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We discuss a systematic methodology that leads to the reconstruction

of the material profile of either single, or assemblies of one-dimensional flex-

ural components endowed with Timoshenko-theory assumptions. The probed

structures are subjected to user-specified transient excitations: we use the com-

plete waveforms, recorded directly in the time-domain at only a few measure-

ment stations, to drive the profile reconstruction using a partial-differential-

equation-constrained optimization approach. We discuss the solution of the

ensuing state, adjoint, and control problems, and the alleviation of profile mul-

tiplicity by means of either Tikhonov or Total Variation regularization. We

report on numerical experiments using synthetic data that show satisfactory

reconstruction of a variety of profiles, including smoothly and sharply varying

profiles, as well as profiles exhibiting localized discontinuities. The method

is well suited for imaging structures for condition assessment purposes, and
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can handle either diffusive or localized damage without need for a reference

undamaged state.
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Chapter 1

Introduction

Non-destructive testing of structural components is at the very core

of structural health monitoring, system identification, and diagnostics for in-

frastructure systems. The goal of condition assessment is the localization and

quantification of alterations imparted on a (structural) system between the

time it was placed in operation (or even its original design state), and the

moment condition assessment is requested. To date, a plethora of condition

assessment methods have been used, where methods relying on the analysis

of the dynamics of a structure, following its probing by a time-dependent ex-

citation, continue to be dominant. Probing refers to targeting the structure

using acoustic, electromagnetic, or stress waves, and/or their combination.

The analysis of the resulting dynamics refers to post-processing the struc-

ture’s response, aiming at reconstructing the profile; typically, the response

has been collected at a few points, a limited area, or in general, a subset of

the structure’s bounding surface. One could broadly classify these dynamics-

based methods into methods relying on the analysis of the structure’s modal

parameters (eigenfrequencies, mode shapes, curvatures of mode shapes, etc),

or on the analysis of travel times associated with the induced wave motion.

By and large, both classes of methodologies underutilize either the frequency
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spectrum, or the transient record: analyses based on modal parameters rely

typically on a few modes, irrespective of the particular modal quantity used

to drive the detection process, whereas analyses based on the propagation of

waves use travel times and first arrivals to infer the location of structural flaws

(e.g. cracks).

Of particular interest in this article is the exploitation of the com-

plete waveforms for damage detection, or more broadly, for reconstructing the

material profile of a probed structure consisting of Timoshenko-type beams.

The approach formally gives rise to an inverse problem, which, even though it

lacks the deterministic character of the aforementioned methodologies, it takes

advantage of the complete waveforms and uses the totality of the recorded in-

formation to infer the profile. In this sense, there is reasonable expectation for

a more accurate profile reconstruction, when compared to other approaches,

at the (affordable) expense of algorithmic complexity. The battleground for

full waveform methods has been the geophysical exploration arena, where the

goal is to recover the material distribution by wave probing, for the purpose of

identifying hydrocarbon pockets embedded in highly heterogeneous domains.

From a methodological point of view, structural systems are similar to geologic

formations, under the unifying assumption of a linear elastic behavior during

wave probing.

Next, we highlight developments related to dynamics-based probing,

to place the proposed methodology in context. Early efforts were primarily

focused on damage detection given experimentally determined modal param-
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eters. Pioneering work on this class of problems involved the use of eigen-

frequencies. Adams et. al. [1] devised a damage detection scheme based on

shifts in the natural frequencies between the virgin and damaged state of a

structure, for which a priori knowledge of the virgin state was necessary (in

fact, the virgin state was assumed to correspond to the theoretically perfect

structure). The authors considered the problem of undamped axial vibrations

of a rod. Damage was modeled as a massless spring of infinitesimal length and

unknown stiffness (Ka). It was assumed that the mode shapes of the undam-

aged structure remain unchanged in the damaged state. The location of the

damage and the value of Ka were the unknowns to be determined using the

observed frequency shifts. Liang et. al. [10] utilized a similar approach for the

problem of flexural vibrations of an Euler-Bernoulli beam, where cracks were

modeled using rotational springs. The authors plotted the values of normal-

ized spring stiffness versus damage location for a few natural frequencies of

the beam to identify the damage site. The methods would fail for components

(e.g. a simply supported beam) for which symmetric damage locations would

produce the same frequency shifts.

To improve the performance of frequency-based methods, mode shapes

and improved crack models were included in the analysis. Rizos et. al. [15]

presented such a method using the flexural vibrations of a cantilever beam.

The crack was modeled by a massless rotational spring. Ideas from fracture

mechanics were used to relate the spring stiffness to crack depth. The ampli-

tudes of the induced motion at two locations on the beam were used to obtain
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the damage location and damage severity. Pandey et. al. [13] demonstrated a

methodology based on changes in the curvature of mode shapes. Mode shapes

for a damaged and undamaged beam were obtained using the finite element

method. Vibrations of a simply supported and a cantilever beam were consid-

ered. It was found that curvature mode shapes were more sensitive to damage

detection than displacement mode shapes. The method was helpful in deter-

mining a damage zone, but could not provide any quantitative estimate of the

damage magnitude. Cao and Zimmerman [3] suggested load-dependent Ritz

vectors extracted from the dynamic response data (Cao and Zimmerman [4])

as drivers for damage detection. Minimum rank perturbation theory was used

to calculate the stiffness loss using measured eigenvectors and eigenfrequencies

as an input. The presence and location of damage was determined in terms of

a generalized damage residual; the Ritz vectors were found to be more sensitive

to damage than modal vectors. Ruotolo and Surace [16] presented a method

for damage identification in multiply-cracked beams by employing optimiza-

tion techniques and genetic algorithms. Cerri and Vestroni [5] addressed the

problem of diffused cracking in a beam. Two methods, based on characteristic

equation error, and comparison between measured and analytical frequencies

respectively, were discussed. Banici and Kallivokas [2] suggested a method

for crack detection in beams utilizing multiple spectra. First-order perturba-

tion approximations were employed to calculate the first few frequencies of the

damaged beam. Crack locations and severities were obtained by minimizing

the misfit between measured and computed eigenfrequencies. Solution mul-
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tiplicity was alleviated by using data from auxiliary experiments using small

masses to modify the used spectra. Many of the aforementioned approaches

lack the ability to quantify the damage magnitude, and, could not lead to

quantification of remaining strength. Moreover, most modal parameter-based

methods require calibration with the structure’s virgin state. However, the

ease of experimentation and the low computational cost make these techniques

desirable, despite their shortcomings.

Among methods that do not rely on modal characteristics for assess-

ment, the most prominent is the impact-echo method (Sansalone and Carino

[17]). It uses stress waves to quantify the thickness of slabs, but also to detect

cracks, primarily in concrete structures, and has been standardized by ASTM

(ASTM C 1074) and ACI (ACI 228.1R). The technique is based on the re-

flection of P-waves. The damaged component is subjected to an impact and

the resulting motion is recorded using a transducer. Either travel times or

the frequency content of the time signal can be used to detect the presence

and location of the flaw. The method was developed to test concrete pave-

ments, slabs, or other plate-like structures. For example, the spectrum of an

undamaged plate shows peak at the so-called plate thickness frequency, and

that of a damaged plate presents a shift in the location of this peak. The

depth at which the crack is located can be calculated using this shift. Similar

to the methods mentioned earlier, the impact-echo is cumbersome for finding

defects in frames or bridge decks, due to the difficulties in the interpretation of

the collected response, owing to the multiple reflections/refractions (Sansalone
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and Streett [18]). The method provides only qualitative measurement of the

damage, which is not directly useful in predicting response of the structure to

any other applied load. It is, in general, more suitable for detecting cracks

running parallel to a test surface than those running orthogonal to it.

On the other hand, the territory of direct time-domain-based inversion

schemes remains, by and large, unexplored. In this work, we discuss a total

wavefield-based inversion technique using a partial-differential-equation (PDE)

constrained optimization approach for reconstructing the material properties

of a flexural member or of complete frames. The proposed approach yields

the spatial variability of a target property, leading to a better quantitative

estimate, without requiring a priori knowledge of the undamaged state. It is

equally effective in recovering smooth as well as sharply varying profiles, albeit

computationally more expensive than the modal parameters-based algorithms

discussed earlier.

The inversion process is inspired by similar developments in geophysi-

cal exploration, where full waveform approaches are increasingly favored. The

inversion process is driven by the misfit between measured and computed re-

sponses to a known excitation (in the time-domain). Thus, the experimental

setup is no different than what is currently used by other methods. The

measured response is the measured time-history of the deflections at a few

sensor locations in the damaged member, and contains information about the

spatial variability of the material property we seek to determine. Reconstruc-

tion of the property’s spatial variability will reveal any structural flaws, if
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present; it will also allow for the complete imaging of the probed structure.

