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This dissertation research places traffic congestion in a broader context of land 

use and economic linkages and contends that optimal congestion relief requires both land 

use and pricing policies. Congestion is considered excessive when the individually 

desirable (or privately optimal) amount of auto travel exceeds the socially optimal level. 

Two underlying causes of excessive congestion are discussed in detail here: market 

failures from congestion and agglomeration externalities and planning failures from 

exclusionary zoning and low-density zoning practices. This research is among the first to 

connect the economics of planning failure with excessive congestion.  

This research first specifies a spatial general equilibrium framework that reflects 

congestion delays, agglomeration economies, and planning failures. Simulation findings 

suggest that anti-congestion policies might erode agglomeration economies, causing a net 

social loss. Pricing policies need to balance the benefits from congestion reduction with 

the losses that come from weakening agglomeration tendencies. The congestion 

diseconomy is only a small share (5%-23%) of the total cost of congestion; policies 

seeking to produce free-flow speeds may lead to substantial welfare loss.  

Simulations demonstrate how that, when planning failures dominate region, even 

the first-best pricing is not so effective since planning failures are insensitive to (market) 
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pricing signals. Incorporating land use and economic policies are found to be socially 

optimal when both planning and market failures exist. This research also examines 

practical policies. Application of a mileage tax or a cordon toll partially reduces 

excessive congestion and decentralizes jobs. Urban growth boundaries are relatively 

inefficient and may distort land markets, causing worse congestion. Firm cluster zoning is 

more effective since allowing for jobs decentralization. Densification policies can 

alleviate the excessive congestion caused by low-density zoning regulation. Under 

exclusionary zoning regulations, building an employment subcenter can greatly improve 

welfare and alleviate congestion. Planning for new subcenters, however, requires a 

subsidy or incentive to trigger the firms’ relocations.  

This research also presents an empirical study using the 2006 Household Travel 

Survey data obtained for Austin, Texas. This study develops a multilevel multinomial 

logit model to investigate the interaction effects between land use and travel cost 

variables on travel mode choice. Results suggest that road-pricing policies are more 

efficient in reducing driving in neighborhoods with better walkability and easier access to 

activity centers. The impacts of land use patterns on driving are stronger when driving 

costs rise. These findings suggest that an incorporation of both land use policies and road 

pricing policies benefits a region’s residents more than the either policy on its own.   
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CHAPTER 1: INTRODUCTION 

PROBLEM STATEMENT 

Traffic congestion
1
 is one of the most obstinate problems plaguing many cities 

and regions around the world. Road users experience direct negative effects due to 

congestion, such as travel delays, extra fuel costs, and personal stress. There is also an 

external impact on non-road users, such as residents and businesses near congested roads. 

A recent report by the Texas Transportation Institute (TTI) estimates that in 2011, each 

U.S. commuter saved 38 hours per year and 19 gallons of gasoline, summing to $820 per 

commuter annually, when all roads were free of congestion. Congestion also increases 

environmental and social costs of travel: namely, air pollution, greenhouse gas emissions, 

and energy dependency. Traffic congestion in 498 urban areas in the United States caused 

5.5 billion hours of travel delay, 2.9 billion gallons of excess fuel consumption, and 56 

billion pounds of additional CO2 emissions. These total $120 billion in losses due to 

congestion, or almost $400 per capita per year (TTI, 2012).  

Traffic congestion seems to be an unavoidable consequence of contemporary city 

life. Intensifying congestion could be evidence of social prosperity and economic growth 

(Downs, 2005; Taylor, 2002). Cities with empty roads during peak hours may well 

indicate the presence of an economic recession. A certain degree of congestion is 

individually or socially desirable. Road users can tolerate travel delay as long as they 

obtain other benefits from living and working in a congested area (e.g., high wages, 

shorter commutes, and easy access [OECD, 2007]). Congestion is excessive only when 

                                                           
     

1
Traffic congestion is a concept bounded by space and time. Congestion can occur on not only the street 

and highway network but also the public transit system, railway system, and airport slots. This dissertation 

primarily focuses on road traffic congestion raised by automobile vehicles in the citywide highway network 

system. Without specific notations, traffic congestion and congestion used in the dissertation represent road 

traffic congestion. 
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its marginal social cost (MSC) of travel exceed the marginal social benefit (MSB) 

(OECD, 2007; Victorian Competition and Efficiency Commission [VCEC], 2006).  

