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Three-Dimensional Rock-Fall Analysis with Impact Fragmentation and 

Fly-Rock Modelling 

 

Publication No._____________ 

 

 

Yuannian Wang, Ph.D. 

The University of Texas at Austin, 2009 

 

Supervisor:  Fulvio Tonon 

 

The dissertation details work aimed toward the development and implementation 

of a 3-D impact fragmentation module to perform rock fall analysis by taking into 

account impact fragmentation. This fragmentation module is based on a database of a 

large set of impact simulations using a fully calibrated discrete element model (DEM), 

and is employed to predict impact fragmentation processes in rockfall analysis by either 

training a neural network model or linearly interpolating the database. 

A DEM was employed to model impact fragmentation in the study. A DEM code 

was developed from scratch. The model was first calibrated and verified with 

experimental results to demonstrate the capability of modeling both quasi-static and 

dynamic material behavior. Algorithms to calibrate the model’s micro-parameters against 

triaxial tests on rocks were presented. Sensitivity analyses were used to identify the 

deformability micro-parameters by obtaining relationships between microscopic and 

macroscopic deformability properties. The strength model parameters were identified by 

a global optimization process aimed at minimizing the difference between computed and 
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experimental failure envelopes. When applied to the experimental results of tested 

granite, this calibration process produced a good agreement between simulated and 

experimental results for both deformability and strength properties.  

Dynamic compression and SHPB tests were performed to verify the dynamic 

model. A strain-rate-dependent dynamic strength was observed in the experimental 

results. This strain-rate-dependent dynamic strength was also confirmed by the numerical 

results. No rate-dependent constitutive model was used in the DEM to simulate dynamic 

behavior. This simulated rate-dependent dynamic strength can be attributed to material 

inertia because the inertia inhibits crack growth.  

Some fundamental mechanisms of impact fragmentation associated with rockfalls 

were then numerically investigated. The developed DEM code was coupled with a 

simplified impact model inspired by the theory of dynamic foundations. It has been 

shown that the magnitude of impact velocity, the angle of the incidence, the ground 

condition all play very important roles in impact fragmentation.  

Several case studies were performed to validate the developed impact 

fragmentation module in rock fall analysis. It has been demonstrated that the developed 

fragmentation module can reasonably predict impact fragmentation and perform some 

risk analysis in rock fall analysis.  
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CHAPTER 1 INTRODUCTION 

 

1.1 OVERVIEW 

Rock fall is a common natural hazard causing sometimes loss of life and 

significant damage to infrastructures, such as roads, construction sites, working faces in 

open pit mines and so on. Rock fall mitigation measures, such as restraining nets, catch 

benches and other protection barriers, are thus important in protecting highways, 

construction sites and working faces. In order to design effective rock fall mitigations, it 

is necessary to understand the rock fall dynamics, such as rock fall trajectory, bouncing 

height, kinetic energy of boulders and impact fragmentation.  

1.1.1 Rockfall Analysis 

Depending on the initiation of the detached rock block and the geomorphic 

conditions of the slope, a rock fall trajectory is the combination of three main processes, 

namely: sliding or rolling, free falling and impact. These processes are controlled by 

well-known physical laws and can be described by simple equations and hence easily 

simulated if these processes are free of fragmentation. However, if fragmentation occurs 

during the rock falling, the process will be much more complicated to simulate. 

Generally, there are two approaches to evaluate rock fall dynamics: experimental 

methods and numerical analyses (Agliardi and Crosta 2003; An and Tannant 2007; 

Bozzolo and Pamini 1986; Crosta 2003; Dorren 2003; Giacomini et al.; Giani et al. 2004; 

Mougin et al. 2005; Nocilla et al. 2008). Experimental methods include field tests and 

empirical studies. Usually, field tests are carried out to determine rock fall trajectories 

and runout distances, and sometimes to evaluate the efficiency of protective measures. 

Field test is undoubtedly effective, but it is expensive and time-consuming. It is also 
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impossible to test many scenarios: initial conditions (velocity, mass, location), natural 

and design topography and ground properties. Therefore, field tests are typically used to 

calibrate numerical models. By using the calibrated numerical models, statistical and 

parametric analyses may be performed to improve the understanding of rock fall events. 

Numerical analysis mainly focuses on the evaluation of the trajectories of detached 

blocks for different morphological and geologic conditions. It becomes increasingly 

popular and powerful because of the development of computer technology and relevant 

information technology. 

Several computer programs either in 2D and 3D have been developed and tested 

for rockfall analysis (Guzzetti et al. 2002). Most of the programs implement either a 

lumped mass or a rigid body approach. Despite the fact that impact fragmentation and its 

relevant fly-rock have often been cause of damage and unexpected accidents, so far, there 

are no programs which can simulate rockfall with a function of modeling rock 

fragmentation. 

The program STONE is a three-dimensional simulation program that can produce 

simple maps useful to assess rockfall hazard; it uses GIS technology to manipulate 

existing thematic information available in digital format. The program requires as input a 

digital terrain model, the location of rock-fall detachment areas, the dynamic friction 

coefficient used to simulate the loss of velocity during rolling, and the coefficients for 

normal and tangential energy restitution at the impact points (Guzzetti et al. 2002). 

STONE has been extensively verified and then validated using actual case histories 

ranging in scale from the local to the regional (Agliardi and Crosta 2003; Crosta 2003; 

Guzzetti et al. 2002). However, like all other rockfall analysis tools, STONE cannot take 

into account impact fragmentation and analyze its potential hazard. 
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With a good understanding of rock fall dynamics for a specific site condition, 

different mitigation measures may be designed against rock fall, such as rock restraining 

nets, catch walls and deformable barriers. Generally, the design of the defense system is 

determined on the basis of the estimated rock fall trajectories, of their energy and of the 

identified arrest areas.  

1.1.2 Rockfall Fragmentation  

Rock fragmentation is frequently observed during rock fall events. However, rock 

fragmentation upon impact is usually not accounted for in the design of a defense 

structure. This lack of consideration explains why the study of fragmentation is still in its 

early age despite it being a natural and frequent phenomenon. Fragmentation can be 

facilitated by the presence of discontinuities in the boulders and by high impacting 

energy and rigid ground conditions. The trajectories of rock fragmentation are much 

different from that of the intact block (used to design the barrier) and are more difficult to 

predict with an increase in the risk of causing damage to properties and lives. Agliardi 

and Crosta (Agliardi and Crosta 2003) have experimentally observed that ‘‘the smaller 

rock fragments are characterized by observed velocities greater than the computed 

maximum velocities’’ and that ‘‘the high observed velocities could be due to the 

momentum increase occurring as a consequence of fragmentation at impact’’.  

A rock fall fatality happened on October 29th in 2003 at an open-cut mine in 

Mantos Blancos, Chile. As shown in Figures 1-1 and 1-2, a rock block from a waste 

dump was initiated and fell down. It impacted against a bench and fragmented. One of 

the projectile fragments struck a light vehicle on the driver’s side on the door pillar, 

entering through the windows and striking the driver.  
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Figure 1-1. Front view of incident area and scketch of rockfall trajectories; a rockfall 
fatality happened on October 29th in 2003 at an open-cut mine in 
Mantos Blancos, Chile (from a report provided by Zavis Zavodni) 

 

Figure 1-2. The impact fragment striking the viehcle and causing the fatality; a rockfall 
fatality happened on October 29th in 2003 at an open-cut mine in 
Mantos Blancos, Chile (from a report provided by Zavis Zavodni) 
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There is a real need to improve our understanding of fragmentation mechanisms 

in order to strengthen the protection against rock fall. In particular, predicting the 

possible size, shape and number of fragments generated under impact is fundamental to 

design more efficient protection systems. 

1.1.3 Discrete Element Modelling 

The behavior of rock is oftentimes complex, with a nonlinear failure envelope, a 

high ratio of uniaxial compression strength to tensile strength (Hoek 1983), and a strain-

rate dependent dynamic strength. Currently, it is very difficult, if not impossible, to fully 

model this complex behavior, which has a complicated failure evolution process. Discrete 

element method (DEM) is a popular tool used in modeling rock behavior, because it can 

deal with the material failure naturally by modeling failure evolutionary process from 

micro crack to macro failure without any complex constitutive models. As a result, DEM 

is chosen to model the rock fragmentation upon impact in rock fall analysis. 

DEM can be generally viewed (Cundall and Hart 1992) as a method that allows 

finite displacements and rotations of discrete bodies, and updates contacts automatically 

as the calculation progresses. The original application of DEM by Cundall and Strack 

(Cundall and Strack 1979) was to perform research into the behavior of granular material 

and blocky rock systems (Cundall 1971). Then it has been extended to solid mechanics to 

investigate the failure process of bonded geomaterials, like intact rock (Hajiabdolmajid et 

al. 2002; Potyondy and Cundall 2004) and concrete (Hentz et al. 2004a). Nowadays, 

DEM is widely used in geomechanics from soil (particulate type) to intact rock 

(relatively continnum type), to rock masses (assemblies of blocks) with applications in 

many areas, such as rock engineering, soil mechanics, mining and petroleum engineering 

(Cho et al. 2007; Cook 2004; Cundall and Strack 1979; Donze et al. 1997; Ng 2006; 
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Olson et al. 2002; Onate and Rojek 2004; Pierce et al. 2007). In modeling particulate 

materials, the element used in the model can be viewed as representing the true material 

particle. When modeling the behavior of intact rock, the elements used in the model do 

not represent the actual material particle size and the elements are bonded to each other 

with a specific strength. 

While the method is versatile and attractive, it requires extensive calibration 

work. The calibration process in DEM includes parameter identification for both 

deformability and strength. Before modeling a specific case, the specimen should be 

prepared with specific micro parameters to be determined for a given packing so as to 

closely reproduce the specific macro material properties. 

So far, there has been no satisfactory way to calibrate the DEM model in order to 

reproduce the complicated behavior of material like rock and deploy the versatility of 

DEM. Using sensitivity analysis, most of the researchers investigate the effect of one 

individual parameter (or a combined dimensionless parameter) while keeping other 

variables fixed, and then a general formula to determine micro-scale parameters based on 

specific macro material properties is determined (Fakhimi and Villegas 2007; Yoon 

2007). Based on the author’s investigation, when identifying micro deformability 

parameters, the problem is relatively simple and sensitivity analysis can be applied. 

However, when identifying micro strength parameters, the problem involves micro crack 

propagation, and hence it is more complicated. Indeed, the individual trend of one 

strength parameter may not be directly obtained by just fixing the values of all the other 

parameters since these parameters may not be independent. In Particle Flow Code (PFC) 

(Itasca 1999), for example, uniaxial compressive tests are used to reproduce the 

deformability behavior and the uniaxial compressive strength: as the authors note 

(Potyondy and Cundall 2004), “It should be noted that our current understanding of this 
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calibration process is still incomplete — i.e., we still do not know how to construct a PFC 

material that reproduces a given strength envelope or one that reproduces a given ratio of 

unconfined compressive strength to Brazilian tensile strength …”.  

 In order to accurately model impact induced rock fall fragmentation, dynamic 

properties, such as strain-rate dependency, must be accounted for. So far, little work has 

been done on the simulations of dynamic properties of brittle materials, like rock, in 

DEM modeling. Hentz and his coworkers (Hentz et al. 2004a; Hentz et al. 2004b) have 

investigated the behavior of concrete subjected to dynamic loading using DEM in a very 

high level of strain rate. However, the model calibration process was not well defined; 

and the verification of the dynamic model was only limited to a relatively small range of 

high strain rate (350~700 sec.-1). 

1.2 MOTIVATION 

Although, rock fragmentation is frequently observed during rock fall events and 

several authors have raised issues related to the impact of fragments on protection 

structures(Giacomini et al.; Mougin et al. 2005; Nocilla et al. 2008), this phenomenon is 

not accounted for when designing the rock fall mitigation measures. The impact 

fragmentation of falling rock (as shown in Figure 1-3 may increase the possibility of 

damage and the difficulties in predicting and preventing rock fall fatalities. In open pit 

mines, impact fragmentation of falling rock blocks and relevant fly-rock pose a daily 

hazard and have caused loss of life and property damage. Due to the complexity of 

impact fragmentation, it is still poorly understood and very few useful contributions can 

be found in the literature (Chau K.T. 2003; Zhang et al. 2000). An improvement in 

understanding the mechanism of rock fragmentation upon impact is of great need. 

Current rock fall analysis tools cannot account for impact fragmentation (Agliardi and 
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Crosta 2003; Guzzetti et al. 2002), which drive us to investigate the fundamental 

mechanism governing the impact induced rock fragmentation, and to develop a three-

dimensional rock-fall analysis system that can take into account impact fragmentation 

and fly-rock. 

 

 

Figure 1-3. Sketch of rockfall analysis with impact fragmentation 

1.3 EXPECTED CONTRIBUTIONS 

The expected contributions of the proposed study include: 
1) To enhance the understanding of the fundamental mechanism of impact 

induced rock fragmentation and its effect on post-impact rockfall process; 
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2) To deliver a state-of-the-art rockfall analysis system to take into account 

impact fragmentation and fly-rock, which will help property owners take 

control and alleviate the loss of life from rockfalls; 

3) To provide some valuable advice on rockfall management. 

1.4 RESEARCH PLAN 

The work focuses on the development of a rock fragmentation model to 

investigate the fundamental mechanism that governs the process of impact fragmentation 

and its influence on post-impact rockfall process. 

A new module that models impact fragmentation will be developed and added to 

the existing three-dimensional rock-fall analysis system HY-STONE developed by Dr. 

Giovanni Crosta and co-workers (Bicocca University, Milan, Italy). The new module is a 

neural network model trained with the simulation results of sphere impacts using a newly 

developed Discrete Element Model (DEM) code.  The new module will be fully validated 

using laboratory and field tests.     

The new module is essentially a trained neural network which can determine the 

mass and velocities of the fragments right after impact. Because running a DEM 

simulation of each block’s impact will excessively slow down the HY-STONE execution 

time, a very large set of DEM impact simulations to train the neural network will be 

analyzed beforehand using high-performance computing systems at UT Austin. This set 

of simulations will use possible input ranges occurring in practical rock fall cases, such as 

impact velocity, rock properties and ground conditions. The trained neural network will 

be then used to predict the fragmentation when an impact happens during a rockfall 

analysis. Each fragment’s subsequent trajectory will be then determined by the existing 

STONE algorithm.  
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The key work is to develop a DEM impact model and investigate the fundamental 

mechanics of impact fragmentation. The DEM model has been developed from scratch 

and is being validated with experimental results. The validated model can then be 

extended to simulate some case histories with impact fragmentation to demonstrate the 

capability of predicting the fragmentation during rockfall impact. With these fully 

verified DEM model, a large set of simulations will be performed to account for different 

possible scenarios by varying material properties of rock block, dynamic characteristics 

of impact and ground conditions. Each simulation will record the information on 

fragmentation after impact, such as number of fragments, mass and velocities of each 

fragment. The neural network will be implemented and trained with these simulation 

results. 
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CHAPTER 2:  3-D DISCRETE ELEMENT METHOD  

 

2.1 INTRODUCTION 

The Discrete Element Method (DEM), originally developed by Cundall and 

Strack (Cundall and Strack 1979) has proved to be a powerful tool in modeling the 

behavior of geomaterials especially for those characterized by some discontinuous units 

like jointed rock or directly at the particle level like soils. The method has also been 

recognized as a very useful tool to model the process of failure evolution, i.e. behavior 

from continuum to discontinuum. A large amount of research has been devoted to such 

problems including failure of concrete (Hentz et al. 2004b), and fragmentation of rock 

and other quasi-brittle materials due to blasting or high-speed impact (D'Addetta et al. 

2001; Donze et al. 1997; Whittles et al. 2006). 

The DEM discretizes a material into a system consisting of either rigid or 

deformable elements, which are typical in shape of a sphere (disc in 2D), but polyhedra 

(polygons in 2D) have also been used. This method is typically an ideal tool when 

dealing with problems which are inaccessible to traditional continuum-based numerical 

approaches such as finite differences and finite elements. In contrast to these continuum-

based methods, the DEM shows particular advantages in investigating the failure 

mechanism in terms of micromechanics.   

2.2 PACKING 

Sphere packing is used to generate particle in a given domain to prepare virtual 

specimens. It is always important to DEM modeling as both the packing degree and the 

size distribution of particles will affect the ultimate assembly (rock material) behavior. 
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Several types of sphere packing approaches were compared, like CRP (Close Random 

Packing) (Jodrey 1985) and radii expansion (Itasca 1999) used in PFC. Among these 

alternatives, radius expansion method is fast, can produce dense packing of arbitrary 

shape, and was finally selected as the method for sphere packing. A brief idea about 

radius expansion packing method is introduced as follows. 

A population of spheres with their radii distributed according to a Gaussian 

distribution is first generated with the specified upper and lower radius values 

corresponding to plus-and-minus one standard deviation, respectively, from the mean 

radius. The mean radius, mR , is calculated to meet the specified porosity as 

                 3 (1 )
4m

n VR
Nπ
−

= ,                                                        (2-1) 

where N  is the number of spheres, n  is the desired porosity, and V  is the total volume 

of the container. Then, these spheres are shrunk artificially to smaller sizes and placed 

randomly within the specified volume; this packing has a larger porosity, 0n . It is easy to 

place small-radius spheres in this manner, because the available void space is large. The 

spheres are then expanded to obtain the desired porosity, in which all radii are multiplied 

by a radius multiplier, m , in order to change the porosity from 0n  to n . The radius 

multiplier can be calculated as 

                 
1/3

0

1
1

nm
n

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

.                                                       (2-2) 

After the spheres are expanded, particles may overlap. Finally, the assembly is 

cycled by a simple DEM model to reduce the overlap and obtain equilibrium. Rigid 

boundaries are placed to confine the spheres in a specified volume. 
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As an example, a cylindrical sphere packing with a radius of 25 mm and height of 

100 mm, a desired porosity of 0.4 and 2,500 spheres is obtained in the three steps shown 

in Figures 2-1 to 2-3. 

 

Figure  2-1. The 1st step: Randomly generate 2500 spheres with artificially small radii in 
order  to prepare a cylindrical specimen with a radius of 25 mm and 
height of 100 mm 

 

Figure 2-2. The 2nd step: Expand each sphere to obtain a specific porosity with large 
overlapping 
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Figure 2-3. The 3rd step: Cycle the spheres using a simple DEM model to obtain 
equilibrium 

2.3 GENERAL FORMULATION 

2.3.1 Calculation Cycle 

The calculation cycle used in DEM is a time-stepping algorithm (Cundall 1988; 

Cundall and Strack 1979; Itasca 1999): it integrates the differential equations of motion 

of each particle (the Newton’s Second Law of Motion) in time by applying a contact 

constitutive model to each contact, updates particle positions and constant searches for 

contacts between two spheres or between a sphere and a boundary. The calculation cycle 

is illustrated in Fig. 2-4. At each time step, contacts are detected and updated from the 

known particle positions and boundary conditions. The contact constitutive model is then 

applied to each contact to update the contact forces. Based on the updated contact forces 

and boundary conditions, the law of motion is then applied to each particle to update its 

acceleration, velocity and position.  
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Figure 2-4. DEM calculation cycle employed in the developed code used for the research 

2.3.2 Force-Displacement Law    

The force-displacement law relates the relative displacement between two entities 

at a contact to the contact force acting on the entities (Hentz et al. 2004a). Here “Force-

Displacement” is a general term including both Force-Displacement and Moment-

Rotation. Depending on the type of contact, the force and moment acting on the particles 

at a contact are determined based on the relative displacement and contact constitutive 

model. There are different types of contact models to accommodate different material 

behaviors. When dealing with materials characterized by particulate or fractured 

elements, a frictional contact is used. However, in order to model a solid material with no 

initial crack, a bonded contact must be introduced. During the course of the simulation, if 

a bonded contact is broken according to the failure criterion to be described later, this 

bonded contact will be degraded to a frictional contact (provided that the two entities are 

still in contact).  

A DEM algorithm has been implemented with the following features. The initial 

model is set up by using a spatially randomly distributed packing assembly of spheres, 

which yields the initial “zero stress” state. This is achieved by introducing an 
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“equilibrium distance”, ,A B
eqD  (Hentz et al. 2004a; Hentz et al. 2004b), between each pair 

of contact spheres A and B, which is equal to the distance between the centers of A and B 

at the end of the packing assembly (release of the locked-in stress). An interaction range 

is introduced into the model to simulate materials other than simple granular materials, in 

particular those which involve a matrix (Hentz et al. 2004a). Particles that are not in 

physical contact can still be bonded if they are within the interaction range, which makes 

the generated material behave more like a cemented material rather than a granular 

material. 

Figure 2-5 shows the basic idea about the constitutive model implemented in the 

current algorithm, in which the springs represent the elastic responses to normal and 

shear forces, the slider and switch elements simulate the contact slide after shear failure 

and tensile crack after tensile failure, respectively. The constitutive model is detailed in 

next sections. 

A B
Kn

Ks

dA,B

 

Figure 2-5. Constitutive model of contact used in the developed code 
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2.3.2.1 Normal Force Calculation 

The relationship between contact forces and the relative displacements is assumed 

to be linear with the following interpretation (Cundall and Strack 1979; Hentz et al. 

2004b; Itasca 1999). The contact forces consist of a normal component, nF , acting in the 

direction of the segment AB joining the two sphere centers, and a shear component, sF , 

acting in the plane perpendicular to AB at the point of contact. The force-displacement 

law relates these two force components to the corresponding components of the relative 

displacement via linear normal stiffness ( nK ) and shear stiffness ( sK ) at contact. 

The normal force, nF , acting on sphere A is calculated as (Hentz et al. 2004a; 

Hentz et al. 2004b)  
, ,( )nA B A B

n n eq contF K D d= − ,                                              (2-3) 

where ,A B
eqD  is equilibrium distance between the two spheres A and B which is set when 

the contact is initially created, ,A Bd  is the current distance between each pair of contact 

spheres A and B, and n  is the unit vector pointing from the center of sphere A to the 

center of sphere B. The contact is in tension when , ,A B A B
eqd D> , and in compression when 

, ,A B A B
eqd D< . The calculated new normal contact force is then added to the contribution of 

the resultant force and moment for both spheres. When tensile failure occurs at contact, 

the way to calculate the normal force will change, as described in Section 2.3.2.3. 

2.3.2.2 Shear Force and Moment Calculation 

The shear contact force is determined from an updated shear displacement on the 

contact plane, which is computed in an incremental fashion (Itasca 1999; Wang and 

Tonon 2009a; Wang and Tonon 2009b). The relative shear-displacement increment is 
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added to the current value of shear displacement in a vector form, which hence results in 

an increment in shear contact force. The motion of the contact should be taken into 

account during this procedure (Itasca 1999) because the current shear displacement 

vector always lies on the contact plane, which moves with the spheres in the global 

coordinate system. 

The shear contact force vector, sF , should be updated to account for two rotations 

as shown in Figure 2-6.  

• The first rotation is caused by the change from the old unit normal, oldn , to the 

new normal, newn , which is due to the translational displacement of the sphere 

centers; 

• The second rotation is caused by the rotation of both spheres around the normal 

vector, newn , (details about the transform matrix may be found in Appendix A). 

CB

CA

C'B

C'A

Contact plane P
Contact plane P'

Original configuration New configuration  caused by translational
displacement of contacting spheres

C C

 

   CB

    CA

Contact plane: P

Average rotation angle: Φ

C

 

Figure 2-6. Rotations of contact plane (in 2D) used in determination of contact shear 
forces 

          (a) The 1st rotation                                                       (b) The 2nd rotation 
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Both of these rotations do not change the magnitude of the shear force between 

the two spheres; they only affect the direction of the contact shear force. The first rotation 

matrix can be obtained by rotating the local coordinate system about the unit vector v , 

which is determined from the vector product of the old unit vector of contact plane, oldn , 

and the new unit vector of contact plane, newn , as: [ , , ]
old new

x y z
n nv v v v

l
×

= = , in which 

l =| |old newn n× , is the length of vector old newn n× . The rotation angle θ  is also calculated 

from the vector product of old newn n×  as sin | |old newn n lθ = × = . If one assumes that the 

rotation is very small, then cos 1θ = , and one may omit the higher order of the term of 

sinθ  in Eq. (A.1) (in Appendix A) to obtain the first rotation matrix: 

 1

1
1

1

z y

z x

y x

lv lv
M lv lv

lv lv

⎡ ⎤−
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

,                                                  (2-4) 

which is a skew-symmetric matrix. 

