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This dissertation presents two different Bayesian approaches for highly non-

linear systems with a theoretical study on combining the benefits of the Gaussian

sum filter and particle filter; the posterior particles of a particle filter are drawn from

a Gaussian mixture model approximation of the posterior distribution. The first ap-

proach introduces the methods which change each and every particle of a particle

filter into a Gaussian mixture component, either using the properties of Dirac delta

function or using kernel density estimation; the former treats each particle of the

prior distribution as a Gaussian component with a collapsed zero covariance matrix

and the latter estimates the covariance matrix of a Gaussian component using the

kernel density estimation algorithm. The Gaussian sum filter is then used to cal-

culate the posterior distribution. The second approach uses clustering algorithms.

These clustering algorithms are used to recover Gaussian mixture model represen-

tation of the prior probability density function from the propagated particles. The

vi



expectation-maximization clustering algorithm and modified fuzzy C-means clus-

tering algorithms are applied to this approach. Under the scenarios considered in

this study, it is shown through numerical simulations that the proposed algorithms

lead to better performances than the existing algorithms such as Gaussian sum fil-

ters and particle filters.
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Chapter 1

Introduction

State estimation methods are widely used across a wide variety of appli-

cations in science and engineering fields including orbit determination [66, 98],

robotics [11, 34], meteorology [4, 72], electric power systems [40, 69], and fluid

dynamic systems [37, 42]. In particular, in orbit determination for space situational

awareness (SSA), the importance of state estimation methods has been emphasized

because of severe nonlinearities in orbit determination problems. The presence

of these nonlinearities in orbital dynamics and measurements certainly makes the

state estimation problem more challenging. Moreover, to date, there are more than

34,000 space objects (SOs) greater than 10 cm, such as used satellites and frag-

ments of rocket, in Earth orbit [1], whereas only a limited number of sensors are

available and used to estimate the states of SOs. As space debris becomes more

congested due to the launching of new objects, it poses a serious threat to newly

launched satellites. To solve this problem, extensive research has recently been

done on improving the accuracy, consistency, and efficiency of state estimation

[20, 21, 24, 50, 61, 65, 100].

In estimation theory, a state refers to information to explain the characteris-

tics of a dynamic system, such as position, velocity, attitude, and angular velocity.
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The dynamic system expresses the relation of time-varying states as a mathematical

model with differential or difference equations. Unfortunately, it is nearly impossi-

ble to represent an exact dynamic system as a deterministic mathematical model be-

cause of modeling errors and disturbances. These uncertainties are usually regarded

as noise and are expressed in a probability distribution. Because of the existence

of these uncertainties, we use a measurement model and sensor data along with a

dynamic model. In practice, however, not all states are directly measured due to

monetary problems and/or physical constraints; therefore, state estimation methods

are used to estimate and predict states with appropriate dynamic and measurement

models based on noisy sensor data.

The objective of state estimation is to minimize the error between the true

and estimated state of a system. State estimation is generally divided into a non-

Bayesian (or frequentist) approach and a Bayesian approach [10]. Non-Bayesian

estimation assumes that the true state is unknown but deterministic. The most pop-

ular examples of non-Bayesian estimators are least square (LS) and maximum like-

lihood (ML). On the other hand, Bayesian estimation is a stochastic state estimation

approach where the posterior expectation is included in the cost function of an op-

timization problem; the goal of Bayesian estimation is to find the optimal solution

of an unknown random variable. The most well-known Bayesian estimators are

maximum a posteriori (MAP) and minimum means square error (MMSE).

In this dissertation, we focus on MMSE estimators whose optimal solution

is the conditional mean [10]; MMSE estimators calculate the conditional probabil-

ity density function (PDF) in a recursive way. For example, the process of stochastic
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state estimation consists of two steps, a prediction step and an update step. The pre-

diction step propagates the posterior distribution from the previous time step to the

next time step. The propagated distribution is called the prior distribution. In the

update step, the prior distribution is updated by measurement information through

Bayes’ rule to obtain the posterior distribution at the current time. In the following

paragraph, a brief review of the types of MMSE estimators is introduced and, in

subsequent chapters, these types are elaborated.

For linear systems with additive Gaussian noise, the Kalman filter is the

optimal MMSE estimator [49]. The Kalman filter is first established for linear

systems and can be extended to deal with nonlinear systems. Linear estimators

for nonlinear systems are based on the linear MMSE (LMMSE) framework [56]

and classified generally into two types according to the approximation methods

used to estimate the first two moments mean and covariance matrix required for

an LMMSE estimate. As extensions of the Kalman filter for nonlinear systems,

the extended Kalman filter (EKF) [29], the Gaussian second-order filter (GSOF)

[67], the iterated EKF [29], and the recursive update filter (RUF) [114] are defined

with a local linear approximation. Another class of linear estimators for nonlinear

systems rely on a set of deterministic regression points for statistical linearization

of the nonlinear functions to obtain the first two moments [54]. These estimators

include the quadrature Kalman filter (QKF) [6], the unscented Kalman filter (UKF)

[46], and and the cubature Kalman filter (CKF) [5]. These linear estimators for non-

linear systems are also called linear Gaussian filters since they are derived under the

assumption that all distributions are Gaussian, which is not guaranteed in practice.
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Nonlinear filters such as the Gaussian sum filter (GSF) and particle filter

(PF) are therefore used to deal with very nonlinear/non-Gaussian problems. The

GSF deals with non-Gaussian distributions by obtaining the approximation of the

PDF as a Gaussian mixture model (GMM) [2, 97]. Recently, there have been con-

siderable efforts to improve the original GSF to better account for nonlinearities

[19, 25, 26, 33, 85, 103, 106]. Other nonlinear estimators, such as PFs or sequential

Monte Carlo methods, include the algorithms that approximate a PDF using a set

of finite number of samples [7], such as the bootstrap particle filter (BPF) [30], the

auxiliary particle filter (APF) [79], and the regularized particle filter (RPF) [92].

The objective of this dissertation is to develop new Bayesian approaches

for highly nonlinear systems with a theoretical study on combining the benefits

of the GSF and PF. This is achieved mainly in two ways: (1) every particle of

PF is regarded as a Gaussian component to establish a GMM (Chapters 3 and 4)

and (2) all particles are classified into some Gaussian mixture components using a

clustering algorithm (Chapters 5 and 6).

Chapter 3 proposes a novel sequential Monte Carlo algorithm that samples

from a GMM approximation of the posterior distribution. The conditional PDF

is approximated by a weighted sum of Gaussian distributions in the GSF and by

a weighted sum of Dirac delta functions in the PF, respectively. Moreover, the

Dirac delta function can be mathematically defined as a Gaussian component with

a collapsed zero covariance matrix. Motivated by this definition, each particle of

the pre-prior distribution is treated as a Gaussian component with a zero covariance

matrix and the GSF algorithm is then used to compute the posterior distribution.
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Two alternative algorithms are also proposed to further improve the accuracy of

the baseline algorithm. The first algorithm is designed to draw samples from a

GMM as an importance distribution instead of as the true posterior. The second

alternative algorithm is aimed to obtain a better GMM approximation for the pre-

prior distribution by choosing nonzero covariances whose optimal value can be

calculated to remove the bias in the sample covariance. Accuracy and consistency

performance are evaluated by a Monte Carlo analysis and are also compared to the

BPF and RPF in the numerical examples considered.

Chapter 4 suggests a modified kernel-based ensemble Gaussian mixture fil-

tering (EnGMF) to produce fast and consistent orbit determination capabilities in

a sparse measurement environment. In the EnGMF [3], kernel density estimation

(KDE), which is a non-parametric technique to estimate the PDF of a random vari-

able [93], is used to integrate a GSF with a PF. This algorithm computes the co-

variance matrix of each Gaussian component using the bandwidth parameter of a

kernel function. Although the bandwidth parameter can be obtained using a data-

driven method, Silverman’s rule of thumb is proposed here to reduce the compu-

tational burden of KDE. By using equinoctial orbital elements instead of Cartesian

coordinates, Silverman’s rule of thumb can provide a near-optimal bandwidth pa-

rameter for orbit determination with sparse observation data, thus improving the

filter’s performance. Numerical simulations are performed to test and analyze the

proposed algorithm compared to state-of-the-art approaches in terms of accuracy,

consistency, and efficiency.

Chapter 5 proposes a new approach to nonlinear estimation combining a
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GSF and PF using an expectation-maximization (EM) clustering algorithm in the

context of space object (SO) tracking. In this method, the EM clustering algorithm

groups several particles into each Gaussian mixture component at the prior time and

then estimates the posterior distribution using the GSF algorithm. In addition to the

nonlinear estimator, two modifications of the EKF and UKF are introduced to use

the additional constraint information of, and deal with high nonlinearities of, a sys-

tem of orbit determination in geostationary Earth orbits (GEO). The performance of

the three algorithms are analyzed through numerical simulation with a challenging

estimation problem of SO tracking in GEO.

Chapter 6 develops two novel clustering methods for PF with GMMs (PF-

GMM) proposed in Chapter 5. When the GSF and PF are combined, different

clustering algorithms can be applied to the PFGMM. It is proved that, under the as-

sumption of a perfect clustering scheme, the PFGMM’s density converges in prob-

ability to the true filter density, implying that the filter performance depends mainly

on the performance of a clustering method [83]. It is desirable for the GSF to

have a small enough covariance matrix such that nonlinear measurement functions

can be accurately approximated by linearization in the support of each component,

which can be implemented by the K-means clustering algorithm in the PFGMM.

Moreover, the better approximation prior distribution has, the better performance

the GSF provides, which can be assured by the EM clustering algorithm for the

PFGMM. Based on modifications of the fuzzy c-means (FCM) clustering algo-

rithm, two different clustering algorithms are proposed. Both proposed clustering

algorithms are designed to merge the advantages of the K-means and EM clustering

6



algorithm for better performance with the PFGMM; they simultaneously minimize

the covariance of each of the GMM components and maximize the likelihood func-

tion. The performance comparison of the RPF and the PFGMM with the K-means,

the EM, and the proposed clustering algorithms are done through a Monte Carlo

analysis.

1.1 Contributions of the Dissertation

The following are novel contributions of this work:

• Chapter 3

– A new sequential Monte Carlo algorithm is proposed that samples from

a GMM approximation of the posterior distribution.

– Two small modifications of the baseline algorithm are proposed to fur-

ther improve its accuracy.

• Chapter 4

– A modified EnGMF is introduced to produce fast and consistent orbit

determination capabilities in a sparse measurement environment.

• Chapter 5

– A new nonlinear estimation algorithm combining the PF and GSF using

the EM clustering method is proposed to deal with the high nonlinearity

and weak observability of a system.

7



– Two alternative estimation techniques based on the UKF and EKF are

presented.

• Chapter 6

– Two novel clustering algorithms for the PFGMM are proposed to si-

multaneously minimize the covariance for each of the components of a

GMM and maximize the likelihood function based on the FCM cluster-

ing algorithm.

8



Chapter 2

Background Material
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Throughout this dissertation, we consider general discrete-time nonlinear

dynamics and measurements. The dynamics is given by

xk+1 = fk(xk,νk) (2.1)

where k is the time step, xk is an nx × 1 vector, fk is some nonlinear function and

the process noise νk is a zero mean, white sequence, independent from the initial

distribution of x0 and possessing covariance matrix Qk. The measurement is

yk = hk(xk) + ηk (2.2)

the measurement noise ηk is a zero mean, white sequence with covariance matrix

Rk, independent from all other random quantities.

2.1 Linear Filters for Nonlinear Systems

This section serves to introduce the concepts and algorithms of the EKF

and UKF, which are based on the LMMSE estimator’s framework for nonlinear

systems.

2.1.1 The Extended Kalman Filter

The EKF is a nonlinear approximation of the Kalman filter that can be ap-

plied to nonlinear systems using the same Kalman filtering framework [29]. Given

the system model, Eq. (2.1) and Eq. (2.2), the time update equations are described

10



as follows:

x̂k+1|k = fk(x̂k|k) (2.3)

P xx
k+1|k = FkP

xx
k|kF

T
k +GkQkGk (2.4)

Fk =
∂fk(x,ν)

∂x

∣∣∣∣
x=x̂k|k

(2.5)

Gk =
∂fk(x,ν)

∂ν

∣∣∣∣
ν=νk

(2.6)

where x̂k+1|k is the a priori state estimate, P xx
k+1|k is the a priori state estimation

error covariance, Fk andGk are the Jacobian of the dynamics evaluated at the poste-

rior mean x̂k|k and at νk = 0, respectively, and P xx
k|k is the posterior state estimation

error covariance at time instant k. The measurement update equations are:

x̂k+1|k+1 = x̂k+1|k +Kk+1

(
yk+1 − hk+1(x̂k+1|k)

)
(2.7)

P xx
k+1|k+1 = P xx

k+1|k −Kk+1Wk+1K
T
k+1 (2.8)

Kk+1 = P xx
k+1|kH

T
k+1W

−1
k+1 (2.9)

Wk+1 = Hk+1P
xx
k+1|kH

T
k+1 +Rk+1 (2.10)

Hk+1 =
∂hk+1(x)

∂x

∣∣∣∣
x=x̂k+1|k

(2.11)

where P xx
k+1|k+1 is the a posteriori state estimation error covariance at time instant

k+ 1, Hk+1 is the Jacobian of the measurement evaluated at the prior mean x̂k+1|k,

Kk+1 is the Kalman gain, and Wk+1 is the measurement residual covariance.

2.1.2 The Unscented Kalman Filter

The UKF approximates nonlinear functions with statistical linearization us-

ing a set of sigma points [54]. The most common schemes to effectively calculate
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sigma points are to assume that all distributions are Gaussian [47]. Given an nx×nx

error covariance matrix P xx
k|k, we generate 2nx + 1 sigma points as follows:

Xk|k = x̂k|k11×(2nx+1) +
[
0nx×1,

√
nx + λSk

]
(2.12)

where 11×(2nx+1) is an indicator function,

Sk =
[(
P xx
k|k
)1/2 − (P xx

k|k
)1/2]

, (2.13)(
P xx
k|k

)1/2
is the square root of the P xx

k|k such that P xx
k|k =

(
P xx
k|k

)1/2 (
P xx
k|k

)1/2(T)

,

and λ = α2(nx + κ) − nx is a scaling parameter [107]. The parameter α tunes

the spread of the sigma points around x̂k|k and it is usually set to a small positive

number (10−4 ≤ α ≤ 1). κ is a secondary scaling parameter which is usually set to

3− nx. Based on the above sigma points, the corresponding weights are calculated

as follows:

Wm
0 =

κ

nx + κ
, W c

0 =
κ

nx + κ
+ (1− α2 + β) (2.14)

Wm
j = W c

j =
0.5

nx + κ
, for j = 1, · · · , 2nx (2.15)

where the parameter β is used to include prior knowledge of the distribution of x.

With the above sigma points and weights, the time update equations are expressed

as follows:

Xj,k+1|k = fk(Xj,k|k), j = 0, · · · , 2nx (2.16)

x̂k+1|k =
2nx∑
j=0

Wm
j Xj,k+1|k (2.17)

P xx
k+1|k =

2nx∑
j=0

W c
j

[
Xj,k+1|k − x̂k+1|k

] [
Xj,k+1|k − x̂k+1|k

]T
+Qk (2.18)
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Using the propagated estimates x̂k+1|k and P xx
k+1|k, a new set of sigma points Xk+1|k

and the corresponding weights are recalculated. The measurement update equations

are then expressed as follows:

Yj,k+1|k = hk+1(Xj,k+1|k), j = 0, · · · , 2nx (2.19)

ŷk+1 =
2nx∑
j=0

Wm
j Yj,k+1|k (2.20)

P yy
k+1|k =

2nx∑
j=0

W c
j

[
Yj,k+1|k − ŷk+1

] [
Yj,k+1|k − ŷk+1

]T
+Rk+1 (2.21)

P xy
k+1|k =

2nx∑
j=0

W c
j

[
Xj,k+1|k − x̂k+1|k

] [
Yj,k+1|k − ŷk+1

]T (2.22)

x̂k+1|k+1 = x̂k+1|k + P xy
k+1|k

(
P yy
k+1|k

)−1 (
yk+1 − ŷk+1

)
(2.23)

P xx
k+1|k+1 = P xx

k+1|k − P
xy
k+1|k

(
P yy
k+1|k

)−1 (
P xy
k+1|k

)T
(2.24)

where P yy
k+1|k is the measurement residual covariance, P xy

k+1|k is the cross covariance.

The linear filters for nonlinear systems are also called linear Gaussian fil-

ters since they are derived under the assumption that all distributions are Gaus-

sian. However, in practice, nonlinear systems does not guarantee Gaussian distri-

butions. Therefore, nonlinear filters such as the GSF and PF are used to deal with

nonlinear/non-Gaussian problems.

2.2 Nonlinear Filters for Nonlinear Systems

The GSF and PF are two common solutions to the nonlinear Bayesian esti-

mation problem, and they are briefly reviewed in this section.
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2.2.1 The Gaussian Sum Filter

The GSF approximates the conditional PDF by combining several Gaussian

components having different means and covariance matrices, and this approxima-

tion of the probability distribution is called a GMM [2, 97]. The conditional PDF

of xk|y1...yk is expressed as follows:

pxk
(xk) =

N∑
i=1

ω
(i)
k|k n(xk; µ

(i)
k|k,P

(i)
k|k) (2.25)

where n(x;µ,P ) represents the Gaussian pdf with mean µ and covariance P , and

ω
(i)
k|k, µ(i)

k|k and P (i)
k|k are the weights, means, and covariance matrices of the i-th

Gaussian component. The PDF’s normalization and positivity properties lead to the

following constraints on the weights

ω
(i)
k|k ≥ 0, ∀i

N∑
i=1

ω
(i)
k|k = 1 (2.26)

(It is actually possible to define some of the weights negative, but that type of

GMM approximation is not considered here.) Assuming the covariance matrices are

“small” enough (such that linearization of the dynamics and measurements holds in

the domain of likely realization of each of the components), then each of the compo-

nents remains approximately Gaussian at all times and it is propagated and updated

using the conventional EKF (or UKF) equations. The time update equations are

described as:

µ
(i)
k+1|k = fk

(
µ

(i)
k|k
)

(2.27)

P
(i)
k+1|k = F

(i)
k P k|kF

(i)T
k +G

(i)
k QkG

(i)T
k (2.28)

ω
(i)
k+1|k = ω

(i)
k|k (2.29)
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where F (i)
k andG(i)

k are the Jacobian of the dynamics evaluated at the component’s

mean xx = µ
(i)
k|k and at νk = 0, respectively.

The measurement update follows from Bayes’s rule and is given by

µ
(i)
k|k = µ

(i)
k|k−1 +K

(i)
k

(
yk − hk

(
µ

(i)
k|k−1

))
(2.30)

P
(i)
k|k = P

(i)
k|k−1 −K

(i)
k

(
H

(i)
k P

(i)
k|k−1H

(i)T
k +Rk

)
K

(i)T
k (2.31)

K
(i)
k = P

(i)
k|k−1 H

(i)T
k

(
H

(i)
k P

(i)
k|k−1H

(i)T
k +Rk

)−1
(2.32)

ω
(i)
k|k =

ω
(i)
k|k−1 β

i
k∑N

i=1 ω
(i)
k|k−1 β

i
k

(2.33)

where

βik = n
(
yk; hk

(
x
(i)
k|k−1

)
, H

(i)
k P

(i)
k|k−1H

(i)T
k +Rk

)
(2.34)

where H(i)
k is the Jacobian of the measurement evaluated at the prior mean µ(i)

k|k−1.

The weights are scaled so that they add to one.

Lastly, the total mean µk|k and covariance matrix P k|k of the posterior

GMM are given by

µk|k =
N∑
i=1

ω
(i)
k|k µ

(i)
k|k (2.35)

P k|k =
N∑
i=1

ω
(i)
k|k

(
P

(i)
k|k + µ

(i)
k|kµ

(i)T
k|k − µk|kµ

T
k|k

)
(2.36)

It is noted that the GMM approximation of the conditional PDF approaches

to the true PDF under the assumption that there are a sufficient number of Gaussian

components and that each of them has covariance matrix small enough such that the
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linearization of each component around its mean is representative of the nonlinear

dynamics and measurements.

2.2.2 The Particle Filter

Particle filters are a subset of sequential Monte Carlo methods that use se-

quential importance sampling with resempling (SISR). The PF approximates the

continuous PDF as a discrete probability mass function (PMF), therefore the PDF

is composed by a weighted sum of Dirac delta functions [7].

pxk
(xk) ≈

N∑
i=1

ω
(i)
k|k δ(xk − x

(i)
k|k) (2.37)

If it were feasible to compute the actual posterior distribution at the next time step

pxk+1
(xk+1) starting from pxk

(xk) and to sample from it; then we would use stan-

dard Monte Carlo techniques. However, since it is usually unfeasible to sample

from the actual posterior distribution, an importance distribution is often used in-

stead. The bootstrap particle filter (BPF) uses the transition distribution as the im-

portance distribution. With capital letters we indicate the collection of all random

vectors identified by the corresponding lower case letter, up to and including the

current time.

