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Abstract

Background: DNA methylation has been linked to many important biological phenomena. Researchers have
recently begun to sequence bisulfite treated DNA to determine its pattern of methylation. However, sequencing
reads from bisulfite-converted DNA can vary significantly from the reference genome because of incomplete bisulfite
conversion, genome variation, sequencing errors, and poor quality bases. Therefore, it is often difficult to align reads to
the correct locations in the reference genome. Furthermore, bisulfite sequencing experiments have the additional
complexity of having to estimate the DNA methylation levels within the sample.

Results: Here, we present a highly accurate probabilistic algorithm, which is an extension of the Genomic
Next-generation Universal MAPper to accommodate bisulfite sequencing data (GNUMAP-bs), that addresses the
computational problems associated with aligning bisulfite sequencing data to a reference genome. GNUMAP-bs
integrates uncertainty from read and mapping qualities to help resolve the difference between poor quality bases
and the ambiguity inherent in bisulfite conversion. We tested GNUMAP-bs and other commonly-used bisulfite
alignment methods using both simulated and real bisulfite reads and found that GNUMAP-bs and other dynamic
programming methods were more accurate than the more heuristic methods.

Conclusions: The GNUMAP-bs aligner is a highly accurate alignment approach for processing the data from bisulfite
sequencing experiments. The GNUMAP-bs algorithm is freely available for download at: http://dna.cs.byu.edu/
gnumap. The software runs on multiple threads and multiple processors to increase the alignment speed.
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Background

DNA methylation is a chemical process in which a
methyl group is added to the carbon-5 position of a
DNA cytosine. In most vertebrates, DNA methylation
typically occurs on the cytosine of a CpG dinucleotide
[1,2], although some specific examples of other types of
methylation have been shown to play roles in specific tis-
sues [3-6]. Since its discovery over 60 years ago, DNA
methylation has been linked to many important biologi-
cal phenomena such as the suppression of gene expression
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[7,8], imprinting [9], X chromosome inactivation [10], epi-
genetic reprogramming during mammalian development
[11], and cancer development [12]. Therefore, the study
of genome-wide methylation patterns is currently of great
interest to researchers, particularly in areas related to
the molecular mechanisms of development, cancer, and
chromatin dynamics.

When DNA is treated with sodium bisulfite, unmethy-
lated cytosine residues are converted to uracil, while 5-
methylcytosine residues are unaffected. Later in bisulfite
sequencing (BS-seq) experimental protocols, PCR ampli-
fication or sequencing converts the uracil residues to
thymines. The next step of finding the correct genomic
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location for a bisulfite-treated read (BSR) is a compli-
cated and difficult process. Although cytosine to thymine
changes are allowed for when mapping the BSRs to the
genomic sequence, methylated and unmethylated CpG
locations are often identified and, in some cases, it is
impossible to distinguish between a bisulfite (BS)-treated
thymine that originated from an unmethylated cytosine,
and a true thymine from a different genomic location or an
individual genomic variation at that location [13,14]. This
ambiguity is often magnified by the presence of sequenc-
ing errors or low-quality bases. As a result, sophisticated
computational strategies are required for aligning reads
from BS-seq experiments.

The first whole-genome methylation profiles were per-
formed on Arabidopsis thaliana. To map the resultant
BSRs, alignment algorithms based on a probabilistic for-
mulation and a suffix tree [15] as well as reference genome
conversion [16] were used. However, it is not computa-
tionally feasible to apply this approach to larger genomes
such as the human genome, or to experiments with the
current deeper sequencing depths. Later algorithms, such
as BSMAP [14], constructed seed tables of locations from
both the original reference sequence and the BS variants,
and then extends the seeds to form a possible mapping
location. This seed extension process can be somewhat
unreliable because the seeds must be exact and do not
take into account BS-treated variations. BS alignment
methods such as BS Seeker [17], Bismark [18], and BRAT-
BW [19] have been used to map BSRs. These methods
employ a Burrows-Wheeler transformation [20] for fast
(in)exact string matching and then combine the results
with either a pre-processing or post-processing script to
handle BSRs with three letters after converting all Cs
to T. The strength of these methods lie with reads with
fewer mismatches, but they offer very limited support
for aligning reads with insertions or deletions (indels).
These methods also have difficulty in aligning Ts in the
reads to Cs in the genome without also (incorrectly)
aligning for cysteines in the reads to thymidines in the
genome. More recently, the LAST alignment program
has been adapted to align BSRs [21]. LAST uses a seed
extension approach similar to the one used by NCBI
BLAST [22], but the speed and mapping accuracy are
increased by using variable-length seeds and base quality
information [23].