The computed response refers to the time-history of the component’s deflec-

tions at the same locations as the recordings, calculated using an estimate of

the sought property. The actual spatial distribution of the property is the one

that makes the misfit identically zero. This condition is too strong to satisfy in

practice, and hence we try to minimize the misfit functional, while satisfying

the underlying physics, using the systematic framework of PDE-constrained

optimization. Fulfillment of the pertinent physics is achieved by augmenting

the misfit functional by the weak imposition of the governing PDEs, bound-

ary and initial conditions, as well as of any continuity conditions (Lions [11]).

For a convex functional, minimization corresponds to satisfying the first-order

optimality conditions; convexity here is not ensured, and thus, instead, we

seek to satisfy stationarity of the augmented functional. These conditions

lead to time-dependent state and adjoint problems, and a time-independent

control problem, which upon discretization lead to a classic KKT (Karush-

Kuhn-Tucker) system. Numerical solutions of the state and adjoint problems

are obtained using finite elements. We adopt a reduced-space scheme to solve

the KKT system, and iteratively update the material properties until conver-

gence. In general, uniqueness (or even existence) of the solution to the inverse

problem cannot be guaranteed; to tackle solution multiplicity we use regular-

ization schemes such as Tikhonov (TN) and Total Variation (TV). Normally,

both these methods require a user-selected regularization factor as input: here,

we use a regularization factor continuation scheme, which automatically selects
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the factor based on the current state of variables in the control problem.

This thesis is organized as follows: chapter 2 discusses the forward

problem, i.e. the governing PDEs and boundary conditions as per the Tim-

oshenko beam theory for modeling a 1D flexural member. In chapter 3, we

present preliminaries of the inverse problem and PDE-constrained optimiza-

tion approach. This includes the Lagrangian functional, first order optimality

conditions - state, adjoint and control problems along with regularization tech-

niques. Chapter 4 describes the finite element formulation of the state and

adjoint problems along with numerical integration schemes used for their so-

lution. It also contains the general algorithm for inversion process. In chapter

5, we report the results of our numerical experiments on a simply supported

beam. We choose Young’s modulus to be the inversion variable. Chapter 6

presents extensions of the inversion procedure for material profile reconstruc-

tion in frames and algorithmic modifications to accommodate the moment of

inertia as the inversion variable. Conclusions are summarized in chapter 7.
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Chapter 2

The forward problem

To fix ideas, we focus on the problem of undamped flexural vibrations

of a simply-supported beam. In order to be able to capture localized damage,

it is, in general, necessary that high frequencies (or high wavenumbers) be used

for probing. This, in turn, necessitates the adoption of Timoshenko beams for

modeling the flexural elements (Timoshenko [21, 22]), since the usual Euler-

Bernoulli theory leads to a non-physical dispersion relation, according to which

high-frequency components travel almost instantaneously (Graff [6]). By con-

trast, the inclusion of rotary inertia and shear effects, per the Timoshenko

assumptions, allows for a fairly accurate dispersion curve (when compared to

three-dimensional solutions), and a physically faithful representation of flexu-

ral waves in the beam (Figure 2.1). Denoting the transverse displacement by

w(x), the slope due to bending by ψ(x), and the contribution to the total slope

due to shear deformation by γ(x), the total bending slope, per the Timoshenko

model, can be expressed as:

dw(x)

dx
= ψ(x) + γ(x). (2.1)

Then, the problem of the undamped vibrations of a Timoshenko beam,
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A

A’

A

A’

L

q(x,t)w

x

dw
dxγ

ψ

Figure 2.1: Schematic of Timoshenko beam: initially plane cross-section AA’
remains plane post-deformation with shear effects taken into account

or forward problem, can be stated as: find w(x, t) and ψ(x, t), such that:

∂

∂x

{

GAKs

(

∂w

∂x
− ψ

)}

− ρA
∂2w

∂t2
= −q, (2.2)

GAKs

(

∂w

∂x
− ψ

)

+
∂

∂x

(

EI
∂ψ

∂x

)

− ρI
∂2ψ

∂t2
= 0, (2.3)

where x denotes position, with x ∈ (0, L), and t denotes time, with t ∈ (0, T ]

(T is the total observation time). E ≡ E(x) is Young’s modulus, G ≡ G(x)

is the shear modulus, ρ ≡ ρ(x) is the mass density, and A ≡ A(x), I ≡ I(x)

denote the cross-sectional area and moment of inertia, respectively. Ks denotes

the Timoshenko shear factor, which depends on the cross-sectional geometry,

and q ≡ q(x, t) is the applied excitation. Either E or G can be eliminated from

the above equations using G = E
2(1+ν)

, where ν is Poisson’s ratio. Applicable

boundary conditions can be chosen from Table 2.1 below.
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Support Condition Mathematical Representation

Roller w = 0, EI ∂ψ
∂x

= 0

Hinge w = 0, EI ∂ψ
∂x

= 0

Fixed w = 0, ψ = 0

Table 2.1: Boundary conditions for Timoshenko beam (Huang [7])

Thus, for a simply supported beam, initially at rest, the following

boundary and initial conditions apply:

Boundary conditions:

w(0, t) = 0 , w(L, t) = 0, (2.4)
(

EI
∂ψ

∂x

)

x=0

= 0 ,

(

EI
∂ψ

∂x

)

x=L

= 0. (2.5)

Initial conditions:

w(x, 0) = 0, ψ(x, 0) = 0, (2.6)

∂w

∂t
(x, 0) = 0,

∂ψ

∂t
(x, 0) = 0. (2.7)

Equations (2.2) through (2.7) completely define the initial boundary

value problem (IBVP) or the forward problem.
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Chapter 3

The inverse problem

3.1 Objective functional

Without loss of generality, we select the Young’s modulus E(x) as the

inversion variable, whose spatial distribution we seek to determine; in chapter

6 we discuss other possible choices. We seek to minimize the misfit functional

J, in the least-squares sense, between computed and measured deflections, sub-

ject to the physics implied by the forward problem. To alleviate the inherent

solution multiplicity we also augment the misfit J by a regularization term

R(E) to arrive at an objective functional F. Thus, we seek to minimize:

F = J+ R(E)

=
1

2

N
∑

i=1

∫ T

0

[wm(xi, t)− w(xi, t)]
2 dt+ R(E), (3.1)

subject to (2.2)-(2.7). In equation (3.1), xi denotes the location of the i -th

sensor, and N denotes the total number of sensors used. wm(x, t) and w(x, t)

represent the measured and computed responses, respectively, with w(x, t)

corresponding to an assumed profile E(x).

12



3.1.1 Regularization

The misfit functional contains incomplete information about the dy-

namic response of the probed component(s), due to the fact that, in practice,

only a few sensors are used to measure the response. Thus, the inverse prob-

lem that is based solely on the misfit functional suffers from non-uniqueness

of the solutions for E(x). The difficulty is commonly alleviated by enforcing

an additional constraint in the form of regularization. Two types of regular-

ization schemes are used in this work, namely, Tikhonov (TN) regularization,

and Total Variation (TV) regularization.

Tikhonov regularization is one of the most frequently used regulariza-

tion schemes (Tikhonov [20]). It is defined as the L2-norm of the gradient of

the inversion variable; accordingly, and for the one-dimensional Timoshenko

problem of interest here, the last term in (3.1) assumes the form:

RTN(E) =
RE

2

∫ L

0

(

dE

dx

)2

dx, (3.2)

where RE is the regularization factor –a user-defined scalar constant that

weighs the penalty imposed by the regularization term. In general, TN reg-

ularization tends to smoothen sharp variations of the inversion variable, as

betrayed by the derivative term in (3.2). By contrast, Total Variation regu-

larization, in general, allows for easier recovery of discontinuities, due to the

presence of a semi-norm in its definition, as in:

RTV (E) = RE

∫ L

0

[(

dE

dx

)2

+ ǫ

]
1

2

dx, (3.3)
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where ǫ is a small positive constant (e.g. 10−6 for applications). We remark that

the choice of the regularization factor is critical for the performance of either

the TN or the TV scheme. In chapter 4, we discuss a regularization factor

continuation scheme that aids in the convergence of the inversion process.

3.2 PDE-constrained optimization

3.2.1 Lagrangian functional

PDE-constrained optimization approach is to be employed for mini-

mization of the objective functional in (3.1), subject to (2.2) to (2.7). To this

end, the inverse problem is reformulated as an unconstrained optimization

problem by weakly imposing the underlying constraints (2.2) to (2.7) on the

objective functional F in (3.1) to obtain the Lagrangian functional - L.