Xk = x0,x1, · · · ,xk, Y k = y1, · · · ,yk (2.38)

Then, the BPF importance distribution is given by

π(xk+1|Xk,Y k+1) = p(xk+1|xk) (2.39)

the sample x(i)
k+1 is obtained by first sampling ν(i)

k from the process noise. In this

work the samples ν(i)
k are drawn from a Gaussian distribution and x(i)

k+1 are obtained
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as follows:

x
(i)
k+1 = fk(x

(i)
k ,ν

(i)
k ) (2.40)

The importance weights are then calculated as

ω
(i)
k+1 ∝ ω

(i)
k p(yk+1|x

(i)
k+1) = ω

(i)
k n

(
yk+1; hk

(
x
(i)
k+1

)
, Rk+1

)
(2.41)

Sample impoverishment is common in the BPF, and the weights update step is usu-

ally followed by a resampling step.
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Chapter 3

Sequential Monte Carlo Filtering with Gaussian
Mixture Sampling
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3.1 Comparison with State of the Art

Bayesian stochastic estimation of nonlinear and non-Gaussian dynamical

systems using sequential Monte Carlo methods continues to receive considerable

attention in the literature [8, 23, 90]. The Kalman filter provides an exact solution

to the minimum mean-square error estimation problem for linear systems corrupted

by additive Gaussian noise [49]. However, in practice, the conditions for optimality

of the Kalman filter are easily and often violated. The EKF is a non-optimal ap-

proximation of the optimal Kalman filter that can be applied to nonlinear systems

using the same Kalman filtering framework [29]. The possible divergence of the

EKF estimates due to severe nonlinearities is a drawback of this procedure. Other

linear estimators of nonlinear systems include algorithms that rely on a set of de-

terministic regression points [54], such as the QKF [6], the UKF [46], and the CKF

[5]. These algorithms employ the Gaussian approximation and statistical lineariza-

tion of the nonlinear functions through a set of regression points. However, these

methodologies are not always feasible for very high nonlinearities when the state’s

PDF is multimodal or very non-Gaussian.

The GSF is a nonlinear estimator for nonlinear systems [2, 97]. It is able to

account for large deviations from Gaussianity and accommodate multimodal distri-

This chapter is based on: Sehyun Yun and Renato Zanetti, ”Sequential Monte Carlo Filtering
with Gaussian Mixture Sampling,” Journal of Guidance, Control, and Dynamics, 42(9), pp.2069-
2077, 2019. The primary content in this work was contributed by the first author.
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butions by approximating the non-Gaussian PDF as a GMM. The GSF includes one

linear estimator, such as EKF or UKF, for each of the GMM components. The GSF

works best when enough components are taken, each of which with a small enough

covariance matrix such that the nonlinear functions can accurately be linearized in

the support of each of the components. Much recent research exists in improv-

ing the original GSF algorithm to better adapt to, and account for, nonlinearities

[19, 25, 26, 33, 85, 103, 106].

While GSFs approximate the PDFs as a sum of Gaussians, sequential Monte

Carlo methods approximate them by discretization using a finite number of random

samples. Monte Carlo methods need to draw from the actual distributions, which

are often arduous to obtain; sequential importance sampling (SIS) algorithms, on

the other hand, sample from an importance sampling distribution and adjust the

weights of each sample accordingly. Particle filters are a family of SIS algorithms

that include a resampling step to mitigate particle (i.e., sample) degeneracy [7]. One

of the most popular algorithms chooses the importance distribution as the transition

distribution, the BPF [30]. One possible drawback of the BPF is that it does not

directly account for the value of the measurement in the sampling distribution. The

APF mitigates this issue by using an auxiliary variable to account for the value of

the measurement in the importance distribution [79]. The resampling step is often

critical for practical uses of the PF and is usually done sampling from a discrete

distribution. The RPF draws from a continuous distribution approximation of the

PDF [23] by perturbing the particles after resampling to add diversity to the state

space. The approach presented in this chapter contains a new methodology that
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includes both these improvements: it samples from a continuous distribution that

incorporates the contributions of the current measurement.

The PF approximates distributions as discrete, i.e., as weighted sum of Dirac

deltas. Other approaches to discretize the PDF include the point mass filter (PMF)

[15], deterministic Dirac mixtures with equal weights [92] and to combine particle

filters with GMMs. In Refs. [82] and [81], the authors start from a GMM and at

each cycle they resample in a manner similar to a particle filter. Their resampling

step is subject to a matrix inequality constraint that ensures the covariance of each

of the resampled Gaussian components stays below a desired tunable value.

Ref. [52] starts from the Gaussian particle filter derived in [53] to build the

Gaussian sum particle filter (GSPF). The GSPF is basically a bank of Gaussian

particle filters approximating the conditional distributions by weighted Gaussian

mixtures. Ref. [83] introduces the particle Gaussian mixture filter (PGMF) and

employs an ensemble of randomly sampled states for the propagation of the condi-

tional state probability density. The propagated ensemble is clustered to recover a

GMM representation of the propagated PDF. Finally, the posterior PDF can be ob-

tained through a GSF update. This approach is somewhat reminiscent of the RPF,

which uses kernel density estimation as the clustering algorithm.

In this chapter, we propose to always sample from the posterior distribution,

never to combine the distribution at the prior time with an importance distribution,

as done in SIS. Therefore, the methodology and the algorithms derived in this work

are conceptually and practically very different from the GSPF and PGMF. The pro-

posed methodology is also different from the RPF, since the RPF employs kernel
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density estimation on the particles in order to resample from a continuous distri-

bution. In this work we calculate the posterior distribution directly, we do not ap-

proximate it via clustering or kernel density estimator starting from samples. We do

not utilize sequential importance sampling like in the GSPF. Moreover, no particles

propagation and clustering occurs like in the PGMF, rather an initial GMM is gen-

erated at each cycle and from it a posterior PDF is obtained. In addition to the main

result, two modifications of the baseline algorithm are proposed to further improve

its accuracy. First, an importance sampling version of the algorithm is developed.

Then, in the second modification, the initial covariance of the GMM components is

not set to zero, but to a small value that removes the bias in the sample covariance.

The remainder of this chapter is organized as follows: Section 3.2 introduces

the new algorithms. Then, in Section 3.3, simulation results using the proposed

algorithm are presented followed by some concluding remarks on the methodology

and results.

3.2 Algorithms Development

At each time step, sequential Monte Carlo methods in general, and particle

filters in particular, necessitate to start from a good set of samples that accurately

and sufficiently represent the true distribution. Assuming such an initial set of sam-

ples exists, our goal is to approximate the distribution of xk|Y k using sequential

Monte Carlo methods. We will present one main algorithm and then show two small

modifications to it. In a Monte Carlo method, ideally we would want to sample from

p(xk|Y k), and the first algorithm we propose does exactly that.
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We assume that we have a good representation of the distribution at the prior

time, that is to say, we have a set of of N independent and identically distributed

(i.i.d.) samples x(i)
k−1 such that

p(xk−1|yk−1) ≈
N∑
i=1

1

N
δ(xk−1 − x(i)

k−1) (3.1)

the basic idea behind the proposed algorithm is that the Dirac delta function δ(xk−

x̄k) is the limit as the covariance matrix goes to zero of a Gaussian distribution with

mean x̄(i)
k

δ(xk − x̄k) = n(xk; x̄k,O) (3.2)

3.2.1 Algorithm I - Sampling from a GMM Posterior

As mentioned above we start from N i.i.d. samples of p(xk−1|yk−1) and we

interpret the discretized distribution as a GMM

p(xk−1|Y k−1) ≈
N∑
i=1

1

N
δ(xk−1 − x(i)

k−1) =
N∑
i=1

1

N
n(xk−1;x

(i)
k−1,O) (3.3)

We can therefore propagate this distribution forward in time with the GSF equations

to obtain

p(xk|Y k−1) ≈
N∑
i=1

1

N
n(xk;fk−1(x

(i)
k−1),G

(i)
k−1Qk−1G

(i)T
k−1) (3.4)
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We can then process the measurement to obtain

p(xk|Y k) ≈
N∑
i=1

ω
(i)
k n(xk;µ

(i)
k ,P

(i)
k ) (3.5)

µ
(i)
k = fk−1

(
x
(i)
k−1
)

+Kk

(
yk − hk

(
fk−1

(
x
(i)
k−1
)))

(3.6)

P
(i)
k = G

(i)
k−1Qk−1G

(i)T
k−1 −K

(i)
k W

(i)
k K

(i)T
k (3.7)

K
(i)
k = G

(i)
k−1Qk−1G

(i)T
k−1 H

(i)T
k (W

(i)
k )−1 (3.8)

W
(i)
k = H

(i)
k G

(i)
k−1Qk−1G

(i)T
k−1H

(i)T
k +Rk (3.9)

G
(i)
k−1 =

∂fk−1
(
x,ν

)
∂ν

∣∣∣∣∣
ν=ν

(i)
k−1

(3.10)

H
(i)
k =

∂hk
(
x
)

∂x

∣∣∣∣∣
x=fk−1

(
x
(i)
k−1

) (3.11)

ω
(i)
k ∝ n

(
yk; hk

(
fk−1

(
x
(i)
k−1
))
, W

(i)
k

)
(3.12)

where the weights in Eq. (3.12) are normalized.

We can now sample from the GMM distribution in Eq. (3.5) to obtain N

i.i.d. samples of p(xk|Y k); from these samples we can construct a Bayesian esti-

mate and we can use them as a starting point for the next iteration.

To draw from a GMM we follow these steps:

1. Draw N samples u(i) from a uniform distribution between 0 and 1

2. For each i, find the index `i (where the subscipt i is to reinforce the fact there

is one index for each value of i = 1...N ) such that
∑`i−1

j=1 ω
(j) < u(i) ≤∑`i

j=1 ω
(j), where we define

∑0
j=1 ω

(i) = 0
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3. Draw x(i)
k from the Gaussian distribution n(xk; m

(`i)
k|k−1,P

(`i)
k|k−1)

Our approach of sampling from the GMM has two benefits. First, compo-

nents with small weight are unlikely to produce a sample, therefore the resampling

step is effectively already included in the sampling step. In the BPF, the process

noise provides sample diversity after resampling. In a GMM the sample diversity is

obtained directly since the Gaussian components are continuous distributions that

already contain the contribution of the process noise. Other algorithms such as

the RPF need to perform additional steps starting from the discrete distribution to

obtain a continuous distribution to resample from. The second benefit of this al-

gorithm is that, unlike the BPF, the GMM distribution accounts for the value of

the measurement yk. This approach is reminiscent of the APF, except that the full

Bayes update is performed which allows us to directly sample rather than doing

importance sampling.

Our proposed approach provides very good performance if:

1. The process noise covariance is not large enough such that the linearization of

the measurement function h(x) is invalid in a region around fk−1
(
x
(i)
k−1,0

)
whose spread is consistent withG(i)

k−1Qk−1G
(i)T
k−1

2. The number of samples we start from is sufficient to accurately approximate

the distribution at the prior time: p(xk−1|Y k−1) ≈
∑N

i=1
1
N
n(xk−1;x

(i)
k−1,O)

This second assumption is common to all particle filters. If one of these two as-

sumptions fail, the same algorithm proposed here can be used with the following
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mitigation strategies: 1) expressing the process noise itself as a GMM such that

each component has a small enough covariance and 2) drawing more points from

p(xk−1|Y k−1) as a starting point of the algorithm. However, at the cost of more

computations, it is possible to mitigate these two issues in alternative ways as pre-

sented in the following two subsections.

3.2.2 Algorithm II - Importance Sampling from a GMM Posterior

If the distribution at the prior time is accurate, but we have reason to believe

our GMM approximation of the distribution at the current time in Eq. (3.5) is not

as accurate, it is possible to draw from the GMM in Eq. (3.5) as an importance

distribution rather than as the true posterior. When drawing samples x(i)
k from an

importance distribution π(xk|Y k), it is necessary to compute the true probability

density p(x(i)
k |Y k) in order to compute the importance weights. Therefore, we still

need good knowledge of p(x(i)
k−1|Y k−1). Algorithm II proposed in this subsection

provides a good methodology when we have enough samples x(i)
k−1 to accurately

represent p(x(i)
k−1|Y k−1), but the GMM approximation of p(xk|Y k) is not suffi-

ciently accurate. This situation can occur when the linearization assumption taken

by each of the components of the GMM is not accurate, such as when the non-

linearities of the measurement function hk(xk) are significant in a region around

fk−1(x
(i)
k−1,0) spanned by the likely realizations of the component.

Assume the following approximation of the true posterior is more accurate
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than Eq. (3.5):

p(x
(i)
k |Y k) ∝ p(yk|x

(i)
k )

∫
p(x

(i)
k |xk−1) p(xk−1|Y k−1) dxk−1 (3.13)

≈ p(yk|x
(i)
k )

N∑
j=1

p(x
(i)
k |x

(j)
k−1) p(x

(j)
k−1|Y k−1) (3.14)

= n
(
yk; hk

(
x
(i)
k

)
,Rk

) N∑
j=1

ζ
(j)
k−1 n

(
x
(i)
k ; fk−1

(
x
(j)
k−1
)
,G

(j)
k−1Qk−1G

(j)T
k−1

)
(3.15)

where the prior distribution p(x(j)
k−1|Y k−1) no longer has all weights equal to 1/N :

p(x
(j)
k−1|Y k−1) =

N∑
j=1

ζ
(j)
k−1 n

(
x
(i)
k ; x

(j)
k−1,O

)
(3.16)

then we can use Eq. (3.5) as the importance density

π(xk|Y k) =
N∑
i=1

ω
(i)
k n

(
xk;µ

(i)
k ,P

(i)
k

)
(3.17)

where ω(i)
k are the weights of the i-th Gaussian component as defined in Eq. (3.12).

The importance weights are calculated as

ξ
(i)
k =

p(x
(i)
k |Y k)

π(x
(i)
k |Y k)

(3.18)

ζ
(i)
k =

ξ
(i)
k∑N

i=1 ξ
(i)
k

(3.19)

The posterior density is therefore approximated as

p(xk|Y k) ≈
N∑
i=1

ζ
(i)
k δ(xk − x(i)

k ) =
N∑
i=1

ζ
(i)
k n(xk;x

(i)
k ,O) (3.20)

notice that at the start of each iteration the initial weights ζ(i)k of the GMM are not

1/N as in Algorithm 1.
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For large N , Algorithm II can be significantly more computationally expen-

sive than Algorithm I because of the summation in Eq. (3.16) that is performed for

each sample. In other words, Algorithm II has complexity of order N2. Therefore,

in situations where the process noise covariance is large, expressing the process

noise itself as a GMM and using Algorithm I is possibly preferable from a compu-

tational standpoint.

The pre-update error covariance matrix G(i)
k−1Qk−1G

(i)T
k−1 being too small or

not full rank could lead to particle impoverishment issues (all particle filters suffer

from this problem). To overcome this, the following algorithm which uses nonzero

initial covariances is proposed.

3.2.3 Algorithm III - Estimation with Non-Zero Initial Covariance

A better GMM approximation of p(xk−1|Y k−1) than Eq. (3.3) can be ob-

tained by choosing nonzero covariances P (i)
k−1 for each of the components

p(xk−1|Y k−1) ≈
N∑
i=1

1

N
n(xk−1;x

(i)
k−1,P

(i)
k−1) (3.21)

Calculation of optimal values of P (i)
k−1 (for example minimizing the L2 norm of

the difference between PDFs) is often infeasible or computationally expensive; a

very simple alternative approach is to remove the bias in the sample covariance as

described in this section.

When all the weights are the same, the covariance matrix of the GMM dis-
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tribution is given by

PGMM
k−1 =

1

N

(
N∑
i=1

P
(i)
k−1 + x

(i)
k−1x

(i)T
k−1

)
− µk−1 µT

k−1 (3.22)

µk−1 =
1

N

N∑
i=1

x
(i)
k−1 (3.23)

When P (i)
k−1 = O, this reduces to

PBIAS
k−1 =

1

N

N∑
i=1

(
x
(i)
k−1 − µk−1

) (
x
(i)
k−1 − µ

T
k−1

)T
=

1

N

(
N∑
i=1

x
(i)
k−1 x

(i)T
k−1

)
− µk−1 µT

k−1 (3.24)

which is a biased estimator of the covariance matrix since it is, on average, too

small. An unbiased estimator of the covariance matrix is

P UNB
k−1 =

1

N − 1

N∑
i=1

(
x
(i)
k−1 − µk−1

) (
x
(i)
k−1 − µ

T
k−1

)T
(3.25)

A very simple method to choose a nonzero value for the covariance matrix of the

components in Eq. (3.21) is to choose P (i)
k−1 such that the GMM covariance matrix

is unbiased

1

N

(
N∑
i=1

P
(i)
k−1 + x

(i)
k−1x

(i)T
k−1

)
− µk−1 µT

k−1

=
1

N − 1

N∑
i=1

(
x
(i)
k−1 − µk−1

) (
x
(i)
k−1 − µ

T
k−1

)T
(3.26)

Assuming all samples have the same covariance matrix, the solution to this equation

is given by

P
(i)
k−1 =

1

N(N − 1)

N∑
j=1

(
x
(j)
k−1 − µk−1

) (
x
(j)
k−1 − µ

T
k−1

)T
=

1

N
P UNB
k−1 ∀i (3.27)
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For example, if we have a scalar state with unbiased sample variance of PUNB
k−1 = 1

and we choose to draw 100 samples, each of the 100 components of the GMM will

have standard deviation σ(i)
k−1 =

√
P

(i)
k−1 = 0.1.

The remainder of the algorithm is similar to Algorithm I

p(xk|Y k) ≈
N∑
i=1

ω
(i)
k n(xk;µ

(i)
k ,P

(i)
k ) (3.28)

µ
(i)
k = fk−1

(
x
(i)
k−1
)

+Kk

(
yk − hk

(
fk−1

(
x
(i)
k−1
)))

(3.29)

P
(i)
k = F

(i)
k−1P

(i)
k−1F

(i)
k−1 +G

(j)
k−1Qk−1G

(j)T
k−1 −K

(i)
k W

(i)
k K

(i)T
k (3.30)

K
(i)
k = (F

(i)
k−1P

(i)
k−1F

(i)
k−1 +G

(j)
k−1Qk−1G

(j)T
k−1 )H

(i)T
k (W

(i)
k )−1 (3.31)

W
(i)
k = H

(i)
k (F

(i)
k−1P

(i)
k−1F

(i)
k−1 +G

(j)
k−1Qk−1G

(j)T
k−1 )H

(i)T
k +Rk (3.32)

F
(i)
k−1 =

∂fk−1
(
x,ν

)
∂x

∣∣∣∣∣
x=x

(i)
k−1

(3.33)

G
(i)
k−1 =

∂fk−1
(
x,ν

)
∂ν

∣∣∣∣∣
ν=ν

(i)
k−1

(3.34)

H
(i)
k =

∂hk
(
x
)

∂x

∣∣∣∣∣
x=fk−1

(
x
(i)
k−1

) (3.35)

ω
(i)
k ∝ n

(
yk; hk

(
fk−1

(
x
(i)
k−1
))
, W

(i)
k

)
(3.36)

The weights in Eq. (3.36) are normalized, and we can now sample from this GMM

distribution to obtain N i.i.d. samples of p(xk|Y k).

In Algorithm III, we calculate the actual posterior distribution as a GMM

and sample directly from it. Moreover, the covariance matrix of the components

P
(i)
k−1 is calculated, which makes Algorithm III practically and conceptually differ-

ent from the RPF, in that the covariance is not merely used for particle resampling.
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3.3 Numerical Results

In order to evaluate the algorithms proposed in this chapter, four different

examples are considered: a simple motivating example, the univariate nonstationary

growth model (used in [30, 51, 52]), a Lorenz96 system (used in [74, 83]), and the

blind tricyclist problem (used in [80–82]).

3.3.1 Single Step Example

Consider the following simple motivating example. A bivariate normal ran-

dom vector x0 is distributed as

x0 ∼ n (x0; µ0, P 0) = n

(
x0;

[
−3
0

]
,

[
7.2 0
0 21.6

])
(3.37)

and evolves as

x1 = x0 + ν (3.38)

where

ν ∼ n (ν; 0, Q) = n

(
ν;

[
0
0

]
,

[
0.2 0
0 0.2

])
(3.39)

A measurement is available and given by

y = ‖x1‖+ η (3.40)

where

η ∼ n (η; 0, R) = n (η; 0, 0.01) (3.41)

We start from N = 300 independently drawn samples of x0 and we apply the BPF,

the APF, Algorithm I (A1) and Algorithm III (A3) from this chapter.
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For the BPF we drawN independent samples from η, and update the weights

as

w
(i)
BPF ∝ n(ν(i); 0,Q) n(‖x(i)

0 + ν(i)‖; 0, R) (3.42)

The effective number of particles is calculated as

NBPF
eff =

1∑N
i=1(w

(i)
BPF )2

(3.43)

and x(i),BPF
1 = x

(i)
0 + ν(i) with associated weight w(i)

BPF . After resampling, many

resampled bootstrap particles x̃(i),BPF
1 will coincide and all particles will have equal

weight 1/N .

For the APF resampling of the initial state is performed

x0 ≈
n∑
i=1

w
(i)
APF δ(x0 − x(i)

0 ) (3.44)

where

w
(i)
APF ∝ n(‖x(i)

0 + ν(i)‖; 0, R) (3.45)

The effective number of particles is calculated as

NAPF
eff =

1∑N
i=1(w

(i)
APF )2

(3.46)

and x(i),APF
1 = x̃

(i)
0 + ν(i) with associated weight 1/N where x̃(i)

0 are resampled

particles. Notice that, because of ν(i), all particles x(i),APF
1 are distinct from one

another.

For A1 and A3 (jointly denoted as AN) we use the weights described in

Eq. (3.12) and Eq. (3.36), and we calculate the effective number of particles as

NAN
eff =

1∑N
i=1

(
ω
(i)
AN

)2 (3.47)
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After sampling from the GMM, all sampled particles x(i),AN
1 are distinct from one

another and have weight 1/N .

Performing 100 random experiments for each of the four filters, we obtain

the average number of effective particles, the root mean square error (RMSE), and

the Cramer-Rao lower bound (CRLB) [80, 102] values given in Table 3.1. The re-

sults show that starting from the same initial 300 particles the proposed methodolo-

gies produce the most sample diversity and best accuracy among the filters. Notice

that none of the algorithms in Table 3.1 (new or existing) approach the Cramer-Rao

lower bound, this is true for the following examples as well. This is due to the

complex nonlinear nature of the examples chosen.

