device

Internet

User

Web Services

Persistent Store

Figure 1: Specified System

 15

Chapter 3: System Design

This chapter describes the design and implementation of ProxStor.

3.1 TECHNOLOGY STACK

The implementation of ProxStor leveraged several technologies and built upon

existing freely available software. Principle among these software offerings are:

 Jersey – provides a framework for development of RESTful web services

providing support for the JAX-RS API. See [4] and [5].

 Tinkerpop Blueprints – the TinkerPop [6] project provides a common

interface for developing applications on top of graph databases known as

Blueprints. Currently the Blueprints project has enabled back-end support

for more than 18 popular graph database products. The project website

describes it as “analogous to the JDBC, but for graph databases”. See [7].

 Gson – Java library used to convert objects into their JSON representation

and to convert strings back into Java objects.

 Postman REST Client – provides an easy to use graphical interface to test

and refine a REST interface, including the ability to save and restore saved

commands and adapt to different networking environments. See [8].

 Winstone Servlet Container – provides a fast minimalist servlet container

for running ProxStor. See [9].

All ProxStor code was written in the Java programming language. The NetBeans

IDE was used as the development environment. Maven [10] was tasked with managing

project dependencies. Git was used for version control. GitHub hosted the code

repository and provided a convenient wiki used to continually document ProxStor as it

was developed.

 16

3.2 PROXSTOR DESIGN

The ProxStor project consists of two primary components:

1. The ProxStor Connector and API for client application consumption

2. The ProxStor Cloud Service serving as the web interface as well as

providing back-end database access

Figure 2 shows the components of ProxStor and their relative positions within the

stack. The ProxStor components are shaded grey.

Figure 2: ProxStor Components

 17

Additionally a ProxStor Testing project was developed to simulate client access,

including data loading and querying. The testing project is not covered in detail in this

report.

3.3 PROXSTOR CLOUD COMPONENT

ProxStor’s cloud component is implemented as a Java servlet. This component

provides both the RESTful HTTP interface as well it coordinates access to the back-end

database and enforces the desired data model.

3.3.1 ProxStor JAX-RS Resources

ProxStor provides the web interface as a series of Java API for RESTful Web

Services (JAX-RS) classes. A package exists for each resource exposed and within the

package several resource handling classes may be present. The multiple classes are used

to separate base resource locator from sub-resource locators. All JAX-RS resource

locators are implemented on the Jersey framework. Each handler accepts a request from

the network, makes a call into the appropriate data access layer, and once complete return

a meaningful HTTP status, potentially with data. All data coming into and out of the

resource locators must be de-serialized and serialized using JSON. All objects defined in

the API are annotated with @XmlRootElement to facilitate Jersey’s conversion

to/from JSON.

3.3.2 ProxStor Data Access Layers

Each resource type has a unique Data Access Object (DAO) which provides the

interface for the resources to access the Graph database. Each DAO exposes functionality

which matches the capabilities exposed by their partner JAX-RS resource class. All

DAOs interact with an instance of ProxStor Graph.

 18

The DAOs serve to limit the accessibility of a given resource by exposing only

the minimal necessary functionality as well as to maintain all related code in a single

class. All DAOs throw exceptions in the event a resource’s request cannot be processed.

The exceptions in ProxStor are expressive enough for the caller to know which aspect of

the request was problematic.

3.3.3 ProxStor Graph Interface

ProxStor has a Graph object for all the DAO objects to call into for access in to

the database. The ProxStor Graph object converts all these calls into TinkerPop

Blueprints calls. The Blueprints project allows common access to any Blueprints-enabled

Graph database. Thus the Graph object allows ProxStor to be built upon many popular

NoSQL graph database such as Neo4j [11], OrientDB [12], MongoDB [13], ArangoDB

[14], or any of a multitude of other choices. Beyond the flexibility offered to exchange

back-end databases, the Graph object is an ideal point in the design to tightly control

access. It currently provides just enough functionally to enable each of the DAOs.

Although ProxStor Graph is designed independent of the actual database in use, it does

need to know whether transactional operations are support. This is determined by

checking whether Graph is an instance of KeyIndexableGraph. If it is then the

Graph object takes care of issuing the commit after each transaction.

3.4 PROXSTOR CLIENT COMPONENTS

The client component is divided into two pieces. The first is the class

ProxStorConnector which provides a Java application native communication to

ProxStor. The second is known simply as the ProxStor API and it includes the class

definitions for all the JSON objects passed between client and server.

 19

3.4.1 ProxStor Connector

The ProxStor Connector package provides a Java client with:

 Simplified API for communicating with ProxStor

 Class definitions for objects which are exchanged between client and

server.

 JUnit testing suite to validate the ProxStor connector when powered by an

actual running ProxStor instance.

3.4.1.1 Simple Connector API

 The ProxStorConnector class enables a client to:

 Connect to a running ProxStor instance

 Manage the lifecycle of all exposed object types

 Perform device or user check-ins and check-out

All the client invocations of these methods involve handling of the ProxStor

object types. The client does not need to be fluent in network communication design.

Additionally, the connector returns simple Boolean status for operations. The client need

not perform exception handling.

Please refer to the ProxStorConnector.java source file and the respective

JavaDoc for more details.

3.4.1.2 Class Definition API

The ProxStor Connector API package defines the following object types:

 User – Uniquely identifying a user of the ProxStor system.

 Device – Uniquely identifying a user’s device. ProxStor enforces the

relationship that a device must be used by one and only one user.

 20

 Location and LocationType – A location in the physical world as

well as the type of location. Locations can be related to each other in

either a nesting fashion or by defining the distance in between.

 Environmental and EnvironmentalType – A sense-able

environmental element within a location. When a device detects a

environmental the system can infer location.

 Locality – Created whenever a user is within location. A Locality

persistently records the user, device, environmental, location, and time

information on each check in.

The design point is for each of the above classes to be a simple object easily

converted to/from JSON. When receiving objects as JSON ProxStor cannot assume that

any specific fields have been populated, thus validation must be performed on such data.

Please refer to the proxstor.api source package and the respective JavaDoc

for more details. The internals of the classes, for example how exactly a User is defined,

is not critical to evaluate the feasibility of ProxStor. The above classes have purposefully

been designed to provide a basic level of expressiveness. Real deployments would want

to capture much more information.

3.4.1.3 JUnit Test Suite

The ConnectionTesterSuite JUnit Suite class runs a series of JUnit tests

to validate, both positively and negatively, the following connector interface categories:

device, environmental, locality, location, location nearby, location within, user, and user

knows. The JUnit tests must be configured to connect to a running ProxStor instance. It is

recommended to run this suite anytime a modification is made to the

ProxStorConnector.

 21

3.5 GRAPH RELATIONAL DATABASE

From the beginning of ProxStor development it was understood that all the data

being collected and managed needed to be stored in a Database Management System

(DBMS). Traditionally Relational DBMS (RDBMS) do not scale well to the types of

dataset sizes envisioned in this system [3]. This limitation is a primary motivation for the

NoSQL movement of databases. NoSQL databases are available in many different types

of data structure models such as column, key/value, document, and graph. After

evaluation of the available types it was decided to build ProxStor on top of graph

databases. As the name implies the graph model is built around data with relationships

which can be expressed in graphs, which is a natural fit for the data used in ProxStor. The

number of relationships, types, attributes, and direction of edges do not need be defined

in a rigid schema. Graph databases are very flexible and forgiving and promise to

perform well even at the scale of billions of nodes and relationships [3]

3.5.1 Graph Models

To demonstrate the flexibility of the graph model a few relationships from the

ProxStor data model will be examined. While the models are faithful to the internal

implementation of ProxStor, certain details have been omitted for ease of discussion.

Note that the figures below are not a formal modeling language such as Unified Modeling

Language (UML).

3.5.1.1 User Knows User

See the following figure for the model of how the knows relationship is

established between users. The full definition of the User class is not essential to this

discussion, so the user is left mostly undefined here.

 22

 User A
name
email

...

 User C
name
email

...

 User B
name
email

...

knows {
str

ength : 5
0}

knows {
str

ength : 7
0 }

knows {strength : 90}

Figure 3: User ‘Knows’ Relationship

Note that the vertices in the graph (users) are connected to each other with

directed edges (relationships). Here the relationship is knows and contains the attribute

strength. The attribute is a critical component of this relationship because it allows

ProxStor to perform intelligent queries from the database extracting only the necessary

data. For example, if a query is being processed searching for all the users that user A

knows with strength greater than or equal to 70, ProxStor will perform the following

actions:

 Retrieve the graph vertex representing user A

 Query the graph relational database for all outgoing edges labeled knows

with attribute strength greater than or equal to 50

 Follow each matching edge to its vertex and add to the matching set

Note that all edges in the database are directed and thus a natural asymmetric

relationship forms for knows. User B claims to know user A with a higher strength than is

reciprocated by user A. User C has not set a knows relationship back to user A and thus

any query processed by ProxStor for users that user C knows will not include user A.

 23

3.5.1.2 User Uses Device

Here we see how a user is related to a device which they use.

 Device
manuf.
model
…

 User
name
email

...

 Device
manuf.
model
…

 Device
manuf.
model
…

uses

...

...

uses

uses

Figure 4: User ‘Uses’ Relationship

An edge from the user vertex labeled uses is directed to the device vertex. The

edge has no attributes in this case. Although the edge is directed (it must be by definition)

the uses edge can be followed back from the device to the user. This is critical in

ProxStor as many operations are performed with only the device context. For example,

when a device senses an environmental and performs a check-in operation one of the

actions ProxStor must take the reporting device identifier, retrieve the device vertex,

follow the uses edge backwards to the user, and create the appropriate locality.

As with the knows relationship above between users, there is no limit on the

number of uses edges that can exists from user to device.

3.5.1.3 Location Contains Environmental

The key piece of data linking a device’s sensing of an environmental fingerprint

to a location is the environmental vertex, which is connected via the contains

relationship.

 24

 Location
description

address
…

 Environmental
description

type
identifier

…

 Environmental
description

type
identifier

…

 Environmental
description

type
identifier

…

contains
contains

contains
...

...

Figure 5: Location ‘Contains’ Relationship

An edge labeled contains is directed from the location to the environmetal. The

utility of this is very similar to the uses relationship above. When a device detects an

environmental fingerprint ProxStor must determine which, if any, location the device is

within. The first step is to find a matching environmental for the type and identifier

reported by the device. Once that is complete the contains edge is followed backwards to

the containing location, and combined with the process described in the section above

ProxStor now associates a user as being in a location.

3.5.1.4 Location Nearby/Within Location

In order for ProxStor to know which locations are within one another as well as

the distance between locations the following data model is maintained.

 25

 Location A
description

address
…

 Location C
description

address
…

 Location B
description

address
…

nearby {distance : 100m}

within

Figure 6: Location ‘Within’ and ‘Nearby’ Relationship

The nearby relationship contains the distance attribute, which is used in distance-

bound queries to reduce the number of edges traversed to only this inside the acceptable

range. Although the edge is directed all ProxStor use of the edge is traversed without

consideration of the direction.

