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Under uniaxial compression deformation in low-density foams localizes into 

narrow bands of crushed cells. Crushing spreads at nearly constant stress with crushed and 

relatively undeformed material coexisting. The material returns to homogeneous 

deformation with increasing stress when the crushing has spread over the whole specimen. 

The present study investigates how this partially unstable behavior of low-density foams 

transfers to the multiaxial setting as follows: 

(i) The crushing behavior of random foams is investigated under “true” triaxial loadings. 

A micromechanically accurate cubical model of an Al-alloy open-cell foam with relative 

density of 0.08 is crushed by a numerical true triaxial apparatus in three directions for three 

families of radial displacement paths. For all paths studied, the foam traces the same three 

regime behavior observed under uniaxial compression. Local cell crushing developed in 

narrow bands of cells at boundaries and subsequently propagate to the rest of the domain 

until the whole domain is crushed. 

(ii) A plasticity model is presented with a Drucker-Prager type yield function coupled with 

a non-associated flow rule. An essential component of the modeling effort is the 

introduction of a softening branch to the material stress-strain response. The constitutive 

model is incorporated in a cubical finite element model to simulate true triaxial crushing 

tests performed on the random foam in the continuum setting. Small geometric 

imperfections are used to trigger localized deformation in the form of planar bands of high 

strain. The bands broaden with the stresses tracing plateaus. For all loading paths, the 

calculated crushing responses reproduce those of the random foam very well. The study 
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clearly demonstrates that the homogenized model captures the partially inhomogeneous 

crushing behavior of foams. 

(iii) The same random foam model is crushed under displacement controlled axial 

compression at different levels of external pressure. The study shows that such foams 

deform inhomogeneously under this triaxial loading also. The level of external pressure 

tends to lower the limit stress, the stress plateau, and the rest of the response. This behavior 

is subsequently simulated at the continuum level. It is demonstrated that the homogenized 

model again captures the three-regime response of the random foam. 
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Chapter 1:  Introduction 

Cellular microstructure is widely used in nature and in synthetic materials and 

structures to conserve materials and reduce weight. Natural examples include many woods, 

stalks and roots of plants, cork, human bones, sponge, coral, shells etc. (Gibson and Ashby, 

1997). Many fruits and vegetables have cellular microstructures also. Synthetic cellular 

materials that mimic nature have experienced an enormous increase in the past decades, so 

that today may be one of the most widely used man-made classes of materials. Synthetic 

cellular materials fall into two categories, two-dimensional honeycombs and space filling 

foams. Some space filling foams have open cell faces (open-cell foams) and others have 

faces that are covered by plates or membranes (closed-cell foams). These synthetic cellular 

materials can be made from all major material categories including metals, polymers, 

ceramics, paper and carbon. This dissertation investigates the mechanical behavior of open-

cell foams. 

1.1 APPLICATIONS OF FOAMS 

The cellular microstructure of space filling foams bestows to them unique 

mechanical, thermal, acoustical and other properties that make them attractive in a broad 

range of applications (e.g., see Gibson and Ashby, 1997; Ashby et al., 2000). The breath 

in availability coupled with their high stiffness-to-weight and strength-to-weight ratios, 

have made them one of the most widely used classes of materials as cores in sandwich 

structures used in applications ranging from packaging to ship and aircraft panels. 

Polymeric foam sandwich cores include Polystyrene, Polyurethane, PVC (Polyvinyl 

Chloride), or PMI (Polymethacrylimide) foams, etc. (e.g., see Enlighten presented by 

Altair). Rigid closed-cell PMI foams are used, for example, in the aerospace industry in 

ailerons and helicopter rotor blades because of their excellent mechanical properties. In 

addition, PMI foams have a high fatigue life and can be easily thermoformed to complex 

geometries. One of the disadvantages of polymeric foams is that they tend to have lower 

tolerance to damage, compared to heavier solid laminate materials. Metal foams are also 
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used as sandwich cores to replace stamped-steel parts of a vehicle (e.g., Aluminum Foam 

Sandwich by German Automaker Karmann, reported in Banhart 2003).  

Another advantage of foams is their relatively low crushing strength and extensive 

stress plateau. This gives them unique energy absorption and impact mitigation capacities 

that are exploited in applications ranging from car bumpers, to helmets and other blast 

protection structures. Flexible polymeric foams are used for personal protection 

applications such as cushions, sport shoe midsoles and helmets (Mills et al., 2003). Metal 

foams on the other hand are extensively used in the automotive industry. Aluminum foams 

are used, for example, as fillers of crashboxes placed between the bumper and the front rail 

of a car (Banhart 2003). Crashboxes are designed to absorb energy in relatively low speed 

crashes, protecting the passengers and the rest of the car. Adding Aluminum foam cores 

improves the energy absorption capacity of crashboxes compared to the non-filled 

extrusion alternatives (see also Hassen et al., 2000). It also leads to the advantage of weight 

saving and volume reduction of crashboxes (Fuganti et al., 2000). 

Modern manufacturing techniques enable casting of foams in dies producing a parts 

with a dense aluminum skin and a foam interior. Such parts have high stiffness and 

excellent damping characteristics in addition to superior energy absorption. Banhart (2003) 

reported use of such composite components as engine mounts in vehicles (e.g., designed 

by LKR of Austria for the German automaker BMW).  

Other applications of foams include titanium-based foams used as bone implants; 

polymeric foams used as thermal and acoustic insulation materials; air batteries, 

biomedical prostheses, catalyst supports, filters and fluid flow limiting devices, fuel cells, 

non-slip surfaces for trays, etc.  

1.2 UNIAXIAL CRUSHING OF LOW-DENSITY FOAMS 

An important goal of the research community has been to connect the 

microstructure and base material properties to the foam's unique properties. Connection of 

the microstructure to the initial elastic properties has, by and large, been accomplished, but 

relating it to the "strength," the stress plateau and the densification response remains a 
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challenge. For low-density foams used in many applications, this behavior is governed by 

inelastic action, localized crushing at the cell level, and ligament contact that is responsible 

for the spreading of the crushing. 

A typical uniaxial crushing behavior of polyester urethane foams of relative density 

about 2.5% was described in Gong et al. (2005a) and Gong and Kyriakides (2005). The 

foams tested were crushed up to an average strain of about 0.5. The compressive stress-

displacement response in the rise direction starts with a nearly linear elastic branch that 

terminates into a stress maximum. It then traces an extended plateau, followed by a second 

stiff branch. The foam deforms nearly uniformly during the initial stable regime of the 

response. Following the limit stress the specimen buckles in an overall manner, and 

concurrently deformation localizes in a banded manner. Subsequently, the bands grow with 

numbers and propagate to neighboring cells with the stress tracing the plateau. After the 

whole domain is crushed, the domain is densified and the stress picks up again. Similar 

surface deformation patterns were reported in Wang et al. (2000) using a digital image 

correlation technique. The foams are anisotropic, and the crushing response in the 

transverse direction monotonically increases. The deformation, on the other hand, is 

probably uniform when the foam is crushed in the transverse direction. 

Jang and Kyriakides (2009a) reported that low-density open-cell Al-alloy foams 

under uniaxial crushing exhibit the same three-regime behavior (see axial stress-

displacement response shown in Fig. 1.1). Here however deformation localizes into 

irregular bands that cover the whole cross section of the domain. With further compression 

such bands propagate until the whole domain is crushed. X-ray tomography was used to 

capture the propagation of crushing as illustrated by the set of images shown in Fig. 1.2 

(see also Bart-Smith et al., 1998; Gioux et al., 2000). The images correspond to the 

numbered bullets on the response shown in Fig. 1.1. Cell crushing is limited by contact 

between cell ligaments, which stiffens the crushing zones and leads to a small recovery in 

the stress. The stress increase is sufficient to destabilize neighboring cells. This successive 

destabilization of neighboring cells is the mechanism through which the crushing front 

propagates until the whole domain is crushed as illustrated by images -  in Fig. 1.2. 
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Beyond image , the material deforms essentially uniformly, requiring a significant 

increase in stress––densification regime. 

In the case of this anisotropic aluminum foam the response and deformation in the 

transverse direction is similar to that in the rise direction but with somewhat lower stress 

maximum and plateau stress. Localized deformation in aluminum foams under uniaxial 

crushing was also reported in Bastawros et al. (2000), Schuler et al. (2013), Jung et al. 

(2015), and Aakash et al. (2019) using digital image correlation. 

Motivated by capturing this inhomogeneous crushing behavior of foams, past 

studies has developed micromechanical models. The microstructures of low-density open-

cell polymeric and Al-alloy foams were characterized in Gong et al. (2005a), Jang et al. 

(2008) and Jang and Kyriakides (2009a). With this as background, the foams were first 

idealized using the periodic space-filling 14-sided Kelvin cell assigned the major geometric 

characteristics established from the measurements on random monodisperse foams. Gong 

et al. (2005a) and Jang et al. (2008) reported that the Kelvin cell models capture the initial 

elastic properties of foams accurately. The calculated limit stresses were also found to be 

in a good agreement with the values measured in uniaxial compression experiments (Gong 

et al., 2005a; Jang et al., 2010). Similar calculations on elastic properties and compressive 

strength based on Kelvin cells can also be found in Warren and Kraynik (1997), Laroussi 

et al. (2002), Fischer et al. (2009), Fanelli et al. (2017) and Zhu et al. (2017).  

Uniaxial crushing responses based on the Kelvin cell were found to trace the trends 

of experimental results up to large displacements very well (Gong and Kyriakides, 2005; 

Jang and Kyriakides, 2009b). Here periodicity conditions were released and spring 

elements were adopted to approximate ligament contact. A disadvantage of Kelvin cell 

models is that they are only applicable to monodisperse foams. Furthermore, the resultant 

crushing patterns are influenced by the periodicity of the microstructure and consequently 

differ from those of random foams. Studies on uniaxial crushing of foams beyond the onset 

of instability using similar spatial periodic structures are reported in Luxner et al. (2007) 

and Takahashi et al. (2010) among others. 
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The Kelvin cell studies were subsequently improved upon by the development of 

micromechanically accurate foam models (Jang et al., 2008, 2010; Gaitanaros et al., 2012, 

2018). Such models are generated using the Surface Evolver software and able to mimic 

the random microstructure of real foams (Brakke, 1992). The ligaments are modeled 

straight with non-uniform cross sectional area distributions similar to those of the real 

foams, so that they end up with the same density as the foam analyzed. Jang et al. (2008, 

2010) showed that such models reproduce the elastic properties and the strength of foams 

quite accurately.  

Another significant improvement of random models is that a beam-to-beam contact 

algorithm is adopted, which plays a key role in the correct simulation of the stress plateau 

during the propagation phase of the crushing response. The performance of such random 

foams in the simulation of uniaxial crushing of an Aluminum foam was demonstrated in 

Gaitanaros et al. (2012). Figures 1.3 and 1.4 taken from this work show the compressive 

axial stress-displacement response from a foam model and a sequence of corresponding 

deformed configurations respectively. The compressive response is in very good 

agreement with measured ones. A band of collapsed cells is observed to initiate from the 

“weakest” site in image . Subsequently the crushed zone propagates through the rest of 

the domain until the whole model is crushed, as shown in image 2-. The 

micromechanically accurate models were also used to successfully reproduce quasi-static 

and impact crushing of polydisperse foams as reported in Gaitanaros and Kyriakides (2014) 

and Gaitanaros et al. (2018). 

1.3 MULTIAXIAL LOADINGS ON LOW-DENSITY FOAMS 

Further progress in the understanding of the mechanical behavior of cellular 

materials and foams must also address their behavior under multiaxial loads. Multiaxial 

crushing experiments on low-density foams are challenging because of the associated large 

volume changes. Thus, experimental efforts to date have been mainly concerned with the 

onset of "yielding.” They are divided in two main categories. In the first group the foam is 

surrounded by a membrane and tested in the traditional triaxial test setup involving external 
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pressure and axial compression. This family of triaxial tests is hitherto referred to 

“conventional” triaxial test. Triantafillou et al. (1989) used conventional triaxial tests to 

establish failure surfaces for polymeric and aluminum foams. Similar results for reticulated 

vitreous carbon foams (RVC) were reported in Triantafillou and Gibson (1990). Deshpande 

and Fleck (2000) reported a series of triaxial crushing results on Alporas (closed-cell) and 

Duocel (open-cell) Al-alloy foams of different relative densities. Ruan et al. (2007) 

reported that CYMAT (closed-cell) aluminum foams of relative density about 12% exhibit 

a limit load in the axial stress when under external pressure of 2 MPa. However for all the 

works listed, the microstructure and evolution of crushing events of foams tested were not 

examined. Gioux et al. (2000) showed images of deformed configurations of open-cell and 

closed-cell Al-alloy foams under hydrostatic compression. Local regions of higher 

deformation in the foam specimens were observed. The foams were loaded up to an axial 

strain of only about 7%. 

In the second category, a specially shaped specimen is tested under displacement 

controlled loading in a type of three axis testing facility. Combaz et al. (2011) designed a 

triaxial test apparatus that surrounds cubical aluminum foam domains with three pairs of 

orthogonal loading platens. The displacements of the moving platens in the three directions 

were prescribed to produce proportional loading paths in stress space. Similarly, triaxial 

loadings were applied on anisotropic polymeric foams in Shafiq et al. (2015) by 

compressing three pairs of rigid blocks on cubical foam specimens. Each block was 

allowed to move in only one direction normal to the loading axis. They reported stress-

strain responses with load maxima followed by softening branches. In both works the 

crushing was terminated at relatively low strains and no information about the deformation 

of the microstructure is provided. Alternative biaxial experimental results can be found in 

(Gdoutos et al., 2002; Mohr and Doyoyo, 2003; Blazy et al., 2004; Jung and Diebels, 2017). 

Analytical efforts aimed at modeling the mechanical behavior of foams under 

multiaxial loads are rather limited. Gong et al. (2005b) and Ayyagari and Vural (2016) 

reported the onset of instability (or "yielding") of low-density foams under multiaxial loads 

using elastic Kelvin cell foams. Zhu et al. (2019) crushed model foams with relative density 
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of 10% with a Voronoi closed-cell microstructure under various radial displacement paths. 

They reported several triaxial responses with extended stress plateaus and microstructures 

with localized deformations. 

However, micromechanically accurate models of random foams, although 

insightful and accurate, are numerically intensive and not ideal as constitutive models, 

prompting the pursuit of "homogenized" alternatives. To date, despite strong evidence in 

the literature that under compression low-density foams crush inhomogeneously, present 

continuum constitutive models of foams, assume the material to harden monotonically and 

consequently do not capture the inhomogeneous behavior. Zhang et al. (1997) proposed a 

volumetric hardening compressible constitutive model for polymeric foams, with a 

quadratic yield function and non-associated flow rule. Miller (2000) introduced a quadratic 

dependence on the pressure in the Drucker-Prager (1952) yield criterion customized for 

aluminum foams. To date the most widely used constitutive model is due to Deshpande 

and Fleck (2000). They used results from different multiaxial stress paths to generate an 

isotropic quadratic yield surface in the 
  
(I1, J2) space. An associated plastic flow rule was 

adopted and the hardening law used in the work was assumed to depend on stress paths. 

The constitutive model was used to reproduce a number of crushing responses for 

aluminum foams. However, the deformation of such models is homogeneous. The model 

was later implemented in ABAQUS and other FEA software. 

Deshpande and Fleck (2001) extended the application of the model to polymeric 

foams. Xue and Hutchinson (2004), Tagarielli et al. (2005) and Ayyagari and Vural (2015) 

proposed extended versions of the model for transversely isotropic foams. Linear pressure 

dependence resulting in asymmetry in compression and tension was also examined in 

Ayyagari and Vural (2015). Zhu et al. (2019) reported that the parameter 2  which 

determines the shape of the yield surface follows a nonlinear softening-stiffening trend 

against equivalent plastic strain. Similar results can be found also in Chen et al. (2000). 

In summary, experimental studies on multiaxial crushing of foams to large volume 

changes remain a challenge, and existing data lack both foam microstructure information 



 8 

and its evolution during crushing. Most of the present constitutive models adopt a quadratic 

Drucker-Prager type yield function and a hardening material model, which lead to 

homogeneous deformation under uniaxial and multiaxial stress states. Both of these 

deficiencies in the current state of the art will be addressed in this dissertation. 

1.4 OUTLINE OF THE WORK 

In the present study we aim to establish the response of low-density open-cell Al-

alloy foams under triaxial loadings crushed to large volume changes. Having developed 

confidence in the veracity of the micromechanically accurate modeling framework 

developed for random foams, the "testing" is performed numerically. Chapter 2 describes 

the random foam models used in this study. They are based on the framework developed 

in Jang et al. (2008) and Gaitanaros et al. (2012). Chapter 3 presents a true triaxial apparatus 

that is used to crush cubical random foam models under three sets of radial displacement 

paths. A Drucker-Prager type compressible constitutive model for continuum modeling of 

multiaxial crushing of foams is presented and calibrated in Chapter 4. In Chapter 5, 

crushing simulation of the true triaxial numerical tests from Chapter 3 are performed in the 

continuum setting. The predictions are evaluated by direct comparison to those of the 

random foam results. Chapter 6 describes conventional triaxial tests of foams first on 

random foams and the responses are subsequently simulated using homogenized models. 
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Fig. 1.1: Compressive uniaxial nominal stress-displacement response of a Duocel® 
Al-alloy foam (from Jang and Kyriakides, 2009a). 
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Fig. 1.2: Sequence of cross-sectional deformed configurations corresponding to the numbered points on the response in Fig. 
1.1 taken with X-ray tomography (from Jang and Kyriakides, 2009a). 
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Fig. 1.3: Calculated compressive uniaxial stress-displacement response in the rise 
direction of a micromechanically accurate model with 103 cells (from 
Gaitanaros et al., 2012). 
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Fig. 1.4: Sequence of deformed configurations corresponding to the numbered bullets on the response shown in Fig. 1.3 
(from Gaitanaros et al., 2012). 
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Chapter 2:  Random Foam Model12 

Open-cell solid foams consist of randomly packed polyhedral cells that result from 

the foaming process. The low-density open-cell Aluminum foams used in this study are 

cast into templates made from polymeric foams (Ashby et al., 2000): the polymer in the 

cast is evaporated and liquid Al is poured in its place. The mold is then removed leaving 

behind the aluminum foam with the same microstructure as the original polymeric one. 

This includes the distribution of polyhedral cells that have anywhere from 9 to 17 faces 

when the foam is nearly monodisperse (Matzke, 1946), their anisotropies, etc. The material 

is concentrated in the nearly straight edges of the polyhedral cells and in the nodes usually 

formed by four intersecting ligaments. A long-term goal of the research community has 

been to connect the microstructure and base material properties to the foams’ unique 

properties such as their high stiffness-to-weight ratios, strength-to-weight ratios, and 

unique energy absorption capacities. 

Our research group has developed a family of micromechanically accurate models 

that have been shown to reproduce most of the mechanical properties of open-cell foams 

(Jang et al., 2008; Gaitanaros et al., 2012; Gaitanaros and Kyriakides 2015; Gaitanaros et 

al., 2018). The models start as a skeletal isotropic random soap froth generated using the 

Surface Evolver software (Kraynik et al. 2003b, 2004). Such soap froths reproduce all 

major geometric characteristics of liquid foams such as the polyhedral cell geometry, the 

length distribution of ligaments, etc. They skeletal microstructure is dressed with solid with 

the ligament cross sectional area distribution that corresponds to that of actual Al-alloy 

foams. The correct distribution of material is maintained in the discretization of the 

ligaments when developing finite element models of the foam blocks.  

This Chapter describes how the large-scale micromechanically accurate foam 

models used in this study are generated. The procedure is based on the framework 

                                                 
1 Yang, C., Kyriakides, S., 2019. Multiaxial crushing of open-cell foams. Int’l J. Solids Structures 159, 
239-256. Chenglin Yang contributed as first author. 
2 Yang, C., Kyriakides, S., 2019. Crushing of low density foams under triaxial loadings. Extreme 
Mechanics Letters (accepted). Chenglin Yang contributed as first author. 
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developed in Jang et al. (2008) and Gaitanaros et al. (2012). Section 2.1 describes the 

numerical generation of a skeletal version of a   N
3 cell model that is based on a random 

spatially periodic soap froth generated by the Surface Evolver. Section 2.2 describes the 

discretization of the ligaments with circular cross-sections but variable diameters along the 

length. The contact algorithm required in the foam crushing simulations for arresting local 

cell crushing is also outlined. Finally the mechanical properties of the Al-alloy base 

material are briefly discussed. 

2.1 GEOMETRY 

The random foam models that are analyzed in this study originate from random 

spatially periodic soap froths generated by the Surface Evolver (Brakke, 1992) as described 

in Kraynik et al. (2003b, 2004). The generation procedure has the following steps. A 

primitive Voronoi froth with foam-like characteristics is generated first from randomly 

packed hard spheres of equal radius in molecular dynamics. Each Voronoi cell consists of 

all points that lie closest to a random seed, i.e., the center of each sphere. Next, the Voronoi 

structure is used as an initial condition in the Surface Evolver to generate the limiting case 

of a “dry” foam in which the liquid volume fraction is zero and the films can be modeled 

as two-dimensional surfaces. The software minimizes energy and balances mechanical 

forces by satisfying Plateau’s laws (Plateau, 1873; Weaire and Hutzler, 1999): I. the faces 

of cells are surfaces of constant mean curvature; II. three faces meet at equal dihedral 

angels of 120 ; and III. four edges meet at the tetrahedral angle 1cos ( 1/ 3) 109.47    . 

In this study, monodisperse foam models are used, thus the additional constraint that all 

cells have the same volume is also applied.  

The next step includes a relaxation process that requires a large number of 

topological transitions that involve cell-neighbor switching. Since the solution is a local 

energy minimum, the surface area can be further reduced by subjecting the foam to large-

deformation tension-compression cycles that provoke additional neighbor switching. This 

process is referred to as annealing. The resulting structures are in excellent agreement with 
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Matzke’s (1946) experimental study, indicating that the foam structures being produced 

are realistic. The simulation generates a skeletal version of monodisperse, periodic and 

isotropic foams. Accurate data on geometric properties such as the volume, surface area, 

and edge length of the entire foam, individual cells, and cell-level features are provided in 

Kraynik et al. (2003a, 2003b, 2004, 2005, 2006). 

The skeletal version of the random foam model used in this study is generated by 

joining the vertices of the random cellular microstructure with straight lines. In the analyses 

performed the foam is required to be an exact cube. For this tailoring the periodicity of the 

domain is removed followed by removal of a thin layer of material from each surface. For 

a 103 cell model, removal of a layer reduces the width of each side by approximately 2%. 

Typically about 200 end nodes are left on each surface. A 3-D rendering of a 103 cell 

skeletal model that has been cropped is shown in Fig. 2.1. 

2.2 FINITE ELEMENT MODELING 

2.2.1 Discretization and Material Distribution 

The straight ligaments in the random foam model are dressed with shear deformable 

beams with circular cross-sections but variable diameters along the length. The area 

distribution follows that developed from measurements on ERG Duocel® Al-6101-T6 

foams reported in Jang et al. (2008): 

4 2( ) ( ) (36 1),o oA A f A         / ,x l     (2.1) 

where oA  depends on the ligament length l , through 

2.5963( ) (0.6633 0.2648 ),o o oA A g A     / ,l l    (2.2) 

here, oA  and l  are the average of the measured values of mid-span cross sectional area 

and length respectively. 