In this study, we present a highly accurate prob-
abilistic mapping algorithm, Genomic Next-generation
Universal MAPper for Bisulfite Sequencing (GNUMAP-
bs), for BSR alignment. GNUMAP-bs is an extension
of the Genomic Next-Generation Universal MAPper
(GNUMAP) [24] that can accommodate the alignment of
BSRs to a reference genome. GNUMAP-bs was developed
to achieve higher accuracy than other BS-seq approaches
by including base quality scores in the alignment pro-
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cess. In addition, the GNUMAP-bs probabilistic map-
ping approach allows for the unbiased estimation of DNA
methylation, especially when reads are aligned to multiple
genomic locations.

Results and discussion

We compared GNUMAP-bs with several commonly-used
BS alignment methods, namely BSMAP (v2.3) [14], Bis-
mark(v0.7.9) [18], LAST [21], and BRAT-BW [19]. We also
compared GNUMAP-bs with the unpublished proprietary
probabilistic aligner Novoalign (v2.07.09, http://www.
novocraft.com) because it uses a probabilistic approach
that is similar to the approach used in GNUMAP-bs. For
a fair comparison, we considered only common options
that were shared by all the alignment methods; other-
wise, we used the default values or slight modifications
of the defaults to achieve the best performance for each
method. For each aligner, we allowed up to three or four
base pair differences within 100-bp BSRs. For GNUMAP-
bs and Novoalign, this resulted in cutoff values of -a
0.90 and -t 75, respectively. Considering that repeated
genomic sequences often appear in mammalian genomes,
we allowed up to 20 multiple mapping locations for
each read. This approach to handling multiple alignments
has only a small impact on the sensitivity of the more
heuristic algorithms, but has moderate sensitivity gains in
more traditional approaches like GNUMAP-bs. The Bis-
mark software only reports up to two valid alignments.
The parameter values that were used for each alignment
method are given in Table 1.

We used two datasets to evaluate the performance of
each of the alignment methods. The first was a simulated
BSR dataset, which was carefully designed to mimic a typ-
ical human methylation experiment. The second was a
real human BS-seq dataset, which was compared with an
experimentally-derived human methylome profile.

Table 1 Parameters used in the two experiments for each
of the aligners tested

Mapper Parameters
GNUMAP-bs -m17-s1-T20-a0.90 (-a0.92) -b
Novoalign -k17-s2-r-A20-t75 (-t 90) -b2
BSMAP -n0-w 100-v3
Bismark -n2-150
Bismark-bt2 -N 1 -L 20 ~bowtie2 —min-score L,0,-0.6
LAST -Q1-j1-d120 -n20 -f1 | last-map-probs.py -s150 -m0.95
BRAT-BW default settings for single-end reads

Parameters in parentheses were used for the human BSR dataset. Up to 3 to 4
sequencing errors or mutations were allowed in a 100-bp long BSR. Because the
human genome contains many repeated genomic regions, 20 valid mapping
locations were allowed for a given read when the alignment method supported
this feature.
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Simulated bisulfite sequencing experiment

For the simulation study, we randomly assigned 20% of the
CGs in the whole human genome (NCBI build37/HG19)
to represent unmethylated cytosines (Cs) by changing
them to thymidines (Ts), thereby simulating complete BS
conversion. For the remaining 80% of the CGs, 75% was
randomly assigned to be fully methylated and, therefore
the Cs remained as Cs. The remaining 5% was assigned
to be methylated in proportions between 0.1 and 0.9. In
this dataset, we assumed that all non-CG sites remained
unmethylated, so these Cs were all changed to Ts for read
generation. We used the dwgsim (http://sourceforge.net/
projects/dnaa/files/dwgsim) simulation tool with param-
eters -e 0.001-0.008 -1 100 -y 0.05 -r 0.002 -R 0.2 -C 10,
to generate 100-bp BSRs with a 10? read depth across
the genome. This simulation produced a BS-seq dataset
that contained approximately 180 million (M) reads with a
sequencing error rate that ranged from 0.001 to 0.008 and
increased from the 5’ to 3’ ends, plus 5% randomly gener-
ated sequence, and a mutation rate of 0.002 (in which 0.2%
were indels).