ProxStor will also use the latitude and longitude information for each location

(not shown in figure) to calculate a bounding box approximating the range involved in

any distance-based query. This allows filtering of results to only those locations or

localities whose coordinates fall within the rectangular region.

The within relationship has no attribute and the direction is important. In the

figure above location B is within location A, not the other way around.

3.5.1.5 User Currently/Previously at Locality

Localities are generated whenever a user and a location come together within

proximity of each other. A user can have only a single active locality at a time (otherwise

he/she would be in two places at one). A user is related to his/her current locality through

the currently_at relationship.

 26

Once the user is no longer present in a location the locality becomes related to the

user through a previously_at edge. There is no limit on the number of previously_at

relationships a user may have to localities. See the following data model.

 Locality
location
active
arrival
…

currently_at

 Locality
location
active
arrival
…

 Locality
location
active
arrival
…

 Locality
location
active
arrival
…

previously_at
{ locationid : 100

arrival : 2014/11/01 10:00pm
departure : 2014/11/10 10:30 pm }

...

 User
name
email

...

...

Figure 7: User ‘Currently At’ and ‘Previously At’ Relationships

The currently_at relationship has no attributes and simply tells ProxStor by its

existence that a user is indeed checked-in somewhere.

The previously_at relationship to older locality instances carries three important

attributes. The first is locationid, the location identifier of the location associated with the

locality. This enables rapid filtering of a user’s check-in history for a certain location.

The other two attributes are the arrival and departure times associated with that locality,

known as arrival and departure respectively. When ProxStor is processing a query for

locality instances within a certain timeframe the previously_at edges from the user are

filtered by a check for date range overlap.

 27

Chapter 4: REST API

ProxStor’s services are exposed to the world as a web service using meaningful

URIs and returning consistent HTTP responses. Applications consuming the Java

ProxStor Connector (see Section 3.4) do not need to comprehend the below details as the

connector provides a more simplified interface. For those directly accessing the web

interface, for example implementing their own connector, this section provides a guide to

the interface.

ProxStor’s web interface is modeled as a RESTful interface. REST stands for

Representational State Transfer and is a dominant design model for web services [15]. In

brief, a REST service is:

- Stateless

- Uses standard HTTP methods

- URIs are used in a directory-like structure to access resources

- Uses JSON to transfer objects

Through this RESTful interface ProxStor exposes CRUD (Create, Retrieve,

Update, and Delete) [16] operations for all static object types. Note that this matches well

with the function requirements for data creation, update, persistence, and deletion.

The reader who is unfamiliar with REST is encouraged to read [15] or [4].

4.1 HTTP METHODS

ProxStor uses the following standard HTTP methods for all interactions:

o GET

o POST

o PUT

o DELETE

 28

4.1.1 GET

For all retrieval operations the GET method is used. Examples include retrieval of

a user’s current location or to perform a static object search.

4.1.2 POST

For all create operations the POST method is used. Examples include addition of

a new user into the system or a new location check-in.

4.1.3 PUT

For all update operations the PUT method is used. Examples include updates to

the profile for a location or to modify the knows (friendship) relationship between two

users.

4.1.4 DELETE

For all delete operations the DELETE method used. Examples include removing

the within relationship between two locations or removing a user from the database.

In addition to the traditional deletion of an object from the persistent data store,

DELETE also is used in ProxStor to:

o Check-out from a location

o Shutdown the running database instance

The following sections clarify the usage of all exposed URIs.

4.2 HTTP RESPONSES

ProxStor strives to implement consistent HTTP responses [17] in all situations

simplifying client (and client library) development. The below sections document the

various HTTP responses and under what circumstances they are returned.

 29

4.2.1 OK (200)

HTTP status 200 (OK) is returned when the requested operation completed

successfully without error. If the request was for the retrieval of information the body of

the response will contain JSON representation of such data.

4.2.2 Created (201)

HTTP status 201 (Created) is returned when a request to create new content inside

ProxStor completes successfully. In the header of the 201 response the Location field will

indicate the URI of the new content. As fitting the specific request the HTTP response

body may also include a JSON representation of the newly created content.

4.2.3 No Content (204)

HTTP status 204 (No Content) is returned when a request to perform an operation

is successfully completed and the context of the request does not involve the transfer of

data. In ProxStor status 204 is returned for successful updating and deleting of objects as

the status code is all the information a client requires.

4.2.4 Forbidden (403)

HTTP status 403 (Forbidden) is currently only returned in situation, when the

administrator attempts to create a new graph database instance while one already exists.

4.2.5 Not Found (404)

HTTP status 404 (Not Found) is returned in both the case of a malformed URI

and an invalid request. In the bad URI case the status 404 is returned by the servlet

container, not ProxStor per se.

ProxStor return status 404 if the client request references an unknown or

nonexistent object. For example, if the request was to retrieve a user object with a non-

existent userId.

 30

4.2.6 Server Error (500)

HTTP status 500 (Server Error) typically indicates an unhandled exception within

ProxStor which reached up to the servlet container; however ProxStor does intentionally

return 500 in two cases.

The first is if an URISyntaxException is thrown while preparing the Location

header field in a 201 (Created) response.

The second is if an attempted instantiation of a new back-end Graph instance

fails.

4.2.7 Service Unavailable (503)

HTTP status 503 (Service Unavailable) is returned when an attempt is made to

retrieve the database instance information, but no running database instance exists.

4.3 URIS

 A uniform resource identifier (URI) is a string used to uniquely identify the name

of a resource and uniform resource locators (URL) used in HTTP requests (i.e. a web

address) are in fact URIs. All communications with ProxStor is initiated with an HTTP

request to some URI. Thus it is necessary to review the URI layout to actually

comprehend the ProxStor web interface.

All URIs in ProxStor are relative to the base URI, which is actually a factor of the

servlet container in use. For example, when running ProxStor within Winstone the default

base URI becomes:

http://{host}:{port}/api

Figure 8: Base URI

 31

In the URI the {host} and {port} segments must be replaced by the system

hostname and listening TCP port respectively. The exact base URI will depend on the

specifics of your ProxStor deployment. The following sections list all exposed URIs and

describes their use. The key concept to grasp is that all the URIs documented herein are

actually relative (appended) to the system base URI.

When designing the web interface care was taken to ensure all ProxStor URIs

were meaningful and expressive. Combining the HTTP request type and the URI is

sufficient to describe the operation being attempted.

4.4 WEB API

Based on the requirements and specifications from Chapter 2, as well as the

system design from Chapter 3, the RESTful web API was derived. The following section

provides some example uses of the ProxStor Web API. The complete API documentation

is in Appendix A.

4.4.1 Example – Device Check-in

In this example a user enters a new location carrying a device connected to the

Internet. This device has been previously associated with the user, so ProxStor makes the

assumption that the user is wherever the device happens to be.

This device has onboard sensors which detect the presence of a Bluetooth Low

Energy (BLE) Universally Unique Identifier (UUID). This is how the mobile device

notifies ProxStor of this observation and how the device ultimately learns its location.

First the device creates a new proxstor.api.Environmental object, sets

the type field to proxstor.api.EnvironmentalType.BLE_UUID, and the

identifier to the sensed UUID value. Note that additional fields exist within this class, but

at this time only above information are known to the device.

 32

Next the device submits this partial Environmental object to ProxStor by

issuing an HTTP POST request containing the JavaScript Object Notation (JSON)

representation of the Environmental to the following URI:

/checkin/device/{devid}/environmental

Figure 9: Device Check-in URI

Where {devid} is replaced by the actual device identifier assigned to the mobile

device by ProxStor.

ProxStor will internally reference the BLE UUID to find the associated

Environmental, follow the Environmental back to the containing Location,

and create a new Locality associated the Device owner with this Location. The

response from ProxStor will contain this new Locality in JSON format which the

client will de-serialize. This new object now provides the client with the following new

information:

 Identifier for this Locality

 Identifier for the Location

 Identifier for the Environmental

 Date & Time of check-in

The identifier for the current Location is an object identifier reference specific to

the back-end database instance. The value is not meaningful to the device or to the user.

To turn this into a Location object the client must issue another request to ProxStor.

4.4.2 Example – Location Retrieval

To retrieve the Location object the client issues an HTTP GET request to the

following URI:

 33

/location/{locid}

Figure 10: Location Retrieval URI

Where {locid} is replaced by the location identifier from the Locality returned

from the check-in operation.

ProxStor will internally retrieve the Location associated with the locid and

returns the structure in JSON format. Again the client must de-serialize the object to have

a functioning Location accessible memory. The client now has the following new

information on the user’s current location:

 Description

 Address

 Type (business, residence, etc.)

 GPS coordinates

 34

Chapter 5: Results

Although ProxStor remains a proof of concept without fully optimized critical

code paths, benchmarking is performed to confirm feasibility of design. The ease of

ProxStor system deployment as well and ease of client application development is

qualitatively assessed. The system’s runtime performance is evaluated quantitatively to

ascertain the feasibility of the current design.

Software engineering metrics on the ProxStor codebase are provided as well as

lessons learned while developing the system.

The software and hardware used in this section is documented below.

Table 1: Software Tested

Item Detail

ProxStor v0.1

Operating System Linux Mint running kernel 3.13.0-24-generic

Java SE Runtime Environment v1.7.0_67

Winstone Servlet Container v0.9.10

TinkerPop Blueprints v2.6.0

OrientDB Community v1.7.9

Neo4j Community v2.1.5

NetBeans v8.0.1

 35

Table 2: Hardware Tested

5.1 USAGE ASSESSMENT

5.1.1 System Deployment

The system deployment is simple and straightforward. ProxStor is distributed as a

Web Application Archive (WAR), which is a JAR file containing all necessary libraries

and support files for the web application. After copying this single WAR file onto the

target system, the administrator directs the chosen Java servlet container to this archive.

All testing performed in this report used the Winstone servlet container invoked

with the following command:

$ java -jar winstone.jar --warfile=proxstor-webapp.war

Note that the specific deployment steps will vary with the chosen container.

5.1.2 Graph Database Connection

Experimentation in moving ProxStor between different graph database systems

validates the design decision to remain flexible through the use of the Blueprints

interface. The testing in this report involves database connections that are established and

tested on OrientDB, Neo4j, and TinkerGraph graph implementations. Only the

connection information differs.

Item Detail

Hardware platform Dell PowerEdge R710

Processor 2 x six-core Intel Xeon X5670 @ 1.93GHz

System Memory 96 GiB DDR 1066MHz

Storage Controller Dell PERC H700

Hard Disk 8 x Toshiba PX02SSU020 200GB SSD

 36

Because the system natively supports the use of any graph database which itself

implements the Blueprints interface the administrator simply uses the Administrator URI

to either connect to a running graph database server or create a new instance.

