
Copyright

by

Arun Arvind Nair

2012

The Dissertation Committee for Arun Arvind Nair
certifies that this is the approved version of the following dissertation:

Efficient Modeling of Soft Error Vulnerability in

Microprocessors

Committee:

Lizy Kurian John, Supervisor

Lieven Eeckhout

Mattan Erez

Nur Touba

Earl E. Swartzlander, Jr.

Michael D. Bryant

Efficient Modeling of Soft Error Vulnerability in

Microprocessors

by

Arun Arvind Nair, B.E.; M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2012

To my parents: Arvind and Premlata Nair.

Acknowledgments

I am grateful to my advisor Prof. Lizy John for her guidance and sup-

port throughout my tenure here at UT Austin. I am grateful for the flexibility

and resources she has provided me in order to make my research possible, and

her availability to discuss issues and problems with research.

I have had the privilege of collaborating with Prof. Lieven Eeckhout,

who greatly helped to shape this dissertation. I am immensely grateful to him

for his guidance and encouragement, and the many hours of proof-reading and

correcting my conference paper submissions.

I thank Dr. Stijn Eyerman for his guidance while developing the mecha-

nistic model. He provided me his implementation of interval analysis profilers,

which enabled me to concentrate on developing the AVF model. I am deeply

indebted to Arijit Biswas for taking time out to explain the various issues

regarding AVF evaluation, and for reading my papers and providing detailed

comments. I am thankful to Shubu Mukherjee for the initial discussions and

inputs that lead to the work presented in this dissertation.

I am grateful to the members of my committee (in alphabetical order):

Prof. Michael Bryant, Prof. Mattan Erez, Prof. Earl Swartzlander, and

Prof. Nur Touba. Their feedback has been invaluable towards improving the

quality of my research. Prof. Herb Krasner was kind enough to employ me

v

as a Teaching Assistant for various courses that he has taught. I had the

pleasure of working as a TA with Prof. Vijay Garg and Prof. Miryung Kim,

and I thank them for their support. I am also grateful to Prof. Vijay Reddi

for his advice and help towards my job search.

I also thank my labmates at the Laboratory of Computer Architecture

(LCA) (in alphabetical order): Aashish Phansalkar, Ciji Isen, Deepak Panwar,

Dimitris Kaseridis, Faisal Iqbal, Jian Chen, Jeff Stucheli, Jungho Jo, Karthik

Ganesan, Lloyd Bircher, Nidhi Nayyar, Umar Farooq and YoungTaek Kim, for

comments, or feedback on my research, proposal and defense practice talks. I

enjoyed my collaboration and conversations with Jian on each other’s work.

Discussions with Faisal over coffee and/or lunch, on research, cricket, culture,

or pretty much anything else were always fun. I have also enjoyed the company

of Dimitris and Ciji and particularly appreciate their efforts in making me feel

home when I first joined the group. I am grateful to Karthik for his help with

the SNAP GA framework, and the simpoints that he generated for SPEC

CPU2006.

I am grateful to a number of people in my family who made this pos-

sible: to my parents, Arvind and Premlata Nair, for their support, love, and

encouragement; to my sister Sonal, brother-in-law Dhaval, cousins Anand and

Amrita, and Ami for their support. And not the least, to my fiancèe Sunita,

for all the love, encouragement, support, and patience.

Last but not the least, I am indebted to the taxpayers of the states of

Texas and California for affording me an excellent education.

vi

Efficient Modeling of Soft Error Vulnerability in

Microprocessors

Publication No.

Arun Arvind Nair, Ph.D.

The University of Texas at Austin, 2012

Supervisor: Lizy Kurian John

Reliability has emerged as a first class design concern, as a result of an

exponential increase in the number of transistors on the chip, and lowering of

operating and threshold voltages with each new process generation. Radiation-

induced transient faults are a significant source of soft errors in current and

future process generations. Techniques to mitigate their effect come at a sig-

nificant cost of area, power, performance, and design effort. Architectural

Vulnerability Factor (AVF) modeling has been proposed to easily estimate the

processor’s soft error rates, and to enable the designers to make appropriate

cost/reliability trade-offs early in the design cycle. Using cycle-accurate mi-

croarchitectural or logic gate-level simulations, AVF modeling captures the

masking effect of program execution on the visibility of soft errors at the out-

put. AVF modeling is used to identify structures in the processor that have the

highest contribution to the overall Soft Error Rate (SER) while running typical

workloads, and used to guide the design of SER mitigation mechanisms.

vii

The precise mechanisms of interaction between the workload and the

microarchitecture that together determine the overall AVF is not well stud-

ied in literature, beyond qualitative analyses. Consequently, there is no known

methodology for ensuring that the workload suite used for AVF modeling offers

sufficient SER coverage. Additionally, owing to the lack of an intuitive model,

AVF modeling is reliant on detailed microarchitectural simulations for under-

standing the impact of scaling processor structures, or design space exploration

studies. Microarchitectural simulations are time-consuming, and do not easily

provide insight into the mechanisms of interactions between the workload and

the microarchitecture to determine AVF, beyond aggregate statistics.

These aforementioned challenges are addressed in this dissertation by

developing two methodologies. First, beginning with a systematic analysis

of the factors affecting the occupancy of corruptible state in a processor, a

methodology is developed that generates a synthetic workload for a given

microarchitecture such that the SER is maximized. As it is impossible for every

bit in the processor to simultaneously contain corruptible state, the worst-case

realizable SER while running a workload is less than the sum of their circuit-

level fault rates. The knowledge of the worst-case SER enables efficient design

trade-offs by allowing the architect to validate the coverage of the workload

suite and select an appropriate design point, and to identify structures that

may potentially have high contribution to SER. The methodology induces

1.4× higher SER in the core as compared to the highest SER induced by

SPEC CPU2006 and MiBench programs.

viii

Second, a first-order analytical model is proposed, which is developed

from the first principles of out-of-order superscalar execution that models the

AVF induced by a workload in microarchitectural structures, using inexpensive

profiling. The central component of this model is a methodology to estimate

the occupancy of correct-path state in various structures in the core. Owing

to its construction, the model provides fundamental insight into the precise

mechanism of interaction between the workload and the microarchitecture to

determine AVF. The model is used to cheaply perform sizing studies for struc-

tures in the core, design space exploration, and workload characterization for

AVF. The model is used to quantitatively explain results that may appear

counter-intuitive from aggregate performance metrics. The Mean Absolute

Error in determining AVF of a 4-wide out-of-order superscalar processor using

model is less than 7% for each structure, and the Normalized Mean Square

Error for determining overall SER is 9.0%, as compared to cycle-accurate mi-

croarchitectural simulation.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Modeling the Vulnerability to Soft Errors 3

1.2 Motivation . 6

1.2.1 Mitigating the Effect of a Biased Workload Suite 6

1.2.2 Design-time AVF modeling 9

1.2.3 Characterizing Workloads for their Impact on AVF . . . 10

1.3 Thesis Statement . 11

1.4 Contributions . 12

1.5 List of Acronyms and Abbreviations 15

1.6 Organization . 15

Chapter 2. Background 17

2.1 Metrics for Reliability . 18

2.2 Incidence of Soft Errors in Real Systems 19

2.3 Modeling Intrinsic SER . 20

2.4 Masking Effect of the Circuit on SER 21

2.5 Masking Effect of Program Execution on SER 22

2.6 Architectural Vulnerability Factor 24

2.7 ACE Analysis . 25

2.7.1 Architecturally Correct Execution (ACE) Bits 26

2.7.2 Computing AVF using ACE Analysis 28

x

2.7.3 Limitations of ACE Analysis 29

2.7.4 Limitations of SFI . 32

2.8 Mechanistic Modeling of CPU Performance 33

2.8.1 Steady State, or Ideal Execution 35

2.8.2 Non-Overlapped Long-Latency Data Cache Misses . . . 36

2.8.3 Branch Misprediction Penalty 37

2.8.4 Instruction Cache and TLB misses 39

2.8.5 Estimating Cycles Per Instruction 39

2.9 Related Work . 40

2.9.1 Estimating the Worst-Case Observable SER 41

2.9.2 Analytical Modeling of AVF and SER 42

Chapter 3. Methodology 45

3.1 Simulators . 45

3.2 ACE Analysis . 46

3.3 Genetic Algorithm . 47

3.4 Evaluation Methodology . 50

Chapter 4. An Automated Methodology for Bounding Micro-
processor Vulnerability to Soft Errors 52

4.1 Issues affecting SER benchmarking 53

4.2 Difficulties in determining the worst-case SER 55

4.3 Design of the Code Generator 58

4.3.1 AVF due to Microarchitecture-Dependent Behavior . . . 60

4.3.1.1 Long-Latency Operations 60

4.3.1.2 ILP and instruction latency 61

4.3.1.3 Instruction Mix 61

4.3.1.4 Front-End Misses 61

4.3.1.5 Cache Coverage and Working Set 62

4.3.2 Design of the Code Generator 63

4.4 Framework for the Generation of the AVF Stressmark 66

4.5 Evaluation Methodology . 67

4.6 Results . 69

xi

4.6.1 Stressmark generation for different circuit-level fault rates 75

4.6.2 Stressmark generation for a different microarchitecture . 78

4.7 Implications of the AVF Stressmark Methodology on Design . 79

4.7.1 Comparison with Other Possible Methodologies 80

4.7.2 Utilizing the Stressmark Methodology 81

4.8 AVF Stressmark Generation for In-order Pipelines 83

4.9 Discussion . 87

4.10 Conclusions . 88

Chapter 5. Mechanistic Modeling for Architectural Vulnerabil-
ity Factor 90

5.1 Modeling AVF using Interval Analysis 92

5.2 Modeling the AVF of the ROB 94

5.2.1 Modeling steady-state occupancy 95

5.2.2 Modeling Occupancy in the Shadow of Long-Latency Data
Cache Misses . 99

5.2.3 Modeling Occupancy During Front-End Misses 100

5.2.4 Computing Occupancy of Correct-Path Instructions in
the ROB . 102

5.2.5 Modeling the Effect of Interactions Between Miss Events 103

5.3 Modeling of the AVF of the IQ 107

5.4 Modeling the AVF of LQ, SQ, and FU 108

5.5 Assumptions of the Model . 109

5.6 Evaluation . 110

5.7 Results . 112

5.7.1 Potential Sources of Error 116

5.7.2 Impact of Interaction between Miss Events 117

5.8 Applications of the Model . 120

5.8.1 The Impact of Scaling Microarchitectural Parameters . . 121

5.8.1.1 Impact of Scaling the ROB on AVF and perfor-
mance . 121

5.8.1.2 Sensititivity of AVF to Memory Latency 124

5.8.2 Design Space Exploration 125

5.9 Workload Characterization for AVF 130

5.10 Conclusion . 132

xii

Chapter 6. Conclusion 133

6.1 Summary and Conclusions . 133

6.2 Future Research Directions . 135

6.2.1 AVF Stressmark for Multicore Machines 135

6.2.2 Online Estimation of SER 136

6.2.3 Estimating per-thread AVF or Resource Sharing in SMT 137

Bibliography 139

xiii

List of Tables

1.1 List of Acronyms or Abbreviations used in this Dissertation. . 15

2.1 Definition of Events for Interval Analysis 39

4.1 Baseline Configuration of Processor. 56

4.2 Alternate configuration for evaluating the stressmark creation
methodology . 79

4.3 Comparison of worst-case SER estimation methodologies in the
Core using SPEC CPU2006 and MiBench 82

4.4 In-order Configuration. 84

4.5 Knob Settings for the In-order Stressmark 87

5.1 Values of α and β for SPEC CPU2006 workloads. 96

5.2 Processor Configurations . 111

5.3 Contribution of I-cache misses, and branch mispredictions in
the shadow of long latency data cache misses, to overall CPI for
the wide-issue machine . 119

xiv

List of Figures

1.1 Choice of the design-point, under different SER coverage scenarios 7

1.2 Utilizing the model to perform design space exploration. . . . 13

2.1 Interval Analysis for Modeling Performance. 34

4.1 Methodology for creation of an AVF stressmark. 59

4.2 Comparison between the overall SER induced by the Stressmark
and CPU2006 workloads on the core and caches for the Baseline
Configuration. 69

4.3 Comparison between the overall SER induced by the Stressmark
and MiBench workloads on the core and caches for the Baseline
Processor Configuration. 70

4.4 Stressmark generated by the Genetic Algorithm for the Baseline
Processor Configuration. 71

4.5 AVF of queuing and storage structures for SPEC CPU2006 and
MiBench workloads on the Baseline Processor Configuration. . 73

4.6 SER induced on Processor Configurations RHC and EDR, by
workloads from SPEC CPU2006 and MiBench. 74

4.7 Results of AVF Stressmark Methodology on different circuit-
level fault rates. 77

4.8 AVF of queueing and storage structures for Configuration:LargeROB. 80

4.9 AVF of the Core for the In-order Configuration 86

5.1 I-W characteristics for sample SPEC CPU2006 workloads. . . 98

5.2 Modeling the Occupancy of the ROB Using Interval Analysis. 99

5.3 Modeling the Occupancy During an I-cache Miss. 100

5.4 Modeling the Effects of Interactions Between Miss Events on
Occupancy. 104

5.5 Modeling the AVF of the Wide-Issue Machine. 112

5.6 Modeling the AVF of the Narrow-Issue Machine 114

5.7 Impact of Ignoring the Interaction between Miss Events. . . . 117

xv

5.8 Effect of Scaling ROB Size on its CPI and SER 122

5.9 Sensitivity of AVF to Memory Latency. 126

5.10 Comparison of CPI and SER of the wide and narrow-issue ma-
chines. 128

xvi

Chapter 1

Introduction

Shrinking process geometries have enabled an exponential increase in

the number of transistors fabricated on a chip, with each successive process

generation. While this process has enabled lower operating voltages and higher

frequencies, it has also made reliability of hardware an increasingly important

design criterion. Radiation induced faults are a significant source of transient

faults in hardware, and the situation is expected to worsen with smaller feature

sizes [1–4].

Transient faults, unlike permanent or hard faults, are temporary in

nature, and disappear once the factor causing the fault disappears. Radiation-

induced faults are transient faults that occur as a result of strikes by energetic

particles such as neutrons from cosmic radiation, and alpha particles from

radioactive trace elements in the packaging materials. A particle of sufficient

energy displaces electrons in the substrate in sufficient number to flip the state

of the storage element, or logic gate. As transistor threshold voltages and

operating voltages reduce, less energy is required to cause a bit flip, making

soft errors a more acute problem in future process generations.

High-end microprocessors have protected large SRAM arrays such as

1

the last-level caches against transient faults with Single-bit Error Detection,

Double-bit Error Correction (SECDED) codes. Increasingly, however, it is

becoming necessary to protect latches and flip-flops in the core as well. For

example, Fijutsu’s 130nm SPARC64 design [5] protects 80% of the latches

with parity bits. IBM POWER7 [6] additionally correct single event upsets

by enabling re-execution of faulting instructions. Such soft-error mitigation

strategies incur significant overheads in terms of performance, power, area

and design effort, necessitating judicious application of these techniques.

Mitigating Soft Errors: Soft errors can be mitigated through changes in

process technology, circuits, microarchitecture, or architecture [7]. Mukherjee

et al. [7] note that while Silicon On Insulator (SOI) technology reduces the

the radiation induced fault rate at the transistor level, it does not completely

eliminate the problem. Circuit-level techniques such as radiation hardened

circuits, or increased transistor sizing can be employed to reduce the suscepti-

bility of individual circuits. However, they incur a significant area and power

penalty. Microarchitecture-level solutions such as parity-based error detection,

and correction or recovery can be utilized. For example, the IBM POWER

7 has features to detect soft errors, and re-execute faulting operations [6].

These techniques protect against faults that are detected early enough such

that re-execution is possible. Naturally, there is a significant overhead for

implementing error detection and recovery circuitry. At a higher level, redun-

dant execution techniques, such as Triple Modular Redundancy (TMR) can be

2

used, in which three pipelines execute the same program in lockstep, and the

output is compared at every cycle. In the event that one processor experiences

a fault, a voting mechanism picks the majority value as the correct one.

Due to the significant overhead in implementing SER mitigation schemes,

it is necessary to balance the need for SER mitigation with performance, power,

area and design effort targets. Two methodologies to address this issue are

presented in this dissertation. A methodology to estimate the worst-case SER

observable while running a realizable workload is developed. This methodology

enables the designer to make informed decisions regarding efficient design for

worst-case SER. Furthermore, a first-order analytical model to estimate SER

is developed. This enables the architect to perform design space exploration,

parametric studies, and workload characterization for soft error vulnerability.

1.1 Modeling the Vulnerability to Soft Errors

Most usage scenarios do not need the high level of error protection af-

forded by techniques such as TMR. In such usage scenarios, the additional

overhead of guaranteeing error-free operation may be undesirable. For exam-

ple, typical servers or consumer devices need to meet a reliability target for

which strategies such as TMR are excessive, and too expensive. For such usage

scenarios, designers would prefer to meet their reliability objectives efficiently,

by protecting a small number of structures in the processor, such that the

overhead of the soft-error mitigation mechanisms is minimized. The design-

ers thus need a methodology to identify the structures that require protection

3

such that the Soft Error Rate (SER) is brought within specifications.

Prior research [2, 8] has shown that masking effects of program behavior

have a significant impact on the visibility of faults to the user. Wang et al.

[8] report that nearly 85% of all the transient faults in the core are masked by

program execution. Different programs stress the microarchitecture differently,

thereby exposing or masking faults at different rates. Furthermore, certain

structures, such as the branch predictor affect only performance, and have

no impact on correctness: a fault in the branch predictor’s history counter

values may affect performance, but not correctness. This suggests that it

is unnecessary to protect every single bit in the processor to bring the SER

within specifications. Therefore, it becomes necessary to model the impact

of program execution on the visibility of the faults, in order to protect the

structures in the processor that are the highest contributors to the overall

SER, such that the overall reliability target is met.

This masking effect of program execution is captured using Architec-

tural Vulnerability Factor (AVF) modeling, which expresses the probability

that a fault occurring in a particular structure will manifest itself as an error

in the program output. Architects use AVF modeling to determine the mask-

ing effect of a set of workloads. The architect may decide to add sufficient

SER mitigation mechanisms such that the observable SER while running a

typical workload is brought within specifications. AVF modeling thus enables

the architect to efficiently select SER mitigation schemes such that the target

SER is met.

4

Statistical Fault Injection (SFI) can be used to compute the AVF of a

structure. Using a Register Transfer Level (RTL) or logic gate-level models of

the processor executing a workload, single faults are injected into a structure

at random instants in time. The average fraction of such injected faults that

manifest as program errors would then be measured to estimate the masking

effect of the workload on the faults in that structure. However, RTL sim-

ulations are time-consuming, and SFI requires a large number of runs with

randomly injected faults, for statistical significance. Furthermore, RTL mod-

els are not available during the early design planning and thus have limited

use in guiding microarchitectural decisions for mitigating soft errors.

In order to move AVF modeling earlier in the design cycle, Mukherjee,

et al. [2] propose Architecturally Correct Execution (ACE) analysis to provide

a conservative estimate of AVF. ACE analysis only requires a single execution

of the workload on a microarchitecture-level performance simulator, which is

orders of magnitude faster than an RTL model. ACE analysis estimates AVF

by capturing the fraction of bits per cycle in a hardware structure that contain

correctness-critical state. ACE analysis is thus a very useful tool in estimating

the efficacy of architecture-level SER mitigation schemes during the early de-

sign phase. It enables the architect to estimate the power, performance, area

and reliability trade-offs of design decisions much earlier in the design cycle.

5

1.2 Motivation

The observable SER of a workload is strongly dependent on the mi-

croarchitecture, workload, and underlying circuit-level fault rates. Different

programs stress microarchitectural structures differently, and hence a change

in the microarchitecture, or underlying circuit-level fault rates alters their

observed SER by different proportions. There has been limited work on an-

alyzing the fundamental program characteristics affecting the masking effect

of program execution. The complex interaction between the microarchitec-

ture and workload imply that simple performance metrics, such as IPC or

cache miss rates do not correlate with AVF. AVF estimation is reliant on

detailed microarchitectural simulations, which report aggregate metrics, but

do not uncover the fundamental factors affecting AVF. A large number of

time-consuming simulations are required to derive some insight on the effect

of parametric or design changes on AVF. Whereas black-box statistical or

machine-learning based methodologies have been proposed [9–11], they rely

on detailed microarchitectural simulations, and provide no insight into the

precise mechanisms influencing AVF. In the following discussion, a motivation

for better understanding the effect of program execution on AVF is presented.

1.2.1 Mitigating the Effect of a Biased Workload Suite

There is no known methodology for selecting workloads for AVF bench-

marking that are demonstrably representative of the entire population of user

workloads. A workload suite that offers adequate coverage on one microar-

6

Worst Case
SER

Scenario
 1

Scenario
 2

SER

Average SER Design Point

Max. Workload
SER

Safety
Margin

Figure 1.1: Choice of the design-point, under different SER coverage scenarios

chitecture and circuit-level fault-rate does not neccessarily do so when either

factor is changed. Therefore, any design decision made based on the AVF

induced by a small set of workloads is potentially biased either towards over-

design, or under-design. This is a common statistical sampling problem: how

does one verify whether the mean of the sample is equal to the mean of the

population? This is made worse by the fact that workloads for AVF evaluation

are not picked through random sampling, but a result of specific choices, and

are hence likely to be biased. Furthermore, AVF simulation requires detailed,

microarchitecture-level simulations, which are computationally intensive. In

order to avoid the prohibitive expense of running the entire workload on a

detailed performance simulator, the designer would typically run short traces

of these workloads, potentially increasing the sampling bias.

Such biases in the workload suite may potentially lead to over-design

or under-design for SER mitigation. An overdesigned processor has a higher

power, performance and area penalty, whereas an under-designed processor

7

may fail to meet its reliability goal. To protect against potential under-design

due to a workload suite biased towards low SER, architects add a guard band,

or safety margin [12]. There is no known methodology for estimating the guard

band. This guard band is often selected based on designer intuition. It may

be very expensive to correct underdesign for SER later in the design cycle, and

it is therefore important to model AVF as accurately as possible during the

early design stages. Figure 1.1 represents two scenarios, assuming a design for

the highest observed SER (other design points are possible, such as average,

median, or a percentile of the workload suite). The arrows depict the range

of SER observed while running the workload suite. Scenario 1 represents

the case in which the workload suite has sufficient SER coverage, and an

additional guard band is unnecessary. Automatic addition of a guard band

will push the design point beyond the maximum attainable SER, leading to

over-design. On the other hand, scenario 2 represents a case in which the

workload suite requires a significant safety margin to guard against potential

under-design, due to the significant gap in its SER coverage, relative to the

worst-case observable SER. The knowledge of the worst-case observable SER

thus allows the architect to pick the appropriate guard band, and to validate

the SER coverage of the workload suite.

Estimating this worst-case observable SER is non-trivial. It is not pos-

sible for every bit in the processor to contain correctness-critical state simul-

taneously, due to complex interactions between the various structures in the

processor. For example, instructions in the rerder buffer will be issued into the

8

load queue, store queue, branch units, or arithmetic units, based on their type.

An increase in instructions of one type will result in a proportionate reduction

in state in the other units. Thus, simply adding the circuit-level failure rates

of all bits in the core would result in gross overestimation. Furthermore, the

circuit-level fault rates of each structure may be different. The same amount

of correctness-critical state in a structure with a higher fault rate is likely to

expose more errors than a structure with a low fault rate. There is therefore

a need for a systematic methodology to develop a workload that maximizes

the visibility of soft errors for a given microarchitecture and circuit-level fault

rates.

1.2.2 Design-time AVF modeling

Detailed microarchitectural simulations have become the mainstay of

computer architecture research and development, due to their relative accuracy

and flexibility. Architects typically use detailed microarchitectural simulations

to study the effect of microarchitectural or parametric changes on AVF, power,

area and performance, in order to determine the best trade-off between these

objectives. However, such simulations can be time-consuming when performed

over a large number of workloads, for a large number of instructions, and

over a large number of microarchitectural configurations. Such simulations

provide aggregate metrics, and it is difficult to draw inferences on the precise

impact of the workload and various microarchitectural parameters on AVF

and performance using these metrics.

9

Additionally, it is time consuming to perform design space exploration

or parametric sweeps for various microarchitectural parameters using detailed

simulation. The simulator masks the precise microarchitectural mechanisms

that influences the aggregate metrics, providing little insight into their under-

lying causes. For example, it is difficult to estimate the efficacy of an SER

mitigation scheme proposed in literature [13], involving the enabling soft-error

mitigation mechanisms in the shadow of a last-level data cache miss, without

implementing this mechanism in the simulator.

Analytical design space methodologies can complement cycle-accurate

simulations for performing experiments, such as parametric sweeps or design

space exploration. The computational simplicity of an analytical model al-

lows the architect to use these models to cheaply explore the design space,

and eliminate infeasible design points, and guide detailed simulations. A well-

constructed analytical model also provides invaluable insight into the mech-

anisms influencing AVF and performance, allowing the designer to make in-

formed design choices. Owing to its simplicity, an analytical model also allows

the architect to study a greater number of workloads, over a larger number of

instructions than may be possible using detailed simulations.

