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Quaternion Regression and Finite-Time Controllers for

Attitude Dynamics

Marcelino Mendes de Almeida Neto, Ph.D.

The University of Texas at Austin, 2019

Supervisor: Maruthi Akella

This dissertation presents two major research contributions to the field

of attitude dynamics and control. The first topic comprises of estimating the

angular velocity of a rigid body purely with orientation measurements ex-

pressed in terms of the quaternion parameterization. At first, the object of in-

terest is assumed to be in pure-spin, and a simple two-step algorithm is derived

and analyzed as part of this dissertation. These results are further extended for

the general case of angular velocity estimation by way of relaxing the pure-spin

restriction. The proposed angular velocity estimator is particularly useful in

the context of vision-based navigation, as demonstrated through simulations.

The second major research contribution from this dissertation is represented

through a pair of new Lyapunov-based controllers that steer a fully actuated

rigid body attitude system from an arbitrary initial configuration to any de-

sired one within prescribed finite-time. The stability and convergence prop-

erties owing to these two controllers are analyzed through Lyapunov analysis

vii



and extensive numerical simulation studies. Finite-time attitude controllers,

as opposed to asymptotic controllers, can be particularly useful in satellites

that need to repeatedly reorient themselves with hard-deadline constraints.
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Chapter 1

Introduction

Attitude estimation and control are fields of research with an exten-

sive literature and set of applications. These domains are explicitly impor-

tant in fixed-wing aircrafts [28], helicopters [66], multicopters [5, 33], space

systems [15, 70], underwater vehicles [71], among many other applications.

With the miniaturization of embedded computing and sensing within the last

decade, many of those attitude systems are becoming fully autonomous for

multiple applications, with little to no human intervention in their operation.

Full automation of these systems allow for stricter requirements on their op-

erations, as it eliminates human-related uncertain factors. As a consequence,

autonomous systems rely increasingly more on algorithm robustness.

When it comes to attitude estimation, past researchers have developed

excellent models for attitude tracking and estimation of tumbling rigid bodies

with known inertia and actuation properties. However, there is a limited set

of methods for dealing with systems whose inertia or actuation torques are

unknown. This is one of the problems explored in the current dissertation,

with the ultimate goal of developing an algorithm that is able to track a non-

cooperative tumbling target using a visual sensor only (RGB camera).
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In the field of rigid-body attitude control, two new formulations of

finite-time controllers are introduced. The controllers are derived from

Lyapunov-based formulations, and contrast with asymptotic controllers by

guaranteeing convergence to a desired trajectory in finite-time, as opposed to

asymptotically. These new control laws are feedback-based and are robust to

unknown disturbance torques.

This dissertation is subdivided in two parts, with two chapters in each.

Part I (Chapters 2 and 3) concerns of estimating the angular velocity of an at-

titude system based on sequential orientation measurements, whereas Part II

(Chapters 4 and 5) presents new attitude controllers that steer a fully ac-

tuated rigid body towards any desired configuration within prescribed finite

time. Each of these chapters is a standalone text with introduction, devel-

opments and conclusions, although some parts are reduced from the original

publications to prevent redundancy in the current manuscript.

Chapter 2 proposes a batch solution to the problem of estimating con-

stant angular velocity based on sequential orientation measurements, as pre-

sented in [6]. Provided that the angular velocity remains constant, the ori-

entation quaternion belongs to a constant plane of rotation as time evolves.

Motivated by this fundamental property, one can determine the angular ve-

locity’s direction by estimating the quaternion plane of rotation. Hence, the

estimation of the quaternion plane of rotation leads to the determination of

the axis of rotation. The angular velocity magnitude is estimated by project-

ing the measured quaternions onto the estimated plane of rotation, and then

2



computing the least squares evolution of the quaternion angle in the plane.

Performance evaluation of the proposed algorithm is done through a Monte

Carlo analysis, also being compared with a Multiplicative Extended Kalman

Filter.

Chapter 3 concerns of estimating the angular velocity of a non-

cooperative target using camera measurements. These results build upon the

solutions of Chapter 2 by adapting the estimation algorithm for when the an-

gular velocity is not constant, but rather evolving with unknown input torques.

The new algorithm assumes that a fixed set of past orientation measurements

evolve such that the angular velocity is approximately constant for the whole

window of measurements. In order to determine the size of the window (such

that the pure-spin assumption is reasonable), the estimator in Chapter 3 em-

ploys statistical consistency tests to determine whether or not a set of mea-

surements seem to satisfy the assumption of “constant angular velocity”. The

number of input measurements adapts itself with time based on the results

of these consistency tests. The performance of the proposed angular velocity

estimator is analyzed through a camera-target simulator, where the target is

tracked using Simultaneous Localization and Mapping algorithms, providing

relative orientation measurements. Preliminary results from Chapter 3 were

presented in [7].

Chapter 4 introduces a new class of finite-time feedback controllers for

rigid-body attitude dynamics subject to full actuation, as presented in [2].

The control structure is Lyapunov-based and is designed to regulate the con-

3



figuration from an arbitrary initial state to any prescribed final state within

user-specified finite transfer-time. A salient feature is that the synthesis of the

control structure is explicit, i.e., given the transfer-time time, the feedback-

gains are explicitly stated to satisfy the convergence specifications. A major

contrast between this work and others in the literature is that instead of re-

sorting to feedback-linearization (to get to the so-called normal form), the

new proposed approach approach efficiently marries the process of designing

time-varying feedback gains with the logarithmic Lyapunov function for atti-

tude kinematics based on the Modified Rodrigues Parameters representation.

Saliently, this finite-time solution extends nicely for accommodating trajectory

tracking objectives and possesses robustness with respect to bounded external

disturbance torques. Numerical simulations are performed to test and validate

the performance and robustness features of the new control designs.

Chapter 5 introduces an alternative control law to what is proposed in

Chapter 4. In contrast with the previous solution, the stabilizing control law

herein presented does not depend on any knowledge on the inertial properties

of the controlled rigid body, and it does not require cancellation of the non-

working gyroscopic terms present in attitude equations of motion. The new

solution still guarantees limit convergence to the origin as time approaches

the terminal time, but it can no longer be assured that the storage function

decreases monotonically throughout the controlled period. As in Chapter 4,

the new controller is also shown to be able to track trajectories, as well as being

robust to bounded eternal disturbance torques. The results of Chapter 5 were

4



previously presented in [3].

The contributions in this dissertation are outlined below:

• Derivation and development of the Quaternion Regression Algorithm for

attitude systems in pure spin, along with a Monte Carlo analysis on its

performance (Chapter 2).

• Adaptation of QuateRA for estimating the tumbling rate of a target

that is not in pure spin by introducing a self-tuning adaptive algorithm.

The algorithm performance is analyzed by tracking a non-cooperative

tumbling target using an RGB camera (Chapter 3).

• The derivation of a finite-time attitude controller for fully-actuated rigid

bodies (possibly disturbed by unknown bounded torques) based on a

backstepping formulation (Chapter 4).

• The derivation of a finite-time attitude controller for fully-actuated rigid

bodies (possibly disturbed by unknown bounded torques) based on a

Lyapunov-like formulation without resorting to backstepping (Chap-

ter 5).
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Part I

Angular Velocity Estimation
from Orientation Measurements

1



Chapter 2

QuateRA: The Quaternion Regression

Algorithm

2



2.1 Introduction

This chapter1 presents a batch solution to the problem of angular veloc-

ity estimation using a time-sequence of orientation measurements in terms of

the Euler quaternion parameterization. Our approach is motivated by the con-

stant translational velocity estimation problem, whose solution is well known

and has well-understood statistical properties [11]. Surprisingly, the rotational

counterpart is significantly more challenging and has not yet been solved in

a batch estimation sense (to the author’s best knowledge). Based on reason-

able assumptions for the quaternion noise measurement model, we derive a

simple two-step algorithm that establishes a closed-form solution for the con-

stant angular velocity estimation problem without the need to use iterative

algorithms.

The problem of estimating the angular velocity under pure spin is a

specialized case to the general problem of estimating the angular velocity for

a tumbling body. However, the understanding of the pure spin problem aids

solving the generalized case assuming that the tumbling motion can be approx-

imated to pure spin throughout a sufficiently short-duration finite sequence of

measurements. A kinematic approach (such as the one proposed in the cur-

rent work) can be particularly useful when estimating the angular velocity

of a non-cooperative target whose inertia properties and external torques are

1“Marcelino Almeida, Renato Zanetti, Daniele Mortari, and Maruthi Akella. Quatera:
The quaternion regression algorithm. Submitted to the Journalof Guidance, Control, and
Dynamics, 2019.” (Marcelino Almeida conducted the problem formulation, the mathemati-
cal proofs, simulation and analyses, and wrote the paper.)
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unknown.

The lack of precise knowledge of the rigid-body’s inertia matrix and

torque vector also poses a major challenge to standard angular velocity esti-

mation techniques. Many of the existing angular velocity estimators [47, 53]

rely on the knowledge of the target’s specific inertia and torque parameters.

An exception can be made for the derivative approach described in Ref. [9],

but as the author acknowledges, the angular velocity estimator can produce

considerable error due to the presence of measurement noise. In Ref. [10], the

authors present the Pseudolinear Kalman Filter (PSELIKA), which does not

depend on knowledge of inertia matrix or input torques. However, PSELIKA is

developed with the goal of “simplicity rather than accuracy” [10], serving as a

relatively coarse angular velocity estimator for control loop damping purposes.

In Ref. [51], generalizations to Wahba’s problem are proposed by ac-

cepting sequential vector measurements instead of the traditional simultaneous

ones (see Ref. [38] and the references therein). These generalizations imply the

need to estimate for initial orientation and angular velocity (not only orien-

tation, as in Wahba’s problem). The work of Ref. [51] proposes the following

problems:

• First Generalized Wahba’s Problem (FGWP) - The system is in pure

spin with known spin-axis but unknown spin rate. The author presents

a closed-form solution to this problem based on two measurements. The

work of Ref. [54] uses semidefinite optimization to solve FGWP for more

4



than two measurements.

• Second Generalized Wahba’s Problem (SGWP) - The system is tum-

bling (torque-free) with known inertia matrix. This system is shown to

be observable with at least three vector measurements, but no solution

is provided by Ref. [51]. A solution to the three-vector measurement

problem is provided in Ref. [26] and a numerical solution is provided in

Ref. [52] for four measurements or more.

An alternative solution to the pure spin angular velocity estimation

problem is to use methods based on the Multiplicative Extended Kalman Fil-

ter (MEKF) [24, 34, 36], since these rely on kinematics only. These methods

should usually converge if properly initialized and iterated through a backward

smoothing process [50] or through some gradient descent method. Iterated

nonlinear programming methods2 present the drawback that these might con-

verge to local minima, or not even converge. Our batch solution in this paper

departs from filtering-based ones in that no iterations are necessary for the

proposed algorithm.

The primary contribution of this work is the Quaternion Regression

Algorithm (QuateRA). Instead of solving the problem through well-stablished

filtering approaches [24, 34, 36], we solve the problem through a geometrical

standpoint. We provide an alternative to an attitude EKF by introducing an

attitude regression algorithm. QuateRA builds upon the work of Ref. [42], and

2Here we use the term iterated to denote sequential algorithms.
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it is a batch solver (does not require iterations), even though the problem is

nonlinear. QuateRA uses a sequence of orientation measurements to determine

the system’s axis of rotation (AOR) through a Singular Value Decomposition

(SVD) procedure, and then it uses the AOR to estimate for the angular ve-

locity magnitude (AVM). We develop QuateRA’s AOR estimation with use

of the Total Least Squares (TLS) cost function, and we are able to provide a

solution under mild assumptions on the measurement noise. In fact, the AOR

estimation algorithm herein presented shares important similarities with the

problem of averaging quaternions [35, 37], but instead of finding an average

quaternion, we search for an average quaternion plane. The quaternion aver-

age is actually a particular solution to our algorithm. In the current work, we

also discuss some asymptotic statistical properties involving QuateRA, apart

from validating those results with Monte Carlo simulations.

QuateRA’s AOR estimation was first introduced by Ref. [42], and ex-

perimental validation was presented in Ref. [4]. Ref. [7] used QuateRA’s AOR

estimate in conjunction with a modified MEKF to estimate the relative an-

gular velocity of a non-cooperative target. The current chapter presents an

expanded version of the work in Ref. [6], which differs from the previous con-

tributions within Refs. [4, 7, 42] in the following aspects:

• The previous works used QuateRA’s AOR estimation based on heuris-

tics, instead of being a solution that formally minimizes a cost function.

In the current work, we start from a constrained version of TLS (the con-

straints are a direct consequence of the quaternion unit-norm condition),
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and reach the same solution suggested by Ref. [42] under the assumption

of small angle approximation for the quaternion measurement noise.

• None of the previously reported results in this field (Refs. [4, 7, 42]) an-

alyzed the statistical properties of QuateRA. In the current work, we

explore the strong consistency properties of QuateRA, and we propose

covariance matrices for the angular velocity estimation. We also present

Monte Carlo analysis to validate the derived statistical properties.

• When estimating the AVM, Ref. [42] suggested the use of performing

“dirty” derivatives on the most recently measured quaternions. In con-

trast, the work of [4] showed that one can often obtain better results by

pre-filtering the measured quaternions before employing the derivative.

The AVM estimation in Ref. [7] is performed by using a modified MEKF.

The AVM estimation suggested by Ref. [42] is actually biased under mild

measurement noise, while the solutions presented in Refs. [4] and [7] rem-

edy the bias problem, but introduce tuning parameters. In contrast, this

work reprojects the measured quaternions onto the plane of rotation es-

timated by QuateRA, and calculates the AVM as an average quaternion

angular displacement over time.

The remainder of this chapter is organized as follows: Section 2.2

presents a motivation to the angular velocity estimation problem by intro-

ducing solutions to the simple problem of estimating constant linear velocity
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from position measurements. Some of the insights therein are crucial for un-

derstanding QuateRA’s statistical properties. Section 2.3 introduces the ro-

tational attitude kinematics, describing some notation and parametrizations,

as well as the assumed measurement model. Section 2.4 presents the esti-

mation problem formulation, introducing the optimization cost function and

constraints of the problem. Section 2.5 presents QuateRA, and Section 2.6

introduces a Monte Carlo analysis of QuateRA, comparing it with an MEKF

formulation, and a solution using a nonlinear solver for the same problem.

Finally, Section 2.7 presents conclusions for this work.

2.2 Motivation: Batch Estimation of Linear Velocity
from Position Measurements

The goal of this section is to explore a well known (and solved) problem

through a different perspective. This section discusses the simple problem of

estimating the linear velocity of a point mass whose position is measured

through time. We introduce the traditional Least Squares solution to the

problem, and compare it with a two-step solution in which the direction of

velocity is estimated, then its estimate is used for further estimating the linear

velocity’s magnitude. Because QuateRA splits the problem in two as in the

latter case of this section, we draw insights on what to expect on QuateRA’s

performance.

Assume a point mass moving on the xy plane with unknown constant

velocity v =
[
vx vy

]T
. The position of the body is denoted as p =

[
x y

]T
.

8



The kinematics of the problem is described as:

p(t) = p0 + vt, (2.1)

where t denotes time and p0 ,
[
x0 y0

]T
is the position of the system at time

t = 0. The goal of this section is to estimate the vector X =
[
pT0 vT

]T
through LS and TLS, drawing parallels between the two approaches.

We denote an estimated variable as (̂·) (x̂(t) is an estimate of x(t) and

ŷ(t) is an estimate of y(t)), and a measured variable as (̄·) (p̄ is a measurement

of p and v̄ is a measurement of v). We use star notation (·)∗ with variables with

general covariance to distinguish them from their counterpart with normalized

covariance (cov[p∗] is a positive-definite matrix, while cov[p] = I, where I is

an identity matrix). The notation
−→
(·) is used to denote unit-norm vectors

(−→x satisfies ||−→x ||2 = 1). In addition, for simplicity of notation, we denote

pi = p(ti).

Assume that we measure the position of this system at n different

instants of time ti, i ∈ {1, · · · , n}. The measurement model is given by:{
x̄(ti) = x(ti) + εx(ti)

ȳ(ti) = y(ti) + εy(ti)
, (2.2)

where ε∗i ,
[
εx(ti) εy(ti)

]T
is assumed to be a normally distributed random

variable with mean E[ε∗i ] = 0 and covariance Pε , cov[ε∗i ] = E[ε∗i ε
∗T
i ], with

Pε > 0. We denote the measured position p̄∗i = pi + ε∗i , which is a random

variable with mean E[p̄∗i ] = pi and covariance cov[p̄∗i ] = Pε. Decomposing

the covariance matrix as Pε = LLT , we define the normalized measurements
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p̄i = L−1p̄∗i such that p̄i = L−1pi +L
−1ε∗i . Defining εi = L−1ε∗i , we have that

E[εi] = 0 and cov[εi] = E[εiε
T
i ] = I2, where I2 is the two-dimension identity

matrix.

The vector of normalized measured positions is written as P̄ ,[
p̄T1 p̄T2 · · · p̄Tn

]T
, and the equivalent vector of normalized true positions

is given by P ,
[
(L−1p1)T (L−1p2)T · · · (L−1pn)T

]T
. The measurement

error vector is written as ε ,
[
εT1 εT2 · · · εTn

]T
, implying P̄ = P + ε. Since

E[ε] = 0, then we have that E[P̄ ] = P and cov[P̄ ] = cov[ε] = I2n.

Given the measurement vector P̄ , we want to optimally estimate the

system’s initial position p0 and velocity v. A common method to solve this

problem is to use the least squares solution, which pursues to find optimal p0

and v that minimizes the cost function:

J =
1

2
εTε =

1

2

(
P̄ − P

)T (
P̄ − P

)
. (2.3)

The solution to this problem is very well known in the literature. Con-

structing the matrix H ∈ R2n×4:

H =


L−1 0 · · · 0
0 L−1 · · · 0
...

...
. . .

...
0 0 · · · L−1



I2 t1I2

I2 t2I2
...

...
I2 tnI2

 , (2.4)

we have that P = HX. The optimal solution3 X̂LS =
[
p̂T0 v̂T

]
for the cost

3We use the subscript LS to indicate that this is the Linear Squares solution to the
problem.
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function in Eq. 2.3 is given by:

X̂LS =
(
HTH

)−1
HT P̄ . (2.5)

Although Eq. 2.5 is the most used method to estimate the unknowns

from Eq. 2.1, it is also possible to obtain solutions that minimize cost functions

different from Eq. 2.3.

In particular, one can pursue a solution through Total Least Squares

(TLS - also referred to as Orthogonal Least Squares), as opposed to Least

Squares (LS). Starting from Eq. 2.1, we have that:

x(t) = x0 + vx · t (2.6)

y(t) = y0 + vx · t (2.7)

Isolating the t term in Eq. 2.6 and substituting it into Eq. 2.7 leads to:

y = y0 +
vy
vx

(
x− x0

)
=
(
y0 − vy

vx
x0

)
+
vy
vx
x (2.8)

Defining α , y0 − vy
vx
x0 and β = vy

vx
, then Eq. 2.8 can be written in the

compact form:

y = α + βx, (2.9)

and the unknowns to be found are now α and β. The problem can be recast

as finding the Cartesian line L(l0,
−→
l ) (l0 ∈ R2 is a point belonging to the

line, and
−→
l ∈ S1 is the line direction) such that the distance squared between

the regularized measured points p̄i, i ∈ {1, · · · , n} and the line L(l0,
−→
l ) are
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minimized. The distance function used in TLS is not necessarily the Euclidian

distance between a point and a line, unless the error covariance is of the form

Pε = σ2I2, where σ ∈ R>0.

For general values of the covariance matrix, we pursue as in LS by

covariance-normalizing the measurements p̄i = L−1p̄∗i , where L comes from

the decomposition of Pε = LLT . Defining d
(
p̄i, L

)
as the Euclidian distance

between p̄i and L(l0,
−→
l ), the TLS cost function is given by (see Appendix A.1

for a formal definition of the TLS problem):

JTLS =
n∑
i=1

d
(
p̄i, L

)2
. (2.10)

The regression problem for the cost of Eq. 2.10 was first proposed and

solved in [1] for the special case in which Pε = σ2I2. Many solution formula-

tions have been presented to this problem for the general case (see [16,41,65]

for literature review), but here we present the solution presented in [57] due

to its connections to the QuateRA problem.

First, we calculate the centroid of all the data-points:

µp ,
1

n

n∑
i=1

p̄i. (2.11)

It turns out that the optimal line L̂(l0,
−→
l ) passes through the centroid

µp. Since a line is defined as a point and a direction, the solution is complete

once the line direction is found. To this purpose, we define the translated

vectors p
i
:

p
i
, p̄i − µp, ∀i ∈ {1, · · · , n} (2.12)
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Clearly, the centroid of the set of vectors p
i
, i ∈ {1, · · · , n} is at the ori-

gin. Then, we define the matrix B ∈ R2×n as a concatenation of all translated

vectors p
i
:

B ,
[
p

1
p

2
· · · p

n

]
(2.13)

Taking the Singular Value Decomposition (SVD) on the matrix B,

we get B = UΣ̃V T , where U =
[
u1 u2

]
contains the left singular vectors

of B, V =
[
v1 v2 · · ·vn

]
contains the right singular vectors of B, and

Σ̃ =
[
Σ 02×n−2

]
contains the singular values of B within Σ = diag

(
σ1, σ2

)
.

As shown in Ref. [57], the line that minimizes the cost function of

Eq. 2.10 is parameterized as L̂(µp,u1), where u1 ∈ S1 is the first left singular

vector of B, and the optimal cost is given by ĴTLS = σ2. The problem can

then be mapped back into the original coordinates:

µ∗p =

[
µ∗px
µ∗py

]
= Lµp, u∗1 =

[
u∗1x
u∗1y

]
=

Lu1∥∥Lu1

∥∥ . (2.14)

Thus, the TLS minimizer that fits the model of Eq. 2.9 given the mea-

surements of Eq. 2.2 and the measurement noise covariance Pε is given by the

line L̂∗(µ∗p,u
∗
1). The constants α and β from Eq. 2.9 can be calculated as:

β =
u∗1y
u∗1x

, α = µ∗py − βµ∗px. (2.15)

Going back to the original problem of estimating the velocity in Eq. 2.1,

the vector u∗1 is an estimate of the velocity direction −→v , v/||v||. In order to
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obtain the estimation of the velocity v, one still needs to estimate the velocity

magnitude ||v||.

We can project the measured points onto the optimal line µ∗p,u
∗
1, ob-

taining the TLS estimates for these points along the line. Then, the velocity

magnitude can be estimated as an average displacement along the line.

Given that the measurements are distributed as p̄∗i ∼ N(pi,Pε), it is

possible to show that the marginal distribution of p̄∗i along any line L(l0,
−→
l )

is a one-dimensional normally-distributed random variable with mean at p∗pi

and standard deviation σ along the
−→
l direction (see Lemmas 4 and 5 of

Appendix A.4 for proof), where:

p∗pi = l0 +
1

σ2

[(
p̄∗i − l0

)T
P−1−→l

]−→
l , σ =

1∥∥∥L−1−→l
∥∥∥ =

1√−→
l P−1

−→
l
.

(2.16)

Hence, defining S̄i = p∗piu
∗
1 as the displacement along the optimal TLS

line, and admitting the distribution S̄i ∼ N(Si, σ
2), one can use LS to solve

for S0 and ||v|| in the model:

Si = S0 + ||v|| · ti. (2.17)

2.2.1 Analysis

It turns out that the solution obtained through LS (Eq. 2.5) is generally

different from the one obtained through TLS (solution of Eq. 2.17 and the

first left singular vector of the matrix in Eq. 2.13). The different solutions are

expected, given that both estimators employ different cost functions.
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For the particular scenario of estimating the planar system’s velocity

of Eq. 2.1, the LS solution is more advantageous than TLS in many aspects,

some of which are described below. Assuming a linear model (as in Eq. 2.1)

with additive gaussian measurement noise (as in Eq. 2.2), LS is a maximum

likelyhood estimator, implying:

• LS is known to be the globally optimal estimator that obtains the Min-

imum Mean Square Error (MMSE) of the estimate, i.e., it minimizes

MSE = E
[(
X̄ −X

)T (
X̄ −X

)]
. This implies that, in average, no

other estimator will perform as good as LS for minimization of MSE.

In other words, the LS solution will produce smaller squared error more

than 50% of the time (in average) when compared with any other esti-

mator.

• LS is well known for being an unbiased estimator given zero-mean addi-

tive noise to the measurements. On the other hand, TLS is only guar-

anteed to be strongly consistent, i.e., the TLS estimate converges to the

true value (with probability 1) as the number of measurements n tend

to infinity [20, 27], meaning that it is asymptotically unbiased. Monte

Carlo analysis suggest that the bias of TLS is statistically appreciable

when signal-to-noise ratio is low, and n is small [30,65].

• The error-covariance for TLS estimates are known for n → ∞, while

the error-covariance of LS is known for any n. However, the Monte

Carlo analysis in [30] suggest that the TLS error-covariance estimation
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for n → ∞ is a good approximation for n < ∞ provided that n > 20.

Ref. 20 derives a TLS covariance matrix for large samples.

• The LS estimate of the velocity magnitude ||v|| using Eq. 2.17 assumes

that the velocity direction −→v is precisely known. However, as already

mentioned, TLS provides a biased estimate −̄→v = u1, which can also lead

to a biased estimation of ||v||.

Based on the comparisons above, there is no compelling reason to con-

vert the model of Eq. 2.1 into the form of Eq. 2.9, and then perform TLS. On

the other hand, provided that measurement noise is sufficiently small, and the

number of measurements are large enough (e.g., say n > 20), then then TLS

is a competitive algorithm that matches closely the LS solution in the MSE

sense (i.e., it outperforms LS in the MSE sense almost 50% of the time).

As a motivational example, assume a system moving on a line with

initial position p0 =
[
1 0

]T
m and velocity v =

[
2 1

]T
m. The measurement

error standard deviation is given by σε = 0.1m. The measurements are taken

once every dt , ti+1 − ti = 0.1s and the regression is made with n = 20

measurements. Running a Monte Carlo simulation of 100000 solutions, it turns

out that LS outperforms TLS 51.05% of the time in the estimated squared error

sense. If the measurement error standard deviation degrades to σε = 0.5m,

then LS outperforms TLS 55.44% of the time. By taking n = 50 measurements

with σε = 0.1m, LS outperforms TLS 50.34% of the time.

Despite the possible limitations of TLS, we employ the TLS cost func-
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tion in the development of QuateRA. This choice is made because it is then

possible to decouple the estimation of the angular velocity axis of rotation

from its magnitude, whereas the estimation of the coupled problem (which

would be the LS counterpart) is substantially more complex. When estimat-

ing a fixed axis of rotation among sequential quaternion measurements, the

estimation problem can be posed as a plane fitting problem (special case of

TLS), as will be shown in Section 2.4.

2.3 Attitude Kinematics and Measurement Model

2.3.1 Attitude Kinematics

We adopt the notation qBA to represent the relative orientation quater-

nion between frames A and B. A quaternion is written in the form:

qBA =

[
qBAs
qBAv

]
,

where qBAv and qBAs are the vector and scalar components of the quaternion qBA ,

respectively. Also, quaternions satisfy the norm constraint
∥∥qBA∥∥ = 1.

We denote the quaternion inverse rotation as (qBA )−1 = qAB, which is

given by:

qAB =

[
qBAs
−qBAv

]
.