L(w,ψ, λw, λψ, λB1, λB2λI1, λI2, E)

=
1

2

N
∑

i=1

∫ T

0

[wm(xi, t)− w(xi, t)]
2 dt+ R(E)

+

∫ T

0

∫ L

0

λw

[

∂

∂x

{

GAKs

(

∂w

∂x
− ψ

)}

− ρA
∂2w

∂t2
+ q

]

dx dt

+

∫ T

0

∫ L

0

λψ

[

GAKs

(

∂w

∂x
− ψ

)

+
∂

∂x

(

EI
∂ψ

∂x

)

− ρI
∂2ψ

∂t2

]

dx dt

+

∫ T

0

λB1

[

EI
∂ψ

∂x

]

x=0

+ λB2

[

EI
∂ψ

∂x

]

x=L

dt

+

∫ L

0

λI1

[

∂w

∂t

]

t=0

+ λI2

[

∂ψ

∂t

]

t=0

dx, (3.4)

where only Neumann-type conditions have been imposed (Dirichlet conditions

14



will be explicitly enforced), and λw, λψ, λB1, λB2, λI1, λI2 denote the Lagrange

multipliers (or adjoint variables). We seek a stationary point for L, by requir-

ing the satisfaction of the first-order optimality conditions. Specifically, we

require that the first variation of L with respect to the state variables (w,ψ),

the Lagrange multipliers (λ), and the control variable (E), vanish. This, in

turn, gives rise to state, adjoint, and control problems, as discussed in the

following sections.

3.2.2 The first optimality condition

We require the vanishing of the first variation of the Lagrangian func-

tional with respect to the Lagrange multipliers (or adjoint variables):

δλwL = 0, δλψL = 0, δλB1
L = 0,

δλB2
L = 0, δλI1L = 0, δλI2L = 0. (3.5)

It is easily verifiable that equations (3.5) yield the state problem, which is

identical to the forward problem (2.2)-(2.7).

State Problem:

∂

∂x

{

GAKs

(

∂w

∂x
− ψ

)}

− ρA
∂2w

∂t2
= −q, (3.6)

GAKs

(

∂w

∂x
− ψ

)

+
∂

∂x

(

EI
∂ψ

∂x

)

− ρI
∂2ψ

∂t2
= 0, (3.7)

for x ∈ (0, L), t ∈ (0, T ].
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Boundary conditions:

w(0, t) = 0, (3.8)

w(L, t) = 0, (3.9)
(

EI
∂ψ

∂x

)

x=0

= 0, (3.10)

(

EI
∂ψ

∂x

)

x=L

= 0.

Initial conditions:

w(x, 0) = 0, (3.11)

ψ(x, 0) = 0, (3.12)

∂w

∂t
(x, 0) = 0, (3.13)

∂w

∂t
(x, 0) = 0. (3.14)

3.2.3 The second optimality condition

Vanishing of the first variation of the Lagrangian with respect to the

state variables - (w,ψ), i.e.:

δwL = 0, (3.15)

δψL = 0. (3.16)
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give rise to the adjoint problem. We note that displacement boundary condi-

tions and initial conditions imply:

δw(0, t) = 0, (3.17)

δw(L, t) = 0, (3.18)

δψ(x, 0) = 0, (3.19)

δw(x, 0) = 0, (3.20)

∂δψ(x, 0)

∂t
= 0, (3.21)

∂δw(x, 0)

∂t
= 0. (3.22)

δwL =
N
∑

i=1

∫ T

0

∫ L

0

−(wm − w)δ(x− xi)δw dx dt

+

∫ T

0

∫ L

0

λw

[

∂

∂x

{

GAKs

(

∂δw

∂x

)}

− ρA
∂2δw

∂t2

]

dx dt

+

∫ T

0

∫ L

0

λψ

[

GAKs

(

∂δw

∂x

)]

dx dt. (3.23)

We simplify the above expression term-by-term. Let,

α =

∫ T

0

∫ L

0

λw
∂

∂x

{

GAKs

(

∂δw

∂x

)}

dx dt

=

∫ T

0

[

λwGAKs

∂δw

∂x

]L

0

−

[
∫ L

0

GAKs

∂δw

∂x

∂λw
∂x

dx

]

dt

=

∫ T

0

[

λwGAKs

∂δw

∂x

]L

0

dt

−

∫ T

0

[

GAKs

∂λw
∂x

δw

]L

0

−

[
∫ L

0

δw
∂

∂x

(

GAKs

∂λw
∂x

)

dx

]

dt.
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Using equation (3.17) and (3.18), we get

δw(0, t) = 0,

δw(L, t) = 0.

∴ α =

∫ T

0

[

λwGAKs

∂δw

∂x

]L

0

+

∫ L

0

δw
∂

∂x

(

GAKs

∂λw
∂x

)

dx dt.

Let,

β = −

∫ T

0

∫ L

0

λwρA
∂2δw

∂t2
dx dt

= −

∫ L

0

[

λwρA
∂δw

∂t

]T

0

−

[
∫ T

0

ρA
∂δw

∂t

∂λw
∂t

dt

]

dx.

λw(x, T ) = 0. (3.24)

From equation (3.22),

∂δw

∂t
(x, 0) = 0. (3.25)

∴ β =

∫ L

0

∫ T

0

ρA
∂δw

∂t

∂λw
∂t

dt dx

=

∫ t

0

[

ρA
∂λw
∂t

δw

]T

0

−

[
∫ T

0

ρAδw
∂2λw
∂t2

dt

]

dx.

∂λw
∂t

(x, T ) = 0, (3.26)

δw(x, 0) = 0. (3.27)
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∴ β = −

∫ L

0

∫ T

0

ρAδw
∂2λw
∂t2

dt dx.

Let,

Γ =

∫ T

0

∫ L

0

λψ

{

GAKs

(

∂δw

∂x

)}

dx dt

=

∫ T

0

[

λψGAKsδw

]L

0

−

[
∫ L

0

δw
∂

∂x

(

GAKsλψ

)

dx

]

dt.

From equations (3.17) and (3.18), we have

δw(0, t) = 0,

δw(L, t) = 0.

∴ Γ = −

∫ T

0

∫ L

0

δw
∂

∂x

(

GAKsλψ

)

dx dt.

Substituting values of α, β,Γ in equation(3.23), we get

δwL = 0

=

∫ T

0

∫ L

0

[

∂

∂x

[

GAKs

(

∂λw
∂x
− λψ

)]

− ρA
∂2λw
∂t2

−
N
∑

i=1

(wm − w)δ(x− xi)

]

δw(x, t) dx dt

+

∫ T

0

[

λw(L, t)G(L)A(L)Ks(L)

][

∂δw

∂x

]

x=L

dt

−

∫ T

0

[

λw(0, t)G(0)A(0)Ks(0)

][

∂δw

∂x

]

x=0

dt. (3.28)
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The function δw(x, t) for x ∈ (0, L) is arbitrary and values of ∂δw
∂x

at x = 0 and

x = L are arbitrary. Hence, their multipliers in equation (3.28) are identically

zero. Thus, δwL = 0 implies that,

∂

∂x

[

GAKs

(

∂λw
∂x
− λψ

)]

− ρA
∂2λw
∂t2

=
N
∑

i=1

∫ L

0

(wmi − wi) dt, (3.29)

λw(0, t) = 0, (3.30)

λw(L, t) = 0. (3.31)

δψL =

∫ T

0

∫ L

0

−λw
∂

∂x

(

GAKsδψ

)

dx dt

+

∫ T

0

∫ L

0

λψ

[

∂

∂x

{

EI

(

∂δψ

∂x

)}

−GAKsδψ − ρI
∂2δψ

∂t2

]

dx dt

+

∫ T

0

λB1

[

EI
∂δψ

∂x

]

x=0

+ λB2

[

EI
∂δψ

∂x

]

x=L

dt. (3.32)

We simplify the above expression term-by-term.

Let,

ǫ = −

∫ T

0

∫ L

0

λw
∂

∂x

{

GAKsδψ

}

dx dt

= −

∫ T

0

[

λwGAKsδψ

]L

0

−

[
∫ L

0

GAKsδψ
∂λw
∂x

dx

]

dt.

From equations (3.30) and (3.31), we have

λw(0, t) = 0,

λw(L, t) = 0.
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∴ ǫ =

∫ T

0

∫ L

0

δψGAKs

∂λw
∂x

dx dt.