1.2.3 Characterizing Workloads for their Impact on AVF

The precise mechanism of the masking effect of program execution on

the visibility of soft-errors has not been sufficiently studied, making workload

characterization for AVF a significant challenge. Fu et al. [14] report a “fuzzy

10

relationship” between AVF and simple performance metrics. Other statistical

or machine-learning based models [9–11] rely on detailed microarchitectural

simulations and fail to provide insight on the fundamental interaction between

the software and hardware that together determine AVF. Given a workload

and aggregate metrics obtained using microarchitectural simulations, it is only

possible to make very qualitative predictions on its influence on AVF of a struc-

ture. Oftentimes, the interaction between various microarchitectural events

produces results that run counter-intuitive to these qualitative predictions.

The ability to characterize workloads for their influence on AVF allows

the architect to identify workloads that are likely to induce high or low AVF

in a particular structure. This, in turn, enables the architect to validate the

heterogeneity of the workload suite being used to evaluate the Soft Error Rate

(SER). A workload suite with sufficient heterogeneity is essential for enabling

the architect to make correct design decisions for reliability and performance.

1.3 Thesis Statement

The microarchitectural events triggered by the execution of the work-

load influence the architectural vulnerability factor of the structures in a given

microarchitecture. It is feasible to develop an automated methodology that

generates a synthetic workload to exercise these microarchitectural events such

that the Soft Error Rate is maximized. It is also feasible to efficiently model the

architectural vulnerability factor by modeling the impact of these microarchi-

tectural events on the occupancy of correctness-critical program state in these

11

structures.

1.4 Contributions

The challenges outlined in Section 1.2 are addressed through the fol-

lowing contributions:

• Starting with a detailed study of the impact of microarchitecture-dependent

workload characteristics on the occupancy of corruptible state in the

core, an automated methodology for developing a workload that uncov-

ers the worst-case Soft Error Rate (SER) of a given microarchitecture

is developed. First, a systematic methodology to develop a code gener-

ator which takes a set of parameters, or knobs, to produce a synthetic

workload is demonstrated. The knobs control the microarchitecture-

dependent workload characteristics that influence the occupancy of cor-

ruptible state in microarchitectural structures is proposed. Second, the

code generator is interfaced to an iterative, feedback-driven optimization

loop utilizing a genetic algorithm. Upon the convergence of the genetic

algorithm, the optimized workload, called an AVF stressmark, estimates

the worst-case soft error rate.

• It is demonstrated that the stressmark achieves 1.4× higher SER in

the core, 2.5× higher SER in the data L1 cache and TLB, and 1.5×

higher SER in L2 cache as compared to the highest SER induced by

SPEC CPU2006 and MiBench programs for a processor similar to the

12

Profilers
Profile
Data-
base

Workload 1

Workload 2

Workload n

One-time Effort

Micro-architectural
Specifications

CPI,
AVF

. .
 .

Inexpensive
Computation

Model

Figure 1.2: Utilizing the model to perform design space exploration.

Alpha 21264. The flexibility of this methodology across different mi-

croarchitectures, and underlying fault rates, is demonstrated. It is also

demonstrated that näıve estimates of the worst-case, such as adding the

raw circuit-level fault rates of all structures, or adding the highest SER

induced by any workload in the workload suite, on a per-structure basis,

to estimate the worst-case observable SER will lead to significant errors,

and consequently, potential overdesign or underdesign.

• Starting with a comprehensive study of the impact of microarchitectural

events on the occupancy of correct-path state in microarchitectural struc-

tures, a mechanistic modeling methodology that predicts the occupancy

of correctness-critical state in the microarchitecture, using inexpensive

profiling is developed. The modeling methodology is developed from first

principles of out-of-order processor execution, to provide insight into the

precise mechanisms that influence the SER of the microarchitecture ex-

ecuting a given workload. Figure 1.2 presents the general overview of

the modeling methodology. Workloads are profiled to capture important

13

metrics required by the model, which is a one-time effort. Multiple mi-

croarchitectures can then be modeled using the data from a single profile.

The Mean Absolute Error for estimating the AVF for a structure of a 4-

wide out-of-order microarchitecture is less than 7%, and the Normalized

Root Mean Square Error is 9.0%.

• It is demonstrated that this mechanistic model can be used to cheaply

perform design space exploration studies, and evaluate the efficacy of

soft error mitigation mechanisms. The model can be used to study the

impact of design changes on AVF and performance. Due to its construc-

tion, it is able to provide novel insight into the interaction between the

workload and the microarchitecture that together determine the AVF of

a structure.

• It is demonstrated that the mechanistic model can be used to perform

workload characterization for AVF. Using the mechanistic model, the

architect can study a greater number of workloads, for a longer period of

time than might be possible using detailed simulations. The model can

also be used to identify workloads that would induce high or low AVF in

a structure, thereby enabling the architect to validate the heterogeneity

of the workload suite.

14

Acronym or Abbreviation Expansion
ROB Reorder buffer
IQ Issue queue
LQ Load queue
SQ Store queue
RF Register file

ARF Architected register file
PRF Physical register file
FU Functional unit
SB Store buffer
IB Instruction buffer

TVF Timing Vulnerability Factor (Section 2.5)
AVF Architectural Vulnerability Factor (Section 2.6)
SER Soft Error Rate
ACE Architecturally Correct Execution (Section 2.7)
FIT Failure In Time (Section 2.1)

MTTF Mean Time to Failure (Section 2.1)
MTBF Mean Time Between Failure (Section 2.1)
MTTR Mean Time to Repair (Section 2.1)
SEU Single Event Upset
SFI Statistical Fault Injection (Section 1.1, 2.7.4)
IPC Instructions Per Cycle
CPI Cycles Per Instructions

Table 1.1: List of Acronyms or Abbreviations used in this Dissertation.

1.5 List of Acronyms and Abbreviations

A list of acronyms and abbreviations used in this work is presented in

Table 1.1, to aid easy reference. Additionally, the expansion of each acronym

or abbreviation is repeated in each chapter of this dissertation, to aid clarity.

1.6 Organization

Chapter 2 provides a background for the causes of soft errors in modern

microarchitectures, and methodologies to estimate the soft error rate of the

15

processor while running a workload. A background on the first-order mecha-

nistic modeling of performance of a processor, and other work related to the

objectives of this dissertation can also found in Chapter 2. Chapter 3 outlines

the simulators, workloads, and evaluation methodology used in this disserta-

tion. Chapter 4 discusses the methodology to generate an AVF stressmark, its

evaluation, and application towards design for mitigating soft errors. Chapter

5 elaborates on the mechanistic modeling methodology for AVF, its evaluation,

and applications towards design for soft error mitigation. Finally, Chapter 6

summarizes the key results and insights presented in the dissertation, and

proposes the directions for future research.

16

Chapter 2

Background

Radiation-induced transient faults, also known as Single Event Upsets

(SEU), occur as a consequence of strikes from energetic sub-atomic particles,

such as alpha particles and neutrons. Alpha particles are emitted as a result of

radioactive decay of contaminants in the packaging materials. Neutrons that

reach the earth’s surface typically arise as a result of the interaction between

cosmic radiation and the earth’s upper atmosphere. Particles with sufficient

energy may strike silicon to release electron-hole pairs, which may then be

swept into the diffusion region of the transistor in sufficient number so as to

register an incorrect value. The lower the threshold and operating voltages, the

fewer such electron-hole pairs are necessary to cause a fault. This implies that

less energetic sub-atomic particles may cause faults as operating voltages are

lowered in future process generations. Soft errors due to neutron bombardment

tends to increase with altitude. For example, Denver, CO, situated at 5000

feet above sea level experiences nearly 5× more cosmic radiation flux than

New York City, at sea level [15]. Leadville, CO, located at over 10,000 feet

above sea level experiences nearly 13× more cosmic ray flux than New York

City [15].

17

Soft errors have long been a problem in space and avionics applica-

tions, due to the higher rate of bombardment from cosmic radiation. High-

availability and high-reliability mainframes have devoted resources for pro-

tection from soft errors at ground level. However, as operating voltages are

lowered, as a result of shrinking device geometries, and an acute need to re-

duce the power consumption of the chip, soft errors are becoming an issue for

commodity servers as well. A fault that passes out to the program output

without being detected by hardware is termed as a Silent Data Corruption

(SDC). If the hardware is equipped to detect and correct this fault, the SDC

is eliminated. However, if the system is unable to correct the fault, it may

raise an exception, or crash. This is termed as Detected Unrecoverable Error

(DUE). High-reliability and high-avaliability systems aim to minimize SDC,

and reduce the DUE errors.

2.1 Metrics for Reliability

Mean Time to Failure (MTTF) or Mean Time Between Failures (MTBF)

is often used to capture the reliability of a system, and is typically measured

in terms of the number of failures per year. MTBF is defined as the sum of

the MTTF and Mean Time To Repair (MTTR). In other words, MTBF is

the sum of the system uptime, and downtime. IBM Server group specifies

an MTBF for the entire system of 1000 years for SDC, 25 years for system

software crashes, and 10 years for application crashes [2, 12]. Each system will

have multiple CPUs, and other components, that may fail for many reasons

18

in addition to SEUs. Failure in Time (FIT) is often used to express the SER

of a structure, and is a reciprocal of the Mean Time to Failure. Specifically,

FIT captures the number of faults occurring in 109 hours. Thus, 1 FIT is

equivalent to an MTTF of 109 hours.

2.2 Incidence of Soft Errors in Real Systems

There have been numerous studies on the incidence of soft errors at

or near ground level for SRAMs and DRAMs [3, 15–17]. In 2000, Sun Mi-

crosystems reported that the error protection scheme implemented for their

SRAM chips on their UltraSPARC II-based servers was insufficient to han-

dle soft errors [18]. In 2005, Hewlett-Packard reported that their 2048-CPU

ASC-Q supercomputer installation at Los Alamos National Laboratory, lo-

cated 7000 feet above sea level, had frequent crashes due to soft errors in its

parity-protected board-level cache tag array [18, 19]. With the lowering of

operating voltages and more state on chip as a result of complex pipelines, a

greater number of latches, flip-flops, and logic are vulnerable to particle strikes,

making the processor pipeline vulnerable to soft errors [2, 12, 20–22].

When a large number of such processors are used, such as large data-

centers, or supercomputer installations, the combined effect of such faults be-

comes especially acute. Owing to their regular structure, SRAMs and DRAMs

are easier to protect with error detection and correction codes. However, the

processor pipeline, or core, has unstructured logic, latches, and flip-flops, which

are difficult to protect thus, without incurring significant power, performance,

19

and area penalties. Fortunately, not all faults occurring in the core necessarily

result in soft errors due to masking at the circuit-level, microarchitecture-level,

or program-level. Masking of faults may occur due to program characteristics,

underutilization of structures in the core, or due to structures that do not

contribute to program correctness, such as the branch predictor.

2.3 Modeling Intrinsic SER

This section provides a brief overview of the raw SER estimation method-

ologies for a bit or circuit element. The first step is to determine the critical

charge (Qcrit) for the transistors in the circuit. Qcrit is defined as the mini-

mum charge produced by an incedent neutron or alpha particle, necessary to

flip the state of the transistor. Qcrit can be determined from simulation, such

as SPICE models, or empirically, by exposing a circuit to elevated levels of

neutron and alpha particle bombardment. One of the models used to compute

the circuit level fault rate is the Hazucha and Svensson model [23], and is

expressed as

Circuit SER ∝ Flux× Area× e−
Qcrit
Qcoll

where Flux, Area, and Qcoll refer to the neutron or alpha particle flux, ex-

posed circuit area, and collection efficiency, respectively. Qcoll is defined as the

fraction of charge generated by a particle strike that was collected by the tran-

sistors and is determined emperically. Qcrit, Qcoll and Area generally decrease

with each new process generation, at different rates for combinatorial, latch

and SRAM circuits. Sivakumar et al. [20] find that combinatorial circuits

20

will see a significant increase in SER, latches will experience some increase in

SER, and SRAMs will experience negligible increase in SER with each process

generation.

2.4 Masking Effect of the Circuit on SER

Combinatorial logic gates result in three kinds of masking [18, 20, 24].

Logical masking occurs if the particle strike affects a portion of the circuit that

has no bearing on the output of the gate. For example, a bit flip on one input

node of an AND gate, when the other input node is set to 0, is logically masked.

Electrical masking occurs as a result of attenuation of the pulse created by the

particle strike as it propagates through the combinatorial logic, such that it is

supressed before it reaches the output of the circuit. Latch window masking

occurs if the Single Event Upset (SEU) pulse reaches a latch outside its setup

and hold time. These factors can be estimated using a simulator, such as

SPICE [20].

Timing Vulnerability Factor (TVF), also referred to as timing derating

[12], captures the fraction of time for which a circuit is vulnerable to SEUs

[18].

Sivakumar et al. [20] note that technology scaling rapidly reduces the

size and Qcrit of logic gates, as compared to SRAM cells, making them more

vulnerable in future process generations. Additionally, electrical masking in

logic circuits will decrease in future generations, resulting in increased SER due

to the core. Furthermore, in high frequency designs, the ratio between setup +

21

hold time of latches and flip-flops as compared to the clock period is not small,

resulting in a larger TVF [12]. Consequently, Nguyen and Yagil [12] predict

that the SER contribution due to static combinatorial circuits will become

comparable to that of latches in future process technologies. Sivakumar et al.

predicted an exponential increase in the SER due to combinatorial circuits,

under the assumption of aggressive processor pipelining with each process

generation. Power constraints have meant that very deeply pipelined designs

such as the Intel Pentium 4 have fallen into disuse, hence the exact rate of

increase is unclear, and is not as much of an issue as predicted. Nevertheless,

the pipelines in current processors are generally deeper than those dating back

to the late 1990’s or early 2000’s, with the notable exception of the Intel

Pentium 4.

2.5 Masking Effect of Program Execution on SER

The execution of a program on the microarchitecture also determines

what fraction of SEUs manifest as errors at the output. Program execution

is ultimately the cause of logical masking at the circuit level. Program execu-

tion also determines the utilization of structures, and whether a computation

affected by an SEU is necessary for correctness of the program. A fault in a

storage element at a time when it is not being used, such as an unused entry in

the ROB, will not propagate to the output, and is therefore masked. A fault

in the unused 32 bits in a 64-bit register holding a 32-bit value will be masked.

The former case is considered a time component of masking, wheareas the

22

latter case is a space component of masking of an active entry [12]. Modern

microprocessors contain a significant amount of state devoted to structures

that do not affect correctness of the program, but only enhance performance.

For example, a fault in an entry of the branch predictor’s history table or the

Branch Target Buffer may lead to an incorrect control path being fetched.

However, this would be detected when the branch is executed, and corrected

by discarding the wrong-path instructions, and fetching from the correct path.

This speculative execution is a common feature in modern microproces-

sors, and creates masking effects of its own. For example, the branch predictor

may predict the branch to be taken, whereas the correct control flow of the

workload requires it not to be taken. Upon the detection of this “mispredic-

tion”, the instructions fetched from the wrong path (i.e., the taken path) must

be discarded. Any fault affecting the instructions in the wrong path will never

be committed to the program output, and is hence masked.

Instructions in the workload may also result in masking. For example,

NOPs do not affect the result of computation. Therefore, other than the bits

that identify the NOP (corresponding to its opcode), a fault in a NOP entry

will be masked. Compilers also introduce instructions to enhance performance

that may be dynamically dead. For example, a load instruction may be hoisted

past a conditional branch to hide some of its latency, but may be used only

along one branch path. If the other branch path is taken, the loaded value

would be dynamically dead. Similarly, a function from a dynamically linked

library may return a value that is never read, and hence dead. Butts and Sohi

23

[25] show that 3-16% of dynamic instructions are dead. Instructions whose

values are not consumed are called First Level Dynamically Dead (FDD).

Transitively Dynamically Dead (TDD) instruction values are used only by

FDD instructions, or other TDD instructions. This is equally applicable to

memory operations: stores whose values are subsequently overwritten before

they are read are dynamically dead. As the values of these instructions do not

affect the output of the program, their correctness is not critical.

Logical masking could occur at the program level. For example, an

operation such as R3 = R1 AND 0x00FF only retains the lower 8 bits of R1 and

clears the rest, implying that a fault in the higher order bits is masked. Some

Instruction Set Architectures (ISA) support predication. Predication attempts

to reduce the branch misprediction penalty of hard-to-predict branches by

converting a control dependence into a data dependence. Predication makes

the execution of an instruction dependent on (or predicated on) the status of

a predicate register, set by the branch condition evaluation instruction when

it evaluates to true. Instructions for which the predicate register evaluates to

false are discarded, thereby masking faults in their results.

2.6 Architectural Vulnerability Factor

Architectural Vulnerability Factor (AVF) expresses the probability that

a user-visible error will occur, given a Single Event Upset (SEU) in a bit or

storage element [2]. AVF is analogous to derating, or logic derating [12], error

cross-section and residency [26], which are terms used depending on the level

24

of analysis, or institution. This dissertation will consistently use the term

AVF. AVF is a property of a hardware bit in a structure, and can be used to

compute its soft error rate as follows:

SERbit = AV Fbit × TV Fbit × intrinsic fault ratebit (2.1)

where TVF refers to the Timing Vulnerability Factor (see Section 2.4). The in-

trinsic fault rate is estimated using experimental, or simulation methodologies,

such as those outlined in Section 2.3.

The SER of each bit in a chip is aggregated to compute the overall

SER for the chip, while running the workload. This method to estimate SER

is therefore also called AVF+SoFR, where SoFR stands for Sum of Failure

Rates.

2.7 ACE Analysis

AVF expresses the probability that a radiation-induced fault in a bit

in a hardware structure will be observable at the output. The computation

of AVF requires the determination of whether the corruption of a value con-

tained in the bit will affect the correctness of the program. The greater the

fraction of time for which the bit-cell in hardware holds critical values, the

lesser is the masking of faults affecting the bit-cell. Although it is possible to

determine AVF of a bit in a structure using Statistical Fault Injection (SFI)

on a gate-level, or Register Transfer Level (RTL) model, this methodology

requires a large number of simulations for statistical significance, and is there-

25

fore time-consuming. Additionally, RTL models are unavailable during early

design planning. Mukherjee et al. [2] propose ACE analysis in order to al-

low conservative AVF estimation during the early design phase. ACE analysis

requires only a single execution of a workload on a microarchitectural model,

which is significantly faster than SFI.

2.7.1 Architecturally Correct Execution (ACE) Bits

Mukherjee et al. term bit values — induced by a workload in a structure

— whose correctness is essential for the correctness of the program, as Archi-

tecturally Correct Execution bits or ACE bits [2]. An ACE bit is one whose

correctness is required for the correctness of the program. A bit could be ei-

ther microarchitecturally or architecturally ACE. A microarchitectural ACE

bit is not architecturally visible, but its correctness is nevertheless required.

For example, the head and tail pointers of the ROB or IQ are microarchi-

tecturally ACE, as any corruption in their contents would lead to incorrect

execution of the program, even though the programming model is oblivious

to their existence. On the other hand, architecturally ACE bits are directly

visible to the programmer, and any corruption in their state may result in

incorrect execution. These include corruption in data resident in the ROB,

issue queue, register files and caches.

Conversely, Mukherjee et al. term bits that are not critical to program

correctness as un-ACE. Microarchitecturally un-ACE bits could result from

bits that represent unused or invalid state, bits discarded as a result of mis-

26

speculation, or bits in predictor structures. Architecturally un-ACE bits are a

direct result of the instructions in the binary. Examples of these include NOPs,

software pre-fetches, predicated false instructions, and dynamically dead in-

structions. Other than the few bits that are critical for these instructions to

be decoded correctly, the bits for both these instructions are un-ACE.

Whether a bit is ACE or not in cache structures depends on the nature

of reads and writes to that structure. For example, a store to a location that

has been affected by an upset will overwrite the corrupted data; the location,

during the period of time leading up to the write, is therefore un-ACE. On the

other hand, a load from a location affected by a fault will bring in corrupted

data into the processor. Assuming that this load itself is ACE, this location

in the cache is also ACE. Biswas et al. [27] introduce the concept of lifetime

analysis to determine the ACE-ness of a cache structure. Assuming a writeback

cache, a cache-line is ACE between Fill ⇒ Read, Read ⇒ Read, Write ⇒ Read

and Write ⇒ Evict.

For Content Addressible Memory (CAM) arrays, assuming a single bit

upset model, a corrupted entry could be mistaken for another, if they differ

in only one bit position, or Hamming distance of one. Therefore, a per-bit

lifetime analysis is performed only on such bits.

27

2.7.2 Computing AVF using ACE Analysis

Mukherjee et al. formally define AVF of a structure of size N bits, as

follows:

AV Fstructure =
1

N
×

N∑
i=0

(
ACE cycles for bit i

Total Cycles

)
(2.2)

AVF of a structure may thus be expressed as the average number of ACE bits

per cycle divided by the total number of bits in the structure. The AVF is

multiplied by the circuit-level fault rate (i.e., TV F × instrinsic fault rate)

to estimate the SER of the structure. The SER of each structure in the chip

is added, to compute the overall SER of the chip.

ACE analysis is intended to provide a conservative estimate of AVF

during early design planning. Thus, it assumes a bit is ACE unless it can

be proven otherwise. Similarly, it will make the most conservative assumption

regarding the circuit-level masking of soft errors. Additionally, it assumes that

the soft error rate is low enough such that the probability of multiple radiation

strikes affecting the same bit value or instruction is negligibly small, when

used to estimate SER. This is generally true in terrestrial applications, but

may overestimate SER under elevated levels of radiation, such as accelerated

bombardment of the chip in radiation chambers. Nevertheless, it provides a

good estimate of the occupancy of corruptible state in the processor.

It should be mentioned that classical reliability analysis has been ap-

plied to computational reliability, at a circuit level. Assuming that errors are

exponentially distributed with a constant failure rate λ, the reliability of that

28

component over a time period of t is modeled as R(t) = e−λt. While this

model may help estimate the fault rate of each bit, it is unclear whether the

distribution holds after the masking effect of logic and program execution is

considered [22, 28]. Therefore, using a methodology called SoftArch, Li et al.

[22] use the exponential failure rate model to estimate AVF, in a manner sim-

ilar to ACE analysis. The key difference is that ACE analysis is a point of

strike model, directly measuring AVF of the bit based on whether the bit value

will eventually affect the output, whereas SoftArch propagates the probability

of a fault until it reaches the output through a store operation to memory

and then computes the Mean Time to Failure (MTTF) based on the aggre-

gate probabilities of faults of each operation that led to the output. AVF of a

structure is then computed using the MTTF.

2.7.3 Limitations of ACE Analysis

ACE Analysis has limitations, owing to its conservatism in computing

SER, lack of detail in the the microarchitectural model, and the sum-of-failure

rate methodology under certain circumstances. These are outlined below:

• Practical Memory Limitations: In theory, ACE Analysis should track

instruction dependencies across registers, memory and even I/O de-

vices, such as the disk. In practice, such tracking would require massive

amounts of memory, and is therefore impractical. Therefore, a scope is

defined, and any instruction that crosses this scope is considered to be

ACE. For example, if the scope is defined as the CPU-memory interface,

29

then all stores to memory are ACE unless demonstrated otherwise. If

the scope is extended to include the memory, such that all operations

crossing the memory-I/O device interface are ACE, it is possible that

instructions and bits that were earlier considered ACE would be un-

ACE. In this dissertation, the scope is defined to be the CPU-memory

interface, using a methodology similar to that used by Mukherjee et al.

[2]. Memory and register dependencies are tracked over a sliding window

of 50,000 instructions to limit the memory requirement of ACE analy-

sis. Each bit is assumed to be ACE unless it can be proven otherwise.

Doubtless, this introduces conservatism to the SER estimated using ACE

Analysis. This limitation is shared with other performance-model based

methodologies such as SoftArch [22].

• Conservatism due to the Microarchitectural Model: Wang et al. [29]

show that AVFs computed using a less detailed performance model may

overestimate the resultant SER by two or three times, as compared to

Statistical Fault Injection (SFI). As a rebuttal, Biswas et al. [30] show

that this detail is easily added, minimizing the overestimation of SER.

Additionally, ACE analyis approximates program behavior in the pres-

ence of faults; faults that change the behavior of the processor are not

modelled. Wang et al. [29] claim that another potential reason for the

overestimation of SER using ACE Analysis may be due to so-called “Y

branches”. In earlier work, Wang et al. [31] report the existence of

branches that may be forced down the wrong path due to a transient

30

fault, but would eventually reconverge with the correct path without

affecting the correctness of the output. They refer to such branches as

“Y branches”. ACE analysis conservatively assumes all branches to be

ACE, and will execute correct path instructions. Thus, it does not ac-

count for such behavior. It is expected, however, that such branches are

relatively infrequently observed [18, 30], but can be accounted for using

additional analysis. This limitation is shared with other methodologies,

such as SoftArch [22].