The second rotation matrix is calculated by using the average rotational speeds of 

the two contacting spheres as they rotate around the X-, Y- and Z- axes in a global 
Cartesian coordinate system. Let [ , , ]A A A A T

x y zω ω ω ω=  and [ , , ]B B B B T
x y zω ω ω ω=  denote the 

angular velocity of spheres A and B respectively. The rotational angles over the time 

increment t∆  can be written as Θ : [ , , ] ( )
2

A B
T new new

x y z n n tω ωθ θ θ +
= ⋅ ⋅ ∆ . 

Again assume that rotations are very small at each time step. The second 

rotational matrix (A. 2) (in Appendix A) can be simplified as  

2

1
1

1

z y

z x

y x

M
θ θ

θ θ
θ θ

⎡ ⎤−
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

.                                                         (2-5) 
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Equations (2-4) and (2-5) apply only to small rotations. Considering that each 

contact is updated at each time step (which is very small to maintain computational 

stability in an explicit Euler time-integration scheme), the deformations will be 

sufficiently small for the approximation used in Equations (2-4) and (2-5).  The time step 

is about one 10th to one 100th of the critical time step, ~ /dt m K .  

The total rotational matrix can then be determined as 

1 2

1
1

1

z z y y z z y x y z x y

z z x y z z x x z y x x

y x z y y z x x y y x x

lv lv lv lv lv lv
M M lv lv lv lv lv lv

lv lv lv lv lv lv

θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ θ θ θ θ

⎡ ⎤+ + − − − − +
⎢ ⎥Μ = = − − + + − + −⎢ ⎥
⎢ ⎥− − + − + − + +⎣ ⎦

.                (2-6) 

To account for the motion of the contact plane, the new shear displacement, 
new

sU , is finally updated as 
new old

s sU U= Μ .                                                        (2-7) 

The relative motion between two contact spheres along the new contact plane creates a 

shear displacement increment, sU∆ , which is added to the shear displacement vector, 

new
sU : 

updated new
s s sU U U= + ∆ .                                                   (2-8) 

The increment of shear displacement sU∆  for a given timestep can be computed 

by using the relative motion at contact. The relative contact velocity cV is given by 

( ) ( )c c c B A
B A B BC A ACV V V V r V rω ω= − = + × − + × ,                      (2-9) 

where  and c c
A BV V are the translational velocities at the contact point for spheres A and B, 

 and A BV V are the translational velocities of sphere centers A and B, Aω and Bω  are the 
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rotational velocities for spheres A and B, and ACr  and BCr  are radius vectors from sphere 

centers to the contact point, C. 

The relative contact velocity can be decomposed into normal ( c
nV ) and shear 

( c
sV ) components with respect to the contact plane. The shear component is then 

calculated as  
c c c

s nV V V= − ,                                                               (2-10) 

where ( )c c new new
nV V n n= ⋅ ⋅ . 

Finally, the increment of shear displacement sU∆  for a given timestep t∆  is  
 c

s sU V t∆ = ∆ .                                                               (2-11) 

The new shear contact force acting at contact point, C, is updated as 
( )new

s s s sF K U U= − + ∆ ,                                                       (2-12) 

where sK  is the shear stiffness of the contact. This newly updated shear contact force is 

added to the resultant force and moment for both spheres. 

The moment applied on spheres A and B due to shear contact force, sF  can be 

calculated respectively as 

             A AC s

B BC s

M r F

M r F

= ×

= − ×
 .                                                           (2-13) 

2.3.3 Failure Criteria 

The strength criteria at contact used in the model comprise two parts, tensile 

failure and shear failure. These two kinds of failure jointly control the overall material 

strength. Tensile failure occurs when the magnitude of the contact normal force (in 
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tension) is greater than the product of tensile strength, T ,  times the contact area, CA , 

which is calculated as: 

            
2

2
A B

C
R RA π +⎛ ⎞= ⎜ ⎟

⎝ ⎠
,                                                     (2-14) 

where AR  and BR  are the radii of spheres A and B respectively.  

After tensile failure, the contact force suddenly drops down to zero and the 

contact is de-bonded in tension, which means that the tensile strength is zero after the 

tensile failure. In the meantime, the cohesion part of shear strength will also degrade to 

zero. In order to model the softening behavior of the material, as shown in Figure 2-7, the 

contact force may gradually decrease rather than suddenly dropping to zero (used in this 

dissertation) after the contact force reaches the peak value. 

Fn

overlap moving away

compression

tension

Deq
A,B

non-softening

softening

dA,B

Fmax

 

Figure 2-7. Tensile failure criterion used in the developed code (modified after Donze 
(Hentz et al. 2004a)) 
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The shear failure follows the Coulomb criterion as shown in Figure 2-8. The 

maximum shear strength, maxτ , is dependent on cohesion c, friction angle ϕ  and also 

normal stress, nσ , at contact (Hentz et al. 2004a).  

        max tanncτ σ ϕ= +                                                   (2-15) 

After shear failure, the cohesion is set to zero and the frictional angle can decrease to 

residual frictional angle rϕ . 

The micro-level parameters used to describe the contact strength (T for tensile 

component and c, ϕ , and rϕ for shear component) are different from the values at the 

macro level, and need to be identified by a calibration process. In the cases presented, rϕ  

is taken as 50% of ϕ . 
 

Fs

Fn

ϕ

rϕ
c AC

T AC

bonded contact interaction

debonded contact interaction

(compression)
(tension)

 

Figure 2-8. Shear failure criterion used in the developed code (modified after Donze 
(Hentz et al. 2004a)) 
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2.3.4 Equations of Motion 

In DEM, the equations of motion are applied to each individual particle, and can 

be expressed as two vector equations, i.e. translational motion equation and rotational 

motion equation. The vector form equation for translational motion is written as 

                    1mu c u F+ =                                                       (2-16) 

where 1c  is damping for translational velocity; F  is the resultant force applied to a 

sphere (sum of all externally applied forces acting on the particle and body force);  u  and 

u  are translational acceleration and translational velocity respectively; m is the mass of 

the particle. 

Because of symmetry of a solid sphere, each principal moment of inertia is the 

same. The equation for rotational motion can be then simply written as 

                                2I c Mω ω+ =                                                   (2-17) 

where 2c  is damping for angular velocity; I is the moment of inertia of the sphere; ω  is 

the angular acceleration; ω  is the angular velocity and M is the resultant moment. 

2.4 TIMESTEP DETERMINATION 

In DEM, motion equations (2-16) and (2-17) are integrated using a centered 

finite-difference explicit scheme (Cundall 1971; Cundall and Hart 1992). The computed 

solution produced by these equations remains stable only if the timestep does not exceed 

a critical timestep, which is related to the minimum eigenperiod of the total system. For a 

static problem, the timestep is only associated with system’s critical timestep. For a 

dynamic problem, the timestep should also be related to loading frequency in order to 

assure the accuracy in simulation. The actual timestep used in simulations is taken as a 

fraction of the minimum of this estimated critical timestep and the possible smallest 

period of loading, which can be expressed as  
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min[ , ]                 (for a dynamic  proble)  

                                     (for a static problem)
system loading

system

t T T

t T

α

α

∆ =⎧⎪
⎨∆ =⎪⎩         (2-18) 

where α  is the fraction coefficient usually varying from 0.01 to 0.1, loadingT is the possible 

smallest period of loading, and systemT is the minimum eigenperiod of all particle systems. 

The minimum eigenperiod of all particle systems may not be easily calculated because 

each particle may have different contact configurations, not like a single mass-spring 
system. But the order of magnitude of  systemT  may be estimated as min(2 / )m Kπ , in 

which m is the mass of an element and K is the stiffness associated with that element 

(O'Sullivan and Bray 2004). 

2.5 DAMPING   

Because the DEM is a fully dynamic formulation, some form of damping is 

necessary to dissipate kinetic energy. For a dynamic problem, a specific damping needs 

to be known to correctly set up the model. For a quasi-static problem, the damping used 

in DEM is numerically used to dissipate the system energy as quickly as possible to reach 

the equilibrium state without affecting the final result. To improve the computational 

efficiency, a local non-viscous damping (Itasca 1999) is used in the current model to 

speed up the simulation of static problems, in which only the unbalanced forces are 

damped at each time step as follows:  
( ) ( )unbalanced unbalancedm a F sign v abs Fα⋅ = − ⋅ ⋅    (in translation)                   (2-19) 
( ) ( )unbalanced unbalancedI M sign abs Mω α ω⋅ = − ⋅ ⋅      (in rotation),                  (2-20) 

in which m and I are mass and moment inertia of a spherical particle, respectively; a  

and ω  are translational and rotational accelerations, respectively; v and ω  are 

translational and rotational velocities, respectively; unbalancedF and unbalancedM  are 

unbalanced resultant forces and moment.  
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For simplicity, the damping coefficients used in translational and rotational 

equations are the same and are indicated by α . The value of α should be between 0 and 

1 to avoid numerical divergence. This kind of damping may be only suitable for static 

problems. For dynamic problems, usually a viscous damping is employed to decelerate 

local relative movements among neighboring particles (Fraige and Langston 2004).  
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Figure 2-9. Effect of numerical damping on material behavior. Cylindrical specimen with 
a height of 3.2 cm and 1.6 cm diameter consisting of 2500 spheres; 

104.7 , / 0.085c s nE GPa K K= = , 429 MPac = , 068ϕ = , 
34.2 MPaT = , and coefficient of interaction range of 1.3 

Different values of damping coefficient, α , were used to investigate the effect of 

damping on static simulations. As depicted in Figure 2-9, simulated stress-strain curves 

show that material strength increases with damping, but material Young’s modulus does 

not change with damping. Compared to lower damping, higher damping tends to decrease 
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the energy dissipation rate more quickly, and the loads are more gradually applied to the 

specimen to reach the equilibrium state.  Hence, materials with lower numerical damping 

fail more easily and have lower strength. However, when 0.7α ≥ , damping has 

negligible effect on static strength (both peak and residual), whereas the post-peak 

softening is smoother for higher damping. It is to be noted that, for quasi-static problems, 

dynamic energy will be fully absorbed during loading and high damping ( 0.7α ≥ ) is 

typically used for the modeling.  

a) 0.1α =                         b) 0.7α =  

Figure 2-10. Displacement vector fields for different numerical damping. Cylindrical 
specimen with a height of 3.2 cm and 1.6 cm diameter consisting of 
2500 spheres; 104.7 , / 0.085c s nE GPa K K= = , 429 MPac = , 068ϕ = , 

34.2 MPaT = , and coefficient of interaction range of 1.3 

shear plane shear plane
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The numerical damping also affects the failure pattern, which is wedge shaped as 

shown in Figure 2-10. Lower damping decreases the energy dissipation from the top to 

the bottom (the load is applied from the top platen with the bottom end fixed), and hence 

the failure zone occurs at a relatively higher level than with higher damping. 

It is expected that the higher damping should be used to mimic the actual test 

conditions, where, for quasi-static tests, the load is applied slowly enough to make the 

energy gradually transmitted to the whole specimen without causing any dynamic effects 

that may lead to failure. 

The damping force is controlled by the non-dimensional damping constant, α , in 

which only accelerating motion is damped. This local non-viscous damping is similar to 

hysteretic damping, and can be directly related to the damping ratio, D, as D α
π

= , which 

is described in PFC manual (Itasca 1999). 

2.6 WAVE MOTIONS  

Discrete element modeling is a fully dynamic method (Cundall 1971; Cundall and 

Strack 1979). In modeling uniaxial compressive tests, loading is applied at the top of 

specimens while fixing the bottom of specimens in the vertical direction. The loading is 

applied in a step fashion by gradually increasing the axial displacement at the top end of 

specimen within 1000 timesteps and then waiting for the system to reach equilibrium 

before applying another step of displacement loading. A cylindrical specimen (5 cm in 

diameter and 10 cm in height)   consisting of 1,500 spheres was employed and particle 

motions at different locations in the specimen were monitored. The histories of 

displacement in the axial direction (Z) for particles No. 904, 632, 880 and 592 (shown in 

Figure 2-11) were monitored for 2 different loading periods, namely, step 2 (elastic) and 
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step 18 (at failure). The histories of particle motions in the axial direction are shown in 

Figures 2-12 and 2-13. The results show that: 

1) The displacement waves move from the top to the bottom and decay 

gradually. 

2) For a given particle, the waves gradually die off due to damping and the 

system eventually reaches equilibrium in the elastic stage. 

3) In the case of material failure, in addition to the general wave due to applied 

loading, there is also “noise” accompanied generated from many local micro 

fractures that behave like small free boundaries. 
 
 

 
 

Figure 2-11. Sketch of position of monitored particles in a cylindrical specimen (5 

cm in diameter and 10 cm in height) consisting of 1,500 spheres 
 

No. 904 

No. 592 

No. 880 

No. 632 
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Figure 2-12. Histories of particle motions in the axial direction during the elastic stage 
(no contact failures) 
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Figure 2-13 Histories of particle motions in the axial direction at failure (many contact 

failures occur) 
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2.7 COMPUTATIONAL TIME 

In discrete element modeling, computational time is always a concern (Cundall 

1988; Ferrez and Liebling 2001; Henty 2000). Extensive computational time is consumed 

by contact detection. The cell mapping technique (Cundall 1988), in which the whole 

domain is divided into many cells, is used to alleviate the computational burden due to 

contact detection in DEM. For a given cell, only the spheres located in neighboring cells 

and the cell itself need to be considered for contact detection without need to loop over 

all spheres. By doing this, each sphere is first mapped into a unique cell, and the contact 

detection is then carried out by looping these cells. The cell size is an important factor 

because an appropriate cell size can minimize the computational time. The algorithm may 

cause inaccuracy if the cell size is too small, thereby some contacts may not be detected. 

For example, two contacting spheres whose center distance is larger than the cell size 

may not be considered as a contact if these two centers are not located in neighboring 

cells or in the same cell. Hence, the cell size must be at least twice as large as the 

maximum sphere radius of the sphere packing. 

The effect of cell size on both computational time and accuracy is investigated in 

a triaxial test example of a cylindrical specimen. All of the spheres are mapped into cells 

which are thin concentric disk dividing the specimen in the axial direction. The cell size 

is defined as the thickness of a thin disc, and the cell number is defined as the specimen 

height divided by the cell size. The simulated results shown in Figure 2-14 illustrate that 

the simulated material pre-peak behavior does not depend on the number of cells when 

the number of cells is smaller than 16. When the number of cells is larger than 16, which 

corresponds to a cell size of 2 mm (the maximum radius of the packing is about 1 mm), 

the calculated behavior dramatically changes because of failing to include all existing 

contacts. When the number of cells is smaller than 16, the differences in post-peak 
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behavior are caused by the fact that, after failure, the relative particle positions change 

much faster than in the pre-peak stage, and an even smaller cell number should be used. 

This aspect may not be of concern if the post-peak behavior is not important for the 

analyst.  
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Figure 2-14. Effect of the number of cells on simulated results for triaxial tests.  

Cylindrical specimen with a height of 3.2 cm and 1.6 cm diameter 
consisting of 2500 spheres; 104.7 , / 0.085c s nE GPa K K= = , 

429 MPac = , 068ϕ = , 34.2 MPaT = , and coefficient of interaction 
range of 1.3 

The computational times for different the number of cells are shown in Figure 2-

15. It highlights that increasing the number of cells lowers the computational time 

needed. However, if the cell size is too small to the extent that some contacts are 

overlooked, inaccuracy may occur, and the computational time will increase. 
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Figure 2-15. Computational time versus the number of cells. Cylindrical specimen with a 
height of 3.2 cm and 1.6 cm diameter consisting of 2500 spheres; 

104.7 cE GPa= , / 0.085s nK K = , 429 MPac = , 068ϕ = , 
34.2 MPaT = , and coefficient of interaction range of 1.3 
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CHAPTER 3:  DEM MODEL CALIBRATION 

 

3.1 INTRODUCTION 

DEM is attractive in modeling bonded geomaterials because it can naturally deal 

with the material failure by modeling the failure evolutionary process from micro crack 

development to macro failure without any complex constitutive models. While the 

method is versatile and attractive, it requires extensive calibration work.  

The calibration process in DEM includes parameter identification for both 

deformability and strength. Before modeling a specific engineering system, a specimen 

should be prepared with specific macro elastic parameters and strength parameters, 

whose corresponding micro parameters are to be determined for a given packing to 

closely reproduce the specific macro material properties. 

The calibration process is a typical inverse problem, and is currently carried out 

by trial and error using laboratory test results, which are compared with simulation results 

(Cooreman et al. 2007; Oreskes et al. 1994). There are a total of five micro parameters 

(they will be discussed in detail in Section 3.2) involved in determining the macro-scale 

emergent behavior for both deformability and strength. The packing structure (including 

particle shape, size and arrangement) will affect the material behavior. Usually, the 

behavior of geomaterials is complex, with a nonlinear failure envelope and a high ratio of 

uniaxial compression strength to tensile strength. Hence, it is hard to calibrate the model 

with the aim of accommodating all these micro parameters to match this complex 

behavior, and the micro model parameters can hardly be related directly to a set of 

material properties for all types of packing. Usually, this calibration process should be 

carried out for each different packing. From the mathematical point of view, the number 
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of experimental data points should be larger than or at least equal to the number of the 

model parameters to be determined. 

Until now, there has been no satisfactory way to calibrate the DEM model in 

order to reproduce this complicated behavior and deploy the versatility of DEM. Using 

sensitivity analysis, most of the researchers just investigate the effect of one individual 

parameter (or a combined dimensionless parameter) while keeping other variables fixed, 

and then a general formula to determine micro-scale parameters based on specific macro 

material properties is determined (Fakhimi and Villegas 2007; Yoon 2007). However, the 

problem associated with determining these micro parameters is a multi-variable problem, 

in which the individual trend of one parameter cannot be directly obtained by just fixing 

the values of all the other parameters since these parameters may not be independent. A 

simple example to illustrate this problem could be: Provided that you have a topographic 

map, which gives the elevation at any point (x, y), it is impossible to obtain a unique 

relationship between elevation and x by fixing the value of y.  

In this section, model parameters are first described. A typical calibration 

approach is then presented and employed to identify these model parameters at micro 

level for static problems. Experiments were carried out on granite by applying both static 

and dynamic loading. The experimental results were analyzed and used to calibrate and 

verify the model in both static and dynamic aspects.  

3.2 MODEL PARAMETERS 

3.2.1 Deformability Parameters 

Deformability parameters include normal stiffness, nK , and shear stiffness, sK , 

that, to avoid local failures, are usually calibrated either under small loading conditions or 

by setting very high micro strength parameters. These micro deformability parameters are 
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calibrated to match the material macro deformability parameters: Young’s modulus, E, 

and Poisson ratio, ν , which are determined from experiments. Based on our 

investigations from DEM simulation results, material Young’s modulus is related to both 

nK  and the ratio s

n

K
K

, while material Poisson’s ratio is only related to the ratio s

n

K
K

, 

which will be discussed in detail later. 

A starting value for nK may be calculated as spring constant as follows. As shown 

in Figure 3-1, consider a column consisting of N spheres having the same radius R, piled 

up vertically and subject to loading P at both ends. The spheres have Young’s modulus 

cE . The displacement of the assembly can be approximately determined as:  

               2

22 2
c c c

P P NPL NR NR
AE R E RE

ε
π π

∆ = = = = .                                       (3-1) 

where A is the area of the effective cross section for the column.  

 

 

Figure 3-1. Sketch of deriving contact spring constant 
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Alternatively, the model can be simplified as series of (N-1) springs with spring 

constant K. Each spring represents the material response between two neighboring sphere 

centers and is located at the contact. The displacement can be calculated as: 

                                     ( 1) PN
K

∆ = − .                                                               (3-2) 

By equating the displacements in Eqs. (3-1) and (3-2), the spring constant K can 

be determined as 
2

cE RK π
=  when N is large enough so that 1N N≈ − . 

As shown in Figure 3-2, consider a contact pair having different sizes with radii AR  

and BR , and contact equilibrium distance eqD . The contact normal stiffness may be 

similarly approximated as 

                                      
4
c eq

n

E D
K

π
= .                                                              (3-3) 

 

Figure 3-2. Contact spring constant for different sphere sizes 

A relatively homogeneous response is obtained from a random packing assembly 

composed of different sphere sizes when cE  and s

n

K
K

, rather than nK  and s

n

K
K

, are used 
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as calibration parameters. Because if the same value of normal stiffness, nK , is used for 

all contacts, the deformability properties between two sphere centers for contact pairs 
having different equilibrium distance, eqD , are not uniform as can be seen from Eq. (3-3). 

The contact normal stiffness, nK , is calculated using Eq. (3-3), and the contact shear 

stiffness, sK , is determined from the ratio s

n

K
K

 and nK . 

 In summary, the deformability parameters to be calibrated are: cE  and s

n

K
K

. 

3.2.2 Strength Parameters 

The two failure mechanisms of shear and tension can affect each other because 

either type of failure may change local stress conditions. This actually makes the failure 

process more complicated and makes it difficult to calibrate strength parameters.  

Strength parameters include the contact tensile strength, T, and c and ϕ  for shear 

components as already described in the failure criteria of the model (Section 2.3.3). These 

strength parameters are calibrated under different confining pressures to match a failure 

envelope obtained from experiments. This process is very time-consuming as each trial 

parameter set needs to be simulated under different confining pressures to reach the peak 

strength point of a stress-strain curve. 

3.3 NUMERICAL SETUP 

In order to calibrate the strength parameters, it is necessary to model triaxial tests 

of cylindrical specimens. Several techniques and algorithm developed for modeling a 

triaxial test are presented here.  
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3.3.1 Membrane Boundary for Applying Confining Pressure 

One of the difficulties in modeling triaxial tests in DEM is applying confining 

pressure to realistically represent the test conditions. Currently, the conventional periodic, 

rigid, and flexible boundaries are commonly used to simulate triaxial tests.  

Periodic boundary is commonly used in simulations with parallelepiped 

specimens, and is implemented by copying the boundary particles to the opposite side of 

the parallelepiped. The confining pressure is achieved by compacting the specimen to a 

specific pressure (Jensen et al. 1999). The periodic boundary is difficult to be 

implemented in a cylindrical specimen. The method used to achieve the desired confining 

pressures by compacting the specimen can significantly increase the computational effort, 

and it is difficult to keep the confining pressure constant during the shearing phase. 

“Rigid-wall” boundary treats boundaries as rigid walls, which may be either plane 

(parallelepiped specimen) or cylindrical (cylindrical specimen). The confining pressure is 

applied by moving these boundary walls laterally to reach the required confining 

pressure, which is defined as the average normal stress acting on the boundary particles 

(Itasca 1999; Potyondy and Cundall 2004). The drawbacks of rigid boundaries are that 

the boundary particles tend to be artificially aligned with the boundary wall, and that the 

material failure process and deformation may be overly constrained by such a boundary, 

which therefore are not fully representative of the actual test conditions.  

Flexible boundary emulates the boundary in the conventional triaxial setup by 

using adjoining triangular plate elements, whose corners are placed at the centers of 

neighboring particles. Confining pressure is applied to each plate element, and the 

resultant force is then distributed among the three neighboring particles at the vertices of 

the plate element (Kuhn 1995). In addition to identifying boundary particles, the 

following operations must be performed: identify triangular elements, compute their 
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corresponding normal vectors and compute each interior corner angle and also take the 

issue of numerical instability into account. All these calculations must be repeated 

throughout the simulation to take into account the displacements of the membrane, and 

lead to a much higher computational expense than the proposed boundary model. 

Additionally, boundary particles are identified as those particles comprised in a thin layer 

parallel to the undeformed configuration. If the boundary undergoes large deformations 

(e.g. bulging or shear band), the boundary particles may not be correctly identified. 

Another type of flexible boundary was developed by Zhang and Sture (Zhang and Sture 

1996) to simulate a rubber membrane by beam elements. In addition to the DEM, this 

algorithm calls for solving a set of matrix equations (associated with bean elements) at 

each time step. This type of flexible boundary can only be applied to simulate 2D 

problems.  

All these conventional boundaries used in modeling confining pressure have 

difficulty representing the real confining conditions used in the laboratorial triaxial tests. 