Congestion ties closely to agglomeration. Heavy congestion often takes place in 

large cities with strong agglomeration of knowledge and production. The spatial 

concentration of activities and traffic could simultaneously generate negative congestion 

externalities and positive agglomeration externalities. Congestion will not negatively 

affect a city’s economy if the agglomeration benefits fully compensate for the congestion 

losses. Many empirical studies have examined the link between congestion and urban 

economies (e.g., Boarnet, 1997; Graham, 2007; Hymel, 2009; Sweet, 2011; Weisbrod, 

Vary, & Treyz, 2001). Although their findings remain inconclusive, several studies have 

demonstrated that the city economy is impaired only when congestion exceeds a 

threshold level of crowding (e.g., OECD, 2007; Sweet, 2014). This finding implies that 

congestion is not always bad but excessive congestion
2
 is inefficient. It is thus important 

to examine policies for reducing excessive congestion, rather than eliminating all 

congestion. 

Few existing studies distinguish excessive congestion from congestion (e.g., 

OECD, 2007). Such studies may lead to an overestimation of the net social costs of 

congestion (i.e., the congestion diseconomy) and overreaction in terms of anti-congestion 

policies. To dissect inefficient congestion, this dissertation tackles three important 

questions: What causes excessive driving demand, how should the term excessive be 

defined and measured, and how should excessive congestion be effectively mitigated? By 

                                                           
     

2
As discussed in the following chapters, traffic congestion may be insufficient, rather than excessive, 

after agglomeration externalities are accounted for. However, it is better to explain insufficient congestion 

as insufficient agglomeration. Social optimum exactly needs more agglomeration and concentration of 

production and consumption activities, rather than more traffic on the roads, although congestion is an 

inevitable consequence of increasing levels of agglomeration. This dissertation emphasizes the issues of 

excessive, rather than insufficient, congestion. Policies for resolving the problem of insufficient congestion 

probably need to encourage agglomeration enhancement. 
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resolving these issues, this study aims to find a much-needed bridge between planning 

and economics to inform efficient investment decisions and effective policymaking for 

congestion relief. 

The research articulates two underlying causes of excessive congestion: market 

failures – in the current market setting where road users pay only the personal cost of 

travel, which is lower than the social costs of trip making (Arnott, 1979; Brueckner, 

2000; Kono & Joshi, 2012; Pines & Sadka, 1985), and planning failures – where 

government planning interventions cause less efficient development (e.g., low-density 

sprawl) than would occur without that intervention (Cervero, 1996; Levine, 2006). Either 

failure tends to result in excessive travel and congestion. In an unregulated market, road 

users who only pay the private costs of using limited road space would generate excess 

travel demand, leading to more congestion. Some planning interventions, such as density-

constrained, single-use, and minimum-lot-size zoning, restrict alternative development 

that the market desires and increase trip length and automobile dependence. The 

increased automobile travel demand adds to regional congestion in the long term.  

Although much literature has explained congestion under the framework of 

market failure (see a review by Anas & Lindsey [2011]), less has scrutinized how 

planning failure shapes excessive congestion in our living metropolitan areas. It is 

important to recognize that excessive travel demand caused by market failures differ from 

planning failures. Excessive congestion is the amount of congestion exceeding the 

socially optimal level, in which additional trips produce more costs than benefits to the 

community. Excessive congestion is caused by underpaid travel costs in the perspective 

of market failures and unnecessary regulatory policies in the perspective of planning 

failures. Many studies have shown the adverse effects of land use regulation, such as low-

density zoning’s effects on housing affordability, employment, and urban productivity 
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(Glaeser & Gyourko, 2003; Hsieh & Moretti, 2015; Quigley & Rafael, 2005; Turner, 

Haughwout, & van der Klaauw, 2014). However, the effects of land use regulations on 

mobility and accessibility, along with traffic congestion, are less examined and need 

further investigation.  