• Sum of Failure Rates: Using SoftArch, Li et al. [28] argue that ACE

analysis will overestimate the SER in systems with an extremely large

number of components (such as tens of thousands of processors), or at

extremely high flux density of particle bombardment (such as in a ra-

diation chamber), or workloads with extremely long phases that are ex-

tremely different from one another. They acknowledge that for typical

applications, ACE analysis provides is accurate. The potential cause of

this discrepency is due to the occurrance of multi-bit faults. A single

entry in a structure may be hit multiple times over its lifetime under

elevated levels of radiation, and ACE analysis is unable to account for

temporal multi-bit faults (a limitation shared with SoftArch). Sum of

Failure Rates assumes that the faults in each structure are independent

of those in other structures. It is possible, however, that faults in mul-

tiple different structures combine to produce only one error. Due to

the propagated fault model used in SoftArch, it is able to account for

31

the joint probability of multiple faults affecting a single output value,

whereas Sum of Failure Rates cannot. Nevertheless, for practical pur-

poses, the conservativeness of ACE analysis and sum of failure rates may

be sufficient.

The conservatism of ACE analysis in determining SER is still reason-

able if the designer is interested in bounding SER. ACE analysis is utilized

in this dissertation to estimate the occupancy of corruptible state in the core,

and not to measure the actual SER. For the former purpose, ACE analysis is

accurate. SoftArch, or any other methodology may be used instead of ACE

analysis to achieve the same objectives.

2.7.4 Limitations of SFI

It is also pertinent to note the limitations of more direct methods such

as Statistical Fault Injection using RTL models. SFI overcomes some of the

limitations of ACE analysis, or SoftArch, due to its low-level detail, but in-

troduces some of its own. Due to the onerously long runtimes (orders of

magnitude slower than performance models), and the need to perform mul-

tiple simulations for statistical significance, a workload is simulated only for

1,000 – 10,000 cycles [18]. It often takes much longer for a fault to propagate

to the program output, so that can be confirmed that it will not be masked. In

contrast, microarchitectural models are run for billions of cycles, providing a

better view of this masking effect. Additionally, SFI will run two copies of the

RTL simulation: one fault-free, and the other into which faults are injected,

32

and the output is compared to detect the incidence of a fault. At the end of

this relatively short simulation, all mismatches in state, whether architectural

or microarchitectural must be conservatively treated as if they are errors (i.e.,

ACE). Some of these errors may be masked due to future operations in the

workload, but practical limitations obviate the long simulation time required

to establish this fact. SFI may thus be reasonable to conservatively compute

the AVF of structures such as pipeline latches, in which the faults quickly be

propagated to the registers, or get masked. For structures such as caches or

register files in which a faulty value can remain for a long time before man-

ifesting as an error, or being masked, SFI may result in pessimistic results.

As noted earlier, RTL models are available only after the design has been fi-

nalized, and implemented, making it a poor choice for early design planning.

The cost of changing the architecture at this stage to improve reliability may

be excessively high.

2.8 Mechanistic Modeling of CPU Performance

Karkhanis and Smith [32] devise a first-order analytical model for es-

timating the performance of an out-of-order processor, which is refined by

Eyerman et al. [33] using interval analysis. Eyerman et al. [33] report a 7%

error in estimating Cycles Per Instruction (CPI) on a 4-wide machine. Inter-

val analysis models the program execution as an ideal, miss-free execution,

interrupted by miss events that would disrupt the dispatch of instructions, as

33

Branch
Misprediction Data L2 miss L1 I-cache miss

D
is

pa
tc

h
R

at
e

D

Execution Time
Branch

Misprediction
Penalty

L2 miss penalty L1 miss
penalty

Figure 2.1: Interval Analysis for Modeling Performance.

illustrated in Figure 2.1. In the absence of any miss events, the processor is

able to dispatch instructions at the maximum dispatch rate D1. The stall-free

or ideal execution represents the case in which the processor has no stalls due

to miss events. This dissertation uses the term instruction window to refer to

the instructions in flight, or the ROB. The following discussion is intended to

provide the reader with a basic understanding of Interval Analysis.

Each miss event interrupts the dispatch of instructions until it resolves.

An interval begins with the resolution of an earlier miss event, and ends just

before the resolution of the next miss event, penalizing the performance of the

processor in proportion to its miss penalty. As an out-of-order processor can

extract Memory-Level Parallelism (MLP), and nearly all of the latency of the

overlapped miss is hidden behind that of the non-overlapped data L2/TLB

miss, it is sufficient to count only the non-overlapped data L2 and TLB miss

1Note that D may be less than the peak designed dispatch width if the program lacks
sufficient inherent Instruction Level Parallelism (ILP).

34

cycles towards estimating performance, for a given instruction window size.

Shorter latency data cache miss events that cannot individually stall the pro-

cessor, such as a data L1 cache miss that hits in the L2 cache can be modeled in

the same manner as arithmetic instructions. The branch misprediction penalty

for an out-of-order processor is modeled as the sum of the front-end pipeline

depth, and the branch resolution penalty. The branch resolution penalty is

the number of cycles between the mispredicted branch entering the instruction

window, and the misprediction being detected. The following section explains

each event or interval in detail.

2.8.1 Steady State, or Ideal Execution

Given an instruction window of size W , the total number of cycles taken

to execute all instructions in the instruction window is a function of the latency

of executing the critical dependence path. The average critical dependence

path length K(W) for a given program being executed by a processor with

instruction window size W is modeled as K(W) = 1
α
W 1/β [32, 34] where α

and β are constants that are determined by fitting the relationship between

K(W) and W to a power curve. This analysis is performed assuming that all

instructions have unit latency. Therefore, given an average instruction latency

l, the critical path would require l.K(W) cycles. Using Little’s law, the ideal

Instruction Level Parallelism (ILP), or Instructions Per Cycle (IPC) (i.e., I(W)

) that can be extracted from the program given an instruction window of size

35

W is presented in Equation 2.3 [32, 34].

I(W) =
W

l.K(W)
=
α

l
.W (1−1/β) (2.3)

Setting β to 2 in Equation 2.3, the available ILP for a given workload

has a quadratic relationship with the instruction window size [34]. Earlier

studies by Riseman and Fisher [35] emperically obtain this approximately

quadratic relationship. For the SPEC CPU2006 workloads in this dissertation,

β varies between 1.24 and 2.40. The larger the value of β, the shorter the

critical dependency path K(W), and greater the available ILP.

The workload is profiled using a functional simulator, over a range of

instruction window sizesW to determine the corresponding critical dependence

path length K(W). The profiler sweeps over the entire length of the workload

using a sliding window of size Wmax, simultaneously recording statistics for all

instruction window sizes, from 1 to Wmax. This profiling is a one-time effort

for each workload. This relationship between K(W) and W over a range of

instruction window sizes is fitted to a power curve to obtain α and β.

2.8.2 Non-Overlapped Long-Latency Data Cache Misses

Non-overlapped last-level cache misses or data Translation Lookaside

Buffer (TLB) misses can stall the dispatch of intstructions until they are re-

solved. Each non-overlapped miss blocks the dispatch of instructions for a pe-

riod of time equal to its miss penalty. In order to determine the non-overlapped

last-level data cache or TLB misses, the workload is profiled using a cache sim-

36

ulator, over a range of instruction window sizes, in a single pass, using a sliding

window similar to that for estimating K(W). The number of non-overlapped

data L2 and TLB misses are recorded for each window size. Thus, the profile

only needs to be rerun if the cache hierarchy is changed. Fortunately, the

number of practical cache hierarchies possible is limited.

2.8.3 Branch Misprediction Penalty

Branch misprediction penalty can be considered as the cost of oppor-

tunity of an incorrectly predicted branch. All instructions fetched after the

mispredicted branch are incorrect, and hence the pipeline is flushed after the

branch is detected, and the pipeline is refilled from the correct path. Thus, the

branch misprediction penalty is equal to the sum of the branch resolution time

and the pipeline refill penalty. Pipeline refill penalty is equal to the front-end

pipeline depth. The branch resolution time is the amount of time between

the branch entering the instruction window, and the misprediction being de-

tected. Karkhanis and Smith [32] show that, assuming an earliest-first issue

policy, the mispredicted branch is among the last correct-path instruction to

be executed, and that the impact of issual of wrong-path instructions on the

branch resolution time is minimal. Karkhanis and Smith estimate the branch

resolution time as a leaky bucket algorithm2 in which correct-path instructions

2The leaky-bucket algorithm is so called, because it parallels the behavior of a bucket full
of water with a small hole at the bottom. The pressure at the hole is maximum when the
bucket is full, and hence the volume of water leaving the hole is large. As the bucket drains,
the pressure at the hole decreases, and the volume of flow out of the hole also decreases.

37

are continually being drained from the pipeline until the misprediction is de-

tected, triggering a pipeline flush. For a designed dispatch width D, setting

I(W) = D in Equation 2.3, the number of instructions in flight during ideal

execution is as follows:

W (D) =

(
l.D

α

) β
β−1

(2.4)

At clock cycle t = 0, when the mispredicted branch instruction enters

the instruction window, there are Wt=0 = W (D) instructions in flight dur-

ing ideal execution. During each subsequent cycle, D instructions are issued,

reducing the number of unissued correct-path instructions in flight, and thus

Wt=1 = Wt=0 −D. The issued instructions will quickly be retired (under the

assumption of ideal, or miss-free execution). Wt=1 is substituted into Equa-

tion 2.3 to determine I(Wt=1). If I(Wt=1) ≥ D, then D more instructions

are issued in the subsequent cycle, and the process repeats. Note that due

to the earliest-first issue policy, correct-path instructions are prioritized to be

issued over wrong-path instructions. At some stage, the number of correct-

path instructions in flight becomes less than the minimum number necessary

to support the designed issue/dispatch width. Therefore, applying the formula

Wt=n+1 = Wt=n −min(D, I(Wt=n)) iteratively until only one correct-path in-

struction remains in the pipeline, the branch misprediction penalty is modeled

using this leaky-bucket algorithm. Eyerman et al. [33] refine this modeling by

considering the clustering of mispredicted branches. A branch misprediction

that occurs immediately after another branch misprediction will have fewer

instructions in flight when it enters the instruction window, and hence lower

38

Abbreviated Event Definition
Event Name

ideal Steady-state execution, in the absence of instruction-cache misses,
branch mispredictions or long-latency data cache misses

brMp Branch Mispredictions
IL1Miss L1 I-cache misses that hit in L2
IL2Miss I-cache misses that also miss in L2
ITLBMiss ITLB misses
DL2Miss Non-overlapped data L2 cache miss
DTLBMiss Non-overlapped data TLB miss

Table 2.1: Definition of Events for Interval Analysis

misprediction penalty.

Branch misprediction statistics can be computed using a simple branch

predictor profiler. In practice, there only are a limited number of reasonable

branch predictor configurations possible.

2.8.4 Instruction Cache and TLB misses

Instruction cache (I-cache) misses and TLB misses interrupt the dis-

patch of instructions. As the time required to drain the front-end pipeline is

roughly equal to the time required to refill it after the I-cache miss resolves,

the miss penalty of an I-cache or I-TLB miss is equal to its latency. I-cache

and I-TLB miss count can be determined through simple cache simulation.

2.8.5 Estimating Cycles Per Instruction

The total number of cycles for executing a program is modeled as

Ctotal = Cideal + CIL1Miss + CITLBMiss + CbrMp + CDL2Miss + CDTLBMiss. The

39

expansions of the abbreviated event names in the subscript can be found in

Table 2.1. Miss events that would not interrupt dispatch, such as data cache

hits, are modeled similar to arithmetic instructions. The model assumes a

balanced microarchitecture design; specifically, that the processor would not

frequently stall in the absence of miss events, while running typical workloads.

Karkhanis and Smith [32], and Eyerman et al. [33] demonstrate that it is

sufficient to model these intervals as being independent of one another, with

little loss in accuracy. This key simplifying assumption does not hold true

for occupancy. For example, a mispredicted branch that is dependent on an

L2 data cache miss significantly reduces the occupancy of correct-path bits in

the shadow of the L2 miss, and is non-trivial to estimate using the existing

interval analysis model or aggregate metrics.

A single profile can be used to perform parametric studies on ROB size,

issue width, and the latencies of instructions, caches, TLBs and main memory.

If the cache hierarchy or the branch predictor is changed, the corresponding

profiler would need to be rerun. As noted earlier, there are only a limited

number of practical cache hierarchies and branch predictors, and once the

database is populated, all estimations of Cycles Per Instruction (CPI) are

nearly instantaneous.

2.9 Related Work

This section contrasts prior attempts at estimating the worst-case SER

due to program execution, with the AVF stressmark generation methodology

40

presented in this dissertation. Prior work on modeling the AVF of a mi-

croarchitecture are also presented, and contrasted with the mechanistic model

presented in this dissertation.

2.9.1 Estimating the Worst-Case Observable SER

There has been some prior work on attempting to increase the visibility

of radiation induced faults at the program output. Kellington et al. [36] and

Sanda et al. [37] study the soft-error tolerance of the IBM POWER6 proces-

sor under a radiation beam. They use a proprietary validation software called

Architectural Verification Program (AVP) which injects random instructions

into the core, and detects errors on the fly. They report that AVP injects

roughly 20% un-ACE bits, and mainly exercises the core and not the caches.

Due to the proprietary set-up of AVP, the extent to which it exercises the core

is unkown, but it is reasonable to expect that completely random injection

of instructions, even if they were all ACE, would likely not maximize the cor-

ruptible state resident in the processor.The precise factors affecting occupancy

of state in the processor to estimate the maximum occupancy of corruptible

state is developed and presented in this dissertation. It is therefore extremely

unlikely that AVP would chance upon the exact combination of factors that

maximize the visibility of soft errors. Even with the incorporation of a ma-

chine learning methodology, a systematic approach, such as the one presented

in this dissertation, would be superior in terms of convergence time, and confi-

dence in the result. Circuit level techniques have been proposed, such as work

41

by Sanyal et al [38–40]. However, this does not consider the masking effect of

program execution, and cannot be used during the early design stage.

Joshi et al. [41], Polfliet et al. [42], and Ganesan et al. [43, 44] utilize

genetic algorithms to develop stressmarks for power and thermal stressmarks.

Their methodology cannot be directly used for AVF, since it has no means of

capturing ACE and core or cache occupancy. Furthermore, they rely on mi-

croarchitecture independent program characteristics, which are not not useful,

since AVF is strongly dependent on microarchitecture. The AVF stressmark

methodology creates a code generator that is expressly designed for generating

an AVF stressmark, by working from first principles. Consequently, most of

the knobs used, and the nature of the code generator, are significantly different.

Other methodologies to estimate AVF, such as SoftArch [22], or Pro-

gram Vulnerability Factor (PVF) [45] and Hardware Vulnerability Factor (HVF)

[46], may be utilized instead of ACE Analysis, to compute the Soft Error Rate

(SER) of a given microarchitecture. These methodologies by themselves can-

not be used to estimate the worst-case SER, as they are themselves dependent

on workloads, just as is the case with ACE analysis.

2.9.2 Analytical Modeling of AVF and SER

Mukherjee et al. [2] use Little’s Law as a high-level technique to es-

timate occupancy of state in the structure; however, this methodology still

requires detailed simulation to extract the Instructions Per Cycle (IPC) and

the average latency of each correct-path instruction in each structure. Com-

42

puting the latter from profiling is non-trivial for an out-of-order processor due

to overlapping of some execution latencies, and dependence on the latencies

of other instructions in that structure. Furthermore, it fails to provide insight

into the fundamental factors affecting the occupancy of correct-path state be-

yond aggregate metrics.

As AVF represents the combined effect of the workload and its inter-

action with the hardware, Sridharan and Kaeli [45] attempt to decouple the

software component of AVF from the hardware component through a micro-

architecture-independent metric called Program Vulnerability Factor (PVF).

PVF has been shown to model the AVF of the Architected Register File using

inexpensive profiling. However, for estimating the AVF of other structures,

their methodology relies on the estimation of Hardware Vulnerability Factor

(HVF) [46], which in turn requires detailed simulation, and thus provides less

insight than a well constructed mechanistic model. Sridharan and Kaeli have

shown that HVF correlates with occupancy of structures such as the ROB,

and hence it is expected that the mechanistic modeling methodology presented

herein can be used to model the HVF of the applicable structures.

Fu et al. [14] report a “fuzzy relationship” between AVF and simple

performance metrics. Therefore, black-box statistical models for AVF that

utilize multiple microarchitectural metrics have been proposed by Walcott et

al. [9] and Duan et al. [10] for dynamic prediction of AVF. These models use

metrics such as average occupancy, and cumulative latencies of instructions in

various structures as inputs to the statistical model. However, these metrics

43

are not available without detailed simulation. Cho et al. [11] utilize a neural-

network based methodology for design-space exploration, and use it to model

AVF of the Issue Queue. As each workload is associated with its own neural

network model, training it would potentially require a significant amount of

detailed simulations. All these models combine the software and hardware

component of AVF, and do not uncover the fundamental mechanisms influ-

encing AVF, thereby providing less insight than the approach presented in this

dissertation. As the methodology presented herein derives the factors affect-

ing AVF from first principles that explicity models this fuzzy relationship, it

enables the architect to identify the precise cause of high or low AVF in a

particular structure, and characterize workloads for AVF.

44

Chapter 3

Methodology

This chapter provides an overview of the simulators, workloads and

evaluation methodology used in this dissertation.

3.1 Simulators

Two simulators that simulate microarchitectures using the Alpha ISA

are used to produce the data presented herein. SimSoda [47] simulator per-

forms ACE analysis and is built on top of the SimAlpha [48] simulator. SimAl-

pha models the Alpha 21264 microarchitecture in great detail, and has been

validated for integer microbenchmarks against an Alpha 21264 processor. How-

ever, it lacks flexibility and models features that are unique to the microar-

chitecture of the Alpha 21264. Therefore, SimpleScalar [49] is used when a

more generic and flexible microarchitecture model is required. SimpleScalar,

however, models the ROB, IQ and RF in a single structure called the Regis-

ter Update Unit (RUU). It also implements a unified Load and Store Queue

(LSQ). As modern microprocessors do not use a unified RUU, instead prefer-

ring a separate ROB, IQ and register file, the simulator needs modification to

be representative of current microarchitectures. Additionally, many microar-

45

chitectures implement a separate load queue and store queue. The results

presented in this disseration using SimpleScalar are generated using a modi-

fied version of the simulator that implements separate ROB, IQ, RF, LQ and

SQ.

3.2 ACE Analysis

In order to compute the AVF of a structure using ACE analysis on a

performance simulator using Equation 2.2, the performance simulator must

provide the sum of residence cycles for ACE bits in that structure, the total

number of elapsed cycles of execution, and the total number of bits in the

structure. Performance models provide the total number of elapsed cycles,

and the number of bits in the structure is known at design time. Therefore,

ACE analysis only requires the additional task of computing the residence

cycles of ACE bits in the structure.

In order to determine the residency of ACE bits in the structure, the

performance simulator counts the number of cycles for which an instruction is

resident in the structure. The instruction may then be committed eventually,

or quashed as a result of a misprediction. If the instruction is committed, it is

put into a post-commit analysis window that tracks whether the instruction is

dynamically dead, or is logically masked. This post-commit analysis window

may be thousands of instructions in size; a window size of 50,000 instructions is

assumed. Mukherjee [18] states that a window of a few thousand instructions

is sufficient to capture most of the dynamically dead instructions, and logical

46

masking.

The post-commit analysis window maintains a list of instructions to be

analyzed, along with their corresponding per-structure residence cycle counts,

and a table specifying producers and consumers of each instruction within

the analysis window. Instructions are inserted into the analysis window at

commit-time in program order, and instructions that are older than the size

of the analysis window are removed. When a dynamically dead instruction is

found, all instructions that exclusively depend on dynamically dead instruc-

tions are also marked dynamically dead. Instructions that are removed from

the analysis window are then checked for ACE-ness; if they were not dynami-

cally dead or masked, the residence cycle count for each structure is added to

the ACE cycle counter corresponding to that structure. Thus, the methodol-

ogy assumes that each instruction is ACE unless it can be proven otherwise.

Additional detail may also be added to ACE analysis at the bit level granu-

larity, for increased accuracy. For example, branch instructions do not require

a destination register specifier, and thus, the fields in the ROB that corre-

spond to the destination register specifier are not ACE. As discussed earlier

in Chapter 2, addition of such detail reduces the overestimation of AVF [30].

3.3 Genetic Algorithm

Genetic Algorithms (GA) are global optimization heuristics used to find

optimal solutions to complex problems. Genetic algorithms mimic biological

systems in nature. Using the principles of natural selection, biological systems

47

seek to improve the quality of their gene pool. Genetic algorithms similarly

evolve an optimal solution from a set of random values, or initial seed values.

Each set of values is called an individual, and each individual is composed

of multiple “genes”. Each gene influences an aspect, or part, of the overall

solution. A string of genes are collecively referred to as a chromosome for

the individual. A set of individuals together constitute a generation of the

population. The individuals in the generation are evaluated for fitness; for

example, if the objective is to maximize a function, then individuals that

produce higher values for the function are more fit. Fitter individuals are given

a higher probability to propagate their genes. Conversely, unfit individuals are

less likely to be selected for breeding, and will likely die out. A whole new

population of solutions is thus generated by mating the highly fit individuals

of the current generation with each other.

Just like in biological systems, individuals in each generation are “repro-

duced” or “cross-bred” by combining parts of the genes of the two individuals

to produce a new individual. This process is referred to as crossover. Two

individual chromosomes are cut at a random location, producing head and tail

chromosomes. The tails of the two individuals are swapped to produce two

new individuals, each containing some genes from each parent. Crossover is

not applied to every pair of individuals selected for mating; rather, a random

choice is made to perform reproduction, with a probability of between 0.6 and

1 [50]. If a crossover is not performed, the offspring are simply duplicates

of their parents, giving each individual a chance of propagating their genes

48

without any crossover. Additionally, to avoid being stuck in local maxima or

minima, the genetic algorithm also introduces “mutation”, which involves the

introduction of random changes to genes in an individual. The probability of

mutation is selected to be less than 0.05, to avoid excessively random varia-

tions in population, and allow for a gradual evolution of a solution through

reproduction (i.e., crossover). As the population matures, the average fitness

of the population begins to approach the most fit individual found thus far.

A gene is said to have converged when 95% of the population shares the same

values. A population converges when all the genes have also converged. To

further avoid being stuck in local maxima or minima, the GA may introduce

cataclysmic events. During a cataclysm, the best solution in the population

is selected, and placed in a completely new population of randomly seeded

individuals, and the process is restarted.

Genetic Algorithms (GA) have been shown to successfully deal with a

wide range of problem areas, that are particularly difficult to solve using other

methods [50]. GA’s are not guaranteed to produce the absolute global opti-

mum solution to a given problem. Nevertheless, they are good at finding sat-

isfactorily good solutions, acceptably quickly with little intervention. Genetic

algorithms to maximize the occupancy of state in the core are utilized. This

involves complex tuning of program characteristics that cannot be expressed in

a manner that is amenable to mathematical optimization techniques, making

the GA an ideal candidate for such optimizations. This dissertation uses the

IBM SNAP Genetic Algorithm, obtained under NDA for university research.

49

3.4 Evaluation Methodology

The methodologies presented in this dissertation are evaluated using

SPEC [51] CPU2006 benchmark suite, and MiBench [52] benchmark suite.

SPEC CPU2006 is an industry standard benchmark suite for comparing the

performance of high performance processors, and has a large memory footprint.

MiBench is a benchmark suite used to evaluate embedded system processors

and has a small memory footprint. Consequently, SPEC CPU2006 workloads

have dynamic instruction counts of trillions of instructions, whereas MiBench

workloads have dynamic instruction counts of millions of instructions. The

working set, and typically, the memory footprint, of MiBench workloads fits

in the last-level cache of high performance processors, which is not the case

for many SPEC CPU2006 workloads.

Owing to the large dynamic instruction count of SPEC CPU2006 work-

loads, it is impractical to run the entire workload on a performance simulator.

Therefore, it is necessary to be able to run representative traces of the work-

load. The SimPoint [53] methodology was devised to address the issue of

identifying representative traces. The workload is broken into equal intervals

of execution. Each interval is profiled to identify constituent basic blocks. A

basic block is a region of execution of code that has exactly one control flow

entry and exit. Simpoint profiling identifies the basic blocks in each chunk of

execution, to produce a basic block vector. Using machine learning, SimPoints

methodology clusters these basic block vectors based on their similarity to one

another, and picks a representative interval from each cluster. Clusters are

50

assigned weights based on the number of intervals contained in each. Each

representative interval is run on a performance simulator, and the relevant

statistics are collected. A weighted average of the relevant statistics provides

an accurate estimation of the same statistics obtained using a complete run of

the workload. A single representative interval may also be picked using this

methodology; this is called Single SimPoints. Single SimPoints methodology

is used to evaluate SPEC CPU2006 workloads. The interval size is chosen to

be 100M instructions, as proposed in the original SimPoint work [53].