Since the ligaments are modeled as beams, there is an overlap of material at the 

nodes, which is corrected for the purposes of calculating the relative density through the 

following expression (Jang et al. 2008): 
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where oR  is the average radius of all ligaments at mid-span. It is noted that k and n depend 

on the anisotropy. Table 4 of Jang et al. (2008) report k and n values for foams of different 

anisotropy values. For isotropic foams, 2.0263k   and 1.7072n  . The foam model used 

in the study has a relative density  r
* / r  0.08 . Assigning this to Eq. (2.3), together with 

the average length of all ligaments in the skeletal random foams, enables the calculation of 

 
Ro . 

The ligaments are then discretized in LS-DYNA (2019) with the Hughes-Liu linear 

beam element (1981) that is derived from the isoparametric 8-node solid element. The 

element allows for finite deformations of the beam axis, finite rotations of its normal as 

well as transverse shear deformations. A constant moment is generated along the length of 

the element, which implies each ligament must be assigned with a sufficient number of 

elements. In addition, a reference surface located at an offset location facilitates contact on 

the outer surface of the beam, a key characteristic for the present problem. 

The discretization is chosen for accurate representation of the area variation along 

the ligament, the order of the element, and for optimal performance in ligament contact. 

The discretization method is very similar to that in Gaitanaros et al. (2012) with minor 

adjustments to the current model, and will be outlined here for completeness. First, the 

ligaments are categorized in two groups: ones with l l  and the rest with l l . The 

average length of each group is designated as 1l  and 2l , respectively. Based on the 

measured average lengths of the foam, the mean mid-span cross sectional area in each 

group, 
  
Ao l

,   1,2 , is calculated by assigning 
  
l ,   1,2, oA  and l  to Eq. (2.2). 

The area variation along the ligament is applied as following: the first group is 

further discretized with 7 elements and the second with 9 elements. All elements are 

assigned a uniform circular cross sectional area, using the discretized version of Eq. (2.1): 
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A( )  Ao l

f ( )
l

,   1,2      (2.4) 

The values of 
  
f ( )

l
 for the two groups of ligaments are given in (Gaitanaros et al., 2012, 

Gaitanaros and Kyriakides, 2014) and for clarity in Table 2.1. Figure 2.2 shows an 

expanded view of a few cells that demonstrate the area variation of ligaments. 

In the present model, there are a few very short and thick ligaments in the first 

group (~2% of the total number of ligaments). LS-DYNA is an explicit code, where a stable 

time increment depends on the smallest element length. Thus, a higher computational 

efficiency is achieved by assigning 3 elements and the two largest cross sectional areas 

from the first group to these ligaments. 

Table 2.1: Cross sectional area of beam elements for the two ligament groups 

  
1

( ) lf   
2

( ) lf   

0.18   1.0 1.0 

0.18 0.34   1.2425 - 

0.18 0.26   - 1.0 

0.26 0.34   - 1.3925 

0.34 0.42   1.9122 1.9122 

0.42 0.5   2.8484 2.8484 

 

Figure 2.3 shows a slice of the random foam model from the  y  x  plane that 

consists of ligaments dressed with beam elements. The model has 103 cells and for clarity 

the image is limited to 0.12H thick (a little thicker than one cell). 

2.2.2 Contact Algorithm 

Contact between ligaments of collapsing cells is responsible for arresting local 

crushing, in the process enabling the spreading of crushing to neighboring and other cells. 

Consequently, the modeling of contact plays a crucial role in the ability of the model to 
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reproduce the stress plateau and the following second stiffening regime. In this study, the 

general automatic contact algorithm of LS-DYNA is adopted in the model as beam-to-

beam contact, together with the penalty formulation of Gaitanaros et al. (2012). The 

algorithm generates a circular cylindrical contact surface for every element, which 

corresponds to our circular cross sections. 

The penalty formulation uses an interface stiffness of the same order of magnitude 

as the stiffness of the contacting elements. At every step of the analysis penetrations are 

investigated along the length of each element by finding the intersection point between 

nearby beam elements and checking to see if their outer surfaces overlap. If they do, the 

contact force is computed and is applied to the nodal points of the interacting elements. 

In addition, contacts between excess materials are excluded in the model. As noted 

above, the use of beam elements leads to excess material at the nodes. This excess material 

was corrected for the calculation of the density of the model but the overlaps remain in the 

numerical model. The overlaps at the nodes cause initial interpenetrations between beam 

elements and non-physical contacts that lead to numerical instabilities. This difficulty is 

bypassed by excluding the two elements adjacent to the nodes from developing contact. 

The group of very short ligaments is also excluded from developing contact because of 

initial interpenetrations. 

Coulomb friction with a coefficient of 0.4 is used for beam-to-beam contact. It is 

shown that friction between contacting ligaments was found to play an important role in 

stabilizing the numerical solution. Moreover, friction prevents “dynamic” sliding between 

ligaments especially when the compressive force increases during the densification regime. 

It is noted that contacts between the foam model and the surrounding plates in the next 

chapters are frictionless. 

2.2.3 Base Material Properties 

The foam Al alloy is treated as an elastic-plastic solid assigned the true stress- 

logarithm strain version of the properties measured in an independent tensile test in Jang 
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and Kyriakides (2009b). Figure 2.4 shows that a Ramberg-Osgood fit of the measured 

nominal stress-engineering strain response 

1
3

1
7

n

yE

 


 æ ö   ç ÷ç ÷ è ø  

       (2.5) 

with parameters:   E  104  ksi (69 GPa), 
  
 y  28ksi (193 MPa), 48n  . In LS-DYNA the 

material response is represented by piecewise linear segments and used to calibrate 

isotropic plasticity. 
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Fig. 2.1: Skeletal 3-D rendering of the 103 cell model foam. 
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Fig. 2.2: A typical cell that consists of ligaments from the two length groups discretized 
with 7 and 9 elements. (Note: the ligaments have circular cross sections. The 
polygonal cross section in the image is a LS-DYNA display effect). 

  



 22 

 
 

 

Fig. 2.3: A 103 cell model foam slice from the y x  central plane; ligaments are now 
dressed with beam elements. 
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Fig. 2.4: A Ramberg-Osgood fit of Al-6106-T6 foam base material. 
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Chapter 3:  True Triaxial Crushing of Random Foam Models3 

Multiaxial crushing experiments on low-density foams are challenging because of 

the associated large volume changes. The literature on the subject is rather sparse and has 

been mainly concerned with the onset of “yielding.” To date results with complete crushing 

responses and evolution of the microstructure of foams under triaxial loads have not been 

reported. This challenge is addressed in this Chapter by investigating the crushing behavior 

of foams under triaxial loads numerically using the isotropic random foam model 

developed from Chapter 2.  

 Papka and Kyriakides (1999a) designed and built a biaxial crushing testing facility. 

They used this facility to conduct a set of biaxial crushing experiments on a polycarbonate 

honeycomb with circular cells by prescribing a set of radial displacement paths. In this 

Chapter the mechanism of this biaxial testing machine is adopted and extended to generate 

numerically a true triaxial apparatus. The objective of this apparatus is to perform crushing 

of random foam models in three orthogonal directions to large volume changes. The 

apparatus is used to generate crushing responses and concurrently monitor the evolution of 

the microstructure of the foam. Section 3.1 describes the true triaxial test setup developed. 

Sections 3.2 to 3.4 describe simulations of triaxial crushing of the random foam model. 

Section 3.5 describes unique properties measured from the random foam models. A 

significant part of the results in this Chapter appears in Yang and Kyriakides (2019a), 

hitherto referred to as YK19a. 

3.1 CRUSHING TEST SETUP 

3.1.1 True Triaxial Numerical Apparatus 

Papka and Kyriakides (1999a) developed a biaxial testing machine that enabled 

crushing of low-density honeycomb specimens to volume reduction of up to 95%. The 

specimen is compressed between two pairs of parallel orthogonal plates each connected to 

                                                 
3 Yang, C., Kyriakides, S., 2019. Multiaxial crushing of open-cell foams. Int’l J. Solids Structures 159, 
239-256. Chenglin Yang contributed as first author. 



 25 

a rigid block. The blocks are moved by two orthogonal actuators and their relative motions 

are accommodated by a set of linear slides (see Fig. 3 of Papka and Kyriakides, 1999a). 

They used the machine to crush a polymeric honeycomb with circular cells under various 

biaxial displacement ratios. The biaxial crushing was simulated numerically using a 

micromechanically accurate model of the honeycomb. The model was crushed between 

four rigid planes that moved in the same way as the plates in the physical machine (see Fig. 

4 in Papka and Kyriakides, 1999b). This setup was used to successfully reproduce the 

biaxial crushing responses recorded in the experiments. 

The present numerical apparatus is based on the same principle as the biaxial 

crushing machine extended to a three-dimensional orthogonal setting. It consists of three 

pairs of parallel rigid planar surfaces arranged as shown in Fig. 3.1a. A cubical specimen 

of dimensions H H H   is placed in a cavity of the same size formed by the six planes. 

The blue member of each pair of parallel plates is restrained from motion along the 

direction of its normal. Crushing in this direction is achieved by prescribing the normal 

displacement, 
  
 i , i  x, y,z , of the yellow plate of this pair. As is the case in the biaxial 

crushing machine, as crushing progresses the area in contact with the specimen in each 

direction is reduced. This is accommodated by allowing the planes to slide relative to each 

other as shown schematically in Fig. 3.1b. The kinematics of the planes are as shown in 

Table 3.1, where the symbol  stands for free to move in this direction, and  represents 

prescribed displacement. Number 0 implies no motion is allowed in this direction .  

Table 3.1: Degrees of freedom of six planes of crushing apparatus 

   Plane    
Motion   x  0   x  H    y  0   y  H    z  0  z  H  

x 0   0  0 
y 0  0   0 
z 0  0  0  

 

The numerical apparatus operates very much like the so-called “true triaxial” 

testing facility for soils, the first version of which was developed at Cambridge University 
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in the early 1970s (Hambly, 1969; Pearce, 1971; Wood 1975). The word “true” was added 

to triaxial in order to distinguish this test setup from the conventional axisymmetric triaxial 

test used in geotechnical materials testing. Crushing of foams under the more conventional 

triaxial loading will be discussed in Chapter 6. Thus, to distinguish between the two test 

setups we use the name “true triaxial test” for the present apparatus.  

3.1.2 Boundary and Loading Conditions 

A cubical random foam model with 103 cells described in Chapter 2 is placed in the 

cavity of the apparatus (Fig. 3.1a). End nodes on each surface will come into contact with 

the rigid plates. This contact is frictionless, but in the way of reducing the edge effects, the 

rotational degrees of freedom of the contacting nodes are constrained. 

The random foam model is crushed in the three directions by prescribing the motion 

of the surrounding rigid plates. The prescribed displacements, 
 
 i , can be arbitrary but for 

the crushing simulations presented in this study they will follow radial paths in the   {x, y,z} 

space. In particular, three families of radial displacements will be considered: 

   (n,1,1)T , 0  n  5,    (n,0.5,1)T , 0  n  5,     (n,0,1)T , 0  n  5   (3.1) 

where   is the amplitude in the z-direction as shown in Fig. 3.2.  

LS-DYNA is an explicit code, so quasi-static loading is achieved by selecting the 

loading time history,    (t) , slow enough to keep the kinetic energy much smaller than the 

internal energy throughout the loading history. In this work, the loading history in the z-

direction, 
  
 z (t)  is carefully chosen following the smooth step function originally from 

ABAQUS: 

  
 z ( )  o  (1  o )3(10 15  62)      (3.2) 

where 
  
  (t  ti ) / (ti1  ti ) , 

 
o  and 

 
1 are the start and end displacement of the function, 

respectively. The scheme ensures that the loading increments are extremely small at the 

initial stage, and gradually enlarge when the deformation reaches the densification stage. 

This has to be balanced by the fact that a complete crushing response of a model with more 
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than 81,000 elements and about 500,000 degrees of freedom, which includes contact is 

very computationally intensive. 

3.2 ANALYSIS OF THE SET    (n,1,1)T  

3.2.1 Equi-triaxial Crushing:    (1,1,1)T  

The analysis of the set    (n,1,1)T  starts with the random foam model crushed in the 

triaxial apparatus in an equi-triaxial manner. This is achieved by prescribing the same 

displacement histories, 
  
 i (t) , to the three active planes, and is designated as    (t)(1,1,1)T . 

The model foam is crushed down to 0.6H in each of the three directions, which implies that 

the volume is reduced to 30.216H . The crushing involved 138 displacement output 

increments, enough to capture the key information of the responses in the three directions, 

including limit stresses, stress minima, stress levels of extended plateaus, etc. In view of 

the large changes in cross-sectional area of the specimen, the true stresses will be reported 

as 
  
{sx ,sy ,sz} in this chapter and YK19a, where each component represents the reaction 

force on the respective plane divided by the current area of the side. 

The calculated results are presented in Figs. 3.3 – 3.5. Figure 3.3a shows the 

resultant true stress-normalized displacement response measured in each direction. Figure 

3.3b shows the mean stress plotted against the change in volume up to 
  
u / uo  0.75 , 

where 

  
s  (sx  sy  sz ) / 3  I1 / 3       (3.3) 

and 

  
u / uo  [1 (1  x )(1 y )(1  z )],  

  
 i   i / H .   (3.4) 

The foam is isotropic so the three responses in Fig. 3.3a follow very similar 

trajectories. Figures 3.4 and 3.5 show a select number of deformed sections of the model 

in the y x  and y z  planes respectively, which correspond to the numbered bullets on 
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the 
 
sx   x  response (same time steps for the other two responses). To reduce the expected 

edge effects on the observed cell deformation, the sections are taken from the middle of 

the cubical domain, as shown schematically in Fig. 3.6. For clarity, the images are limited 

to slices 0.12H thick (a little thicker than one cell). 

The foam initially deforms elastically and the three 
 
si   i  responses rise sharply, 

and so does the  s  u , here 
  
u  u / uo. The measured bulk modulus is  k

* /k  0.00961

, which compares with 0.0112 yielded by the periodic Kelvin cell formula in Gong et al. 

(2005a). At higher stresses, ligaments start to yield and the overall stiffness of the foam 

gradually degrades. The three 
 
si   i  responses develop stress maxima at about 450 psi 

(3.10 MPa) at average strains of about 0.004 (the actual stresses and the corresponding 

strains are slightly different in the three directions because of the randomness of the 

microstructure). It is worth pointing out that the limit stresses are influenced to some degree 

by the specific interface conditions between the foam and the plates. The mean stress 

maximum is 450.6 psi (3.11 MPa) at the corresponding volume change  u  0.012 . Both 

the mean stress maximum and the corresponding volume change follow Eqs. (3.3) and 

(3.4). Up to this point, the deformation of the foam model is distributed throughout the 

domain and can be considered as uniform. 

Beyond the stress maxima, the stresses decay down to about 350 psi (2.41 MPa) 

and, simultaneously, deformation starts to localize at the “weakest” parts of the domain, 

which in this study are the cells in contact with the rigid plates. Images  in Figs. 3.4 and 

3.5, at normalized displacements of about 0.032, correspond approximately to the lowest 

stresses recorded. The ligaments in contact with the moving planes, originally at y H  

and z H , have undergone significant local bending, and the adjacent cells have started 

collapsing. Interesting, in the third direction similar localized deformation takes place at 

the plane 0x  . Examination of the complete specimen confirms that the ligament bending 

and cell crushing observed in these three edges are representative of what takes place across 

the complete planes. As the local cell deformation increases, ligament contact develops 
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which stiffens the crushing zones, leading to a small recovery in the stress. The stress 

increase is sufficient to destabilize neighboring cells, so in images  and , at normalized 

displacements of about 0.051 and 0.093, the cell crushing has spread inward at all three 

planes, while the stresses are staying between 370 and 380 psi (2.55- 2.62 MPa). This takes 

place while the rest of the foam domain remains essentially intact. In summary, three nearly 

planar crushing fronts are propagating from the outer boundaries inward with most of the 

domain remaining essentially undeformed. 

Crushing continues, but due to the progressive reduction in surface areas, the true 

stresses start to gradually increase reaching levels of about 420 psi (2.90 MPa) by point  

at    0.15 . The corresponding images show the crushing fronts have moved inward from 

the three planes significantly. Moreover, crushing appears to be more intense at the corners 

formed by two active planes. Additionally, although crushing has now also commenced at 

zones adjacent to the other three planes, which thus far have been relatively unaffected, a 

significant part of the center of the foam remains intact. 

At point  at 0.195  , the stresses have risen to an average level of about 465 

psi (3.21 MPa). Crushing now is taking place next to all six bounding planes propagating 

inward. The volume is down to about 30.52H , most of it occupied by nearly intact foam 

at the center of the cube. In images  at 0.272  , the inward propagation of crushing 

emanating from the six bounding planes has continued and the stresses have risen to an 

average of about 595 psi (4.10 MPa). A central nearly spherical zone appears intact with 

complete cells, which remain unaffected. Beyond this point, the stresses trace an even 

steeper upward trend, reaching a level of 820 psi (5.66 MPa) at point  at 0.34  . The 

volume is now reduced to about 30.29H  but a small spherical volume of relatively intact 

cells remain in the center. s  is the average of the stresses in the three directions, so the 

s u  follows a very similar trajectory. 

In summary, in this section, the model foam crushed in the triaxial apparatus in a 

displacement-controlled equi-triaxial manner, exhibits an initial elastic response. This 

terminates into local stress maximum beyond which deformation localizes. Because of the 
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finiteness of the domain, crushing initiates at the boundaries that are in contact with the 

rigid plates and progresses inwards. Even though following the initial local stress minimum 

the true stresses recorded increase with displacement, crushed and intact material coexists 

until the whole domain densifies at a relatively high stress level. 

3.2.2 Effect of the geometry variation of    (1,1,1)T  

When using finite size domains to represent the behavior of the infinite medium, it 

is necessary to test the sensitivity of the solution to the domain size. To this end, we analyze 

the response of random foam models of different sizes to equi-triaxial loading    (1,1,1)T . 

Calculations are preformed for models with 63, 83, 103 and 123 cells. The models are 

generated in the same manner, are isotropic and are assigned a relative density of 0.08. 

Discretization and other numerical parameters are the same. Figures 3.7a-c show the four 

stress-displacement responses in the x-, y- and z-directions. Comparing the four responses, 

it is clear that increasing the domain from 63 to 83 cells shifts the stress levels to higher 

levels in all three directions. A smaller increase occurs when the domain is increased to 103 

cells. The responses of the 103 to 123 cell models have the same limit stresses and very 

similar stress levels in the three directions. However in the y-direction, the two responses 

separate somewhat in the re-stiffening branch. Overall, the solution of the 103 domain is 

considered converged. The 103 cell domain will thus be used in all subsequent crushing 

calculations. 

The foam models considered have random microstructures and as a result no two 

models generated in the Surface Evolver are the same. It is thus worth examining the effect 

of the small differences in the microstructure of the same size models on the calculated 

response. To this end we consider two such microstructures, designated as Models I and II, 

that are dressed in the same manner, and assigned the same density. Figure 3.8 compares 

the    (1,1,1)T responses in the three directions (not specified) from the two 103 cell models. 

Model II is the model used in this study. The two sets of responses have the same general 

trends. More specifically, the elastic moduli are very similar, and so are the stress maxima 
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and minima. The overall responses trace very similar trajectories. As pointed out in 

Gaitanaros et al. (2012) the small differences in the responses can be expected to get 

reduced as the size of the domain increases. 

3.2.3 Triaxial Crushing:    (3,1,1)T  

The second loading history analyzed is    (t)(3,1,1)T . Here the foam is crushed 

equally along the y- and z-directions, but at a rate three times faster along the x-direction. 

Figure 3.9a shows the true stress-normalized displacement responses recorded in the three 

directions, and Fig 3.9b the corresponding mean stress-change in volume response. Figures 

3.10 and 3.11 show a select number of deformed sections of the model in the y x  and 

y z  planes respectively that correspond to the numbered bullets on the response. The 

configurations are taken from the same time steps in the loading history    (t) , and as a 

result the corresponding displacements in the y- and z-directions are one third of those in 

the x-direction, and are marked with different bullets. The responses again rise elastically 

to stress maxima, followed by drops associated with localized deformation that spreads at 

lower stress levels. The 
 
sy   y  and 

 
sz   z  responses are similar and limited to 

normalized displacement of about 0.2, whereas the 
 
sx   x  response extends to 

  
 x  0.6 . 

The  s  u  response follows a similar three branch trajectory extending to  u  0.74  (or 

the volume is down to 0.26 of the original volume). The slopes of the initial linear elastic 

branches of the responses are the same in the y- and z-direction and larger than the slope in 

the x-direction, in accordance with the isotropic material behavior. A more detailed 

discussion of the elastic behavior will appear in Section 3.2.4 together with other cases in 

the same family of loading paths    (n,1,1)T . The initial stress maxima in the y- and z-

direction are at about 430 psi (2.97 MPa), whereas in the x-direction the stress rises to about 

463 psi (3.19 MPa). The loads are caused by bending and plastic deformation of the 

ligaments at the boundaries, so they occur at slightly different times, with the x-direction 

occurring first, the z-direction second, and the one in the y-direction last. 
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Beyond the stress maxima, deformation localizes once again at one of the contact 

surfaces in each direction, while the three stresses drop down to local minima (in the y- and 

z-directions about 320 psi and 350 psi in the x-direction – 2.21 and 2.41 MPa–– with 

corresponding displacements
 

0.034y  , 0.029z   and 0.026x  ). They then rise to 

a nearly common stress plateau of about 390 psi (2.69 MPa). In images  in Figs. 3.10 and 

3.11 at 
  
 x  0.0576  and one-third this value in the other two directions, edge ligaments 

and the adjacent row of cells along the plane originally at x H  have started collapsing 

and some ligament contact has developed. Because of this local stabilization, the stress has 

risen to about 400 psi (2.76 MPa). Since the foam has experienced only one-third the 

displacement along the y- and z-directions, the zones adjacent to these contact planes are 

much less deformed, and the stresses are still on their downward trajectory. 

In images  at 0.200x  , local crushing has commenced along the 0y   plane 

and the plane originally at z H . By this time, the stresses in the two directions have gone 

past their local minima and are approaching the level of xs . Concurrently, a nearly planar 

crushing front has propagated from the top along the x-direction, and a small amount of 

crushing has appeared along the 0x   plane. Figure 3.9b shows the volume to have been 

already reduced by about 30%. 

In image  in Fig 3.10 at 
  
 x  0.278  and  u  0.40 , the propagation of the 

crushing front on the side of the moving plane along the x-direction has continued, and the 

one at 0x   has also progressed while the stress has not changed significantly. The 

crushing front at 0y   has spread inwards and some mild crushing has commenced on the 

opposite side. The corresponding image in Fig. 3.11 shows that crushing in the z-direction 

is limited to the cells adjacent to the moving plane. 

In images  at 
  
 x  0.344  and  u  0.49 , xs  has risen to 485 psi (3.34 MPa). 

Crushing has propagated inwards along the x-direction from both sides. The same is the 

case for the y-direction, while in the z-direction the crushing along 0z   remains limited. 
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In images  at 0.389x   and 0.54u  , 500xs  psi (3.45 MPa) and the same 

trend continues in the x- and y-directions, but deformation along the 0z   plane remains 

limited. The crushing along the x-direction is very significant but a substantial number of 

cells in the center are seen in Fig. 3.10 to remain relatively undeformed (the events are 

similar in the x z  plane). This is clearly illustrated in the corresponding image in the 

y z  central plane image in Fig. 3.11. It is worth pointing out that the central planar views 

in Figs 3.10 and 3.11 are representative of the complete planes that cells in the center 

remain intact. Since in the x-direction crushing propagates from the endplates inwards, 

y z  plane cuts closer to the endplates show cell deformation occurring earlier and being 

more pronounced than at the central plane in Fig. 3.11. This difference between the central 

region and regions close to the endplates applies to the other two planes as well. This 

variation in the extent of crushing is illustrated Fig. 3.12 where deformed configurations at 

0.39x   from the central  y  x  plane cut and a cut about 0.08H from z H  are 

compared. Both cuts have the same thickness. 