We found that the mapping sensitivities of the proba-
bilistic aligners GNUMAP-bs (97.0%), Novoalign (96.3%),
and LAST (96.9%), were higher than the sensitivities of
BSMAP (93.9%) and Bismark (93.2%), as shown in Table 2.
The Bismark-Bowtie2 algorithm had the lowest false pos-
itive rate (0.1%), but at the cost of an approximately 7%
decrease in its sensitivity. Overall, the Bismark-Bowtie2

Table 2 Simulated bisulfite read experiment
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algorithm had 1.2 M fewer false positives than GNUMAP-
bs, but approximately 10 M fewer BSRs were aligned
correctly to the genome. The Bismark-Bowtie algorithm
performed better than Bismark-Bowtie2 in that it aligned
5 M more reads with only a slight increase in the number
of incorrectly aligned reads. The LAST algorithm aligned
nearly all the BSRs (99.2%) to the genome, but although
the proportion of correctly mapped reads was similar to
that of GNUMAP-bs, the error rate was much higher.
BRAT-BW was not included in this comparison because
the application software removed the original sequence
header/name which contained information pointing to
the correct alignment location of the BSRs.

Differences in sensitivities of these methods were much
more pronounced for BSRs that contained at least one
sequencing error or genome variant, and the GNUMAP-
bs sensitivity was clearly better than the sensitivities of the
other approaches (Table 2). We also evaluated how accu-
rately each aligner predicted the CG methylation levels
when the true methylation level ranged from 10% to 90%.
All the alignment methods tested performed well with
mean absolute errors less than 0.01 and with standard
deviations less than 0.07.

When the computational performances of each of the
methods were compared (Table 2), we observed that
GNUMAP-bs required the most RAM (44.8 GB) and
Bismark required the least (5.9 GB). Because some
of the software applications presented here support

Evaluation metric GNUMAP-bs Novoalign BSMAP Bismark Bismark-bt2 LAST
Overall mapping results:

Total reads aligned (%) 156.6M(97.8) 155.8M(97.4) 153.4M(95.9) 149.5M(93.4) 145.4M(90.8) 158.7M(99.2)
Correctly aligned (%) 155.2M(97.0) 154.2M(96.3) 150.2M(93.9) 149.2M(93.2) 145.2M(90.7) 155.1M(96.9)
Incorrectly aligned (%) 1.4M(0.9) 1.7M(1.1) 1.5M(1.0) 0.3M(0.2) 0.2M(0.1) 3.6M(2.3)
With > 1 sequence variant:

Total reads aligned (%) 69.0M(97.8) 66.0M(93.6) 65.3M(92.6) 63.6M(90.2) 59.6M(84.4) 70.3M((99.7)
Correctly aligned (%) 67.7M(96.0) 65.3M(92.6) 63.9M(90.1) 63.3M(89.8) 59.4M(84.1) 66.7M(94.6)
Incorrectly aligned (%) 1.3M(1.8) 0.7M(1.0) 1.4M(2.0) 0.3M(04) 0.2M(0.3) 3.5M(5.1)
Predicted methylation:

Ave. absolute estimation err. 0.11 0.69 0.22 0.1 0.10 -
Standard err. 0.056 0.066 0.067 0.064 0.062 -
Computational resource:

Total compute time (16 CPUs) 39h50m 29h25m 4h28m 46h 16 m 97h26m 58h20m
Peak memory usage (GB) 448 14.5 94 5.9 79 159
Reads per second per CPU 68 92 607 448 26 753