A new approach to apply realistic fluid confining pressure has been developed for 

modeling triaxial tests on intact rock using the DEM. In order to overcome drawbacks of 

conventional boundaries, the new approach described here applies updated force 

boundary to simulate the confining pressure. The applied force only acts on the boundary 

particles, which are identified and updated periodically. The force applied to an 

individual boundary particle is directly determined (without any need for iteration) based 

on the input confining pressure and the sphere size.  

The boundary particles are identified by using a cell algorithm developed by the 

author, in which the particles near the boundary are considered as the potential boundary 

particles, and are mapped into cells as shown in Figure 3-3, which, for clarity, only shows 

a 2D sketch on a horizontal cross section of a vertical cylindrical specimen. In order to 
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ensure that each cell has at most one boundary particle, the vertical (axial) and 

circumferential dimensions of a cell are selected as the minimum diameter of all spheres. 

Boundary spherical particles are mapped into cells according to their sphere centers, 

therefore, a sphere center can only be located in one cell, and it is of no concern if part of 

a particle is in one cell and part of it is in another cell. The cells make up a pipe-like 

boundary. The inner radius of the “pipe” is set as the original radius of the sample minus 

several times (twice used in the code) the maximum sphere diameter of all particles 

depending on the sphere size and specimen dimensions used in the simulation. However, 

the outside radial dimension of the “pipe” is not limited as shown in Figure 3-3, because 

the specimen may bulge during loading. By doing this, for each cell along the vertical 

(axial) and circumferential dimensions, there is at most one sphere center which can be 

placed in each cell. Along the radial direction, there could be several sphere centers 

located in a cell.  For each cell, the outermost particle can then be easily identified as the 

particle with the largest radial distance, and marked as boundary particle. 

Since identifying these boundary particles is time-consuming, the boundary 

particles are updated periodically rather than at each time step because they are not likely 

to change within a small time interval. The numerical investigations conducted revealed 

that updating the boundary particles every 100 timesteps is a good compromise between 

computational speed and accuracy, because it produces less than 1% discrepancy in axial 

stress while speeding up the simulation by about 3 times. 

After identifying the boundary particles, the effect of the confining pressure is 

imposed by applying forces onto these boundary particles. The radial force applied onto 

the ith individual boundary particle under membrane boundary condition, m
iF , is 
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determined based on the value of input confining pressure, p ,  and the radius of the 

particle, iR , as: 

2

2

1

m
b

m
m b

i i i N

i
i

AF R p
R

π
π

=

=

=

∑
                                                       (3-4) 

where m
bA  is the initial area of circumferential boundary of the specimen, m

bN  is the 

number of boundary particles, under membrane boundary condition. The boundary force, 

m
iF , is applied at the center of its relevant sphere, and is directed radially.  

Inner radius of "pipe"

Potential boundary spheres

Cells

Identified boundary spheres
(hatched)

 

Figure 3-3. Boundary particles identification using a cell algorithm in modeling 
membrane boundary for applying confining pressure 

Figure 3-4 (a) shows an example, in which the boundary particles are identified 

after loading a 2,500 sphere specimen to failure. The specimen bulges at several locations 

with formation of a shear plane (localization), which cannot be modeled by using 
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conventional boundary conditions, such as rigid boundary condition. Figure 3-4 (b) 

shows the boundary particles after failure under the rigid boundary condition. 

 

(a) Membrane boundary    

 

(b) Rigid boundary 

Figure 3-4. Results of identified boundary particles at post-peak stage for different 
boundaries 

3.3.2 Comparisons between Rigid and Membrane Boundaries 

Comparisons between rigid and membrane boundaries were made with the same 

packing assembly, model parameters and loading conditions. The simulations model a 

triaxial test with a confining pressure of 10 MPa. A 2,500 sphere specimen is considered 

Localization 
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here, which is 3.2 cm in height and 1.6 cm in diameter for the purpose of comparison 

against other simulations (Hentz et al. 2004a; Hentz et al. 2004b). The model parameters 

are shown in Table 3-1, which were calibrated for Lac du Bonnet granite (Wang and 

Tonon 2008). 

Table 3-1. Model parameters used in simulations with membrane boundary and rigid 
boundary 

Model parameter ( )cE GPa * 
s

n

K
K

 
( )c MPa  ϕ ( )T MPa  

Value 107.3 0.085 429 068  34.2 

 

 

Figure 3-5. Comparison of stress-strain curves between membrane boundary and rigid 
boundary conditions 
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(a) Rigid boundary 

 

(b) Membrane boundary 

Figure 3-6. Positions of boundary particles shown on a squeezed axial-radial plane for 
two different boundaries 
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(a) Membrane boundary   

 

(b) Rigid boundary       

Figure 3-7. Confining pressures applied to individual boundary particles for two different 
boundary conditions 
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The monitored stress-strain curves in Figure 3-5 show that the material under a 

rigid-wall boundary condition exhibits a higher strength than when membrane boundary 

conditions are aplied: 418 MPa as compared to 352 MPa. Failure occurs at a relatively 

larger strain under rigid-wall boundary condition than under membrane boundary 

condition (0.8% versus 0.65%). Although less noticeable than strength, deformability is 

also affected by the boundary conditions. In the initial elastic loading range, the material 

has a slightly larger Young’s modulus under rigid-wall boundary condition than under 

membrane boundary condition. After initial elastic loading range, the stiffness of the 

material drops faster under membrane boundary condition than under rigid-wall boundary 

condition. 

The reason for the differences in both strength and deformability between rigid-

wall and membrane boundary conditions lies in the interaction between the boundary and 

the specimen. In order to further investigate the boundary interaction, the positions of the 

boundary particles (Figure 3-6) and the stresses applied to each boundary particle (Figure 

3-7) are monitored for the two different boundary conditions. The stress applied to the ith 

boundary particles, r
iσ , under rigid boundary condition is determined as: 

2

1
2

r
bi N

r i
r i i
i r

i b

R
F
R A

π
σ

π

=

==
∑

                                                        (3-5) 

where r
iF  is the contact force calculated from the overlap between rigid wall and the 

boundary particle; r
bA  is the initial area of circumferential boundary of the specimen; r

bN  

is the number of boundary particles (under membrane boundary condition); and iR  is the 

radius of boundary particle. 

As depicted in Figure 3-7 (a), confining pressures applied to membrane boundary 

particles are the same for each particle, and are equal to 13.2 MPa, which is a weighted 
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value to approximately obtain the effect of input confining pressure (10 MPa). However, 

the confining pressures applied by using rigid-wall boundary particles vary largely: from 

zero to 250 MPa (Figure 3-7 (b)). For rigid-wall boundary, the boundary particles are 

artificially aligned to a rigid wall. This rigid-wall boundary constrains the failure and 

deformability processes, and introduces a highly inhomogeneous state of stress (Figure 3-

7 (b)). Depending on the material type and loading condition, the failure pattern of a 

cylindrical specimen under triaxial loading conditions may vary, but during the shearing 

phase the circumferential boundary will no longer be cylindrical. A rigid-wall boundary, 

which is always cylindrical, hence overly constrains the boundary and tends to produce 

higher strength and stiffness than the actual condition does. During shearing, when 

membrane boundary condition is applied, some boundary particles tend to expand out 

(Figures 3-4 (a) and 3-6 (b)) at constant applied stress (Figure 3-7 (a)). However, when a 

rigid boundary condition is applied, these particles are constrained to a rigid wall (Figures 

3-4 b) and 3-6 (a)), which produces higher stress applied to these particles (Figure 3-7 

(b)). On the other hand, when a rigid boundary condition is applied, some boundary 

particles may have lower, even zero, stresses (Figure 3-7 (b)), because the confining 

pressure is mainly taken by those boundary particles which tend to expand out. 

3.3.3 Simulation Procedures for Triaxial Tests 

The confining pressure is first applied on all boundary particles (all-around 

pressure) to reach an equilibrium state. Under this all-around confining pressure, the 

specimen develops a displacement at the top end of the specimen. Then an axial 

displacement is applied incrementally while keeping the confining pressure constant on 

circumferential boundary particles. 
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The shearing phase for a triaxial test is simulated by applying an incremental 

displacement at the top end of specimen while the bottom end is fixed in the vertical 

direction. At each incremental step, the top-end displacement is increased by a certain 

amount, and the displacement is then kept constant until the system reaches equilibrium. 

The equilibrium state can be indicated by monitoring either the system energy history or 

the balances between the stresses applied at the two ends of the specimen. In the 

simulations carried out in this research, the latter one was used to check the equilibrium 

state during a simulation; displacement increment was increased if the relative difference 

of stresses calculated at the two ends of specimen is smaller than 1%. By monitoring the 

normal stress and strain in the axial direction, the stress-strain curve can be easily 

obtained, which is then used to analyze the macro material properties of the model 

specimen, i.e., deformability and strength.  

 

3.4 STATIC CALIBRATION 

In order to simulate a specific quasi-static problem, the micro parameters of the 

DEM model should be calibrated to reproduce similar macro material properties as 

desired. There are two types of micro parameters to be determined in DEM, i.e., 

deformability and strength parameters. These micro parameters are calibrated with 

uniaxial tests and triaxial tests (axi-symmetric). 

3.4.1 Experimental Results  

In order to make the dynamic model calibration consistent with the static model 

calibration, sets of experiments, including both quasi-static and dynamic tests, were 

carried out on the same kind of rock, in UT Rock Lab by using the GCTS RDS-300 

system. The tested material is granite, which is fairly homogeneous, so no large scatter in 
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material properties such as deformability and strength due to fractures will be expected. 

The specimens used in the tests are cylindrical with dimensions of diameter in 50 mm 

and height in 100 mm. 

Several triaxial tests under different confining pressures of 0, 1, 2 and 5 MPa, 

respectively, have been carried out. These relatively low confining pressures were 

typically used for quasi-static model calibration because high confining pressures are not 

to be expected in rock fall analyses. All the tests were tested at a strain rate of 

5 -11 .0 1 0  s−× . 

Table 3-2. Results of triaxial tests 

3σ  

(MPa) 

1, failureσ  

(MPa) 

E (tangent modulus at 

50% of failure load)(GPa) 

ν (at 50% of 

failure load) 

, axial failureε (%)

0 162.4 22.4 0.26 1.08 

1 172.5 23.5 0.24 0.71 

2 186.7 27.1 0.27 0.77 

5 208.7 22.7 0.19 0.71 

 

The test results are shown in Table 3-2, and the failure envelope is shown in 

Figure 3-8. The failure mode for uniaxial compression test ( 3σ = 0) is different from that 

under confining pressure: under uniaxial compression, the specimen failed in “split” 

mode (Figure 3-9), which is typical for brittle material, whereas under triaxial 

compression, the classical “shear” failure mode was observed (Figure 3-10). 
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Figure 3-8. Experimental failure envelope of granite used for DEM model calibration  

 

Figure 3-9. Failure pattern (split) in uniaxial compression tests on granite 
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Figure 3-10. Failure pattern (shear) in triaxial compression tests on granite 

3.4.2 Identification of Micro Deformability Parameters  

In the calibration process, the experimental data shown in Table 3-2 and Figure 3-

8 were used to calibrate both deformability and strength parameters of the model.  

A cylindrical specimen with a height of 100 mm and 50 mm diameter was 

prepared for calibration using a random packing of 2,500 spheres. The size of the 

specimen is the same as the one used in the experiments. The density is 2,600 kg/m3 as 

measured. The coefficient of interaction range was chosen as 1.1. 

Deformability parameters include particle’s Young’s modulus, cE , and the ratio of 

normal stiffness over shear stiffness at contact, /s nK K , where the contact normal 

stiffness is determined by  
,

4

A B
c eq

n

E D
K

π
= .                                                        (3-6) 
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These micro deformability parameters are calibrated to match the material’s macro 

deformability parameters: Young’s modulus, E, and Poisson’s ratio,ν , which were 

determined from experiments as 23.9 MPaE =  and 0.24ν = ,respectively.  

The identification of deformability parameters was carried out under non-failure 

condition by means of DEM uniaxial compressive tests. The average stresses in the 

assembly can be determined either by the method of Liao (to determine the full stress 

tensor) (Liao 1997) or simply by averaging the contact forces on both the bottom and top 

ends to get the axial stress. The latter one was used in the simulations carried out in this 

research. 
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Figure 3-11. The relationship between macro elastic properties and cE  

As can be seen in Figures 3-11 and 3-12, material’s Young’s modulus, E, is 

related to both particle’s Young’s modulus and the ratio /s nK K , while material’s 

Poisson ratio ν  is only related to the ratio /s nK K . When determining material’s 
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Young’s modulus, E, particle’s Young’s modulus and the ratio /s nK K  are independent 

of each other. This allows us to investigate this individual effect on E and then combine 

those effects together to determine material’s Young’s modulus E as follows. 
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Figure 3-12. The relationship between macro elastic properties and /s nK K  

Different combinations of cE  and /s nK K   are used to set up a series of 

simulations for a given random packing. A sensitivity analysis is carried out by varying 

one of the factors and fixing the other factor. As seen in Figure 3-11, the material’s macro 

Young’s modulus, E, increases linearly with particle’s Young’s modulus, cE , and the 

material’s macro Poisson’s ratio does not change with particle’s Young’s modulus, cE . 

By fitting the simulation results (as shown in Figures 3-13 and 3-14), the following 

relationships are obtained based on formulas presented by Liao (Liao 1997) :  

0.794 2.589
0.937

1 1.380

s

n
c

s

n

K
KE E K

K

⎛ ⎞+⎜ ⎟
⎜ ⎟=
⎜ ⎟+⎜ ⎟
⎝ ⎠

                                     (3-7) 
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0.634 0.192

0.544
1 3.732

s

n

s

n

K
K

K
K

ν

⎛ ⎞+⎜ ⎟
⎜ ⎟=
⎜ ⎟+⎜ ⎟
⎝ ⎠

                                   (3-8) 
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Figure 3-13. Fitting results: material’s Young’s modulus vs. /s nK K  
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Figure 3-14. Fitting results: material’s Poisson’s ratio vs. /s nK K  
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Equations (3-7) and (3-8) can be solved for the micro deformability parameters, 

which are found to be equal to 27.2  and 0.098s
c

n

KE GPa
K

= = (as shown in Table 3-3). 

With these model parameters, the simulated macro properties are as shown in Table 3-4 

(third row, columns 2 and 3), which are very close to the experimental results. These two 

equations are only valid for a given packing structure including the number of particles, 

particle sizes and size distribution. 

Table 3-3. Model parameters used in the simulations 

Model parameter ( )cE GPa  
s

n

K
K

 
( )c MPa  ϕ ( )T MPa  

Value 27.2 0.098 385.0 60o  110.2 

Table 3-4. Macro-properties of experimental and simulated results 

Property  ( )E GPa  ν ( )uq MPa  (degree)ϕ   ( )c MPa  

Experimental 23.9 0.24 162.4 40.0 15.2 

Calibrated 23.7 0.25 160.0 37.8 18.3 

3.4.3 Identification of Micro Strength Parameters  

There are two kinds of failure mechanisms, i.e. shear and tension, controlling the 

material failure. They can affect each other because either type of failure may change 

local stress conditions. This actually makes the failure process more complicated and 

makes it difficult to calibrate strength parameters. Strength parameters include the contact 

tensile strength, T, and c and ϕ  for shear components as already described in the failure 

criteria of the model, (Section 2.3.3). These strength parameters are calibrated under 
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different confining pressures to match a failure envelope obtained from experiments. This 

process is very time-consuming as each trial parameter set needs to be simulated under 

different confining pressures to reach the peak strength point of a stress-strain curve. 

In order to identify the strength parameters, an inverse method is used. The main 

objective of the inverse method used here is to identify a selected set of unknown 

modeling parameters in DEM to improve the agreement with experimental data. The 

experimental failure envelope is usually obtained by setting up a set of triaxial tests with 

different confining pressures to get the ultimate strength. In order to match the 
experimental failure envelope, some representative points, 1_ exp( ,  )i ipσ , from the 

experimental failure envelope are selected to delineate the envelope as shown in Figure 
3-15, where 1_ exp

iσ  is the ultimate axial strength under confining pressure ip  

( i = 1, 2, 3 n ) , and n  is the number of points chosen to describe the envelope. The 

corresponding confining pressures, ip , are used for DEM simulation setup. For a given 

set of micro strength parameters, [ ,  ,  T]c ϕ , the simulated ultimate strength under 

confining pressure ip , is denoted as 1_sim
iσ . The objective function  

                                  
2

1_ exp 1_ sim

1 1_ exp

1( ,  , T)
i in

i
i

f c
n

σ σ
ϕ

σ=

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑                              (3-9) 

is used to evaluate the difference between experimental and simulated failure envelopes. 

The global optimization package SNOBFIT (Neumaier 2008) is utilized in the 

calibration process, in which an optimization problem is solved with objective function 

( )f V subject to [ , ]V L U∈ , where V  is the parameters set, [ ,  ,  T]c ϕ ,  to be identified, 

and [ , ]L U  is the parameter space, which is bounded by using specified ranges as 

low up

low up

low up

c c

T T
ϕ ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.  
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Figure 3-15. Calibrated strength envelope using a global optimization method compared 
against experimental one  

SNOBFIT performs global and local search by branching and local fits to find the 

global optimal point. This technique is especially suitable for optimizing problems with 

multiple local optimal points. In the calibration of strength parameters, the objective 

function in Equation (3-8) is not available in an analytical form because a DEM code 

accounting for an intricate physical process is utilized to compute the failure envelope 

with specified micro strength parameters. SNOBFIT is the only global optimization code 

that handles non-analytical objective functions. The way in which the micro strength 

parameters affect the material strength is far complex, and the relationships of these 

strength parameters involved in determining the objective function, ( ,  , T)f c ϕ , may not 
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be monotonic. Extensive numerical simulations have shown that SNOBFIT is capable of 

optimizing this complicated objective function to find the micro strength parameters. 
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Figure 3-16. Flow-chart of the inverse method for strength parameters identification 
using the global optimization package SNOBFIT 
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At each step of the optimization process, SNOBFIT generates a specified number 

of evaluation points, and then proceeds by successively partitioning the parameter space 

and building local quadratic models of the objective function. The search process is 

terminated when a given minimal objective function value is reached or if no better 

solution can be found after a specified number of steps. Compared to typical stochastic 

algorithms, SNOBFIT does not require as many function evaluations and is therefore 

applicable to problems with expensive function evaluations, such as a DEM to obtain a 

failure envelope. 

The overall calibration procedure proceeds iteratively. With reference to Figure 3-

16, one starts from either an initial guess of model parameters or parameter values 

randomly chosen in parameter space. Then, the unknown parameters V  are iteratively 

updated to find the optimized parameters: at the ith iteration, the DEM code is invoked to 

obtain a computed failure envelope (CFE) corresponding to parameters iV . The CEF is 

then compared to the experimental failure envelope (EFE) by evaluating the objective 

function ( ,  , T)f c ϕ  (Equation 3-9). If the value of the objective function is smaller than 

the given tolerance, optimized model parameters will be output. Otherwise, the model 

parameters are updated by calling SNOBFIT. In the calibration process, the DEM code 

and SNOBFIT are repeatedly invoked until CFE matches EFE by meeting the tolerance 

criterion, which is set as 5% because of the intensive computational effort involved in 

obtaining the value of the objective function. In the calibration work presented in this 

research, 0 0

10 MPa 500 MPa
10 80

10 MPa 150 MPa

low up

low up

low up

c c

T T
ϕ ϕ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 is used for the parameter ranges for the 

tested granite, which are roughly estimated based on available experimental strength data. 

The number of points, n, chosen to delineate the failure envelope is 4.  
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All the simulations for strength parameter calibration use the deformability 

parameters identified in Table 3-3 (column 2 and 3). The calibrated strength parameters 

are 385 MPac = , 060ϕ = and 110.2 MPaT = . The calibrated failure envelopes are 

shown in Figure 3-15, which shows that the simulated envelope with calibrated micro 

strength parameters matches well the experimental one. A total number of 65 iterations 

were necessary to find the calibrated micro strength parameters with a tolerance criterion 

of 5%, i.e. 65 failure envelopes were generated, each corresponding to different strength 

parameter combinations.  

The corresponding stress-strain curves under different confining pressures are 

plotted in Figure 3-17. It shows that specimens under higher confining pressure fail at 
larger strain and under higher deviator stress ( 1 3 , failure( )σ σ− ). 
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Figure 3-17. Simulated stress-strain curves using the calibrated model 
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The calibrated DEM model can be a good tool to investigate the failure of a brittle 

material by shedding light on the following aspects. 

The macro failure of a brittle material is caused by the evolution and propagation 

of local cracks, which can be identified by the history of the number of contact failures 

(cracks). When a specimen fails in a simulation, a failure zone forms, along which, 

contacts are broken apart by tensile failure cracks and particles are rearranged. For 

triaxial compressive tests, the stress-strain curve can be divided into three distinct stages 

(Figure 3-18) based on the generated cracks: 

Stage I:  Very few cracks are generated and the material behaves elastically. 

Stage II: Tensile cracks are gradually generated over a strain-loading increment; 

cohesion component of the cracked contact is destroyed, and the material behaves 

plastically. 

Stage III: The frictional strength (residual contact shear strength) starts to 

mobilize gradually until the residual shear strength of the material is reached along a 

shear band, which is made up of those particle contacts firstly broken by tensile failure 

followed by loss of cohesion in the shear strength at contact. In this stage, the newly 

generated contact failures in tension are very few because the additional strain mainly 

takes place in the shear band, which is formed by broken contacts. This stage 

characterizes the post-peak behavior of compression test.  

When the loading increases, the cohesion component of shear strength is 

gradually destroyed by tensile cracking. The normal stress-dependent frictional strength 

(residual shear strength at contact) is only mobilized after the specimen reaches macro 

failure (peak strength), when the cohesional component of shear strength is significantly 

reduced, and the rock fragments can move relative to each other in shear. In other words, 
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the residual frictional strength at contact (micro level) only affects the post-peak behavior 

for brittle materials. 
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Figure 3-18. History of contact failures during a simulated uniaxial compressive test with 
the calibrated model 

 

Figure 3-19. Mobilization of the strength components (after ref. (Hajiabdolmajid et al. 
2002) ) 
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The results of failure process for compression test shown in Figure 3-18 can be 

compared with the investigations made in (Hajiabdolmajid et al. 2002) (on page 736 and 

Fig. 10) (Figure 3-19), in which Hajiabdolmajid, et al. concluded that, in relatively low 

confinement environments, the delay in frictional strength mobilization is characteristic 

of brittle failure in geomaterials. They argue that “The cohesional component of strength 

is the predominant strength component at the early stage of brittle failure and cohesion 

loss is the predominant failure process leading to the observed brittle behavior. The 

cohesive strength is gradually destroyed by tensile cracking and crack coalescence. The 

normal stress-dependent frictional strength can only be fully mobilized after the 

cohesional component of strength is significantly reduced, much damage has 

accumulated, and when the rock fragments can move relative to each other in shear.” 

These investigations agree well with the author’s observations obtained by modeling the 

failure behavior of brittle materials. Based on the author’s investigations, in brittle 

materials tensile cracks at particle contacts dominate the failure process before reaching 

the peak strength. When the loading increases, the cohesion component of shear strength 

is gradually destroyed by tensile cracking as shown in Figure 3-18. The normal stress-

dependent frictional strength (residual shear strength at contact) is only mobilized after 

the specimen reaches macro failure (peak strength), when the cohesional component of 

strength is significantly reduced, and the rock fragments can move relative to each other 

in shear. In other words, the residual frictional strength at contact (micro level) mainly 

affects the post-peak behavior of brittle materials. 

3.4.4 Comparisons against PFC’s BPM Model 

The developed DEM model and calibration algorithm was compared against 

PFC’s BPM model (Potyondy and Cundall 2004) by calibrating the behavior of Lac du 
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Bonnet granite. PFC’s BPM is often used to model intact rock behavior. However, if 

clusters of spheres are not used, it has difficulties in modeling the behavior of Lac du 

Bonnet granite, whose strength envelope displays a high slope, and which has a high ratio 

of compressive strength to tensile strength.  