The intricate causes of excessive congestion make its measurement complex. The 

analytical framework for excessive congestion estimation needs to internalize not only 

social costs specific to travel but also social benefits outside the transport system. The 

values of daily travel are often not from trips themselves but activities performed at the 

destinations. People benefit from driving to shopping malls for daily consumption and to 

the workplace for wage income. The evaluation of travelers’ benefits thus needs a 

systematic framework that integrates interactions among transportation, land use, and 

labor and consumption markets. Also, the framework should enable researchers to tackle 

tensions between congestion and agglomeration as well as be responsive to land use 

regulations. Only limited studies have developed such integrated models (e.g., Anas & 

Liu, 2007; Anas & Xu, 1997; Wheaton, 2004). Most models only recognize either 

congestion externalities (e.g., Anas & Xu, 1999; Arnott, 1979; Brueckner, 2007; Pines & 

Sadka, 1985; Solow, 1972; Wheaton, 1998;) or agglomeration externalities (Berliant, 

Peng, & Wang, 2002; Borck & Wrede, 2009; Fujita & Ogawa, 1982; Lucas & Rossi-

Hansberg, 2002; Rossi-Hansberg, 2004). 

Therefore, this dissertation builds a spatial general equilibrium framework to 

analyze interactions among land use, transportation, and agglomeration of business. 

Relying on computational simulations and empirical studies, I investigate the 

effectiveness of two types of anti-congestion policies: congestion pricing and land use 

planning. The major argument is that either congestion pricing or land use planning 
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policies may reduce excessive driving demand and congestion; however, neither pricing 

nor planning alone can effectively correct both market and planning failures.  

The congestion pricing strategy is an economic approach to addressing market 

failures by applying a toll, equal to the external cost of travel, on all road users who 

create the cost. Optimal tolls equal the marginal external costs of congestion—that is, the 

gap between marginal social and private expenses. Such an optimal tolling policy is 

difficult to implement in practice, despite the fact that it, in theory, can fully correct the 

market failure from congestion externalities and adjust traffic to the socially optimal 

level. There are many more practical but second-best policies, such as cordon charges, 

area-wide pricing, and variable-rate highway tolling. Pioneering examples around the 

world include Singapore’s cordon charge in the early 1970s, Norway’s toll rings in the 

mid-1980s, London’s area-based pricing in 2003 (Ieromonachou, 2006; Santos, 2005), 

and high-occupancy toll (HOT) lanes and expressways in the United States (U.S. GAO, 

2012).  

Land use planning strategies are regularly embraced by planners who believe that 

command-and-control regulations, seeking ideal or desired land use patterns, are an 

effective solution to congestion. Although most economists regard land use planning as a 

second-best substitute for optimal congestion pricing policies (e.g., Brueckner, 2000; 

Wheaton, 1998), many planners argue that land use planning serves more as a strategy for 

correcting planning failures, rather than market failures (Cervero, 1996; Knaap, Talen, 

Olshansky, & Forrest, 2000; Levine, 2006). These planners recommend alternatives (e.g., 

mixed-use development, transit-oriented development, and smart growth) to low-density 

sprawl, the latter of which is notorious for nurturing an auto-oriented lifestyle and auto 

dependence (Knaap et al., 2000). 



6 

Land use and transportation studies have widely discussed the efficiency of both 

congestion pricing and land use planning as tactics for driving congestion reduction and 

relief. However, most studies recognize them as independent or substitutable, rather than 

complementary, policies. Although a few empirical studies have detected potential 

benefits from complementary land use and pricing policies (e.g., Guo, Agrawal, & Dill, 

2011; Lee & Lee, 2013), no theoretical interpretations have been advanced. This research 

aims to fill the gap and investigate how incorporating land use and economic policies 

could be more efficient than either congestion pricing alone or land use planning alone 

policies.  

RESEARCH OBJECTIVES AND QUESTIONS 

In this dissertation, I propose an integrated approach to understanding how market 

systems and planning regulations encourage or discourage auto travel and congestion. 

This study first recognizes the difference between the economist’s view of market failure 

and the city planner’s view of planning failure. I then explore the combination of both 

views in theory and practice. Specifically, I aim to achieve the following objectives: 

(1) To examine how agglomeration externalities as a source of market failure, 

other than congestion externalities, affect traffic congestion (Chapters 2 and 

3). This requires developing a new urban economic model with 

endogenously determined congestion and agglomeration externalities. In this 

research, I will adopt computational simulations to identify both the socially 

optimal and excessive levels of congestion, to measure diseconomies of 

excessive congestion from market failures, and to examine interactions 

between congestion and agglomeration. 

