
Copyright

by

Prateek Jain

2009

The Dissertation Committee for Prateek Jain
certifies that this is the approved version of the following dissertation:

Large Scale Optimization Methods for Metric and

Kernel Learning

Committee:

Inderjit S. Dhillon, Supervisor

Constantine Caramanis

Joydeep Ghosh

Kristen Grauman

Raymond Mooney

Large Scale Optimization Methods for Metric and

Kernel Learning

by

Prateek Jain, B.Tech., M.S.Comp.Sci.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2009

Dedicated to my parents...

Acknowledgments

It is remarkable that even a modest enterprise such as this thesis, is

impossible without contributions from so many people and proper alignment

of so many factors. So, I begin by thanking almighty God for making it all

work out.

I would like to thank my thesis advisor Prof. Inderjit S. Dhillon for

simply being a great advisor and helping me out in possibly the toughest

situation of my life. I hope his passion for research and ability to think clearly

and objectively about a problem have rubbed off, at least partially, on me also.

I will also like to thank my committee members Prof. Constantine Caramanis,

Prof. Joydeep Ghosh, Prof. Kristen Grauman, and Prof. Raymond Mooney

for their advice and support. Special thanks to Kristen for helping me get

started with my research and being a great role model as well as a great

source of advice.

I would also like to thank all of my lab-mates in the data mining lab,

especially Jason Davis, Brian Kulis , Zhengdong Lu, Suvrit Sra and Wei Tang,

for helping me out with so many things including research and for making our

lab Tay-137 the most fun place to work on the UT campus. A special thanks

to Raghu Meka, an unofficial member of our group and my collaborator on

many research and sports projects. Thanks to Chinmayi Krishnappa for proof-

v

reading large portions of this thesis.

While research is a lot of fun, still Austin would have been an incredi-

bly boring place if not for all my friends here, including David Montoya, Mitul

Tiwari, Misha Sra, Prince Mahajan, Sudheendra Narasimhan, Vinay Siddha-

vanhalli. Special thanks to my apartment mates Indrajit Roy, Pushpraj Shukla

and Siddharth Chauhan for bearing with my weird idiosyncrasies and me in

general for a long time.

Next, I would like to thank my sweetest and best friends Anand Sinha,

Bharti Jain, Chinmayi Krishnappa, Hemanta Maji, Manku Jain, Naveen Gupta

and Rishi Dhingra. I am heavily indebted to all of them for being there for me

during happiness, sorrows and everything else. Thanks also to my friends from

my undergraduate studies espcially my wing-mates and department-mates.

I would like to thank my whole family for imparting me all the values

that I have and for making me feel so secure that I never felt scared taking up

challenges. Thanks to my uncle Vinod Jain, aunt Chameli Jain, and cousins

Manjari , Shivani Jain for their constant love and support. Special thanks to

my sisters Swati and Prerna Jain, my brother-in-law Sanjay Patni, and my

neices Soumya and Tithi Jain for making life worth living. Finally, thanks to

my mom and dad for everything. I know it is impossible to thank you in words

and so I put to rest this futile exercise.

vi

Large Scale Optimization Methods for Metric and

Kernel Learning

Publication No.

Prateek Jain, Ph.D.

The University of Texas at Austin, 2009

Supervisor: Inderjit S. Dhillon

A large number of machine learning algorithms are critically dependent

on the underlying distance/metric/similarity function. Learning an appropri-

ate distance function is therefore crucial to the success of many methods. The

class of distance functions that can be learned accurately is characterized by

the amount and type of supervision available to the particular application. In

this thesis, we explore a variety of such distance learning problems using differ-

ent amounts/types of supervision and provide efficient and scalable algorithms

to learn appropriate distance functions for each of these problems.

First, we propose a generic regularized framework for Mahalanobis met-

ric learning and prove that for a wide variety of regularization functions, metric

learning can be used for efficiently learning a kernel function incorporating the

available side-information. Furthermore, we provide a method for fast nearest

neighbor search using the learned distance/kernel function. We show that a

vii

variety of existing metric learning methods are special cases of our general

framework. Hence, our framework also provides a kernelization scheme and

fast similarity search scheme for such methods.

Second, we consider a variation of our standard metric learning frame-

work where the side-information is incremental, streaming and cannot be

stored. For this problem, we provide an efficient online metric learning al-

gorithm that compares favorably to existing methods both theoretically and

empirically.

Next, we consider a contrasting scenario where the amount of super-

vision being provided is extremely small compared to the number of training

points. For this problem, we consider two different modeling assumptions:

1) data lies on a low-dimensional linear subspace, 2) data lies on a low-

dimensional non-linear manifold. The first assumption, in particular, leads

to the problem of matrix rank minimization over polyhedral sets, which is a

problem of immense interest in numerous fields including optimization, ma-

chine learning, computer vision, and control theory. We propose a novel on-

line learning based optimization method for the rank minimization problem

and provide provable approximation guarantees for it. The second assump-

tion leads to our geometry-aware metric/kernel learning formulation, where

we jointly model the metric/kernel over the data along with the underlying

manifold. We provide an efficient alternating minimization algorithm for this

problem and demonstrate its wide applicability and effectiveness by apply-

ing it to various machine learning tasks such as semi-supervised classification,

viii

colored dimensionality reduction, manifold alignment etc.

Finally, we consider the task of learning distance functions under no

supervision, which we cast as a problem of learning disparate clusterings of

the data. To this end, we propose a discriminative approach and a generative

model based approach and we provide efficient algorithms with convergence

guarantees for both the approaches.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Thesis Overview . 3

1.2 Summary . 10

1.3 Notation . 10

Chapter 2. Background Material and Related Work 11

2.1 Parameterized Mahalanobis Metrics 11

2.1.1 Information-Theoretic Metric Learning 12

2.2 Locality Sensitive Hashing . 13

2.3 Multiplicative Weights Update Algorithm 14

2.3.1 Online Convex Programming 16

2.4 Related Work . 17

Chapter 3. Metric and Kernel Learning: A Generic Framework 25

3.1 A Generic Framework for Metric Learning 28

3.1.1 Relations to Existing Metric Learning Methods 31

3.2 High-dimensional Metric Learning 34

3.3 Kernel Function Learning . 38

3.3.1 Special Cases . 40

3.3.1.1 von Neumann Divergence 40

3.3.1.2 Squared Frobenius Divergence 44

x

3.3.1.3 SDPs . 46

3.4 Summary . 49

Chapter 4. Fast Similarity Search for Learned Metrics 50

4.1 Hashing for Semi-Supervised Similarity Search 50

4.1.1 Explicit Formulation . 52

4.1.2 Implicit Formulation . 54

4.1.2.1 ITML based Hashing 58

4.2 Searching Hashed Examples 61

4.3 Results . 63

4.3.1 Clarify . 65

4.3.2 Human Body Pose Estimation. 67

4.3.3 Exemplar-based Object and Scene Categorization 71

4.3.3.1 Caltech-101 database 71

4.3.3.2 Flickr scene database 74

4.3.4 Indexing Local Patch Descriptors. 77

4.4 Summary . 79

Chapter 5. Online Metric Learning 80

5.1 Online Metric Learning . 82

5.1.1 Formulation and Algorithm 82

5.1.2 Analysis . 86

5.2 Fast Online Similarity Searches 92

5.2.1 Online Hashing Updates 93

5.3 Experimental Results . 95

5.4 Summary . 103

Chapter 6. Geometry-aware Kernel Learning 104

6.1 Methodology . 105

6.1.1 Geometry-aware Metric Learning 107

6.1.2 Alternative M . 108

6.2 Algorithm . 110

6.3 Discussion . 113

xi

6.3.1 Connection to Regularization Theory 113

6.3.2 Connection to Gaussian Processes(GP) 114

6.4 Applications . 115

6.4.1 Classification . 116

6.4.2 Manifold Learning . 116

6.5 Experimental Results . 118

6.5.1 Classification: Supervised Learning 118

6.5.2 Classification: Semi-supervised Learning 120

6.5.3 Colored Dimensionality Reduction 124

6.5.4 Manifold Alignment . 124

Chapter 7. Low Rank Kernel Learning 128

7.1 Computational Complexity . 132

7.2 Methodology . 133

7.2.1 Rank Minimization via Multiplicative Weights Update . 135

7.2.2 Rank Minimization via OCP 137

7.2.3 Discussion . 140

7.3 Low-rank Kernel Learning . 141

7.3.1 Low-rank Kernel Matrix Learning: Transductive Setting 141

7.3.2 Low-rank Kernel Function Learning: Inductive Setting . 143

7.4 Experimental Results . 146

7.4.1 Synthetic Datasets . 146

7.4.2 Low-rank Kernel Learning: Transductive Setting 147

7.5 Summary . 150

Chapter 8. Unsupervised Distance Learning 151

8.1 Disparate Clustering . 155

8.1.1 First Approach: Decorrelated-kmeans 156

8.1.1.1 Computing the updates efficiently: 158

8.1.1.2 Determining λ: 159

8.1.2 Second Approach: Sum of Parts 161

8.1.2.1 Learning the convolution of a mixture of Gaus-
sians
162

xii

8.1.2.2 Computing the updates efficiently: 167

8.1.3 Discussion . 167

8.1.3.1 Decorrelation measure: 167

8.2 Decorrelated-kmeans vs Convolutional-EM 173

8.3 Experiments . 174

8.3.1 Implementation Details: 176

8.3.2 Synthetic Datasets: . 176

8.3.3 Real-World Datasets . 180

8.3.3.1 Music Dataset: 180

8.3.3.2 Portrait Dataset: 181

8.4 Summary . 182

Chapter 9. Conclusions and Future Directions 184

Vita 205

xiii

References 189

List of Tables

4.1 Time complexity for computing semi-supervised hash functions 63

4.2 Mean pose error (in cm) obtained with various method 67

7.1 Rank of the matrices obtained by different RMP methods for
varying size of the constraint matrices 148

7.2 Accuracy obtained by various low-rank kernel learning methods 149

8.1 Accuracy achieved by various methods on the Music dataset . 181

8.2 Accuracy achieved by various methods on the Portrait dataset 183

xiv

List of Figures

4.1 An overview of our Fast Similarity Search method 51

4.2 Comparison of nearest neighbor retrieval methods for Latex
dataset . 65

4.3 Error in NN retrieval for pose estimation w.r.t. number of hash
bits and time allowed for search 68

4.4 Examples of pose estimates 69

4.5 Comparison of various methods for Caltech-101 dataset 72

4.6 Gains over non-learned kernels w.r.t. training set size and
search time allowed . 73

4.7 Error rate w.r.t. search time allowed for Flickr Data 76

4.8 Comparison of methods for Photo tourism data 78

5.1 Comparison with existing online metric learning methods on
the UCI datasets . 97

5.2 Comparison of errors for LEGO and POLA on MNIST data . 98

5.3 Comparison with existing online metric learning methods on
the Photo Tourism data . 98

5.4 Recall value for online hashing updates using Photo Tourism data101

5.5 Average recall at different time steps during online hashing . . 102

6.1 Illustration of G-ML . 109

6.2 Classification error via kernels learned using G-ML and ITML
[24] . 119

6.3 Semi-supervised classification error for methods on four stan-
dard datasets . 120

6.4 Classification error rate for G-ML with 30 labeled samples and
70 labeled data . 121

6.5 Two dimensional embedding of 2007 USPS digits using different
methods . 123

6.6 Manifold alignment results for the Yale Face dataset 125

6.7 Retrieval results for G-ML on the Yale Face data 126

xv

6.8 Recall as a function of number of retrieved images for various
methods . 127

8.1 Images of different persons in different poses 151

8.2 Representative vectors obtained by Dec-kmeans and the parts
obtained by Conv-EM. 172

8.3 NMI achieved by various methods on the Concatenated Dataset 178

8.4 NMI achieved by various methods on the Overlap Dataset . . 179

8.5 NMI achieved by various methods on the Sum Dataset 180

xvi

Chapter 1

Introduction

The success of many learning algorithms, such as k-Nearest Neighbor

and, Support Vector Machines, is critically dependent on the distance/similarity

measure used to compare the input data points. A standard, but somewhat

ad-hoc approach to select a distance measure is to try a few off-the-shelf dis-

tance or similarity (kernel) functions such as the Euclidean distance function

or the Gaussian kernel function. However, such an approach is cumbersome

and does not scale well. Moreover, for most real-world problems standard dis-

tance or similarity functions are not appropriate and fail to capture the true

relationships between objects.

Recently, distance/kernel learning approaches have come forward as a

more principled and data-dependent method to select a distance/kernel func-

tion for the task at hand. Numerous approaches have been proposed that

attempt to learn distance/kernel functions, e.g., [29, 90, 70, 110]. Typically,

these approaches assume a specific parameterization of the distance function

and optimize for the parameters using the provided supervision. Examples

of common parameterizations include Gaussian kernels with variable width

[90], weighted sum of a few given metrics/kernels [70], and weighted sum of

1

eigenvectors of a Laplacian over the data [112].

Ideally, a distance/kernel learning algorithm should have the following

properties: 1) flexible parameterization so that it can be applied to a variety

of applications, 2) efficiency in the computation of provably optimal distance

functions, 3) good generalization to unseen points, i.e., it also works in induc-

tive settings, 4) can be used efficiently by many applications, such as sub-linear

time similarity search.

Unfortunately, most of the existing distance/kernel learning approaches

are lacking in at least one of the above properties. Of the existing approaches,

one of the most successful approaches is to learn a Mahalanobis distance func-

tion. Mahalanobis distance functions have been shown to be successful in a

number of different domains, e.g., text mining [23], computer vision [57, 45],

software support [46]. They are amenable to simple and elegant formulations,

have good generalization properties and wide applicability.

However, most of the Mahalanobis metric learning methods are de-

signed for semi-supervised learning with small dimensionality and large amounts

of supervision. Different forms and amounts of supervision dictate the class of

distance functions that can be learned accurately. For example, if limited su-

pervision is available, then learning a distance function with a large number of

parameters is infeasible. Furthermore, in most of the real-world applications,

especially in the domain of computer-vision and text-mining, the data-points

are complicated data structures, such as images, text documents, and web

documents. Typically, a feature representation of such data structures is high-

2

dimensional and is difficult to obtain. Instead, the inner product function (or

kernel function) over the feature space is provided. Thus, there is a need

to formulate scalable and theoretically sound distance learning methods that

perform well in the provided domain and conditions, and can also perform

computations implicitly in the feature (or kernel) space.

In this thesis, we explore various large scale optimization techniques

for the problems of learning distance functions and kernel functions under

varying amounts and types of supervision. Our primary focus is on learning

Mahalanobis distance/kernel function in a variety of different contexts. We

also explore a few other parameterizations for distance functions in Chapter 7

and 8. In the next section, we provide a broad overview of the distance/kernel

learning problems considered in this thesis and our contributions.

1.1 Thesis Overview

In Chapter 3, we propose a generic regularized framework for Maha-

lanobis metric learning1 that can be seen as a generalization of a variety of

metric learning methods, e.g, ITML [24], LMNN [108]. Specifically, we pa-

rameterize the distance function, i.e., the metric, over the data points using a

Mahalanobis metric2, i.e., dW (x,y) = (x− y)T W (x− y). Side-information is

provided to the framework in the form of convex constraints over the Maha-

1Throughout this thesis, the term metric learning refers to Mahalanobis metric learning.
2Throughout this thesis, the term Mahalanobis metric W refers to the Mahalanobis

distance function parameterized by W

3

lanobis metric. Examples of such constraints include commonly used pair-wise

distance constraints, relative-distance constraints etc. Assuming a convex reg-

ularization function, a metric learning problem under our generic framework is

a convex program and can be solved in polynomial time using standard convex

programming software.

Solving for Mahalanobis metric using a standard convex programming

software requires explicit representation of the feature vectors x ∈ R
d and

computes a d × d matrix W explicitly. As stated earlier, for most real-world

applications d is large and explicit representation for feature vectors x is not

available explicitly. Hence, direct computation of W is infeasible. However,

we show that under a fairly mild assumption on the regularization function,

our metric learning framework can be used for implicitly learning a metric

over the feature space. Furthermore, the learned metric can be used to define

a new kernel function for the given application.

One of the most important applications of metric learning is in en-

hancing the solution to a fundamental problem - the nearest neighbor search

problem, which is critical to several machine learning problems including k-NN

classification, pose estimation, and ranking. Furthermore, most real-world ap-

plications involve large databases, ruling out linear search for nearest neighbor.

Hence, sub-linear time search for nearest neighbor using the learned metric is

vital.

In chapter 4, we introduce a method for fast approximate similarity

search with learned distance functions. We formulate randomized hash func-

4

tions that incorporate side-information from partially labeled data or paired

constraints, thus allowing examples to be efficiently indexed according to the

learned metric without resorting to a naive linear scan of all the items. We

present a straightforward solution for the case of relatively low-dimensional

input vector spaces, where the Mahalanobis metric (W) can be computed ex-

plicitly. We further derive a method for the fast computation of hash functions

over high-dimensional datasets for which explicit input space computations are

infeasible. Our method makes fast indexing accessible for numerous existing

metric learning methods (e.g., [110, 10, 24]). We demonstrate the approach

applied to a variety of real-world datasets. We find that our learned met-

rics improve accuracy relative to commonly-used metric baselines, while our

hashing construction enables efficient indexing with learned distances and very

large databases.

The metric learning framework we introduce in Chapter 3 provides use-

ful distance functions for a variety of domains, and is accurate for applications

where the learner can access all distance constraints at once. However, in many

real-world applications, distance constraints are only available incrementally,

thus necessitating methods that can perform online updates to the learned

metric. Existing online algorithms offer bounds on worst-case performance,

but typically do not perform well in practice as compared to their offline coun-

terparts (i.e. ones with static distance constraints). In Chapter 5, we present

a new online metric learning algorithm that updates a learned Mahalanobis

metric based on LogDet regularization and gradient descent. We prove theo-

5

retical worst-case performance bounds, and empirically compare the proposed

method against existing online metric learning algorithms. As in Chapter 3, to

further boost the practicality of our approach, we develop an online locality-

sensitive hashing scheme which leads to efficient updates of data structures

used for fast approximate similarity search. We demonstrate our algorithm on

multiple datasets and show that it outperforms relevant baselines.

Learning a Mahalanobis metric using methods described in Chapters 3

and 4 consists of learning O(min(d2, n2)) parameters, where d is the dimen-

sionality of the input data and n is the number of input data points. As

a result, if the amount of supervision is very small then learning a full-rank

Mahalanobis metric or the corresponding kernel function leads to over-fitting

and poor generalization. In Chapter 3 we partially address this problem by

restricting the Mahalanobis metric to be a diagonal plus low-rank matrix, thus

reducing the number of parameters to linear in O(min(d, n)). However, the

low-rank part needs to be restricted to a pre-selected basis which is undesir-

able in many applications. In Chapters 6 and 7, we attempt to get rid of this

requirement by making assumptions on the structure of the data.

In Chapter 6, we explore the scenario where the data points lie on

a small-dimensional smooth manifold. Given pairwise (dis-)similarity con-

straints, we learn a kernel matrix over the data that respects the provided

side-information as well as the local geometry of the data. We extend the

framework introduced in Chapter 3; we jointly model the metric/kernel over

the data along with the underlying manifold. Furthermore, we show that for

6

some important parameterized forms of the underlying manifold model, we

can estimate the model parameters and the kernel matrix efficiently. Our re-

sulting algorithm is able to incorporate local geometry into the metric learning

task; at the same time it can handle a wide class of constraints. Finally, our

algorithm is fast and scalable, is able to exploit the low dimensional manifold

structure and does not require semi-definite programming. We demonstrate

wide applicability and effectiveness of our framework by applying to various

machine learning tasks such as semi-supervised classification, colored dimen-

sionality reduction, manifold alignment etc. On each of the tasks our method

performs competitively or better than the respective state-of-the-art method.

In Chapter 7, we assume that the data points lie in a low-dimensional

subspace, i.e., the learned kernel matrix is low-rank. This implies that the

number of parameters to be learned is reasonably small and can be learned

accurately using a small amount of supervision. We handle the low-rank kernel

learning problem in both transductive and inductive settings. For the trans-

ductive setting, we propose a novel low-rank kernel matrix learning problem

that incorporates the provided distance constraints. For the inductive set-

ting, we use our metric learning framework introduced in Chapter 3 to learn

a low-parameter kernel function3.

In both transductive and inductive settings, our formulation reduces to

the affine constrained rank minimization problem, which in itself is a problem

3Throughout this thesis, the term rank k-kernel function refers to a kernel function which
leads to at most rank k-kernel matrix for any set of points

7

of immense interest with numerous applications in fields like optimization,

computer vision, and control theory. We show that the rank minimization

with affine constraints is an NP-hard problem and assuming P 6= NP , does

not even admit a logarithmic approximation. Furthermore, we propose two

online learning based approaches for rank minimization - our first algorithm

is a multiplicative update method based on a generalized experts framework

[84, 4], while our second algorithm is a novel application of the online convex

programming framework [113]. In the latter, we flip the role of the decision

maker by making the decision maker search over the constraint space instead of

feasible points, as is usually the case in online convex programming. A salient

feature of our online learning approach is that it allows us to give provable

approximation guarantees for the rank minimization problem over polyhedral

sets. We evaluate the performance of our methods for low-rank kernel learning

on UCI datasets. On all the datasets, our algorithms improve the accuracy of

the baseline kernel while also significantly decreasing the rank.

In Chapter 8, we study the problem of unsupervised distance learning.

We observe that a distance function is used to capture a particular semantic

notion in the data. When no supervision is provided, we formulate the problem

as that of learning all the distance functions associated with the dominant

semantics – a hard problem. We relax the problem to that of finding all the

clusterings associated with the dominant distance functions or semantics in

the data.

We propose two new approaches for the problem of recovering disparate

8

clusterings. In the first approach we aim to find good clusterings of the data

that are also decorrelated with one another. To this end, we give a new and

tractable characterization of decorrelation between clusterings, and present

an objective function to capture it. We provide an efficient “decorrelated”

k-means type algorithm to minimize this objective function and provide con-

vergence guarantees. In the second approach, we model the data as a sum of

mixtures and associate each mixture with a clustering. This approach leads

us to the problem of learning a convolution of mixture distributions. Though

the latter problem can be formulated as one of factorial learning [34, 50, 87],

the existing formulations and methods do not perform well on many real high-

dimensional data sets. We propose a new regularized factorial learning frame-

work that is more suitable for capturing the notion of disparate clusterings in

modern, high-dimensional data sets. We propose a generalized EM-algorithm

to find out parameters for new regularized factorial learning framework and

prove convergence for the same. The resulting algorithm does well in uncov-

ering multiple clusterings, and is much improved over existing methods. We

evaluate our methods on two real-world data sets - a music data set from the

text mining domain, and a portrait data set from the computer vision domain.

Our methods achieve a substantially higher accuracy than existing factorial

learning as well as traditional clustering algorithms.

9

1.2 Summary

We introduce a generic framework for Mahalanobis distance learning

(metric learning) that generalizes most of the existing convex Mahalanobis

distance learning formulations. We then extend our framework to handle large

dimensional datasets and also to implicitly learn metrics, or equivalently kernel

functions, in feature space. We then propose a method for fast similarity search

for metric learned by our regularized framework.

Additionally, we consider a few specific distance learning problems

where our metric learning framework cannot be applied directly. In particular,

we consider the problem of online metric learning, geometric metric learning,

low-rank metric/kernel learning and unsupervised distance learning. For each

of the problems, we propose theoretically justified formulations and provide

efficient algorithms to solve the corresponding problem.

1.3 Notation

We adhere to the following notation throughout this thesis. Lowercase

bold letters (x) denote vectors, xT y denotes inner product between two vec-

tors x and y, and ‖ · ‖p denotes Lp norm. Matrices are denoted by capital

letters (X). ‖·‖F denotes Frobenius norm, ‖·‖p denotes vector induced p-norm

for matrices. Tr(·) denotes the trace of a matrix and AT denotes transpose of

A. The term Mahalanobis metric W refers to the Mahalanobis distance func-

tion parameterized by W and the term metric learning refers to Mahalanobis

distance learning.

10

Chapter 2

Background Material and Related Work

In this chapter, we cover background material relevant to the thesis

proposal, including Mahalanobis metrics, locality sensitive hashing, the multi-

plicative weights update algorithm, and online convex programming. We also

briefly review related work.

2.1 Parameterized Mahalanobis Metrics

Given n points {x1, . . . ,xn}, with all xi ∈ ℜd, positive-definite (p.d.)

d × d matrix A parameterizes the squared Mahalanobis distance:

dA(xi,xj) = (xi − xj)
T A(xi − xj), (2.1)

for all i, j = 1, . . . , n. Note that the Mahalanobis metric is a linear mapping of

data, i.e., x′ → A1/2x and it is induced by generalazied inner product (kernel)

that measures the pairwise similarity: sA(xi,xj) = xT
i Axj.

Given a set of inter-point distance constraints, one can directly learn a

matrix A to yield a distance measure that is more accurate for a given classi-

fication or clustering problem. Many methods have been proposed for Maha-

lanobis metric learning [110, 10, 24]. Of particular interest is the information-

11

theoretic metric learning method of [24] because it is easier to implement and

faster than most of the other existing metric learning methods.

2.1.1 Information-Theoretic Metric Learning

Given an initial d× d p.d. matrix A0 specifying prior knowledge about

inter-point distances, the learning task is posed as an optimization problem

that minimizes the LogDet divergence between matrices A and A0, subject to

a set of constraints specifying pairs of examples that are similar or dissimilar.

In semi-supervised multi-class settings, the constraints are taken directly from

the provided labels: points in the same class must be similar, points in different

classes are constrained to be dissimilar.

To compute A, the LogDet divergence is minimized while enforcing

desired constraints:

min
Aº0

Dℓd(A,A0)

s. t. dA(xi,xj) ≤ u (i, j) ∈ S,

dA(xi,xj) ≥ ℓ (i, j) ∈ D,

(2.2)

where Dℓd(A,A0) = tr(AA−1
0)− log det(AA−1

0)−d, S and D are sets containing

pairs of points constrained to be similar and dissimilar, respectively, and ℓ and

u are large and small values, respectively (defined below).

Computing the optimal solution to (2.2) involves repeatedly projecting

the current solution onto a single constraint, via the update:

At+1 = At + βtAt(xit − xjt
)(xit − xjt

)T At, (2.3)

12

where xit and xjt
are the constrained data points for iteration t, and βt is a

projection parameter computed by the algorithm.

When the dimensionality of the data is very high, one cannot explicitly

work with A, and so the update in (2.3) cannot be performed. However, one

may still implicitly update the Mahalanobis matrix A via updates in kernel

space for an equivalent kernel learning problem in which K = XT AX for

X = [x1, . . . ,xn]. If K0 is an input kernel matrix for the data, the appropriate

update is:

Kt+1 = Kt + βtKt(eit − ejt
)(eit − ejt

)T Kt, (2.4)

where the vectors eit and ejt
refer to the it-th and jt-th standard basis vectors,

respectively, and the projection parameter βt is the same as in (2.3) (see [24]).

Note that it is possible for the set of examples involved in constraints to be a

superset of the set of examples in the input kernel.

2.2 Locality Sensitive Hashing

A family of locality-sensitive hash functions F is a distribution of func-

tions where the following holds: for any two objects x and y,

Pr
h∈F

[h(x) = h(y)] = sim(x,y), (2.5)

where h(x) is a hash function mapping vector x to a bit value, sim(x,y) is

some similarity function defined on the collection of objects [21, 53]. A k-bit

hash key can be defined using hash functions < h1, h2, . . . , hk > sampled from

13

F as:

g(x) = [h1(x), h2(x), . . . , hk(x)].

When g(x) = g(y), x and y collide in the hash table. Because the prob-

ability that two inputs collide is equal to the similarity between them, highly

similar objects are indexed together in the hash table with high probability.

In the hashing table construction phase, each database example is

hashed into l different hash tables using random permutations of the bits

of the hash key given by g(x). Each list of permuted hash keys is sorted lex-

icographically to form l sorted orders. For a query point, k-bit hash key is

computed using g and is indexed into each sorted order using binary search,

thus retrieving at most 2l examples. This technique guarantees that to retrieve

(1 + ǫ) approximate neighbors at most l = O(N1/(1+ǫ) examples need to be

looked up[21].

2.3 Multiplicative Weights Update Algorithm

The Multiplicative Weights Update algorithm (MW algorithm) is an

extension of the Winnow algorithm [74] for a generalized experts framework

[4]. This framework was implicitly used by [84] for solving several fractional

packing and covering problems. This approach was formalized and extended

to semi-definite programs in [3].

In the generalized experts (GE) framework there is a set of n experts,

a set of events E, and a penalty matrix M such that the i-th expert incurs a

14

penalty of M(i, j) for an event j ∈ E. The penalties are assumed to be bounded

and lie in the interval [−ρ, ρ] for a fixed ρ > 0. At each time step t = 1, 2, . . . ,

an adversary chooses an event jt ∈ E so that the i-th expert incurs a penalty of

M(i, jt). The goal in the GE framework is to formulate a prediction algorithm

that chooses a distribution Dt = (pt
1, . . . , p

t
n) on the experts at time step t, so

that the total expected loss incurred by the prediction algorithm is not much

worse than the total loss incurred by the best expert. Formally, the goal of

the prediction algorithm is to minimize

T
∑

t=1

n
∑

l=1

pt
lM(l, jt) − min

i

T
∑

t=1

M(i, jt).

Note that the distribution in round t, Dt, must be chosen without knowledge

of the event jt chosen at time step t. At every step t, the MW algorithm has

a weight wt
i assigned to expert i, and sets the distribution Dt = (pt

1, . . . , p
t
n),

where pt
i = wt

i/
∑

j wt
j. The weights at time step t + 1 are updated as:

wt+1
i =

{

wt
i(1 − δ)M(i,jt)/ρ if M(i, jt) ≥ 0,

wt
i(1 + δ)M(i,jt)/ρ if M(i, jt) < 0.

It can be shown that the multiplicative updates algorithm achieves

bounded expected loss.

Theorem 1 (Corollary 4 of [4]). Suppose that for all i and j ∈ E, M(i, j) ∈

[−ρ, ρ]. Let ǫ > 0 be an error parameter and let δ = min{ ǫ
4ρ

, 1
2
}, and T =

16ρ2 ln n
ǫ2

. Then, the following bound holds for the average expected loss of the

MW algorithm
∑T

t=1

∑n
l=1 pt

lM(l, jt)

T
≤ ǫ +

∑

t M(k, jt)

T
, ∀k.

15

2.3.1 Online Convex Programming

The online convex programming (OCP) framework [113, 60, 48] models

various useful online learning problems like industrial production and network

routing. The OCP framework involves a fixed convex set K and a sequence

of unknown cost functions f1, f2, . . . : K → R. At each time step t, a decision

maker must choose a point zt ∈ K and incurs a cost ft(zt). However, the

choice of zt must be made with the knowledge of z1, . . . , zt−1 and f1, . . . , ft−1

alone i.e., without knowing ft. The total cost incurred by the algorithm after

T steps equals
∑

t ft(zt). The objective in OCP is to minimize the regret as

defined below:

R(T) =
T

∑

t=1

ft(zt) − min
z∈K

T
∑

t=1

ft(z). (2.6)

[113] has shown that in the case when the functions ft are convex

and differentiable with bounded gradient, one can achieve a regret of O(
√

T).

Let ‖K‖ = maxz1,z2∈K ‖z1 − z2‖ and G = maxz∈K,t∈{1,...} ‖
`

f t(z)‖, where

‖ · ‖ denotes the Euclidean norm (or Frobenius norm if the set K is defined

over matrices). Also, assume that
`

f t can be evaluated efficiently at any

given point z. Under the above assumptions [113] proposed a Generalized

Infinitesimal Gradient Ascent algorithm which achieves a regret of O((G2 +

‖K‖2)
√

T). The function GIGA in Algorithm 3 describes a slightly modified

version of [113]’s algorithm that achieves the following improved regret bound.

Theorem 2 (Adaptation of Theorem 1 of [113]). The following bound holds

16

for the regret of the GIGA sub-routine of Algorithm 3 after T rounds,

R(T) ≤ G · ‖K‖
√

T (2.7)

Proof sketch: Using the modified step-size in Algorithm 2, the theorem follows

from Zinkevich’s original proof.

2.4 Related Work

We briefly review related work to the research presented in this pro-

posal.

Distance Learning: Recently, a number of techniques have been

proposed for distance learning, including several techniques to learn a Ma-

halanobis metric [110, 10, 24], and methods to learn example-specific local

distance functions [29]. Embedding functions can be useful both to capture

(as closely as possible) a desired set of provided distances between points, as

well as to provide an efficient approximation for a known but computationally

expensive distance function of interest [6, 42]. In contrast to learned metrics,

such geometric embeddings are meant to mirror a fixed distance function and

do not adapt to reflect supervised constraints.

Kernel Learning: Existing kernel learning methods can be broadly di-

vided into two categories. The first category includes primarily task-dependent

approaches, where the intrinsic structure in the data is assumed, and the goal

is to maximally tune the kernel to the provided side-information for the given

17

task, e.g., class labels for classification, must (cannot)-link constraints for semi-

supervised clustering. Prominent methods include multiple kernel learning

[70], hyper-kernels [83], hyper-parameter cross validation [90], etc. In Chap-

ter 3, we present a Mahalanobis metric based framework for learning kernel

functions, which can then be extended to learn low-rank kernels. A drawback

of this approach is that it is primarily based on “local” kernels (e.g., the RBF

kernel), and do not exploit the geometry of the unlabeled data.

The other category of kernel learning methods consist of data-dependent

approaches, which explicitly model the geometry of the data, e.g., underlying

manifold structure. These methods appear in both unsupervised and semi-

supervised learning scenarios. For the unsupervised case, [109] proposed a

method to recover the underlying low dimensional manifold by learning a ker-

nel over it. More generally, [13] show that a large class of manifold learning

methods are equivalent to learning certain types of kernels. For the semi-

supervised setting, data-dependent kernels are used to enforce smoothness on

a graph or a similar structure composed from all of the data. Like in the un-

supervised case, the kernel captures the manifold and/or cluster structure of

the data, and after integrated a regularized classification model, often provides

good generalization performance [94, 18].