Table 3.1: Results of Example 1. Number of effective particles

Ex. 1 Effective Particles RMSE
BPF (300) 9.8370 1.8215
APF (300) 12.4878 1.7847
A1 (300) 56.3863 1.6333
A3 (300) 62.0461 1.6228
CRLB — — 0.1999

3.3.2 Univariate Nonstationary Growth Model

Consider the discrete time highly nonlinear scalar dynamic system and mea-

surement model given by [30, 51, 52]:

xk =
1

2
xk−1 + 25

xk−1
1 + x2k−1

+ 8 cos
(
1.2(k − 1)

)
+ νk−1 (3.48)

yk =
x2k
20

+ ηk (3.49)
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where the process noise, νk−1, and the measurement noise, ηk, are assumed to be

independent zero mean Gaussian random variables with variances Q = 1 and R =

1, respectively.

This model is highly nonlinear and bimodal. The cosine term in the dynamic

equation varies with time k. The likelihood has a bimodal nature which makes

the states more difficult to estimate. In this example, a Monte Carlo analysis is

performed with 200 simulations, each simulation has a time span k = [0, 50]. The

estimation performance of the EKF, UKF, BPF and the three algorithms proposed

here [A1, Algorithm II (A2), and A3] are compared based on RMSE, effective

sample size (ESS), and noncredibility index (NCI) [55]. The RMSE for each Monte

Carlo simulation is calculated from the true and estimated states at each time k. The

ESS is the effective number of particles calculated as in the previous example. The

NCI is defined as

NCIk =
1

M

M∑
j=1

[
10 log10

(
(xjk − µ

j
k)

T(P j
k)
−1(xjk − µ

j
k)
)

− 10 log10

(
(xjk − µ

j
k)

TΣ−1k (xjk − µ
j
k)
) ]

(3.50)

where M is the number of Monte Carlo simulations, xjk are the true states, µjk are

the estimated states, P j
k are the filter’s error covariance matrix of the j-th Monte

Carlo run computed with Eq. (2.36), and Σk is the ensemble error covariance matrix

of the estimates at time k computed from the Monte Carlo samples. The NCI quan-

tifies the difference between the ideal error covariance matrix Σk and the estimated

error covariance matrix P k. The NCI metric is a geometric average of 10 times the

logarithm of the normalized estimation error squared (NEES) ratio; it is a balanced
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Figure 3.1: Time averaged RMSE for 200 random realizations

measure of the consistency of the estimators. When the difference between Σk and

P k is small, the NCI value should be zero or nearly zero at all times [55].

The Root Mean Square of the RMSEs, the Monte Carlo averaged ESS, and

the NCI from the 200 Monte Carlo runs are shown in Table 3.2. A total of 100

particles are used in both the BPF and the new algorithms proposed here.

Figure 3.1 shows the RMSE and the CRLB of the 200 simulation, the RMSE

for each is calculated over a time span of [0, 50]. The RMSE values of each filter are

listed in Table 3.2. Our three proposed algorithms have comparable RMSEs. The

best performance is obtained with A3, which starts each iteration from a GMM with

non-zero covariance. The RMSEs of the EKF and UKF are higher than that of any

sample-based filters. Moreover, the proposed algorithms have better performance

than the BPF given the same number of particles, 100.
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Table 3.2: Results of Example 2. RMSE for 200 Monte Carlo simulations

Ex. 2 RMSE ESS NCI
A1 (100) 22.6558 78.0530 5.3895
A2 (100) 22.4748 77.6704 4.1806
A3 (100) 22.3328 79.0343 4.1823
BPF (100) 23.5081 60.2690 6.0290
EKF 71.7314 — — 17.2206
UKF 50.2221 — — 10.3616
CRLB 1.7258 — — — —

The consistency test result of each estimator represented by the absolute

NCI value is depicted in Figure 3.2 In this figure, the NCI values of our proposed

algorithms are smaller than those of other estimators. Figure 3.3 describes the ESS

which indicates sample diversity of particle filters. In the figure, the Monte Carlo

simulations show that the proposed methodologies produce significantly higher ef-

fective number of particles than the BPF. The proposed A3 method performs best

in terms of RMSE and ESS.

3.3.3 Lorenz96 system

In this example, the BPF and the here proposed A1 and A3 are applied to a

Lorenz96 system [74, 83]. The Lorenz96 dynamical system is expressed as follows:

ẋi(t) = xi−1(t)
(
xi+1(t)− xi−2(t)

)
− xi(t) + F + νi(t) (3.51)

yk = H X(tk) + ηk, Hi,j =

{
1, j = 2i− 1
0, otherwise ,

for i = 1, · · · , 20, j = 1, · · · , 40 (3.52)

where xi(t), i = 1, 2, · · · , 40, are the components of the 40th-dimensional vector

X(t). In the dynamics equation the following conventions are used x−1 = xN−1,
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x0 = xN , and x1 = xN+1. The term F represents a constant external forcing and is

set to 8, which causes chaotic behavior in the system. The dynamics is propagated

for 10 seconds at 20 Hz while the discrete measurements are available at 1 Hz,

tk = 1, 2, · · · , 200. Fourth order Runge-Kutta integration is used with a step size of

0.05 sec, and the process noise is held constant over each 0.05 second interval with

zero correlation between the intervals. The measurements are linear and measure

only the components of the state vector that have odd indices. It is assumed that the

process noise and measurement noise are uncorrelated, white, zero mean, and with

covariance matrices given by Q = 10−2 and R = 10−2I20×20, respectively [83].

The initial state of the system is assumed multivariate Gaussian distribution with

µ0 = F [1, 1, · · · , 1]T and P0 = 10−3I40×40.

Figure 3.4 shows the CRLB and the performance of 100 Monte Carlo sim-

ulations with 2000 particles for the Lorenz96 system. The time averaged value of

RMSE of the three algorithms and the CRLB are shown in Table 3.3. For such

a large system, A2 is not recommended because of high computation time and is

omitted from this example. The results show that the performance of A3 is better

than the A1. Moreover, the BPF is found to provide significantly inferior perfor-

mance. To compare the consistency of the filters, the absolute NCI value is com-

puted and compared in Figure 3.5. This figure indicates that the performance of

A1 and A3 are comparable. On the other hand, the absolute NCI value of the BPF

is greater than that of A1 and A3 over time. The time averaged ESS for the 100

Monte Carlo simulations are shown in Figure 3.6. The effective number of particles

for the BPF is small since it does not directly account for the latest information of
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Figure 3.4: Monte Carlo averaged RMSE for 100 random realizations

the measurement. On the other hand, A1 and A3 provide good diversity and num-

ber of effective particles. The quantitative results representing the consistency and

ESS of the filters are listed in Table 3.3. A3 has the best performance in terms of

accuracy, consistency, and ESS.

Table 3.3: Results of Example 3. RMSE for 100 Monte Carlo simulations

Ex. 3 RMSE ESS NCI
A1 (2000) 20.3819 1248.5274 0.4160
A3 (2000) 20.1415 1338.7312 0.3920
BPF (2000) 28.7860 229.0955 22.7186
CRLB 1.8377 — — — —
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3.3.4 The Blind Tricyclist Problem

In this last example, A3 is tested on the blind tricyclist problem presented in

Ref. [80], and its performance is compared to that of the EKF and RPF. The blind

tricyclist is a challenging nonlinear estimation problem with seven states consist-

ing of unknown planar position, heading angle, and four observation parameters.

Unlike the previous examples, in this problem the process noise does not enter the

dynamics linearly. Moreover, the process noise covariance matrix is not full rank

because three states do not have process noise. Therefore, most particle filters will

fail to produce particle diversity, while A3 and the RPF are suitable and applied

to this problem. The dynamics are propagated for 141 seconds at 2 Hz with the

two known inputs corrupted by additive Gaussian noise. Two relative bearing mea-

surements are available every 3 seconds out-of-phase at 180 ◦, e.g., the rider gets

relative bearing measurements from two shouting friends: the first friend shouts

out at sample times 0.5, 3.5, 6,5, etc., while the second friend shouts out at sample

times 2, 5, 8, etc.

Figure 3.7 displays the time history of the position’s RMSE magnitude of

the CRLB and 100 Monte Carlo simulations of the EKF, A3 with 3000 and 10000

particles, and RPF with 3000 and 10000 particles. Since the process noise is only

related to the planar position and heading states, the process noise covariance ma-

trix G(i)
k−1Qk−1G

(i)T
k−1 is not full rank. Therefore, A1 and A2 cannot be successfully

applied to this problem, neither are the BPF and APF. In addition, since the tricycle

heading angle and the merry-go-round phase angles can cause a 2π cycle ambigu-

ity, a 2π relative unwrapping operation is performed. The RPF resampling is done
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whenever the number of effective particles is smaller than a resampling thresh-

old N̂eff , chosen as 400 and 5000 for 3000 and 10000 particles, respectively [81].

The results indicate that the performances of both the A3s with 3000 and 10000

mixture elements are better than those of the RPFs for the first 100 secs but they

become comparable after that. The reason is that the RPF implemented here uses an

Epanechnikov kernel density estimator, which is optimal for Gaussian distributions.

After 100 seconds of simulation time, when the total uncertainty of the problem re-

duces, the distribution looks “more” Gaussian and the RPF performs really well.

However, when the PDF differs substantially from Gaussian, the Epanechnikov

kernel density estimator and hence the RPF perform noticeably worse than A3. If

the posterior density was known, an optimal kernel estimator could be found to

produce excellent results. Generally speaking, however, the shape of the posterior

distribution is unknown and thus A3 does a better job of representing the distri-

bution, as the consistency test below clearly shows. Ref. [80] details the reason

why RPF with 10000 particles performs worse than the RPF with 3000 particles:

“First, the increase from 3000 to 10,000 particles might be insufficient to ensure

improvement in a 100-run Monte Carlo simulation. Also, the RPF regularization’s

dithering might have interfered with the PF’s accuracy convergence in the limit of

a large number of particles.”

The RMSE of A3 and RPF lie a bit lower than the CRLB during the first 5

sec of the run, which is theoretically impossible but allowable since a finite number

of Monte Carlo simulations is conducted [82]. This figure also shows that the per-

formance of the EKF is inferior to that of A3 and the RPF. The quantitative RMSE
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results for position is listed in Table 3.4. The RMSE value of the A3 with 3000

particles is 3.97% smaller than that of the RPF with 3000 particles and the RMSE

value of the A3 with 10000 particles is 27.87% smaller than that of the RPF with

10000 particles.

Figure 3.8 shows the absoulte NCI value of each estimator. The absolute

value of NCI of all filters increases as time passes. This is because the process

noise covariance matrix G(i)
k−1Qk−1G

(i)T
k−1 is rank-deficient. It is well known that

small process noise can causes degeneracy in particle filters, thus degrading their

performance [7]. The figure shows that the RPF with 3000 particles does suffer

from degeneracy. Even with 3000 particles, the absolute value of NCI of A3 shows

that the filter is performing in a very satisfactory fashon. The time averaged abso-

lute NCI value to the total samples of 100 cases is listed in Table 3.4, where n/a

indicates degeneracy. The average computation time per filtering run in MATLAB

on a 3.5-GHz, four-core Ubuntu operation system is also presented in Table 3.4.

The absolute NCI value of the A3 is smaller than that of the EKF and RPF with the

same number of particles. In addition, compared to the RPF, the A3 reduces the

mean computation time by 5.65% and 19.72% with 3000 and 10000 particles, re-

spectively. Therefore, the performance in terms of accuracy, consistency, and mean

computation time of the proposed algorithm is conspicuously better than that of the

EKF and RPF.
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Table 3.4: Results of Example 4: RMSE for 100 Monte Carlo Simulations

Ex. 4 RMSE NCI Computation time (sec/sim.)
EKF 21.2319 28.3933 0.0205
A3 (3000) 11.0344 2.1958 41.3793
A3 (10000) 10.8863 2.6238 170.2232
RPF (3000) 11.4904 n/a 43.8562
RPF (10000) 15.0916 5.3220 212.0285
CRLB 3.9161 — — — —

3.4 Chapter’s Summary

In this chapter, a new sequential Monte Carlo algorithm is proposed that

samples from a Gaussian mixture model approximation of the posterior distribu-

tion. Each sample of the distribution at the prior time is treated as a Gaussian

component with a collapsed zero covariance matrix. Process noise is responsible

for generating propagated components with non-singular covariance matrix, and

the Gaussian sum filter algorithm is used to calculate the posterior distribution. It

is shown that the proposed algorithm improves over the accuracy, consistency, and

effective number of particles of the bootstrap and regularized particle filters in the

numerical examples considered.

Two small modifications of the baseline algorithm are also proposed to fur-

ther improve its accuracy. First, an importance sampling version of the algorithm

is developed. At the cost of more computations, this modified approach slightly

improves over the baseline algorithm. In the second modification, the initial covari-

ance of the Gaussian mixture model components is not set to zero, but to a small

value that removes the bias in the sample covariance, this approach is necessary, for
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example, when the process noise is not sufficient to produce nonsingular covariance

matrices for the components. All the proposed algorithms have better performance

than the conventional bootstrap particle filter in all tests performed.
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Chapter 4

Kernel-Based Ensemble Gaussian Mixture Filtering
for Orbit Determination with Sparse Data
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4.1 Motivation and Comparison with State of the Art

The algorithms introduced in the previous chapter were shown to improve

the performance of the BPF and RPF under challenging nonlinear scenarios. The

process of making each particle a Gaussian component improves particle diversity

and overall performance of the filter. The three proposed algorithms, however, suf-

fer from one common drawback of most particle filters: poor performance in the

absence of process noise. This is particularly true for little to no process noise

during long propagation times in-between measurements. If an initial uncertainty

grows considerably due to the dynamics, a set of particles that is adequate to ap-

proximate the initial PDF might become too sparse and be inadequate to represent

the a priori PDF for filtering purposes. This chapter investigates this problem in the

context of orbit determination.

In recent years, there has been an increasing interest in tracking an ever-

growing number of SOs for collision avoidance and space domain awareness [16,

20, 77]. As very large, low earth orbit (LEO) constellations are being developed and

launched, the risk of collision in LEO keeps increasing because of a high density

of SOs in this region. The high number and density of LEO SOs require accurate

orbit determination and data association [71]. Currently, only a limited number of

radar-based surveillance sensors are available and used to estimate the state of an

SO in LEO. The current approach to maintaining a LEO catalogue is not scalable

to tens of thousands of spacecrafts. The solution of this problem is either adding

more hardware (more tracking stations and/or clusters of supercomputers) or im-

proving the computational efficiency of tracking and data association software used
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to maintain the catalogue.

A software-only solution is one in which the number of available measure-

ments per SO is reduced because the current surveillance network is tasked to ac-

quire data from many more SOs. It requires an efficient data association algorithm

and an estimator able to extract as much information as possible from the sparse

data. This chapter addresses the latter, and proposes an accurate and computation-

ally fast nonlinear estimation algorithm for orbit determination.

For linear systems with linear measurements, the well-known Kalman filter

[49] provides a globally optimal solution, i.e., it extracts as much information from

the data as possible (in a MMSE sense). In the presence of nonlinearities (either

in the dynamics, the measurements, or both), a nonlinear filter is able to produce

a more accurate estimate than a linear one, i.e., extract more information from the

data. Radar measurements of range, range-rate, and angles to an SO are inherently

nonlinear. A nonlinear filter, therefore, will outperform a linear filter such as the

EKF [29] or UKF [47] even in the presence of near-linear dynamics.

To cope with the sparse data problem, this chapter compares two nonlin-

ear algorithms: the adaptive entropy-based Gaussian mixture information synthesis

(AEGIS) [19] and the kernel-based ensemble Gaussian mixture filtering (EnGMF)

[3]. This work proposes a new modification to EnGMF to greatly improve its com-

putational complexity. Two implementations of the UKF are also compared to the

proposed approach, representing the SO with both Cartesian and equinoctial coor-

dinates [14].
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For linear measurements and dynamics, the UKF reduces to the Kalman fil-

ter and is the optimal output of all linear estimators regardless of the probability

distributions (in a MMSE sense). The UKF is typically more robust to nonlineari-

ties than the EKF [47] but can still fail to produce an adequate estimate in the case

of high nonlinearities. The nonlinearities of orbital dynamics are easily mitigated

by choosing to represent the SO’s state with an appropriate set of orbital elements,

for example equinoctial elements. Changes in these elements, specifically the an-

gle quantity, are linear, and variations due to nonlinear effects are relatively small.

This choice of coordinates, therefore, allows for accurate and computationally in-

expensive long time propagations of the mean and covariance matrix [48, 88], for

example when using the unscented transformation (UT). The price to pay for lin-

ear dynamics is typically an even more nonlinear measurement model, which may

cause UKF divergence in a scarce-measurement environment, as shown in the nu-

merical results section of this chapter. In measurement-rich environments, when

long propagations are followed by dense measurements arcs, a batch least-squares

approach is often the preferred orbit determination solution [98], as it allows to ex-

tract more information from nonlinear measurements than linear sequential filters.

After processing the measurement batch, the mean and covariance of the estimate

can be propagated with the UT to start a new iteration. Batch least squares does

not provide full information about the probability distribution function, and it only

returns the mean and covariance matrix and the underlying distribution is typically

assumed Gaussian, hence they work best when many measurements are available

such that the resulting uncertainty is close to Gaussian. Nonlinear recursive filters,
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on the other hand, approximate the optimal MMSE estimator, which has the lowest

square estimation error (on average), and provides a full description of the underly-

ing PDFs. AEGIS and our proposed modification to EnGMF are two examples of

nonlinear filters.

While this chapter focuses on the estimation problem, adding data associ-

ation to a single-target nonlinear filter is a well-studied problem. Data associa-

tion and collision detection benefit from full knowledge of the PDF, which can be

approximated with AEGIS and the EnGMF but inevitably results in a Gaussian as-

sumption for linear estimators. As long as the PDF remains approximately Gaussian

after measurements are incorporated, linear filters produce excellent performance.

Ref. [41], for example, assumes that the initial orbit determination solution is an

estimate with a Gaussian distribution, and employs modified equinoctial elements

to propagate the state and associate a sequence of observations to an SO using the

Mahalanobis distance.

The AEGIS method is based on the standard GSF [2, 97]. The GSF is a

nonlinear estimator for nonlinear systems and it has been applied to SO tracking

applications [38, 39]. To deal with multimodal and non-Gaussian distributions, the

GSF approximates the PDF as a GMM. The GSF provides a nearly optimal so-

lution when enough components are taken and each Gaussian component has a

small enough covariance matrix such that the nonlinear dynamic and measurement

functions can be accurately approximated to linear functions in the support of each

Gaussian component. In the presence of a Gaussian prior and a nonlinear measure-

ment, the GSF outperforms linear filters when the prior is approximated by many
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Gaussian of smaller covariance such that the measurement is approximately linear

in their support.

One of the limitations of the standard GSF is that the weights of the Gaus-

sian components remain the same during nonlinear propagations. Several studies

recently have been proposed to address this issue and improve the standard GSF

algorithm to better account for nonlinear dynamics [19, 101, 103]. One of these ap-

proaches is AEGIS, which splits the Gaussian components to reduce the effects of

nonlinearities of a dynamical system during the prediction of state uncertainty [19].

Another approach to nonlinear filtering is SISR, commonly known as parti-

cle filters (PFs) [8]. PFs are known to suffer from degeneracy with near-deterministic

dynamics, i.e., with little process noise. As orbital dynamics is well characterized, a

particle filter implementation of orbit determination inevitably requires low process

noise. Modifications have been investigated to improve the standard SISR meth-

ods such as the BPF, APF, and RPF [23] by combining particle filters and GSF

[3, 64, 84, 112, 113]. For example, the sequential Monte Carlo filtering with Gaus-

sian mixture model (SMCGMM) proposed in Chapter 3 [112] assumes that each

particle of the pre-propagation distribution to be a Gaussian component having a

zero or small covariance matrix. Refs. [84] and [113] integrate a PF with a cluster-

ing algorithm (e.g., K-means algorithm or EM algorithm) to approximate the prior

distribution with a GMM. Although clustering to form the GMM provides an accu-

rate solution for a highly nonlinear system, it is computationally expensive and not

of practical use for tracking large LEO constellations.

Other examples of hybrid PF/GSF algorithms include Refs. [3] and [64]
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which approximate each propagated particle as a Gaussian component with a non-

zero covariance matrix calculated by bandwidth selection for kernel density estima-

tion (KDE). KDE is a non-parametric technique to estimate the PDF of a random

variable [93]. The KDE algorithm with a Gaussian kernel is similar to the EM clus-

tering algorithm in that they construct a GMM using the particles. However, in the

KDE algorithm, every particle is considered as a Gaussian component to establish

a GMM whereas EM clustering algorithm groups several particles into each Gaus-

sian mixture components. An adaptable bandwidth selection suffers from a high

computational cost similar to the clustering algorithms presented in [84] and [113].

In this chapter, the EnGMF algorithm is modified to efficiently track SOs

in LEO with short and sparse observation data. A key element of the EnGMF

algorithm is the determination of the covariance matrix of each Gaussian compo-

nent in a GMM. The covariance matrix is determined by the bandwidth parameter

of a kernel function. Although the optimal bandwidth parameter can be obtained

using a data-driven method [44, 76], this approach is computationally expensive.

Alternatively, we can compare the simulation results of a system using a range of

the bandwidth parameter [64] and tune this parameter according to the system. In

this chapter, we propose an approach to achieve a near-optimal bandwidth param-

eter with a low computational cost for orbit determination with sparse observation

data. We achieve this by computing the bandwidth of a Gaussian kernel in the KDE

algorithm with Silverman’s rule of thumb [94] to reduce the KDE computational

burden.

The remainder of this chapter is organized as follows. First, the dynamics
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and measurement models are described and the coordinate systems are presented.

Then, the two nonlinear estimation techniques, the AEGIS and a modified EnGMF,

are introduced in Section 4.3. In Section 4.4, simulation results are shown using the

proposed algorithms followed by some concluding remarks on the methodology

and results.