Let,

η =

∫ T

0

∫ L

0

λψ
∂

∂x

{

EI

(

∂δψ

∂x

)}

dx dt

=

∫ T

0

[

λψEI
∂δψ

∂x

]L

0

−

[
∫ L

0

EI
∂δψ

∂x

∂λψ
∂x

dx

]

dt

= −

∫ T

0

[

EI
∂λψ
∂x

δψ

]L

0

−

[
∫ L

0

δψ
∂

∂x

(

EI
∂λψ
∂x

)

dx

]

dt

+

∫ T

0

[

λψEI
∂δψ

∂x

]L

0

dt

=

∫ T

0

∫ L

0

δψ
∂

∂x

(

EI
∂λψ
∂x

)

dx dt

+

∫ T

0

[

λψEI
∂δψ

∂x

]L

0

−

[

EI
∂λψ
∂x

δψ

]L

0

dt.

Let,

ζ = −

∫ T

0

∫ L

0

λψρI
∂2δψ

∂t2
dx dt

= −

∫ L

0

[

λψρI
∂δψ

∂t

]T

0

−

[
∫ T

0

ρI
∂δψ

∂t

∂λψ
∂t

dt

]

dx.

λψ(x, T ) = 0. (3.33)

From equation (3.21), we get

∂δψ(x, 0)

∂t
= 0. (3.34)

∴ ζ =

∫ L

0

∫ T

0

ρI
∂δψ

∂t

∂λψ
∂t

dt dx

=

∫ L

0

[

ρI
∂λψ
∂t

δψ

]T

0

−

[
∫ T

0

ρIδψ
∂2λψ
∂t2

dt

]

dx.
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∂λψ
∂t

(x, T ) = 0. (3.35)

From equation (3.19), we get

δψ(x, 0) = 0. (3.36)

∴ ζ = −

∫ L

0

∫ T

0

ρIδψ
∂2λψ
∂t2

dt dx.

Substituting values of ǫ, η, ζ in equation(3.32), we get

δψL = 0

=

∫ T

0

∫ L

0

[

∂

∂x

[

EI
∂λψ
∂x

]

+GAKs

(

∂λw
∂x
− λψ

)

−ρI
∂2λψ
∂t2

]

δψ(x, t) dx dt

+

∫ T

0

[

λψEI
∂δψ

∂x

]L

0

−

[

EI
∂λψ
∂x

δψ

]L

0

dt

+

∫ T

0

λB1

[

EI
∂δψ

∂x

]

x=0

+ λB2

[

EI
∂δψ

∂x

]

x=L

dt.
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Thus,

δψL = 0

=

∫ T

0

∫ L

0

[

∂

∂x

[

EI
∂λψ
∂x

]

+GAKs

(

∂λw
∂x
− λψ

)

−ρI
∂2λψ
∂t2

]

δψ(x, t) dx dt

−

∫ T

0

[

EI
∂λψ
∂x

]

x=L

δψ(L, t)−

[

EI
∂λψ
∂x

]

x=0

δψ(0, t) dt

+

∫ T

0

[

E(L)I(L)λψ(L, t) + λB2E(L)I(L)

][

∂δψ

∂x

]

x=L

−

[

E(0)I(0)λψ(0, t)− λB1E(0)I(0)

][

∂δψ

∂x

]

x=0

dt. (3.37)

The following quantities are arbitrary:

δψ(x, t) for x ∈ (0, L),

δψ(L, t),

δψ(0, t),
[

∂δψ

∂x

]

x=L

,

[

∂δψ

∂x

]

x=0

.

There results:

GAKs

(

∂λw
∂x
− λψ

)

+
∂

∂x

[

EI
∂λψ
∂x

]

− ρI
∂2λψ
∂t2

= 0, (3.38)

(

EI
∂λψ
∂x

)

x=0

= 0, (3.39)

(

EI
∂λψ
∂x

)

x=L

= 0, (3.40)
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λB1(t) = λψ(0, t), (3.41)

λB2(t) = −λψ(L, t). (3.42)

Based on equations (3.29) to (3.31) and (3.38) to (3.42) above, the

adjoint problem can be summarized as follows: Adjoint Problem

∂

∂x

[

GAKs

(

∂λw
∂x
− λψ

)]

− ρA
∂2λw
∂t2

=
N
∑

i=1

[wm(xi, t)− w(xi, t)], (3.43)

GAKs

(

∂λw
∂x
− λψ

)

+
∂

∂x

[

EI
∂λψ
∂x

]

− ρI
∂2λψ
∂t2

= 0, (3.44)

for x ∈ (0, L), and t ∈ [0, T ).

Boundary Conditions:

λw(0, t) = 0, (3.45)

λw(L, t) = 0, (3.46)
(

EI
∂λψ
∂x

)

x=0

= 0, (3.47)

(

EI
∂λψ
∂x

)

x=L

= 0. (3.48)

Final Conditions:

λw(x, T ) = 0, (3.49)

λψ(x, T ) = 0, (3.50)

∂λw
∂t

(x, T ) = 0, (3.51)

∂λψ
∂t

(x, T ) = 0. (3.52)
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We remark that, as is evident by (2.2)-(2.3) and (3.43)-(3.44), the state and

adjoint problems are governed by identical operators, which greatly facilitates

the numerical implementation and alleviates the computational cost. Notice

further that, whereas the state problem is driven by the applied excitation, the

adjoint problem is driven by the misfit between the measured and computed

responses (right-hand-side of (3.43)). Moreover, the state problem is an initial

value problem, whereas the adjoint problem is a final value problem.

3.2.4 The third optimality condition:

Finally, we demand that the first variation of the Lagrangian - L with

respect to the control variable - E should be equal to zero, or:

δEL = 0, (3.53)

which gives rise to the control problem. The form of the control problem

depends on the type of regularization used. We derive the control equation for

TN regularization below.

δEL = RE

∫ L

0

(

dE

dx

)(

dδE

dx

)

dx

+

∫ T

0

∫ L

0

λw
∂

∂x

[

AKs

2(1 + ν)
δE

(

∂w

∂x
− ψ

)]

dx dt

+

∫ T

0

∫ L

0

λψ

[

∂

∂x

{

IδE

(

∂ψ

∂x

)}

+
AKs

2(1 + ν)
δE

(

∂w

∂x
− ψ

)]

dx dt

+

∫ T

0

λB1

[

IδE
∂ψ

∂x

]

x=0

+ λB2

[

IδE
∂ψ

∂x

]

x=L

dt.
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Let,

ξ = RE

∫ L

0

(

dE

dx

)(

dδE

dx

)

dx

= RE

[

dE

dx
δE

]L

0

−R

∫ L

0

d2E

dx2
δE dx

= −RE

∫ L

0

[

dE

dx
δ(x− 0)−

dE

dx
δ(x− L) +

d2E

dx2

]

δE dx.

Let,

χ =

∫ T

0

∫ L

0

λw
∂

∂x

[

AKs

2(1 + ν)
δE

(

∂w

∂x
− ψ

)]

dx dt

=

∫ T

0

[

λw
AKs

2(1 + ν)
δE

(

∂w

∂x
− ψ

)]L

0

dt

−

∫ T

0

∫ L

0

AKs

2(1 + ν)

∂λw
∂x

(

∂w

∂x
− ψ

)

δE dx dt

= −

∫ T

0

∫ L

0

AKs

2(1 + ν)

∂λw
∂x

(

∂w

∂x
− ψ

)

δE dx dt.

Let,

κ =

∫ T

0

∫ L

0

λψ
∂

∂x

{

IδE

(

∂ψ

∂x

)}

dx dt

=

∫ T

0

[

λψIδE
∂ψ

∂x

]L

0

−

[
∫ L

0

I
∂ψ

∂x

∂λψ
∂x

δE dx

]

dt

= −

∫ T

0

∫ L

0

I
∂ψ

∂x

∂λψ
∂x

δE dx dt.
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Collecting the final expressions for ξ, χ and κ, we get,

δEL = −RE

[

dE(0)

dx
δE(0)−

dE(L)

dx
δE(L)

]

−RE

∫ L

0

d2E

dx2
δE dx

−

∫ T

0

∫ L

0

[

AKs

2(1 + ν)

(

∂w

∂x
− ψ

)(

∂λw
∂x
− λψ

)

+I
∂ψ

∂x

∂λψ
∂x

]

δE dx dt

= 0.

Again, we use the arbitrariness of δE(0) and δE(L) to arrive at the

control equations for both TN and TV type regularizations, stated below.