In images  and  at 0.467x   and 0.519, xs  rises respectively to 576 and 668 

psi (3.97 and 4.61 MPa). The x-direction crushing has reduced the volume down to 30.38H  

in  but a significant number of cells in the center remain intact. In  with the volume 

down to about 30.33H , most of the foam is crushed but a number of cells in the center of 

the deformed domain remain essentially intact. Beyond images , Fig. 3.9a records xs  up 

to 900 psi at 0.586x  . Dashed lines in ys  and zs  show the responses in the y- and z-

directions at the same time step beyond 0.586x  . 

3.2.4 Set of Triaxial Crushing Results for:    (n,1,1)T  

In this section we examine the triaxial crushing results for the set of loading paths 

   (n,1,1)T . Similar calculations for additional cases in the    (t)(n,1,1)T  loading history 

family were performed in which n was assigned the following values: 
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 0.33,0.67,1.0,1.5,3.0,5.0n . The complete 
 
sx   x  and 

 
sy  y  responses recorded are 

plotted in Figs. 3.13a and b; for better visualization the early parts of the stress-

displacement responses are also shown expanded in Figs. 3.14a and b, where the abscissa 

is limited to average strains of 0.07. Figure 3.15 shows the corresponding mean stress-

change in volume responses.  

Overall, the stress-displacement responses follow the trends observed for 1.0n   

and 3.0. All responses start with a linear elastic branch that terminates into a stress 

maximum. Deformation starts to localize and the stress subsequently drops down to a local 

minimum, which results from local stabilization in collapsing cells due to ligament contact. 

The responses recover and start to trace plateaus, which at higher compressive 

displacements evolve into rising trajectories due to the reduction of area. 

The slopes of the initial elastic parts of the responses, 
  
 x / x  and 

  
 y /  y , are 

plotted in Fig. 3.16 against n with solid bullets. Included in the figure with dashed lines are 

corresponding plots produced by the following isotropic linearly elastic constitutive 

relations 
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Here   {E*,*}   {63.2 ksi, 0.365} were evaluated for optimal fitting of the 

measured slopes using an unconstrained optimization algorithm. The details of derivation 

of the constitutive relations and the optimal fitting are discussed in Appendix. A. By 

comparison, the corresponding values yielded by the Kelvin cell formulas in Gong et al. 

(2005a) are {63.3 ksi, 0.404}. The elastic modulus is also in quite good agreement with 

values in Jang et al. (2008) established from uniaxial compression of periodic isotropic 

random foams. It is worth noting, however, that as was the case for its predecessor 

developed in Gaitanaros et al. (2012) for uniaxial compression, the present meshing of the 
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model is aimed for crushing calculations, which may reduce its accuracy in the prediction 

of elastic properties. 

The early parts of the inelastic responses trace quite similar trajectories (Fig. 3.14). 

Five of the stress maxima in the x-direction are at about 450 psi (3.10 MPa) while the value 

for 0.33n   is at 428 psi (2.95 MPa). The stress maxima in the y-direction are at similar 

levels and have likewise modest variation. However, now the lowest value occurs for n = 

5.0. The stress minima in the x-direction occur at about 
 
 x  0.025 and the stress is around 

345 psi (2.38 MPa) for five cases and 307 psi (2.12 MPa) for   n  0.33. They all recover 

around 
  
 x  0.05, tracing short stress plateaus that range between 380 and 400 psi (2.62-

2.76 MPa). In the y-direction the stress minima occur also at 
 
 y   0.025, which clearly 

means they occur at different times than the minima in the x-direction. Subsequently, the 

stresses rise and trace either a small undulation or a plateau around 378 psi (2.61 MPa). 

At higher displacements, the stresses start increasing (Fig. 3.13). The increase in 

stress depends on n; in the x-direction, for the lower values of n the stress picks up at 

smaller displacements, and the increase is becoming more gradual as n increases. The 

responses in the y-direction exhibit the opposite trend. For the larger values of n the stress 

picks up at smaller values of 
 
 y , and the upswing is increasingly delayed for smaller 

values of n. 

It is important to point out that beyond the initial stress maximum the deformation 

is inhomogeneous for all values of n up to points  on the response. This is illustrated in 

Fig. 3.17 that shows a pair of deformed configurations for each n corresponding to  u  0.5

. The configurations on the left column come from the y x  central plane, and the ones on 

the right from y z  central plane (see Fig. 3.6). All images show coexistence of crushed 

and essentially intact cells. The events at smaller and larger volume changes are similar to 

those reported for n = 1.0 and 3.0. 

The mean stress-change in volume   (s  u ) responses in Fig. 3.15 exhibit similar 

trajectories to those of the stress-displacement ones. The elastic bulk modulus is nearly the 
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same for the six cases, ranging between  k * /k  of 0.00955 for n = 0.33 and 0.00965 for n 

= 5.0 with the average of 0.00961 ( 38.17 10k   ksi). The corresponding value based on 

  {E*,*} from Fig. 3.16 is 0.00959. The local mean stress maxima are again close, ranging 

between 415 to 451 psi (2.86-3.11 MPa) for n = 5.0 and 1.0 respectively. Beyond the 

maxima, the responses stay banded together, exhibiting a similar small level of variation 

in stress. The stresses drop down to about 360 psi (2.28 MPa) tracing an extended plateau 

up to  u  0.4  beyond which they gradually rise with volume change. With the exception 

of the response for n = 5.0 which strays slightly, the other five responses stay banded up to 

the end of crushing when the volume is reduced by 70%. 

One key characteristic for the low density foam is its unique energy absorption 

capacity resulting from relatively low crushing strength and extended stress plateaus. The 

energy absorbed per unit undeformed volume, E, is calculated as the sum from the three 

directions: 

E i i
i

d   ,  , , .i x y z      (3.6) 

Here i  is designated as the nominal stress in each direction. Figure 3.18 shows E at 

different values of change in volume, u , against n. E remains essentially invariant to n 

for all values of volume change. It will be interesting to examine if this insensitivity to this 

loading parameter holds for other triaxial loading histories. 

3.3 ANALYSIS OF THE SET    (n,0.5,1)T  

3.3.1 Triaxial Crushing:    (3,0.5,1)T  

The second family of loading paths considered is    (n,0.5,1)T  (see Fig. 3.2). The 

loading path    (3,0.5,1)T is examined is some detail in order to establish the general 

characteristics of this loading family. Figure 3.19 shows the three sets of stress-normalized 

displacement responses plotted together. Figures 3.20 and 3.21 show a select number of 
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deformed sections in the z x  and y z  planes taken once more from the central planes, 

as shown in Fig. 3.6. Crushing in the y-direction is limited, so configurations in the plane 

y x  are less interesting and are not shown. The configurations again were taken at the 

same time steps and, as a result, they correspond to different stages of the crushing history 

in each plane. The general characteristics of the three responses are similar to those 

discussed for the loading history    (3,1,1)T  in Fig. 3.9a, except that here the responses are 

different in the three directions. The elastic moduli follow the isotopic relationships, with 

values similar to those reported in the previous section. The stress maxima are at different 

levels and they occur at different displacements as shown in Table 3.2. 

Table 3.2: Stress maxima in the three directions for the loading path (3, 0.5,1)T  

 x y z 

 
si  psi 
(MPa) 

463 
(3.19) 

410 
(2.83) 

435 
(3.00) 

 
 i  (%) 0.60 0.46 0.44 

 

Crushing again starts at the edges in contact with the rigid plates. In the x- and z- 

directions crushing initiates at the moving plates, and in the y-direction at the stationary 

plate at   y  0 . The responses develop local stress minima, which are ordered as the stress 

maxima, but correspond again to different time steps in the loading history (compare the 

positions of the solids bullets on each response). At stations  in Figs. 3.19, 
 
 x  has gone 

through a local stress minimum and has started tracing a stress plateau at about 380 psi 

(2.62 MPa). In the corresponding image in Fig. 3.20, a row of cells in contact with the 

moving x-plane, have crushed. In the z-direction at this station the displacement is one third 

of 
 
 x  and 

 
 z  is still on the descending branch. Thus only minor ligament bending is 

observed in Fig. 3.21. In the y-direction the response is even further behind with even less 

localized deformation registering. At station  the localized crushing in the x-direction has 

increased significantly while 
 
 x  remains essentially unchanged. The z-side in contact with 
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the moving plane shows more local ligament bending and the corresponding stress has 

gone through its local minimum and is on an increasing trajectory. The deformation in the 

y-direction remains limited with 
 
 y reaching its lowest level. 

Subsequently, as was the case for the previous loading paths, crushing progresses 

from the boundaries inwards. The x-direction response traces an extended stress plateau. 

Image  in the z x  plane shows that crushing has commenced from the stationary plane 

at 0x   also, and subsequently propagates inwards from both sides. In image , a 

significant number of cells in the center of the plane remain intact. At higher values of 
 
 x

, the number of uncrushed cells gets progressively reduced and simultaneously the stress 

rises at a steeper rate. 

Crushing in the z-direction is more limited and even more so in the y-direction. 

Consequently, Fig. 3.21 shows that in the early stages of the loading history most of the 

cells in the y z  plane remain intact. The extent of crushing increases in images -, but 

in  a significant number of cells remain relatively uncrushed, even though they have 

undergone some distortion. It is again pointed out that since in the x-direction crushing is 

progressing inwards from the endplates, y z  planar cuts made closer to the end-plates 

show earlier and more pronounced cell deformation than in the central plane depicted in 

Fig. 3.21. 
 
sz  is always somewhat lower than the corresponding 

 
sx , and 

 
sy  lags behind the 

other two values throughout the loading history. To highlight this difference, the 
 
sy and 

 
sz  

responses are drawn with solid line up to the increment that corresponds to 
 
sx  = 1000 psi 

(6.90 MPa), and subsequently with dashed lines. 

3.3.2 Set of Triaxial Crushing Results for:    (n,0.5,1)T  

Six cases are analyzed from the family of crushing calculations under radial loading 

paths in which the displacements are different in the three direction, ( )( , 0.5,1)Tt n , with 

the variable n taking values  0.33,0.67,1.0,1.5,3.0,5.0n . The responses for all loading 



 39 

histories in this set are plotted in Fig. 3.22. Figure 3.22a-3.22c shows the six 
 
sx   x , 

 
sy   y , and 

 
sz   z  responses. The initial linear parts of the responses follow the isotropic 

material trend observed for the previous loading history set. They were used to estimate 

the elastic moduli using the optimization algorithm outlined in Section 3.2.4 and the results 

are:   {E*,*}   {67.3 ksi, 0.357}; in other words, slightly different values than those 

yielded by the six    (n,1,1)T responses. Figure 3.23 shows the slopes of the initial elastic 

parts of the responses, 
  
 x / x , 

  
 y /  y , and 

  
 z /  z  against n with solid bullets, fitted 

with the following isotropic linearly elastic constitutive relations 

  

 x
x


E*

(1*)(1 2*)

n(1*)  3* / 2

n
,  

  

 y

 y


E*

(1*)(1 2*)
(1*  2n*), 

  

 z
 z


E*

(1*)(1 2*)
(1

*

2
 n*).      (3.7) 

All the responses exhibit stress maxima and minima, the values of which are 

generally quite closely packed and occur at similar displacements for each path. However, 

the differences between directions outlined for the case above transfer to the whole set. The 

x-direction responses fall in accordance with the value of n, so n = 0.33 undergoes the 

minimum axial crushing and n = 5.0 the maximum. For this reason, the y- and z-direction 

responses are ordered in the opposite manner in Figs. 3.22b and 3.22c. It is important to 

point out that for this family of radial paths as well, beyond the stress maxima, the 

deformation is inhomogeneous for all values of n. This is illustrated in Fig. 3.24 that shows 

a pair of deformed configurations for each n corresponding to  u  0.5. The configurations 

on the left column come from the z x , and the ones on the right from the y z  central 

plane. All images show coexistence of crushed and uncrushed cells. The behavior at 

smaller and larger volume changes are along the lines of those in Figs. 3.20 and 3.21. 
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The mean stress-change in volume responses for this set are plotted in Fig. 3.25. 

The linear elastic branches exhibit an average bulk modulus of about  k * /k   0.00962, in 

a range of 0.00956 (n = 0.33) to 0.00967 (n = 5.0). The corresponding predicted value from 

{ *, *}E   of the set is 0.00959. Both the averaged measured and predicted values are close 

to the values reported in Section 3.2.4. All responses exhibit maxima that are closely 

grouped together. They then drop down to local minima followed by plateaus that extend 

to about  u  0.4 . For larger volume changes, the foam densifies and the mean stress 

follows an increasing trend. With the exception of n = 5.0, which strays somewhat, the 

other five responses are banded together up to a volume change of 70%. 

The energy absorbed per unit undeformed volume, E, at different values of change 

in volume, is plotted in Fig. 3.26 against n. E remains essentially invariant to n for all values 

of volume change. 

3.4 ANALYSIS OF THE SET    (n,0,1)T  

3.4.1 Triaxial Crushing:    (3,0,1)T  

The third family of loading paths considered is    (n,0,1)T  in which the 

displacement in the y-direction is zero (see Fig. 3.2). We again consider first the case with 

n = 3.0,    (3,0,1)T in order to establish the general characteristics of this loading family. 

Figure 3.27 shows the measured stress-normalized displacement responses in the x- and z-

directions, which show similar trends to the responses reported for the    (3,1,1)T  and 

   (3,0.5,1)T  radial paths. The main difference is that, since 
  
 y  0 , no response is traced 

for the y-direction, although the stationary plates at   y  0  and  y  H  develop reaction 

forces. Figures 3.28 and 3.29 show a select number of deformed sections taken from the 

z x  and y z  central planes. The two responses start with linear branches with slopes 

that reflect the initial linear elastic and isotropic behavior of the material. They terminate 
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into stress maxima beyond which the foam starts to crush. The responses develop stress 

minima that occur at different time increments. Image  in Fig. 3.28 shows crushing to 

have commenced at the x-direction moving plate. At the same time the deformation in the 

zone adjacent to z H  is limited, and zs  is still on the descending slope. Images  in 

Figs. 3.28 and 3.29 show crushing to be also taking place at the z-direction moving plate. 

Concurrently, very limited deformation is observed at the y-direction edges.  

In images  and , at 0.204x   and 0.319, crushing has continued to propagate 

inwards from both moving plates, while 
 
sx  remains relatively unchanged, presumably 

because the  y  z  cross-sectional area of the foam does not change significantly (see 

images - in Fig. 3.29). Throughout this loading history, crushed and essentially intact 

cells are observed to coexist. By image  in Fig. 3.28, crushing has commenced from the 

stationary x-direction plate also, and the relatively intact cells are now concentrated in the 

center of the plane; 
 
sx  starts to increase and so does 

 
sz . By contrast, deformation in the 

central y z  plane in Fig. 3.29 is limited to the side of the moving z-plate. We point out, 

however, that a y z  planar cut made closer to the upper x-direction plate shows more 

pronounced cell deformation than in the central plane in Fig. 3.29. Subsequently, the now 

densified foam continues to crush but with increasing stresses. Relatively undeformed cells 

continue to be observed in image , but by image  the foam appears densified in the x-

direction. 

3.4.2 Set of Triaxial Crushing Results for:    (n,0,1)T  

Similar calculations for additional cases in the ( )( ,0,1)Tt n  loading history family 

were performed in which n was again assigned the values: 
  
n 0.33,0.67,1.0,1.5,3.0,5.0  . 

The 
 
sx   x  and 

 
sz   z  responses corresponding to all radial loading paths in this set are 

plotted in Figs. 3.30a and b, respectively. They follow similar trends to those reported for 

the other two families of radial paths, and will be discussed in less detail. The elastic 
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constants yielded by this set are:   {E*,*}   {66.8 ksi, 0.358}, values comparable but 

slightly different from those of the other two sets. The slopes of the initial elastic parts of 

the responses, /x x  , and /z z   are plotted against n with solid bullets, Fig. 3.31. 

Included are the isotropic linearly elastic constitutive relations in Eq. (3.8) fitted with 

dashed lines.  

  

 x
x


E*

(1*)(1 2*)

n(1*) *

n
,  

  

 z
 z


E*

(1*)(1 2*)
(1*  n*).      (3.8) 

All responses in Fig. 3.30 exhibit stress maxima beyond which localized crushing 

of cells takes place. The responses trace stress minima followed by stress plateaus, the 

extents of which in the x-direction go with n and in the z-direction go with n-1. For all values 

of n, the deformation beyond the stress maximum is inhomogeneous with crushed and 

relatively undeformed zones of cells coexisting. Figure 3.32 shows deformed 

configurations in the z x  and y z  central planes for each n corresponding to  u  0.5. 

The events at smaller and larger volume changes follow the trends in Fig. 3.32 and 

observed in the calculation of the path (3,0,1)T  in Figs. 3.28 and 3.29. The stresses pick 

up when the material becomes densified in the dominant loading direction. 

Figure 3.33 shows plots of the mean stress-change in volume responses for this set. 

The linear elastic branches yield a bulk modulus  k * /k   0.00965, which is very 

comparable to that produced by the other two loading histories. The responses exhibit local 

maxima and drop down to stress plateaus that remain at nearly the same level up to 

 u  0.4 . They stay banded together but exhibit more difference between them than the 

other two sets of results. At higher volume change, the stresses pick up with the n = 5.0 

response being somewhat lower than the others. 
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The energy absorbed per unit undeformed volume, E, at different values of u , is 

plotted in Fig. 3.34 for different values of n. E again remains essentially invariant to n for 

all values of volume change. 

3.5 ANALYSIS ACROSS THE THREE FAMILIES OF LOADING PATHS 

The stress-displacement responses from the three families of loading paths reported 

in Chapter 3 exhibit similar trends. This section analyzes unique properties of Al-alloy 

foams measured from the triaxial crushing calculations of the isotropic random foam model 

across the three families of loading paths. The model foam exhibits an initial linear elastic 

and isotropic behavior. Fitting of the slopes of the initial linear parts of the three responses 

for the six radial paths of each family produced the following estimates for the foam elastic 

modulus and Poisson's ratio as shown in Table 3.3. 

Table 3.3: Elastic modulus and Poisson's ratio of the three families of loading paths 

   E *ksi 
(MPa)   *  

  (n,1,1)  63.2 
(436) 

0.365 

  (n,0.5,1)  67.3 
(464) 

0.357 

  (n,0,1)  66.8 
(460) 

0.358 

 

The observed differences in Table 3.3 are caused by the finite size of the random 

microstructure and by small differences introduced at the edges by the "cropping" 

performed for cleaner interphasing with the endplates. For comparison, the corresponding 

values yielded by the Kelvin cell foam formulas in Gong et al. (2005a) are {63.27 ksi, 

0.404}. 

The stresses measured at plastic work of 0.09 psi (0.62 kPa) from the three families 

are used to develop a Druckler-Prager type of initial yield surface for this compressible 

material. The yield function is calibrated using the stress-displacement responses from the 

18 triaxial tests reported here (see a more detailed description of the constitutive model in 
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Chapter 4). The data shows a quadratic relationship between the two stress invariants given 

by 

   2 22 1/2 1/2
2 1[3 / 3 ] [1 / 3 ]oJ I          (3.9) 

(similar to Deshpande and Fleck, 2000). For the chosen value of plastic work,  = 0.78. 

The limit stresses, 
  
siL , i  x, y,z , recorded in the 18 crushing simulations are 

plotted in Fig. 3.35 against the parameter n. The x-direction values corresponding to the 

same n fall together and so do the ones in the z-direction. The y-direction values become 

lower when the ratio 
  
 y /  z  decreases. 

  
sxL(n)  exhibit somewhat  lower values for n < 1, 

they increase with n, and remain nearly constant for   n  1.5. 
 
syL  and 

 
szL  follow the 

opposite trend with n. They start at relatively higher values and decrease as n increases. 

The mean stress-change in volume responses for the   (n,1,1)T  and   (n,0.5,1)T  

responses were at approximately the same stress levels, whereas those for the   (n,0,1)T  

traced somewhat lower stress levels. 

The energy absorbed at a given volume change was the same for each value of n in 

each set. Figure 3.36 plots E against u  for three cases from each of the three radial path 

families. Clearly, E is linearly related to u  and no significant difference is observed 

between the values corresponding to the nine data points at each value of u . 

3.6 SUMMARY 

Crushing experiments under triaxial loads are difficult, primarily because of the 

large volume changes involved. To address this challenge a true triaxial numerical 

apparatus has been used to crush a micromechanically accurate cubical model of an 

isotropic Al-alloy open-cell foam with relative density of 0.08 down to volume changes of 

about 70%. The model foam has been crushed under three families of radial displacement 

paths in the   (x, y, z)  space designated in Eq. (3.1). The first set    (t)(n,1,1)T involves the 

displacement in the y-direction the same as in the z-direction. It includes the calculation of 
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equi-triaxial crushing: (1,1,1)T . The second set ( )( , 0.5,1)Tt n  allows the displacement 

to be different in the three directions. In the third set, ( )( , 0,1)Tt n , the displacement in the 

y-direction is zero. Thus, this set is regarded as loading paths for “confined” biaxial 

crushing. In each family, crushing calculations are carried out for six radial loading paths, 

with the variable n taking values  0.33,0.67,1.0,1.5,3.0,5.0n . Reported are the true 

stress-displacement responses in the three directions and corresponding foam deformed 

configurations; the mean stress-volume change responses; and the energy absorbed as a 

function of the volume change.  

For all loading paths, the true stress-deformation responses in the three directions 

exhibit an initial linearly isotropic elastic branch that terminates into a stress maximum. 

Deformation localizes usually at the boundaries in contact with the rigid plates of the 

apparatus leading to a drop in stress. Contact of ligaments arrests local deformation, the 

stress traces a minimum, and local crushing starts to spread to the rest of the domain. The 

direction undergoing the maximum displacement traces an extended stress plateau with the 

crushing fronts moving inwards from the boundaries of the domain. The other directions 

undergo less crushing and develop shorter stress plateaus. As the crushing increases the 

true stresses start to rise, partly due to the reduction of cross sectional areas. Throughout 

the loading history crushed and relatively undeformed cells coexist. Clearly, homogenized 

inelastic constitutive models that assume the material to deform homogenously are 

inappropriate for this class of foams. 

The mean stress-change in volume responses of each set coalesced reasonably well 

and exhibit banded trajectories following the trends observed in the true stress-

displacement responses. The energy absorbed per unit undeformed volume, E, is found to 

be linear with u  and invariant to n. Furthermore, no significant difference is observed 

across the three sets at the same u . 

The observations of multiaxial crushing of the random foam model will guide the 

development of the compressible constitutive model in the following chapters. 
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Fig. 3.1: (a) True triaxial numerical apparatus used in the present study consisting of 
three pairs of orthogonal planes. (b) Planar views of the apparatus showing 
the degrees of freedom of the six plates. 

  

(a) 

(b) 
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Fig. 3.2: Three families of radial paths adopted in the crushing of the model foam. 
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Fig. 3.3: (a) Calculated true stress-displacement responses in the x-, y- and z-directions 

for the (1,1,1)T  loading path, and (b) corresponding mean stress-change in 
volume response. 

 

(a) 

(b) 
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Fig. 3.4: Sequence of deformed foam images from the y x  central plane corresponding to the numbered points on the 
responses in Fig. 3.3a and 3.3b. 

  

    

    
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Fig. 3.5: Sequence of deformed foam images from the y z  central plane corresponding to the numbered points on the 
responses in Fig. 3.3a and 3.3b. 