51

Chapter 4

An Automated Methodology for Bounding

Microprocessor Vulnerability to Soft Errors

In this Section, an automated methodology for bounding microproces-

sor vulnerability to soft errors is presented. Starting from the first principles

of superscalar execution, a set of microarchitecture-dependent characteristics

that maximize the occupancy of state in the major structures of the processor

is identified. A code generator that manipulates these characteristics based

on its inputs, or “knobs” is developed, and interfaced with a machine learn-

ing algorithm in a closed-loop feedback process. Upon the convergence of the

machine learning algorithm, the workload generated by the code generator is

shown to induce significantly higher Soft Error Rate (SER) than the highest

SPEC CPU2006 or MiBench workload.

The significant contributions of this work are as follows:

1. A flexible and automated methodology to generate an AVF stressmark is

developed. This AVF stressmark is designed to approach the maximum

observable SER for a given microarchitecture.

2. The deficiencies in current methodologies for the estimation of the ob-

servable worst-case SER are highlighted. Also highlighted are the poten-

52

tial pitfalls of soft-error reliability design without the knowledge of the

observable worst-case SER. The knowledge of the observable worst-case

SER enables designers to quantify design trade-offs such that their SER

design objectives can be met efficiently.

4.1 Issues affecting SER benchmarking

Prior research [2, 8] has shown that masking effects of program behavior

have a significant impact on the visibility of faults to the user. Architected

Vulnerability Factor (AVF) modeling, which quantifies this masking effect,

enables architects to determine the highest per-structure SER observed while

running typical workloads. The observable SER of a workload is strongly

dependent on the microarchitecture and underlying circuit-level fault rates.

Different programs stress microarchitectural structures differently, and hence

a change in microarchitecture or underlying fault rate alters their observed

SER by different proportions. A workload suite that offers adequate coverage

on one microarchitecture and circuit-level fault-rate does not neccessarily do

so when either factor is changed.

There is no known methodology to ensure that the benchmark suite

covers the entire range of observable SER, from zero to the worst-case ob-

servable SER. Therefore, architects run a large number of programs in the

hope that sufficient coverage is achieved. Architects choose the SER design

objective appropriate for the usage environment, such as design for the aver-

age workload-induced SER, or for the highest workload-induced SER. A safety

53

margin is added to determine the design point, to cover for the possibility of

inadequate SER coverage and representativeness of the workload suite [12].

The choice of this safety margin is largely based on designer intuition, and it

is difficult to know whether it is adequate. Figure 1.1 represents two workload

scenarios with different SER coverages. The arrows represent the range of SER

observed while running programs in the workload suites. The workload suite

in scenario 1 has good SER coverage, whereas the workload suite in scenario

2 does not. Suppose that the architect is designing for the highest workload-

induced SER. As shown in Figure 1.1, the addition of the safety margin to the

highest workload-induced SER pushes the design point well beyond the worst-

case observable SER, leading to over-design. On the other hand, the safety

margin for scenario 2 is insufficient to cover for the worst-case. In the absence

of a methodology for determining the worst-case SER, it is impossible to know

whether these safety margins are excessive, or inadequate. On similar lines,

the architect may choose to design for the average-case workload, or some per-

centile of the workload suite. Consider Scenario 1 which has a relatively high

average SER. An aggressive safety margin over the average case in Scenario

1 may push the design point close to, or beyond the worst-case SER, leading

to over-design. On the other hand, an aggressive safety margin is required in

Scenario 2 to cover for its lack of adequate SER coverage. The knowledge of

the worst-case SER allows thus the architect to rationalize about the amount

of the safety margin necessary, and define the design point relative to the

worst-case SER and the design objective. The knowledge of the worst-case

54

SER also indicates whether the workload suite needs additional benchmarks

to make up for its lack of SER coverage. It is expected that designing for

the worst-case SER will increase in significance in future technologies, due to

elevated levels of SER as a result of aggressive lowering of operating voltages

to reduce power consumption.

4.2 Difficulties in determining the worst-case SER

It is impossible for every bit in the processor to simultaneously have

100% AVF while running a program: structures in processors are typically

over-designed to handle bursty program behavior, and have interdependencies

such that all of them cannot contain useful program state simultaneously.

This suggests that the overall worst-case SER calculated by adding up circuit-

level fault rates of individual circuits, without considering the masking effect

of program behavior would lead to an overly pessimistic design. For similar

reasons, it would be incorrect to estimate the worst-case by adding up the

highest per-structure SER observed using AVF modeling.

Therefore, there is a need to determine the highest observable SER

in a holistic manner. A workload that exposes this highest observable SER

is referred to as a stressmark, drawing an analogy with power or thermal

stressmarks (also called viruses), which are designed to maximize power and

temperature of the processor, respectively. As every gate in the circuit cannot

be toggling simultaneously, the power or thermal virus focusses on instructions

that maximize overall power dissipation or temperature.

55

Parameter Baseline
Integer ALUs 4, 1 cycle latency, 64 bit wide
Integer Multiplier 1, 7 cycle latency, 64 bit wide
Fetch/slot/map/issue/commit 4/4/4/4/4 per cycle
Integer Issue Queue 20 entries, 32 bits/entry
ROB 80 entries, 76 bits/entry
Integer rename register file 80, 64 bits/register
LQ/SQ 32 entries each, 128 bits/entry
Branch Predictor Hybrid, 4K global, 2 level 1K local

4K choice
Branch Misprediction Penalty 7 cycles
L1 I-cache 64kB, 2-way, 64B line, 1 cycle latency
L1 D cache 64kB, 2-way, 64B line, 3 cycle latency
DTLB 256 entry, fully associative, 8kB page
L2 cache 1MB, direct mapped, 7 cycle latency

Table 4.1: Baseline Configuration of Processor.

A comprehensive methodology that simultaneously increases the AVF

of multiple structures in the processor such that the observable SER ap-

proaches the maximum is developed herein. The search space for such a

program is large and complex. Starting from first-principles, a set of mi-

croarchitecture dependent factors that affect the occupancy of useful state in

the processor is derived, and used to develop a code generator that defines a

feasible search space. A Genetic Algorithm (GA) to explore this search space

and generate the stressmark is then used. When the GA has converged, the re-

sulting workload will induce an SER that approaches the maximum observable

SER.

56

Interdependence of the AVF of Processor Structures

Occupancy, and hence AVF of structures in an OoO processor are not

completely independent of one another. This interdependence also ensures

that all bits in the processor cannot be ACE simultaneously.

Consider the Alpha 21264 whose configuration is outlined in Table 4.1.

Every instruction in the ReOrder Buffer (ROB) must exist in either the Issue

Queue (IQ), Load Queue (LQ) or Store Queue (SQ), or have been executed in

the Function Units (FU). However, the total number of entries in the integer

IQ, LQ and SQ alone is more than the size of the ROB, implying that the

ROB, IQ, LQ, SQ and FU cannot simultaneously have 100% AVF.

The number of rename registers in use depends on the number of in-

structions in flight, and hence the occupancy of the ROB. Unlike architected

registers, rename registers cannot hold ACE data all the time. Many rename

registers hold values that are quickly consumed, and not read again. The

process of retiring, releasing, re-assigning and writing to a rename register

file takes multiple cycles, and hence AVF of the physical register file is never

100%. Additionally, stores and branch instructions do not write ACE data to

a rename register.

The interdependence in occupancy also implies that assuming that the

instantaneous occupancy of ROB and IQ, and the Instruction mix (I-mix)

are known, the occupancy/utilization of LQ, SQ, FU and rename RF can be

bounded, thereby bounding AVF. Additional information about the proportion

57

of ACE instructions in each type (load, store, arithmetic) allows a tighter

bound on AVF.

FU utilization is maximum when the processor can issue arithmetic

instructions at maximum bandwidth. However, LQ and SQ occupancy will be

lower, since the instruction mix has fewer loads and stores.

The Alpha 21264 also allows only two memory instructions to issue per

cycle, restricting the rate at which they can be filled with ACE bits.

It is clear from the above example that simply adding the circuit-level

fault rates of individual structures, or the highest per-structure SER, to cal-

culate worst-case SER would be incorrect. This is generally true of any other

microarchitecture as well. There is therefore a need for a methodology that

addresses the issue of quantifying the observable worst-case SER.

4.3 Design of the Code Generator

In this section, the methodology used to build a code generator for AVF

stressmarks is described. This code generator must be provided with knobs to

control various parameters. The knobs are used to interface the code generator

with a Genetic Algorithm (GA) tool, which then controls the characteristics of

the output program. Figure 4.1 outlines the framework for stressmark creation.

In the first step, the Genetic Algorithm produces a set of knob values, that is

used by the code generator to create a candidate stressmark. In the next step,

this candidate stressmark is compiled and run on a simulator for measuring

58

Start

Initialize memory space:
Page_size * DTLB entries

i < Page_size *
DTLB entries ?

p = Array[p+i];
i = i + stride;

Dump memory to
file

Load and store operations
(hits) to cover every

location in previous cache
line

ACE adds, multiplies, loads
and stores to meet

specified requirements.

Instructions dependent on
p for IQ occupancy

Long Latency
L2 Miss

i <
MaxIterations?

1: Increases AVF of
LQ and SQ

2: Increases AVF of
caches and DTLB

Code Generator Framework

YES

YES

Fitness
Computation

Code
Generator

AVF Simulator

Genetic Algorithm

Fitness Quality
Evaluation

Knobs

Executable

OKAVF
Stressmark

Figure 4.1: Methodology for creation of an AVF stressmark.

AVF. In the following step, the output of the simulator is evaluated by a fitness

function, which evaluates whether the output has converged. The result is fed

back into the GA, and the above steps will be repeated until convergence is

achieved, or a maximum number of runs are reached. Additionally, the code

generator must ensure that every instruction is ACE so that entries in the core

and cache are also ACE. In order to define the knobs for the code generator, the

microarchitecture-dependent program characteristics that affect occupancy in

cores and caches are studied.

Microarchitectural structures are classified into Queueing Structures

(QS) and storage structures. For queueing structures such as the IQ, LQ,

SQ, ROB, and FU, the AVF is proportional to occupancy, if the proportion

of ACE bits in the program is kept fixed. This correlation between AVF

and occupancy has been utilized to predict AVF of such structures [9, 10].

59

For storage structures, overall occupancy does not necessarily correlate to

AVF, since data in cache lines may switch between being ACE and un-ACE,

depending on access patterns. For caches, AVF is influenced by the working

set size [27] and coverage of cache locations.

4.3.1 AVF due to Microarchitecture-Dependent Behavior

The factors that affect the overall occupancy of queuing structures, and

liveness of caches are also to be considered while designing the code generator.

For the discussion below, assume that the instruction stream has a constant

proportion of ACE bits. This analysis is used to determine the factors that

are required to be controlled in a code generator that increases AVF in a core.

4.3.1.1 Long-Latency Operations

A long-latency operation, such as an L2 or DTLB miss, double-precision

divide, or square root may cause the processor to eventually stall (if their

latencies are not overlapped with another long-latency operation). Consider

the example of an L2 miss. Typically, in the shadow of an L2 miss, the ROB

fills up completely, and all FU activity ceases eventually. The IQ contains

instructions dependent on the L2 miss. The LQ data array corresponding to

an issued load contains ACE bits only after the data has been brought from

the memory hierarchy; until then, only the tag array holds ACE bits.

60

4.3.1.2 ILP and instruction latency

Low ILP and/or higher instruction latency increases the occupancy of

the IQ. Higher instruction latency increases the occupancy of ROB, LQ and

SQ, provided that the IQ is not full. Since FUs have fixed latencies, the only

way to increase occupancy is through maximum IPC (high bandwidth, per

Little’s law).

4.3.1.3 Instruction Mix

Instructions in the ROB are distributed among the FUs, LQ and SQ,

and an increase in one type of instruction will cause an increase the average

occupancy of its corresponding unit, and a proportionate decrease in the oc-

cupancy of the others. The size of operands used also affects the ACE-ness of

entries in the load queue, store queue and register file. For instance, a 32-bit

store instruction on a 64-bit machine would have the other 32-bits as un-ACE,

thereby lowering its AVF [2]. As the LQ and SQ typically contain more bits

than function units, programs that have a greater proportion of loads and

stores will have more corruptible state in the processor, all else being equal.

4.3.1.4 Front-End Misses

I-cache misses, I-TLB misses and fetch inefficiency reduce AVF of all

structures by reducing the supply of useful instructions. In the case of a branch

misprediction, all instructions fetched along the wrong path are un-ACE, and

the subsequent pipeline flush reduces the occupancy of the queues.

61

4.3.1.5 Cache Coverage and Working Set

The AVF of a cache depends on the number of cache lines that contain

ACE data, and the duration for which the lines are ACE [27]. A high number

of accesses to a few cache lines will give a high hit rate, but low AVF. On

the other hand, a high miss rate could also result in high AVF, if the evicted

lines, and the filled lines replacing them are ACE. The working set may also

be fragmented due to the cache line; a strided access pattern may not use

every memory location in the cache line, and hence only a part of the line will

contain ACE bits.

Additionally, the compiler introduces un-ACE instructions such as NOPs

for alignment of loops to cache line boundaries, prefetches to reduce L2 miss

penalty, and dynamically dead instructions. AVF is sensitive to the compiler

used, and aggressiveness of compilation options. For an AVF stressmark, all

un-ACE instructions should be eliminated.

It may be clear that occupancy, and hence the vulnerability to soft

errors is super-linear in the number of ACE instructions in flight. Intuitively,

any program that does not have a high proportion of branch mispredictions,

has a high proportion of loads and stores, and a high miss rate in the cache

would have high occupancy. The above insights are used to derive a code

generator.

62

4.3.2 Design of the Code Generator

The knobs required for the code generator are derived using the insights

outlined in Section 4.3.1. The code generator must allocate a large enough

memory region such that every line in the data caches and DTLB are covered.

High AVF of caches is ensured by performing ACE loads and stores such that

every cache line is 100% ACE (other strategies are possible). Simultaneously,

high DTLB AVF is ensured by requiring the loads and stores to cover every line

in the DTLB without evictions (read to evict is un-ACE). A code generator

based on the framework outlined in Figure 4.1 is implemented. The code

generator must be provided with the size of the ROB, and the caches, of the

particular microarchitecture.

Using a strided load in the inner loop, that will miss in the L2 cache,

and is dependent on itself (pointer chasing) avoids any Memory-Level Paral-

lelism for the L2 misses. Ideally, having the size of the inner loop equal to the

size of the ROB minimizes the number of L2 misses in the ROB, while also

maximizing the number of instructions in the shadow of the L2 miss. As the

loop gets larger than the ROB size, fewer instructions occur in the shadow of

the L2 miss. The code generator is allowed to determine the size of the loop,

but its maximum size is restricted to 1.2× the size of the ROB. Separately,

another code generator framework is implemented in which the L2 miss is

converted into an L2 hit, keeping the rest of the requirements the same. This

models the case of L2 miss-free behavior. The code generator then fills up the

inner loop (see Figure 4.1) with ACE instructions as specified using param-

63

eterizable knobs derived from the characteristics summarized under section

4.3.1, below:

1. I-mix : The fraction of loads, stores and arithmetic instructions are spec-

ified using this knob. This determines the occupancy of LQ, SQ and FU

respectively.

2. Dependency distance: This knob controls the number of instructions be-

tween two dependent instructions and affects placement of instructions.

Dependency distance has been used as a microarchitecture-independent

metric for ILP [54, 55]. The code generator interleaves dependence chains

to meet this requirement.

3. Fraction of Long-Latency Arithmetic: This knob controls the mix of

long-latency and short-latency arithmetic instructions. This affects the

average latency of each instruction and hence the issue rate.

4. Average Dependence Chain Length: This controls the average length

of the instruction chain dependent on a load, leading up to a store.

This knob affects the ILP. This is implemented by having a knob that

specifies the fraction of arithmetic instructions that are to be transitively

dependent on loads. These instructions are distributed uniformly over

all loads, and chain loads to available stores.

5. Register Usage: This knob affects the proportion of Reg-Reg vs. imme-

diate instructions, and hence determines the number of register values

64

that are ACE.

6. Instructions Dependent on L2 Miss: This knob controls the number of

instructions occupying the IQ in the shadow of the L2 miss.

7. Random seed: This knob is passed to a random number generator that

randomizes the placement of long-latency vs. short latency instructions

in the code. This is used to discover the best code schedule.

8. Code Generator Switch: This switches between the code generators with

and without L2 misses.

Every value that is loaded or produced must transitively produce a value that

is stored to memory, to ensure 100% ACE-ness of instructions and data. Also,

stored results must not overwritten before they are read. The code generator

produces code in C, with embedded Alpha assembly instructions. Assembly

instructions are used to precisely control the output of some of the above

knobs.

Unique Requirements of the Code Generator: The requirement of

100% ACE instructions, and increasing susceptible state in the processor are

two factors that distinguish this effort from typical functional verification, test-

ing methodologies or power viruses. Functional verification or testing empha-

sizes on bug or defect coverage without any regard to ACE-ness or susceptible

state resident in the processor. Therefore, functional verification tools may not

65

achieve as high AVF as the AVF stressmark methodology, or may require an

unreasonably large number of random runs (if not directed) to achieve such

high AVF. There is no correlation between power and state resident in the

core. For example, long-latency stalls increase AVF, but provide opportuni-

ties to reduce core power using clock and/or power gating. Power dissipation

is typically maximized when the processor is able to issue multiple arithmetic

instructions at full bandwidth, but this typically implies that the occupancy of

other queues are less than 100%. Furthermore, un-ACE instructions consume

power but do not contribute to AVF. Thus, power viruses are unlikely to be

high AVF workloads, by design. Deriving the properties that affect AVF from

first principles allows the architect to restrict the search space by disallowing

infeasible solutions, and to allow a quick generation of a high-AVF stressmark.

4.4 Framework for the Generation of the AVF Stress-
mark

The search space for an AVF stressmark, despite the pruning performed

while creating the code generator, remains complex. As seen in the discussion

in Section 4.2, the task of creating the optimal instruction schedule that sat-

isfies the constraints of a microarchitecture, while simultaneously increasing

SER is non-trivial. Therefore, utilizing a a Genetic Algorithm (GA) auto-

mates the exploration of the search space defined above. A Genetic Algorithm

is evolutionary machine learning methodology which is often used to find “ap-

proximately optimal” solutions to complex optimization problems. The GA

66

initially starts from a set of random solutions. For each solution, a fitness

value is computed, and the best results form the baseline for future genera-

tions. The GA applies mutation, crossover and migration to these solutions,

to generate a new solution. Mutation involves random changes to the solution,

crossover involves swapping parts of existing solutions to create offspring gen-

erations whereas migration involves changing the population of the solution.

When the solutions in a generation converge, the GA introduces a cataclysmic

event, to completely change the population of the best known solution and

avoid being stuck in a local maxima or minima. The GA continues with the

process of creating new generations until no further improvement is reported.

The use of a machine learning algorithm such as GA reduces the de-

pendence on a designer’s intimate knowledge of the microarchitecture while

creating the stressmark. The IBM SNAP genetic algorithm framework, ob-

tained under NDA for university research, is used to create the knob values for

the code generator, as outlined in Figure 4.1. The output of the code generator

is compiled and run on the AVF simulator (outlined below). The results are

used to calculate the fitness metric (SER), which is fed back to the GA, to

create future generations.

4.5 Evaluation Methodology

The methodology is evaluated on a modified version of SimSoda [47],

which computes AVF using the ACE analysis methodology proposed by Mukher-

jee et al. [2] and Biswas et al. [27]. Simsoda is based on SimAlpha [48], which

67

models an Alpha 21264 (EV6) in great detail. SimAlpha models the Integer

IQ and Floating Point IQ as separate structures. The experiments presented

herein concentrate on the integer pipeline, for parity with SPEC CPU2006

integer results. The methodology, however, is general enough to be trivially

extended to include the FP pipeline. As presented in Figure 4.1, the GA

generates knobs that are provided as inputs to the code generator. The code

generator produces the corresponding output, and is run on the SimSoda sim-

ulator.

The Genetic Algorithm (GA) runs for 50 generations, with 50 individ-

uals per generation (a total of 2,500 runs), and the best result is picked as the

stressmark. The stressmark is executed for 100M instructions. The stressmark

is compared with 11 CPU2006 Integer Workloads and 10 CPU2006 FP work-

loads. The remaining workloads in the SPEC CPU2006 suite did not compile

successfully due to compiler issues. A single simulation point of length 100M

instructions is identified, using the SimPoint methodology [53], and used for

a detailed simulation at this simulation point. The stressmark results are also

compared with 12 MiBench [52] programs, for diversity of workloads in the

workload suite. The stressmark and all the benchmarks were compiled using

gcc version 4.1 with the -O2 flag. The probability of mutation is set as 0.05

and a crossover rate as 0.73 in the GA, based on recommended ranges from

literature, such as Grefenstette [56], and Srinivas and Patnaik [57]. The choice

of the settings primarily affect the rate of convergence of the genetic algorithm.

68

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!
"
#
$%
&
'
()
*+
,
()
-$

-." -./01" 23$/2435" 3%"

Figure 4.2: Comparison between the overall SER induced by the Stressmark
and CPU2006 workloads on the core and caches for the Baseline Configuration.

4.6 Results

Figure 4.2 and Figure 4.3 represent the overall SER of the architecture

specified in Table 4.1, which is called the Baseline Configuration. It is assumed

that the circuit-level fault rate of the underlying circuits is 1 unit/bit. This is

an arbitrary unit, since only the relative magnitude is of importance for the

methodology. The SER of Queuing Structures (QS), Queuing Structures and

the Register File (QS+RF), DL1+DTLB, and L2 are presented separately, as

caches have significantly more bits than the core, and would dominate all SER

computation. The SER values reported are normalized by dividing them by

the total number of bits in that class of structure, in the interest of clarity.

For example, the SER computed for the queuing structures is divided by the

69

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!
"
#
$%
&
'
()
*+
,
()
-$

-." -./01" 23$/2435" 23%"

Figure 4.3: Comparison between the overall SER induced by the Stressmark
and MiBench workloads on the core and caches for the Baseline Processor
Configuration.

total number of bits in them.

Analysis

Figure 4.4(a) shows the final parameters generated by the GA as the op-

timal solution. The generated code utilizes every architected register, thereby

maintaining high ACE in the Architected RF, by utilizing the appropriate

number of reg-reg instructions. The GA selects short dependence chains to

control ILP and hence occupancy of IQ, and a loop size almost equal to the

size of the ROB. Figure 4.4(b) shows the convergence of Fitness Function for

each generation, averaged over the 50 individuals per generation. The abrupt

drop in the Average Fitness Function at generation 30 is due to a cataclysm

triggered by SNAP as a result of convergence of solutions. The best solution

70

Parameter Value

Loop Size 81

No. of loads 29

No. of stores 28
No. of Independent

Arithmetic Instructions 5
No. of instructions

dependent on L2 miss 7
Avg. Dependence Chain

Length 2.14

Depencency Distance 6
Fraction of Long Latency

Arithmetic 0.8
Fraction of Reg-Reg

arithmetic instructions 0.93

(a) Knob settings of final GA
solution

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" $!" %!" &!" '!" (!")!"

!
"
#
$%
&
#
'(
)*
+
#
,,
'-
.
/
0
1'
2
+
)*
,3
4
)*
'

5#+#$%67+,'

(b) Convergence of GA

Figure 4.4: Stressmark generated by the Genetic Algorithm for the Baseline
Processor Configuration.

from generation 29 is moved into a new population of random mutations, and

the process is repeated. At the end of 50 generations (2,500 runs), the GA has

converged. Six individuals are run in parallel to speed up the process. The

overall execution time for creating this stressmark is roughly 48 hours.

The stressmark induces an SER of 0.797 units/bit, 0.997 units/bit and

0.931 units/bit in queues, DL1+DTLB and L2, respectively. Workload 403.gcc

induces the highest overall SER (core+cache) of all the workloads in Figure

4.2 and Figure 4.3. Compared to this, the stressmark induces over 2× higher

SER in QS+RF, and DL1+DTLB, and around 1.5× higher SER in L2. The

AVF of individual structures while running the benchmarks is also captured

at a granularity of 50,000 instructions. It is found that the stressmark is

significantly higher than the AVF of such short traces as well. However, using

71

short traces may not give sufficient number of instructions for accurate ACE

analysis, and may be pessimistic.

The Alpha 21264 has a separate 2-issue FP pipeline, in addition to

the 4-issue integer pipeline. As FP programs are able to issue more instruc-

tions than integer programs, the SER of queuing structures in SPEC CPU2006

FP workloads is relatively high, compared to SPEC CPU2006 integer work-

loads. The stressmark has much higher vulnerable bits than 459.GemsFDTD

or 434.zeusmp, in the core or caches. The SER induced by MiBench workloads

is low.