4.2 System Models

This section serves to introduce system models used in this chapter.

4.2.1 Dynamics Model

The inertial position and velocity of an SO are denoted by rI = [x y z]T and

vI = [vx vy vz]
T. The orbital dynamics of an SO in Earth-Centered Inertial (ECI)

coordinates are given by[
ṙI

v̇I

]
=

[
vI

− µ
r3
rI + aINS + aI3B + aIdrag + aIsrp

]
(4.1)

where µ is the Earth’s gravitational parameter and r is the Euclidean norm of rI .

aINS is the gravitational perturbation due to non-spherical effect of the Earth gravity,

aI3B indicates the third-body perturbations of the Moon and the Sun, and aIdrag

and aIsrp represent the acceleration perturbation due to atmospheric drag and solar

radiation pressure (SRP), respectively. For this study, the EGM2008 [78] gravity

model is used for the Earth and 70 × 70 degrees and order are applied for gravity

modeling, and the planetary and lunar ephemeris DE430 [27] is selected to compute

the location of the Moon and the Sun.
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The primary non-gravitational force acting on SOs in LEO is the drag force.

The drag acceleration due to atmospheric density relies upon the drag coefficient,

the cross-sectional area of an SO face perpendicular to velocity vector, and the

height of an SO above the Earth’s surface. The acceleration due to drag is then

given by

aIdrag = −1

2
Cd
A

m
ρd‖vrel‖vrel (4.2)

where Cd is the drag coefficient, m and A are the mass and cross-sectional area

of the SO, respectively, ρd is the atmospheric density at altitude of the SO, ‖ · ‖

means the Euclidean norm, and vrel is the atmosphere-relative velocity vector. For

computing the atmospheric density, the exponential density model is employed in

this study [105].

The acceleration due to SRP depends on the shape of an SO and the can-

nonball model, i.e., spherical object, is assumed in this chapter. The acceleration

perturbation due to SRP is then given by

aIsrp = −SFACRu
I
sun

mc
(4.3)

where SF is the solar flux, m is the mass of the SO, c is the speed of light, CR is the

coefficient of reflectivity, uIsun is the unit vector pointing from the SO to the Sun in

the ECI frame.

4.2.2 Measurement Model

Range ρrange and range-rate ρrangerate measurements along the line of sight

(LOS) from a ground-based radar sensor to an SO is provided. The relative position

55



vector ρI = [ρx ρy ρz]
T between the SO and a ground station rIS coordinatized in

ECI is given by:

ρI = rI − rIS (4.4)

The error-free range measurement is given:

ρrange = ‖ρI‖ = ‖rI − rIS‖ (4.5)

By differentiating Eq. (4.5) with respect to time, the error-free range-rate measure-

ment is obtained as follows:

ρrangerate =

(
rI − rIS

)T (
vI − vIS

)
‖rI − rIS‖

(4.6)

where vIS is the time rate of change of the ground station position vector with respect

to the inertial frame.

Along with the range and range-rate, angle data in the form of right ascen-

sion α and declination δ are measured to estimate the states of the SO. The error-free

angle observation equations are described as follows:

α = tan−1
(
ρy
ρx

)
, δ = sin−1

(
ρz
‖ρI‖

)
(4.7)

All measurements are corrupted by zero-mean, Gaussian noise. In this study, light

travel time delay and measurement biases are not considered.

4.2.3 Coordinate systems

The dynamic equations of the SO presented above are expressed in Carte-

sian coordinates, which results in nonlinear differential equations. Alternatively,
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equinoctial orbital elements [14] offer a near-linear dynamics. The Keplerian mo-

tion is exactly linear, and nonlinearities arise only due to perturbations such as

non-central gravity and drag. The equinoctial orbital elements are expressed as

functions of the Keplerian orbital elements as follows:

a = a

h = e sin (ω + Ω)

k = e cos (ω + Ω)

λ0 = M0 + ω + Ω

p = tan (i/2) sin (Ω)

q = tan (i/2) cos (Ω)

(4.8)

where a is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the

longitude of the ascending node, ω is the argument of periapsis, andM0 is the mean

anomaly.

4.3 Estimation Techniques

This section reviews the AEGIS and introduces the proposed nonlinear es-

timation algorithms to cope with the sparse data problem: a modified EnGMF.

4.3.1 Adaptive Entropy-based Gaussian Mixture Information Synthesis

The AEGIS uses an entropy-based method to detect nonlinearity of a dy-

namical system during the prediction of state uncertainty and then applies a splitting

technique to decrease the approximation error caused by truncating the nonlinear

functions of the system to low-order. The AEGIS method is based on the standard
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GSF which is a nonlinear estimator. In the GSF, non-Gaussian PDFs are approxi-

mated as a GMM as follows:

p(x) =
N∑
i=1

ω(i)n(x;µ(i), P (i)) (4.9)

where x is a random variable, p(x) is the PDF of x,N is the number of all Gaussian

components, n(x|µ, P ) represents the Gaussian PDF with mean µ and covariance

P ; and µ(i), P (i), and ω(i) are the means, covariance matrices, and weights of the

ith Gaussian component. The PDF normalization and positivity properties lead to

the following constraints on the weights:

ω(i) ≥ 0, ∀i
N∑
i=1

ω(i) = 1 (4.10)

The performance of the GSF mainly depends on both the number and the weights

of the components of a GMM; however, both of them are held constant during

the propagation step. To improve the standard GSF algorithm to better adapt to

nonlinearities of the system, the AEGIS approach allows for the modification of the

Gaussian components over the propagation step based on two main mechanisms.

The first step of the AEGIS is to monitor the nonlinearity of the dynam-

ics using a property derived from the differential entropy for linearized dynamical

systems. The differential entropy of a continuous random variable x is defined as

follows [19]:

H(x) = −
∫
S

p(x)log (p(x)) dx = E{−log (p(x))} (4.11)

where S is the support set. In this chapter, all logarithms are assumed to be nat-

ural. The analytic solution of the differential entropy for a multivariate Gaussian
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distribution is then expressed as follows:

H(x) =
1

2
log|2πeP | (4.12)

where P is the covariance matrix and | · | represents the matrix determinant. By

taking a derivative with respect to time for Eq. (4.12), the time rate of the differential

entropy can be calculated as follows:

Ḣ(x) =
1

2
trace{P−1Ṗ} (4.13)

where Ṗ is the time rate of change of the covariance matrix, which in the absence

of process noise evolves as:

Ṗ (t) = F (µ(t), t)PT(t) + P (t)FT (µ(t), t) (4.14)

where µ(t) is the time-varying mean of the Gaussian distribution and F (µ(t), t) is

the Jacobian of the dynamics evaluated at the mean µ(t). By substituting Eq. (4.14)

into Eq. (4.13), the time rate of the differential entropy for a linearized dynamical

system is obtained as follows:

Ḣ(x) = trace{F (µ(t), t)} (4.15)

The entropy value for a linearized system, therefore, can be calculated by numer-

ically integrating Eq. (4.15) with an appropriate initial condition, which requires

only the evaluation of the trace of the dynamics Jacobian. On the other hand, a

nonlinear determination of the differential entropy can be evaluated via Eq. (4.12)

by a nonlinear implementation of the integration of the covariance matrix; for ex-

ample, unscented transformation is one of the most popular and effective methods
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Table 4.1: Three-component splitting library

i ωi µi σi
1 0.2252246249 -1.0575154615 0.6715662887
2 0.5495507502 0 0.6715662887
3 0.2252246249 1.0575154615 0.6715662887

for moment evaluation. Any deviation between the linear and nonlinear values of

the entropy then indicates that nonlinearity is impacting the Gaussian component.

As a result, the difference between the linearized and nonlinear predictions of the

entropy can be monitored without the full solution to both the linearized and nonlin-

ear predictors. In other words, when the difference between these values of entropy

exceeds a preassigned threshold, a splitting algorithm is applied to the Gaussian

component during a propagation. A smaller threshold leads to more frequent split-

ting during the propagation.

Once the nonlinear effects have been detected from the first step, a splitting

algorithm is applied to mitigate the effects by replacing a Gaussian component with

several Gaussian components. For the univariate case, each Gaussian component

can be decomposed into 3 components using splitting libraries which are shown in

Table 4.1. The splitting technique for a univariate case with splitting library can be

then extended to the multivariate case by considering the principal directions of the

covariance matrix. The details of the algorithm are explained in Ref. [19]. After the

propagation, the a posteriori mean and covariance matrix, and mixture weights are

obtained using the measurement update of the standard GSF.

When allowing the number of Gaussian components to grow unbounded,
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the AEGIS is an accurate and consistent estimator. In this chapter, we are interested

not only in estimation accuracy, but also in computational efficiency to maintain

custody of a very large number of SOs. The proposed solution to achieve this

balance of performance versus accuracy is introduced next.

4.3.2 Modified Kernel-Based Ensemble Gaussian Mixture Filtering

As a recursive algorithm, the knowledge of the distribution p(xk−1|yk−1) at

the prior time is assumed and approximated by N i.i.d. samples x(i)
k−1 such that

p(xk−1|yk−1) ≈
N∑
i=1

1

N
δ(xk−1 − x(i)

k−1) (4.16)

where y is a measurement vector and δ(·) is the Dirac delta function. Following the

same procedure as the BPF [7], a set of samples at the next time step is obtained

using the Markov transition kernel p(xk|xk−1). The Markov kernel indicates the

dynamics of a system and all estimators use the true dynamic model without process

noise in this chapter.

The next step is to convert the samples into Gaussian mixtures using KDE.

In other words, each particle is considered as a Gaussian component with non-zero

covariance. The approximated GMM of the propagated samples is then expressed

as follows:

p(xk) ≈
N∑
i=1

1

N
n(xk;x

(i)
k|k−1, B) (4.17)

where the bandwidth matrix B is can be calculated by [64]

B = βP̂ (4.18)
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where β is the bandwidth parameter, 0 ≤ β ≤ 1, and P̂ is the sample covariance

matrix calculated from the particles. The Gaussian components’ means are the

particles x(i)
k|k−1 and all GMM weights are equal to 1/N . The covariance matrix of

each Gaussian component is determined by the bandwidth parameter. The larger

bandwidth parameter β, the smaller the probability assigned to the particle and vice

versa.

Finally, we can incorporate the measurement information by updating the

means, covariance matrices, and the weights of all N Gaussian components in the

same way as the measurement update of the GSF. N i.i.d. samples are then drawn

from the GMM approximation of the posterior distribution. These samples are used

as a starting point for the next iteration. The details of the measurement update of

the GSF and the method to draw N i.i.d. samples from a GMM are explained in

Chapter 3.

In the EnGMF algorithm, it is crucial to choose the most appropriate band-

width which determines the performance of the filter. Bandwith selection is an

accuracy vs. computational cost trade off, with the most accurate algorithms nu-

merically solving an optimization problem. In this chapter, we propose to use Sil-

verman’s rule of thumb [94] to estimate the bandwidth (i.e., covariance) matrix BS

as follows:

BS = βSP̂ =

(
4

nx + 2

) 2
nx+4

N−
2

nx+4 P̂ (4.19)

We can, therefore, obtain a near-optimal bandwidth parameter for orbit determi-

nation with sparse observation data without the need of performing any numeri-

cal optimization. If the sampling distribution were Gaussian, Silverman’s rule of

62



thumb would provide the optimal bandwidth parameter based on the mean inte-

grated square error (MISE) as a performance criterion [94]. However, it may result

in conservative (large) estimates when the distribution is not close to Gaussian.

This is a very desirable feature, since inaccuracies results in conservatism rather

than over-confidence and divergence. The flow chart of the modified EnGMF for

orbit determination is described in Figure 4.1.

4.4 Numerical Results

To evaluate the performance of the UKF, AEGIS, and EnGMF, one numer-

ical example is considered. The system dynamic equations are numerically inte-

grated with an embedded Runge-Kutta 8(7) method [22]. Range, range-rate, and

angle measurements are simulated using a ground station located at the North Pole

(latitude = 90◦, longitude = 0◦, altitude = 0 km), which is an ad-hoc method not to

be affected by Earth’s rotation. In this simulation, observation data are short and

sparse, which means that the observation interval time is much longer than the ob-

servation duration. The measurements are available every 10 seconds with a pass

lasting only 2 minutes, i.e., 12 measurements per pass. Each observation consists

of range, range-rate, right ascension, and declination and the measurements are cor-

rupted by additive zero-mean Gaussian white noise with standard deviation of 30 m

and 0.3 m/s for the range and range-rate, respectively, and 100 arc-seconds on the

right ascension and declination observation.

The SO is in a near polar orbit with the following Keplerian orbital elements:

a = 7,078.0068 km, e = 0.01, i = 85◦, and ω = Ω = ν = 0. The simulation epoch is
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Initialize particles

Propagate the particles 
using the dynamics

Calculate the bandwidth matrix of 
the Gaussian components

using Silverman's rule of thumb

Incorporate measurement information 
in the same way as the measurement 

update in the GSF 
(Each Gaussian component is updated 

using the UKF)

Draw N i.i.d. particles 
from the posterior PDF

Measurement

Figure 4.1: The flow chart of the modified EnGMF for orbit determination

4-January-2010 at 00:00:00 UTC. The shape of the SO is assumed to be a sphere

with a cross-sectional area of 1 m2 and a mass of 500 kg. The drag coefficient and

the coefficient of reflectivity of the SO are set to be 2 and 1.5, respectively. The
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initial distribution is defined in Cartesian coordinates as

x0 ∼ n (x0; µ0, P0) (4.20)

where

µ0 =


7007.2175 (km)

0 (km)
0 (km)
0 (km/s)

0.6606 (km/s)
7.5509 (km/s)

 (4.21)

P0 =


1.481e+2 0 0 0 -9.237e-2 -5.333e-2

0 2.885e+1 9.994 -3.232e-2 0 0
0 9.994 5.770 -1.242e-2 0 0
0 -3.232e-2 -1.242e-2 3.687e-5 0 0

-9.237e-2 0 0 0 6.798e-5 3.145e-5
-5.333e-2 0 0 0 3.145e-5 3.166e-5


(4.22)

First, a Monte Carlo analysis is performed with 100 simulations, and each

simulation has one measurement pass every orbital period, 5926 seconds. Note

that, throughout this paper, the starting time of each measurement pass is ran-

domly selected in close proximity of a multiple of the orbital period. The UKF

uses the following tuning parameters: α = 1, β = 2, κ = 3 - d = -3, for its sigma

points spread. For the AEGIS method, the three-component splitting library is used

(AEGIS-3), and the threshold on the allowed deviation of the differential entropy

is set as ∆H = 0.001H0 [19]. The value of H0 is unique for each mixture com-

ponent and based on the covariance at the latter of the last posterior estimate or the

output of a splitting operation. After each measurements pass, the AEGIS algo-

rithm is forced to have only one Gaussian component with the posterior mean and
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covariance matrix. This simple merging algorithm reduces AEGIS computational

burden and adds conservatism that cannot cause divergence (a Gaussian distribu-

tion is the most uncertain given any finite covariance matrix). The EnGMF method

uses 1000 particles. Both the AEGIS and the EnGMF use the UKF measurement

update equations for incorporating measurement information in each GMM com-

ponent. For the UKF and EnGMF, two implementations with Cartesian coordinates

and the equinoctial orbital elements are compared. AEGIS is only implemented in

Cartesian coordinates. An AEGIS implementation in equinoctial coordinates will

result in very few component splits as the splits occur due to nonlinearity in the

propagation, making equinoctial AEGIS very similar to the equinoctial UKF.

These three algorithms are compared based on accuracy, complexity, and

consistency. The accuracy of the filters is represented by their root-mean-square

error (RMSE), which is computed from the true and estimated states at each mea-

surement update time for all Monte Carlo simulations. The filters’ complexity is

represented by their average execution time per filtering run in a C++ implementa-

tion on a 3.2 GHz single-core Ubuntu operating system. The filters’ consistency is

examined using the scaled normalized estimation error squared (SNEES) βR which

is defined as follows:

βRk =
1

Md

M∑
j=1

(x
(j)
k − x̂

(j)
k )T(P

(j)
k )−1(x

(j)
k − x̂

(j)
k ) (4.23)

where M is the number of Monte Carlo simulations, x(j)
k are the true states, x̂(j)

k

are the estimated states, P (j)
k are the filter’s estimated error covariance matrix of the

j-th Monte Carlo run at the time step k. The size of the state space d = 6 is used
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to scale the NEES value [10] such that a consistent filter will result in a SNEES of

one rather than a NEES of d. If the SNEES value is much greater than 1, it means

the estimator is divergent; however, if the value is much smaller than 1, it indicates

the estimator is too conservative. When the estimator is consistent, SNEES should

be nearly one at all times.

The time history of the RMS position errors of the 100 simulations is de-

picted in Figure 4.2 and the position’s RMSE values of each filter are listed in

Table 4.2. Due to their nonlinear nature, AEGIS and EnGMF provide better per-

formance than the UKF at the very first measurement update. However, in this

measurement-rich environment, equinoctial UKF performs near the top in accu-

racy, and it is the most consistent at a small fraction of the computational cost of

nonlinear filters. From the results, it is also shown that the UKF and EnGMF with

equinoctial orbital elements outperforms the corresponding filter with Cartesian co-

ordinates. Nevertheless, the best performance in terms of estimation accuracy is

obtained with the AEGIS, closely followed by equinoctial UKF.

Figure 4.3 shows the SNEES value for 100 Monte Carlo simulations and

Table 4.2: Monte Carlo averaged RMSE, SNEES, and computation time for 100
simulations

Position’s
SNEES

Computation
RMSE (km) time (sec)

UKF (Cartesian) 0.2212 507.4479 3.36
UKF (Equinoctial) 0.1839 1.2425 3.55

AEGIS-3 (Cartesian) 0.1810 1.5058 460.34
EnGMF (Cartesian) 0.3320 0.4986 189.47

EnGMF (Equinoctial) 0.3284 0.4920 190.49
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Figure 4.2: The average RMSE for 100 Monte Carlo simulations, 1 pass per orbit

the average computation time per filtering run for all the filters. In Figure 4.3(a),

the SNEES value of the EnGMF is smaller than 1, which means the EnGMF is

too conservative. For the EnGMF, the covariance matrix calculated by Silverman’s

rule for each Gaussian component is over-smoothed since the density is not truly

Gaussian. The value of the AEGIS filter is gradually increased starting from the

value 1. For the UKF, it works better when using equinoctial orbital elements than

when using Cartesian coordinates. When the UKF uses Cartesian coordinates, it

diverges in two out of 100 simulations, which means the estimate error completely

exceeded the ±3 sigma predicted standard deviations of the posterior covariance

matrix. As is typical for linear estimators without underweighting [116], equinoctial

UKF is overly optimistic in processing the very first batch of measurements, but

due to the measurement-rich scenario, it recovers nicely and achieved very good

consistency.

The time-averaged SNEES value to the total samples of 100 cases is listed

in Table 4.2. The average computation time is also presented in Table 4.2. In terms
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Figure 4.3: The SNEES value and the average computation time per filtering run
for 100 Monte Carlo simulations

of computation time, the best performance is obtained with the UKF by a wide

margin (as expected from a simple linear filter), and the EnGMF reduces the mean

computation time by 58.73% in comparison with the AEGIS. Notice that resetting

the GMM in AEGIS to a single component after each measurement pass greatly

reduces its computational cost when compared to other merging/pruning schemes.

Having established the baseline performance of the estimators with one

measurement pass per orbital period, we focus on the real challenge addressed by

this paper: scarcity of measurements. Additional simulations are performed when

the gap between measurement passes is increased to 2, 3, 4, 5, and 6 orbital periods.

As in the previous case, a Monte Carlo analysis is performed with 100 simulations.

As we are concerned with computational speed, we set a maximum allowable num-

ber of GMM components for the AEGIS to be 1000 to contain its overall run time,

and relaxing this constraint will result in an accurate, but very slow filter.
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Figure 4.4(a) displays the position RMSE of the UKF, AEGIS, and EnGMF

in all the six cases and the Monte Carlo averaged RMS position errors for all cases

are listed in Table 4.3, where n/a indicates the filter has diverged. The time-averaged

SNEES value of each estimator for all the six cases is displayed in Figure 4.4(b).

The AEGIS outperforms the EnGMF with Cartesian coordinates in terms of RMS

accuracy for all the six cases. However, the EnGMF with the equinoctial orbital el-

ements provides better estimation accuracy than the AEGIS when the interval time

between measurement passes is 6 orbital periods. Also note that the RMS posi-

tion error of the AEGIS increases more rapidly with the orbital periods than the

EnGMF as shown in Figure 4.4(a). While the equinoctial UKF provides excellent

performance for the one-orbit interval period, its performance is severely degraded

in terms of accuracy and consistency for the two- and three-orbits case, and is com-

pletely diverging for 4–6 orbital periods in-between measurements pass. This is

another confirmation that linear dynamics is not sufficient to justify the use of a

linear estimator, as nonlinear measurements also need to be addressed.

The choice of using Silverman’s rule in the EnGMF rather than performing

bandwidth optimization is a trade between speed and accuracy/consistency. How-

ever, since the choice results in a conservative filter (estimated covariance larger

than actual one) this trade off is deemed worthy when the goal is to maintain cus-

tody of a very high number of SOs. The EnGMF implementation in the equinoctial

elements provides better and better performance than the EnGMF with Cartesian

coordinates as the interval between measurement passes is increasing. The UKF

with Cartesian coordinates and the equinoctial orbital elements diverges when the
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Figure 4.4: Monte Carlo averaged RMSE and SNEES value for all the six cases

Table 4.3: Monte Carlo averaged RMS position errors for all the six cases

1 2 3 4 5 6
UKF (Cartesian) 0.2212 0.6178 n/a n/a n/a n/a

UKF (Equinoctial) 0.1839 0.3823 1.1294 n/a n/a n/a
AEGIS-3 (Cartesian) 0.1810 0.3027 0.4026 0.5060 0.6445 0.6872
EnGMF (Cartesian) 0.3320 0.4248 0.5144 0.5682 0.7219 0.7559

EnGMF (Equinoctial) 0.3284 0.4086 0.4838 0.5444 0.6566 0.6632

interval time is more than 3 and 4 orbital periods, respectively.