A cylindrical specimen with a height of 3.2 cm and 1.6 cm diameter was prepared 

for calibration using a random packing of 2,500 spheres. To allow comparison, the size of 

the specimen is the same as the one used in Hentz et al’s work (Hentz et al. 2004a). The 

coefficient of interaction range was chosen as 1.3 for this case rather than 1.1 used in 

previous case. The model was calibrated against the macro properties of Lac du Bonnet 

granite shown in Table 3-5. The calibrated micro deformability parameters are 

104.7  and 0.085s
c

n

KE GPa
K

= = , and the calibrated micro strength parameters are 

429 MPac = , 068ϕ = and 34.2 MPaT = (also shown in Table 3-1). The calibrated 

failure envelopes are shown in Figure 3-20, which shows that the simulated envelope 

with calibrated micro strength parameters matches well the experimental one. The results 

demonstrate a prominent pressure-dependent behavior compared to PFC model results 

(Table 1 and Fig. 12 (Potyondy and Cundall 2004)). Potyondy and Cundall (Potyondy 

and Cundall 2004) concluded that: “This discrepancy may arise from the use of circular 

and spherical grains in the present model, and it could be reduced by using grain shapes 

that more closely resemble the complex-shaped and highly interlocked crystalline grains 

in granite.” When using clusters of spheres, a good match with experimental envelope 

slope was obtained, but other problems, like discrepancy in dilation and post-peak 

behavior, were observed. It turns out that, in the model used in this research, the author 

can reproduce the behavior of Lac du Bonnet granite by an effective calibration technique 

(Figure 3-20). Unlike in author’s model, the shear strength in BPM model is not pressure-
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dependent (it only includes cohesion), which might cause the difficulty in modeling a 

high strength envelope slope.   

Table 3-5. Macro-properties of Lac du Bonnet granite 

Property  ( )E GPa  ν  ( )uq MPa  (degree)ϕ ( )c MPa  ( )t MPaσ  

Experimental 
results 

69 0.26 216 59 30 9.3 

Author’s DEM 
model 

71 0.25 220 58 32.6 19.1 

PFC3D BPM 
model 

69.2 0.256 198.8 32.1 55.1 27.8 
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Figure 3-20. Comparison against PFC’s BPM in calibrating Lac du Bonnet granite 
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In order to understand the importance of pressure-dependent shear strength in 

simulating a high strength envelope slope, a DEM model with a non-pressure-dependent 

shear strength ( 0ϕ = in Equation  (2-15)) was calibrated against the experiment data of 

Lac du Bonnet granite as used above. The values of micro deformability parameters are 

the same as those identified previously. Now only two parameters are involved in 

strength parameter identification, i.e., c , and T .  

 The optimum result obtained after 100 iterations has strength parameters equal to  

239 MPac = , and  47 MPaT =  and its failure envelope is shown in Figure 3-20 (failure 

envelope for non-pressure-dependent shear strength). It shows that the Lac du Bonnet 

granite experimental failure envelope cannot be modeled by only using model strength 

parameters c  and T . This model is still different from PFC’s BPM model because of the 

concepts of equilibrium distance and interaction range used in the model, therefore the 

identified model strength parameters cannot be directly compared to those used in the 

BPM model. It is concluded that pressure dependent micro shear strength is critical to 

correctly simulate high slope failure envelopes. 

In practice, the Brazilian test is usually carried out to determine the material 

tensile strength. However the strength parameters calibrated from triaxial tests to 

determine material tensile strength cannot be directly used to model the Brazilian test. 

Because the packing assembly used for the Brazilian test (disk) is different from packing 

assembly used for triaxial test (cylinder), the calibrated strength parameters for the 

triaxial test specimen may not be suitable for a disk specimen any more.  

From a numerical point of view, a direct tension test can be easily set up to 

determine tensile strength. With the calibrated strength parameters, a direct tension test is 

simulated by applying incremental tensile displacement loading. The tensile strength 

between specimen ends and loading platens (interface) are set high enough to make sure 
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that no failure can occur at the interface. As shown in Figure 3-21, the simulated tensile 

strength is about 19.1MPa (for mean particle radius of 0.70 mm), which is higher than the 

experimental value of 9.3MPa obtained from Brazilian tests. The tensile strength 

simulated by PFC3D in Potyondy’s work (Potyondy and Cundall 2004) was about 28 

MPa. The difference in the simulated tensile strength may be caused by different reasons. 

First, the model used in this work is different from PFC’s BPM in several ways, such as 

concepts of equilibrium distance and interaction range, and pressure-dependent shear 

strength. Further, Potyondy and Cundall used different specimens used for simulating 

triaxial and Brazilian tests, and hence the internal packing structures were different. As 

highlighted in this dissertation, in order to model a specified material, different packing 

structures should have different micro model parameters. However, Potyondy and 

Cundall used the model parameters identified for uniaxial tests even in modeling 

Brazilian tests. Lastly, the tensile strength obtained from Brazilian tests is normally 

higher than that obtained from direct tension test because Brazilian tests introduce biaxial 

state of stress, in which some micro cracks may be due to compressive load. Usually, it is 

difficult to fully model a material behavior with very high ratio of uniaxial compressive 

strength over tensile strength. However, the ratio of uniaxial compressive strength to 

tensile strength of about 12 obtained here is a representative value for intact rock 

material. 

3.4.5 Discussions on Model Calibration 

This section follows the previous section of comparisons against PFC’s BPM 

model with the example of modeling Lac du Bonnet granite to discuss some important 

aspects associated with DEM model calibration. 
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Figure 3-21. Simulated stress-strain curves for direct tension test with different particle 
sizes for Lac du Bonnet granite  

It should be noted that the calibrated values of micro strength parameters in DEM 

model are different from the ones at macroscopic level. In DEM modeling, failure either 

in tension or shear is initiated from those highly stressed contact bonds and propagates 

subsequently. Hence, calibrated micro strength parameters could be much higher than 

effective strengths, as can be seen from the strength parameter calibration of Lac du 

Bonnet granite, in which the calibrated model strength parameters c , ϕ  and T  are all 

much higher than macroscopic ones as shown in Table 3-5.  

Unlike other numerical methods such as finite element method, in which model 

parameters can be directly derived from experimental results, DEM deformability and 

strength parameters used at the micro level are different from the material properties at 
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the macro level. That is why special calibration algorithms were proposed. In DEM 

modeling, specimens are prepared by random sphere packing. Different packings have 

different internal structures even for the same number of particles. These internal packing 

structures can affect the macroscopic behavior of packing assemblies. As a result, in 

DEM modeling, every packing specimen must be calibrated by using the algorithms 

discussed above to match the desired properties before using it in actual simulations. 

Usually, different packings should have different micro model parameters to match 

specific material properties.   

The effect of internal packing structures on macro material properties was 

investigated in this section in terms of particle size and random process in packing. The 

investigation demonstrates that internal packing structure is an intrinsic part of material 

characterization in discrete element modeling. 

 First, packing assemblies with different mean particle sizes were considered 

while keeping all other micro parameters fixed. The mean particle radii for the five 

different packing assemblies are 0.44 mm, 0.56 mm, 0.70 mm, 0.95 mm, and 1.13 mm, 

respectively. Simulated results show that the particle size can affect macro properties in 

both deformability and strength. The Poisson’s ratio is independent of particle size, while 

the Young’s modulus exhibits a clear dependency upon particle size, with E decreasing 

from 75.1 GPa to 65.2 GPa as particle size increases from 0.56 mm to 1.13 mm (Figure 

3-22 (a). The reason to this dependence is unknown, but it should be related to the 

internal structure of random packing, because such dependence is not observed while 

using regular packings, in which spheres are in the same size and face centered. The 

simulated uniaxial unconfined compressive strength and tensile strength exhibit no clear 

increasing or decreasing trends with particle size as shown in Figures 3-21 and 3-22 (b).  
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(a) Dependence of Young’s modulus on particle size 

 

(b) Stress-strain curves for different mean particle sizes  

 Figure 3-22. Effect of particle size on simulated macro properties 
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Different random processes in packing can also cause changes in internal packing 

structures. A set of triaxial simulations ( 3 10 MPaσ = ) were performed with packing 

assemblies generated by different random processes while using the same type of particle 

sizes. Figure 3-23 shows that the difference in ultimate deviator stress ( 1 3 at failure( )σ σ− ) 

resulted from random arrangement can be up to 15%. However, this random process has 

negligible effect on Young’s modulus and Poisson’s ratio. 

Another important factor which can affect the model calibration is the coefficient 

of interaction range. The higher the coefficient of interaction range is, the lower values of 

the calibrated micro strength parameter are. 

In conclusion, internal packing structures can affect macro material properties 

provided other micro-properties are fixed, and have to be taken into account in model 

calibration. 
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Figure 3-23. Effect of random distribution of particles on simulated material behavior in 
DEM modeling 
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3.5 VERIFICATION OF DYNAMIC PROBLEMS 

3.5.1 Introduction 

One of the key points of this research is to investigate the mechanisms that control 

impact fragmentation. Hence the dynamic behavior of rock materials under impact 

loading condition is of the great concern.  One of the main features of dynamic behavior 

of rock materials is the loading-rate dependent dynamic strength, which a model must 

reproduce. The understanding of this rate effect has been the purpose of many 

experimental works, as well as of numerical models.  

As indicated in Figure 3-24, the strain rate for rock falls ranges from about 0.5 to 

several hundred s-1, but this is probably only for the case of rock block impact against 

hard rock (hard impacts). For rock falls onto a soft ground, most of kinetic energy 

dissipates via the ground by creating a plastic zone and by wave scattering, which tend to 

extend the impact duration. Hence, the loading and the loading rate applied to rock blocks 

are very low for rock falls onto soft grounds. Moreover, for rockfall impact, the strain 

rate mentioned here only refers to the impact zone, which accounts for a very small 

portion of the rock block. The remaining major portion of the rock block is subjected to 

very low strain rates. But it is the locally highly strain-rate loaded zone that initiates 

cracks and drives the propagation of cracks to create the general fragmentation process.    

 

Figure 3-24. Regime of strain rates for different loading conditions (after (Hentz et al. 
2004b)) 
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Various experimental devices have been used to explore a wide range of strain 

rates (Giacomini et al.; Hentz et al. 2004a; Lankford 1980; Zhao 2003; Zhao et al. 1999). 

Compression tests have been performed, from static loading up to strain rates of 10-1 s-1, 

with a hydraulic servo-controlled testing machine. With Drop Weight Impact tests, rates 

of 101 s-1 may be reached, but the energy transmitted to the specimen is limited by the 

size of the device. Higher strain rates as large as 102 s-1 can be obtained with a Split 

Hopkinson Pressure Bar (SHPB) test which has now become very popular. 

As shown in Figure 3-25, a large number of experimental results on concrete were 

compiled by Hentz et al in terms of the dynamic strength over static strength ratio. These 

results show that at relatively lower strain rates, the strength increment with strain rate is 

less prominent than that at higher strain rates, where a sharp rise occurs at around the 

strain rate of 30 s-1.  

 

 

Figure 3-25. Strain rate effect on dynamic uniaxial compressive strength (after (Hentz et 
al. 2004b)) 
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In order to make sure that the calibrated DEM model can also be used to model 

the dynamic behavior of rocks, dynamic tests using both a compression testing machine 

at low strain rates and a SHPB apparatus at higher strain rates were performed to verify 

the code on the same material used in triaxial tests for calibrating the quasi-static model 

(Section 3.4). 

3.5.2 Dynamic Tests 

3.5.2.1 Dynamic Compression Tests 

The specimens used for dynamic compression tests are the same size as the one 

used for triaxial tests. Five different strain rates were used in the uniaxial compression 

tests, namely, 65 .0 1 0 −× , 45 .0 1 0 −× , 35 .0 1 0 −× , 25 .0 1 0  −× and 12 .0 1 0 −× s-1. The 

tests were conducted by controlling the displacement of the loading platen using the 

GCTS RDS-300 system in UT Rock Lab. The tested results given in Figure 3-26 show a 

clear effect of strain rate on dynamic strength especially when the strain rate is larger 

than 45 .0 1 0 −×  s-1. The dynamic strength does not increase much when strain rate 

increases from 65 .0 1 0 −×  s-1 to 45 .0 1 0 −×  s-1, and this range is typically considered as 

quasi-static state. The results shown in Figure 3-15 were obtained at strain rate of 

51 .0 1 0 −×  s-1, in which the uniaxial strength is very close to the values obtained at strain 

rates of 65 .0 1 0 −×  s-1 to 45 .0 1 0 −×  s-1 as shown in Figure 3-26. When the strain rate is 

larger than 45 .0 1 0 −×  s-1, the dynamic strength is linearly dependent on strain rate in a 

logarithmic scale as shown in Figure 3-26 b). 

Another interesting observation on these dynamic tests is that the size and number 

of fragments are directly related to the strain rate. As depicted in Figure 3-27, the higher 

the applied strain rate is, the larger number of fragments and the smaller size of the 
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fragments are generated. The further analysis on the effect of strain rate on the fragment 

size distribution will be addressed in Section 3.5.4. 
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(a) Stress histories of different strain rates 
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(b) Relationship between dynamic strength and strain rate 

Figure 3-26. Effect of strain rate on dynamic strength of dynamic compression tests  
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a)  165 .0 1 0 s −−×  

 

b) 135 .0 1 0 s −−×  

 

c) 125 .0 1 0 s −−×  

Figure 3-27. Fragmentation under different strain rates in dynamic uniaxial compression 
tests 

3.5.2.2 Split Hopkinson Pressure Bar Tests 

A typical SHPB experimental setup is outlined in Figure 3-28. It consists of two 

long aligned metallic bars with a short specimen placed between them. A projectile 
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impacts the free end of the input bar thus developing a compressive longitudinal incident 

wave ( )i tε . Once this wave reaches the bar-specimen interface, part of it, ( )r tε , is 

reflected, whereas the other part travels through the specimen and develops the 

transmitted wave ( )t tε  in the output bar. These three waves are recorded by two strain 

gauges cemented on the input and output bars respectively. The recorded waves are then 

used to deduce the force and velocity at two ends of the specimen. 

 

 

Figure 3-28 Sketch of SHPB test setup used to determine material’s dynamic properties 
at high strain rates 

As the three waves are not measured at bar-specimen interfaces, the recorded data 

have to be shifted in time and distance from the position of the strain gages to the 

specimen faces. Based on one dimensional wave propagation theory and the 
superposition principle, the forces ( ( )inputF t , ( )outputF t ) and the velocities 

( ( )inputV t , ( )outputV t ) at both faces of the specimen are given by the following equations 

(Frew et al. 2001; Zhao 2003) 

0

0

( ) ( ( ) ( ))

( ) ( )

( ) ( ( ) ( ))

( ) ( )

input B i r

output B t

input i r

output t

F t A E t t

F t A E t

V t C t t

V t C t

ε ε

ε

ε ε

ε

= +⎧
⎪ =⎪
⎨ = −⎪
⎪ =⎩

                                       (3-10) 

where BA , E  and 0C  are the bar’s cross-sectional area, Young’s modulus, and the elastic 

wave speed. 
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In order to identify the material properties of tested materials (specifically, stress-

strain relationship), Zhao (Zhao 2003) showed that a so-called three-waves formula give 

a correct average stress imposed on the specimen  
( ) ( )

( )

( ) ( )
( )

2

output input
s

s

output output
s

s

V t V t
t

l
F t F t

t
A

ε

σ

−⎧
=⎪

⎪
⎨ +⎪ =⎪⎩

                                             (3-11) 

where sl and sA  denote the length and the cross-sectional area of specimen, respectively. 

3.5.2.2.1 Experimental Setup and Data 

 SHPB tests were carried out at the Dynamic Lab of the Department of Aerospace 

Engineering and Engineering Mechanics at The University of Texas at Austin. The same 

granite material as used previously for model calibration was used (Section 3.4) for 

SHPB tests. The rock specimens that were used are cylindrical with a height of 13.1 mm 

and a diameter of 21.6 mm. The density is 2,600 kg/m3 and the average compressive 

wave speed is about 3,031 m/s deduced based on the Young’s modulus of 23.9 GPa 

determined from quasi-static tests. The wave speed of the bars is 4,871 m/s and the 

Young’s modulus is 193.7 GPa. The diameter of the input and output bars is 12.4 mm. 

The diameter of specimens were chosen much larger than the bar diameter so as to meet 

the ASTM standard D 4543 (ASTM 2007) in which the specimen diameter should be at 

least six times the maximum particle diameter in the material. In order to test a specimen 

with diameter of 21.6 mm, two adapters were used. But this will introduce some noise 

which should be considered in analyzing the recorded waves. 

A high-speed camera was used to capture the failure process of the specimen and 

also to correlate the particle velocities at interfaces calculated from Equation (3-10) to the 

ones measured based on the movements of bars from captured pictures. As shown in 
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Figures 3-29 and 3-30, a typical failure process of the specimen was clearly captured with 

several cracks being initiated, then propagating, and eventually the whole specimen 

shattering into particles.  

 

   

   

   

Figure 3-29. Failure process recorded by a high-speed camera for the test with a stain rate 
of 53.4 s-1 (time interval of 10 micro-seconds) 
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Figure 3-30. Failure process recorded by a high-speed camera for the test with a stain rate 
of 80.1 s-1 (time interval of 10 micro-seconds) 

Pulse shapers (Frew et al. 2002) have been found to be a very useful tool to obtain 

smooth and well behaved stress-strain curves in brittle materials. The pulse shapers used 

in the tests were thin copper disks with a thickness of about 1 mm and a diameter of 6 

mm. The pulse shaper is placed between the projectile and the incident bar. The pulse 

shaper slows down the load rate and extends the rise time, which is the time from starting 
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to load the specimen to reaching the peak value, giving the specimen more time to reach 

a quasi-steady (or equilibrium) state needed. 

The projectile was triggered by a pressure gun. The strain rate could not be 

directly controlled in the tests. Instead, different pressures to trigger the projectile were 

used to achieve different strain rates. But the strain rates are not linearly dependent on the 

pressures to trigger the projectile. Two loading experiments respectively under 300 and 

450 kPa controlling pressure were performed. Recorded strain histories from strain 

gauges and deduced force and velocity histories at bar-specimen interfaces are plotted in 

Figures 3-31 to 3-36. 
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Figure 3-31. Recorded strain histories for the test with 300 kPa controlling pressure 
generating an average strain rate of 53.4 s-1 
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Figure 3-32. Recorded strain histories for the test with 450 kPa controlling pressure 
generating an average strain rate of 80.1 s-1 
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Figure 3-33. Calculated force histories applied on the input bar end at two different strain 

rates 
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Figure 3-34. Calculated force histories applied on the output bar head at two different 

strain rates 
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Figure 3-35. Calculated particle velocity histories at the input bar end  at two different 

strain rates 
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Figure 3-36. Calculated particle velocity histories at the output bar head at two different 

strain rates 

3.5.3 Verification of Dynamic Model with Dynamic Compression and SHPB Tests 

The results of dynamic compression and SHPB tests were then used to verify the 

DEM code to simulate the dynamic behavior of granite. Micro parameters were 

calibrated using quasi-static procedures as shown in Table 3-3.  Instead of using high 

numerical damping in modeling quasi-static problems, zero damping was applied to 

simulate dynamic problems, in which material damping is neglected. In static model, the 

damping coefficient is artificially set very high to quickly dissipate the kinetic energy and 

get the steady-state results. In dynamic modeling, usually the material damping for intact 

rock is very low for intact rock and can be neglected. 
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3.5.3.1 Numerical Simulation of Compression Tests  

In modeling dynamic compression tests, more iterative steps are needed to reach 

the failure state when a lower strain rate is applied. It took about 12 hours to run a 

simulation of 2500-sphere packing at strain rate of 0.2 s-1 on Lonestar platform at Texas 

Advanced Computing Center of University of Texas at Austin. Due to the limit of 

computational resource, only strain rates higher than 0.2 s-1 can be simulated when a 

2500-sphere packing is used. So only the dynamic compression test with the strain rate of 

0.2 s-1 can be simulated with a 2500-sphere packing. As shown in Figure 3-37, for strain 

rate of 0.2 s-1, the simulated strength is close to the experimental one. For a higher strain-

rate regime, simulated dynamic strength in uniaxial compression is about 10% higher 

than the strength of both SHPB simulated and experimental tests, which will be addressed 

in next section.  
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Figure 3-37 Effect of strain rate on dynamic strength observed from both experimental 

and numerical results    
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In order to understand the effect of loading rate on dynamic strength within a 

relatively large range of strain rate from a numerical point of view, a 600-sphere packing 

was used for the simulation of dynamic compression tests. All the micro model 

parameters were the same as those calibrated with 2500-sphere packing. With this 

smaller-number sphere packing, the lowest strain rate of 0.001 s-1 can be simulated. 

Simulations were performed to mimic the actual test conditions by fixing the specimen 

bottom in the vertical direction and by applying displacement at the top end continuously 

with a specified velocity. To obtain stress-strain curves, the average vertical normal 

stresses on bottom and top ends of the specimen were monitored.  

The simulated stress-strain curves under different strain rates for dynamic 

compression tests are shown in Figure 3-38. Strain rate has negligible effect on Young’s 

modulus, which can be estimated from the Figures 3-38 (a) and (b) as about 23.5 MPa. 

When the applied strain rate is higher than 11 0 .0 s − , noticeable “stepping” waves occur. 

For a very large strain rate, such as case (d) in Figure 3-38, one step wave is enough to 

fail the specimen. Even for a low strain rate, this type of “stepping waves” still exist and 

can be found when zooming into a small range of strain (Figure 3-38 (a)). The simulated 

failure evolution of case (c) is shown in Figure 3-39 by monitoring contact failures at 

different stages. It is found that contact failures progressively propagate from the two 

ends to the center of the specimen.  

The simulated strength dependence on strain rate is shown in Figure 3-39. The 

tendency of increasing dynamic strength with strain rate exhibits two distinct regimes in 

strain rate. The strength dependency on strain rate is less prominent for the small strain 

rate regime (< 10 s-1) compared to the large strain rate regime (>10 s-1). This numerical 

observation is similar to the experimental results as shown in Figure 3-25, which was also 

confirmed by the experimental results on granite (dynamic compression and SHPB tests) 
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shown in Figure 3-40. Note that no rate-dependent constitutive model was used in the 

DEM model to simulate dynamic behavior. As discussed by Lankford (Lankford 1982) 

(Lankford 1980), inertia controls the strain rate dependent behavior because the extension 

of cracks is limited by material inertia. Usually specimens fail at the stress level 

corresponding to the commencement of the micro crack nucleation processes, and 

material inertia inhibits crack growth. 
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(a)      11.0 sε −=                                       (b) 110.0 sε −=  
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(c)      1100.0 sε −=                                    (d) 11,000.0 sε −=  

Figure 3-38. Stress-strain curves for different applied strain rates (both stresses on top 
end and on bottom end were recorded as indicated in the figures) 
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Stage 1                               Stage 2                                     Stage 3 

 

 

Stage 4                               Stage 5                                     Stage 6 

Figure 3-39. Failure evolution by monitoring contact failures at different stages 

corresponding to the simulation case (c) in Figure 3-38. The black points represent 

locations of failed contacts.  
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Figure 3-40. Strain-rate dependent dynamic strength for both experimental results and 

simulated results in modeling dynamic compression tests with 600-
sphere packing  

3.5.3.2 Numerical Simulations of SHPB Tests  

A 2500-sphere packing with diameter of 21.6 mm and length of 13.1 mm was 

used to build the numerical rock sample. Micro parameters are the same as those 

calibrated with quasi-static procedures. As discussed previously in Section 3.4.4, 

identified micro parameters are slightly packing dependent. But this dependence is not 

very prominent if a similar size distribution is used, hence the same micro parameters as 

identified in quasi-static model calibrations were applied to the new SHPB specimen to 

approximately achieve similar material properties. Two SHPB tests with strain rates of 

53.4 and 80.1 s-1 were simulated.  

The experimental input and output velocities were applied to the left and right 

ends of specimen, respectively. Due to the diameter change from bars to adapters, 
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deduced particle velocities of bars have to be transformed to particle velocities of 

adapters. This transformation was achieved by obtaining a velocity reduction factor based 

on the measured particle velocities of adapters captured by the high speed camera. The 

reduction factors were determined by comparing the maximum values of deduced particle 

velocity based on uniform bar and the monitored particle velocity using high speed 

camera. The final input and output particle velocities are shown in Figures 3-35 and 3-36. 