Our geometry-aware kernel learning method (see Chapter 6) combines

the two kernel learning paradigms, thereby exploiting the geometry of the

data while retaining the task-specific feature. Related work in this direc-

tion is limited and largely focuses on learning parameters for a specific family

18

of data-dependent kernels, e.g., spectral kernels [112, 69]. In comparison,

our method is based on a non-parametric information-theoretic metric/kernel

learning method and is more flexible. Furthermore, existing methods are typi-

cally designed for a particular application only, e.g., semi-supervised classifica-

tion, and are not able to handle different type of constraints, such as distance

constraints.

Low-rank Kernel Learning: For large scale distance learning, low-

rank kernel learning algorithms are of great importance as they help in scaling

the existing kernel learning methods [70] to large data sets. [8] introduced

a low-rank kernel learning method where they use incomplete Cholesky fac-

torization to relax the rank constraint. [68] introduces a spectral Bregmann

divergences based objective function where the objective function itself con-

strains the final kernel to have the same rank as the input kernel K0. A

disadvantage of this method is that the initial kernel K0 needs to be low-

rank, while in practice this is often not the case. Also, most of the existing

low-rank kernel learning methods are restricted to transductive setting. In

Chapter 7, we introduce kernel learning methods for both transductive and

inductive settings. Furthermore, our methods do not require the initial kernel

to be low-rank.

Our low-rank kernel learning formulations lead to the problem of rank

minimization over intersection of polyhedral sets and a small number of convex

constraints. Most existing methods for rank minimization over convex sets are

based on relaxing the non-convex rank function to a convex function, e.g., the

19

trace-norm [26, 85] or the logarithm of the determinant [27]. Unfortunately,

these heuristics do not have any guarantees on the quality of the solution in

general. Recently, there a number of methods have been proposed for solving

the affine constrained rank minimization problem exactly [85, 79, 72, 38], most

of which extends the corresponding techniques for compressed sensing to rank

minimization [20, 31, 101, 16]. However, these methods assume a restricted

isometry property on the affine constraints matrix which typically does not

hold for the constraints matrix encountered in kernel learning. Furthermore,

most of the existing methods are shown to be optimal for only linear equality

constraints. Thus these approaches are limited in its applicability and it is

not clear how to extend it to a larger class of rank minimization problems.

We demonstrate empirically that our online learning based algorithms (see

Chapter 7) for rank minimization outperform the trace-norm relaxation based

method [26, 85]. We also remark that minimizing the trace-norm is computa-

tionally expensive, which further limits its applicability.

Several specific instances of the general low-rank matrix approximation

problems have been widely researched in the machine learning community.

Examples include low-rank kernel learning, SDE, sparse PCA and NNMA.

Most methods for these problems can be broadly grouped into the following

two categories: a) methods which drop the rank constraint and use the top

k eigenvectors of the solution to the relaxed optimization problem e.g., [109];

b) methods which factor the matrix X in RMP into ABT and optimize the

resultant non-convex problem e.g., [71, 62]. However, typically these methods

20

do not have any provable guarantees.

Fast Similarity Search: In order to efficiently index multi-dimensional

data, data structures based on spatial partitioning and recursive hyperplane

decomposition have been developed, e.g. k−d-trees [28] and metric trees [103].

Due to the particular importance of indexing local patch features, several tree-

based strategies have also been proposed [11, 82] in the vision community.

Some such data structures support the use of arbitrary metrics. However, while

their expected query time requirement may be logarithmic in the database size,

selecting useful partitions can be expensive and requires good heuristics; worse,

in high-dimensional spaces all exact search methods are known to provide little

query time improvement over a naive linear scan [53].

As such, researchers have considered the problem of approximate sim-

ilarity search, where a user is afforded explicit tradeoffs between the guar-

anteed accuracy versus speed of a search. Several randomized approximate

search algorithms have been developed that allow high-dimensional data to be

searched in time sub-linear in the size of the database, notably the locality-

sensitive hashing (LSH) methods of [53, 21]. Data-dependent variants of LSH

have been proposed: the authors of [32] select partitions based on where data

points are concentrated, while in [92] boosting is used to select feature dimen-

sions that are most indicative of similarity in the parameter space. This tunes

the hash functions according to the estimation problem of interest; however,

indexed examples must be sorted according to the input space (non-learned)

distance.minimas

21

While randomized algorithms such as LSH have been employed heavily

in various fields to mitigate the time complexity of identifying similar ex-

amples [91], their use has been restricted to generic measures for which the

appropriate hash functions are already defined; that is, direct application to

learned metrics was not possible. In Chapter 4, we devise a method that al-

lows knowledge attained from partially labeled data or paired constraints to

be incorporated into the hash functions. Our algorithm is theoretically sound:

there is provably no additional loss in accuracy relative to the learned metric

beyond the quantifiable loss induced by the approximate search technique.

Disparate Clustering: For disparate clustering, most of the existing

work has been in the semi-supervised setting. The semi-supervised clustering

problem of finding a clustering consistent with a given set of constraints has

been extensively studied ([105, 110, 14]). This approach has been applied to

the problem of recovering multiple clusterings by providing appropriate con-

straints. Must-link and cannot-link constraints have been extensively used

for semi-supervised clustering ([105, 106, 14]). Recently, Davidson et al.[22]

proposed an efficient incremental algorithm for must-link and cannot-link con-

straints. An alternative approach to the problem is taken by [9, 41, 40] where

it is assumed that a clustering of the data is given and the objective is to

find a clustering different from the given one. Our work for disparate cluster-

ing (see Section 8) differs from the above approaches in that our methods for

discovering the disparate clusterings are completely unsupervised.

A supervised approach to the related problem of learning hidden two-

22

factor structures from the observed data was suggested in [100]. Their method,

named Separable Mixture Model (SMM), models the data using a bilinear

function of the factors and can also be used for obtaining two clusterings of

the data. An advantage of our methods for disparate clustering over SMM is

that our methods are unsupervised compared to the supervised approach of

SMM. Also, our model can be extended to more than two factors, whereas it

is unclear how SMM could be extended to a data generated from more than

two-factors.

One of our approaches (“sum of parts” approach), introduced in Sec-

tion 8.1.2, is closely related to the factorial learning problem where each data

point is assumed to be generated by combining multiple factors. Ghahramani[34]

introduced a novel architecture named co-operative vector quantization (CVQ),

in which a set of multiple vector quantizers (VQ) combine linearly to generate

the input data. However, a drawback of CVQ is that it can have multiple

solutions. Many of these solutions give poor results for the problem of dis-

covering disparate clusterings, especially on our real-world applications. Also,

CVQ can be seen as a special case of our model. Another recent model related

to factorial learning is multiple cause vector quantization (MCVQ) (Ross and

Zemel [87]). In MCVQ it is assumed that the dimensions of the data can be

separated into several disjoint factors, which take on values independently of

each other. The factors are then modeled using a vector quantizer as in CVQ.

However, MCVQ also faces the same drawbacks of CVQ - existence of multiple

solutions - which leads to poor performance for our application of discovering

23

disparate clusterings.

The problem of learning convolutions of distributions that forms the

basis of our “sum of parts” approach (see Section 8.1.2) has been considered

in the statistics community - see for instance [30], [89], [88]. However, these

methods deal with learning convolutions of simple distributions like binomial,

Gaussian and Poisson, and do not consider mixtures of distributions. A fun-

damental problem with learning a convolution of Gaussians, as mentioned in

[89], is that the problem is not well-defined - there exist many solutions to the

learning problem. We face a similar problem in the M-step of our algorithm

for learning the convolution of mixtures of Gaussians, where the maximum

likelihood estimation has multiple solutions. We deal with this issue by reg-

ularizing the solution space in a way suitable for the purpose of recovering

disparate clusterings so that the problem becomes well-posed.

We emphasize that though we state the problem of recovering disparate

clusterings as one of learning independent components from the data, the prob-

lem we address is completely different from that of independent component

analysis (ICA) [52]. ICA tries to separate a multivariate signal into indepen-

dent additive univariate signals, whereas in our problem we try to decompose

the signal into independent multivariate signals, each of which may have high

correlation between its different dimensions.

24

Chapter 3

Metric and Kernel Learning: A Generic

Framework

In this chapter, we introduce a generic framework for metric learning

that encompasses various existing metric learning methods [24, 108, 93]. Our

framework learns a Mahalanobis distance function that is parameterized by a

positive semi-definite matrix W 1:

dW (x,y) = (x − y)T W (x − y).

Mahalanobis distance functions are a powerful class of distance func-

tions and have been shown to be successful in a variety of domains, e.g.,

computer vision [57], text mining [23], software analysis [46]. Recently, numer-

ous methods have been proposed for the task of Mahalanobis metric learning

[108, 110, 36, 93]. These methods work by exploiting distance information that

is intrinsically available in many learning settings. Our metric learning frame-

work incorporates the available distance information as convex constraints on

the Mahalanobis metric W , and can handle a number of different types of

distance constraints. To avoid over-fitting, and to ensure good generalization

1Throughout this thesis, the term Mahalanobis metric W refers to the Mahalanobis
distance function parameterized by W .

25

bounds, a regularization function can be specified. Furthermore, we extend our

framework to handle high-dimensional data where learning full Mahalanobis

metric W with a quadratic number of parameters is not feasible. To this end,

we restrict the learned metric to be a low-rank plus diagonal matrix and show

that under mild conditions, such a metric can be learned efficiently.

Another important problem that we address in this chapter is that of

kernel (or similarity) function learning. Kernel methods have been successful in

many machine learning problems. The basic idea behind kernel methods is to

use the inner product over a feature space rather than explicitly use the feature

space vectors. This is particularly useful when: 1) feature representation of

the data points may not be available or is high dimensional, or 2) the data set

has non-linear decision boundaries.

Typically, the success of a kernel method is heavily dependent on the

kernel function that is selected. Unfortunately, most existing kernel function

learning methods are either restricted to the transductive setting (i.e. test

points are known at the time of training) or have a specific parametric form.

In this chapter, we show that Mahalanobis distance functions can also be

used naturally and efficiently for the problem of kernel function learning. Our

learned kernel function is of the form k(x,y) = xT Wy, and can be computed

efficiently using an initial kernel function.

In summary, the contributions of this chapter are:

• We introduce a generic regularized framework for the problem of Ma-

26

halanobis metric learning. Our framework can handle a variety of side-

information and different regularization functions, and guarantees that

the optimal metric can be obtained in a polynomial number of time steps.

• We extend our framework to handle high dimensional metric learning

where learning a full Mahalanobis metric is expensive. Instead, we re-

strict our metric to have a small number of parameters and show that

under certain mild conditions, the metric can be learned efficiently.

• We show that for a large class of regularization functions, our framework

admits implicit computation of the metric in kernel space. Consequently,

our method can be used for learning kernel functions while incorporating

the provided side-information. Moreover, for large training databases,

our methods can be scaled by restricting the learned kernel function to

a small number of basis points.

• We show that a variety of existing metric learning methods are spe-

cific instances of our framework, and hence, can be kernelized efficiently

(i.e. computed implicitly in kernel space). Furthermore, by restricting

the learned kernel to a small basis set, we also improve the scalability

properties of these methods.

Most of the material presented in this chapter is based on our work [55, 24].

27

3.1 A Generic Framework for Metric Learning

Given a set of points X = {x1,x2, . . . ,xn}, such that xi ∈ R
d, the

task it to learn a Mahalanobis distance function parameterized by a positive

definite matrix matrix W ∈ S
d×d
+ :

dW (xi,xj) = (xi − xj)
T W (xi − xj). (3.1)

We assume that the side-information is provided in the form of convex con-

straints over the Mahalanobis matrix W . One of the most common form of

side-information is distance relationships between training points, e.g., pair-

wise distance constraints, relative distance constraints etc. Another commonly

available side-information is class label information that can be incorporated

in our framework as distance constraints or non-parametric probability esti-

mation constraints.

Given a set of convex constraints specifying the available side-information,

the metric learning problem is to learn a positive-definite matrix W parame-

terizing the corresponding Mahalanobis distance function (3.1). To avoid over-

fitting to the provided side-information and guarantee good generalization, we

introduce a regularization on W which leads to the following optimization

problem:

min
W

Tr(f(W))

s.t. gi(X
T WX) ≤ bi, 1 ≤ i ≤ m,

W º 0, (3.2)

28

where (gi, bi) specifies the available side-information and f : R
d×d → R

d×d is

a regularization function. Now, if f and gi’s are convex functions such that

a sub-gradient of f and of each gi is computable efficiently (in time poly(d))

then the above problem is solvable in polynomial time using standard convex

programming methods such as the ellipsoid method [44].

Next, we give a few examples of the different types of side-information

that can be handled in our framework:

1. Pair-wise distance/similarity constraints: Pairwise distance/similarity

constraints is one of the most commonly available side-information in

the context of metric learning. For example, in the problem of semi-

supervised clustering, points are constrained to be either similar (pair-

wise distance should be relatively small) or dissimilar (pairwise distance

should be larger). In fully supervised settings, constraints can be inferred

so that points in the same class have small distances (or high similarity)

and points in the different class have large distances. A pairwise distance

constraint between a pair of points xi and xj can be formulated as:

±Tr(XT WX(ei − ej)(ei − ej)
T) ≤ b,

where ei is the i-th standard basis vector. Similarly, a pairwise similarity

constraint is specified by:

±Tr(WXeie
T
j X) ≤ b,

29

2. Relative distance/similarity constraints: Relative distance/similarity

constraints is another popular class of supervision. For example, in infor-

mation retrieval settings, relative distance constraints between triplets

of points can be gathered through click-through feedback. In fully su-

pervised settings, points in the same class should have smaller distance

compared to the points in different classes. Also, relative distance simi-

larity constraints are useful in the area of psychology and market analysis

where it is hard to assign a distance/similarity value between two points

but it is easier to compare the distance between a triplet of points. Rel-

ative distance constraints for triplet (xi,xj,xk) is specified using:

±Tr(XT WX(ei − ej)(ei − ej)
T − (ei − ek)(ek − ek)

T) ≤ b.

3. Non-parametric probability estimation constraints: Non-parametric

probability estimation constraints are mostly used in the supervised/semi-

supervised setting [54], where conditional probability of a class given a

data point (p(c|x)) is estimated using Parzen’s window method. Such

constraints are specified using:

p(c|x) = ±
∑

i∈c Tr(WxxT
i)

∑C
t=1

∑

j∈t Tr(WxxT
j)

≥ b,

or equivalently,

Tr

xT W

(

±
∑

i∈c

xi − b

C
∑

t=1

∑

j∈t

xj

)T

 ≥ 0.

30

3.1.1 Relations to Existing Metric Learning Methods

Our metric learning framework generalizes almost all the existing con-

vex metric learning problem formulations. Here, we give examples of a few

such formulations.

• Information Theoretic Metric Learning (ITML): Davis et al. [24]

proposed the following metric learning problem formulation:

min
Wº0

Tr(WW−1
0) − log det(WW−1

0),

s.t. dW (xi,xj) ≤ bij, (i, j) ∈ S,

dW (xi,xj) ≥ bij, (i, j) ∈ D,

where S and D specify pairs of similar and dissimilar points respectively.

Clearly, ITML is an instantiation of our framework with the regulariza-

tion function f(W) = W
−1/2
0 WW

−1/2
0 − log(W

−1/2
0 WW

−1/2
0) and linear

pairwise distance constraints.

• Mahalanobis Metric for Clustering (MMC): In their seminal work,

Xing et al. [110] introduced the following problem:

max
W

∑

ij

(1 − yij)
√

(xi − xj)T W (xi − xj),

s.t.
∑

ij

yij(xi − xj)
T W (xi − xj) ≤ 1,

W º 0,

31

where yi is the class label for xi, yij = 1 if yi = yj and 0 otherwise. A

variational formulation of the above problem is:

max
W,t

t,

s.t.
∑

ij

yij(xi − xj)
T W (xi − xj) ≤ 1,

∑

ij

(1 − yij)
√

(xi − xj)T W (xi − xj) ≥ t,

W º 0.

For fixed t, clearly the above problem is an instance of (3.2) with f(W) as

a constant function. Similarly, Large Margin Nearest Neighbor (LMNN)

[108] and Maximally Collapsing Metric Learning (MCML) [36] can also

be seen as instantiations of our generic framework with constant regu-

larization function f .

• Relevant Component Analysis (RCA): RCA [10] computes the Ma-

halanobis metric W in closed form using:

W−1 =
1

n

L
∑

l=1

∑

i∈Ωl

(xi − µl)(xi − µl)
T , (3.3)

where Ωl is a chunklet or sub-class membership assignment and µl is the

mean of a chunklet Ωl. A chunklet is a subset of a class; all the points

in a chunklet belong to the same class, but points in different chunklets

need not belong to different classes. Note that, W computed using (3.3)

32

is the optimal solution to the following problem:

min
W

− log det W,

s.t.
1

n

L
∑

l=1

∑

i∈Ωl

(xi − µl)
T W (xi − µl) ≤ 1,

W º 0. (3.4)

Furthermore, µl can be written as a linear combination of xi’s. Hence,

the first constraint in (3.4) can be written as a convex function of XT WX.

Therefore, RCA can also be seen as an instantiation of our metric learn-

ing framework with regularization function f(W) = − log det W .

• Pseudo Online Metric Learning (POLA): Shalev-Shwartz et al.

[93] proposed the following metric learning formulation:

min
W

‖W‖2
F ,

s.t. yij(b − (xi − xj)
T W (xi − xj)) ≥ 1, ∀(i, j) ∈ P,

W º 0, (3.5)

where yij = 1 if xi and xj are similar, and yij = −1 if xi and xj are

dissimilar. P is a set of pairs of points with known distance constraints.

Clearly, POLA is an instantiation of our metric learning framework with

f(W) = ‖W‖2
F and the side-information available in the form of pair-

wise distance constraints.

33

3.2 High-dimensional Metric Learning

In Section 3.1, we proposed a generic framework for Mahalanobis dis-

tance learning, that can be seen as a generalization of a number of metric

learning methods. The number of parameters involved in these problems is

O(min(n2, d2)), where n is the number of training points and d is the dimen-

sionality of the data. This quadratic dependency effects not only the running

time for both training and testing, but also poses tremendous challenges in

estimating a quadratic number of parameters. For example, a data set with

10,000 dimensions leads to a Mahalanobis matrix with 100 million values. This

represents a fundamental limitation of existing approaches, as many modern

data mining problems possess relatively high dimensionality.

In this section, we present a generic framework for learning structured

Mahalanobis distance (kernel) functions that scale linearly with the dimen-

sionality (or training set size). Instead of representing the Mahalanobis dis-

tance/kernel matrix as a full d × d (or n × n) matrix with O(min(n2, d2))

parameters, our methods use compressed representations, admitting matri-

ces parameterized by O(min(n, d)) values. This enables the Mahalanobis dis-

tance/kernel function to be learned, stored, and evaluated efficiently in the

context of high-dimensional large training sets.

Now, we formulate our high-dimensional metric learning framework.

Consider a low-dimensional subspace in R
d and let the columns of U form an

orthogonal basis of this subspace. We will constrain the learned Mahalanobis

34

distance matrix to be of the form:

W = αId + Wl = W0 + ULUT , (3.6)

where α is a parameter, Id is the d-dimensional identity matrix, Wl denotes

the low-rank part of W and L ∈ S
k×k
+ with k ≪ min(n, d). Similar to prob-

lem (3.2), we propose the following problem to learn a fixed matrix (W0 plus

low-rank Mahalanobis metric):

min
W,L

Tr(f(W))

s.t. gi(X
T WX) ≤ bi, 1 ≤ i ≤ m,

W = αId + ULUT ,

W º 0.

(3.7)

Note that the above problem is identical to (3.2) except for an added con-

straint W = αId + ULUT . Assuming sub-gradient of f and gi can be com-

puted efficiently, the above problem can also be solved using standard convex

programming methods. However, sub-gradients of f and gi can potentially

cost Ω(d2) computational steps which is expensive for large d. Instead, we

would like to solve for W in time at most linear in d.

Below, we show that for a large class of functions f , the above problem

can be solved in time linear in d, and polynomial in k,m.

Theorem 3. Let f : R → R be a function defined over the reals. Consider

the extension of f to the spectrum of W ∈ S+
d , i.e. f(W) = Uf(Λ)UT , where

W = UΛUT is the eigenvalue decomposition of W (Definition 1.2, [49]). For

35

this class of functions f , (3.7) reduces to:

min
L

Tr(f(αIk + L))

s.t. gi(X
T X + XT ULUT X) ≤ bi, 1 ≤ i ≤ m,

L º −αIk.

(3.8)

Proof. Let U ′ ∈ R
d×d be an orthonormal basis for R

d obtained by completing

the basis represented by U , i.e., U ′ = [U U⊥] for a U⊥ ∈ R
d×(d−k) s.t. UT U⊥ = 0

and UT
⊥U⊥ = Id−k. Now,

W = αId + ULUT = αId + U ′
[

L 0
0 0

]

U ′

= U ′
(

αId +

[

L 0
0 0

])

U ′T . (3.9)

Now, it is easy to see that for a spectral function (Definition 1.2, [49]) f ,

f(UWUT) = Uf(W)UT , (3.10)

where U is an orthogonal matrix. Also, for any A,B ∈ R
d×d,

f

(

A 0
0 B

)

=

(

f(A) 0
0 f(B)

)

, (3.11)

Using (3.9), (3.10), and (3.11), we get:

Tr(f(W)) = Tr

(

U ′f

(

αU ′T IdU ′ +

[

L 0
0 0

])

U ′T
)

,

= Tr(f

([

αIk + L 0
0 αId−k

])

),

= Tr(f(αIk + L)) + (d − k)f(α). (3.12)

Theorem now follows using (3.12) and substituting for W = αIk + ULUT in

the constraints of (3.7).

36

We now present conditions on f and gi so that (3.7) can be solved in

time poly(n,m, k) and linear in d.

Theorem 4. Let f : R → R be a function defined over the reals such that:

• f(x) is a convex function.

• A sub-gradient of f(x) can be computed efficiently in O(1) time.

Similar to Theorem 3, consider the matrix generalization of f , i.e., f(W) =

Uf(Λ)UT , where W = UΛUT is the eigenvalue decomposition of W .

Let gi(B), B ∈ R
n×n be a convex function and its sub-gradient can be

computed in time poly(n). Then, problem (3.7) can be solved in time linear

in d and polynomial in n,m, k.

Proof. Using Theorem 3, problem (3.7) reduces to (3.8). Now consider the

objective function in (3.8). Let L = VLΛLV T
L be the eigenvalue decomposition

of L, then ∇Lf(αIk + L) = VLf ′(ΛL)V T
L . As a sub-gradient of f(x) can be

computed in O(1) for all x ∈ R, a sub-gradient of f(αIk +L) can be computed

using O(k3) operations.

Now, consider a constraint in (3.8), gi(X
T X +XT ULUT X) ≤ bi. Note

that XT X + XT ULUT X can be computed in time O((n2 + nk)d + k3) and

sub-gradient of gi(·) can be computed in time poly(n). Hence, sub-gradient

of gi(X
T X + XT ULUT X) can be computed in time linear in d and poly in

n, k. Finally, the positive definitess constraint is over a k × k matrix, and is

independent of d.

37

So, (3.8) is a convex program with m constraints and where all the

subgradients can be computed in time linear in d. Hence, it can be solved in

time poly(n,m, k) and linear in d using standard convex programming methods

like ellipsoid method [44].

3.3 Kernel Function Learning

In this section we study the problem of kernel function learning. We

utilize the high-dimensional metric learning framework presented in the pre-

vious section to learn a kernel function. Specifically, we learn a Mahalanobis

metric W using our metric learning framework (3.7) and the corresponding

kernel function is given by: k(x,y) = xT Wy. For the low-dimensional case,

W can be solved for explicitly using standard convex programming softwares

and can be used to form the kernel function k(x,y) = xT Wy.

The more interesting scenario is the high-dimensional case where the

feature vectors and the Mahalanobis metric W cannot be represented explic-

itly, and hence kernel learning is critical. The goal is to efficiently learn a

metric W such that the kernel function k(x,y) = φ(x)T Wφ(y) can be com-

puted implicitly in the feature space2. In this section we show that by selecting

appropriate basis U , we can use high-dimensional metric learning framework

(3.7) introduced in previous section to solve for W implicitly in the feature

space, i.e., the problem (3.7) is kernelizable. We assume that the kernel func-

2We denote high-dimensional inputs by φ(x) to mark their distinction from the small-
dimensional inputs x.

38

tion K0(x,y) = φ(x)T φ(y) between any two data points can be computed in

O(1) time. Denote W ∗ as an optimal solution for (3.7). Now, we formally

define kernelizable metric learning problems.

Definition 3.3.1. An instance of metric learning problem (3.7) is kernelizable

if the following conditions hold:

• Problem (3.7) is solvable efficiently in time poly(n, m) without explicit

use of feature space vectors X = [φ(x1), φ(x2), . . . , φ(xn)].

• Tr(W ∗Y CY T), where φY ∈ R
d×N is the feature space representation of

any given data points Y = [φ(y1), φ(y2), . . . , φ(yn)], can be computed in

time poly(N) for all C ∈ R
N×N .

Theorem 5. Let K0 = XT X and let R be a k-dimensional basis such that

R = XJ , where J ∈ R
n×k. Assuming f and gi’s satisfy the conditions specified

in Theorem 4, problem (3.7) with U = R(RT R)−1/2 = XJ(JT K0J)−1/2 is

kernelizable (see Definition 3.3.1)3.

Proof. Using Theorem 3, problem (3.7) reduces to (3.8). Now, consider a con-

straint gi(X
T X+XT ULUT X) ≤ bi specified in (3.8). As U = XJ(JT K0J)−1/2,

gi(X
T X+XT ULUT X) = gi(K0+K0J(JT K0J)−1/2L(JT K0J)−1/2JT K0). Hence,

input to gi can be computed in time O(n2 +nk+k3). Using similar arguments

to Theorem 4, (3.7) can be solved efficiently in time poly(n,m). Furthermore,

3If JT K0J is rank deficient then pseudo inverse of JT K0J can be used.

39

learned metric is of the form W ∗ = αIk+XJ(JT K0J)−1/2L∗J(JT K0J)−1/2XT .

Hence, Tr(W ∗Y CY T) = Tr(αY T Y +Y T XJ(JT K0J)−1/2L∗J(JT K0J)−1/2XT Y),

i.e., Tr(W ∗Y CY T) can be computed efficiently in terms of inner product in

the feature space, K0(X,Y) = XT Y .

3.3.1 Special Cases

In the previous section, we proved a general result on kernelization of

metric learning. In this section, we further consider a few special cases of

interest: the von Neumann divergence, the squared Frobenius norm and semi-

definite programming. For each of the cases, we derive the required optimiza-

tion problem to be solved and mention the relevant optimization algorithms

that can be used.

3.3.1.1 von Neumann Divergence

The von Neumann divergence is a generalization of the well known

KL-divergence to matrices. It is used extensively in quantum computing to

compare density matrices of two different systems [81]. It is also used in the

exponentiated matrix gradient method by [102], online-PCA method by [107]

and fast SVD solver by [5]. The von Neumann divergence between W and W0

is defined to be:

DvN(W,W0) = Tr(W log W − W log W0 − W + W0),

where both W and W0 are positive definite. Now, consider an instance of the

metric learning problem with linear constraints and von Neumann divergence

40

as the regularization function:

min
W

DvN(W, I)

s.t. Tr(WXCiX
T) ≤ bi, ∀1 ≤ i ≤ m,

W º 0. (3.13)

It is easy to see that DvN(W, I) = Tr(fvN(W)), where

fvN(W) = W log W − W + I = UfvN(Λ)UT ,

where W = UΛUT is the eigenvalue decomposition of W and fvN : R →

R, fvN(x) = x log x−x+1. Also, note that fvN(x) is a strictly convex function

with argminx fvN(x) = 1 and fvN(1) = 0. Hence, using Theorem 5, problem

(3.13) is kernelizable since DvN(W, I) satisfies the required conditions. Us-

ing (3.8) with U = X(XT X)−1/2, the optimization problem to be solved is

given by:

min
L

DvN (In + L, In)

s.t. Tr(CiK0 + CiK
1/2
0 LK

1/2
0) ≤ bi, ∀1 ≤ i ≤ m

L º −In, (3.14)

Next, we derive a simplified version of the above optimization problem. Note

that DvN(·, ·) is defined only for positive semi-definite matrices. Hence, the

constraint L º −In should be satisfied if the above problem is feasible. Thus,

the reduced optimization problem is given by:

min
L

DvN (In + L, In)

s.t. Tr(CiK0 + CiK
1/2
0 LK

1/2
0) ≤ bi, ∀1 ≤ i ≤ m. (3.15)

41

Now, we prove a lemma for general Bregman matrix divergences, of which

the von Neumann divergence is a special case. Consider the following general

optimization problem:

min
W

Dφ(W,W0)

s.t. Tr(WRi) ≤ si, ∀1 ≤ i ≤ m,

W º 0, (3.16)

where Dφ(W,W0) is a Bregman matrix divergence [65] generated by a real-

valued strictly convex function over symmetric matrices φ : R
n×n → R, i.e.,

Dφ(W,W0) = φ(W) − φ(W0) − Tr((W − W0)
T∇φ(W0)). (3.17)

Note that the von-Neumann divergence is a Bregman matrix divergence (see

Equation (3.17)) with the generating function φ(X) = Tr(X log X − X).

Lemma 1. The solution to the dual of the primal formulation (3.16) is given

by:

max
W,λ,Z

φ(W) − φ(W0) − Tr(W∇φ(W)) + Tr(W0∇φ(W0)) − s(λ)

s.t. ∇φ(W) = ∇φ(W0) − R(λ) + Z, (3.18)

λ ≥ 0, Z º 0, (3.19)

where s(λ) =
∑m

i=1 λisi and R(λ) =
∑m

i=1 λiRi.

Proof. First, consider the Lagrangian of (3.16):

L(W,λ, Z) = Dφ(W,W0) + Tr(WR(λ)) − s(λ) − Tr(WZ),

where R(λ) =
m

∑

i=1

λiRi, s(λ) =
m

∑

i=1

λisi, Z º 0, λ ≥ 0. (3.20)

42

Now, note that

∇W Dφ(W,W0) = ∇φ(W) −∇φ(W0). (3.21)

Setting the gradient of the Lagrangian with respect to W to be zero and

using (3.21), we get:

∇φ(W) −∇φ(W0) + R(λ) − Z = 0, (3.22)

and so, Tr(W∇φ(W0)) = Tr(W∇φ(W)) + Tr(WR(λ)) − Tr(WZ). (3.23)

Now, substituting (3.23) into the Lagrangian, we get:

L(W,λ, Z) = φ(W) − φ(W0) − Tr(W∇φ(W)) + Tr(W0∇φ(W0)) − s(λ),

where ∇φ(W) = ∇φ(W0) − R(λ) + Z. The lemma now follows directly.

Using Lemma 1 and simplifying using the fact that ∂Tr(X log X)
∂X

= log X,

we get the following dual for problem (3.13):

max
λ

− Tr(exp(−K
1/2
0 C(λ)K

1/2
0)) − b(λ)

s.t. λ ≥ 0, (3.24)

where C(λ) =
∑

i λiCi and b(λ) =
∑

i λi(bi − Tr(CiK0)).

Now, using Tr(AB) = Tr(BA) we see that:

Tr
((

−K
1/2
0 C(λ)K

1/2
0)k

)

= Tr ((−C(λ)K0)
k
)

.

43

Next, using the Taylor series expansion for the matrix exponential:

Tr(exp(−K
1/2
0 C(λ)K

1/2
0)) = Tr

(∞
∑

i=0

(−K
1/2
0 C(λ)K

1/2
0)i

i!

)

=
∞

∑

i=0

Tr
(

(−K
1/2
0 C(λ)K

1/2
0)i

)

i!

=
∞

∑

i=0

Tr ((−C(λ)K0)
i)

i!
= Tr(exp(−C(λ)K0)).

Hence, the resulting dual problem is given by:

min
λ

F (λ) = Tr(exp(−C(λ)K0)) + b(λ)

s.t. λ ≥ 0. (3.25)

Also, ∂F
∂λi

= Tr(exp(−C(λ)K0)CiK0) + bi. Hence, any first order smooth opti-

mization method can be used to solve the above dual problem. Also, similar

to [65], a Bregman’s cyclic projection method can be used to solve the primal

problem (3.15).

3.3.1.2 Squared Frobenius Divergence

The squared Frobenius norm divergence is defined as:

Dfrob(W,W0) =
1

2
‖W − W0‖2

F ,

and is a popular measure of distance between matrices. Consider the follow-

ing instance of (3.7) with the squared Frobenius divergence as the objective

44

function and linear inequality constraints:

min
W

Dfrob(W, ηI)

s.t. Tr(WXCiX
T) ≤ bi, ∀1 ≤ i ≤ m,

W º 0. (3.26)

Note that for η = 0 and Ci = (ea−eb)(ea−eb)
T − (ea−ec)(ea−ec)

T (relative

distance constraints), the above problem (3.26) is the same as the one proposed

by [93]. Below we see that, similar to [93], Theorem 5 in Section 3.3 guarantees

kernelization for a more general class of Frobenius divergence based objective

functions.

It is easy to see that Dfrob(W, ηI) = Tr(ffrob(W)), where

ffrob(W) = (W − ηI)T (W − ηI) = Uffrob(Λ)UT ,

W = UΛUT is the eigenvalue decomposition of W and ffrob : R → R, ffrob(x) =

(x−η)2. Note that ffrob(x) is a strictly convex function with argminx ffrob(x) =

η and ffrob(η) = 0. Hence, using Theorem 5, problem (3.26) is kernelizable

since Dfrob(W, ηI) satisfies the required conditions. Using (3.8), the optimiza-

tion problem to be solved is given by:

min
L

‖L‖2
F

s.t. Tr(ηCiK0 + CiK
1/2
0 LK

1/2
0) ≤ bi, ∀1 ≤ i ≤ m,

L º −ηIn. (3.27)

The above problem can be solved using standard convex optimization tech-

niques like interior point methods.

45

3.3.1.3 SDPs

In this section we consider the case when the regularization function

in (3.7) is a linear function. Examples of similar formulations for metric

learning include MMC [110], LMNN [108]. We consider the following generic

semidefinite program (SDP) to learn a linear transformation W :

min
W

Tr(XC0X
T W)

s.t. Tr(WXCiX
T) ≤ bi, ∀1 ≤ i ≤ m

W º 0. (3.28)

Here we show that this problem can be efficiently solved for high dimensional

data in its kernel space.