Simulation study of 160 million (M) simulated BSRs generated from the human genome reference sequence. The GNUMAP-bs algorithm was the most sensitive
aligner, especially for reads with > 1 sequence variant (sequencing errors or mutations). The Bismark algorithm had the smallest error rate with 1.2 M fewer
erroneously assigned reads than GNUMAP-bs, however GNUMAP-bs correctly aligned 6 to 10 M more reads. The BSMAP algorithm had the fastest total run time,
however its sensitivity was less than the sensitivity of the GNUMAP-bs algorithm. LAST mapped nearly all reads with a sensitivity that was comparable to that of
GNUMAP-bs, but the mapping error rate for LAST was much higher than it was for GNUMAP-bs.
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computation on multiple threads and some do not, we
presented two different measures of computational speed:
1) the total run time on a 16 CPU linux server and
2) the number of reads processed per CPU per second.
GNUMAP-bs required approximately 40 hours of total
compute time to process the 180 M BSRs, while BSMAP,
the fastest algorithm, was nearly nine times faster than
GNUMAP-bs. The LAST application does not support
parallel computing, so LAST had the longest total align-
ment time. However, the LAST algorithm aligned the
most reads per second per CPU (753), while Bismark-
Bowtie2 aligned the least (26).

Human BS-seq dataset

We also evaluated the performances of the alignment
methods using a BS-seq dataset generated from samples
from a healthy human donor collected at the Andrology
Laboratory at the University of Utah (Salt Lake City, UT,
USA). The BS-seq data were generated by coupling BS
conversion and the Illumina HiSeq2000 platform, which
generated 101-bp BSRs for analysis. We aligned 283.6 M
reads from three lanes of BS sequencing data containing
85 M to 100 M sequencing reads each, to the recent build
of the human genome (NCBI build37/HG19). The human
BSRs were processed for quality control as suggested pre-
viously [25]. Briefly, the quality control involved masking
low quality bases or trimming consecutive lowest quality
bases at the 3’ ends of the reads.

We used the same parameters on these data as were
used for the simulation experiment (Table 1) with two
exceptions: -a 0.92 for GNUMAP-bs and -t 90 for
Novoalign. The LAST algorithm again aligned the high-
est proportion (93.7%) of BSRs to the genome, followed
by 70.0% for GNUMAP-bs, 68.2% for Novoalign, 67.1% for
BSMAP, 67.0% for Bismark, 62.9% for Bismark-Bowtie2,
and only 50.3% for BRAT-BW.

We compared these mapping results with the Sanger-
based BS sequencing control data available from the
Human Epigenome Project (HEP) [26] by selecting the
data that were obtained using the same type of tissue as
was used in our BS-seq dataset. The HEP data provides a
natural gold standard for algorithmic evaluation. For this
comparison, we focused on the 13,563 HEP CG sites on
chromosome 22 (chr22), because these data provide the
most comprehensive chromosomal CG coverage that is
available in the HEP database. The data for the other chro-
mosomes in the HEP showed similar profiles as chr22, but
the coverage was much sparser.

Overall, the mapping results produced by the differ-
ent alignment methods for the human BS-seq dataset
were consistent with the results for the simulation dataset.
Compared with GNUMAP-bs, LAST aligned almost twice
as many reads to chr22 (3.02 M compare with 1.57 M);
however, the CG read coverage for LAST (7.6 reads/CQG)
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was only about 20% higher than for GNUMAP-bs (6.3
reads/CG) (Table 3). While Novoalign aligned more
reads to and covered more CG sites on chr22 than
GNUMAP-bs, GNUMAP-bs had better CG read cover-
age (6.3 reads/CQG) than Novoalign (6.1 reads/CG) and
the other aligners, BSMAP (5.8 reads/CQ), Bismark (5.8
reads/CG), Bismark-Bowtie2 (5.7 reads/CG), and BRAT-
BW (5.0 reads/CQG) (Table 3).

The differences between GNUMAP-bs and LAST
become even less pronounced when the overlap between
the mapped BSRs and the 13,563 CGs with HEP cover-
age on chr22 was considered. Last aligned the BSRs to
63.5% (8,606) of the CGs HEP sites compared with 58.3%
(7,902) for GNUMAP-bs, and 57.5% (7,802) for Novoalign,
57.1% (7,747) for BSMAP, 55.7% (7,561) for Bismark,
54.1% (7,331) for Bismark-Bowtie2, and 49.3% (6,690) for
BRAT-BW (Table 3).