Control Problem - TN scheme:

δEL = −

∫ L

0

{

RE

d2E

dx2

+

∫ T

0

[

AKs

2(1 + ν)

(

∂w

∂x
− ψ

)(

∂λw
∂x
− λψ

)

+I
∂ψ

∂x

∂λψ
∂x

]

dt

}

δE dx = 0, (3.54)

subject to
(

dE
dx

)

x=0
= 0 and

(

dE
dx

)

x=L
= 0.

Control Problem - TV scheme:

δEL = −

∫ L

0

{

REǫ
d2E

dx2

[(

dE

dx

)2

+ ǫ

]− 3

2

+

∫ T

0

[

AKs

2(1 + ν)

(

∂w

∂x
− ψ

)(

∂λw
∂x
− λψ

)

+I
∂ψ

∂x

∂λψ
∂x

]

dt

}

δE dx = 0, (3.55)

subject also to
(

dE
dx

)

x=0
= 0 and

(

dE
dx

)

x=L
= 0.
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We note that the control equations are time-independent. Stationarity of the

Lagrangian functional is achieved when a set of variables - {w(x, t), ψ(x, t),

λw(x, t), λψ(x, t), E(x)}, satisfying the state, adjoint, and control problems is

obtained. We discuss next the inversion scheme that leads to the reconstruc-

tion of E(x).
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Chapter 4

The inversion process

There are at least two schemes to resolve the triplet of the state, adjoint,

and control problems. In a full-space method, all three problems are solved

simultaneously, resulting in increased computational cost. In a reduced-space

method, the three problems are solved in sequence: firstly the time-dependent

state problem is solved to yield the state variables (deflections w(x, t), and

slopes ψ(x, t)) for an assumed distribution of Young’s modulus E(x). Then,

the time-dependent adjoint problem is solved driven by the misfit, to yield the

adjoint variables λw(x, t) and λψ(x, t). As will be discussed, standard finite

elements are used to resolve numerically both the state and adjoint problems.

Finally, the control equation is used as the reduced gradient in a gradient-

based scheme to provide updates for the inversion variable/material property.

The cycle is repeated, until convergence. The details are outlined below.

4.1 The state problem - semi-discrete form

Recall that the state problem is identical to the forward problem for a

vibrating Timoshenko beam. Following standard lines, we multiply the gov-

erning PDEs of the state problem (2.2) and (2.3) by test functions u(x) and
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v(x), respectively, and integrate over the domain (0, L); there results:

∫ L

0

u(x)
∂

∂x

{

GAKs

(

∂w

∂x
− ψ

)}

− u(x)ρA
∂2w

∂t2
dx

= −

∫ L

0

u(x)q(x, t) dx, (4.1)

∫ L

0

v(x)GAKs

(

∂w

∂x
− ψ

)

+ v(x)
∂

∂x

(

EI
∂ψ

∂x

)

−v(x)ρI
∂2ψ

∂t2
dx = 0. (4.2)

Thus,

[

uGAKs

(

∂w

∂x
− ψ

)]L

0

−

∫ L

0

GAKs

∂w

∂x

∂u

∂x
dx+

∫ L

0

GAKsψ
∂u

∂x
dx

−

∫ L

0

uρA
∂2w

∂t2
dx = −

∫ L

0

uq dx,

∫ L

0

vGAKs

∂w

∂x
− vGAKsψ dx+

[

vEI
∂ψ

∂x

]L

0

−

∫ L

0

EI
∂v

∂x

∂ψ

∂x
dx

−

∫ L

0

vρI
∂2ψ

∂t2
dx = 0.

We then use boundary conditions (3.8) - (3.11) to arrive at the following weak

forms.
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−

∫ L

0

GAKs

∂w

∂x

∂u

∂x
dx+

∫ L

0

GAKsψ
∂u

∂x
dx−

∫ L

0

uρA
∂2w

∂t2
dx

= −

∫ L

0

uq dx, (4.3)

∫ L

0

vGAKs

∂w

∂x
− vGAKsψ dx−

∫ L

0

EI
∂v

∂x

∂ψ

∂x
dx

−

∫ L

0

vρI
∂2ψ

∂t2
dx = 0. (4.4)

Next, the test u, v, and trial functions w,ψ are approximated by:

w(x, t) ≃ φ(x)TW(t), (4.5)

u(x) ≃ uTφ(x), (4.6)

ψ(x, t) ≃ g(x)TΨ(t), (4.7)

v(x) ≃ vTg(x), (4.8)

where W(t) and Ψ(t) are vectors of unknown nodal deflections and slopes,

respectively, and φ(x) and g(x) are vectors of shape functions. For the latter,

there are several choices proposed in the literature (Kapur [9];Thomas and

Abbas [19];Reddy [14]). Among those, we favor consistent choices, whereby

the order of the approximant for the deflections remains one order higher than

that of the slopes, to avoid spurious energy modes, or the need for under-

integration. To this end, we select standard Lagrange 4-noded cubic polyno-

mials to approximate w (and u), and Lagrange 3-noded quadratic polynomials

to approximate ψ (and v); we use linear interpolants h(x) for E(x) (Fig. 4.1).

Given these choices, the element mass and stiffness matrices are 7× 7.
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Nodal deflections − w(x,t) (cubic)

Nodal moduli − E(x) (linear)

ψ(x,t) (quadratic)Nodal slopes −

Figure 4.1: Nodes associated with the element interpolants for the nodal de-
flections w, nodal slopes ψ, and nodal Young’s moduli E

Introduction of (4.5)-(4.8) in the weak forms (4.3)-(4.4) yields the fol-

lowing semi-discrete system:

Mst

..

dst +Kstdst = Qst, (4.9)

where a dot denotes time-derivative of the subtended quantity, and,

Mst =

[

∫ L

0
ρAφφT dx 0

0
∫ L

0
ρIggT dx

]

, (4.10)

Kst =

[

∫ L

0
GAKsφ

′φ′T dx
∫ L

0
GAKsφ

′gT dx
∫ L

0
GAKsgφ

′T dx
∫ L

0
(GAKsgg

T + EIg′g′T ) dx

]

, (4.11)

dst =

[

W

Ψ

]

, (4.12)

Qst =

[

−
∫ L

0
φq dx
0

]

. (4.13)
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In equations (4.9) to (4.13), Mst and Kst represent the mass and stiff-

ness matrices respectively. Qst is the load vector. dst is the vector of unknown

nodal values of w and ψ.

4.2 The adjoint problem - semi-discrete form

As remarked in section 3.2.3, the governing operators for the state and

adjoint problems are identical. Thus, the finite element model for the adjoint

problem involves similar mathematical considerations as those for the state

problem. λw and λψ are treated as independent variables and the same test

functions, u(x) and v(x), are used.

∫ L

0

u(x)
∂

∂x

{

GAKs

(

∂λw
∂x
− λψ

)}

− u(x)ρA
∂2λw
∂t2

dx

= −

∫ L

0

u(x)θ(x, t) dx, (4.14)

∫ L

0

v(x)GAKs

(

∂λw
∂x
− λψ

)

+ v(x)
∂

∂x

(

EI
∂λψ
∂x

)

−v(x)ρI
∂2λψ
∂t2

dx = 0, (4.15)

where θ is the driver for the adjoint problem, defined as:

θ(x, t) =
N
∑

i=1

[wm(x, t)− w(x, t)]δ(x− xi).

We then use integration by parts and boundary conditions (3.45) - (3.48) to

get the following weak forms.
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−

∫ L

0

GAKs

∂λw
∂x

∂u

∂x
dx+

∫ L

0

GAKsλψ
∂u

∂x
dx−

∫ L

0

uρA
∂2λw
∂t2

dx

= −

∫ L

0

uθ(x, t) dx, (4.16)

∫ L

0

vGAKs

∂λw
∂x
− vGAKsλψ dx−

∫ L

0

EI
∂v

∂x

∂λψ
∂x

dx

−

∫ L

0

vρI
∂2λψ
∂t2

dx = 0. (4.17)

Again, we select Lagrange cubic polynomials to approximate λw, and Lagrange

quadratic polynomials to approximate λψ. The following approximations for

trial and test functions - {λw(x, t), u(x), λψ(x, t), v(x)} are obtained:

λw(x, t) ≃ φ(x)Tλw(t), (4.18)

u(x) ≃ uTφ(x), (4.19)

λψ(x, t) ≃ g(x)Tλψ(t), (4.20)

v(x) ≃ vTg(x). (4.21)

Introduction of (4.18) - (4.21) in the weak forms (4.16), (4.17) yields

the following semi-discrete system:

Madj

..

dadj +Kadjdadj = Qadj, (4.22)

where a dot denotes time-derivative of the subtended quantity, and,
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Madj = Mst , Kadj = Kst, (4.23)

dadj =

[

λw
λψ

]

, (4.24)

Qadj =

[

−
∫ L

0
φθ dx
0

]

. (4.25)

Due to (4.23), the computational cost associated with matrix assembly

is reduced considerably, since the matrices need to be assembled only once

during each inversion iteration for both the state and adjoint problems. The

time integration procedure for the state and adjoint problems is, however,

slightly different, since the state problem is an initial value problem, whereas

the adjoint problem is a final value problem. We address these schemes next.