5.1.3 Client Application

The ProxStor Connector and API are validated by enabling the rapid development

of the benchmarking applications used in this report. The client simply creates an

instance of ProxStorConnector exposing all necessary ProxStor-related

functionality. This simple interface frees up development time to focus on other aspects

such as mock data collection, thread management, and result data collection and

reporting. The ProxStor connection API and object [de]serialization work as designed.

5.2 PERFORMANCE METRICS

The proxstor.testing package holds all the tests used to gather the below

performance data. For more insight into how the testing was run (including more testing

not shown here) please refer to the source.

5.2.1 Static Testing

The first class of benchmarking is performed to gauge the impact of the growth in

size of the back-end graph database has on the latency of common requests. The category

is referred to as static because the database is loaded with data to reach the targeted graph

database node size before the identified requests are performed. No concurrent use of

ProxStor occurs during the benchmark. The goal is to confirm that ProxStor’s

performance is not adversely affected by a large back-end database as well as to

determine if the performance results will be consistent across two different database

implementations.

 37

The following requests are tested:

 Check into random location

 Check out of random location

 Query current location of random user

 Query all user’s within a randomly selected location

The queries are performed on the same database as it grows in size, with each

growth factor of 10 recorded. Each individual test is performed 1,000 times with the

average response time in milliseconds (ms) captured. For all tests care is taken not to

benefit from a cached response from the system.

The testing is performed on OrientDB and repeated on Neo4j. Due to the time

required to load the database will one billion records the Neo4j testing did not move past

the 100 million node count. One billion records is the growth point where a single

ProxStor database should be sharded and the work distributed across multiple nodes.

The results of static testing on OrientDB are in the below table.

Request

Type

Database Size (k-Nodes)

10 100 1,000 10,000 100,000 1,000,000

Check-in 56 56 66 67 69 74

Check-out 5 5 5 5 5 7

Current

Location

8 7 7 8 8 10

All Within

Location

6 6 7 7 8 10

Table 3: Static Testing Response Time (ms) – OrientDB

 38

The results of static testing on Neo4j are in the below table.

Request

Type

Database Size (k-Nodes)

10 100 1,000 10,000 100,000

Check-in 53 53 56 57 59

Check-out 3 3 3 3 3

Current

Location

7 6 6 7 7

All Within

Location

6 6 6 7 7

Table 4: Static Testing Response Time (ms) – Neo4j

Both tables show similar degradation in response time as the database size

increased, although in all benchmarks the Neo4j backed testing produced lower response

times.

 The check-in operation is the longest running operation, which is a reflection

that the operation must perform two lookup operations as well as two database

insertion operations.

 The current location and all within location operations involve database look-

up operations, but no updates. This explains their lower response time.

 The check-out operation involves both a lookup and a modification to an

existing edge between vertices. The operation involves no data marshalling,

potentially explaining the very low response time.

 39

As database size grew by a factor of ten thousand the response time to a user

check-in increased 23% and 11% for OrientDB and Neo4j respectively. In the most

extreme example OrientDB check-in response time increased by 33% by the final

database size of one billion nodes, which represents a growth factor of one hundred

thousand in data set size. This meets performance expectations.

To better characterize the impact database access, and its associated persistent

storage commits, have on the response time a subset of tests is now performed on a

TinkerGraph database instance. TinkerGraph is an in-memory reference property graph

implementation [18] which avoids any access to storage. Because the overhead of

updates to main memory are an order of magnitude faster than mass storage updates, the

goal is to reveal the actual latency inherent in the non-disk related actions - network

connections, data marshalling, and the ProxStor service computations. Note that

TinkerGraph instances are not stable with a database size greater than a million nodes.

Request

Type

Database Size (k-Nodes)

10 100 1,000

Check-in 51 51 51

Check-out 3 4 4

Current

Location

6 6 6

All Within

Location

6 6 6

Table 5: Static Testing Response Time (ms) – TinkerGraph

 40

These results strongly indicate that the majority of the request response time in

both OrientDB and Neo4j deployments is spent outside of database access. For example,

the relatively expensive check-in operation continues to require more than 50

milliseconds even when there are no disk accesses required.

To further investigate this phenomenon ProxStor is instrumented to record the

time taken inside each JAX-RS request handler, taking care to track all possible code

paths. To minimize the impact of this data collection the processing times are stored in an

in-memory data structure and only retrieved once all testing is complete. The goal is to

identify how much time is spent within ProxStor’s code.

Below is the table of results for a ten thousand node database. All times are in

milliseconds (ms).

Request

Type

10-k Node Database Size

OrientDB Neo4j TinkerGraph

Check-in 8.89 5.46 0.15

Check-out 3.28 0.44 0.43

Current

Location

0.42 0.18 0.07

All Within

Location

0.87 0.40 0.08

Table 6: ProxStor Internal Processing Times

 41

These results show that the majority of the request response time is not contained

within ProxStor itself. This reveals that the majority of the time is spent in the network

handlers, HTTP listener, JAX-RS processing, and data marshalling.

As expected, the results show that the database implementations with physical

manifestations take significantly more time than an in-memory version. The data

confirms that Neo4j is faster than OrientDB for all request types. This performance

advantage for Neo4j is consistent with the advantage seen when comparing Table 3

against Table 4 above. Recall that ProxStor is executing the same code path regardless of

the underlying database.

5.2.2 Data Evolution

To explore how ProxStor performance ages as data evolves over time an

increasing load is applied to a system starting from a fresh initialization. Initially there

are 10 synthetic clients creating content and performing queries. Every 10x growth in the

size of the database causes a corresponding 2x increase in the client load. The aggregate

average latency of the responses is recorded throughout each step. This test approximates

the real world observation that as the number users of a system grows so does the size of

the working dataset. All data below is collected while ProxStor is connected to an

OrientDB instance.

 42

Database Size Client Count IOPS Average Response

Time (ms)

100,000 100 1024 98

1,000,000 200 727 275

10,000,000 400 630 635

100,000,000 800 570 1403

Table 7: ProxStor Dynamic Testing Results

At 100 k-nodes × 100 clients ProxStor is able to maintain an average response

time of 98ms, exceeding the non-functional requirement expectation for a speed. At

1,000 k-nodes × 200 clients ProxStor is meeting expectations for response time with an

average of 275ms. At 10,000 k-nodes × 400 clients the user is likely to perceive a lag in

response time, which does not meet performance expectations. Finally, at 100,000 k-

nodes × 800 the response time is approaching 1.5 seconds, which is unacceptable.

Based on these results alone a recommendation that a single ProxStor instance

should not exceed 400 concurrent users to maintain acceptable performance is

reasonable. However, due to the identification of a source of high latency outside of

ProxStor’s processing (see above section) instrumentation is added to the final state of

the data evolution database to track time spent within ProxStor’s request handler. The

results of the instrumentation show that under the high load of 800 concurrent clients

ProxStor’s request handlers take an average of 245 milliseconds to complete. This is an

improvement of more than 1.1 seconds, which is encouraging. If the total processing time

outside of the handler can be reduced the overall performance of ProxStor under load will

improve dramatically.

 43

Identification of the source of high response time, as well as correction, is called

out in the future work section of Chapter 6.

5.2.3 Benchmarking

ApacheBench [18] is used to benchmark ProxStor’s performance in the situation

when multiple requests are outstanding (i.e. concurrency). ApacheBench is a popular

HTTP server benchmarking tool from the Apache software foundation included in the

standard Apache HTTP web server source distribution [20]. ApacheBench is chosen here

because it is recognized and respected as best in class in the field of web application

performance benchmarking. Because it is written in C these benchmarks can further be

used to highlight the Java threading and network socket layer overhead contained in the

results from Section 5.2.2.

To fully stress ProxStor the ApacheBench for Multi URL [21] modification is

used which allows different URLs to be accessed concurrently. For this testing

modifications are made to ProxStor to work within the operational constraints of

ApacheBench. For example, because ApaceBench has no DELETE request support,

ProxStor will temporarily interpret a certain GET request to the check-in URI as a request

to check-out of a location. In all cases of temporary modification care is taken to ensure

all internal operations remain identical to the unmodified version, thus preserving the

value of these benchmarking results.

ApacheBench is run against ProxStor instances connected to OrientDB, Neo4j,

and TinkerGraph. For each of these configurations the database size is set to one million

nodes. Benchmarking is performed at 10, 100, and 250 concurrent request levels. For

each request type (see below), ten thousand individual requests are performed in a single

run, with the average response time calculated across ten runs.

 44

The following requests are tested:

 Check into random location

 Check out of random location

 Query current location of random user

 Query all user’s within a randomly selected location

The tables below contain the average (mean) response time for the indicated

request type across all runs against the specific database at the specified concurrency

level.

The results for OrientDB are presented below:

Request Type Concurrent Request Count

10 100 250

Check-in 3 18 47

Check-out 3 18 46

Current Location 2 12 34

All Within Location 2 13 34

Table 8: ApacheBench Response Time (ms) – OrientDB

 45

The results for Neo4j are presented below:

Request Type Concurrent Request Count

10 100 250

Check-in 3 17 40

Check-out 3 16 38

Current Location 2 12 26

All Within Location 2 13 31

Table 9: ApacheBench Response Time (ms) – Neo4j

The results for TinkerGraph are presented below:

Request Type Concurrent Request Count

10 100 250

Check-in 18 170 516

Check-out 4 36 91

Current Location 2 11 28

All Within Location 2 11 27

Table 10: ApacheBench Response Time (ms) – TinkerGraph

Across all three databases the response time rises as the number of concurrent

requests increases, which is expected. Both OrientDB and Neo4j installations gracefully

handle the increasing concurrency with a worst case response time increasing by a factor

of 17 for a corresponding concurrency load increase factor of 25.

 46

At the starting concurrency level of 10, TinkerGraph’s response time is six times

longer than the other two databases revealing that this in-memory implementation is not

optimized for multiple outstanding operations, even at a minimal concurrency level. The

TinkerGraph installation further reveals poor scaling with response time increasing by a

factor of 29 for a concurrency increase factor of 25. Both these observations are

consistent with TinkerGraph’s stated goal to be a reference implementation to aid

development and unit testing [18], not performance.

The ApacheBench performance results for OrientDB show response time

increasing by a factor of approximately 2.6 as concurrency increases from 100 to 250.

Table 7 in Section 5.2.2 shows response time increasing by a factor of approximately 2.8

as client count increases from 100 to 200. Because these increases are roughly equivalent

it is concluded that response time scaling factors are independent of the specific client

implementation. These results further show that the Java-based testing client used in

Section 5.2.2 introduces a response time overhead factor of greater than five times that

incurred by ApacheBench supporting the observation that a majority of time is spent

within Java code outside ProxStor, such as networking and data marshalling layers.