The quaternion composition rule is denoted as:

qCA = qCB ⊗ qBA ,
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in which:

qCB⊗ =

[
qCBs −(qCBv)

T

qCBv qCBsI − [qCBv×]

]
, (2.18)

where I is the 3×3 identity matrix, and [v×] is the skew-symmetric cross prod-

uct matrix associated with a vector v ∈ R3. The matrix qCB⊗ is a 4D rotation

matrix, implying orthogonality, i.e., it satisfies qCB ⊗ (qCB⊗)T = (qCB⊗)TqCB⊗ =

I4. Also, we denote the identity quaternion:

qI , (qBA )−1 ⊗ qBA = qBA ⊗ (qBA )−1 =
[
1 0 0 0

]T
(2.19)

Given a vector v ∈ R3, then we define v⊗ ∈ R4×4 as:

v⊗ ,

[
0 −vT
v −[v×]

]
. (2.20)

With some slight abuse of notation, we define the composition of a

quaternion q ∈ S3 with a vector v ∈ R3 as:

q ⊗ v , q ⊗
[

0
v

]
.

Given a vector vA ∈ R3 expressed in frame A, its representation in

frame B can be obtained as:[
0
vB

]
= qBA ⊗ vA ⊗ (qBA )−1.

Alternatively, vB can be calculated from vA using the expression vB =

CB
Av

A, where CB
A is the direction cosine matrix respective to qBA :

CB
A = I − 2qBAs[q

B
Av×] + 2[qBAv×]2. (2.21)
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Denote ωCB/A ∈ R3 as the angular velocity of frame B w.r.t. frame A

expressed in frame C. Then, the rotational kinematics for qBA is given by:

q̇BA =
1

2
ωBB/A ⊗ qBA . (2.22)

For an angular velocity ωBB/A, we denote its magnitude ΩB/A and its

direction −→ωB
B/A, such that:

ΩB/A ,
∥∥ωBB/A∥∥ , −→ωB

B/A ,
ωBB/A
ΩB/A

.

Assuming a constant angular velocity ωBB/A throughout a period ∆t =

tf − t0, then the solution to the kinematic differential equation in Eq. 2.22 is

given by qBA (tf ) = F (ωBB/A) · qBA (t0), where:

F
(
ωBB/A

)
= exp

[
∆t
2
ωBB/A⊗

]
= cos

ΩB/A∆t

2
· I4 + sin

ΩB/A∆t

2
· −→ωB

B/A ⊗ .

(2.23)

Using the subscript I to denote inertial frame and O for the frame of

the object of interest, the remainder of this paper will denote qi , qOI (ti),

ω , ωOO/I ,
−→ω , −→ωO

O/I , and Ω , ΩO/I .

2.3.2 Measurement Model

In this section, we present the assumed measurement model for the

problem. The assumptions and derivations herein presented are crucial for

posing and solving the AOR optimal estimation within QuateRA.

We employ the quaternion measurement model given by:

q̄i = qi ⊗ qNi, (2.24)
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where qi =
[
qsi qTvi

]T
is the true quaternion and qNi is the noise quaternion:

qNi ,

[
cos θi

2

eNi sin
θi
2

]
, (2.25)

in which θi and eNi are independent random variables. We assume that

θi is Gaussian (Although it might be unrealistic to assume that angles are

distributed as Gaussian, Ref. [43] has shown that this is a reasonable ap-

proximation for double-precision machines as long as σθ ≤ 22 deg) such that

θi ∼ N(0, σ2
θ), and eNi ∈ S2 is a unit-norm random vector uniformly dis-

tributed4 in S2 = {x ∈ R3 : ||x|| = 1} and has the characteristics E[eNi] = 0

and E[eNie
T
Ni] = 1

3
I (see Appendix A.3).

Assuming that all qNi, i ∈ {1, · · · , n} are independent and identically

distributed, we define the quantities µN and PN as the mean and covariance

for the noise quaternion, respectively:

µN , E
[
qNi
]

= E
[

cos θi
2

eNi sin
θi
2

]
=

[
E
[
cos θi

2

]
E
[
eNi sin

θi
2

]] =

[
E
[
cos θi

2

]
E
[
eNi
]
E
[
sin θi

2

]]
= E

[
cos θi

2

] [1
0

]
PN , E

[(
qNi − µN

) (
qNi − µN

)T] = E
[
qNiq

T
Ni

]
− µNµTN

=

[
E
[
cos2 θi

2

]
− E2

[
cos θi

2

]
E
[
eTNi cos θi

2
sin θi

2

]
E
[
eNi cos θi

2
sin θi

2

]
E
[
eNie

T
Ni

]
E
[
sin2 θk

2

]]
=

[
E
[
cos2 θi

2

]
− E2

[
cos θi

2

]
0

0 1
3
E
[
sin2 θi

2

]
I3

]

4The reader should note that this is a simplification, given that it is not always true that
the angle randomness is as likely in any direction. For instance, star trackers tend to have
different noise characteristics in the boresight direction and the ones perpendicular to it.
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The expected values above can be calculated according with Ref. [43]:

E
[
cos θi

2

]
= e−σ

2
θ/8, E

[
cos2 θi

2

]
= 1

2

(
1 + e−σ

2
θ/2
)
, and E

[
sin2 θi

2

]
=

1
2

(
1− e−σ2

θ/2
)
. Defining σ2

s , E
[
cos2 θi

2

]
− E2

[
cos θk

2

]
and σ2

v , 1
3
E
[
sin2 θi

2

]
,

then the noise covariance matrix takes the form:

PN =

[
σ2
s 0

0 σ2
vI3

]
. (2.26)

We define the covariance for the measured quaternion as:

Pq , E
[(
q̄i − E

[
q̄i
]) (
q̄i − E

[
q̄i
])T]

= E
[
q̄iq̄

T
i

]
− E

[
q̄i
]
E
[
q̄i
]T

=
(
qi⊗

)
E
[
qNiq

T
Ni

] (
qi⊗

)T − (qi⊗)µNµTN (qi⊗)T
=
(
qi⊗

) [
E
[
qNiq

T
Ni

]
− µNµTN

] (
qi⊗

)T
=
(
qi⊗

)
PN
(
qi⊗

)T
.

If we make the notation relaxation qi =
[
qs qTv

]T
, and use

Eqs. 2.18 and 2.26, we can further expand Pq as:

Pq =

[
σ2
sq

2
s + σ2

vq
T
v qv σ2

sqsq
T
v − σ2

vqsq
T
v

σ2
sqsqv − σ2

vqsqv σ2
sqvq

T
v − σ2

v

(
q2
sI3 −

[
qv×
]2)] .

Using the properties
[
qv×
]2

= qvq
T
v − qTv qvI3, and q2

s + qTv qv = 1, we

have that:

Pq =

[
σ2
v +

(
σ2
s − σ2

v

)
q2
s

(
σ2
s − σ2

v

)
qsq

T
v(

σ2
s − σ2

v

)
qsqv σ2

vI3 +
(
σ2
s − σ2

v

)
qvq

T
v

]
= σ2

vI4 +
(
σ2
s − σ2

v

)
qiq

T
i .

(2.27)

Using the statistics above, if one desires to perform a quaternion mea-

surement normalization, it is necessary to decompose the covariance matrix in
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the form Pq = LqL
T
q . There are multiple ways of proceeding with the decom-

position, but here we derive the square root decomposition, i.e., Pq = LqLq,

where Lq = LTq . Starting from Eq. 2.27, we add and subtract 2σ2
vqiq

T
i and

2σvσsqiq
T
i on the right-hand side of the equation:

Pq = σ2
vI4 − 2σ2

vqiq
T
i + 2σvσsqiq

T
i +

(
σ2
s − 2σvσs + σ2

v

)
qiq

T
i

= σ2
vI4 − 2σv

(
σv − σs

)
qiq

T
i +

(
σv − σs

)2
qiq

T
i .

Defining σq , σv − σs and using the property qiq
T
i = qiq

T
i qiq

T
i then:

Pq = σ2
vI4 − 2σvσqqiq

T
i + σ2

qqiq
T
i qiq

T
i = σ2

vI4 − 2σvσqqiq
T
i + σ2

q

(
qiq

T
i

)2

=
(
σvI4 − σqqiqTi

)2
(2.28)

Therefore, the matrix square-root of Pq is given by Lq = σvI4−σqqiqTi ,

where σq = σv − σs. The inverse of the square-root matrix is given by:

L−1
q =

1

σsσv

(
σsI4 + σqqiq

T
i

)
.

Post-multiplying L−1
q by qi, we get that:

L−1
q qi =

1

σsσv

(
σsqi + σqqi

)
=

σv
σsσv

qi =
1

σs
qi.

Therefore, qi is an eigenvector of L−1
q , and the corresponding eigenvalue

is given by λq = 1/σs. Having that in mind, if we perform a Taylor Expansion

on Eq. 2.24 around θi = 0, and pre-multiply by L−1
q , we get that:

L−1
q q̄i = L−1

q qi ⊗ qNi = L−1
q

(
qi⊗

) (
qI + ∂qNi

∂θi

∣∣∣
0
θi + ∂2qNi

∂θ2i

∣∣∣
0
θ2
i + · · ·

)
= L−1

q qi +L−1
q

(
qi⊗

) (∂qNi
∂θi

∣∣∣
0
θi + ∂2qNi

∂θ2i

∣∣∣
0
θ2
i + · · ·

)
=

1

σs
qi +L−1

q

(
qi⊗

) (∂qNi
∂θi

∣∣∣
0
θi + ∂2qNi

∂θ2i

∣∣∣
0
θ2
i + · · ·

)
,
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where qI is the identity quaternion defined in Eq. 2.19.

Therefore, if we consider only the zero-th order approximation for the

measurement normalization performed by the operation L−1
q q̄k, then this op-

eration is just a scaling operation on the true quaternion. In practice, it is

impossible to perform the measurement normalization L−1
q q̄i because Lq is a

function of the true quaternion qi (not the measured one), which is unknown.

Alternatively, if we make the practical approximation [20]:

Pq ≈
(
σvI4 − σqq̄iq̄Ti

)2
=⇒ L−1

q ≈
1

σsσv

(
σsI4 + σqq̄iq̄

T
i

)
, (2.29)

then the measurement normalization leads to L−1
q q̄i = λqq̄i.

2.4 Problem Formulation

This section poses the problem that we solve with QuateRA. Let q̄i be a

quaternion measurement at time ti, and assume that we have n measurements.

Defining q̂i ∈ S3 as the quaternion estimate at time ti, we want to minimize

the cost function:

JLS =
1

2

n∑
i=1

(
q̂i − q̄i

)T
P−1
q

(
q̂i − q̄i

)
=

1

2

n∑
i=1

(
q̂i − q̄i

)T
L−Tq L−1

q

(
q̂i − q̄i

)
=

1

2

n∑
i=1

(
L−1
q q̂i −L−1

q q̄i
)T (

L−1
q q̂i −L−1

q q̄i
)
.

Making the practical approximations L−1
q q̄i ≈ λqq̄i and L−1

q q̂i ≈ λqq̂i,

then:
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JLS ≈
1

2
λ2
q

n∑
i=1

∥∥q̂i − q̄i∥∥2

2
. (2.30)

Dropping the constant gain λq from the cost function (as it shouldn’t

impact the optimal solution), and using the property q̄Ti q̄i = q̂Ti q̂i = 1, then

JLS can be further simplified as:

JLS =
1

2

n∑
i=1

∥∥q̂i − q̄i∥∥2

2
=

1

2

n∑
i=1

(
q̂i − q̄i

)T (
q̂i − q̄i

)
=

1

2

n∑
i=1

(
2− 2q̂Ti q̄i

)
= n−

n∑
i=1

q̂Ti q̄i. (2.31)

Additionally, the optimal estimation problem has to be subject to the

quaternion kinematic equation of Eq. 2.22:

q̇ =
1

2
ω ⊗ q.

Assuming that ω = Ω−→ω is constant, the rotational kinematics evolves

as described by the state transition matrix of Eq. 2.23:

q(t) =
[
cos Ω∆t

2
· I4 + sin Ω∆t

2
· −→ω⊗

]
q0 = cos

Ω∆t

2
· q0 + sin

Ω∆t

2
· −→ω ⊗ q0,

(2.32)

where ∆t , t − t0. In summary, we are searching for estimates of ω̂ = Ω̂−̂→ω ,

and q̂i satisfying:
minω̂,q̂i JLS = n−

∑n
i=1 q̂

T
i q̄i

s.t. q̂i+1 = cos Ω̂δi
2
· q̂i + sin Ω̂δi

2
· −̂→ω ⊗ q̂i, ∀ i ∈ {1, · · · , n− 1}

||q̂i|| = 1, ∀ i ∈ {1, · · · , n}
,

(2.33)
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where δi , ti+1 − ti.

As mentioned in the Introduction, QuateRA is a two step algorithm:

it first estimates the AOR −̂→ω , and then uses its knowledge to estimate for

the AVM Ω̂. In order to estimate the AOR, QuateRA uses a geometric in-

terpretation based on the solution to the quaternion kinematic equation of

Eq. 2.32.

Defining the vectors u1 ∈ S3 = q0 and u2 ∈ S3 = −→ω ⊗q0, we have that

uT1u2 = q0 · −→ω ⊗ ·q0. Since −→ω⊗ is a skew-symmetric matrix (see Eq. 2.20)

then uT1u2 = 0, i.e., u1 ⊥ u2. Defining α , Ω∆t
2

, we can write Eq. 2.32 as:

q(t) = cosα · u1 + sinα · u2. (2.34)

Clearly, any q(t) described by Eq. 2.34 is a linear combination of u1

and u2, for all t ∈ R. Hence, if we define the 4D hyperplane P(u1,u2) =

span{u1,u2}, then q(t) ∈ P(u1,u2), ∀ t ∈ R. Thus, the optimally estimated

quaternions should belong to a single plane of rotation: q̂i ∈ P(u1,u2), ∀i ∈

{1, · · · , n}. In addition, we have that ω = u2 ⊗ u−1
1 .

Therefore, if we have a sequence of measurements q̄i, i ∈ {1, · · · , n},

with n ∈ N≥2 (N is the set of natural numbers), then we can estimate the axis of

rotation by finding the optimal hyperplane that fits the measured quaternions.

Classically speaking, plane-fitting is a Total Least Squares (TLS) problem [65].

We define q̂TLSi as the TLS best in-plane estimate for the i-th measurement.

Defining the matrices Q̄ and Q̂TLS as:

Q̄ ,
[
q̄1 q̄2 · · · q̄n

]
, Q̂TLS ,

[
q̂TLS1 q̂TLS2 · · · q̂TLSn

]
, (2.35)
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then our plane-fitting problem can be cast in the following TLS form:
minû1,û2,q̂i JTLS =

∥∥∥Q̂TLS − Q̄
∥∥∥2

F

s.t. q̂TLSi ∈ P(û1, û2), ∀ i ∈ {1, · · · , n}
||q̂TLSi || = 1, ∀ i ∈ {1, · · · , n}

, (2.36)

where the || · ||F denotes the Frobenius norm. Notice that the optimization

problem of Eq. 2.36 stems from the classical TLS problem, except for the

unit norm constraint ||q̂TLSi || = 1. Hence, although we start from a TLS cost

function for estimating the quaternion plane of rotation, the solution is not

related to the textbook solutions on TLS.

Once we solve the optimization problem of Eq. 2.36, we are able to

obtain estimates for the axis of rotation −̂→ω , the plane of rotation P(û1, û2),

and the quaternion estimates q̂TLSi ∈ P(û1, û2). Given those estimates, we

recast the optimization problem of Eq. 2.33 as:
minΩ̂,q̂i

JLS = n−
∑n

i=1 q̂
T
i q̂

TLS
i

s.t. q̂i+1 = cos Ω̂δi
2
· q̂i + sin Ω̂δi

2
· −̂→ω ⊗ q̂i, ∀ i ∈ {1, · · · , n− 1}

||q̂i|| = 1, ∀ i ∈ {1, · · · , n}
q̂i ∈ P(û1, û2), ∀ i ∈ {1, · · · , n}

,

(2.37)

In an nutshell, the problem of Eq. 2.36 is solved by taking the Singu-

lar Value Decomposition on Z , Q̄Q̄T , whose two first left singular vectors

determine the quaternion plane of rotation. The AOR direction is uniquely

identified from the plane of rotation. In order to solve the problem of Eq. 2.37,

we observe that a unit quaternion qi on a plane can be uniquely identified by

a single angle Φi. Hence, if we assume that this angle is evolving linearly as
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in Φi = Φ1 + Ω∆t, we can perform least squares to solve for optimal Φ̂1 and Ω̂

that determine the quaternion evolution on that plane. QuateRA’s algorithm

is summarized in Section 2.5.4.

2.5 The Quaternion Regression Algorithm

In this section, we develop the QuateRA algorithm. The remainder of

this section is structured as follows: Section 2.5.1 derives the AOR estima-

tion algorithm, while Section 2.5.2 derives the AVM estimator. A method for

estimating the covariance matrix is given in Section 2.5.3. Section 2.5.4 sum-

marizes QuateRA into a few steps, and Section 2.5.5 presents some insights

and analysis to the overall algorithm.

2.5.1 Estimation of the Axis of Rotation

In order to estimate the AOR, the goal is to find a plane P̂(û1, û2) =

span{û1, û2} and a set of estimated quaternions q̂i ∈ P̂(û1, û2), i ∈ {1, · · · , n}

that minimizes the TLS cost function:

J1 =
1

2

∥∥Q̄− Q̂TLS
∥∥2

F
. (2.38)

In order to reduce heavy notation, the remainder of this subsection will

denote Q̂ ≡ Q̂TLS and q̂i ≡ q̂TLSi .

Starting from the definition of Q̄ in Eq. 2.35, we can derive the following
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property:

tr
(
Q̄Q̄T

)
= tr

(∑n
i=1 q̄iq̄

T
i

)
=

n∑
i=1

tr
(
q̄iq̄

T
i

)
=

n∑
i=1

∥∥q̄i∥∥2
= n (2.39)

From the Frobenius norm definition, we have that:

J1 =
1

2
tr
[(
Q̄− Q̂

) (
Q̄− Q̂

)T]
=

1

2
tr
[
Q̄Q̄T − Q̄Q̂T − Q̂Q̄T + Q̂Q̂T

]
=

1

2
tr
(
Q̄Q̄T

)
− 1

2
tr
(
Q̄Q̂T

)
− 1

2
tr
(
Q̂Q̄T

)
+

1

2
tr
(
Q̂Q̂T

)
. (2.40)

Using the trace property tr(AB) = tr(BA), and the property of

Eq. 2.39, we have that:

J1 = n− tr
(
Q̄Q̂T

)
= n− tr

(∑n
i=1 q̄iq̂

T
i

)
= n−

n∑
i=1

tr
(
q̄iq̂

T
i

)
= n−

n∑
i=1

q̄Ti q̂i.

(2.41)

Minimizing the cost function of Eq. 2.41 is equivalent to maximizing

the following cost function:

J2 =
k∑
i=1

q̄Ti q̂i. (2.42)

Theorem 1. Given a quaternion q ∈ S3 and a plane spanned by the unit

vectors u1 ∈ S3 and u2 ∈ S3 such that uT1u2 = 0. Denoting this plane as

P(u1,u2), the quaternion qp ∈ S3 that belongs to the plane P(u1,u2) and

minimizes the cost function:

J0 =
1

2

∥∥q − qp∥∥2

2
=

1

2

∥∥q − qp∥∥2

F
(2.43)

is given by:

qp =
1√(

qTu1

)2
+
(
qTu2

)2

[(
qTu1

)
u1 +

(
qTu2

)
u2

]
(2.44)
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Proof. The cost function of Eq. 2.43 can be written as:

J0 =
1

2

∥∥q − qp∥∥2

2
=

1

2

(
qTq − 2qTqp + qTp qp

)
= 1− qTqp. (2.45)

Minimizing the cost function of Eq. 2.45 is the same as maximizing the

following cost function:

J1 = qTqp. (2.46)

Every quaternion that belongs to the plane P(u1,u2) can be written as

a linear combination of u1 and u2:

qp = au1 + bu2. (2.47)

In order to satisfy the norm condition for ||qp|| = 1, the following holds:

||qp|| = qTp qp = a2uT1u1 + 2abuT1u2 + b2uT2u2 = a2 + b2 = 1

Hence, the coefficients a and b from Eq. 2.47 are constrained such that

a2 + b2 = 1. We rewrite the optimization problem as:{
maxa,b J1 = qTqp = aqTu1 + bqTu2

s.t. a2 + b2 = 1.
(2.48)

Introducing the Lagrange multiplier λ, the Lagragian related to the

problem above is written as:

L = aqTu1 + bqTu2 +
1

2
λ(a2 + b2 − 1) =⇒

{
∂L
∂a

= qTu1 + λa
∂L
∂b

= qTu2 + λb
.
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From the first-order necessary optimality conditions, we get that:{
qTu1 + λa = 0 =⇒ a = −qTu1

λ

qTu2 + λb = 0 =⇒ b = −qTu2

λ

. (2.49)

Substituting a and b from Eq. 2.49 into a2 + b2 = 1, we get that:

(qTu1)2

λ2
+

(qTu2)2

λ2
= 1 =⇒ λ = ±

√
(qTu1)2 + (qTu2)2. (2.50)

Therefore, we have that:

a = −q
Tu1

λ
= ± 1√

(qTu1)2 + (qTu2)2
qTu1, (2.51)

b = −q
Tu2

λ
= ± 1√

(qTu1)2 + (qTu2)2
qTu2. (2.52)

We can notice that this problem has two extremum points: a maximiz-

ing solution and a minimizing one. By inspecting the cost function in Eq. 2.48,

the maximizing solution has to be the one given by:

a =
1√

(qTu1)2 + (qTu2)2
qTu1, b =

1√
(qTu1)2 + (qTu2)2

qTu2, (2.53)

leading to the solution of Eq. 2.44.

Using Theorem 1, then q̂ can be written as a linear combination of the

optimal plane vectors û1 and û2. Hence, the cost function J2 from Eq. 2.42
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can be written as:

J2 =
n∑
i=1

1√(
q̄Ti û1

)2
+
(
q̄Ti û2

)2
q̄Ti
[(
q̄Ti û1

)
û1 +

(
q̄Ti û2

)
û2

]
=

n∑
i=1

1√(
q̄Ti û1

)2
+
(
q̄Ti û2

)2

[(
q̄Ti û1

)2
+
(
q̄Ti û2

)2
]

=
n∑
i=1

√(
q̄Ti û1

)2
+
(
q̄Ti û2

)2
(2.54)

Note that in the total absence of measurement noise, and assuming

û1 ∈ span{u1,u2}, û2 ∈ span{u1,u2} with ûT1 û2 = 0, the following holds:√(
q̄Ti û1

)2
+
(
q̄Ti û2

)2
= 1, ∀ i ∈ {1, · · · , n}.

Defining the variable x ,
(
q̄Ti û1

)2
+
(
q̄Ti û2

)2
, the First order Taylor

Expansion of
√
x around x = 1 is given by:

√
x ≈ 1

2
+
x

2
=⇒

√(
q̄Ti û1

)2
+
(
q̄Ti û2

)2 ≈ 1

2
+

1

2

(
q̄Ti û1

)2
+

1

2

(
q̄Ti û2

)2

Therefore, under the small angle approximation for the measurement

noise, we have that the cost function J2 can be approximated to:

J2 ≈
n

2
+

1

2

n∑
i=1

[(
q̄Ti û1

)2
+
(
q̄Ti û2

)2
]

(2.55)

For simplicity of notation, we define a new cost function whose maxi-

mization is equivalent to the maximization of Eq. 2.55:

J =
n∑
i=1

[(
q̄Ti û1

)2
+
(
q̄Ti û2

)2
]

=
n∑
i=1

[
ûT1 q̄iq̄

T
i û1 + ûT2 q̄iq̄

T
i û2

]
(2.56)

= ûT1

n∑
i=1

q̄iq̄
T
i û1 + ûT2

n∑
i=1

q̄iq̄
T
i û2 = ûT1 Q̄Q̄

T û1 + ûT2 Q̄Q̄
T û2 (2.57)
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Defining Z̄ , Q̄Q̄T , the optimization problem can be stated in the

following form:  max
û1∈S3,û2∈S3

ûT1 Z̄û1 + ûT2 Z̄û2

s.t. ûT1 û2 = 0
. (2.58)

The optimization problem of Eq. 2.58 does not admit a unique solution.

This should be an obvious statement, since there are infinitely many pairs of

orthogonal vectors that define a plane. Still, this is not an issue for QuateRA,

since the axis of rotation direction can be uniquely determined from the hy-

perplane, regardless of which particular optimal solution has been obtained for

û1 and û2. Lemma 1 introduces a particular optimal solution to the problem

above.

Lemma 1. A solution to the optimization problem in Eq. 2.58 can be ob-

tained from the Singular Value Decomposition (SVD) of Z̄ = ÛΣ̂ÛT , where

Û ∈ R4×4 =
[
û1 û2 û3 û4

]
contains the singular vectors of Z̄, and

Σ̂ = diag
(
σ̂1, σ̂2, σ̂3, σ̂4

)
contains the singular values of Z̄, wherein σ̂1 ≥ σ̂2 ≥

σ̂3 ≥ σ̂4 ≥ 0. If σ̂2 > σ̂3, then û1 and û2 compose a solution to the optimiza-

tion problem in Eq. 2.58 and the optimal cost is given by J∗(û1, û2) = σ̂1 + σ̂2,

with σ̂1 = ûT1 Z̄û1 and σ̂2 = ûT2 Z̄û2.

Proof. This follows from common knowledge in SVD, as the best-fit k-

dimensional subspace for a matrix is the subspace spanned by the first k sin-

gular vectors [61]. As we are looking for a 2-dimensional subspace that best

approximates Z̄, then the solution to the optimization problem of Eq. 2.58 is

given by the first two left singular vectors of Z̄.
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Having the optimal hyperplane estimate P̂(û1, û2), we still need to

calculate the AOR −̂→ω that leads to rotation on that plane. As previously

observed in Eq. 2.32, the optimal hyperplane can be written as P̂(û1, û2) =

P̂(û1,
−→ω ⊗ û1). This implies that û2 = −̂→ω ⊗ û1. Therefore, the optimal

estimate for the AOR is given by:

−̂→ω = û2 ⊗ û−1
1 . (2.59)

An important observation is that −̂→ω is an ambiguous estimate of −→ω

up to a sign error, i.e, it estimates the direction of −→ω , but the sense might

be wrong. This ambiguity is eliminated when estimating the AVM Ω, whose

estimate Ω̂ will be negative when −̂→ω is an estimate of −−→ω . In any case, the

product ω̂ = Ω̂−̂→ω is consistent with ω = Ω−→ω .

Using the result from Theorem 1, the optimally estimated quaternions

on the plane P̂(û1, û2) are given by:

q̂TLSi =
1√(

q̄Ti û1

)2
+
(
q̄Ti û2

)2

[(
q̄Ti û1

)
û1 +

(
q̄Ti û2

)
û2

]
. (2.60)

2.5.2 Estimation of the Angular Velocity Magnitude

In this section, we use the estimated in-plane quaternions q̂TLSi ∈

P(û1, û2) to solve the optimization problem of Eq. 2.37, where q̂TLSi is given

by Eq. 2.60.

We make the observation that a unit quaternion belonging to a plane

P(û1, û2) can be fully specified simply by an angle on that plane. We define
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the quaternion angle on P(û1, û2) as having a zero-angle when aligned with

u1, and it grows positive as the quaternion rotates from u1 towards u2. We

make the definitions:

Φ̂i = 2 · atan2
(
ûT2 q̂i, û

T
1 q̂i
)
, Φ̄i = 2 · atan2

(
ûT2 q̂

TLS
i , ûT1 q̂

TLS
i

)
, (2.61)

where Φ̄i is the respective angle of the quaternion q̂TLSi , and Φ̂i is the angle of

the quaternion that we are estimating q̂i.