Figure 4.5 shows the computation time of each filter, which is normalized

by the value for the EnGMF with Cartesian coordinates. Compared to the AEGIS,

the EnGMF reduces the computation time by 59.91% on average.

A more in-depth comparison of the performances of the EnGMF and AEGIS

algorithms is shown for the ten-orbits interval periods. Figures 4.6 and 4.7 present

the time history of the RMS position errors, SNEES values, and average compu-

tation time per filtering run of the EnGMF and AEGIS, and each value is also de-

scribed in Table 4.4. In terms of accuracy, the EnGMF with Cartesian coordinates

71



1 2 3 4 5 6

Interval Time [orbital periods]

0

0.5

1

1.5

2

2.5

3

N
o

rm
a

liz
e

d
 c

o
m

p
u

ta
ti
o

n
 t

im
e

Monte Carlo averaged computation time per filtering run

UKF (Cartesian)

UKF (Equinoctial)

AEGIS-3 (Cartesian)

EnGMF (Cartesian)

EnGMF (Equinoctial)

Figure 4.5: Monte Carlo averaged computation time per filtering run

Figure 4.6: The average RMSE for 100 Monte Carlo simulations, the ten-orbits
case

or the equinoctial orbital elements outperforms the AEGIS method over time. This

is because the AEGIS filter diverges in seven out of 100 simulations as shown in

Figure 4.7(a), whereas the EnGMF is conservative. Moreover, Figure 4.7(b) shows

that the EnGMF reduces the computation time by 60.57% compared to the AEGIS.

In Table 4.4, we can see that the EnGMF using the equinoctial orbital elements

obtains the best performance in terms of accuracy and mean computation time.

The performance of the estimators gets worse as the gap between measure-
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Figure 4.7: The SNEES value and the average computation time per filtering run
for 100 Monte Carlo simulations, the ten-orbits case

Table 4.4: Monte Carlo averaged RMSE, SNEES, and computation time for the
ten-orbits case

Position’s
SNEES

Computation
RMSE (km) time (sec)

AEGIS-3 (Cartesian) 2.1578 1.6459e+06 865.17
EnGMF (Cartesian) 0.9930 0.8595 342.46

EnGMF (Equinoctial) 0.6688 0.5504 339.86

ment passes increases until it eventually diverges. To evaluate the performance of

the EnGMF with the equinoctial elements under a sparser measurement data con-

dition, a Monte Carlo analysis is performed with 100 simulations when the gap

between measurement passes is increased to 20 orbital periods. The value of 20

orbital periods is chosen because it causes one divergence out of 100 runs when

1000 particles are used. The analysis is repeated for an EnGMF implementation

with 2000 particles. Figures 4.8 and 4.9 show the time history of the RMS posi-

tion errors, SNEES values, and average computation time of the 100 simulations,
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Figure 4.8: The average RMSE for 100 Monte Carlo simulations, the twenty-orbits
case

and each value is listed in Table 4.5. The result shows that the EnGMF with 2000

particles outperforms the EnGMF with 1000 particles in terms of the RMSE and

SNEES, which is the result of EnGMF with 1000 particles diverging in one out of

100 Monte Carlo simulations as shown in Figure 4.9(a). The EnGMF with 2000

particles, however, requires almost twice the computation time of the EnGMF with

1000 particles. Thus, the choice of the number of particles in the EnGMF is a

trade between speed and accuracy/consistency. In other words, even if only a few

observation data are available, the EnGMF with a large number of particles can

provide accurate and consistent performance tracking SOs in LEO. In future work,

we will investigate how to adaptively select an appropriate number of particles for

very sparse measurement scenarios.
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Figure 4.9: The SNEES value and the average computation time per filtering run
for 100 Monte Carlo Simulations, the twenty-orbits case

Table 4.5: Monte Carlo averaged RMSE, SNEES, and computation time for the
twenty-orbits case

Position’s
SNEES

Computation
RMSE (km) time (sec)

EnGMF-1000 (Equinoctial) 1.1135 989.5970 676.75
EnGMF-2000 (Equinoctial) 0.9372 0.6234 1374.26

4.5 Chapter’s Summary

This chapter studies a software-only solution to the orbit determination prob-

lem with sparse observation data. The motivation behind the study is the ability to

maintain custody of a very large number of low earth orbit objects. As such, it is

of outmost importance in this study to strike a balance between estimation accura-

cy/consistency and computational burden of the methodology employed. A linear

filter implementation (unscented Kalman filter) is shown to be inadequate for very

scarce measurement scenarios (measurement passes every three orbits or more) re-
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gardless of the choice of coordinates (Cartesian or equinoctial orbital elements). A

state-of-the-art Gaussian sum filter named AEGIS is shown to perform well at a

very high computational cost, but to fail when the number of Gaussian components

is artificially capped in order to contain its total execution time.

A newly proposed approach is to modify the kernel-based ensemble Gaus-

sian mixture filter. Each propagated sample of the prior distribution is treated as

a Gaussian component with a non-zero covariance matrix. The covariance matrix

of a Gaussian component is calculated with Silverman’s rule of thumb to reduce

the computational cost of numerically optimizing a bandwidth parameter. The rule

produces the optimal bandwidth when the samples are drawn from a Gaussian dis-

tribution, and results in a conservative estimate for non-Gaussian distributions. Nu-

merical simulations show that the modified algorithm is more accurate and/or faster

than the other approaches for sparse measurement scenarios. The conservatism in-

herent from using Silverman’s rule cannot cause filter divergence but can result in

slight loss of accuracy. This slight loss of accuracy is deemed an acceptable trade

off to computational efficiency for the ultimate purpose of this work: tracking a

very large number of space objects. While this conservatism can potentially trigger

false collision alarms, an efficient strategy to maintaining a large catalog is using the

proposed lower complexity and conservative estimates for the population at-large

and to only focus high precision and computationally expensive orbit determination

solutions for the very small subset of objects that are deemed at risk for collision.
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Chapter 5

Expectation-Maximization Clustering in Particle
Gaussian Mixture Filters for Light-Curve Data

Processing
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5.1 Motivation and Comparison with State of the Art

The algorithms proposed in Chapter 3 and Chapter 4 create a GMM approx-

imation of the distribution by centering a Gaussian component at each and every

particle of a PF. At the cost of more computations, the performance of PF/GMM

hybrid algorithms can be further improved with a more accurate GMM represen-

tation of the prior distribution by choosing parameters of the GMM that optimize

some appropriately chosen performance index. This chapter introduces a very ac-

curate filtering algorithm that employs expectation-maximization (EM) clustering

to solve an open and very challenging problem in the context of simultaneous space

object (SO) tracking and characterization.

Space situational awareness (SSA) refers to knowledge of our near-space

environment, including the tracking and identification of SOs orbiting Earth. This

task encounters many challenges and one of them is the limited number of sensors

available to track and identify an ever growing number of SOs. To extract as much

information as possible from the sparse data, sophisticated techniques need to be

used to estimate and predict the states of SOs. Precise models of non-gravitational

forces acting on SOs are needed for accurate orbit prediction and propagation. Solar

Radiation Pressure (SRP) is the main non-gravitational force acting on SOs in or

This chapter is based on: Sehyun Yun and Renato Zanetti, ”Nonlinear Filtering of Light-Curve
Data,” Advances in Space Research, 66(7), pp.1672-1688, 2020. The primary content in this work
was contributed by the first author.
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around Geosynchronous Earth Orbit (GEO) and it can be modeled using the shape

and reflectivity properties of the object [50, 68].

Light curve data, which is an object’s observed brightness, have been used

to analyze attitude observability and to estimate the shape and attitude of SOs

[24, 36, 61, 63, 110]. Since light curve observations are sensitive to the object’s

surface parameters, these can also be estimated from light curve data [57, 109].

Furthermore, it is shown that the space object mass as well as the position, ve-

locity, angle, angular velocity and surface parameters can be estimated by fusing

two data types: the angles (line-of-sight) and apparent brightness magnitude of

an object [59, 60, 62]. Estimation of these many parameters with relatively little

observations, however, has been shown to cause divergence in an UKF when too

many states with large uncertainty are estimated simultaneously [108]. Ref. [108]

attributes the divergence to information dilution [28].

According to the information dilution theorem (IDT), when additional bi-

ases are added to an estimation problem, it is possible that the uncertainties of the

original states in the model increase [86]. Moreover, filter divergence may occur

because the limited information is not being used in the most proper way [108]. To

resolve the information dilution problem in the context of SO tracking, multiple-

model adaptive estimation (MMAE) and unscented Schmidt-Kalman filter were im-

plemented to determine which states should be estimated [21, 61, 65, 87]. Ref. [21]

quantifies system observability with the information matrix of an estimator and uses

the system’s observability to determine which states should be estimated. Ref. [65]

use an unscented Schmidt-Kalman filter algorithm based on the physical relation-
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ship between SRP and observed albedo-area to find low observable states and to

consider their contribution to the uncertainty of the system without estimating them.

The Schmidt-Kalman filter [91] only estimates a subset of the states, while “con-

siders” the effect of other statess without attempting to infer their value; with this

approach the effective number of estimated states is reduced and the effects of infor-

mation dilution are mitigated. Ref. [87] also employ an unscented Schmidt-Kalman

filter algorithm and use the Fisher information matrix (FIM) to measure of the ob-

servability of the system; when the FIM becomes close to singular, some states

are considered rather than estimated. Considering states in a recursive estimator

mitigates information dilution, and to date no study exists that conclusively estab-

lishes whether concurrently estimating a dynamic attitude state, angular velocity,

and surface parameters from light curve data using a recursive estimator is feasible

or if, conversely, information dilution and/or the lack of observability prevent such

an estimator to improve knowledge of the system or even avoid divergence. In this

chapter, we demonstrate that the principal driver to divergence is the severe non-

linearity of the problem and that it is possible to design a recursive estimator able

to improve knowledge of both the attitude and the surface parameters of SOs. The

detrimental effects of nonlinearities are exacerbated by information dilution mak-

ing the UKF design in [108] diverge, but information dilution alone is not cause for

divergence; as shown by the algorithms proposed here. In this chapter, the system

is studied using three different recursive estimation techniques that successfully es-

timate all states simultaneously without resorting to only consider the uncertainty

of some of them. The three algorithms used are: a newly proposed modification
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of PFGMM [84], the truncated interval unscented Kalman filter (TIUKF) [99], and

the truncated extended Kalman filter (TEKF) [96].

The first estimation technique used here is based on sequential Monte Carlo

methods. Previous works using sequential Monte Carlo methods include [58],

where attitude and angular velocity of an SO are estimated from light curve data

using a RPF with the generalized Rodrigues parameters used for local attitude error

representation. More recently, a marginalized particle filter is used to reduce com-

putational cost of a conventional PF for attitude and angular velocity estimation

from light curve data [17, 18]. The use of a PF in this type of problems is partic-

ularly appealing for two reasons: i. it provides a nonlinear approximation of the

optimal nonlinear estimator, and ii. it handles much larger initial uncertainties than

linear estimators (such as the EKF or the UKF); in fact, Ref. [17] assumes an uni-

form initial attitude uncertainty of almost 360 degrees. Refs. [17] and [18] are very

successful in estimating attitude, but do not attempt to concurrently estimate both

attitude and surface parameters. It is the addition of surface parameters that causes

information dilution and divergence in [108]. This chapter also uses a sequential

Monte Carlo filter to estimate both the attitude and rate of the vehicle, but the fil-

ter’s estimated states include surface parameters and translational states. Surface

parameters are successfully estimated in [109] and [57]; the former uses MMAE,

essentially choosing between a finite set of possible values for the surface param-

eters, while the latter is perhaps the closest existing results to this work. The key

differences between the two approaches is that Ref. [57] assumes a known (con-

stant) angular velocity, hence the attitude estimation problem can be fully solved
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by determining the attitude at a single time; therefore all estimated quantities are

constant/static, and a batch approach for Bayesian inverse problems is used by the

authors. This work, on the other hand, does not assume a priori knowledge of the

angular velocity, which is instead estimated together with the attitude and surface

parameters in a recursive dynamic filter.

The proposed sequential Monte Carlo method is a modification of the work

by [84] but a different clustering algorithm (expectation-maximization, EM) is used

to form the GMM density approximation. This modification overcomes issues en-

countered when applying to this problem two existing particle/GMM hybrid algo-

rithms, [112] and [84]. Ref. [112] introduces a new sequential Monte Carlo algo-

rithm which treats each particle of the pre-propagation distribution as a Gaussian

component with a zero or small covariance matrix; the GSF algorithm is used to

calculate the posterior distribution. Ref. [84] introduces the PGMF and employs an

ensemble of randomly sampled states for the propagation of the conditional state

probability density. The propagated ensemble for representing the propagated PDF

is clustered using K-means algorithm. While K-means is a simple approach to clus-

tering, it does not produce adequate results for the problem at hand. The K-means

algorithm performs a hard assignment of data points to clusters, which means each

data point is associated uniquely with one cluster, hence only the points in the same

cluster are used to update each mean. Additionally, the K-means algorithm does not

account for the covariance. The K-means algorithm can be interpreted as a special

case of GMMs clustering in which all mixture weights are equal and the covariance

matrices of the mixture components are given by ξI , where ξ is a variance parame-
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ter and I is the identity matrix. The EM algorithm for GMMs used in this chapter

as it performs a soft assignment based on the posterior probabilities, thus obtaining

the proper covariance of the components. In addition to this new nonlinear filter,

the modified UKF and EKF are also shown to successfully mitigate the filter diver-

gence issues encountered in the literature while reducing the overall computational

complexity of the PFGM with EM Clustering.

The remainder of this chapter is organized as follows. First, the dynamics

and measurement models are described and the filter states are presented. Then, the

various nonlinear estimation techniques are introduced in Section 5.3. In Section

5.4, simulation results are shown using five filtering algorithms followed by some

final remarks of the methodology and results.

5.2 System Models

In this chapter, the inertial position and velocity of SOs are denoted by rI =

[x y z]T and vI = [vx vy vz]
T, respectively. The quaternion, which is based on the

Euler axis of rotationn and rotation angle θ, is defined as q =
[
sin(θ/2)nT cos(θ/2)

]T
=
[
%T q

]T and the angular velocity of the SO with respect to the inertial frame, ex-

pressed in body frame, is denoted by ωBB/I = [ωx ωy ωz]
T.

5.2.1 Dynamics Model

In this chapter, the orbital dynamics of an SO in ECI coordinates are con-

sidered as follows:

r̈I = − µ
r3
rI + aIJ2 + aIsrp (5.1)
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where µ is the Earth’s gravitational parameter, r is the Euclidean norm of rI , aIJ2 is

the gravitational perturbation due to non-spherical nature of Earth, and aIsrp is the

acceleration perturbation due to SRP.

The J2 perturbation acceleration equation computes the three component

forces in the ECI frame.

ẍ = F

(
1− 5

(z
r

)2) x

r
(5.2)

ÿ = F

(
1− 5

(z
r

)2) y

r
(5.3)

z̈ = F

(
3− 5

(z
r

)2) z

r
(5.4)

where

F = −3

2
J2

( µ
r2

)2(RE

r

)2

(5.5)

where J2 is the second zonal harmonic coefficient and RE is the Earth’s equatorial

radius. Higher order spherical harmonics are neglected without loss of generality.

At geosynchrounous distances, the J2 term is small and higher order spherical har-

monics are not needed to demonstrate the efficacy of the proposed methodologies.

SRP represents the primary non-gravitational force acting on SOs in GEO

and the acceleration due to SRP is modeled using the shape of the body. In this

chapter, it is assumed that the shape model consists of a finite number of flat facets;

the ith facet is defined by a set of three orthonormal basis vectors uBu , uBv , and uBn

expressed in the body coordinates. The unit vector uBn points outward normal of

the facet, whereas the vectors uBu and uBv lie in the plane of the facet. The geometry

of the modeled reflection is shown in Figure 5.1. The acceleration perturbation due
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Figure 5.1: Geometry of reflection

to SRP, assuming a Lambertian reflectance model, is then given by [108]:

aIsrp =

Nfacets∑
i=1

aIsrp(i) (5.6)

aIsrp(i) =−
SFA(i)

(
uIn(i) · uIsun

)
mc

·(
(1− sF0)u

I
sun +

(
2

3
dρ+ 2sF0

(
uIn(i) · uIsun

))
uIn(i)

) (5.7)

where Nfacets is the number of facets, SF is the solar flux, m is the mass of the

SO, c is the speed of light, and A(i) is the area of the ith facet. The unit vector

uIn(i) is the normal vector pointing outward along the ith surface and uIsun is the

unit vector pointing from the SO to the Sun. Scalars s and d are the fraction of the

specular bidirectional reflectance Rs and the diffuse bidirectional reflectance Rd,

respectively, where s + d = 1. F0 and ρ are the specular and diffuse reflectance of

the facet i at normal incidence, respectively.

As commonly done in aerospace engineering applications [115], the direc-

tion cosine matrix is used as the attitude matrix representation in this study. The
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relationship between the vector vB in the body frame and the vector vI in the iner-

tial frame is described by the attitude matrix A(q) such as

vB = A(q)vI (5.8)

and the attitude matrix can be parameterized in terms of the quaternion as follows:

A(q) = I3×3 − 2q[%×] + 2[%×]2 (5.9)

where

[a×] =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (5.10)

is the skew-symmetric matrix representation of the cross product for a vector a.

The quaternion dynamic equation is given by

q̇ =
1

2
Ω · q (5.11)

where

Ω =


0 ωz −ωy ωx
−ωz 0 ωx ωy
ωy −ωx 0 ωz
−ωx −ωy −ωz 0

 (5.12)

is the skew-symmetric form of the body rotation about the inertial frame. The

angular velocity dynamic equation is expressed as follows:

ω̇BB/I = J−1SO
(
TB
srp −

[
ωBB/I×

]
JSOω

B
B/I

)
(5.13)

where JSO is the inertia matrix of the SO and TB
srp is the total torque acting on the

SO due to SRP in the body frame. The force due to SRP can be assumed to act on

the centroid of each surface. Then, the total torque is calculated by

TB
srp = m

Nfacets∑
i=1

[
lB(i)×

]
A(q)aIsrp(i) (5.14)
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where lB(i) is the position vector from the center of the mass of the SO to the

geometric center of the ith facet in body frame.

5.2.2 Measurement Model

Angle data in the form of azimuth (az) and elevation (el) are measures used

to estimate the states of an SO. The angle observation equations are expressed as

follows:

az = tan−1
(
ρE
ρN

)
(5.15)

el = sin−1
(

ρU

‖dI‖

)
(5.16)

whereρEρN
ρU

 =

1 0 0
0 cos(π

2
− λ) sin(π

2
− λ)

0 − sin(π
2
− λ) cos(π

2
− λ)

 cos(π
2

+ θ) sin(π
2

+ θ) 0
− sin(π

2
+ θ) cos(π

2
+ θ) 0

0 0 1

dI
(5.17)

where dI is the position vector from an observer to the SO, ‖·‖means the Euclidean

norm, θ and λ are the sidereal time and geodetic latitude of the observer, respec-

tively, and [ρE ρN ρU ]T is the position vector converted from the inertial to the local

topocentric East-North-Up coordinates. In this study, light travel time delay is not

considered.

Along with the azimuth and elevation, the light curves, which are the time-

varying apparent brightness measurements of the SO, are also used. The apparent

brightness magnitude measured by the observer is computed by

mapp = −26.7− 2.5 log10

∣∣∣∣∣∣
Nfacets∑
i=1

fr(i)A(i)
(
uIn(i) · uIsun

) (
uIn(i) · uIobs

)
‖dI‖2

∣∣∣∣∣∣ (5.18)
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where -26.7 is the apparent magnitude of the Sun, uIobs is the unit vector pointing

from the SO to the observer, and fr(i) is the bidirectional reflectance distribution

function (BRDF) for the ith facet. The BRDF models light distribution of a surface

due to incident light and it is a function of two directions, one toward the light

source and one toward the observer [9, 61]. The BRDF can be decomposed into a

specular component and a diffuse component as follows:

fr(i) = sRs(i) + dRd(i) (5.19)

The specular reflectance is mirror-like and the diffuse reflectance is Lambertian

which means that light is equally reflected in all directions. These bidirectional

reflectances are calculated differently for the various models. In this chapter, we

use a modified version of the Phong model with a simple form of a non-Lambertian

diffuse reflectance [9]. Under the flat facet assumption, the specular bidirectional

reflectance is given by

Rs(i) =

√
(nu(i) + 1) (nv(i) + 1)

8π
·(

uIn(i) · uIh
)nu(i)(uI

u(i)·uI
h)

2
+nv(i)(uI

v(i)·uI
h)

2

uIn(i) · uIsun + uIn(i) · uIobs − (uIn(i) · uIsun) (uIn(i) · uIobs)
F (i)

(5.20)

where nu(i) and nv(i) are the anisotropic reflectance properties of the ith surface

along the uBu (i) and uBv (i) directions, respectively. Without loss of functionality, in

this study, they are assumed to be set equal to each other for the sake of simplicity

(nu(i) = nv(i) = n(i)). Then, Eq. (5.20) is simplified as follows:

Rs(i) =
(n(i) + 1)

8π
· (

uIn(i) · uIh
)n(i)

uIn(i) · uIsun + uIn(i) · uIobs − (uIn(i) · uIsun) (uIn(i) · uIobs)
F (i)

(5.21)
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where uIh is the normalized half vector which bisects the angle between uIsun and

uIobs:

uIh =
uIsun + uIobs
‖uIsun + uIobs‖

(5.22)

and the Fresnel reflectance F (i) is approximated as

F (i) = F0(i) +

(
1

s
− F0(i)

)(
uIsun · uIh

)
(5.23)

The diffuse bidirectional reflectance is calculated as follows:

Rd(i) =
28ρ

23π
(1− sF0) ·[

1−
(

1− u
I
n(i) · uIsun

2

)5
][

1−
(

1− u
I
n(i) · uIobs

2

)5
] (5.24)

The apparent magnitude is measured differently mainly depending on the SO atti-

tude and it has the highest value when the surface normal vector uIn and the half

vector uIh are in the same direction. The various values of apparent magnitude

depending on the SO attitude are analyzed in [36].