4.3 State and adjoint time integration

4.3.1 Time integration for the state problem

We use standard Newmark average acceleration schemes for both the

state and adjoint problems. Denoting with a superscript n the subtended

quantity’s value at the n-th time-step, the resulting scheme for the state prob-

lem can be summarized as:

Meff
st

..

d
n+1

st = Qeff
st , (4.26)

35



where,

Meff
st = Mst +

1

4
∆t2Kst, (4.27)

Qeff
st = Qn+1

st −Kstd
n
st −∆tKst

.

d
n

st −
1

4
∆t2Kst

..

d
n

st, (4.28)

and ∆t is the time-step. To initiate the process, we use silent initial conditions

and the following equation:

Mst

..

d
0

st= Q0
st −Kstd

0
st. (4.29)

Upon recovering of the accelerations
..

d
n+1

st ,the velocities and the dis-

placements can be obtained using:

.

d
n+1

st =
.

d
n

st +
1

2
∆t

[

..

d
n

st +
..

d
n+1

st

]

, (4.30)

dn+1
st = dnst +∆t

.

d
n

st +
1

4
∆t2

[

..

d
n

st +
..

d
n+1

st

]

. (4.31)

4.3.2 Time integration for the adjoint problem

By contrast to the state problem, the adjoint problem is initiated using

the final time conditions at t = T , to obtain the final time adjoint “accelera-

tions,” as:

Madj

..

d
T

adj= QT
adj −Kadjd

T
adj. (4.32)
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To resolve the accelerations at subsequent time-steps, we traverse the time-line

in the negative direction, and adjust the Newmark scheme accordingly:

Meff
adj

..

d
n−1

st = Qeff
st , (4.33)

where,

Meff
adj = Madj +

∆t2

4
Kadj = Meff

st , (4.34)

Qeff
adj = Qn−1

adj −Kadjd
n
adj +∆tKadj

.

d
n

adj

−
1

4
∆t2Kadj

..

d
n

adj . (4.35)

The values of
.

d
n−1

adj and d
n−1

adj can then be computed using:

.

d
n−1

adj =
.

d
n

adj −
1

2
∆t

[

..

d
n−1

adj +
..

d
n

adj

]

, (4.36)

dn−1
adj = dnadj −∆t

.

d
n

adj +
1

4
∆t2

[

..

d
n−1

adj +
..

d
n

adj

]

. (4.37)

4.4 Inversion parameter updates

The reconstruction of the distributed Young’s modulus E(x) begins

with an initial guess. Then, the state variables w(x, t), ψ(x, t) satisfying equa-

tions (3.6)-(3.14) are computed. Next, the adjoint variables λw(x, t), λψ(x, t),

satisfying equations (3.43) - (3.52) are obtained. We, then, seek fulfillment of

the control problem (3.54) or (3.55), using the values of the state and adjoint
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variables, as well as the current profile of the inversion variable E(x). The con-

trol problem is readily satisfied if the current profile of the inversion variable

is the true profile. This is not the case, in general, and an iterative procedure

is required to recover the profile: such a procedure can be readily devised by

noticing that the non-vanishing left-hand-side of the control equation is the re-

duced gradient of the Lagrangian functional (∇EL). Furthermore, the reduced

gradient is equal to the gradient of the objective functional (∇EF), since the

side constraints vanish on account of satisfaction of the state problem. Thus:

Reduced gradient - TN regularization

∇EL = −RE

d2E

dx2

−

∫ T

0

[

AKs

2(1 + ν)

(

∂w

∂x
− ψ

)(

∂λw
∂x
− λψ

)

+I
∂ψ

∂x

∂λψ
∂x

]

dt, (4.38)

subject to
(

dE
dx

)

x=0
= 0 and

(

dE
dx

)

x=L
= 0.

Reduced gradient - TV regularization

∇EL = −REǫ
d2E

dx2

[(

dE

dx

)2

+ ǫ

]− 3

2

−

∫ T

0

[

AKs

2(1 + ν)

(

∂w

∂x
− ψ

)(

∂λw
∂x
− λψ

)

+I
∂ψ

∂x

∂λψ
∂x

]

dt, (4.39)

subject also to
(

dE
dx

)

x=0
= 0 and

(

dE
dx

)

x=L
= 0.

From this point on, there are three options for handling the inversion variable

updates: one could treat (4.38) or (4.39) as search directions in a gradient-

38



based scheme, or seek to enforce the control problem (3.54) or (3.55) in a weak

sense, using the variation δE as the weight function. We discuss all three

schemes and highlight the relative merits; we focus first on the gradient-based

scheme using a conjugate-gradient method.

4.4.1 Gradient-based scheme for inversion variable updates

Let gk be the (discretized) reduced gradient (4.38) or (4.39) at the k-th

inversion iteration, i.e.,

gk = (∇EL)k. (4.40)

Moreover, let the vector E(k) denote the nodal values of the inversion variable

E at the k-th iteration. We compute the updated vector E(k+1) of the inversion

variable at the next iteration as:

E(k+1) = E(k) + αdk, (4.41)

where dk is the search direction, and α is the step length. The search direction

dk can be obtained as:

dk =

{

−gk if k = 0
−gk + gk·gk

gk−1·gk−1

dk−1 if k ≥ 1
(4.42)

Thus, with the exception of the first iteration, the search direction is updated

at every inversion iteration based on the reduced gradient of the previous itera-

tion. However, in practice, due to round-off errors that lead to the progressive
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contamination of the search direction, dk is reset every m iterations (we used

m = 10); thus, the scheme is modified to read:

dk =

{

−gk if mod(k,m) = 0
−gk + gk·gk

gk−1·gk−1

dk−1 otherwise
(4.43)

Once the update E(k+1) is obtained, we evaluate the misfit functional

J and compare it against a preset tolerance. If the misfit is less than the

tolerance, the inversion process is terminated, and E(k+1) is regarded as the

stationary solution. Otherwise, the outlined process is repeated. Lastly, to

determine appropriate values for the step length α in (4.41), an inexact line

search with backtracking is employed, subject to the Armijo condition. The

condition requires that α produce a sufficient decrease in the misfit functional,

that is:

J(E(k) + αdk) ≤ J(E(k)) + µαgk · dk, (4.44)

for which we used µ = 10−12. In order to obtain an α satisfying (4.44), the

backtracking approach is utilized (Nocedal and Wright [12]). The process is

initialized with a suitable step length α = αo. Then, the step length α is

reduced by letting α ← ρα for ρ < 1 until the Armijo condition is satisfied

(ρ = 0.5 was used throughout).The entire inversion process is summarized in

Table 4.1.

Remarks

• We note that the reduced gradients (4.38) or (4.39) require that the first

derivatives of the inversion variable vanish at domain ends ((dE/dx) = 0
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Algorithm 1 Inversion algorithm using a reduced space method

1: Choose α0, ρ, µandRE; Set α = α0

2: Set k = 0 and convergence tolerance tol

3: Set initial guess of the inversion variable ck
4: Set J = tol + 1
5: while (J > tol) do
6: Solve the state problem (3.6),(3.7), (3.8) - (3.14) to get w and ψ
7: Solve the adjoint problem (3.43),(3.44), (3.45) - (3.52) to get λw

and λψ
8: Calculate the discrete form of reduced gradient gk = (∇EL)k
9: Compute the search direction dk using (4.43)
10: while [F(ck + αdk) ≤ F(ck) + µαgk · dk] do
11: α← ρα
12: end while

13: Update the material property vector by ck+1 = ck + αdk
14: k = k + 1
15: end while

Table 4.1: Inversion algorithm (Kang and Kallivokas [8])
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at x = 0, L). We explicitly impose these requirements by forcing a

constant value of E over the extreme elements of the domain: this action

realizes, in a finite-difference sense, the vanishing of the derivatives.

• We also remark that the direct use of (4.38) or (4.39) requires the com-

putation of the second spatial derivative of the inversion variable E at

element ends. Since E is approximated using, in general, C0 interpolants

(linear herein), its second derivative is a Dirac function at nodal lo-

cations. We use a central finite-difference scheme to approximate the

second derivative, effectively smoothening numerically a Dirac function.