If we define ψi , Φ̂i − Φ̄i, then we have that q̂Ti q̂
TLS
i = cos |ψ|

2
. Using

Taylor series around the origin, we can approximate q̂Ti q̂
TLS
i ≈ 1− ψ2

8
. Hence,

for sufficiently small ψ (i.e. low noise characteristics), the cost function of

Eq. 2.37 can be approximated as:

JLS = n−
n∑
i=1

q̂Ti q̂
TLS
i ≈ n− n+

1

8

n∑
i=1

ψ2 =
1

8

n∑
i=1

(Φ̂i − Φ̄i)
2. (2.62)

If we assume the system model:

Φi = Φ1 + Ω∆ti =
[
1 ∆ti

] [Φ1

Ω

]
,

and the measurement model:

Φ̂i = Φi + νi,

where νi is the measurement noise such that E[νi] = 0, E[νiνj] = 0, i 6= j, and

E[ν2
i ] = Pν , then we can use least squares to estimate for Φ̂1 and Ω̂:

X̂ ,

[
Φ̂1

Ω̂

]
=
(
HTH

)−1
HT Φ̂, (2.63)
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where:

H ,

[
1 · · · 1

∆t1 · · · ∆tn

]T
, Φ̂ ,

[
Φ̂1 · · · Φ̂n

]T
. (2.64)

Given that the measurement noise is assumed to be uncorrelated be-

tween two measurements (E[νiνj] = 0, i 6= j), then the covariance matrix of

the estimate X̂ is given by cov[X̂] = Pν
(
HTH

)−1
.

The optimally estimated quaternions q̂i ∈ P(û1, û2) can be retrieved

as:

q̂i+1 = cos
Ω̂δi
2
· q̂i + sin

Ω̂δi
2
· −̂→ω ⊗ q̂i, ∀ i ∈ {1, · · · , n− 1}. (2.65)

Note that the quaternion estimates in Eq. 2.65 satisfies all the con-

straints of the optimization problem in Eq. 2.37.

Theorem 2 below proves that the noise νi is actually zero mean and

that Pν = 1
3
σ2
θ , where σθ is the noise standard deviation for the measurement

noise as defined in Eqs. 2.24 and 2.25.

Theorem 2. Assume that qN =
[
cos θ

2
eTN sin θ

2

]T
is a noise quaternion,

where θ is a zero-mean gaussian random variable with E[θ2] = σ2
θ , and eN ∈ R2

is a unit vector uniformly distributed in the 3D sphere. Also, define a plane

P(qI , qv) as the hyperplane spanned by the unit vectors qI (identity quaternion)

and qv ,
[
0 vT

]T
with v ∈ S2 such that qTv qI = 0. Now, assume that

qNp ∈ P(qI , qv) is the quaternion that belongs to P(qI , qv) and is closest to qN

such as in Theorem 1. Then, if we assume the small angle approximation on
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θ = 0, the quaternion qNp has the form:

qNp =

[
cos Φ

2

v sin Φ
2

]
, (2.66)

where Φ has the approximate statistics E[Φ] = 0, and σ2
Φ , E[Φ2] = 1

3
σ2
θ .

Proof. According with Theorem 1, qNp is given by:

q̂Np =
1√(

qTNqI
)2

+
(
qTNqv

)2

[(
qTNqI

)
qI +

(
qTNqv

)
qv
]

=
1√(

qTNqI
)2

+
(
qTNqv

)2

[
qTNqI
v · qTNqv

]
(2.67)

Comparing Eq. 2.67 with Eq. 2.66, we get that:

cos
Φ

2
=

qTNqI√(
qTNqI

)2
+
(
qTNqv

)2
(2.68)

From the definition of the identity quaternion (Eq. 2.19), we get that

qTNqI = cos θ
2
. In addition, we have that qTNqv = eTNv sin θ

2
. Defining γ as the

angle between the vectors eTN and v, then we can define cos γ , eTNv. Given

that eN is uniformly distributed in a 3D sphere, then Appendix A.3 shows

that cos γ ∼ U[−1, 1]. Therefore, we have that qTNqv = cos γ sin θ
2
. Plugging

these values into Eq. 2.68, and performing Taylor series expansion on both

sides around Φ = 0 and θ = 0, we get to:

cos
Φ

2
=

cos θ
2√

cos2 θ
2

+ cos2 γ sin2 θ
2

(Taylor Series on both sides)

1− Φ2

8
≈ 1− cos2 γ

θ2

8
(2.69)
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Inspecting Eq. 2.69, we can approximate Φ ≈ θ · cos γ. Therefore, we

have that E[Φ] = E[θ]E[cos γ] = 0 and E[Φ2] = E[θ2]E[cos2 γ] = 1
3
σ2
θ .

2.5.3 Covariance Estimate

This section presents a covariance estimate for the estimated angular

velocity through a Fisher Information approach. We compute how much in-

formation is added to the estimates when a new orientation measurement is

processed. We base our Information propagation on the MEKF equations

derived in Appendix A.4.

Assuming that the attitude error is in the Gibbs vector format (see

Eq. A.28), we define the estimation error vector as X =
[
δgT δωT

]T
, where

δω , ω̂ − ω. Each orientation measurement has the error covariance R =

1
3
σ2
θI3. Defining the covariance matrix PX = E[XXT ], the related Fisher

information matrix is given by I = P−1
X .

Assuming that one orientation measurement has been already pro-

cessed, the information matrix can be initialized as:

I1 =

(
R−1 03

03 03

)
. (2.70)

The information for all subsequent measurement updates can be pro-

cessed iteratively as:

Ik+1 = ΓT
k IkΓk +HkRH

T
k , ∀ k ∈ {1, · · · , n− 1}, (2.71)
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where Hk =
[
I3 03

]
, Γk , e−Aδk , δk , tk+1 − tk, and:

A =

[
−[ω×] I3

03 03

]
.

Finally, the estimated final covariance matrix is given by P̂X = I−1
n .

2.5.4 Algorithm Summary

In this section, we summarize the algorithm steps for QuateRA.

1. Construct the measurement matrix Q̄ as in Eq. 2.35 and calculate Z̄ =

Q̄Q̄T .

2. Compute the SVD Z̄ = ÛΣ̂ÛT . The plane of rotation is defined by the

first two columns of Û =
[
û1 û2 û3 û4

]
.

3. The optimal axis of rotation is defined as in Eq. 2.59: ω̂ = û2 ⊗ û−1
1 .

4. Compute the optimally estimated quaternions q̂i, i ∈ {1, · · · , n} on the

plane P̂(û1, û2) using Eq. 2.60.

5. For each quaternion q̂i on the plane P̂(û1, û2), compute the quaternion

angle within the plane Φ̂i using Eq. 2.61.

6. Estimate the angular velocity Ω̂ and its associated covariance using

Eqs. 2.63 and 2.64. Note that the angles Φ̄ need to be unwrapped before

performing the least squares estimation.

7. Initialize the Fisher information matrix as in Eq. 2.70, and update

through Eq. 2.71. Compute the final covariance as P̂X = I−1
n .
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2.5.5 QuateRA Analysis

In this section, we provide some critical analysis and insights about the

derivation of QuateRA.

We have converted the initial optimization problem of Eq. 2.33 into

two subproblems: one that estimates the AOR by estimating the quaternion

plane of rotation (Eq. 2.36), and then we use the plane of rotation knowledge

to estimate for the AVM (Eq. 2.37). The items below provide a critical view

on our derivations and solutions:

• Although we have employed the TLS cost function, the optimization

problem is not a classical TLS problem, as we constrain the optimized

variables to be unit norm. Hence, we cannot affirm that all TLS statis-

tical properties are transferred to QuateRA.

• The Least Squares estimate of the AVM ||Ω|| assumes that the velocity

direction −→ω is precisely known. However, as already mentioned, TLS can

provide a biased estimate, which can also imply on a biased estimation

of ||Ω||.

• Many portions of our derivations assume sufficiently small measurement

noise. This implies that QuateRA might not be a reasonable estimator

for problems with too large orientation measurement noise.

Given the concerns above, Section 2.6 presents a Monte Carlo analysis

of QuateRA, comparing its results with a Multiplicative Extended Kalman
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Filter. The Monte Carlo results indicate that QuateRA carries the strong con-

sistency property of classical TLS, and it even outperforms MEKF in some

situations, especially for situations with large angular velocities and low sam-

pling frequency. On the other hand, MEKF seems to be a slightly better

estimator for high sampling frequencies and small angular velocities. Note,

however, that the average discrepancy between QuateRA and MEKF disap-

pear as the number of measurements increase.

A few important remarks that should be noted on QuateRA are high-

lighted below:

• When n = 2, QuateRA computes the solution that leads to JLS = 0,

i.e., n = 2 leads to a perfect fit of the data.

• It doesn’t matter if Q̄ is constructed with qi or −qi. Plane-fitting is

agnostic to the quaternion direction, and the AVM estimation is not

affected as long as the angles are unwrapped prior to solving the LS

problem.

• The quaternion averaging problem described in Ref. [37] is a special

solution for the problem herein presented. Note the similarity between

the cost function in Eq. 2.56 with respect to Eq. 12 within Ref. [37] when

all the weights are unity. This implies that û1 has the geometric meaning

of an average quaternion among all the measurements.
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2.6 QuateRA Monte Carlo Analysis

This section provides a Monte Carlo analysis of QuateRA, confirming

the statistical properties derived in the previous sections, as well as provid-

ing a comparison with an MEKF (see Appendix A.4 for referencing the used

formulation). We perform extensive simulations for multiple values of n (num-

ber of measurements) and σθ (standard deviation for the angle in the noise

quaternion).

In all simulations, we used an angular velocity with direction −→ω =

1√
14

[
1 2 3

]T
. The standard deviation for the measurement noise are chosen

as σθ = 1◦, σθ = 2◦, σθ = 3◦, σθ = 4◦, and σθ = 5◦ (large values, when

compared to star-tracker technology). The analysis of this section would be

quite uninteresting for σθ values expected for Star Trackers, since QuateRA’s

performance would not change much as a function of the number of measure-

ments n). In the simulations that follow, the number of measurements range

from n = 5 to n = 50 in increments of 5. Each Monte Carlo result is obtained

after nMC = 10000 executions. We denote −→ω⊥ ∈ S2 as an arbitrary unit vector

perpendicular to −→ω , i.e., −→ω T−→ω⊥ = 0.

In order to evaluate the AOR estimation, we calculate the mean and

standard deviation of the estimated AOR −̂→ω along −→ω⊥. Defining −̂→ω
T

i as the

estimation of −→ω at the ith Monte Carlo trial, and ei⊥ , −̂→ω
T

i
−→ω⊥ as the respec-

tive projected error, then the mean µ⊥ and variance σ2
⊥ for ei⊥ is calculated
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as:

µ⊥ ,
1

nMC

nMC∑
i=1

ei⊥, σ2
⊥ ,

1

nMC − 1

nMC∑
i=1

(
ei⊥ − µ⊥

)2
. (2.72)

A sample mean around µ⊥ = 0 indicates that the AOR is an unbiased

estimator. The standard deviation has to belong to the range 0 < σ⊥ ≤

1/
√

3 ≈ 0.5774, where σ⊥ → 1/
√

3 indicates that the estimator is obtaining

solutions uniformly distributed in the unit sphere (see Appendix A.3). In our

experience, the AOR estimator provides acceptable estimates when σ⊥ ≤ 0.1.

In order to evaluate the AVM estimation, we define the AVM error as

eiΩ , Ω̂i−Ω, where Ω̂i is the estimated AVM for the ith Monte Carlo execution.

We calculate the mean µΩ and variance σ2
Ω of eiΩ as:

µΩ ,
1

nMC

nMC∑
i=1

eiΩ, σ2
Ω ,

1

nMC − 1

nMC∑
i=1

(
eiΩ − µΩ

)2
. (2.73)

First, we evaluate QuateRA’s performance in a degenerate scenario.

We start with measurements taken at 10hz, with an AVM of Ω = 0.1rad/s.

Notice that when the measurement is as high as 5◦ = 0.0873rad and the num-

ber of measurements are as low as n = 5, the change in orientation throughout

that period is of 0.05rad, and hence the signal to noise ratio is extremely low

for accurately estimating the angular velocity. Figure 2.1 presents the Monte

Carlo results for the AOR estimation, indicating that the estimator is asymp-

totically unbiased and that the standard deviations decrease as the number of

measurements increase. Figure 2.2 shows that the mean error µΩ converges to

zero as the number of measurements n increase. The standard deviation also
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decreases as n increases. One should be aware that these solutions only make

sense if the AOR make sense, i.e., if σ⊥ is small enough.

Figure 2.1: Sample Mean and Standard Deviation of the projection of the
estimated AOR along a direction perpendicular to the true AOR. Measure-
ments taken at 10Hz, with an AVM of Ω = 0.1rad/s. Results are shown as a
function of the number of measurements (x axis) and the standard deviations
σθ (different plots).

Given the estimate error for the i-th Monte Carlo execution as ωei =

ω̂ − ω, we compute the sample standard deviation on ωei, defined as σω =[
σωx σωy σωz

]T
. We compare σω with the standard deviations estimated

in Section 2.5.3, denoted as σ̂ω =
[
σ̂ωx σ̂ωy σ̂ωz

]T
. We compare both in a
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Figure 2.2: Sample Mean and Standard Deviation of the estimated AVM error
for measurements taken at 10Hz, and an AVM of Ω = 0.1rad/s. Results are
shown as a function of the number of measurements (x axis) and the standard
deviations σθ (different plots).

Percent Deviation sense:

PDσx , 100 · σ̂ωx − σωx
σωx

, PDσy , 100 · σ̂ωy − σωy
σωy

, (2.74)

PDσz , 100 · σ̂ωz − σωz
σωz

.

Figure 2.3 shows how the covariance estimates are biased for a small

number of measurements, but the bias diminishes as the number of measure-

ments increase.

QuateRA’s performance is improved drastically (compared to the ex-

ample from before) in a scenario for which measurements are taken at 1Hz, still
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Figure 2.3: Percentual deviation of the average estimated standard deviation
for σ̂ω w.r.t. the sample standard deviation σω, assuming sampling frequency
of 10Hz, and an AVM of Ω = 0.1rad/s. Results are shown as a function of
the number of measurements (x axis) and the measurement noise standard
deviations σθ (different plots).

with an AVM of Ω = 0.1rad/s. We can see that both the bias and the stan-

dard deviations (Figures 2.4 and 2.5) are reduced compared with the previous

scenario, and the estimated covariance is very close to the sample covariance

(Figure 2.6). Our reasoning for improvement is based upon the fact that TLS

can provide better planar estimates when the quaternion measurements are

more sparsely distributed along the plane, whereas the previous scenario had

many quaternions close to each other, making it harder to determine the plane

of rotation from the given measurements.

In order to compare QuateRA with the MEKF, we will analyze varying

values for sampling frequency δt and angular velocity magnitude. We com-
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Figure 2.4: Sample Mean and Standard Deviation of the projection of the
estimated AOR along a direction perpendicular to the true AOR. Measure-
ments taken at 1Hz, with an AVM of Ω = 0.1rad/s. Results are shown as a
function of the number of measurements (x axis) and the standard deviations
σθ (different plots).

pare both estimators by evaluating the Least Squares cost function of Eq. 2.33

JLS = n−
∑
q̂Ti q̄i. In order to obtain the MEKF quaternion estimates q̂, we

first execute the MEKF algorithm - processing all orientation measurements -

and then we use the estimated angular velocity to propagate the final orienta-

tion backwards in time to obtain previous orientations (smoothing procedure).

We compare Quatera with MEKF as a percent deviation:

PD(%) = 100 · JLS(MEKF )− JLS(QuateRA)

JLS(MEKF )
, (2.75)

where MEKF outperforms QuateRA when PD(%) < 0 and QuateRA ourper-

forms MEKF otherwise.
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Figure 2.5: Sample Mean and Standard Deviation of the estimated AVM error
for measurements taken at 10Hz, and an AVM of Ω = 0.1rad/s. Results are
shown as a function of the number of measurements (x axis) and the standard
deviations σθ (different plots).

Table 2.1 presents the average percent deviation for dt = 0.1s and

Ω = 0.1rad. We notice that MEKF outperforms QuateRA most of the time

for this scenario. The performance between both is quite similar when the

number of measurements is in the range n ≥ 25. Table 2.2 presents the

percent deviation for dt = 1s and Ω = 0.1rad, and we notice that there is

no clear winner when comparing both in this scenario. In contrast, QuateRA

outperforms MEKF largely when dt = 1s and Ω = 1rad, as shown in Table 2.3.

We attribute the poor performance of MEKF in this last scenario due to the

fact that MEKF is just a first order filter, and its performance degrades when

nonlinearities become dominant when measurements are taken sparsely.
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Figure 2.6: Percentual deviation of the average estimated standard deviation
for σ̂ω w.r.t. the sample standard deviation σω, assuming sampling frequency
of 10Hz, and an AVM of Ω = 0.1rad/s. Results are shown as a function of
the number of measurements (x axis) and the measurement noise standard
deviations σθ (different plots).

Finally, QuateRA is compared with a solution obtained from a nonlin-

ear solver for the optimization problem of Eq. 2.33. The optimization problem

is initialized with an initial guess for the angular velocity that is obtained from

the quaternion kinematic equation of Eq. 2.22. Assuming the approximations

q̇ ≈ q̄2−q̄1
t2−t1 and q̇ ≈ 1

2
ω ⊗ q̄1, then we initialize the nonlinear solver with the

estimates ω̂ = 2 q̄2−q̄1
t2−t1 ⊗ q̄

−1
1 and q̂1 = q̄1. We have used Matlab’s [40] function

fmincon [39] using the interior-point algorithm with constraint tolerance of

10−6, maximum of 1000 iterations and optimality tolerance of 10−6. Again,

we perform 10000 Monte Carlo executions for the same scenarios as in the

previous comparison: first with dt = 0.1s and Ω = 0.1rad, then dt = 1s and
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Ω = 0.1rad, and dt = 1s and Ω = 1rad.

Tables 2.4-2.6 show the number of times that Fmincon converged for

each scenario over 10000 executions. We see that Fmincon always had trouble

to converge when the number of input measurements were n = 5. When

n 6= 5, we see some variability for the number of convergences depending on

the scenario for the sampling frequency and angular velocity. This hints at the

idea that a nonlinear optimizer won’t always converge, and we see a particular

case in which it converged only 83.8% of the time.

We use the following equation for comparing the performance between

Fmincon and QuateRA:

PD(%) = 100 · JLS(Fmincon)− JLS(QuateRA)

JLS(Fmincon)
, (2.76)

where Fmincon outperforms QuateRA when PD(%) < 0 and QuateRA

ourperforms Fmincon otherwise. In principle, Fmincon should always out-

perform QuateRA, and this analysis helps us in understanding how far is

QuateRA from the optimal solution. Note that the analysis hereinafter is

done only for Fmincon’s converged solutions, and the non-converged ones are

discarded.

Tables 2.7-2.9 show the percent deviation between both methods. Just

as in the comparison with the MEKF, QuateRA is outperformed when n is

low, dt = 0.1s and Ω = 0.1rad.

A surprising outcome can be seen in Tables 2.8 and 2.9, in which Quat-

eRA largely outperforms Fmincon for large number of input measurements
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(and performs similarly for a low number of measurements). Although Fmin-

con believes to have converged for most of these optimization problems, the

numerical solution quality deteriorates as n increases for this particular sce-

nario.

2.7 Conclusions

This work presented a batch estimation procedure for the determination

of a constant angular velocity from quaternion measurements. In the constant

angular velocity scenario, we show that the orientation quaternion evolves

without departing from a fixed plane of rotation. With this insight, we are able

to estimate the axis of rotation. Given the plane of rotation, the quaternions

can be reprojected onto this plane, being parametrized as a single evolving

angle on the plane. The angular velocity magnitude is then estimated from

the evolution of the quaternion angle on the plane.

As we show in our Monte Carlo section, the performance of the Quater-

nion Regression Algorithm (QuateRA) is a function of n and the expected

amplitude of the measurement noise. Our results indicate asymptotic unbi-

asedness of QuateRA, and we are able to accurately determine the standard

deviation of the angular velocity estimation for sufficiently large sample sets.

We show that QuateRA performs very close to a Multiplicative Extended

Kalman Filter (MEKF), even outperforming the latter when nonlinearities

are dominant (as is tipically the case with large angular rates), as MEKF is

a first order estimator. When compared with a nonlinear optimization solver,
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QuateRA performs very close to Fmincon when the number of measurements

are low. For large measurement sample sets, QuateRA outperforms Fmincon,

which fails to converge appropriately.

Our earlier contributions have already demonstrated the application of

preliminary versions of QuateRA for estimating a non-constant angular ve-

locity. These works introduced tuning parameters for adapting the size of the

sliding window and for tuning the Angular Velocity Magnitude (AVM) estima-

tor. In contrast, the current work presents a method for estimating the AVM

that is free of tuning parameters, and it does produce a consistent covariance

estimate for the estimate (provided a sufficiently large sample set). These

contributions are relevant for the overall problem of estimating a time-varying

Axis of Rotation (AOR) without the need for heuristic tuning. In the case

of non-constant angular velocity with unknown torques and inertia matrix,

filtering techniques as an MEKF are not appropriate solutions because the

dynamics are not fully modeled. On the other hand, a self-tuning algorithm

such as a QuateRA-based sliding window with statistically adaptive window

size can figure out how many measurements can be taken without violating

the assumption that the angular velocity is approximately constant. Hence,

QuateRA is applicable not only for constant angular velocity (the pure-spin

case), but also in the presence of unmodeled attitude dynamics (large uncer-

tainties in the inertial properties and possible presence of unknown external

disturbance torques). This problem is treated in the chapter that follows.

An interesting path of future work would be to determine a covariance
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estimate associated with the estimated AOR. Classically, it is possible to es-

timate asymptotic covariances for TLS solutions provided that the solution

is unique. As shown in Section 2.5, the TLS solution for this problem is not

unique and we cannot determine the covariance of û1 and û2 using classi-

cal methods in TLS. Since the AOR estimate is determined from û1 and û2,

computing the covariance of the estimated AOR is not trivial. Therefore, sta-

blishing the AOR covariance would be a meaningful contribution for future

work.

Another interesting path for future research would be to expand Quat-

eRA for non-constant measurement covariance over multiple measurements.

Additionally, we have assumed that the axis of the noise quaternion is dis-

tributed in a uniform spherical distribution, whereas this is not always true in

practice. For instance, star trackers typically have different covariances associ-

ated with the roll, pitch and yaw directions. Hence, it would also be meaningful

to adapt QuateRA to accommodate for a more accurate measurement model.

52



T
ab

le
2.

1:
P

er
ce

n
t

d
ev

ia
ti

on
b

et
w

ee
n

M
E

K
F

an
d

Q
u
at

eR
A

fo
r
d
t

=
0.

1s
an

d
Ω

=
0.

1r
ad

.

n
=

5
n

=
10

n
=

15
n

=
20

n
=

25
n

=
30

n
=

35
n

=
40

n
=

45
n

=
50

σ
=

1◦
-9

.9
1

-1
.1

8
-0

.4
1

-0
.1

5
-0

.0
6

0.
04

0.
07

-0
.3

5
0.

11
-0

.3
1

σ
=

2◦
-9

.5
6

-6
.6

5
-1

.7
1

-0
.3

5
-0

.8
0

-0
.8

5
-0

.0
8

0.
08

-0
.3

1
0.

14
σ

=
3◦

-1
0.

50
-8

.2
7

-4
.7

3
-2

.8
3

-1
.4

9
-0

.9
5

-0
.2

6
0.

08
-0

.4
0

-0
.1

2
σ

=
4◦

-9
.6

2
-9

.0
4

-7
.1

9
-3

.5
3

-1
.3

5
-1

.0
4

-0
.7

9
-0

.1
6

-0
.1

9
-0

.3
6

σ
=

5◦
-9

.0
4

-7
.4

9
-7

.0
8

-5
.3

2
-2

.9
3

-1
.6

7
-0

.8
6

-0
.2

9
-0

.2
0

-0
.5

2

T
ab

le
2.

2:
P

er
ce

n
t

d
ev

ia
ti

on
b

et
w

ee
n

M
E

K
F

an
d

Q
u
at

eR
A

fo
r
d
t

=
1s

an
d

Ω
=

0.
1r

ad
.

n
=

5
n

=
10

n
=

15
n

=
20

n
=

25
n

=
30

n
=

35
n

=
40

n
=

45
n

=
50

σ
=

1◦
1.

18
-0

.6
5

0.
10

-0
.5

9
0.

09
-0

.6
7

0.
22

-0
.8

0
-0

.0
7

-0
.2

2
σ

=
2◦

-0
.6

1
-0

.6
6

0.
10

0.
25

0.
22

0.
47

-0
.0

4
0.

01
0.

05
-0

.3
9

σ
=

3◦
0.

81
-0

.1
0

0.
96

-0
.3

5
-0

.6
6

-0
.3

3
-0

.1
4

-0
.5

8
0.

13
-0

.3
1

σ
=

4◦
-0

.0
2

-0
.3

2
0.

35
0.

55
-0

.0
9

0.
13

-0
.3

9
-0

.2
8

0.
21

0.
08

σ
=

5◦
-2

.0
9

-0
.6

6
-0

.8
0

-0
.1

5
0.

03
0.

56
0.

38
-0

.1
2

0.
15

-0
.2

5

T
ab

le
2.

3:
P

er
ce

n
t

d
ev

ia
ti

on
b

et
w

ee
n

M
E

K
F

an
d

Q
u
at

eR
A

fo
r
d
t

=
1s

an
d

Ω
=

1r
ad

.

n
=

5
n

=
10

n
=

15
n

=
20

n
=

25
n

=
30

n
=

35
n

=
40

n
=

45
n

=
50

σ
=

1◦
92

.6
0

77
.5

4
61

.3
5

47
.9

3
37

.3
5

29
.3

1
23

.7
3

19
.1

2
16

.2
0

13
.1

5
σ

=
2◦

76
.4

3
47

.1
9

29
.1

1
19

.5
1

13
.7

9
10

.0
8

7.
66

5.
74

5.
26

4.
27

σ
=

3◦
60

.8
1

29
.6

9
16

.1
5

10
.1

8
7.

26
5.

23
4.

43
3.

11
2.

41
2.

11
σ

=
4◦

47
.1

2
20

.0
7

10
.4

7
6.

75
4.

95
3.

35
2.

47
1.

93
1.

67
1.

45
σ

=
5◦

37
.3

1
14

.6
5

7.
94

5.
20

4.
09

1.
62

1.
79

1.
22

1.
27

0.
79

53



T
ab

le
2.

4:
N

u
m

b
er

of
ti

m
es

th
at

F
m

in
co

n
co

n
ve

rg
ed

fo
r
d
t

=
0.

1s
an

d
Ω

=
0.

1r
ad

.

n
=

5
n

=
10

n
=

15
n

=
20

n
=

25
n

=
30

n
=

35
n

=
40

n
=

45
n

=
50

σ
=

1◦
0

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
σ

=
2◦

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

σ
=

3◦
0

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
σ

=
4◦

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

σ
=

5◦
0

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0

T
ab

le
2.

5:
N

u
m

b
er

of
ti

m
es

th
at

F
m

in
co

n
co

n
ve

rg
ed

fo
r
d
t

=
1s

an
d

Ω
=

0.
1r

ad
.

n
=

5
n

=
10

n
=

15
n

=
20

n
=

25
n

=
30

n
=

35
n

=
40

n
=

45
n

=
50

σ
=

1◦
0

10
00

0
99

84
92

00
85

44
85

45
88

37
86

64
84

55
83

84
σ

=
2◦

0
10

00
0

99
82

92
16

86
19

86
63

87
95

88
27

89
46

90
05

σ
=

3◦
0

10
00

0
99

64
93

27
88

47
88

35
89

73
90

88
92

31
93

26
σ

=
4◦

0
10

00
0

99
74

94
48

89
61

89
84

90
57

91
98

93
54

95
18

σ
=

5◦
0

10
00

0
99

72
95

19
91

38
91

16
91

85
92

96
94

54
95

68

T
ab

le
2.