5.3 SOFTWARE ENGINEERING METRICS

ProxStor itself was written entirely in the Java programming language. In addition

to the project code some small test scripts were developed and Postman configuration

was maintained. Below are the source lines of code (SLOC) for each category. SLOC

determined by the loc-calculator [22] tool.

 47

Type SLOC

Java 12,635

Scripts 41

Other 1,250

Table 11: ProxStor SLOC by Type

The Java SLOC is further broken down by project below.

Project SLOC

proxstor-connection 3258

proxstor-testing 2950

proxstor-webapp 6427

Table 12: ProxStor SLOC by Java Package

The git revision control system [23] was used to manage the changes throughout

ProxStor development. The following statistics were gathered from the repository

holding all components of ProxStor, accompanying scripts, Postman configuration, and

this report.

Type Value

Commits 312

Lines Inserted 26,829

Lines Deleted 10,912

Table 13: Git Repository Statistics

 48

Chapter 6: Conclusion

This report has described ProxStor, an implementation of one potential form of

the motivating envisioned system. The realized system confirms that such systems are

feasible and can scale well to high number of connected devices. When developing such

a system the designer must:

 Avoid lock-in to any one single NoSQL database solution

 Participate in the cloud computing paradigm shift by abstracting the

system into a service

 Enable a wide range of client devices, from the high-powered mobile

phone down to low-powered embedded sensors

 Consider closely the performance consequences of any potential web

container technologies and accompanying libraries

It is recognized that ProxStor would be most effective (and more prolific) if

deployed as a service running on mobile devices – not simply a standalone application.

Future work should strive to enable this goal otherwise they risk the system being

irrelevant.

6.1 LESSONS LEARNED

6.1.1 What Worked

Below is a listing of the things which worked well when developing ProxStor,

broken down by category.

The following software packages were essential to the success of this project:

Jersey, Netbeans, Maven, Blueprints, Postman, and Winstone. Without the hard work

already invested in these projects ProxStor would never have been achieved.

 49

The following design decisions were also essential: servlet-based design, JAX-

RS, separation of concerns into DAOs, use of the graph relational database model, and

abstracting away from specific database implementation with the use of blueprints. With

the selection of each of these points the realization of the system became more stable,

more extensible, more standards based, and most importantly, more concrete.

6.1.1.1 Design Patterns

Development of ProxStor utilizes some well-known design patterns, which are

critical to realizing the successful system.

The Singleton pattern is used in both the Data Access Object (DAO) layers and in

the ProxStor connection package. Concurrency issues are side-stepped by enforcing

serialization through the use of static methods in these layers.

The Factory pattern is used to create and configure instances of the back-end

graph database without exposing instantiation logic for all possible supported Blueprints

enabled databases.

The Proxy pattern is used to provide a simplified interface to client. The

complexity of the underlying data model and objects is not exposed. The ProxStor

connector wraps the already simplified web API in an even simpler interface.

6.5.2 What Didn’t Work

While developing ProxStor there were some things which didn’t work too well.

These were: the Blueprints documentation, the TinkerPop projects other than Blueprints,

and both the Tomcat and Glassfish servlet containers.

The Blueprints documentation left much to be desired on how to actually the

library in anything other than the trivial cases. This forced the reader to consult the

JavaDoc, which were sparse, but good naming conventions allowed forward progress.

 50

The TinkerPop projects beyond Blueprints, such as Gremlin and Furnace, are

even more poorly documented. The stated goals for these projects excite, but the trial and

error required to use them in ProxStor was beyond the scope of this report.

The Tomcat [24] and Glassfish [25] servlet containers proved to be more unstable

and slower to launch than alternatives. Although support for launching and debugging

servlets from with the IDE is integrate with these two container frequent crashes or hangs

drove ProxStor development to Winstone.

6.2 RELATIONSHIP TO EXISTING WORK / RELATIONSHIP TO PRIOR WORK

A General Framework for Geo-Social Query Processing [26] provides a

framework for data management algorithms relating to querying Geo-Social Networks

(GeoSNs). The approach is algorithmic in nature whereas ProxStor approaches the

problem from a software engineering perspective.

RAML [27] is a modeling language for describing RESTful APIs. While one of

the goals for ProxStor was to create a coherent and succinct API, the creation of a

broader purpose API description language was not.

Research exists in the area of database research and optimization, but ProxStor

remains agnostic to the details of the back-end graph database implementation. This

project specifically does not head down the path of tuning behavior for a specific

database solution.

The ProxStor project remains orthogonal to all the above.

6.3 FUTURE WORK

Along the journey from conceptualization to actual implementation several

questions have been answered, yet despite this success much future work remains in this

 51

area. This work falls into four categories: code improvements, enhanced testing,

maintainability, and well as general conception level concerns.

6.3.1 Code Improvements

The first identified code improvement is to optimize resource intensive code paths

related to executing multi-dimensional queries. The TinkerPop Gremlin [28] and Furnace

[29] projects have been identified to help in this area.

The second is code enhancement to support complex queries with a more

expressive language. This should permit clients to ask more specific questions and

actually consume fewer resources within ProxStor. Such an addition includes extensions

to the client web API as well as the language processing and execution components.

The third relates to determining the distance between Locations for the purposes

of queries. Today ProxStor relies upon the database to be populated purposefully

populated with such data, which is unrealistic in true deployments. The system should be

extended to either calculate these distances programmatically as a Location is added, or

perhaps as a batch processing in an offline mode.

Lastly, as identified in Chapter 5, performance optimizations opportunities exist

somewhere in the request processing both before and after the ProxStor request handlers

are involved. These source of these performance opportunities are not well understood,

but identification and correction should be completed.

6.3.2 Enhanced Testing

Scale out both horizontally and vertically must be performed to understand how

ProxStor scales. Of particular concern is whether the current design properly scales

horizontally. With the variety of approaches taken by the generally available popular

Graph Database offerings it is believed the answer will depend not only on ProxStor’s

 52

design, but also on the specifics of the database deployment. Care will have to be taken to

properly shard the database to maintain optimal performance. For example, a user and

his/her proximity history should reside within a single database server instance.

Real world mobile application development and testing should also be performed.

This applies to both low- and high-powered devices. The assumptions regarding low-

powered devices ease of use should be confirmed and a real-world example of a mobile

application performing check-in and check-out operations should be developed to

identify unknown hurdles.

6.3.3 Maintainability

How does ProxStor’s API documentation remain synchronized with the current

revision of the web interface? Appendix A of this report was generated manually by a

combination of referencing both ProxStor’s source code and wiki [30] and was likely

successful only because of this author’s familiarity with the interface. Effort should be

invested in a system to maintain and generate API documentation from the source code.

A system such as Swagger [31] may be a good fit.

The wiki is also a susceptible to drifting out of date.

6.3.4 General Concerns

The ProxStor approach does not currently address how to relocate digital

fingerprints. For example, if a Bluetooth Low Energy beacon associated with location A

is moved to Location B, how can ProxStor become aware of this? What should ProxStor

do with all the previous localities and location references associated with the particular

environmental? One possibility for detection of the relocation is to solicit the assistance

of the high-powered device users. Each check-in could be challenged by the user if

he/she believes the calculated location is incorrect. The application would prompt the

 53

user to enter the correct information and when enough users have reported the error then

ProxStor would be switched over to the new location. Which layer performs this

‘enough’ check, mobile application or ProxStor, has not been identified.

Secondly, ProxStor has no awareness of moving environmental fingerprints. How

would a user check into a moving city bus? One half of this works today – the association

of environmental(s) with a location for the bus. The query for the user’s current location

breaks down however. This is an area open to future work.

Also, perhaps most concerning, is that there is no security model built into

ProxStor. Do users want all movements tracked? At the very least only those users who

you consider a friend should be allowed to access your movements, but perhaps some

locations are more private than others. Models exist to address at least some of these

concerns, but clearly opportunity exists to go deeper into this area.

6.5 OBTAINING PROXSTOR

All ProxStor source code is hosted on the Github service. The source includes the

ProxStor web service, ProxStor Connector, test clients, Postman configuration, and this

report. The code is available at:

https://github.com/jgiannoules/proxstor

The ProxStor Wiki documents many of the details in this report, but also provides

some sample queries and a useful API cheat sheet. The Wiki is locations at:

https://github.com/jgiannoules/proxstor/wiki

 The ProxStor Connector, as well as all internal classes, is documented using

Javadoc. The HTML Javadoc for ProxStor is available at:

 https://jgiannoules.github.com/proxstor/apidocs/

https://github.com/jgiannoules/proxstor
https://github.com/jgiannoules/proxstor/wiki
https://jgiannoules.github.com/proxstor/apidocs/

 54

Appendix A

The complete ProxStor Web API is documented in the following sections. For

each URI the following is described:

 Supported HTTP requests

 Operations performed within ProxStor

 Success and Failure HTTP response status codes

The Web Services interface can roughly be broke into fixed-object and dynamic

categories. In either case all URIs are relative to the same base.

A.1 FIXED COMPONENTS WEB SERVICES INTERFACES

The Web Interface provides CRUD interfaces for lifecycle management of the

following ProxStor object types. These are considered fixed objects due to their relative

static nature.

 Users

o Knows relationships between users

o Devices owned by Users

 Locations

o Locations connected by Within relationship

o Locations connected by Nearby relationship

o Environmetals inside Locations

 Locality object representing a period of time User was in a Location

 Searching the above components

 Administration of ProxStor

Search actions are siloed to a specific object type (User, Devices, etc.) while fixed

component queries are formed with URI constructs. The static data returned has context

 55

assumed from the clients query. For example, querying ProxStor for all users a user with

a specified userId knows with a certain strength minStrength will return a list of User

JSON object without supporting metadata. The client must maintain the context of whose

friends list is represented.

A.1.1 User URI

All operations related to manipulation of user objects within the database happen

relative to the user URI:

/user

Figure 11: User URI

URI Method HTTP Header Description

1 / POST Content-Type: application/json

Accept: application/json

Create user

2 /{userid} GET Accept: application/json Retrieve user

3 /{userid} PUT Content-Type: application/json Update user

4 /{userid} DELETE Delete user

Table 14: User URI Methods

The URI /{userid} is referred to as the base user + userId URI for convenience.

The {userid} notation is meant to signify that the numeric database-specific user id is to

be inserted in place of the {userid} string.

 56

A.1.1.2 Create User

To create a new user the client should prepare a proxstor.API.User object

containing the user information. Note that at this time the userId field is null because the

system has not yet assigned an id. This User object is then converted into JSON and sent

via a HTTP POST request to the user URI with the header fields Content-type and Accept

both set to application/json. If the user is successfully added ProxStor will return an

HTTP status 201 (Created) with the new userId in two locations. The client is free to

choose whichever extraction method it wishes.

The first location is with the Location field of the response header. This Location

contains the full URI to the User object and can be directly used in a GET request. If the

userId alone is needed the client must process the field to retain only the id portion after

the final forward slash.