Theorem 6. Problem (3.28) is kernelizable.

Proof. (3.28) has a constant regularization function, i.e., it is a non-strict

convex problem that may have multiple solutions. A variety of regularizations

can be considered that lead to slightly different solutions. Here, we consider

two regularizations:

• Frobenius norm: We add a squared Frobenius norm regularization

to (3.28) so as to find the minimum Frobenius norm solution to (3.28)

(when γ is sufficiently small):

min
W

Tr(XC0X
T W) +

γ

2
‖W‖2

F

s.t. Tr(WXCiX
T) ≤ bi, ∀1 ≤ i ≤ m,

W º 0. (3.29)

46

Consider the following variational formulation of the problem:

min
t

min
W

t + γ‖W‖2
F

s.t. Tr(WXCiX
T) ≤ bi, ∀1 ≤ i ≤ m

Tr(XC0X
T W) ≤ t

W º 0. (3.30)

Note that for constant t, the inner minimization problem in the above

problem is similar to (3.26) and hence can be kernelized. Corresponding

optimization problem is given by:

min
L,t

t + γ‖L‖2
F

s.t. Tr(CiK
1/2
0 LK

1/2
0) ≤ bi, ∀1 ≤ i ≤ m

Tr(C0K
1/2
0 LK

1/2
0) ≤ t

L º 0, (3.31)

Similar to (3.27), the above problem can be solved using convex opti-

mization methods.

• Log determinant: In this case we seek the solution to (3.28) with

minimum determinant. To this effect, we add a log-determinant regu-

larization:

min
W

Tr(XC0X
T W) − γ log det W

s.t. Tr(WXCiX
T) ≤ bi, ∀1 ≤ i ≤ m,

W º 0. (3.32)

47

The above regularization was also considered by [65], which provided a

fast projection algorithm for the case when each Ci is a one-rank matrix

and discussed conditions for which the optimal solution to the regularized

problem is an optimal solution to the original SDP.

Consider the following variational formulation of (3.32):

min
t

min
W

t − γ log det W

s.t. Tr(WXCiX
T) ≤ bi, ∀1 ≤ i ≤ m,

Tr(XC0X
T W) ≤ t,

W º 0. (3.33)

Note that the objective function of the inner optimization problem of

(3.33) satisfies the conditions of Theorem 5, and hence (3.33) or equiva-

lently (3.32) is kernelizable.

In summary, in this section, we showed that for a large class of regular-

ization functions f , general metric learning problem (3.2) can be kernelized,

i.e., can be used to learn a kernel function satisfying the provided side informa-

tion. Additionally, we studied a few existing metric learning formulations that

are instantiations of (3.2) and derive the corresponding optimization problem

for kernel learning.

48

3.4 Summary

In this chapter, we proposed a generic regularized framework for metric

learning (3.2). Our framework can handle a variety of distance constraints

and regularization functions. In fact, almost all the existing convex metric

learning methods can be seen as specific instances of our framework. For

high-dimensional datasets, we extended our framework to reduce the number

of learned parameters from quadratic to linear in the dimensionality d. Under

certain mild conditions (which almost all the existing methods satisfy), our

high-dimensional metric learning framework can be used to learn the metric

efficiently in time linear in d.

We also considered the problem of kernel function learning, and show

that under certain mild conditions, our metric learning framework can be used

for kernel learning as well. Similar to the metric learning case, we showed that

the learned kernel function can be restricted to a small number of parame-

ters, and hence, can be scaled for large datasets. This is particularly useful

for applications where sub-linear time approximate nearest neighbor search is

important. Finally, we considered a few examples of existing metric learning

methods and studied their corresponding kernel learning problem.

49

Chapter 4

Fast Similarity Search for Learned Metrics

In this chapter, we study a method for fast approximate similarity

search with learned Mahalanobis metrics. We formulate randomized hash func-

tions that incorporate side-information from partially labeled data or paired

constraints, so that the input examples may be efficiently indexed according

to the learned metric without resorting to a naive exhaustive scan of all items.

We present a straightforward solution for the case of relatively low-dimensional

input vector spaces, and further derive a solution to accommodate very high-

dimensional data for which explicit input space computations are infeasible.

The former contribution makes fast indexing accessible for numerous existing

metric learning methods (e.g., [110, 10, 24]), while the latter is of particular in-

terest for commonly used image representations, such as bags-of-words, multi-

dimensional multi-resolution histograms, and other high-dimensional features.

Some of the material presented in this chapter was published in [57].

4.1 Hashing for Semi-Supervised Similarity Search

The main idea of our approach is to learn a parameterization of a Ma-

halanobis metric based on the provided side-information, e.g., partial labels or

50

Q
111101

110111

110101

h r
1
…r

k

N

hr
1
…r

k

<<N

Q

Xi

Q
,

(a) Main idea of locality-sensitive hashing

(b) Paired constraints
(c) Original hash function (d) Semi-supervised hash

function

Figure 4.1: (a) When learning a metric, some paired constraints can be obtained for

a portion of the image database, specifying some examples that ought to be treated as

similar (straight line) or dissimilar (crossed out line). (b) Whereas existing randomized

LSH functions hash examples similar under the original distance together, (c) our semi-

supervised hash functions incorporate the learned constraints, so that examples constrained

to be similar—or other pairs like them—will with high probability hash together. The

circular red region in (b) denotes that the existing LSH functions generate a hyperplane

uniformly at random to separate images, in contrast, as indicated by the blue “hourglass”

region in (c), our hash functions bias the selection of random hyperplane to reflect the

specified (dis)similarity constraints.

paired constraints for some training examples, while simultaneously encoding

the learned information into randomized hash functions. These functions will

guarantee that the more similar inputs are under the learned metric, the more

likely they are to collide in a hash table. After constructing hash tables con-

taining all of the initial training (database) examples, examples similar to a

51

new instance are found in sub-linear time in the size of the database by eval-

uating the learned metric between the new example and any examples with

which it shares a hash bucket.

We learn Mahalanobis metric parameterized by A using the metric

learning framework introduced in Section 3.1, Chapter 3. Recall that, A is

obtained by solving a convex optimization problem of the form:

min
W

Tr(f(W))

s.t. gi(X
T WX) ≤ bi, 1 ≤ i ≤ m,

W º 0. (4.1)

Also, assuming f satisfies conditions provided in the Theorem 5, the learned

metric is of the form W = I + XSXT , where S ∈ R
n×n.

Now, we introduce a family of hash functions that accommodate learned

Mahalanobis distances, where we want to retrieve examples xi for an input xq

for which the value dW (xi,xq) resulting from (2.1) is small, or, in terms of the

kernel form, for which the value of sA(xi,xq) = xT
q Wxi is high.

4.1.1 Explicit Formulation

For the explicit case, we can adapt the randomized hyperplane hashing

approach of [21], which further follows from results in [37]. In the process

of designing a randomized algorithm for the MAX-CUT problem, Goemans

and Williamson demonstrated that, given a collection of vectors x1, ...,xn on

the unit sphere, and a randomly generated vector r, the following relationship

52

holds:

Pr[sign(xT
i r) 6= sign(xT

j r)] =
1

π
cos−1(xT

i xj).

In [21], Charikar uses this result to design hash functions for LSH for the inner

product similarity function. In particular, we let

hr(x) =

{

1, if rT x ≥ 0
0, otherwise

, (4.2)

which is a valid LSH function as given in (2.5).

This may be naturally extended to the setting when we learn a Ma-

halanobis distance. For the explicit case, we assume that metric is learned

using our general metric learning framework (4.1) where function f is any

convex function for which a sub-gradient can be computed efficiently. Given

the matrix learned metric W , such that W = GT G, we generate the following

randomized hash functions hr,W , which accept an input point and return a

hash key bit:

hr,W (x) =

{

1, if rT Gx ≥ 0
0, otherwise

, (4.3)

where the vector r is chosen at random from a d-dimensional Gaussian distri-

bution with zero mean and unit variance. This construction leverages earlier

results showing that (i) the probability of two unit vectors having a dot prod-

uct with random vector r that are opposite in sign is proportional to the angle

between them [37], and (ii) the sign of rT xi is therefore a locality-sensitive

function for the inner product of any two inputs xi and xj [21].

53

Thus by parameterizing the hash functions instead by G (which is com-

putable since W is p.d.), we obtain the following relationship:

Pr [hr,W (xi) = hr,W (xj)] = 1 − 1

π
cos−1

(

xT
i Wxj

√

|Gxi||Gxj|

)

,

which sustains the LSH requirement of (2.5) for a learned Mahalanobis metric,

whether W is computed using the method of [24] or otherwise [110, 108, 10].

Essentially we have shifted the random hyperplane r according to W , and

by factoring it by G we allow the random hash function itself to “carry” the

information about the learned metric. The denominator in the cosine term

normalizes the learned kernel values.

In this case, we could transform all the data according to W prior to

hashing, i.e, x → W 1/2x and use standard Euclidean nearest neighbor hash-

ing techniques; however such a technique would require transformation of test

points also which would require additional O(d2) computation. Furthermore,

the choice of presentation here helps set up the more complex formulation

we derive below. Note that (4.3) requires that the input dimension d be low

enough that W can be handled in memory directly, allowing explicit optimiza-

tion of (4.1).

4.1.2 Implicit Formulation

We are particularly interested in the case where the dimensionality

d may be very high—say on the order of 104 to 106—but the examples are

sparse and therefore representable (e.g., bags of words or histogram pyra-

mids [95, 42]). Even though the examples are each sparse, the matrix A can

54

be dense, with values for each dimension. In this case, the kernelized metric

learning techniques are necessary. However, this complicates the computation

of hash functions, as they can no longer be computed directly as in (4.3) above.

Thus, in this section we derive a new algorithm to make simultaneous implicit

updates to both the hash functions and the metric.

Here, we assume that the metric is learned using our high-dimensional

metric learning framework (see Section 3.2). Recall that, by setting α = 1 and

U = ΦK
−1/2
0 , our high-dimensional metric learning framework learns a metric

of the form W = I + ΦK
−1/2
0 LK

−1/2
0 ΦT , where Φ = [φ(x1), . . . , φ(xc)] be

the d × c matrix of the initial c data points selected from the training points

that forms the basis R = Φ to which W is restricted to. We denote high-

dimensional inputs by φ(x) to mark their distinction from the dense inputs

x handled earlier. Let φ(xi)
T φ(xj) be the initial (non-learned) kernel value

between example xi and the input xj. Initially, K0 = ΦT Φ, and so, implicitly,

W0 = I. As in the explicit formulation above, the goal is to wrap G into the

hash function, i.e. compute rT Gφ(x), but now we must do so without working

directly with G.

In the following, we will show that an appropriate hash function hr,W

for inputs φ(x) can be defined as:

hr,W (φ(x)) =

{

1, if rT φ(x) +
∑c

i=1 γr
i φ(xi)

T φ(x) ≥ 0
0, otherwise

, (4.4)

where φ(xi)
T φ(x) is the original kernel value between xi and the query x, and

γr
i are coefficients computed once (offline) during metric learning (and will be

55

defined below). Note that while G is dense and therefore not manageable,

computing rT φ(x) is computationally inexpensive, as only the entries of r

corresponding to non-zero entries in φ(x) need to be generated. Should the

inputs be high-dimensional but dense, our implicit form is still valuable, as we

bypass computing O(d2) products with G and require only O(d) inner products

for rT φ(x).

Next we show that for W = GT G learned using our high-dimensional

metric learning framework, G can be computed efficiently in terms of the

initially chosen c basis points, and hence, (4.4) can be computed efficiently.

Our construction relies on the following lemma.

Lemma 2. Let W = I + ΦK
−1/2
0 LK

−1/2
0 ΦT , where W º 0 and L ∈ R

c×c.

Also, assume Φ has full column rank. Then, W 1/2 = I + ΦSΦT , with

S = K
−1/2
0

(

−I + (I + L)1/2
)

K
−1/2
0 , (4.5)

where K0 = ΦT Φ.

Proof. Note that S given above is well defined as, W º 0 =⇒ I + L º 0.

Lemma now follows by substituting for S in W = W 1/2W 1/2.

Recall that using (3.7) with the basis R = Φ, Mahalanobis metric

W can be computed efficiently in terms of K0 = ΦT Φ and is of the form

W = I+ΦK
−1/2
0 LK

−1/2
0 ΦT . Using Lemma 2, G = I+ΦSΦT , where W = GT G,

56

S = K
−1/2
0

(

I + K
1/2
0 LK

1/2
0

)

K
−1/2
0 . Therefore, we have

rT Gφ(x) = rT φ(x) +
c

∑

i=1

c
∑

j=1

Sijr
T φ(xj)φ(xi)

T φ(x)

= rT φ(x) +
c

∑

i=1

γr
i φ(xi)

T φ(x),

where γr
i =

∑

j Sijr
T φ(xj), and is a notation substitution for the first equality.

This notation reflects that the values of each γr
i rely only on known constrained

points, and thus can be efficiently computed in the training phase, prior to

hashing anything into the database. Finally, having determined the expression

for rT Gφ(x), we arrive at our hash function definition in (4.4). Note the

analogy between the use of rT Gx and rT Gφ(x) in (4.3) and (4.4), respectively.

In summary, in this section, we presented a method for efficient com-

putation of learned hash function for high-dimensional data points in terms

of inner product between just a few of the training points. Our hash func-

tion is parameterized by a Mahalanobis metric W obtained using the high-

dimensional metric learning framework introduced in Section 3.2.

Note that, to compute the hash function defined in (4.4) we need to

compute S given in (4.5). This in turn requires computation of K−1
0 which can

be prohibitive for large databases. In the next section, we show that for the

special case of the Information Theoretic Metric Learning (ITML) method, S

can be obtained during the metric learning phase itself and do not need to

explicitly invert K0.

57

4.1.2.1 ITML based Hashing

In this section, we consider Information Theoretic Metric Learning

(ITML) approach, a special instance of the general metric learning problem

(3.7), in the context of locality sensitive hashing. Specifically, we show that

the parameters γr
i required for efficient computation of hash functions can be

obtained via simple updates while learning the metric itself.

Recall that, W 1 is obtained by repeatedly projecting the current solu-

tion onto a single constraint, via the update:

Wt+1 = Wt + βtWt(xit − xjt
)(xit − xjt

)T Wt, (4.6)

where xit and xjt
are the constrained data points for iteration t, and βt is a

projection parameter computed by the algorithm. See [24] for further details.

For the case of high dimensional data, W is implicitly updated using:

Kt+1 = Kt + βtKt(eit − ejt
)(eit − ejt

)T Kt, (4.7)

where the vectors eit and ejt
refer to the it-th and jt-th standard basis vectors,

respectively, and the projection parameter βt is the same as in (4.6)(see [24]).

Our construction relies on two technical lemmas, which are given below.

Lemma 3. Let B = I+βyyT be positive semi-definite. Then B1/2 = I+αyyT ,

with α = (±
√

1 + yT yβ − 1)/yT y.

Proof. The lemma follows directly using Lemma 2 where Φ = y.

1A variable without a subscript t denotes its value after convergence.

58

Lemma 4. For all t, if G0 = I and S0 = 0, then

Gt+1 = I + ΦSt+1Φ
T

St+1 = St + αt(I + StK0)(eit − ejt
)(eit − ejt

)T (I + K0S
T
t)(I + K0St).

Proof. We prove this lemma using induction. In the base case, S0 = 0, imply-

ing G0 = I and GT
0 G0 = W0 = I. Now, let the hypothesis holds for step t,

i.e. Gt = I + ΦStΦ
T . Note that this form for Gt is analogous to the form for

W = I + XMXT (however, the matrices S and M are not equivalent). Now

update for matrix G at step t + 1 is given by:

Gt+1 = (I + βtGtvtv
T
t GT

t)1/2Gt = (I + αtGtvtv
T
t GT

t)Gt, (4.8)

where, vt = φ(yt)− φ(zt) and α is given by Lemma (3). Now substituting for

Gt we get,

Gt+1 = I + ΦStΦ
T + αtGtvtv

T
t GT

t Gt (4.9)

Now, vt = Φ(eit − ejt
). Thus,

Gtvt = (I + ΦStΦ
T)Φ(eit − ejt

) = (Φ + ΦStΦ
T Φ)(eit − ejt

)

= Φ(I + StK0)(eit − ejt
), (4.10)

where last equality follows from ΦT Φ = K0. Similarly,

ΦGt = ΦT (I + ΦStΦ) = (Φ + ΦT ΦStΦ) = (I + K0St)Φ. (4.11)

Using Equation (4.9), (4.10) and (4.11),

Gt+1 = I + ΦStΦ
T + αtΦ(I + StK0)(eit − ejt

)

(eit − ejt
)T (I + K0S

T
t)(I + K0St)Φ. (4.12)

59

Thus substituting,

St+1 = St + αt(I + StK0)(eit − ejt
)(eit − ejt

)T (I + K0S
T
t)(I + K0St),

proves the lemma.

Recall the update rule for W from (4.6): Wt+1 = Wt + βtWtvtv
T
t Wt,

where vt = φ(yt) − φ(zt), if points yt and zt are involved in the constraint

under consideration at iteration t. We emphasize that just as this update

must be implemented implicitly via (4.7), so too we must derive an implicit

update for the Gt matrix required by our hash functions.

Since Wt is p.d., we can factorize it as Wt = GT
t Gt, which allows us to

rewrite the update as:

Wt+1 = GT
t (I + βtGtvtv

T
t GT

t)Gt.

As a result, if we factorize I +βtGtvtv
T
t GT

t , we can derive an update for Gt+1:

Gt+1 = (I + βtGtvtv
T
t GT

t)1/2Gt = (I + αtGtvtv
T
t GT

t)Gt, (4.13)

where the second equality follows from Lemma 3 using y = Gtvt, and αt is

defined accordingly.

Using (4.13) and Lemma 4, Gt can be expressed as Gt = I + ΦStΦ
T ,

where St is a c × c matrix of coefficients that determines the contribution of

each of the c points to G. Initially, S0 is set to be zero matrix, and from there

every St+1 is iteratively updated in O(c2) time via St+1 =

St + αt(I + StK0)(eit − ejt
)(eit − ejt

)T (I + K0S
T
t)(I + K0St).

60

Using this result, at convergence of the metric learning algorithm we

can compute rT Gφ(x) in terms of the c inner products φ(xi)
T φ(x) as follows:

rT Gφ(x) = rT φ(x) +
c

∑

i=1

c
∑

j=1

Sijr
T φ(xj)φ(xi)

T φ(x)

= rT φ(x) +
c

∑

i=1

γr
i φ(xi)

T φ(x),

where γr
i =

∑

j Sijr
T φ(xj). Note that, inversion of K0 is not required and S

can be computed efficiently while solving for W .

In this section we presented the main technical contribution of this

chapter: explicit and implicit methods to construct semi-supervised hash func-

tions. For the implicit case, we presented a generic method to compute hash

functions for our kernel learning framework and considered the special case of

kernels learned using ITML.

4.2 Searching Hashed Examples

Having constructed LSH functions for learned metrics, we can apply

existing methods [53, 21] to perform sub-linear time approximate similarity

search. Given N data points in a Hamming space and an input xq, approxi-

mate near-neighbor (ANN) techniques guarantee retrieval of example(s) within

the radius (1+ ǫ)D from xq in O(N1/(1+ǫ)) time, where the true nearest neigh-

bor is at a distance of D from xq. We employ the method of [21], which

requires searching M = 2N1/(1+ǫ) examples to obtain the first ANN. (Note

that M << N for large databases.) After hashing, we only need to compute

61

the learned kernel values between the query and the examples with which it

collided. The hashed neighbors are ranked according to these scores, and this

ranked list is used for k-NN classification, clustering, etc., depending on the

application.

To generate b-bit hash keys, we select b random vectors [r1, . . . , rb] to

form b hash functions and concatenate the resulting bits from (4.3) or (4.4).

There is a tradeoff in the selection of b: larger values will increase the accuracy

of how well the keys themselves reflect the learned metric, but will increase

computation time and can lead to too few collisions in the hash tables. On

the other hand, lower values of b make hashing faster, but the key will only

coarsely reflect our metric, and too many collisions may result.

Table 4.1 summarizes the computational complexity for the main steps

of our algorithm: projections during offline metric learning, computing each

hash bit for a given point, and computing the ANNs for a hashed query.

z is the number of non-zero entries in the query, z ≤ d. Having defined

theoretically sound locality-sensitive hash functions for learned metrics, we

can apply existing methods [53, 21] to perform sub-linear time approximate

similarity search. Given N data points in a Hamming space and an input

xq, approximate near-neighbor techniques guarantee retrieval of example(s)

within the radius (1+ǫ)D from xq in O(N1/(1+ǫ)) time, where the true nearest

neighbor is at a distance of D from xq.

To generate a b-bit hash key for every example, we select b random

vectors [r1, . . . , rb] to form b hash functions. The hash key for an input x

62

Step Explicit Implicit
Metric learning projection (offline) O(d2) O(c2)
Hashing: compute hr,A(x) O(d) O(z)
Search: identify the query’s ANNs O(Md) O(Mz)

Table 4.1: Computational complexity for the proposed method, using variables
defined in the text.

is then the concatenation of the outputs of (4.3) (or similarly, the outputs

of (4.4) for an input φ(x)). The tradeoff in the selection of b is as follows:

larger values will increase the accuracy of how well the keys themselves reflect

the metric of interest, but will also increase computation time and can lead

to too few collisions in the hash tables. On the other hand, if b is lower,

hashing will be faster, but the key will only coarsely reflect our metric, and

too many collisions may result. A query hashes to certain buckets in the hash

table, where it collides with some small portion of the stored examples. We

employ the search method of [21], which requires searching M = 2N1/(1+ǫ)

examples for the k = 1 approximate-NN. Then we compute the learned kernel

(or metric) values only between the query and those examples. The hashed

neighbors are ranked according to these scores, and this ranked list is used for

k-nn classification, clustering, etc., depending on the application.

4.3 Results

In the following we first apply our algorithm in the low-dimensional

setting to a nearest neighbor classification problem for software support. Then

we apply our algorithm in the implicit setting for image search in three distinct

63

domains: exemplar-based recognition, pose estimation, and feature indexing.

In all cases, our experimental goal is twofold: 1) to evaluate the impact on

accuracy a learned metric has relative to both standard baseline metrics and

state-of-the-art methods, and 2) to test how reliably our semi-supervised hash

functions preserve the learned metrics in practice when performing sub-linear

time database searches. We therefore report results in terms of both accuracy

improvements as well as speedups realized.

For all the experiments, we use ITML method for learning metric and

in the implicit hashing case, we compute the hash function using the updates

derived in Section 4.1.2.1. Throughout we select examples for (dis)similarity

constraints randomly from among a pool of examples. For categorical data,

(dis)similarity constraints are associated with points having different (same)

labels; for data with parameter vectors, constraints are determined based on

examples’ nearness in the parameter space. We compute the distance between

all pairs of a subset (≈ 100) of the database examples according to the non-

learned metric, and then let the distance constraints’ lower ℓ and upper u

limits be the 1-st and 99-th percentile of those values, respectively. We mea-

sure accuracy in terms of the error of the retrieved nearest neighbors’ labels,

which is either a parameter vector (in the case of the pose data) or a class

label (in the case of the patches and object images).

64

1 2 3 4 5 6 7 8 9 10 11

25

30

35

40

45

50

Number of hash bits

k−
N

N
 c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

 (
%

)
fo

r
10

 r
un

s
Latex dataset

L2 Linear Scan
L2 Hashing
ML Linear Scan
ML Hashing

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Number of hash bits

%
 o

f d
at

ab
as

e
se

ar
ch

ed
fo

r
10

 r
un

s

Latex dataset

L2 Hashing
ML Hashing

Figure 4.2: Comparison of the accuracy (left) and time requirements (right)
when hashing with the original and learned metrics for the Latex dataset.
Left plot shows k-nn classification accuracy; right plot shows the search time
in terms of the percentage of database items searched per query, both as a
function of the number of hash bits b. Results are from ten runs with random
query / database partitions, with ǫ = 1.5. Our learned hash functions reduce
the search to about 5% of the database, with virtually no loss in accuracy over
the exhaustive linear scan.

4.3.1 Clarify

We first evaluate our method for learned metric hashing on a nearest

neighbor (nn) classification problem using data from the Clarify system

of Ha et al. [46]. Clarify assists a programmer in diagnosing errors by

identifying previously seen abnormal termination reports with similar program

features, and pointing the programmer to other users who have had similar

problems. We experiment with a database of n=3825 such examples collected

from the Latex typesetting program. The features are d = 20-dimensional,

and so our explicit formulation for learning hash functions is most appropriate.

Paired similarity constraints are generated with information-theoretic metric

65

learning using 20 labeled examples from each class. For 10 random partitions

of the data, we extract 30 examples for each of its nine classes, and treat

the remainder as database examples. We measure the k = 4-nearest-neighbor

classification accuracy and search times over all 270 queries per run, under

four settings: the original Euclidean distance metric and a linear scan, the

original distance with LSH, the learned metric with a linear scan, and the

learned metric with LSH. For both hashing cases we fixed ǫ = 1.5.

Figure 4.2 shows the resulting accuracy and complexity gains. By in-

corporating the paired constraints, the learned metric shows clear accuracy

gains over the unconstrained Euclidean distance, yielding about 10% higher

correct classification rates. The k-nn rates for the both associated hashed

results are on average as good as the linear scan results, and in this case,

have little dependence on the number of hash functions used. As b increases,

however, the hash keys become more specific and allow larger amounts of the

database to be ignored for any given query (right-hand plot). When searching

only 5% of the database, our learned hash functions suffer no loss in accuracy

yet enable an average 13x speedup (maximum speedup 34x) relative to an

exhaustive scan with the learned metric (including the overhead cost of com-

puting the hash keys). Interestingly, for the same values of ǫ and b, the number

of examples searched with the learned hash functions is noticeably lower than

that of the generic hash functions, and has a tighter distribution. While the

indexing guarantees remain the same, we infer that just as the learned metric

adjusts the feature space so that in-class examples are more closely clustered,

66

Method d k=1 k=7 k=50
L2 linear scan 24K 8.9 12.0 15.1
L2 hashing 24K 9.4 12.8 15.6
PSH, linear scan 1.5K 9.4 12.2 15.9
PCA, linear scan 60 13.5 14.0 16.8
ML PCA, lin. scan 60 13.1 13.8 16.2
ML linear scan 24K 8.4 11.5 14.1
ML hashing 24K 8.8 12.1 14.9

Table 4.2: Mean pose error (in cm) obtained with each method. Our approach
(denoted ML) outperforms the L2 baseline and PSH [92].

the learned hash functions better map them to distinct keys.

4.3.2 Human Body Pose Estimation.

Next we demonstrate our method applied to single-frame human body

pose estimation. Example-based techniques to infer pose (e.g. [7, 92]) store a

large database of image examples that are labeled with their true pose (i.e.,

3d joint positions or angles). A query image is indexed into the database

according to image similarity, and the query’s pose is estimated based on the

pose parameters attached to those nearest neighbors (NN). Thus our objective

for this task is to learn a metric for the image features that reports small

distances for examples that are close in pose space, and to make the search

scalable by hashing according to the learned metric. This is similar to the

goals of the parameter-sensitive hashing (PSH) method of [92]. However our

approach is distinct from [92] in that it allows one to seamlessly both hash

and search according to the learned metric. As a result it may provide more

67

100 150 200 250 300 350 400 450 500
8

8.5

9

9.5

10

10.5

11

11.5

Number of bits (b)

M
ea

n
er

ro
r

pe
r

jo
in

t (
cm

)

Pose Estimation: Error vs Number of bits

ML Hashing
L

2
 Hashing

ML Linear Scan
L

2
 Linear Scan

1 1.5 2 2.5 3 3.5 4

8

9

10

11

12

13

14

15

16

17

ε

M
ea

n
er

ro
r

pe
r

jo
in

t (
cm

)

Pose Estimation: Error vs ε

ML Hashing
L

2
 Hashing

ML Linear Scan
L

2
 Linear Scan

Figure 4.3: Left: Error as a function of the number of hash bits. Fast search
with the learned metric is more accurate than the L2 baseline. For both,
the error converges around b=500 bits. Right: Hashing error relative to
an exhaustive linear scan as a function of ǫ, which controls the search time
required.

accurate retrievals, as we show empirically below.

We use a database of half a million examples provided by the authors

of [99], where PSH is employed within a pose tracker. The images were gen-

erated with Poser graphics software: human figures in a variety of clothes

are rendered in many realistic poses drawn from mocap data. Each image

is represented by a d = 24, 016-dimensional multi-scale edge detection his-

togram (EDH). The vectors’ high dimension requires our implicit formulation

for semi-supervised hash functions. We use a linear kernel over c = 50 ran-

domly selected examples as the initial kernel (K0). We hold out 1000 test

queries examples, and generate 1, 000, 000 similarity constraints among 50K

of the remaining training examples. For each, we constrain the distance of the

10 nearest exemplars (in terms of pose parameters) to be less than ℓ. Simi-

68

M
L
−
H
A
S
H

I
N
P
U
T

L2

−
H
A
S
H

P
S
H

Figure 4.4: Examples of pose estimates. Each column contains a different pose.
Top row contains query images, remaining rows show the best pose retrieved
by each method. Second row shows best pose obtained by our method

larly, of all the examples with a pose distance greater than a threshold t, 10

are randomly picked and their distance to the example is constrained to be

greater than u. The values of t and c are selected with cross-validation.

As baselines, we compute results for NN search with both the Euclidean

distance (L2) on the EDH’s, and the Hamming distance on the PSH embed-

dings provided by the authors of [99]. To hash with the L2 baseline we simply

69

apply [21]. We also use PCA to reduce the dimensionality of the EDH vectors

in order to apply our explicit formulation. We measure the error for a query by

the mean distance of its true joint positions to the poses in the k-NN. To give

a sense of the variety of the data, a random database example is on average

at a distance of 34.5 cm from a query.

Table 4.2 shows the overall errors for each method. (Throughout our

approach is denoted by ‘ML’.) With a linear scan, ML yields the most accurate

retrievals of all methods, and with hashing it outperforms all the hashing-based

techniques. The PCA-based results are relatively poor, indicating the need

to use the full high-d features and thus our implicit formulation. A paired-

error T -test reveals that our improvements over PSH and L2 are statistically

significant, with 99.95% confidence.

Figure 4.4 shows the NN retrieved by each method for five typical

queries. In most examples, L2 and PSH estimate the overall pose reasonably

well, but suffer on one or more limbs, whereas our approach more precisely

matches all limbs and yields a lower total error. While PSH does not improve

over the L2 baseline for this dataset (as it did for data in [92]), it does do

nearly as well as L2 when using about 16x fewer dimensions; it appears its

main advantage here is the ability to significantly reduce the dimension.

Our semi-supervised hash functions maintain the accuracy of the learned

metric, but for orders of magnitude less search time than the linear scan. With

our Matlab implementation, a linear scan requires 433.25 s per query, while

our hashing technique requires just 1.39 s. On average, metric learning with

70

hashing searches just 0.5% of the database. Figure 4.3 compares the error

obtained by ML+hashing and L2+hashing when varying the number of hash

bits (middle plot) and the search time allowed (right plot). For a large number

of bits, the hash keys are more precise and hence the error drops (although

hashing overhead increases). Similarly, since M = 2N1/(1+ǫ), for higher values

of ǫ we must search fewer examples, but accuracy guarantees decrease.

4.3.3 Exemplar-based Object and Scene Categorization

Next we evaluate our method applied for exemplar-based object and

scene recognition with the Caltech-101, a common benchmark, and a dataset

of scene images downloaded from Flickr. The goal is to predict the object or

scene class of a test example by finding the most visually similar examples in

the labeled database, and then allowing those neighbors to cast votes on the

label. In this set of experiments we demonstrate the flexibility of our approach

relative to the choice of a base metric, with results using three different kernels

defined in the vision literature [42, 73, 1].

4.3.3.1 Caltech-101 database

To compare the Caltech-101 images we consider learning kernels on

top of Grauman and Darrell’s pyramid match kernel (PMK) [42] applied to

SIFT features, and the kernel designed by Zhang and colleagues [1] applied to

geometric blur features. As described above, the PMK uses multi-resolution

71

0 5 10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70

80

number of training examples per class

m
ea

n
re

co
gn

iti
on

 r
at

e
pe

r
cl

as
s

Caltech 101: Comparison to Existing Methods

ML+CORR
ML+PMK
Varma and Ray (ICCV07)
Bosch et al. (CIVR07)
Frome et al. (ICCV07)
Zhang et al.(CVPR06)
Lazebnik et al. (CVPR06)
Berg (thesis)
Mutch & Lowe(CVPR06)
Grauman & Darrell(ICCV 2005)
Berg et al.(CVPR05)
Wang et al.(CVPR06)
Holub et al.(ICCV05)
Serre et al.(CVPR05)
Fei−Fei et al. (ICCV03)
SSD baseline

Figure 4.5: Comparison against existing techniques. Our method outperforms
all other single metric/kernel approaches.

histograms to estimate the correspondence between two sets of local image fea-

tures. To hash with the non-learned PMK, the pyramids are embedded as de-

scribed in [67]. The pyramid inputs are sparse but extremely high-dimensional

(d = O(106)), thus explicitly representing A is infeasible, and the implicit form

of our technique is necessary. The kernel in [1] also measures the correspon-

dences between local features, but by averaging over the minimum distance to

matching features in terms of the descriptors and their position in the image;

we will refer to it as CORR. Note that we can learn kernels for both the PMK

and CORR using the kernel learning formulation from [24], but can only hash

with the learned PMK, since an explicit vector space representation (φ(x)) for

the CORR kernel is unknown.

72

5 10 15 20 25 30
0

10

20

30

40

50

60

70

number of training examples per class

m
ea

n
re

co
gn

iti
on

 r
at

e
pe

r
cl

as
s

Caltech 101: Gains over Original (non−learned) Kernels

ML+CORR

ML+PMK

CORR

PMK

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

50

60

70

80

90

100

110

Epsilon (ε)

k−
N

N
 c

la
ss

ifi
ca

tio
n

er
ro

r
ra

te

Caltech101: Classification Error with Hashing

ML+PMK Hashing

PMK Hashing

ML+PMK Linear Scan

PMK Linear Scan

Figure 4.6: Left: Our learned kernels significantly improve NN search accu-
racy relative to their non-learned counterparts, the CORR and PMK kernels.
Right: Comparison of the k-NN classification error when hashing with the
original and learned PMK. This plot shows the accuracy-search time tradeoff
when using the original or learned hashing functions. CORR refers to the
kernel proposed by Zhang et al. [1]. (Best viewed in color.)