6:
N

u
m

b
er

of
ti

m
es

th
at

F
m

in
co

n
co

n
ve

rg
ed

fo
r
d
t

=
1s

an
d

Ω
=

1r
ad

.

n
=

5
n

=
10

n
=

15
n

=
20

n
=

25
n

=
30

n
=

35
n

=
40

n
=

45
n

=
50

σ
=

1◦
0

10
00

0
10

00
0

10
00

0
99

98
99

98
99

99
99

97
99

96
99

91
σ

=
2◦

0
10

00
0

10
00

0
10

00
0

10
00

0
99

97
99

98
99

97
99

95
99

90
σ

=
3◦

0
10

00
0

10
00

0
99

98
10

00
0

99
99

99
97

99
93

99
91

99
87

σ
=

4◦
0

10
00

0
10

00
0

99
99

99
98

99
95

99
94

99
90

99
92

99
85

σ
=

5◦
0

10
00

0
99

99
10

00
0

10
00

0
99

99
99

97
99

96
99

87
99

91

54



T
ab

le
2.

7:
P

er
ce

n
t

d
ev

ia
ti

on
b

et
w

ee
n

F
m

in
co

n
an

d
Q

u
at

eR
A

fo
r
d
t

=
0.

1s
an

d
Ω

=
0.

1r
ad

(t
h
er

e
is

n
o

d
at

a
fo

r
n

=
5)

.

n
=

5
n

=
10

n
=

15
n

=
20

n
=

25
n

=
30

n
=

35
n

=
40

n
=

45
n

=
50

σ
=

1◦
x

-0
.5

4
-0

.7
6

-0
.7

2
-0

.9
7

0.
15

-0
.5

1
-0

.1
0

0.
04

0.
29

σ
=

2◦
x

-7
.3

5
-1

.1
7

-1
.3

4
-0

.1
8

0.
20

0.
25

-0
.1

2
-0

.3
2

-0
.2

4
σ

=
3◦

x
-9

.4
2

-4
.9

7
-2

.0
5

-0
.5

8
-0

.1
9

-0
.2

5
0.

36
-0

.2
4

0.
22

σ
=

4◦
x

-7
.3

4
-7

.5
4

-4
.4

0
-1

.8
7

-0
.5

1
-0

.3
2

-0
.3

6
-0

.2
4

-0
.2

5
σ

=
5◦

x
-6

.6
1

-6
.4

9
-4

.8
7

-2
.4

2
-0

.6
5

-1
.5

3
-0

.5
7

-0
.7

6
-0

.6
3

T
ab

le
2.

8:
P

er
ce

n
t

d
ev

ia
ti

on
b

et
w

ee
n

F
m

in
co

n
an

d
Q

u
at

eR
A

fo
r
d
t

=
1s

an
d

Ω
=

0.
1r

ad
(t

h
er

e
is

n
o

d
at

a
fo

r
n

=
5)

.

n
=

5
n

=
10

n
=

15
n

=
20

n
=

25
n

=
30

n
=

35
n

=
40

n
=

45
n

=
50

σ
=

1◦
x

-0
.6

4
-0

.4
3

0.
23

0.
20

-0
.0

6
-0

.4
3

0.
10

0.
03

0.
10

σ
=

2◦
x

-0
.4

6
1.

21
0.

74
0.

28
0.

82
0.

13
21

.7
7

21
.4

2
62

.8
2

σ
=

3◦
x

0.
49

0.
11

0.
04

-0
.7

2
19

.7
2

19
.3

2
77

.9
2

81
.6

5
92

.2
1

σ
=

4◦
x

-0
.4

3
0.

49
-0

.5
1

29
.0

0
66

.0
2

74
.4

8
89

.9
4

93
.9

9
96

.3
5

σ
=

5◦
x

0.
63

0.
49

7.
79

64
.4

8
85

.3
6

88
.2

5
95

.4
1

96
.6

4
97

.4
9

T
ab

le
2.

9:
P

er
ce

n
t

d
ev

ia
ti

on
b

et
w

ee
n

F
m

in
co

n
an

d
Q

u
at

eR
A

fo
r
d
t

=
1s

an
d

Ω
=

1r
ad

(t
h
er

e
is

n
o

d
at

a
fo

r
n

=
5)

.

n
=

5
n

=
10

n
=

15
n

=
20

n
=

25
n

=
30

n
=

35
n

=
40

n
=

45
n

=
50

σ
=

1◦
x

0.
97

0.
06

0.
47

-0
.1

5
0.

09
0.

03
0.

41
0.

23
47

.8
3

σ
=

2◦
x

0.
53

-0
.1

1
0.

20
0.

36
0.

37
-0

.3
9

0.
39

31
.9

6
18

.9
1

σ
=

3◦
x

-0
.6

5
-0

.5
0

-0
.2

3
-0

.1
9

-0
.0

6
0.

18
12

.4
3

16
.9

8
65

.4
4

σ
=

4◦
x

-0
.2

1
0.

16
-0

.3
4

-0
.2

0
-0

.0
4

12
.6

3
35

.6
6

52
.6

7
71

.6
7

σ
=

5◦
x

-0
.2

0
-0

.3
1

-0
.1

7
9.

34
14

.8
4

32
.9

4
58

.7
0

65
.8

4
81

.7
4

55



Chapter 3

Real-time Angular Velocity Estimation of

Non-cooperative Space Objects Using Camera

Measurements
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3.1 Introduction

This chapter1 presents a solution to the problem of estimating the rel-

ative angular velocity (RAV) between a camera (onboard a chaser spacecraft)

and an object in space (the target spacecraft or celestial object) using cam-

era measurements only. The work presented in this chaper is a natural step

as an application of QuateRA [6] as a generalized angular velocity estimator.

Our approach assumes no prior knowledge of the inertial characteristics of

the target space object such as shape, size, and mass distribution, making it

seamlessly applicable to different applications. If we assume that the angu-

lar velocity of the chaser is known, then our approach provides the absolute

angular velocity of the target object.

Using camera measurements, the relative pose between the chaser and

the target can be estimated by tracking known features (assuming a known

target) or through Simultaneous Localization and Mapping (SLAM) algo-

rithms [25]. Previous works show that SLAM algorithms can be used for

resolving the relative pose problem in space applications. More specifically, in

Ref. [22], the authors use images obtained from NASA’s STS-125 Service Mis-

sion 42 in tandem with the ORB-SLAM package [44], demonstrating that it

tracked closely the estimated relative pose during the mission [45]. In Ref. [46],

1“Marcelino Almeida, Renato Zanetti, Daniele Mortari, and Maruthi Akella. Real-time
angular velocity estimation of non-cooperative space objects using camera measurements.
2018 AAS/AIAA Astrodynamics Specialist Conference in Snowbird, UT, 167(18-420), Aug.
2018.” (Marcelino Almeida conducted the problem formulation and solution, simulation and
analyses, and wrote the paper.)

2Service Mission to the Hubble Space Telescope carried out in May-2009.
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the authors use data from the Rosetta mission3 to feed an EKF-SLAM algo-

rithm, which estimates Rosetta’s spin state, mass, and moments, as well as

the chaser’s position and velocity.

The main issue with using EKF-based algorithms for estimating the

RAV of a non-cooperative target is that the external torques upon the same

might be unknown. In this case, any perturbing external torques have to

be estimated by extending the states (assuming smooth torques with bounded

derivatives) or by using a sufficiently large process noise in the angular velocity

covariance propagation. The problem becomes even harder when the target’s

inertia matrix is unknown, since it is barely observable at long distances [46].

The lack of precise knowledge of a system’s inertia matrix and torque

vector also poses a challenge to non Kalman-filtering techniques. Many of the

existing angular velocity estimators [9, 47, 53] rely on the knowledge of the

target’s specific inertia and torque parameters. An exception can be made for

the derivative approach described in Ref. [9], but as the author acknowledges,

the angular velocity estimator can produce considerable error due to the pres-

ence of measurement noise. In Ref. [10], the authors present the Pseudolinear

Kalman Filter (PSELIKA), which does not depend on knowledge of inertia

matrix or input torques. However, PSELIKA is developed with the goal of

“simplicity rather than accuracy” [10], serving as a crude angular velocity

estimator for control loop damping purposes.

3https://www.aerosociety.com/news/lecture-report-rosetta-how-we-landed-on-a-comet/
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An alternative solution to the RAV problem is to use methods based

on the Multiplicative Extended Kalman Filter (MEKF) [24,34,36], since these

rely on kinematics only. Still, one needs to have tight bounds upon how fast

the angular velocity of the target might be changing with time, and use the

process noise covariance as a tuning parameter (i.e., a forgetting factor). If the

target is being actuated or it is tumbling (e.g., the Toutatis asteroid4), then the

rate at which the target’s angular velocity varies with time is not necessarily

constant. In this scenario, properly tuning the forgetting factor becomes a

formidable task, thereby providing a strong motivation for the need to resort

to adaptive estimators.

In this context, the Angular Velocity Adaptive Estimation (AVAst)

algorithm [42] is an attractive option for real-time applications, since it is

adaptive, is based on kinematics, and is not computationally expensive. The

AVAst algorithm builds upon the Quaternion Regression Algorithm (Quat-

eRA) [6], which uses sequential orientation measurements for estimating con-

stant angular velocity (pure spin) through a batch procedure. In order to

prevent confusion throughout the text, we refer to QuateRA as an estimator

for constant angular velocity, while AVAst estimates a dynamic angular veloc-

ity, but the reader should keep in mind that AVAst still employs QuateRA

internally. QuateRA is divided in two parts: one that estimates the axis of

rotation (AOR), and another that estimates the angular velocity’s magnitude

4https://science.nasa.gov/science-news/science-at-nasa/2012/12dec_

toutatis/
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(AVM). In order to calculate the AOR, QuateRA estimates the average plane

of rotation for the given sequence of rotations, then uses AOR information

to estimate for the AVM. AVAst distinguishes from QuateRA by adaptively

changing the set of input measurements that are used in QuateRA such that

the angular velocity estimates are statistically consistent.

The main contribution of this work concerns in presenting a strategy

in how to employ QuateRA as a generalized estimator for angular velocity.

In addition, we demonstrate how AVAst can be engaged with ORB-SLAM

for estimating the angular velocity of a non-cooperative target. Simulation

results are shown for ratifying the proposed pipeline. In terms of the overall

algorithm implementation, our approach uses camera images to feed into a

SLAM algorithm, which is able to determine the relative pose between the

target and the chaser. Towards this goal, we employ the ORB-SLAM algorithm

that was also used earlier in Ref. [22]. As already shown in Ref. [22], ORB-

SLAM is capable of running in real time (no need for post-processing), and it

has been documented to produce satisfactory results in numerous applications.

Then, AVAst is used for estimating the angular velocity of the given target.

The remainder of this paper is organized as follows: Section 3.2 poses

the problem of estimating the angular velocity of a target object using cam-

era measurements, also introducing the assumed statistics of the measurement

noise. Section 3.3 introduces QuateRA, and Section 3.4 presents the consis-

tency test used in AVAst. Section 3.5 presents simulation results, along with

a comparison with an estimation algorithm inspired from Ref. [10]. Finally,
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Figure 3.1: Reference frames and rotational transformations.

conclusions are presented in Section 3.6.

3.2 Problem Formulation

The various reference frames adopted for this problem is displayed in

Fig. 3.1. We assume a chaser camera (frame C) with known orientation qCI

w.r.t. a star tracker inertial frame of reference (frame I). We assume that

the chaser angular velocity ωCC/I is known. Also, we assume a target object

(frame O) with unknown relative angular velocity ωOO/C , but within the field

of view of the chaser’s camera. In addition, we do not assume knowledge of

the target’s inertia matrix or actuation torques.

The objective of this work is to obtain the target’s angular velocity

ωOO/I through visual inspection. We use ORB-SLAM [44] to measure the rel-
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ative orientation between the chaser and the target. The measured relative

orientation between C and O at time ti is denoted as the quaternion qOC (ti).

The quaternion parameterizing the absolute pose of the target at time ti is

then calculated as:

qOI (ti) = qOC (ti)⊗ qCI (ti) (3.1)

We use the target’s pose measurements qOI (ti) as inputs to QuateRA,

which separately estimates the target’s axis of rotation (denoted as −→ωO
O/I),

and the angular velocity magnitude (denoted as ΩO
O/I). The target’s estimated

angular velocity is then:

ωOO/I = ΩO
O/I
−→ωO

O/I (3.2)

For simplicity of notation, the remainder of this chapter will denote

q(t) , qOI (t), qi , qOI (ti), ω , ωOO/I ,
−→ω , −→ωO

O/I , and Ω , ΩO
O/I . We denote

x̂ as an estimate of the variable x, and we use the notation x̄i to denote

a measurement of the variable x at instant i. Specifically, the quaternion

measurement model is assumed to be:

q̄i = qNi ⊗ qi, (3.3)

where qN is the noise quaternion:

qNk ,

[
cos θi

2

eNi sin
θi
2

]
, (3.4)

in which θi and eNi are independent random variables. Just like in Ref. [6],

the measurement model assumes that θi is Gaussian such that θi ∼ N(0, σ2
θ),
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Figure 3.2: Proposed Algorithm Pipeline.

and eNi ∈ S2 is a unit-norm random vector uniformly distributed in S2 = {x ∈

R3 : ||x|| = 1} and has the characteristics E[eNi] = 0 and E[eNie
T
Ni] = 1

3
I.

The target’s kinematics is described as:

q̇(t) =
1

2
ω ⊗ q(t). (3.5)

Assuming that the target’s angular velocity ω(ti) is approximately

constant during the period t = [ti, ti+1], then the solution to Eq. 3.5 is

qk+1 = F (ω) · qi, where:

F (ω) = exp
[
δt
2
ω⊗
]

= cos
Ωδt

2
· I + sin

Ωδt

2
· −→ω⊗, (3.6)

where δt = ti+1 − ti.

Figure 3.2 depicts the suggested pipeline utilized in this work: images

are fed to ORB-SLAM, which in turn produces a relative orientation. The

relative orientation is used in QuateRA to estimate the AVD ω̄, which is then

used to estimate for the AVM Ω.
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3.3 The Quaternion Regression Algorithm

This section presents QuateRA, as well as some crucial aspects used in

its derivation, herein presented as a summary of Section 2.5 with some slight

changes in notation. QuateRA assumes constant ω to first estimate the AOR

−̂→ω , then uses its knowledge to estimate for the AVM Ω̂. Finally, the estimated

angular velocity is given by ω̂ = Ω̂−̂→ω .

In order to estimate the AOR, QuateRA uses a geometric interpretation

based on the solution to the quaternion kinematic equation for constant ω:

q(t) =
[
cos Ωδt

2
· I + sin Ωδt

2
· −→ω⊗

]
q0, (3.7)

with δt , t − t0. Defining the vectors u1 ∈ S3 = q0 and u2 ∈ S3 = −→ω ⊗ q0,

we have that uT1u2 = q0 · −→ω ⊗ ·q0. Since −→ω⊗ is a skew-symmetric matrix (see

Eq. 2.20) then uT1u2 = 0, i.e., u1 ⊥ u2. Clearly, any q(t) described by Eq. 3.7

is a linear combination of u1 and u2, for all t ∈ R. Hence, if we define the

4D hyperplane P(u1,u2) = span{u1,u2}, then q(t) ∈ P(u1,u2), ∀ t ∈ R. In

addition, there exists a perpendicular plane P(u3,u4) = span{u3,u4}, with

u3,u4 ∈ S3 such that u4 = −→ω ⊗ u3, where uT3 q(t) = uT4 q(t) = 0, ∀ t ∈ R.

Therefore, given a sequence of measurements q̄i, i ∈ {1, · · · , n}, with

n ∈ N≥2, QuateRA estimates the AOR by finding the optimal hyperplane that

minimizes the distance to the measured quaternions.

At a given time tk, QuateRA constructs the measurement matrix with

n measurements Q̄k,n as:

Q̄k,n ,
[
q̄k−n+1 q̄k−n+2 · · · q̄k

]
. (3.8)
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Similarly, we define the window matrix of estimated quaternions as:

Q̂k,n ,
[
q̂k−n+1 q̂k−n+2 · · · q̂k

]
. (3.9)

Note that the quaternions in each column of Q̂k,n should belong to

the estimated plane of rotation: q̂i ∈ P(û1, û2), i ∈ {k − n + 1, · · · , k}. The

quaternions q̂i are estimated to minimize the Total Least Squares cost function:

J0 =
1

2

∥∥Q̄k,n − Q̂k,n

∥∥2

F
, (3.10)

subject to q̂i ∈ P(û1, û2), ∀ i ∈ {k − n + 1, · · · , k}, where û1 and û2 define

the optimally estimated plane of rotation.

Assuming small angle approximation for the noise quaternion (see

Eq. 3.4), Ref. [6] shows that the optimization problem above is approxi-

mately equivalent to finding the unit-norm vectors û1 ∈ S3, û2 ∈ S3 such

that ûT1 û2 = 0, that maximizes the following cost function:

J =
n∑
i=1

[(
q̄Ti û1

)2
+
(
q̄Ti û2

)2
]

= ûT1 Z̄û1 + ûT2 Z̄û2, (3.11)

where Z̄ , Q̄k,nQ̄
T
k,n. Given û1, û2, the optimally estimated quaternions

within Q̂ are given by:

q̂i =
1√(

q̄Ti û1

)2
+
(
q̄Ti û2

)2

[(
q̄Ti û1

)
û1 +

(
q̄Ti û2

)
û2

]
. (3.12)

Ref. [6] proves non-uniqueness of the solution û1, û2 that maximizes

Eq. 3.11. This holds because the solution can also be described by any other

pair of vectors v̂1 ∈ S3, v̂2 ∈ S3 that satisfy v̂T1 v̂2 = 0 and v̂1, v̂2 ∈ P(û1, û2).
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A particular solution to the plane-fitting problem can be obtained

through Singular Value Decomposition (SVD) of Z̄ = ÛΣ̂ÛT , where Û ∈

R4×4 =
[
û1 û2 û3 û4

]
contains the singular vectors of Z̄, and Σ̂ =

diag
(
σ̂1, σ̂2, σ̂3, σ̂4

)
contains the singular values of Z̄, wherein σ̂1 ≥ σ̂2 ≥ σ̂3 ≥

σ̂4 ≥ 0. If σ̂2 > σ̂3, then û1 and û2 compose a solution to the optimization

problem in Eq. 3.11 and the optimal cost is given by J∗(û1, û2) = σ̂1 + σ̂2,

with σ̂1 = ûT1 Z̄û1 and σ̂2 = ûT2 Z̄û2. It is also true that σ̂3 = ûT3 Z̄û3 and

σ̂4 = ûT4 Z̄û4.

Having the optimal hyperplane estimate P̂(û1, û2), the optimal esti-

mate for the AOR is given by:

−̂→ω = û2 ⊗ û−1
1 . (3.13)

The optimal quaternion estimates q̂i ∈ P(û1, û2), i ∈ {k−n+1, · · · , k}

can be re-parameterized as just an angle on the plane P(û1, û2). Taking û1 as

a reference vector, the angle Φ̂i of any quaternion q̂i w.r.t. û1 is given by:

Φ̂i = 2 · atan2
(
q̂Ti û2, q̂

T
i û1

)
, i ∈ {k − n+ 1, · · · , k}. (3.14)

Then, assuming the model:

Φi = Φ0 + Ωti =
[
1 ti

] [Φ0

Ω

]
, (3.15)

we can perform the least squares estimation:

X̂ ,

[
Φ̂0

Ω̂

]
=
(
HTH

)−1
HT Φ̂, (3.16)
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where:

H ,

[
1 · · · 1

tk−n+1 · · · tk

]T
, Φ̂ ,

[
Φ̂k−n+1 · · · Φ̂k

]T
. (3.17)

The estimated covariance matrix of X̂ is given by cov[X̂] =

1
3
σ2
θ

(
HTH

)−1
.

3.4 Consistency Test

Since QuateRA assume pure-spin motion, it is not suitable to be used

as an angular velocity estimator for a tumbling (or an actuated) system. How-

ever, if the sampling frequency is high enough (or the tumbling rate is slow

enough), then a sufficiently small sequence of orientation measurements can

be approximated as close to pure spin for that sequence of measurements.

AVAst’s objective is to determines the number of sequential orientation mea-

surements that can be used by QuateRA in a way such that the measurements

are progressing approximately as in pure spin motion. This can be attained

through consistency tests, which is accomplished in this work through residual

analysis [13, 19,67].

Different possibilities can occur when the angular velocity of a body is

changing:

1. Only the AVM is changing: as an example, this possibility can occur on

a satellite that is in an elliptical orbit around a primary body, but is

oriented with an axis that is always pointing towards the center of the

primary.
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2. Only the AOR is changing: this is an uncommon occurrence, but a

controlled satellite could possibly be in a regime like this.

3. Both the AVM and the AOR are changing: can occur on a naturally-

tumbling body (such as an asteroid) or on an actuated spacecraft.

AVAst needs to handle all cases above. To do that, it needs to de-

termine if either the AVM or AOR is changing, or both. Remembering the

measurement windows of length n at time tk:

Q̄k,n =
[
q̄k−n+1 q̄k−n+2 · · · q̄k

]
, Φ̂k,n =

[
Φ̂k−n+1 Φ̂k−n+2 · · · Φ̂k

]T
.

(3.18)

We implement AVAst such that nmin ≤ n ≤ nmax, where nmax is a user-

specified upper bound on the window size, and nmin ≥ 3 (we need at least two

measurements to obtain a solution, and at least three to be able to perform

a consistency test). If the measurement windows seem to be consistent, we

allow the windows to increase (n = n + 1), and we decrease the window size

otherwise (n = n− 1).

A straightforward consistency test (and the one exploited in Ref. [7])

is to test for residual autocorrelation. We define the Φ-residuals ε̂ , Φ̂−HX̂

and the AOR residuals as the projection of the quaternion measurements onto

the third singular vector û3:

êi , q̄
T
i û3, i ∈ {k − n+ 1, · · · k} =⇒ ê ,

[
êk−n+1 · · · êk

]T
= Q̄T

k,nû3.
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Figure 3.3: Residual plot for planar motion (left) and quaternion motion with
out-of-plane component (right). The index i represents the subscript for êi ,
q̂Ti û3.

The covariace of a residual sequence (Pe , E[êêT ] or Pε , E[ε̂ε̂T ]) is

typically a non-diagonal matrix, implying that residuals are commonly auto-

correlated sequences [19]. However, this correlation is generally unimportant

(weakly autocorrelated), as discussed in Ref. [67, p. 171]. Figure 3.3 depicts a

typical simulated scenario displaying the residual sequence êi, i ∈ {1, · · · , 40}

corresponding to the case when all quaternions within a window Q̄k,n of length

n = 40 stem from planar motion measurements (left plot) and when they do

not (right plot). Visually inspecting, the right-hand plot in Figure 3.3 is,

qualitatively speaking, more autocorrelated than the plot on the left.

In order to quantify autocorrelation in a sequence ê (or ε̂), we use the

following one-lag autocorrelation formulas [13, p. 31]:

re =
1

n · r0e

k−1∑
i=k−n+1

(êi − µe)(êi+1 − µe), (3.19)

rε =
1

n · r0ε

k−1∑
i=k−n+1

(ε̂i − µε)(ε̂i+1 − µε), (3.20)

where µe, µε, r0e and r0ε are, the mean and zero-lag autocorrelation of the
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residual sequences:

µe =
1

n

k∑
i=k−n+1

êi, r0e =
1

n

k∑
i=k−n+1

(êi − µe)2, (3.21)

µε =
1

n

k∑
i=k−n+1

ε̂i, r0ε =
1

n

k∑
i=k−n+1

(ε̂i − µε)2.

The one-lag autocorrelation signals as defined in Eq. 3.19 satisfies −1 ≤

re ≤ 1 and −1 ≤ rε ≤ 1, where the signal is one-lag perfectly correlated when

re → 1 or rε → 1, and is one-lag uncorrelated when |re| → 0 or rε → 0.

In addition, our experience suggests that one-lag autocorrelation of residuals

are typically negative when the model fits the data (i.e., neighboring residuals

tend to have opposite signs), while we expect positive autocorrelation when

the model does not fit the data as in the right plot of Figure 3.3. For instance,

the residuals in Figure 3.3 present one-lag autocorrelation of re = −0.15 (left

plot) and re = 0.8705 (right plot).

In order to obtain confidence bounds on whether a sequence is auto-

correlated, we need to estimate the autocorrelation covariance. To that end,

we use the following expression [13, p. 188]:

σ2
re , var[re] =

1

n

(
1 + 2r2

e

)
, σ2

rε , var[rε] =
1

n

(
1 + 2r2

ε

)
. (3.22)

The consistency test is made by performing the comparison of re (rε)

with a tuning threshold r∗e (r∗ε ). Whenever the motion is close to pure spin, i.e.

re < r∗e (rε < r∗ε ), the consistency test is satisfied, otherwise whenever re ≥ r∗e

(rε ≥ r∗ε ), the consistency test fails. Driven by extensive numerical simulations
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of this algorithm, we found that a reasonable choice for the threshold is r∗e = σre

(r∗ε = σrε), where σre and σrε are defined in Eq. 3.22.

3.5 Simulation Results

In order to numerically test our proposed algorithm pipeline, we have

developed a simulator that can obtain visual feed of a tumbling object5. The

simulator is able to obtain rendered images in either monocular or stereo modes

from 3D CAD models. The simulator is able to display the 3D model in any

pose, as well as set the camera at any pose as well, allowing us to have a truth

baseline. In addition, one can prescribe any desired values for the camera’s

resolution, focal lengths, and stereo baseline. Figure 3.4 shows some examples

of renderings that were obtained with the simulator using a 3D model6 for the

Itokawa asteroid [56], assuming a camera with resolution of 720p. The images

in Figure 3.4 (from left to right) display the asteroid with frontal light source,

lateral light source, and a fading lateral light source (near eclipse).

In order to test AVAst as outlined in this paper, we set the Itokawa

asteroid to tumble according with unperturbed attitude dynamics, assuming

a normalized inertia matrix (inertia matrix divided by the asteroid’s mass) JI

5The simulator is open source and can be downloaded from https://github.com/

marcelinomalmeidan/view_asteroid.
6https://nasa3d.arc.nasa.gov/detail/itokawa
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Figure 3.4: Itokawa rendering with different light sources.

given by Ref. 56:

JI =

0.00673 0 0
0 0.02122 0
0 0 0.02235

 km2. (3.23)

We have simulated Itokawa’s attitude dynamics in different hypothet-

ical tumbling and lighting conditions. Each experiment is recorded for 20

minutes and the camera pose is assumed stationary, without loss of gener-

ality. For each scenario, ORB-SLAM is executed to determine the relative

pose of the camera with respect to the asteroid. An example of the camera’s

relative trajectory w.r.t. the tumbling asteroid is shown in Figure 3.5-(left),

while 3.5-(right) displays a sample of tracked Orb features in one frame. The

ORB-SLAM algorithm is able to produce a sequence of relative poses at a

rate of approximately 10Hz7, hence δk ≈ 0.1s. According with the data we’ve

obtained, ORB-SLAM is able to produce orientation measurements with an

7These results were obtained in a computer with an Intel Core i5-4690K CPU (Quad
Core 3.50GHz).
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Figure 3.5: Left: History of the camera’s pose with respect to the asteroid’s
fixed frame determined from running the ORB-SLAM algorithm. The red and
black dots are features on the asteroid surface. Right: Example of features
taken from one frame in the image plane.

approximate accuracy of σθ ≈ 0.002rad= 412.5arcsec. These orientation mea-

surements are fed incrementally to AVAst algorithm to estimate the target’s

RAV. The algorithm parameters for all simulations were chosen as nmax = 200,

and r∗1 = σr1 (as defined in Eq. 3.22).

Figure 3.6 shows the results for a simulation in which Itokawa’s ini-

tial angular velocity is given by ω(0) =
[
0.025, 0.01, 0.005

]T
. Figure 3.6(a)

shows the sliding window length for Q̂, Figure 3.6(b) shows the angular ve-

locity magnitude error, Figure 3.6(c) superimposes the true axis of rotation

with the estimated one, and Figure 3.6(d) superimposes the true angular ve-

locity with the estimated one. Figure 3.7 shows the results for a simulation

with initial angular velocity ω(0) =
[
0.01, 0.02, −0.005

]T
(higher angular
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velocity in the unstable axis of rotation), but with fading lateral light source

(near eclipse - see Figure 3.4). We do not observe any algorithm performance

degradation on these results when compared to the previous one, which had

better lighting conditions.