5.2.3 Filter States

In this chapter, it is assumed that the shape of the SO is a cube and each

facet of it has the same BRDF surface parameters. The area and mass of the SO

are assumed to be known. In addition, the specular reflectance F0 and diffuse re-

flectance ρ at normal incidence can be set to be equal to each other because the

difference between specular and diffuse reflectance can be expressed by specular s

and diffuse fraction parameter d. Thus, the three unique surface parameters to be

estimated are n. ρ, d, and they obey the following constraints:

n < 0, 0 ≤ ρ ≤ 1, 0 ≤ d ≤ 1, s+ d = 1
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Therefore, the state vector utilized is:

x =
[
qT
(
ωBB/I

)T (
rI
)T (

vI
)T

n ρ d
]T

(5.25)

5.3 Nonlinear Estimation Techniques for Highly Nonlinear Sys-
tems

This section presents the three different estimation algorithms used to ana-

lyze the problem at hand: PFGMM, TIUKF, and TEKF.

5.3.1 Particle Filter with Gaussian Mixture Models

The PF with an EM clustering algorithm for GMMs is proposed in this sec-

tion. A recursive algorithm is used, i.e., knowledge of the distribution p(xk−1|yk−1)

at the prior time is assumed and approximated by N i.i.d. samples x(i)
k−1 such that

p(xk−1|yk−1) ≈
N∑
i=1

1

N
δ(xk−1 − x(i)

k−1) (5.26)

where k is an integer that indicates the discrete time step, y is a measurement vector,

and δ(·) is the Dirac delta function. As in the BPF [8], a set of samples at the next

time step is generated using the Markov transition kernel p(xk|xk−1). Throughout

this research, SRP and J2 are the only perturbations included and additional process

noise is neglected. This is a particularly challenging assumption, as particle filters

typically rely on process noise to overcome impoverishment.

The next step is to cluster the data into Gaussian mixtures using an EM

clustering algorithm. The EM algorithm for GMM approximates the PDF of xk by
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combining several Gaussian components having different means, covariance matri-

ces, and weights. With the i.i.d. data set, the likelihood function for the GMM is

expressed by

p(xk|π,µ,Σ) =
N∏
i=1

K∑
j=1

πjn(x
(i)
k |µj,Σj) (5.27)

where K is a preassigned number of clusters, n(x|µ,Σ) represents the Gaussian

PDF with mean µ and covariance Σ; and µj , Σj , and πj are the means, covariance

matrices, and weights of the jth Gaussian component. The PDF’s normalization

and positivity properties lead to the following constraints on the weights:

πj ≥ 0, ∀j
K∑
j=1

πj = 1 (5.28)

The goal of the EM clustering algorithm is to maximize the likelihood function with

respect to the clustering parameters which are means and covariance matrices of the

components, as well as the weights. The algorithm is summarized as follows:

1. Initialize the means µj , covariance matrices Σj and weights πj , and

evaluate the initial value of the log likelihood.

ln p(xk|π, µ,Σ) =
N∑
i=1

ln

[
K∑
j=1

πjn(x
(i)
k |µj,Σj)

]
(5.29)

2. (E step) Evaluate the responsibilities using the current clustering param-

eter values.

γ(z
(i)
j ) = p(z

(i)
j = 1|x(i)

k ) =
πjn(x

(i)
k |µj,Σj)∑K

m πmn(x
(i)
k |µm,Σm)

(5.30)

where γ(z
(i)
j ) is the responsibility of a sample i with respect to a jth Gaussian

distribution.
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3. (M step) Estimate the new clustering parameters using the current re-

sponsibilities to maximize the likelihood. (The following equations are derived in

[13])

µj =

∑N
i=1 γ(z

(i)
j )x

(i)
k∑N

i=1 γ(z
(i)
j )

(5.31)

Σj =

∑N
i=1 γ(z

(i)
j )(x

(i)
k − µj)(x

(i)
k − µj)T∑N

i=1 γ(z
(i)
j )

(5.32)

πj =
1

N

N∑
i=1

γ(z
(i)
j ) (5.33)

4. Evaluate the value of the log likelihood and check for convergence of it.

If the convergence criterion is not satisfied, replace the old clustering parameters

with the new ones and return to step 2.

In this chapter, all components of the GMM are taken with the same co-

variance matrix. This assumption prevents the GMMs from being too overlapped,

while not enforcing hard clustering as in K-means.

Finally, we can incorporate the measurement information by updating the

means and covariance matrices of all K components using a Kalman measurement

update. The mixture weights need to be updated as well using the components’

likelihood functions. We then drawN i.i.d. samples from the posterior distribution;

from these samples, we construct a Bayesian estimate and use them as a starting

point for the next iteration. The details of the measurement update and the method

to draw N i.i.d. samples from a GMM are explained in Chapter 3.

Two approaches to enforce the surface parameters constraints are evaluated.
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The first approach is to modify them to unconstrained proxy values. For this study,

the same conversion equation used in [108] is applied to convert the surface param-

eters to the corresponding proxy value and vice versa:

p1 = ln(n), n = exp(p1) (5.34)

p2 =
1

2
ln
(

ρ

1− ρ

)
, ρ =

1

2
(tanh(p2) + 1) (5.35)

p3 =
1

2
ln
(

d

1− d

)
, d =

1

2
(tanh(p3) + 1) (5.36)

Alternatively, rather than transforming the surface parameters, we can modify the

filter to exploit the additional information on the constraints and improve the perfor-

mance of the filter. In this study, we use the modified rejection-sampling approach

which enforces the constraints by simply discarding the particles violating them in

the prediction step. Although the number of total samples will be reduced, it is

shown that the algorithm maintains the generic properties of the PF [75].

The filter’s density, under the assumption of a perfect clustering scheme,

converges in probability to the true filter density [84]. The other two approaches

studied are based on the constrained UKF and EKF with the PDF truncation ap-

proach, which are computationally cheaper and will be presented in the following

two subsections.

5.3.2 Truncated Interval Unscented Kalman Filter

The UKF is a linear estimator for nonlinear systems which employs statis-

tical linearization of nonlinear functions through a set of sigma points [54]. The

most common schemes to calculate sigma points effectively employs the Gaussian
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approximation [45]. The truncated interval unscented Kalman filter (TIUKF) is

used in this study to include the inequality constraints on the surface parameters.

The TIUKF is composed of two parts: the interval constrained approach which en-

forces the sigma points interval constraints and the PDF truncation approach which

truncates the PDF at the constraint edges [95, 99, 104].

The generic nonlinear dynamics is given by

xk+1 = fk(xk) + νk (5.37)

where k is the time step, xk is an nx× 1 vector, fk is some nonlinear function, and

the process noise νk is zero-mean white noise, albeit in this application it will be

taken as zero. The measurement is

yk = hk(xk) + ηk (5.38)

where yk is a measurement vector, hk is some non-linear function, and ηk is the

measurement noise consisting of a zero-mean, white sequence with covariance ma-

trixRk, independent from the initial distribution of x0. In addition, assume that the

state vector satisfies the interval constraint as follows:

bk ≤ xk ≤ ck (5.39)

where bk ∈ Rnx and ck ∈ Rnx are known vectors. If the state vector xi,k, where

i = 1, · · · , nx, is one-sided, we set bi,k = −∞ or ci,k =∞.

Given an nx × nx error covariance matrix P xx
k|k, we generate the 2nx + 1

sigma points Xk|k holding

bk ≤ Xj,k|k ≤ ck, j = 0, · · · , 2nx. (5.40)
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To satisfy the inequality constraints, the sigma points are chosen as follows:

Xk|k = x̂k|k11×(2nx+1) + [0nx×1, θ1,kcol1 [Sk] , · · · , θ2nx,kcol2nx [Sk]] (5.41)

where x̂k|k is the a posteriori state estimate which is assumed to satisfy the interval

constraints at time instant k, 11×(2nx+1) is an indicator function,

Sk =
[(
P xx
k|k
)1/2 − (P xx

k|k
)1/2]

, (5.42)

and

θj,k = min
(√

nx + λU , Θ1, Θ2

)
, for j = 1, · · · , 2nx (5.43)

where, for i = 1, · · · , nx,

Θ1 = min
j:S(i,j),k>0

(
∞,

ci,k − x̂i,k|k
S(i,j),k

)
, Θ2 = min

j:S(i,j),k<0

(
∞,

bi,k − x̂i,k|k
S(i,j),k

)
,

(5.44)

and λU = α2 (nx + κ)−nx is a scaling parameter [107]. The constant α determines

the spread of the sigma points around x̂k|k and it is usually set to a small positive

number (10−4 ≤ α ≤ 1). κ is a secondary scaling parameter which is usually set to

3 − nx. Based on the above sigma points, the associated weights are computed as

follows:

Wm
0 = ek, W c

0 = ek +
(
1− α2 + β

)
(5.45)

Wm
j = W c

j = dkθj,k + ek, for j = 1, · · · , 2nx (5.46)

where the constant β is used to include prior knowledge of the distribution of x,
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and

dk =
2λU − 1

2 (nx + λU)
(∑nx

j=1 θj,k − (2nx + 1)
√
nx + λU

) (5.47)

ek =
1

2 (nx + λU)
− 2λU − 1

2
√
nx + λU

(∑nx

j=1 θj,k − (2nx + 1)
√
nx + λU

) (5.48)

The derivation of the weights equations is described in [104].

Figure 5.2 illustrates how the sigma points of the TIUKF are chosen com-

pared to the sigma points of the conventional UKF in two dimensional system.

When the scaling parameters are α = 1, β = 2, and κ = 1, and the interval con-

strains are bk = [3 2]T and ck = [8 8]T, the mean and covariance matrix of the

TIUKF are obtained as follows:

x̂UKF =

[
4
4

]
⇒ x̂TIUKF =

[
4.3717
4.2587

]
(5.49)

P̂ xx
UKF =

[
3 0
0 3

]
⇒ P̂ xx

TIUKF =

[
1.7122 0.0962
0.0962 1.8456

]
(5.50)

With the above sigma points, the time update equations are the same as the

conventional UKF:

Xj,k+1|k = fk(Xj,k|k), j = 0, · · · , 2nx (5.51)

x̂k+1|k =
2nx∑
j=0

Wm
j Xj,k+1|k (5.52)

P xx
k+1|k =

2nx∑
j=0

W c
j

[
Xj,k+1|k − x̂k+1|k

] [
Xj,k+1|k − x̂k+1|k

]T (5.53)

where x̂k+1|k is the a priori state estimate and P xx
k+1|k is the a priori state estimation

error covariance. With the propagated estimates x̂k+1|k and P xx
k+1|k, a new set of
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(b) Sigma points and weights of TIUKF

Figure 5.2: Comparison of the sigma points and weights in UKF and TIUKF

sigma points Xk+1|k of the TIUKF which satisfy the interval constraints and the

corresponding weights are recalculated. Then, the measurement update equations

are expressed as follows:

Yj,k+1|k = hk+1(Xj,k+1|k), j = 0, · · · , 2nx (5.54)

ŷk+1 =
2nx∑
j=0

Wm
j Yj,k+1|k (5.55)

P yy
k+1|k =

2nx∑
j=0

W c
j

[
Yj,k+1|k − ŷk+1

] [
Yj,k+1|k − ŷk+1

]T
+Rk (5.56)

P xy
k+1|k =

2nx∑
j=0

W c
j

[
Xj,k+1|k − x̂k+1|k

] [
Yj,k+1|k − ŷk+1

]T (5.57)

x̂k+1|k+1 = x̂k+1|k + P xy
k+1|k

(
P yy
k+1|k

)−1 (
yk+1 − ŷk+1

)
(5.58)

P xx
k+1|k+1 = P xx

k+1|k − P
xy
k+1|k

(
P yy
k+1|k

)−1 (
P xy
k+1|k

)T
(5.59)
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where P xx
k+1|k+1 is the a posteriori state estimation error covariance, P yy

k+1|k is the

measurement residual covariance, and P xy
k+1|k is the cross covariance.

We then perform the PDF truncation process. The constrained state esti-

mate is the mean of the truncated Gaussian PDF at the constraint edges. The state

estimate is normalized in a way that its components are statistically independent of

each other to reduce computational effort to determine the truncated PDF. The part

of the Gaussian PDF which is outside of the constraints then is removed. After all

the constraints are sequentially applied to the corresponding component, we then

revert the normalization process to obtain the constrained state estimate. The details

of the algorithm are explained in [95] and [96].

5.3.3 Truncated Extended Kalman Filter

The EKF is a nonlinear approximation of the Kalman filter that can be ap-

plied to nonlinear systems using the same Kalman filtering framework. Given the

system model, Eq. (5.37) and Eq. (5.38), the time update equations are described as

follows:

x̂k+1|k = fk(x̂k|k) (5.60)

P xx
k+1|k = FkP

xx
k|kF

T
k (5.61)

Fk =
∂fk(x)

∂x

∣∣∣∣
x=x̂k|k

(5.62)
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where Fk is the Jacobian of the dynamics evaluated at the posterior mean x̂k|k. The

measurement update equations are:

x̂k+1|k+1 = x̂k+1|k +Kk+1

(
yk+1 − hk+1(x̂k+1|k)

)
(5.63)

P xx
k+1|k+1 = P xx

k+1|k −Kk+1Wk+1K
T
k+1 (5.64)

Kk+1 = P xx
k+1|kH

T
k+1W

−1
k+1 (5.65)

Wk+1 = Hk+1P
xx
k+1|kH

T
k+1 +Rk+1 (5.66)

Hk+1 =
∂hk+1(x)

∂x

∣∣∣∣
x=x̂k+1|k

(5.67)

where Hk+1 is the Jacobian of the measurement evaluated at the prior mean x̂k+1|k,

Kk+1 is the Kalman gain, and Wk+1 is the measurement residual covariance. The

PDF truncation step which is explained in the previous subsection is then applied

to the truncated extended Kalman filter (TEKF) [96].

Despite of the additional information on the constraints, the severe nonlin-

earities of the system can lead to divergence of the TEKF. For example, the approx-

imation error caused by truncating the nonlinear functions to the first-order (e.g.

Eq. (5.62) and Eq. (5.67)) can be significant. It is well-known that when measure-

ment noise is small while the a priori uncertainty of the state estimate is relatively

large, nonlinear effects can become very significant [67, 116].

To analyze nonlinear effects on the measurement update in detail, a Gaus-

sian second-order filter is considered which includes the second-order terms in the

Taylor series expansion [67]. The Kalman gain and measurement residual covari-
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ance in the Gaussian second-order filter are expressed as follows:

K2nd
k+1 = P xx

k+1|kH
T
k+1

(
W 2nd
k+1

)−1
(5.68)

W 2nd
k+1 = Hk+1P

xx
k+1|kH

T
k+1 +Rk+1 +Bk+1 (5.69)

where matrix Bk+1 is the contribution of the second-order effects and the ijth com-

ponent of Bk+1, under the Gaussian approximation, is given by

Bij,k+1 =
1

2
trace

(
∂2hi,k+1(x)

∂x∂xT

∣∣∣∣
x=x̂k+1|k

P xx
k+1|k

∂2hj,k+1(x)

∂x∂xT

∣∣∣∣
x=x̂k+1|k

P xx
k+1|k

)
(5.70)

where hi,k+1 is the i-th component of hk+1(xk+1). Comparing the measurement

residual covariance for the EKF in Eq. (5.66) with the measurement residual covari-

ance for the Gaussian second-order filter in Eq. (5.69) and observed the Gaussian

second-order filter gain is smaller than the standard EKF gain when the contribu-

tion of the second-order term is significant. Consequently, the state estimation error

covariance (Eq. (5.64)) of the standard EKF decreases more quickly than the ac-

tual state error covariance when the contribution of the second-order term is not

negligible.

The Gaussian second-order filter is rarely used in practice due to its reliance

on the Gaussian approximation. An alternative method to compensate for the high-

order effects that allows for tuning are implemented in this chapter: Lear’s under-

weighting method [116]. Lear’s approach to underweighting the measurement is

to add a percentage of the a priori estimation error covariance to the measurement

residual covariance:

WU.W
k+1 = Hk+1P

xx
k+1|kH

T
k+1 +Rk+1 + βUWHk+1P

xx
k+1|kH

T
k+1 (5.71)
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where βUW is a tuning parameter. The additional term, βUWHk+1P
xx
k+1|kH

T
k+1, in

the measurement residual covariance decreases the Kalman gain, thus reducing the

state estimate and a posteriori state estimation error covariance update.

Another approach to make the filter more robust in the presence of high

uncertainty and nonlinearities is the consider Kalman filter [111]. The effects of

highly nonlinear states of the system can be “considered” only, meaning the states

are not updated in the filter. In other words, we only update the state estimates

which are not highly nonlinear and the corresponding error covariance based on

the uncertainty of the highly nonlinear states. The consider Kalman filter algorithm

and derivation are explained in [111]. In this chapter, both methods are applied to

the TEKF only when the contribution of the a priori estimated state uncertainty to

the residual covariance is much larger than the measurement noise covariance, i.e.

Hk+1P
xx
k+1|kH

T
k+1 � Rk+1, which is a strong indicator that nonlinear effects might

become important [116].

5.4 Numerical Results

For the state estimation problem described in Section 5.2, we adopted the

scenario used in [108] to investigate the divergence and accuracy achievable by

recursive estimators, i.e., non-batch. Ref. [108] suggests divergence is due to infor-

mation dilution, as the available data are scarce and not used in the most appropriate

way. We concur with this analysis in that information dilution coupled with severe

nonlinearities causes divergence in the UKF. However, information dilution alone is

not responsible for divergence as a linear system does not exhibit divergence. The
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numerical results in this section show that it is possible to design recursive estima-

tors for this problem that do not diverge and that improves the accuracy of all states.

It is not only possible with sophisticated sequential Monte Carlo methods, but also

with an UKF or even an EKF when appropriate precautions are taken.

In the simulation, a SO is in a geosynchronous orbit with the following or-

bital elements: a = 42, 364.16932 km, e = 0, i = 30◦, M0 = 91◦, and ω = Ω = 0.

The simulation epoch is 15-March-2010 at 04:00:00 UT and the SO does not pass

through the shadow of the Earth during the simulation time. The shape of the SO

is a cube with side length 1m and a mass of 2kg and it is assumed that there is

no self shadowing in the model. Apparent brightness magnitude and angle mea-

surements are simulated using a ground station located at the top of Haleakala in

Maui (latitude = 20.71◦, longitude = −156.26◦, and altitude = 3.5086km). Mea-

surements are corrupted by additive zero-mean Gaussian white noise with standard

deviations of 0.1 for the brightness magnitude and 10 arc-seconds on the azimuth

and elevation observation. Both measurements are available every 2 seconds for

two hours. The changes we made in this simulation scenario with respect to [108]

are that (1) we used the azimuth and elevation observations for angle data instead

of right ascension and declination observation and (2) we omitted thermal radiation

pressure (TRP) in the dynamics as it did not change the results appreciably. The

details of the initial truth state, the initial estimated state, and the initial uncertainty

are listed in Table 5.1. Note that the goal of this study is to estimate attitude, attitude

rate, and surface parameters simultaneously, and we do so using the initial condi-

tions highlighted in [108] that include an initial attitude uncertainty of 10 degrees
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Table 5.1: Initial conditions

State Initial Truth Initial Estimate Uncertainty (1σ)

q

0.754 0.695

3.33 deg
0.133 0.134
0.000 0.010
0.643 0.706

ωBB/I (rad/s)
0.00200 0.00212

1.16 × 10−4-0.00100 -0.00106
0.00500 0.00506

rI (km)
-739.4 -789.4

10036682.9 36732.9
21178.9 21278.9

vI (km/s)
-3.0669 -3.0169

0.10-0.0464 0.0536
-0.0268 -0.0768

n 150 120 30
ρ 0.40 0.10 0.30
d 0.70 1.00 0.30

(3σ) and that cause their UKF design to diverge. This is a challenging scenario as

all surfaces of the SO are assumed to have the same parameters, hence different

surfaces are indistinguishable from one another and very large initial attitude er-

rors cannot be resolved. In addition, the assumption of having the same parameters

makes the total torque acting on the SO due to SRP become zero. Other studies,

including [17, 58] assume known surface parameters with different values for each

facet. Under those conditions, a particle filter is able to resolve initial orientation

uncertainties much larger than 10 degrees.

The first goal is to investigate whether information dilution alone can cause

divergence, or if a nonlinear filter can be successfully applied to this problem. Many

nonlinear algorithms such as various flavors of the particle filter as well as PGMF
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from [84] and the sequential Monte Carlo filter from [112] were used and they all

diverged. The UKF also diverges. These failures are due to the high nonlinearities

of the light-curve data combined with the absence of process noise. Divergence is

not an intrinsic property of the system, as the modified PGMF algorithm proposed

here, named PFGMM1, is able to prevent the divergence of the state. Figure 5.3

shows the position, attitude, and surface parameter errors with the corresponding

3σ predictions when PFGMM1 is used. Notice that proxy values are used in order

to estimate the surface parameter without any constraint on their values. All errors

are consistent with the uncertainties, meaning that the filter does not diverge. From

the analysis, it is shown that it is the severe nonlinearities coupled with the weak

observability of the system that leads to divergence, not information dilution. The

PFGMM uses 3 clusters with 10,000 particles and for this and all subsequent filters

the modified Rodrigues parameters (MRPs) are used to define the local error for the

attitude estimation.