The resulting input and output forces are computed by summing all the forces 

applied on the two specimen ends. Given the experimental input and output velocity 

histories, the positions of the two specimen ends are updated at each time step.  The 

simulated stress stain curves are then obtained, and should be compared with 

experimental stress-strain curves. 
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Figure 3-41. Numerical and experimental SHPB stress-strain curves for the strain rate of 
53.4 s-1   
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Figure 3-42. Numerical and experimental SHPB stress-strain curves for the strain rate of 
80.1 s-1   

Figures 3-41 and 3-42 show stress-strain curves for the two tests with the strain 

rate of 53.4 and 80.1 s-1. The simulated strengths are a little higher (less than 10%) than 

but are close to the experimental ones. The simulated pre-peak curves well fit the 

experimental ones, but the post-peak parts do not match well the experimental ones.  

3.5.4 Fragment Size Distribution 

3.5.4.1 Introduction 

Fragment size distribution is the most important outcome of fragmentation 

processes. It is governed by both a material property (the distribution of flaws) and a 

kinematic property (the rate of loading) (Grady and Kipp 1980). Figures 3-27, 3-29 and 

3-30 show a strain-rate-dependent fragment size distribution from the experimental 

results. The higher the applied strain rate is, the smaller the average fragment size is. 
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Different distribution functions were used to describe fragment size distributions (Åström 

et al. 2004; Behera B 2005; Cheong et al. 2004; Grady 2008; Lu et al. 2002; Wittel et al. 

2008), namely, exponential, Voronoi and Weibull distributions.  

The exponential distribution is usually used to describe fragment distribution on 

metals and other more ductile material (Grady 2008). It can be written as 

( ) 1 exp
c

sQ s
s

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
,                                                      (3-12) 

in which, ( )Q s is accumulated mass of all fragments smaller than a given normalized 

fragment size normalized by the total mass of the block; the normalized fragment size, s, 

is the actual fragment size divided by the largest fragment size; sc  is a parameter to be 

determined representing the average fragment size. Grady also proposed Voronoi 

distribution to account for depletion of the smaller sizes. 

 ( ) 1 (1 )exp
c c

s sQ s
s s

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
                                            (3-13)  

A two-parameter Weibull distribution was proposed based on a fracture activation and 

stress-wave interaction model to describe dynamic fragmentation event.  

( ) 1 exp
k

c

sQ s
s

⎡ ⎤⎛ ⎞
⎢ ⎥= − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

,                                             (3-14)  

where k is a parameter to be determined, which is physically related to stress wave 

propagation (Grady 2008; Grady and Kipp 1980; Mott 1947). 

3.5.4.2 Fragmentation Detection in DEM Modelling 

In order to analyze the size distributions of fragments in DEM modeling of impact 

fragmentation processes, a fragmentation detection scheme was developed to predict 

fragmentation-related information and also post impact behavior. The detecting scheme is 

directly related to the characteristics of the discrete element method in which particles 
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can move apart or link together in clusters. The scheme is able to recognize clusters 

where particles are either linked together or separated after impact. Generally, the 

particles within the same cluster have the same velocity. The corresponding information 

such as velocity, mass, etc. associated with each cluster can be easily measured. 
Mornitor the contact failures

Initialize the particle cluster attribute
sphere[i].Cluster_ID as "0" for all

particles

Start to identify  fragmentation
clusters by looping the particle i from
1 to N (m=0 for cluster counting up)

sphere[i].Cluster_ID
             =0?

Creat a new frgmentation cluster with
the ID m=m+1

(sphere[i].Cluster_ID=m)

Identify  all the particles which link together
either directly or indirectly with particle i by

looping the particle j from i to N

Y
es

No

i = i+1

No failure between particles
which have Cluster_ID=m  and j ?

sphere[j].Cluster_ID=m

Store the information about
fragmentation clusterfor each cluster

Output the information in terms of
fragmentation cluster including

mass,velocity, position,etc..

N
o

Yes

j = j+1

 
Figure 3-43. Flowchart of fragmentation block detecting scheme in DEM modeling 
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The detailed fragmentation detecting scheme is shown in the flow chart of Figure 

3-43, and an example of detected fragmentation after an impact is given in Figure 3-44, 

in which all the fragments were separated for better visualization. 

 

Figure 3-44. Detected fragments after a simulated impact (some very tiny fragments are 
not shown)  

3.5.4.3 Results of Fragment Size Distributions 

Sieve analysis was performed on the fragments generated in both dynamic 

compression and SHPB tests. Figure 3-45 shows normalized size distributions for 

different strain rates. The normalized cumulative mass and fragment size are defined in 

Equation (3-12). With increasing strain rate, the average fragment size shifts to smaller 

values. The fitted curves with different distribution equations are given in Figure 3-46. It 

shows that Weibull distribution works better than exponential and Voronoi distributions 

for both high and low strain rates. The exponential distribution can hardly capture the 

fragment size distribution at a low strain rate. In using two-parameter Weibull 
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distribution, the value of sc, which indicates the normalized average fragment size, 

decreases from 0.75 at strain rate of 0.1 s-1 to 0.31 at strain rate of 80.1 s-1. The value of k, 

representing the shape of the distribution curve, decreases with increasing strain rate.  

Size distributions of fragments in simulated dynamic compression and SHPB tests 

were also analyzed and compared against experimental ones. As shown in Figure 3-47, 

simulated fragment size distributions are not in good agreement with experimental ones, 

in particular for low strain rates.  This discrepancy comes from the fact that there is a 

large gap between small fragments and large fragments for the simulation with a low 

strain rate. The model resolution also affects the fragment size distributions because the 

smallest fragment can not be smaller than the smallest sphere used in DEM modelling. It 

has been found that the fragment size distribution can be improved by introducing rolling 

stiffness to the particles in the model, which will be discussed in Chapter 4. But the 

development of this improvement will be left for the future research. 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Q
(s

) (
no

rm
al

iz
ed

 a
cc

um
ul

at
iv

e 
fra

gm
en

t m
as

s)

s (normalized fragment size)

 0.001 sec.-1

 0.1 sec.-1

 53.4 sec.-1

 80.1 sec.-1

 

Figure 3-45. Normalized size distributions for the generated fragments in dynamic 

tests at different strain rates 
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(a) Higher strain rate                                    (b) Lower strain rate 

Figure 3-46. Normalized fragment size distributions and fitted curves with different 
distribution equations at different strain rates 
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Figure 3-47. Comparison of experimental and numerical fragment size 

distributions at different strain rates 
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CHAPTER 4 MODELING ROCK FRAGMENTATION UPON 
IMPACT 

 

4.1 INTRODUCTION 

In the previous chapter, the developed DEM code has been calibrated and verified 

to be capable of modeling both static and dynamic loading induced rock failure. In this 

chapter, the DEM code is to be used to simulate impact induced rock fragmentation in  

rockfall analysis.   

The physical process of rockfall impact fragmentation is complex consisting of 

impact-induced stress wave propagating, generating thermal energy and acoustic wave, 

and creation of plastic zones, etc. In order to model this type of process using the 

calibrated DEM code, it is necessary to simplify the problem, such as introducing 

coefficients of restitution to account for the energy loss during impact, which will be 

addressed later in the chapter. One of the challenges in modeling rock fall impact, in 

which a block of rock impacts on the ground with the kinetic energy accumulated from 

the gravity, is to choose a right model to represent the interaction between rock block and 

the ground including the stiffness and damping issues of the ground.  

4.2 MODEL OF THE INTERACTION BETWEEN ROCK BLOCKS AND THE GROUND  

In using DEM to model the rock impacting against the ground, the ground is 

simplified as a half-space, elastic, homogeneous and isotropic media, while the behavior 

of rock blocks is simulated by the DEM. The interaction between impacting rock blocks 

and the ground is essentially the force-displacement relationship, which will be applied to 

DEM model as boundary conditions. In other words, the impacting forces due to the 
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penetration of rock blocks into the ground are to be determined and applied as a force 

boundary in DEM modeling.  

In DEM modeling, impact interactions are treated as point loads acting on both 

impacting boundary particles and the ground. These point loads applied to the half-space 

medium can induce surface motions, which will, in turn, influence other impacting 

boundary particles’ interactions.  

 

 

Figure 4-1. Surface motion due to a transient point source (after (Richart et al. 1970)) 

Lamb first investigated (Lamb 1903 - 1904 ) the surface motion occurred by a 

point source at the surface of an linearly elastic isotropic and homogeneous half-space 

medium. Under the conditions considered by Lamb, an excitation spreads out from the 

transient point source as a symmetrical annular wave. As shown in Figure 4-1, a particle 

at the surface first experiences a motion in the form of oscillation at the arrival of P-

wave, followed by a relatively quiet period leading up to another oscillation at the arrival 

of S-wave. These motions are referred by Lamb as the minor tremor and are followed by 

a much larger oscillation, the major tremor, at the arrival of the R-wave. The results 

presented by Lamb are in frequency domain, not in time domain, and are very difficult to 

be implemented into our DEM model because the DEM calculation scheme uses explicit 
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time integration. Some analytical solutions for surface motions caused by harmonic or 

Heaviside impact sources were also presented in wave number-time domain (Park and 

Kausel 2004; Richart et al. 1970).  Due to the difficulty of determining the surface 

motion caused by irregular time-dependent excitation, it is impossible to introduce these 

results into the DEM modeling to account for the impact behavior. For simplicity, the 

coupling effects of the interactions due to the surface motions generated by other 

impacting particles are to be neglected. 

In order to use DEM to simulate the rock impact, the rock block is set up as a 

sphere packing as discussed previously. When an impact occurs, part of the boundary 

particles (spheres) interact with the ground and the generated interface forces may make 

the block bounce off the ground. The larger the penetration of those boundary particles 

into the ground is, the larger the generated “push-back” forces are. The relationship 

between the “push-back” forces and the penetrations can be depicted by a serial of 

springs in both normal and tangential direction attached to impacting boundary particles 

as shown in Figure 4-2. The stiffness of the springs can be estimated from the theory of 

vibrations for foundations on elastic media. In this approximation, the spherical boundary 

particles are treated as tiny foundations whose equivalent disk radii are the same as their 

own spherical radii.  

In the theory of vibrations for foundations on elastic media, the vertical and 

tangential oscillations of a rigid circular disk foundation are possible to be described in 

terms of mass-spring-dashpot analog (Richart et al. 1970). For disk foundations resting 

on an elastic half-space, the spring constants are determined from the static response of 

the rigid disk to vertical or horizontal loads, and are given as (Richart et al. 1970): 
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Figure 4-2. Sketch of impact model with springs and dashpots attached to each impacting 
particle in both normal and shear directions to simulate dynamic 
interactions between rock block and the ground. 
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where nk and sk  are normal and shear stiffness respectively, G , ν  are the shear modulus 

and Poisson’s ratio of the ground respectively, and 0r  is the radius of the disk foundation.  

The dashpots are used to provide damping that accounts for the energy loss due to the 

elastic stress waves propagating away into the ground (geometric damping or radiation 

damping). The dashpot constants are given as (Richart et al. 1970): 
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in which nc and sc  are damping constants for normal and tangential oscillations 

respectively, and ρ is the density of the ground material. 

When particles penetrate into the ground, contacts develop and the interactions 

between rock block and the ground are set up. The equations of translational motions of 

particles in normal and tangential directions to the impact plane are then written as: 

( )

( )

2
0 0

2
0 0

3.4 4 ( )                             Vertical
1 1
18.4(1 ) 32(1 ) ( )      Sliding

7 8 7 8

z

x

r Grmz Gz z Q t

mx r Gx Gr x Q t

ρ
ν ν

ν νρ
ν ν

+ + =
− −

− −
+ + =

− −

,        (4-3) 

where ( )zQ t  and ( )xQ t  are forces exerted by other neighboring particles in normal (z) 

and tangential (x) directions, respectively.  

4.3 INVESTIGATION ON MECHANISM OF IMPACT FRAGMENTATION 

The mechanism of impact fragmentation is complicated. There are numerous 

factors governing the process of impact fragmentation, among which, magnitude of 

impact velocity, incidence angle, ground conditions and material properties of rock block 

itself are important and are to be addressed below. Some other factors, such as 

persistence, orientation and aperture of fractures in the rock block, are also very 

important for impact rock fragmentation, and will be dealt with in Section 4.3.4.  

4.3.1 Model Setup 

A spherical rock block was generated to simulate rock fall impact and investigate 

the mechanism of impact fragmentation. The block consists of 600 randomly distributed 

spherical particles with average radius of 0.011 m, and has a radius of 0.1 m.  

The model parameters are the same as those calibrated for granite in Table 3-3. 

The model parameters for the spherical block cannot be directly calibrated by using the 

algorithm used for cylindrical specimens, because there are no standard experiments that 
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give strength and deformability for spherical specimens. Instead, a similar random 

internal particle structure was constructed by using a similar distribution of particle sizes. 

By doing this, one can assume that micro model parameters are approximately equal to 

those identified from cylindrical specimens. The spring-dashpot impact model is applied 

to model interaction between the rock block and the ground. 

4.3.2 Effect of Impact Velocity 

The magnitude of impact velocity and the incidence angle with reference to the 

slope (ground) are directly related to the dynamic interaction between rock blocks and the 

ground, and hence play important roles in the process of impact fragmentation. Here, 

incidence angle is defined as the acute angle between the slope and the incident 

trajectory. For example, for a normal impact, incidence angle is 90o. Generally, a greater 

magnitude of impact fragmentation tends to generate higher impact stresses and to break 

the rock block more easily. A smaller incidence angle has the larger potential to alleviate 

the impact fragmentation while producing greater angular momentum to rock blocks.  

In this section, effects of the magnitude of impact velocity and the incidence angle 

on impact fragmentation of homogeneous rock blocks (without initial fractures) have 

been investigated. The ground has Young’s modulus of 20 GPa and Poisson’s ratio of 

0.3, which is representative of relatively hard rock. 

4.3.2.1 Magnitude of Impact Velocity 

In this case, normal incidences are considered, in which a rock block impacts with 

the ground perpendicular to the ground slope. The magnitude of impact velocity varies as 

40, 50 and 60 m/s, which are reasonable values in practical rockfall analyses. One of the 

most important concerns on impact fragmentation is the highest impact stress generated 

during impact. As shown in Table 4-1 and Figure 4-3, at about 50 m/s of impact velocity, 
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fragmentation starts to occur with 43 fragments. When the impact velocity increases to 60 

m/s, the number of fragments goes up to 334.  

Table 4-1. Number of fragments of different magnitude of impact velocity under normal 
incidence  

Magnitude of velocity 

(m/s ) 

40 50 60 

Number of fragments 0 43 334 

Note that the fragmentations localize at the impact zone and all the generated 

fragments during impact are very small consisting of less than 3 spherical particles. In 

other words, for a homogeneous rock block, impact fragmentations occur locally without 

generating some relative large fragments as typically observed in the field for large rock 

block, which may have some inherent fractures. The importance of inherent fractures in 

rock block to impact fragmentation is to be addressed shortly in Section 4.3.4. 

In Figure 4-4, monitored histories of system kinetic energy and impact normal 

stress give a clear view on an impact process. During the approach period, the system 

kinetic energy decreases while the block penetrating into the ground and reaches almost 

zero when the block attains its largest penetration, at which point almost all the system 

kinetic energy is transformed into strain energy. Impact normal stress increases with 

penetration and impact normal stress reaches its largest value at about the largest 

penetration. During the restitution period, the stored strain energy is again transformed 

into system kinetic energy gradually while impact normal stress decreases until reaching 

zero when the block bounces off the ground.   
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a)  V = 40 m/s 

 
b)  V = 50 m/s 

 
c)  V = 60 m/s 

Figure 4-3. Fragmentations of different magnitude of impact velocity after the block (in 
green) bouncing off the ground (in white) 
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Figure 4-4. Histories of impact stress and system kinetic energy for different impact 
velocities 



 107

Figure 4-3 shows that the monitored highest impact normal stress increases from 

about 2,000 MPa to 2,250 MPa when the magnitude of impact velocity increases from 40 

to 60 m/s, while the highest impact normal stress does not increase much when impact 

velocity increases from 50 m/s to 60 m/s. There seems an impact normal stress threshold 

controlling the fragmentation for a given type of rock block, only above which 

fragmentation can occur. When fragmentation occurs, impact normal stress is deviated by 

the generated fragments. This explains why there are no big differences in generated 

highest impact normal stress between impact velocity of 50 m/s and 60 m/s. The impact 

duration at different magnitudes of velocity does not vary much. A higher velocity tends 

to decrease the impact duration. On the other hand, a higher velocity also causes a larger 

penetration which increases the impact duration. 

The monitored impact normal stress was determined by the normal forces divided 

by the contact areas when impact particles penetrate into the ground. This stress is 

actually the dynamic contact stress applied to individual particle. This impact contact 

stress is much higher than material strength because it is calculated on contact areas, and 

not on gross area. This monitored impact contact stress can reflect the “push-back” effect 

applied to the block. 

4.3.2.2 Incidence Angle 

For a constant magnitude of impact velocity, a change of incidence angle can also 

affect impact fragmentation because the normal component of impact velocity to the 

ground really governs the highest impact stress, which is the main drive for impact 

fragmentation. The normal component increases with incidence angle, so a larger 

incidence angle has a greater potential to generate fragmentation. The tangential 

component of impact velocity actually plays a role in changing angular momentum.  
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In this case, the magnitude of impact velocity is kept constant as 60 m/s, while the 

incidence varies as 30o, 60o and 90o. As shown in Table 4-2, for incidence angle of 30o, 

no fragmentation occurs, while the number of fragments increases to 175 and 334 for an 

incidence angle of 60o and 90o, respectively.  
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(c) 90o 

Figure 4-5. Fragmentation, and histories of impact stress and system kinetic energy for 
different incidence angles  
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Table 4-2. Fragmentation of different incidence angles with the magnitude of impact 
velocity of 50 m/s 

Incidence angle 30o 60o 90o 

Number of fragments 0 175 334 

Figure 4-5 shows that the monitored highest impact normal stress increases from 

about 1800 MPa for incidence angle of 30o to 2250 MPa for incidence angle of 60o, 

where fragmentation occurs. The highest impact normal stress does not increase much 

when incidence angle increases from 60o to 90o, as the highest impact normal stress 

exceeds the fragmentation stress threshold as discussed in the previous case. For the 

normal incidence (90o incidence angle) case, system kinetic energy reaches almost zero 

when the block attains its largest penetration, at which point almost all the system kinetic 

energy is transformed into strain energy. By contrast, the system kinetic energy changes 

little when the incidence angle is equal to 30o.  For a small incidence angle, most of the 

system energy is transmitted by the tangential component of velocity rather than the 

vertical penetration. 

4.3.3 Effect of Ground Condition 

Not only magnitude of the impact velocity and angle of incidence, but also ground 

conditions can affect impact fragmentation. A softer ground tends to extend the duration 

of an impact and produce lower impact stress, so a rigid ground is more likely to cause 

impact fragmentation compared to a soft ground. As seen in Equations (4-1) and (4-2) on 

the impact model used to simulate the dynamic interaction between rock block and the 

ground, the Young’s modulus and Poisson’s ratio of the ground jointly determine the 

values of stiffness and geometric damping in both normal and tangential directions.  

Based on Equations (4-1) and (4-2), the Young’s modulus of the ground is proportional 

to the values of stiffness and the square of geometric damping in both normal and 
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tangential directions, while the Poisson’s ratio of the ground has less effect on those 

values of stiffness and damping especially in tangential direction. Considering that the 

Poisson’s ratio of the ground does not vary much (with typical values ranging from 0.15 

to 0.35), the effect of the Poisson’s ratio of the ground is not studied here and ground 

conditions are only characterized by the Young’s modulus of the ground. 

In this case, normal incidences are considered and the magnitude of impact 

velocity is kept constant as 60 m/s. The Young’s modulus of the ground varies as 1, 10 

and 20 GPa. As shown in Table 4-3, for the Young’s modulus of the ground of 1 GPa, no 

fragmentation occurs. Fragmentation occurs with 36 fragments for the Young’s modulus 

of the ground of 10 GPa. When the ground becomes much stiffer with the Young’s 

modulus of the ground of 20 GPa, the number of fragments increases to 334.  

Table 4-3. Fragmentation of different ground conditions under normal incidence 

Young’s modulus of the ground (GPa) 1 10 20 

Number of fragments 0 36 334 

Figure 4-6 shows that impact normal stress increases with the Young’s modulus 

of the ground. The highest impact stress increases from about 400 MPa to 1,900 MPa 

when the Young’s modulus of the ground increases from 1 GPa to 10 GPa. Impact 

fragmentation occurs with 36 fragments for the ground of 10 GPa and with 334 fragments 

for the ground of 20 GPa, while the highest impact normal stress increases from about 

1,900 MPa to 2,250 MPa. It has been discussed previously that the highest impact normal 

stress does not overpass the impact fragmentation stress threshold much because the 

impact normal stress is deviated when impact fragmentation occurs. But for different 

ground conditions, the impact fragmentation stress threshold may be different.  
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(c) 20 GPa 

Figure 4-6. Fragmentation, and histories of impact normal stress and system energy for 
different ground conditions under normal incidence 

Impact duration also plays a role in controlling the impact fragmentation stress 

threshold needed for occurrence of impact fragmentation. From Section 3.5, the uniaxial 

compressive strength increases with increasing strain rate. A softer ground tends to 
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extend impact duration and induces a relatively lower strain-rate loading applied to rock 

blocks, so the stress threshold of impact fragmentation for a soft ground is lower than that 

for a rigid ground provided that the dynamic strength of rock blocks is strain-rate 

dependent. On the other hand, impact stresses are nearly proportional to the ground 

Young’s modulus before generating fragmentation. A soft ground tends to produce lower 

impact stresses given the same impact profile. Based on the simulated results (Figure 4-

6), the effect of the ground Young’s modulus on impact stress is much larger than that of 

strain rate dependent strength, and a soft ground tends to alleviate the impact 

fragmentation. 

4.3.4 Effect of Fracture Properties of Rock Block 

Real rock blocks involved in rock fall are seldom homogeneous. Typically, rock 

blocks contain fractures. These fractures can play very important roles in impact induced 

rock fragmentation. The effects of fracture persistence, opening, cementation and 

orientation on impact induced rock fragmentation were investigated and are presented 

hereafter. 

 

Figure 4-7. Impact of homogeneous rock block on the ground after the block (in green) 
bouncing off the ground (in white) 
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In following cases, normal incidences with a magnitude of impact velocity of 30 

m/s and Young’s modulus of the ground of 20 GPa are considered. Fractures were treated 

as planar with circular shape. All fractures were modeled as broken contact bonds in 

DEM modeling. The simulated results of fractured block can be compared to the 

homogeneous one as shown in Figure 4-7 with no fragmentation occurred, in which no 

fracture is included in the DEM model.  

4.3.4.1 Persistence 

In this cases, two fractures, which are perpendicular to each other, are located in 

the form of “X” centered at the center of the block and are along the angular bisectors of 

X and Z axis (Figure 4-8). Fractures persistence is defined as the ratio of the radius of 

circular fracture plane over the largest radius of the circular plane which cuts through the 

spherical block. In the case of a fracture passing through the sphere center, the largest 

radius is the radius of the spherical block. Fractures were treated as broken contact bond 

with frictional angle of 20o.  

 

X

Z

"X" shape fracture "+" shape fracture

 

Figure 4-8. Sketch of “X” and “+” shape fractures in a spherical block used for 
numerically investigating the effect of fracture patterns on fragmentation   
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(a) 80% persistence (46 fragments) 

 

(b) 90% persistence (55 fragments) 

 

(c) 100% persistence (196 fragments) 
Figure 4-9. Impact fragmentation for different fracture persistence after the block (in 

green) bouncing off the ground (in white)  
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The simulated results show that fracture persistence has a very important role in 

governing the degree and the pattern of impact fragmentation. As shown in Figure 4-9, 

with 80% of fracture persistence, there are 46 fragments generated which cannot be 

observed from outside the block. These 46 fragments are actually some individual 

particles along the fractures, de-bonded and separated from the rock block due to the 

impact. When fracture persistence increases to 90%, the number of fragments is 55 and 

part of the perimeter of the block, which is not cut through by the fractures, starts to 

break (Figure 4-9 (b)) due to the fracture propagation from the fractures tips.  Only when 

the fractures are fully persistent, there is a clear pattern of four big fragments with the 

bottom one more fragmented. The number of fragments for fully persistent case is 196. 

4.3.4.2 Fracture Aperture 

In this case, in addition to using broken contact bond to describe fracture in DEM 

modeling, a fracture opening was modeled by introducing a new equilibrium distance, 

eqD , of a broken contact, which is smaller than the actual center-to-center distance. When 

two contacting spheres move close together across a fracture, no contact compression 

force will be generated before reaching the new equilibrium distance. 