The highest instantaneous SER in the core would occur when the 80

entries in the ROB are distributed as 32 entries in each of the LQ and SQ,

and 16 in the IQ. At this instant, AVF of FU would be 0%. The instantaneous

worst-case occupancy for queuing structures, in the shadow of an L2 miss, is

0.899 units/bit (as compared to 0.797 units/bit for the stressmark). As RF

AVF depends on the duration between production and consumption, it is dif-

ficult to estimate its AVF this way. Any processor making forward progress

will have decreased occupancy just after the blocking L2 miss retires, and the

ROB filling up completely in the shadow of the next L2 miss. Constraints such

as the restriction on the number of loads and stores per cycle, and the load

latency, and data dependencies required to maintain ACE-ness affect overall

occupancy of a real program. Therefore, it is clear that the stressmark achieves

AVF that is close to the theoretical and unsustainable maximum. It is impos-

72

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

!
"
#
$%
&
'$

,-./00123.45630/789/" &!%:;<<" &&':;=>24" &)#:=29/-??"

&!#:>@8?$" &($:78>AB39-B2" &'(:0C/9;" &)%:30-3."

&$+:2<D" &'(:E22/." &(&:E$(&./D" &!!:?/.7>/9<E"

(a) AVF of SPEC CPU2006 Integer Workloads

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

!
"
#
$%
&
'$

,-./0012.34520/678/" &%'9:.;12<0" &&&9821=" &%&9>/?01@"

&%)96/067/%=" &%%9176<" &'+9A/10BCDC" &'!90;@6/E"

&%(9<2<-?0FCG" &&)9=/26HH" &#!9IJ2K/0"

(b) AVF of SPEC CPU2006 FP Workloads

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

!
"
#
$%
&
'$

,-./0012.34520/678/" 09028" :207;12-<" :7-;8-0"

=0>.-" .0?8-<" @<>0-0;.7A-" 2BA;1"

A;1" CCD" EFE%$" B7G30-.2"

A2-.7;72"

(c) AVF of MiBench Workloads

Figure 4.5: AVF of queuing and storage structures for SPEC CPU2006 and
MiBench workloads on the Baseline Processor Configuration.

73

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

!#'$"

!
"
#
$%
&
'
()
*+
,
()
-$

()" ()*+,"

(a) SER for workloads on Configuration with Radiation Hardened Circuitry (RHC)

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!
"
#
$%
&
'
()
*+
,
()
-$

'(" '()*+"

(b) SER for workloads on Configuration with Error Detection and Recovery (EDR)

Figure 4.6: SER induced on Processor Configurations RHC and EDR, by
workloads from SPEC CPU2006 and MiBench.

74

sible to positively prove that the stressmark induces the absolute, sustainable

maximum SER (a problem shared with power and thermal viruses). It is for

this reason that the ability of the GA to optimize for such a complex solution

space is leveraged. The convergence of the GA, and low difference between an

idealized, “back of the envelope” calculation of instantaneous maximum SER

and the stressmark-induced SER provides confidence that the SER induced

by the stressmark is very near the maximum.

Figures 4.5 presents the AVF of SPEC CPU2006 and MiBench bench-

marks on the baseline configuration, on individual structures. In contrast with

SPEC CPU2006, the AVF stressmark for this microarchitecture achieves much

higher AVF on all the structures, with the exception of FUs and in some cases,

RF.

4.6.1 Stressmark generation for different circuit-level fault rates

The task of manually generating a stressmark when the circuit-level

fault rates are not the same is even more challenging. For the GA, how-

ever, it is only a matter of changing the fitness function to reflect the new

values. In this section, stressmarks are generated for two configurations for

the same microarchitecture in Table 4.1 but different underlying fault rates

outlined in Figure 4.7(a). Unchanged fault rates in DL1, DTLB and L2 are

assumed. Consider the case in which the ROB, LQ and SQ are protected us-

ing Radiation-Hardened Circuitry (RHC), and a case in which these structures

are protected using Error Detection and Recovery (EDR). Circuit-level fault

75

rates of structures are not publicly available, so the failure rates assumed are

arbitrary. These assumed failure rates are still useful for demonstrating the

effectiveness of the AVF stressmark methodology.

Configuration RHC: In the case of Config RHC, the IQ and RF are more

vulnerable than the ROB, LQ and SQ. The methodology compensates by

trading off some AVF in the less vulnerable units, to drive up the AVF of IQ

and RF, and hence overall SER. The GA thus attempts to find a point where

all trade-offs put together maximize the fitness function. This comparison is

presented in Figure 4.7(d). Comparing Figure 4.7(b) to Figure 4.4(a), it is seen

that the GA chooses fewer loads and stores, very short dependency distance

and longer average dependence chain length. This reduces ILP and increases

the occupancy of the IQ. Since this setting uses more arithmetic instructions,

the fraction of reg-reg instructions required to use all architected registers is

reduced. The GA selects an instruction schedule such that the overall SER

for this new configuration approaches the maximum. Figure 4.6(a) presents

the SER of the core of SPEC CPU2006 and MiBench programs. The AVF

stressmark induces a significantly higher SER than any SPEC CPU2006 or

MiBench programs.

Configuration EDR: As the AVF of the ROB, LQ and SQ are zero, the

observable SER in the shadow of an L2 miss is relatively low. The GA therefore

switches to the L2 miss-free case. Loads and stores are still required, due to the

76

RHC EDR

ROB 0.25 0
IQ 1 1
FU 1 1
RF 1 1
LQ Tag 0.4 0
LQ Data 0.4 0
SQ Tag 0.35 0
SQ Data 0.35 0

Structure

Circuit-level
Fault Rate
(Units/bit)

(a) Intrinsic fault rate of
structures

Fitness

35.61

46.90

54.75 Parameter Value

57.90 Loop Size 81

58.68 No. of loads 29

58.72 No. of stores 28

58.88 No. of Independent Arithmetic Instructions5

59.02 No. of instructions dependent on L2 miss7

59.06 Avg. Dependence Chain Length2.14

59.04 Depencency Distance 6

59.06 Fraction of Long Latency Arithmetic0.8

59.04 Fraction of Reg-Reg arithmetic instructions0.93

59.02

59.04

59.02

59.06

59.08

59.16

59.28 Parameter Value Config B

59.44 Loop Size 74 52

59.44 No. of loads 20 1

59.40 No. of stores 20 4

59.56

No. of Independent

Arithmetic Instructions 11 13

59.54

No. of instructions

dependent on L2 miss 4 0

59.72

Avg. Dependence

Chain Length 2.7 15

59.78 Depencency Distance 1 1

59.76

Fraction of Long

Latency Arithmetic 0.7

59.74

Fraction of Reg-Reg

arithmetic instructions 0.52

59.86

36.51

44.04

53.24 Parameter Value

57.82 Loop Size 91

(b) Knob Settings for
Config RHC

Parameter Value

Loop Size 54

No. of loads 2

No. of stores 6
No. of Independent

Arithmetic

Instructions 5
No. of instructions

dependent on L2 hit 15
Avg. Dependence

Chain Length 6.5

Depencency Distance 1
Fraction of Long

Latency Arithmetic 0.9

Fraction of Reg-Reg

arithmetic instructions 0.4

(c) Knob Settings for
Config EDR

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

!
"
#
$%
&
'$

,-./0012.34520/678/" ,-./0012.349:;" ,-./0012.34<=9"

(d) AVF of queuing structures

Figure 4.7: Results of AVF Stressmark Methodology on different circuit-level
fault rates.

77

need for maintaining AVF of the caches. As there are no long-latency stalls,

IPC is higher and hence FU AVF is higher. The turn-around time between

releasing and re-assigning a renamed register is significantly decreased and

hence RF AVF is higher. Simultaneously, the AVF of the IQ is also increased

through longer dependence chains. Figure 4.7(d) represents the results of

running Configuration EDR. As expected, AVF of FU and RF are driven

high, at the cost of LQ and SQ occupancy. Figure 4.6(b) presents the SER

induced by the workload suite on Configuration EDR. In this case too, the

SER induced by the AVF stressmark exceeds that of any other program in

the workload suite. It is thus demonstrated that the code-generator and GA

methodology is flexible enough to adapt to such that overall error rate is

increased.

4.6.2 Stressmark generation for a different microarchitecture

For completeness, a stressmark (Stressmark:LargeROB) for a 4-issue

OoO processor with a larger IQ, ROB and rename register file in the core, and

a larger DTLB and L2 cache and latency (Configuration:LargeROB), outlined

in Table 4.2, is created. Figure 4.8 details the overall SER of Configurations

Baseline and LargeROB, in which all structures are assumed to have the same

circuit-level fault rate of 1 unit/bit. Further, assume that the sizes of each

entry in the queuing structures of LargeROB are the same as the Baseline

Configuration. In order to increase the AVF of the relatively larger IQ, the

GA picks a shorter dependency distance, and much more instructions depen-

78

Parameter Configuration:LargeROB
Integer ALUs 4, 1 cycle latency
Integer Multiplier 4, 7 cycle latency
Fetch/slot/map/issue/commit 4/4/4/4/4 per cycle
Issue queue 32 entries
ROB 96 entries
Integer rename register file 96
LQ/SQ size 32 entries
Branch Predictor Hybrid, 4K global, 2 level 1K local,

4K choice
L1 I cache 64kB, 2-way, 64B line, 1 cycle latency
L1 D cache 64kB, 4-way, 64B line, 3 cycle latency
D TLB 512 entry, fully associative
L2 cache 2MB, 8 way, 12 cycle latency

Table 4.2: Alternate configuration for evaluating the stressmark creation
methodology

dent on the L2 miss. The RF AVF is relatively lower, because the size of

the architected register stays the same, but the number of rename registers

increases. Thus, the methodology is flexible enough to automatically adapt to

different microarchitectures.

4.7 Implications of the AVF Stressmark Methodology
on Design

The stressmark methodology can be used by architects to evaluate the

impact of design choices for reducing SER of their design. This discussion

shall be restricted only to the core (Queueing structures + Register File), as

79

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!
"
#
$%
&
'
()
*+
,
()
-$

-./01123/4563107890" -./01123/45:;9<=">"

(a) AVF of queuing structures

Parameter Value

Loop Size 91

No. of loads 29

No. of stores 29
No. of Independent

Arithmetic Instructions 5
No. of instructions

dependent on L2 miss 14
Avg. Dependence Chain

Length 2.14

Depencency Distance 1
Fraction of Long Latency

Arithmetic 0.6
Fraction of Reg-Reg

arithmetic instructions 0.96

(b) Knobs for final GA
solution

Figure 4.8: AVF of queueing and storage structures for Configura-
tion:LargeROB.

the methodology clearly induces very high AVF on the caches. The overall

SER induced in the core by the stressmark for the Baseline, RHC and EDR

configurations is presented in Table 4.3. Using this information, the architect

can study the area, power and performance penalty of the SER-mitigation

techniques under consideration, and make appropriate trade-offs. A signifi-

cant advantage of this technique is its adaptiveness. When the circuit-level

fault rate of one or more structures are reduced, the framework automatically

stresses other structures such that the overall SER approaches the maximum.

The architect can thus pick candidate structures for protection from soft errors,

that demonstrably have a significant impact on the overall SER.

4.7.1 Comparison with Other Possible Methodologies

In the absence of an AVF stressmark, it is impossible to know whether

the set of 33 workloads offers sufficient AVF coverage. Table 4.3 shows the

80

worst SER observed on the set of workloads. The stressmark induces increased

SER of 37%, 29% and 33% over the highest SER-inducing programs for the

Baseline Configuration, Configuration RHC, and Configuration EDR, respec-

tively. Clearly, a safety margin that does not account for this lack of SER

coverage may result in under-design. Conversely, an aggressive safety margin

could result in over-design.

Table 4.3 also presents the worst-case SER estimated by picking the

highest SER on a per-structure basis, and adding them together, which is re-

ferred to as “Sum of highest per-structure SER”. This methodology results in

an error of 8%, 3%, and 17%, relative to the stressmark, for the Baseline Con-

figuration, Configuration RHC, and Configuration EDR, respectively. For the

selected workloads, the stressmark induces higher AVF. This is not necessarily

the case, as one could write programs that drive individual structures to max-

imum AVF. This methodology produces variable results, and is fundamentally

unsound. The worst-case SERs calculated by adding the raw circuit-level SER

for individual circuits would be 1 unit/bit for the Baseline, 0.59 units/bit for

Configuration RHC and 0.39 units/bit for configuration EDR. This is an over-

estimation, and will lead to an extremely pessimistic design. This, in turn,

will impact performance, power and design effort of the processor.

4.7.2 Utilizing the Stressmark Methodology

The knowledge of the observable worst-case SER allows an architect to

evaluate the robustness of the SER evaluation workload suite in use. In the

81

Configuration Stressmark Best Individual Sum of Highest
Program SER per-structure SER

(units/bit) (units/bit) (units/bit)
Baseline 0.63 0.46 (447.dealII) 0.58

RHC 0.31 0.24 (459.gemsFDTD) 0.3
EDR 0.2 0.15 (susan) 0.17

Table 4.3: Comparison of worst-case SER estimation methodologies in the
Core using SPEC CPU2006 and MiBench

case of the workloads considered in this section, the worst-case SER induced

by an individual program in the workload suite of 33 programs is significantly

less than the stressmark. This suggests that, at least for the microarchitec-

ture under consideration, SPEC CPU2006 and MiBench may not be varied

enough. The workload suite is lacking in programs that occupy the upper end

of SER range. The stressmark reveals “SER bottlenecks” in the processor, and

can be used to identify programs that may target these structures to induce

high AVF. This, however, motivates the need for a rigourous methodology

for selecting workloads for that achieve sufficient AVF/SER coverage, and are

representative of user workloads, for SER evaluation.

Extending the Stressmark to Include Other Structures The code gen-

erator is currently designed to target the parts of the processor that contain

the most state, and hence the highest sources of SER. However, the method-

ology is general enough to be extended to other structures, with or without

modification. For example, fetch and decode queues are always maintained

at 100% AVF as the stressmark never incurs any branch mispredictions. FP

82

instructions can be trivially incorporated into the same framework as integer

instructions. However, if all these large structures are protected with error

detection and recovery, the SER bottleneck will shift to other parts of the

microarchitecture. This will potentially require the design of a different code

generator, that stresses these smaller structures. A study similar to the one

presented herein will be required, that identifies microarchitecture-dependent

characteristics, and utilizes these to create a code generator. Restricting the

search space of the GA is important to allow it to converge in a reasonable

amount of time.

4.8 AVF Stressmark Generation for In-order Pipelines

The task of generating AVF stressmarks for in-order pipelines is gener-

ally simpler than that for out-of-order machines. As instructions in an in-order

machine execute in the same order as in the program binary, many large and

complex structures that contain state, such as the ROB and the load and

store queues are eliminated. For this work, we consider the instruction buffer,

store buffer, functional units, and architected register file, as these contain the

largest amount of state for an inorder machine. Table 4.4 represents an inorder

superscalar machine with an designed issue width of 2 instructions per cycle.

The instruction buffer (IB) holds decoded instructions until they are

ready to be issued. The issued instructions execute in the function units, and

are subsequently retired. The store buffer (SB) contains stores that have been

retired, but are waiting to be written out to the caches or memory. The Alpha

83

Parameter Configuration
Issue Width 2, in-order
Integer ALU 2 ALUs, 1 cycle latency

Integer Multiplier 2, 7 cycle latency
Instruction Buffer 16 entries, 32 bits per entry

Store Buffer 8 entries, 128 bits per entry
Architected Register File 32 entries, 64 bits per entry

L1 Instruction and Data Cache 32kB, 4 way set associative, 1 cycle latency
L2 Cache 1MB, 8 way set associative, 9 cycle latency

TLB 512 entry, fully associative
Branch Predictor 4k gshare, 4k BTB

Table 4.4: In-order Configuration.

ISA defines 32 general-purpose integer registers, which are contained in the

Architected Register File (ARF). The in-order machine is modeled using Sim-

plescalar simulator [49], modified to capture the AVF of each of the structures

under consideration.

The same code generator framework used for generation of stressmarks

for out-of-order machines is used. However, only a subset of these knobs

have an impact on the AVF of the aforementioned structures in an in-order

machine. Additionally, the strategy of stalling on L2 misses will increase the

occupancy of the IB, but not the SB or FUs, as was the case in an out-of-order

machine. In an in-order machine, stalling on an L2 miss will result in very low

utilization of the SB and the FUs. It is possible to prune the search space by

eliminating such redundancies or obviously poor strategies. However, for the

data presented herein, the code generator for the out-of-order machine is run

as-is.

Figure 4.9 presents the results of the AVF stressmark generated for the

84

in-order configuration outlined in Table 4.4, assuming an underlying circuit-

level fault rate of 1 unit/bit. The stressmark induces higher AVF in every

individual structure than any SPEC CPU2006 or MiBench workload. The

stressmark increases the AVF of the ARF, SB, IB, and FU to increase the

overall SER. Each register is un-ACE between a read and subsequent write.

As the GA uses arithmetic instructions to increase the AVF of the FUs, some

writes to the ARF are inevitable, resulting in an AVF of 0.77 in the ARF. In

this architecture, the number of bits in the function units are relatively signifi-

cant in comparison to other structures in the core, and is hence a larger trade-

off between RF AVF and FU AVF. The stressmark induces 30% higher SER

in the in-order core than the highest SPEC CPU2006 or MiBench workload

(gromacs). The methodology does not change significantly for multithreaded

in-order machines. An additional thread would be necessary to populate the

ARF of the other hardware context. This hardware thread can then stall,

allowing the stressmark presented herein to maximize the utilization of the

shared structures. Although multithreading two workloads may potentially

increase the AVF of the FUs, this will result in a reduction in the AVF of

the register file, as the register is un-ACE for the duration between the last

read, and write. Additionally, they also reduce the effective issue width for

the other thread. Therefore, there is only a need to maximize the AVF of the

register files, which can be easily done. Thus, creation of a multithreaded in-

order stressmark is a relatively straightforward extension of the methodology

85

0"
0.2"
0.4"
0.6"
0.8"
1"

St
re
ss
m
ar
k"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"
so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"
lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

su
sa
n"

bi
tc
ou

nt
"

ba
sic

m
at
h"

qs
or
t"

ad
pc
m
"

gs
m
"

FF
T"

CR
C3

2"
rs
yn
th
"

gh
os
ts
cr
ip
t"

pa
tr
ic
ia
"

di
jk
st
ra
"

AV
F$

RF"AVF" SB"AVF" FU"AVF" IB"AVF"

(a) AVF induced by SPEC CPU2006 and MiBench workloads compared to the Stressmark

0"

0.2"

0.4"

0.6"

0.8"

St
re
ss
m
ar
k"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"
so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"
lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

su
sa
n"

bi
tc
ou

nt
"

ba
sic

m
at
h"

qs
or
t"

ad
pc
m
"

gs
m
"

FF
T"

CR
C3

2"
rs
yn
th
"

gh
os
ts
cr
ip
t"

pa
tr
ic
ia
"

di
jk
st
ra
"

SE
R$
(u
ni
ts
/b
it)
$

(b) SER observed while running SPEC CPU2006 and MiBench workloads compared to
the Stressmark

Figure 4.9: AVF of the Core for the In-order Configuration

86

Knob Value
Loop Size 35
No of Loads 1
No of Stores 7
No of dependent 1
arithmetic
No of independent 22
arithmetic
No of instructions 1
dependent on L2 hit
Dependency Distance 7
Fraction of long- 0.0
latency instructions
Fraction of Reg-Reg 0.73
instructions

Table 4.5: Knob Settings for the In-order Stressmark

presented herein.

4.9 Discussion

The AVF stressmark methodology presented herein is limited by the

lack of low-level detail in an academic simulator. In the absence of low-level

microarchitectural and circuit detail, ACE analysis is done conservatively. As

low-level modeling information is added to the AVF estimation, the conser-

vatism in the estimation of AVF is significantly reduced.

Furthermore, structures such as control circuits, much of the datapath,

register alias tables, branch misprediction recovery checkpoints, decoders, etc.

have not been modeled in this work, owing to the relatively small amount of

state contained in them as compared to the structures considered in this work,

or the lack of low-level detail necessary to model these structures, or both. As

87

noted earlier, it is impossible for all structures to contain state simulateneously,

making sum of intrisic fault rates a poor metric for estimating the worst-case

observable SER. The stressmark methodology provides an effective way of

determining the worst-case observable SER.

SER estimation using AVF modeling also depends on accurate estima-

tion of intrinsic fault rates. As AVF is multiplied by the intrinsic fault rates

to estimate soft error rates, errors in estimating intrisic fault rates will be am-

plified. It is therefore necessary to compute the intrinsic fault rate accurately.

4.10 Conclusions

In this section, the lack of a methodology for evaluating the highest

observable SER is highlighted. It is demonstrated that methodologies that

ignore the interactions between structures within a processor may incur sig-

nificant errors while estimating the highest SER under program influence.

Therefore an automated and flexible methodology, derived from a comprehen-

sive study of interactions between structures in an OoO processor is proposed,

that generates an stressmark that approaches the maximum SER observable

while running a program. It is demonstrated that the methodology can en-

able architects to make quantifiable decisions regarding the effect of various

SER mitigation mechanisms on overall highest SER. This knowledge enables

the architect to make better informed trade-offs between performance, power,

area and SER reliability. It is shown that the stressmark achieves 1.4×, 2.5×,

and 1.5× higher SER in core, DL1+DTLB and L2 respectively, as compared

88

to the highest SER induced by SPEC CPU2006 and MiBench programs for a

4-wide out-of-order architecture similar to the Alpha 21264.

89

Chapter 5

Mechanistic Modeling for Architectural

Vulnerability Factor

In this chapter, a first-order mechanistic model for Architectural Vul-

nerability Factor (AVF) is presented. Derived from the first principles of super-

scalar processor execution, the mechanistic model is designed to provide insight

into the precise interaction between the microarchitecture and the workload

that together influence AVF. Using a set of inexpensive profiles, the model es-

timates the AVF of the ROB, IQ, LQ, SQ and FU with a Mean Absolute Error

of less than 7%. The model is used to perform design space exploration and

parametric sweeps, and to characterize workloads for their impact on AVF.

Figure 1.2 provides an overview of the modeling methodology. The workloads

are profiled once, and the statistics thus collected may be used to estimate the

performance and AVF of multiple microarchitectures nearly instantaneously.

Owing to its construction, the model presented herein can provide in-

sight into the fundamental factors influencing the AVF of a structure, beyond

what is obtained using detailed simulation, or “black-box” models such as sta-

tistical or machine-learning based models [9–11]. Detailed, microarchitectural

simulations typically present the aggregate masking effect of the ACE bits

90

due the workload, and the impact of microarchitectural events triggered by a

workload on the occupancy of these ACE bits in a structure. It is difficult to

infer the exact factors affecting AVF from aggregate metrics [14]. Statistical or

machine-learning based modeling also do not easily quantify the fundamental

interactions between the workload and microarchitecture, making it difficult

to derive insight into the factors affecting AVF. The methodology presented

herein models the workloads influence on microarchitectural events, and on

the number of ACE bits induced in the structure, providing greater insight

into the factors affecting AVF of a design.

Eyerman et al. [33] refer to analytical modeling methodologies that

capture the fundamental mechanisms of operation of the processor as mech-

anistic models, to contrast them with other black-box modeling alternatives.

The same terminology will be used in this dissertation.

The following are the unique contributions derived from the work pre-

sented herein:

• A novel first-order analytical model for AVF, designed from first princi-

ples to capture the impact of microarchitectural events on the AVF of

major out-of-order processor structures is presented. The key novelty

of this modeling effort over prior mechanistic models for performance

[32, 33] is that it captures the interaction between different events occur-

ring in a processor, and estimates the average occupancy of correct-path

state, with low error. This enables the architect to derive unique insight

91

into the factors affecting the AVF of a structure, not available using

aggregate metrics or black-box models.

• As the model requires inexpensive profiling, it can be used to perform

design space exploration studies nearly instantaneously. The model is

used to study the effect of scaling the ROB, issue width and memory

latency on AVF, which provides valuable insight into the effect of mi-

croarchitecture and workload interactions on AVF.

• The model is used for workload characterization for AVF. It quantita-

tively explains why some high-IPC workloads induce high AVF in CPU

structures whereas others do not, and why not all workloads with a large

number of last-level data cache misses induce high AVF. The methodol-

ogy can be used to identify high AVF workloads.

5.1 Modeling AVF using Interval Analysis

The central idea behind this modeling methodology is to model the

occupancy of correct-path state in the core. Recall from Section 2.5 that

the mispredicted, or wrong-path state in the processor will be un-ACE. By

derating the occupancy of correct-path state in a structure by the proportion

of ACE bits induced in it by the workload, the AVF of the structure can be

estimated.