We first evaluate the effectiveness of metric learning itself on this dataset.

We pose a k-NN classification task, and evaluate both the original (PMK or

CORR) and learned kernels when used in a linear scan mode. We set k = 1

for our experiments; this value was chosen arbitrarily. We vary the number

of training examples T per class for the database, using the remainder as test

examples, and measure accuracy in terms of the mean recognition rate per

class, as is standard practice for this dataset.

Figure 4.5 shows our results relative to all other existing techniques

that have been applied to this dataset. Our approach outperforms all exist-

ing single-kernel classifier methods when using the learned CORR kernel: we

achieve 61.0% accuracy for T = 15 and 69.6% accuracy for T = 30. Our

73

learned PMK achieves 52.2% accuracy for T = 15 and 62.1% accuracy for

T = 30. Figure 4.6 shows specifically the comparison of the original baseline

kernels for NN classification. The plot on the left reveals gains in NN retrieval

accuracy; notably, our learned kernels with simple NN classification also out-

perform the baseline kernels when used with SVMs [1, 42]. Only the results

of recent multiple-metric approaches [29, 104, 17] (shown with dashed lines in

Figure 4.5) are more accurate, though they also incur the greater cost of ap-

plying each of the base kernels in sequence to all examples, while our method

requires only one comparison to be computed per example.

Now we consider hashing over the learned PMK. For T = 15, our

learned hash functions achieve 47% accuracy, and require about 10x less com-

putation time than a linear scan when accounting for the hash key computation

(here N = 1515, which is modest compared to the pose data evaluated above).

The righthand plot in Figure 4.6 shows the error of our learned PMK-based

hashing compared to the baseline [43] as a function of ǫ. For this data the value

of b had little effect on accuracy. As with the linear scan search, we still realize

significant accuracy improvements, but now with a guaranteed sub-linear time

search.

4.3.3.2 Flickr scene database

To evaluate our learned hash functions when the base kernel is the prox-

imity distribution kernel (PDK), we performed experiments with a dataset of

5400 images of 18 different tourist attractions from the photo-sharing site

74

Flickr. We took three cities in Europe that have major tourist attractions:

Rome, London, and Paris. The tourist sites for each city were taken from the

top attractions in www.TripAdvisor.com under the headings Religious site,

Architectural building, Historic site, Opera, Museum, and Theater. Overall,

the list yielded 18 classes: eight from Rome, five from London, and five from

Paris. The classes are: Arc de Triomphe, Basilica San Pietro, Castel SantAn-

gelo, Colosseum, Eiffel Tower, Globe Theatre, Hotel des Invalides, House of

Parliament, Louvre, Notre Dame Cathedral, Pantheon, Piazza Campidoglio,

Roman Forum, Santa Maria Maggiore, Spanish Steps, St. Pauls Cathedral,

Tower Bridge, and Westminister Abbey. We downloaded the first 300 images

returned from each search query to represent the data for each class. Since

not all images downloaded for a given tag actually contain the proper scene,

we manually added ground truth labels. About 90% of the initial tags on the

downloaded images were accurate.

Duplicate images and images that had no response from the interest

point detectors were removed and then replaced with lower ranked images so

that the number of images per category remained at 300. All images were

scaled down to have moderate width (320 pixels).

Note that the regular viewpoints and scales in the Caltech-101 images

above make it possible to improve the unordered set representation using sim-

ply image coordinate positions, which means the PMK with features including

spatial position are adequate. For the Flickr data, however, the viewpoint and

scale varies significantly across instances of the same scene, so the loose con-

75

0.2 0.4 0.6 0.8 1 1.2
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

ε

3−
N

N
 c

la
ss

ifi
ca

tio
n

er
ro

r
ra

te
Flickr: Classification Error with Hashing

ML+PDK Hashing
PDK Hashing
ML+PDK Linear Scan
PDK Linear Scan

0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

30

35

40

45

ε

%
 o

f t
he

 D
at

ab
as

e
S

ea
rc

he
d

Flickr: % of the Database Searched

ML+PDK Hashing
PDK Hashing

Figure 4.7: Scene classification on the Flickr dataset. Left: Hashing error
relative to an exhaustive linear scan as a function of ǫ, which controls the
search time required. Right: Amount of the database searched as a function
of ǫ. Clearly our method ML+PDK Hashing achieves significantly higher
accuracy while searching for a smaller size of the database.

figurations of features captured by the PDK provide a better way to preserve

semi-local geometry without being overly restrictive. We detect corner and

blob-like regions in the images using the Harris-affine [80] and Maximally Sta-

ble Extremal Regions (MSER) [77] detectors, and represent all regions with

SIFT descriptors [75]. The PDK requires a codebook to quantize features;

following [73], we set the number of visual words to be k = 200, and include

neighbors up to rank R = 64. We use the embedding described in [67] for

hashing with PDK.

We again pose a nearest-neighbor classification task, and compare re-

sults when using either a linear scan or hashing, with the original base PDK

or the learned PDK. We randomly select 275 images per class for training and

76

the remaining images for testing. Figure 4.7 shows the results. The linear scan

error for either hashing method show the best possible performance, and again

as we decrease the ǫ parameter, we can expect more accurate results at the

cost of longer query times. The learned PDK achieves a significantly higher

accuracy then the original base PDK while searching a smaller amount of the

Flickr database.

4.3.4 Indexing Local Patch Descriptors.

Finally, we evaluate our approach on a patch matching task using data

provided from the Photo Tourism project [96] and [51]. The dataset contains

about 300K local patches extracted from interest points in multiple users’

photos of scenes from different viewpoints. The objective is to be able to

rapidly identify any matching patches from the same 3d scene point in order

to provide correspondences to a structure from motion algorithm. For this

application, classifying patches is not so useful; rather, one wants to find all

relevant patches. Thus we measure accuracy in terms of precision and recall.

We add random jitter (scaling, rotations, and shifts) to all patches as

prescribed in [51], extract both the raw patch intensities and SIFT descriptors,

and then pose the retrieval task to the L2 baseline and our learned metrics

for each representation. To learn metrics we gather constraints from 10,000

matching and non-matching patch pairs, with a 50-50 mix taken from the Trevi

and Halfdome portions of the data. All methods are tested on 100K pairs from

the Notre Dame portion. The left plot in Figure 4.8 compares their accuracy

77

0 0.05 0.1 0.15 0.2 0.25
0.75

0.8

0.85

0.9

0.95

False Positive

T
ru

e
P

os
iti

ve
Photo Tourism: Comparison of ROC curves

ML+SIFT: 14.7

ML+Raw: 16.7
L

2
+SIFT: 23.4

L
2
+Raw: 31.1

100 200 300 400 500 600 700 800 900 1000
0.6

0.65

0.7

0.75

0.8

Number of nearest neighbors (k)

R
ec

al
l

Photo Tourism: Recall vs NN

ML Linear Scan

ML Hashing
L

2
 Linear Scan

L
2
 Hashing

Figure 4.8: Left: This plot illustrates accuracy improvements of the learned
metric (ML) relative to L2 baselines, for both raw patches (dimensionality
d = 4096) and SIFT descriptors (dimensionality d = 128). Right: This plot
shows the recall as a function of the number of SIFT patches retrieved, for
our method and the L2 baseline. Our semi-supervised hash functions maintain
accuracy close to a linear scan, while requiring much less search time.

via ROC curves for each feature and metric combination; the numbers in the

legend summarize the error in terms of the false positive rate once 95% of the

true positives are retrieved. ML+raw intensities yields a significant gain over

L2+raw, while ML+SIFT also gives some improvement.2

Finally, we consider our ML-hashing algorithm for the SIFT patches.

We measure accuracy by the relevance of the NN ranking: for increasing values

of k, we compute the recall rate within the top k-NN. We calculate this score

with and without hashing, and before and after metric learning. In order to

2In this experiment we were able to reproduce the baseline for L2 given in [51], however
we were unable to do so for their SIFT baseline, for which 6% error is obtained. We suspect
this is due to our un-optimized SIFT extraction, and that ML would continue to yield similar
improvements as above if provided better descriptors.

78

control k for the hashing, we consider as many nearby hash bins as necessary.

In the right plot in Figure 4.8, we see that the learned metric outperforms the

L2 baseline, and that hashing does not noticeably degrade accuracy. When

k = 1000, we search only 16.1% of the database when hashing over the learned

metric, and when k = 1, we search only 0.8%, leading to substantial gains in

retrieval time (about a factor of 80 vs. linear scan).

4.4 Summary

In this chapter, we introduced a method to enable efficient approxi-

mate similarity search for learned metrics. Our main contribution is a new

algorithm to construct theoretically sound locality-sensitive hash functions for

both implicit and explicit parameterizations of the Mahalanobis distance func-

tion. For high-dimensional data, we show that a hash function can be com-

puted efficiently for metrics learned using our high-dimensional metric learning

framework (3.7). Furthermore, for the special case of the ITML method [24],

we derive simultaneous implicit updates for both the hash function and the

learned metric. Experiments demonstrate our technique’s accuracy and flexi-

bility for a number of large-scale search tasks.

79

Chapter 5

Online Metric Learning

The metric learning framework we introduced in Chapter 3 assumes

that all the side-information is available at once and is used in an offline

training phase. However, in many real applications, the desired distance func-

tion may need to change gradually over time as additional information or

constraints are received. For instance, in image search applications on the

internet, online click-through data that is continually collected may impact

the desired distance function. To address this need, recent work on online

metric learning algorithms attempts to handle constraints that are received

one at a time [93, 24]. Unfortunately, current methods suffer from a number

of drawbacks, including speed, bound quality, and empirical performance.

Further complicating this scenario is the fact that fast retrieval methods

must be in place on top of the learned metrics for many applications dealing

with large-scale databases. For example, in image search applications, relevant

images within very large collections must be quickly returned to the user, and

constraints and user queries may often be intermingled across time. Thus a

good online metric learner must also be able to support fast similarity search

routines. This is problematic since existing methods (e.g., locality-sensitive

80

hashing [35, 21] or kd-trees) assume a static distance function, and are expen-

sive to update when the underlying distance function changes.

In this chapter, we consider the problem of online metric learning. Our

goal is to make metric learning practical for real-world learning tasks in which

both constraints and queries must be handled efficiently in an online manner.

To that end, we first develop an online metric learning algorithm that uses

LogDet regularization and exact gradient descent. The new algorithm is in-

spired by the metric learning algorithm studied in [24]; however, while the loss

bounds for the latter method are dependent on the input data, our loss bounds

are independent of the sequence of constraints given to the algorithm. Fur-

thermore, unlike the Pseudo-metric Online Learning Algorithm (POLA) [93],

another recent online technique, our algorithm requires no eigenvector com-

putation, making it considerably faster in practice. We further show how our

algorithm can be integrated with large-scale approximate similarity search.

We devise a method to incrementally update locality-sensitive hash keys dur-

ing the updates of the metric learner, making it possible to perform accurate

sub-linear time nearest neighbor searches over the data in an online manner.

We compare our algorithm to related existing methods using a vari-

ety of standard data sets. We show that our method outperforms existing

approaches, and even performs comparably to several offline metric learning

algorithms. To evaluate our approach for indexing a large-scale database, we

include experiments with a set of 300,000 image patches; our online algorithm

effectively learns to compare patches, and our hashing construction allows

81

accurate fast retrieval for online queries.

5.1 Online Metric Learning

In this section we introduce our model for online metric learning, de-

velop an efficient algorithm to implement it, and prove regret bounds.

5.1.1 Formulation and Algorithm

As in previous chapters, we restrict ourselves to learning a Mahalanobis

distance function over our input data, which is a distance function parame-

terized by a d × d positive definite matrix W . Recall that, the squared Ma-

halanobis distance between given d-dimensional vectors u and v is defined

as

dW (u,v) = (u − v)T W (u − v).

In this chapter, we assume that the side-information is available in form of

distance or similarity constraints that arise from supervised information—for

example, the distance between two points in the same class should be “small”.

In contrast to offline approaches, which assume all constraints are pro-

vided up front, online algorithms assume that constraints are received one at

a time. That is, we assume that at time step t, there exists a current distance

function parameterized by Wt. A constraint is received, encoded by the triple

(ut,vt, yt), where yt is the target distance between ut and vt. Using Wt, we first

predict the distance ŷt = dWt
(ut,vt) using our current distance function, and

incur a loss ℓ(ŷt, yt). Then we update our matrix from Wt to Wt+1. The goal

82

is to minimize the sum of the losses over all time steps, i.e. LW =
∑

t ℓ(ŷt, yt).

One common choice is the squared loss: ℓ(ŷt, yt) = 1
2
(ŷt − yt)

2. We also con-

sider a variant of the model where the input is a quadruple (ut,vt, yt, bt),

where bt = 1 if we require that the distance between ut and vt be less than

or equal to yt, and bt = −1 if we require that the distance between ut and vt

be greater than or equal to yt. In that case, the corresponding loss function is

ℓ(ŷt, yt, bt) = max(0, 1
2
bt(ŷt − yt))

2.

A typical approach [63, 24, 93] for the above given online learning

problem is to solve for Wt+1 by minimizing a regularized loss at each step:

Wt+1 = argmin
W≻0

D(W,Wt) + ηℓ(dW (ut,vt), yt), (5.1)

where D(W,Wt) is a regularization function and ηt > 0 is the regularization

parameter. As in [24], we use the LogDet divergence Dℓd(W,Wt) as the reg-

ularization function. It is defined over positive definite matrices and is given

by Dℓd(W,Wt) = tr(WW−1
t)− log det(WW−1

t)−d. This divergence has previ-

ously been shown to be useful in the context of metric learning [24]. It has a

number of desirable properties for metric learning, including scale-invariance,

automatic enforcement of positive definiteness, and a maximum-likelihood in-

terpretation.

Existing approaches solve for Wt+1 by approximating the gradient of

the loss function, i.e. ℓ′(dW (ut,vt), yt) is approximated by ℓ′(dWt
(ut,vt), yt)

[63, 24, 93]. While for some regularization functions (e.g. Frobenius diver-

gence, von-Neumann divergence) such a scheme works out well, for LogDet

83

regularization it can lead to non-definite matrices for which the regularization

function is not even defined. This results in a scheme that has to adapt the

regularization parameter in order to maintain positive definiteness [24].

In contrast, our algorithm proceeds by exactly solving for the updated

parameters Wt+1 that minimize (5.1). Since we use the exact gradient, our

analysis will become more involved; however, the resulting algorithm will have

several advantages over existing methods for online metric learning. By setting

gradient of (5.1) with LogDet regularization to be zero w.r.t. W :

W−1
t+1 = W−1

t + η(ȳ − yt)ztz
T
t ,

where zt = ut − vt and ȳ = dWt+1
(ut,vt) = zT

t Wt+1zt. Using straightforward

algebra and the Sherman-Morrison inverse formula, we can show that the

resulting solution to the minimization of (5.1) is:

Wt+1 = Wt −
η(ȳ − yt)Wtztz

T
t Wt

1 + η(ȳ − yt)zT
t Wtzt

. (5.2)

It is not immediately clear that this update can be applied, since ȳ is a function

of Wt+1. However, by multiplying the update in (5.2) on the left by zT
t and

on the right by zt and noting that ŷt = zT
t Wtzt, we obtain the following:

ȳ = dWt+1
(ut,vt) = zT

t Wt+1zt =
ŷt

1 + η(ȳ − yt)ŷt

. (5.3)

(5.3) is a quadratic equation in ȳ, and can be solved as

ȳ =
ηytŷt − 1 +

√

(ηytŷt − 1)2 + 4ηŷ2
t

2ηŷt

. (5.4)

84

We justify ignoring the other solution to the quadratic equation later in the

proof of Theorem 7. We can solve directly for ȳ using the above given formula,

and then plug this into the update (5.2). For the case when the input is a

quadruple and the loss function is the squared hinge loss, we only perform the

update (5.2) if the new constraint is violated.

It is possible to show that the resulting matrix Wt+1 is positive definite;

the proof appears below in Theorem 7.

Theorem 7. Suppose Wt is positive-definite, then Wt+1 given by the LEGO

update (5.2) is positive definite.

Proof. We prove the theorem using mathematical induction. The base case

holds as the initial matrix W0 = 1
d
I is positive definite.

Now we show that Wt+1 is positive-definite(p.d.) if Wt is p.s.d. If Wt

is a p.d. matrix then ŷ = zT Wtz ≥ 0 for all z. Now,

√

(ηytŷt − 1)2 + 4ηŷ2
t ≥ |ηytŷt − 1|,

as η > 0. Thus, using (5.4), ȳ = zT
t Wt+1zt ≥ 0 for all zt. Hence, Wt+1 is

p.d. This also justifies our rejection of the other solution to the quadratic

equation (5.3), since otherwise ȳ ≤ 0, implying the resulting Wt+1 would be

indefinite.

The fact that this update maintains positive definiteness is a key ad-

vantage of our method over existing methods; POLA, for example, requires

85

projection to the positive semidefinite cone via an eigendecomposition. The

final loss bound in [24] depends on the regularization parameter ηt from each

iteration and is in turn dependent on the sequence of constraints, an undesir-

able property for online algorithms. In contrast, by minimizing the function ft

we designate above in (5.1), our algorithm’s updates automatically maintain

positive definiteness. This means that the regularization parameter η need

not be changed according to the current constraint, and the resulting bounds

(Section 5.1.2) and empirical performance are notably stronger.

We refer to our algorithm as LogDet Exact Gradient Online (LEGO),

and use this name throughout to distinguish it from POLA [93] (which uses

a Frobenius regularization) and the Information Theoretic Metric Learning

(ITML)-Online algorithm [24] (which uses an approximation to the gradient).

5.1.2 Analysis

We now analyze the regret bounds for our online metric learning algo-

rithm.

To evaluate the online learner’s quality, we want to compare the loss of

the online algorithm (which has access to one constraint at a time in sequence)

to the loss of the best possible offline algorithm (which has access to all con-

straints at once). Let d̂t = dW ∗(ut,vt) be the learned distance between points

ut and vt with a fixed positive definite matrix W ∗, and let LW ∗ =
∑

t ℓ(d̂t, yt)

be the loss suffered over all t time steps. Note that the loss LW ∗ is with respect

to a single matrix W ∗, whereas LW (Section 5.1.1) is with respect to a matrix

86

that is being updated every time step. Let W ∗ be the optimal offline solution,

i.e. it minimizes total loss incurred (LW ∗). The goal is to demonstrate that

the loss of the online algorithm LW is competitive with the loss of any offline

algorithm. To that end, we now show that LW ≤ c1LW ∗ + c2, where c1 and c2

are constants.

To compute the regret bound, we present a lemma (Lemma 7) to bound

the loss at each step incurred by the algorithm in terms of the loss incurred

by the optimal offline solution. In the result below, we assume that the length

of the data points is bounded: ‖u‖2
2 ≤ R for all u, i.e. Tr(Xt) ≤ R for all

t. Also, let the optimal W ∗ to be 0 ≺ W ∗ ≺ I. Thus yt ∈ [0, R], if a yt is

provided out of this range than we can just clip it to be between either 0 or R.

We first present a few useful lemmas that will be used for proving Lemma 7.

Lemma 5. At each step t of the LEGO algorithm,

ȳ ≤ R

2
+

√

R2

4
+

1

η
.

Proof. Using (5.4),

ȳ =
ηyt − 1/ŷt +

√

(ηyt − 1/ŷt)2 + 4η

2η
.

Now ŷt ≥ 0, η ≥ 0 and yt ≤ R. Thus, simplifying we get:

ȳ ≤ R

2
+

√

R2

4
+

1

η
.

Hence proved.

87

Lemma 6. At each step t of the LEGO algorithm,

dȳ

dyt

=
ηȳ2

1 + ηȳ2
,

d(ȳ − yt)

dyt

=
−1

1 + ηȳ2
.

Proof. Using (5.3),

1 + η(ȳ − yt)ŷt =
ŷt

ȳ
.

Thus,

η

(

dȳ

dyt

− 1

)

= − 1

ȳ2

dȳ

dyt

.

Simplifying we get:

dȳ

dyt

=
ηȳ2

1 + ηȳ2
. (5.5)

By subtracting 1 from both the sides of (5.5) and simplifying the resulting

expression, we get:

d(ȳ − yt)

dyt

=
−1

1 + ηȳ2
.

Hence proved.

Lemma 7. At each step t,

1

2
αt(ŷt − yt)

2 − 1

2
βt(dW ∗(ut,vt) − yt)

2 ≤ Dld(W
∗,Wt) − Dld(W

∗,Wt+1),

where 0 ≤ αt ≤ η

1+η

(

R
2

+
q

R2

4
+ 1

η

)2 , βt = η, and W ∗ is the optimal offline

solution.

88

Proof.

Dld(W
∗,Wt) − Dld(W

∗,Wt+1) = log

(

det(Wt)

det(Wt+1)

)

+ Tr((W−1
t − W−1

t+1)W
∗).

Since log(det(W)) = Tr(log(W)) and Tr(AB) = Tr(BA), we have that

Dld(W
∗,Wt) − Dld(W

∗,Wt+1) = Tr(log(Wt) − log(Wt+1)) + Tr((W−1
t − W−1

t+1)W
∗)

= Tr(log(WtW
−1
t+1)) − η(ȳ − yt)Tr(XtW

∗)

= Tr(log(I + η(ȳ − yt)WtXt)) − η(at − yt)Tr(W ∗Xt)

= log(1 + ηt(ȳ − yt)ŷt) − ηt(ȳ − yt)r,

where r = Tr(W ∗Xt).

Proving the lemma amounts to showing that:

Dld(W
∗,Wt) − Dld(W

∗,Wt+1) = log(1 + ηt(ȳ − yt)ŷt) − ηt(ȳ − yt)r

≥ 1

2
αt(bt − yt)

2 − 1

2
βt(r − yt)

2, (5.6)

for some positive constants αt and βt. Consider the function

F (r) =
1

2
αt(ŷt − yt)

2 − 1

2
βt(r − yt)

2 − log(1 + η(ȳ − yt)ŷt) + η(ȳ − yt)r.

Equation 5.6 is equivalent to F (r) ≤ 0,∀r. It can be seen that F (r) is max-

imized when r = yt + η
βt

(ȳ − yt). Substituting for r in F (r) and simplifying,

we get:

1

2
αt(ŷt − yt)

2 +
η2

2βt

(ȳ − yt)
2 − log(1 + η(ȳ − yt)ŷt) + ηt(ȳ − yt)yt.

Hence, we need to prove that

G(yt) =
1

2
αt(ŷt − yt)

2 +
η2

2βt

(ȳ − yt)
2 − log(1 + η(ȳ − yt)ŷt) + ηt(ȳ − yt)yt ≤ 0,

89

for all yt.

Using Lemma 6,

dG

dyt

= −αt(ŷt − yt) −
η2

βt

(ȳ − yt)

1 + ηȳ2
+

1

1 + η(ȳ − yt)ŷt

ηŷt

1 + ηȳ2
+ η(ȳ − yt) −

ηyt

1 + ηȳ2
.

Now 1
1+η(ȳ−yt)ŷt

= ȳ
ŷt

. Therefore,

dG

dyt

= −αt(ŷt − yt) −
η2

βt

(ȳ − yt)

1 + ηȳ2
+

η(ȳ − yt)

1 + ηtȳ2
+ η(ȳ − yt).

Now let βt = η ≥ 0. Hence,

dG

dyt

= −αt(ŷt − yt) + η(ȳ − yt).

Now it can be seen that if yt = ŷt =⇒ yt = ȳ. Therefore, the optimum for

G(yt) is achieved at yt = ȳ = ŷt and the optimal value is G = 0.

Now consider:

d2G

dy2
t

= αt −
η

1 + ηȳ2
.

Hence yt = ȳ is maxima for G iff,

αt ≤
η

1 + ηȳ2
,

for all ȳ. Using Lemma 5, yt = ȳ is maxima for G if

αt ≤
η

1 + η
(

R
2

+
√

R2

4
+ 1

η

)2 .

As G = 0 at yt = ȳ, for βt = η and α ≤ η

1+η

„

R
2

+
q

R2

4
+ 1

η

«2 , the lemma holds.

90

Theorem 8.

LW ≤
(

1+η

(

R

2
+

√

R2

4
+

1

η

)2)

LW ∗+

(

1

η
+

(

R

2
+

√

R2

4
+

1

η

)2)

Dld(W
∗,W0),

where LW =
∑

t ℓ(ŷt, yt) is the loss incurred by the series of matrices Wt

generated by Equation (5.4), W0 ≻ 0 is the initial matrix, and W ∗ is the

optimal offline solution.

Proof. The bound is obtained by summing the loss at each step using Lemma 7:

∑

t

(

1

2
αt(ŷt−yt)

2−1

2
βt(dW ∗(ut,vt)−yt)

2

)

≤
∑

t

(

Dld(W
∗,Wt)−Dld(W

∗,Wt+1)

)

.

The result follows by plugging in the appropriate αt and βt, and ob-

serving that the right-hand side telescopes to Dld(W
∗,W0)−Dld(W

∗,Wt+1) ≤

Dld(W
∗,W0) since Dld(W

∗,Wt+1) ≥ 0.

For the squared hinge loss ℓ(ŷt, yt, bt) = max(0, bt(ŷt − yt))
2, the corre-

sponding algorithm has the same bound.

The regularization parameter affects the tradeoff between LW ∗ and

Dld(W
∗,W0): as η gets larger, the coefficient of LW ∗ grows while the coef-

ficient of Dld(W
∗,W0) shrinks. In most scenarios, R is small; for example, in

the case when R = 2 and η = 1, then the bound is LW ≤ (4+
√

2)LW ∗ +2(4+
√

2)Dld(W
∗,W0). Furthermore, in the case when there exists an offline solu-

tion with zero error, i.e., LW ∗ = 0, then with a sufficiently large regularization

parameter, we know that LW ≤ 2R2Dld(W
∗,W0). This bound is analogous to

the bound proven in Theorem 1 of the POLA method [93]. Note, however, that

91

our bound is much more favorable to scaling of the optimal solution W ∗, since

the bound of POLA has a ‖W ∗‖2
F term while our bound uses Dld(W

∗,W0):

if we scale the optimal solution by c, then the Dld(W
∗,W0) term will scale

by O(c), whereas ‖W ∗‖2
F will scale by O(c2). Similarly, our bound is tighter

than that provided by the ITML-Online algorithm since, in the ITML-Online

algorithm, the regularization parameter ηt for step t is dependent on the in-

put data. An adversary can always provide an input (ut,vt, yt) so that the

regularization parameter has to be decreased arbitrarily; that is, the need to

maintain positive defininteness for each update can prevent ITML-Online from

making progress towards an optimal metric.

In summary, we have proven a regret bound for the proposed LEGO

algorithm, an online metric learning algorithm based on LogDet regularization

and gradient descent. Our algorithm automatically enforces positive definite-

ness every iteration and is simple to implement. The bound is comparable to

POLA’s bound but is more favorable to scaling, and is stronger than ITML-

Online’s bound.

5.2 Fast Online Similarity Searches

As seen in Chapter 4, for many real-world applications, metric learning

is used in conjunction with nearest-neighbor searching, and data structures to

facilitate such searches are essential. For online metric learning to be practical

for large-scale retrieval applications, we must be able to efficiently index the

data as updates to the metric are performed. This poses a problem for most

92

fast similarity searching algorithms, since each update to the online algorithm

would require a costly update to their data structures.

Our goal is to avoid expensive naive updates, where all database items

are re-inserted into the search structure. We employ locality-sensitive hashing

(LSH) to enable fast queries; but rather than re-hash all database examples

every time an online constraint alters the metric, we show how to incorporate a

second level of hashing that determines which hash bits are changing during the

metric learning updates. This allows us to avoid costly exhaustive updates to

the hash keys, though occasional updating is required after substantial changes

to the metric are accumulated.

Recall, that LSH [35, 21] produces a binary hash key H(u) =

[h1(u)h2(u)...hb(u)] for every data point. The locality-sensitive hash function

h(·) must satisfy the following property: Pr[hi(u) = hi(v)] = sim(u,v), where

sim(·, ·) denotes a similarity function with values between 0 and 1. In this work,

we use the following hash function developed in Section 4.1:

hr,W (u) =

{

1, if rT Gu ≥ 0
0, otherwise,

(5.7)

where W = GT G and r is the normal to a random hyperplane.

5.2.1 Online Hashing Updates

The approach described in Chapter 4 is not immediately amenable

to online updates. We can imagine producing a series of LSH functions

hr1,W , ..., hrb,W , and storing the corresponding hash keys for each data point

93

in our database. However, the hash functions as given in (5.7) are dependent

on the Mahalanobis distance; when we update our matrix Wt to Wt+1, the

corresponding hash functions, parameterized by Gt, must also change. To up-

date all hash keys in the database would require O(nd) time, which may be

prohibitive. In the following we propose a more efficient approach.

Recall the update for W : Wt+1 = Wt − η(ȳ−yt)Wtztz
T
t Wt

1+η(ȳ−yt)ŷt
, which we will

write as Wt+1 = Wt + βtWtztz
T
t Wt, where βt = −η(ȳ − yt)/(1 + η(ȳ − yt)ŷt).

Let GT
t Gt = Wt. Then Wt+1 = GT

t (I+βtGtztz
T
t GT

t)Gt. The square-root of I+

βtGtztz
T
t GT

t is I + αtGtztz
T
t GT

t , where αt = (
√

1 + βtz
T
t Wtzt − 1)/(zT

t Wtzt).

As a result, Gt+1 = Gt + αtGtztz
T
t Wt. The corresponding update to (5.7) is

to find the sign of

rT Gt+1x = rT Gtu + αtr
T Gtztz

T
t Wtu. (5.8)

Suppose that the hash functions have been updated in full at some time

step t1 in the past. Now at time t, we want to determine which hash bits

have flipped since t1, or more precisely, which examples’ product with some

rT Gt has changed from positive to negative, or vice versa. This amounts

to determining all bits such that sign(rT Gt1u) 6= sign(rT Gtu), or equiva-

lently, (rT Gt1u)(rT Gtu) ≤ 0. Expanding the update given in (5.8), we can

write rT Gtu as rT Gt1u +
∑t−1

ℓ=t1
αℓr

T Gℓzℓz
T
ℓ Wℓu. Therefore, finding the bits

that have changed sign is equivalent to finding all u such that (rT Gt1u)2 +

(rT Gt1u)

(

∑t−1
ℓ=t1

αℓr
T Gℓzℓz

T
ℓ Wℓu

)

≤ 0. We can use a second level of locality-

sensitive hashing to approximately find all such u. Define a vector ū =

94

[(rT Gt1u)2; (rT Gt1u)u] and a “query” q̄ = [−1;−∑t−1
ℓ=t1

αℓr
T Wℓzℓz

T
ℓ Gℓ]. Then

the bits that have changed sign can be approximately identified by finding all

examples ū such that q̄T ū ≥ 0. In other words, we look for all ū that have a

large inner product with q̄, which translates the problem to a similarity search

problem. This may be solved approximately using the locality-sensitive hash-

ing scheme given in [21] for inner product similarity. Note that finding ū for

each r can be computationally expensive, so we search ū for only a randomly

selected subset of the vectors r.

In summary, when performing online metric learning updates, instead

of updating all the hash keys at every step (which costs O(nd)), we delay

updating the hash keys and instead determine approximately which bits have

changed in the stored entries in the hash table since the last update. When

we have a nearest-neighbor query, we can quickly determine which bits have

changed, and then use this information to find a query’s approximate nearest

neighbors using the current metric. Once many of the bits have changed, we

perform a full update to our hash functions.

Finally, we note that the above can be extended to the case where

computations are done in kernel space.

5.3 Experimental Results

In this section we evaluate the proposed algorithm (LEGO) over a va-

riety of data sets, and examine both its online metric learning accuracy as

well as the quality of its online similarity search updates. As baselines, we

95

consider the most relevant techniques from the literature: the online metric

learners POLA [93] and ITML-Online [24]. We also evaluate a baseline offline

metric learner associated with our method. For all metric learners, we gauge

improvements relative to the original (non-learned) Euclidean distance, and

our classification error is measured with the k-nearest neighbor algorithm.

First we consider the same collection of UCI data sets used in [24]. For

each data set, we provide the online algorithms with 10,000 randomly-selected

constraints, and generate their target distances as in [24]—for same-class pairs,

the target distance is set to be equal to the 5th percentile of all distances in

the data, while for different-class pairs, the 95th percentile is used. To tune

the regularization parameter η for POLA and LEGO, we apply a pre-training

phase using 1,000 constraints. (This is not required for ITML-Online, which

automatically sets the regularization parameter at each iteration to guarantee

positive definiteness). The final metric (AT) obtained by each online algorithm

is used for testing (T is the total number of time-steps). Figure 5.1 shows the k-

nn error rates for all five data sets. LEGO outperforms the Euclidean baseline

as well as the other online learners, and even approaches the accuracy of

the offline method (see [24] for additional comparable offline learning results

using [36, 108]). LEGO and ITML-Online have comparable running times.

However, our approach has a significant speed advantage over POLA on these

data sets: on average, learning with LEGO is 16.6 times faster, most likely

due to the extra projection step required by POLA.

Next we evaluate our approach on a handwritten digit classification

96

task, reproducing the experiment used to test POLA in [93]. We use the same

settings given in that paper. Using the MNIST data set, we pose a binary

classification problem between each pair of digits (45 problems in all). The

training and test sets consist of 10,000 examples each. For each problem, 1,000

constraints are chosen and the final metric obtained is used for testing. Fig-

ure 5.2 compares the test error between POLA and LEGO. Note that LEGO

beats or matches POLA’s test error in 33/45 (73.33%) of the classification

problems. Based on the additional baselines provided in [93], this indicates

that our approach also fares well compared to other offline metric learners on

this data set.

Wine Iris Bal−Scale Ionosphere Soybean
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

k−
N

N
 E

rr
or

UCI data sets (order of bars = order of legend)

ITML Offline
LEGO
ITML Online
POLA
Baseline Euclidean

Figure 5.1: Comparison with existing online metric learning methods on the
UCI datasets. Our method (LEGO) outperforms both the Euclidean distance
baseline as well as existing metric learning methods, and even approaches the
accuracy of the offline algorithm.