Though the finite difference approximation is inconsistent with the un-

derlying assumptions, we have not observed an impact on the conver-

gence rate, or the quality of the results. Alternatively, one could use the

scheme we describe next, which avoids the explicit computation of the

second derivatives, while also avoiding the need for the explicit imposi-

tion of the vanishing of the first derivatives at the domain ends.

4.4.2 Weak-form-based scheme for inversion variable updates

We return to the control problem expression (3.54) (or (3.55)), and use

δE as a weight function, approximated by:

δE = zTh(x), (4.45)

where zT are arbitrary nodal quantities, and h(x) is the vector of linear ap-

proximants (recall E(x) is similarly approximated by h(x)). After integration
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by parts, there results:

∫ L

0

dh(x)

dx

dh(x)T

dx
dx E−

1

RE

∫ T

0

∫ L

0

h(x)

[

AKs

2(1 + ν)

(

∂w

∂x
− ψ

)(

∂λw
∂x
− λψ

)

+I
∂ψ

∂x

∂λψ
∂x

]

dx dt = 0, (4.46)

where E above is the vector of nodal E(x) values. Equation (4.46) can be

solved for the nodal values E of the inversion variable, without need to resort

to a gradient-based scheme. The right-hand-side is readily computable at each

inversion iteration, following the solution of the state and adjoint problems.

The left-hand-side of (4.46) requires the computation of a “stiffness-like” ma-

trix only once for all inversion iterations. The matrix, however, is singular with

rank deficiency of one, due to the pure Neumann character of the problem: we

recall that the only conditions imposed on E(x) were the two Neumann end

conditions
(

dE
dx

)

x=0
and

(

dE
dx

)

x=L
. Thus, to overcome the singularity, the value

of E must be a priori fixed at one node of the discretization. This is, in effect,

the only disadvantage of this second scheme for computing material updates.

Alternatively, (4.46) too can be used as the reduced gradient, in its

weak form, to drive the gradient-based scheme. Of the three alternatives, the

results presented herein were obtained using the first scheme.
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4.5 Regularization factor continuation

The choice of the regularization factor is, overall, critical to the success-

ful recovery of the true material profile. Very small values of the regularization

factor will not alleviate solution multiplicity, while large values may hinder re-

construction of the target profile. Here, we use a continuation scheme, in which

the regularization factor for every inversion iteration is chosen based on values

of the variables in the control equation (Kang and Kallivokas [8]). Thus,

RE = 0.5
|∇EFm|

|∇EFr|
, (4.47)

where,

∇EFm =

∫ T

0

[

AKs

2(1 + ν)

(

∂w

∂x
− ψ

)(

∂λw
∂x
− λψ

)

+I
∂ψ

∂x

∂λψ
∂x

]

dt, (4.48)

∇EFr =
d2E

dx2
. (4.49)

The approach maintains a balance between the misfit part and the regulariza-

tion part of the control equation leading to an improved estimate of RE over

constant choices. Notice that in the initial part of the inversion, when the mis-

fit is large, the regularization factor chosen by using equation (4.47) will be

similarly large, and will thus assist in reducing the feasibility space of possible

solutions. Once the misfit reduces sufficiently, a smaller regularization factor
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will present the optimizer with more flexibility in attaining the true profile

(Kang and Kallivokas [8]).
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Chapter 5

Numerical results

We use the inversion methodology outlined in the previous chapters

to first reconstruct material profiles of single beams. Extensions to frames

are discussed in chapter 6. We discuss the reconstruction of smoothly-varying

profiles, which are typically easier to obtain using TN regularization, and the

reconstruction of sharply-varying profiles, typically indicative of abrupt mod-

ulus changes, for which TV regularization is better suited. We also report

on profiles characterized by localized damage extending over a fraction of the

total component length. We experiment with distributed loads, which in prac-

tice will be more difficult to generate for condition assessment purposes, but

report also quite satisfactory results with point loads, which are fairly easy to

generate on existing structures. In all of the reported results, the measured

responses have been generated synthetically, using a different discrete system

than the one we use for inversion purposes to avoid biasing the inversion pro-

cess.

We use a simply-supported beam to conduct the experiments, with

nominal values for the various beam parameters. Specifically, we used:
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L = 1.0, (5.1)

A(x) = 1.0, (5.2)

I(x) =
1.0

12.0
, (5.3)

ρ(x) = 1.0, (5.4)

Ks =
5

6
, (5.5)

q(x, t) = β(x)τ(t), (5.6)

where β(x) and τ(t) denote the spatial and temporal dependence of the applied

probing excitation q(x, t). We consider two cases for β, a uniform load -

β(x) = Ao, and a point load - β(x) = Aoδ(x − x0) applied at point x = x0.

Throughout all cases, a Gaussian time signal is used for τ(t):

τ(t) = exp

[

−(t−Bo)
2

Co

]

, (5.7)

where Ao, Bo, Co are user-defined parameters: the value of Co controls the

frequency content of the time signal. The signal parameters, component ge-

ometry, load and sensor locations, are all shown in the figures that follow.

To start the process, the beam is subjected to the excitation q(x, t)

and the time history of the deflections is measured at the N sensor locations.

Generally, 3 or 4 sensors are used per member. In the next step, the time his-

tories at the sensor locations are fed, via the misfit, as input to the inversion

algorithm outlined earlier. The Young’s modulus profile E(x) corresponding
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to the stationary point of the augmented Lagrangian is recovered as output.

Table 5.1 summarizes the data used for all the examples we report herein: as

could be seen from the table, we used approximately 12-20 points per wave-

length (using the smallest wavelength to drive the element size). For the cases

exhibiting localized damage we remark that structural flaws were detected us-

ing excitations with shortest wavelength ranging from a fraction (Fig. 6.6) to

about 4 wavelengths (Fig. 5.7) of the structural flaw’s width.

Example λ he ∆t T Iterations
Fig. 5.1 0.0855 0.0200 0.010 4 2752
Fig. 5.2 0.0684 0.0125 0.008 4 2454
Fig. 5.3 0.0855 0.0100 0.010 4 11466
Fig. 5.4 0.0513 0.0100 0.006 4.2 4646
Fig. 5.5 0.0684 0.0200 0.008 4 8772
Fig. 5.6 0.0205 0.0050 0.002 3.6 8275
Fig. 5.7 0.0513 0.0100 0.006 4.2 2991
Fig. 6.2 0.1710 0.0125 0.020 10 4247
Fig. 6.3 0.0855 0.0100 0.008 13.2 1344
Fig. 6.4 0.0205 0.0050 0.004 6.6 1410
Fig. 6.5 0.0789 0.0067 0.008 6 990

Table 5.1: Example characteristics: smallest wavelength λ, element size he,
time-step ∆t, total observation time T , number of iterations

Figures 5.1 and 5.2 show the results for smoothly varying profiles, which

were reconstructed using 4 sensors, and a uniform and point load, respectively.

Notice that in both cases the initial guess was a uniform profile that is not re-

lated to any prior undamaged component state. The recovered profiles match

the targets quite well. Sharp profiles are similarly well reconstructed, as evi-

denced by the results shown in figures 5.3 and 5.4 pertaining to an abrupt 50%
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change in the modulus over the central 20% portion of the beam, which could

represent a region experiencing diffuse cracking. Of similar quality are the

reconstructed results depicted in figures 5.5 and 5.6. The former pertains to a

staircase-type profile, while the latter depicts localized damage of different in-

tensity in two neighboring sections. Lastly, Fig. 5.7 depicts the reconstructed

profile obtained when there is 10% Gaussian noise infused in the synthetic

data. Despite the noise, the profile is still fairly well reconstructed.
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(c) Initial, target, and converged profile

Figure 5.1: Reconstruction of a smooth target profile for a simply-supported
beam: excitation, uniform load, sensor distribution, TN regularization
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(c) Initial, target, and converged profile

Figure 5.2: Reconstruction of a smooth target profile for a simply-supported
beam: excitation, point load location, sensor distribution, TN regularization
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Figure 5.3: Reconstruction of a sharp target profile for a simply-supported
beam: excitation, uniform load, sensor distribution, TV regularization
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Figure 5.4: Reconstruction of a sharp target profile for a simply-supported
beam: excitation, point load location, sensor distribution, TV regularization
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(c) Initial, target, and converged profile

Figure 5.5: Reconstruction of a multiply-sharp target profile for a simply-
supported beam: excitation, uniform load, sensor distribution, TV regulariza-
tion
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(c) Initial, target, and converged profile

Figure 5.6: Reconstruction of localized damage for a simply-supported beam:
excitation, point load location, sensor distribution, TV regularization
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(c) Initial, target, and converged profile

Figure 5.7: Reconstruction of a sharp target profile for a simply-supported
beam with 10% Gaussian noise in the data: excitation, point load location,
sensor distribution, TV regularization
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Chapter 6

Extensions

The outlined process could be generalized to accommodate damage de-

tection and profile reconstruction in frames. In addition, the inversion process

could be cast in terms of the second moment of inertia, instead of Young’s

modulus, if a geometric measure of damage is desired. Both extensions are

addressed below.