The second location is in the body of the response. The full User object, including

the userId, is returned to the client in JSON. This is the location used by the ProxStor

Connector.

A.1.1.2 Retrieve User

To retrieve a user from the database the client must send a GET HTTP request to

the base user + userId URI path with the header field Accept set to application/json. If the

specified userId is valid ProxStor will respond with an HTTP status of 200 (OK) with the

JSON representation of the User object in the response body.

A.1.1.3 Update User

To update a user the requestor must send the JSON representation of the updated

User object in an HTTP PUT request to the base user + userId URI. Note that the userId

in the URI and the userId in the JSON representation of User must be identical in

 57

addition to being a valid user id in the database. If the user update was successful

ProxStor will respond with an HTTP status of 204 (No Content) with no content in the

response body.

A.1.1.4 Delete User

To delete a user from the database the client must send an HTTP DELETE

request to the base user + userId URI. No special header fields need be specified.

ProxStor will respond with an HTTP status of 204 (No Content) if the deletion was

successful.

A.1.2 Knows URI

All operations relating to the knows relationship between users are performed

relative to the knows URI:

/user/{userid}/knows

Figure 12: Knows URI

Note that all knows operations are in the context of a specific base user + userId

URI, and thus the context of a user. A knows relationship does not exist without at least

specifying the user who is asserting the level to which they know someone else and the

URI structure is representing this constraint.

In the following table the strength value, {s}, is to degree to which the knows

relationship is established. The supported values are 1 through 100, with higher values

representing stronger relationships. It is envisioned that an application building upon

ProxStor will categorize the value ranges into terms understood to the user. For example,

 58

friendship could be anything greater than 50. For the purposes of this report keep in mind

that the strength value is a required component of the URI.

URI Method HTTP Header Description

1 /strength/{s}/user/{userid2} POST Create know

relationship

2 /strength/{s} GET Accept:

application/json

Retrieve users

who userid knows

3 /strength/{s}/reverse GET Accept:

application/json

Retrive users who

know userid

4 /strength/{s}//user/{userid2} PUT Update knows

relationship

5 /user/{userid2} DELETE Delete knows

relationship

Table 15: Knows URI Methods

The URI /strength/{s} is referred to as the strength URI for convenience. The {s}

notation is meant to signify that the numeric value for the strength of this knows

relationship is to be inserted in place of the {s} string.

The URI /user/{userid2} is referred to as the userId2 URI for convenience. The

{userid2} notation is meant to signify that the numeric database-specific user id is to be

inserted in place of the {userid2} string.

 59

A.1.2.1 Create Knows

To create a new knows relationship between two users the client must send an

HTTP POST to the knows + strength + userId2 URI. The URI encodes all the

information ProxStor needs to establish the relationship, therefore no JSON

representation is sent by the client. If both the userId and userId2 are valid users (and not

the same value), the strength value is in the valid range (1-100), and a knows relationship

does not already exist, then ProxStor will respond with an HTTP status 201 (Created).

A.1.2.2 Retrieve Knows

To retrieve all the users whom a specific user knows with at least a minimum

strength the client must send an HTTP GET to the knows URI with the HTTP header

field Accept set to application/json. ProxStor will confirm the validity of the user id in the

URI and find all the users who the user knows with at least strength from the URI. If the

user id is valid ProxStor will respond with HTTP status 200 (OK) with the body of the

response containing a JSON representation of a list of proxstor.api.User objects.

A.1.2.3 Retrieve Knows Reverse

To retrieve the users who know a specific user with at least a minimum strength

the client appends /reverse to the knows URI. Note that this retrieval is the opposite

direction of that in section 4.3.2.2. In other words, these are the users who know the

specified user id with minimum strength s – not users who user id knows. The remainder

of the interface is identical to 4.3.2.2.

A.1.2.4 Update Knows

To update the strength value in an established knows relationship the client must

issue an HTTP PUT request to the knows + strength + userId2 URI with the updated

strength value encoded in the URI. If a knows relationship already exists from userid to

 60

userid2 and the strength value is valid, then ProxStor will update the relationship and

respond with HTTP status 204 (No Content).

A.1.2.5 Delete Knows

To remove the knows relationship between two users the client must send an

HTTP DELETE request to the knows + userId2 URI. Note that no strength value is

specified. If a knows relationship exists between userid and userid2, then ProxStor will

delete this relationship and respond with HTTP status 204 (No Content).

If either of the user ids was invalid or the knows relationship was not already

established ProxStor will respond with HTTP status 404 (Not Found).

A.1.3 Device URI

All operations related to manipulation of device objects within the database

happen relative to the device URI:

/user/{userId}/device

Figure 13: Device URI

Note that all device-related operations are in the context of a specific base user +

userId URI, and thus a single specific user. A device does not exist in ProxStor without

being associated with a user and so the URI naturally expresses this.

 61

URI Method HTTP Header Description

1 / POST Content-Type: application/json

Accept: application/json

Create device

2 / GET Accept: application-json Retrieve all

user’s devices

3 /{devid} GET Accept: application/json Retrieve device

4 /{devid} PUT Content-Type: application/json Update device

5 /{devid} DELETE Delete device

Table 16: Device URI Methods

The URI /{devid} is referred to as the base device + devId URI for convenience.

The {devid} notation is meant to signify that the numeric database-specific device id is to

be inserted in place of the {devid} string.

A.1.3.1 Create Device

To create a new device the client should prepare a proxstor.API.Device

object containing the device information. Note that at this time the devId field is null

because the system has not yet assigned an id. This Device object is then converted into

JSON and sent via a HTTP POST request to the desired user’s device URI with the

header fields Content-type and Accept both set to application/json. If the device is

successfully added ProxStor will return an HTTP status 201 (Created) with the new devId

in two locations. The client is free to choose whichever extraction method it wishes.

The first location is with the Location field of the response header. This Location

contains the full URI to the Device object and can be directly used in a GET request. If

 62

the devId alone is needed the client must process the field to retain only the id portion

after the final forward slash.

The second location is in the body of the response. The full Device object,

including the devId, is returned to the client in JSON. This is the location used by the

ProxStor Connector.

A.1.3.2 Retrieve User’s Devices

To retrieve all devices owned by a specific user the client must sent an HTTP

GET request to the base device URI for the owning user. Do not specify a devId specific

portion to the URI. The request header field Accept should be set to application/json. If

the user specified in the URI is valid and owns at least one device ProxStor will respond

with an HTTP status of 200 (OK) and the body of the response will contain a JSON

representation of a list of Device objects. If the user is valid, but owns no devices, the

response status will be 204 (No Content) with no contents in the body.

A.1.3.3 Retrieve Device

To retrieve a single device from the database the client must send an HTTP GET

request to the base device + devId URI path for the owning user with the header field

Accept set to application/json. If the specified devId is valid and owned by the userId in

the URI ProxStor will respond with an HTTP status of 200 (OK) with the JSON of the of

the Device object in the response body.

A.1.3.4 Update Device

To update a device the requestor must send the JSON representation of the

updated Device object in an HTTP PUT request to the owning user’s base device + devId

URI. Note that the devId in the URI and the devId in the JSON representation of Device

must be identical in addition to being a valid device id in the database and be owned by

 63

the userId in the URI. If the device update was successful ProxStor will respond with an

HTTP status of 204 (No Content) with no content in the response body.

A.1.3.5 Delete Device

To delete a device from the database the client must send an HTTP DELETE

request to the owning user’s base device + devId URI. No special header fields need be

specified. ProxStor will respond with an HTTP status of 204 (No Content) if the deletion

was successful.

A.1.4 Location URI

All operations related to manipulation of location objects within the database

happen relative to the location URI:

/location

Figure 14: Location URI

URI Method HTTP Header Description

1 / POST Content-Type: application/json

Accept: application/json

Create location

2 /{locid} GET Accept: application/json Retrieve location

3 /{locid} PUT Content-Type: application/json Update location

4 /{locid} DELETE Delete location

Table 17: Location URI Methods

 64

The URI /{locid} is referred to as the base location + locId URI for convenience.

The {locid} notation is meant to signify that the numeric database-specific location id is

to be inserted in place of the {locid} string.

A.1.4.2 Create Location

To create a new location the client should prepare a

proxstor.API.Location object containing the location information. Note that at

this time the locId field is null because the system has not yet assigned an id. This

Location object is then converted into JSON and sent via a HTTP POST request to the

location URI with the header fields Content-type and Accept both set to application/json.

If the location is successfully added ProxStor will return an HTTP status 201 (Created)

with the new locId available in two locations. The client is free to choose whichever

extraction method it wishes.

The first location is with the Location field of the response header. This Location

contains the full URI to the Location object and can be directly used in a GET request. If

the locId alone is needed the client must process the field to retain only the id portion

after the final forward slash.

The second location is in the body of the response. The full Location object,

including the locId, is returned to the client in JSON. This is the method used by the

ProxStor Connector.

A.1.4.2 Retrieve Location

To retrieve a location from the database the client must send a GET HTTP request

to the base location + locId URI path with the header field Accept set to application/json.

If the specified locId is valid ProxStor will respond with an HTTP status of 200 (OK)

with the JSON representation of the Location object in the response body.

 65

A.1.4.3 Update Location

To update a location the requestor must send the JSON representation of the

updated Location object in an HTTP PUT request to the base location + locId URI. Note

that the locId in the URI and the locId in the JSON representation of Location must be

identical in addition to being a valid location id in the database. If the location update was

successful ProxStor will respond with an HTTP status of 204 (No Content) with no

content in the response body.

A.1.4.4 Delete Location

To delete a location from the database the client must send an HTTP DELETE

request to the base location + locId URI. No special header fields need be specified.

ProxStor will respond with an HTTP status of 204 (No Content) if the deletion was

successful.

A.1.5 Within URI

All operations relating to the within relationship between location are performed

relative to the within URI:

/location/{locid}/within

Figure 15: Within URI

Note that all within operations are in the context of a specific base location +

locId URI, and thus the context of a location. A within relationship does not exist without

at least specifying the location which is within another location.

 66

URI Method HTTP Header Description

1 /{locid2} POST Create within

relationship

2 / GET Accept: application/json Get locations within

3 /reverse GET Accept: application/json Get location containing

4 /{locid2} GET Test location within

5 /{locid2} DELETE Delete within

relationship

Table 18: Within URI Methods

The URI /{locid2} is referred to as the locId2 URI for convenience. The {locid2}

notation is meant to signify that the numeric database-specific location id is to be inserted

in place of the {locid2} string.

A.1.5.1 Create Within

To create a new within relationship between two locations the client must send an

HTTP POST to the within + locId2 URI. The URI encodes all the information ProxStor

needs to establish the relationship, therefore no JSON representation is sent by the client.

If both the location identifiers are valid (and not the same value) and a within relationship

does not already exist, then ProxStor will respond with an HTTP status 201 (Created).