 

 

 

 

   

  
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Fig. 3.6: Depiction of the y x  and y z  central planes. 
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Fig. 3.7: The (1,1,1)T  responses from random foam models of different domain sizes: 
(a) in the x-direction, (b) y-direction, and (c) z-direction. 

(a) 

(b) 

(c) 
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Fig. 3.8: Comparison of the (1,1,1)T  responses in the three directions from two 310  
cell models. 
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Fig. 3.9: (a) Calculated true stress-displacement responses in the x-, y- and z-directions 

for the (3,1,1)T  loading path, and (b) corresponding mean stress-change in 
volume response. 

 

(a) 

(b) 
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Fig. 3.10: Sequence of deformed foam images from the y x  central plane corresponding to the numbered points on the 
responses in Fig. 3.9a and b. 

  

    

    
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Fig. 3.11: Sequence of deformed foam images from the y z  central plane corresponding to the numbered points on the 
responses in Fig. 3.9a and b. 
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 

   

  
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Fig. 3.12: (a) Location of the central plane cut and the cut adjacent to z H . (b) 

Deformed configurations of model slices at 0.39x   for the (3,1,1)T  

loading path from the central y x  plane, and (c) the y x  plane closer to 
z H . 

  

(a) 

(b) (c) 
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Fig. 3.13: Calculated true stress-displacement responses for the ( ,1,1)Tn  family of 
loading paths: (a) in the x-direction and (b) in the y-direction. 

  

(a) 

(b) 
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Fig. 3.14: Expanded views showing the initial parts of the calculated true stress-

displacement responses for the ( ,1,1)Tn  family of loading paths: (a) in the x-
direction and (b) in the y-direction. 

(a) 

(b) 
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Fig. 3.15: Calculated mean stress-change in volume responses for the ( ,1,1)Tn  family 
of loading paths. 
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Fig. 3.16: Measured slopes of initial elastic responses for the ( ,1,1)Tn  family plotted 

against n, and linear elastic isotropic fits { / [(1 )(1 2 )]}E E     . 
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Fig. 3.17: Images from the y x  and y z  central planes at 0.5u   for different 

values of n for the ( ,1,1)Tn  family of loading paths. 
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Fig. 3.18: Deformation energies as a function of n for various values of u  for the 

( ,1,1)Tn  loading paths. 
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Fig. 3.19: Calculated true stress-displacement responses in the x-, y-, and z-directions 

for the (3,0.5,1)T  loading path. 
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Fig. 3.20: Sequence of deformed foam images from the z x  central plane corresponding to the numbered points on the 
responses in Fig. 3.19. 

  

    

    
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Fig. 3.21: Sequence of deformed foam images from the y z  central plane corresponding to the numbered points on the 
responses in Fig. 3.19. 
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   
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Fig. 3.22: Calculated true stress-displacement responses for the ( ,0.5,1)Tn  family of 
loading paths: (a) in the x-direction, (b) y-direction, and (c) z-direction. 

(a) 

(b) 

(c) 
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Fig. 3.23:  Measured slopes of initial elastic responses for the ( ,0.5,1)Tn  family plotted 

against n and linear elastic isotropic fits { / [(1 )(1 2 )]}E E     . 
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Fig. 3.24:  Images from the z x  and y z  central planes at 0.5u   for different 

values of n for the ( ,0.5,1)Tn  family of loading paths. 
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Fig. 3.25: Calculated mean stress-change in volume responses for the ( ,0.5,1)Tn  family 
of loading paths. 
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Fig. 3.26: Deformation energies as a function of n for various values of u  for the 

( ,0.5,1)Tn  loading paths. 
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Fig. 3.27: Calculated true stress-displacement responses in the x- and z-directions for 

the (3,0,1)T  loading path. 
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Fig. 3.28: Sequence of deformed foam images from the z x  central plane corresponding to the numbered points on the 
responses in Fig. 3.27. 

  

    

    
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Fig. 3.29: Sequence of deformed foam images from the y z  central plane corresponding to the numbered points on the 
responses in Fig. 3.27. 

  

 

 

 

   
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Fig. 3.30: Calculated true stress-displacement responses for the ( ,0,1)Tn  family of 
loading paths: (a) in the x-direction and (b) in the z-direction. 

 

(a) 

(b) 
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Fig. 3.31: Measured slopes of initial elastic responses for the ( ,0,1)Tn  family plotted 

against n and linear elastic isotropic fits { / [(1 )(1 2 )]}E E     . 
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Fig. 3.32: Images from the z x  and y z  central planes at 0.5u   for different 

values of n for the ( ,0,1)Tn  family of loading paths. 
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Fig. 3.33: Calculated mean stress-change in volume responses for the ( ,0,1)Tn  family 
of loading paths. 
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Fig. 3.34: Deformation energies as a function of n for various values of u  for the 

( ,0,1)Tn  loading paths. 
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Fig. 3.35: Limit stresses in the three directions plotted against n for the three radial paths 
analyzed. 
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Fig. 3.36: Deformation energies at discrete values of change in volume from nine 
loading paths. 
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Chapter 4:  Continuum Constitutive Model for Low-Density Foams45 

As reported in Chapter 1, it is well established that under compression low-density 

metallic and polymeric foams deform inhomogeneously, developing zones of locally 

buckled and crushed cells. Persistent compression causes the crushing to spread with the 

stress remaining relatively unchanged. For the Al-alloy foam used in this study, uniaxial 

crushing experiments as well as micromechanically accurate foam models have confirmed 

the co-existence of zones of crushed and intact material as the stress plateau is traced (e.g., 

see Jang and Kyriakides, 2009a; Gaitanaros et al., 2012). Chapter 3 demonstrated that this 

behavior carries over to the multiaxial crushing setting (see also Yang and Kyriakides, 

2019a). Despite the plethora of evidence of inhomogeneous crushing behavior, present 

continuum constitutive models of foams assume the material to harden monotonically and 

consequently do not capture this partially inhomogeneous behavior (e.g., Deshpande and 

Fleck, 2000, 2001; Zhu et al., 2019).  

In an effort to address this deficiency, this chapter presents an extension of the 

Deshpande and Fleck (2000) compressible constitutive family of models for foams with 

the aim of capturing the partially inhomogeneous crushing behavior. The model is 

calibrated using the stress-“average strain” responses of the 18 sets of triaxial crushing 

simulations reported in Chapter 3. Section 4.1 describes the framework of the constitutive 

model. Section 4.2 describes essential parameters for the isotropic elastic and the 

compressible plasticity part of the model chosen based on true triaxial crushing results in 

Chapter 3. 

4.1 CONSTITUTIVE MODEL FRAMEWORK 

The aluminum alloy foam is modeled as a compressible isotropic elastoplastic rate-

independent solid. The strain increments are decomposed into an elastic part and a plastic 

                                                 
4 Yang, C., Kyriakides, S., 2019. Continuum modeling of crushing of low-density foams. J. Mech. Phys. 
Solids, https://doi.org/10.1016/j.jmps.2019.103688. Chenglin Yang contributed as first author. 
5 Yang, C., Kyriakides, S., 2019. Crushing of low density foams under triaxial loadings. Extreme 
Mechanics Letters (accepted). Chenglin Yang contributed as first author. 



 83 

part, ij
pe

ij ijd d d    . Elastic deformations are linear and isotropic and thus elastic stress-

strain increment relations are given by 

  
dij

e 
1

E
d ij 


E

d kk ij , or 
  
d ij  C(E, )ijkl dkl

e  (4.1) 

where   {E,} are the elastic modulus and Poisson’s ratio of the material. It is noted that the 

true stresses in the three directions in Chapter 3 are reported as 
  
{sx ,sy ,sz}. However, to 

distinguish from the deviatoric stress components 
 
sij  in the constitutive model here, 

 
 ij 

are designated as the components of the Cauchy stress tensor. 

The yield function is assumed to be a compressible Drucker-Prager type, similar to 

the one adopted in Deshpande and Fleck (2000), in the form of  

  
f  3J2   2( I1 / 3)2




1/2

  e      (4.2) 

where 
  
I1   kk , J2  sijsij / 2,  and 

  
sij   ij  kk ij / 3. The constant   determines the 

shape of the yield surface and will be evaluated using data from Chapter 3. As is common 

in such models, a non-associated flow rule is adopted for added flexibility represented by 

  
g  3J2  b 2( I1 / 3)2




1/2

.       (4.3) 

The constant b  decides the shape of the flow potential and is determined in Section 4.2. 

The flow rule is then given by 

  

d ij
p  L ¶g

¶ ij
.        (4.4) 

The equivalent stress, 
 
 e , represents the current size of the yield surface and is given by 

  
 e  3J2   2( I1 / 3)2




1/2

.       (4.5) 
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The work compatible equivalent strain increment is developed as follows: The 

plastic strain decomposes into a hydrostatic and deviatoric part, 
1

3
p p p

ijij ij kkd de d    . 

Using the flow rule, the deviatoric and hydrostatic components can be expressed as 

  
deij

p 
L
g

3

2
sij ,   

  
dkk

p 
L
g

b2

3
 kk .    (4.6) 

Next, Eq. (4.5) squared becomes 

2
2 2 2 2

2 1
3

3 ( / 3)
2 9e ij ij kkJ I s s

      .     (4.7) 

Using Eq. (4.6) in Eq. (4.7) it becomes 

2 2 2
2 2

4
2

3
p p p

e ij ij kk
g g

de de d
 

L L b
æ ö æ ö ç ÷ ç ÷
è ø è ø

.     (4.8) 

From Eq. (4.8) L  can be expressed as 

1/2
2

2
4

2 2
( )

3 9
p p p
ij ij kk

e

g
d d d

L   
 b

 æ ö
   ç ÷ç ÷ è ø 

.    (4.9) 

The work compatible equivalent strain increment is evaluated from 

  

 ede
p   ijd ij

p  L ij
¶g

¶ ij
 Lg,      (4.10)  

which yields: 

 

  

de
p 

g

 e

æ

èç
ö

ø÷

2
2

3
dij

pd ij
p 

 2

b 4


2

9

æ

è
ç

ö

ø
÷ (dkk

p )2












1/2

.    (4.11) 

Eq. (4.11) can be used to convert the true stress-displacement responses from the 

calculations of various loading paths reported in Chapter 3 to equivalent stress-plastic 

strain relations for material calibration. Furthermore, p
ijd  developed from Eq. (4.9) and 

(4.10) can be implemented in an implicit algorithm.  

Back to the flow rule, Eq. (4.4) can then be expressed as 
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dij
p  de

p  e

2g2
[3sij  2b 2 kk ij / 9].     (4.12) 

Next, consider that the incremental stress-strain relationship starts with the form 

 

d ij  Cijkl dkl  dkl
p   Cijkl dkl  L ¶g

¶ kl

æ

èç
ö

ø÷
.    (4.13) 

Eq. (4.13) is further developed using the consistency condition of the constitutive equations  

.          (4.14) 

Combine Eq. (4.14) and (4.2), the consistency equation can be expanded as 

.       (4.15) 

where f  is in the form of 
1/22 2

2 13 ( / 3)J I    from Eq. (4.2) and / p
e e ¶ ¶  is obtained 

from the equivalent stress-plastic strain relation of the material. From Eq. (4.11)  can 

be replaced by / egL  , and thus the equation can be rewritten as 

.       (4.16) 

L  is obtained by putting Eq. (4.13) in (4.16) 

.   (4.17) 

From Eq. (4.13) to (4.17), finally the incremental stress-strain relationship can be written 

as 

e
ij ijkl ijpq mnkl rsuv klp

pq mn rs uv ee

f g gg f
d C C C C d

 
    

  ¶¶ ¶¶ ¶     ¶ ¶ ¶ ¶ ¶    
 (4.18) 
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4.2 MODEL CALIBRATION  

4.2.1 Parameters for the Constitutive Model 

The constitutive model is implemented in the “crushable foam isotropic hardening 

model” in ABAQUS (see Users Manual 2014), which is calibrated using directly the stress-

“average strain” responses of the 18 sets of triaxial crushing simulations reported in 

Chapter 3. The elastic modulus and Poisson’s ratio of the material is assigned 

approximately the average values measured in the family of crushing responses:   {E,}  

{63.27 ksi-436 MPa, 0.36}. More specifically,   is assigned the average of the fitted values 

of the three families shown in Table 3.3, and E  is assigned a value close to the fitted value 

of the set ( ,1,1)Tn . 

 The yield surface is established using the stress and strain values at plastic work of 

  W
p  0.09  psi (0.62 kPa) of all the 18 sets of crushing calculations. The plastic work is 

calculated in the same way as the energy absorbed E in Section 3.2.4, but with the elastic 

part subtracted. A least squares fit algorithm was then used to determine an optimal value 

of 0.78 for the parameter  . Figure 4.1 shows the resultant yield surface in the normalized 

distortional-mean stress plane (
 
 o  is the yield stress in the uniaxial compression test). 

Included with different symbols for each set are the data from the simulations. It is noted 

that the upper left data point in the family of uniaxial compression is from the simulation 

using the setup described in Gaitanaros et al. (2012), while the lower right uniaxial value 

is from the simulation in which the displacement in the y- and z-directions are restrained. 

In the way of motivating the non-associative flow rule adopted, the local normal 

  

3¶ f

¶I1
,

1

3

¶ f

¶J2
1/2

æ

è
ç
ç

ö

ø
÷
÷

 at three locations on the yield surface as well as the flow direction 

established from the responses, 

  

3¶g

¶I1
,

1

3

¶g

¶J2
1/2

æ

è
ç
ç

ö

ø
÷
÷

, are displayed by red and green color 

arrows respectively. The calculation of the two directions using the stress and strain values 
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from the simulations is presented in Appendix B. Clearly, the two sets of directions are 

different. 

In ABAQUS’ version of this model, the plastic potential parameter b  is tied to a 

“plastic” Poisson’s ratio. This connection is not possible for the present material because 

of the inhomogeneous nature of the deformations. Instead, b  is set at 1.5 chosen as it 

produces the best overall predictions of stress plateau levels in the simulations of the 

crushing responses using the continuum model. 

4.2.2 Material Stress-Strain Relation for True Triaxial Crushing 

The “crushable foam isotropic hardening model” in ABAQUS is calibrated to a 

hardening uniaxial compressive foam response. All foam crushing responses in Chapter 3 

developed stress maxima followed by localized deformation, which gradually spread 

through the domain tracing stress plateaus of different extents. Aiming to reproduce this 

inhomogeneous deformation at the continuum level, a softening branch is introduced to the 

material response. Figure 4.2 plots the equivalent stress-strain, 
 
 e  e

p , response 

evaluated for    (1,1,1)T  loading and  b  1.5. Here  where  is based 

on the average logarithmic plastic strain increments of the crushing simulations using Eq. 

(4.6). Included with a dashed line is the material response adopted. It consists of three 

branches: (i) a linear softening branch for 
  
e

p  0.75  with 
  
Et

p  200 psi (1.38 MPa); (ii) 

a branch that follows the “measured” hardening part of the response for 
  
e

p  0.82 ; and 

(iii) a branch that connects (i) and (ii). This equivalent stress-strain relation will be 

implemented in the homogenized foam model for true triaxial crushing tests in Chapter 5. 

More details on the choices made follow. 

a. The whole set of 
 
 e  e

p  responses evaluated in the same fashion from the 

crushing responses of the    (n,1,1)T  family is plotted in Fig. 4.3. The six responses 

coalesce nicely over the stress plateaus up to a strain of about 0.8. However, they 
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exhibit different hardening for higher strains. The behavior repeats in the other two 

families ( ,0.5,1)Tn  and ( ,0,1)Tn  as shown in Fig 4.4a and b, respectively. This 

of course is a significant weakness caused by the simplicity of the assumed 

constitutive model. Dependence of hardening on equivalent strain has also been 

reported in Deshpande and Fleck (2000) and Shafiq et al. (2015), who adopted 

associated plasticity models based on yield functions similar to Eq. (4.2). Chen et 

al. (2000) and Zhu et al. (2019) reported a dependence of the yield surface shape 

on strain. 

b. The stress level of the softening branch is chosen such that the equal area Maxwell 

construction,  
*  295.14  psi (2.04 MPa), drawn with a fine dashed line in Fig. 

4.2, coincides with the stress plateau. The softening slope and its extent are selected 

for optimal performance. The effect of the choice of 
 
Et

p  on the results will be 

examined in the parametric study in Chapter 5. 

Interestingly, the equivalent stresses-change in volume responses, /e o u u , 

exhibit a uniform hardening trend at larger volume changes. Figure 4.5 shows one example 

of the six responses from the    (n,1,1)T  family. The six responses are banded together all 

the way up to 
  
u / uo  0.75 . This behavior may prove to be useful in any future extensions 

of the present constitutive model. 

4.2.3 Material Stress-Strain Relation for Conventional Triaxial Crushing 

Chapter 6 uses this constitutive model to simulate a set of conventional triaxial tests 

performed on the random foam in the continuum setting. In these tests the foam is loaded 

under external pressure and then compressed in one direction under displacement control. 

The equivalent stress-strain relationship used is similar to the one in Section 4.2.2 except 

that the softening branch has been lowered as described below.  
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Figure 4.6 shows the equivalent stress-strain 
  
( e  e

p )  response derived from the 

results of the equi-triaxial crushing numerical test in Chapter 3. Included is the equivalent 

stress-strain relation of a representative response from the triaxial set of tests in which the 

pressure is 100 psi (0.69 MPa). Shown with a dashed line is the material response adopted 

in the calculations of Chapter 6. The initial yield stress is 288.4 psi (1.99 MPa). The 

response has a short ascending branch to 339.2 psi (2.34 MPa) at 
  
e

p  0.01. Here it 

connects to a linear softening branch with plastic modulus of 
  
Et

p  200  psi (-1.38 MPa) 

that extends to 
  
e

p  0.64. For strains larger than 0.77 the assumed response follows the 

hardening part of the equi-triaxial test. The response is completed by adding a hardening 

section between 
  
0.64  e

p  0.77  to connect the softening and hardening branches as 

shown in Fig. 4.6. With these parameters the assumed response is similar to that in Fig. 4.2 

but the negative branch has been lowered somewhat for the Maxwell level to be in better 

agreement with the stress plateau of the conventional triaxial response.  
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Fig. 4.1: Initial yield surface in the 2 13 / 3o oJ I   plane calibrated using the 

results from the three loading families analyzed in Chapter 3. Included are the 
local normals and the flow directions for three responses; their difference 
supports the adoption of a non-associative flow rule. 

  



 91 

 

 

 

 

 

Fig. 4.2: Random foam equivalent stress-strain response from the (1,1,1)T  loading path 
and the partially unstable stress-strain response adopted for the homogenized 
material in Section 4.2.2. 
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Fig. 4.3: Measured equivalent stress-strain responses for the ( ,1,1)Tn  family of loading 
paths for the random foam model. 
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Fig. 4.4: Measured equivalent stress-strain responses for (a) the ( ,0.5,1)Tn , and (b) 

( ,0,1)Tn  family of loading paths for the random foam model. 

  

(a) 

(b) 
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Fig. 4.5: Measured equivalent stress-change in volume responses for the ( ,1,1)Tn  
family of loading paths for the random foam model. 
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Fig. 4.6: Random foam equivalent stress-strain response for the equi-triaxial test 

(1,1,1)T , and partially unstable response adopted in Section 4.2.3. Included 
for comparison is the corresponding response from the P =100 psi (0.69 MPa) 
triaxial test. 
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Chapter 5:  True Triaxial Crushing of Homogenized Foam Models6 

In an effort to add to the understanding of crushing behavior of foams under 

multiaxial loads, Chapter 3 investigated the crushing behavior of an Al-alloy open-cell 

foam with relative density of 0.08 under true triaxial loadings. A micromechanically 

accurate foam model was crushed in three directions under displacement control for three 

sets of radial loading paths. For all loading paths, the crushing propagates in an 

inhomogeneous manner. A band of locally collapsed cells was developed at the boundaries 

in each direction and subsequently propagated to the rest of the domain until the whole 

domain is crushed. Clearly, a homogenized “alternative” of such foams must address this 

partially inhomogeneous crushing behavior under triaxial loads. 

Motivated by these results, Chapter 4 presented a compressible constitutive model 

that captures this inhomogeneous behavior. In this Chapter the constitutive model is 

incorporated in a solid finite element model that aims to reproduce the triaxial foam 

crushing at the continuum level. Section 5.1 describes the setup for the crushing 

simulations in the continuum setting. Sections 5.2-5.4 simulate the radial displacement 

triaxial crushing of Chapter 3 using the homogenized model. Section 5.5 describes results 

from parametric studies on the performance of the homogenized model. A significant part 

of the study in Chapter 4 and 5 appears in Yang and Kyriakides (2019b). 

5.1 FINITE ELEMENT MODEL 

5.1.1 Geometry and Mesh 

A cubical domain with size H as shown in Fig. 5.1 is used for all the crushing 

simulations of the homogenized foam model. It is discretized with 8-node incompatible 

linear brick elements (C3D8I) that allow the development of internal strain gradients. This 

type of element has been found to be effective in the modeling of solids exhibiting 

inhomogeneous deformations (e.g., Hallai and Kyriakides, 2013; Jiang et al. 2017a, 

                                                 
6 Yang, C., Kyriakides, S., 2019. Continuum modeling of crushing of low-density foams. J. Mech. Phys. 
Solids, https://doi.org/10.1016/j.jmps.2019.103688. Chenglin Yang contributed as first author. 
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2017b). To avoid biasing the anticipated localization and its evolution, the domain is 

discretized with the irregular mesh shown in Fig. 5.1. The mesh is generated by seeding 

each of the 12 edges with 25 elements and one diagonal of each face with 24. This results 

in a domain with a total number of 36,288 irregular brick elements.  

To help initiate the instability, geometric imperfections in the form of three small 

depressions are introduced to the three moving faces of the cubical domain with normals 

in the positive   (x, y,z)  directions. Each depression is in the form of one half sine that 

covers the width of the moving plane. It starts at 0.05H and ends at 0.2H measured the 

adjacent stationary plane. Thus for example on the plane  x  H  the sine imperfection of 

amplitude a, extends over   z  (0.05  0.2)H  as shown in Fig. 5.1b. 

5.1.2 Boundary and Loading Conditions 

The cubical random foam microstructures in Chapter 3 were crushed by prescribing 

the displacements of orthogonal rigid planes surrounding the foam that formed a “true 

triaxial” test arrangement. To simulate the radial displacement crushing paths performed, 

  
( x , y , z )T , the solid domain in Fig. 5.1a is compressed as follows: 

- The normal displacements of the nodes on the faces   x  0 ,   y  0  and   z  0 are 

prescribed to be zero. 

- The domain is compressed by prescribing incrementally the normal displacements, 

  
 x ,  y ,  z  of all nodes on the faces  x  H ,  y  H , and  z  H . Figure 5.1b shows the 

boundary and loading conditions on the  y  H  face. 

- The same three families of radial path histories defined in Fig. 3.2:    (n,1,1)T , 

   (n,0.5,1)T  and    (n,0,1)T  will be simulated using the homogenized model also.  

The domain is compressed in ABAQUS/Explicit. To keep the simulation quasi-

static, the loading history follows the scheme described in Section 3.1.2. The increment is 

slow enough to ensure that the kinetic energy is much smaller than the internal energy. The 
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average stress acting in each direction is evaluated by dividing the sum of the reaction 

forces acting on each stationary face by the current area of the face. 