We have also executed some simulations using a 3D model8 of the

Cassini spacecraft (see Figure 3.8), assuming the inertia tensor [32]:

Jc =

 8810 −136.8 115.3
−136.8 7922.7 192.1
115.3 192.1 4586.2

 (3.24)

Figure 3.9 shows the results for a tumbling motion of Cassini with initial

angular velocity ω2 , ω(0) =
[
0.01, 0.02, 0.005

]T
(again, principal motion is

around the unstable axis of rotation). Similarly, Figure 3.10 shows the results

for a perturbed tumbling motion of Cassini, with perturbation given by:

τB(t) = 10 ·

 sin(0.01t)
sin(0.01t+ 2π

3
)

sin(0.01t+ 4π
3

)

 (3.25)

3.5.1 Metrics for Analysis of Simulation Results

The simulation results in Figures 3.6-3.10 show that AVAst is able to

closely track the angular velocities of the non-cooperative targets. Here we

make a performance evaluation of the algorithm performance for the different

simulation situations.

8https://nasa3d.arc.nasa.gov/detail/jpl-vtad-cassini
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Figure 3.6: Simulation results for Itokawa’s tumbling motion assuming initial
angular velocity of ω(0) = [0.025, 0.01, 0.005]T
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Figure 3.7: Simulation results for Itokawa’s tumbling motion with poor lighting
conditions assuming initial angular velocity of ω(0) = [0.01, 0.02, −0.005]T
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Figure 3.8: Simulated view of the Cassini spacecraft.

We define ω̄ek , ω̄Tk⊥ ˆ̄ωk as the axis estimated pointing error for the

angular velocity vector, where ω̄Tk⊥ is any vector in the plane perpendicular to

ω̄Tk . Also, we define ēΩk , Ωk −Ωk|k as the AVM estimation error. The mean

and standard deviation error metrics are computed as:

ēω̄ =
1

N

∑
ω̄ek, (3.26)

σω̄ =
1

N − 1

∑(
ω̄ek − ēω̄

)2
, (3.27)

ēΩ ,
1

N

∑
ēΩk, (3.28)

σΩ ,
1

N − 1

∑(
ēΩk − ēΩ

)2
, (3.29)

where N is the number of measurements. Additionally, we define the mean

window length as:

µL ,
1

N

∑
nk, (3.30)
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Figure 3.9: Simulation results for Cassini’s tumbling motion assuming initial
angular velocity of ω(0) = [0.01, 0.02, 0.005]T
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Figure 3.10: Simulation results for Cassini’s tumbling perturbed motion as-
suming initial angular velocity of ω(0) = [0.0, −0.02, −0.035]T
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where nk is the window length of Q̂k,n at the k− th iteration of the algorithm.

Using the definitions above, Table 3.1 presents a performance compari-

son among the various simulation results. All simulation results indicate nearly

identical performance, except for the actuated Cassini case, which performed

worse. This is expected, since all other simulations present only tumbling

motions, while the last one had the spacecraft being actuated. This led to

a quickly changing motion (see Fig. 3.10), which substantially reduced the

average window length n. An immediate consequence of a reduced window

length n is higher variance in the axis estimation error ω̄ek, which can also be

potentially biased. Since the angular velocity axis estimation performs worse,

then it follows that the estimation of Ωk|k also performs worse.

Itokawa Itokawa Dark Cassini Cassini Actuated
µL 66.75 67.74 76.16 36.59
ēω̄ 9.81 · 10−5 −1.34 · 10−4 −3.06 · 10−4 5.48 · 10−4

σω̄ 2.22 · 10−2 2.40 · 10−2 2.11 · 10−2 6.20 · 10−2

ēΩ (rad/s) −2.57 · 10−5 −5.38 · 10−5 1.19 · 10−5 −1.08 · 10−4

σΩ (rad/s) 8.50 · 10−4 5.89 · 10−4 8.21 · 10−4 3.2 · 10−3

Table 3.1: Performance comparison for the multiple simulations.

It is important to point out that even though the Itokawa simulation

with poor lighting conditions performed nearly on par with the simulation

that used fair lighting conditions, one should not jump to conclusions that

light source quality does not play an important role. Whereas the performance

deterioration has not been captured in the simulated environment presented

in this paper, one would need to further validate these results with carefully
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conducted experiments using a real camera in a real space mission. An in-

teresting avenue for further work would be to improve the camera model of

the simulator to to make it more realistic (i.e., add measurement noise, image

blur, radiation noise).

The algorithm presented in this work has one tuning parameter, the

autocorrelation threshold r∗1. All our simulations were executed with r∗1 = σr1.

Regarding this choice for r∗1, we are satisfied with the given choice, and we

believe that this is appropriate for the problem at hand. However, there could

be other settings wherein one could desire to be less conservative by choosing

r∗1 = 2·σr1 or r∗1 = 3·σr1. This would imply that that the window length would

only decrease when there is more evidence that the motion is not in pure spin.

This leads to a higher average window size n, and consequently adds more

lag to the estimation of ω̄ (not to mention having larger requirements for

the memory buffer). Instead, we prefer to choose r∗1 = σr1 because this is a

conservative choice, preventing the window from growing too much.

3.5.2 Algorithm Comparison

In order to compare AVAst with a traditional filtering method, we have

extended the MEKF presented in Appendix A.4 by assuming a markov process

as the propagation for the angular velocity [10,48]:

ω̇ = −αω + νω, (3.31)

where α is an inverted time constant and νω is assumed to be a zero-mean

Gaussian process noise vector with covariance E[νων
T
ω ] = σ2

ωI.
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A drawback in using such a method is that that α and σω are tuning

knobs, and the use of such an algorithm involves tuning of those parameters for

a given application (i.e., optimal choices for those parameters are application-

dependent). We execute this extended MEKF within the same SLAM scenar-

ios as the ones for which we used QuateRA. After some trial and error, we

reached α = 0.1 and σω = 10−3 as reasonable values for those parameters.

Table 3.2 shows the performance of the MEKF using the same metrics

as the ones described in Section 3.5.1. When compared with Table 3.1, we can

see that the performance of both methods are reasonably similar. We point

out, however, that AVAst does not need any tuning, except for the simple

parameter r∗1, whereas the MEKF had to be tuned for the range of motions

that we expect within the given simulations.

Itokawa Itokawa Dark Cassini Cassini Actuated
ēω̄ 1.12 · 10−4 −4.18 · 10−4 −3.20 · 10−4 −3.43 · 10−4

σω̄ 2.37 · 10−2 2.96 · 10−2 3.76 · 10−2 4.14 · 10−2

ēΩ (rad/s) 1.32 · 10−5 −3.12 · 10−5 1.94 · 10−5 −2.52 · 10−6

σΩ (rad/s) 1.42 · 10−3 8.84 · 10−4 1.39 · 10−3 1.65 · 10−3

Table 3.2: Performance comparison for the multiple simulations using linear
Markov extension for the MEKF.

3.6 Conclusions

In this chapter, we have introduced and analyzed the performance of the

AVAst algorithm for the angular velocity of a non-cooperative target through

visual inspection. The relative pose between the chaser and the target is
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estimated using ORB-SLAM, and this information is used to get the relative

angular velocity through QuateRA.

Simulation results demonstrate that the algorithm is successful in track-

ing the true angular velocity of the target without much need for tuning. The

same tuning parameters were used throughout all the simulations, showing

robustness of the algorithm to different scenarios. When compared with an

application-tuned filter approach, AVAst compares similar to the presented

method, with the advantage that AVAst does not require any fine tuning.

A surprising result that we had was that the algorithm did not perform

differently when lighting conditions were not favorable. However, we believe

that we need to improve our camera models to make it more realistic in order

to have a more thorough analysis of the algorithm deterioration in the face of

poor lighting conditions.

An interesting path of future work would be to use the proposed al-

gorithm using real imagery from space missions such as the ones obtained

by the Seeker spacecraft in future missions [49, 62]. Validation could be per-

formed if Seeker estimates the angular velocity of a spacecraft that has its own

gyroscopes.
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Part II

Finite-time Attitude Controllers
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Chapter 4

New Class of Attitude Controllers Guaranteed

to Converge within Specified Finite-Time

4.1 Introduction

This chapter1 introduces a finite-time feedback controller for fully actu-

ated rigid-body attitude dynamics. We make use of Lyapunov’s Direct Method

to design a feedback law that regulates the configuration from an arbitrary ini-

tial state to any final state within a desired finite transfer-time tf . The control

synthesis is explicit, i.e., given the transfer-time time tf , the feedback-gains

are explicitly calculated to satisfy the convergence specifications, even in the

presence of bounded disturbances.

Several recent papers in literature address finite-time regulation prob-

lems for fully-controllable systems that are diffeomorphic to the so-called nor-

mal form representation. Some of these methods stem from non-smooth feed-

back, such as bang-bang [8], and/or sliding-mode controllers. These methods

usually introduce discontinuous dynamics through feedback, which can lead

1“Marcelino Almeida and Maruthi Akella. New class of attitude controllers guaranteed
to converge within specified finite-time. The Journal of the Astronautical Sciences, pages 1-
19, 2019.” (Marcelino Almeida conducted the problem formulation and solution, simulation
and analyses, and wrote the paper.)
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to chattering and excitation of undesired frequencies [59]. Other methods

are built on top of the “Lyapunov differential inequality” [12], and many re-

cent results stem from this methodology (see Ref. 60 and references therein).

Whereas many of existing methods provide existence results for finite-time

control algorithms, the explicit synthesis of such feedback schemes is far from

being fully resolved, especially when applied to nonlinear systems such as the

attitude control problem.

In this chapter, we introduce a feedback control law whose feedback

gains are time-varying and grow unbounded towards the terminal time tf .

Although the notion of using unbounded feedback gains can be unsettling at a

first glance, such an approach has certain strong theoretical underpinnings that

are based upon variational calculus. Specifically, finite-horizon optimal control

problems with terminal state constraints are known to produce unbounded

feedback gains [14].

The major contributions of this chapter are as follows. Our formulation

introduces a feedback structure that is closely related to Ref. 60. However,

a major contrast is that our work does not seek to arbitrarily cancel out

nonlinearities including those associated with the rotational kinematics. Thus,

instead of resorting to the traditional approach of feedback-linearization, our

approach utilizes the unbounded gains in conjunction with the logarithmic

Lyapunov function presented by Ref. 64 for the attitude kinematics based on

the Modified Rodrigues Parameters (MRPs) representation.

This chapter is structured along these following lines: Section 4.2
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presents our control design for attitude stabilization around the origin, while

Section 4.3 extends the result for trajectory tracking problems (such as slew

maneuvers). Section 4.4 introduces some practical considerations for the im-

plementation of the designed controller. Section 4.5 presents numerical simu-

lation results and Section 4.6 summarizes the chapter by drawing some con-

cluding remarks.

4.2 Control Design

Assume a rotation of an angle ψ ∈
(
−2π, 2π

)
around a unit-norm

axis ê ∈ R3. The three-parameter MRP (Modified Rodrigues Parameters)

representation σ ∈ R3 for the same rotation is defined as:

σ , ê tan
ψ

4
. (4.1)

The kinematics of MRPs [29] is given by

σ̇(t) =
1

4
B
(
σ(t)

)
ω(t), (4.2)

where ω(t) ∈ R3 is the angular velocity expressed in a body-fixed frame, and

B
(
σ(t)

)
= (1− σTσ)I3 + 2σ∗ + 2σσT , (4.3)

where we denote v∗ as the skew-symmetric matrix associated with a vector

v ∈ R3.

It should be noticed that the product σTB(σ) satisfies the property:

σTB(σ) = (1− σTσ)σT + 2σTσσT = (1 + σTσ)σT = b(σ)σT , (4.4)
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where b(σ) ∈ R≥1 is a scalar defined as b(σ) , (1 + σTσ), and satisfies

the property 2||σ|| ≤ b(σ). In addition, the matrix B(σ) satisfies the norm

property [55]:

||B(σ)|| = b(σ). (4.5)

The composition rule between the MRPs σ1 and σ2 is given by [58]:

σ3 , σ1 ⊗ σ2 =
(1− ||σ1||2)σ2 + (1− ||σ2||2)σ1 + 2σ∗2σ1

1 + ||σ1||2||σ2||2 − 2σT1 σ2

. (4.6)

The direction cosine matrix associated with an MRP σ can be obtained

by:

C(σ) = I +
8(σ∗)2 − 4(1− σTσ)σ∗

(1 + σTσ)2
(4.7)

Defining the MRP inverse σ−1 as the parameterization for the rotation

matrix C(σ−1) = CT (σ), then the relation between σ−1 and σ is given by:

σ−1 = −σ. (4.8)

The body angular velocity ω(t) evolves according with Euler’s rotation

equation:

Jω̇(t) = −ω∗(t)Jω(t) + u(t) + d(t), (4.9)

where J = JT > 0 is the inertia tensor expressed in the body-fixed frame,

u(t) is an input torque. The torque d(t) is an unknown bounded disturbance
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torque, meaning that there exists d̄ ∈ R≥0 such that
∥∥d(t)

∥∥ ≤ d̄, ∀t ∈ [0, tf ).

We define J and J̄ as the smallest and largest eigenvalues of J , respectively.

The goal of this work is to find a control law u(t), t ∈ [0, tf ), such

that σ(tf ) = ω(tf ) = 0, for some specified final time 0 < tf < ∞, even in

the presence of non-zero disturbance torques. We accomplish this through

a backstepping design: first, we assume that ω(t) = ωr(t) is an “input” to

Eq. 4.2. We find a Lyapunov candidate function that stabilizes the MRP in

finite time (i.e., σ(tf ) = 0) by applying the control law ωr(t), t ∈ [0, tf ). Then,

we use ωr(t) to find a new control law u that stabilizes both σ(t) and ω(t).

Subsection 4.2.1 presents the procedure for stabilizing Eq. 4.2 assuming

input ω(t) = ωr(t). Subsection 4.2.2 presents the backstepping formulation

for designing the feedback law u(t) that stabilizes both Eqs. 4.2 and 4.9.

4.2.1 MRP Stabilization

Assume that ωr(t) is the input to

σ̇(t) =
1

4
B
(
σ(t)

)
ωr(t), t ∈ [0, tf ). (4.10)

Next, define the function µ(t) as:

µ(t) ,
tf

tf − t
, t ∈ [0, tf ). (4.11)

One should note that µ(0) = 1, µ(t) > 1,∀t ∈ (0, tf ), and limt→tf µ(t) =

∞. In addition, the derivative of µ(t) with respect to time is given by:

µ̇(t) =
tf

(tf − t)2
=

1

tf

(
tf
tf−t

)2

=
1

tf
µ2(t), t ∈ [0, tf ). (4.12)
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The integral of µ2(t) with respect to time is given by:∫ t

0

µ2(β) dβ =
t2f

tf − t

∣∣∣t
0

= tfµ(t)
∣∣∣t
0

= tf (µ(t)− 1) = tf µ̄(t), (4.13)

where µ̄(t) , µ(t) − 1. The signal µ̄(t) satisfies the properties µ̄(0) = 0,

µ̄(t) > 0,∀t ∈ (0, tf ), limt→tf µ̄(t) =∞, and ˙̄µ(t) = µ̇(t).

We define the following Lyapunov candidate function:

V0(t) = µλ(t) ln
(
1 + σT (t)σ(t)

)
, t ∈ [0, tf ), (4.14)

for some λ ∈ R>0. Clearly, V0(t) = 0 ⇐⇒ ||σ(t)|| = 0, and V0(t) > 0,∀t ∈

[0, tf ), if ||σ(t)|| 6= 0.

The time derivative of Eq. 4.14 is given by:

V̇0(t) =
∂V0

∂µ
µ̇(t) +

∂V0

∂σ
σ̇(t)

= λµλ−1µ̇(t) ln
(
1 + σT (t)σ(t)

)
+

1

4

∂V0

∂σ
B(σ(t))ωr(t)

=
λ

tf
µλ+1(t) ln

(
1 + σT (t)σ(t)

)
+
µλ(t)

2
· σT (t)

1 + σT (t)σ(t)
B(σ(t))ωr(t)

=
λ

tf
µλ+1(t) ln

(
1 + σT (t)σ(t)

)
+
µλ(t)

2
· σ

T (t)B(σ(t))

1 + σT (t)σ(t)
ωr(t). (4.15)

Using the property from Eq. 4.4 into Eq. 4.15 leads to:

V̇0(t) =
λ

tf
µλ+1(t) ln

(
1 + σT (t)σ(t)

)
+
µλ(t)

2
σT (t)ωr(t). (4.16)

Since ln(1 + η) ≤ η, ∀η ≥ 0, then:

V̇0(t) ≤ λ

tf
µλ+1(t)σT (t)σ(t) +

µλ(t)

2
σT (t)ωr(t) (4.17)
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In addition, µλ+1(t)σT (t)σ(t) ≤ µλ+2(t)σT (t)σ(t), t ∈ [0, tf ), leading

to:

V̇0(t) ≤ λ

tf
µλ+2(t)σT (t)σ(t) +

µλ(t)

2
σT (t)ωr(t)

= µλ(t)σT (t)
(
λ
tf
µ2(t)σ(t) + 1

2
ωr(t)

)
(4.18)

We can choose the control law:

ωr(t) = −2
(
λ
tf
µ2(t)σ(t) + kµ2(t)σ(t)

)
(4.19)

= −2
(
λ
tf

+ k
)
µ2(t)σ(t), (4.20)

= −φµ2(t)σ(t), (4.21)

for some constant gain k > 0, φ , 2
(
λ
tf

+ k
)
> 0 and t ∈ [0, tf ), leading to:

V̇0(t) ≤ −kµλ+2(t)σT (t)σ(t). (4.22)

Noticing again that − ln(1 + η) ≥ −η, ∀η ≥ 0, then:

V̇0(t) ≤ −kµλ+2(t) ln
(
1 + σT (t)σ(t)

)
= −kµ2(t)V0. (4.23)

Invoking the Comparison Lemma [31], we have that:

V0(t) ≤ V0(0) exp
[
−k
∫ t

0
µ2(γ) dγ

]
. (4.24)

Using Eq. 4.13, we get:

V0(t) ≤ V0(0) exp
[
−ktf · µ̄(t)

]
µλ(t) ln

(
1 + σT (t)σ(t)

)
≤ V0(0) exp

[
−ktf · µ̄(t)

]
. (4.25)
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Observing that limt→tf exp
[
−ktf · µ̄(t)

]
= 0, then:

lim
t→tf

V0(t) ≤ 0 =⇒ lim
t→tf

V0(t) = 0 =⇒ lim
t→tf

σ(t) = 0. (4.26)

Therefore, if the control law in Eq. 4.21 is realizable (i.e. ωr ∈ L∞),

then we have finite time convergence of σ to the origin. Also, it is desirable

that limt→tf ωr(t) = 0, which would imply that once the state σ reaches zero

at t = tf , it will remain there for t > tf (i.e., soft-landing).

Taking the two-norm of the control law from Eq. 4.21, we get that:

||ωr(t)|| = φ||µ2(t)σ(t)|| (4.27)

Therefore, it is sufficient to say that if the product µ2σ ∈ L∞, then

ωr ∈ L∞, implying that the control law is realizable. Appendix A.3 proves

that if Eq. 4.25 holds true, then µα1σ ∈ L∞, ∀α1 ∈ R, implying that:

∃ α2 ∈ R s.t. ||µα1(t)σ(t)|| ≤ α2, ∀t ∈ [0, tf ), (4.28)

which leads to:

||µα1−1(t)σ(t)|| ≤ α2

µ(t)
, ∀t ∈ [0, tf ). (4.29)

Choosing α1 = 3, we have that:

lim
t→tf
||µ2(t)σ(t)|| ≤ lim

t→tf

α2

µ(t)
= 0. (4.30)

Therefore, from Eq. 4.27 we get that limt→tf ||µ2(t)σ(t)|| = 0 =⇒

limt→tf ||ωr(t)|| = 0.

92



4.2.2 Attitude Stabilization

In the previous subsection, the variable ω(t) = ωr(t) was assumed to

be a control variable. Now, we employ a backstepping design to stabilize σ(t)

and ω(t) in finite time. The equations of motion are given by:{
σ̇(t) = g(σ)ω(t)

Jω̇(t) = −ω∗(t)Jω(t) + u(t) + d(t)
, (4.31)

where g(σ) , 1
4
B
(
σ(t)

)
, and d(t) is a bounded disturbance input with

||d(t)|| ≤ d̄.

The goal is to design u(t) such that u ∈ L∞ and limt→tf [σ(t),ω(t)] = 0.

We rewrite Eq. 4.2 as:

σ̇(t) = g(σ)ω(t) + g(σ)ωr(t)− g(σ)ωr(t)

= g(σ)ωr(t) + g(σ)
(
ω(t)− ωr(t)

)
= g(σ)ωr(t) + g(σ)ωe(t), (4.32)

where ωe(t) , ω(t)− ωr(t).

Then, we construct a new Lyapunov candidate function V : [0, tf ) →

R+:

V (t) = V0(t) +
1

2
µ4(t)ωTe (t)Jωe(t),

= µλ(t) ln
(
1 + σT (t)σ(t)

)
+

1

2
µ4(t)ωTe (t)Jωe(t). (4.33)
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The time derivative of Eq. 4.33 is given by:

V̇ (t) =
∂V0

∂µ
µ̇(t) +

∂V0

∂σ
σ̇(t) + 2µ3(t)µ̇(t)ωTe (t)Jωe(t) + µ4(t)ωTe (t)Jω̇e

=
∂V0

∂µ
µ̇(t) +

∂V0

∂σ
g(σ)ωr(t) +

∂V0

∂σ
g(σ)ωe(t) +

2

tf
µ5(t)ωTe (t)Jωe(t)

+ µ4(t)ωTe (t)
[
u(t) + d(t)− ω∗(t)Jω(t)− Jω̇r(t)

]
.

From Eqs. 4.15-4.23 in the previous section, it follows that:

∂V0

∂µ
µ̇(t) +

∂V0

∂σ
g(σ)ωr(t) ≤ −kµ2(t)V0(t), (4.34)

for some k > 0 and ωr(t) given by Eq. 4.21. Using Eq. 4.34 together with the

property from Eq. 4.4, we get:

V̇ (t) ≤− kµ2(t)V0(t) +
µλ(t)

2
σT (t)ωe(t) +

2

tf
µ5(t)ωTe (t)Jωe(t)

+ µ4(t)ωTe (t)
[
u(t)− ω∗(t)Jω(t)− Jω̇r(t)

]
+ µ4(t)ωTe (t)d(t).

Focusing on the disturbance term, we have that2:

µ4(t)ωTe (t)d(t) =µ2(t)
(
µ2(t)ωTe (t)

)
d(t)

≤1

2
µ2(t)

[
µ4(t)||ωe(t)||2 + ||d(t)||2

]
≤1

2
µ6(t)||ωe(t)||2 +

1

2
µ2(t)d̄2, (4.35)

where d̄ is an upper bound on the disturbance
∥∥d(t)

∥∥ ≤ d̄.

2We use the property abT c ≤ 1
2

(
a2||b||2 + ||c||2

)
, ∀a ∈ R>0, b ∈ Rn, c ∈ Rn, n ∈ Z>0.
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In addition, using the fact µ5(t)ωTe (t)Jωe(t) ≤ µ6(t)ωTe (t)Jωe(t), we

get that:

V̇ (t) ≤− kµ2(t)V0(t) +
µλ(t)

2
σT (t)ωe(t) +

2

tf
µ6(t)ωTe (t)Jωe(t)

+ µ4(t)ωTe (t)
[
u(t) + µ2(t)

2
ωe(t)− ω∗(t)Jω(t)− Jω̇r(t)

]
+

1

2
µ2(t)d̄2

≤− kµ2(t)V0(t) +
1

2
µ2(t)d̄2 + µ4(t)ωTe (t)ζ(t), (4.36)

where:

ζ(t) , u(t) + µ2(t)
(

1
2
I + 2

tf
J
)
ωe(t)− ω∗(t)Jω(t)− Jω̇r(t) +

1

2
µλ−4(t)σ(t).

We can choose the control law:

u(t) =−
(

1
2
kJ + 2

tf
J + 1

2
I
)
µ2(t)ωe(t)−

1

2
µλ−4(t)σ(t)

+ ω∗(t)Jω(t) + Jω̇r(t), (4.37)

where ω̇r(t) can be obtained by differentiating Eq. 4.21:

ω̇r(t) =− φµ2(t)
[

2
tf
µ(t)σ(t) + g(σ)ω(t)

]
=− 2

tf
φµ3(t)σ(t)− φg(σ)µ2(t)ωe(t)− φg(σ)µ2(t)ωr(t)

=− 2

tf
φµ3(t)σ(t)− φg(σ)µ2(t)ωe(t) + φ2g(σ)µ4(t)σ(t). (4.38)

Substituting Eq. 4.37 into Eq. 4.36 leads to:

V̇ (t) ≤ −kµ2(t)V0(t)− 1

2
kµ6(t)ωTe (t)Jωe(t) +

1

2
µ2(t)d̄2

≤ −kµ2(t)
(
V0(t) + 1

2
µ4(t)ωTe (t)Jωe(t)

)
+

1

2
µ2(t)d̄2

≤ −kµ2(t)V (t) +
1

2
µ2(t)d̄2. (4.39)
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Once again, invoking the Comparison lemma leads to:

V (t) ≤ Φ(t, 0)V (0) + Φ(t, 0)

∫ t

0

Φ(0, τ)
1

2
µ2(t)d̄2 dτ, (4.40)

where Φ(t1, t2) = exp
[
−ktf

(
µ(t1)− µ(t2)

)]
. Solving the integral in Eq. 4.40,

we can show that:

V (t) ≤ V (0) exp
[
−ktf · µ̄(t)

]
+
d̄2

2k

(
1− exp

[
−ktf · µ̄(t)

])
(4.41)

We provide the analysis for the disturbance free case in Section 4.2.2.1

and the analysis for the case with non-zero disturbance torques in Sec-

tion 4.2.2.2. We demonstrate that the control objectives are reached in the

disturbance-free case for any λ > 0, while we require λ = 8 to satisfy complete

disturbance rejection at terminal time tf .

4.2.2.1 Disturbance-Free Analysis

In the absence of disturbances, d̄ = 0 and the following holds:

V (t) ≤ V (0) exp
[
−ktf · µ̄(t)

]
, (4.42)

which implies:
1
2
µ4(t)ωTe (t)Jωe(t) ≤ V (0) exp

[
−ktf · µ̄(t)

]
µλ ln(1 + σTσ) ≤ V (0) exp

[
−ktf · µ̄(t)

] . (4.43)

We also have that:

lim
t→tf

V (t) ≤ 0 =⇒ lim
t→tf

V (t) = 0 =⇒

{
limt→tf ||µ2(t)ωe(t)||2 = 0

limt→tf ||σ(t)||2 = 0
. (4.44)
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Since limt→tf ωe(t) = 0 and limt→tf ωr(t) = 0 (See Eqs. 4.27 and 4.30),

then limt→tf ω(t) = 0. Also, the right-hand side of Eq. 4.41 is a bounded

function, for t ∈ [0, tf ), implying that:

V ∈ L∞ =⇒ ωe ∈ L∞ =⇒ ω ∈ L∞, (4.45)

where the last implication above holds true given that ωr = −φµ2σ ∈ L∞

(See Appendix A.3).

We need to ensure that the control torque u(t) is bounded. According

with Eqs. 4.43 and 4.44, µ2ωe ∈ L∞, σ ∈ L∞, limt→tf ||µ2(t)ωe(t)|| = 0,

and limt→tf ||σ(t)|| = 0. Given that Eq. 4.43 holds, Appendix A shows that

µ3σ ∈ L∞, limt→tf ||µ3(t)σ(t)|| = 0, µ4σ ∈ L∞, limt→tf ||µ4(t)σ(t)|| = 0.