To determine if increased coverage resulted in
decreased alignment quality, we computed the correlation
coefficient between the estimated HEP methylation levels
and the methylation levels estimated from each align-
ment method. The correlation coefficients were 0.887
for GNUMAP-bs and ranged from 0.895 for Bismark-
Bowtie2 to 0.882 for LAST (Table 3). We also computed a
concordance statistic for each of the methods as defined
previously [27]. Briefly, the concordance is the fraction of
sites for which the methylation levels (aligner vs. HEP)
differ by less than a predefined cutoff (we used 0.25).
Based on this statistic, we found that the performances
of most of the aligners were similar, with concordance
values of 0.869 for GNUMAP-bs and ranged from 0.872
for Bismark-Bowtie2 0.872 and BRAT-BW to 0.858 for
LAST (Table 3). These results showed that the increased
coverage levels produced by LAST result in lower consis-
tency with the HEP data in terms of both correlation and
concordance. Pairwise comparisons of the concordance
for the CGs covered/not covered between GNUMAP-bs
and the other aligners are shown in Figure 1. For example,
Figure 1 shows 577 CGs that were covered by GNUMAP-
bs but not covered by Bismark; the concordance of the
GNUMAP-bs methylation estimates for these sites was
0.78. In contrast, only six CGs covered by Bismark were
not covered by GNUMAP-bs, and the concordance for
these sites was extremely low (0.33). These results clearly
showed that the increased mapping coverage (for both
numbers of CGs covered and reads per CG) obtained
using GNUMAP-bs did not result in decreased alignment
quality or methylation estimates.

Conclusions

BS sequencing presents difficult challenges to researchers
attempting to process the sequencing reads from BS-
seq experiments. In this work, we present GNUMAP-
bs, a highly accurate and effective alignment algorithm
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Table 3 Human bisulfite read experiment
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Evaluation metric GNUMAP-bs Novoalign BSMAP Bismark Bismark-bt2 LAST BRAT-BW
All chr22:

Reads Aligned 1.57M 1.65M 1.34M 1.3TM 1.21TM 3.02M 0.98M
CGs Covered 330K 336K 330K 310K 299K 373K 275K
CGread coverage 6.3 6.1 58 58 5.7 76 50
HEP overlap:

CGs Covered 7,902 7,802 7,747 7,561 7331 8,606 6,690
Correlation 0.887 0.889 0.887 0.888 0.895 0.882 0.894
Concordance 0.869 0.867 0.865 0.867 0.872 0.858 0.872
CG Read coverage 4.6 45 44 43 43 49 3.7

Study of 162.3 M Illlumina BSRs on human chromosome 22 (chr22) from a human donor sample. The top rows show the overall mapping efficiency, including covered

CGs sites and read coverage aligned to chr22. The bottom rows show the consistency of each mapping result with known methylation levels at 13,563 CGs sites on
chr22 available from the HEP database. The concordance statistic is defined as the fraction of overlapped CGs covered by the aligner with HEP CGs for which the

methylation prediction error was smaller than 0.25.

that is specifically designed to estimate DNA methy-
lation levels with base-level resolution in BS-seq data.
GNUMAP-bs uses a probabilistic approach to align BSRs
to a reference genome. GNUMAP-bs was developed to
achieve higher coverage and accuracy than other pub-
lished BS-seq approaches by integrating base quality and
alignment quality information in the mapping process.
We have shown that the GNUMAP-bs probabilistic map-
ping approach results in an improved unbiased estima-
tion of DNA methylation across the human genome. In
simulated and real datasets, we showed that GNUMAP-
bs outperforms other BS-seq alignment methods when

both coverage and consistency were balanced with Sanger
based BS sequencing controls.