The modeling methodology is inspired by Interval Analysis, which was

presented in Section 2.8. Similar to Interval Analysis for performance, the oc-

92

cupancy of correct-path state in the core is modeled as an ideal, uninterrupted

occupancy, punctuated by miss events that alter this occupancy depending on

their behavior. By computing the average occupancy, weighted by the number

of cycles spent in each interval, the overall average occupancy of correct-path

state can be estimated. A key departure from the Interval Analysis method-

ology for performance is its assumption that miss events are independent of

one another, in the first order [32, 33]. This assumption does not hold true

for occupancy. Therefore, modeling of correct-path occupancy necessitates

the modeling of interactions between various miss events, and their collective

influence on occupancy.

The following discussion describes the methodology for estimating the

occupancy of correct-path state, of the ROB, LQ, SQ, IQ, and FU, which

contain the largest amount of corruptible state in the core. The exclusion

of wrong-path instructions from the occupancy estimations enables the easily

computation AVF by derating this occupancy by the fraction of bits introduced

into a structure that were ACE. Un-ACE instructions are identified through

profiling and this information is used to determine the number of ACE bits

injected in to each structure while running the workload. The separation of

the program’s influence on the number of ACE bits induced in a structure,

and the residency of these ACE bits in the structure enables the architect

to gain deeper insight into the interaction of events, and their contribution

to overall AVF. As with any analytical modeling methodology, the design

objective in this modeling methodology is to balance accuracy with simplicity

93

of formulation, the ability to provide quantitative insight, and ease of collecting

necessary program characteristics.

The following section describes the estimation the occupancy of eventu-

ally committed state in the ROB using Interval Analysis. The ROB occupancy

governs the occupancy of LQ, SQ, and FU, and can be used to estimate their

occupancy/utilization. As the IQ can issue instructions out-of-order, its oc-

cupancy is estimated independently in Section 5.3. AVF can be estimated by

derating the occupancy of the structures with the average fraction of ACE bits

in these structures.

5.2 Modeling the AVF of the ROB

The occupancy of the ROB is modeled using interval analysis as having

a steady-state, or ideal value in the absence of miss events. Each miss event

would alter occupancy of correct-path instructions, depending on its behavior.

Averaging the occupancy during the steady-state execution and miss events,

weighted by the cycles spent in each interval gives the overall average occu-

pancy. The ramp-up and ramp-down curves for occupancy are linearized, with

slopes equal to the steady-state dispatch rate, in the interest of simplicity. The

effect of each miss event on occupancy are studied independently of one an-

other, in Sections 5.2.1 through 5.2.3. Subsequently, an analysis of the impact

of interaction between miss events is presented in Section 5.2.5.

94

5.2.1 Modeling steady-state occupancy

As seen in Section 2.8, given an instruction window of size W , the total

number of cycles taken to execute all instructions in the instruction window

is a function of the latency of executing the critical path. The average critical

path length K(W) for a given program is modeled as K(W) = 1
α
W 1/β [32, 34]

where α and β are constants that are determined by fitting the relationship

between K(W) and W to a power curve. This analysis is performed assuming

that all instructions have unit latency. Therefore, given an average instruction

latency l, the critical path would require l·K(W) cycles. Using Little’s law, the

ideal IPC (I(W)) that can be extracted from the program given an instruction

window of size W is presented in Equation 5.1 [32, 34]. For a processor with

a designed dispatch width D, setting I(W) = D, and rearranging the terms

in Equation 5.1 gives us the steady-state ROB occupancy, OROB
ideal , or W (D)

necessary to sustain the peak dispatch rate.

I(W) =
W

l.K(W)
=
α

l
·W (1−1/β) (5.1)

∴ OROB
ideal = W (D) =

(
l ·D
α

) β
β−1

(5.2)

If the ideal IPC of the program is less than the designed dispatch width,

the program requires a much larger instruction window to extract the necessary

ILP. In this case, the occupancy of the ROB will saturate to 100%. As noted

by Karkhanis and Smith [32], a processor that has a balanced design for a

95

Workload α β
perlbench 1.43 1.51
bzip2 0.78 1.98
gcc 1.50 1.61
bwaves 2.16 1.34
mcf 1.74 1.60
milc 0.78 2.40
zeusmp 0.88 2.11
gromacs 1.70 1.70
leslie3d 1.02 1.81
namd 1.07 1.76
gobmk 1.00 1.84
soplex 0.98 1.80
hmmer 1.09 1.82
sjeng 0.8 1.73
gemsFDTD 1.32 2.12
libquantum 2.45 1.24
h264ref 1.95 1.57
omnetpp 1.36 1.58
astar 0.69 1.93
sphinx3 1.26 1.69

Table 5.1: Values of α and β for SPEC CPU2006 workloads.

96

typical workload will not frequently stall due to a full IQ. Therefore, only the

typical case is considered for modeling.

Table 5.1 lists the values of α and β for workloads in the SPEC CPU2006

suite. Note that β > 1 for any real workload. Values of β < 1 are meaningless,

as they either imply that the critical path in the instruction window K(W) is

potentially longer than the instruction window size W (0 < β < 1), or that the

critical path length reduces as the instruction window size increases (β < 0).

In the case of SPEC CPU2006, β ranges between 1.24 (libquantum) and 2.40

(milc). Lower values of β indicate less ILP, whereas higher values indicate

more ILP. Consequently, β
β−1

in Equation 5.2 asymptotically approaches∞ as

β → 1, and approaches 1 for large values of β. This implies that workloads

with low ILP need a larger instruction window to be able to issue the same

number of instructions per cycle as compared to a workload with high ILP.

Figure 5.1 presents the relationship between K(W) and W for a range of

instruction window sizes up to 512 entries. The power curve fit for determining

α and β is depicted by the solid black curve, with the corresponding equation

for the power curve. For workloads such as bzip2 (Figure 5.1(a)), the fit is

nearly exact. For other workloads such as astar (Figure 5.1(b)), the fit diverges

somewhat at the higher end of the curve. These two cases are typical of most

workloads. For yet other workloads such as hmmer (Figure 5.1(c)), the I-W

curve is slightly irregular, leading to a relatively sub-optimal fit. Although

the general trend is approximately that of a power curve, the curve itself has

97

y"="1.279x0.5041"

0"

10"

20"

30"

40"

0" 100" 200" 300" 400" 500" 600"

K(
W
)%

Instruc-on%Window%Size%(W)%

K(W)" Power"(K(W))"

(a) I-W curve for bzip2

y"="1.4434x0.5192"

0"

10"

20"

30"

40"

0" 100" 200" 300" 400" 500" 600"

K(
W
)%

Instruc-on%Window%Size%(W)%

K(W)" Power"(K(W))"

(b) I-W curve for astar

y"="0.9203x0.5498"

0"

10"

20"

30"

40"

0" 100" 200" 300" 400" 500" 600"

K"
(W

)"

Instruc-on"Window"Size"(W)"

K(W)" Power"(K(W))"

(c) I-W curve for hmmer

Figure 5.1: I-W characteristics for sample SPEC CPU2006 workloads.

98

L2 miss at
the head
of ROB

ROB Full
L2 miss
resolves

Steady state
execution

Mispredicted branch
enters window

Misprediction detected,
and pipeline flushed.

Instructions from
correct path enter the

window

Mis-speculated
(UnACE)

Instructions

I-Cache Miss Latency
* issue rate

L2 Miss
completes.

Misprediction
detected

Mispredicted
Branch Enters

the window

L2 Miss at head of ROB

Ideal Occupancy

O
cc

up
an

cy
O

cc
up

an
cy

Time

O
cc

up
an

cy

Time

Time

Steady State
Occupancy

I-cache Miss
Penalty

Front-End
Pipeline Depth

I-cache Miss

I-cache Miss
resolves

O
cc

up
an

cy

Time

(a) Occupancy of the ROB in the
shadow of an L2 miss

L2 miss at
the head
of ROB

ROB Full
L2 miss
resolves

Steady state
execution

Mispredicted branch
enters window

Misprediction detected,
and pipeline flushed.

Instructions from
correct path enter the

window

Mis-speculated
(UnACE)

Instructions

I-Cache Miss Latency
* issue rate

L2 Miss
completes.

Misprediction
detected

Mispredicted
Branch Enters

the window

L2 Miss at head of ROB

Ideal Occupancy

O
cc

up
an

cy
O

cc
up

an
cy

Time

O
cc

up
an

cy

Time

Time

Steady State
Occupancy

I-cache Miss
Penalty

Front-End
Pipeline Depth

I-cache Miss

I-cache Miss
resolves

O
cc

up
an

cy

Time

(b) Occupancy of the ROB during a branch
misprediction

Figure 5.2: Modeling the Occupancy of the ROB Using Interval Analysis.

changing behavior in different intervals, leading to divergence with the fitted

power curve at various points along it. This may be problematic for workloads

that have few miss events, making the accuracy of the I-W curve fit a critical

factor. This will be discussed in detail in Section 5.7.

It is recommended that a value of W that is much larger than the range

of instruction window sizes of interest be selected for doing curve fitting. This

avoids any error from the divergence at the extremes.

5.2.2 Modeling Occupancy in the Shadow of Long-Latency Data
Cache Misses

As shown in Figure 5.2(a), a non-overlapped data L2 miss (or a TLB

miss for a hardware-managed TLB) reaches the head of the ROB, blocking

the retirement of subsequent instructions. The processor continues to dis-

patch instructions until the ROB fills up completely. Thus, the occupancy in

99

I-Cache Miss Latency
* issue rate

O
cc

up
an

cy

Time

I-cache Miss
Penalty

Front-End
Pipeline Depth

I-cache Miss

I-cache Miss
resolves

Figure 5.3: Modeling the Occupancy During an I-cache Miss.

the shadow of a non-overlapped L2 miss is OROB
DL2Miss = W . When the data

eventually returns from main memory, the L2 miss completes, and the pro-

cessor is now able to retire instructions. At this point, the assumption about

interval analysis requires that the occupancy of the ROB returns to steady-

state. However, this need not be the case: the occupancy of the ROB can

remain at nearly 100% if the processor is capable of dispatching and retiring

instructions at the same rate. In Section 5.2.5, a procedure for accounting for

this interaction is explained.

5.2.3 Modeling Occupancy During Front-End Misses

Modeling Occupancy During an L1 I-cache Miss: The occupancy of

the ROB during an L1 I-cache miss depends on the hit latency of the L2 cache,

as shown in Figure 5.3, and therefore requires special modeling. When an L1

I-cache miss occurs, the processor is initially able to dispatch instructions

until the front-end pipeline drains. Subsequently, the occupancy of the ROB

100

decreases by a rate determined by the ideal IPC (see Equation 5.1), as depicted

by the solid line. Once the I-cache miss resolves and the front-end pipeline is

refilled, occupancy of the ROB starts increasing at the rate of the ideal IPC

(Equation 5.1). Linearizing ramp-up and ramp-down, the shaded areas under

the ramp-up and ramp-down are equal, allowing the model to approximate

occupancy as depicted by the dotted line. As depicted in Figure 5.3, the

occupancy of state during an I-cache miss reduces in proportion to the designed

dispatch or retirement rate D (assuming that they are equal), and the latency

of the I-cache miss. Thus, OROB
IL1Miss = OROB

ideal − latL2 ·D, where latL2 cycles is

the hit latency of the L2 cache. This allows us to model changes in occupancy

as steps, greatly simplifying computation, and is used to model other miss

events as well.

The occupancy during other front-end misses such as L1 I-cache misses,

L2 instruction misses, and I-TLB misses can be modeled on similar lines. As

the latencies of L2 instruction misses and I-TLB misses are relatively large,

the occupancy of the ROB goes down to zero.

Modeling Occupancy During a Branch Misprediction: Figure 5.2(b)

illustrates the effect of a branch misprediction on the occupancy of the ROB.

The solid line depicts the occupancy of correct-path instructions in the ROB.

All instructions fetched after the mispredicted branch are eventually discarded,

and hence un-ACE. As correct-path instructions are retired, and instructions

from the mispredicted path continue to be fetched, the occupancy of ACE

101

state decreases. The overall occupancy, as indicated using the dotted line

remains at the steady-state value, until the branch misprediction is detected

and the pipeline is flushed. Karkhanis and Smith [32] show that assuming

an oldest-first issue policy, the mispredicted branch is among the last correct-

path instructions to be executed in the instruction window. Simultaneously,

retirement of instructions drains the ROB of correct-path state, resulting in

low ACE occupancy by the time the misprediction is detected, and the pipeline

is flushed. Thus, OROB
brMp ≈ 0. After the front-end pipeline refills and dispatch

resumes, the occupancy of the ROB eventually returns to the steady-state

value.

5.2.4 Computing Occupancy of Correct-Path Instructions in the
ROB

The interval analysis model for performance enables the estimation of

the number of cycles spent during each execution interval. The model pre-

sented herein enables the estimation of the occupancy of correct-path instruc-

tions the ROB during these intervals. Thus, average occupancy of the ROB,

computed over the execution of the program is as follows:

OROB
total =

1

Ctotal
× (OROB

ideal · Cideal +OROB
DL2Miss · CDL2Miss +OROB

IL1Miss · CIL1Miss

+OROB
brMp · CbrMp +OROB

ITLBMiss · CITLBMiss +OROB
DTLBMiss · CDTLBMiss)

(5.3)

In essence, Equation 5.3 is the average occupancy, weighted by the

number of cycles spent in each interval.

102

5.2.5 Modeling the Effect of Interactions Between Miss Events

The following discussion explores the cases in which multiple miss-

events may interact with each other, and whether they have a significant

impact on the accuracy of the model.

Dependent Branch Mispredictions in the Shadow of a Long-Latency

Data Miss: Consider the case in which a branch is dependent on a long-

latency data L2/TLB miss, and occurs within the same instruction window.

If such a branch is mispredicted, all instructions in the ROB fetched after the

branch instruction are un-ACE. As the branch will not resolve until the cache

miss completes, the occupancy of correct-path state in the shadow of this L2

miss is not 100%, as shown in Figure 5.4(a). Programs such as perlbench,

gcc, mcf and astar have a significant number of such interactions. Branch

mispredictions that are independent of long-latency data cache misses will

resolve quickly enough such that their interaction has little effect on occupancy,

and are hence ignored. This assumption is tested in Section 5.7.2.

This interaction between long-latency data misses and dependent branch

mispredictions is captured by computing the number of instances in which a

non-overlapped data L2 or TLB miss has a dependent mispredicted branch

in its instruction window (Ndep(W)), and the average number of instructions

between the earliest dependent mispredicted branch and the non-overlapped

miss at the head of the ROB (lenDL2,Br(W), lenDTLB,Br(W)). Note that the

103

L2 miss at
the head
of ROB

ROB Full
L2 miss
resolves

Steady state
execution

Mispredicted
branch enters

window

Misprediction
detected, and

pipeline
flushed.

Instructions
from correct

path enter the
window

Mis-speculated
(UnACE)

Instructions

Misprediction Penalty

Misprediction Penalty
* dispatch width

L2 Miss
completes.

Misprediction
detected

Mispredicted
Branch Enters

the window

L2 Miss at head of ROB

Ideal Occupancy

O
cc

up
an

cy
O

cc
up

an
cy

Time

O
cc

up
an

cy

(a) Mispredicted Branch dependent on an L2 miss.

0"

0.2"

0.4"

0.6"

0.8"

1"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"
hm

m
er
"

sje
ng
"

Ge
m
sF
DT

D"
lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

xa
la
nc
bm

k"Fr
ac
%o

n(
of
(N
on

+o
ve
rla

pp
ed

(
M
is
se
s(

(b) Quantifying the number of data L2/TLB misses followed by long intervals,
before the occurence of a front-end miss.

Figure 5.4: Modeling the Effects of Interactions Between Miss Events on Oc-
cupancy.

104

mispredicted branch only needs to be dependent on any data L2 or TLB

cache miss in the instruction window. This computation can be added to

the existing profiler for non-overlapped data cache misses with little over-

head. It does, however, require that information on mispredicted branches

from the branch profiler be made available to the non-overlapped data cache

miss profiler. Thus, Ndep(W) data L2 misses have only lenDL2,Br(W) correct-

path instructions in their shadow, whereas the remaining data L2 misses have

W correct-path instructions in their shadow. Assuming NDL2Miss(W) non-

overlapped misses, the term OROB
DL2Miss · CDL2Miss in Equation 5.3 is expressed

as latDL2Miss · (lenDL2,Br(W) ·Ndep(W) +W · (NDL2Miss(W)−Ndep(W))).

Interaction of Data cache and Instruction Cache Misses: The model

presented herein is impacted by two types of interactions between data-cache

and instruction cache miss events. The first case occurs when an L2 instruction

cache or ITLB miss occurs in the shadow of a non-overlapped DL2 or DTLB

miss, resulting in less than 100% occupancy of the ROB. This case is very rare;

only perlbench is significantly impacted by this, due to its higher proportion

of ITLB misses. A procedure similar to the aforementioned case of dependent

branch instructions is followed to estimate the impact of these interactions. L1

I-cache misses in the shadow of a non-overlapped L2/DTLB miss will resolve

quickly, and hence their interaction has negligible effect on average occupancy.

A second case is when the duration between a long-latency data cache

miss and front-end miss is too long. As described in Section 5.2.2, a simplifying

105

assumption that the occupancy of the ROB returns to steady state relatively

quickly after a long-latency data cache miss retires, as a result of subsequent

front-end misses causing the ROB to drain, may not be entirely accurate.

Therefore, the fraction of non-overlapped DL2 and DTLB misses that are

separated from a front-end miss by at least 2W instructions are measured.

This interval length is chosen to be large enough to eliminate misses that

occur in the shadow of the L2 and DTLB miss. Furthermore, a significant

number of misses occur within 2W of the non-overlapped L2/TLB miss, which

have negligible impact on accuracy. Thus, only the length of long intervals is

captured, and the impact of very short intervals on the average is filtered out.

Figure 5.4(b) outlines the average number of non-overlapped misses that are

followed by intervals of greater length than 2W instructions, for the cache and

branch predictor configuration outlined for the wide-issue machine, in Table

5.2. As seen in Figure 5.4(b), with the exception of hmmer, gobmk, sjeng, and

astar, this situation occurs infrequently. The average length of such sequences

for these workloads range between 300 and 450 instructions. Thus, the fraction

of non-overlapped L2 misses in Figure 5.4(b) will experience a subsequent

region of ideal execution in which occupancy is W , which is included in the

calculations for the model.

A similar experiment performed to capture long intervals between two

consecutive data L2/TLB misses, results in the conclusion that they are much

fewer in number, and affect only workloads dominated by these misses. There-

fore, they have negligible impact on average occupancy of these workloads due

106

to the dominance of L2/TLB misses on overall occupancy.

Clustered Front-End Misses: With the exception of the L1 I-cache miss,

the ROB is completely drained after a front-end miss event. As these misses

are independent of each other, their impact on occupancy is separable, in the

first-order. Due to the relatively low latency of an L1 I-cache miss that hits in

the L2, the ROB may not be completely drained before the miss resolves. Thus,

two I-cache misses relatively close to each other may drive occupancy lower

than if they occurred separately. Similarly, an I-cache miss quickly following a

branch misprediction may experience lower occupancy. However, the latency

of each I-cache miss is relatively short, and therefore, an large number of such

events are necessary to produce a meaningful impact on overall occupancy.

For the workloads under consideration, the number of I-cache misses are not

significant enough in number to warrant modeling of their interactions. The

relative infrequency of such events, and the relatively low impact on average

occupancy implies that their impact is negligible. This assumption will be

evaluated in Section 5.7.2.

5.3 Modeling of the AVF of the IQ

The occupancy of the Issue Queue requires separate modeling due to the

fact that instructions can issue out-of-order. The model assumes an oldest-first

issue policy. Occupancy of correct-path instructions during front-end misses

is modeled in exactly the same way as the ROB. Steady-state occupancy, and

107

occupancy in the shadow of a long-latency data cache or TLB miss needs to

be modeled differently, as outlined below.

Steady-state IQ occupancy: Let A(W) be the average number of instruc-

tions in a chain of dependent instructions in the instruction window. A(W) is

obtained as a by-product of the critical-path profiling necessary to determine

K(W). The average latency of each instruction in the IQ is l · A(W). Using

Little’s law, OIQ
ideal = l · A(W) ·min(D, I(W)) [58].

Occupancy in the Shadow of a Long-Latency Data Miss: When issue

of instructions ceases in the shadow of an L2/TLB miss, the IQ contains only

the instructions dependent on such misses. The average number of instructions

dependent on the L2 and DTLB misses in the instruction window is measured,

to determine the average occupancy during such miss events. This profiling

can be added to the existing profiler for determining non-overlapped data-

cache misses, and incurs no overhead. This profiling also captures the effect

of interactions between data L2/TLB misses and front-end misses, similar to

the procedure outlined in Section 5.2.5.

5.4 Modeling the AVF of LQ, SQ, and FU

The occupancy of the Load Queue, Store Queue and Function Units can

be derived from the occupancy of the ROB, and the instruction mix (I-mix).

Additionally, by classifying un-ACE instructions according to the I-mix, the

108

occupancy of each of these units is derated to estimate AVF. FU utilization can

be estimated using Little’s Law, as the latency of each arithmetic instruction

and the issue rate are known.

Loads and stores enter the LQ and SQ after they are issued, and remain

there until they are retired. As seen in Section 5.3, the average dispatch-to-

issue latency for an instruction is l · A(W) cycles. Thus, the LQ and SQ

occupancy can be estimated as the fraction of loads and stores in the ROB,

adjusted for the average dispatch-to-issue latency of the loads/stores in the

instruction stream. Thus, the occupancy-cycle product in the ideal case for

SQ is expressed as (Nstores/Ntotal) · OROB
ideal · Cideal − l · A(W) · Nstores, where

Nstores and Ntotal are the number of stores, and total number of instructions

respectively. All other occupancy-cycle products from Equation 5.3 are mul-

tiplied by the fraction of stores to estimate OSQ
total. The occupancy estimation

is further improved by also including the number of loads and stores in the

shadow of a non-overlapped data L2/TLB in the calculations.

5.5 Assumptions of the Model

The model assumes that for a processor with designed issue or dispatch

width D, in the absence of any long-latency miss events, the processor is able

to dispatch instructions at peak dispatch width, and is not constrained for

resources (functional units, load and store queue entries, MSHRs, etc) while

running typical workloads. An implicit assumption of the model is that the

processor must not be underprovisioned. In prior work, Eyerman et al. [33]

109

assume a balanced processor, and define it as one in which “for a given dispatch

width D, the ROB (window size) and other resources such as the issue buffer(s),

load/store buffers, rename registers, MSHRs, functional units, write buffers,

etc., are of sufficient size to achieve sustained processor performance of D

instructions per cycle in the absence of miss events. Furthermore, for a given

balanced design, reducing the size of any one of the resources will reduce

sustained performance below D instructions per cycle”. In this dissertation,

rather than emphasizing the assumption of a balanced design, a configuration

that is not underprovisioned is assumed.

It is assumed in this dissertation that the sizes of the load and store

queues are large enough so as to extract all the available MLP from the in-

structions in the instruction window. If the size of the load and store queue

constrains the extraction of MLP from the instruction window, the load and

store queue sizes need to be considered while estimating the number of non-

overlapped data cache misses.

All scaling studies and design space evaluation studies presented herein

assume that the processor is not underprovisioned.

5.6 Evaluation

SimpleScalar [49] is used to evaluate the accuracy of the mechanistic

model presented herein. ACE analysis is implemented on a modified version of

SimpleScalar. Bit-wise ACE analysis is performed, as opposed to an occupancy

110

Parameter Wide Issue Machine Narrow Issue Machine
ROB 128 entries, 76 bits per entry 64 entries, 76 bits per entry
Issue Queue 64 entries, 32 bits per entry 32 entries, 32 bits per entry
LQ 64 entries, 80 bits per entry 32 entries, 80 bits per entry
SQ 64 entries, 144 bits per entry 32 entries, 144 bits per entry
Branch Predictor Combined, 4K bimodal, Combined, 4K bimodal,

4K gshare, 4K choice, 4K BTB 4K gshare, 4K choice, 4K BTB
Front-end pipeline depth 7 5
Fetch/dispatch/ 4/4/4/4/4 per cycle 2/2/2/2 per cycle
issue/execute/commit
L1 I-cache 32kB, 4-way set associative 32kB, 4-way set associative
L1 D cache 32kB, 4-way set associative 32kB, 4-way set associative
L2 cache 1MB, 8-way set associative 1MB, 8-way set associative
DL1/L2 latency 2/9 cycles 2/9 cycles
DTLB and ITLB 512 entry, fully associative 512 entry, fully associative
Memory Latency 300 cycles 300 cycles
TLB Miss Latency 75 cycles 75 cycles

Table 5.2: Processor Configurations

heuristic. Simplescalar models a unified instruction window, that combines the

ROB and the IQ into a single unit. Therefore, Simplescalar is modified to have

a separate IQ. Further, the LQ and SQ are modeled separately, as opposed to

the unified Load-Store Queue (LSQ) in SimpleScalar.