Since σ ∈ L∞, then g(σ) ∈ L∞.

Therefore, u(t) is composed as a sum of bounded signals, which implies

that u ∈ L∞. In addition, since limt→tf ||µ2(t)ωe(t)|| = 0, limt→tf ||σ(t)|| = 0,

limt→tf ||µ3(t)σ(t)|| = 0 and limt→tf ||µ4(t)σ(t)|| = 0, then limt→tf u(t) = 0.

4.2.2.2 Disturbance Analysis

Eq. 4.41 can be upper bounded as:

V (t) ≤ V (0) +
d̄2

2k
. (4.46)

Defining the constant V̄ , V (0) + d̄2

2k
, if follows that:

µλ(t) ln(1 + σT (t)σ(t)) ≤ V̄ (4.47)

1

2
µ4(t)ωTe (t)Jωe(t) ≤ V̄ . (4.48)

97



Starting from Eq. 4.47, it is possible to show that µλ/2σ ∈ L∞ and

that limt→tf µ
ρ(t)σ(t) = 0, ∀ρ < λ/2 (See Appendix B.2), which implies that

limt→tf σ(t) = 0, if λ > 0.

Given that the control law of Eq. 4.37 is function of ω̇r(t), which de-

pends on µ4(t)σ(t) (see Eq. 4.38), then we need that λ/2 ≥ 4 =⇒ λ ≥ 8

to satisfy µ4σ ∈ L∞. Additionally, the control law of Eq. 4.37 depends on

µλ−4(t)σ(t), implying that we need λ− 4 ≤ λ/2 =⇒ λ ≤ 8. Therefore, λ = 8

satisfies both µ4σ ∈ L∞ and µλ−4σ ∈ L∞.

Eq. 4.48 implies that µ2ωe ∈ L∞. Also, since ωTe (t)Jωe(t) ≤ µ−4(t)V̄ ,

then limt→tf ω
T
e (t)Jωe(t) = 0 =⇒ limt→tf ωe(t) = 0.

Given that limt→tf ωe(t) = 0 and limt→tf ωr(t) =

limt→tf −φµ2(t)σ(t) = 0 (for λ = 8), then limt→tf ω(t) = limt→tf ωe(t) +

limt→tf ωr(t) = 0.

Therefore, by choosing λ = 8 we have that the control law of Eq. 4.37 is

a sum of bounded terms, implying that u ∈ L∞. In addition, limt→tf σ(t) = 0

and limt→tf ω(t) = 0, accomplishing the desired control objectives. One should

also note that there are no guarantees that limt→tf u(t) = 0, as is the case for

the disturbance-free control.

4.3 Tracking Control

In the previous section, we developed a stabilizing controller that takes

the system to the origin. In this section, we generalize the solution for tracking
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a desired trajectory.

Assume a desired trajectory given by a desired orientation signal σd(t)

and a desired angular velocity signal ωd(t). The objective is to reach the

desired trajectory at time t = tf , i.e., δσ(tf ) = 0 and δω(tf ) = 0, where

δσ(t) , σ(t) ⊗ σ−1
d (t) is the reference attitude error and δω(t) , ω(t) −

C(δσ)ωd(t) is the angular velocity error expressed in the true orientation’s

frame of reference. The matrix C(δσ) is the direction cosine matrix equivalent

to the rotation δσ (see Eq. 4.7) and satisfies Ċ(δσ) = −δω∗C(δσ). We assume

that the quantities σd(t), ωd(t), and ω̇d(t) are fully specified as part of the

tracking control objective.

As in the previous section, we first assume that the error dynamics for

δσ̇(t) is driven by a signal δωr(t) as follows:

δσ̇(t) = g(δσ)δωr(t), (4.49)

where g(δσ) , 1
4
B(δσ).

We can choose the control law

δωr(t) = −φµ2(t)δσ(t), (4.50)

which was already shown to lead to limt→tf δσ(t) = 0. Also, we’ve al-

ready proven that the control law given by Eq.4.50 is realizable and that

limt→tf δωr(t) = 0.

In order to control the tracking error dynamics, we need to stabilize
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the equations of motion below:{
δσ̇(t) = g(δσ)δω(t)

Jω̇(t) = −ω∗(t)Jω(t) + u(t) + d(t)
. (4.51)

In order to achieve stability, we define the angular velocity error signal

δωe(t) , δω(t)− δωr(t). The derivative of Jδωe(t) is given by:

Jδω̇e(t) =Jδω̇(t)− Jδω̇r(t)

=Jω̇(t)− JĊ(δσ)ωd(t)− JC(δσ)ω̇d(t)− Jδω̇r(t)

=− ω∗(t)Jω(t) + u(t) + d(t) + Jδω∗(t)C(δσ)ωd(t)

− JC(δσ)ω̇d(t)− Jδω̇r(t), (4.52)

where δω̇r(t) can be obtained by differentiating Eq. 4.50:

δω̇r(t) = −φµ2(t)
[

2
tf
µ(t)δσ(t) + g(δσ)δω(t)

]
. (4.53)

We choose the control law:

u(t) =−
(

1
2
kJ + 2

tf
J + 1

2
I
)
µ2(t)δωe(t)−

1

2
µλ−4(t)σ(t) + ω∗(t)Jω(t)

+ Jω̇r(t)− Jδω∗(t)C(δσ)ωd(t) + JC(δσ)ω̇d(t). (4.54)

Replicating the same analysis as in the stabilization case, it is possible

to show that the tracking error converges to zero: limt→tf δσ(t) = 0 and

limt→tf δω(t) = 0. In addition, it is possible to use the same arguments as

before to show that the control law from Eq. 4.54 is realizable (both in the

presence and absence of disturbances).
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4.4 Practical Considerations

We have proven in the previous sections that the control laws

Eqs. 4.37 and 4.54 are bounded even in the presence of disturbances. Still,

there are some practical aspects that have to be considered when utilizing

these controller designs.

An important matter that arises in any real implementation concerns

the feedback control using noisy measurements. Assuming a measurement

model with zero-mean additive noise, the designed control laws cannot be

guaranteed to drive the system to the origin anymore. As t approaches tf , µ(t)

increases unboundedly and amplifies the measurement noise that is introduced

into the system through Eqs. 4.37 or 4.54. Instead of being driven to the origin,

the system states converge to a time-varying residual set whose extent changes

as a function of µ(t).

A simple saturation heuristic that can be used to remedy the noise

amplification is to bound µ(t) as follows:

µ(t) =

{
tf
tf−t

, t ∈ [0, κtf )
tf

tf−κtf
, t ∈ [κtf ,∞)

, (4.55)

for some user-chosen κ ∈ (0, 1). This heuristic avoids µ(t) from becoming

unbounded and thereby eliminating the possibility of increasingly amplifying

the measurement noise.

A judicious choice of κ in Eq. 4.55 depends on the measurement noise

characteristics, as well as the final time tf . As κ approaches 0, the risk is
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that the system might not reach an acceptably small residual set within the

prescribed finite time. Alternatively, as κ approaches 1, the noise amplification

might be too high, demanding too much on the actuators. Therefore, a rational

choice of κ would be one that caps the signal µ(t) as soon as the system reaches

to within a small enough residual set.

In order to identify whether or not the system trajectories are within the

residual set, one can perform a rigorous analysis to characterize the measure

of the residual set as a function of noise variance, initial states and final time.

Alternatively, our experience based on extensive numerical simulations of the

control laws Eqs. 4.37 and 4.54 shows that it is possible to determine whether

the system has reached the residual set by analyzing the Fast Fourier Trans-

form (FFT) of the measured angular velocity ω (δω for the tracking case) and

identifying the instant when the high-frequencies (mostly noise) dominates the

measured signal.

Finite-time (or even infinite time) convergence to the origin in the pres-

ence of noise is unattainable, given that the controller attempts to converge

to a measured zero, which is not the true zero. Once the system states reach

within a residual set, we cannot really claim that there is any advantage in

using the control law from Eqs. 4.37 or 4.54 with respect to other works in

the literature, including non-finite controllers. This means that one can run

the finite-time controller until the system reaches the residual set, then switch

to some other classical control law, such as a Proportional-Derivative con-

troller [18, 64, 69] tuned with optimal feedback gains (minimizing actuation
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energy or residual set measure).

4.5 Simulation Results

This section presents some simulation results for the designed control

laws. In the absence of measurement noise, we show that the designed control

laws drive the system to zero error as expected. Subsection 4.5.1 presents

results for the control being applied in the absence of measurement noise, while

Subsection 4.5.2 shows the results for the control law with noisy measurements.

Our simulations are performed for final time tf = 30s.

For all simulations, the initial orientation is given by a rotation of

ψ(0) = π around the axis ê(0) = 1/
√

3
[
1, 1, 1

]T
, and the initial angular

velocity is given by ω(0) =
[
−0.03, 0.04, −0.05

]T
. The inertia matrix is

given by:

J =

 95 −0.69 0.18
−0.69 190 0.12
0.18 0.12 142.5

 (4.56)

4.5.1 Perfect measurements

This section presents simulation results for attitude stabilization using

noise-free measurements. We are able to demonstrate that the system con-

verges to arbitrary final configurations for arbitrary initial conditions. We

implement µ(t) with saturation as in Eq. 4.55 with κ = 0.995, avoiding the

singularity at t = tf .

Figure 4.1 shows the result for the stabilization of the system to the
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origin using the control law from Eq. 4.37. The plots on the left display the

simulation outputs in a linear scale, whereas the plots on the right present the

same outputs in logarithmic scale. Values below 2.20 · 10−16 are considered

zero and are not shown on the log plot. We can see that the system is being

driven towards the origin increasingly faster until the machine zero is reached.

Notice that the states (ω(t) and σ(t)) and the inputs (u(t)) all converge to

zero. The log plots fade after 20 seconds, but one should have in mind that

this is the double precision zero, not the mathematical zero. The mathematical

zero should only happen at exactly t = tf as per our proofs.

Figure 4.2 shows the result for the stabilization of a perturbed system

to the origin using the control law from Eq. 4.37 with λ = 8. The disturbance

is constant and given by d(t) =
[
1, 1, 1

]T
. The angular velocity ω(t) reaches

zero before the terminal time, while ||σ(tf )|| = 3.62·10−12. In steady state, the

input torque compensates the disturbance signal u(t)→
[
−1, −1, −1

]T
.

Figure 4.3 shows a result for the stabilization of the system to a tum-

bling configuration, using the control law from Eq 4.54. The desired trajectory

follows the differential equation:{
σ̇d(t) = g(σd)ωd(t)

Jω̇d(t) = −ω∗d(t)Jωd(t)
, (4.57)

with σd(0) = −1/
√

3
[
1, 1, 1

]T
, ωd(0) =

[
0.01, 0.01, 0.01

]T
. We can see

that, for this scenario, the states of the error dynamics converge to “machine-

zero” sometime after about 20s. The states (ω(t) and σ(t)) and the input

torques u(t) all converge to zero.
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Figure 4.1: Time histories of state trajectories for the set-point regulation
case with perfect measurements. The plots on the left display the simulation
outputs in a linear scale, whereas the plots on the right present the same
outputs in logarithmic scale.
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Figure 4.2: Time histories of state trajectories for the set-point regulation
case with perfect measurements and applied disturbances. The plots on the
left display the simulation outputs in a linear scale, whereas the plots on the
right present the same outputs in logarithmic scale.
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Figure 4.3: Time histories of state trajectory errors for the trajectory tracking
case with perfect measurements. The plots on the left display the simulation
outputs in a linear scale, whereas the plots on the right present the same
outputs in logarithmic scale.

107



4.5.2 Noise corrupted measurements

In order to test the presented algorithm in presence of noise, we add

measurement noise that is typical for a spacecraft with a star tracker, a gy-

roscope, and is executing an onboard state estimation algorithm. We assume

that the state estimator is executing at a rate of 100Hz, and that it produces

angular velocity measurements with standard deviation σω = 0.002rad/s and

attitude measurements with angular orientation error having standard devia-

tion of σφ = 2arcsec= 9.7 · 10−6rad (in fact, commercial star tracker standard

deviation is typically below 1.5arcsec [17]).

Figure 4.4 shows a result for the stabilization of the system to the

origin using the two heuristics described in Section 4.4 for measurement noise

accommodation. The blue plot implements µ(t) as in Eq. 4.55 with a fixed

value of κ = 0.85 (Fixed Kappa Method - FKM). The red plot implements

the FFT heuristic described in Section 4.4 by analyzing the FFT of ||ω|| over

a window of 256 measurements, and tracking the instant at which frequencies

above 10Hz dominate over frequencies below 10Hz.

We can see in the blue plot of Figure 4.4 that even though the state

errors reach a residual set sometime after 13s, the controller gains keep in-

creasing until t = 25.5s. Because of this, the FKM controller demands more

control torque on average than the one using the FFT method, which capped

the value of µ(t) at t = 12.22s. On average, the FKM results get to a narrower

residual set for δσ than the FFT results, but the residual set for δω is larger

in the FKM results than it is in the FFT one.
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Figure 4.4: System convergence to the origin with noisy measurements. The
blue plot shows the controller that caps µ(t) at κ = 0.85, while the red plot
shows the controller that detects the switching time through the FFT method.
The plots on the left display the simulation outputs in a linear scale, whereas
the plots on the right present the same outputs in logarithmic scale.
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4.6 Conclusion

In this paper, we have introduced a finite-time controller for fully-

actuated rigid-body attitude dynamics. The feedback control law is stablished

using Lyapunov’s direct method, regulating the system’s configuration from

any arbitrary initial state to any final one within user-specified finite transfer

time tf even in the presence of disturbances. In order to achieve finite-time

regulation, the feedback gain grows unbounded as time approaches tf .

We have presented simulation results, demonstrating the efficacy of the

controller in reaching the desired configuration within finite time. In presence

of noise, the system trajectories are shown to converge within a residual set

and we propose mechanisms to avoid unnecessary amplification of noise.

An interesting avenue for further work would be seeking the design

of a finite-time controller for attitude dynamics without going through the

backstepping process, as in the current work. An obvious downside of the

backstepping design is that the designed control laws (Eqs. 4.37 and 4.54)

are algebraically heavy due to the fact that they partially compensate for

the “non-working” gyroscopic terms in the attitude dynamics equations (for

example, the ω∗Jω term). On the other hand, the literature for asymptotic

attitude stabilization (not finite-time) is abundant with control designs that

can be obtained without gyroscopic compensation [64,69].
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Chapter 5

Time-varying feedback for attitude regulation

in prescribed finite-time
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5.1 Introduction

This chapter1 introduces a finite-time feedback controller for stabiliz-

ing the attitude dynamics of a fully actuated rigid-body. The major novelty

of this finite-time regulation control law is that it satisfies the self-reduction

property, i.e., the feedback law is designed to be independent of the inertia

properties of the rigid-body thereby providing stability robustness. We make

use of a Lyapunov-like analysis to design this feedback law that regulates the

configuration from an arbitrary initial state within a desired finite transfer-

time tf . The control synthesis is explicit, i.e., given the transfer-time time tf ,

the feedback-gains are explicitly stated to satisfy the convergence specifica-

tions.

Many recent papers in literature address finite-time regulation prob-

lems for controllable systems that are diffeomorphic to the so-called normal

form representation. Some of these methods derive from non-smooth feedback,

such as bang-bang [8] and/or sliding-mode controllers. These methods usually

introduce discontinuous dynamics through feedback, which can lead to chat-

tering and excitation of undesired frequencies [59]. Other methods are built

on top of the “Lyapunov differential inequality” [12], and many recent results

stem from this methodology (see Ref. [60] and references therein). Whereas

many of existing methods provide existence results for finite-time control algo-

1“Marcelino Almeida and Maruthi Akella. Time-varying feedback for attitude regulation
in prescribed finite-time. 2019 AAS/AIAA Astrodynamics Specialist Conference in Port-
land, ME, (19-653), Aug. 2019.” (Marcelino Almeida conducted the problem formulation
and solution, simulation and analyses, and wrote the paper.)
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rithms, the explicit synthesis of such feedback schemes is far from being fully

resolved, especially when applied to nonlinear systems such as the attitude

control problem.

Within our recently reported prior work [2], we derived a control law

for finite-time regulation on a fully actuated rigid-body attitude system. We

used a backstepping control design to obtain the proposed control law, but the

controller derived in that work requires compensation of the non-working terms

within Euler’s rotational dynamics equations, demanding precise knowledge

of the rigid-body’s inertia tensor. It is well known that asymptotic attitude

stabilization does not need compensation of the rotational gyroscopic terms

(i.e., the self-reduction property, see Refs. [64, 69]), motivating us to further

pursue a finite-time stabilization feedback control law that does not require

cancellation via feedback of the aforementioned terms.

This chapter circumvents the need for the backstepping design used in

Ref. [2] by designing a new Lyapunov-like function that demonstrates finite-

time stability of the system’s attitude dynamics without resorting to cancella-

tion of the non working terms in the Euler’s rotational dynamic equations. We

introduce a feedback control law whose feedback gains are time-varying and

grow unbounded towards the terminal time tf , while the feedback terms are

function of the system‘s orientation (herein parameterized as the Modified Ro-

drigues Parameters - MRPs) and angular velocity. We prove that even though

the feedback gains grow unbounded as tf approaches, the product between

these gains and the system’s states is actually bounded, ensuring bounded
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feedback torques. The major contribution of this chapter is to introduce the

new control law, along with its respective finite-time stability analysis.

We present simulation results to demonstrate the efficacy of the pro-

posed control law, highlighting the importance of the control gains in the

transient trajectory of the controlled system.

Section 5.2 presents an outline for the stability analysis for the pre-

scribed finite-time attitude stabilization feedback law. Section 5.3 presents

numerical simulation results that validate the proposed method. Finally, Sec-

tion 5.4 summarizes the current contribution by drawing some concluding re-

marks.

5.2 Control Design

The goal of this work is to find a feedback control law u(t), t ∈ [0, tf ),

such that σ(tf ) = ω(tf ) = 0, for some specified final time 0 < tf < ∞. The

proposed control law is time varying, with feedback gains growing unbounded

as time approaches t = tf . We make use of a storage function to prove that

the proposed controller achieves the desired finite time stabilization, and that

the control input is bounded for all time: u(t) ∈ L∞, t ∈ [0, tf ). Notation,

kinematic and dynamic definitions used in the Chapter are introduced in Sec-

tion 4.2.

This work makes extensive use of the time-varying function µ(t) ∈ R≥1
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as defined below:

µ(t) ,
tf

tf − t
, t ∈ [0, tf ). (5.1)

One should notice that µ(0) = 1, µ(t) > 1, ∀t ∈ (0, tf ) and

limt→tf µ(t) =∞. Because µ(t) ≥ 1, it also holds that µα(t) ≤ µβ(t),∀α ≤ β.

The derivative of µ(t) is given by:

µ̇(t) =
tf

(tf − t)2
=

1

tf

(
tf
tf−t

)2

=
1

tf
µ2(t), t ∈ [0, tf ). (5.2)

Using the property of Eq. 5.2, we have that:

d

dt
µα(t) = αµα−1(t)µ̇(t) =

α

tf
µα+1(t). (5.3)

The integral of µ2(t) with respect to time is given by:∫ t

t0

µ2(β) dβ =
t2f

tf − t

∣∣∣t
t0

= tfµ(t)
∣∣∣t
t0

= Ftf (µ(t)− µ(t0)) (5.4)

5.2.1 Storage Function

This section defines the storage function used to derive finite-time sta-

bility for the attitude problem given the dynamics of Eqs. 4.2 and 4.9, and the

control law:

u(t) = −b(σ)

ψ

(
k1µ

4(t)σ(t) + k2µ
2(t)ω(t)

)
, (5.5)

where ψ > 0, k1 > 0, k2 > 0 are constants.

We define the following quantities:

V1 , 2νµη+4σTσ, V2 ,
ψ

2
µηωTJω, V3 , λµη+2σTJω, (5.6)
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where λ > 0 and ν > 0 are constant values. The storage function V ∈ R≥0 is

defined as V = V1 +V2 +V3. In the absence of disturbances, the proofs in this

paper actually works for any value of η ∈ R>0. However, we need η ≥ 4 to

accommodate disturbance rejection. The remainder of this chapter assumes

η = 4:

V1 = 2νµ8σTσ, V2 =
ψ

2
µ4ωTJω, V3 = λµ6σTJω. (5.7)

An upper bound on V can be derived as (notice that we use the property

2ab ≤ a2 + b2, for a, b ∈ R):

V = 2νµ8||σ||2 +
ψ

2
µ4ωTJω + λµ6σTJω

≤ 2νµ8||σ||2 +
ψ

2
J̄µ4||ω||2 + λJ̄(µ4||σ||)(µ2||ω||)

≤ 2νµ8||σ||2 +
ψ

2
J̄µ4||ω||2 +

λJ̄

2
µ8||σ||2 +

λJ̄

2
µ4||ω||2

=
(
2ν + λJ̄

2

)
µ8||σ||2 +

(
ψ + λ

) J̄
2
µ4||ω||2

≤ ᾱ
(
µ8||σ||2 + µ4||ω||2

)
, (5.8)

where ᾱ , max
(
2ν + λJ̄

2
, ψ

2
J̄ + λ

2
J̄
)
.

Similarly, we can derive a lower bound on V :

V = 2νµ8||σ||2 +
ψ

2
µ4ωTJω + λµ6σTJω

≥ 2νµ8||σ||2 +
ψJ

2
µ4||ω||2 − (µ4λJ̄ ||σ||)(µ2||ω||)

≥ 2νµ8||σ||2 +
ψJ

2
µ4||ω||2 − λJ̄

2

(
µ8||σ||2 + µ4||ω||2

)
=
(
2ν − λ

2
J̄
)
µ8||σ||2 +

(
ψ
2
J − λ

2
J̄
)
µ4||ω||2

≥ α
(
µ8||σ||2 + µ4||ω||2

)
, (5.9)
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where α , min
(
2ν − λJ̄

2
, ψ

2
J − λ

2
J̄
)
.

The following conditions ensure positive definiteness of V :

ν > 0, ψ > 0, ν >
λJ̄

4
,

ψ

λ
>
J̄

J
. (5.10)

Defining the ratio ψ
λ

= β J̄
J

, for some β > 1, then the last condition in

Eq. 5.10 is satisfied. In addition, we have that λ = Jψ
βJ̄

, leading to the following

condition on ν:

ν

ψ
>
J

β
. (5.11)

5.2.2 Finite Time Proof

This section proves that the system of Eqs. 4.2 and 4.9 stabilizes in

finite time by using the controller of Eq. 5.5. We explicitly define ν , k1 + λk2
ψ

.

First, we take time-derivatives on V1:

V̇1 =
16ν

tf
µ9σTσ + 4νµ8σT σ̇ =

16ν

tf
µ9||σ||2 + νµ8σTB(σ)ω

=
16ν

tf
µ9||σ||2 +

(
k1 + λk2

ψ

)
µ8b(σ)σTω. (5.12)

Now, taking derivative of V2:

V̇2 =
2ψ

tf
µ5ωTJω + ψµ4ωT

(
−ω∗Jω + u+ d

)
≤ 2ψJ̄

tf
µ5||ω||2 + ψµ4ωTu+ ψ

(
δµ3ωT

) (
1
δ
µd
)

≤ 2ψJ̄

tf
µ5||ω||2 + ψµ4ωTu+

ψδ2

2
µ6||ω||2 +

ψ

2δ2
µ2d̄2, (5.13)
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where δ > 0 is a constant scalar.

Combining V̇1 with V̇2, the control law of Eq. 5.5, and the definition
ν , k1 + λk2

ψ
, we get:

V̇1 + V̇2 ≤
16ν

tf
µ9||σ||2 +

2ψJ̄

tf
µ5||ω||2 +

(
��k1 + λk2

ψ

)
µ8b(σ)σTω

− µ4b(σ)ωT
(
����k1µ

4σ + k2µ
2ω
)

+
ψδ2

2
µ8||ω||2 +

ψ

2δ2
d̄2

=
16ν

tf
µ9||σ||2 +

2ψJ̄

tf
µ5||ω||2 − k2b(σ)µ6||ω||2 +

λk2

ψ
b(σ)µ8σTω

+
ψδ2

2
µ6||ω||2 +

ψ

2δ2
µ2d̄2. (5.14)

Using the definition b(σ) , (1 + σTσ) on the third term of Eq. 5.14,
it follows that:

V̇1 + V̇2 ≤
16ν

tf
µ9||σ||2 +

(
2ψJ̄
tf
µ−1 + ψδ2

2
− k2

)
µ6||ω||2

− k2µ
6||σ||2||ω||2 +

λk2

ψ
b(σ)µ8σTω +

ψ

2δ2
µ2d̄2. (5.15)

Finally, taking derivative on V3:

V̇3 =
6λ

tf
µ7σTJω + λµ6σT

(
−ω∗Jω + u+ d

)
+
λ

4
µ6ωTJB(σ)ω

≤ 6λJ̄

tf
µ7||σ||||ω||+ λµ6J̄ ||σ||||ω||2 + λµ6σT (u+ d) +

λJ̄

4
b(σ)µ6||ω||2,

(5.16)

where we used the property of Eq. 4.5 in the last step above. Using the
property ||σ|| ≤ 1

2
b(σ) on the second term of Eq. 5.16, and using the relation
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2µ7||σ||||ω|| = 2(µ4||σ||)(µ3||ω||) ≤ µ8||σ||2 + µ6||ω||2, we reach:

V̇3 ≤
3λJ̄

tf
µ8||σ||2 +

3λJ̄

tf
µ6||ω||2 +

λJ̄

2
b(σ)µ6||ω||2 + λµ6σTu+ λµ6σTd

+
λJ̄

4
b(σ)µ6||ω||2

=
3λJ̄

tf
µ8||σ||2 +

3λJ̄

tf
µ6||ω||2 +

3λJ̄

4
b(σ)µ6||ω||2 + λµ6σTu+ λµ6σTd

=
3λJ̄

tf
µ8||σ||2 +

3λJ̄

tf
µ6||ω||2 +

3λJ̄

4
µ6||ω||2 +

3λJ̄

4
µ6||σ||2||ω||2

+ λµ6σTu+ λµ6σTd, (5.17)

where the last step above used the definition b(σ) , (1 + σTσ).

Substituting the control law of Eq. 5.5 on the last term of Eq. 5.17, we
get that:

λµ6σTu = −λk1

ψ
b(σ)µ10||σ||2 − λk2

ψ
b(σ)µ8σTω

= −λk1

ψ
µ10||σ||2 − λk1

ψ
µ10||σ||4 − λk2

ψ
b(σ)µ8σTω. (5.18)

In addition, using the relation λµ6σTd = λ(δµ5σT )(1
δ
µd) ≤

λδ2

2
µ10||σ||2 + λ

2δ2
µ2d̄2 for some δ > 0, we get to the following form for V̇3:

V̇3 ≤ λ
(

3J̄
tf
µ−2 + δ2

2
− k1

ψ

)
µ10||σ||2 − λk1

ψ
µ10||σ||4 + λ

(
3J̄
tf

+ 3J̄
4

)
µ6||ω||2

+
3λJ̄

4
µ6||σ||2||ω||2 − λk2

ψ
b(σ)µ8σTω +

λ

2δ2
µ2d̄2. (5.19)

Combining terms on V̇ = V̇1 + V̇2 + V̇3, we notice that the last term on
Eq. 5.17 cancels with the last term of Eq. 5.15, leading to:

V̇ ≤− λ
(
k1
ψ −

16ν
λtf
µ−1 − 3J̄

tf
µ−2 − δ2

2

)
µ10||σ||2 − λk1

ψ
µ10||σ||4 +

(
λ

2δ2
+ ψ

2δ2

)
µ2d̄2

−
(
k2 − 3J̄λ

tf
− 3J̄λ

4 −
2ψJ̄
tf
µ−1 − ψδ2

2

)
µ6||ω||2 −

(
k2 − 3λJ̄

4

)
µ6||σ||2||ω||2.