The simulation is conducted with the five nonlinear filters described in the

previous section: (1) the particle filter with Gaussian mixture models (PFGMM)

without the constraint information (PFGMM1), (2) the PFGMM with the con-

straint information (PFGMM2), (3) the TIUKF, (4) the TEKF with underweighting

(TEKF1), and (5) the TEKF with considering parameters (TEKF2).

The introduction of proxy surface parameters, while making the state space

unconstrained, adds more nonlinearities to the systems. Alternatively, the constraint

can be used as additional information in the modified rejection-sampling algorithm,

we denote this filter as PFGMM2. The time history of the state errors and respective
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Figure 5.3: Position, attitude, and surface parameter errors with the PFGMM with-
out the constraint information
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3σ predicted performance when using the PFGMM2 with the modified rejection-

sampling approach is depicted in Figure 5.4. Since the constraint information is

added to the estimator, it can be seen that the PFGMM2 has the better performance

than the PFGMM1.

The two nonlinear filters proposed (PFGMM1 and PFGMM2) establish that

information dilution due to few measurements and many estimated quantities does

not necessarily cause filter divergence, and that treating constraints as source of

information improves the performance of the filter. The next objective of this inves-

tigation is to design a consistent linear estimator, i.e., Kalman filter, which, while

producing less accurate estimates than the nonlinear filters above, still produces a

consistent, non-diverging solution. The algorithms used are the modifications of

the UKF and EKF described in the previous sections.

The TIUKF uses the following tuning parameters: α = 0.8, β = 3, and

κ = 3, for its sigma points spread. The underweighting tuning parameter for the

TEKF with underweighting approach (denoted as TEKF1) is βUW = 2.0. The

third and last linear estimator considered is the TEKF with considering parame-

ters (denoted as TEKF2) which treats the surface parameters (since they are highly

nonlinear states in the system) as considered states when high nonlinearities are

detected. High nonlinearities are declared when Hk+1P
xx
k+1|kH

T
k+1 > 3Rk+1 in the

brightness magnitude measurement only, as it is the nonlinear measurement that

causes divergence.

The simulation results of the three linear filters are shown in Figure 5.5 to

Figure 5.7. Comparing the error and covariance of all the cases, the performance of
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Figure 5.4: Position, attitude, and surface parameter errors with the PFGMM with
the constraint information
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those filters is comparable to that of the PFGMMs, yet at a reduced computational

cost. Based on the criterion, Hk+1P
xx
k+1|kH

T
k+1 > 3Rk+1, the TEKF1 used the un-

derweighting parameter as follows: βUW = 2.0 for t ≤ 16 and βUW = 0 for t > 16,

where t is the simulation time. With the same criterion, the TEKF2 considers sur-

face parameters when t ≤ 48 and estimates all the states for the rest of the time.

Since the PDF truncation step was performed in the TEKF with the methods to

compensate for the high-order effects, the uncertainties of the surface parameters

and associated states (i.e. attitude) eventually converge to slightly smaller values

than those of the PFGMM1.

Table 5.2 lists the time-averaged root mean square error (RMSE) for a sin-

gle simulation. The best performance is obtained with the PFGMM2 when com-

paring the time-averaged RMSE. In terms of the RMS attitude, angular velocity,

and parameter errors, the TEKFs have the better performance than the PFGMM1,

which indicates it is possible to improve the PFGMM by increasing the number of

particles and clusters. While an increases in the number of particles and clusters

might improve the PFGMM, such an increase would increase the computational

cost substantially. The computation time for filtering run in MATLAB on a 3.2

GHz hexa-core Windows operation system is also presented in Table 5.2. In terms

of computation time, the TEKFs are the best performers while retaining roughly the

same accuracy as the PFGMMs.

As results from single runs cannot definitively assess the performance of a

stochastic estimator, a Monte Carlo analysis is performed with 100 simulations to

compare the performance of the five filters based on the RMSE and the NCI. The
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Figure 5.5: Position, attitude, and surface parameter errors with the TIUKF
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Figure 5.6: Position, attitude, and surface parameter errors with the TEKF with
underweighting
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Figure 5.7: Position, attitude, and surface parameter errors with the TEKF with
considering surface parameters
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Table 5.2: RMSE for a single simulation

Filter

Time-averaged RMSE
Computation

Position
(m)

Velocity
(m/s)

Attitude
(deg)

Angular
velocity
(deg/hr)

Parameter time (s)

PFGMM1 26383.9 22.313 2.440 19.916 8.721 4090.90
PFGMM2 22208.3 15.634 0.706 7.641 8.033 4292.72
TIUKF 45548.6 21.179 3.022 46.934 10.108 158.06
TEKF1 33062.5 22.915 1.121 9.154 8.421 127.87
TEKF2 29865.8 22.336 0.794 8.983 8.557 127.84

RMSE is calculated from the true and estimated states at each time k for each Monte

Carlo simulation and the NCI metric is used to measure the consistency of the five

estimators. When the difference between the ensemble error covariance matrix of

the estimates and the filter’s error covariance matrix is small, the NCI value should

be zero or nearly zero at all times.

Figure 5.8 to Figure 5.10 display the time history of the RMS position, ve-

locity, attitude, angular velocity, and parameter errors of the 100 simulations. The

time-averaged value of the RMSE of all the filters are listed in Table 5.3. The sur-

face parameters of the highly nonlinear light curve measurements are associated

with the attitude and angular velocity. It is shown in the figures that the results of

the RMS attitude, angular velocity, and surface parameter (ρ and d) errors are highly

correlated to each other. The best performance is obtained with the PFGMM2. The

results also show that although the performance of the TEKF1 and PFGMM2 are

comparable, the TEKF2 has the worst performance among the five filters. In terms

of the RMS position, velocity, and surface parameter (n) errors, the performances
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Figure 5.8: Monte Carlo averaged RMSE of position and velocity for 100 random
realizations

of the TIUKF and PFGMM2 are comparable. However, the RMS attitude, angular

velocity, and surface parameter (ρ and d) errors of the TIUKF are higher than those

of any filters, which means the TIUKF is adversely affected by the severe nonlin-

earities of the system. On the other hand, the RMS attitude, angular velocity, and

surface parameter errors of the PFGMM1 which does not use the constraint infor-

mation are comparable to the PFGMM2 while the RMS position and velocity errors

of the PFGMM1 are higher than those of any filters.

The consistency test result of each filter represented by the absolute NCI

value is shown in Figure 5.11. In this figure, the NCI values of the PFGMM1 and

PFGMM2 are smaller than those of other linear filters and they approach to zero

as time passes. The absolute NCI value of the TEKF1 is smaller than that of the

TEKF2, which means that Lear’s underweighting method is more effective to com-
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Table 5.3: RMSE for 100 Monte Carlo simulations

Filter

Time-averaged RMSE

NCI
Computation

Position
(m)

Velocity
(m/s)

Attitude
(deg)

Angular
velocity
(deg/hr)

Parameter
time

(s/simula-
tion)

PFGMM1 10473.0 13.38 3.57 39.82 8.97 6.10 3886.94
PFGMM2 6058.0 10.52 1.82 20.39 6.16 4.61 3724.63

TIUKF 6128.7 10.29 12.92 124.88 8.69 14.59 120.77
TEKF1 6768.3 11.22 2.55 26.92 10.32 11.90 114.70
TEKF2 10330.0 13.09 11.98 86.20 18.02 15.54 112.64

pensate the nonlinear effects of this system than considering the surface parameters.

Moreover, the figure shows that the TIUKF is unsuitable for such a highly nonlinear

system. The average computation time per filtering run as well as the time-averaged

absolute NCI value are listed in Table 5.3.

5.5 Chapter’s Summary

This chapter presents a detailed study of the estimation of the translational

and rotational states of near-geosynchronous objects from bearing angles and light

curve data. Three parameters of the highly nonlinear light curve measurements are

also estimated. The high nonlinearity and weak observability of the system makes

this problem particularly challenging for recursing filtering algorithms. This fact is

exacerbated by the absence of process noise, which is typically needed to overcome

particle impoverishment in particle filters.

A novel approach to nonlinear estimation combining particle filters and

Gaussian sum filters using an expectation-maximization clustering method is pro-
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posed. The advantage of this algorithm is that the use of soft clustering gives a

more accurate Gaussian mixture model representation of the prior probability den-

sity function over existing related approaches. The soft-clustering approach allows

the filter to converge, while a similar existing algorithm using K-means clustering

diverges under the conditions of the example studied. The soft clustering works in

a way that each point is assigned to all the clusters with different weights or prob-

abilities, thus obtaining the proper covariance of the components. By designing a

consitent filter with the same members of the state space and same measurements,

it is shown that dilution of information is not a cause of divergence per-se, rather

divergence of prior approaches are due to the severe nonlinearities of the system

coupled with large initial uncertainties and the weak observability introduced by

information dilution.
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Finally, three linear estimators were designed and shown to provide good

performance. The truncated interval unscented Kalman filter uses the constraint

information in the time and measurement update steps and truncates the probability

density function after the measurement update. The truncated extended Kalman

filter includes not only the probability density function truncation approach but also

two extra methods to compensate nonlinear effects.
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Chapter 6

Clustering Methods for Particle Filters with Gaussian
Mixture Models
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6.1 Motivation and Comparison with State of the Art

The particle filter with Gaussian mixture models (PFGMM) proposed in the

previous chapter is able to successfully estimates the states of a highly nonlinear

system in a challenging application where other filters such as the GSF, BPF, APF,

and RPF diverge. In the PFGMM, the propagated samples are clustered to recover

a GMM representation of the prior PDF. Ref. [84] demonstrated that the filter’s

density converges in probability to the true filter density under the assumption of

a perfect clustering scheme, implying the filter performance strongly depends on

the performance of a clustering method. Popular clustering algorithms such as the

K-means algorithm and expectation-maximization (EM) algorithm for GMMs have

been applied to the PFGMM [84, 113].

The first PFGMM algorithm proposed in the literature, the Particle Gaussian

Mixture Filter [84], utilizes K-means clustering which produces separated clusters

for each Gaussian component of the GMM. When K is a fixed preassigned num-

ber of clusters, the K-means algorithm minimizes within-cluster-sum-of-squares

(WCSS) (i.e., variance) by partitioning the data set into the K clusters. As a re-

sult, the covariance of each cluster generated by the K-means algorithm is as small

as possible. A small covariance of each Gaussian mixture component is desirable

outcome as the GSF is globally optimal only for linear systems and GMM distri-

butions. In the presence of nonlinearities, typically, the smaller the covariance of

a component, the smaller the nonlinear effects of the measurement function in the

likely realizations of that component and hence the better the performance of the

GSF.
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Although it produces components with small covariance, the K-means al-

gorithm does not guarantee an accurate GMM representation of the prior PDF. The

EM algorithm for GMMs, produces a better approximation of the prior distribution

by maximizing the likelihood function with respect to the clustering parameters,

which are the means, covariance matrices, and weights of the components of a

GMM. The K-means algorithm is a special case of the EM algorithm for GMMs

in which all mixture weights are equal and all covariance matrices have spherical

forms. The EM algorithm produces larger covariances than K-means, since it is not

a hard clustering algorithm and allows for the components to overlap.

In this chapter, we propose two novel clustering algorithms to merge the

benefits of K-means and EM and apply them to the PFGMM to improve its estima-

tion performance. The two new types of clustering methods simultaneously mini-

mize the covariance for each of the components of a GMM and maximize the like-

lihood function based on a fuzzy C-means (FCM) clustering algorithm [12]. The

FCM algorithm is closely related to the K-means algorithm and EM algorithm for

GMMs. In FCM clustering, the data points can belong to more than one cluster with

different membership grades between 0 and 1. These membership grades represent

the degree to which data points belong to the different clusters. The standard FCM

algorithm, which is also referred to as soft K-Means algorithm, employs a weight-

ing exponent on each fuzzy membership. The weighting exponent is also called

the fuzzifier since it determines the level of the fuzziness of clustering. Unlike the

approach of the standard FCM algorithm, the FCM algorithm can also be regarded

as regularization of the K-means algorithm with a maximum entropy method [89].
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Based on the new aspect of the FCM algorithm, Ref. [32] proposed the FCM with

regularization by Kullback-Leibler information (KLFCM), which is similar to the

EM algorithm for GMMs. Inspired from the standard FCM and KLFCM algorithm,

in this chapter, we propose two types of clustering methods specifically designed to

improve the performance of the PFGMM.

The remainder of this chapter is organized as follows. Sections 6.2 and 6.3

briefly describe the PFGMM and the FCM algorithm, respectively. Then, the new

clustering algorithms are proposed in Section 6.4. Section 6.5 presents simulation

results of the proposed algorithms, followed by some concluding remarks on the

new methodologies and the results.

6.2 Particle Filter with Gaussian Mixture Models

Each algorithm’s iteration starts from the knowledge of the prior distribution

p(xk−1|Y k−1) which is approximated by N independent and identically distributed

(i.i.d.) samples x(i)
k−1

p(xk−1|Y k−1) ≈
N∑
i=1

1

N
δ(xk−1 − x(i)

k−1) (6.1)

where k indicates the discrete time step, δ(·) is the Dirac delta function, and Y k−1

is the set of all measurement vectors {y1, · · · ,yk−1} where yk−1 is a measurement

vector at the time step k − 1. Following the same procedure as particle filters [7], a

set of samples at the next time step is generated using the Markov transition kernel

p(xk|xk−1). The Markov kernel is defined by the dynamics of a system and the

known statistics of the process noise.
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The next step of the algorithm is to cluster the particles into Gaussian mix-

tures using a clustering algorithm such as the K-means algorithm or the EM algo-

rithm for GMMs and the propagated distribution is then expressed as follows:

p(xk|Y k−1) ≈
K∑
j=1

ω
(j)
k|k−1n(xk; x̂

(j)
k|k−1, P

(j)
k|k−1) (6.2)

where K is the predetermined number of clusters, n(x|x̂, P ) represents the Gaus-

sian PDF with mean x̂ and covariance P ; and ω(j)
k|k−1, x̂

(j)
k|k−1, and P (j)

k|k−1 are the

weight, mean, and covariance matrix of the ith Gaussian component calculated by

the K-means or EM clustering algorithm. The K-means and EM algorithm are sim-

ilar in the sense that they use an iterative refinement approach to find the optimal

clusters. The K-means is a hard clustering algorithm, which means each particle

is associated uniquely with one cluster, as such it uses only the points in the same

cluster to update each component’s mean. The EM algorithm performs a soft as-

signment and approximates the PDF of xk with several Gaussian components hav-

ing different means, covariance matrices, and weights. The details of the K-means

and EM algorithm are explained in [13].

Finally, we incorporate measurement information by updating the means,

covariance matrices, and weights of all the components in the same way as the

measurement update of the GSF. We then draw N i.i.d. samples from the GMM

which is the posterior distribution. Since this is a recursive algorithm, we use the

samples as a starting point for the next iteration. The details of the measurement

update of the GSF and the algorithm to draw N i.i.d. samples from a GMM are

explained in Chapter 3.
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6.3 Fuzzy C-Means Clustering

The standard FCM and the KLFCM algorithm are reviewed in this section.

In the standard FCM algorithm, the aim of the algorithm is to minimize the objective

function which is defined as follows [12]:

Jm =
N∑
i=1

C∑
j=1

(uij)
mdij (6.3)

where C is the preassigned number of clusters and m is the weighting exponent for

the fuzzification of memberships, m ≥ 1. uij denotes the membership value of the

ith data sample for the jth cluster and all membership values have the following

constraints:

uij ≥ 0,∀i, j,
C∑
j=1

uij = 1 (6.4)

The dissimilarity function dij which is a measure of the Euclidean distance between

ith data sample x(i) and the center of the jth cluster µj is expressed as follows:

dij =
(
x(i) − µj

)T (
x(i) − µj

)
(6.5)

The optimal values of the clustering parameters uij andµj are calculated us-

ing a fixed-point iteration scheme, which is similar to the EM algorithm for GMMs.

The algorithm is summarized as follows:

1. Initialize the membership values uij and set the objective function value

to infinity.

2. Calculate the cluster centers µj using the current membership values.

µj =

∑N
i=1(uij)

mx(i)∑N
i=1(uij)

m
(6.6)
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3. Estimate the new membership values uij using the current cluster centers

to minimize the objective function.

uij =

[
C∑
k=1

(
dij
dik

) 1
m−1

]−1
(6.7)

4. Evaluate the objective function and check for convergence of it. If the

convergence criterion is not satisfied, replace the old membership values with the

new ones and return to step 2.

After a number of iterations, the clustering parameters are optimized to minimize

the objective function.

Fuzziness is the level of overlap between clusters (more overlap equals less

defined or fuzzier boundaries). In the standard FCM algorithm the weighting ex-

ponent m determines the level of the fuzziness of clustering, so it is also called

fuzzifier [12]. In other words, the partition is getting fuzzier as the fuzzifier has

a larger value. On the other hand, the memberships uij converges to 0 or 1 when

the fuzzifier m has the minimum value of one, which means the FCM algorithm

reduces exactly to the K-means algorithm.

In addition, the FCM algorithm is closely related to the EM algorithm for

GMMs. Ref. [31] defined a fuzzy covariance matrix for the FCM algorithm so that

different clusters can have different geometric shapes in the clustering. Moreover,

Ref. [89] shows that the FCM algorithm can be regraded as the regularization of the

K-means algorithm with a maximum entropy method, and Ref. [32] demonstrates

that the EM algorithm of the GMMs can be casted as a penalized version of the hard

means clustering algorithm. As a result, the FCM clustering with the regularizer by
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Kullback-Leibler (KL) information, called KLFCM, can be made the same algo-

rithm as the EM algorithm for GMMs [35]. The objective function of the KLFCM

is expressed as follows:

JKL =
N∑
i=1

C∑
j=1

uijd
′
ij + λ

N∑
i=1

C∑
j=1

uij log
uij
πj

+
N∑
i=1

C∑
j=1

uij log |Σj|

−
N∑
i=1

ηi

[
C∑
j=1

uij − 1

]
− τ

[
C∑
j=1

πj − 1

] (6.8)

where the dissimilarity function d′ij of the KLFCM is the Mahalanobis distance,

d′ij =
(
x(i) − µj

)T
Σ−1j

(
x(i) − µj

)
(6.9)

and λ is the fuzzifier, λ ≥ 0. Σj and πj are the covariance matrix and weight of

the jth cluster, and ηi and τ are Lagrangian multipliers whose corresponding terms

respectively indicate the constraints on membership values and weights.

The necessary conditions for optimality of (6.8) are derived as follows:

µj =

∑N
i=1 uijx

(i)∑N
i=1 uij

(6.10)

Σj =

∑N
i=1 uij(x

(i) − µj)(x(i) − µj)T∑N
i=1 uij

(6.11)

πj =
1

N

N∑
i=1

uij (6.12)

where

uij =
πj exp

(
− 1
λ
d′ij
)
|Σj|−1/λ∑C

k=1 πk exp
(
− 1
λ
d′ik
)
|Σk|−1/λ

(6.13)

The iteration rule is equivalent to the standard FCM algorithm. In the KLFCM

algorithm, the fuzzifier λ tunes the degree of fuzziness of the membership values.
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For instance, all memberships are getting closer to 1/C as we are putting more

weight on the relative entropy term. Thus, the larger the fuzzifier, the fuzzier the

memberships. The KLFCM algorithm is the same as the EM algorithm for GMMs

when the fuzzifier λ is equal to 2.

6.4 Clustering Methods for PFGMM

This section presents two different clustering methods to simultaneously

minimize the covariance for each of the components of a GMM and maximize the

likelihood function for the PFGMM. Both these features are key contributors to

PFGMM estimation performance.