We next consider a set of image patches from the Photo Tourism

97

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

LEGO Error

P
O

LA
 E

rr
or

MNIST data set

Figure 5.2: Comparison of errors for LEGO and POLA on 45 binary classifica-
tion problems using the MNIST data; LEGO matches or outperforms POLA
on 33 of the 45 total problems.

0 0.05 0.1 0.15 0.2 0.25 0.3
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positives

T
ru

e
P

os
iti

ve
s

PhotoTourism Dataset

LEGO
ITML Offline
POLA
ITML Online
Baseline Euclidean

Figure 5.3: Comparison with existing online metric learning methods on the
Photo Tourism data. Our online algorithm significantly outperforms the L2

baseline and ITML-Online, does well relative to POLA, and nearly matches
the accuracy of the offline method.

project [96], where user photos from Flickr are used to generate 3-d recon-

structions of various tourist landmarks. Forming the reconstructions requires

solving for the correspondence between local patches from multiple images of

the same scene. We use the publicly available data set that contains about

98

300,000 total patches from images of three landmarks1. Each patch has a di-

mensionality of 4096, so for efficiency we apply all algorithms in kernel space,

and use a linear kernel. The goal is to learn a metric that measures the dis-

tance between image patches better than L2, so that patches of the same 3-d

scene point will be matched together, and (ideally) others will not. Since the

database is large, we can also use it to demonstrate our online hash table

updates. Following [51], we add random jitter (scaling, rotations, shifts) to

all patches, and generate 50,000 patch constraints (50% matching and 50%

non-matching patches) from a mix of the Trevi and Halfdome images. We test

with 100,000 patch pairs from the Notre Dame portion of the data set, and

measure accuracy with precision and recall.

Figure 5.3 shows that LEGO and POLA are able to learn a distance

function that significantly outperforms the baseline squared Euclidean dis-

tance. However, LEGO is more accurate than POLA, and again nearly matches

the performance of the offline metric learning algorithm. On the other hand,

the ITML-Online algorithm does not improve beyond the baseline. We at-

tribute the poor accuracy of ITML-Online to its need to continually adjust

the regularization parameter to maintain positive definiteness; in practice, this

often leads to significant drops in the regularization parameter, which prevents

the method from improving over the Euclidean baseline. In terms of training

time, on this data LEGO is 1.42 times faster than POLA (on average over 10

runs).

1http://phototour.cs.washington.edu/patches/default.htm

99

Finally, we present results using our online metric learning algorithm

together with our online hash table updates described in Section 5.2.1 for the

Photo Tourism data. For our first experiment, we provide each method with

50,000 patch constraints, and then search for nearest neighbors for 10,000 test

points sampled from the Notre Dame images. Figure 5.4 shows the recall as a

function of the number of patches retrieved for four variations: LEGO with a

linear scan, LEGO with our LSH updates, the L2 baseline with a linear scan,

and L2 with our LSH updates. The results show that the accuracy achieved

by our LEGO+LSH algorithm is comparable to the LEGO+linear scan (and

similarly, L2+LSH is comparable to L2+linear scan), thus validating the effec-

tiveness of our online hashing scheme. Moreover, LEGO+LSH needs to search

only 10% of the database, which translates to an approximate speedup factor

of 4.7 over the linear scan for this data set.

Next we show that LEGO+LSH performs accurate and efficient re-

trievals in the case where constraints and queries are interleaved in any order.

Such a scenario is useful in many applications: for example, an image retrieval

system such as Flickr continually acquires new image tags from users (which

could be mapped to similarity constraints), but must also continually support

intermittent user queries. For the Photo Tourism setting, it would be useful in

practice to allow new constraints indicating true-match patch pairs to stream

in while users continually add photos that should participate in new 3-d recon-

structions with the improved match distance functions. To experiment with

this scenario, we randomly mix online additions of 50,000 constraints with

100

10,000 queries, and measure performance by the recall value for 300 retrieved

nearest neighbor examples. We recompute the hash-bits for all database ex-

amples if we detect changes in more than 10% of the database examples.

100 200 300 400 500 600 700 800 900 1000

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Number of nearest neighbors (N)

R
e
c
a
l
l

L
2
 Linear Scan

L
2
 LSH

LEGO Linear Scan
LEGO LSH

Figure 5.4: The plot shows the recall value for increasing numbers of near-
est neighbors retrieved. ‘LEGO LSH’ denotes LEGO metric learning in con-
junction with online searches using our LSH updates, ‘LEGO Linear’ denotes
LEGO learning with linear scan searches. L2 denotes the baseline Euclidean
distance. The right plot shows the average recall values for all methods at
different time instances as more queries are made and more constraints are
added. Our online similarity search updates make it possible to efficiently
interleave online learning and querying. See text for details.

Figure 5.5 compares the average recall value for various methods after

each query. As expected, as more constraints are provided, the LEGO-based

accuracies all improve (in contrast to the static L2 baseline, as seen by the

straight line in the plot). Our method achieves similar accuracy to both the

linear scan method (LEGO Linear) as well as the naive LSH method where

101

0 2000 4000 6000 8000 10000
0.62

0.64

0.66

0.68

0.7

0.72

0.74

Number of queries

A
v
e
r
a
g
e

R
e
c
a
l
l

LEGO LSH
LEGO Linear Scan
LEGO Naive LSH
L
2
 Linear Scan

Figure 5.5: ‘LEGO LSH’ denotes LEGO metric learning in conjunction with
online searches using our LSH updates, ‘LEGO Linear’ denotes LEGO learning
with linear scan searches. L2 denotes the baseline Euclidean distance. The plot
shows the average recall values for all methods at different time instances as
more queries are made and more constraints are added. Our online similarity
search updates make it possible to efficiently interleave online learning and
querying. See text for details.

the hash table is fully recomputed after every constraint update (LEGO Naive

LSH). The curves stack up appropriately given the levels of approximation:

LEGO Linear yields the upper bound in terms of accuracy, LEGO Naive LSH

with its exhaustive updates is slightly behind that, followed by our LEGO

LSH with its partial and dynamic updates. In reward for this minor accuracy

loss, however, our method provides a speedup factor of 3.8 over the naive

LSH update scheme. (In this case the naive LSH scheme is actually slower

than a linear scan, as updating the hash tables after every update incurs a

large overhead cost.) For larger data sets, we can expect even larger speed

102

improvements.

5.4 Summary

In this chapter, we considered the problem of online metric learning

where side-information is provided in an online fashion. For this problem,

we developed an online metric learning algorithm that performs inexpensive

updates to the metric each time some new side-information in the form of

distance constraints is available. We showed that our online learner offers

improved reliability over state-of-the-art online metric learning methods in

terms of regret bounds, and empirical performance. As in Chapter 4, we

applied our learned metric to the problem of fast similarity search. For this

task, we proposed a method to perform online updates to the fast similarity

search structures, and demonstrated its applicability and advantages on a

variety of data sets.

103

Chapter 6

Geometry-aware Kernel Learning

In previous chapters, we studied the problem of distance/kernel learn-

ing in offline and online settings, and applied it to the task of sublinear time

similarity search. We parameterized the distance/kernel function using a Ma-

halanobis metric W with a quadratic number of parameters in the dimension-

ality d, or the training set size n. For large datasets, we restricted the number

of parameters to be linear in min(d, n). However, this requires pre-specifying

a small-dimensional basis upfront which might be too restrictive for many

real-world applications.

For typical real-world applications, even though the dimensionality of

the feature space is large, the intrinsic dimensionality of the data is signifi-

cantly smaller. In the next two chapters, we exploit this intuition by imposing

different kinds of structural assumptions on the data to learn kernel functions

using a small amount of supervision.

In this chapter, we assume that the data is obtained from a low-

dimensional manifold. The goal is then to incorporate the intrinsic structure

in the data, while learning a task-dependent kernel using the provided side-

information. Specifically, we jointly model a task-dependent kernel as well as

104

a data-dependent kernel that reflects the local geometry or manifold structure

of the data. We show that for some important parameterizations of the set of

data-dependent kernels, our formulation admits convexity, and the proposed

optimization algorithm efficiently learns an appropriate kernel function for the

given task. Our algorithm is fast, scalable, does not involve semi-definite pro-

gramming, and crucially, is able to exploit the low dimensional structure of

the underlying manifold that is often present in real-world datasets.

Our proposed framework is generic and can be easily tailored for a vari-

ety of tasks. We apply our method to the task of classification (inductive and

transductive setting), automatic model selection for standard kernel functions,

and semi-supervised manifold learning. For each application, we empirically

demonstrate that our method can achieve comparable or better performance

than the respective state-of-the-art.

This work on geometric kernel learning was published in [76].

6.1 Methodology

Given a set of n points {x1,x2, . . . ,xn} ∈ R
d, we seek a positive semi-

definite kernel matrix K that can be later used for various tasks, e.g. classi-

fication, retrieval, etc. Our goal is two-fold: 1) use the provided supervision

over the data, 2) exploit the unlabeled or unsupervised data, i.e., we want

to learn a kernel that respects the underlying manifold structure in the data

while also incorporating the side-information provided. Previous kernel learn-

ing approaches typically handle this problem by learning a spectral kernel

105

K =
∑

i αiviv
T
i , where the vectors vi are the low-frequency eigenvectors of

the Laplacian of a k-NN graph. However, constraining the eigenvectors to be

unchanged severely restricts the class of kernels that can be learned.

A contrasting task-dependent approach to kernel learning is based on

the metric learning paradigm introduced in Chapter 3. Here, the goal is to

learn a kernel K that is “close” to a pre-defined baseline kernel K0 and satisfies

the provided pairwise (or relative) constraints that are specific to the task at

hand. Formally, K is obtained by solving the following problem:

minK D(K,K0), s.t. K ∈ K,

where K is a convex set of kernel K that satisfy

Kii + Kjj − 2Kij ≤ u (i, j) ∈ S,

Kii + Kjj − 2Kij ≥ l (i, j) ∈ D,

K º 0. (6.1)

In the above S is the given set of similar points, D is the given set of dis-similar

points, and D(·, ·) is a distance function for comparing two kernel matrices.

We will denote the set of kernel that satisfy (6.1) as the set of task-dependent

kernel. Although flexible and effective for various problems, this framework

does not account for the unlabeled data and their geometry. As a result, large

amount of supervision is required to capture the intrinsic structure in the data.

In this chapter, we propose a geometry-aware metric learning (G-ML)

framework that combines both the data-dependent and task-dependent kernel

106

learning approaches. Our model maintains the flexibility of the metric learning

based approach while exploiting the intrinsic structure in the data, and as we

shall show later, engenders multiple competitive machine learning models.

6.1.1 Geometry-aware Metric Learning

In this section, we describe our geometry-aware metric learning (G-ML)

model, where we learn the kernel K, as well as the kernel M that explicitly

exploits the intrinsic structure in the data through the optimization problem:

min
K,M

D(K,M), s.t. K ∈ K, M ∈ M, (6.2)

where the set M is a parametric set of kernels that capture the intrinsic geom-

etry of the labeled as well as unlabeled data and D(·, ·) is a distance function

over matrices. The above optimization problem computes kernel K that satis-

fies task specific constraints (6.1) and is also close to kernel M , thus incorpo-

rating data geometry into the kernel K (see Figure 6.1). Later in the section,

we give a few interesting examples of the set M.

A key component of our framework is the distance function D(K,M)

that is being used. Similar to ITML (see Section 2.1.1), we also use the LogDet

matrix divergence, Dℓd(K,M), where Dℓd(K,M) = tr(KM−1)−log det(KM−1)−

n.

Now, we give an important example of the set M based on spectral

learning methods [112] that captures the underlying structure in the data.

First, define a graph G over the data points that captures local structure of

107

data, e.g., a k-NN graph or an ǫ-ball graph. Let W be the adjacency matrix

of G, D be the degree matrix, L be the graph Laplacian1 L = D − W , and

V = [v1,v2, . . . ,vr] be the r eigenvectors of L (typically r ≪ n) corresponding

to the smallest eigenvalues of L: λ1 ≤ · · · ≤ λr. Then, the set M we consider

is given by:

M =

{

r
∑

i

αiviv
T
i | α1 ≥ α2 ≥ · · · ≥ αr ≥ 0.

}

(6.3)

where the order constraints α1 ≥ α2 ≥ · · · ≥ αr ≥ 0 further ensure smoothness

(the eigenvector vi is known to be smoother than vi+1).

For this particular choice of M, the kernel K is obtained by solving the

following optimization problem:

min
K,α1,α2,...,αr

Dℓd(K,M)

s.t. K ∈ K, M =
r

∑

i

αiviv
T
i ,

α1 ≥ α2 ≥ · · · ≥ αr ≥ 0.

(6.4)

Solving above problem yields {α1, α2, . . . , αr} in the cone α1 ≥ α2 ≥ · · · ≥ αr ≥ 0

and a feasible kernel K that is close to M =
∑r

i αiviv
T
i (see Figure 6.1). Slack

variables can be incorporated in our framework to ensure that the set K is

always feasible, even under noisy constraints.

6.1.2 Alternative M

In the above subsection, we discussed an example of M as a particular

subset of spectral kernels. However our framework is general and depending on

1We can also use the normalized Laplacian I − D− 1

2 WD− 1

2 .

108

Figure 6.1: Illustration of G-ML. The shadowed polygon stands for the feasible
set of kernels K specified by the task dependent pairwise constraints. The cone
stands for data-dependent kernels that exploits the intrinsic geometry of the
data. Using a fixed M0 would lead to sub-optimal kernel K ′, while the joint
optimization (as in (6.2)) over both M and K leads to a better solution K∗.

the application it can admit other parametric sets also. For example, consider

the set:

M = {S − S(I + TS)−1TS| T =
r

∑

i

θiviv
T
i ,

θ1 ≥ · · · ≥ θr ≥ 0.} (6.5)

where S is a fixed given kernel and the vectors vi are eigenvectors of the graph

Laplacian L. This set generalizes the data-dependent kernel proposed by [94]

by replacing the graph Laplacian with a more flexible T . Note that M given

by (6.5) reduces to M given by (6.3) in the limit ‖S−1‖ → 0. This set of kernel

is interesting in that, unlike most spectral kernels that are usually evaluated

in a transductive setting, the kernel value can be naturally extended to unseen

samples as

M(x,x′) = S(x,x′) − S(x, .)(I + TS)−1TS(.,x′)

109

As will be shown in Section 4, the set M given by (6.3) as well as (6.5) both lead

to convex sub-problems for finding T with fixed K. In general, the convexity

holds if {v1, · · · ,vr} are orthogonal, which allows us to extend our model to

other manifold learning models [13], such as Isomap or LLE. The set M can

also be adapted to perform automatic model selection for supervised learning,

for example we can tune the parameter for the RBF kernels by letting

M =

{

α exp(−||xi − xj||2
2σ2

) | α > 0, σ > 0

}

, (6.6)

where α and σ are parameters to be learned by G-ML.

6.2 Algorithm

In this section, we analyze properties of the proposed optimization

problem (6.4) and propose a fast and scalable algorithm. First, note that

although the constraints specified in (6.4) are all linear, the objective function

Dℓd(K,M) is not jointly convex in K and M . However, the problem can be

shown to be convex individually in K and M−1. Here and in the remainder

of this chapter, whenever the inverse of a matrix does not exist, we use its

Moore-Penrose inverse. It is easy to see that on fixing M , the problem is

strictly convex in K as Dℓd(K,M) is known to be convex in K [24]. The fol-

lowing lemma shows that (6.4) is also convex in the parameters 1
αi

, 1 ≤ i ≤ r,

when K is fixed.

Lemma 8. Assuming K to be fixed, Problem (6.4) is convex in β1 = 1/α1, β2 =

1/α2, . . . , βr = 1/αr.

110

Algorithm 1 Geometry-aware Metric Learning(G-ML)
Optimization procedure when M is given by (6.3)

Input: X: input d × n matrix, S: similarity constraints
D: dis-similarity constraints, α0: initial α

γ: slack parameter, r: number of eigenvectors
Output: K, M
1: G =kNN-graph(X), W =Affinity matrix of G

2: L = D − W , L =
∑n

i µiviv
T
i

3: M =
∑r

i α0
i viv

T
i

4: repeat
5: K = ITML(M, S, D, γ) //(Step A)
6: α = FindAlpha(K,v1,v2, . . . ,vr) //(Step B)
7: M =

∑

i αiviv
T
i

8: until convergence

function α = FindAlpha(K,v1,v2, . . . ,vr)
Cyclic projection method to solve (6.4) with fixed K
1: αi = vT

i Kvi, 1 ≤ i ≤ r
2: ν = 0, i = 0
3: repeat
4: c = min(νi, (αi+1 − αi)/2)
5: νi = νi − c, αi+1 = αi+1 − c, αi = αi + c
6: i = mod (i + 1, n)
7: until convergence

Proof. Since M−1 =
∑

i βiviv
T
i , where βi = 1

αi
, the fact that Dℓd(K,M) =

Dℓd(M
−1, K−1) is convex in M−1 implies convexity in βi,∀i. Furthermore, the

constraints α1 ≥ α2 ≥ · · · ≥ αr ≥ 0 can be equivalently written as a set of

linear constraints βr ≥ · · · ≥ β2 ≥ β1 > 0.

Now, we describe our proposed alternating minimization algorithm for

solving (6.4). Our algorithm is based on individual convexity of (6.4) w.r.t K

and M−1. It iterates by fixing M (or equivalently α1, α2, . . . , αr) to solve for

111

K (denoted Step A), and then fixing K to solve for α1, α2, . . . , αr (Step B). In

Step A, to find K, we use the cyclic projection algorithm where at each step

we project the current solution onto one of the constraints. The projection

problem that needs to be solved at each step is:

min
K

Dℓd(K,Kt), s.t. Kii + Kjj − 2Kij ≤ u,

i.e., projection w.r.t. single (dis-)similarity constraint. As shown in Sec-

tion 2.1.1, the above problem can be solved in closed form using a one-rank

update to Kt. Furthermore, the update can be computed in just O(nk) oper-

ations, where r ≪ n is the rank of the kernel M . Now in Step B, to obtain

α1, α2, . . . , αr, we solve the equivalent optimization problem:

min
β1,β2,...,βr

Dℓd(
∑

i

βiviv
T
i , K−1)

s.t. βr ≥ βr−1 ≥ · · · ≥ β1 ≥ 0,

where βi = 1/αi. This problem can also be solved using cyclic projection,

where at each step the current solution is projected onto one of the inequality

constraints. Every projection step can be performed in just O(k) operations.

In summary, we have presented a highly scalable and easy to implement

algorithm (Algorithm 1) for solving (6.4). Furthermore, the objective function

value achieved by our algorithm is guaranteed to converge.

Alternative M As mentioned in Section 6.1.2, an alternate set M given by

(6.5) induces an natural out-of-sample extension. Although it is not further

112

pursued in this thesis, we would like to point out that, similar to (6.4), this

alternative set M also leads to a convex optimization problem for computing

M when K is fixed.

Lemma 9. Assuming K to be fixed, Problem (6.4) is convex in θ1, θ2, . . . , θr.

Proof. Restricting the kernel function to the provided samples, we get M =

S−S(I +TS)−1TS. Using the Sherman-Morrison-Woodbury formula, M−1 =

S−1+T. Now, Dℓd(K,M) is convex in M−1. Using the property that a function

g(x) = f(a + x) is convex if f is convex, Dℓd(K,M) is convex in T . As T is a

linear function of θi, 1 ≤ i ≤ r, Dℓd(K,M) is convex in θ1, · · · , θr.

Using the above lemma, we can adapt Algorithm 6.1.2 to obtain a

suboptimal solution to (6.2) where M is given by (6.5).

Unlike the kernels in (6.3) and (6.5), the set M given by (6.6) does not

admit a convex subprolem when fixing K. However, since only two parameters

are involved, we can still adapt our alternative minimization framework to

obtain a reasonably efficient method for optimizing (6.2) using M specified in

(6.6).

6.3 Discussion

6.3.1 Connection to Regularization Theory

Now, we present a regularization theory based interpretation of our

methodology for estimating kernel K (Problem (6.4)). Using duality theory,

113

it can be shown that the general form of the solution to (6.4) is given by:

K = (
∑

i

α−1
i viv

T
i +

∑

(i,j)∈S

γS

ij(ei − ej)(ei − ej)
T

−
∑

(i,j)∈D

γD

ij (ei − ej)(ei − ej)
T)−1 (6.7)

with γS
ij, γ

D
ij ≥ 0 and ei being the vector with the ith entry one and rest

zeros. Let f : X → R be a real valued function over the feature space and

f = [f(x1), f(x2), · · · , f(xn)]T , we then have

fT K−1f = fT

(

∑

i

1

αi

viv
T
i

)

f +
∑

(i,j)∈S

γS

ij(fi − fj)
2

−
∑

(i,j)∈D

γD

ij (fi − fj)
2 (6.8)

where the first term addresses the overall smoothness of function f on the

graph, while the last two terms measures the violation of pairwise constraints.

Formulation (6.8) generalizes the joint regularization framework proposed by

[94] to include non-positive definite term (dis-similarity term
∑

(i,j)∈D
γD

ij (fi −

fj)
2 in our case) in the regularization, while the overall positive definiteness is

still ensured either explicitly through another constraint (K º 0) or implicitly

through the particular optimization algorithm (Bregman projection in our

case).

6.3.2 Connection to Gaussian Processes(GP)

Next, we present an interesting connection of our method to that of

GP based methods for estimating M . Let K = Φ(X)Φ(X)T , where Φ(X) =

114

[φ(x1) φ(x2) · · · φ(xn)]T and φ(xi) ∈ R
m is the feature space representation of

point xi. As in standard GP based methods, assume that each of the feature

dimension of φ(xi)’s are jointly Gaussian with mean 0 and covariance M that

needs to be estimated. Thus, the likelihood of the data is given by:

L =
1

(2π)n/2|M |1/2
exp

(

−1

2
tr

(

Φ(X)T M−1Φ(X)
)

)

.

It is easy to see that maximizing the above given likelihood is equivalent to

minimizing Dℓd(K,M) with fixed K. Assuming a parametric form for M =
∑

i αiviv
T
i , GP based spectral kernel learning is equivalent to learning M using

our method. Furthermore, typical GP based methods use one-rank target

alignment kernel K = yyT , where yi is the label of i-th point. In contrast,

we use a more robust learned kernel K that not only accounts for the labels,

but also the similarity in the data points itself, i.e. our learned kernel K is

less likely to overfit to the provided labels and is applicable to a wider class of

problems where supervision need not be in the form of labels.

6.4 Applications

In this section, we describe a few applications of our geometry-aware

metric learning framework (G-ML) for kernel learning. Besides enhancing ex-

isting metric/kernel learning methods, our method also extends the application

of kernel learning to a few previously inapplicable tasks as well, e.g., manifold

learning tasks.

115

6.4.1 Classification

First, we describe application of our method to the task of classification

in two scenarios: 1) supervised case where the test points are unknown in the

training phase, and 2) semi-supervised case where the test/unlabeled points are

also part of the training. For both the cases, pairwise similarity/dissimilarity

constraints are obtained using the provided labels over the data, and the k

nearest neighbor classifier with the learned kernel K is used for predicting

the labels. In the supervised learning case, we apply G-ML to the task of

automatic model selection by learning the parameters for the baseline kernel

M . For semi-supervised learning, G-ML jointly learns the kernel K and the

eigenvalues of the spectral kernel M , thereby taking into account the geometry

of the unlabeled data. Note that the optimization step for M (step B) is similar

to the kernel-target alignment technique for selecting a spectral kernel [112].

However, [112] treat the kernel as a long vector, while our method respects

the two-dimensional structure and positive definiteness of the matrix M .

6.4.2 Manifold Learning

G-ML is applicable to semi-supervised manifold learning where the task

is to learn and exploit the underlying manifold structure using the provided

supervision (pairwise (dis-)similarity constraints). In particular, we apply G-

ML to the task of non-linear dimensionality reduction and manifold alignment.

In contrast to other metric learning methods [110, 24] that learns the metric

over the ambient space, G-ML learns the metric on the manifold, where {vi}

116

are the approximate coordinates of the data on the manifold [12].

Colored Dimensionality Reduction Here we consider the semi-supervised

dimensionality reduction task where we want to retain both the intrinsic man-

ifold structure of data and the (partial) label information. G-ML naturally

merges the two sources of information; the learned kernel K incorporates the

manifold structure (as expressed in {αi} and {vi}) while reflecting the pro-

vided side information (expressed through constraints). Hence, the leading

eigenvectors of K should provide a better low-dimensional representation of

the data. In absence of any constraints, this dimension reduction model de-

generates to Laplacian Eigenmaps [12]. Furthermore, compared to [97], our

model is able to learn a more accurate embedding of the data (Figure 6.5).

Manifold Alignment Finally, we apply our method to the task of manifold

alignment, where the goal is to align previously disconnected (or weakly con-

nected) manifolds according to some common property. For example, consider

images of different objects under a particular transformation, e.g. rotation,

illumination, scaling etc, which will form a low-dimensional manifold called

Lie group. The goal is to estimate information about the transformation of

the object in the image, rather than the object itself. We show that G-ML

accurately represents the corresponding Lie group manifold by aligning the

image manifold of different objects under the same transformation (captured

by a joint graph Laplacian). This alignment is achieved through learning the

117

kernel K by constraining a small subset of images with similar transformations

to have small distance.

6.5 Experimental Results

In this section, we evaluate our method for geometry-aware metric

learning (G-ML) on the applications mentioned in the previous section. Specif-

ically, we apply our method to the task of classification, semi-supervised clas-

sification, non-linear dimensionality reduction, and manifold alignment. For

each task we compare our method with the respective state-of-the-art methods.

6.5.1 Classification: Supervised Learning

First, we apply our G-ML framework to the task of classification in a

supervised learning scenario (Section 6.4.1). For this task, we consider the

feasible set M for M to be scaled Gaussian RBF kernels with unknown scale

α and kernel width σ, as in (6.6). Unlike the spectral kernel case, the sub-

problem for finding α and σ is non-convex and a local optimum for the non-

convex subproblem is found with conjugate gradient descent (Matlab function

fminsearch). The resulting K is then used for k-NN classification. We evaluate

our method (G-ML) on four standard UCI datasets (iris, wine, balance-scale

and ionosphere). For each dataset we use 20 points for training and the rest

for testing. Figure 6.2 compares 4-NN classification error incurred by our

118

iris wine

5 10 15
9

9.5

10

10.5

11

Iterations

T
es

t E
rr

or
 (

%
)

G−ML(Gaussian)
ITML+Xvalid

5 10 15
0

10

20

30

40

50

60

70

Iterations

T
es

t E
rr

or
 (

%
)

G−ML(Gaussian)
ITML+Xvalid

ionosphere scale

5 10 15
20

25

30

35

40

Iterations

T
es

t E
rr

or
 (

%
)

G−ML(Gaussian)
ITML+Xvalid

5 10 15
10

15

20

25

30

35

40

Iterations

T
es

t E
rr

or
 (

%
)

G−ML(Gaussian)
ITML+Xvalid

Figure 6.2: 4-NN classification error via kernels learned using our method (G-
ML) and ITML [24]. The data-dependent kernel M is the RBF kernel. Clearly,
G-ML is able to achieve competitive error rate while learning the kernel width
for M , while ITML requires cross validation.

method to the ITML method [24]. For ITML, the kernel width of Gaussian

RBF M is selected using leave-one-out cross validation. Clearly, G-ML is able

to automatically select a good kernel width, while ITML requires slower cross

119

10 digits odd vs even

50 100
0

10

20

30

40

50

60
te

st
 e

rr
or

 (
%

)

G−ML
NonpSpec
Diffusion
Max−Align
Gaussian
Linear
Quadratic

30 70
0

5

10

15

20

25

30

35

40

te
st

 e
rr

or
 (

%
)

G−ML
NonpSpec
Diffusion
Max−Align
Gaussian
Linear
Quadratic

pc vs mac baseball vs hockey

30 70
0

5

10

15

20

25

30

35

40

45

50

te
st

 e
rr

or
 (

%
)

G−ML
NonpSpec
Diffusion
Max−Align
Gaussian
Linear
Quadratic

30 70
0

10

20

30

40

50

60

te
st

 e
rr

or
 (

%
)

G−ML
NonpSpec
Diffusion
Max−Align
Gaussian
Linear
Quadratic

Figure 6.3: Classification error for various methods on four standard datasets
using different number of labeled samples. Note that G-ML consistently per-
forms comparably or better than the best semi-supervised learning methods
and significantly outperforms the supervised learning methods.

validation to obtain a similar width parameter.

6.5.2 Classification: Semi-supervised Learning

Next, we evaluate our method for classification in the semi-supervised

setting (Section 6.4.1). We evaluate our method on four datasets that fall

120

10 digits odd vs even

2 4 6 8 10

20

22

24
te

st
 e

rr
or

 (
%

)

2 4 6 8 10
14

15

16

17

te
st

 e
rr

or
 (

%
)

number of iterations

2 4 6 8 10
14

16

18

te
st

 e
rr

or
 (

%
)

2 4 6 8 10
9.5

10

10.5

te
st

 e
rr

or
 (

%
)

number of iterations

pc vs mac baseball vs hockey

2 4 6 8 10

10

12

14

te
se

t e
rr

or
 (

%
)

2 4 6 8 10
8

9

10

11

te
st

 e
rr

or
 (

%
)

number of iterations

2 4 6 8 10
1

2

3

4

te
st

 e
rr

or
 (

%
)

2 4 6 8 10
1

2

3

4

te
st

 e
rr

or
 (

%
)

number of iterations

Figure 6.4: Top Row and Bottom row: Classification error rate for our
method (G-ML) with 30 labeled samples and 70 labeled data (50, 100 for 10
digits) as the number of iterations increase. In both the cases G-ML improves
over the initial (diffusion) kernel .

in two broad categories: a) text classification: two standard subsets of 20-

newsgroup dataset, namely, baseball-hockey (1993 instances/ 2 classes), and

pc-mac (1943/2). b) digit classification: two subsets of USPS digits dataset,

odd-even (4000/2) and ten digits (4000/10). Odd-even involves classifying odd

“1, 3, 5, 7, 9” vs. even “0, 2, 4, 6, 8” digits, while ten digits is the standard

121

10-way digit classification.

To form the k-NN graph, we use cosine similarity over tf-idf represen-

tation for text classification datasets and RBF-kernel function over gray-scale

pixel values for the digits dataset. We compare G-ML (k-NN classifier with

k = 4) with three state-of-the-art semi-supervised kernels: non-parametric

spectral kernel [112], diffusion kernel [64], and maximal-alignment kernel [70].

For all four semi-supervised learning models we use 10-NN unweighted graphs

on all the datasets. The non-parametric spectral kernel uses the first 200 eigen-

vectors [112], whereras G-ML uses the first 20 eigenvectors to form M . For

the three competitor semi-supervised kernels, we use support vector machines

(one-vs-all classification). We also compare against three standard kernels:

RBF kernel (bandwidth learned using 5-fold cross validation), linear kernel,

and quadratic kernel. We use the diffusion kernel K = exp(−tL) with t = 0.1

for initializing our alternating minimization algorithm. Note that the various

parameter values are set arbitrarily without optimizing and do not give an

unfair advantage to the proposed method.

We report the classification error of G-ML averaged over 30 random

training/testing splits; the results of competing methods are from [112]. Fig-

ure 6.3 compares error incurred by various methods on each of the four datasets,

the second row shows the test error rate at each iteration of G-ML using 30

labeled examples (except for 10 digits dataset where we use 50 examples),

while the third row shows the same for 70 labeled examples (100 examples

for 10 digits). Clearly, on all the four data sets, G-ML gives comparable or

122

better performance than state-of-the-art semi-supervised learning algorithms

and significantly outperforms the supervised learning algorithms.

G-ML colored MVU [97]

−0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

−80 −60 −40 −20 0 20 40 60 80

−25

−20

−15

−10

−5

0

5

10

15

ITML [24] LE [12]

−0.035 −0.03 −0.025 −0.02 −0.015 −0.01 −0.005 0

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

−0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Figure 6.5: Two dimensional embedding of 2007 USPS digits using different
methods. Color of the dots represents different classes of digits (color coding
is provided in the top row). We observe that compared to other methods, our
method separates the respective manifolds of different digits more accurately,
e.g. digit 4. (Better viewed in color)

123

6.5.3 Colored Dimensionality Reduction

Next, we apply our method to the task of semi-supervised non-linear

dimensionality reduction. We evaluate our method on standard USPS dig-

its dataset, and compare it to the state-of-the-art colored Maximum Variance

Unfolding (colored MVU) [97] method which also performs dimensionality re-

duction for labelled data. We also compare our method to ITML [24] that

does not take the local geometry into account and Laplacian Eigenmaps [12]

that does not exploit the label information. For visualization, we reduce the

dimensionality of the data to two and plot each of the 10 classes of digits with

different color (Figure 6.5). For the proposed G-ML method, we use 200 sam-

ples to generate the pairwise constraints, while colored MVU is supplied with

all the labels. Note that other than digit 5, G-ML is able to separate manifolds

of all the digits in the two-dimensional embedding. In contrast, colored MVU

is unable to clearly separate manifolds of digits 4, 5, 8, and 2 while using more

labels than the proposed G-ML method.

6.5.4 Manifold Alignment

In this experiment, we evaluate our method for the task of manifold

alignment (Section 6.4.2) on two datasets, each associated with a different type

of transformation. The first dataset consists of images of two subjects sampled

from the Yale face B dataset, each with 64 different illumination conditions

(varying angles of two illumination sources). Note that the images of each of

124

LE [12] G-ML (iteration 1) G-ML (iteration 2)

G-ML (iteration 5) G-ML (iteration 20) ITML [24]

Figure 6.6: Manifold alignment results for the Yale Face dataset. The plot
show 3-dimensional embedding of the images of two subjects with different
illumination obtained by various methods.

the subjects lie on an arbitrary oriented two-dimensional manifold. In order to

align the two manifolds, we randomly sample 10 must-links for the images with

the same illumination conditions. Figure 6.6 shows three-dimensional embed-

ding of the images using Laplacian Eigenmaps [12], proposed G-ML method at

various iterations, and ITML method with RBF kernel as the baseline kernel

[24]. We observe that G-ML is able to capture the manifold structure of the

Lie group and successfully align them within five iterations. Next, we apply

our method to the task of illumination estimation, where the goal is to re-

trieve the image with the most similar illumination to the given query image.