6.1 Material profile reconstruction for frames

L 2

L
1

2

1

Figure 6.1: Prototype portal frame

To fix ideas, we consider the modeling of the portal frame shown in
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Fig. 6.1. All members are considered axially rigid and modeled as Timoshenko

beams. The forward problem can be cast similarly to (2.2)-(2.3), stated now

for each i member (i = 1: column, i = 2: beam):

∂

∂xi

{

GiAiKsi

(

∂wi
∂xi
− ψi

)}

− ρiAi
∂2wi
∂t2

= −qi, (6.1)

GiAiKsi

(

∂wi
∂xi
− ψi

)

+
∂

∂xi

(

EiIi
∂ψi
∂xi

)

− ρiIi
∂2ψi
∂t2

= 0. (6.2)

Boundary conditions:

w1(0, t) = 0, (6.3)

w2(0, t) = 0, (6.4)

w2(L2, t) = 0, (6.5)

ψ1(0, t) = 0, (6.6)

G1A1Ks1

(

∂w1

∂x
(L1, t)− ψ1(L1, t)

)

= 0, (6.7)

E2I2
∂ψ2

∂x2
(L2, t) = 0, (6.8)

Continuity conditions:

ψ1(L1, t) = ψ2(0, t), (6.9)

E1I1
∂ψ1

∂x1
(L1, t) = E2I2

∂ψ2

∂x2
(0, t), (6.10)

Initial conditions:

wi(xi, 0) =
∂wi
∂t

(xi, 0) = 0, (6.11)

ψi(xi, 0) =
∂ψi
∂t

(xi, 0) = 0. (6.12)
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The frame-specific objective functional can be rewritten as:

F =
1

2

2
∑

i=1

[ N
∑

j=1

∫ T

0

(wmi − wij)
2 dt+ Ri(Ei)

]

(6.13)

subject to (6.1)-(6.12). After side-imposing on the objective functional the

Neumann-type conditions, among those in (6.3)-(6.12), the augmented La-

grangian becomes:

L =
2

∑

i=1

[

1

2

N
∑

j=1

∫ T

0

(wmi − wij)
2 dt+

∫ Li

0

Ri(Ei) dxi

+

∫ T

0

∫ Li

0

λiw

[

∂

∂xi

{

GiAiKsi

(

∂wi
∂xi
− ψi

)}

− ρiAi
∂2wi
∂t2

+ qi

]

dxi dt

+

∫ T

0

∫ Li

0

λiψ

[

GiAiKsi

(

∂wi
∂xi
− ψi

)

+
∂

∂xi

(

EiIi
∂ψi
∂xi

)

−ρiIi
∂2ψi
∂t2

]

dxi dt

+

∫ L

0

λi1
( .
wi

)

t=0
+ λi2

(
.

ψi
)

t=0
dx

+

∫ T

0

λ3

[

G1A1Ks1

(

∂w1

∂x
− ψ1

)]

x1=L1

+ λ4

[

E2I2
∂ψ2

∂x2

]

x2=L2

dt

+

∫ T

0

λ5

[

E1I1

(

∂ψ1

∂x1

)

x1=L1

− E2I2

(

∂ψ2

∂x2

)

x2=0

]

dt

]

(6.14)

The first-order optimality conditions for the Lagrangian (6.14) yield

state, adjoint, and control problems similar to the single-member problem

presented earlier. Specifically, the state and adjoint problems are each cast

for the entire frame, allowing through the interface conditions the coupling

of the motion of the column to the beam. The control problems, however,
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are uncoupled: each is identical to either of (3.54) or (3.55) when written for

either the beam or the column members. Figures 6.2 to 6.4 present profile

reconstruction results for a variety of profiles, mixing sharp and smooth pro-

files for the two-member frame, as well as localized damage sections for the

prototype frame of Fig. 6.1. As an example of the generalization of the con-

cepts to arbitrary-geometry frames, Fig. 6.5 depicts a two-story frame, where

the response has been sampled at 4 sensors locations per member (all sensor

locations are given in Table 6.1), revealing localized damage in the first-story

beam, and a non-uniform modulus profile in the second-story beam, while also

recovering the in-service material profile of the columns.

Sensor x y Sensor x y
Tag Tag
S1 0.0 0.2 S2 0.0 0.4
S3 0.0 0.6 S4 0.0 0.8
S5 0.0 0.1 S6 0.0 0.3
S7 0.0 0.6 S8 0.0 0.9
S9 0.1 2.0 S10 0.3 2.0
S11 0.5 2.0 S12 0.8 2.0
S13 1.0 0.1 S14 1.0 0.4
S15 1.0 0.7 S16 1.0 0.9
S17 1.0 0.2 S18 1.0 0.4
S19 1.0 0.7 S20 1.0 0.8
S21 0.1 1.0 S22 0.3 1.0
S23 0.5 1.0 S24 0.8 1.0

Table 6.1: Sensor locations for the frame shown in Fig. 6.5
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Figure 6.2: Reconstruction of a smooth target profile for a prototype portal
frame: excitation, point load location, sensor distribution, TN regularization
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Figure 6.3: Reconstruction of a sharp target profile for a prototype portal
frame: excitation, point load location, sensor distribution, TV regularization
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Figure 6.4: Reconstruction of localized damage for a prototype portal frame:
excitation, point load location, sensor distribution, TV regularization
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Figure 6.5: Time signal, geometry, load and sensor locations for material pro-
file reconstruction of a frame
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for column C3
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Figure 6.6: Reconstruction of material profile including localized damage for
the frame in Fig. 6.5 using TV regularization
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6.2 Inversion variables other than Young’s modulus

We remark that, if instead of the Young’s modulus there is interest

in reconstructing the distribution of the second moment of inertia I(x), as a

measure of cross-sectional damage, there will be no change to the first and

second optimality conditions, which will still yield the same state and adjoint

problems. However, the regularization term, and the control problems will be

impacted: accordingly, the control problems become:

TN regularization

δIL = −

∫ L

0

{

RI

d2I

dx2

−

∫ T

0

[

E
∂ψ

∂x

∂λψ
∂x

+ λψρ
∂2ψ

∂t2

]

dt

}

δI dx = 0, (6.15)

subject to
(

dI
dx

)

x=0
= 0 and

(

dI
dx

)

x=L
= 0.

TV regularization

δIL = −

∫ L

0

{

RIǫ
d2I

dx2

[(

dI

dx

)2

+ ǫ

]− 3

2

+

∫ T

0

[

E
∂ψ

∂x

∂λψ
∂x

+ λψρ
∂2ψ

∂t2

]

dt

}

δI dx = 0, (6.16)

subject also to
(

dI
dx

)

x=0
= 0 and

(

dI
dx

)

x=L
= 0.

The remainder of the inversion process for I(x) is the same as the one followed

for E(x).
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Chapter 7

Conclusions

We presented a systematic inversion methodology for reconstructing

the material profile in beams and frames of arbitrary complexity, using total

wavefields for both probing and inversion purposes. We modeled the one-

dimensional components using Timoshenko beam theory, where both shear

and rotary inertia effects are accounted for, in order to allow for a more accu-

rate representation of the underlying wave physics when compared to Euler-

Bernoulli assumptions.

The optimization problem was cast based on a misfit functional between

the measured response and the numerically computed response. Adherence to

the physics of the problem was ensured by forming an augmented Lagrangian

functional, that includes the misfit, a regularization term, as well as the side-

imposed governing PDEs, boundary, and initial conditions. We discussed the

numerical treatment of the ensuing state, adjoint, and control problems, in the

context of a reduced-space method. Moreover, Tikhonov and Total Variation

regularization schemes were used to alleviate the inherent ill-posedness of the

inverse medium problem.

We reported numerical results for single beams, and frames, involving
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either smooth or sharp material profiles, which in a few cases were also con-

sistent with localized damage. Invariably, even in the presence of noise, the

outlined procedure exhibited algorithmic robustness, using only a few sensors

per component. We note that the process is well-suited for localizing and

quantifying damage in frames without need for knowing the undamaged state

or any prior state of the structure. In this context, the presented methodology

offers a reasonable tool for condition assessment of existing structures.
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