A.1.5.2 Retrieve Within

To retrieve all the locations within a specific location the client must send an

HTTP GET to the within URI with the HTTP header field Accept set to application/json.

ProxStor will confirm the validity of the location id in the URI and find all the locations

within the specified location. If the locsation id is valid ProxStor will respond with HTTP

 67

status 200 (OK) with the body of the response containing a JSON representation of a list

of proxstor.api.Location objects.

A.1.5.3 Retrieve Within Reverse

To retrieve the locations which contains a specific location the client appends

/reverse to the within URI. Note that this retrieval is the opposite direction of that in

section 4.3.5.2. The remainder of the interface is identical to 4.3.5.2.

A.1.2.4 Test Within

To test whether a location is within another location the client may issue an HTTP

GET request to the within + locId2 URI. If a within relationship exists between locid and

locid2 then ProxStor will respond with HTTP status 204 (No Content).

A.1.2.5 Delete Within

To remove the within relationship between two locations the client must send an

HTTP DELETE request to the within + locId URI. If a within relationship exists

between locid and locid2, then ProxStor will delete this relationship and respond with

HTTP status 204 (No Content).

If either of the locations ids was invalid or the within relationship was not already

established ProxStor will respond with HTTP status 404 (Not Found).

A.1.6 Nearby URI

All operations relating to the nearby relationship between locations are performed

relative to the nearby URI:

/location/{locid}/nearby/distance/{d}

Figure 16: Nearby URI

 68

Note that all nearby operations are in the context of a specific base location +

locId URI, and thus the context of a location. A nearby relationship does not exist

without at least specifying the location who is asserting the distance to which they are

nearby some other location. The URI structure is representing this relationship.

The distance value, {d}, is to distance in meters between locations.

URI Method HTTP Header Description

1 /{locid2} POST Create nearby

relationship

2 / GET Accept: application/json Retrieve locations

within distance

3 /{locid2} GET Tests location distance

4 /{locid2} PUT Update nearby

relationship

5 /{locid2} DELETE Delete nearby

relationship

Table 19: Nearby URI Methods

The URI /{locid2} is referred to as the locId2 URI for convenience. The {locid2}

notation is meant to signify that the numeric database-specific location id is to be inserted

in place of the {locid2} string.

A.1.6.1 Create Nearby

To create a new nearby relationship between two users the client must send an

HTTP POST to the nearby + locId2 URI. The URI encodes all the information ProxStor

 69

needs to establish the relationship, therefore no JSON representation is sent by the client.

If both the locid and locid2 are valid locations (and not the same value) and a nearby

relationship does not already exist, then ProxStor will respond with an HTTP status 201

(Created).

A.1.6.2 Retrieve Nearby

To retrieve all the locations within a specified distance of a specific location the

client must send an HTTP GET to the nearby URI with the HTTP header field Accept set

to application/json. ProxStor will confirm the validity of the location id in the URI and

find all the locations nearby within the distance encoded in the URI. If the location id is

valid ProxStor will respond with HTTP status 200 (OK) with the body of the response

containing a JSON representation of a list of proxstor.api.Location objects.

A.1.6.3 Test Nearby

To test whether a location is nearby within a specific distance to another location

the client may issue an HTTP GET request to the nearby + locId2 URI. If a nearby

relationship exists between locid and locid2 and the distance is less than or equal to d

then ProxStor will respond with HTTP status 204 (No Content).

A.1.6.4 Update Nearby

To update the distance value in an established nearby relationship the client must

issue an HTTP PUT request to the nearby + userId2 URI with the updated distance value

encoded in the URI. If a nearby relationship already exists from locid to locid2 then

ProxStor will update the relationship and respond with HTTP status 204 (No Content).

 70

A.1.6.5 Delete Nearby

To remove the nearby relationship between two locations the client must send an

HTTP DELETE request to the nearby + locId2 URI. Note that distance must be included

in the URI, but the value is ignored in this operation. If a nearby relationship exists

between locid and locid2, then ProxStor will delete this relationship and respond with

HTTP status 204 (No Content).

If either of the location ids was invalid or the nearby relationship was not already

established ProxStor will respond with HTTP status 404 (Not Found).

A.1.7 Environmental URI

All operations related to manipulation of environmental objects within the

database happen relative to the environmental URI:

/location/{locid}/environmental

Figure 17: Environmental URI

Note that all environmental related operations are in the context of a specific base

location + locId URI, and thus a single specific location. An environmental does not exist

in ProxStor without being associated with a location and so the URI naturally expresses

this.

 71

URI Method HTTP Header Description

1 / POST Content-Type:

application/json

Accept: application/json

Create

environmental

2 / GET Accept: application-json Retrieve all

location’s

environmentals

3 /{environmentalid} GET Accept: application/json Retrieve

environmental

4 /{environmentalid} PUT Content-Type:

application/json

Update

environmental

5 /{environmentalid} DELETE Delete

environmental

Table 20: Environmental URI Methods

The URI /{environmentalid} is referred to as the base environmental +

environmentalId URI for convenience. The {environmentalid} notation is meant to

signify that the numeric database-specific environmental id is to be inserted in place of

the {environmentalid} string.

A.1.7.1 Create Environmental

To create a new environmental the client should prepare a

proxstor.API.Environmental object containing the environmental information.

Note that at this time the environmentalId field is null because the system has not yet

assigned an id. This Environmental object is then converted into JSON and sent via a

 72

HTTP POST request to the desired location’s environmental URI with the header fields

Content-type and Accept both set to application/json. If the environmental is successfully

added ProxStor will return an HTTP status 201 (Created) with the new environmentalId

in two locations. The client is free to choose whichever extraction method it wishes.

The first location is with the Location field of the response header. This Location

contains the full URI to the Environmental object and can be directly used in a GET

request. If the environmentalId alone is needed the client must process the field to retain

only the id portion after the final forward slash.

The second location is in the body of the response. The full Environmental object,

including the environmentalId, is returned to the client in JSON. This is the method used

by the ProxStor Connector.

A.1.7.2 Retrieve Location’s Environmentals

To retrieve all environmentals inside a specific location the client must sent an

HTTP GET request to the base environmental URI for the owning location. Do not

specify a environmentalId specific portion to the URI. The request header field Accept

should be set to application/json. If the location specified in the URI is valid and contains

at least one environmental ProxStor will respond with an HTTP status of 200 (OK) and

the body of the response will contain a JSON representation of a list of Environmental

objects. If the location is valid, but contains no environmentals, the response status will

be 204 (No Content) with no contents in the body.

A.1.7.3 Retrieve Environmental

To retrieve a single environmental from the database the client must send an

HTTP GET request to the base environmental + environmentalId URI path for the

owning location with the header field Accept set to application/json. If the specified

 73

environmentalId is valid and contained within the locId in the URI ProxStor will respond

with an HTTP status of 200 (OK) with the JSON representation of the Environmental

object in the response body.

A.1.7.4 Update Environmental

To update an environmental the requestor must send the JSON representation of

the updated Environmental object in an HTTP PUT request to the owning location’s base

environmental + environmentalId URI. Note that the environmentalId in the URI and the

environmentalId in the JSON representation of Environmental must be identical in

addition to being a valid environmental id in the database and be inside the location

specified in the URI. If the environmental update was successful ProxStor will respond

with an HTTP status of 204 (No Content) with no content in the response body.

A.1.7.5 Delete Environmental

To delete an environmental from the database the client must send an HTTP

DELETE request to the owning location’s base environmental + environmentalId URI.

No special header fields need be specified. ProxStor will respond with an HTTP status of

204 (No Content) if the deletion was successful.

A.1.8 Locality URI

A Locality represents the bringing together of a device and an environmental (or a

user and a location). The ProxStor system collects these localities through the system

lifetime. These are used to answer questions about a user's current and historic locations.

Manipulating a Locality is not very useful by itself (that's what check-in is for).

These operations are provided mainly for development and testing purposes.

All operations related to manipulation of Locality objects within the database

happen relative to the locality URI:

 74

/locality

Figure 18: Locality URI

URI Method HTTP Header Description

1 / POST Content-Type: application/json

Accept: application/json

Create locality

2 /{localityid} GET Accept: application/json Retrieve locality

3 /user/{userid} GET Accept: application/json Retrieve

localities for user

4 /{localityid} PUT Content-Type: application/json Update locality

5 /{localityid} DELETE Delete locality

Table 21: Locality URI Methods

The URI /{localityid} is referred to as the base locality + localityId URI for

convenience. The {localityId} notation is meant to signify that the numeric database-

specific locality id is to be inserted in place of the {localityid} string.

A.1.8.2 Create Locality

To create a new locality the client should prepare a

proxstor.API.Locality object containing the locality information. Note that at

this time the localityId field is null because the system has not yet assigned an id. This

Locality object is then converted into JSON and sent via a HTTP POST request to the

locality URI with the header fields Content-type and Accept both set to application/json.

 75

If the locality is successfully added ProxStor will return an HTTP status 201

(Created) with the new localityId in two locations. The client is free to choose whichever

extraction method it wishes.

The first location is with the Location field of the response header. This Location

contains the full URI to the Locality object and can be directly used in a GET request. If

the localityId alone is needed the client must process the field to retain only the id portion

after the final forward slash.

The second location is in the body of the response. The full Locality object,

including the localityId, is returned to the client in JSON.

A.1.8.2 Retrieve Locality

To retrieve a locality from the database the client must send a GET HTTP request

to the base locality + localityId URI path with the header field Accept set to

application/json. If the specified localityId is valid ProxStor will respond with an HTTP

status of 200 (OK) with the JSON representation of the Locality object in the response

body.

A.1.8.3 Retrieve User’s Localities

To retrieve previous localities for a specified user the client must send an HTTP

GET request to the base locality + user + userId URI with header field Accept set to

application/json. If the specified userId is valid ProxStor will respond with HTTP status

200 (OK) and the body containing the JSON list representation of the previous proximity

objects associated with the specified user.

 76

A.1.8.4 Update Locality

To update a locality the requestor must send the JSON representation of the

updated Locality object in an HTTP PUT request to the base locality + locd URI. Note

that the localityId in the URI and the localityId in the JSON representation of Locality

must be identical in addition to being a valid locality id in the database. If the locality

update was successful ProxStor will respond with an HTTP status of 204 (No Content)

with no content in the response body.

A.1.8.5 Delete Locality

To delete a locality from the database the client must send an HTTP DELETE

request to the base locality + localityId URI. No special header fields need be specified.

ProxStor will respond with an HTTP status of 204 (No Content) if the deletion was

successful.

A.1.9 Search URI

All operations related to the searching are relative to the search URI:

/search

Figure 19: Search URI

 77

URI Method HTTP Header Description

1 /users POST Content-Type: application/json

Accept: application/json

Search users

2 /devices POST Content-Type: application/json

Accept: application/json

Search devices

3 /locations POST Content-Type: application/json

Accept: application/json

Search locations

4 /environmentals POST Content-Type: application/json

Accept: application/json

Search

environmentals

Table 22: Search URI Methods

The URI for the respective object type is referred to as the object search URI for

convenience.