Figure 6.7 shows that G-ML is able to accurately retrieve similar illumination

images irrespective of the identity of the person. The ITML method, which

does not capture the local geometry of the unsupervised data, is unable to

125

query A 1 2 3 4 5 6 7 8

G-ML

ITML

query B 1 2 3 4 5 6 7 8

G-ML

ITML

Figure 6.7: Retrieval result for two queries based on kernel learned using G-
ML and using ITML kernel. We observe that G-ML is able to capture the
local geometry of the manifold, which is further confirmed by the illumina-
tion retrieval results, where unlike ITML, G-ML is able to retrieve similar
illumination images irrespective of the subject. (Better viewed in color)

align the data points w.r.t. the illumination transform and hence unable to

accurately retrieve similar illumination images.

To give a quantitative evaluation of manifold alignment, we also per-

formed a similar experiment on a subset of COIL-20 data datasets, which

contains images of three subjects with different degree of rotation (72 points

uniformly sampled from 0∼360 degree). Images of each subjects should lie on

a circular one-dimensional manifold. We apply our method to retrieve images

126

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

Number of Nearest Neighbors Retrieved

R
ec

al
l

Comparison of Recall vs NN retrieved

G−ML
ITML
DK

Figure 6.8: This plot shows recall as a function of number of retrieved images,
for G-ML, ITML, and Diffusion Kernel (DK).

with similar “angle” to a given query image. Figure 6.8 shows that with 10

randomly chosen similarity-constraints, our method is able to obtain recall of

0.47, significantly outperforming the ITML (0.24) and the diffusion kernel [64]

method (0.23).

127

Chapter 7

Low Rank Kernel Learning

In this chapter, we focus on the problem of kernel learning with limited

supervision. In contrast to the previous chapter, we assume that the data lies

in a low-dimensional linear subspace, and the goal is to learn the corresponding

low-rank kernel matrix/function1 over the data.

We consider two different settings for kernel learning:

• Transductive Learning: In this setting, all the training and test data

is provided upfront. Hence, learning a low-rank kernel matrix suffices

as kernel values between out-of-sample points need not be computed.

• Inductive Learning: For inductive learning, a kernel function needs

to be learned as the kernel function value between any pair of points

might be needed.

In both the cases, we formulate the low-rank kernel learning problem

as a rank minimization problem subject to several affine constraints and a

1Throughout this chapter, the term rank k-kernel function refers to a kernel function
which leads to at most rank k-kernel matrix for any set of points

128

heavily structured convex set. The problem of rank minimization over poly-

hedral sets is an important problem in itself, with numerous applications in

machine learning, computer vision, control theory etc. Apart from low-rank

kernel learning, other important machine learning problems like feature effi-

cient linear classification, semi-definite embedding (SDE), non-negative matrix

approximation (NNMA), etc., can also be viewed as rank minimization prob-

lems over a polyhedron with additional convex constraints such as a Frobenius

norm constraint and/or a semi-definiteness constraint. Even though there has

been extensive work on the specific problems mentioned above, the general

problem of rank minimization over polyhedral sets is not well understood.

In this chapter, we first address the problem of rank minimization when

there are a large number of trace constraints along with a few convex con-

straints that are relatively “easy” in a precise sense defined below. We further

study specific algorithms for low-rank kernel learning in both transductive and

inductive settings, which are special cases of the general rank minimization

problem.

We first formulate the rank minimization problem we study. Let A1, . . . , Am ∈

R
n×n, b1, . . . , bm ∈ R and let C ⊆ R

n×n be a convex set of matrices. Then,

consider the following optimization problem which we refer to as RMP (for

129

Rank Minimization over Polyhedron):

min rank(X)

s.t Tr(AiX) ≥ bi 1 ≤ i ≤ m

X ∈ C. (RMP)

The set C represents the “easy” constraints in the sense that for such

a set C, we assume that RMP with a single trace constraint can be solved

efficiently. Note that this holds for many typical convex sets C, e.g., the

unit ball under any Lp or Frobenius norm, the semi-definite cone, and the

intersection of the unit ball with the semi-definite cone. Furthermore, low-

rank kernel learning, SDE and NNMA can all be seen as instantiations of the

above general formulation.

The general RMP problem as stated above is non-convex, NP-hard and,

as we show, cannot be approximated unless P = NP . Due to the computa-

tional hardness of the problem much of the previous work has concentrated

on providing heuristics, with no guarantees on the quality of the solution. We

remark that the recent trace-norm based approach of [85] does guarantee an

optimal solution for a simplified instance of RMP where only well-conditioned

linear equality constraints are allowed. However, it is not clear how to extend

their guarantees to the more general RMP problem.

We now list the main contributions of this chapter:

130

• We show that for the RMP problem, the minimum feasible rank cannot

be approximated unless P = NP (see Theorem 9). To get over this

hurdle we introduce a relaxed notion of approximation, where along with

approximating the optimal rank we also allow small violations in the

constraints. In practice, this relaxed notion is as meaningful as the

standard notion of approximation as almost all real-life problems have

noisy measurements.

• We provide an algorithm for RMP based on the Multiplicative Weights

Update framework of [84, 4] and under the relaxed notion of approxima-

tion, we prove approximation guarantees for the algorithm.

• We provide an algorithm for RMP based on the framework of online con-

vex programming (OCP) introduced by [113]. We use the OCP frame-

work in a novel way by changing the role of the decision maker, which

searches over the constraints instead of the feasible points, as is usually

the case. We prove that under the relaxed notion of approximation, the

algorithm provides approximation guarantees.

• We apply our method to the problem of low-rank kernel matrix learning

in transductive setting which can be seen as a specific instance of general

RMP. Furthermore, we demonstrate empirically that our algorithm for

low-rank kernel learning is able to learn low-rank kernels while improving

on the accuracy of the baseline kernel.

• Using our kernel learning framework introduced in Section 3.3, we reduce

the problem of kernel function learning to an instance of RMP and show

131

that using both of our algorithms for RMP can be used efficiently in this

context.

Most of the material of this chapter is based on our work [78, 56].

7.1 Computational Complexity

As was mentioned in the introduction, RMP is NP-hard in general.

Further, by a reduction to the problem of support minimization over convex

sets, and using hardness of approximation results from [2] we show that RMP

is hard to approximate within a factor of 2log1−ǫ n, for every ǫ > 0. Further,

if we let ∆ = max{‖Ai‖F + |bi| : 1 ≤ i ≤ m} for a particular instance of

RMP, then following the techniques of [2] we also show that RMP is hard to

approximate within a factor of 2log1−ǫ ∆, for every ǫ > 0.

Theorem 9. There exists no polynomial time algorithm for approximating

RMP within a factor of 2log1−ǫ n, for every ǫ > 0 unless P = NP . Further, if

we let ∆ = max{‖Ai‖F + |bi| : 1 ≤ i ≤ m} then RMP cannot be approximated

within a factor of 2log1−ǫ ∆ unless P = NP 2.

In view of the above hardness result we introduce a weaker notion of

approximation. We believe the relaxed notion of approximation to be of equal

use, if not more, as the standard notion of approximation in practice. For

2This hardness result holds even when C is fixed to be the unit ball under an Lp or
Frobenius norm or many other sets common in practice.

132

an instance of RMP, let F(A1, . . . , Am, b,C) denote the feasible region, where

b = (b1, . . . , bm):

F(A1, . . . , Am, b,C) = {X : X ∈ C, Tr(AiX) ≥ bi,∀i}. (7.2)

Definition 7.1.1. Given a function c : R → R+, we say that a matrix X is a

(c(ǫ), ǫ)-approximate solution to RMP if the following hold:

X ∈ F(A1, . . . , Am, b − ǫ1,C)

rank(X) ≤ c(ǫ) min{rank(X) : X ∈ F(A1, .., Am, b,C)}.

Further, we say that RMP is (c(ǫ), ǫ)-approximable, if there exists a poly-

nomial time algorithm that given inputs A1, . . . , Am, b, ǫ, outputs a (c(ǫ), ǫ)-

approximate solution to RMP.

Thus, along with approximating the minimum feasible rank we also

allow a small violation, quantified by ǫ, of the constraints. Note that for

ǫ = 0, we recover the normal notion of approximation with an approximation

factor of c(0).

7.2 Methodology

Our approach to RMP crucially exploit the fact that even though RMP

is hard in general, it is efficiently solvable for certain convex sets C when there

is a single trace constraint. For instance, when C = {X : X º 0, ‖X‖F ≤ 1},

with a single trace constraint the RMP problem can be solved efficiently using

a singular value decomposition of A.

133

In our approach, we assume the existence of an oracle O that solves the

following RMP problem with a single trace constraint, and returns an optimal

X or declares the problem infeasible:

O : min rank(X) s.t. Tr(AX) ≥ b,X ∈ C. (7.3)

As discussed above, for certain convex sets C, oracle O solves a hard non-convex

problem. In our approach, we exploit this fact by making several queries to

the oracle where the trace constraint Tr(AX) ≥ b is obtained by a weighted

combination of the original trace constraints. The trick then is to choose the

combinations in such a way that after a small number of iterations, we can

find a low-rank X that satisfies all the constraints with at most an ǫ-violation.

Based on the above intuition, we give two approaches to solve the RMP

problem - one based on the Multiplicative Weights Update algorithm and the

other based on online convex programming.

Before we describe our algorithms, we need to introduce additional

notation. For an instance of RMP specified by matrices A1, . . . , Am, scalars

b1, . . . , bm and convex set C, let D = max{‖X‖F : X ∈ C}. We assume,

without loss of generality, that D ≥ 1. Recall that F((A1, . . . , Am), b,C) and

F((A1, . . . , Am), b − ǫ1,C) denote the feasibility sets as defined in (7.2) and

∆ = max{‖Ai‖F + |bi| : 1 ≤ i ≤ m}. Further, let k∗ be the rank of the optimal

solution to RMP. That is,

k∗ = min{rank(X) : X ∈ F((A1, . . . , Am), b,C)}.

134

7.2.1 Rank Minimization via Multiplicative Weights Update

Algorithm 2 RMP-MW (Multiplicative Updates)

Input: Constraints (Ai, bi), 1 ≤ i ≤ m, ǫ
Input: Oracle O(A, b) which solves

min rank(X) s.t. Tr(AX) ≥ b, X ∈ C

1: Initialize: w1
i = 1, ∀i and t = 1

2: repeat
3: Set (At, bt) =

∑

i w
t
i(Ai, bi)

4: if Oracle O(At, bt) declares infeasibility then
5: return Problem is infeasible
6: else
7: Obtain X t using Oracle O(At, bt)
8: Set M(i,X t) = Tr(AiX

t) − bi

9: Set ρ = maxi M(i,X t)
10: Set wt+1=MultUpdate(wt,M, ρ, ǫ)
11: end if
12: Set t = t + 1
13: until t > T
14: return X =

∑

t X
t/T

Output: wt+1=MultUpdate(wt,M, ρ, ǫ)
1: Set δ = min{ ǫ

4ρ
, 1

2
}

2: for all 1 ≤ i ≤ m do
3: if M(i,X t) ≥ 0 then
4: wt+1

i = wt
i(1 − δ)M(i,Xt)/ρ

5: else
6: wt+1

i = wt
i(1 + δ)−M(i,Xt)/ρ

7: end if
8: end for

In this section we present an approach to RMP based on the generalized

experts (GE) framework described in Section 2.3. To adapt the GE framework

for the RMP problem, we first need to select a set of experts, a set of events

135

and the associated penalties. We associate each RMP constraint Tr(AiX) ≥ bi

with an expert and let the events correspond to the elements of C. The penalty

for expert i corresponding to the i-th constraint and event X is then given by

Tr(AiX) − bi. Note that rather than rewarding a satisfied constraint, we

penalize it. This strategy is motivated by the work of [84, 3] and is similar

to boosting, where a distribution is skewed towards an example for which the

current hypothesis made an incorrect prediction.

We assign weights wt
i to the i-th expert in the t-th iteration, and initial-

ize the weights w1
i = 1, for all i. In the t-th iteration we query the oracle O with

(A, b) =
∑

i w
t
i(Ai, bi) to obtain a solution X t+1 ∈ C. We then use the Mul-

tiplicative Weights Update algorithm with updates as described in function

MultUpdate of Algorithm 2 to compute the weights wt+1
i for the (t + 1)-th

iteration. Algorithm 2 describes our multiplicative update based algorithm

for RMP. In the following theorem we prove approximation guarantees for the

solution output by Algorithm 2.

Theorem 10. Given the existence of an oracle O solving the problem of (7.3),

Algorithm 2 outputs an (O(∆2D2 log n
ǫ2

), ǫ)-approximate solution to RMP.

Proof. Observe that, if the oracle declares infeasibility at any time step t, the

original problem is also infeasible. Hence, we assume that the oracle returned

a feasible point X t at time-step t, for all 1 ≤ t ≤ T .

Now, |Tr(AiX) − bi| ≤ ‖Ai‖F‖X‖F + |bi| ≤ ∆D. Thus, the penalties

Tr(AiX) − bi lie in [−∆D, ∆D]. As Algorithm 2 uses multiplicative updates

136

to update the weights as in Theorem 1, for T = 16(∆D)2 log n/ǫ2, we have

∑

t

∑

j pt
j[AjX

t − bj]

T
≤ ǫ +

∑

t[AiX
t − bi]

T
,

where pt
j = wt

j/
∑

l w
t
l . Note that, by the choice of the oracle the LHS ≥ 0.

Thus, for X =
∑

t X
t/T we have

Tr(AiX) ≥ bi − ǫ, ∀i. (7.4)

We now bound the rank of X compared to the optimal value. Let t be such

that Xt has the highest rank, say k, among X1, . . . , XT . Then, k∗ ≥ k, as

for a particular convex combination of (Ai, bi) the minimum rank possible

was k. Thus, rank(X) ≤ kT = O((∆2·D2)k∗

ǫ2
). Using (7.4) we have that X ∈

F((A1, . . . , Am), b− ǫ1,C). Thus, by Definition 7.1.1 X is an (O(∆2D2 log n
ǫ2

), ǫ)-

approximate solution to RMP.

The running time of Algorithm 2 is O(∆2D2 log n
ǫ2

(TO + mn2)), where TO

denotes the oracle’s running time.

7.2.2 Rank Minimization via OCP

In this section, we present a novel application of online convex pro-

gramming described in Section 2.3.1 to obtain an approximate solution to

RMP. The intuition behind this approach is similar to that of Section 7.2.1; in

fact this approach can be viewed as a generalization of the approach of Section

7.2.1.

137

Algorithm 3 RMP-OCP (Online Convex Programming)

Input: Constraints (Ai, bi), 1 ≤ i ≤ m, ǫ
Input: Oracle O(A, b) which solves min rank(X) s.t. Tr(AX) ≥

b, X ∈ C

1: Initialize: A1 =
P

i Ai

m
and b1 =

P

i bi

m
, t = 1

2: Set K = {
∑

i λi(Ai, bi) :
∑

i λi = 1, λi ≥ 0 ∀i}
3: repeat
4: if Oracle O(At, bt) declares infeasibility then
5: return Problem is infeasible
6: else
7: Obtain X t using Oracle O(At, bt)
8: Define function f t(A, b) = Tr(AX t) − b
9: Set (At+1, bt+1)=GIGA((At, bt), f t(A, b), K, t)

10: end if
11: Set t = t + 1
12: until t > T
13: return X =

∑

t X
t/T

Output: zt+1=GIGA(zt, f t(z), K, t)
1: Set ηt = ∆

2D
√

t

2: Set zt+1 = ΠK (zt − ηt∇f t(zt)), where ΠK represents the orthogonal pro-
jection onto K

In the OCP framework one generally associates the convex set K with

a feasible region and the cost functions with penalty functions. In our ap-

plication of OCP to RMP we flip this view and choose K to be the space of

convex combinations of the constraints and associate cost functions with fea-

sible points of RMP. In particular, we set K ⊆ R
n×n×R to be the convex hull

of (A1, b1), . . . , (Am, bm), i.e.,

K =

{

∑

i

λi(Ai, bi) :
∑

i

λi = 1, λi ≥ 0 ∀i

}

.

Given a matrix X, we define a cost function fX : K → R by fX(A, b) =

138

Tr(AX) − b.

We initialize A1 =
∑

i Ai/m and b1 =
∑

i bi/m. Given (At, bt) ∈ K

for the t-th iteration, we query the oracle O with (A, b) = (At, bt) to obtain

a solution X t ∈ C. We then set the cost function f t(A, b) = fXt(A, b) =

Tr(AX t)− b and use the OCP algorithm [113] as described in function GIGA

of Algorithm 3 to compute (At+1, bt+1) for the (t + 1)-st iteration. Algorithm

3 describes our OCP based algorithm for RMP. In the following theorem we

prove approximation guarantees for the output of Algorithm 3.

Theorem 11. Given the existence of an oracle O to solve the problem (7.3),

Algorithm 3 outputs an (O(∆2D2

ǫ2
), ǫ)-approximate solution to RMP.

Proof. As in Theorem 10 we assume that the oracle returns a feasible point

at all time steps. Note that using the terminology of Theorem 2, G =

maxz∈K,t∈{1,...} ‖
`

f t(z)‖ ≤ D and ‖K‖ ≤ ∆. Thus, using Theorem 2 we

have
T

∑

t=1

(Tr(AtX t) − bt) ≤ min
(A,b)∈K

T
∑

t=1

(Tr(AX t) − b) + ∆D
√

T .

Note that the above LHS ≥ 0 since oracle returns a feasible X t, ∀t. Thus, for

T = ∆2D2/ǫ2 and X =
∑

t X
t/T ,

Tr(AX) ≥ b − ǫ, (7.5)

for all (A, b) ∈ K. In particular, we have for every i, Tr(AiX) ≥ bi − ǫ.

We now bound the rank of X compared to the optimal value. Let t be such

that Xt has the highest rank, say k, among X1, . . . , XT . Then, we must have

139

k∗ ≥ k, and so we have rank(X) ≤ kT ≤ O((∆D)2k∗/ǫ2). Also, from (7.5)

we have that X ∈ F((A1, . . . , Am), b− ǫ1,C). Thus by Definition 7.1.1, X is a

(O((∆2D2)/ǫ2), ǫ)-approximate solution to RMP.

The running time of Algorithm 3 is O(∆2D2

ǫ2
(TO+TOCP +mn2)), where

TO denotes the running time of the oracle, and TOCP denotes the time taken

in each round by the GIGA algorithm of Theorem 2.

7.2.3 Discussion

Oracle: The oracle for solving the problem of (7.3) plays a crucial role

in our approach. As discussed previously, for typical cases of C, like the unit

ball under an Lp or Frobenius norm etc., (7.3) can be solved by the singular

value decomposition of A. Further, in the case when the set C involves a

quadratic or ellipsoid constraint we can use the S-procedure [86] to solve (7.3).

Limitations: A drawback of our methods is the dependence on ∆, ǫ in the

bound of Theorem 10. This limits the applicability of our method to problems,

like NNMA, with a large number of non-negativity constraints where the ratio

∆
ǫ

is typically large. However, our algorithms can be used as a heuristic for

such problems and can be used to initialize other methods which require a

good low-rank solution for initialization. Moreover, the lower bounds for the

experts framework and boosting suggest that the dependence on ∆, ǫ in our

bound may be optimal for the general RMP problem.

140

7.3 Low-rank Kernel Learning

In this section we apply both our rank minimization algorithms to the

problem of low-rank kernel learning in both transductive and inductive setting.

7.3.1 Low-rank Kernel Matrix Learning: Transductive Setting

In the transductive setting, low-rank kernel learning involves finding a

low-rank positive semi-definite (p.s.d.) matrix that satisfies linear constraints

typically derived from labeled data. Due to the rank constraint, this problem is

non-convex and is in general hard to solve. As described below, both our online

learning approaches can be applied naturally to this problem. We provide

provable guarantees on the rank of the obtained kernel.

Formally, the low-rank kernel learning problem can be cast as the fol-

lowing optimization problem:

min
K

‖K − K0‖F

s.t. Tr(SiK) ≤ ℓ, ∀ 1 ≤ i ≤ |S|,

Tr(DjK) ≥ u, ∀ 1 ≤ j ≤ |D|,

rank(K) ≤ r, K º 0,

(7.6)

where S is a set of pairs of points from the same class that are constrained to

have distance less than ℓ. Similarly, D is a set of pairs of points from different

classes that are constrained to have distance greater than u, with ℓ ≪ u.

For a similarity constraint matrix Si, Si(i1, i1) = Si(i2, i2) = 1, Si(i1, i2) =

Si(i2, i1) = −1 and all other entries 0. The dissimilarity constraint matrices Dj

141

can be constructed similarly. Assuming ‖K0‖F = 1, (7.6) can be reformulated

as:

min
K

rank(K)

s.t. Tr(SiK) ≤ ℓ ∀i, Tr(DjK) ≥ u ∀j,

Tr(KK0) ≥ β, ‖K‖F ≤ 1, K º 0,

(7.7)

where β is a function of r and can be computed using binary search. Note that

(7.7) is a special case of RMP with the convex set C being the intersection of

the p.s.d. cone and the unit Frobenius ball. Hence, we can use RMP-MW and

RMP-OCP to solve (7.7). Given (A, b) the oracle for both the methods solves:

min
K

rank(K) : Tr(AK) ≥ b, ‖K‖F ≤ 1, K º 0. (7.8)

Let A = UΣUT be the eigenvalue decomposition of A, and let Λ be a di-

agonal matrix with just the positive entries of Σ. Then the minimum k s.t.
√

∑k
i=1 Λ(i, i)2 ≥ b is the solution to (7.8). This follows from elementary linear

algebra. Note that for the oracle solving (7.8), TO = O(n3).

Now, D = 1 and ∆ = O(1 + l2 + u2) as ‖Si‖F = ‖Dj‖F = 2.

Using Theorem 10, the RMP-MW algorithm obtains a solution with rank

r ≤ O(1+u2+l2

ǫ2
log n)r∗ where r∗ is the optimal rank. Similarly, RMP-OCP

obtains an
(

O(1+u2+l2

ǫ2
), ǫ

)

-approximate solution. In Section 7.4.2, we present

empirical results for RMP-MW and RMP-OCP algorithms on some standard

UCI datasets.

142

7.3.2 Low-rank Kernel Function Learning: Inductive Setting

Consider an instance of the metric learning framework (3.2) introduced

in Section 3.1, with rank(W)+‖W‖2
F as the regularization function and linear

inequality constraints gi. Formally,

min
W

rank(W)

s.t. Tr(WXCiX
T) ≤ bi, ∀1 ≤ i ≤ m,

‖W‖2
F ≤ r,

W º 0, (7.9)

where W ∈ S
d
+ is a positive semi-definite matrix to be learned, Ci ∈ R

n×n, 1 ≤

i ≤ m are constraint matrices, X = {φ(x1), φ(x2,) . . . , φ(xn)}, φ(xi) is the

feature vector representation for i-th data point. Note that if the constraint

matrices Ci are of the form ±(ep − eq)(ep − eq)
T , then the above problem is

a metric learning problem using similarity and dissimilarity constraints.

Now, we show that as in Section 3.3, we can extend the above formu-

lation for learning a low-rank kernel function. First, we provide two lemmas

that we use to reduce (7.9) to a kernel learning problem.

Lemma 10. Let W ∗ be the optimal solution of (7.9), then

W ∗ = XS∗XT ,

where S∗ ∈ S
n
+.

143

Proof. Let W = UΛUT =
∑

j λjuju
T
j be the eigenvalue decomposition of

W . Consider a linear constraint Tr(WXCiX
T) ≤ bi as specified in problem

(7.9). Note that Tr(WXCiX
T) =

∑

j λju
T
j XCiX

T uj. Note that if the j-th

eigenvector uj of W is orthogonal to the range-space of X, i.e. XT uj = 0,

then the corresponding eigenvalue λj is not affected by the constraint. Now,

clearly setting λj = 0 decreases rank of W and doesn’t effect constraints

‖W‖2
F ≤ r and W º 0. Furthermore, the range-space of X is at most n-

dimensional. Thus, without loss of generality we can assume that λj = 0,∀j >

n. Furthermore, uj∀j ≤ n lie in the range-space of X, i.e., uj = Xαj∀j ≤ n

for some αj ∈ R
n. Hence,

W ∗ =
n

∑

j=1

λ∗
i u

∗
ju

∗T
j ,

=
n

∑

j=1

X(λ∗
jα

∗
jα

∗T
j)XT ,

= XS∗XT ,

where S∗ =
∑n

j=1 λ∗
jα

∗
jα

∗T
j .

Lemma 11. If n < d and X has full column rank, i.e. XT X is invertible

then:

XSXT º 0 ⇐⇒ S º 0.

Proof. =⇒

XSXT º 0 =⇒ vT XSXT v ≥ 0,∀v ∈ R
d. Since X has full column rank,

144

∀q ∈ R
n ∃v ∈ R

d s.t. XT v = q. Hence, qT Sq = vT XSXT v ≥ 0,∀q ∈

R
n =⇒ S º 0

⇐=

Now ∀v ∈ R
d, vT XSXT v ≥ 0 as S º 0. Thus XSXT º 0.

Using Lemma 10, problem (7.9) reduces to:

min
S

rank(XSXT)

s.t. Tr(XSXT XCiX
T) ≤ bi, ∀1 ≤ i ≤ m,

‖XSXT‖2
F ≤ r,

XSXT º 0. (7.10)

Now, assuming X to be full-rank and dimensionality of X to be greater than

n (number of points), rank(XSXT) = rank(XK
−1/2
0 LK

−1/2
0 XT) = rank(L),

where L = K
1/2
0 SK

1/2
0 . Additionally, Tr(XSXT XCiX

T) = Tr(K
1/2
0 LK

1/2
0 Ci),

where K0 = XT X is the input kernel matrix. Similarly, ‖XSXT‖2
F = ‖L‖2

F .

Using Lemma 11, XSXT º 0 ⇐⇒ L º 0. Hence, (7.10) reduces to following

kernel learning problem:

min
L

rank(L)

s.t. Tr(K
1/2
0 LK

1/2
0 Ci) ≤ bi, ∀1 ≤ i ≤ m,

‖L‖2
F ≤ r,

L º 0. (7.11)

Note that the above problem is the same as the low-rank kernel matrix

learning problem (7.7) defined in the previous section and is an instantiation

145

of general RMP. Hence, we can use RMP-MW and RMP-OCP to solve (7.11).

The Oracle required by both the methods can be constructed as described

in Section 7.3.1. Furthermore, given learned L∗, the learned kernel function,

k(·, ·), between a pair of points yi and yj is given by:

K(yi,yj) = φ(yi)
T XK

−1/2
0 LK

−1/2
0 XT φ(yj),

i.e., the learned kernel can be computed efficiently using an initial kernel func-

tion K0(x,y) = φ(x)T φ(y).

7.4 Experimental Results

In this section, we present empirical evaluation and comparison of our

algorithms to existing methods for general RMP as well as low-rank kernel

learning. For general RMP, we use synthetic examples to compare our methods

against the trace-norm heuristic [85] and the log-det heuristic [27]. The trace-

norm heuristic relaxes the rank objective to the trace-norm of the matrix,

which is given by the sum of its singular values. Note that the trace-norm of

a matrix is a convex function. The log-det heuristic relaxes the rank objective

to the log of the determinant of the matrix. For the application of RMP to

low-rank kernel learning, we use standard UCI datasets. All the presented

results represent the average over 20 runs.

7.4.1 Synthetic Datasets

First we use synthetic datasets by generating random matrices Ai ∈ Sn,

where Sn is the set of n × n symmetric matrices. We also generate a random

146

positive semi-definite matrix X0 ∈ Sn with ‖X0‖F ≤ 1, and use the obtained

X0 to generate constraints Tr(AiX) ≥ bi = Tr(AiX0). The convex set C

is fixed to be the intersection of the p.s.d cone and the unit ball under the

Frobenius norm. We fix the number of constraints to be 200 and the tolerance

ǫ for RMP-MW and RMP-OCP to be 5%. We use SeDuMi to implement the

trace-norm and log-det heuristics.

In Table 7.1, we compare the ranks of the solutions obtained by our

algorithms against the ones obtained by the trace-norm and log-det heuris-

tics. For small n, both trace-norm and log-det heuristic perform better than

RMP-MW and RMP-OCP. Note that since the constraint matrices Ai are ran-

dom, they satisfy (with high probability) the restricted isometry property used

in the analysis of [85]. However, RMP-OCP outperforms trace-norm heuristic

for large n (Table 7.1, n = 100) and RMP-MW performs comparably. We

attribute this phenomenon to the Frobenius norm constraint for which the

theoretical guarantees of [85] are not applicable. Also, both trace-norm and

log-det heuristic scale poorly with the problem size and fail to obtain a result

in reasonable time even for moderately large n. In contrast, both our algo-

rithms scale well with n, with RMP-MW in particular able to solve problems

of sizes up to n = 5000.

7.4.2 Low-rank Kernel Learning: Transductive Setting

We evaluate the performance of our methods applied to the problem

of low-rank kernel learning in transductive setting, as described in Section

147

Method\n 50 75 100 200 300
RMP-MW 23.25 11.25 7.3 2 2
RMP-OCP 12.8 7.5 5.3 2 2
Trace-norm 6.8 6.7 6.5 - -

LogDet 5 4.2 4.0 - -

Table 7.1: Rank of the matrices obtained by different RMP methods for vary-
ing size of the constraint matrices (n). The number of constraints generated
(m) is fixed to be 200. A “-” represents that the method could not find a
solution within 3 hours on a 2.6GHz Pentium 4 machine. Note that for large
problem sizes, both the trace-norm and the log-det heuristics are not compu-
tationally viable. Both our approaches outperform the trace-norm heuristic as
the problem size increases.

7.3.1, for k-NN classification on standard UCI datasets. We use two-fold cross

validation with k = 5. The lower and upper bounds for the similarity and

dissimilarity constraints (l, u) are set using the 30-th and 70-th percentiles of

the observed distribution of distances between pairs of points. We randomly

select a set of 40c2 pairs of points for constraints, where c is the number of

classes in the dataset. We run both RMP-MW and RMP-OCP for T = 50

iterations. Empirically our algorithms significantly outperform the theoretical

rank guarantees of Theorems (10) and (11).

Table 7.2 shows the accuracies achieved by the baseline Gaussian kernel

(with σ = 0.1), RMP-MW, RMP-OCP and the Burg divergence (also called as

LogDet divergence) based low-rank kernel learning algorithm (BurgKernel) of

[68]. It can be seen from the table that both RMP-MW and RMP-OCP obtain

a significantly lower rank kernel than the baseline Gaussian kernel. Further,

RMP-MW and RMP-OCP achieve a substantially higher accuracy than the

148

Dataset\Method GK MW OCP BK
Musk 80.80 93.11 98.15 81.51

(476) (44.1) (61.2) (61.2)
Heart 77.44 91.05 91.13 83.91

(267) (46.8) (39.5) (39.5)
Ionosphere 90.34 91.26 91.17 90.67

(350) (40) (27.9) (27.9)
Cancer 90.12 93.14 91.46 93.38

(569) (82) (94) (94)
Scale 66.34 73.78 72.46 72.11

(607) (146) (91) (91)

Table 7.2: Accuracies for 5-Nearest Neighbor classification using kernels ob-
tained by different methods. Numbers in parentheses represent the rank of the
obtained solution. GK represents Gaussian Kernel (σ = 0.1), MW represents
RMP-MW, OCP represents RMP-OCP and BK represents BurgKernel[68].
Overall, RMP-OCP obtains the best accuracy.

Gaussian kernel. Our algorithms also achieve a substantial improvement in

accuracy over the BurgKernel method. Note that we iterate our algorithms

for fewer iterations compared to the ones suggested by the theoretical bounds,

hence few of the constraints maybe unsatisfied. This suggests that these un-

satisfied constraints maybe noisy constraints and have small effect on the gen-

eralization error. We leave further investigation into generalization error of

our methods as a topic for future research.

Note that the BurgKernel method needs to be initialized with a low-

rank kernel. Typically, a few top eigenvectors of the baseline kernel are used

for this initialization. However, selecting only a few top eigenvectors can lead

to a poor initial kernel, especially if the rank of the initial kernel is high. This

can further lead to poor accuracy for the BurgKernel method, as indicated

149

by our experiments. Instead, the kernels obtained by our algorithms could

be used to initialize the BurgKernel algorithm. For example, for the case

of the Heart dataset, initialization of BurgKernel algorithm with the low-

rank solution obtained by RMP-OCP method achieves an accuracy of 94.29

compared to 83.91 achieved when initialized with the top eigenvectors of the

baseline Gaussian kernel. Note that this also improves upon the accuracy

achieved by RMP-MW and RMP-OCP.

7.5 Summary

In this chapter, we considered the problem of low-rank kernel learning in

both the transductive and inductive settings. For both the settings, low-rank

kernel learning reduces to the rank minimization problem over the intersec-

tion of a polyhedra and a heavily structured convex set. For this problem, we

proposed two online learning based approximation algorithms — the multi-

plicative weights update based algorithm and the online convex programming

based algorithm. Both the algorithms can be applied to a large class of general

rank minimization problems and provide provable approximation guarantees.

150

Chapter 8

Unsupervised Distance Learning

Figure 8.1: Images of different persons in different poses. Each row has differ-
ent persons in the same pose. Each column has the same person in different
poses.

For most real-world problems, the data has complicated semantics and

several interpretations. For example, a set of face images can be categorized

according to person identity, pose, angle of camera etc. In previous chapters,

we studied the problem of learning a metric/kernel function using available

side-information. Broadly speaking, the goal of supervision is to stress a par-

ticular semantic or interpretation of the data and use it to compress the data,

e.g., if the label of an image containing the face of a person is determined

151

according to the identity of the person in the image, then the data is com-

pressed or clustered according to the person-identity semantic. However, in

the absence of any side-information, it is desirable to uncover all the dominant

semantics.

In this chapter, we study the problem of distance learning in the unsu-

pervised setting. We model a particular semantic as the clustering 1 it induces

over the data. Hence, in the absence of any supervision, the goal is to uncover

all the disparate or alternative clusterings. As an example, consider a set of

pictures of different persons in different poses (see Figure 8.1). Given such a

dataset the goal is to recover two disparate clusterings of the data - one based

on the identity of the person and the other based on their pose. The above

problem arises naturally for many other widely used datasets, for instance:

news articles (can be clustered by the main topic, or by the news source),

reviews of various musical albums (can be clustered by composers, or by other

characteristics like genre of the album), and movies (can be clustered based

on actors/actresses or genre).