The fracture aperture was taken as 1% of the actual center-to-center distance and 

“X” form 80% fracture persistence was used. Compared against the results of 80% 

fracture persistence (as shown in Figure. 4-9 (b)) with 46 fragments, now 306 fragments 

are generated with two larger ones for opening fracture case as shown in Figure 4-10. It 

has been found that impact fragmentation is very sensitive to fracture aperture. This can 

be attributed to cracks caused by tensile stress waves. When a compressive stress wave 

produced by impact encounters a free surface (open fracture), it turns into a tensile stress 
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wave. Usually, rock materials are much weaker to tensile forces than to compression 

forces.  That is why a larger number of fragments were found in the case of open fracture. 

 

Figure 4-10. Impact fragmentation for opening fractures with 80% persistence after the 
block (in green) bouncing off the ground (in white)  

4.3.4.3 Fracture Orientation 

In this case, compared against “X” shape fractures, two fractures in “+” shape 

centered at the block center were modeled, which are in XY and YZ planes (Figure 4-8), 

respectively. It shows that “+” shape fractures are more critical to creating fragmentation 

than “X” form fractures. For fracture persistence of 90%, only 55 fragments were 

generated for the case of “X” form fractures compared to 224 fragments for “+” shape 

fractures.  As shown in Figure 4-11 (b), 317 fragments were generated with the two 

bottom part separated by the fractures crashed down. By contrast, there are 196 fragments 

created after impact with 3 larger fragments for the case of fully persistent “X” shape 

fractures. 
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(a) 90% fracture persistence with 224 fragments (“+” shape) 

 
(b) 100% fracture persistence with 317 fragments (“+” shape) 

Figure 4-11. Impact fragmentation for different persistence of “+” shape fractures after 
the block (in green) bouncing off the ground (in white)  

4.3.5 Energy Loss during Impact and Dynamic Interaction with the Ground 

Energy loss is one of the most concerns in impact modeling. In rock fall impact, 

considerable kinetic energy is consumed to generate rock fragments, stress waves 

propagating into the ground, craters into the ground, etc. Usually, the rebound velocity of 

the rock is significantly less than its impact velocity (An 2006; An and Tannant 2007). In 

modeling of rock impact against the ground with fragmentation, system energy can be 
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tracked to understand the energy transformation during impact. Because the ground is 

idealized as elastic material, the energy loss due to crater generation into the ground 

cannot be accounted for. 

The total system energy (ET), includes kinetic energy (EK), strain energy (ES) and 

energy loss due to friction (EF), geometric damping (ED) and tensile cracking (EC). 

According to conservation of energy, the total system energy ET is equal to the 

summation of EK + ES + EF + ED + EC at any time. The gravity is neglected in impact 

simulations considering that the gravity of block is much smaller than impact stress 

during impact for practical impact fragmentation problems. 

Kinetic energy consists of translational and angular energy of particles, which can 

be determined as 
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where Np is the number of particles, generalized M includes mass and principal moment 

of inertial of particles, and generalized Vi includes translational and angular velocity of 

particles. 

Strain energy is the energy stored in normal and tangential springs at all contacts. 

It can be expressed as 
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where Nc is the number of contacts, n
iF  and s

iF  are the normal and shear forces, 

respectively, and  n
iF  and s

iF are normal and shear stiffness, respectively. 

Energy losses of friction, geometric damping and tensile cracking are 

accumulated during impact, and are not recoverable. Friction energy loss occurs after 

contact shear failure. It can be expressed as (An 2006) 
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in which s
iU∆  is the incremental shear displacement, and ( )s s elastic

i iU U∆ − ∆ stands for the 

increment of slip displacement.  

Geometric damping energy loss is caused by the dashpots associated with the 

impact model of ground interaction, which is related to stress waves propagating out via 

the ground. This accumulated damping energy loss is written as  
( )
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where _p impN  is the number of particles in direct contact with the ground during impact, 

nc and sc  are the damping coefficients determined by Equation (4-2), nv and sv  are the 

particle velocity in normal and tangential directions, respectively, and nu∆ and su∆ are the 

incremental displacement in normal and tangential directions, respectively. 

Tensile cracking energy loss is the energy release of the stored strain energy in 

normal springs when contact tensile failure occurs. This accumulated tensile crack energy 

loss is calculated by 
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where _c crackN  is the number of contacts in tensile failure, T is the tensile contact 

strength, and C
iA  is the contact area.   

All of these energies can be tracked to see how the energy is transformed and how 

the energy transformation is related to failure process. Figure 4-12 shows the energy 

transformation of a normal impact against a relative stiffer ground (the Young’s modulus 

of the ground: 20 GPa) with an impact velocity of 60 m/s generating 334 fragments. It 

reveals that: 
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1) Energy transformation happens mainly during impact period including 

approach and restitution stages.  

2) After the block bounces off the ground, little energy transformation occurs, 

stored strain energy is released and kinetic energy remains relatively constant.  

3) Failure process accompanied by energy loss in friction and tensile cracking 

only occurs during the period of impact, which means that no further failure occurs after 

the block bounces off the ground. 

4) Friction energy loss takes up the most part of the energy loss, while tensile 

cracking energy loss is not prominent. For a softer ground condition, the geometric 

damping energy may go up and exceed frictional energy loss as the impact duration tends 

to become longer. 

5) Total energy, which is the summation of all types of energy, remains constant 

during the whole simulation, which means energy conservation. 
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Figure 4-12. System energy transformation and energy loss due to failure and geometric 

damping during impact 
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Figure 4-13. Histories of impact stresses resulted from spring and dashpot in normal 
direction for different ground conditions  

In the impact model to simulate the dynamic interaction between rock block and 

the ground, there are two components directly related to the dynamic interaction, namely 

stiffness and damping in both normal and tangential directions (Eqs. (4-1) and (4-2) ). In 

terms of impact fragmentation, interaction in normal direction is of the most concern.  

The effect of the geometric damping (refer to Section 4.1) on fragmentation was 

investigated by comparing the contributions of stresses from both spring and dashpot. As 

seen in Figure 4-13, stresses resulted from both spring and dashpot in the normal 
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direction were recorded during impact for different ground conditions. The stress related 

to geometric damping is overshadowed by the stress from the spring, especially for a 

stiffer ground.  For a soft ground, the contribution from damping part is relatively higher 

than that for a stiffer ground, so the energy dissipation from geometric damping is 

relatively higher for a softer ground.  

4.4 CONCLUSION 

The developed DEM code has been used with a simplified impact model inspired 

by the theory of foundations subjected to dynamic loading to simulate impact induced 

rock fragmentation in rockfall analysis. This approach can provide us some valuable 

insights into impact induced rock fragmentation, although the real physical process is too 

complicated to be fully modeled. It has been shown that the magnitude of impact 

velocity, the angle of the incidence, ground conditions and fractures all play very 

important roles in impact fragmentation.  
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CHAPTER 5 FRAGMENTATION MODULE 

5.1 INTRODUCTION 

The final rockfall analysis package to be delivered in this research consists of a 

rockfall analysis platform, HY-STONE (Agliardi and Crosta 2003), and a developed 

fragmentation module. It takes a relatively long time to run an impact simulation with the 

developed DEM code depending on the impact conditions. Hence it is not wise to directly 

invoke DEM code to run impact simulations to obtain fragmentation information in 

performing rockfall analysis. Alternatively, a large set of impact simulations have been 

carried out beforehand to build up a database, which is used to develop a fragmentation 

module by either training a neural network model or linearly interpolating the database. 

This module is employed to predict impact fragmentation processes during a rockfall 

analysis.  

An interface has been developed by Dr. Crosta’s group at the Bicocca University 

of Milano, Italy, to integrate the developed fragmentation module into HY-STONE. 

When an impact occurs during rockfall analysis, the module will detect whether 

fragmentation occurs or not. If fragmentation does not occur, HY-STONE will continue 

its ordinary rockfall analysis. If fragmentation is detected, HY-STONE will stop the 

simulation of "ordinary" trajectories at the impact location where fragmentation has been 

detected, and invoke the fragmentation module to generate detailed fragment information, 

and continue rockfall analysis by following each generated fragment. 

5.2 SIMULATION DATABASE PREPARATION 

A large set of impact simulations were carried out to cover different impact 

scenarios. For simplicity, a spherical block with a diameter of 0.1 m was simulated by 

using a 2,500-sphere packing. The simulations of different block sizes can be 
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approximately obtained by scaling the results of 0.1 m diameter packing. Because the 

failure criteria used in discrete element model are stress dependent rather than scale 

(particle size) dependent, the effect of scale on simulation results should be negligible 

especially for fragmentation. This has been confirmed by following two different 

simulations: uniaxial compression test and impact test.  

In the simulations of uniaxial compression test, two types of cylindrical specimen 

were used. The smaller specimen has radius of 0.0125 m and height of 0.05 m, while the 

larger one is 0.25 m in radius and 0.1 m in height, which is double size of the smaller 

one. The larger specimen was directly scaled up from the packing for the smaller 

specimen, and hence has the same number of particle (2,500) and the same packing 

structure as the smaller one. Except for the specimen size, all the model parameters used 

in the simulation were the same for both simulations. Figure 5-1 shows that the simulated 

stress-strain curves are very close to each other and the scale dependence is negligible. 
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Figure 5-1. Comparisons of simulated stress-strain curves of uniaxial compression test for 

two different scales of specimen  
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In impact simulations, two different sizes of spherical block were used to 

investigate the scaling effect on impact fragmentation. The smaller block has radius of 

0.1 m and the larger one is 0.4 m in diameter. The larger specimen of rock block was 

directly scaled up from the packing for the smaller spherical block, and has the same 

number of particles (600) and the same packing structure as the smaller one. An oblique 

impact with incident angle of 60 and velocity of 50 m/s against the ground with a 

Young’s modulus of 50.0 GPa was considered in the simulations. All other model 

parameters were the same for both simulations. The comparisons on generated fragments 

for two different sizes of block given in Table 5-1 show that the number of fragments and 

fragment velocity are approximately close to each other and the scale dependence can 

also be neglected.  

Table 5-1. Comparisons of simulated impact fragmentation for two different sizes of 
block 

Fragment information Smaller bock Larger block 

Number of fragment 103 111 

The 1st large 

fragment 

Number of particle 477 467 

Mass (kg) 6.51 402.8 

Velocity vector (m/s) (22.4, 1.4, 36.7) (23.5, 1.0, 38.7) 

The 2nd large 

fragment 

Number of particle 4 5 

Mass (kg) 0.09 4.7 

Velocity vector (m/s) (8.4, -14.1, 31.1) (14.7, -20.5, 22.7) 

The 3rd large 

fragment 

Number of particle 3 4 

Mass (kg) 0.04 3.9 

Velocity vector (m/s) (11.8,-0.4,18.2) (9.2, 0.3, 40.0) 
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There are seven input parameters used in building the database of impact 

simulations. These input parameters consist of three types of properties, namely, material 

properties of rock block itself, ground conditions and impact profiles. There are five 

micro model parameters used to describe the material properties: particle Young’s 

modulus, Ec, the ratio /s nK K , cohesion, c, friction angle, ϕ , and tensile strength, T. The 

ratio /s nK K  is directly related to material’s Poisson’s ratio, which does not vary much 

for most rock materials, and hence is not included in the input parameters. The ratio 

/s nK K  was kept as 0.15, which leads a Poisson’s ration of about 0.25. For ground 

conditions, only Young’s modulus of the ground, Egrd, is used, while the Poisson’s ratio 

of the ground is not included because it does not significantly affect the results (Section 

4.2). The Poisson’s ratio of the ground was selected as 0.3. There are two parameters 

used to describe the impact profile: magnitude of impact velocity, V, and incidence angle, 

θ , which is defined, in a local reference system, as the acute angle between impact 

velocity and slope plane, 90o for normal impact, 0o for purely tangential impact.  

 The possible bounds for each parameter are set to cover possible scenarios, which 

can happen in reality, as listed as in Table 5-2.  

Considering the computational burden of large number of simulations, the number 

of points for each input parameter should be small. Three points were selected for each 

micro parameter to describe material properties of rock block. Five points were chosen 

for each parameter used for ground condition and impact profile. This leads up to a total 

number of 4 33 5 10,125× =  impact simulations. The number of points chosen for each 

input parameter may be too sparse to generate acceptable accurate results especially for 

interpolation method. However, increasing the density of the points for each input 

parameter may substantially increase the number of impact simulations.  
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For each simulation, the number of fragments and the mass and average velocities 

of each fragment are recorded and are used as output parameters for either neural network 

or interpolation method to predict impact fragmentation. 

 Table 5-2. Input parameters for impact simulations 

Properties Material properties of rock block 

(micro parameters) 

Ground 

condition 

Impact profile 

Parameter Ec (GPa) c (MPa) ϕ  (o) T (MPa) Egrd (GPa) V (m/s) θ (o) 

Low bound. 5.0 50.0 30.0 10.0 0.1 1.0 5.0 

High bound. 200.0 500.0 80.0 150.0 50.0 60.0 90.0 

 

5.3 NEURAL NETWORK MODEL 

5.3.1 Overview 

Neural networks (NNs) (Hecht-Nielsen 1987; Schalkoff 1997) provide a 

massively parallel computational model that mimics the structure and operation of the 

human brain. NNs are capable of learning highly non-linear relationships, they are noise 

tolerant, and truly adaptive (J. G. Cai 1998; Sidarta 2000; Sonmez et al. 2006). These 

features make NN able to perform predictions for some complex processes, such as 

impact fragmentation process. 

NN learns from examples (training data) to gain and discover the insight 

information presented in training data. During the learning process, the NN adjusts NN 

connection weights associated to each neuron to be able to reproduce the training data. 
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In this section, NN was used to predict impact fragmentation process, specifically, 

the number of fragments, and the mass and velocities of each fragment, by training the 

NN with the data included in the simulation database discussed previously in Section 5.2.  

5.3.2 Multi-layer Feed Forward NN 

The first computational model of an artificial neuron (also referred to as 

processing unit or node) that was capable of threshold logic operation was proposed by 

McCulloch and Pitts (McCulloch 1943). Hebb (Hebb 1949) designed the first learning 

rule for NN, which was based on the premise that if two neurons were activated 

simultaneously, then the strength of the connection between them should be increased. 

Then using the McCulloch-Pitts neurons, Rossenblatt (Rosenblatt 1962) developed a two-

layer learning system, called perceptron.  

5.3.2.1 Neuron Model 

A neuron with a single R-element input vector is shown in Figure 5-2 (Howard et 

al. 2007). The individual elements of inputs 1 2[ ,  ,  ... , ]Rp p p  are multiplied by weights 

1,1 1,2 1,[ ,  ,  ... , ]Rw w w   and are summed as form of W p⋅ , the dot product of the single-row 

matrix W and the vector p. 

 

Figure 5-2. A neuron with vector input used in neural network model (Howard et 

al. 2007) 
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The neuron has a bias b summed with the weighted inputs to form the net input n 
as 1,1 1 1,2 2 1,+ ... + R Rn w p w p w p b= + + , which is the argument of the transfer function f. 

5.3.2.2 Network Architecture 

Network architecture refers to the topology of the NN that includes the number of 

layers and the number of neurons in each layer. A method to back-propagate the error 

information from the output neurons to hidden neurons, which are the neurons in the 

hidden layers between input layer and output layer,  was discovered by Werbos (Werbos 

1974). This method led to the development of multi-layer, feed-forward NNs, also called 

backpropagation NNs (Sidarta 2000). 

 

Figure 5-3 A typical multi-layer feed forward NN with two hidden layers 

(Howard et al. 2007) 

In the multi-layer, feed-forward NN, as illustrated in Figure 5-3, the artificial 

neurons are in layers. All neurons in each layer have connections to all neurons in the 

next layer. A NN starts with the operation by presenting input signals to the input 

neurons. These signals forwardly travel through the connections, and reach the output 

neurons to produce the output of the NN. 

A layer can consist of two or more of the neurons. A network can have several 

such layers. Each layer has a weight matrix W (IW: Input weight matrix, LW: Layer 
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weight matrix), a bias vector b, and an output vector a. To distinguish between the weight 

matrices, output vectors, etc., for each of these layers in Figure 5-4, the number of the 

layer is appended as a superscript to the variable of interest. The network shown in Figure 

5-4 has R inputs, S1
 neurons in the first layer, S2

 neurons in the second layer, etc.  

 

 

Figure 5-4. A multi-layer neural network (Howard et al. 2007)  

There are three types of layers in a multilayer network. A layer that used to feed 

the input elements is called an input layer. A layer that produces the network output is 

called an output layer. All other layers are called hidden layers.  

The number of layers is essentially determined from the number of hidden layers. 

The number of neurons in the input and output layers can be easily determined from the 

problem representation, but the number of neurons in hidden layers, which determines the 

capacity of the NN, is difficult to determine in priori, since it is deeply related to the 

complexity of the underlying knowledge base in the training data and the degree of 
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complexity of the problem. The relation between the degree of complexity of the problem 

and the network architecture is not well understood at present (Schalkoff 1997; Sidarta 

2000).  

5.3.2.3 Neural Network Training 

“The purpose of NN training is to allow the NN to learn and discover the 

underlying information present in the training data in the form of input-output pairs and 

to self-organize to adapt to the database environment” (Schalkoff 1997; Sidarta 2000). 

NN adapts to the presented training data by changing the values of its connection 

weights. The learned knowledge during the NN training is stored in NN connection 

weights.  

The training process consists of three major steps (Schalkoff 1997; Sidarta 2000): 

(1) initialization of connection weights, (2) presentation of training examples, and (3) 

adjustment of connection weights. The connection weights are randomly initialized 

within a small range of values. An input signal is then forwardly passed through the NN 

to produce an output signal by applying corresponding NN connection weights. The 

output error is backpropagated through the NN, and the connection weights are adjusted 

by adopting a specified learning rule. The training process is repeated until a satisfactory 

learning is achieved. During iterative training of a neural network, a single pass through 

the entire training set is called a training epoch. 

5.3.3 Input and Output Neurons 

Input layer consists of seven input parameters as shown in Table 5-2, which have 

already been discussed in Section 5.2.  

Output layer is formed by 41 parameters, which include the total number of 

fragments, mass and velocities of the largest 10 fragments generated in an impact 
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simulation. If the total generated number of fragments is less than 10, the remaining 

output parameters are set as zero.  

5.3.4 Training and Testing Network 

The selection of an adequate number of training patterns is extremely important, 

both the size and range of training set affect the performance of the network. If there are 

too few training patterns, the network can memorize all of the correct outputs because of 

the large capacity of the weights. Therefore the resulting network is accurate on the 

training set but makes poor predictions on the testing set. When the number of training 

patterns is large, the learning procedure finds common features among the patterns in the 

training set that enable the network to correctly predict the desired outputs that were not 

included in the training set, but the training time will be prolonged. Because at present 

neural networks are not good at extrapolating information outside the training domain, 

patterns chosen for training should cover ranges of parameters values used in practice. 

10,125 patterns from the simulation database were chosen to train the neural network and 

additional 40 cases were used to test the trained neural network. 

The purpose of utilizing NN is to form a fragmentation module to be integrated 

into HY-STONE for predicting impact fragmentation in rock fall analysis. In many cases, 

impacts occur but no fragmentation happens or just local failure occurs. Under such 

situations, in order to save computational resource no complete fragmentation 

information needs to be output. Therefore, the prediction process was divided into two 

stages. In the first stage, a trained neural network is employed to determine whether a 

rock block is heavily fragmented or not after impact. Only when a heavily fragmented 

impact is detected, the second stage is activated to predict the detailed fragmentation. In 
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the second stage, the masses and velocities of fragments are predicted by a second trained 

neural network. Both networks have one hidden layer.  

 

 

(a) First stage prediction with 27 hidden neurons 

 

(b) Second stage prediction with 20 hidden neurons 

Figure 5-5. Convergence characteristics of training for the two neural networks  
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Since NN requires a few trials to establish a desired network, a parametric study 

were carried out by changing the number of neurons in the hidden layer. The number of 

neurons in the hidden layer has been decided based on reasonable errors from repeated 

trainings. The mean square error plotted as a function of the training epochs is shown in 

Figure 5-5. Experiments indicated that there was no significant improvement in 

convergence as the number of neurons in hidden layer increased beyond 27 for first stage 

prediction and 20 for second stage prediction.  

5.3.5 Performance of Trained Neural Networks  

In order to make sure that the network is capable of generalization, a set of unseen 

patterns were used to check network performance. Forty patterns not included in the 

database (i.e. whose values do not coincide with grid points) were chosen to evaluate the 

interpolation performance. The number of fragments, the mass and velocity component in 

Z direction (Vz) (referred to Figure 4-2) of the largest fragment were selected to evaluate 

interpolation performance. 

5.3.5.1 Performance of the First Stage NN Prediction 

To evaluate the capability of the network, the scatter diagram of the output values 

and target values of network for prediction of number of fragments was plotted as shown 

in Figure 5-6.  Ideally, on a plot of output versus target, the points should be aligned 

along the 1:1 diagonal straight line. The results plotted in Figure 5-6 show that the trained 

neural network can be used to approximately predict the number of fragments in impact 

simulations. 

5.3.5.2 Performance of the Second Stage NN Prediction  

   There are 40 output parameters in the network of the second stage of prediction. 

In order to observe the performance of network, the mass (m) and velocity in Z direction 
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(Vz) (referred to Figure 4-2) of the largest fragment are selected. These two parameters 

are the first and second, respectively.  
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Figure 5-6. Network performance for the number of fragments in the first trained neural 

network 
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Figure 5-7. Network performance for the mass of the largest fragment (the 1st output) in 

the 2nd trained neural network 
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Figure 5-8. Network performance for the Vz component of the largest fragment (the 2nd 
output) in the 2nd trained neural network  

Figures 5-7 and 5-8 show the performance of the two outputs in the 2nd trained 

neural network. Overall, the network has good prediction performance. By comparing 

Figure 5-6 against Figure 5-7, it is seen that the velocity correlation is better than the 

mass correlation. This difference is due to the fact that velocity depends on input 

parameters more smoothly than mass, which can be seen from the statistic analyses on 

fragment information in training database prescribed below. The network performance is 

actually related to the underlying smoothness in the training database, because NN can 

more easily capture a smooth database.  

Some statistical analyses were performed on all fragments in the numerical 

simulations used for training. Figure 5-9 shows that the distribution of fragment mass is 

highly concentrated in two regions: either smaller than 0.5 kg or larger than 7.5 kg, which 

means that for most of the simulations, the rock blocks are either fully shattered or nearly 
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unbroken. This highly non-smooth behavior is difficult to be predicted by using neural 

network. Unlike the distribution of mass, the distributions of velocity components are 

highly concentrated and related to the input parameters of impact profiles as seen in 

Figure 5-10. 
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Figure 5-9. Statistic distribution of fragment mass in the database of impact simulation  
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Figure 5-10. Statistic distribution of fragments velocity component in the Z direction in 

the database of impact simulation 
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5.4 INTERPOLATION METHOD 

5.4.1 Multilinear Interpolation 

As the impact simulation database is rectangular-grid-based with respect to the 

seven input parameters, multi-dimensional interpolation method is of the option for the 

prediction approximation. Multilinear interpolation was chosen, in which one-

dimensional linear interpolation is applied in each separate coordinate dimension (Judd 

1998). Following algorithms are taken from Kenneth’s work (Kenneth 2006). 

Interpolating function y[x] is based on a sampling of y at point x = x[m], wherein x 
is defined as x = (x1, x2, … , xn), [ ] [ ] [ ] [ ]( )m m m m

1 2 , , ,  nx x x x= … in an n-dimensional 

Cartesian space, and m is an integer-valued, n-dimensional index list (m=(m1, m2, … , 

mn)).  