(2) To theorize how planning failures cause excessive congestion (Chapters 2 

and 3). I aim at bridging economic and planning analytics for congestion 
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studies by placing planning failures into the economic framework for market 

failure analysis. The framework is applied to compare the role of planning 

versus market failures in shaping excessive congestion and social 

inefficiency and to articulate when land use planning or economic policies 

are superior and when incorporating land use and economic policies are 

socially preferred.  

(3) To identify and evaluate socially optimal policies for reducing the excessive 

congestion caused by market failures (e.g., from congestion and 

agglomeration externalities) and planning failures (e.g., from exclusionary 

zoning and low-density zoning regulations), respectively (Chapter 3). This 

research compares land use planning- and congestion pricing-alone policies 

with complementary land use and pricing policies, with focuses on their 

impacts on congestion relief, land use, and social welfare. 

(4) To assess the effectiveness of practical (i.e., second-best) congestion pricing 

(e.g., vehicle miles of travel [VMT] tax and cordon toll) and land use 

planning policies (e.g., urban growth boundaries [UGBs], firm cluster 

zoning, residential densification, and building suburban employment 

centers), rather than unrealistic optimal policies, as a strategy to reduce 

excessive congestion and improve social welfare (Chapters 4 and 5).  

(5) To empirically investigate the interaction effects of land use characteristics 

and travel costs on travel mode choice in the Austin, Texas area and to 

provide evidence on the benefits of incorporating land use and economic 

policies for reducing auto travel demand in Austin (Chapter 6).  

(6) To foster methodological innovation in studies addressing urban congestion, 

planning failure, and land use–transportation–economy integration.  
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For achieving these research goals, this dissertation will investigate the following 

questions: 

(1) How do anti-congestion policies affect agglomeration economies? 

Alternatively, in which situations could these policies benefit or harm 

agglomeration economies? These questions can help decision makers to 

define and estimate excessive congestion and avoid misestimating the 

efficiency of anti-congestion policies. Although negative congestion 

externality is the primary source of market failure leading to excessive 

congestion, positive agglomeration externality could be a source of market 

failure that causes insufficient crowding and congestion. To identify 

excessive congestion, we need to investigate the tension between congestion, 

as an important centrifugal force of urban growth, and agglomeration, as an 

important centripetal force.  

(2) How do planning failures from exclusionary and low-density zoning 

regulations affect congestion, land use, and social efficiency? When do 

planning failures play a more important role in determining excessive 

congestion than market failure? These questions saliently lack sufficient 

studies, either in theory or empirics. Proponents of congestion pricing 

strategies, such as many economists, often overlook the roles of planning 

failures in the excessive congestion occurrence. In contrast, proponents of 

land use planning strategies, such as many planners, often neglect the salient 

role of market failure leading to excessive congestion. Although there is 

reasoning behind both perspectives, little research has been successful in 

connecting them together. The primary barriers to bridging economic and 

planning studies are the inconsistent analytical frameworks used by them. 
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This research thus will develop a framework for simulating mechanisms of 

planning and market failures.  

(3) In the presence of market and planning failures, can an optimal pricing or 

land use policy alone eliminate all excessive congestion? This question 

investigates the necessity of a complementary land use and economic policy. 

We can break this issue down into four sub-questions: (a) If congestion 

pricing is ignored, what is the effectiveness of land use planning on 

congestion reduction and welfare improvement; (b) if land use planning is 

ignored, what is the effectiveness of congestion pricing on congestion 

reduction and welfare improvement; (c) comparing these two policies, which 

one will bring more desired outcomes on congestion reduction, land use, and 

well-being; and (d) what are the effects of combining congestion pricing and 

land use planning? These questions are important for land use and 

transportation planning practice.  

(4) What practical pricing and land use policies are effective in reducing 

excessive congestion? Because optimal policies are often idealistic and 

infeasible in planning practice, this research will examine several practical, 

second-best policies, with a focus on their influences on congestion 

reduction, land use, and social efficiency as well as their potential side 

effects.  