5.2 ANALYSIS OF THE SET    (n,0.5,1)T  

5.2.1 Triaxial Crushing:    (3,0.5,1)T  

For all loading paths studied in this Chapter, the tests were simulated numerically 

using the continuum constitutive model developed in Chapter 4. The crushing path 

   (3,0.5,1)T  that exhibits different displacement histories in the x-, y- and z-directions, is 

analyzed first to describe the crushing behavior of the homogenized foam model in the 

three directions. The domain is loaded incrementally prescribing    (t) . Initially, the 

increments are relatively small in order to capture the anticipated onset of instability and 

localized deformation, and become larger once the stresses start tracing stress plateaus 

making for a total of 150 increments. Figure 5.2a plots the calculated true stress-

displacement responses in the three directions together with the corresponding ones 

measured in the random foam. The stresses 
 
 i  represent the sum of the reaction forces on 

the nodes on each of the three stationary faces divided by the current area of each face. 

Figure 5.3 shows a set of deformed configurations with strain contours superimposed, 

which illustrate the evolution of localized strain in the course of the loading history. The 

images correspond to the bullets marked on each stress-displacement response with 

different symbols and colors, and numbered in the case of the 
 
 x   x  response. Figure 

5.2b shows the corresponding mean stress-change in volume response, 
  
  u / uo , where  

  
  ( x  y  z ) / 3, 

  
u / uo  [1 (1  x )(1  y )(1  z )],  i   i / H .    (5.1) 

The three responses based on the homogenized model exhibit the same general 

characteristics as those of the random foam and, by-and-large, reproduce their trends. They 

start with stiff linearly elastic branches that terminate in local stress maxima and represent 
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the onset of localized deformation. The stresses then drop down to local minima, recover, 

and start tracing stress plateaus of different extents. In the process, deformation localizes 

in planar bands with strain levels of order 1.0, which gradually spread until the whole 

domain is so deformed. The domain then reverts back to homogeneous deformation that 

characterizes the behavior of densified material. The x-direction response traces a very 

similar path to that of the random foam. In the z- and y-directions the solid is compressed 

at rates that are respectively one-third and one-sixth that of the x-direction. These two 

responses follow those of the random foam in the first half of the crushing history, but the 

stresses tend to pick up at a lower rate in the latter parts of crushing. 

The mean stress change in volume response in Fig. 5.2b follows quite closely the 

corresponding one from the random foam up to a volume reduction of about 50% and 

underestimates it somewhat at higher values of 
  
u / uo . 

For better visualization of the early parts of the three responses, they are also shown 

expanded in Fig. 5.4a, and Fig. 5.4b shows the 
  
  u / uo  response up to a volume change 

of 0.15. A set of corresponding deformed configurations is included in Fig. 5.5. The initial 

stiff branches follow the expected linear elastic, isotropic behavior. Each terminates into a 

local load maximum, which occur at very similar strain levels and consequently at different 

times in the loading history. Following each load maximum, a planar band of localized 

deformation initiates in the plane normal to the associated loading direction. Thus, 
 
 x  

reaches a maximum of 458 psi (3.16MPa) first and descends to a local minimum.  

Image  just after the stress minimum, shows a higher deformation band to have 

initiated from the depression on the plane  y  H  that extends over the whole  y  z  plane. 

It is worth noting that at this time 
 
 z  is slightly below its local maximum value of 444 psi 

(3.06 MPa), and 
 
 y  is even further below its own maximum value of 446 psi (3.07 MPa). 

In image , the band has broadened and 
 
 x  has completed the initial transient and started 

traversing a relatively flat plateau. 
 
 z  is on its descending branch but 

 
 y  remains still 
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below its local maximum. By stations , 
 
 z  is close to its local stress minimum and a 

second planar band of higher deformation has initiated in the  x  y  plane from the 

imperfection on the  x  H  plane. At this time 
 
 y  has attained its local maximum level, 

 
 x  is further along its plateau level, and the original band normal to the x-direction has 

broadened more. At stations , 
 
 y  is tracing its descending branch, 

 
 z  is tracing its own 

stress plateau, 
 
 x  is further along on its own plateau reaching a normalized displacement 

of 0.033, and both planar bands of higher deformation have broadened. By stations , 
 
 y  

has gone past its local minimum and a third planar band of high strain has been initiated in 

the  x  z  plane from the imperfection on the  z  H  plane. Meanwhile the stresses along 

the other two directions have continued to traverse their individual stress plateaus. By 

stations , the prescribed displacements are 
  
{ x , y , z}    {0.087,0.0145,0.029} and all 

three stresses are traversing their respective plateaus.  

Between displacements 
  
 i (0.01,0.05)H  the three stresses trace relatively flat 

plateaus with average values of 
  
{ x , y , z}   {369,360,370} psi  {2.55,2.48,2.55} MPa. 

It is worth pointing out that if we consider parts of these plateaus where all three coexist 

the stresses change slightly to 
  
{ x , y , z}  {377, 366, 370} psi {2.60, 2.52, 2.55} MPa. 

These values correspond to an equivalent stress of 291 psi (2.01 MPa), which compares 

with the 295 psi (2.04 MPa) level of the equal area Maxwell stress of the adopted equivalent 

stress-strain response in Fig. 4.2. 

The mean stress-change in volume response in Fig. 5.4b is in the main very similar 

to that of the random foam. A small difference around the first local maximum is observed 

caused by the somewhat different mechanism of initiation of instabilities in the 

homogenized material. 

Observations: 
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- The imperfections provide a local small riser over the stress state of the block 

causing the local stress to reach the level of the peak in the equivalent stress-strain 

response in Fig. 4.2. When this happens localized deformation nucleates. The 

nucleation results in an initial drop in the overall stress, which however recovers 

sometime later. The local increase in stress occurs when the displacement in each 

direction reaches a critical value, and this is responsible for the delay between the 

three nucleation events. 

- The levels of the three stress maxima in Fig. 5.4a are mainly governed by the stress 

peak in the up-down-up response constructed over the unstable branch in Fig. 4.2 

and to a smaller degree by the amplitude of the imperfections. 

- The stress maximum in each direction occurs at very similar displacement levels of 

about 
  
 i  0.0033H . Thus each occurs at different time in the loading history.  

- The homogenized material lacks any of the microstructural characteristics of the 

random foam. Furthermore, it is crushed by prescribing nodal displacements on the 

three moving faces rather than by contact with rigid plates. Consequently, in the 

homogenized material localized deformation initiates from the geometric 

imperfections and develops into internal planes rather than at the contacting 

surfaces as in the random foams. The geometric imperfection provides enough of a 

local stress riser to progressively trigger each of the planar bands. This role of the 

imperfections will be the same for all loading paths considered. 

- Following the initial transients each response traces a stress plateau of similar level. 

More difference is observed between the three plateaus of the random foam 

primarily because of differences in the early evolution of localization in each 

direction. However, generally the two sets of plateaus have comparable levels. 

For the subsequent evolution of the crushing behavior we return to Figs. 5.2 and 

5.3. To help connect the two sets of results, stations and image  correspond to stations 

and image  in Fig. 5.4 and Fig. 5.5. By station  all three planar bands have broadened, 

with the one normal to the x-direction widening the most and the three stresses remaining 

relatively unchanged. The same goes for the station and image  except that the 
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broadening of the band normal to the x-direction starts to become the dominant mode of 

deformation. In image  the main band has consumed about one-third of the domain, while 

the broadening of the band normal to the z-direction is much more limited and that of the 

third band is relatively small. At this time 
 
 x  remains relatively unchanged while 

 
 z  and 

 
 y  have started on an increasing trend presumably because of the much larger decrease in 

the cross sectional areas sustained in these two directions. In image  more than half of 

the domain has developed the higher strain mainly from the broadening of the y z  planar 

band, and some increase in the broadening of the other two bands. Concurrently, 
 
 x  

remains essentially unchanged while the other two stresses continue their increasing trends. 

By image  most of the domain is in the higher strain with one main island of relatively 

undeformed material remaining on the side of the  x  H  plane. Now all three stresses are 

on an increasing trend. While most of the deformed material is at a strain of about 1.0, part 

of the  x  y  planar band is deformed to a higher level, and the same trend has started in 

the  x  z  band. It appears that this higher strain may be required for compatibility of 

deformation in these two directions with the island of relatively undeformed material that 

remains. By image  the island of undeformed material is much smaller while the stresses 

in all the three directions have continued to increase. The higher deformation in the two 

bands that started in the previous station has broadened. In image  at an 
  
 x  0.6  and a 

volume reduction of nearly 70%, but for the two narrow zones which underwent higher 

strain earlier, the block is essentially back to homogeneous deformation. The stress levels 

are 
  
{ x , y , z}  {718, 429, 536} psi {4.95,2.96,3.70} MPa. Both sets of results are 

truncated at 
  
 x  0.647 H  when 

 
 x   1000 psi (6.90 MPa) for the random foam. 

In summary, the three crushing responses of the homogenized material exhibit the 

same characteristics as those of the random foam and track them quite accurately. The 

mean stress-change in volume response reproduces reasonably well also that of the random 

material. The random foam was crushed between rigid planes, which caused crushing to 

initiate from the boundaries and move inwards. By contrast, the homogenized model is 
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crushed by prescribing the nodal displacements on the three moving faces. This resulted in 

a more uniform stress state requiring that localization be nucleated from geometric 

imperfections introduced in the domain. Since the homogenized foam lacks any other 

microstructural characteristics, the imperfections tend to govern the evolution of localized 

deformation. The thickness imperfections adopted progressively initiated a planar band of 

higher deformation normal to each loading direction. The one normal to the most 

compressed direction tended to propagate from one end to the other limiting the broadening 

of the other two bands. 

5.2.2 Set of Triaxial Crushing Results for: ( ,0.5,1)Tn  

The responses in the x-, y-, and z-directions for the crushing simulations of the 

whole family of loading paths    (n,0.5,1)T  are shown in Fig. 5.6, with n taking values, 

  n {0.33,0.67,1.0,1.5,3.0,5.0}. The corresponding random foam responses from Chapter 

3 are included in each plot for comparison. The three pairs of responses are truncated at 

the same displacements. Figure 5.7 plots the mean stress against the change in volume for 

the six cases, which correspond to the random foam results in Fig. 3.25. Generally, the 

stress- displacement responses of the homogeneous models follow the trends of the random 

ones. They exhibit initial elastic branches that terminate in local stress maxima followed 

by extended stress plateaus, and stiffening branches in the densified material regime. The 

stable elastic branches are essentially identical to the measured ones. Load maxima develop 

progressively in each direction with the primary loading direction occurring first, the 

secondary second, and the least compressed direction third. Accordingly, for    (5,0.5,1)T  

the order of the maxima is   {x,z, y} while for   (0.33,0.5,1) is   {z, y,x}. As was observed 

for the base case, the maxima occur when the respective displacements reach 

  
 i  0.0034H  as a consequence of the stress in the respective imperfection reaching the 

level required to initiate localization. Deformation localizes first in the plane that is normal 

to the prevalent compression direction. This is followed by localization in the secondary 
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compression direction with the third direction coming last. Thus, for   n  0.33 the first 

localization is in the  x  y  plane, the second in the  x  z  plane and the one in the y  z  

plane initiating last. By contrast, for 5.0n   the  y  z  plane localizes first and the  x  y  

plane last. For 1.0n   the maxima in 
 
 x  and 

 
 z occurred simultaneously at respective 

strains of 0.00262 presumably because of the higher stress state induced to the two 

imperfections by the equi-biaxial compression. 

Following each localization event, the corresponding stress drops down to a local 

minimum, recovers, and starts to trace a plateau. Figure 5.8 shows the early parts of the 

stress responses in each direction ( 0 0.07x  , 0 0.05y  , 0 0.07z  ) from the 

homogenized foam model. Included are the corresponding results from the random foam 

model. The descending slopes are steeper than the corresponding ones from the random 

foam model. The plateaus corresponding to each n are at very similar levels and this holds 

for all three directions until the points when the stresses gradually pick up as crushing 

continues. More specifically, x  stays around 371 psi (2.56 MPa) until 0.07x   for all 

cases except for n =0.33 which has a value is 361 psi (2.49 MPa). The z  plateaus are at 

about 374 psi (2.58 MPa), with the value of n = 5.0 somewhat higher at 393 psi (2.71 MPa). 

The y  plateaus vary somewhat more from each other with an average of around 359 psi 

(2.48 MPa). Collectively these stress levels correspond to an equivalent stress that is close 

to the equal area Maxwell stress of 295 psi (2.04 MPa) in Fig. 4.2. Generally plateaus levels 

are in good agreement with those of the random foam. As each plateau is traced the 

corresponding planar band broadens, however for different values of n the broadening 

differs in each direction and so does the extent of the stress plateaus. 

Deformed configurations at a volume change of 50% for the six cases analyzed are 

shown in Fig. 5.9. For   n  0.33 the broadening of the  x  y  band is seen to have dominated, 

with that in the other two directions being rather limited. For 1.0n   the propagation along 

the x- and z-directions is balanced and dominant while along the y-direction is limited. For 

  n  5 deformation propagates mainly along the x-direction with the other two bands 
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experiencing limited broadening. For the n-values in between, the trend is along similar 

lines. During the propagation the strain levels in the deformed material are of the order of 

1.0 while the relatively undeformed material remains elastic at the strain corresponding to 

the current stress levels. Beyond the stress plateaus the stresses in Fig. 5.6 predicted using 

the homogeneous model exhibit the saturation type of behavior associated foam 

densification. The responses follow the trends of those of the random foams but 

underestimate them at higher strains. 

The mean stress-change in volume responses in Fig. 5.7 are also in good agreement 

with those of the random foam in Fig. 3.25, but underestimate them at volume strains higher 

50%. The energy absorbed per unit undeformed volume, E, at different levels of 
  
u / uo  

 

based on the homogenized model is compared to that measured for the random model in 

Fig. 5.10 for the six values of n. In concert with the random foam, the energy does not vary 

with n. Furthermore, the present predictions compare very well with results of the random 

foam results up to 
  
u / uo  of 0.5. For higher values the present model yields progressively 

lower values, which is a reflection of the lower stress levels predicted at higher 

displacements. 

5.3 ANALYSIS OF THE SET ( ,1,1)Tn  

In this section, similar crushing calculations of homogenized foam models are 

presented for the second set of radial triaxial paths analyzed in Chapter 3    (n,1,1)T , where 

n takes the values   n {0.33,0.67,1.0,1.5,3.0,5.0}. The domain analyzed is the same and is 

meshed in the same manner. The symmetry imposed by having the crushing in the y- and 

z-directions equal made initiation of the instability somewhat more difficult so the domain 

is now perturbed with imperfections with amplitude of   0.015H . 

Initiation of localization was found to be particularly difficult for the simulation of 

the equi-triaxial crushing case of    (1,1,1)T , and thus the performance of the homogenized 

model in this loading path is examined in some detail. Because of the symmetry imposed 
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by this loading, the domain tends to deform homogeneously tracing the negative branch of 

the equivalent stress-strain response adopted. The symmetry was broken by adopting a 

slightly larger rate of crushing in the x-direction by using    (1.05,1,1)T . Furthermore, for 

this loading two linear orthogonal imperfections were used on each of the moving surfaces 

with amplitude of   0.02H  as shown in Fig. 5.11. 

Figure 5.12 plots the calculated three sets of true stress-displacement responses of 

the path    (1.05,1,1)T  from the homogenized model, together with the true stress responses 

of the path    (1,1,1)T  from the random foam model. Figure 5.13 shows a selected number 

of deformed configurations corresponding to the bullets marked on the 
 
 x   x  response 

(marked at the same time step in the other two directions with different color symbols). 

The responses in the x-, y- and z-directions again exhibit a decently good agreement 

between the homogenized model and the random foam. They have identical linear elastic 

branches, which are terminated by local stress maxima. The three stress maxima in the 

homogenized setting, 
  
{ x , y , z}, are {467, 462, 462} psi {3.22, 3.19, 3.19} MPa, and 

occur the displacements 
  
{ x , y , z}  {0.0025, 0.0023, 0.0023}. These values are slightly 

higher than the corresponding levels of 450 psi (3.10 MPa) of the random foam (Section 

3.2.1). The stresses then drop to local minima, recover, and enter extended plateaus of very 

similar stress levels and extents. At larger displacements, the stresses pick up again but 

exhibit a lower trend than the random foam. In the plateau region the 
 
 x   x  response is 

close to the other two responses, but become increasingly “faster” at larger displacement 

due to the larger rate of crushing  (note the increasing difference between the 

displacements of the configurations).  

In image  the stresses just recover from the local minima and start to trace 

extended plateaus. Three planar bands of higher strain have been initiated from the 

imperfections on the moving surfaces. Displacement 
 
 x , is very close to 

 
 y  and 

 
 z , 
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shown by the overlaps of the three bullets in Fig. 5.12 at this station. The three planar bands 

broaden at the same rate in the process. By station  at 
  
 x  0.125, which is 5% larger 

than 
 
 y  and 

 
 z , the stresses are at the levels of the random foam. The three bands have 

broadened and the fronts propagate towards the corner at   {x  H , y  H , z  H}. The bullet 

on the 
 
 x   x  response is ahead of the other rest, with the three stress levels very close. 

In image , the bands of higher strain have consumed regions between the imperfections 

and the stationary planes, leaving behind a nearly pyramidal island of undeformed material. 

Now, the bands propagate nearly symmetrically towards the moving planes, progressively 

reducing the size of the island. At this station, the deformation has increased in narrow 

planes containing the imperfections (~1.5 compared to 1.0 in the rest of the deformed 

material). In image  at 
  
 x  0.247 , the stresses gradually increase, but at a milder rate 

than in the random responses. By stations  and , the stresses continue to climb but at a 

steeper rate and the higher deformation regions broaden in the three directions. In image 

, 
  
 x  0.395, the higher deformation has spread over most of the domain, but a small 

size pyramidal island remains. The block is essentially back to homogeneous deformation 

as it is crushed further. 

We next consider the loading path    (3,1,1)T  as a representative case of the rest five 

radial paths of this loading family. Here the displacement history 
  
 x (t)  is three times faster 

than the displacements along the y- and z-directions. The behavior of the homogenized 

foam model under this crushing path has similar trends as those reported for the loading 

path    (3,0.5,1)T ; thus it is presented here in less detail. Figure 5.14 shows the calculated 

true stress-displacement responses traced in the x-, y- and z-directions. Included for 

comparison are the corresponding results from the random foam. Figure 5.15 shows a set 

of deformed configurations at the numbered time step in the loading history shown in Fig. 

5.14. The three responses from the homogenized model start with the expected linear stiff 
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branches that terminate into local stress maxima. The three maxima occur at 
  
 i  0.0032 , 

and thus they show up at different times, with x  achieving its maximum first and the 

other two later. Following the load maxima, localized deformation starts to nucleate from 

the three imperfections in each plane, in sequence.  That is the y z  plane localizes first 

and the localization in the x y  and x z  plane occur together at a later time.  

In image , at 0.044x  , the stresses have gone past their local minima. The 

planar bands of higher strain have initiated from the imperfections in all three directions, 

with the y z  planar band wider. From station  to , up to 0.322x  , x  remains 

relatively unchanged and somewhat lower than that of the random foam, while y  and z  

are in a mild increasing trend, comparable to the level of the dashed responses. All three 

planar bands of higher strains have broadened with main band in the y z  plane 

consuming more than half of the domain. At station , x  starts on a gradual increasing 

trend, while the other two stresses follow a stiffer trajectory. At this station and beyond, 

the stress levels of the homogenized model are lower to those of the random foam. Now 

most of the domain has been consumed by a strain of the order of 1.0, and an island of 

essentially undeformed material remains close to the  x  H  plane. Once again, planar 

zones containing the imperfections have developed a higher strain. As crushing continues, 

the stresses continue to increase and the size of the island is reduced. By station  only a 

narrow section close to x H  remains relatively undeformed. In image  at 0.6x   the 

domain is essentially homogeneous while the volume has been reduced to 0.25H3.  

The homogenized model results of the ( ,1,1)Tn family are presented in summary 

form in Figs. 5.16-5.18. The stress-displacement responses in the x- and y-directions are 

compared to the corresponding ones from the random foam in Fig. 5.16. The main features 

of the responses are similar to those described for the previous set except that now the 

evolutions of crushing in the y- and z-directions are very similar and so are the stress-

displacement responses; for this reason the z-responses are not shown. The slopes of the 
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elastic branches are very close to those of the random foam. The limit loads are also at 

generally comparable values. Localization again initiates as a planar band that is normal to 

the prevailing crushing direction. Thus for n = 5.0, 3.0 and 1.5 a  y  z  planar band initiates 

first when 
 
 x  achieves its local maximum. The localization causes a drop in this stress 

down to a local minimum and as the band starts to broaden it recovers and starts tracing a 

plateau. The y- and z-directions achieve their stress maxima some time later simultaneously 

resulting in the nucleation of planar bands that are normal to these directions. 

For n = 0.67 and 0.33 
 
 y  and 

 
 z  achieve their maxima first, simultaneously 

initiating planar bands in the  x  z  and  x  y  planes. These stresses follow similar drops 

down to local minima and then recover to stress plateaus during which the bands broaden. 

 
 x  achieves its maximum at a later time and results in the nucleation of a third localization 

band. For the nearly equi-triaxial case of  n 1.05, the three stresses reach nearly identical 

maxima at the same time and initiate three planar bands simultaneously. 

As the crushing progresses all responses trace plateaus that are very comparable to 

those of the random foam. Good agreement is also observed for the mean stress-change in 

volume responses up to 
  
u / uo  of about 50% shown in Fig. 5.18. An impression of the 

evolution of higher strain in each domain is provided by the deformed configurations 

corresponding to volume change of 50% shown in Fig. 5.17. As mentioned above, for 

  n  1.05 the three planar bands propagate nearly symmetrically towards the moving planes 

leaving behind a nearly pyramidal island of undeformed material. At higher crushing 

displacements, the size of this island is reduced but at increasingly higher stresses. It is 

worth mentioning that for the corresponding random foam the undeformed island was in 

the center of the domain because in that case crushing initiated more symmetrically at the 

three pairs of rigid planes in contact with the domain. 

As n increases to 1.5 and then to 3.0 and 5.0, the band normal to the x-direction 

becomes increasingly more dominant. Thus the propagation of higher strain becomes 

increasingly more oriented along the x-direction leaving behind unsymmetric islands of 



 110 

undeformed material that are evident in the corresponding images in Fig. 5.17. Crushing 

of these islands requires an increasingly higher stress leading to the upswing in the stress-

displacement responses in Fig. 5.18. We consider this increase in resistance to deformation 

to be partially due to constraints imposed by the finite domain being analyzed. 

For n of 0.67 and 0.33 the opposite trend is observed, where the evolution of higher 

strain is dominated by the concurrent propagation of  x  y  and  x  z  planar bands. For 

0.67n  , the  y  z  planar band is seen in the corresponding image in Fig. 5.17 to be 

narrower than the other two and much narrower for   n  0.33. This spreading of higher 

strain results again in the formation of unsymmetrical islands of undeformed material, 

which requires higher stress to deform. 

Overall the 6 responses track those of the random foam quite well for most of the 

deformation history, but again underpredict them at higher crushing displacements. This 

reflects also on the 
  
  u / uo  responses in Fig. 5.18, which reproduce very well the 

corresponding results from the random foam in Fig. 3.15 up to a volume change of about 

50%, but underpredict them at higher values. The energy absorbed per unit undeformed 

volume, E, at different values of the change in volume for the six cases based on the 

homogenized model is plotted in Fig. 5.19. In concert with those of the random foam shown 

in empty symbols in the figure, the energy does not vary with n. Furthermore, the present 

predictions compare very well with results of the random foam results up to 
  
u / uo  of 0.5. 

An underestimation is observed at higher values of volume reduction, resulting from the 

stresses being lower at higher displacements. 