This multilinear interpolation algorithm requires a rectangular sampling grid. For 

multilinear interpolation, it has the following form,  

1
{0,1}

[ ] [ ]

( ,..., ),

[ ] [ ] [ ]
n

j

m m
s

s s s
s

yFit x u x y m s

∈

=

= +∑ ,                                     (5-1) 

where the functions [ ][ ]m
su x  are defined so that at grid points 

[ ][ ] [ ];   {0,1};   {1,..., }m
jyFit m s y m s s j n+ = + ∈ ∈                        (5-2) 

This require that the functions satisfy the following conditions, 
[ ] '1,  '

[ ']  , ,  {0,1};  {1,..., }
0,  '

m
s j j

s s
u m s s s j n

s s
=⎧

+ = ∈ ∈⎨ ≠⎩
                       (5-3) 

[ ][ ]m
su x  is linear in each coordinate jx  and can be expressed as 

( )[ ]

{1,..., }

[ ] 1  with 1 ( {1,..., })m
s j j j j j j

j n

u x x m s m x m j n
∈

= − − − ≤ ≤ + ∈∏        (5-4) 

5.4.2 Performance 

The accuracy of the prediction in impact fragmentation depends on the density of 

grid points. Due to the limit of computational resource, the density of grid points is 
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relatively low, which may lead to poor prediction accuracy. The number of grid points 

over a given interval of input values varies from 3 to 5 depending on the input parameter.  

The 40 patterns used for testing NN performance were also chosen to evaluate the 

interpolation performance. The number of fragments, the mass and velocity component in 

Z direction (Vz) of the largest fragment were selected to evaluate interpolation 

performance. Figures 5-11 to 5-13 show the interpolation performance for these three 

output parameters, respectively. The overall performance of interpolation method is 

poorer than that of trained neural network, but it still can be used to reasonably predict 

the impact fragmentation.  
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Figure 5-11. Performance of interpolation method for the number of fragments (1st 
output) 
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Figure 5-12. Performance of interpolation method for the mass of the largest fragment 
(2nd output) 
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Figure 5-13. Performance of interpolation method for the velocity component in Z 
direction of the largest fragment (3rd output) 
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5.5 FRAGMENTATION MODULE 

5.5.1 Overview 

The fragmentation module to be integrated into HY-STONE is based either on 

trained neural network or on the interpolation method. Because the neural network was 

developed and trained in MATLAB environment, the MATLAB should be activated 

whenever the fragmentation module is recalled. This may extensively increase the 

computational burden while running HY-STONE for rockfall analysis by considering 

impact fragmentation. The interpolation method is a standalone program which can be 

directly recalled to predict impact fragmentation. Compared to neural network method, 

interpolation method is less accurate due to relatively sparse grid points. 

The fragmentation module has input and output which are directly fed and read, 

respectively, by HY-STONE when impact fragmentations are considered during rock fall 

analysis. This is explained in Section 5.5.2. 

As impact simulations were performed based on a local reference system with a 

unique block size, transformation and scaling should be applied to the predicted results 

for both neural network and interpolation methods so that HY-STONE can directly use 

them for rock fall analysis. This is explained in Section 5.5.4. 

5.5.2 Input and Output 

The following input parameters should be input before HY-STONE calls the 

fragmentation module: 

Ec (GPa):                                  Particle Young’s modulus 

c (MPa):                                   Micro cohesion  

ϕ (o):                                        Micro frictional angle 

T (MPa):                                  Micro tensile strength 
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 Egrd (GPa):                              Ground Young’s modulus 

V (m/s):                                    Impact velocity 

θ  (o):                                        Incidence angle  

CORn:                                      Coefficient of restitution in normal direction 

CORs:                                      Coefficient of restitution in tangential direction 

Dimensional scaling factor:   
0.1 
EquivalentR

m
λ =  

The first seven parameters are the same as those used for simulation database 

preparation, which have already been discussed in Section 5.2. Coefficients of restitution 

in normal (CORn) and tangential (CORs) directions are defined respectively as the ratio of 

the magnitudes of velocity components in normal and tangential directions (with respect 

to an impact plane) before and after an impact. The dimensional scaling factor, λ , is 

defined as the ratio of actual equivalent block size (radius) over the simulated block size 

(0.1 m in radius).  

The output parameters are similar to those in simulation database preparation 

except that velocity of each fragment should be transformed into the global reference 

system used in HY-STONE. These parameters are: 

N:                                   Number of fragments 

mi:                                  Mass of fragment i 

Ri:                                  Equivalent radius of fragment i 

_i glbV :                             Velocity vector of fragment i in a global reference system 

Only the largest 10 fragments are output. If the total number of fragments is less 

than 10, all the output parameters of remaining virtual fragments will be set to “zero”. 
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5.5.3 Preprocessor 

Impact simulations are performed based on a local reference system (refer to 

Figure 4-2 and Section 4.2), in which the effect of gravity is neglected compared to the 

large impact forces. The purpose of the preprocessor is to prepare input parameters in the 

local reference system at the point of impact. The local reference system is formed as 

follows based on a global reference system:  

• The origin of the local reference system is located right at the impact 

point; 

• The unit vector Zloc, with components
3

3

3

x
y
z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 in the global reference system, 

points upward normal to the slope; 

• The unit vector Xloc, with components 
1

1

1

x
y
z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 in the global reference system, 

points in the direction of projected impact velocity on the slope plane; 

• The unit vector Yloc, with components 
2

2

2

x
y
z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 in the global reference 

system, can be then determined by considering the right-hand rule 

( loc loc locY Z X= × ). 

The transformation matrix from the local to the global reference system, M is  

[ ]
1 2 3

1 2 3

1 2 3

loc loc loc

x x x
M X Y Z y y y

z z z

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

 .                     (5-5) 

The transformation matrix from the global to the local reference system is MT.  
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5.5.4 Postprocessor 

The purpose of the postprocessor is to transform the predicted results from a local 

(XYZloc) to a global (XYZglb) reference system, and to apply coefficients of restitution and 

scaling factor to the results, so that HY-STONE can directly continue the rockfall 

analysis with the predicted fragmentation information. 

The output impact velocity is adjusted by taking account of coefficients of 

restitution in both normal and tangential directions. The adjusted velocity components for 

the i-th fragment in local reference system are computed by considering coefficients of 

restitution as: 

_ _

_ _

_ _

'

'

'

i x i x s

i y i y s

i z i z n

V V COR

V V COR

V V COR

⎧ = ⋅
⎪

= ⋅⎨
⎪ = ⋅⎩

                                                      (5-6) 

The velocity vector of the i-th fragment, _ _ _( ' ,  ' ,  ' )i x i y i zV V V , is then transformed 

from local reference system to global reference system as 
_ glb _i i locV M V= ⋅ . 

The mass of each fragment is scaled up by the factor 3λ , and the equivalent 

radius of each fragment is scaled up by a factor λ . 
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CHAPTER 6 Case Studies 

 

6.1 INTRODUCTION 

In this chapter, three rockfall case histories (namely, the California quarry rockfall 

field tests, the Rossing drop tests, and the Argyle rockfall event) have been used to 

validate the developed impact fragmentation module in rockfall analysis. Among the 

three case histories, only the California case has detailed topographical information on 

the slope, and hence it has been selected to validate the rockfall package that integrates 

the fragmentation module into STONE. The other two case histories have been selected 

to directly validate the impact model, where only single impacts were simulated to 

evaluate fragmentation. 

6. 2 CALIFORNIA ROCKFALL TESTS 

6.2.1 Overview 

In an effort to evaluate the environmental impact of conversion of the Guadalupe 

Valley Quarry, located in Brisbane, CA, to a civil development, drop tests were carried 

out with the aim of determining the runout distance of possible rockfalls down a 165-m 

high slope. The drop tests were documented in detail by using a high-speed camera 

including fragmentation information.  

Sixty three blocks were dropped with a wheel loader from two different locations 

following two possible different cross sections F-F’ and G-G’ as shown in Figures 6-1 to 

6-4. The rock blocks were composed of sandstone either with isolated fractures or highly 

fractured. The run-out distance and the sample condition after fall were recorded. 
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Figure 6-1. 3D topographic map of the test site in Brisbane, CA with the sketch of two 
cross-sections used for dropping tests  

 

Figure 6-2. Geological map of the test site in Brisbane, CA  
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Figure 6-3. Cross section of F-F’ for dropping tests 

 

Figure 6-4. Cross section of G-G’ for dropping tests 
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6.2.2 Model Calibration 

The material properties of sandstone were analyzed based on uniaxial 

compressive experimental data (given in Appendix B) provided by Prof. Scott Kieffer 

from University of Graz. Only uniaxial compressive strength (UCS) and Young’s 

modulus data were available. The intact rock Young’s modulus was picked as the highest 

value of 64.7 GPa among those determined experimentally. Similarly, the highest UCS 

(97.0 MPa) was chosen as the intact rock UCS. mi, one of the parameters used in Hoek-

Brown failure criterion (Hoek 1983; Hoek and Brown 1997), was chosen as the average 

value of 17.0. Geologic strength index (GSI) for the rock blocks was determined as 85.0 

to reach a UCS of about 61.1 MPa for the rock mass, which is actually the average value 

of tested UCSs on intact rock.  

The deformation modulus, rmE , for the rock blocks was obtained by using the 

following correlation (Hoek and Diederichs 2006): 

((60 15 )/11)

1 / 2(0.02 )
1rm i D GSI

DE E
e + −

−
= +

+
                                      (6-1) 

where iE is the deformation modulus for intact rock, and D is the disturbance factor. 

The strength envelope depicted in Figure 6-5 is based on the following Hoek-

Brown failure criterion (Hoek and Brown 1997): 

3

3

'
' '
1

a

ci b
ci

m s
σ

σ σ σ
σ

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
                                               (6-2) 

where 
1

'σ  and 
3

'σ are the maximum and minimum effective stresses at failure 

respectively, mb is the value of the Hock-Brown constant m for the rock mass, s and a are 

constants which depend upon the characteristics of the rock mass, and ciσ is the uniaxial 

compressive strength of the intact rock. 
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Figure 6-5. Material properties of generalized sandstone with RockData  

The strength of a fractured rock mass depends on the properties of the intact rock 

and also on fracture structures. The Geological Strength Index (GSI) provides a system 

for estimating the reduction in rock mass strength for different geological conditions.   

Once the Geological Strength Index has been estimated, the parameters which 

describe the rock mass strength characteristics are calculated as follows: 

 100exp
28b i

GSIm m −⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                        (6-3) 
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For GSI > 25, the original Hoek-Brown criterion is applicable 
100exp

9
1
2

GSIs

a

⎧ −⎛ ⎞= ⎜ ⎟⎪⎪ ⎝ ⎠⎨
⎪ =⎪⎩

                                              (6-4) 

For GSI < 25, the original Hoek-Brown criterion applies with 
0

    
0.65

200

s
GSIa

=⎧
⎪
⎨

= −⎪⎩

.                                                  (6-5) 

The following parameters were then chosen for calibrating the DEM model. 

1) Deformability 

The deformability properties of generalized rock mass were obtained as Young’s 

modulus: E=62.0 GPa and Poisson’s ratio: ν =0.18 (picked as average value of 

experimental data for uniaxial compression tests as seen in Appendix B). With these 

deformability properties, the micro DEM deformability parameters: Ec = 59.0 GPa and 

Ks/Kn = 0.29 were then identified (Section 3.4.1). 

2) Strength 

In order to identify the micro model strength parameters, the following points in 

the ( 1 3, σ σ ) plane were picked from the strength envelope in Figure 6-6: (0.0, 61.1), (1.0, 

71.5), (2.0, 81.0), (5.0, 104.5), (10.0, 136.5) in the units of MPa. By performing 

optimization-based calibration process (Section 3.4.2), the micro strength parameters 

were calibrated as: c = 108.5 MPa, ϕ  = 57.0o and T = 26.2 MPa. The produced failure 

envelope is shown in Figure 6-6, which shows that the experimental and calculated 

failure envelopes are reasonably close to one another in the confinement range of interest 

to rockfall analysis (0-2 MPa). 
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Figure 6-6. Calibrated and experimental failure envelopes of sandstone for California 

case study 

6.2.3 Rockfall Analysis using HY-STONE 

The developed fragmentation module using the interpolation method has been 

successfully integrated into HY-STONE to perform rockfall analysis by accounting for 

impact fragmentation. The program HY-STONE simulates in three dimensions the fall of 

a boulder along a slope. The program was designed to use thematic data already available 

for large areas, or that could be obtained from geological and geomorphologic maps or 

through reconnaissance investigations, and to generate spatially distributed information 

useful to assess rock-fall hazard at the regional and local scales. Rockfall analyses along 

cross-section FF’ in California case history were performed with and without considering 

impact fragmentation and the effects of impact fragmentation in rockfall analysis were 

evaluated.   
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6.2.3.1 Input Data 

HY-STONE requires the following input data (Guzzetti et al. 2002) and some 

input data are shown in Table 6-1: 

1) a digital terrain model (DTM), representing topography in raster format, 

which was converted from the original digital map in AutoCAD dwg format 

provided by Dr. Scott Kieffer; 

2) a raster map (a grid) showing the location of the starting cells, i.e., the cells 

from which rock falls occur, also specifying the number of boulders to be 

triggered; 

3) grids for the normal and tangential restitution coefficients, the rolling friction 

coefficient, and ground Young’s modulus (used for fragmentation module); 

4) calibrated model parameters for rock blocks if fragmentation module is 

activated; and 

5) other initial and controlling parameters specifying the input grid filenames, 

the initial conditions and the simulation specifications required by the code 

(threshold values, ranges of stochastic variability, etc.). 

Table 6-1. Input data used for HY-STONE rockfall model in California case study 

Field Value 

Normal restitution coefficient weathered sandstone:  0.55;  talus/debris:  0.35 

Tangential restitution coefficient weathered sandstone: 0.70;  talus/debris:  0.70 

Rolling friction coefficient weathered sandstone 0.4;   talus/debris: 0.65 

Block shape sphere 

Block average radius 0.3 m 

Block maximum radius  0.5 m 

Start velocity 1 m/s 

Start rotational velocity 0.5 radius/s 
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Min velocity (stop below) 0.25 m/s 

Ec 59.0 GPa 

c 108.5 MPa 
ϕ  57.0o 

T 26.2 MPa 

Rock density 2.59 kg/m3

Ground Young’s modulus 0.25 GPa (talus deposit), 2.5 GPa (weathered 
sandstones) 

Stochastic ranges (applied to 
Restitution coefficients, Rolling 
friction coefficient, Start 
velocity, and Ground Young’s 
modulus) 

normal distribution, standard deviation: 5% of 
mean value 

 6.2.3.2 Kinematic Modeling 

HY-STONE uses a “lumped mass” approach to simulate rock falls, i.e., the 

boulder is considered dimensionless with all the mass concentrated in a point (the centre 

of mass). The size, shape and mass of the boulder are not considered and a kinematics 

simulation of the rock-fall process is performed where the movement is computed 

through a series of discrete time intervals. The advantage of the lumped mass approach 

lays in its simplicity and in the computational speed. Taking into account the mass of the 

boulder, its shape and size would allow for a complete dynamic modeling, but would 

introduce uncertainties (particularly due to the irregular shape of the boulder), would 

increase the computation time, and would generate a large variability in the results 

making it more difficult to ascertain rock-fall hazard at the regional scale. 

The trajectory (or travel path) of a boulder is computed automatically from the 

DTM in HY-STONE. The trajectory depends on the starting point, the topography, and 

the coefficients used to simulate the loss of velocity at the impact point or where the 

boulder is rolling (Guzzetti et al. 2002).  
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HY-STONE is capable of modeling three of the four “states” that a rock fall can 

take, namely: free falling, bouncing and rolling. Starting from a source point, HY-

STONE “shoots” a boulder horizontally out of the point along the steepest slope and at an 

initial velocity set by the user. After the horizontal start, the boulder, driven by gravity, 

follows a parabolic (ballistic) trajectory (free falling) until it hits the ground.  

When the location of the impact point has been determined, HY-STONE invoke 

the fragmentation module to check whether this impact can cause fragmentation or not. If 

fragmentation does not occur, rebound velocity and angle are computed by accounting 

for the energy loss using coefficients of restitutions. If fragmentation occurs, the 

fragmentation module outputs the rebound velocity of each fragment and different new 

rockfall trajectories are then computed and followed in the rockfall analysis. 

6.2.3.3 Natural Variability and Uncertainty in the Input Data 

Parameters such as the rockfall starting velocity and direction, the rolling friction 

coefficient and the normal and tangential energy restitution coefficients vary largely in 

nature and are difficult to define precisely, particularly over large areas. HY-STONE 

provides a way to cope with the natural variability and local uncertainty associated with 

such information by adding to these values a random component. The user can select a 

range of variation (in percentage) around the given (default or central) values. During the 

computation, where needed (i.e., at the beginning of a new trajectory for the starting 

angle, at each impact point for the normal and tangential energy restitution coefficients, 

and where the boulders roll for the dynamic friction coefficient), STONE draws 

randomly a value from the selected range around the given (default) values.  

Adding the random components to the simulation proves very useful to test the 

program outputs for errors or inconsistencies due to local conditions. When combined 
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with the possibility of triggering a large number of boulders from each starting cell, the 

use of the random components provides a way of coping with the natural variability and 

the intrinsic uncertainty associated with rock falls. The statistic analyses of computed 

rockfall trajectories by considering the natural variability and the intrinsic uncertainty can 

be used for assessing rockfall invasion areas in terms of frequency and intensity.  

 6.2.3.4 Results 

Rockfall modeling along cross-section FF’ was performed with and without 

activating fragmentation module using HY-STONE. Simulated rockfall trajectories using 

probabilistic modeling by accounting for the natural variability of parameters were used 

to assess rockfall invasion areas. In the probabilistic modeling of rockfall analysis, the 

areas with higher density of rockfall trajectories are considered as higher frequency or 

intensity of rockfall invasions. 

Figures 6-7 to 6-16 shows different views of simulated 3D rockfall trajectories 

with and without activating fragmentation along cross-section FF’ using HY-STONE.  

Trajectories are represented as points, classified by translational velocity. By comparing 

the rockfall trajectories with and without activation fragmentation module, following 

observations can be made: 

1) Impact fragmentation occurs when activating the fragmentation module for 

calibrated input parameters of rock blocks used in the case study, which is 

confirmed by the recorded experimental results. 

2) Simulated rockfall invasion areas with activating the fragmentation module 

are much larger than those computed without activating fragmentation 

module. 
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3) The average values of velocity and height (relative height from the slope in 

the vertical direction) of small fragments are higher than those for rock blocks 

without activating the fragmentation module.  

It is then natural to draw the conclusion that impact fragmentation is very 

important in rockfall analysis in assessing rockfall invasion areas in terms both of 

frequency and intensity. Without considering impact fragmentation, the assessment of the 

areas prone to rockfall would be underestimated and hence may mislead the design of 

protection measurement or other rockfall risk analyses.  

 

 

Figure 6-7. Full view (NE) of simulated 3D rockfall trajectories with fragmentation along 
cross-section FF’ using HY-STONE   
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Figure 6-8. Front view of simulated 3D rockfall trajectories with fragmentation along 
cross-section FF’ using HY-STONE.  Trajectories are represented as 
points, classified by translational velocity.  

 

Figure 6-9. Front view of simulated 3D rockfall trajectories without fragmentation along 
cross-section FF’ using HY-STONE.  Trajectories are represented as 
points, classified by translational velocity.  
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Figure 6-10. NE-view of simulated 3D rockfall trajectories with fragmentation along 
cross-section FF’ using HY-STONE.  Trajectories are represented as 
points, classified by translational velocity.  

 

Figure 6-11. NE-view of simulated 3D rockfall trajectories without fragmentation along 
cross-section FF’ using HY-STONE.  Trajectories are represented as 
points, classified by translational velocity.  
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Figure 6-12. Top view of simulated 3D rockfall trajectories with fragmentation along 
cross-section FF’ using HY-STONE.  Trajectories are represented as 
points, classified by translational velocity. 

 

Figure 6-13. Top view of simulated 3D rockfall trajectories without fragmentation along 
cross-section FF’ using HY-STONE.  Trajectories are represented as 
points, classified by translational velocity. 
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Figure 6-14. N-view of simulated 3D rockfall trajectories with fragmentation along cross-
section FF’ using HY-STONE.  Trajectories are represented as points, 
classified by translational velocity. 

 

Figure 6-15. N-view of simulated 3D rockfall trajectories without fragmentation along 
cross-section FF’ using HY-STONE.  Trajectories are represented as 
points, classified by translational velocity. 
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Figure 6-16. Average height of flying fragments of each cell with fragmentation along 
cross-section FF’ using HY-STONE 

6. 3 ROSSING DROP TESTS 

6.3.1 Overview 

The experimental work at Rossing Uranium Mine in Australia comprised free 

falling tests onto a nearly horizontal surface of rock and scree-covered rock, respectively. 

The initial purpose of this drop tests was to measure the normal coefficient of restitution. 

Because fragmentation was observed in the drop tests, it was then proposed to validate 

our DEM impact model based on these results.  

 Selected equidimensional rock blocks, ranging in size from 200 to 300 mm, were 

vertically dropped from a height of 9.6 m onto the prepared test surfaces. Approximately 

60 rock blocks, including marble, quartzite and skarn, were released during the testing 

and dropped onto a cordierite gneiss hard rock surface as well as a scree covered surface 

as shown in Figure 6-17. The falling rock blocks were recorded by a high speed video 
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camera. From the provided video files, about 6 drops resulted in rock block 

fragmentation, and they were all tested on the hard rock surface.  However, it is now 

impossible to identify the rock type from those video files, which makes it difficult to use 

the test results to directly validate our DEM code. But it can at least provide us with 

useful in situ data to compare with the simulation results.  

6.3.2 Model Calibration 

The provided test data on rock properties were very limited and displayed large 

variation (Appendix C). Due to the insufficiency of provided experimental data, only 

marble was selected for the validation, which has relatively more data. Because of the 

large scatter of the provided data, higher and lower parameter bounds were selected and 

used for validating the dropping tests as follows: 

Figure 6-17. Testing arrangement for Rossing dropping tests  

1) High bound 

Scree Surface Hard Rock Surface
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The high-bound deformability properties for the rock blocks were estimated as: 

Young’s modulus: E=66.0 GPa and Poisson’s ratio: ν =0.25. With these deformability 

properties, the micro DEM deformability parameters: Ec = 74.8 GPa and Ks/Kn = 0.115 

were then identified (Section 3.4.1). 

Points in the ( 1 3, σ σ ) plane were picked from the high-bound strength envelope 

for the rock blocks: (0.0, 115.0), (10.0, 144.1), (20.0, 167.4), (30.0, 197.3) in the units of 

MPa. By performing optimization-based calibration process (Section 3.4.2), the micro 

strength parameters were calibrated as: c = 80.0 MPa, ϕ  = 60o, T = 110.0 MPa. The 

experimental and simulated failure envelopes are shown in Figure 6-18, in which the 

simulated failure envelope is fairly close to the target one. 

2) Low bound 

The low-bound deformability properties for the rock blocks were estimated as 

Young’s modulus: E=41.0 GPa and Poisson’s ratio: ν =0.25. With these deformability 

properties, the micro DEM deformability parameters: Ec = 45.3 GPa and Ks/Kn = 0.115 

were then identified. 

Points in the ( 1 3, σ σ ) plane were picked from the low-bound strength envelope 

for the rock blocks: (0.0, 44.0) (10.0, 58.0), (20.0, 71.0) in the units of MPa. By 

performing optimization-based calibration process, the micro strength parameters were 

calibrated as: c = 65.0 MPa, ϕ  = 60o, T = 12.0 MPa. The experimental and simulated 

failure envelopes are shown in Figure 6-19, in which the simulated failure envelope is not 

very close to the target one at high confining pressures, but matches the target envelope at 

low confining pressures. Considering the interest of modeling rock fragmentation upon 

impact in the research, confining pressure is not of a big concern. As a result, these 

calibrated model parameters are acceptable for the case study. 
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6.3. 3 Impact Simulations 

For simplicity, a spherical block of 0.2 m in diameter was used for simulations. 