(5) Is incorporating land use and economic policies effective to reduce auto-

travel demand in empirical studies? Empirical studies have long investigated 

the anti-congestion impact of either land use or pricing policies. However, 

few examine the “mutually supportive” effects between them (Guo et al., 

2011). Despite the fact that the empirical study does not directly measure 
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congestion, it can still provide evidence to examine the findings from the 

theoretical and simulation research used in this dissertation.  

DISSERTATION OUTLINE 

The dissertation includes seven chapters. This Chapter 1 states the research 

problems, key objectives, and questions in this dissertation and describes the organization 

and structure of the dissertation. Chapter 2 reviews the literature on theories related to 

excessive congestion, market failure, and planning failure and the empirical studies on 

anti-congestion policies, including land use planning and congestion pricing strategies. 

Chapter 2 helps to theorize how congestion connects with agglomeration and how market 

and planning failures shape excessive congestion. It also identifies the gaps between 

theories and empirics in addressing congestion issues.  

Chapter 3 relies on urban economic theories to develop a novel spatial general 

equilibrium model that accommodates market failure from congestion and agglomeration 

externalities. This model is extended to internalize planning failures from exclusionary 

zoning and low-density zoning regulations. This chapter first investigates how congestion 

and agglomeration externalities cause market failures leading to excessive congestion and 

identifies the socially optimal pricing policies to reduce excessive congestion from 

market failure. Next, the chapter examines how planning failures cause excessive 

congestion and explores the optimal land use remedies for planning failures. Finally, this 

chapter emphasizes the importance of incorporating land use and economic policies in 

cities with both planning and market failures.  

Based on the modeling and simulation frameworks created in Chapter 3, Chapter 

4 focuses on the effectiveness of practical pricing policies: VMT taxes and cordon tolls. 

Chapter 5 focuses on practical land use policies, including UGBs, firm cluster zoning, 

and residential densification. Although practical policies are less efficient and second-
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best or even third-best compared to the optimal policies, they are often much more 

politically and financially feasible than first-best policies.  

Chapter 6 presents an empirical study of Austin, Texas region area to investigate 

the interaction effects of land use and travel cost variables on travel mode choice. It 

develops a multilevel logit model to identify whether neighborhood-level land use 

characteristics can serve as a spatial context modifying the pricing effect on reducing 

driving. Despite the fact that this study does not directly model congestion, it can provide 

evidence of the benefit of incorporating land use and economic policies. 

Chapter 7 summarizes key findings of this dissertation research. Primary 

contributions to literature are outlined, and future work opportunities (theoretical, 

empirical, and methodological) are discussed.  
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CHAPTER 2: THEORY OF EXCESSIVE CONGESTION AND EVIDENCE OF ANTI-

CONGESTION POLICIES 

This chapter contains two sections. The first section disentangles the causes of 

excessive congestion, articulates theories of market and planning failures, and connects 

them with traffic congestion. The second section elucidates the underlying reasoning of 

land use planning and congestion pricing policies for reducing congestion and 

summarizes the effectiveness of these policies as found in empirical studies. 

THEORY OF EXCESSIVE CONGESTION 

 

 

Sources: http://international.fhwa.dot.gov/pubs/pl07012/images/figure_1.cfm 

Figure 2.1 Causes of Congestion in the United States 

Congestion arises when travel demand for road space exceeds the available supply 

of road capacity and can derive from both the supply and demand sides. A report from the 

U.S. Department of Transportation (DOT) categorizes national highway congestion into 

nonrecurrent and recurrent congestion and summarizes seven types of causes (Freeway 

http://www.dot.gov/
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Management Handbook, 1997). Nonrecurrent congestion results from nonpredictable or 

one-time-only events, such as traffic incidents, bad weather, maintenance and work 

zones, and special events. Recurrent congestion comes instead from predictable events, 

such as signal lights and physical bottlenecks. Nonrecurrent factors generate 55% of 

highway congestion in the U.S., and recurrent factors account for 45% (see Figure 2.1). 

Also, socioeconomic dynamics may be significant sources aggravating traffic congestion, 

including growing population and employment, rising incomes, and decreasing costs of 

driving (Falcocchio & Levinson, 2015). 