In addition, GNUMAP-bs provides many high-demand
features needed for constructing a high quality methy-
lome from BS-seq data. First, GNUMAP-bs incorporates
quality sequencing data into a dynamic programming
framework. This feature gives GNUMAP-bs the best bal-
ance between sensitivity and specificity of the tested BSR
aligners, especially for reads that contain short polymor-
phisms. Second, GNUMAP-bs adaptively assigns an opti-
mal mapping stringency based on an effective read length
after the original read is trimmed. Third, GNUMAP-bs
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Figure 1 GNUMAP-bs workflow for mapping high-throughput bisulfite reads. A flow-chart of the GNUMAP-bs algorithm is shown. For the
reference genome, all Cs are converted to Ts and then each k-mer in the genome is hashed, producing a list of positions in the genome to which
the k-mer sequence is mapped. Given a completely BS-converted read (e.g. TGGTGTT) where the corresponding original bisulfite read (BSR) is
known (e.g. CGGTGTC), a query k-mer (e.g. TGGTG) is searched against the BS-converted hash table. Locations with a k-mer match to both the
genome and the read are aligned using the original read and original genome and the GNUMAP-bs probabilistic Needleman-Wunsch (N-W)
algorithm. If the alignment score passes a quality threshold, the location is considered a match and recorded on the genome for future output. The
posterior probability is computed for each mapped location using Equation (1). Finally, all the mapped BSRs are used to quantify the fraction of
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not only relies on the maximal score alignment but also
probabilistically considers suboptimal alignments; that is,
the alignment score is converted to a posterior probabil-
ity and the probabilistic scores quantify the likelihood of
the true source location for each read across the refer-
ence genome. As a result, for both the simulated and real
datasets, we showed that GNUMAP-bs was more effec-
tive that the other methods in detecting read locations in
the presence of sequencing errors. GNUMAP-bs also dis-
played the highest consistency with a known HEP methy-
lation database. Because GNUMAP-bs supports Message
Passing Interface (MPI) processing, the computational
burden of the dynamic programming can be alleviated.
Moreover, with computer resources becoming cheaper,
computing clusters with large numbers of nodes and
cores, and more computing clouds are becoming avail-
able. Therefore, memory and CPU running times are less
of a bottleneck, which is especially useful for GNUMAP-
bs alignments. For this reason, accuracy should currently
be a more important concern in BS-seq data analysis.

Methods

The GNUMAP-bs alignment algorithm is a modification
of the GNUMAP algorithm, which consists of three main
steps, all of which needed to be modified to align BSRs
to a reference genome. A flow chart of the GNUMAP-
bs algorithm is displayed in Figure 2. The first step is
the construction of a hash table using all genomic sub-
sequences, where the k nucleotide (nt) long (k-mers) are
the keys and the hash table values store the genomic loca-
tions of the k-mer. In addition, k-mers from the BSRs are
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incrementally referenced in the reads in the genomic hash
table. In GNUMAP-bs, the genome and the reads are arti-
ficially ‘BS-converted’ by changing all Cs to Ts before the
hashing step. This process ensures that all BSRs can be ref-
erenced into the hash table regardless of whether or not
they contain methylated bases.

In the second step of the GNUMAP algorithm, all the
BSRs are aligned to the genome at the hashed locations.
The alignment is performed using a novel probabilistic
alignment algorithm that uses base quality information.
All the regions that meet a predefined alignment score
threshold are retained for the final step. In GNUMAP-bs,
the probabilistic alignment algorithm matches the uncon-
verted (original) reads to the unconverted genome while
allowing matches between Ts in the reads and Cs in
the genome. Using dynamic programming in probability
space for mapping BSRs to a genome has several benefits:
1) the Needleman—Wunsch algorithm is guaranteed to
find the optimal alignment for a BSR; 2) by incorporating
base qualities into the probabilistic algorithm, true DNA
methylation can be more accurately identified in the align-
ment, especially in areas where the reads have low base
quality; and 3) by making only a small change in the align-
ment scoring matrix, namely by removing the T (read) to
C (genome) ‘mismatch’ penalty and scoring these align-
ments as a ‘match; the probabilistic Needleman—Wunsch
algorithm can accurately account for the BS changes in
BSRs without losing reads that are partially converted, or
that have genome variations or sequencing errors.

During PCR amplification after BS conversion, the C
to T conversions in the BSRs lead to G to A conversions

Gnumap-bs Bsmap

40
(0.60)

b

Gnumap-bs Novoalign

Gnumap-bs Bismark

C

Figure 2 Relative complement mapping consistency of GNUMAP-bs with HEP methylation profiles of human chromosome 22. Venn
diagrams between GNUMAP-bs and (a) Novoalign, (b) BSMAP, and (c) Bismark showing both the number of covered/uncovered CG sites and the
concordance (in parenthesis) of these sites with the HEP methylation profiles. The estimated levels of methylation in the additional CG sites covered
by the probabilistic aligners but not by the other aligners are highly concordant with the HEP results.
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on the PCR-synthesized strand as described previously
[14]. These G to A changes provide evidence of non-
methylation on the original strand. The phenomenon also
occurs for C to T changes on the PCR-synthesized strand.
Therefore, the GNUMAP-bs algorithm maps each BSR
twice, once looking for only C to T changes and then look-
ing for only G to A changes. When a G to A change is
observed, the read is considered to be a PCR-synthesized
strand, and the non-methylation event is attributed to the
original strand.