A.1.9.1 Submitting Search

All four URIs for searching are used very similarly. To return search results the

client determines which object type to search through and sends an HTTP POST request

to appropriate object search URI. The request header fields Content-type and Accept must

both set to application/json. The body of the request shall contain a partially specified

JSON representation of the corresponding object type. For example, to search through

users the client might send a partial proxstor.api.User with only the email address

specified. This causes ProxStor to find all matching users – in this case the single user

with the specified email address.

 78

If ProxStor find one or more matches to the search then it responds with HTTP

status 200 (OK) and the JSON list representation of the appropriate object types is

contained within the body.

If no matches are found ProxStor responds with HTTP status 204 (No Content).

Note that using wildcards or regular expressions inside the fields of the objects is

not currently supported.

A.1.10 Administration URI

All operations related to the administration of ProxStor are relative to the admin

URI:

/admin

Figure 20: Admin URI

URI Method HTTP Header Description

1 /graph POST Content-Type:

multipart/form-data

Create/connect to

database instance

2 /graph GET Retrieve database

instance

3 /graph DELETE Shutdown running

database instance

Table 23: Admin URI Methods

The URI /graph is referred to as the base graph admin URI for convenience.

 79

A.1.10.1 Create Database Instance

To instruct ProxStor to create or connect to a backend database instance the

administrator must send an HTTP POST to the admin + graph URI containing a

multipart/form-data encoded in the URL. These form data elements will be converted

into a Map<String, String> and passed to GraphFactory. This allows the administrator to

connect ProxStor to any Graph instance supported by Blueprints, whether it’s a new

instance of a database or a reconnection to an existing one. For more information on

GraphFactory see the Blueprints documentation.

If the Graph instance is successfully created ProxStor will return an HTTP

response of 200 (OK).

If a Graph instance is already running ProxStor will return an HTTP status of 403

(Forbidden).

If a Graph instance cannot be created from the form parameters provided an

HTTP status of 500 (Internal Server Error) will be returned.

A.1.10.2 Retrieve Database Instance

To retrieve information on the running database instance the administrator must

send an HTTP GET to the admin + graph URI.

If a running database instance exists ProxStor will return an HTTP status of 200

(OK) and the body of the response will contain the plain text status.

If no running database instance exists ProxStor will return an HTTP status of 503

(Service Temporarily Unavailable).

A.1.10.3 Shutdown Database Instance

To stop (shutdown) a running database instance the administrator must sent an

HTTP DELETE request to the admin + graph URI.

 80

If a running database instance exists ProxStor will stop that running (including

committing all transactions to disk) and return HTTP status 200 (OK).

If a running database instance does not exist ProxStor will return HTTP status 404

(Not Found).

A.2 DYNAMIC COMPONENTS WEB SERVICES INTERFACES

The dynamic components of the web interface provide the following operations:

 Device check-in

 User check-in

 Query

These dynamic components are contrasted against the fixed components by both

the frequency of their access and update, but also because of the increased complex of the

API interface.

A.2.1 Device Check-in URI

All Device check-in actions are relative to the URI:

/checkin/device/{devid}/environmental

Figure 21: Device Check-in URI

 81

URI Method HTTP Header Description

1 / POST Content-Type:

application/json

Accept: application/json

Check-in

(Partial

Environmental)

2 / DELETE Accept: application/json Check-out

(Partial

Environmental)

3 /{environmentalid} POST Check-in

4 /{environmentalid} DELETE Check-out

Table 24: Device Check-in URI Methods

Here a device (devid) reports detecting a environmental artifact. The device is

used by a User, and the environmental is in a Location. ProxStor will create a Locality

instance associated with the User referencing the Location.

The URI /{environmentalid} is referred to as the environmentalId URI for

convenience. The {environmentalid} notation is meant to signify that the numeric

database-specific environmental id is to be inserted in place of the {environmentalid}

string.

A.2.1.1 Device Check-in (Partial Environmental)

When a device detects a new environmental element it should report the discovery

to the ProxStor service by creating a new proxstor.api.Environmental object

and filling in the known data, such as type and identifier. This Environmental object must

then be converted into JSON and sent via a HTTP POST request to the device check-in

URI with the header fields Content-type and Accept both set to application/json. If a

 82

locality is successfully created from the request ProxStor will return an HTTP status 201

(Created) with the new Locality available in the body of the response as well as indicated

in the Location field in the header.

A.2.1.2 Device Check-out (Partial Environmental)

After a device successfully checks into a location using the above interface it

must also monitor the environmental and notify ProxStor when the device no longer

senses it. To report this check-out (no longer sensing environmental) the client must send

an HTTP DELETE request to the base device check-in URI with the header field

Content-type set to application/json. The body of the request should contain the partial

proxstor.api.Environmental object used to check-in, or optionally the

complete Environmental object retrieved based on the environmenalId from the Locality

object. ProxStor will respond with an HTTP status of 204 (No Content) if the check-out

was successful.

A.2.1.3 Device Check-in

If the client already knows the precise environmetnalId corresponding to the

environmental being sensed it may use a more optimized non-JSON POSTing interface.

The client sends an HTTP POST request to the device check-in + environmentalId URI.

The full URI provides ProxStor with the necessary information to associate a device with

a environmental. If a locality is successfully created from the request ProxStor will return

an HTTP status 201 (Created) with the new Locality available in the body of the response

as well as indicated in the Location field in the header.

 83

A.2.1.4 Device Check-out

The same non-JSON POSTing interface can be used to check out of a location as

well. The client sends an HTTP DELETE request to the device check-in +

environmentalId URI. The full URI provides ProxStor with the necessary information to

dissociate a device from an environmental. ProxStor will respond with an HTTP status of

204 (No Content) if the check-out was successful.

A.2.2 User Check-in URI

All User related check-in are relative to the URI:

/checkin/user/{userid}

Figure 22: User Check-in URI

URI Method HTTP Header Description

1 /location/{locid} POST Accept: application/json Check-in

(Manual)

2 /location/{locid} DELETE Check-out

(Manual)

3 / GET Accept: application/json Retrieve current

locality

Table 25: User Check-in URI Methods

Here a User (userid) reports being in Location {locid}. The request is taken

literally. ProxStor will create a Locality instance associated with the User referencing the

Location.

 84

A.2.2.1 User Check-in

If a user wishes to manually check into a location this may be achieved by

sending an HTTP POST request to the user check-in + location URI. The request header

field Accept should be set to application/json. If a locality is successfully created from

the request ProxStor will return an HTTP status 201 (Created) with the new manually

created Locality available in the body of the response as well as indicated in the Location

field in the header.

A.2.2.2 User Check-out

If a user wishes to manually check out of a location this may be achieved similar

to the manual check-in process. The client sends an HTTP DELETE request to the user

check-in + location URI, but this time there are no requirements on the request header.

ProxStor will respond with an HTTP status of 204 (No Content) if the check-out was

successful.

A.2.2.3 Retrieve User Locality

To retrieve a specified user’s current locality the client must send an HTTP GET

request to the base user check-in URI with the request header field Accept set to

application/json. If the user from the URI has a currently active locality ProxStor will

respond with an HTTP status of 200 (OK) containing the JSON representation of the

Locality in the body. If the user is not currently in any active locality the response will be

204 (No Content).

A.2.3 Query

All query requests are performed relative to the query URI:

 85

/query

Figure 23: Query URI

URI Method HTTP Header Description

1 / POST Content-Type : application/json

Accept: application/json

Submit Query

Table 26: Query URI Methods

A.2.3.1 Submit Query

To submit a fixed format query to ProxStor the client must first prepare a JSON

representation of proxstor.api.Query containing the appropriate defined fields

(see next section). The client then sends an HTTP POST request to the query URI with

the header fields Content-type and Accept both set to application/json. If the query is

accepted then ProxStor will respond with an HTTP status of 200 (OK). The body of the

response will contain the JSON list representation of the matching Localities. If the query

was valid, but returned no results ProxStor will return an HTTP status of 204 (No

Content).

A.2.3.2 Building Query Requests

ProxStor has a single Query URI which accepts a single JSON object representing

the class proxstor.api.Query.

 86

Figure 24: Query Class

 To build a Query for ProxStor consumption one or more of the fields must

be non-null. If ProxStor is able it will return all the Locality instances which match the

criteria. For example, to ask ProxStor to return the individuals who are currently at the

coffee shop the following JSON representation of Query can be used.

Figure 25: Example Query JSON

In this example the userId is the User for which the Query is based. It is this

user’s friends that are the subject of the query. The strength is the minimum degree of

knows needed in this Query. The locationId is the coffee shop. So, this Query will return

a list of Locality instances representing all of User 1001’s friends (that is knows ≥ 10)

who happen to currently be in the coffee shop right now.

This single Query class is used to ask ProxStor about who is somewhere as well as

where was someone. Both styles can be constrained by a defined timeframe. If only the

start of the timeframe is defined then ProxStor assumes the timeframe runs from start up

 87

to now. Below is a summary of the various query types which ProxStor understands. For

all types userId must be defined, so it is left off the table for space reasons. Note that the

interpretation of userId does vary.

userId locationId strength dateStart dateEnd Description

Y Y N N N Return userId’s current location

Y N N Y Y/N Return userId’s locations within

dateStart to dateEnd timeframe

Y N Y N N Return current location of Users

who userId’s knows with at

least strength

Y N Y Y Y/N Return locations of Users within

dateStart to dateEnd timeframe

who userId’s knows with at

least strength

Y Y Y N N Return Users in locationId who

userId’s knows with at least

strength

Y Y Y Y Y/N Return locations of Users in

locationId within dateStart to

dateEnd who userId’s knows

with at least strength

Table 27: Query Examples

 88

To issue a Query about yourself use your own userId. To issue a form of the

above Query types, but for all Users regardless of whether userId knows them, set

strength to 0.

 89

References

[1] Atzori, Luigi, Antonio Iera, and Giacomo Morabito. “The internet of things: A

survey.” Computer networks 54.15 (2010): 2787-2805.

[2] Get Started with Bluetooth Low Energy. http://www.jaredwolff.com/blog/get-

started-with-bluetooth-low-energy/.

[3] Robinson, Ian, James Webber, and Emil Eifrem. Graph Databases. Sebastopol,

Calif.: O'Reilly Media, 2013.

[4] Jersey. https://jersey.java.net/.

[5] Java API for RESTful Services (JAX-RS). https://jax-rs-spec.java.net/.

[6] TinkerPop. http://www.tinkerpop.com/.

[7] Tinkerpop/blueprints. https://github.com/tinkerpop/blueprints/wiki/.

[8] Postman REST Client. https://twitter.com/postmanclient/.

[9] Winstone Servlet Container. http://winstone.sourceforge.net/.