Factors causing traffic congestion are not necessarily triggers to excessive 

congestion. According to the Oxford English Dictionary (2015), excessive is defined as 

“more than is necessary, normal, or desirable.” The definition of the “desirable” demand 

on auto travel is the key point for excessive congestion estimation. Excessive congestion 

could be a subjective concept in which road users apply their own standards to define 

which parts of congestion are normal and tolerable. Also, the concept of desirable 

demand is a consequence of comparison. For example, the individually desirable level of 

travel demand and congestion might not be the socially desirable level.  

In this dissertation, the definition of desirable refers to a concept widely used in 

economics: socially optimal. From an economic perspective, the socially optimal level of 

congestion occurs when the marginal social benefit (MSB) of travel equals the marginal 

social cost (MSC). At this optimal level, societies cannot achieve a larger net benefit by 

adding or removing a trip; the net profit to the whole society is at its maximum. 

Measuring the socially optimal level of congestion requires knowing not only the 

marginal private costs (MPCs) and benefits (MPBs) of travel but also the marginal 

external costs and benefits imposed on others. According to the first theorem of welfare 

economics, if no externalities of congestion exist in the society, the competitive 

http://www.oxforddictionaries.com/us/definition/american_english/desirable#desirable__2
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allocation of travel-related activities and resources in the free market without any price 

interventions by government policy can achieve the socially optimal level of congestion. 

In the presence of externalities of crowding, if road users account for all of their impacts 

on others, the resulting level of congestion is socially optimal. This economic definition 

of what is the socially optimal level of congestion suggests that societies needs a certain 

degree of congestion, and the optimal level of congestion represents the maximum 

amount of traffic volume desired by the whole society.  

Excessive congestion arises when the congestion level exceeds the socially 

optimal level. In this case the MSC of travel surpasses the MSB, leading to a net social 

cost; that is, a welfare loss. This research defines such a welfare loss as congestion 

diseconomy, which equals the total social cost minus the benefit of travel. In contrast, 

congestion can be insufficient when the congestion level is below the socially optimal 

level. In this case, the society could ask for more trips to support increasing economic 

activities. Insufficient congestion is better defined as insufficient agglomeration because 

agglomerated activities determine congestion rather than the reverse. The following 

sections present several graphical analyses theorizing when congestion is excessive, and 

they investigate what policies are efficient for adjusting congestion to the socially optimal 

level. 

Market Failure from Congestion Externalities 

  

“In principle, it is possible to determine whether congestion is excessive  

by examining the  impact of  adding an  extra vehicle  to a road or  

allowing an additional passenger onto a train. When the net benefits 

derived by the additional traveler are  greater than  the additional  costs 

imposed  on existing  travelers, adding further cars onto the road or 

people onto trains will make the community better off  overall.  Increasing  

congestion  would  be  consistent  with  increasing welfare,  but  when  the  

net  benefits  derived  by  an  additional  driver  or  a  train passenger  are  

less  than  the  costs  imposed  on  existing  road  users  or  train 
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passengers,  society  as  a  whole  is  worse  off  due  to  the  extra  travel.  

When this occurs, congestion is said to be excessive.” (VCEC, 2006: p55) 

 

The quotation above is from a report of the Victorian Competition and Efficiency 

Commission in Australia (VCEC, 2006). It explains that excessive congestion arises 

when the MSC of adding extra drivers to a road exceeds the MSB (MSC > MSB). The 

key question is why such a situation would happen in the free market. In a socially 

optimal situation, MSC equals MSB, and the transportation market is efficient. No road 

users could be made better off without other road users becoming worse off. The situation 

in which MSC exceeds MSB can occur when the market fails to price the external cost of 

traffic congestion, that is, the congestion externality. Thus, underpriced travel is a crucial 

cause of excessive congestion. 

Figure 2.2 illuminates how congestion externality as a source of market failure 

incurs excessive congestion. The graph analysis assumes that identical road users are 

expected to drive on a particular section of the road network during peak hours. The 

horizontal axis represents traffic flow passing the section within a fixed period, while the 

vertical axis represents costs for crossing the road section. The driving demand curve 

demonstrates that driving demand decreases with driving costs, and that the MSB of 

adding an extra vehicle to the road decreases with the traffic volume. Because no external 

benefits of driving are present here, the marginal private benefit (MPB) equals the MSB. 