The accuracy of the first-order mechanistic model is evaluated using

20 SPEC CPU2006 workloads (compiler issues prevented the remaining work-

loads for Alpha from being successfully compiled) using gcc v4.1 compiled with

-O2 flag. The profilers and the detailed simulator on single simulation points

of length 100 million instructions, identified using the SimPoint methodol-

ogy [53]. The two configurations evaluated in this discussion are presented in

Table 5.2. Wide-issue machine represents an 4-wide issue out-of-order super-

scalar, whereas Narrow-issue machine represents a 2-wide issue out-of-order

superscalar.

111

0"

0.2"

0.4"

0.6"

0.8"

1"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"

so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"

lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

AV
F$

Modeled"AVF" Simulated"AVF"

(a) AVF of ROB

0"

0.2"

0.4"

0.6"

0.8"

1"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"
so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"
lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

AV
F$

Modeled"AVF" Simulated"AVF"

(b) AVF of IQ

0"

0.2"

0.4"

0.6"

0.8"

1"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"
so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"
lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

AV
F$

Modeled"AVF" Simulated"AVF"

(c) AVF of LQ

0"

0.2"

0.4"

0.6"

0.8"

1"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"

so
pl
ex
"

hm
m
er
"

sje
ng
"

Ge
m
sF
DT

D"

lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

AV
F$

Modeled"AVF" Simulated"AVF"

(d) AVF of SQ

0"

0.2"

0.4"

0.6"

0.8"

1"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"
so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"
lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

AV
F$

Modeled"AVF" Simulated"AVF"

(e) AVF of FU

0"

20"

40"

60"

80"

100"

120"
pe

rlb
en

ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"

so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"

lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

SE
R$
(u
ni
ts
)$

Model"SER" Simulated"SER"

(f) Soft Error Rate

Figure 5.5: Modeling the AVF of the Wide-Issue Machine.

5.7 Results

The AVF of the ROB, IQ, LQ, SQ, and FU is presented in Figure 5.5.

The overall SER for these structures is also computed, assuming an arbitrary

circuit-level fault rate of 0.01 units/bit, due to the unavailability of real data.

However, it allows us to compute the relative error in the SER estimated by

the model.

112

Figure 5.5(a) presents a comparison between the modeled and simulated

AVF of the ROB. The mean absolute error in estimating AVF is 0.03, with

a maximum error of 0.08 for hmmer. As AVF is normalized to the number

of bits in the structure (see Equation 2.2), it has a tendency to amplify small

errors in small structures. Therefore, for a sense of proportion, the absolute

error in estimating SER in terms of the circuit-level fault-rate of each entry

in the corresponding structure is expressed. Thus, the mean absolute error in

the ROB is equivalent to the fault-rate of 3.8 entries, and the worst-case error

is 10.2 entries. In the interest of brevity, in the following discussion, when the

absolute SER error is expressed as n entries, it stands to mean “equivalent to

the circuit-level fault-rate of n entries in the corresponding structure”.

The average absolute IQ AVF error is 0.07 (4.5 IQ entries), with a max-

imum error of 0.155 for bwaves, (9.9 entries) in the IQ. The average absolute

LQ and SQ errors are 0.045, and 0.02, respectively, which translates to an er-

ror of 2.8 entries, and 1.3 entries, respectively. The maximum errors are 0.09

(zeusmp) and 0.06 (omnetpp), which translates to the fault-rate of 5.7 entries,

and 3.84 entries in the LQ, and SQ, respectively. The mean absolute error for

the FUs is 0.01, with a maximum error of 0.05 for zeusmp.

Figure 5.5(f) presents the combined SER for the ROB, IQ, LQ, SQ

and FU. Root Mean Square Error (RMSE) is typically used to compute the

accuracy of a model, and is computed as
√

1
N

∑N
i=0(mi − ai)2, where mi, ai and

N represent the modeled value, actual value, and total number of workloads

113

0"

0.2"

0.4"

0.6"

0.8"

1"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"

so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"

lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

AV
F$

Modeled"AVF" Simulated"AVF"

(a) AVF of ROB

0"

0.2"

0.4"

0.6"

0.8"

1"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"

so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"

lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

AV
F$

Modeled"AVF" Simulated"AVF"

(b) AVF of IQ

0"
0.2"
0.4"
0.6"
0.8"
1"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"
so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"
lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

AV
F$

Modeled"AVF" Simulated"AVF"

(c) AVF of LQ

0"

0.2"

0.4"

0.6"

0.8"

1"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"

so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"

lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

AV
F$

Modeled"AVF" Simulated"AVF"

(d) AVF of SQ

0"

0.2"

0.4"

0.6"

0.8"

1"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"
so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"
lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

AV
F$

Modeled"AVF" Simulated"AVF"

(e) AVF of FU

0"
10"
20"
30"
40"
50"
60"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"
so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"
lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

SE
R$
(u
ni
ts
)$

Modeled"SER" Simulated"SER"

(f) Soft Error Rate

Figure 5.6: Modeling the AVF of the Narrow-Issue Machine

114

respectively. RMSE places higher weights on larger deviations, due to the

squaring of errors. Normalized RMSE (NRMSE) is computed by dividing the

RMSE by the arithmetic mean of the actual values. The NRMSE for the

mechanistic model on the wide-issue machine is 9.0%.

Figure 5.6 presents the AVF and SER for the narrow-issue machine

outlined in Table 5.2. The mean absolute error in AVF for the ROB is 0.06

(3.84 entries) with a maximum absolute error of 0.13 (8.3 entries) for hmmer.

The mean absolute error in estimating the AVF of the IQ is 0.067 (2.14 entries)

with a max error of 0.16 (5.12 entries) for leslie3d. The mean absolute error

for the LQ is 0.047 (1.5 entries) with a maximum error of 0.1 (3.2 entries) for

gemsFDTD. The average absolute error for the SQ is 0.02 (0.64 entries) with

a maximum error of 0.07 (2.24 entries) for milc. The average FU AVF error

is 0.02, with a maximum of 0.13 for gromacs. The SER using the model and

simulation is presented in Figure 5.6(f). The NRMSE for the narrow-issue

configuration is 10.3% as compared to detailed ACE analysis.

For completeness, the model is also used to estimate the AVF while

running the stressmark for the baseline configuration presented in Section

4 on the wide-issue machine. The model estimates the AVF of the ROB

with an absolute error of 0.04. Thus, the model estimates AVF for the wide-

issue machine with reasonable accuracy. However, the error in estimating the

LQ AVF is significantly high. This is because of the atypical nature of the

stressmark: address of all loads are dependent on addresses of other last-level

cache misses (pointer chasing). The model assumes that loads will issue as

115

soon as their dependences resolve, and that the dependence is equal to the

average steady-state dependence chain latency l · A(W) (see Section 5.4). In

the case of the stressmark, all loads are dependent on other last-level cache

misses, making their dependence chain latency significantly larger than the

average case. This factor can be modeled with additional profiling to detect

pointer chasing. However, this is an atypical behavior. It is recommended that

the profiling detect cases in which such pointer-chasing occurs, and model it

if it occurs frequently.

5.7.1 Potential Sources of Error

The proportion of ACE bits injected in a structure by the program is

multiplied with the average occupancy to compute AVF, under the assumption

that the proportion of ACE bits induced by the workload remains roughly con-

stant during each interval. This is a reasonable assumption over the simulation

points used. Over larger execution lengths, a conservative approach would be

to estimate AVF over smaller execution lengths, and combine the results to

determine overall AVF. This does not significantly increase the profiling time

or AVF estimation time, but may require additional storage.

For workloads such as hmmer that incur very few miss events, and are

such that the relationship between W and K(W) does not exactly fit a power

curve, this approximation may induce errors in modeling the ROB occupancy

(See Section 5.2.1). Despite this, the absolute error for hmmer is not very

large, and the equation is accurate for other workloads.

116

0"
0.2"
0.4"
0.6"
0.8"
1"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"
so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"
lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

AV
F$

Modeled"AVF" Simulated"AVF"

Figure 5.7: Impact of Ignoring the Interaction between Miss Events.

The out-of-order issue of instructions from the IQ causes errors in the

estimation of AVF. For example, NOP instructions leave the IQ almost imme-

diately, but are included in the computation of A(W), and the average number

of ACE bits induced by the instruction stream. Capturing these effects would

require the combination of profiling and ACE analysis. This approach is specif-

ically avoided so that the model can provide insight into the architectural and

microarchitectural contributors to AVF, and avoid re-running of profiling and

ACE-analysis on microarchitectural changes such as to the fields in each IQ

entry, or using a different cache hierarchy.

5.7.2 Impact of Interaction between Miss Events

As noted in earlier discussions, the interaction between data cache and

TLB misses with front end events only affects the accuracy in estimating AVF

of a subset of workloads. Figure 5.7 illustrates the AVF of the ROB for the

117

wide-issue machine, computed by assuming that each miss event is independent

of all the others. When compared with the ROB AVF error presented in

Figure 5.5(a), it is observed that the impact of such interactions is negligible

for a majority of workloads. However, workloads perlbench, gcc, mcf and

astar have increased error. This is especially true of perlbench and mcf, in

which a significant fraction of data L2 and TLB misses also have dependent

mispredicted branches, or instruction TLB misses, in their shadow. Workloads

such as hmmer also see an increase in error when the long intervals between a

data L2 or DTLB miss and front-end miss is not handled. The mean absolute

error in this case is 0.075 (as opposed to 0.03 when interactions are considered),

with the maximum error of 0.3 for mcf (as opposed to 0.08 when interactions

are considered). This graph demonstrates that ignoring these interactions will

induce significant error in the estimation of such workloads.

It is argued in Section 5.2.5 that consecutive, or clustered I-cache misses

have an insignificant impact on the estimation of correct path state due to their

infrequency and low latency. Table 5.3 presents the contribution of all I-cache

misses that hit in the L2 cache towards overall CPI. In no case do I-cache

misses have an influence of more than 6.41% on overall performance, and for

most workloads, it is less than 0.5%. Recall from Equation 5.3 that the occu-

pancy during each event is weighted by its contribution to the total number of

execution cycles to determine overall occupancy. A significant fraction of these

I-cache misses will not be clustered, resulting in a low inaccuracy if clustering

is ignored. For workloads that have a significant number of I-cache misses,

118

Workload Total Performance Total Performance Penalty due to
Penalty due to Independent Mispredictions

I-cache misses (%) in the Shadow of Data Misses (%)
perlbench 6.41 0.33
bzip2 0.00 0.00
gcc 0.01 0.30
bwaves 0.00 2.31
mcf 0.00 0.02
milc 0.00 0.00
zeusmp 0.00 2.04
gromacs 0.00 0.0
leslie3d 0.01 1.03
namd 0.00 1.33
gobmk 6.12 0.67
soplex 0.00 0.78
hmmer 0.00 1.28
sjeng 1.76 0.77
gemsFDTD 0.00 0.1
libquantum 0.00 0.9
h264ref 0.46 0.5
omnetpp 0.37 1.05
astar 0.00 0.0
sphinx3 0.01 1.23

Table 5.3: Contribution of I-cache misses, and branch mispredictions in the
shadow of long latency data cache misses, to overall CPI for the wide-issue
machine

119

it may be necessary to model such clustering. The need for this will be indi-

cated by the number of cycles lost as a result of I-cache misses. In this case,

the I-cache miss immediately following an earlier I-cache miss will experience

lower occupancy which can be computed in a manner similar to an individual

I-cache miss.

Table 5.3 also outlines the contribution of branch mispredictions that

are in the shadow of the data L2/TLB miss, and independent of long latency

data misses to overall modeled CPI. The interval analysis model for CPI does

not account for such interactions, as the error in ignoring them is negligible

[32, 33]. As argued in Section 5.2.5, it is reasonable to assume that these

independent branch mispredictions in the shadow of long-latency cache misses

resolve quickly enough such that their overall impact on the average occupancy

is negligible, and hence can be ignored. In other words, for the workloads under

study, it is reasonable to model these branch mispredictions as if occurring

outside the shadow of the blocking long-latency data L2/TLB miss.

5.8 Applications of the Model

The analytical model can be used to study performance vs. AVF trade-

offs of SER mitigation techniques, the impact of sizing of structures on AVF

and performance, compiler optimizations on AVF, different cache sizes and

latencies, different branch predictors, etc. In this section, a small subset of

these design choices are explored. Specifically, the impact of scaling the ROB,

memory latency, and issue width are analyzed.

120

5.8.1 The Impact of Scaling Microarchitectural Parameters

5.8.1.1 Impact of Scaling the ROB on AVF and performance

Sizing studies for AVF and performance are interesting because they

allow the architect to determine the trade-off between altering the size of a

structure on performance and AVF. For example, it may be reasonable to

reduce the ROB size by a small amount provided that it has negligible impact

on performance, but significantly reduces SER. Using the model, an architect

can instantaneously determine the impact of scaling a structure on AVF and

CPI. This section studies the impact of sizing the ROB on AVF and CPI on

the wide-issue machine presented in Table 5.2, assuming a circuit-level fault

rate of 0.01 units/bit. It is assumed that the IQ, LQ, SQ, FU, and other

structures are scaled to maintain the same proportion with the ROB as for

the wide-issue machine, so that the processor remains balanced.

Figure 5.8 illustrates the impact of scaling the size of the ROB from 64

to 160 entries, on the wide-issue machine. The trend in SER due to increase

in ROB size has two general mechanisms. Workloads for which the ROB is

not large enough to be able to sustain an ideal IPC of four will see an increase

in the contribution from ideal execution until this is satisfied. Workloads with

MLP will be able to exploit it, resulting in fewer stalls due to data L2/TLB

misses. However, for larger ROB sizes, the occupancy of instructions in the

shadow of these data L2/TLB misses increases as well, resulting in an overall

increase in SER. The following discussion presents a few examples for, and

121

0"2"4"6"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

Pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"
so
pl
ex
"

hm
m
er
"

sje
ng
"

Ge
m
sF
DT

D"l
ib
qu

an
tu
m
"h

26
4r
ef
"
om

ne
tp
p"

as
ta
r"

sp
hi
nx
3"

CPI$

Id
ea
l"

Br
an
ch
"M

isp
re
di
cK
on

"
DL

2"
DT

LB
"

IL
1"

IL
2"

IT
LB
"

(a
)

E
ff

ec
t

o
f

sc
a
li
n

g
th

e
R

O
B

si
ze

o
n

C
P

I

0"10
"

20
"

30
"

40
"

50
"

60
"

70
"

80
"

90
"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

64"
96"
128"
160"

Pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"
so
pl
ex
"

hm
m
er
"

sje
ng
"
Ge

m
sF
DT

D"li
bq

ua
nt
um

"h
26
4r
ef
"
om

ne
tp
p"

as
ta
r"

sp
hi
nx
3"

SER$(units)$

Id
ea
l"

IL
1"

DL
2"

DT
LB
"

(b
)

E
ff

ec
t

o
f

sc
a
li

n
g

th
e

R
O

B
si

ze
o
n

it
s

S
E

R

F
ig

u
re

5.
8:

E
ff

ec
t

of
S
ca

li
n
g

R
O

B
S
iz

e
on

it
s

C
P

I
an

d
S
E

R

122

exceptions to, these mechanisms.

Workloads such as gobmk do not see significant change in their CPI or

SER due to a large enough ROB, and little available MLP. On the other hand,

workloads such as namd have a long critical dependency path, which results in

high values for β/(β − 1) and l/α (Section 5.2). Consequently, from Equation

5.2, namd induces high SER for all ROB sizes despite its low CPI.

For workloads such as libquantum, the increase in ROB size provides

increased MLP, resulting in lower CPI, but also a greater SER in the shadow of

the L2/DTLB miss. Libquantum is able to exploit more MLP than gemsFDTD

resulting in a greater rate of reduction of CPI, and a lesser rate of increase of

SER. Bwaves and zeus experience an increase in SER due to both mechanisms.

Perlbench and mcf represent two important exceptions to this general

trend. Despite both workloads having a significant number of data L2/TLB

misses, mcf experiences a significant number of branch mispredictions de-

pendent on data L2 misses, and perlbench experiences I-TLB misses, in the

shadow of data L2/TLB misses. Consequently, scaling of the ROB size has

little impact on SER, as the occupancy of state per cycle does not change sig-

nificantly. Mcf experiences reduction in CPI due to MLP, but the occupancy

of ACE state during such misses is still limited by the dependent mispredicted

branches.

The scaling study allows the architect to make the appropriate trade-

offs between performance and SER, and understand the factors affecting the

123

scaling of workloads. For example, the 128-entry ROB provides a speedup

of 1.098 (harmonic mean) and increases the average SER by 18% over the

96-entry ROB.

5.8.1.2 Sensititivity of AVF to Memory Latency

The impact on AVF of changing memory latency, to provide insight into

the influence of memory bandwidth contention in CMPs, or Dynamic Voltage

and Frequency Scaling (DVFS) is an interesting study, because it provides

insight into the effect of these commonplace techniques on AVF. Figure 5.9

presents the overall SER for a memory latency of 150 cycles, and 300 cycles,

obtained using the model, and from detailed simulation, assuming a constant

circuit-level fault rate1 of 0.01 units/bit. The memory latency used by the

model and simulation is enclosed in parentheses. From the formula for AVF

(see Equation 2.2), it can intuitively be seen that reduction in memory latency

reduces the total number of cycles of ACE bit residency, and the total number

of execution cycles. Consequently, the change in AVF in Figure 5.9 is sub-

linear, and thus, less sensitive to memory latency when compared with CPI.

AVF typically decreases with a decrease in memory latency, although it is

mathematically possible for it to increase as well, as seen with astar. The

comparison with simulation also serves to validate the model. The average

change in AVF as predicted by the model is 3.25 units, as compared to 2.22

1Although the circuit-level fault rate will significantly increase at low voltages, a constant
value provides insight into the change due to AVF

124

units from simulation. The model faithfully captures the trend for change in

SER, with low error. Figure 5.9(b) illustrates the fraction of SER attributable

to each event, for a memory latency of 150, and 300 cycles. Although the

overall AVF remains nearly the same, the contribution of AVF in the shadow

of an L2 miss reduces significantly, for workloads that are dominated by L2

cache misses. Conversely, the relative contribution from ideal execution and

DTLB miss increases. The workload experiences fewer cycles from ACE bits in

the shadow of an L2 miss, but also fewer execution cycles overall, resulting in a

reduction in contribution from the L2 miss, and a greater relative contribution

from other misses towards overall SER.

5.8.2 Design Space Exploration

The model can be used to compare different microarchitectures for their

impact on performance and AVF/SER. Figure 5.10 presents the CPI and SER

of the wide-issue and narrow-issue machine outlined in Table 5.2. The SER

is computed for the ROB, LQ, SQ, IQ and FU, and is broken down into its

contributing events, so as to provide better insight. On average, there is an

81% increase in SER, and an average speedup of 1.35 (harmonic mean) going

from the narrow-issue to the wide-issue configuration. This is attributable to

an increase in ROB size and dispatch width. Unlike scaling the ROB size

(Section 5.8.1), increasing the issue-width typically increases the SER across

all workloads. From Equation 5.2, a larger instruction window is required to

sustain a larger dispatch and issue width. For the 20 SPEC CPU2006 work-

125

0"

40"

80"

120"
pe

rlb
en

ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"
so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"
lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

SE
R$
(u
ni
ts
)$

Modeled"(150)" Modeled"(300)" Simulated"(150)" Simulated"(300)"

(a) Sensitivity of SER to memory latency

0"

40"

80"

120"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"
so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"
lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

SE
R$
(U
ni
ts
)$

Ideal" DL2" DTLB" IL1"

(b) Impact of scaling memory latency from 150 cycles (left) to 300
cycles (right)

Figure 5.9: Sensitivity of AVF to Memory Latency.

126

loads considered in the experiments presented herein, β is between 1.24 and

2.39, resulting in a super-linear increase in the ideal occupancy. Although

branch resolution time increases with dispatch width, it is reasonable to ex-

pect that SER would generally increase with dispatch width, on a balanced

design. As noted in Section 5.8.1, namd and bwaves have long critical paths

K(W). The workloads have sufficient ILP for the narrow-issue machine, but

not the wide-issue machine, resulting in maximum occupancy of state during

ideal execution for the wide-issue case. Additionally, bwaves also experiences

an increase in SER due to data L2 misses. The SER for bwaves and namd

increases by a factor of 2.26, and 2.6 respectively. On the other hand, mcf is

unaffected by increase in issue-width or ROB size, due to the large number of

dependent mispredicted branches in the shadow of its data L2 misses.

To understand the implications on multi-core design, the SER for a ho-

mogeneous Chip Multiprocessor (CMP) using multiple wide-issue and narrow

issue under the same area budget are compared. Using the McPAT simu-

lator [59], it is estimated that on a 32nm process, the wide-issue machine

(core+cache) has a 65% higher area than the narrow-issue machine. Given

that the wide-issue machine has on average 81% higher SER for the ROB,

LQ, SQ, IQ, a wide-issue multi-core CMP would be, on average, more vulner-

able for these structures, for the same area. Of course, not all structures have

been modeled herein (although the larger ones are covered), or the impact of

shared resources in the memory hierarchy considered, such as memory band-

width, of the CMPs. Nevertheless, as the ROB occupancy governs occupancy

127

0"2"4"6"8"
Wide"

Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"
so
pl
ex
"

hm
m
er
"

sje
ng
"
ge
m
sF
DT

D"li
bq

ua
nt
um

"h
26
4r
ef
"
om

ne
tp
p"

as
ta
r"

sp
hi
nx
3"

CPI$

Id
ea
l"

DL
2"

DT
LB
"

Br
an
ch
"M

isp
re
di
cJ
on

"
IL
1"

IL
2"

IT
LB
"

(a
)

C
P

I
st

a
ck

s
fo

r
th

e
w

id
e

a
n

d
n

a
rr

ow
-i

ss
u

e
m

a
ch

in
e

0"20
"

40
"

60
"

80
"

10
0"

12
0"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

Wide"
Narrow"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

bw
av
es
"

m
cf
"

m
ilc
"

ze
us
m
p"

gr
om

ac
s"

le
sli
e3
d"

na
m
d"

go
bm

k"
so
pl
ex
"

hm
m
er
"

sje
ng
"

ge
m
sF
DT

D"l
ib
qu

an
tu
m
"h

26
4r
ef
"

om
ne

tp
p"

as
ta
r"

sp
hi
nx
3"

SER$(units)$

Id
ea
l"

DL
2"

DT
LB
"

IL
1"

(b
)

S
E

R
co

n
tr

ib
u

ti
on

o
f

m
ic

ro
a
rc

h
it

ec
tu

ra
l

ev
en

ts
fo

r
th

e
w

id
e

a
n

d
n

a
rr

ow
-i

ss
u

e
m

a
ch

in
e

F
ig

u
re

5.
10

:
C

om
p
ar

is
on

of
C

P
I

an
d

S
E

R
of

th
e

w
id

e
an

d
n
ar

ro
w

-i
ss

u
e

m
ac

h
in

es
.

128

of state in most other structures in the core, this result gives some insight on

the SER of core structures in the CMPs, for the configurations under consider-

ation. It must also be emphasized that the result presented is only applicable

to the microarchitectures under consideration. A different microarchitectural

configuration for the wide-issue, narrow-issue, or both configurations may yield

different conclusions.

The model can also be used to provide insight into the efficacy of

soft error mitigation schemes. Gomaa et al. [13] propose an opportunistic

mechanism, called Partial Explicit Redundancy (PER), of enabling Redundant

Multi-Threading (RMT) [21] during low IPC events, such as L2/TLB miss,

and disabling it during high-IPC intervals, to minimize the performance loss.

RMT employs a lagging thread that re-executes the operations of the leading

thread and detects faults by comparing the output. Load values and branch

outcomes are forwarded by the leading thread so that the lagging thread does

not incur any miss penalties, and always runs in the ideal mode. Gomaa et

al. [13] report that PER reduces the AVF of the Issue Queue in their mi-

croarchitecture by an average of 57%. Using detailed simulation for a specific

microarchitecture, Sridharan et al. [60] investigate this effect for the ROB,

LQ, SQ, and IQ, and report that nearly 60% of vulnerability occurs in the

shadow of a long-stall instruction, most of which are data L2 cache misses.

Both studies were performed using workloads from SPEC CPU2000.

Under an optimistic assumption of no performance loss using the op-

portunistic scheme, the components of SER in Figure 5.10(b) corresponding

129

to data L2 and TLB misses would disappear. Whereas this scheme generally

reduces the AVF of most workloads significantly (resulting in an SER reduc-

tion of 66% for the wide-issue machine), namd would still have high AVF.

Furthermore, namd has a high IPC of 3.8 during ideal execution such that

enabling RMT would result in roughly doubling the contribution of the ideal

interval towards overall CPI (Figure 5.10(a)). Of course, these results are mi-

croarchitecture and workload specific. For example, there is an average SER

reduction of 60% as computed using the model, when the memory latency of

the wide-issue machine is reduced to 150 cycles, as illustrated in Figure 5.9(b).

The results obtained using the model are similar to earlier work, and allows

architects to estimate the efficacy of such a scheme in the first order, for their

microarchitecture and workloads.