In all cases during the propagation phase of the crushing history, material deformed 

to strain of about 1.0 coexists with material that remains at small elastic strains that 

correspond to the current state of stress. The evolution of higher strain in the models differs 

from that of the corresponding random foam for the same reasons given earlier. 
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5.4 ANALYSIS OF THE SET    (n,0,1)T  

The performance of the homogenized foam model is further examined by six 

crushing simulations for the third set of loading paths ( )( , 0,1)Tt n . In this set of loading 

paths the random foam was crushed along the x- and z-directions with the y-displacement 

kept at zero. In these radial paths n takes the values
  
n 0.33,0.67,1.05,1.5,3.0,5.0{ } . For 

better performance, the symmetry imposed by the equi-biaxial loading is broken by adding 

a small perturbation to 
 
 x  as follows    (1.05,0,1)T . 

We again choose    (3,0,1)T  as a representative case and use the results to describe 

the behavior of the homogenized foam model along this loading family. Figure 5.20 shows 

the stress responses in the x- and z-directions from the homogenized model in solid lines, 

and the corresponding ones of the random foam in dashed lines. Figure 5.21 plots a selected 

number of deformed configurations corresponding to the numbered bullets marked on the 

response. The homogenized model reproduces the general trends of the random foam 

responses very well. The stress maxima in the x- and z-directions occur at 
 
 x  and 

 
 z  of 

about 0.0034, which indicates that they develop at different times. Following the load 

maxima, the stresses drop to local minima, and simultaneously planar localization bands 

nucleate from the imperfections in the  y  z  and  x  y  planes, again at different times. The 

two stresses then recover, and start to trace extended plateaus. Image  in Fig. 5.21 shows 

the  y  z  band along the prevailing crushing direction has broadened to a width of 3~4 

elements, while the band normal to the z-direction has a width of about 2 elements. By this 

station at 
  
 x  0.061, both stresses are tracing their own plateaus: 

 
 x  is comparable to 

that of the random foam; 
 
 z  takes a higher value than the response of the random foam. 

From station  to , both planar bands are broadening, with the  y  z  band widening 

significantly more than the  x  y  band. From 
  
 x  0.138  to 0.338, 

 
 x  remains relatively 

unchanged, slightly below the value of the random foam. The levels of 
 
 z  are comparable 
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for both models. At station , the dominant band has consumed most of the domain, 

leaving mainly two islands of relatively undeformed material near the  x  H  and   x  0  

planes. A zone of material of higher deformation appears in the  x  y  plane, again probably 

due to the compatibility issue discussed in Section 5.2.1. The stresses in the x- and z-

directions are lower than those of the random foam and start to increase beyond this point. 

At stations  and , the front of the dominant band continues to spread to both end planes 

along the x-direction. The stress continues to increase in the x-direction, but 
 
 z  

experiences a small dip following station , probably due to the disturbance caused by 

transformation of an island of relatively undeformed material at both end planes normal to 

the x-direction. By station  the deformation is essentially back to homogeneous. 

The calculated stress-displacement responses in the x- and z-directions for all the 

six cases of this loading family appear in Fig. 5.22. Figure 5.23 depicts deformed 

configurations corresponding to volume change of 50%. The responses follow the same 

trends as the results of the other two loading families discussed in this chapter. They 

develop initial stress maxima followed by localization into planar bands of higher strain. 

The bands are now limited to the  y  z  and the  x  y  planes and they nucleate when the 

stress in the relevant imperfection reaches a critical value. Planar bands of higher strain 

appear first normal to the primary loading direction, in the less compressed direction 

second. Thus for n smaller than 1.0, the first localization is in the  x  y  plane. By contrast, 

for n = 1.5, 3.0 and 5.0, the nucleation of the band of higher strain appears in the  y  z  

first. At n = 1.05, the localization initiates in two planes essentially in the same time step, 

with x  recorded 1.05 times of z . As the bands broaden the two stresses trace plateaus. 

The extents of the two sets of plateaus follow the order of n in the x-direction, and are 

reversed in the z-direction. The deformed configurations at 
  
u  0.5uo  clearly illustrate 

the coexistence of material deformed to strain of about 1.0 and essentially undeformed 

zones. For n of 0.33 and 0.67, the  x  y  plane bands broaden much more than those in the 

 y  z  plane. For n = 1.5 and above, the  y  z  plane bands become increasingly wider. It’s 
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noted that the deformations for values of n and n-1 mirror each other. When n is closer to 

1.0, the band broadening is essentially symmetric.  

The mean stress-change in volume responses in Fig. 5.24 are nicely banded 

together. They reproduce the corresponding results of the random foam in Fig. 3.33 up to 

volume change of 50% but underestimate them somewhat for higher u  values. Overall, 

the mean stress levels in Fig. 5.24 are somewhat lower than the values of the other two 

families which repeats the behavior of the random foam. 

The energy absorbed per unit undeformed volume at different levels of 
  
u / uo  for 

the six loading cases from both the homogenized and random foam models are plotted in 

Fig. 5.25. The same trend is observed as those of the other two families. For each loading 

family, the energy absorbed at a given volume change was the same for each value of n. 

Figure 5.26 plots E against 
  
u / uo  for three loadings from each of the three families of 

radial paths. Similar to the random foam results, E is linearly related to 
  
u / uo  and no 

significant difference is observed between the values corresponding to the nine data points 

at each value of 
  
u / uo . 

5.5 PARAMETRIC STUDY 

5.5.1 Mesh Sensitivity of the Solution 

The softening branch introduced to the stress-strain response in Fig. 4.2, implies 

that the solution may exhibit some sensitivity to the mesh adopted. The irregular mesh used 

to produce the results presented has 25 elements per edge making for a total of 36,288 

elements. The sensitivity of the solution to the mesh is examined by recalculating the 

response of the base case of    (3,0.5,1)T  for three additional meshes listed in Table 5.1. 
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Table 5.1: Four meshes used for the calculation of the loading path    (3,0.5,1)T  

No. of Elements 
Edge Total 

15 9,472 
20 20,000 
25 36,288 
30 67,500 

 

Figure 5.27 plots the stress-displacement responses produced by the four meshes. They are 

nearly identical confirming mesh refinement has limited effect on the global response. Each 

response achieved the same stress maximum; a  y  z  planar band of higher strain nucleated 

first from the imperfection at  y  H  and started propagating towards the  x  H  moving 

plane. An  x  y  planar band nucleates next followed by an  x  z  band as described in 

Section 5.2.1. Figure 5.28 shows deformed configurations at 
  
 x / H  0.217  from the four 

meshes. The higher strain is seen to have evolved in each model in a similar manner. In 

concert with other problems in which propagating instabilities are simulated by introducing 

a softening branch in the material response, the main effect of mesh refinement is in the 

width of the transition zone that separates the two deformation regimes (e.g., Hallai and 

Kyriakides, 2013; Jiang et al., 2017a, 2017b). Thus, the front is seen to be approximately 

one element wide in all four domains. 

The widths of the initial planar bands initiated in each plane are also approximately 

one element wide and consequently become narrower as the mesh is refined. The 

narrowing of the band in turn implies that it nucleates at smaller applied displacement as 

the mesh is refined. Figure 5.27b shows the expanded early parts of the 
  
 x   x / H  

response of each of the four meshes considered. The local stress maximum is the same for 

the four cases. (The value of the maximum depends to some degree on the size of the step 

increment, D , used but is independent of the mesh.) The descending branch that follows 

the maximum is, however, influenced by the mesh, as it becomes sharper as the mesh 
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density increases, and the local minimum that corresponds to the time when the band is 

fully developed occurs at increasingly smaller displacement. Nevertheless, this difference 

in the initial part of the response does not affect the subsequent propagation of high strain 

in the domain. 

The sensitivity of the front separating the low and high strain domains to the mesh 

can, of course, be alleviated by regularizing the solution by making the constitutive model 

rate-dependent (Needleman, 1998). To this end, a powerlaw rate-dependence is introduced 

to the constitutive model as follows: 

         (5.2) 

where ( ) represents a time derivative,  is a reference strain rate,   S ( p ) is the measured 

stress-plastic strain relationship at the reference strain rate, and m is the rate exponent. In 

the following study, the reference rate is chosen as  104 s-1, the material stress-strain 

response in Fig. 4.2 is adopted as the response at this rate, and m is assigned the value of 

0.01. 

Crushing simulations from the   (n,0.5,1)T  family were repeated using the rate-

dependent constitutive model. Figure 5.29 shows an expanded view of the evolution of the 

 y  z  planar band from the coarsest and finest meshes for both the rate independent and 

rate dependent constitutive models. The domain is crushed following the loading path 

   (3,0.5,1)T  and the station is at 
  
 x  0.024 . Overall the localization patterns developed in 

Figs. 5.29a and b are very similar. However, in the case of the rate independent model 

refining the mesh makes the band narrower. By contrast, the rate dependence appears in 

Fig. 5.29b to have locked the width of the band and that of the transition zone. In other 

words, the regularization has worked and added more numerical stability to the solution 

(see also Hallai and Kyriakides, 2011; Jiang et al., 2017a). 
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The parameters  m and  of the rate dependent model reported above were 

selected for optimal performance of the regularization scheme. These parameters have 

undesirable effect of increasing the overall responses as illustrated in Fig. 5.30. 

Consequently, the rate dependence constitutive model was not adopted in the homogenized 

model simulations. 

In summary, as in other problems in the propagating instability family for which 

partially unstable material responses are adopted, the main effect of mesh refinement is in 

the width of the transition. At the same time, this does not affect the evolution of higher 

strain in the domain. 

It is worth pointing out that the irregular mesh used in this study reduces any biasing 

in the anticipated localization and its evolution. Figure 5.31 compares the responses 

produced using regular and irregular meshes for the    (3,0.5,1)T  loading path. Whereas the 

overall trend of the two sets of responses are the same, the regular mesh responses are 

significantly more ragged over the early parts of the stress plateaus where the unstable 

branch of the material response is active (see Fig. 5.31b). This is because for the regular 

mesh localization tends to develop in a more discrete fashion, where a complete  y  z  

plane one element wide in the x-direction localizes at a given time. The plane of higher 

strain generated does not interact sufficiently with its two neighboring planes to help spread 

the high strain further. Consequently, initiation of localization in each plane requires a 

higher stress causing the recorded stresses to oscillate about mean values that correspond 

to those of the irregular mesh. By contrast, a zone of localized deformation in an irregular 

mesh provides enough disturbance to neighboring elements to facilitate the propagation of 

high deformation at a nearly constant stress level. Moreover, it was not possible to simulate 

the nearly symmetric responses like    (1.05,1,1)T  with the regular mesh. In summary, the 

current irregular mesh is carefully chosen to capture the inhomogeneous behavior of foams 

under true triaxial crushing tests.  
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5.5.2 Imperfection Sensitivity 

In the homogenized model the instability is initiated from small depressions 

introduced to the three moving surfaces of the cubical domain (see Fig. 5.1). The amplitude 

adopted for most cases is   a  0.01H . In Figure 5.32, the effect of this amplitude on the 

response of the loading path    (3,0.5,1)T  is investigated by considering two additional 

amplitudes of   0.005H  and   0.02H . Figure 5.32 shows that imperfection amplitude has a 

negligible effect on the crushing response. Furthermore, no difference in the evolution of 

localized bands is observed from the three domains throughout the crushing history. In 

some of the loading histories considered the imperfection amplitude was found to change 

by a small amount ( ±  1-2%) the limit stress, but had no other effect on the rest of the 

response.  

Regarding the locations of the imperfections, they determine the position of the 

initial planar band in each plane and influence the direction of the subsequent propagation 

of the bands. However, this has minimal influence on the stress-displacement responses. 

5.5.3 Effect of Constitutive Model  

In all calculations presented in this chapter 
  
Et

p  200  psi (-1.38 MPa) was found 

to result in initiation stresses and stress plateaus that are very close to those of the random 

foam crushing calculations. In order to assess the effect of the “strength” of softening on 

the solution, two additional values of 
 
Et

p  are considered, -150 and -250 psi (-1.03 and -

1.72 MPa), while keeping the rest of the up-down-up response the same as shown in Fig. 

5.33a. The new material responses were used to perform crushing calculations for the base 

loading case of    (3,0.5,1)T  using the mesh with 25 elements per edge used in most of this 

chapter. Figure 5.33b plots the early parts for the calculated 
  
 x   x / H  responses for the 

three solutions. As mentioned in Section 5.2.1, the level of the stress maximum is mainly 

influenced by the stress peak introduced to the stress-strain response by the negative slope 
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branch adopted. Consequently, the stress maximum for 
  
Et

p  250  psi (-1.72 MPa) is 

slightly higher and that of -150 psi (1.03 MPa) slightly lower than that of -200 psi (1.38 

MPa). Beyond the maxima the three responses trace very similar trajectories starting with 

the stress decaying branches. At higher displacements, the stress plateaus and the 

densification branches at high volume changes are very similar too. The similarity in the 

responses corresponding to the three values of 
 
Et

p  was repeated for the y- and z-directions. 

Furthermore, no significant differences were observed in the corresponding evolution of 

higher deformation in the domains. It must however be pointed out that when 
 
Et

p  becomes 

steeper than about -300 psi (-2.07 MPa) the plateau stresses start to increase. Similarly, if 

the negative slope is not large enough, deformation does not localize and the coexistence 

of highly deformed and relatively undeformed materials does not take place. This for 

example was observed for 
  
Et

p  100  psi (-0.69 MPa). 

In the development of the constitutive model in Section 4.1, it was reported that the 

constant b  in the flow potential in Eq. (4.3), was assigned the value of 1.5 as it produces 

the best overall predictions of the stress plateaus for the whole set of radial paths performed. 

The effect of b  on the responses for loading path    (3,0.5,1)T  is demonstrated in Fig. 5.34 

where the calculations were performed for values of  b  {1.2,1.5,1.8,2.1}. Clearly, 

increasing b  results in a decrease in the levels of the stress responses in the three 

directions, including the load maxima, minima, and plateau stresses. Furthermore the 

pickup in stress associated with densification is delayed. Included in the three sets of 

responses are the corresponding results from the random foam model. The responses for 

 b  1.5 are seen to be the ones closer to those of the random foam.  

5.6 SUMMARY 

Chapter 3 uses a true triaxial apparatus to numerically crush micromechanically 

accurate Al-alloy foam models under three sets of radial displacement paths. For all 
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loadings considered, deformation localized and then spread with limited additional effort, 

while crushed and essentially undeformed zones of cells co-existed. 

This chapter presented a first attempt at representing this partially unstable behavior 

through a homogenized model. Multiaxial crushing of foam was simulated numerically by 

incorporating the constitutive model described in Chapter 4 into a cubical finite element 

model. An irregular mesh of incompatible elements was used in order to minimize biasing 

the anticipated localization. The domain is large enough to allow the localization and 

propagation of higher deformation bands to develop freely. The random foam crushing 

tests were simulated by fixing the normal displacements on three of the cube faces, and 

prescribing incrementally the normal displacements on the three opposite faces. Small 

geometric imperfections were introduced to the three moving faces to help initiate 

localization. 

This modeling framework was used to simulate all three sets of multiaxial crushing 

tests on random foams in Chapter 3. On the whole, the localization and propagation of high 

strain deformation is reproduced, and by-and-large so are the recorded stress-displacement 

responses. The homogenized model lacks any microstructural characteristics so instability 

must be triggered by an external disturbance. Because of the symmetry of the geometry 

and loading, localization is in the form of narrow planar bands normal to each loading 

direction. A band nucleates from a local depression imperfection when the dominant 

normal displacement reaches a critical value. Bands nucleate progressively in the other two 

directions when the stress at the corresponding imperfection reaches a critical value of the 

same level. The average stress in each direction reaches a local maximum at the nucleation 

of localization. The stress then drops down to a local minimum, recovers, and starts tracing 

a stress plateau as the band broadens, and this is repeated in each direction, but at different 

times dictated by the prescribed displacements. A front of the order of one element wide 

separates a domain that is deformed to a strain of about 1.0 with domains that are still 

elastic. The extent of propagation in each direction depends on the displacement ratios. 

Thus, when the prescribed displacement in one direction is much larger than the other two 
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–e.g.,    (3,0.5,1)T – the “crushing” is predominant in this direction and less in the other 

two. By contrast, when the displacements are more balanced –e.g.,   (1.05,1,1)– the three 

high strain bands propagate in a more symmetric manner, gradually forming a nearly 

pyramidal zone of essentially undeformed material. 

The model foams are crushed to volume reductions of about 70%. Beyond volume 

changes of about 50% the true stresses begin to trace increasing trajectories that mimic 

those of the random foam due to densification and the reduction in cross sectional areas. 

The homogenized model trajectories generally under-predict those of the random foam. 

This is at least partly related to the inability of the constitutive model to correctly reproduce 

hardening at larger strains for several of the loading histories (see Section 4.2.2). 

Furthermore, in the present model, high deformation nucleates at geometric imperfections 

that are close to the stationary planes and propagate towards the moving faces. By contrast, 

the random foam was crushed in the true triaxial apparatus between rigid planes, so 

crushing initiated at the contacting surfaces and moved towards the center of the domain. 

The mean stress-change in volume responses reproduce the level and banded nature 

of the random foam results up to a volume reduction of about 50%, and under-predict them 

somewhat at higher volume changes. Interestingly, in concert with the random foam the 

energy absorption varies nearly linearly with volume reduction and is essentially the same 

for all three sets of radial paths. 
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Fig. 5.1: (a) Finite element mesh used for the homogenized model, and (b) z x  planar 
view of the model showing the prescribed displacements. 

  

(a) 

(b) 
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Fig. 5.2: (a) Calculated true stress-displacement responses in the x-, y-, and z-directions 

for the (3,0.5,1)T  loading path from both the homogenized and random foam 
model, and (b) corresponding mean stress-change in volume responses. 

  

(a) 

(b) 
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Fig. 5.3: Sequence of homogenized foam deformed configurations showing the three moving surfaces with strain contours 

superimposed corresponding to the numbered bullets on the (3,0.5,1)T  responses in Fig. 5.2. 
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Fig. 5.4: Expanded plots showing the initial parts of (a) the calculated true stress-

displacement responses in the x-, y-, and z-directions for the (3,0.5,1)T  
loading path, and (b) corresponding mean stress-change in volume response 
from both the homogenized and random foam model. 
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Fig. 5.5: Sequence of deformed foam images with strain contours superimposed 
showing the progressive initiations of the three planar bands corresponding to 

the numbered bullets on the responses for the (3,0.5,1)T  loading path in Fig. 
5.4. 
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Fig. 5.6: Comparison of homogenized and random foam model true stress-

displacement responses for the ( ,0.5,1)Tn  loading paths: (a) in the x-
direction, (b) y-direction, and (c) z-direction. 
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Fig. 5.7: Calculated mean stress-change in volume responses for the ( ,0.5,1)Tn  
loading paths from the homogenized model. 
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Fig. 5.8: Expanded plots showing the initial parts of homogenized and random foam 

model true stress-displacement responses for the ( ,0.5,1)Tn  loading paths: (a) 
in the x-direction, (b) y-direction, and (c) z-direction. 
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Fig. 5.9: Homogenized model deformed configurations corresponding to / 0.5ou u   

for different values of n for the ( ,0.5,1)Tn  loading paths. 
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Fig. 5.10: Comparison of the homogenized and random foam model deformation 

energies for the ( ,0.5,1)Tn  loading paths. Plotted are energies for six values 

of n at different levels of / ou u . 
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Fig. 5.11: The finite element model adopted for the (1.05,1,1)T  loading path showing 
two orthogonal imperfections introduced to each moving face. 
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Fig. 5.12: Calculated true stress-displacement responses in the x-, y-, and z-directions 

for the (1.05,1,1)T  loading path from the homogenized foam model, 

compared to the corresponding responses for the (1,1,1)T  loading path from 
the random foam model. 
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Fig. 5.13: Sequence of homogenized foam deformed configurations showing the three moving surfaces with strain contours 

superimposed corresponding to the numbered bullets on the (1.05,1,1)T  responses in Fig. 5.12. 
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Fig. 5.14: Calculated true stress-displacement responses in the x-, y-, and z-directions 

for the (3,1,1)T  loading path from both the homogenized and random foam 
model. 
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Fig. 5.15: Sequence of homogenized foam deformed configurations showing the three moving surfaces with strain contours 

superimposed corresponding to the numbered bullets on the (3,1,1)T  responses in Fig. 5.14. 
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Fig. 5.16: Comparison of homogenized and random foam model true stress-

displacement responses for the ( ,1,1)Tn  loading paths: (a) in the x-direction 
and (b) y-direction. 
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Fig. 5.17: Homogenized model deformed configurations corresponding to / 0.5ou u   

for different values of n for the ( ,1,1)Tn  loading paths. 

 

0.33 

0.67 

1.0 

1.5 

3.0 

5.0 

n 



 138 

 
 
 
 

 

Fig. 5.18: Calculated mean stress-change in volume responses for the ( ,1,1)Tn  loading 
paths from the homogenized model. 
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Fig. 5.19: Comparison of the homogenized and random foam model deformation 

energies for the ( ,1,1)Tn  loading paths. Plotted are energies for six values of 

n at different levels of / ou u . 
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Fig. 5.20: Calculated true stress-displacement responses in the x-and z-directions for the 

(3,0,1)T  loading path from both the homogenized and random foam model. 
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Fig. 5.21: Sequence of homogenized foam deformed configurations showing the three moving surfaces with strain contours 

superimposed corresponding to the numbered bullets on the (3,0,1)T  responses in Fig. 5.20. 
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Fig. 5.22: Comparison of homogenized and random foam model true stress-

displacement responses for the ( , 0,1)Tn  loading paths: (a) in the x-direction 
and (b) z-direction. 
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Fig. 5.23: Homogenized model deformed configurations corresponding to / 0.5ou u   

for different values of n for the ( , 0,1)Tn  loading paths. 
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Fig. 5.24: Calculated mean stress-change in volume responses for the ( , 0,1)Tn  loading 
paths from the homogenized model. 
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Fig. 5.25: Comparison of the homogenized and random foam model deformation 

energies for the ( , 0,1)Tn  loading paths. Plotted are energies for six values of 

n at different levels of / ou u . 
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Fig. 5.26: Homogenized model crushing energies at discrete values of change in volume 
from nine loading paths. 
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Fig. 5.27: (a) Comparison of stress-displacement responses in three directions for the 

(3,0.5,1)T  path using four different mesh densities. (b) /x x H   responses 

showing the effect of the mesh on the initial descending branch associated 
with the nucleation of the first planar band. 
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Fig. 5.28: Deformed configurations from the four meshes at / 0.217x H   for the (3,0.5,1)T  path. The main difference of 

mesh refinement is in the width of the transition zone that separates the two deformation regimes. 
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Fig. 5.29: Expanded view of the deformed configurations from the two meshes at / 0.024x H   for the (3,0.5,1)T  path. The 

constitutive model is (a) rate-independent and (b) rate dependent. 
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Fig. 5.30: Early part of the overall stress-displacement responses in three directions for 

the (3,0.5,1)T  path using the constitutive model that is (a) rate independent 
and (b) rate dependent. 
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Fig. 5.31: (a) Comparison of stress-displacement responses and (b) the expanded early 

parts in three directions for the (3,0.5,1)T  path using the regular mesh and 
the irregular mesh adopted in this chapter. 
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Fig. 5.32: (a) Stress-displacement responses in three directions for the (3,0.5,1)T  path 
with three imperfection amplitudes. 
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Fig. 5.33: (a) Equivalent stress-strain responses with three different slope softening 
branches. (b) Expanded early parts of /x x H   responses produced using 

the three stress-strain responses. 
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Fig. 5.34: True stress-displacement responses for the (3,0.5,1)T  loading paths using 
four different b : (a) in the x-direction, (b) y-direction, and (c) z-direction. 