(5.20)
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Defining φ1 , k1
ψ

, φ2 , k2
ψ

, and using the relation λ = Jψ
βJ̄

=⇒ λJ̄ =
Jψ
β

, V̇ is rewritten as:

V̇ ≤− λ
(
φ1 − 16ν

λtf
µ−1 − 3J̄

tf
µ−2 − δ2

2

)
µ10||σ||2 − λφ1µ

10||σ||4 +
(
λ

2δ2
+ ψ

2δ2

)
µ2d̄2

−
(
k2 − 3

tf

Jψ
β −

3
4
Jψ
β −

2ψJ̄
tf
µ−1 − ψδ2

2

)
µ6||ω||2 −

(
k2 − 3

4
Jψ
β

)
µ6||σ||2||ω||2

=− λ
(
φ1 − 16ν

λtf
µ−1 − 3J̄

tf
µ−2 − δ2

2

)
µ10||σ||2 − λφ1µ

10||σ||4 +
(
λ

2δ2
+ ψ

2δ2

)
µ2d̄2

− ψ
(
φ2 − 3

tf

J
β −

3
4
J
β −

2J̄
tf
µ−1 − δ2

2

)
µ6||ω||2 − ψ

(
φ2 − 3

4
J
β

)
µ6||σ||2||ω||2.

(5.21)

Define κ1 , φ1 − δ2

2
, κ2 , φ2 − 3

tf

J
β
− 3

4
J
β
− δ2

2
, κ3 , φ2 − 3

4
J
β
. Given

any value for φ1 > 0 and φ2 > 0, it is always possible to come up with β large
enough and δ small enough such that κ1 > 0, κ2 > 0, and κ3 > 0. We rewrite
Eq. 5.21 as:

V̇ ≤−

,γ1(t)︷ ︸︸ ︷
λ
(
κ1 − 16ν

λtf
µ−1 − 3J̄

tf
µ−2
)
µ10||σ||2 −

,γ2︷︸︸︷
λφ1 µ

10||σ||4

− ψ
(
κ2 − 2J̄

tf
µ−1
)

︸ ︷︷ ︸
,γ3(t)

µ6||ω||2 − ψκ3︸︷︷︸
,γ4

µ6||σ||2||ω||2 +
(
λ

2δ2
+ ψ

2δ2

)︸ ︷︷ ︸
,γ5

µ2d̄2

=− γ1(t)µ10||σ||2 − γ2µ
10||σ||4 − γ3(t)µ6||ω||2 − γ4µ

6||σ||2||ω||2 + γ5µ
2d̄2.

(5.22)

Under the assumption that κ3 > 0 (β sufficiently large), we have that
both γ2 > 0 and γ4 > 0. Then, we simplify Eq. 5.22 as:

V̇ ≤− γ1(t)µ10||σ||2 − γ3(t)µ6||ω||2 + γ5µ
2d̄2. (5.23)

As for γ1(t) and γ3(t), we notice that limt→tf γ1(t) = λφ1 and
limt→tf γ3(t) = ψκ1. Since γ1(t) and γ3(t) are monotonically increasing func-
tions in the interval t ∈ [0, tf ), then ∃ t1 ∈ [0, tf ) s.t. γ1(t) > 0 and γ3(t) > 0,
for any t ∈ [t1, tf ).

In the proofs that follow, Lemma 2 demonstrates that the differential
equation of Eq. 5.23 does not admit finite-time-escape in the interval t ∈ [0, t1].
Then, Lemma 3 proves that V (t) is bounded for t ∈ [t1, tf ).
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Lemma 2. Given the definitions γ1(t) , λ
(
κ1 − 16ν

λtf
µ−1 − 3J̄

tf
µ−2
)

, γ3(t) ,

ψ
(
κ2 − 2J̄

tf
µ−1
)

, and γ5 , λ
2δ2

+ ψ
2δ2

, the differential equation of Eq. 5.23 does

not admit finite-time-escape for t ∈ [0, t1], ∀ t1 < tf .

Proof. We start the proof by bounding Eq. 5.23 as:

V̇ ≤ −γ1(t)µ10||σ||2 − γ3(t)µ6||ω||2 + γ5µ
2d̄2

= −λ
(
κ1 − 16ν

λtf
µ−1 − 3J̄

tf
µ−2
)
µ10||σ||2 − ψ

(
κ2 − 2J̄

tf
µ−1
)
µ6||ω||2 + γ5µ

2d̄2

≤
(

16ν
tf

+ 3λJ̄
tf

)
µ10||σ||2 +

2ψJ̄

tf
µ6||ω||2 + γ5µ

2d̄2

≤ Γµ2
(
µ8||σ||2 + µ4||ω||2

)
+ γ5µ

2d̄2, (5.24)

where Γ , max
(

16ν
tf

+ 3λJ̄
tf
, 2ψJ̄
tf

)
. Using Eq. 5.9 and noticing that µ(t) ≤

µ(t1), ∀t ∈ [0, t1], for t1 < tf , then Eq. 5.24 can be bounded as:

V̇ ≤ Γ

α
µ2(t1)V + γ5µ

2(t1)d̄2. (5.25)

Using the Comparison Lemma [31] on Eq. 5.25, we get that:

V (t) ≤ V (0) exp
(

Γ
α
µ2(t1) · t

)
+
γ5αd̄

2

Γ

[
exp

(
Γ
α
µ2(t1) · t

)
− 1
]
, t ∈ [0, t1]

≤ V (0) exp
(

Γ
α
µ2(t1) · t1

)
+
γ5αd̄

2

Γ

[
exp

(
Γ
α
µ2(t1) · t1

)
− 1
]
, t ∈ [0, t1].

(5.26)

Hence, V (t) is upper-bounded by a constant in the period t ∈ [0, t1],
implying that finite-time-escape is not possible for the same period.

Lemma 3. Given that γ1(t1) > 0 and γ1(t3) > 0, the solution to the differential
equation of Eq. 5.23 is bounded for t ∈ [t1, tf ).

Proof. Eq. 5.23 can be written as:

V̇ ≤ −γ1(t)µ10||σ||2 − γ3(t)µ6||ω||2 + γ5µ
2d̄2

≤ −γ1(t1)µ10||σ||2 − γ3(t1)µ6||ω||2 + γ5µ
2d̄2

≤ −Lµ2
(
µ8||σ||2 + µ4||ω||2

)
+ γ5µ

2d̄2, (5.27)
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where L , min
(
γ1(t1), γ3(t1)

)
. Combining Eq. 5.27 with Eq. 5.8, we get that:

V̇ ≤ −L
ᾱ
µ2V + γ5µ

2d̄2. (5.28)

Once again, invoking the Comparison lemma leads to:

V (t) ≤ Φ(t, t1)V (t1) + γ5d̄
2Φ(t, 0)

∫ t

t1

Φ(0, τ)µ2(τ) dτ, (5.29)

where Φ(t1, t2) = exp
[
−L
ᾱ
tf
(
µ(t1)− µ(t2)

)]
.

As shown in Eq. 5.2, dµ(τ)
dτ

= 1
tf
µ2(τ), leading to µ2(τ)dτ = tfdµ. The

integral within Eq. 5.29 can be written as:∫ t

t1

Φ(0, τ)µ2(τ) dτ = tf

∫ µ(t)

µ(t1)

Φ(0, τ) dµ = tf

∫ µ(t)

µ(t1)

exp
[
L
ᾱ
tf · µ

]
dµ

=
ᾱ

L
exp

[
L
ᾱ
tf · µ

] ∣∣∣µ(t)

µ(t1)

=
ᾱ

L
exp

(
L
ᾱ
tf · µ(t)

) [
1− exp

[
−L
ᾱ
tf
(
µ(t)− µ(t1)

)]]
=
ᾱ

L
Φ(0, t)

[
1− exp

[
−L
ᾱ
tf
(
µ(t)− µ(t1)

)]]
. (5.30)

Using the fact that Φ(t, 0)Φ(0, t) = I, Eq. 5.29 can be written as:

V (t) ≤ V (t1) exp
[
−L
ᾱ tf

(
µ(t)− µ(t1)

)]
+
γ5ᾱ

L
d̄2
(
1− exp

[
−L
ᾱ tf

(
µ(t)− µ(t1)

)])
≤ V (t1) +

γ5ᾱ

L
d̄2. (5.31)

Therefore, V (t) ∈ L∞, for t ∈ [t1, tf ).

We have proven so far that the storage function satisfies V (t) ∈ L∞, t ∈
[0, tf ). Because V (t) ∈ L∞, there exists V̄ such that V (t) ≤ V̄ for t ∈ [0, tf ).
Using this inequality with Eq. 5.9, we get that:

αµ8||σ||2 + αµ4||ω||2 ≤ V̄ =⇒

{
αµ8||σ||2 ≤ V̄

αµ4||ω||2 ≤ V̄
=⇒

µ
4||σ|| ≤

√
V̄
α

µ2||ω|| ≤
√

V̄
α

(5.32)
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Therefore, µ4(t)||σ(t)|| ∈ L∞ and µ2(t)||ω(t)|| ∈ L∞. Because
µ4(t)||σ(t)|| ∈ L∞, then it must be true that ||σ(t)|| ∈ L∞ implying that
b(σ) = 1 + ||σ(t)||2 ∈ L∞. Hence, the control law of Eq. 5.5 is a product of
bounded terms, satisfying u(t) ∈ L∞, i.e., it is realizable. In addition, the
following can be established from Eq. 5.32:µ

4||σ|| ≤
√

V̄
α

µ2||ω|| ≤
√

V̄
α

=⇒

||σ|| ≤ µ−4
√

V̄
α

||ω|| ≤ µ−2
√

V̄
α

=⇒

{
limt→tf ||σ|| ≤ 0

limt→tf ||ω|| ≤ 0
.

(5.33)

Therefore, limt→tf ||σ|| = 0 and limt→tf ||ω|| = 0, finalizing our proofs.

5.2.3 Summary of the Stability Proof

In this section we summarize all important details used in the stability
proof. We have proven that the system below is finite-time stable:

σ̇(t) = 1
4
B(σ(t))ω(t)

Jω̇(t) = −ω∗(t)Jω(t) + u(t)

u = −b(σ)
(
φ1µ

4(t)σ + φ2µ
2(t)ω

) , (5.34)

provided that φ1 ,
k1
ψ
> 0 and φ2 ,

k2
ψ
> 0.

Our proof was made based on the storage function:

V = 2νµ8σTσ +
ψ

2
µ4ωTJω + λµ6σTJω, (5.35)

where λ , Jψ
βJ̄

. The storage function above is positive-definite in the interval

t ∈ [0, tf ) provided that ν > 0, ψ > 0, λ > 0, ν
ψ
> J

β
and β > 1. We have

defined ν , k1 + λφ2, so it is sufficient that k1
ψ

= φ1 >
J
β

to satisfy ν
ψ
> J

β
,

implying that we need β > J
φ1

.

In order to guarantee ultimate boundedness of the storage function
V (t), t ∈ [0, tf ), we also made the requirement that β has to be large enough
and δ small enough to make κ1 > 0, κ2 > 0 and κ3 > 0 for any given φ1 > 0
and φ2 > 0, where κ1 , φ1 − δ2

2
, κ2 , φ2 − 3

tf

J
β
− 3

4
J
β
− δ2

2
, κ3 , φ2 − 3

4
J
β
.
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Given β and δ satisfying all previous requirements, we can prove that
the storage function satisfies V (t) ∈ L∞. The boundedness on the stor-
age function is a sufficient condition to prove that the control law u =
−b(σ)

(
φ1µ

4(t)σ + φ2µ
2(t)ω

)
is realizable and that limt→tf ||σ|| = 0 and

limt→tf ||ω|| = 0.

The control design herein presented can be extended to the trajectory

tracking case. The proofs for trajectory tracking and its respective control law

can be found in Appendix C.1.

5.3 Simulation Results

This section presents some simulation results for the newly designed

control laws. We show that these control laws drive the system to zero error

as expected. Simulations are performed for final time tf = 30s.

For all simulations, the initial orientation is given by a rotation of

ψ(0) = π around the axis ê(0) = 1/
√

3
[
1, 1, 1

]T
, and the initial angular

velocity is given by ω(0) =
[
−0.03, 0.04, −0.05

]T
. The inertia matrix is the

same as in Ref. [29]:

J =

 95 −0.69 0.18
−0.69 190 0.12
0.18 0.12 142.5

 (5.36)

Figure 5.1 shows the result for the stabilization of the system to the

origin using the control law from Eq. 5.34, with φ1 = φ2 = 20. The left plots

are in a linear scale, while the plots on the right are in logarithm scale. Values

below 2.20 · 10−16 are considered zero and are not shown on the log plot. We

can see that the system is being driven towards the origin increasingly faster
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Figure 5.1: Time histories of state trajectories for the set-point regulation case
with φ1 = φ2 = 20.

until the machine zero is reached. Notice that the states (ω and σ) and the

inputs (u)) all converge to zero. The log plots fade to zero before 30 seconds,

but one should have in mind that this is the double precision zero, not the

mathematical zero. The mathematical zero should only happen at exactly

t = tf as per our proofs.

Figure 5.2 has a simulation result that is similar to the last one,

except that now we apply a disturbance torque on the system d =
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Figure 5.2: Time histories of state trajectories for the disturbed set-point
regulation case with φ1 = φ2 = 20, and d = [0.5 0.5 0.5]TN.m.

[
0.5 0.5 0.5

]T
N.m. Note that the states of the system converge to the origin,

but the control input converges as limt→tf ||u|| = ||d|| = 0.86603N.m.

Figure 5.3 shows another stabilization result without disturbances, ex-

cept that the control gains are given as φ1 = φ2 = 100. We notice that the

system converges faster than in the previous simulations (as one would expect

from higher feedback gains), but the control input norm ||u|| is much higher

at the beginning of the simulation. Hence, we can observe a trade-off between
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Figure 5.3: Time histories of state trajectories for the disturbed set-point
regulation case with φ1 = φ2 = 100.

the norm of the control input and convergence rate as a function of the con-

trol gains, and one should avoid too high control gains if the actuators cannot

achieve very high torques.

Figure 5.4 shows another stabilization result without disturbances, ex-

cept that the control gains are much lower compared to the previous simula-

tions, as we choose φ1 = φ2 = 1. We notice that convergence is much slower,

and that the control effort is much higher (in terms of the two-norm absolute
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Figure 5.4: Time histories of state trajectories for the disturbed set-point
regulation case with φ1 = φ2 = 1.

value) than in any of the previous simulations. Practitioners should avoid too

low control gains in order to prevent high bounds on the control effort as time

approaches the terminal time.

5.4 Conclusions

This work introduces a feedback control law that is able to regulate

the attitude system for a rigid body from any initial configuration to a desired
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one in prescribed finite time. This result builds upon recently reported prior

work by the authors, using some crucial insights that allow for robustness for

the resulting controller albeit the possibility for large-scale uncertainties in

the inertia properties. The major distinction from those prior results is that

we introduce a new Lyapunov-like function here that enables us to derive a

stabilizing feedback control law that does not need to explicitly cancel the

rotational gyroscopic terms (fulfilling the well-known self-reduction property

of attitude systems). Saliently, we show that the proposed control law allows

the attitude system to converge to the origin even in the presence of unknown

bounded disturbances. For the sake of completeness, we also extended this

control result for the attitude tracking case through the inclusion of certain

carefully formulated feed-forward terms.

An interesting avenue of future work resides in finding bounds on the

control effort within the interval t ∈ [0, tf ) as a function of the control gains φ1,

φ2 and the prescribed final time tf . This could possibly provide engineering

insights that can be used by practitioners to determine whether a desired final

time tf allows finite-time transfer with given torque saturation constraints of

the attitude system. In addition, it would be important to determine methods

to tune the gains φ1, φ2 based on desired response. The interested reader

might want to refer to Ref. [29] for obtaining a “bang-bang” approximation of

minimum bounds for final transfer time given inertial properties and maximum

input torque bounds for rest to rest attitude transfers.

Another path of future work would be on the development of a finite-
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time rigid-body attitude observer based on attitude measurements only, con-

trasting with asymptotic attitude observers [63, 72]. Ref. [23] presents a gen-

eral finite-time observer for linear systems, but the development of finite-time

observers for nonlinear systems is still an open problem. Some of the formu-

lations in the present work could serve as guidance for the development of a

finite-time observer for attitude systems.
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Chapter 6

Conclusions

This dissertation presented developments in the fields of Control and

Estimation for attitude systems. The first half of this dissertation treated the

problem of estimating the angular velocity of a rotating rigid body, either in

pure spin or in tumbling motion. The second half concerned of the derivation

of Lyapunov-based finite-time attitude controllers for rigid bodies.

The first main contribution of this work resided in the introduction

of the Quaternion Regression Algorithm, a simple batch algorithm that es-

timates the angular velocity of a rigid body in pure spin by measuring the

body’s orientation evolution over time using the quaternion parameterization.

The performance of the proposed algorithm is analyzed using Monte Carlo

simulations, and is further compared with a Multiplicative Extended Kalman

Filter. Future work on this subject should include the derivation of the axis

of rotation’s error-covariance matrix, as well as expanding the algorithm for

using measurements with non-constant error-covariance.

The second contribution of this dissertation consisted on adapting the

Quaternion Regression Algorithm to deal with tumbling objects. In order to

accomplish this, an adaptive algorithm is introduced, which assumes that the
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rotating body is in pure-spin for a finite set of measurements. The new algo-

rithm determines by itself whether a sequence of measurements seem to be in

pure spin or not, and then adapts itself to use sequences that are close enough

to pure spin. The developed method is applied in conjunction with the optical

relative navigation technique of Simultaneous Localization and Mapping, and

simulation results demonstrate the effectiveness of the proposed approach. Fu-

ture work on this subject should use data from real space missions, validating

the proposed techniques.

The third and fourth contributions within this dissertation lie upon the

introduction of two Lyapunov-based finite-time attitude controllers for rigid

bodies. The first proposed controller relied on backstepping control techniques

to derive the proposed control-law, whereas the second one is based on a

single Lyapunov-like function. Simulation results demonstrate the effectiveness

of the proposed controllers, and their robustness to measurement noise and

unknown bounded disturbances. Future work on this subject should look

into understanding the transient response based on the controllers’ tuning

parameters, as well as understanding control effort magnitudes for different

final transfer time and tuning parameters. In addition, the formulations herein

presented could possibly be used as guidance for the development of a finite-

time attitude observer.
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Appendix A

Appendices for QuateRA

A.1 Total Least Squares Problem Formulation

The Total Least Squares problem consists of estimating the matrix

Â0 ∈ Rm×n, and the vectors B̂0 ∈ Rm and X̂ ∈ Rn that fits the linear

model [65]:

A0X = B0, (A.1)

where A0 is called the data matrix, B0 is the measurement vector, and X is

an unknown vector. In the TLS problem, the measured components are A∗i

and B∗i , which are random variables of the type:{
A∗i = A0i + ∆Ai

B∗i = B0i + ∆Bi

, (A.2)

where A0i and B0i are the true (unobservable) variables at the ith mea-

surement, ∆Ai, ∆Bi are their zero-mean respective observation errors, and

i ∈ {1, 2, · · · ,m}, with m being the number of measurements. For the pur-

poses of the current work, we assume A∗i as a row vector and B∗i as a scalar.

We define the vectors C∗i =
[
A∗i B∗i

]T
, ∆Ci =

[
∆Ai ∆Bi

]T
and

C∗0i =
[
A0i B0i

]T
. We assume that E[∆Ci∆C

T
j ] = 0, i 6= j and that

all ∆Ci are identically distributed. Defining the covariance matrix PC ,
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E[∆Ci∆C
T
i ],∀ i ∈ {1, · · · ,m}, we assume that PC is positive definite and

known. Taking the Cholesky decomposition PC = LCL
T
C , we define the ma-

trices C ,
[
L−1
C C

∗
1 · · · L−1

C C
∗
k

]
and C0 ,

[
L−1
C C

∗
01 · · · L−1

C C
∗
0k

]
.

Denoting Ĉ0 as the estimate of C0, the TLS problem seeks to minimize:

J =
∥∥C − Ĉ0

∥∥
F
, (A.3)

subject to B̂0 ∈ R(Â0) (B̂0 is in the range space of Â0).

A.2 Gaussian Marginal Covariance Along a Line

Lemma 4. Assume a bivariate normally-distributed random variable with

mean µ =
[
µx µy

]T
and covariance matrix P = diag

(
σ2, σ2

)
. The Prob-

ability Density Function (PDF) for this random variable is given by:

p(x, y) =
1

2πσ2
exp

(
1

2σ2

[(
x− µx

)2
+
(
y − µy

)2
])

(A.4)

Then the marginal PDF of Eq. A.4 along any line L(l0,
−→
l ) is a one-

dimensional normally-distributed random variable with mean at l∗0 and vari-

ance σ2 along the
−→
l direction, where l∗0 = proj(µ, L) = l0 +

[(
µ− l0

)T −→
l
]−→
l

is the point in L(l0,
−→
l ) that minimizes the distance between L(l0,

−→
l ) and µ.

Proof. To prove this, we refer to Fig. A.1. The circles in Fig. A.1 refer to

level sets of the PDF from Eq. A.4, and are centered at µ =
[
µx µy

]T
. We

define αn as the distance between µ and the line L(l0,
−→
l ). Also, we define a

reference frame LN , which is centered at l0 and with basis directions
−→
l ∈ S1
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and −→n ∈ S1, where
−→
l is defined as along the line L(l0,

−→
l ). In addition, we

define the rotation matrix Rz ∈ SO(2) such that
−→
l = Rz

−→x and −→n = Rz
−→y ,

where −→x ,
[
1 0

]T
and −→y ,

[
0 1

]T
.

Figure A.1: Illustration for the proof of marginal PDF along a line.

The relation between a point in the LN frame and the XY frame is

given by: [
l
n

]
= Rz

[
x− µx
y − µy

]
−
[

0
αn

]
(A.5)

We define the vector a as:

a ,

[
x− µx
y − µy

]
= RT

z

[
l

n+ αn

]
(A.6)

One can see that the PDF of Eq. A.4 can be rewritten as:

p(x, y) =
1

2πσ2
exp

(
1

2σ2a
Ta
)

(A.7)
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Calculating aTa on the right-hand-side of Eq. A.6, we have that:

aTa =
[
l n+ αn

]
RzR

T
z

[
l

n+ αn

]
=
[
l n+ αn

] [ l
n+ αn

]
= l2 +

(
n+ αn

)2

(A.8)

Plugging Eq. A.8 into Eq. A.7, we have that:

p(l, n) =
1

2πσ2
exp

(
1

2σ2

[
l2 +

(
n+ αn

)2
])

(A.9)

Now we calculate the marginal PDF along the direction l. This is

accomplished by:

p(l) =

∫ ∞
−∞

p(l, n) dn =

∫ ∞
−∞

1

2πσ2
exp

(
1

2σ2

[
l2 +

(
n+ αn

)2
])

dn (A.10)

=
1√

2πσ2
exp

(
1

2σ2 l
2
) ∫ ∞
−∞

1√
2πσ2

exp
(

1
2σ2

(
n+ αn

)2
)
dn (A.11)

Making the substitution N , n+αn, we have that dn = dN , implying:

p(l) =
1√

2πσ2
exp

(
1

2σ2 l
2
) ∫ ∞
−∞

1√
2πσ2

exp
(

1
2σ2N

2
)
dN︸ ︷︷ ︸

= 1

=
1√

2πσ2
exp

(
1

2σ2 l
2
)

(A.12)

Inspecting Eq. A.12, we notice that the random variable l is normally

distributed with mean E[l] = 0 and variance var[l] = σ2, i.e., l ∼ N(0, σ2).

Lemma 5. Assume a bivariate normally-distributed random variable X ∈ R2

with mean µ and covariance matrix P (not necessarily diagonal), which is
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decomposed in the form P = QQT . The Probability Density Function (PDF)

for this random variable is given by:

p(X) =
1

2π
√
|P |

exp
(

1
2

[(
X − µ

)2
P−1

(
X − µ

)2
])

(A.13)

Then the marginal PDF of Eq. A.4 along any line L(l0,
−→
l ) is a one-

dimensional normally-distributed random variable with mean at l∗0 and stan-

dard deviation σ along the
−→
l direction, where:

l∗0 = l0 +
1

σ2

[(
µ− l0

)T
P−1−→l

]−→
l , σ =

1∥∥∥Q−1−→l
∥∥∥ =

1√−→
l P−1

−→
l
.

(A.14)

Proof. The random variable X can be represented as:

X = µ+ ε, (A.15)

where ε ∼ N(0,P ). Introducing a state transformation Y = Q−1X, we have

that:

Y = Q−1µ+Q−1ε. (A.16)

Defining the new variables µY , Q−1µ and εY = Q−1ε, it follows

that Y ∼ N(µY , I) and εY ∼ N(0, I). In addition, the line L(l0,
−→
l ) gets

transformed into the new state-space as LY (l0Y ,
−→
l Y ), where:

l0Y = Q−1l0,
−→
l Y =

Q−1−→l∥∥∥Q−1−→l
∥∥∥ (A.17)
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One should notice that any displacement S along the
−→
l direction is equivalent

to a displacement SY = S ·
∥∥∥Q−1−→l

∥∥∥ along the
−→
l Y direction.

Using the result from Lemma 4, the marginal distribution of the random

variable Y along the line LY (l0Y ,
−→
l Y ) is given by lY ∼ N(l∗0Y , 1), where:

l∗0Y = l0Y +
[(
µY − l0Y

)T −→
l Y

]−→
l Y (A.18)

Transforming Eq. A.18 into the original coordinates, and using the

transformations l0Y = Q−1l0 and µY = Q−1µ, we have that:

l∗0 = Ql∗0Y = QQ−1l0 +
Q∥∥∥Q−1−→l

∥∥∥2

[(
Q−1µ−Q−1l0

)T
Q−1−→l

]
Q−1−→l

= l0 +
1

−→
l TP−1

−→
l

[(
µ− l0

)T
Q−TQ−1−→l

]−→
l

= l0 +
1

−→
l TP−1

−→
l

[(
µ− l0

)T
P−1−→l

]−→
l (A.19)

Since lY ∼ N(l∗0Y , 1) and any displacement S along the
−→
l direction is

equivalent to a displacement SY = S ·
∥∥∥Q−1−→l

∥∥∥ along the
−→
l Y direction, then

a standard deviation σY = 1 in the
−→
l Y direction is equivalent to a standard

deviation

σ =
∥∥∥Q−1−→l

∥∥∥−1

(A.20)

in the
−→
l direction.

A.3 Statistics of the Spherical Uniform Distribution

In this section we prove that if e ∈ S2 is a unit vector uniformly dis-

tributed in the 3-D unit sphere, then: E[e] = 0 and E[eeT ] = 1
3
I.
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Assume a unit radius sphere and a cylinder of radius r = 1 and height

h = 2. According with Archimedes’ Hat-Box Theorem [21], if we slice both

the cylinder and the sphere at the same height as shown on Fig. A.2, then the

lateral surface area of the spherical segment (S1) is equal to the lateral surface

area of the cylindrical segment (S2).

S1 S2

Figure A.2: Illustration of Archimedes’ Hat-Box Theorem.

More specifically, the surface area S of the cylinder parametrized with

radius r = 1 and height h = 2 is the same as the unit-radius sphere, i.e,

S = 4π. A commonly used method [68] to generate uniformly distributed

samples on a sphere e ∈ S2 is to uniformly sample a point in the cylinder

through a height value z ∼ U[−1, 1], and an angle value φ ∼ U[−π, π], and

then map it to the sphere through the transformation:

e =

√1− z2 cos(φ)√
1− z2 sin(φ)

z

 . (A.21)

The transformation of Eq. A.21 guarantees that areas in the cylinder

are preserved in the sphere after the projection. Therefore, if a random variable
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is uniformly distributed in the prior space (cylindrical space), then it should

still be uniformly distributed in the posterior space (spherical space).