6.4.1 KLFCM with Weighting Exponent

The objective function of the KLFCM with the fuzzification coefficient 2 is

expressed as follows:

JKL2 =
N∑
i=1

C∑
j=1

uij log uij

+
N∑
i=1

C∑
j=1

uij

[
log

1

πj
− log

(2π)−dx/2

(2π)−dx/2|Σj|−1/2
exp

(
−1

2
d′ij

)]

−
N∑
i=1

ηi

[
C∑
j=1

uij − 1

]
− τ

[
C∑
j=1

πj − 1

] (6.14)
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which is equivalent to the following function:

JKL2 =
N∑
i=1

C∑
j=1

uij log uij +
N∑
i=1

C∑
j=1

uijd
′′
ij

−
N∑
i=1

ηi

[
C∑
j=1

uij − 1

]
− τ

[
C∑
j=1

πj − 1

] (6.15)

where dx is the dimension of the state x and the dissimilarity function d′′ij is defined

as follows:

d′′ij = log

(
1

(2π)−dx/2πjn(x(i)|µj,Σj)

)
(6.16)

The first term (i.e., entropy term) of the objective function does not have the fuzzi-

fier λ because it is set to be equal to 2. Therefore, the modified KLFCM algorithm

with the objective function could only act as the EM algorithm. To assign the hard

clustering property of the K-means to the modified algorithm, we make it include a

new fuzzifier. If the new fuzzifier λ′ is added to the first term, it has the same form

as the FCM algorithm with a maximum entropy method, and the updating rule of

the membership values are expressed as follows [89]:

uij =
exp

(
− 1
λ′
d′′ij
)∑C

k=1 exp
(
− 1
λ′
d′′ik
) =

π
−1/λ′
j exp

(
− 1

2λ′
d′ij
)
|Σj|−1/2λ

′∑C
k=1 π

−1/λ′
k exp

(
− 1

2λ′
d′ik
)
|Σk|−1/2λ′

(6.17)

Although the memberships become less fuzzier as the fuzzifier λ′ is smaller, it si-

multaneously loses the property of the EM algorithm since the fuzzifier changes

and distorts the Gaussian distributions. Consequently, the new fuzzifier makes the

modified algorithm very similar to the KLFCM algorithm. To cope with the prob-

lem, we can change the objective function into the standard FCM form by removing

the first term and introducing the weighting exponent (m ≥ 1) on the membership
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values. Then, the modified objective function is expressed as follows:

JKL2′ =
N∑
i=1

C∑
j=1

(uij)
md′′ij −

N∑
i=1

η

[
C∑
j=1

uij − 1

]
− τ

[
C∑
j=1

πj − 1

]
(6.18)

The updating rules for the means, covariance matrices, weights of all clusters and

memberships are then derived as follows:

µj =

∑N
i=1(uij)

mx(i)∑N
i=1(uij)

m
(6.19)

Σj =

∑N
i=1(uij)

m(x(i) − µj)(x(i) − µj)T∑N
i=1(uij)

m
(6.20)

πj =
1

N

N∑
i=1

(uij)
m (6.21)

and

uij =

[
C∑
k=1

(
d′′ij
d′′ik

) 1
m−1

]−1
(6.22)

The proposed algorithm maximizes the log likelihood function, which is the

same as the EM algorithm for GMMs. Moreover, the memberships are propor-

tional to the exponential of the log likelihood function of the GMM. In other words,

even if the weighting exponent m is changed to tune the level of the fuzziness of

the clustering, the form of the log likelihood function (i.e., GMM) in the member-

ships is maintained. Therefore, the degree of fuzziness of the memberships can be

determined by the weighting exponent m with retaining the property of the EM al-

gorithm. As in the standard FCM algorithm, the partition becomes more distinct as

the fuzzifier m has a smaller value. When m is set to be very close to the minimum

value of 1, however, most of the memberships converges to 0 or 1, thus making
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some weights of the clusters zero [12]. As a result, the covariance for the rest of the

components of a GMM is increased. To prevent this problem, a regularization term

with a positive parameter κ is included in the objective function as follows:

JmKL =
N∑
i=1

C∑
j=1

(uij)
md′′ij − κ

N∑
i=1

C∑
j=1

log (πj)

−
N∑
i=1

η

[
C∑
j=1

uij − 1

]
− τ

[
C∑
j=1

πj − 1

] (6.23)

By introducing this new regularization term, all the weights of the clusters are get-

ting closer to 1/C as the value of κ is lager because the sum of πj with respect to

C is constrained to be 1. The updating rule for the weights of the clusters is then

changed into

πj =
2
∑N

i=1(uij)
m + κN

2
∑N

i=1

∑C
j=1(uij)

m + κNC
(6.24)

and the others (6.19), (6.20), and (6.22) remain the same. The proposed algorithm

is named the KLFCM clustering with weighting exponent (mKLFCM).

6.4.2 KLFCM with Ridge Regularization

Another proposed clustering method is to add a new regularization term to

the objective function of the KLFCM with the fuzzification coefficient 2. Regu-

larization is one of the most important concepts in machine learning (ML) and the

most well known regularization techniques are ridge and least absolute shrinkage

and selection operator (LASSO) regularization: the two regularization techniques

are used to reduce the magnitude of irrelevant coefficients of a model and avoid

overfitting [73]. As done in ridge regularization, a new regularization term is added
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to (6.8) with the fuzzification coefficient 2 in order to restrict the determinant of the

covariance of each cluster to the determinant of the total covariance divided by the

number of total clusters as follows:

JRKL′ =
N∑
i=1

C∑
j=1

uijd
′
ij + α

N∑
i=1

C∑
j=1

log

(
|Σj| −

|ΣT |
C

)2

+ 2
N∑
i=1

C∑
j=1

uij log
uij
πj

+
N∑
i=1

C∑
j=1

uij log |Σj|

−
N∑
i=1

ηi

[
C∑
j=1

uij − 1

]
− τ

[
C∑
j=1

πj − 1

] (6.25)

where α is the penalty parameter and ΣT is the covariance matrix of the total sam-

ples. To put it another way, the new clustering algorithm minimizes the following

objective function:

JKL2 subject to
C∑
j=1

log

(
|Σj| −

|ΣT |
C

)2

< Rc (6.26)

where JKL2 is given by (6.15) and Rc is a parameter. Figure 6.1 shows an example

of how the new regularization term in the objective function can be geometrically

interpreted when the number of clusters is 2. If the new regularization term does not

exist (i.e. α = 0), which means there is no inequality constraint, the center of the

ellipse will be the optimal value of the determinant of the each cluster’s covariance.

Figure 6.1 shows, however, the optimal values for the covariance matrices of the

objective functions in (6.25) and (6.26) are given by the first point at which the

ellipse (blue) contacts the constraint region (orange) due to the new regularizer (the

inequality constraint). As a result, the large value of α (the smaller value of Rc)
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Figure 6.1: Geometric interpretation of the new regularizer

will shrink the determinants of all the covariance matrices towards the same value

(|ΣT |/C).

The updating rules for the clustering parameters of (6.25) are the same as

those of (6.8) with λ = 2 except for the covariance matrices. For the new objective

function (6.25), the updating rule for the covariance matrices is not fixed because it

varies depending on the dimension of state. Therefore, to find the consistent closed-

form solution for the updating rule of the covariance matrices, we substitute Σj with

βjMj where |Mj| = 1, βj = |Σj|1/dx . Then, the objective function (6.25) can be
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changed into the following equivalent objective function:

JRKL =
N∑
i=1

C∑
j=1

uijd
′
ij + α

N∑
i=1

C∑
j=1

(
D

βj
− 1

)2

+ 2
N∑
i=1

C∑
j=1

uij log
uij
πj

+
N∑
i=1

C∑
j=1

uij log |Σj|

−
N∑
i=1

ηi

[
C∑
j=1

uij − 1

]
− τ

[
C∑
j=1

πj − 1

]
−

C∑
j=1

ξj log |Mj|

(6.27)

where ξ1, · · · , ξC are Lagrangian multipliers and

D =

(
|ΣT |
C

)1/dx

(6.28)

Then, the updating rules for the Mj and βj are derived as follows:

Mj =

∑N
i=1 uij(x

(i) − µj)(x(i) − µj)T

|
∑N

i=1 uij(x
(i) − µj)(x(i) − µj)T |1/dx

(6.29)

βj =
1

2dx
∑N

i=1 uij

[
A−B +

√
(A−B)2 + C

]
(6.30)

where

A =
N∑
i=1

uij
(
x(i) − µj

)T
M−1

j

(
x(i) − µj

)
(6.31)

B = 2αND (6.32)

and

C = 8αdxND
2

N∑
i=1

uij (6.33)

The proposed algorithm is named the KLFCM clustering with ridge regularization

(RKLFCM).

132



6.4.3 Analysis of the Proposed Clustering Methods

In the mKLFCM clustering algorithm, it is crucial to select the most appro-

priate weighting exponent m which determines the performance of the PFGMM. It

is desirable for the PFGMM to have an accurate GMM representation of the prior

PDF while each component has a small enough covariance matrix such that nonlin-

ear measurements can be accurately approximated by linearization in the support

of each component. In this section, we investigate the impact of the weighting

exponent on the clustering algorithm and find the optimal value for the PFGMM

based on the biggest determinant of the covariance matrix of the components and

the Jensen-Shannon distance (JSD). Note that the smaller the biggest determinant of

the covariance matrix, the better the performance of the PFGMM. The JSD, which

is a metric, is used to measure the similarity between two probability distributions

and given by

J(px||qx) =

√
1

2
DKL(px||mx) +

1

2
DKL(qx||mx) (6.34)

where

DKL(px||qx) =
∑
x∈S

px(x) log

(
px(x)

qx(x)

)
(6.35)

mx =
1

2
(px + qx) (6.36)

and S is the support for x, and px and qx are two different probability distributions.

As the difference between the two distributions becomes smaller, the JSD also gets

smaller.
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Figure 6.2: Analysis of the weighing exponent in the mKLFCM

To analyze the impact of the weighting exponent on the clustering algo-

rithm, a Monte Carlo analysis is performed with 100 simulations. For each simula-

tion, 10,000 particles are drawn from the two-dimensional normal distribution. The

mKLFCM uses 3 clusters and the parameter κ is set to be 0.05. Figure 6.2 shows

the normalized maximum value of determinant and JSD according to the weighting

exponent and the original values are listed in Table 6.1. As mentioned above, the

greater the weighting exponent is, the lower the JSD value becomes. However, the

maximum value of the determinant of covariance also tends to increase with the

weighting exponent. Figure 6.2 shows that the optimal value of the weighting ex-

ponent is 1.216 when samples are from a normal distribution. In addition, Table 6.1

implies that as the weighting exponent is larger, the maximum value of determi-

nant approaches to 1, which is the determinant of the sample covariance. Over-

all, the mKLFCM behaves like the K-means algorithm as the weighting exponent

decreases, whereas it functions like the EM algorithm as the weighting exponent

increases.
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Table 6.1: Analysis of the weighing exponent in the mKLFCM

1.05 1.10 1.15 1.20 1.25 1.30 1.35
Maximum determinant 0.2302 0.2510 0.2848 0.3690 0.5686 0.9484 0.9737

JSD 1.8440 1.6716 1.4339 0.9991 0.4598 0.1415 0.1318

Table 6.2: Analysis of the penalty parameter in the RKLFCM

0.0001 0.001 0.01 0.1 1 10 100
Maximum determinant 0.7774 0.7714 0.7179 0.5032 0.3567 0.3355 0.3334

JSD 0.2338 0.2365 0.2654 0.4917 0.8018 0.8691 0.8766

A key element of the RKLFCM is how to determine the penalty parameter

α. A Monte Carlo analysis with the same simulation conditions as above is per-

formed. Figure 6.3 presents the normalized maximum value of determinant and

JSD according to the penalty parameter and the original values are illustrated in

Table 6.2. As the penalty parameter increases, the maximum value of determinant

decreases. Table 6.2 shows that the maximum value of determinant approaches to

1/3 which is ratio of the sample covariance to the number of clusters used for the

algorithm. On the other hand, the JSD value tends to increase with the penalty pa-

rameter. As can be seen in Figure 6.3, 0.1414 is the optimal value of the parameter

when samples are drawn from a normal distribution. To summarize: the RKLFCM

becomes similar to the EM algorithm as the weighting exponent decreases, whereas

it operates in a similar way of the K-means algorithm as the weighting exponent in-

creases.
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Figure 6.3: Analysis of the penalty parameter in the RKLFCM

6.5 Numerical Results

To evaluate the clustering algorithms proposed in this chapter, two different

examples are considered: a simple motivating example (used in Refs. [103] and

[117]) and the vector nonstationary growth model (used in Refs. [70] and [43]).

6.5.1 Single Step Example

Consider the following simple motivating example. An initial bivariate nor-

mal random vector x0 is distributed as

x0 ∼ n

(
x0;

[
−3
0

]
,

[
1 −0.1
−0.1 0.4

])
(6.37)

and a range measurement of 1.5 with measurement noise variance of 0.01 is avail-

able. Figure 6.4 shows contour plots of the given prior and likelihood distribu-

tion, and Figure 6.5 presents a contour plot of the true posterior distribution. The

measurement is nonlinear so that it causes the banana-shaped posterior distribution

which is cannot be accurately estimated by linear estimators such as EKF and UKF
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Figure 6.4: Prior and measurement distribution for example 1

True Posterior Distribution

-2.5 -2 -1.5 -1 -0.5

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 6.5: True posterior distribution for example 1

[103, 117].

In this example, we compare the clustering performances of the four differ-

ent clustering methods; the K-means algorithm, the EM algorithm for GMMs, and

the two algorithms proposed here [mKLFCM and RKLFCM]. We test the clustering

algorithms to see whether they approximate (a) the prior distribution by a GMM,

(b) the nonlinear measurement function by a linear function for the measurement

update of each component, and (c) the true posterior distribution by an updated
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GMM.

For Case (a) and (c), the JSD is used to measure the distance between the

true distribution and approximated distribution by a GMM. Moreover, for each

Gaussian component, the approximated posterior distribution of the EKF solution

is compared to that of the second-order EKF (SEKF) solution using the JSD for

Case (b) in order to check whether the linearization of the measurement function is

valid in a region of the component [103]. If the covariance of a component is small

enough such that the nonlinearities of the measurement function are negligible, then

the difference between the distributions will be small. For Case (b), the weighted

sum of the JSD values is used for a GMM with the weights of all the components.

All of the clustering algorithms use 30 clusters with 10,000 particles. The

proposed clustering algorithms use the following tuning parameters: m = 1.216

and κ = 0.05 for the mKLFCM, and α = 0.1414 for the RKLFCM. For the EM,

mKLFCM, and RKLFCM algorithm, the initial clustering parameters are selected

using the K-means algorithm [13]. A Monte Carlo analysis is performed with 100

simulations and the averaged JSD values for all of the cases are listed in Table 6.3.

For Case (a), the EM algorithm for GMMs and RKLFCM algorithm are compa-

rable, while the K-Means algorithm results in the worst performance among the

four clustering algorithms. For Case (b), however, the K-means algorithm is better

than any of other algorithms and the EM algorithm gives the worst performance.

Finally, Table 6.3 shows that, for Case (c), the proposed algorithms [mKLFCM and

RKLFCM] outperform the K-means and EM algorithm for GMMs, which means

the proposed algorithms are more suitable for the PFGMM.
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Table 6.3: Monte Carlo averaged JSD for Exemple 1 (100 simulations)

K-means EM mKLFCM RKLFCM
Case (a) 2.6467 0.5866 1.5423 0.7044
Case (b) 2.3689 5.8114 3.4402 4.5364
Case (c) 6.2189 6.0616 5.2056 5.0687

Moreover, for Case (c), Figure 6.6 displays the PFGMM solutions with the

K-means, EM for GMMS, mKLFCM, and RKLFCM clustering algorithms for a

single simulation. Note that the PFGMM solutions with the four clustering methods

succeed in capturing the curvature shape of the true posterior distribution. If a linear

estimator of nonlinear systems such as the EKF or UKF is used for this example,

the curvature shape of the true distribution cannot be replicated by the first two

moments of the estimator. This figure also shows that the PFGMM solutions with

the proposed clustering methods can more accurately adapt to nonlinearities of the

measurement function than the PFGMM with the K-means and EM algorithm for

GMMs.

6.5.2 Vector Nonstationary Growth Model

Consider the discrete-time highly nonlinear bivariate dynamic system and

measurement model given by [43, 70]

xk+1,1 =
xk,1
2

+ 25
xk,1

1 + x2k,1
+ 8 cos (1.2k) + νk,1

xk+1,2 =
xk,2
2

+ 25
xk,2

1 + x2k,2
+ 8 cos (1.2k) + νk,2

(6.38)
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(a) PFGMM with the K-means algorithm Poste-
rior
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(b) PFGMM with the EM algorithm for GMMs
Posterior
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(c) PFGMM with the mKLFCM algorithm Pos-
terior

RKLFCM Posterior Distribution of X
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(d) PFGMM with the RKLFCM algorithm Pos-
terior

Figure 6.6: The PFGMM solutions with the four different clustering algorithms for
a single simulation are presented with (a) the JSD value (the K-means) = 5.6130,
(b) the JSD value (the EM algorithm for GMMs) = 5.4898, (c) the JSD value (the
mKLFCM) = 4.4212, and (d) the JSD value (the RKLFCM) = 4.2193.

yk+1,1 =
x2k+1,1 + x2k+1,2

20
+ ηk+1,1

yk+1,2 =
x2k+1,1 − x2k+1,2

10
+ ηk+1,2

(6.39)

where the process noise νk = [νk,1, νk,2]
T and the measurement noise ηk+1 =

[ηk+1,1, ηk+1,2]
T are assumed to be independent zero-mean Gaussian random vari-
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ables with variances of Q = 10I2×2 and R = I2×2, respectively, and I2×2 is a 2× 2

identity matrix.

The model is highly nonlinear and the cosine term in the dynamic equation

varies with time k. In this example, a Monte Carlo analysis is performed with 200

simulations, and each simulation has a time span of k = [0, 100]. The estimation

performances of the PFGMM with four different clustering algorithms and the reg-

ularized particle filter (RPF) [7] are compared based on the root-means-square error

(RMSE) and the noncredibility index (NCI) [55]. The RMSE for each Monte Carlo

simulation is computed from the true and estimated states at each time k. The NCI

measures the difference between the ideal error covariance matrix and the estimated

error covariance matrix. The NCI metric is a balanced measure of the consistency

of the estimators. When the difference between the ensemble error covariance ma-

trix and the filter’s error covariance matrix is small, the NCI value should be zero or

nealy zero at all times [55]. A total of 200 particles is used in all of the algorithms

and the UKF measurement update for 3 clusters is used for the PFGMM. The tuning

parameters for the proposed algorithms and selecting method for initial clustering

parameters are the same as those used in the example 1.

Figure 6.7 shows the RMSE and the absolute NCI value of the 200 simu-

lations. The time-averaged value of the RMSE and NCI of the five algorithms are

described in Table 6.4. The proposed algorithms outperform the K-means and EM

algorithm for GMMs in terms of accuracy and consistency. Moreover, the figure

shows that the PFGMMs perform better than the RPF both in the accuracy and

consistency. The computation time for filtering run in MATLAB on a 3.2 GHz
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Figure 6.7: The average RMSE and the absolute NCI value for 200 Monte Carlo
simulations

hexa-core Windows operation systems is also presented in Table 6.4. In terms of

computation time, the proposed algorithms are cheaper than the EM algorithm for

GMMs and RPF while the best performance is produced with the K-means algo-

rithm.
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Table 6.4: Monte Carlo averaged RMSE, NCI, and computation time for Example
2 (200 simulations)

RMSE NCI Computation time
RPF 11.7031 49.4944 1.4342

K-Means 8.7378 3.6591 0.4889
EM 8.2914 2.7653 1.0130

mKLFCM 7.6699 1.0270 0.7232
RKLFCM 7.6417 0.9482 0.6525

6.6 Chapter’s Summary

In this chapter, two new clustering algorithms are proposed whose perfor-

mance index minimizes the covariance of each of the components of a Gaussian

mixture model and maximizes the likelihood function simultaneously. The two new

clustering algorithms are based on fuzzy C-means with regularization by Kullback-

Leibler information. The objective function of the first method has the same form

of the standard fuzzy C-means algorithm with an added weighting exponent. In

the second method, a new regularization term is included in the objective function

of the baseline algorithm. As a result, both of the proposed clustering algorithms

compensate for the drawbacks of the K-means and expectation-maximization algo-

rithm for the particle filter with Gaussian mixture models. Two numerical examples

show that the particle filter with Gaussian mixture models with the proposed clus-

tering algorithms provide better performance than the particle filter with Gaussian

mixture models with the K-means or expectation-maximization algorithm as well

as the regularized particle filter in terms of the accuracy and consistency.
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Chapter 7

Conclusions

In this dissertation, a study of new Bayesian approaches combining the ben-

efits of the Gaussian sum filter and particle filter was performed. The filtering tech-

niques introduced in Chapters 3 and 4 of this dissertation develop methods in which

each and every particle of particle filter is made into a Gaussian mixture component,

either using the properties of Dirac delta function or using kernel density estimation.

The filtering algorithms presented in Chapters 5 and 6 entail clustering methods to

group several particles into each Gaussian component.

The first contribution of this dissertation lies in the derivation of a new se-

quential Monte Carlo algorithm that samples from a Gaussian mixture model ap-

proximation of the posterior distribution. Each sample of the prior distribution is

treated as a Gaussian component with a collapsed zero covariance matrix and the

Gaussian sum filter is used to calculate the posterior distribution. Two small mod-

ifications of the baseline algorithm were also developed to improve the accuracy.

Compared to the bootstrap particle filter and regularized particle filter, the perfor-

mances in terms of accuracy, consistency, and mean computation time of the pro-

posed algorithms were analyzed with four different examples using Monte Carlo

simulations.
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The second contribution of this work is the introduction of the modified

kernel-based ensemble Gaussian mixture filtering for orbit determination with sparse

measurement data. Silverman’s rule of thumb is used for bandwidth estimation to

efficiently track SOs in LEO with short and sparse observation data. Moreover,

to improve the filter’s accuracy and consistency, the proposed algorithm is applied

in conjunction with the use of equinoctial orbital elements, and simulations re-

sults showed the effectiveness of the modified algorithm compared to the unscented

Kalman filter and the state-of-the-art Gaussian sum filter, AEGIS.

Future work on the first and second subjects should include adapting the

number of needed particles to a problem. The proposed filters are based on sequen-

tial Monte Carlo methods whose performances in terms of accuracy and consis-

tency rely heavily on the number of particles used in the algorithms. Increasing the

number of particles, however, results in a high computational cost. Therefore, the

development of an adaptive algorithm with an appropriate metric would make the

proposed algorithms more accurate and robust as well as faster.

The third and fourth contributions of this study reside in the introduction

of the particle filter with Gaussian mixture models, a new sequential Monte Carlo

algorithm based on a clustering algorithm. This new approach uses a clustering

algorithm to combine particle filters and Gaussian sum filter; the propagated parti-

cles are clustered to recover a Gaussian mixture model representation of the prior

probability density function. The expectation-maximization clustering algorithm

for Gaussian mixture models was applied to deal with a challenging problem in the

context of simultaneous space object tracing and characterization. Moreover, two
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new clustering algorithms for the particle filter with Gaussian mixture models were

developed to merge the benefits of the K-means and expectation-maximization clus-

tering algorithms. Numerical simulations results demonstrated that the proposed

algorithms are efficient.

Future work on the third and fourth subjects should include reducing the

computational burden of the proposed algorithms. The appropriate number of clus-

ters and particles could be adaptively selected according to a given problem. Before

developing a metric for the adaptive algorithm, the relationship between the perfor-

mances of clustering algorithms and the number of particles need to be precisely

analyzed.
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