In this chapter, we present two novel unsupervised approaches for dis-

covering disparate clusterings in a given dataset. In the first approach we aim

to find multiple clusterings of the data which satisfy two criteria: a) the cluster-

ing error of each individual clustering is small and b) different clusterings have

small correlation between them. To this end, we present a new and compu-

1Throughout this chapter, a clustering will refer to a set of disjoint clusters of the data.

152

tationally tractable characterization of correlation (or decorrelation) between

different clusterings. We use this characterization to formulate a k-means

type objective function which contains error terms for each individual cluster-

ing along with a regularization term corresponding to the correlation between

clusterings. We provide a computationally efficient k-means type algorithm

for minimizing this objective function.

In the second approach we model the problem of finding disparate clus-

terings as one of learning the component distributions when the given data

is sampled from a convolution of mixture distributions. This formulation is

appropriate when the different clusterings come from independent additive

components of the data. The problem of learning a convolution of mixture

distributions is closely related to factorial learning [34, 50, 87]. However, the

methods of [34, 50, 87] are not suited for recovering multiple clusterings. The

problem with applying factorial learning directly is that there are multiple

solutions to the problem of learning a convolution of mixture distributions.

Out of all such possible solutions, the desirable solutions are the ones that

give maximally disparate clusterings. To address this problem we propose

a regularized factorial learning model that intuitively captures the notion of

decorrelation between clusterings and aims to estimate the parameters of the

decorrelated model.

An important aspect of both our approaches is the notion of decorrela-

tion between clusterings. The decorrelation measures that we propose quan-

tify the “orthogonality” between the mean vectors corresponding to different

153

clusterings. We show that the characterization of disparity between different

clusterings by the “orthogonality” between the mean vectors of the respective

cluster centers has a well-founded theoretical basis (see Section 8.1.3.1).

We evaluate our methods on synthetic and real-world datasets that

have multiple disparate clusterings. We consider real-world datasets from two

different domains - a music dataset from the text-mining domain and a portrait

dataset from the computer vision domain. We compare our methods to two fac-

torial learning algorithms, Co-operative Vector Quantization (CVQ)[34] and

Multiple Cause Vector Quantization (MCVQ)[87]. We also compare against

traditional single clustering algorithms like k-means and non-negative matrix

approximation (NNMA)[71]. On all the datasets, both of our algorithms sig-

nificantly outperform the factorial learning as well as the single clustering

algorithms. The factorial learning methods work reasonably well on a few

synthetic datasets which exactly satisfy their respective model assumptions.

But they are not robust in the case where model assumptions are even slightly

violated. Because of this, their performance is poor on real-world datasets and

other synthetic datasets. In comparison, our algorithms are more robust and

perform significantly better on all the datasets. For the music dataset both

our algorithms achieve around 20% improvement in accuracy over the facto-

rial learning and single clustering algorithms (k-means and NNMA). Similarly,

for the portrait dataset we achieve an improvement of 30% over the baseline

algorithms.

This work on disparate clustering was published in [58, 59].

154

8.1 Disparate Clustering

For simplicity, we present our methods for uncovering two disparate

clusterings from the data; our techniques can be generalized to uncover more

than two clusterings. We propose the following approaches:

• Decorrelated-kmeans approach: In this approach we try to fit each clus-

tering to the entire data, while requiring that different clusterings be

decorrelated with each other. To this end, we introduce a novel measure

for correlation between clusterings. This measure is motivated by the

fact that if the representative vectors of two clusterings are orthogonal

to one another, then the labellings generated by nearest neighbor assign-

ments for these representative vectors are independent under some mild

conditions (see Section 8.1.3.1).

• Sum of parts approach: In this approach we model the data as a sum

of independent components, each of which is a mixture model. We then

associate each component with a clustering. Further, as the distribution

of the sum of two independent random variables is the convolution of the

distributions (see [25]), we model the observed data as being sampled

from a convolution of two mixtures. Thus, our approach leads us to the

problem of learning a convolution of mixtures. Note that the individual

components uncovered by this approach may not be good approximations

to the data by themselves, but their sum is. This is in complete contrast

155

to the first approach where we try to approximate the data individually

by each component.

8.1.1 First Approach: Decorrelated-kmeans

Given a set of data points Z = {z1,z2, . . . ,zn} ⊆ R
m, we aim to uncover

two clusterings C1 and C2. Specifically, we wish to partition the set Z into

k1 groups for the first clustering C1 and k2 groups for the second clustering

C2. To achieve this task, we try to find decorrelated clusterings each of which

approximates the data as a whole. We propose the following objective function:

G(µ1...k1
,ν1...k2

) =
∑

i

∑

z∈C1
i

‖z − µi‖2 +
∑

j

∑

z∈C2
j

‖z − νj‖2

+ λ
∑

i,j

(βT
j µi)

2 + λ
∑

i,j

(αT
i νj)

2, (8.1)

where C1
i is cluster i of the first clustering, C2

j is cluster j of the second

clustering, and λ > 0 is a regularization parameter. The vector µi is the

representative vector of C1
i , νj is the representative vector of C2

j , αi is the

mean vector of C1
i and βj is the mean vector of C2

j .

The first two terms of (8.1) correspond to a k-means type error term for

the clusterings, with a crucial difference being that the “representative” vector

of a cluster may not be its mean vector. The last two terms are regularization

terms that measure the decorrelation between the two clusterings. In order

to extend this formulation for T ≥ 2 clusterings, we add k-means type error

156

terms for each of the T clusterings. Furthermore, we add T × (T − 1)/2 terms

corresponding to the decorrelation between pairs of clusterings.

The decorrelation measure given above is motivated by the intuition

that if the “representative” vectors of two clusterings are orthogonal to one

another, then the labellings generated by nearest neighbor assignments for

these vectors are independent. We provide a theoretical basis for the above

intuition in Section 8.1.3.1. Also, an important advantage of the proposed

decorrelation measure is that the objective function remains strictly and jointly

convex in the µi’s and νj’s (assuming fixed C1
i ’s and C2

j ’s).

To minimize the objective function (8.1), we present an iterative algo-

rithm which we call Decorrelated-kmeans (Algorithm 1). We fix C1 and C2 to

obtain µi’s and νj’s that minimize (8.1) and then assign each point z to C1
i

such that i = argminl ‖z − µl‖2 and to C2
j such that j = argminl ‖z − νl‖2.

We initialize one of the clusterings using k-means with k = k1 and the other

clustering randomly.

For computing the µi’s and νj’s, we need to minimize (8.1). The gra-

dient of the objective function in (8.1) w.r.t µi is given by:

∂G

∂µi

= −2

∑

z∈C1
i

z

 + 2

(

∑

j

nij

)

µi + 2λ
∑

j

(βT
j µi)βj,

where nij is the number of points that belong to C1
i and C2

j .

157

Now, (βT
j µi)βj = (βjβ

T
j)µi and αi =

„

P

z∈C1
i

z

«

P

j nij
. Thus,

∂G

∂µi

= −2
∑

j

nijαi + 2
∑

j

nijµi + 2λ

(

∑

j

βjβ
T
j

)

µi.

Similarly,

∂G

∂νj

= −2
∑

i

nijβj + 2
∑

i

nijνj + 2λ

(

∑

i

αiα
T
i

)

νj.

Setting the gradients to zero gives us the following equations:

µi =

(

I +
λ

∑

j nij

∑

j

βjβ
T
j

)−1

αi, (8.2)

νj =

(

I +
λ

∑

i nij

∑

i

αiα
T
i

)−1

βj. (8.3)

Since the objective function (8.1) is strictly and jointly convex in both µi’s and

νj’s, the above updates lead to a global minima of the objective function (8.1)

for fixed C1 and C2.

8.1.1.1 Computing the updates efficiently:

Computing the updates given by (8.2) and (8.3) requires computing the inverse

of an m×m matrix, where m is the dimensionality of the data. Thus updating

all the µi’s and νj’s directly would seem to require O(k1m
3+k2m

3) operations,

which is cubic in the dimensionality of the data. We now give a substantially

faster way to compute the updates in time linear in the dimensionality. Using

the Sherman-Morrison-Woodbury formula (see [39]) for the inverse in (8.2),

we get
(

I + ξiV V T
)−1

= I − ξiV
(

I + ξiV
T V

)−1
V T ,

158

where ξi = λ
P

j nij
and V = [β1, . . . ,βk2

]. Using the eigenvalue decomposition

V T V = QΣQT we see that

(

I + ξiV
T V

)−1
= Q (I + ξiΣ)−1 QT .

Since V T V is a k2 × k2 matrix its eigenvalue decomposition can be computed

in O(k3
2) time. Also, as (I + ξiΣ)−1 is a diagonal matrix, calculating its inverse

requires just O(k2) operations. The updates for µi’s can now be rewritten as,

µi =
(

I − ξiV Q (I + ξiΣ)−1 QT V T
)

αi. (8.4)

Similarly, the updates for νj’s can now be written as,

νj =
(

I − ζjMU (I + ζjΛ)−1 UT MT
)

βj, (8.5)

where ζj = λ
P

i nij
, M = [α1, . . . ,αk1

], and UΛUT is the eigenvalue decompo-

sition of MT M .

Using these updates reduces the computational complexity of computing all

the µi’s and νj’s to O(mk2
1 + mk2

2 + k3
1 + k3

2). If m > k = max(k1, k2), which

is typically the case, the above bound becomes O(mk2).

8.1.1.2 Determining λ:

The regularization parameter λ plays an important role in the Decorrelated-

kmeans algorithm. It determines the tradeoff between minimizing the individ-

ual clustering error of each clustering (first two terms in (8.1)) and finding

decorrelated cluster centers for the different clusterings (last two terms in

159

Algorithm 4 Decorrelated-kmeans (Dec-kmeans)

Input: Data Z = {z1,z2, . . . ,zn}
k1: Number of clusters in first clustering (C1)
k2: Number of clusters in second clustering(C2)
λ: regularization parameter

Output: C1, C2: Two different clusterings

1. C1 ← k-means(Z), C2 ← Random assignment
2. repeat

2.1. αi ← ComputeMean(C1
i), for all 1 ≤ i ≤ k1

2.2. βj ← ComputeMean(C2
j), for all 1 ≤ j ≤ k2

2.3. Update µi and νj for all i, j using (8.4), (8.5)

2.4. ∀z, C1
i ← C1

i ∪ {z},
if i = arg minl ‖z − µl‖2.

2.5. ∀z, C2
j ← C2

j ∪ {z},
if j = arg minl ‖z − νl‖2.

4. until convergence
return C1, C2

(8.1)). Empirically, we observe that the clustering accuracies are good when

λ ∈ [100, 10000], which is a large range. But, a different scaling of the data

can change this range for λ. Hence, we determine λ using a simple heuristic.

Note that for small values of λ, the Decorrelated-kmeans algorithm finds ap-

proximately the same clusters for both the clusterings. While for high value of

λ it tries to find clusterings which are orthogonal to each other, even though

both the clusterings may not fit the data well. Thus, a suitable λ balances out

both the objectives and hence generally there is a large change in objective

function value when λ is perturbed slightly. Based on this intuition we form a

heuristic to determine λ: start with a large λ and find different clusterings of

160

the data while decreasing λ, and select a λ for which the drop in the objective

function is the highest. Note that different variants of the heuristic can be

used depending on the data and domain knowledge. For example, if the data

is large, then a subset of the data can be used for finding clusterings or if

the data is noisy then a more robust measure like average change in objective

function should be preferred over the maximum change measure for selecting

λ.

8.1.2 Second Approach: Sum of Parts

In this section, we describe our “sum of parts” approach. Let Z =

{z1, . . . ,zn} be the observed m-dimensional data sampled from a random vari-

able Z. We model Z as a sum X + Y , where X,Y are independent random

variables and are drawn from mixtures of distributions. Specifically,

pX =

k1
∑

i=1

aipXi
, pY =

k2
∑

j=1

bjpYj
.

The problem of learning independent components can now be stated as:

Given data sampled according to Z, recover the parameters of the probability

distributions pXi
, pYj

along with the mixing weights ai, bj.

As Z = X +Y , the probability density function of Z is the convolution

of pX and pY [25, Section A.4.11]. Thus,

pZ(z) = (pX ∗ pY)(z) =

k1
∑

i=1

k2
∑

j=1

(aibj) · (pXi
∗ pYj

)(z) , (8.6)

161

where f1 ∗ f2(z) =
∫

Rm f1(x) · f2(z − x)dx denotes the convolution of f1 and

f2.

From (8.6) it follows that when the distributions pXi
and pYj

belong

to a family of distributions closed under convolution, Z can be viewed as a

mixture of k1 ×k2 distributions. However, the problem of learning the compo-

nents X and Y from Z is harder than that of simply learning the parameters

of a mixture model, as along with learning the k1×k2 component distributions

one must also be able to factor them out. In the following section, we give

a generalized Expectation Maximization (EM) algorithm for learning the pa-

rameters of the component mixtures when the base distributions are spherical

multi-variate Gaussians. Our techniques can be extended to more general dis-

tributions like non-spherical Gaussians and potentially to other families closed

under convolution.

8.1.2.1 Learning the convolution of a mixture of Gaussians

Let the components X and Y be mixtures of spherical Gaussians, i.e.,

pX =
∑k1

i=1 aiN(µi, σ
2) and pY =

∑k2

i=1 biN(νi, σ
2). As in our first approach we

initialize the EM algorithm (Algorithm 2) by k-means for the first clustering

and a random assignment for the second clustering. We initialize µ0
i ’s and ν0

j ’s

to be the means of the first and second clusterings respectively. To initialize

σ we use a heuristic presented in [15],

σ =
1√
2m

min

(

min
i6=j

‖µ0
i − µ0

j‖, min
i6=j

‖ν0
i − ν0

j ‖
)

.

162

E-step:

Let pt
ij(z) denote the conditional probability that z comes from the Gaussian

pXi
∗ pYj

given the current parameters. As our main objective is to cluster the

data, we use hard assignments in the E-step to ease the computations involved.

The E-step in this case will be:

pt+1
ij (z) =

1, if (i, j) =

argmax(r,s){at
rb

t
s · N (µt

r + νt
s, 2(σt)2) (z)}

0, otherwise.

(8.7)

Note that, to uncover T different clusterings from the data, O(kT) computa-

tional operations are required for each data point in the E-step. Ghahramani[34]

suggested various approximation methods to reduce the time complexity of

this estimation, and the same can be applied to our setting as well. In our

implementation, we use Gibbs sampling for approximating the distribution of

labels, pt+1
ij (z), when the parameters of the base distributions are fixed.

M-step:

In the M-step, we use the clusterings updated in the E-step (specified by pt+1
ij ’s)

to estimate the parameters of the distributions. Formally, we maximize the

log-likelihood:

(

µt+1
1...k1

,νt+1
1...k2

, σt+1, at+1
1...k1

, bt+1
1...k2

)

=

argmax
µ1...k1

,ν1...k2
,σ,

a1...k1
,b1...k2

∑

i,j,z

pt+1
ij (z) log (aibjN(µi + νj, σ)(z)) .

163

The mixture weights and variance σ can be easily computed by differentiating

w.r.t. ai’s, bj’s, σ and setting the derivatives to zero. This gives us the

following expressions:

at+1
i =

1

n

∑

j

∑

z

pt+1
ij (z), (8.8)

bt+1
j =

1

n

∑

i

∑

z

pt+1
ij (z), (8.9)

(σt+1)2 =
1

2mn

∑

i,j,z

pt+1
ij (z) ‖z − µt

i − νt
j‖2. (8.10)

Computing the means to maximize the log-likelihood is more involved and it

reduces to minimizing the following objective function:

min
µ1...k1

,ν1...k2

F (µ1...k1
,ν1...k2

) =
∑

i,j,z

pt+1
ij (z)‖z − µi − νj‖2. (8.11)

Note that there exist multiple solutions for the above equation; since we can

translate the means µi’s by a fixed vector w and the means νj’s by −w to get

another set of solutions. Note that the CVQ [34] algorithm also suffers from

the same problem of multiple solutions. Out of all the solutions to (8.11), the

solutions which give maximally disparate clusterings are more desirable. To

obtain such solutions we regularize the µi’s and νj’s to have small correlation

with each other. To this end we introduce a regularization term to make the

µi’s and νj’s orthogonal to one another. This correlation measure is simi-

lar to the measure discussed in the previous Decorrelated-kmeans approach

(Section 8.1.1). Formally, we minimize the following objective function:

F̃ (µ1...k1
,ν1...k2

) =
∑

i,j,z

pt+1
ij (z)‖z − µi − νj‖2 + λ

∑

i,j

(µT
i νj)

2, (8.12)

164

where λ > 0 is a regularization parameter and can be selected using a heuristic

similar to the one described in Section 8.1.1.2.

Observe that the above objective is not jointly convex in µi and νj but

is strictly convex in µi for fixed νj’s and vice-versa. To minimize F̃ , we use

the block coordinate descent algorithm ([111]) where we fix νj’s to minimize

µi and vice-versa. By differentiating (8.12) w.r.t. µi and νj and setting the

derivatives to zero we get,
(

I +
λ

∑

j νjν
T
j

∑

j nij

)

µi +

∑

j nijνj
∑

j nij

= αi,

(

I +
λ

∑

i µiµ
T
i

∑

i nij

)

νj +

∑

i nijµi
∑

i nij

= βj,

where nij =
∑

z pt+1
ij (z) is the number of data-points that belong to cluster

i of the first clustering and cluster j of the second clustering, αi denotes the

mean of all points that are assigned to cluster i in the first clustering and βj

denotes the mean of points assigned to cluster j in the second clustering, i.e. ,

αi =
1

nai

∑

j

∑

z

zpt+1
ij (z), (8.13)

βj =
1

nbj

∑

i

∑

z

pt+1
ij (z). (8.14)

To solve for µi and νj in the above equations we use an alternative minimiza-

tion scheme - we iteratively update the µi and νj as follows:

µi =

(

I +
λ

∑

j νjν
T
j

∑

j nij

)−1 (

αi −
∑

j nijνj
∑

j nij

)

(8.15)

νj =

(

I +
λ

∑

i µiµ
T
i

∑

i nij

)−1 (

βj −
∑

i nijµi
∑

i nij

)

. (8.16)

165

For initialization we set νj to be βj for each j. Below we prove that

this scheme converges to a local minima of (8.12).

Lemma 12. The updates for µi and νj given by (8.15) converge to a local

minimum of the regularized objective function given by (8.12).

Proof. As the updates (8.15) minimize the objective function at each iteration,

the updates converge to a fixed point[111]. Also, the objective function (8.12)

is strictly-convex in µi for fixed νj’s and vice-versa. Thus, any fixed point of

(8.12) is also a local minimum. It now follows that our updates converge to a

local minimum of the objective function.

Theorem 12. Algorithm 2 monotonically decreases the objective function:

F =
∑

i,j,z

pt+1
ij (z)

‖z − µi − νj‖2

2σ2
+ λ

∑

i,j

(µT
i νj)

2 (8.17)

Proof. Let Ft be the objective function value at the start of t-th iteration, FE
t

be the objective function value after the E-step of t-th iteration and FM
t = Ft+1

be the objective function after M -step of t-th iteration. The E-step assigns

new labels according to 8.7, which is equivalent to minimizing:

∑

i,j,z

pt+1
ij (z)

‖z − µi − νj‖2

2σ2
,

with µi and νj being fixed.

Thus, the first term of the objective function (8.17) is decreased by

the E-step while the second term remains fixed. Hence, Ft ≥ FE
t . Using

Lemma 12, FE
t ≥ FM

t , as only µi’s and νj’s are variables with pij fixed (σ can

be absorbed in λ). Thus, Ft ≥ Ft+1.

166

8.1.2.2 Computing the updates efficiently:

Using techniques similar to Section 8.1.1.1, the update for µi can be

written as:

µi =
(

I − ξiV Q (I + ξiΣ)−1 QT V T
)

(

αi −
∑

j nijνj
∑

j nij

)

, (8.18)

where, ξi = λ
P

j nij
and V = [ν1, . . . ,νk2

] and QΣQT is the eigenvalue decom-

position of V T V .

Similarly, the update for νj can be written as,

νj =
(

I − ζjMU (I + ζjΛ)−1 UT MT
)

(βj −
∑

i nijµi
∑

i nij

), (8.19)

where, ζj = λ
P

i nij
, M = [µ1, . . . ,µk1

] and MT M = UΛUT .

As in Section 8.1.1.1, the above updates reduce the computational com-

plexity of computing all the µi’s and νj’s from O(k1m
3 + k2m

3) to O(m(k2
1 +

k2
2)).

8.1.3 Discussion

8.1.3.1 Decorrelation measure:

Now we motivate the decorrelation measures used in equations (8.1)

and (8.12). For this, we will need the following two lemmas about uniqueness

of projection and multivariate Gaussians. In the following lemmas, for a sub-

space S of R
m let PS : R

m → R
m be the orthogonal projection operator onto

the subspace S.

167

Algorithm 5 Convolutional-EM (Conv-EM)

Input: Data Z = {z1,z2, . . . ,zn}
k1: Number of clusters in first clustering (C1)
k2: Number of clusters in second clustering(C2)
λ: regularization parameter

Output: C1, C2: Two different clusterings

1. C1 ←k-means(Z), C2 ←Random assignment
2. µi ←ComputeMean(C1

i), νj ←ComputeMean(C2
j)

3. ai=
1
k1

, bj=
1
k2

4. repeat

E Step:

4.1. For each z, assign pij(z) using (8.7).
M Step:

4.2. Assign ai, bj and σ using (8.8), (8.9), (8.10).

4.3. Assign αi and βj using (8.13), (8.14).

4.4. νj ← βj

4.5. repeat until convergence

• Update µi using (8.18).

• Update νj using (8.19).

5. until convergence
6. C1

i = {z|pij(z) = 1,∀j}, C2
j = {z|pij(z) = 1,∀j}

return C1, C2

Lemma 13. Let S1, S2 be subspaces of R
m such that S1∩S2 = {0}. Then, for

all x ∈ S1, and y ∈ S2, there exists a unique u ∈ S1 + S2 such that PS1
(u) = x

and PS2
(u) = y.

Proof. Let x ∈ S1 and y ∈ S2. Also, let P1, P2 be the projection matrices

for the projection operators PS1
and PS2

respectively. We first formulate the

hypothesis that S1 ∩S2 = {0} in terms of the matrices P1, P2 by showing that

168

I − P1P2 and I − P2P1 are invertible. Suppose on the contrary that I − P1P2

is not invertible. Then, for some non-zero z we must have, (I − P1P2)z = 0,

i.e., z = P1P2z. Recall that for a projection matrix P into a subspace S we

always have ‖Pu‖ ≤ ‖u‖ with equality if and only if u ∈ S. Thus, we have

‖z‖ = ‖P1P2z‖ ≤ ‖P2z‖ ≤ ‖z‖.

Therefore, z = P1P2z = P2z, which is possible only if z ∈ S1 and z ∈ S2. This

contradicts the assumption that S1 ∩ S2 = {0}, I − P1P2 must be invertible.

Similarly, we can also show that I − P2P1 is invertible.

Now, to prove the lemma we need to show that there exists a unique

u ∈ S1 + S2 such that ‘x = P1u and y = P2u’. Since, S1 ∩ S2 = {0}, solving

the above system of equations is equivalent to solving for v ∈ S1, and w ∈ S2

such that

x = P1(v + w), y = P2(v + w).

Manipulating the above equations, we get:

(I − P1P2)v = x − P1y, (I − P2P1)w = y − P2x.

The existence and uniqueness of v, w follow from the fact that I − P1P2 and

I − P2P1 are invertible.

Lemma 14. Let Z ∈ R
m denote a random variable with spherical Gaussian

distribution. Let S1, S2 ⊆ R
m be two subspaces such that S1 ∩S2 = {0} and let

Z1 = PS1
(Z), Z2 = PS2

(Z) be the random variables obtained by projecting Z

onto S1, S2 respectively. Then, the random variables Z1 and Z2 are independent

if and only if the subspaces S1 and S2 are orthogonal.

169

Proof. ⇐= If S1 and S2 are orthogonal, then for u1 ∈ S1 and u2 ∈ S2, Pr[Z =

u1 + u2] = Pr[Z1 = u1, Z2 = u2]. Further, since Z has a spherical Gaussian

distribution so do Z1 and Z2. The independence of Z1 and Z2 follows easily

from the above observations.

=⇒ Let the random variables Z1 and Z2 be independent. Note that

without loss of generality we can assume that Z has mean 0 (as else we can

translate Z). Furthermore, we can also assume that the support of Z is con-

tained in S1 + S2. This is because, PS1
= PS1

◦ PS1+S2
and PS1+S2

(Z) is also

distributed as a spherical multivariate Gaussian. For the rest of the proof we

will suppose that S1 + S2 = support(Z) = R
m and that Z has mean 0.

Using Lemma 13, for u ∈ R
m, we have

Pr[Z = u] = Pr[PS1
(Z) = PS1

(u), PS2
(Z) = PS2

(u)].

As Z1 and Z2 are independent the above can be rewritten as

Pr[Z = u] = Pr[PS1
(Z) = PS1

(u)] · Pr[PS2
(Z) = PS2

(u)].

Now, since the projection of a spherical multivariate Gaussian is also a

spherical multivariate Gaussian, substituting probability density formulae in

the above equation we get the following:

1

(2π)m/2
e−

1

2
‖u‖2

=
1

(2π)m1/2
e−

1

2
‖u1‖2 · 1

(2π)m2/2
e−

1

2
‖u2‖2

,

where, m1,m2 denote the dimensions of S1, S2 respectively and u1 = PS1
(u), u2 =

PS2
(u). Noting that m = m1 + m2 (since S1 ∩ S2 = {0}) the above equation

170

can be simplified to

‖u‖2 = ‖PS1
(u)‖2 + ‖PS2

(u)‖2.

As the above equation holds for all u it also holds in particular for u ∈ S1.

Now, for u ∈ S1 we have PS1
(u) = u, thus we get

∀u ∈ S1, PS2
(u) = 0.

The above condition can easily be shown to be equivalent to S1 and S2 being

orthogonal.

We now give the motivation for our decorrelation measures. Let µ1, . . . ,µk1

and ν1, . . . ,νk2
be vectors in R

m such that µi and νj are orthogonal for all

i, j. Let S1 be the space spanned by µi’s and S2 be the space spanned by νj’s.

Define the “nearest-neighbor” random variables, NN1(Z), NN2(Z) as follows:

NN1(Z) = argmin{‖Z − µi‖ : 1 ≤ i ≤ k1}, (8.20)

NN2(Z) = argmin{‖Z − νj‖ : 1 ≤ j ≤ k2}.

Then as S1 and S2 are orthogonal to each other, it follows from Lemma 14 that

when Z is a spherical multivariate Gaussian, the random variables NN1(Z)

and NN2(Z) are independent. Similarly, it can be shown that when Z is a

spherical multivariate Gaussian, the random variables NN1, and NN2 defined

by,

(NN1(Z), NN2(Z)) = argmin
(i,j)

{‖Z − µi − νj‖}, (8.21)

171

are independent. Note that in equations (8.1), (8.12) we use inner products

involving the mean vectors of different clusterings as the correlation measure.

Thus, minimizing the correlation measure ideally leads to the mean vectors of

different clusterings being orthogonal. Also, observe that we use nearest neigh-

bor assignments of the form (8.20), (8.21) in our algorithms in Decorrelated-

kmeans and Convolutional-EM. Thus, the decorrelation measures specified in

equations (8.1) and (8.12) intuitively correspond to the labellings of the

clusterings being independent.

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

Dec−Kmeans Representative Vectors 1
Dec−Kmeans Representative Vectors 2
Parts Recovered by Conv−EM

Figure 8.2: Representative vectors obtained by Dec-kmeans and the parts
obtained by Conv-EM. The bold line represents the separating hyperplane for
the first clustering, while the dotted line represents the separating hyperplane
for the second clustering. Conv-EM produced mean vectors {µ1, µ2, ν1, ν2}
and subsequently each of the four parts are obtained by µi + νj (i ∈ {1, 2},j ∈
{1, 2}).

172

8.2 Decorrelated-kmeans vs Convolutional-EM

Decorrelated-kmeans (Algorithm 1) has a three-fold advantage over the

“sum of the parts” approach (Algorithm 2):

• Computing the E-step exactly in the “sum of the parts” approach re-

quires O(kT) computation for each data point, where T is the number

of alternative clusterings. On the other hand, in Decorrelated-kmeans,

each label assignment step requires just O(kT) computations as the

error terms for different clusterings are independent in (8.1). Thus,

Decorrelated-kmeans is more scalable than Convolutional-EM with re-

spect to the number of alternative clusterings.

• The M-step in the “sum of the parts” approach solves a non-convex

problem and requires an iterative procedure to reach a local minimum. In

the Decorrelated-kmeans approach, computing the representative vectors

(the equivalent of M-step) requires solving a convex problem and the

optimal solution can be written down in closed form. Hence, estimation

of representative vectors is more accurate and efficient for Decorrelated-

kmeans.

• Decorrelated-kmeans is a discriminative approach, while Convolutional-

EM is a generative model based approach. Thus, the model assumptions

are more stringent for the latter approach. This is observed empirically

also, where Decorrelated-kmeans works well for all the datasets, but

Convolutional-EM suffers on one of the real-life datasets.

173

On the flip side, there is no natural interpretation of the “representative” vec-

tors given by Decorrelated-kmeans. On the other hand, the means given by

Convolutional-EM can naturally be interpreted as giving a part-based repre-

sentation of the data. This argument is illustrated by Figure 8.2. The repre-

sentative vectors obtained from Decorrelated-kmeans partition the data into

two clusters accurately. But, they don’t give any intuitive characterization of

the data. In contrast, Convolutional-EM is able to recover the four clusters in

the data generated by the addition of two mixtures of Gaussians.

8.3 Experiments

We now provide experimental results on synthetic as well as real-world

datasets to show the applicability of our methods. For real-world datasets we

consider a music dataset from the text-mining domain and a portrait dataset

from the computer-vision domain. We compare our methods against the fac-

torial learning algorithms Co-operative Vector Quantization (CVQ)[34] and

Multiple Cause Vector Quantization (MCVQ)[87]. We also compare against

single-clustering algorithms such as k-means and NNMA. We will refer to the

methods of Sections 8.1.1, 8.1.2 as Dec-kmeans (for Decorrelated-kmeans) and

Conv-EM (for Convolutional-EM) respectively.

We also compare our methods against two simple heuristics:

1. Feature Removal (FR): In this approach, we first cluster the data using k-

means. Then, we remove the coordinates that have the most correlation

174

with the labels in the obtained clustering. Next, we cluster the data again

using the remaining features to obtain the alternative clustering. The

correlation between a feature and the labels is taken to be proportional

to the total weight of the mean vectors for the feature and inversely

proportional to the entropy of the particular feature in the mean vectors.

Formally:

C(i) =

∑

j µi
j

−
∑

j

(

µi
j

P

l µi
l

log
µi

j
P

l µi
l

) ,

where µi
j is the i-th dimension of the j-th cluster.

2. Orthogonal Projection (OP): This heuristic is motivated by principal

gene shaving[47]. The heuristic proceeds by projecting the data onto

the subspace orthogonal to the means of the first clustering and uses the

projected data for computing the second clustering.

(a) Cluster the data using a suitable method of clustering.

(b) Let the means of the obtained clustering be m1, . . . ,mk. Project

the input matrix X onto the space orthogonal to the one spanned

by the means m1, . . . ,mk to get X ′.

(c) Cluster the columns of X ′ to obtain a new set of labels, and compute

the cluster means m̃1, . . . , m̃k.

(d) Repeat steps (b),(c) with means m̃1, . . . , m̃k.

(e) Until convergence, repeat steps (a)-(d).

175

8.3.1 Implementation Details:

All the methods have been implemented in MATLAB. The implemen-

tation of MCVQ was obtained from the authors of [87]. Lee and Seung’s

algorithm[71] is used for NNMA. Experiments were performed on a Linux ma-

chine with a 2.4 GHz Pentium IV processor and 1 GB main memory. For

the real-world datasets, we report results in terms of accuracy with the true

labels. As the number of clusters can be high in the synthetic datasets, we

report results in terms of normalized mutual information (NMI) [98]. For all

the experiments, accuracy/NMI is averaged over 100 runs.

8.3.2 Synthetic Datasets:

For our experiments we generate synthetic datasets as a sum of inde-

pendent components. Let X and Y be samples drawn from two independent

mixtures of multivariate Gaussians. To evaluate our methods in various set-

tings, we generate the final dataset Z by combining X and Y in three different

ways. By viewing X and Y as the components of the datasets, and clustering

based on these components we get two different clusterings of the data.

1. Concatenated dataset: This dataset is produced by simply concatenating

the features of X and Y, i.e., Z =

[

X

Y

]

.

2. Partial overlap dataset: In this dataset we allow a few of the features

of X and Y to overlap. Specifically, let X =

[

X1

X2

]

and Y =

[

Y1

Y2

]

,

where X1, X2, Y1 and Y2 all have the same dimensionality. Then, we

176

form Z =

X1

X2 + Y1

Y2

.

3. Sum dataset: In this dataset, all of the features of X and Y overlap, i.e.,

Z = X + Y.

In our experiments the dimensionality of X and Y was set to 30 and there were

3000 data points. We label each xi and yj according to the Gaussian from

which they were sampled. Thus, each z is associated with two true-labels.

Both our methods produce two disparate clusterings, and we associate each

clustering with a unique true-labeling and report NMI with respect to that

true-labeling. We use the same procedure for CVQ and MCVQ. For k-means

and NNMA2, which produce just one clustering, we report the NMI of the

clustering with respect to the true-labellings.

Figure 8.3 compares the NMI achieved by various methods on the Con-

catenated dataset. It can be seen from the figure that Conv-EM and Dec-

kmeans outperform k-means and NNMA for both the clusterings, achieving

an average improvement of 50 − 60% in NMI. Similarly, both Conv-EM and

Dec-kmeans achieve significantly higher NMI than CVQ. Note that the Con-

catenated dataset satisfies MCVQ’s assumption that each dimension of the

data is generated from one of the two factors. This is empirically confirmed

2As NNMA is useful for the non-negative data only, we made the data non-negative by
choosing the means sufficiently far away from origin.