Denoting Pz(x) and Pφ(x) as the probability distributions of the scalar

variables z and φ respectively, then:

E[z] =

∫ 1

−1

xPz(x) dx =
1

2

∫ 1

−1

x dx =
1

4
x2
∣∣∣1
−1

= 0

E[z2] =

∫ 1

−1

x2Pz(x) dx =
1

2

∫ 1

−1

x2 dx =
1

6
x3
∣∣∣1
−1

=
1

3

E[1− z2] = 1− 1

3
=

2

3

E[cosφ] =

∫ π

−π
cosxPφ(x) dx =

1

2π

∫ π

−π
cosx dx =

1

2π
sinx

∣∣∣π
−π

= 0

E[sinφ] =

∫ π

−π
sinxPφ(x) dx =

1

2π

∫ π

−π
sinx dx = − 1

2π
cosx

∣∣∣π
−π

= 0

E[cosφ sinφ] =

∫ π

−π
cosx sinxPφ(x) dx =

1

2π

∫ π

−π
cosx sinx dx = 0

E[cos2 φ] =

∫ π

−π
cos2 xPφ(x) dx =

1

2π

∫ π

−π
cos2 x dx =

1

2

E[sin2 φ] =

∫ π

−π
sin2 xPφ(x) dx =

1

2π

∫ π

−π
sin2 x dx =

1

2

Therefore, given that z and φ are independently distributed, we have

that:

E[e] =

E[
√

1− z2 cos(φ)]

E[
√

1− z2 sin(φ)]
E[z]

 =

E[
√

1− z2]E[cos(φ)]

E[
√

1− z2]E[sin(φ)]
E[z]

 =

0
0
0

 . (A.22)
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Also, we have that:

E[eeT ] = E

 (1− z2) cos2 φ (1− z2) cosφ sinφ (1− z2)z cosφ
(1− z2) cosφ sinφ (1− z2) sin2 φ (1− z2)z sinφ

(1− z2)z cosφ (1− z2)z sinφ z2


=

1

3
I. (A.23)

A.4 Multiplicative Extended Kalman Filter Formula-
tion

We present the Multiplicative Extended Kalman Filter (MEKF) for-

mulation for the problem in hand. The filter herein presented is based on the

formulations in [34] and [36]. However, our equations differ from the works

cited since we do not have gyroscope measurements, and we do not estimate

the gyroscope measurement bias. In addition, the assumption that the angular

velocity is constant implies no process noise in the dynamics propagation.

We define the reference trajectory kinematics:

q̇R =
1

2
ωR ⊗ qR, (A.24)

where qR ,
[
qRs qTRv

]T
is the reference quaternion and ωR is the reference an-

gular velocity of the reference attitude. The true attitude q can be represented

as:

q = δq ⊗ qR, (A.25)

where δq ,
[
δqs δqTv

]T
represents the rotation from qR to the true rotation.
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Differentiating Eq. A.25, we get:

q̇ = δq̇ ⊗ qR + δq ⊗ q̇R =⇒ 1

2
ω ⊗ q = δq̇ ⊗ qR +

1

2
δq ⊗ ωR ⊗ qR.

(A.26)

Post-multiplying Eq. A.26 by q−1
R and isolating δq̇, we get:

δq̇ =
1

2

(
ω ⊗ q ⊗ q−1

R − δq ⊗ ωR
)

=
1

2

(
ω ⊗ δq − δq ⊗ ωR

)
=

1

2

([
0 −ω
ω −[ω×]

] [
δqs
δqv

]
−
[
δqs −δqTv
δqv δqsI − [δqv×]

] [
0
ωR

])
(A.27)

After some algebraic manipulations, we get that:

δq̇s =
(
ωR − ω

)T
δqv, δq̇v =

(
ω − ωR

)
δqs −

(
ω + ωR

)
× δqv.

We define the scaled attitude error Gibbs vector:

δg , 2
δqv
δqs

, (A.28)

The Gibbs vector associated with the noise quaternion of Eq. 2.25 is

given by:

gNk = 2eNk tan
θk
2
. (A.29)

The transformation from Gibbs vector to quaternion is done as follows:

δqs =

√
2

2 + ||δg||2
, δqv =

1

2
δqsδg. (A.30)

One should notice that E[gN ] = 0. In addition, assuming a small angle

approximation, then tan2 θk
2
≈ θ2k

4
, leading to E[gNg

T
N ] = 1

3
σ2
θI.
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The Gibbs error kinematics is described as:

δġ = 2
δq̇v
δqs
− 2

δqv
δqs

δq̇s
δqs

=
[
I + 1

4
δgδgT

] (
ω − ωR

)
− 1

2

(
ω + ωR

)
× δg.

Assuming the first order approximations δgδgT ≈ 0, and δω× δg ≈ 0,

we get to:

δġ ≈ δω − ωR × δg. (A.31)

Defining the state vector X ,
[
δgT ωT

]T
and the dynamics of

Eq. A.31, then we have the linearized state dynamics:

Ẋ =

[
−[ω×] I3

03 03

]
︸ ︷︷ ︸

,A

X. (A.32)

We define the state transition matrix:

Ad[k] , eAδk , δk , tk+1 − tk. (A.33)

In the propagation step, the following equations are used:

qk+1|k = F (ωk|k)qk|k,

ωk+1|k = ωk|k,

Pk+1|k = Ad[k]Pk|kA
T
d [k],

where Pk|k , E[Xk|kX
T
k|k], and Pk+1|k , E[Xk+1|kX

T
k+1|k], and F (ωk|k) is

defined in Eq. 2.23.
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As for the measurement model, only quaternion measurements are

available. The innovation term is given by:

νk = 2
q̃v[k]

q̃s[k]
, (A.34)

where q̃s[k] and q̃v[k] are, respectively, the scalar and vector parts of q̃k, defined

as:

q̃k ,

[
q̃s[k]
q̃v[k]

]
, q̂k ⊗ q−1

k|k−1.

Assuming the measurement noise defined in Eq. A.29, the measurement

covariance is given by Rk , E[gNg
T
N ] = 1

3
σ2
θI.

The measurement update step uses the following expressions:

Hk =
[
I3 03

]
,

Sk = HkPk|k−1H
T
k +Rk,

Kk = Pk|k−1H
T
k S
−1
k ,

∆xk|k = Kkνk,

Pk|k = (I −KkHk)Pk|k−1(I −KkHk)
T +KkRkK

T
k ,

where ∆xk|k ,
[
∆x1 ∆x2 ∆x3 ∆x4 ∆x5 ∆x6

]T
is the incremental state

update typical for standard EKF formulations.

The updated state δgk|k can be obtained from ∆xk|k as δgk|k =[
∆x1 ∆x2 ∆x3

]T
. Bearing in mind that δgk|k represents the attitude

error respective to δqk (see Eqs. A.25 and A.28), then δqk|k can be ob-

tained from δgk|k using the transformation in Eq. A.30. Defining ∆ω =
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[
∆x4 ∆x5 ∆x6

]T
, the updated states are given by:

qk|k = δqk|k ⊗ qk|k−1,

ωk|k = ωk|k−1 + ∆ω.
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Appendix B

Appendices for Chapter 4

B.1 Boundedness of µα1σ

In this section, we prove that if:

µλ(t) ln
(
1 + σT (t)σ(t)

)
≤ V0(0) exp

[
−ktf · µ̄(t)

]
, (B.1)

then µα1σ ∈ L∞, ∀α1 ∈ R.

Starting from Eq. B.1, we use the definition µ̄(t) , µ(t)− 1 to get:

µλ(t) ln
(
1 + σT (t)σ(t)

)
≤ V0(0) exp

[
−ktf · (µ(t)− 1)

]
= V0(0)ektf exp

[
−ktf · µ(t)

]
= α2 exp

[
−ktf · µ(t)

]
, (B.2)

where α2 , V0(0)ektf > 0.
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Defining β(t) , exp
[
−ktf · µ(t)

]
, it follows that:

µλ(t) ln
(
1 + σT (t)σ(t)

)
≤ α2β(t)

ln
(
1 + σT (t)σ(t)

)
≤ α2µ

−λ(t)β(t)

1 + σT (t)σ(t) ≤ exp
[
α2µ

−λ(t)β(t)
]

σT (t)σ(t) ≤ exp
[
α2µ

−λ(t)β(t)
]
− 1

µ2α1(t)σT (t)σ(t) ≤ µ2α1(t)
[
exp

[
α2µ

−λ(t)β(t)
]
− 1
]

||µα1(t)σ(t)||2 ≤
exp

[
α2µ

−λ(t)β(t)
]
− 1

µ−2α1(t)
. (B.3)

In order to show that the signal f(t) , ||µα1(t)σ(t)||2 is bounded, we

need to evaluate the limit as t→ tf . Taking the limit on both sides:

lim
t→tf

f(t) ≤ lim
t→tf

exp
[
α2µ

−λ(t)β(t)
]
− 1

µ−2α1(t)
. (B.4)

The above limit can be rewritten as:

lim
t→tf

f(t) ≤ lim
µ→∞

exp
[
α2µ

−λ exp
[
−k · tf · µ

]]
− 1

µ−2α1
. (B.5)

Assuming that λ < 2α1, Lemmas 6 and 7 are used to prove that the

right-hand side of Eq. B.5 is equal to zero, implying that ||µα1(t)σ(t)||2 ∈

L∞, ∀α1 > λ/2. In addition, since ||µη1(t)σ(t)||2 ≤ ||µη2(t)σ(t)||2, for η1 ≤ η2,

then ||µα1(t)σ(t)||2 ∈ L∞, ∀α1 ∈ R.

Lemma 6. For any finite real constants α1 6= 0, α2 > 0, γ1 > 0, γ2 > 0, then:

lim
x→0+

α1x
−γ1exp

[
−α2x

−γ2
]

= 0. (B.6)

148



Proof. Making the substitution y = x−γ2 , then:

lim
x→0+

α1x
−γ1exp

[
−α2x

−γ2
]

= lim
y→∞

α1y
γ3+γ4e−α2y, (B.7)

where γ3 ∈ N , bγ1/γ2c and γ4 ∈ [0, 1) , γ1/γ2 − γ3.

One can notice that the limit in Eq. B.7 is a product of zero with ∞,

which can be solved for by using L’Hospital’s rule. Defining γ5 , γ3 + γ4, we

apply L’Hospital’s rule γ3 times, leading to:

lim
y→∞

α1y
γ5e−α2y = lim

y→∞
−α1α2γ5y

γ5−1e−α2y

= lim
y→∞

α1α
2
2γ5(γ5 − 1)yγ5−2e−α2y

= · · ·

= lim
y→∞

(−1)γ3α1α
γ3
2 γ5(γ5 − 1) · · · (γ5 − γ3)yγ4e−α2y. (B.8)

If γ4 = 0, then the proof is complete. However, if γ4 ∈ (0, 1), then we

need to use L’Hospital’s rule one more time:

lim
y→∞

α1y
γ5e−α2y = lim

y→∞
(−1)γ3+1α1α

γ3+1
2 γ5(γ5 − 1) · · · (γ5 − γ3)γ4y

γ4−1e−α2y = 0.

(B.9)

Lemma 7. For any finite real constants α1 > 0, α2 > 0, and 0 < γ1 ≤ γ2 < γ3,

then limx→∞ f(x) = 0, where:

f(x) =
exp

[
α1x

−γ2 exp
[
−α2x

γ1
]]
− 1

x−γ3
. (B.10)
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Proof. Defining y , x−γ3 , we have that y−γ4 = xγ1 , and yγ5 = x−γ2 , where

γ4 ,
γ1
γ3

and γ5 ,
γ2
γ3

. Since 0 < γ1 ≤ γ2 < γ3, then 0 < γ4 ≤ γ5 < 1. The limit

can be rewritten as:

lim
x→∞

f(x) = lim
y→0+

f(y) =
exp

[
α1y

γ5 exp
[
−α2y

−γ4
]]
− 1

y
. (B.11)

For notation simplicity, we define β(y) , exp
[
−α2y

−γ4
]
, leading to:

lim
y→0+

f(y) = lim
y→0+

exp
[
α1y

γ5β(y)
]
− 1

y
. (B.12)

It is straightforward to see that limy→0+ β(y) = 0 and that

limy→0+ e
α1yγ5β(y) = 1. Since this limit is a ratio of zero with zero, we can

use L’Hospital’s rule to show that the right-hand side of Eq. B.12 converges

to zero as y → 0+. We define the numerator signal as:

n(y) , eα1yγ5β(y) − 1. (B.13)

Clearly, it is sufficient to prove that if limy→0+
dn(y)
dy

= 0, then

lim
y→0+

eα1yγ5β(y) − 1

y
= 0, (B.14)

implying that limy→0+ f(y) = 0. Using the notation f ′ , ∂f
∂y

the derivative of

n(y) is given by:

n′(y) = α1

( γ5
yγ6
β(y) + yγ5β′(y)

)
eα1yγ5β(y), (B.15)

where γ6 > 0 is defined as γ6 , 1− γ5. Given that

β′(y) = α2γ4y
−γ4−1 exp

[
−α2y

−γ4
]

=
α2γ4

yγ7
β(y), (B.16)
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for γ7 , 1 + γ4 > 1, we can substitute Eq. B.16 into Eq. B.15:

n′(y) = α1

( γ5
yγ6
β(y) + α2γ4

yγ7−γ5
β(y)

)
eα1yγ5β(y). (B.17)

One should note that since γ7 > 1 and 0 < γ5 < 1, then γ7 − γ5 > 0.

Using Lemma 6 and the definition β(y) , exp
[
−α2y

−γ4
]
, then:{

limξ→0+
γ5
yγ6
β(y) = 0,

limξ→0+
α2γ4
yγ7−γ5

β(y) = 0
. (B.18)

Remembering that limy→0+ β(y) = 0, and that limy→0+ e
α1yγ5β(y) = 1,

then limy→0+ n
′(y) = 0, which implies that limx→∞ f(x) = 0.

B.2 Convergence proof for µρ(t)σ(t)

In this section, we show that the inequality

µλ(t) ln(1 + σT (t)σ(t)) ≤ V̄ , (B.19)

for a constant V̄ > 0, implies that µλ/2σ ∈ L∞ and that limt→tf µ
ρ(t)σ(t) =

0, ∀ρ < λ/2.

Starting from Eq. B.19, we have that:

σT (t)σ(t) ≤ exp
[
V̄ µ−λ(t)

]
− 1 (B.20)

µλ(t)σT (t)σ(t) ≤ µλ(t)
[
exp

[
V̄ µ−λ(t)

]
− 1
]

(B.21)

||µλ/2(t)σ(t)||2 ≤
exp

[
V̄ µ−λ(t)

]
− 1

µ−λ(t)
. (B.22)
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In order to show that the signal f(t) , ||µλ/2(t)σ(t)||2 is bounded, we

need to evaluate the limit as t→ tf . Taking the limit on both sides:

lim
t→tf

f(t) ≤ lim
t→tf

exp
[
V̄ µ−λ(t)

]
− 1

µ−λ(t)
. (B.23)

Assuming λ > 0, the above limit can be rewritten as:

lim
t→tf

f(t) ≤ lim
µ→∞

exp
[
V̄ µ−λ

]
− 1

µ−λ
. (B.24)

Defining ξ(t) , µ−λ(t), we have that:

lim
t→tf

f(t) ≤ lim
ξ→0+

exp
[
V̄ ξ
]
− 1

ξ
. (B.25)

Since the above limit is a ratio of zero with zero, we can use L’Hospital’s

rule:

lim
t→tf

f(t) ≤ lim
ξ→0+

d
dξ

[
exp

[
V̄ ξ
]
− 1
]

d
dξ
ξ

(B.26)

= lim
ξ→0+

V̄ exp
[
V̄ ξ
]

(B.27)

= V̄ (B.28)

Therefore, f(t) , ||µλ/2(t)σ(t)||2 is bounded, i.e., µλ/2σ ∈ L∞. Also,

since ||µλ/2(t)σ(t)||2 ≤ V̄ , then for any ε > 0 and constant ρ such that 2ε+ρ =

λ/2 we have that ||µρσ(t)||2 ≤ µ−ε(t)V̄ , implying that limt→tf ||µρσ(t)||2 = 0.
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Appendix C

Appendices for Chapter 5

C.1 Finite Time Tracking Design

Section 5.2 developed a stabilizing controller that takes the system to

the origin. In this section, we develop the equivalent controller for tracking a

desired trajectory.

Assume a desired trajectory given by a desired orientation signal σd(t)

and a desired angular velocity signal ωd(t) such that σ̇d(t) = 1
4
B(σd(t))ωd(t).

The objective is to reach the desired trajectory at time t = tf , i.e., σe(tf ) = 0

and ωe(tf ) = 0, where σe(t) , σ(t) ⊗ σ−1
d (t) is the reference attitude error

and ωe(t) , ω(t) − C(σe)ωd(t) is the angular velocity error expressed in

the true orientation’s frame of reference. The matrix C(σe) is the direction

cosine matrix equivalent to the rotation σe (see Eq. 4.7) and satisfies Ċ(σe) =

−ω∗eC(σe). We assume that the quantities σd(t), ωd(t), and ω̇d(t) are bounded

as σd(t) ≤ σ̄d, ωd(t) ≤ ω̄d, ω̇d(t) ≤ ¯̇ωd, and are fully specified as part of the

tracking control objective. For simplicity of notation, the remainder of this

section uses the notation ωbd , C(σe)ωd and C , C(σe).

In order to control the tracking error dynamics, we need to stabilize
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the equations of motion below in finite-time:{
σ̇e(t) = g(σe)ωe(t)

Jω̇(t) = −ω∗(t)Jω(t) + u(t) + d(t)
. (C.1)

This can be accomplished with the control law below:

u(t) = −φ1µ
4b(σe)σe − φ2µ

2b(σe)ωe︸ ︷︷ ︸
,ufb

+JCω̇d + ωb∗d Jω
b
d︸ ︷︷ ︸

,uff

, (C.2)

where ufb contains the feedback terms of the control law and uff contains the

feed-forward terms.

First, we note that the quantity Jωbd has the following time-derivative:

Jω̇bd = JĊωd + JCω̇d = −Jω∗eCωd + JCω̇d = −Jω∗eωbd + JCω̇d. (C.3)

Hence, the time derivative of Jωe = Jω − Jωbd is given by:

Jω̇e = −ω∗Jω + u+ Jω∗eω
b
d − JCω̇d + d. (C.4)

Writing the control input as u = ufb + uff , and explicitly writing the

feed-forward term uff = JCω̇d + ωb∗d Jω
b
d, we get to:

Jω̇e = ufb − ω∗Jω + ω∗dJωd + Jω∗eω
b
d + d

= ufb − ω∗Jω + ω∗dJωd − Jωb∗d ωe + d. (C.5)

Using the relation ω = ωe + ωbd on the second term of Eq. C.7, we get

that:

ω∗Jω = ω∗eJω + ωb∗d Jω = ω∗eJω + ωb∗d Jωe + ωb∗d Jω
b
d. (C.6)
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Combining Eq. C.6 with Eq. C.7, we get:

Jω̇e = ufb − ω∗eJω − ωb∗d Jωe −�����
ωb∗d Jω

b
d + ����ω∗dJωd − Jωb∗d ωe + d

= ufb − ω∗eJω −
(
ωb∗d J + Jωb∗d

)
ωe + d

= ufb − ω∗eJω −Qωe + d, (C.7)

where Q , ωb∗d J +Jωb∗d is a skew-symmetric, i.e., QT = Q. This implies that

ωTe Qωe = 0, ∀ωe ∈ R3. Therefore, we have that:

ωTe Jω̇e = ωTe ufb − ωTe ω∗eJω − ωTe Qωe + ωTe d = ωTe ufb + ωTe d. (C.8)

As before, we define our storage function as V = V1 + V2 + V3, where:

V1 , 2νµ8σTe σe, V2 ,
ψ

2
µ4ωTe Jωe, V3 , λµ6σTe Jωe, (C.9)

where λ > 0, ψ > 0 and ν , k1 + λk2
ψ

are constant values, and have to satisfy

the same conditions as in Eq. 5.10 for positive-definiteness of V (t).

Taking the time-derivative on V1, we get:

V̇1 =
16ν

tf
µ9σTe σe + 4νµ8σTe σ̇e =

16ν

tf
µ9||σe||2 + νµ8σTe B(σe)ωe

=
16ν

tf
µ9||σe||2 +

(
k1 + λk2

ψ

)
µ8b(σe)σ

T
e ωe. (C.10)

Taking the time-derivative on V2:

V̇2 =
2ψ

tf
µ5ωTe Jωe + ψµ4ωTe Jω̇e. (C.11)
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Using Eq. C.8, we get:

V̇2 =
2ψ

tf
µ5ωTe Jωe + ψµ4ωTe ufb + ψµ4ωTe d

≤2ψJ̄

tf
µ5||ωe||2 + ψµ4ωTe ufb + ψ(δµ3ωTe )(

1

δ
µd)

≤2ψJ̄

tf
µ5||ωe||2 + ψµ4ωTe ufb +

ψδ2

2
µ6||ωe||2 +

ψ

2δ2
µ2d̄2. (C.12)

Here we use the feedback law:

ufb = −φ1µ
4b(σe)σe − φ2µ

2b(σe)ωe, (C.13)

leading to the following on V̇2:

V̇2 ≤
2ψJ̄

tf
µ5||ωe||2 − ψφ1µ

8b(σe)ω
T
e σe − ψφ2µ

6b(σe)||ωe||2

+
ψδ2

2
µ6||ωe||2 +

ψ

2δ2
µ2d̄2. (C.14)

Using the definitions ψφ1 = k1 and b(σe) = 1 + ||σe||2, we have the

following for V̇1 + V̇2:

V̇1 + V̇2 ≤
16ν

tf
µ9||σe||2 +

λk2

ψ
µ8b(σe)σ

T
e ωe + ψ

(
2J̄
tf
µ−1 + δ2

2
− φ2

)
µ6||ωe||2

−ψφ2µ
6||σe||2||ωe||2 +

ψ

2δ2
µ2d̄2. (C.15)

Finally, taking derivative on V3:

V̇3 =
6λ

tf
µ7σTe Jωe + λµ6σTe Jω̇e +

λ

4
µ6ωTe JB(σe)ωe

≤ 6λJ̄

tf
µ8||σe||2 +

6λJ̄

tf
µ6||ωe||+ λµ6σTe Jω̇e +

λJ̄

4
b(σe)µ

6||ωe||2

=
6λJ̄

tf
µ8||σe||2 + λ

(
6J̄
tf

+ J̄
4

)
µ6||ωe||+ λµ6σTJω̇e +

λJ̄

4
µ6||σe||2||ωe||2.

(C.16)
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Now we expand the term µ6σTJω̇e by combining it with Eq. C.7:

µ6σTe Jω̇e =µ6
[
σTe ufb − σTe ω∗eJ(ωe + ωbd)− σTe Qωe + σTe d

]
≤µ6

[
σTe ufb+J̄ ||σe||||ωe||2+ω̄dJ̄ ||σe||||ωe||+Q̄||σe||||ωe||+d̄||σe||

]
=µ6

[
σTe ufb + J̄ ||σe||||ωe||2 + (ω̄dJ̄ + Q̄)||σe||||ωe||+ d̄||σe||

]
≤− φ1b(σe)µ

10||σe||2 − φ2b(σe)µ
8σTe ωe +

J̄

2
µ6
(
1 + ||σe||2

)
||ωe||2+

+
1

2
(ω̄dJ̄ + Q̄)µ8||σe||2 +

1

2
(ω̄dJ̄ + Q̄)µ4||ωe||2 + µ6d̄||σe||,

(C.17)

where Q̄ , ||Q̌||, in which (̌·) is the inverse of the skew-symmetric operator in

a vector: (v̌∗) = v.

Given that λ
(

1
δ
µd̄
) (
δµ5||σe||

)
≤ λ

2δ2
µ2d̄2 + λδ2

2
µ10||σe||2 for some δ > 0,

we can combine Eq. C.16 with Eq. C.17:

V̇3 ≤λ
(

6λJ̄
tf
µ−2+ ω̄dJ̄

2
µ−2+ Q̄

2
µ−2+ δ2

2
−φ1

)
µ10||σe||2−λφ1µ

10||σe||4+
λ

2δ2
d̄2µ2

+λ
(

6J̄
tf

+ 3J̄
4

+ ω̄dJ̄
2
µ−2 + Q̄

2
µ−2
)
µ6||ωe||+

3λJ̄

4
µ6||σe||2||ωe||2

− λφ2µ
8b(σe)σ

T
e ωe. (C.18)

Now we combine Eqs. C.15 and C.18 to obtain V̇ :

V̇ ≤λ
(

16ν
tf
µ−1+ 6J̄

tf
µ−2+ ω̄dJ̄

2
µ−2+ Q̄

2
µ−2+ δ2

2
−φ1

)
µ10||σe||2−λφ1µ

10||σe||4

+
(

6λJ̄
tf

+ 3λJ̄
4

+ λω̄dJ̄
2
µ−2 + λQ̄

2
µ−2 + 2ψJ̄

tf
µ−1 + ψδ2

2
− ψφ2

)
µ6||ωe||

+
(

3λJ̄
4
− ψφ2

)
µ6||σe||2||ωe||2 +

(
λ

2δ2
+ ψ

2δ2

)
d̄2µ2. (C.19)
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Using the definition λ = J
J̄β
ψ, we get:

V̇ ≤− λ
(
φ1− δ2

2
− 16ν

tf
µ−1− 6J̄

tf
µ−2+ ω̄dJ̄

2
µ−2− Q̄

2
µ−2
)
µ10||σe||2−λφ1µ

10||σe||4

− ψ
(
φ2 − δ2

2
− 6

tf

J
β
− 3

4
J
β
− ω̄d

2
J
β
µ−2 − Q̄

2
J
J̄β
µ−2 − 2J̄

tf
µ−1
)
µ6||ωe||

− ψ
(
φ2 − 3

4
J
β

)
µ6||σe||2||ωe||2 + ψ

(
1

2δ2
J
J̄β

+ 1
2δ2

)
d̄2µ2. (C.20)

Defining κ1 , φ1 − δ2

2
, κ2 , φ2 − δ2

2
− 6

tf

J
β
− 3

4
J
β
, and κ3 , φ2 − 3

4
J
β
,

we can always choose β large enough and δ small enough such that κ1 > 0,

κ2 > 0, and κ3 > 0, for any given φ1 > 0 and φ2 > 0. We make the definitions:

γ1(t) , λ
(
κ1 − 16ν

tf
µ−1 − 6J̄

tf
µ−2 + ω̄dJ̄

2
µ−2 − Q̄

2
µ−2
)
, γ2 , λφ1

γ3(t) , ψ
(
κ2 − ω̄d

2
J
β
µ−2 − Q̄

2
J
J̄β
µ−2 − 2J̄

tf
µ−1
)
, γ4 , ψκ3,

γ5 , ψ
(

1
2δ2

J
J̄β

+ 1
2δ2

)
, (C.21)

such that:

V̇ ≤−γ1(t)µ10||σe||2−γ2µ
10||σe||4−γ3(t)µ6||ωe||2−γ4µ

6||σe||2||ωe||2+γ5µ
2d̄2.

(C.22)

Because γ2 > 0 and γ4 > 0, we can simplify Eq. C.22 as:

V̇ ≤− γ1(t)µ10||σe||2 − γ3(t)µ6||ωe||2 + γ5µ
2d̄2. (C.23)

Again, we can argue that there exists t1 ∈ [0, tf ) such that γ1(t) > 0

and γ2(t) > 0, for any t ∈ [t1, tf ). With this, we can proceed with proofs such

as in Lemma 2 and Lemma 3 from Section 5.2.2 to prove that V (t) is bounded

for t ∈ [0, tf ) and that the tracking problem converges in finite-time in the

presence of disturbances by use of the control law of Eq. C.2.
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