The block was represented by a sphere packing consisting of 2,500 particles. The impact 

was simulated as a normal impact (incident angle of 90o) with the magnitude of impact 

velocity of 13.7 m/s, which is directly determined from the dropping height of 9.6 m as 

2 2 9.8 9.6  m/s  13.7 m/sv gh= = × × = . Drops onto both cordierite gneiss hard rock 

and the scree covered surfaces were modeled. Ground Young’s modulus of 21.0 GPa for 

a hard rock) surface (considering a Young’s modulus of 50.0 GPa for intact cordierite 

gneiss rock and a GSI of 55 for estimation) and 0.5 GPa (estimated based on a medium 

dense gravel (Lequang and Junichi 2003)) for a scree-covered surface, respectively, were 

chosen in the following impact simulations.  
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Figure 6-18. Experimental and calibrated failure envelopes for the high-bound properties  
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Figure 6-19. Experimental and calibrated failure envelope for the lower-bound properties 

1) High bound 

First, the calibrated model for high-bound properties of marble was used to 

simulate the impact against both the hard rock surface and scree-covered surface. As 

exemplified in Figure 6-20, the simulated results show that no fragmentation occurs for 

the impacts against the scree-covered surface, while for impacts against rock, a few small 

fragments developed at the impact zone as seen in Figure 6-21. For high bound marble, 

dropping vertically from a height of 9.6 m may not create severe fragmentation when 

landing either onto the hard rock surface or onto the scree-covered surface.  
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Figure 6-20. Simulated high-bound marble block after bouncing off the ground for 
dropping onto the scree-covered surface  

 

Figure 6-21. Simulated high-bound marble block after bouncing off the ground for 
dropping onto the hard rock surface 
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2) Low bound 

The calibrated model for low-bound properties of marble was then used to 

simulate the impact upon both the hard rock surface and the scree-covered surface. The 

simulated results show that fragmentation occurs under both ground conditions for low-

bound marble block. When the low-bound marble rock impacts against the scree covered 

surface, about 120 fragments were generated, in which two relatively big fragments 

account for up to 90% of the total volume and the remaining are just tiny fragments 

consisting of one to 3 spherical DEM particles. The two big fragments move at a similar 

speed, so it is not easy to visually differentiate the two fragments from Figure 6-22. 

When the low-bound marble rock impacts onto the hard rock surface, it suddenly 

smashes generating about 1,380 fragments with the biggest fragments only consisting of 

290 DEM spherical particles as seen in Figure 6-23. This large number of fragments is 

caused by the low strength of rock block itself and the high stiffness of the ground.  This 

process is similar to the situation where a dry soil block impacts onto a hard rock surface. 

 
Figure 6-22. Simulated low-bound marble block after bouncing off the ground for 

dropping onto the scree-covered surface 
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Figure 6-23. Simulated low-bound marble block after bouncing off the ground for 
dropping onto the hard rock surface 

6.3. 4 Conclusion 

Based on the simulation results using estimated possible high and low bound 

properties of marble, it is reasonable to draw the conclusion that the DEM impact model 

can be used to predict the impact fragmentation. Considering the large uncertainty of rock 

properties, it is impossible to fully simulate the fragmentation process in real tests. 

Especially, when real fragments are smaller than the sizes of DEM particles, the 

simulated fragments cannot be compared to the real situations any more. However, the 

DEM impact model can provide good reference results in evaluating impact 

fragmentation in rock fall analysis. It is also very useful to carry out statistical analysis in 

impact fragmentation using the DEM impact model by introducing uncertainties in model 

parameters. By accounting for the possible variations in rock properties, valuable results 
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with respect to impact fragmentation in rock fall analysis may be obtained to guide the 

design of protective measures against rock fall events with impact fragmentation.  

6. 4 ARGYLE ROCKFALL EVENT 

6.4.1 Introduction 

According to a report from Rio Tinto, a rockfall incident with impact 

fragmentation happened at Borefield in Argyle, Australia on Dec. 2nd 2001 with no 

injuries to personnel, in which a Motor Control Centre (MCC) was severely damaged due 

to flying fragments as shown in Figure 6-24. Though a tire fence (about 2.5 m high) was 

used to prevent rock fall damage, the impact created rock fragments that jumped over the 

bench and hit the MCC. The damaged MCC had to be replaced at cost of $77,000. 

Figure 6-24. Rock fall damage to Motor Control Center with impact fragmentation at an 
Argyle mine   

Rock 
Fragments 

Largest Rock Fragments, 
300 x 200 x 400 mm 
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As shown in Figures 6-25 and 6-26, the slope of a typical Argyle quartzite waste 

rock dump is about 37 degrees and the point of origin of the rockfall was estimated at 

approximately 280 m relative level (RL) near the crest of the waste dump. The point of 

impact at the waste dump toe is at approximately 235 m RL. The dump toe was relatively 

soft, which is not enough to fragment the falling rock block. It was then speculated that 

the falling rock block possibly impacted with another boulder and got fragmented. Those 

fragments flew over a tire fence to hit the facility which is at 235m elevation. The size of 

the original block is unknown but can be estimated as about 300 300 400 mm× ×  based 

on the broken fragments in the photographs.  
  

 

Figure 6-25. Location of rockfall incident with possible impact point 
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Figure 6-26. An oblique view of the local site of the rockfall incident  

6.4.2 Model Calibration for Intact Rock 

As part of this research, a quartzite block sourced and shipped from Argyle in 

Australia was cored and specimens were tested by using triaxial tests. Some fractures 

oriented mainly in two sets of directions were observed while coring the sample. The 

tested specimens were almost intact with no visible fractures as seen from a CT scanned 

cross section of a representative specimen in Figure 6-27. Hence the tested results can be 

viewed as properties for intact quartzite. In this case study, firstly, intact rock properties 

were used for impact simulation to check whether it can get fragmented or not. Then, a 

calibrated equivalent continuum model was employed to simulate the impact 

fragmentation of rock mass. 
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Figure 6-27. A CT scanned cross section of the tested quartzite sample 

For the tested intact quartzite specimens, the average Young’s modulus and 

Poisson’s ratio are 122.0 GPa and 0.25, respectively. The tested failure envelope is 

shown in Figure 6-28.  

With these tested material properties, the micro model parameters were then 

identified with the developed calibration algorithms (Section 3.4). The identified model 

parameters are shown in Table 6-2. 
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Figure 6-28. Experimental and calibrated of failure envelopes of the tested intact 

quartzite sample 

Table 6-2 Micro model parameters for intact quartzite 

6.4.3 Model Calibration for Equivalent Continuum Model 

The material properties of equivalent continuum quartzite were obtained by using 

the same approach as used in Section 6.2.  The Young’s modulus and the UCS for the 

tested intact rock are 122 GPa and 210 MPa, respectively. The Hoek-Brown parameter, 

mi, was chosen as 20 for quartzite. GSI was estimated 85 based on the observation of 

fractures in the cored block. Eventually, the deformability and strength parameters were 

obtained for the generalized rock mass properties as shown in Figure 6-29. 

 (GPa)cE  /s nK K  (MPa)c  o( )ϕ  (MPa)T  

138.3 0.12 350.0 60.0 120.0 
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Figure 6-29. Material properties of quartzite rock mass obtained based on intact rock 
properties and characterization of fractured rock 

Deformability and strength properties were then chosen for calibrating the DEM 

model to simulate equivalent quartzite rock mass. Young’s modulus and Poisson’s ratio 

are 113.0 GPa and 0.24, respectively, for the equivalent continuum material. Points in the 
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( 1 3, σ σ ) plane were picked from the generalized failure envelope to identify the micro 

strength model parameters. The selected points were (0.0, 91.2), (1.0, 104.0), (2.0, 117.0) 

and (5.0, 148) in the units of MPa. Identified micro model parameters are shown in Table 

6-3. 

Table 6-3. Micro model parameters for intact quartzite 

 (GPa)cE  /s nK K  (MPa)c  o( )ϕ  (MPa)T  

125 0.13 125 60 65 

The computed failure envelope is shown in Figure 6-30, which is not very close to 

the target one at high confining pressures, but is fairly close to the target envelope at low 

confining pressures. 
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Figure 6-30. Comparison between the calibrated and generalized failure envelopes for 
fractured quartzite  
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6.4.4 Impact Simulation  

As shown in Figure 6-31, a block rolling along the slope and then impacting 

against a horizontally placed big boulder was considered. For simplicity, a spherical 

block consisting of 2,500 spherical particles was used for impact simulations. The radius 

of the block is 0.2 m. The impact was configured as an oblique impact with an incident 

angle of 37o, which is the slope angle provided by Rio Tinto, The impact velocity was 

calculated as 2 0.8 2 9.8 35.0  m/s  21.0 m/sv ghα= = × × × = , in which a coefficient 

0.8α =  was used to account for the energy loss during rolling. The ground Young’s 

modulus was chosen as 20.0 GPa to represent the big boulder against which the falling 

rock landed. The coordinate system was set up as shown in Figure 6-31. 

 

Figure 6-31. Sketch of impact simulation with coordinate reference system 

Firstly, calibrated intact model was used to simulate the impact to check whether 

an intact rock block can fragment in the impact. As shown in Figure 6-32, no 

fragmentation was observed in the simulation with the intact model. The average 

reflected velocity of the block is about 19.5 m/s, which is slightly lower than the incident 

velocity because part of the translational energy is transformed into rotational energy and 

part of kinetic energy is dissipated by geometric damping. Unlike an ideal oblique 

impact, the horizontal component of reflected velocity was smaller than the horizontal 

component of incident velocity because tangential resistance was applied to the block, 

which causes the slight block rotation. 
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Figure 6-32. Simulated intact block rolling down a slope and impacting against a 
horizontal placed big boulder 

The calibrated equivalent continuum model to represent fractured rock was then 

applied to simulate the impact. As shown in Figure 6-33, about 200 fragments were 

generated. The biggest fragment accounts for about 85% of the total volume and the rest 

are just some small and tiny particles. The reflected velocity of the 5 biggest fragments is 

shown in Table 6-4. By performing a simple analysis on fragment trajectories, three of 

them can likely fly over the tire fence and hit the MCC. Compared with the actual 

fragments observed on site (Figure 6-24), simulated fragment sizes do not agree well with 

the actual fragment sizes. It is always difficult to fully model rock fragmentations 

because rock blocks are discontinuous and internal structures are complex. In modeling 

impact fragmentations, an equivalent continuum model was employed to simplify the 

problem, which may lead the deference from the actual observations on fragment sizes.  

However, by using this developed model it is able to perform some risk analysis on 

impact fragmentation. 
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Table 6-4. Velocity of the largest five fragments after impact 

Fragment No. 1st 2nd 3rd 4th 5th 

Velocity 

(m/s) 

X 12.3 0.5 5.7 12.9 14.0 

Y 0.2 5.6 3.7 -0.03 1.1 

Z 8.6 3.2 8.3 10.3 1.0 

Fly over the tire fence? Yes No Yes Yes No 

 

Figure 6-33. Simulated equivalent fractured block rolling down a slope and impacting 
against a horizontal placed big boulder 

6.5 IMPROVEMENT ON FRAGMENT SIZE DISTRIBUTION 

The DEM impact model can reasonably predict fragmentation, especially predict 

whether a rock block fragments or not in a given impact condition. However, due to the 

limit of current model to accurately account for the uncertainty and complexity of rock 

materials, it is very difficult to fully match the real fragmentation process such as 

fragment sizes.  
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We have made some improvements to our current model to more realistically 

reproduce the fragment size distribution by adding rolling stiffness and strength disorder 

to obtain better fragment size distributions. However, this will lead to a more complex 

model calibration because more parameters should be identified. A brief description of 

the improved model and some preliminary results by using the improved model are 

presented below.  

6.5.1 Rolling Stiffness and Strength Disorder 

A rolling stiffness, Kr, is introduced to resist particle rotation (Iwashita and Oda 

2000): 

r sK aK r=  ,                                                               (6-6) 

where Ks is contact shear stiffness, r is the particle radius, and a is a constant. The 
moment, Mr, due to a rotation vector, θ ( , , )x y zθ θ θ= , of a particle in a global reference 

system,  is then calculated as  
θ ( , , )r r x r y r zr K K K KM θ θ θ= − = − − − .                                        (6-7) 

This rolling resistance is added to the contribution of the particle’s motion equation for 

rotation (Equation 2-17). 

A rotation angle threshold, limθ , is also used, above which the rolling resistance 

rM remains constant. This is similar to a perfectly elastic-plastic behavior. 

In order to describe the internal defects in rock materials, strength disorder was 

introduced to contact strength parameters, c, ϕ  and T, according to Weibull distributions 

(Wittel et al. 2008) 

                              
1

0 0 0

( ) exp( )
k k

k c cP c
c c c

−
⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 

1

0 0 0

( ) exp( )
k k

kP ϕ ϕϕ
ϕ ϕ ϕ

−
⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,                                             (6-8) 
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Here 0c , 0ϕ  and T0 are the average values for c, ϕ  and T, and k is the shape factor 

which controls the distribution shape. A larger k value gives a lower disorder. 

6.5.2 Fragment Size Distribution 

A normal impact was simulated by using the impact model that accounts for 

rolling stiffness. The number of generated fragments was 742. A two-parameter Weibull 

distribution as discussed in Section 3.5.4.1 was employed here to fit the size distribution 

of calculated fragments. Figure 6-34 shows that the normalized fragmentation mass 

distribution can be well represented by a two-parameter Weibull distribution, which is 

much better than the fragment size distribution shown in Figure 3-46. The simulated 

fragment size distribution curve with improved model is more uniform than the previous 

one. Without introducing rolling stiffness and strength disorder, it is difficult to simulate 

a fragmentation with several relative big fragments, which is typically observed in reality 

for rock fragmentation as seen also in Argyle case. 

6.6 CONCLUSION 

Three case studies have been performed to validate the developed impact 

fragmentation module in rockfall analysis. It has been demonstrated that the DEM impact 

model can reasonably predict impact fragmentation, especially predict whether a rock 

block fragments or not in a given impact condition. Due to the limit of current model to 

accurately account for the uncertainty and complexity of rock materials, it is not able to 

fully match the real fragmentation process such as fragment sizes. An improved model 

was then proposed by introducing rolling stiffness and strength disorders to better 
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simulate fragment size distributions. However, additional extensive calibration work is 

required. 
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Figure 6-34. Fragmentation size distribution of simulated rock impact using improved 
model with rolling stiffness 
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 OVERALL CONCLUSIONS 

An impact fragmentation module was developed and integrated into HY-STONE 

to perform rock fall analysis by taking into account rock fragmentation upon impact and 

fly-rock. A discrete element model was employed to model impact fragmentation. The 

model was first calibrated and verified with experimental results to demonstrate the 

capability of modeling both quasi-static and dynamic material behavior. Some 

fundamental mechanisms of impact fragmentation associated with rockfalls were then 

investigated. The impact fragmentation module was finally developed to quickly predict 

the fragmentation process in rockfall analysis using either an interpolation method or a 

neural network model based on a simulation database.  

A DEM code was developed from scratch. A radius expansion packing method 

was used to prepare specimens for modeling. A contact-level based constitutive model 

consisting of spring-dashpot systems and failure criteria was then applied to describe 

material’s constitutive behavior. Some numerical issues such as packing structure, 

particle size and damping effects, and computational time were addressed.  

A new membrane boundary that applies realistic fluid confining pressure was 

developed for modeling triaxial tests. To realistically simulate the confining pressure, the 

new approach applies updated boundary forces rather than a rigid-wall boundary. The 

applied forces only act on the boundary particles, which are identified and updated 

periodically. Comparisons between rigid-wall boundary and membrane boundary have 

shown that rigid-wall boundary can significantly alter the material response especially the 

material strength, and hence is not appropriate to realistically simulate confining 

pressures.  
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When three-dimensional, bonded discrete element models are deployed to model 

intact rock, a basic question is how to determine the micro-parameters that control macro-

properties of the modeled rock. Algorithms to calibrate the model’s micro-parameters 

against standard laboratory tests, such as uniaxial and triaxial tests, were presented. 

Sensitivity analyses are used to identify the deformability micro-parameters by obtaining 

relationships between microscopic and macroscopic deformability properties. The 

strength model parameters were identified by a global optimization process aimed at 

minimizing the difference between computed and experimental failure envelopes. When 

applied to the experimental results of tested granite, this calibration process produced a 

good agreement between simulated and experimental results for both deformability and 

strength properties.  

Investigation on failure evolution of simulated granite was also performed in 

modeling triaxial tests. The monitored evolution of the number and type of contact 

failures (micro cracks) reveals that at micro level tensile failures occur first followed by 

mobilization of residual friction, and that three distinct stages of stress-strain curve can be 

well represented by the accumulated number of contact failures and the mode of contact 

failures.  

After identifying the micro model parameters, dynamic compression and SHPB 

tests were performed to verify the dynamic model. A strain-rate-dependent dynamic 

strength was observed in the experimental results. Different from modeling quasi-static 

problems, in which a high damping was used to quickly dissipate kinetic energy, material 

damping was neglected by using zero damping in modeling dynamic problems. This 

strain-rate-dependent dynamic strength was also confirmed by the numerical results. No 

rate-dependent constitutive model was used in the DEM model to simulate dynamic 
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behavior. This simulated rate-dependent dynamic strength can be attributed to material 

inertia because the inertia inhibits crack growth.  

The developed DEM code was coupled with a simplified impact model inspired 

by the theory of dynamic foundations. This approach can provide us with some valuable 

insights into impact induced rock fragmentation, although the real physical process is too 

complicated to be fully modeled. It has been shown that the magnitude of impact 

velocity, the angle of the incidence, the ground condition all play very important roles in 

impact fragmentation. The effects of fracture orientation, opening and persistence are 

also prominent in modeling fractured rock. The energy loss due to failure process and 

energy transformation in modeling impact fragmentation can be well tracked. 

Because it takes relatively long time to run an impact simulation with the 

developed DEM code, it may be impractical to directly invoke the DEM code and run an 

impact simulation each time a rock block impacts the ground during a rockfall analysis. 

Alternatively, a large set of impact simulations, which cover different impact scenarios, 

have been carried out beforehand to build up a database of possible impacts. The 

database was used to train a neural network and to set up an interpolation module to 

quickly predict impact fragmentation processes in rockfall analysis. The prediction 

performances of trained neural network and interpolation method were evaluated and 

compared with each other. Both approaches can be used to approximately predict impact 

fragmentation. The overall performance of interpolation method is poorer than the trained 

neural network’s.  

Several studies were performed to validate the developed impact fragmentation 

module in rockfall analysis. It has been demonstrated that the DEM impact model can 

reasonably predict impact fragmentation, especially predict whether a rock block 

fragments or not in a given impact condition. Due to the limit of current model to 
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accurately account for the uncertainty and complexity of rock materials, the DEM impact 

model is not able to fully match the real fragmentation process such as fragment size 

distribution. An improved model was then proposed by introducing rolling stiffness and 

strength disorders to better simulate fragment size distributions. However, additional 

extensive calibration work is required.    

7.2 RECOMMENDATIONS FOR FUTURE WORK 

Although detailed work on impact fragmentation in rock fall analysis has been 

made in this work, our understanding to this complicated process is still limited. In order 

to improve our understanding of impact fragmentation in rock fall analysis, the following 

additional work is recommended for future work: 

1. The effects of fracture orientation, aperture and persistence on impact 

fragmentation have been preliminarily studied. However these fracture 

properties have not been explicitly considered in the fragmentation module 

(interpolation module or neural network) because the number of parameters 

(and thus extent of database) would have significantly increased. It is 

recommended that these fracture properties be included in the development of 

a specific fragmentation module for given site conditions and rock properties, 

where the values of those parameters are fixed, and do not need to be varied in 

a sensitivity analysis.  

2.  In modeling an impact against the ground, the ground was simplified as a 

half-space composed of an elastic and homogeneous medium, and the ground 

failure was not directly accounted for. Instead, coefficients of restitution were 

employed to account for the energy dissipation due to ground local yielding. It 

is recommended that ground yielding be accounted for in modeling impact 
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fragmentation and correlations between coefficients of restitution and ground 

yielding be developed. 

3. Without any improvement, the current model has some difficulties in 

reproducing the fragment size distribution as observed in reality. As discussed 

in Section 6.5, by introducing rolling stiffness the model may be improved to 

reproduce a realistic fragment size distribution. Once this additional feature is 

introduced into the DEM code, model validation should be carried out, the 

effect of the rolling stiffness on model behavior can be further investigated, 

the micro-parameter calibration algorithm should be accordingly augmented, 

and the database and fragmentation modules should be accordingly extended. 
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APPENDIX 

APPENDIX A TRANSFORMATION MATRIX (ARFKEN 1985) 
a) In 3D space, the transformation matrix for a rotation around a given unit vector 

[ , , ]v x y z=  by counterclockwise angle θ  is defined as 

2

2

2

cos (1 cos ) (1 cos ) (sin ) (1 cos ) (sin )
( , ) (1 cos ) (sin ) cos (1 cos ) (1 cos ) (sin )

(1 cos ) (sin ) (1 cos ) (sin ) cos (1 cos )

x xy z xz y
M v xy z y yz x

xz y yz x z

θ θ θ θ θ θ
θ θ θ θ θ θ θ

θ θ θ θ θ θ

⎡ ⎤+ − − − − +
⎢ ⎥= − + + − − −⎢ ⎥
⎢ ⎥− − − + + −⎣ ⎦

                                       

(A.1) 

 

b) Let (O, X, Y, Z) be a global Cartesian coordinate system. The rotations with 

angles ,  and x y zθ θ θ , respectively along these axes can be defined as follows: 

• Rotation along the X-axis: 

1 0 0
( ) 0 cos sin

0 sin cos
x x x x

x x

R θ θ θ
θ θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

• Rotation along the Y-axis: 

cos 0 sin
( ) 0 1 0

sin 0 cos

y y

y y

y y

R
θ θ

θ
θ θ

⎡ ⎤−
⎢ ⎥= ⎢ ⎥
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• Rotation along the Z-axis: 
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cos sin 0
( ) sin cos 0

0 0 1

z z

z z z zR
θ θ

θ θ θ
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

The total rotation matrix can be written 

as ( , , ) ( ) ( ) ( )x y z x x y y z zM R R Rθ θ θ θ θ θ=

cos cos cos sin sin
( , , ) sin sin cos cos sin sin sin sin cos cos sin cos

cos sin cos sin sin cos sin sin sin cos cos cos

y z y z y

x y z x y z x z x y z x z x y

x y z x z x y z x z x y

M
θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ θ θ

⎡ ⎤−
⎢ ⎥= − +⎢ ⎥
⎢ ⎥+ −⎣ ⎦

     (A.2)
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APPENDIX B UNIAXIAL COMPRESSIVE TEST DATA ON SANDSTONE FOR CALIFORNIA ROCKFALL TESTS  
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APPENDIX C RESULTS OF UNIAXIAL COMPRESSION TESTS WITH ELASTIC MODULUS AND POISSON’S RATIO   MEASUREMENTS 
BY MEANS OF STRAIN GAUGES 

SPECIMEN PARTICULARS SPECIMEN  DIMENSIONS SPECIMEN  TEST  RESULTS 

Rocklab Sample Borehole Rock Diameter Height Ratio of Mass Density Failure Strength Tangent Secant Poisson's Poisson's Linear Failure

Specimen Depth Height Load (UCS) Elastic Elastic Ratio Ratio Axial Note

No ID Type to Modulus Modulus Tangent Secant Strain at Code

diameter
@ 50% 

UCS 
@ 50% 

UCS @ 50% UCS
@ 50% 

UCS Failure 

3165- m mm mm g g/cm³ kN MPa GPa GPa mm/mm 

UCM-01 SKRS 1 Marble 62.60 175.8 2.8 576.3 1.06 214.1 69.6 68.1 63.5 0.34 0.29 0.002065 XA 

UCM-02a 47.19 109.1 2.3 576.3 3.02 250.7 143.3 108.0 114.0 0.35 0.30 0.001375 1B 

UCM-02b SKRS 2 Marble 47.20 104.8 2.2 513.8 2.80 202.5 115.7 92.6 96.4 0.31 0.28 0.001735 3B 

UCM-02c 47.37 104.6 2.2 507.1 2.75 165.0 93.6 56.8 60.1 0.14 0.15 0.001869 XA 

UCM-03a SKRS 3 Marble 47.34 112.3 2.4 536.7 2.72 77.8 44.2 50.5 44.3 0.27 0.20 0.001129 1B 

UCM-03b 47.48 96.9 2.0 455.9 2.66 100.1 56.5 50.9 48.2 0.30 0.22 0.001825 XA 

UCM-06a SKRS 6 
Pyritic 

Quartzite 47.22 116.7 2.5 573.6 2.81 129.1 73.7 57.0 61.1 0.32 0.27 0.001290 3B 

UCM-06b 47.34 115.7 2.4 558.6 2.74 192.2 109.2 65.9 68.1 0.24 0.24 0.001665 XB 

UCM-08A 47.42 101.9 2.1 486.1 2.70 185.8 105.2 40.4 41.0 0.33 0.25 0.002615 XB 

UCM-08B SKRS 8 Skarn 47.52 90.9 1.9 475.5 2.95 91.5 51.6 70.6 69.9 0.56 0.35 0.000705 0B 
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