In the final step, the GNUMAP-bs algorithm quantifies
the significance of an alignment (e.g. a posterior proba-
bility) by assigning a mapping score that is proportional
to the relative quality of alignments and inversely propor-
tional to the number of matching sites in the reference
genome. Given a BSR, r, assume that there are J “best
match” locations (potential mapping locations) for which
the alignment score is g[d] for alignment to genomic posi-
tion d, which is also aligned to the first base pair location
of r, matches some user-defined threshold. Then, the pos-
terior probability at each location P(r;) can be computed
as:

edld]
le'zl e‘l[/]

It is worth noting that the calibrated posterior probabil-
ity is a special case of the LAST [21] mapping probabilities
equation where a scaling factor for a bit score in the simple
E-value statistics is not explicitly computed.

This probability provides an intuitive value between 0
and 1 representing the methylation signal for each read at
each CG site. Other BS mapping programs use Wpings
instead of Equation (1), which may not accurately capture
the true posterior probability. The posterior probabil-
ity indicates the relative significance of mapping a read
to a particular position. The probabilistic Needleman—
Wunsch computes a log-likelihood score; therefore, if a
particular BSR has multiple possible mapping locations in
the reference genome, the significance of each mapping
decreases. After GNUMAP-bs computes P(ry) for each
read, the algorithm combines the probabilities into one
methylation profile vector and infers a true methylation
ratio at each CG site.

For example, consider a nucleotide, #; at genomic loca-
tion i, and assume that #; is a C residue in a reference
genome. Let C” be a methylated C residue and L(r) be
the read length. For a set of aligned reads covering i, the
methylation ratio c[i] can be computed as:

Y P(rgln; = C™)
a > P(rq)

Intuitively, the reads that cover each C location across
the reference genome provide evidence of true map-

P(rg) = (1)

cli] ,d<i<d+L(ryg). (2)
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ping so that a reliable methylation percentage can be
obtained.

Software implementation and availability

The GNUMAP-bs algorithm is integrated into the is
GNUMAP software suite, and is freely available for down-
load at http://dna.cs.byu.edu/gnumap. The GNUMAP-bs
pipeline can accommodate single-end or pair-end reads in
either FASTA or FASTQ file formats. A reference genome
file (or multiple reference files) in FASTA format is also
required. However, to increase the efficiency of the work-
flow, users can opt to write the reference genome hash
table to a file, which can be used in future runs. GNUMAP
outputs read alignments in standard SAM file format. The
GNUMAP-bs software suite contains an addition appli-
cation function (sam2gmp) that summarizes a SAM file
and writes it into a text file that contains one line for each
cytosine in the genome. Each line in this file contains the
chromosome number, the location of the cytosine on the
chromosome, the number of reads, and the numbers of
As, Cs, Gs, Ts, and Ns covering the location. In addition,
the text file gives a likelihood ratio p-value that indicates
whether there is a significant number of Cs at the location
(i.e. methylation significance).

In addition to the adaptations for BSRs, the GNUMAP-
bs software also contains several modifications to reduce
the computational time and memory needed for the align-
ments. For example, the initial read and genome conver-
sion step reduces the genome alphabet to three bases,
leading to an increase in the number of genome locations
identified in the hash table. To reduce this effect, multi-
ple seeds from each read are referenced by GNUMAP-bs,
and the alignment is only conducted on the locations
with the top two most k-mer hash references. Further-
more, although the original GNUMAP software supports
multi-threaded computing within the same node using
pthread, GNUMAP-bs is fully enabled to support MPI
processing. This feature allows a large-scale alignment to
be spread across multiple nodes in a cluster or supercom-
puting facility [28]. In this implementation, the genome is
divided into equal parts across nodes, and then the same
batches of reads are aligned by each node to their individ-
ual portion of the genome. Once the batch is completed,
the nodes communicate via MPI to calculate the poste-
rior probability scores. Because most of the CPU time
is spent on the alignments, the communication overhead
is relatively small, resulting in a highly efficient parallel
algorithm.
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