177

2 4 6 8 10 12 14 16 18 20
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Clusters (k
1
)

N
M

I f
or

 F
irs

t C
lu

st
er

in
g

Dec−kmeans
Conv−EM
MCVQ
CVQ
K−means
NNMA

2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Clusters (k
2
)

N
M

I f
or

 S
ec

on
d

C
lu

st
er

in
g

Dec−kmeans
Conv−EM
MCVQ
CVQ
K−means
NNMA

Figure 8.3: NMI achieved by various methods on the Concatenated Dataset.
Top figure shows NMI for the first clustering and bottom figure shows NMI for
the second clustering. Overall, Dec-kmeans achieves the highest NMI, while
MCVQ also performs well on this dataset.

by the results, as MCVQ not only outperforms CVQ but also performs com-

petitively with Conv-EM and Dec-kmeans.

Figure 8.4 compares the NMI for various methods on the Overlap

dataset. Clearly, Conv-EM and Dec-kmeans perform better than both CVQ

and MCVQ. Note that when the number of clusters is small, NMI of MCVQ

with respect to both the clusterings drops to around 0.6. This is probably be-

cause the overlap dataset does not satisfy the model assumptions of MCVQ.

Figure 8.5 shows the NMI achieved by various methods on the Sum

dataset. For this dataset also, both Conv-EM and Dec-kmeans perform com-

parably and both the methods achieve significantly higher NMI than other

methods. Interestingly, NMI for MCVQ is even lower than the single-clustering

algorithms (k-means and NNMA). This could be because the modeling as-

sumption of MCVQ – each dimension in the data is generated by exactly one

178

factor – is completely violated in the Sum dataset. Note that, although CVQ

is designed to model the Sum datasets, it performs poorly compared to Conv-

EM and Dec-kmeans. This trend can be attributed to the fact that due to

the lack of regularization CVQ selects one of the many possible solutions to

its optimization problem, which may or may not correspond to good disparate

clusterings.

Also note that Conv-EM does not perform significantly better than

Dec-kmeans, even though the datasets fit the Conv-EM model well. This is

probably because of the non-convex nature of the optimization problem for the

M-step in Conv-EM, due to which which the maximum likelihood estimation

gets stuck in a local minimum.

2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Number of Clusters (k
1
)

N
M

I f
or

 F
irs

t C
lu

st
er

in
g

Dec−kmeans
Conv−EM
MCVQ
CVQ
K−means
NNMA

2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Clusters (k
2
)

N
M

I f
or

 S
ec

on
d

C
lu

st
er

in
g

Dec−kmeans
Conv−EM
MCVQ
CVQ
K−means
NNMA

Figure 8.4: NMI achieved by various methods on the Overlap Dataset. Top
figure shows NMI for the first clustering and bottom figure shows NMI for
the second clustering. Dec-kmeans and Conv-EM achieves similar NMI. Both
achieve higher NMI than MCVQ or CVQ.

179

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

1.2

Number of Clusters (k
1
)

N
M

I f
or

 F
irs

t C
lu

st
er

in
g

Dec−kmeans
Conv−EM
MCVQ
CVQ
K−means
NNMA

2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Clusters (k
2
)

N
M

I f
or

 S
ec

on
d

C
lu

st
er

in
g

Dec−kmeans
Conv−EM
MCVQ
CVQ
K−means
NNMA

Figure 8.5: NMI achieved by various methods on the Sum Dataset. Top figure
shows NMI for the first clustering and bottom figure shows NMI for the second
clustering. Dec-kmeans and Conv-EM achieves similar NMI. NMI achieved by
MCVQ is very low.

8.3.3 Real-World Datasets

8.3.3.1 Music Dataset:

The music dataset is a collection of 270 documents, with each document

being a review of a classical music piece taken from amazon.com. Each music

piece is composed by one of Beethoven, Mozart or Mendelssohn and is in one

of symphony, sonata or concerto forms. Thus, the documents can be clustered

based on the composer or the genre of the musical piece. For the experiments

a term-document matrix was formed with dimensionality 258 after stop word

removal and stemming.

Table 8.1 shows that although all the methods are able to recover the

true clustering for composer, most of the algorithms perform poorly for the

genre based clustering. In particular, k-means and NNMA perform very poorly

for the clustering based on genre as they produce just one clustering which

180

Table 8.1: Accuracy achieved by various methods on the Music dataset, which
is a collection of text documents. Dec-kmeans performs the best on this
dataset. CVQ and MCVQ perform very poorly compared to Conv-EM

Method\Type Composer Genre
NNMA 1.00 0.40
k-means 0.89 0.41
Feature Removal 0.97 0.64
Orthogonal Projection 0.99 0.66
CVQ 0.97 0.57
MCVQ 0.91 0.53
Conv-EM 1.00 0.65
Dec-kmeans 1.00 0.69

has high NMI with the clustering based on composers. Note that in this

dataset, the sets of features (words) that determine clustering with respect

to composer and genre respectively are almost disjoint. Hence, methods like

Feature Removal and Orthogonal Projection, which try to identify disjoint sets

of features for the clusterings work fairly well. But, both MCVQ and CVQ

algorithm achieve very low accuracy as they do not try to find decorrelated

clusterings. Both our methods outperform the baseline algorithms.

8.3.3.2 Portrait Dataset:

The Portrait dataset consists of 324 images obtained from Yale Face

Dataset B [33]. Each image in the dataset is a portrait of one of three people, in

one of three poses in different backgrounds. The dimensionality of each image

is 64 × 64. As a first step we reduce the dimensionality of the data to 300

181

by using principal component analysis. As in the music dataset, the current

dataset can be clustered in two natural ways - by the person in the picture or

the pose. Table 8.2 shows that both k-means and NNMA perform poorly with

respect to both the clusterings. This shows that in the datasets where there is

more than one natural clustering, traditional clustering algorithms could fail

to find even one good clustering. Hence, it can be beneficial to use alternative

clustering methods even if one is interested in obtaining a single clustering.

Our hypothesis is that unlike the music dataset, there are no dominant features

for any of the clusterings in this dataset. This hypothesis can be justified by

observing the poor accuracies of methods like Feature Removal and Orthogo-

nal Projection. Conv-EM outperforms baseline algorithms CVQ and MCVQ

significantly, but interestingly Dec-kmeans achieves an even higher accuracy

of 84% and 78% for the two clusterings.

8.4 Summary

We formulated the unsupervised distance learning problem as that of

learning disparate clusterings of the data. We provided two novel approaches

to simultaneously uncover all the dominant clusterings in the data. Our decor-

related k-means approach is a discriminative approach based on the k-means

clustering algorithm. We introduced a new regularization to uncover decor-

related clusterings of the data and provided theoretical justification for the

same. Our sum of parts approach is a generative approach and leads to the

182

Table 8.2: Accuracy achieved by various methods on the Portrait dataset,
which is a collection of images. Dec-kmeans outperforms all other methods
by a significant margin. Conv-EM achieves better accuracy than all other
methods, especially CVQ and MCVQ.

Method\Type Person Pose
NNMA 0.51 0.49
k-means 0.66 0.56
Feature Removal 0.56 0.48
Orthogonal Projection 0.66 0.70
CVQ 0.53 0.51
MCVQ 0.64 0.51
Conv-EM 0.69 0.72
Dec-kmeans 0.84 0.78

problem of learning a convolution of mixture models. For the special case of

spherical Gaussians, we provided a generalized EM algorithm and added a reg-

ularization to address the identifiability issue. We evaluated our methods on

two real-world data sets - a music data set from the text mining domain, and

a portrait data set from the computer vision domain. Our methods achieved

a substantially higher accuracy than existing factorial learning as well as tra-

ditional clustering algorithms.

183

Chapter 9

Conclusions and Future Directions

In this thesis, we studied the important problems of metric and kernel

learning. In Chapters 3, 4, and 5, we primarily focused on various Mahalanobis

distance/kernel learning problems. In Chapters 6, 7, and 8 we considered a

few other models for distance/kernel learning.

First, we introduced a generic framework for metric learning that gen-

eralizes almost all the existing convex metric learning formulations. We speci-

fied conditions under which our framework learns a metric efficiently. We also

extended our framework to handle high-dimensional data by restricting the

number of parameters involved, leading to an efficient kernel learning frame-

work.

Metric learning owes its wide applicability to its ability to significantly

improve the accuracy of nearest neighbor retrieval. Most of the real-world

applications involve huge databases, and hence, fast nearest neighbor search

is fundamental to the success of any metric learning method. For the problem

of fast similarity search, we developed a method to learn randomized hash

functions which enables sub-linear time similarity search based on the learned

metric. We provided efficiently computable hash functions that can be used

184

with locality sensitive hashing to retrieve (1 + ǫ)-nearest neighbors (according

to the learned distance function) by searching just O(N1/(1+ǫ)) examples. As

our formulation is generic, our method can be used with a variety of metric

learning formulations and for a wide range of similarity search problems. Ap-

plications include fast pose retrieval, fast object recognition using k-NN and

patch matching for fast 3-D reconstruction.

Additionally, we studied more structured distance learning problems

that do not fall directly under the generic metric/kernel learning framework

we introduced in Chapter 3.

We considered the online metric learning problem which is particularly

useful in many web-based applications, e.g., image tagging and search. We de-

veloped an online metric learning algorithm together with a method to perform

online updates to fast similarity search structures, and demonstrated their ap-

plicability and advantages on a variety of data sets. Our online learner offers

improved reliability over state-of-the-art methods in terms of regret bounds

and empirical performance.

Next, we studied two approaches to kernel learning problems where the

amount of available information is small and the intrinsic structure of data

needs to be exploited. In the first approach we assumed that the data lies

on a low-dimensional non-linear manifold and we proposed a kernel learning

algorithm that simultaneously models the intrinsic geometry of the data while

incorporating the provided side-information. Our second approach assumed

that the data lies in a low-dimensional linear subspace. This led to the general

185

rank minimization problem – a problem of immense interest in numerous re-

search areas. For this problem, we provided an efficient algorithm with prov-

able approximation guarantees. Furthermore, we demonstrated empirically

that our approach leads to accurate and low-rank kernels.

Finally, we formulated the problem of unsupervised distance learning

as that of uncovering disparate clusterings from the data in a completely unsu-

pervised setting. We proposed two novel approaches for the problem - a decor-

related k-means approach and a sum of parts approach. In the first approach,

we introduced a new regularization for k-means to uncover decorrelated clus-

terings and provided theoretical justification for it. The sum of parts approach

lead us to the interesting problem of learning a convolution of mixture mod-

els and we presented a regularized EM algorithm for learning a convolution

of mixtures of spherical Gaussians. We demonstrated the effectiveness and

robustness of our algorithms on synthetic and real-world datasets. On each

of these datasets, we significantly improved upon the accuracy achieved by

existing factorial learning methods as well as traditional clustering algorithms

like k-means and NNMA.

In summary, this thesis demonstrates the importance of the distance/kernel

learning problem and its numerous applications. This thesis also validates

the power and significance of Mahalanobis metric/kernel functions as distance

functions. We show that these functions admit simple and elegant problem

formulations, are amenable to theoretical analysis, and can be easily adapted

to a large number of contrasting problem scenarios.

186

Some future directions for the research discussed in this thesis include:

1. Generalization Bounds: We introduced regularization in our met-

ric learning framework (see Section 3.1) to avoid over-fitting to the

available side-information and to have good generalization error. In

Section 5.1.2, we proved regret bounds (or equivalently generalization

bounds) for LogDet divergence based regularization and pairwise dis-

tance constraints. A similar analysis of our general metric learning

framework should be of interest and is expected to provide additional

insight into the selection of an appropriate regularization function.

2. Kernelized Hashing: In Chapter 4, we introduced a method for ef-

ficiently computing hash functions for sparse high-dimensional feature

representations of data objects. Recently, [66] introduced a heuristic

to enable hashing for any Hilbert space that does not require explicit

representation of the feature vectors. It would be of interest to further

study their construction and provide theoretical bounds on the number

of samples required to compute the hash function.

3. Matrix Completion Methods for Low-rank Kernel Learning:

The low-rank kernel learning problem (7.7) introduced in Section 7.3.1

can be reduced to a matrix completion problem. Recently, numerous

methods have been proposed for the matrix completion problem [61, 19,

79] and it would be interesting to study these methods in the context of

low-rank kernel learning.

187

4. Novel Metric Learning Problems: As shown in this thesis, distance

learning problems have widespread applicability and a large number of

metric learning problems specific to particular contexts/applications are

yet unexplored. Examples of such problems include multiple-instance

metric learning, local metric learning, and metric learning by combina-

tion of a few provided baseline metrics.

188

References

[1] Hao Zhang 0002, Alexander C. Berg, Michael Maire, and Jitendra Malik.

Svm-knn: Discriminative nearest neighbor classification for visual cate-

gory recognition. In Proccedings of the IEEE International Conference

on Computer Vision and Pattern Recognition (CVPR), pages 2126–2136,

2006.

[2] Edoardo Amaldi and Viggo Kann. On the approximability of minimizing

non-zero variables or unsatisfied relations in linear systems. Theoretical

Computer Science, 209:237–260, 1998.

[3] Sanjeev Arora, Elad Hazan, and Satyen Kale. Fast algorithms for ap-

proximate semidefinite programming using the multiplicative weights

update method. In Proceedings of the Symposium on Foundations of

Computer Science (FOCS), pages 339–348, 2005.

[4] Sanjeev Arora, Elad Hazan, and Satyen Kale. Multiplica-

tive weights method: a meta-algorithm and its applications.

http://www.cs.princeton. edu/˜arora/pubs/MWsurvey.pdf, 2005.

[5] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach

to semidefinite programs. In Proceedings of the ACM Symposium on

Theory of Computing (STOC), pages 227–236, 2007.

[6] Vassilis Athitsos, Jonathan Alon, Stan Sclaroff, and George Kollios.

Boostmap: An embedding method for efficient nearest neighbor re-

trieval. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (PAMI), 30(1):89–104, 2008.

189

[7] Vassilis Athitsos and Stan Sclaroff. Estimating 3d hand pose from a

cluttered image. In Proccedings of the IEEE International Conference

on Computer Vision and Pattern Recognition (CVPR), pages 432–442,

2003.

[8] Francis R. Bach and Michael I. Jordan. Predictive low-rank decomposi-

tion for kernel methods. In Proccedings of the International Conference

on Machine Learning (ICML), pages 33–40, 2005.

[9] Eric Bae and James Bailey. Coala: A novel approach for the extraction

of an alternate clustering of high quality and high dissimilarity. In Pro-

ceedings of the International Conference on Data Mining (ICDM), pages

53–62, 2006.

[10] Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna Weinshall.

Learning a mahalanobis metric from equivalence constraints. Journal of

Machine Learning Research (JMLR), 6:937–965, 2005.

[11] Jeffrey S. Beis and David G. Lowe. Shape indexing using approximate

nearest-neighbour search in high-dimensional spaces. In Proccedings of

the IEEE International Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1000–1006, 1997.

[12] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensional-

ity reduction and data representation. Neural Computation, 15(6):1373–

1396, 2003.

[13] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux, Jean-Francois

Paiement, Pascal Vincent, and Marie Ouimet. Learning eigenfunc-

190

tions links spectral embedding and kernel PCA. Neural Computation,

16(10):2197–2219, 2004.

[14] Mikhail Bilenko, Sugato Basu, and Raymond J. Mooney. Integrating

constraints and metric learning in semi-supervised clustering. In Proc-

cedings of the International Conference on Machine Learning (ICML),

2004.

[15] Christopher M Bishop. Neural networks for pattern recognition. Oxford

University Press, Oxford, UK, 1996.

[16] Thomas Blumensath and Mike E. Davies. Iterative hard thresholding

for compressed sensing. Applied and Computational Harmonic Analysis,

27(3):265 – 274, 2009.

[17] Anna Bosch, Andrew Zisserman, and Xavier Muñoz. Representing shape

with a spatial pyramid kernel. In Proceedings of the ACM International

Conference on Image and Video Retrieval (CIVR), pages 401–408, 2007.

[18] Olivier Bousquet, Olivier Chapelle, and Matthias Hein. Measure based

regularization. In Proccedings of Advances in Neural Information Pro-

cessing Systems (NIPS), 2003.

[19] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via

convex optimization, 2008.

[20] Emmanuel J. Candès and Terence Tao. Decoding by linear programming.

IEEE Transactions on Information Theory, 51(12):4203–4215, 2005.

[21] Moses Charikar. Similarity estimation techniques from rounding algo-

rithms. In Proceedings of the ACM Symposium on Theory of Computing

191

(STOC), pages 380–388, 2002.

[22] Ian Davidson, S. S. Ravi, and Martin Ester. Efficient incremental con-

strained clustering. In Proceedings of the ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining (KDD), pages 240–249, 2007.

[23] Jason V. Davis and Inderjit S. Dhillon. Structured metric learning for

high dimensional problems. In Proceedings of the ACM SIGKDD Int.

Conf. on Knowledge Discovery and Data Mining (KDD), pages 195–203,

2008.

[24] Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S.

Dhillon. Information-theoretic metric learning. In Proccedings of the

International Conference on Machine Learning (ICML), pages 209–216,

2007.

[25] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classifi-

cation. Wiley-Interscience, November 2000.

[26] M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic with ap-

plication to minimum order system approximation. In American Control

Conference, Arlington, Virginia, 2001.

[27] M. Fazel, H. Hindi, and S. Boyd. Log-det heuristic for matrix rank min-

imization with applications to hankel and euclidean distance matrices.

In American Control Conference, 2003.

[28] J. Freidman, J. Bentley, and A. Finkel. An algorithm for finding best

matches in logarithmic expected time. ACM Transactions on Mathe-

matical Software, 3(3):209–226, September 1977.

192

[29] Andrea Frome, Yoram Singer, Fei Sha, and Jitendra Malik. Learning

globally-consistent local distance functions for shape-based image re-

trieval and classification. In Proccedings of the International Conference

on Computer Vision (ICCV), pages 1–8, 2007.

[30] William R. Gaffey. A consistent estimator of a component of a con-

volution. The Annals of Mathematical Statistics, 30(1):198–205, Mar

1959.

[31] Rahul Garg and Rohit Khandekar. Gradient descent with sparsifica-

tion: an iterative algorithm for sparse recovery with restricted isometry

property. In Proccedings of the International Conference on Machine

Learning (ICML), 2009.

[32] Bogdan Georgescu, Ilan Shimshoni, and Peter Meer. Mean shift based

clustering in high dimensions: A texture classification example. In Proc-

cedings of the International Conference on Computer Vision (ICCV),

pages 456–463, 2003.

[33] Athinodoros S. Georghiades, Peter N. Belhumeur, and David J. Krieg-

man. From few to many: Illumination cone models for face recognition

under variable lighting and pose. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence (PAMI), 23(6):643–660, 2001.

[34] Zoubin Ghahramani. Factorial learning and the EM algorithm. In Proc-

cedings of Advances in Neural Information Processing Systems (NIPS),

pages 617–624, 1994.

[35] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in

193

high dimensions via hashing. In Proceedings of International Conference

on Very Large Data Bases (VLDB), pages 518–529, 1999.

[36] Amir Globerson and Sam T. Roweis. Metric learning by collapsing

classes. In Proccedings of Advances in Neural Information Processing

Systems (NIPS), 2005.

[37] Michel X. Goemans and David P. Williamson. Improved approximation

algorithms for maximum cut and satisfiability problems using semidefi-

nite programming. Journal of ACM, 42(6):1115–1145, 1995.

[38] Donald Goldfarb and Shiqian Ma. Convergence of fixed point continua-

tion algorithms for matrix rank minimization, 2009.

[39] Gene H. Golub and Charles F. van Loan. Matrix Computations. Johns

Hopkins Univ. Press, second edition, 1989.

[40] David Gondek and Thomas Hofmann. Non-redundant clustering with

conditional ensembles. In Proceedings of the ACM SIGKDD Int. Conf.

on Knowledge Discovery and Data Mining (KDD), pages 70–77, 2005.

[41] David Gondek, Shivakumar Vaithyanathan, and Ashutosh Garg. Clus-

tering with model-level constraints. In Proceedings of the SIAM Confer-

ence on Data Mining (SDM), 2005.

[42] Kristen Grauman and Trevor Darrell. The pyramid match kernel: Dis-

criminative classification with sets of image features. In Proccedings of

the International Conference on Computer Vision (ICCV), pages 1458–

1465, 2005.

[43] Kristen Grauman and Trevor Darrell. Pyramid match hashing: Sub-

194

linear time indexing over partial correspondences. In Proccedings of the

IEEE International Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2007.

[44] M. Groschel, Laszlo Lovasz, and Alexander Schrijver. Geometric Algo-

rithms and Combinatorial Optimization. Springer-Verlag, 1988.

[45] Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, and Cordelia

Schmid. Tagprop: Discriminative metric learning in nearest neighbor

models for image auto-annotation. In Proccedings of the International

Conference on Computer Vision (ICCV), 2009.

[46] Jungwoo Ha, Christopher J. Rossbach, Jason V. Davis, Indrajit Roy,

Hany E. Ramadan, Donald E. Porter, David L. Chen, and Emmett

Witchel. Improved error reporting for software that uses black-box com-

ponents. In Proceedings of the ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, pages 101–111, 2007.

[47] Trevor Hastie, Robert Tibshirani, Michael B Eisen, Ash Alizadeh,

Ronald Levy, Louis Staudt, Wing C Chan, David Botstein, and Patrick

Brown. Gene shaving as a method for identifying distinct sets of genes

with similar expression patterns. Genome Biology, 2000.

[48] Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal. Logarithmic

regret algorithms for online convex optimization. In Proceedings of the

Conference on Computational Learning Theory, pages 499–513, 2006.

[49] Nick J. Higham. Functions of Matrices: Theory and Computation.

SIAM, 2008.

195

[50] Geoffrey E. Hinton and Richard S. Zemel. Autoencoders, minimum

description length and Helmholtz free energy. In Proccedings of Advances

in Neural Information Processing Systems (NIPS), pages 3–10, 1993.

[51] Gang Hua, Matthew Brown, and Simon A. J. Winder. Discriminant em-

bedding for local image descriptors. In Proccedings of the International

Conference on Computer Vision (ICCV), pages 1–8, 2007.

[52] Aapo Hyvärinen and Erkki Oja. Independent component analysis: al-

gorithms and applications. Neural Networks, 13(4-5):411–430, 2000.

[53] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: To-

wards removing the curse of dimensionality. In Proceedings of the ACM

Symposium on Theory of Computing (STOC), pages 604–613, 1998.

[54] Prateek Jain and Ashish Kapoor. Active learning for large multi-class

problems. In Proccedings of the IEEE International Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2009.

[55] Prateek Jain, Brian Kulis, Jason V. Davis, and Inderjit S. Dhillon. Met-

ric and kernel learning using a linear transformation, 2009.

[56] Prateek Jain, Brian Kulis, and Inderjit S. Dhillon. Generalized met-

ric and kernel learning framework with applications to low-rank kernel

function learning. In preparation, 2009.

[57] Prateek Jain, Brian Kulis, and Kristen Grauman. Fast image search for

learned metrics. In Proccedings of the IEEE International Conference

on Computer Vision and Pattern Recognition (CVPR), 2008.

[58] Prateek Jain, Raghu Meka, and Inderjit S. Dhillon. Simultaneous unsu-

196

pervised learning of disparate clusterings. In Proceedings of the SIAM

Conference on Data Mining (SDM), pages 858–869, 2008.

[59] Prateek Jain, Raghu Meka, and Inderjit S. Dhillon. Simultaneous unsu-

pervised learning of disparate clusterings. Statistical Analysis and Data

Mining, 1(3):195–210, 2008.

[60] Adam Tauman Kalai and Santosh Vempala. Efficient algorithms for

online decision problems. Journal on Computer and System Sciences

(JCSS), 71(3):291–307, 2005.

[61] Raghunandan H. Keshavan, Sewoong Oh, and Andrea Montanari. Ma-

trix completion from a few entries, 2009.

[62] Dongmin Kim, Suvrit Sra, and Inderjit S. Dhillon. Fast newton-type

methods for the least squares nonnegative matrix approximation prob-

lem. In Proceedings of the SIAM Conference on Data Mining (SDM),

2007.

[63] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus

gradient descent for linear predictors. Inf. Comput., 132(1):1–63, 1997.

[64] Risi Imre Kondor and John D. Lafferty. Diffusion kernels on graphs

and other discrete input spaces. In Proccedings of the International

Conference on Machine Learning (ICML), pages 315–322, 2002.

[65] B. Kulis, S. Sra, and I. S. Dhillon. Convex perturbations for scalable

semidefinite programming. In Proceedings of the International Confer-

ence on Artificial Intelligence and Statistics (AISTATS), 2009.

[66] Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing

197

for scalable image search. In Proccedings of the International Conference

on Computer Vision (ICCV), 2009.

[67] Brian Kulis, Prateek Jain, and Kristen Grauman. Fast similarity search

for learned metrics. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence (PAMI), 31(12):2143–2157, 2009.

[68] Brian Kulis, Mátyás Sustik, and Inderjit S. Dhillon. Learning low-rank

kernel matrices. In Proccedings of the International Conference on Ma-

chine Learning (ICML), pages 505–512, 2006.

[69] John Lafferty and Guy Lebanon. Diffusion kernels on statistical mani-

folds. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 6:129–163, 2005.

[70] Gert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El

Ghaoui, and Michael I. Jordan. Learning the kernel matrix with semidef-

inite programming. Journal of Machine Learning Research (JMLR),

5:27–72, 2004.

[71] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative

matrix factorization. In Proccedings of Advances in Neural Information

Processing Systems (NIPS), pages 556–562, 2000.

[72] Kiryung Lee and Yoram Bresler. Admira: Atomic decomposition for

minimum rank approximation, 2009.

[73] Haibin Ling and Stefano Soatto. Proximity distribution kernels for ge-

ometric context in category recognition. In Proccedings of the Interna-

tional Conference on Computer Vision (ICCV), pages 1–8, 2007.

198

[74] Nick Littlestone and Manfred K. Warmuth. The weighted majority al-

gorithm. In Proceedings of the Symposium on Foundations of Computer

Science (FOCS), pages 256–261, 1989.

[75] David G. Lowe. Distinctive image features from scale-invariant key-

points. International Journal of Computer Vision, 60(2):91–110, 2004.

[76] Zhengdong Lu, Prateek Jain, and Inderjit S. Dhillon. Geometry-aware

metric learning. In Proccedings of the International Conference on Ma-

chine Learning (ICML), page 85, 2009.

[77] Jiri Matas, Ondrej Chum, Martin Urban, and Tomás Pajdla. Robust

wide baseline stereo from maximally stable extremal regions. In British

Machine Vision Conference, 2002.

[78] Raghu Meka, Prateek Jain, Constantine Caramanis, and Inderjit S.

Dhillon. Rank minimization via online learning. In Proccedings of the

International Conference on Machine Learning (ICML), pages 656–663,

2008.

[79] Raghu Meka, Prateek Jain, and Inderjit S. Dhillon. Guaranteed rank

minimization via singular value projection, 2009.

[80] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant

interest point detectors. International Journal of Computer Vision,

60(1):63–86, 2004.

[81] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and

Quantum Information. Cambridge University Press, 2000.

[82] David Nistér and Henrik Stewénius. Scalable recognition with a vo-

199

cabulary tree. In Proccedings of the IEEE International Conference on

Computer Vision and Pattern Recognition (CVPR), pages 2161–2168,

2006.

[83] Cheng Soon Ong, Alexander J. Smola, and Robert C. Williamson. Learn-

ing the kernel with hyperkernels. Journal of Machine Learning Research

(JMLR), 6:1043–1071, 2005.

[84] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast approximation

algorithms for fractional packing and covering problems. In Proceedings

of the Symposium on Foundations of Computer Science (FOCS), pages

495–504, 1991.

[85] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed

minimum-rank solutions of linear matrix equations via nuclear norm

minimization, 2007. Submitted to SIAM Review.

[86] R. Tyrell Rockafellar. Convex Analysis. Princeton University Press,

1970.

[87] David A. Ross and Richard S. Zemel. Learning parts-based representa-

tions of data. Journal of Machine Learning Research (JMLR), 7:2369–

2397, 2006.

[88] F. J. Samaniego and L. E. Jones. Maximum likelihood estimation for

a class of multinomial distributions arising in realibility. Journal of the

Royal Statistical Society. Series B (Methodological), 43(1):46–52, 1981.

[89] Stanley L. Sclove and Garrett J. van Ryzin. Estimating the parame-

ters of a convolution. Journal of the Royal Statistical Society. Series B

200

(Methodological), 31(1):181–191, 1969.

[90] Matthias Seeger. Cross-validation optimization for large scale hierarchi-

cal classification kernel methods. In Proccedings of Advances in Neural

Information Processing Systems (NIPS), pages 1233–1240, 2006.

[91] G. Shakhnarovich, T. Darrell, and P. Indyk, editors. Nearest-Neighbor

Methods in Learning and Vision: Theory and Practice. MIT Press, 2006.

[92] Gregory Shakhnarovich, Paul A. Viola, and Trevor Darrell. Fast pose

estimation with parameter-sensitive hashing. In Proccedings of the Inter-

national Conference on Computer Vision (ICCV), pages 750–759, 2003.

[93] Shai Shalev-Shwartz, Yoram Singer, and Andrew Y. Ng. Online and

batch learning of pseudo-metrics. In Proccedings of the International

Conference on Machine Learning (ICML), 2004.

[94] Vikas Sindhwani, Partha Niyogi, and Mikhail Belkin. Beyond the point

cloud: from transductive to semi-supervised learning. In Proccedings of

the International Conference on Machine Learning (ICML), pages 824–

831, 2005.

[95] Josef Sivic and Andrew Zisserman. Video data mining using config-

urations of viewpoint invariant regions. In Proccedings of the IEEE

International Conference on Computer Vision and Pattern Recognition

(CVPR), pages 488–495, 2004.

[96] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism:

exploring photo collections in 3d. ACM Transactions on Graphics,

25(3):835–846, 2006.

201

[97] Le Song, Alex Smola, Karsten M. Borgwardt, and Arthur Gretton. Col-

ored maximum variance unfolding. In Proccedings of Advances in Neural

Information Processing Systems (NIPS), pages 1385–1392, 2007.

[98] Alexander Strehl and Joydeep Ghosh. Cluster ensembles — a knowledge

reuse framework for combining multiple partitions. Journal of Machine

Learning Research (JMLR), 3:583–617, 2002.

[99] Leonid Taycher, David Demirdjian, Trevor Darrell, and Gregory

Shakhnarovich. Conditional random people: Tracking humans with crfs

and grid filters. In Proccedings of the IEEE International Conference

on Computer Vision and Pattern Recognition (CVPR), pages 222–229,

2006.

[100] Joshua B. Tenenbaum and William T. Freeman. Separating style and

content with bilinear models. Neural Computation, 12(6):1247–1283,

2000.

[101] Joel A. Tropp and Deanna Needell. Cosamp: Iterative signal recovery

from incomplete and inaccurate samples, 2008.

[102] Koji Tsuda, Gunnar Rätsch, and Manfred K. Warmuth. Matrix expo-

nentiated gradient updates for on-line learning and bregman projection.

Journal of Machine Learning Research (JMLR), 6:995–1018, 2005.

[103] Jeffrey K. Uhlmann. Satisfying general proximity/similarity queries with

metric trees. Information Processing Letters, 40(4):175–179, 1991.

[104] Manik Varma and Debajyoti Ray. Learning the discriminative power-

invariance trade-off. In Proccedings of the International Conference on

202

Computer Vision (ICCV), pages 1–8, 2007.

[105] Kiri Wagstaff and Claire Cardie. Clustering with instance-level con-

straints. In Proceedings of the AAAI Conference on Artificial Intelligence

(AAAI), page 1097, 2000.

[106] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Con-

strained k-means clustering with background knowledge. In Proccedings

of the International Conference on Machine Learning (ICML), pages

577–584, 2001.

[107] Manfred K. Warmuth and Dima Kuzmin. Randomized pca algorithms

with regret bounds that are logarithmic in the dimension. In Proccedings

of Advances in Neural Information Processing Systems (NIPS), pages

1481–1488, 2006.

[108] Kilian Q. Weinberger, John Blitzer, and Lawrence K. Saul. Distance

metric learning for large margin nearest neighbor classification. In Proc-

cedings of Advances in Neural Information Processing Systems (NIPS),

2005.

[109] Kilian Q. Weinberger, Fei Sha, and Lawrence K. Saul. Learning a kernel

matrix for nonlinear dimensionality reduction. In Proccedings of the

International Conference on Machine Learning (ICML), 2004.

[110] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart J. Rus-

sell. Distance metric learning with application to clustering with side-

information. In Proccedings of Advances in Neural Information Process-

ing Systems (NIPS), pages 505–512, 2002.

203

[111] Willard I. Zangwill. Nonlinear Programming: A Unified Approach. En-

glewood Cliffs: Prentice-Hall, 1969.

[112] Xiaojin Zhu, Jaz Kandola, Zoubin Ghahramani, and John Lafferty. Non-

parametric transforms of graph kernels for semi-supervised learning. In

Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Proccedings of

Advances in Neural Information Processing Systems (NIPS), volume 17,

pages 1641–1648, 2005.

[113] Martin Zinkevich. Online convex programming and generalized infinites-

imal gradient ascent. In Proccedings of the International Conference on

Machine Learning (ICML), pages 928–936, 2003.

204

Vita

Prateek Jain was born in Nagaur, Rajasthan, India, the son of Late

Ren Manjusha Jain and Nathmal Jain. He spent most of his childhood in

five different cities in the state of Rajasthan. He graduated from Hind Zinc

High School, Chittorgarh, Rajasthan in 1999. He obtained his B.Tech. degree

from Computer Science and Engineering Department, IIT Kanpur in 2004.

He then spent one year as a project trainee with IBM-India Research Lab,

New Delhi and later joined the Computer Science Department at University

of Texas at Austin as a Phd Student in the Fall semester of 2005. Prateek

obtained his M.A. degree from the Computer Science Department, UT Austin

in 2008. During the course of his tenure as a Phd student, Prateek won

three paper awards and was nominated for a best student paper award. He is

also a recipient of an MCD fellowship and several travel-grants from different

international conferences. After his doctorate, Prateek plans to join Microsoft

Research Lab, Bangalore, India as an associate researcher.

Permanent address: Mr. Kamal Kishore Jain,
C/O Rajesh Drug Store,
Sadar Bazar, Nagaur, India (Raj.)

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

205