(a) 

(b) 

(c) 
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Chapter 6:  Conventional Triaxial Crushing of Low-Density Foams7 

In Chapter 3 a true triaxial numerical apparatus was used to crush 

micromechanically accurate open-cell Al-alloy foams under three sets of radial 

displacement paths. It was shown that under this loading the foam deformed 

inhomogeneously exhibiting the same three deformation regimes observed under uniaxial 

compression. Chapter 5 showed that this inhomogeneous behavior can be reproduced at 

the continuum level using the compressible constitutive model developed in Chapter 4. 

This Chapter examines the crushing behavior of the same foams under different triaxial 

loading histories induced by the more conventional triaxial loading setup. Here the foam 

loaded under uniform external pressure is compressed in one direction under displacement 

control (e.g., see Triantafillou et al., 1989; Triantafillou and Gibson, 1990; Gioux et al., 

2000; Deshpande and Fleck, 2000).  

A set of triaxial tests at different pressure levels is first performed numerically on 

micromechanically accurate random foam models generated as described in Chapter 2. The 

compressible constitutive model developed in Chapter 4 is then used in a solid finite 

element model of the triaxial test to simulate the foam behavior. Section 6.1 describes 

conventional triaxial test results on the micromechanically accurate foam models. Section 

6.2 describes corresponding triaxial crushing calculations based on the homogenized 

model. A significant part of the study in Chapter 6 appears in Yang and Kyriakides (2019c). 

6.1 CRUSHING OF RANDOM FOAMS UNDER CONVENTIONAL TRIAXIAL LOADING 

6.1.1 Triaxial Crushing Setup 

The random foam test setup is shown in Fig. 6.1a. A cubical foam model with 

dimensions H3 is placed between two rigid surfaces. Hydrostatic pressure, P, is applied 

first by applying point forces F to each node on the surfaces   x  H , y  H ,  and  z  H  

(e.g., see Fig. 6.1b). The level of the force   F  PA / N , where A is the current area of the 

                                                 
7 Yang, C., Kyriakides, S., 2019. Crushing of low density foams under triaxial loadings. Extreme 
Mechanics Letters (accepted). Chenglin Yang contributed as first author. 
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face, and N is the number of nodes on the face (for this size random foam, about 200). The 

pressure is reacted at the three other faces of the cube,   x  0, y  0, z  0 , by constraining 

the normal degrees of freedom of the ligament end nodes on each face. 

The foam is compressed in the x-direction through two contacting rigid planes. The 

plane at   x  0  is fixed in space, while the plane initially at  x  H  is prescribed 

incrementally a compressive displacement 
 
 x . Contact between the foam ligaments and 

the two planes is frictionless. The model is loaded by first gradually increasing the pressure 

to the desired level. With the pressure held constant, the specimen is compressed by 

prescribing 
 
 x . The calculation is performed in LS-DYNA, so to ensure that the loading is 

quasi-static, the displacement history is chosen slow enough to ensure that the kinetic 

energy is kept at a much lower level than the internal energy throughout the calculation. 

6.1.2 Triaxial Crushing at P = 100 psi 

Compression tests on the random foam models are performed at six pressure levels: 

  P  {0,50,100,150,200,250} psi {0,0.345,0.69,1.03,1.38,1.72}  MPa. The case of 100 psi 

(0.69 MPa) is described in detail in order to present the main characteristics of the crushing 

behavior at lower pressure levels. Figure 6.2 shows the calculated axial stress minus the 

pressure plotted against the applied displacement––
  
( x  P)   x / H –– where 

 
 x  is the 

reaction force on the bottom plate divided by the original area of the foam. The response 

is hitherto referred to as “deviatoric” stress-displacement response. Figure 6.3 shows the 

undeformed and a set of deformed configurations in the  x  y  plane that correspond to the 

stations marked on the response in Fig. 6.2 with numbered bullets. The images are taken 

from the center of the foam block, and for better visualization they are limited to a thickness 

of   0.12H ––or a little thicker than one cell. Figure 6.4 shows expanded the early part of 

the response and Fig. 6.5 a set of corresponding deformed configurations. Image  in both 

sets of results corresponds to the initial undeformed configuration. Image  in Figs. 6.5 

shows the cross section at a low axial stress after the application of pressure. The pressure 

loading is seen to have distorted some of the ligaments at the edges, but the rest of the foam 
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is uniformly deformed. The foam initially reacts linearly to compression, but some gradual 

reduction in stiffness is observed for deviatoric stress larger than about 150 psi (1.03 MPa). 

Plasticization of ligaments leads to a limit load at station  with the stress at about 287 psi 

(1.98 MPa) and the axial strain at 1.76%. The edges appear more deformed, but the rest of 

the domain remains uniformly deformed. Increase in the axial compression leads to a drop 

in stress and localization of deformation. At station  in Fig. 6.4 at an average strain of 

about 5%, the stress is down to 230 psi (1.58 MPa), a band of collapsed cells has appeared 

at the lower right corner of the domain, and the edge at  x  H  has developed some bowing. 

For the foam response at higher displacements, we return to Fig. 6.3 in which 

station  corresponds to station  in Fig. 6.4 and 6.5. Beyond the stress minimum at , 

the stress recovers somewhat and traces a ragged plateau at about 240 psi (1.66 MPa). In 

image  at an average axial strain of 0.169, the crushed band of cells at the bottom has 

broadened. In image  at 
  
 x  0.255, the crushing has spread upwards covering nearly 

one third of the domain. Although as is usual for random foam crushing, some “stiff” cells 

in the crushed zone remain relatively undeformed. This image clearly demonstrates the 

coexistence of mostly crushed and essentially undeformed cell domains, characteristic of 

materials that exhibit propagating instabilities. The upward propagation of the crushed 

zone continues in image  at 
  
 x  0.369 , while in image  at 

  
 x  0.461 the crushing 

affects the whole domain. Further deformation of the now densified material requires 

additional effort with the stress following the usual increasing trend. At stations  and  

at average strains of 0.536 and 0.627, the stress has risen to 331 psi and 427 psi respectively 

(2.28 MPa and 2.94 MPa). 

6.1.3 Triaxial Crushing at P = 200 psi 

The triaxial crushing results at a higher pressure, P = 200 psi (1.38 MPa) are 

presented next but in a less detail. Figure 6.6 shows the deviatoric stress-displacement 

response in the x-direction. Figure 6.7 shows the corresponding deformed configurations 

of a slice in the  x  y  central plane corresponding to the numbered bullets on the response 
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in Fig. 6.6. The deviatoric stress response has a similar trend as reported for P = 100 psi 

(0.69 MPa). It starts with an elastic branch that terminates into a stress maximum about 

216 psi (1.49 MPa) at 0.014x  . Following the limit load, the stress drops to a local 

minimum, recovers, and enters an extended ragged plateau up to an average strain of about 

49%. The plateau stress is at about 153 psi (1.05 MPa), approximately 87 psi (0.60 MPa) 

lower to the corresponding level for P = 100 psi (0.69 MPa). For larger displacements, the 

response follows a stiffening branch. 

The deformation is inhomogeneous with crushed and uncrushed cells coexisting as 

the stress plateau is traced. Image  in Figs. 6.7 shows that at 0.079x   a band of 

collapsed cell has initiated at the same lower right location as for P = 100 psi (0.69 MPa). 

The rest of the domain is uniformly deformed. However because of the higher pressure, a 

larger number of edge ligaments have distorted significantly. Subsequently as crushing 

continues, the localized band propagates upwards, with the cells in the crushed zone more 

compacted than for P = 100 psi (0.69 MPa). By station  at 0.398x  , the crushing has 

consumed more than half of the domain, while the upper part remains essentially 

undeformed. In image  at 0.477x  , the localization has spread to the cells adjacent to 

the x H  plane, leaving some “stiff” zones in the upper part of the domain uncrushed. 

Soon after the station, the crushing covers the whole domain, and the deformation is back 

to homogeneous once more. The material has densified and so the stress increases with 

further compression. Thus at 0.561x   and 0.639 at stations  and , the stress has 

risen to 239 psi and 367 psi respectively (1.65 MPa and 2.53 MPa), which are lower than 

the corresponding values of P = 100 psi (0.69 MPa). 

6.1.4 Response at Different Pressure Levels 

The behavior of the random foam for triaxial tests at the other pressure levels 

considered is broadly similar, and consequently the results of the six pressure levels are 

discussed as a group. It’s noted that the boundary conditions in the pure compression case, 

P = 0 psi, are consistent with the five other triaxial crushing cases and thus different from 
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the uniaxial compression setting reported in Gaitanaros et al. (2012). The crushing 

responses from P = 0 psi and uniaxial compression, however, are very similar. Figure 6.8 

shows the six deviatoric stress-displacement responses calculated. All responses exhibit 

the same three-regime behavior as those of the two pressure cases already discussed. Each 

has an initial stiff and stable regime that terminates in a stress maximum during which the 

foam deforms uniformly. Beyond the limit stress, localized cell crushing initiates at an 

internal location with “weaker” cells. Subsequently, cell crushing gradually spreads 

through the domain while the stress traces a ragged plateau. By an axial strain of about 

50%, crushing has consumed the whole domain. Further compression of the densified 

material requires additional effort resulting in a saturation-type stiffening response. 

Figure 6.9 shows an expanded view of the early parts of the six responses. Included 

with dashed lines are estimates of the initial elastic slopes using 

  

 x  P

x
 E* 1

(1 2*)
 x
P

 2*



















       (6.1) 

which is based on the average isotropic properties of the foam of   {E*,*}  {63.3 ksi–436 

MPa, 0.36} from Chapter 4. For the lower pressures the initial elastic responses follow Eq. 

(6.1) well. However, as the pressure increases, inelastic bending of the end ligaments where 

the forces are applied tends to reduce the overall stiffness below the value for an infinite 

elastic medium.  

Returning to the full responses in Fig. 6.8, increase in the pressure precipitates 

earlier plastification of the domain. This results in lower limit stress and makes the 

descending part of the response more abrupt. Increase in pressure lowers also the stress 

plateau and appears to increase somewhat its extent. The decreasing trend of the limit and 

average plateau stresses with pressure is demonstrated in Fig. 6.10 where the plateau stress 

traces a trajectory with a somewhat larger negative slope. 

The inhomogeneous crushing that takes place as the deviatoric stress traces its 

plateau is demonstrated in Fig. 6.11, which shows a deformed configuration in the  x  y  
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plane from each pressure loading taken at 
 
 x   0.37. It is worth pointing out that for 

pressure levels up to and including 200 psi (1.38 MPa), local collapse of cells initiated at 

an internal site on the lower right as illustrated in image  in Fig. 6.3. The coexistence of 

crushed and uncrushed cell domains is quite evident for all pressures. However as the 

pressure increases, the crushed zone becomes more compacted affecting a smaller part of 

the domain, while the uncrushed zone is less deformed. This behavior makes the two 

deformation regimes more distinct and is responsible for the apparent increase in the extent 

of the stress plateaus with pressure. 

In physical triaxial experiments on foams and other compressible materials, 

pressure is usually applied through a membrane that surrounds the test specimen. In the 

present model, pressure loading is applied via single forces acting at the free ends of 

ligaments at three of the foam bounding planes. This has the drawback of causing inelastic 

bending of edge ligaments at an earlier stage than in the interior of the foam model. For 

example for   P  300  psi (2.07 MPa), this local action resulted in the collapse of the foam 

during the pressurization phase of the loading. For   P  250  psi (1.72 MPa) the specimen 

stayed intact during pressurization but, unlike the rest of the cases, localization first 

initiated at the top where excessive bending of edge ligaments created a weaker part of the 

domain. Local crushing initiated also at the lower end at a later stage, which resulted in the 

two crushed zones observed in the image in Fig. 6.11. 

6.2 CRUSHING OF HOMOGENIZED FOAM MODELS UNDER CONVENTIONAL TRIAXIAL 

LOADING 

The random foam test results reported above are now simulated at the continuum 

level using the compressible constitutive model of Chapter 4 in a finite element model of 

a solid cylinder under triaxial loading. The constitutive model is calibrated to the equivalent 

stress-strain relationship described in Section 4.2.3. The calculations are performed in 

ABAQUS/Explicit. 
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6.2.1 Triaxial Crushing Setup 

As in most conventional triaxial tests, the solid domain analyzed is a circular 

cylinder of height H and diameter H as shown in Fig. 6.12. The domain is discretized with 

8-node incompatible linear elements, C3D8I. The domain is divided into an outer thick 

cylinder covering   0.125  r / H  0.5 and an inner solid core with   r  0.125H . The outer 

cylinder is meshed with 84 sectors with 4.3o angular span. The inner core is meshed with 

irregular elements in the plane, which are chosen so as to connect to the radial elements of 

the outer cylinder at   r / H  0.125 (see cross-sectional view in Fig. 6.12). There are a total 

of 1131 elements in the plane and 40 elements along the axial direction. 

To minimize biasing of the anticipated localization of deformation, and facilitate a 

“smoother” propagation of higher deformation, the elements of the outer tubular domain 

are perturbed as follows: let 
  
xo  be the initial position vector of a node; then the perturbed 

position is given by  where 
  
i , i  1,3 are the amplitudes of the perturbation 

and  p  is a distributed random number between -0.5 and 0.5 (same as in Section 4.5 of Jang 

et al. (2008)). Unless otherwise stated   | | 0.01H  is used. Perturbation is applied to all 

elements of the outer cylinder except that the top and bottom surfaces were perturbed only 

in their planes, and the nodes on the outer cylindrical boundary were only perturbed in the 

x-direction. In addition, to help initiate localization, a small radial depression is introduced 

to the surface of the model covering the whole circumference at   0.3  x / H  0.4  (Fig. 

6.12). The depression is in the form of a half sine wave and has typical amplitude of   0.01H

. 

The top and bottom surfaces of the cylinder are in contact with rigid planes as 

shown in Fig. 6.12. The bottom plane is fixed in space while the top one is used to prescribe 

incrementally compressive displacement 
 
 x  to the cylinder. Pressure P is applied on the 

cylindrical and top surfaces through the “Dsload” distributed load command of ABAQUS. 

A general contact algorithm is applied for the contact between the rigid planes and the 
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domain. Lateral rigid body motion of the domain is prevented by introducing a small 

amount of friction (Coulomb coefficient  m  0.1) between the cylinder and the rigid planes. 

As in the random model, pressure is incremented first to the desired level. The 

model is then compressed by incrementally prescribing 
 
 x  up to a value of about 0.65 

while the pressure is held constant. The calculations are performed in an Explicit code, thus 

in order to keep the displacement incrementation slow enough for the solution to be quasi-

static, the loading history described in from Section 3.1.2 is adopted. 

6.2.2 Performance of the Homogenized Model at P = 100 psi 

The performance of the homogenized model is examined first through a 

conventional triaxial test at the relatively low pressure level of P = 100 psi (0.69 MPa). 

Figure 6.13 shows the calculated 
  
( x  P)   x / H  response for an imperfection amplitude 

of   0.01H –– 
 
 x  is again the reaction force on the stationary base plane divided by the 

original cross sectional area of the cylinder. Figure 6.14 shows a set of corresponding 

deformed configurations of a cross sectional plane that passes through the axis of the 

cylinder (note that the deformation patterns are not axisymmetric). The response exhibits 

the same three behavior regimes as those of the random foam tests in Section 6.1. 

The initial stiff and stable elastic response follows that of the random foam in Fig. 

6.2. The load maximum of 277 psi (1.91 MPa) is about 3.5% lower than that of the random 

foam. This value is primarily governed by the maximum stress of the up-down-up response 

adopted, and to a lesser degree by the amplitude of the imperfection used. The response 

drops down to a local minimum, triggering localization in the form of a planar band of 

higher deformation normal to the direction of axial compression. Subsequently, the 

deviatoric stress starts tracing a ragged plateau that extends to about 
 
 x   0.49. In the 

course, the higher deformation band spreads initially downwards and subsequently upward, 

while mostly remaining perpendicular to the direction of compression, until eventually the 

whole domain is consumed. The stress plateau has an average stress of about 232 psi (1.60 

MPa), which is 2.9% lower than that of the random foam. The choice of the Maxwell stress 
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of the up-down-up response in Fig. 4.6 governs this degree of agreement. For strains larger 

than about 0.50, the response jumps to the level of the stiffening branch of the random 

foam and tracks it well for higher strains. 

A more detailed view of the initiation of localized deformation in Fig. 6.15 plots 

expanded the early part of the 
  
( x  P)   x / H  response, and Fig. 6.16 shows a set of 

corresponding configurations of the early evolution of the band. Here the axial section of 

the cylinder is shown truncated for improved visualization. Deformation localizes soon 

after the initial stress maximum is achieved. In image  soon after the first stress valley at 

 
 x   0.024, a band of higher deformation has initiated from the imperfection on the outer 

surface of the cylinder and has covered the whole cross section. The band with a strain that 

ranges between 0.2 to 0.6, is about one element wide but appears to be affecting parts of at 

least two elements (note that the incompatible elements used allow internal strain 

gradients). In image  at 
 
 x   0.033, the band is more distinct with parts of it having a 

strain that approaches 0.8, a value that is on the stiffening branch of the material response. 

In image  at 
 
 x   0.044, the band is at least two elements wide but has also spread to 

the neighboring elements below it. The strain in the central part of its width is now about 

0.8. The broadening of the band appears to be occurring is spurts that cover part of the 

cross section. Further spreading of this band across the cross section is temporarily 

terminated, and localization initiates at other sites in the same cross sectional plane. These 

progressive initiation and arrest events cause the stress undulations observed in Fig. 6.15. 

It is worth mentioning that the mesh perturbation adopted tends to reduce their amplitude. 

In image  at 
 
 x   0.052, the band has propagated downward covering three elements; in 

image  at 
 
 x   0.066, it has spread to at least four elements, and in image  at 

 
 x   

0.076 to nearly six. Away from the edges of the band, the strain is approximately 0.8 while 

in the rest of the domain the strain is at the value on the initial ascending branch that 

corresponds to the current level of stress. 
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Discussion of subsequent events will continue using the overall response and 

corresponding images in Fig. 6.13 and 6.14, where station and image  correspond to  

in Fig. 6.16. The band continues its downward propagation tracing a similar ragged stress 

plateau. Thus in image  at 
 
 x   0.167, it has deformed most of the domain below the 

imperfection. In image  at 
 
 x   0.259, the higher strain band has reached the lower 

boundary and propagation continues upwards. In the process an island in the center of the 

cylinder is left undeformed, presumably the result of some local incompatibility between 

the perturbed elements in the outer domain and the unperturbed ones of the central core. 

This island of undeformed material causes the bowing of the propagating front observed in 

this image. In image  at 
 
 x   0.371, the bowed front has propagated upwards and in 

image  at 
 
 x   0.457 it has approached the upper boundary. Soon thereafter, the whole 

domain is deformed to the higher strain, and at 
 
 x   0.49 the response takes an upward 

trajectory. It joins the stiffening branch of the random model with the whole domain 

deforming homogeneously as evidenced by images  and  at 
 
 x   0.538 and 0.626 

respectively. 

In summary, the compressible constitutive model coupled with the up-down-up 

material response adopted have enabled the initiation and propagation of deformation in 

the homogenized model, and reproduced quite accurately the three-regime response of the 

random foam. In the absence of the random microstructure of the foam, the deformation 

patterns of the homogenized model are different, and in many respects are influenced by 

the mesh adopted. 

6.2.3 Performance of the Homogenized Model at P = 200 psi 

Results representative of higher pressure, P = 200 psi (1.38 MPa), are discussed 

next but with less detail. Figure 6.17 plots the calculated deviatoric stress-displacement 

response together with that of the random foam. Figure 6.18 shows a set of deformed 

configurations corresponding to the numbered bullets on the response. Overall the 
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calculated response reproduces the trends of the random foam. It exhibits the same three 

regime behavior. Following the limit load, the stress enters a ragged plateau up to an 

average strain of about 48%. The amplitude of the fluctuation is larger than those of the 

random foam; they are also somewhat larger than the fluctuations of P = 100 psi (0.69 

MPa). The fluctuations are again attributed to the progressive initiation and arrest of higher 

strain reported in Section 6.2.2. The mean level of the stress plateau is at about 132 psi 

(0.91 MPa), 13.6% lower than that of the random foam. At higher displacements, the stress 

reverts to a stiffening branch, due to the densification of the model. 

Figure 6.18 clearly shows that, as the stress plateau is traced, a high deformation 

zone and essentially undeformed zones coexist. In station  at 0.081x  , the stress has 

gone past the highly oscillatory trajectory in the early part of the crushing, and traces a less 

ragged plateau. A band of deformation of about 0.8 has initiated from the imperfection and 

in this image consumes 6~8 elements. Furthermore, the outer edges of the higher 

deformation zone cover only parts of planar rows of elements. Subsequently, the band 

spreads downwards. By station  at 0.313x  , the band has consumed the lower half of 

the domain, and continues its propagation towards the upper boundary. The rest of the 

domain is essentially undeformed. In image  0.398x  , the band continues to spread 

upwards and by station  at 0.476x  , the higher deformation zone is about to consume 

the whole domain. Soon thereafter, the band reaches the upper boundary. By stations  

and  at 0.564x   and 0.641 respectively, the deformation is again back to homogeneous 

and the response traces a stiffening branch. In short, under triaxial loading at P = 200 psi 

(1.38 MPa), the continuum model captures the inhomogeneous behavior of the foam. 

6.2.4 Performance of the Homogenized Model: Pure Compression 

The pure compression case is worth special examination also. Figure 6.19 plots the 

stress-displacement response from the homogenized model in a solid line, and the 

corresponding one of the random foam in a dashed line. Figure 6.20 shows a set of 

deformed configurations corresponding to the numbered time steps in the loading history 
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shown in Fig. 6.19. The calculated stress response again follows a trajectory very similar 

to that of the random foam. It starts with an initial elastic branch that terminates into a 

stress maximum of about 327 psi (2.26 MPa) at 0.038x  . Following the local maximum, 

the stress drops to the minimum, recovers, and traces an extended plateau at about 319 psi 

(2.20 MPa), which is about 1.6% higher than that of the random foam. At higher 

displacements, the response follows a gradual stiffening branch, nicely coalescing with that 

of the random foam. 

In image  in Fig. 6.20 at 0.082x  , an inclined band of higher deformation has 

initiated from the imperfection at the outer surface of the cylinder and has formed a conical 

shape. It has an inclination of about 30 degrees in the outer domain and connects to a 

relatively flat dome over the central core. In image  at 0.165x  , the initial localized 

band has broadened upwards covering a width of about 13 elements in the center core and 

about 7 elements close to the outer surface. A second inclined band of higher deformation 

has initiated somewhere in the upper domain, and connected to the dominant band. 

Subsequently, the higher deformation zone continues to propagate upwards, leaving behind 

a ring of undeformed material over the circumference of the domain. This results in local 

bowing out observed in images 3-7. In image  at 0.356x   the band of higher 

deformation approaches the upper boundary and subsequently starts to spread downward. 

By station  at 0.449x  , the band approaches the bottom plane close to the outer 

surface. Now, most of the domain is affected by the higher deformation and the stress starts 

to trace an increasing trend. In station  at 0.603x  , the stress increases to 481.0 psi 

(3.32 MPa). The higher deformation zone has covered the whole domain except for the 

persistent ring.  

6.2.5 Response at Different Pressure Levels Based on the Homogenized Model 

Similar calculations are carried out for all triaxial test pressure levels using the 

homogenized model. The same depression imperfection was used for the five lower 

pressures, while for  P   250 psi (1.72 MPa) the imperfection was increased to   0.015H . 
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The recorded behavior is broadly similar and will be discussed as a group. Figure 6.21 plots 

together the six deviatoric stress-axial displacement responses recorded. They all exhibit 

the same three-regime response with an initial elastic and stable branch, a limit load, an 

extended stress plateau, and a stable stiffening branch. As the pressure increases, the 

response traces an increasingly lower trajectory, with the six responses comparing quite 

well to the corresponding random responses in Fig. 6.8. 