[10] Maven. http://maven.apache.org/.

[11] Neo4j. http://neo4j.com/.

[12] OrientDB. http://www.orientechnologies.com/orientdb/.

[13] MongoDB. http://www.mongodb.org/.

[14] ArangoDB. https://www.arangodb.com/.

[15] RESTful Web Services: The Basics.

http://www.ibm.com/developerworks/library/ws-restful/index.html.

[16] An Overview of the Emerging Graph Landscape (Oct 2013).

http://www.slideshare.net/emileifrem/an-overview-of-the-emerging-graph-

landscape-oct-2013.

http://www.jaredwolff.com/blog/get-started-with-bluetooth-low-energy/
http://www.jaredwolff.com/blog/get-started-with-bluetooth-low-energy/
https://jersey.java.net/
https://jax-rs-spec.java.net/
http://www.tinkerpop.com/
https://github.com/tinkerpop/blueprints/wiki/
https://twitter.com/postmanclient/
http://winstone.sourceforge.net/
http://maven.apache.org/
http://neo4j.com/
http://www.orientechnologies.com/orientdb/
http://www.mongodb.org/
https://www.arangodb.com/
http://www.ibm.com/developerworks/library/ws-restful/index.html
http://www.slideshare.net/emileifrem/an-overview-of-the-emerging-graph-landscape-oct-2013
http://www.slideshare.net/emileifrem/an-overview-of-the-emerging-graph-landscape-oct-2013

 90

[17] HTTP Status Codes. http://www.restapitutorial.com/httpstatuscodes.html.

[18] TinkerGraph. https://github.com/tinkerpop/blueprints/wiki/TinkerGraph.

[19] Apache HTTP server benchmarking tool.

http://httpd.apache.org/docs/2.4/programs/ab.html.

[20] Apache HTTP Server Project. http://httpd.apache.org/.

[21] ApacheBench for Multi URL. https://code.google.com/p/apachebench-for-multi-

url/.

[22] Loc-calculator. https://code.google.com/p/loc-calculator/.

[23] Git. http://git-scm.com/.

[24] Tomcat. http://tomcat.apache.org/.

[25] Glassfish. https://glassfish.java.net/.

[26] Armenatzoglou, Nikos, Stavros Papadopoulos, and Dimitris Papadias. "A general

framework for geo-social query processing." Proceedings of the VLDB

Endowment 6, no. 10 (2013): 913-924.

[27] RAML. http://raml.org/index.html.

[28] Tinkerpop/gremlin. https://github.com/tinkerpop/gremlin/wiki.

[29] Tinkerpop/furnace. https://github.com/tinkerpop/furnace/wiki.

[30] Proxstor Wiki. http://github.com/jgiannoules/proxstor/wiki.

[31] Swagger. https://helloreverb.com/developers/swagger.

http://www.restapitutorial.com/httpstatuscodes.html
https://github.com/tinkerpop/blueprints/wiki/TinkerGraph
http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/
https://code.google.com/p/apachebench-for-multi-url/
https://code.google.com/p/apachebench-for-multi-url/
https://code.google.com/p/loc-calculator/
http://git-scm.com/
http://tomcat.apache.org/
https://glassfish.java.net/
http://raml.org/index.html
https://github.com/tinkerpop/gremlin/wiki
https://github.com/tinkerpop/furnace/wiki
http://github.com/jgiannoules/proxstor/wiki
https://helloreverb.com/developers/swagger

	List of Tables
	List of Figures
	Section 1: Introduction
	1.1 Vision
	1.2 ProxStor
	1.3 User Stories
	1.3.1 Story 1 - Friend Locator
	1.3.2 Story 2 - Restaurant Food Review
	1.3.2 Story 3 - Event Planning

	1.4 Contributions
	1.5 Outline

	Chapter 2: Requirements and Specifications
	2.1 Requirements
	2.1.1 Functional Requirements
	2.1.2 Non-Functional Requirements

	2.2 Specifications
	Figure 1: Specified System

	Chapter 3: System Design
	3.1 Technology Stack
	3.2 ProxStor Design
	Figure 2: ProxStor Components

	3.3 ProxStor Cloud Component
	3.3.1 ProxStor JAX-RS Resources
	3.3.2 ProxStor Data Access Layers
	3.3.3 ProxStor Graph Interface

	3.4 ProxStor Client Components
	3.4.1 ProxStor Connector
	3.4.1.1 Simple Connector API
	3.4.1.2 Class Definition API
	3.4.1.3 JUnit Test Suite

	3.5 Graph Relational Database
	3.5.1 Graph Models
	3.5.1.1 User Knows User
	Figure 3: User ‘Knows’ Relationship

	3.5.1.2 User Uses Device
	Figure 4: User ‘Uses’ Relationship

	3.5.1.3 Location Contains Environmental
	Figure 5: Location ‘Contains’ Relationship

	3.5.1.4 Location Nearby/Within Location
	Figure 6: Location ‘Within’ and ‘Nearby’ Relationship

	3.5.1.5 User Currently/Previously at Locality
	Figure 7: User ‘Currently At’ and ‘Previously At’ Relationships

	Chapter 4: REST API
	4.1 HTTP Methods
	4.1.1 GET
	4.1.2 POST
	4.1.3 PUT
	4.1.4 DELETE

	4.2 HTTP Responses
	4.2.1 OK (200)
	4.2.2 Created (201)
	4.2.3 No Content (204)
	4.2.4 Forbidden (403)
	4.2.5 Not Found (404)
	4.2.6 Server Error (500)
	4.2.7 Service Unavailable (503)

	4.3 URIs
	Figure 8: Base URI

	4.4 Web API
	4.4.1 Example – Device Check-in
	Figure 9: Device Check-in URI

	4.4.2 Example – Location Retrieval
	Figure 10: Location Retrieval URI

	Chapter 5: Results
	Table 1: Software Tested
	Table 2: Hardware Tested
	5.1 Usage Assessment
	5.1.1 System Deployment
	5.1.2 Graph Database Connection
	5.1.3 Client Application

	5.2 Performance Metrics
	5.2.1 Static Testing
	Table 3: Static Testing Response Time (ms) – OrientDB
	Table 4: Static Testing Response Time (ms) – Neo4j
	Table 5: Static Testing Response Time (ms) – TinkerGraph
	Table 6: ProxStor Internal Processing Times

	5.2.2 Data Evolution
	Table 7: ProxStor Dynamic Testing Results

	5.2.3 Benchmarking
	Table 8: ApacheBench Response Time (ms) – OrientDB
	Table 9: ApacheBench Response Time (ms) – Neo4j
	Table 10: ApacheBench Response Time (ms) – TinkerGraph

	5.3 Software Engineering Metrics
	Table 11: ProxStor SLOC by Type
	Table 12: ProxStor SLOC by Java Package
	Table 13: Git Repository Statistics

	Chapter 6: Conclusion
	6.1 Lessons Learned
	6.1.1 What Worked
	6.1.1.1 Design Patterns

	6.5.2 What Didn’t Work

	6.2 Relationship to Existing Work / Relationship to Prior Work
	6.3 Future Work
	6.3.1 Code Improvements
	6.3.2 Enhanced Testing
	6.3.3 Maintainability
	6.3.4 General Concerns

	6.5 Obtaining ProxStor

	Appendix A
	A.1 Fixed Components Web Services Interfaces
	A.1.1 User URI
	Figure 11: User URI
	Table 14: User URI Methods
	A.1.1.2 Create User
	A.1.1.2 Retrieve User
	A.1.1.3 Update User
	A.1.1.4 Delete User

	A.1.2 Knows URI
	Figure 12: Knows URI
	Table 15: Knows URI Methods
	A.1.2.1 Create Knows
	A.1.2.2 Retrieve Knows
	A.1.2.3 Retrieve Knows Reverse
	A.1.2.4 Update Knows
	A.1.2.5 Delete Knows

	A.1.3 Device URI
	Figure 13: Device URI
	Table 16: Device URI Methods
	A.1.3.1 Create Device
	A.1.3.2 Retrieve User’s Devices
	A.1.3.3 Retrieve Device
	A.1.3.4 Update Device
	A.1.3.5 Delete Device

	A.1.4 Location URI
	Figure 14: Location URI
	Table 17: Location URI Methods
	A.1.4.2 Create Location
	A.1.4.2 Retrieve Location
	A.1.4.3 Update Location
	A.1.4.4 Delete Location

	A.1.5 Within URI
	Figure 15: Within URI
	Table 18: Within URI Methods
	A.1.5.1 Create Within
	A.1.5.2 Retrieve Within
	A.1.5.3 Retrieve Within Reverse
	A.1.2.4 Test Within
	A.1.2.5 Delete Within

	A.1.6 Nearby URI
	Figure 16: Nearby URI
	Table 19: Nearby URI Methods
	A.1.6.1 Create Nearby
	A.1.6.2 Retrieve Nearby
	A.1.6.3 Test Nearby
	A.1.6.4 Update Nearby
	A.1.6.5 Delete Nearby

	A.1.7 Environmental URI
	Figure 17: Environmental URI
	Table 20: Environmental URI Methods
	A.1.7.1 Create Environmental
	A.1.7.2 Retrieve Location’s Environmentals
	A.1.7.3 Retrieve Environmental
	A.1.7.4 Update Environmental
	A.1.7.5 Delete Environmental

	A.1.8 Locality URI
	Figure 18: Locality URI
	Table 21: Locality URI Methods
	A.1.8.2 Create Locality
	A.1.8.2 Retrieve Locality
	A.1.8.3 Retrieve User’s Localities
	A.1.8.4 Update Locality
	A.1.8.5 Delete Locality

	A.1.9 Search URI
	Figure 19: Search URI
	Table 22: Search URI Methods
	A.1.9.1 Submitting Search

	A.1.10 Administration URI
	Figure 20: Admin URI
	Table 23: Admin URI Methods
	A.1.10.1 Create Database Instance
	A.1.10.2 Retrieve Database Instance
	A.1.10.3 Shutdown Database Instance

	A.2 Dynamic Components Web Services Interfaces
	A.2.1 Device Check-in URI
	Figure 21: Device Check-in URI
	Table 24: Device Check-in URI Methods
	A.2.1.1 Device Check-in (Partial Environmental)
	A.2.1.2 Device Check-out (Partial Environmental)
	A.2.1.3 Device Check-in
	A.2.1.4 Device Check-out

	A.2.2 User Check-in URI
	Figure 22: User Check-in URI
	Table 25: User Check-in URI Methods
	A.2.2.1 User Check-in
	A.2.2.2 User Check-out
	A.2.2.3 Retrieve User Locality

	A.2.3 Query
	Figure 23: Query URI
	Table 26: Query URI Methods
	A.2.3.1 Submit Query
	A.2.3.2 Building Query Requests
	Figure 24: Query Class
	Figure 25: Example Query JSON
	Table 27: Query Examples

	References