5.9 Workload Characterization for AVF

It is difficult to draw inferences on the effect of a workload on the AVF

of a structure using aggregate metrics, beyond a qualitative analysis. Aggre-

gate metrics such as cache miss rates or branch misprediction rates provide

hints, but as observed in earlier sections, there may be exceptions to such

general intuitions of occupancy of state. Given a microarchitecture such as

the wide-issue machine, the model enables an architect to identify namd as a

high-IPC workload inducing high AVF in multiple structures, and gobmk as a

comparably high-IPC workload that induces very low AVF in the same set of

structures. The model provides an explanation as to why workloads such as

130

mcf with more non-overlapped data cache misses than bwaves induces much

lower AVF. The model uncovers the complex relationship between various mi-

croarchitectural events that combine to induce AVF in a structure. The model

provides the break-down of the contribution of each microarchitectural event

towards AVF, thereby enabling an intuitive understanding of their influence.

Fu et al. [14] report a “fuzzy relationship” between AVF and simple

performance metrics. Therefore, black-box statistical models for AVF that

utilize multiple microarchitectural metrics have been proposed by Walcott et

al. [9] and Duan et al. [10] for dynamic prediction of AVF. These models use

metrics such as average occupancy, and cumulative latencies of instructions in

various structures as inputs to the statistical model, which are not available

without detailed simualation. Cho et al. [11] utilize a neural-network based

methodology for design space exploration, and use it to model AVF of the IQ.

As each workload is associated with its own neural network model, training

it would potentially require a significant amount of detailed simulations. All

these models combine the software and hardware component of AVF, and do

not uncover the fundamental mechanisms influencing AVF, thereby providing

less insight than the approach presented herein. As the model is constructed

from the factors affecting AVF from first principles and explicity models this

fuzzy relationship, an architect can identify the precise cause of high or low

AVF in a particular structure, and characterize workloads for AVF.

The model enables the architect to study a greater number of workloads

and over longer intervals of execution than may be feasible using detailed

131

simulation, and within the bounds of error of the model, to identify workloads

or regions of execution in the workload that induce high AVF in particular

structures, enabling better workload characterization for AVF.

5.10 Conclusion

In this work, a first-order mechanistic model for AVF is developed.

The model is derived from first-principles of out-of-order execution to provide

quantifiable insight into the factors affecting the AVF of structures, and re-

quires only inexpensive profiling. It is shown that this methodology has low

mean absolute error of less than 7%, for the ROB, LQ, SQ, IQ and FU.

Additionally, the model quantifies the impact of each microarchitec-

tural event on AVF and SER. The model can be used to nearly instanta-

neously perform studies on the impact of scaling the ROB size on its AVF and

performance, sensitivity of AVF to changes in memory latency, design space

exploration comparing the SER of different microarchitectures, and workload

characterization. This work enables the architect to identify workloads that

would induce high AVF in CPU structures, and characterize workloads for

AVF.

132

Chapter 6

Conclusion

This chapter summarizes the conclusions of the work presented in this

dissertation, and outlines future research directions to aid better understand-

ing of the impact of workload execution on the visibility of soft errors, and

steps that need to be taken to mitigate them.

6.1 Summary and Conclusions

The problem of soft errors due to sub-atomic particle strikes is becom-

ing significant in current and future process generations, due to an exponential

increase in the number of transistors per chip, and the steady lowering of op-

erating and threshold voltages with each generation. Mitigation of soft errors

comes with a significant penalty of power, performance, area and design effort,

necessitating their judicious application. A good understanding of the impact

of workloads on the visibility of soft errors at the program output is critical for

efficient design of soft error mitigation schemes. Poor workload characteriza-

tion may lead to overdesigned, or underdesigned microarchitectures. However,

workload characterization for AVF, and selection of a sufficiently heteroge-

neous workload suite for AVF are an open problem.

133

Two methodologies to enable the efficient design of soft error mitiga-

tion schemes are presented herein. In Chapter 4, an automated methodology

for bounding the worst-case soft error rate for a microprocessor running a re-

alizable workload was presented. The knowledge of this worst-case allows the

architect to determine whether the workload suite in use has sufficient cov-

erage for SER, and whether an additional guard band is necessary to make

up for any lack of coverage, while avoiding potential overdesign or underde-

sign. Näıve estimations of this worst-case will lead to pessimistic designs. It is

demonstrated that this workload achieves 1.4× higher SER in the core, 2.5×

higher SER in the data L1 cache and TLB, and 1.5× higher SER in L2 cache

as compared to the highest SER induced by SPEC CPU2006 and MiBench

programs for a processor similar to the Alpha 21264. The methodology is also

demonstrated to be flexible across different microarchitectures. A description

of the stressmark methodology presented herein has been published at the

forty-third International Symposium on Microarchitecture (MICRO-43) [61].

Chapter 5 presents a first-order mechanistic model to estimate the AVF

of any structure in the core whose AVF correlates with its utilization. Derived

from the first principles of out-of-order CPU execution, this model is designed

to provide insight into the complex interaction between the workload and the

microarchitecture that together influence AVF. It is shown that this method-

ology has a mean absolute error in AVF estimation of less than 7%. The

mechanistic model is used to cheaply perform design space exploration and

parametric variation studies. The model may be used in conjunction with

134

cycle accurate simulation by eliminating infeasible design points. More signif-

icantly, the construction of this model allows the architect to derive insight

into the precise mechanism affecting the AVF of a structure. Owing to its

construction, the model can be used for workload characterization for AVF,

which is not possible using black-box statistical or machine learning models, or

using aggregate metrics reported using cycle-accurate simulation. At the time

of writing, this work has been selected to be published at the thirty-nineth

International Symposium on Computer Architecture (ISCA-39) [62].

6.2 Future Research Directions

The methodologies presented herein can be extended, or adapted to fur-

ther improve AVF modeling methodologies. Some of these potential research

directions are presented below.

6.2.1 AVF Stressmark for Multicore Machines

The AVF stressmark can be extended for multicore machines, in order

to estimate the overall SER of such a chip. In particular, multicore machines

have shared resources, such as on-chip interconnect, shared last-level caches,

memory controllers, etc. which additionally need to be modeled. The multi-

core AVF stressmark provides the architect with the worst-case SER possible

while running a multithreaded or multiprogrammed workload, and enables

design for the same. Ganesan et al. [44] use machine learning to develop

a methodology for multi-core power virus generation. They model the data

135

sharing patterns between various workloads to exercise the interconnect and

the memory hierarchy such that power is maximized. A similar methodology

can be developed, that leverages this data sharing pattern between cores to

maximize SER. Ganesan et al. [44] find that exercising the interconnect and

memory hierarchy often results in a reduction in power consumption for the

core. Similarly, if the interconnect and memory controllers hold more state

than structures in the core, the GA will target these shared structures while

sacrificing some AVF/SER in the core itself to maximize overall SER.

6.2.2 Online Estimation of SER

The mechanistic model presented herein may be implemented in hard-

ware to estimate AVF of individual structures, or overall SER. This data may

be presented to the OS or software through performance counters, and the OS

or software may take remedial action, reducing the amount of hardware inter-

vention. Currently, AVF information is not available to software, and hence

software cannot take remedial action. Dynamic prediction of AVF has been

proposed in prior work by Walcott et al. [9], Duan et al. [10], and Sridharan

and Kaeli [46] as a means of enabling Redundant Multithreading (RMT) only

when the SER vulnerability is high. Disabling RMT during periods of low

vulnerability avoids the performance penalty of RMT during those periods.

The methodologies proposed by Walcott et al. and Duan et al. are regression-

based models, and neither provides a hardware implementation for the same.

Sridharan and Kaeli [46] propose H-Box hardware to predict AVF when used in

136

conjunction with Program Vulnerability Factor data obtained from offline pro-

filing, but it requires extensive amount of hardware per structure to estimate

AVF. It may be possible to reduce the amount of hardware necessary using the

mechanistic model. Eyerman et al. [63, 64] leverage the mechanistic model for

CPI to develop CPI stacks for single-threaded, and multi-threaded CPUs. It

may be possible to enhance this mechanism to capture the statistics necessary

for estimating AVF. A significant challenge with online AVF estimation is ACE

analysis; specifically, the detection of dynamically dead instructions without

significant investment in hardware. Butts and Sohi [25] report that 3-16%

instructions are dynamically dead. Even if instructions are dynamically dead,

they are not completely immune to producing soft errors; faults in the target

register/address specifiers, or a change in opcode may still result in an error.

Consequently, it may not be a significant overestimation to treat dynamically

dead instructions as ACE, and achieve a slightly conservative bound on SER.

6.2.3 Estimating per-thread AVF or Resource Sharing in SMT

Simultaneous Multithreaded Processors (SMT) employ multiple hard-

ware contexts to allow sharing of resources within the chip. It is generally

difficult to estimate the impact of this resource sharing on AVF. Eyerman and

Eeckhout [33] use interval analysis to generate per-thread CPI stacks in SMT

processors. On similar lines, it may be possible to estimate the impact of SMT

on AVF of the processor. As the mechanistic model proposed herein estimates

occupancy, it may also be used to estimate the utilization of shared resources

137

in the SMT by each hardware context. Although Chen et al. [65] use the

interval analysis model for CPI to dynamically partition shared resources, it

cannot estimate the utilization of each structure. The knowledge of the utiliza-

tion of each structure while running a set of workloads enables the architect

to perform sizing studies for the structure.

138

Bibliography

[1] R. Baumann, “Radiation-induced soft errors in advanced semiconductor

technologies,” IEEE Transactions on Device and Materials Reliability,

vol. 5, pp. 305–316, Sept. 2005.

[2] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A

Systematic Methodology to Compute the Architectural Vulnerability Fac-

tors for a High-Performance Microprocessor,” in MICRO 36: Proceedings

of the 36th annual IEEE/ACM International Symposium on Microarchi-

tecture, pp. 29–40, 2003.

[3] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin,

M. Nicewicz, C. A. Russell, W. Y. Wang, L. B. Freeman, P. Hosier, L. E.

LaFave, J. L. Walsh, J. M. Orro, G. J. Unger, J. M. Ross, T. J. O’Gorman,

B. Messina, T. D. Sullivan, A. J. Sykes, H. Yourke, T. A. Enger, V. Tolat,

T. S. Scott, A. H. Taber, R. J. Sussman, W. A. Klein, and C. W. Wahaus,

“IBM experiments in soft fails in computer electronics (1978 – 1994),”

IBM Journal of Research and Development, vol. 40, pp. 3 –18, January

1996.

[4] S. Borkar, “Designing Reliable Systems from Unreliable Components:

The Challenges of Transistor Variability and Degradation,” IEEE Micro,

vol. 25, no. 6, pp. 10–16, 2005.

139

[5] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K. Morita,

T. Muta, T. Motokurumada, S. Okada, H. Yamashita, Y. Satsukawa,

A. Konmoto, R. Yamashita, and H. Sugiyama, “A 1.3-GHz fifth-generation

SPARC64 microprocessor,” IEEE Journal of Solid-State Circuits, vol. 38,

no. 11, pp. 1896 – 1905, 2003.

[6] R. Kalla, B. Sinharoy, W. Starke, and M. Floyd, “POWER7: IBM’s Next-

Generation Server Processor,” IEEE Micro, vol. 30, pp. 7 –15, March-

April 2010.

[7] S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem: an

architectural perspective,” in 11th International Symposium on High-

Performance Computer Architecture, 2005, HPCA-11, pp. 243 – 247,

February 2005.

[8] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the

Effects of Transient Faults on a High-Performance Processor Pipeline,” in

DSN ’04: Proceedings of the 2004 International Conference on Dependable

Systems and Networks, pp. 61–70, 2004.

[9] K. R. Walcott, G. Humphreys, and S. Gurumurthi, “Dynamic prediction

of architectural vulnerability from microarchitectural state,” in ISCA ’07:

Proceedings of the 34th Annual International Symposium on Computer

Architecture, pp. 516–527, ACM, 2007.

[10] L. Duan, B. Li, and L. Peng, “Versatile prediction and fast estimation of

Architectural Vulnerability Factor from processor performance metrics,”

140

in HPCA 2009: IEEE 15th International Symposium on High Perfor-

mance Computer Architecture, 2009, pp. 129–140, February 2009.

[11] C.-B. Cho, W. Zhang, and T. Li, “Informed microarchitecture design

space exploration using workload dynamics,” in 40th Annual IEEE/ACM

International Symposium on Microarchitecture, 2007, MICRO 2007, pp. 274

–285, December 2007.

[12] H. Nguyen and Y. Yagil, “A systematic approach to SER estimation and

solutions,” in 41st Annual IEEE International Reliability Physics Sympo-

sium Proceedings, 2003., pp. 60 – 70, March-April 2003.

[13] M. Gomaa and T. Vijaykumar, “Opportunistic transient-fault detection,”

in Proceedings of 32nd International Symposium on Computer Architec-

ture, 2005, ISCA ’05, pp. 172–183, June 2005.

[14] X. Fu, J. Poe, T. Li, and J. Fortes, “Characterizing Microarchitecture Soft

Error Vulnerability Phase Behavior,” in 14th IEEE International Sympo-

sium on Modeling, Analysis, and Simulation of Computer and Telecom-

munication Systems, 2006. MASCOTS 2006., pp. 147 – 155, September

2006.

[15] J. Ziegler and H. Puchner, SER–history, trends and challenges: a guide

for designing with memory ICs. http://www.cypress.com/?rID=14793,

Cypress, 2004.

141

[16] T. May and M. Woods, “Alpha-particle-induced soft errors in dynamic

memories,” IEEE Transactions on Electron Devices, vol. 26, pp. 2 – 9,

January 1979.

[17] E. Normand, “Single event upset at ground level,” IEEE Transactions on

Nuclear Science, vol. 43, pp. 2742 –2750, Dec 1996.

[18] S. Mukherjee, Architecture Design For Soft Errors. Burlington, MA,

USA: Morgan Kauffman Publishers, 2008.

[19] S. Michalak, K. Harris, N. Hengartner, B. Takala, and S. Wender, “Pre-

dicting the number of fatal soft errors in Los Alamos National Labora-

tory’s ASC Q supercomputer,” IEEE Transactions on Device and Mate-

rials Reliability, vol. 5, pp. 329 – 335, Sept. 2005.

[20] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, “Model-

ing the effect of technology trends on the soft error rate of combinational

logic,” in Proceedings of the International Conference on Dependable Sys-

tems and Networks, DSN 2002, pp. 389–398, 2002.

[21] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via simul-

taneous multithreading,” in Proceedings of the 27th annual international

symposium on Computer architecture, ISCA ’00, pp. 25–36, 2000.

[22] X. Li, S. Adve, P. Bose, and J. Rivers, “SoftArch: An Architecture Level

Tool for Modeling and Analyzing Soft Errors,” in DSN ’05: Proceedings of

142

the 2005 International Conference on Dependable Systems and Networks,

pp. 496–505, 2005.

[23] P. Hazucha and C. Svensson, “Impact of CMOS technology scaling on

the atmospheric neutron soft error rate,” IEEE Transactions on Nuclear

Science, vol. 47, pp. 2586 –2594, Dec. 2000.

[24] P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson, “On latching

probability of particle induced transients in combinational networks,”

in Digest of Papers, Twenty-Fourth International Symposium on Fault-

Tolerant Computing, 1994. FTCS-24, pp. 340 –349, June 1994.

[25] J. A. Butts and G. Sohi, “Dynamic dead-instruction detection and elimi-

nation,” in ASPLOS-X: Proceedings of the 10th international conference

on Architectural Support for Programming Languages and Operating Sys-

tems, pp. 199–210, 2002.

[26] K. Zick and J. Hayes, “High-level vulnerability over space and time to

insidious soft errors,” in IEEE International High Level Design Validation

and Test Workshop, 2008. HLDVT ’08., pp. 161 –168, November 2008.

[27] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. Mukherjee, and

R. Rangan, “Computing architectural vulnerability factors for address-

based structures,” in ISCA ’05: Proceedings of 32nd International Sym-

posium on Computer Architecture, pp. 532–543, June 2005.

143

[28] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “Architecture-Level Soft

Error Analysis: Examining the Limits of Common Assumptions,” in DSN

’07: Proceedings of the 37th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks, pp. 266–275, 2007.

[29] N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ace analysis reliabil-

ity estimates using fault-injection,” in Proceedings of the 34th annual In-

ternational Symposium on Computer Architecture, ISCA ’07, (New York,

NY, USA), pp. 460–469, ACM, 2007.

[30] A. Biswas, P. Racunas, J. Emer, and S. Mukherjee, “Computing Accurate

AVFs using ACE Analysis on Performance Models: A Rebuttal,” IEEE

Computer Architecture Letters, vol. 7, pp. 21–24, January 2008.

[31] N. Wang, M. Fertig, and S. Patel, “Y-branches: When you come to a

fork in the road, take it,” in Proceedings of the 12th International Con-

ference on Parallel Architectures and Compilation Techniques, PACT ’03,

(Washington, DC, USA), pp. 56–67, IEEE Computer Society, 2003.

[32] T. Karkhanis and J. Smith, “A first-order superscalar processor model,”

in Proceedings of the 31st Annual International Symposium on Computer

Architecture, 2004, pp. 338–349, June 2004.

[33] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mecha-

nistic performance model for superscalar out-of-order processors,” ACM

Transactions on Computer Systems, vol. 27, pp. 3:1–3:37, May 2009.

144

[34] P. Michaud, A. Seznec, and S. Jourdan, “Exploring Instruction-Fetch

Bandwidth Requirement in Wide-Issue Superscalar Processors,” in PACT

’99: Proceedings of the 1999 International Conference on Parallel Archi-

tectures and Compilation Techniques, pp. 2–10, 1999.

[35] E. M. Riseman and C. C. Foster, “The Inhibition of Potential Paral-

lelism by Conditional Jumps,” IEEE Transactions on Computers, vol. 21,

pp. 1405–1411, December 1972.

[36] J. W. Kellington, R. McBeth, P. Sanda, and R. N. Kalla, “IBM POWER6

Processor Soft Error Tolearance Analysis Using Proton Irradiation,” in

SELSE 07: Third workshop on System Effects of Logic Soft Errors, http:

// www. selse. org , 2007.

[37] P. N. Sanda, J. W. Kellington, P. Kudva, R. Kalla, R. B. McBeth,

J. Ackaret, R. Lockwood, J. Schumann, and C. R. Jones, “Soft-error

resilience of the IBM POWER6 processor,” IBM Journal of Research and

Development, vol. 52, no. 3, pp. 275–284, 2008.

[38] A. Sanyal, K. Ganeshpure, and S. Kundu, “On Accelerating Soft-Error

Detection by Targeted Pattern Generation,” in 8th International Sym-

posium on Quality Electronic Design, 2007. ISQED ’07. , pp. 723–728,

March 2007.

[39] A. Sanyal, K. Ganeshpure, and S. Kundu, “Accelerating Soft Error Rate

Testing Through Pattern Selection,” in 13th IEEE International On-Line

Testing Symposium, 2007. IOLTS 07, pp. 191–193, July 2007.

145

[40] A. Sanyal, K. Ganeshpure, and S. Kundu, “An Improved Soft-Error Rate

Measurement Technique,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 28, pp. 596–600, April 2009.

[41] A. M. Joshi, L. Eeckhout, L. K. John, and C. Isen, “Automated micro-

processor stressmark generation,” in Tenth International Symposium on

High Performance Computer Architecture (HPCA), pp. 229–239, 2008.

[42] S. Polfliet, F. Ryckbosch, and L. Eeckhout, “Automated full-system power

characterization,” Micro, IEEE, vol. 31, no. 3, pp. 46 –59, 2011.

[43] K. Ganesan, J. Jo, W. L. Bircher, D. Kaseridis, Z. Yu, and L. K. John,

“System-level max power (SYMPO): a systematic approach for escalat-

ing system-level power consumption using synthetic benchmarks,” in Pro-

ceedings of the 19th international conference on Parallel Architectures and

Compilation Techniques, PACT ’10, pp. 19–28, 2010.

[44] K. Ganesan and L. K. John, “MAximum Multicore POwer (MAMPO):

An automatic multithreaded synthetic power virus generation framework

for multicore systems,” in Proceedings of 2011 International Conference

for High Performance Computing, Networking, Storage and Analysis, SC

’11, (New York, NY, USA), pp. 53:1–53:12, ACM, 2011.

[45] V. Sridharan and D. Kaeli, “Eliminating microarchitectural dependency

from Architectural Vulnerability,” in IEEE 15th International Symposium

on High Performance Computer Architecture, HPCA 2009, pp. 117–128,

February 2009.

146

[46] V. Sridharan and D. R. Kaeli, “Using hardware vulnerability factors to

enhance AVF analysis,” in ISCA ’10: Proceedings of the 37th annual

International Symposium on Computer Architecture, pp. 461–472, ACM,

2010.

[47] X. Fu, T. Li, and J. Fortes, “Sim-SODA: A framework for microarchi-

tecture reliability analysis,” in Proceedings of the Workshop on Modeling,

Benchmarking and Simulation (Held in conjunction with International

Symposium on Computer Architecture), 2006.

[48] R. Desikan, D. Burger, S. W. Keckler, and T. Austin, “Sim-alpha: A

Validated, Execution-Driven Alpha 21264 Simulator,” in Tech report TR-

01-23, The University of Texas at Austin, 2001.

[49] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,”

SIGARCH Computer Architecture News, vol. 25, pp. 13–25, June 1997.

[50] D. Beasley, D. R. Bull, and R. R. Martin, “An Overview of Genetic Al-

gorithms: Part 1, Fundamentals, University Computing, http://ralph.

cs.cf.ac.uk/papers/GAs/ga_overview1.pdf,” 1993.

[51] SPEC, “Standard performance evaluation corporation, http:\\www.spec.

org.”

[52] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown,

“MiBench: A free, commercially representative embedded benchmark

147

suite,” in IEEE International Workshop on Workload Characterization,

2001. WWC-4. 2001, pp. 3 – 14, Feb. 2001.

[53] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically

characterizing large scale program behavior,” in ASPLOS-X: Proceedings

of the 10th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pp. 45–57, 2002.

[54] P. K. Dubey, G. B. Adams III, and M. J. Flynn, “Instruction window size

trade-offs and characterization of program parallelism,” IEEE Transac-

tions on Computers, vol. 43, pp. 431 –442, April 1994.

[55] D. Noonburg and J. P. Shen, “A Framework for Statistical Modeling of

Superscalar Processor Performance,” in Proceedings of International Sym-

posium on High Performance Computer Architecture (HPCA), pp. 298–

309, 1997.

[56] J. Grefenstette, “Optimization of Control Parameters for Genetic Algo-

rithms,” IEEE Transactions on Systems, Man and Cybernetics, vol. 16,

pp. 122 –128, January 1986.

[57] M. Srinivas and L. Patnaik, “Adaptive probabilities of crossover and mu-

tation in genetic algorithms,” IEEE Transactions on Systems, Man and

Cybernetics, vol. 24, pp. 656 –667, April 1994.

[58] T. S. Karkhanis and J. E. Smith, “Automated design of application spe-

cific superscalar processors: an analytical approach,” in Proceedings of

148

the 34th annual international symposium on Computer architecture, ISCA

’07, pp. 402–411, 2007.

[59] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and

N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling

framework for multicore and manycore architectures,” in Proceedings of

the 42nd Annual IEEE/ACM International Symposium on Microarchitec-

ture, MICRO 42, pp. 469–480, ACM, 2009.

[60] V. Sridharan, D. Kaeli, and A. Biswas, “Reliability in the Shadow of Long-

Stall Instructions,” in SELSE 07: Third workshop on System Effects of

Logic Soft Errors, http: // www. selse. org , 2007.

[61] A. A. Nair, L. K. John, and L. Eeckhout, “AVF Stressmark: Towards

an Automated Methodology for Bounding the Worst-Case Vulnerability

to Soft Errors,” in Proceedings of the 2010 43rd Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, MICRO ’43, (Washington,

DC, USA), pp. 125–136, IEEE Computer Society, 2010.

[62] A. A. Nair, S. Eyerman, L. Eeckhout, and L. K. John, “A First-Order

Mechanistic Model for Architectural Vulnerability Factor,” in The Pro-

ceedings of the 39th annual IEEE/ACM International Symposium on Com-

puter Architecture, ISCA ’12, IEEE, 2012.

[63] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A Performance

Counter Architecture for Computing Accurate CPI components,” in Pro-

ceedings of the 12th International Conference on Architectural Support for

149

Programming Languages and Operating Systems, (New York, NY, USA),

pp. 175–184, ACM, 2006.

[64] S. Eyerman and L. Eeckhout, “Per-thread cycle accounting in SMT pro-

cessors,” in Proceedings of the 14th international conference on Architec-

tural Support for Programming Languages and Operating Systems, ASP-

LOS ’09, pp. 133–144, 2009.

[65] J. Chen and L. K. John, “Predictive coordination of multiple on-chip

resources for chip multiprocessors,” in Proceedings of the international

conference on Supercomputing, ICS ’11, pp. 192–201, 2011.

150