The elastic branches are in concert with the elastic properties adopted in the 

constitutive model. The stresses at the limit loads are plotted in Fig. 6.10 against pressure 

where they are seen to follow the same downward trend with pressure as that of the random 

foam, with most values also being quantitatively close. The stress plateaus traced are more 

ragged than the random foam stress plateaus in Fig. 6.8, with the amplitude of the 

fluctuations increasing with pressure. In all cases localization initiated from the 

imperfection. For the four higher pressures, higher strain propagated progressively along 

planar rows of elements normal to the direction of compression similar to the propagation 

described for  P   100 psi (0.69 MPa). The stress fluctuations are caused by partial 

propagation along such planes of elements, local arrest, and initiation at a different site in 

the same plane, or on immediately neighboring planes of elements. The local spread and 

arrest of high deformation continues with the front propagating towards the upper and 

lower boundaries similar to what is reported for  P   100 psi (0.69 MPa) in Fig. 6.14. We 

found the amplitude of these stress fluctuations to be influenced by the perturbation of the 

mesh adopted. It is quite possible that a different randomization of the mesh that includes 

the central core of the cylinder may reduce the amplitude of the fluctuations further, but 

this is not expected to affect the level of the stress plateau. It is worth contrasting the stress 

fluctuations of the homogenized model with those of the random foam, where the stress 

undulations on the stress plateaus are caused by the crushing front encountering “stronger” 

or “weaker” cells in its path. The average values of the six stress plateaus are plotted against 

pressure in Fig. 6.10 where they are seen to exhibit the same downward trend as the plateau 

stresses of the random foam. Furthermore they are also quantitatively in good agreement 

with the values of the random foam. 
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Figure 6.22 shows a set of deformed images from the solutions of the six pressures 

analyzed at 0.37x  . The coexistence of two deformation regimes characteristic of 

materials that exhibit propagating instabilities is quite evident. For the three higher 

pressures, the propagating front remained planar and normal to the direction of 

compression. As reported earlier, for  P   100 psi (0.69 MPa) an island of undeformed 

material caused the propagating front to develop some curvature. For pure compression the 

initial localization that emanated from the depression imperfection developed a conical 

shape band (see Fig. 6.20). The conical shape band, together with the second angled band 

with the opposite inclination, subsequently resulted in local bulging of the deformed 

domain observed in Fig. 6.22. Similar inclined conical bands but with smaller inclinations 

developed for   P  50 psi (0.345 MPa) causing the more modest bulging observed in this 

image in Fig. 6.22. 

For the five pressure cases propagation of higher deformation terminates at about 

 
 x   0.48. For higher compressions, deformation is uniform with the stress tracing 

increasing but nearly parallel trajectories. In the case of pure compression, the response is 

influenced by the presence of the undeformed ring of material and starts increasing 

somewhat earlier. 

6.2.6 Parametric Study 

The sensitivity of the homogenized solution to several of the problem parameters 

is now examined in some detail. 

(a) Softening Modulus 
 
Et

p  

The slope of the negative branch of the up-down-up stress strain response adopted 

was assigned the value of -200 psi (-1.38 MPa) used also in Chapter 5. The effect of the 

softening modulus 
 
Et

p  is examined by crushing calculations for the   P  100  psi base case 

for additional values of 
 
Et

p , -150, -250 and -300 psi (-1.03, -1.72, -2.07 MPa). Figure 6.23a 
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shows the assumed equivalent stress-strain relations for the four 
 
Et

p  values. Figure 6.23b 

plots the resultant four deviatoric stress–displacement responses. The main effect on the 

calculated response is on the initial stress maximum, where increase in the negative slope 

results in an increase in its value. For the three smaller values of 
 
Et

p  the mean levels of 

the stress plateaus are the same, and the amplitudes of the stress plateau fluctuations are 

similar. In the case of 
 
Et

p  = -300 psi (-2.07 MPa), the mean level of the stress plateau 

increases slightly, while the amplitude of the fluctuations is somewhat smaller. The extents 

of the plateaus for the four solutions are similar. 

 

(b) Mesh Sensitivity of the Solution 

The sensitivity of the solution to the mesh density is examined next. The case of 

  P  100  psi (0.690 MPa) was recalculated using four different mesh densities with total 

number of elements ranging from about 16,000 to about 45,000, as listed in Table 6.1. The 

number of elements along the axial direction (i.e., from 25 to 40 elements) and in the cross 

sectional plane (i.e., two models with the same 40 elements axially) were varied. 

Table 6.1: Four finite element meshes used to examine the sensitivity of the solution to 
the mesh density 

No. of Elements 
Axial Total 

25 15,950 
32 20,512 
40 25,460 
40 45,240 

 

Figure 6.24 plots the stress-displacement response produced by the four meshes. 

As the mesh density increases the limit stress changes slightly. The stress plateaus 

produced by the four mesh densities are very ragged but at similar levels, and have very 

similar extents. Some minor differences in the deformation patterns that develop during the 

propagation phase of the solution were observed, but overall the solutions presented can 
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be considered converged. It can thus be concluded that the mesh density has limited 

influence on the calculated response. As in other problems in which partially softening 

behavior is introduced, mesh refinement tends to reduce the width of the transition front 

(see more extensive discussion in Section 5.5.1). This can be avoided by judicious 

regularization or by inclusion of higher order gradients. 

 

(c) Mesh Perturbation 

The mesh adopted in this Chapter can influence the propagation of the higher 

deformation and the associated stress fluctuations. The mesh adopted for the main part of 

the cylinder is based on a regular polar distribution in the plane and a regular axial 

distribution. For a more optimal solution this regularity was perturbed. The effect of the 

“strength” of the perturbation is examined by considering two perturbation amplitudes, 

   / H  0.0075 and 0.01, for the P = 100 psi (0.69 MPa) loading case. Figure 6.25 plots 

the calculated deviatoric stress response-displacement responses for the two perturbations. 

Larger perturbation amplitude reduces the stress fluctuations during the propagation of the 

front. However, the amount of perturbation that can be applied is limited by excessive 

distortion of some elements. As a consequence, the perturbation amplitude adopted in this 

study is limited to 0.01. It is quite possible that a different randomization of the mesh that 

includes the central core of the cylinder may reduce the amplitude of the fluctuations 

further, without affecting the level of the stress plateau. 

 

(d) Imperfection Sensitivity 

In order to ensure a recurring evolution of higher strain in the domain analyzed, a 

local depression imperfection that covers the periphery of the cylinder in Fig. 6.12a was 

used to initiate localization. The effect of the amplitude and location of the imperfection 

on the performance of the homogenized model is now examined. The position of the 

imperfection influences the location of first localization and to some degree the subsequent 

evolution of events. However it does not affect the stress plateau traced during the 

propagation of higher deformation, or the stiffening densification branch. 
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The effect of the amplitude of the imperfection on the response is examined using 

the P = 0 loading case. Figure 6.26 plots the calculated stress response for two imperfection 

amplitudes:   a / H  0.01, the value adopted in this study, and 0.015. The results show that 

with larger imperfection amplitude, the initial stress peak occurs slightly earlier, the stress 

plateau remains essentially unchanged, and its extent of the plateau is larger by a small 

amount.  

 

(e) Coefficient of Friction 

A Coulomb friction between two rigid surfaces and the cylindrical domain is added 

to the model in order to prevent any rigid body motion. Frictionless boundary conditions 

definitely lead to excessive sliding of the model, while a large friction is quite different 

from the frictionless condition used in the random foam described in Section 6.1.1. Figure 

6.27 shows the calculated deviatoric stress-displacement response for P = 50 psi (0.345 

MPa) using friction coefficients m   0.05 and 0.1. The two responses trace essentially the 

same trajectory throughout the crushing history. In this study, coefficient of friction m   

0.1 is adopted. 

6.3 SUMMARY 

This Chapter presented a complementary study of crushing of low-density foams 

under a more conventional triaxial loading that examines the behavior under different stress 

histories. Whereas in Chapters 3 and 5 the foam was crushed in three orthogonal axes under 

displacement control, in this Chapter micromechanically accurate random foams were 

compressed under displacement control in one direction while simultaneously loaded under 

external pressure. Crushing calculations were performed at six pressure levels, 

  P  {0,50,100,150,200,250} psi,  {0,0.345,0.690,1.03,1.38,1.72} MPa. The foam is found 

to exhibit the same three-regime behavior as that reported for uniaxial compression. An 

initial stiff response terminates into a load maximum, triggering localized crushing in a 

band of cells. Further compression causes the crushed zone to gradually spread with the 

stress tracing a plateau during which coexistence of crushed and essentially undeformed 
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zones of cells co-exist. The crushed zone is more compacted as the pressure increases. 

When the whole specimen is crushed, the densified material deforms again homogeneously 

tracing a hardening response. The level of external pressure tends to lower the limit stress, 

the stress plateau, and the rest of the response. 

The random foam test results were subsequently simulated at the continuum level 

using a finite element model of a solid cylinder under triaxial loading. The foam material 

behavior is represented by the compressible constitutive model described in Chapter 4. The 

homogenized model is shown to capture with good accuracy the three-regime response of 

the random foam reproducing the limit stress, the plateau stress, its extent, the subsequent 

hardening of the densified material, and the dependence of these on external pressure. 

Localization is initiated from a small geometric imperfection introduced to the cylindrical 

surface covering the whole circumference. In the homogenized model the random 

microstructure of the foam is replaced by the finite element mesh. For the four higher 

pressures considered, localization is in the form of planar zones of higher strain normal to 

the direction of compression. For pure compression and   P  50 psi (0.345 MPa), 

localization results in a band of conical shape. Additional compression causes the bands to 

broaden while the stress traces a ragged plateau. The band spreading occurs in spurts that 

cover part of the cross section. This local propagation and arrest of high strain results in 

stress fluctuations about the mean level of the stress plateau. By perturbing the initially 

regular mesh of the domain, the amplitude of the fluctuations was reduced. It is quite 

possible that a better randomization of the mesh can result in a smoother stress plateau. 

In summary, Chapter 6 demonstrates that the inclusion of a softening branch in a 

compressible constitutive model enables the reproduction of the inhomogeneous 

deformation exhibited by low-density foams under triaxial testing using a solid element 

model. 
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Fig. 6.1: (a) Triaxial test setup for random foam specimens loaded by constant pressure 
and compressed axially under displacement control. (b) Axial planar view 
showing the loading and boundary conditions. 
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Fig. 6.2: Axial deviatoric stress-displacement response recorded for the triaxial test on 
the random foam specimen at P = 100 psi (0.69 MPa). 
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Fig. 6.3: Sequence of deformed foam images from the x y  central plane corresponding to the numbered bullets on the 
response in Fig. 6.2. 
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Fig. 6.4: Expanded plot showing the initial part of the axial deviatoric stress-
displacement response of the random foam at P = 100 psi (0.69 MPa). 
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Fig 6.5: Sequence of deformed foam images from the x y  central plane corresponding to the numbered bullets on the 
response in Fig. 6.4. 
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Fig. 6.6: Axial deviatoric stress-displacement response recorded for the triaxial test on 
the random foam specimen at P = 200 psi (1.03 MPa). 
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Fig 6.7: Sequence of deformed foam images from the x y  central plane corresponding to the numbered bullets on the 
response in Fig. 6.6. 
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Fig 6.8: Axial deviatoric stress-displacement responses from triaxial tests on the 
random foam specimen at six pressure levels. 
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Fig. 6.9: Expanded early parts of axial deviatoric stress responses at six pressure levels 

fit by corresponding isotropic elastic predictions based on * *{ , }E   {63.3 
ksi–436 MPa, 0.36}. 
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Fig. 6.10: Axial deviatoric stress at the limit load and average stress plateau vs. pressure; 
results from the random and homogenized model. 
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Fig. 6.11: Deformed random foam images from the x y  central plane at / 0.37x L   

for six pressure levels. 
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Fig. 6.12: Specimen geometry and finite element mesh used for the homogenized 
model. 
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Fig. 6.13: Homogenized model axial deviatoric stress-displacement response for 
100P   psi (0.69 MPa) triaxial loading, and the corresponding response from 

the random foam model. 
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Fig. 6.14: Homogenized model deformed configurations from a central plane along the axis of the cylinder corresponding to 
the numbered bullets on the response in Fig. 6.13. 
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Fig. 6.15: Expanded plot showing the initial part of the axial deviatoric stress-
displacement response of the homogenized model at P = 100 psi (0.69 MPa); 
included for comparison is the random foam response. 
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Fig. 6.16: Homogenized model deformed configurations for the early part of the 
response corresponding to the numbered bullets on the response in Fig. 6.15 
(the upper half of the model is removed for better visualization). 
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Fig. 6.17: Homogenized model axial deviatoric stress-displacement response for 
200P   psi (1.38 MPa) triaxial loading, and the corresponding response 

from the random foam model. 
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Fig. 6.18: Homogenized model deformed configurations from a central plane along the axis of the cylinder corresponding to 
the numbered bullets on the response in Fig. 6.17. 
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Fig. 6.19: Homogenized model axial deviatoric stress-displacement response for pure 
compression 0P  , and the corresponding response from the random foam 
model. 
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Fig. 6.20: Homogenized model deformed configurations from a central plane along the axis of the cylinder corresponding to 
the numbered bullets on the response in Fig. 6.19. 
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Fig. 6.21: Homogenized model axial deviatoric stress-displacement responses for 
triaxial loading at six pressure levels. 
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Fig. 6.22: Homogenized model deformed configurations at / 0.37x L   for six 

pressure levels. 
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Fig. 6.23: (a) Equivalent stress-strain responses with four different slope softening 
branches. (b) Axial deviatoric stress-displacement responses at P = 100 psi 
(0.69 MPa) produced using the four stress-strain relations. 
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Fig. 6.24: Comparison of axial deviatoric stress-displacement responses for P = 100 psi 
(0.69 MPa) using four different mesh densities. 
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Fig. 6.25: Axial deviatoric stress-displacement responses at P = 100 psi (0.69 MPa) 
produced using a mesh perturbed with two different amplitudes, / H 
0.75% and 1%. 
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Fig. 6.26: Axial stress-displacement responses for pure compression loading produced 
using two imperfection amplitudes. 
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Fig. 6.27: Axial deviatoric stress-displacement responses for P = 50 psi (0.345 MPa) 
produced using two coefficients of friction. 
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Chapter 7:  Summary and Conclusions 

7.1 SUMMARY OF THE WORK 

It is well established that low-density foams under compression initially exhibit an 

elastic and stable response, but at some stress level deformation localizes in narrow zones 

of crushing cells. The crushing propagates with the stress remaining relatively unchanged 

until the whole domain is crushed, and subsequently the densified material returns to stiff 

and stable response. Multiaxial crushing experiments on foams are difficult to perform 

because of the large volume changes involved and consequently the behavior of foams 

under triaxial loads to large deformation remains a challenging subject. The challenge has 

been addressed in the present study by numerical testing of micromechanically accurate 

models of an Al-alloy open-cell foam. Foams with random isotropic monodisperse cellular 

microstructure with relative density of 0.08 have been tested under true triaxial and 

conventional triaxial loadings. Homogenized “alternatives” have been developed to 

reproduce the inhomogeneous crushing behavior of the random foam.  

The random foam model used in the study was developed in Chapter 2 based on 

the framework in Jang et al. (2008) and Gaitanaros et al. (2012). It is able to mimic the 

random microstructure of real foams and adopts a beam-to-beam contact algorithm 

essential for arresting local crushing of cells during the propagation phase of the response. 

The isotropic foam model used in this study has a cubical domain of 103 cells. 

Cubical random foam models were first crushed in three orthogonal directions 

down to volume changes of about 70% using the numerical true triaxial apparatus described 

in Chapter 3. The apparatus is capable of prescribing displacements on foam blocks in the 

three directions simultaneously. Foams were crushed using three families of radial 

displacement loading paths. For all loading paths, the true stress-displacement responses 

traced in the x-, y- and z-directions show all the general characteristics observed in uniaxial 

crushing. They started with an initial linearly isotropic elastic branch that terminated into 

a stress maximum. Following the stress maxima, bands of locally collapsed cells initiated 

at boundaries and subsequently propagated to the rest of the domain, while the responses 



 201 

started to trace plateaus. The plateaus in the three directions are extended in the primary 

loading direction, while limited in the other directions. As crushing continued, the 

propagation of the bands moved inwards, leaving the cells in the center of the domain 

essentially undeformed. At higher displacements, the responses traced stiff branches again. 

Other characteristics of the true triaxial crushing responses such as the mean stress-change 

in volume response and energy absorbed per unit undeformed volume were also reported. 

The study shows that low-density open-cell foams exhibit an inhomogeneous crushing 

behavior under true triaxial loadings. 

Motivated by the triaxial crushing results of random foams, a compressible 

constitutive model has been developed in Chapter 4 aimed at capturing this partially 

inhomogeneous crushing behavior in the continuum setting. The model uses a Drucker-

Prager type yield function, but with a non-associated plastic flow rule. The parameters for 

the constitutive model have been calibrated to the results of the triaxial crushing 

calculations reported in Chapter 3. An essential component of the modeling effort is the 

introduction of a softening branch to the material stress-strain response followed by a 

hardening branch. 

The constitutive model was first incorporated in a cubical solid finite element 

model in Chapter 5 to analyze the crushing behavior under true triaxial loadings. The finite 

element model uses an irregular mesh of solid incompatible elements. The homogenized 

model was crushed along the same three sets of radial displacement paths used in the 

crushing of the random foams. Small geometric imperfections have been introduced to the 

three loading faces to help initiate localization. The results of these simulations show that 

the calculated crushing responses reproduce the trends of the random foam very well up to 

volume changes of about 50%. At higher displacements, the homogenized model results 

tend to under-predict those of the random foam. As pointed out by previous researchers, 

densification regime hardening appears to be deformation-dependent, a feature not 

captured by the simple compressible constitutive model adopted in this study. 

The homogenized model lacks any of microstructural characteristics of the random 

foam. Consequently, the localization of deformation is driven by the geometric 
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imperfections introduced to the model. Thus for all cases analyzed localization nucleated 

from imperfections close to the stationary planes rather than at the contacting surfaces 

observed in the random foam. Despite these differences, as mentioned above, the calculated 

responses are reproduced quite accurately up to volume changes of about 50%. 

The behavior of low-density foams under the more conventional triaxial loadings 

has been examined in Chapter 6. Random foam models were first crushed under six 

pressure levels by prescribing the displacement in one direction. For all loading paths the 

responses exhibit the same three-regime behavior as reported for true triaxial crushing 

results. During the propagation phase of crushing, local cell crushing initiated at an internal 

location with the “weakest” cells, and gradually spread with the stress tracing a plateau. 

The limit and plateau stresses follow decreasing trends with increase in pressure. 

The conventional triaxial crushing tests have been simulated using the compressible 

constitutive model of Chapter 4 incorporated in a solid cylindrical finite element model. 

Localization, was initiated from small depression introduced to the outer surface and 

typically propagated in a planar manner until the whole domain was deformed. A ragged 

stress plateau was traced in the process. Perturbing the incompatible elements of the 

cylinder was found to result in smoother propagation. The homogenized model again 

captured all major aspects of the crushing responses of the random foam with good 

accuracy. The amplitude of the fluctuations mentioned above increased with the pressure 

level. It is quite possible that a better randomization of the mesh can result in a smoother 

stress plateau. In all stress histories, a band of higher deformation was developed from the 

imperfection and propagated to the rest of the domain. 

7.2 CONCLUSIONS AND FUTURE WORK 

The following main conclusions can be drawn for the work. 

1. The inhomogeneous crushing behavior previously observed in crushing 

experiments and modeling of open-cell Al-alloy foams has also been observed in 

the numerical triaxial tests reported in this work. This behavior was first observed 

in a set of radial displacement paths applied in the custom true triaxial apparatus 
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developed in Chapter 3. The inhomogeneous crushing was repeated in a set of 

conventional triaxial tests at different pressure levels. This behavior, reported for 

the first time, has implications when designing structures that include such foams.  

2. A compressible constitutive model calibrated to the true triaxial crushing results 

was incorporated in suitable finite element models and used to simulate the two sets 

of triaxial tests. The inclusion of a softening branch in the assumed material stress-

strain relationship enabled the reproduction of the inhomogeneous crushing 

behavior for both sets of triaxial tests reported. 

3. Although the compressible constitutive model developed reproduces the 

inhomogeneous crushing behavior of random foams, the crushing responses at 

higher displacements tended to underestimate those of the random foams. Due to 

its simplicity the constitutive model exhibits a hardening dependence on equivalent 

strain. Alleviating this behavior will improve the constitutive model significantly. 

The fact that the equivalent stress–change in volume responses of the true triaxial 

tests coalesce may provide a useful insight in efforts to extend and improve the 

constitutive model. 

4. Crushing experiments under multiaxial loadings on foams that crush 

inhomogeneously under uniaxial compression are essential for expanded 

development of constitutive models that capture their behavior. 
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Appendix A: Isotropic Elastic Constitutive Relations of Foams under 

True Triaxial Crushing 

The foam tested under triaxial loads in Chapter 3 exhibits in the initial stage of 

loading an isotropic elastic behavior and thus 

* * *

* * *(1 )(1 2 ) 1
i kk i

E E  
  

 
  

, , ,i x y z     (A.1) 

where { , }i i   are true stresses and the logarithmic average strains the three directions. For 

each of the three families of radial loading paths described in Chapter 3, strains in the three 

directions are in a certain ratio (e.g., for    (n,1,1)T  x y zn n    ). Using Eq. (A.1), the 

constitutive relation in the x- and y-directions for the set ( ,1,1)Tn  can be written as: 
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 Similarly, constitutive relations in Eq. (3.7) for the ( ,0.5,1)Tn  and Eq. (3.8) for 

( ,0,1)Tn  are derived. 

The constants * *{ , }E   in Eq. (A.1) are determined from each family of loading 

paths as follows. First, /i i   in the three directions are recorded from all six crushing 

calculations of each family. Each /i i   is compared to one analytical solution 

( / )i i analytical   from Eqs. (3.5), (3.7) and (3.8) with a guess for * *{ , }E   included. The 

error function for each /i i   is thus designed as 

2
/ ( / ) , , , .i i i i analyticalerr i x y z            (A.2) 
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A nonlinear optimization command fminsearch in Matlab is used to search for the values 

of * *{ , }E   for each loading family that minimize the sum of the error function from each 

/i i  . The optimized elastic moduli for the three families appear in Figs. 3.16, 3.23 and 

3.31 and are listed in Table 3.3. 

 

  



 206 

Appendix B: Non-associated Plasticity 

The yield surface adopted in Section 4.1, was calibrated to a set of triaxial stress 

states on random foams generated using the true triaxial apparatus in Chapter 3. In Fig. 4.1 

and related text in Section 4.2.1 it was pointed out that the plastic flow direction 
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 are different. The flow direction 

is determined form the random foam stress-strain increments as follows. Normality implies 

that for each loading path, the strain increment in the x- and z-directions can be expressed 

as 
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Normalizing by 1/ L , we obtain the flow direction 
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where i  is the true stress, xs  the deviatoric stress in the x-direction, and p
id  is the 

incremental plastic strain at the corresponding state.  
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Now, the flow direction can be calculated in the form of unit vectors using the 

measured stress and strain components at plastic work of   W
p  0.09  psi (0.62 kPa). The 

calculated flow direction is then compared to the local normal on the yield surface shown 

in Fig. 4.1. The results support that the model has a non-associated plastic flow. 
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