In contrast, the MSC curve is the same as the MPC curve when traffic volume is low, for 

example, under the free-flow volume (TFF)
3
. The underlying assumption is that road users 

have less impact on other users when they can travel at the free-flow speed. The MPC 

curve represents the private cost of each vehicle for using the road, including time cost, 

                                                           
3
 The free-flow volume can be understood as the maximum traffic volume under free-flow speeds, which 

are often estimated below the speed limit. In this dissertation, we mainly consider travel delay as the 

external costs of congestion. If other external costs of travel are included, such as costs of air and noise 

pollution and crashes, the MSC curve should be above the MPC curve even when the traffic volume is low.  
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fuel cost, and vehicle maintenance cost. MPC is constant and relatively low when road 

users can drive at the free-flow speed and then increases with upward slopes when the 

traffic volume exceeds TFF. After passing TFF, MSC diverts from MPC because MSC 

internalizes congestion costs imposed on other road users and nonroad users, such as the 

cost of time delay. 

 
Notes: MSC is the curve of marginal social costs; MPC is the curve of marginal private costs. The demand 

curve also represents the marginal private benefit (MPB). Since no external benefits of travel are present 

here, the marginal social benefit (MSB) equals MPB. TFF is the traffic volume in the free-flow situation; 

TSO is the socially optimal level of traffic volume; TFM is the equilibrium level of traffic in the free-market 

without accounting for congestion externalities. The shaded area, triangle def, represents the magnitude of 

net costs to the society caused by excessive congestion, i.e., total congestion diseconomies, in the free-

market equilibrium. P*- P1 is the Pigouvian toll to move MPC to intersect at the socially desirable point d. 

Figure 2.2 Congestion Externalities as a Source of Market Failure Leading to Excessive 

Congestion 

In a free market without pricing regulations, road users pay only for the private 

costs of their driving, not for external costs imposed on others. Free-market equilibrium 

occurs at the intersection of MPC and MSB, that is, the point where the MSB equals the 
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MPB. The free-market equilibrium level of traffic, TFM, is the individually desirable level 

of congestion rather than the socially desirable level. After accounting for the external 

costs, the socially optimal level of congestion occurs at the intersection of MSC and 

MSB. The socially optimal level of traffic is TSO, smaller than TFM. 

Figure 2.2 provides an intuitive approach to measuring excessive congestion from 

underpriced driving. The excessive driving demand equals the difference between the 

socially and individually desirable levels of traffic, i.e., TFM - TSO. In the free market, the 

equilibrium traffic produces a net benefit equaling the area of abcd minus the area of def. 

At the socially optimum level of congestion, the traffic level reaches equilibrium at the 

socially desirable level, creating a net benefit; that is, the area of abcd. Thus, excessive 

congestion can bring a net social cost up to the shaded area, the triangle def. This shaded 

area also represents the diseconomy of congestion. 

These findings demonstrate that humans prefer to live and work in cities with a 

moderate level of congestion rather than without congestion at all. When traffic volume 

increases from TFF to TSO, congestion becomes worse but the total consumer surplus 

increases up to the area cdh (see Figure 2.2). Also, the congestion diseconomy is just a 

part of the full cost of congestion. When driving demand reaches the TFM level, driving at 

the free-flow speed generates a cost of the area bokg and congestion brings a total cost 

equaling the area cfg. After accounting for the benefit of travel, the exact diseconomy of 

congestion, def, is smaller than the full social cost of congestion, cfg.  

Because market allocations with excessive congestion are inefficient, improving 

the social efficiency requires eliminating excessive congestion or reducing those driving 

trips that are valued less than their social costs. An efficient policy is to adjust price 

signals that road users receive. This can be done by imposing a toll equaling the optimal 

marginal external cost (e.g., P* - P
1
 in Figure 2.2) on all road users. The toll makes road 
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users face the full social cost of travel, including both private and external costs. Such a 

congestion pricing policy is also called Pigouvian congestion pricing. 

Market Failure from Congestion and Agglomeration Externalities 

Previous analysis of market failure assumes that there is only one externality in 

the market, that is, the negative congestion externality. This section extends the 

discussion of market failure to a more realistic context by adding agglomeration 

externalities. Locations with agglomerated business companies and grocery stores, such 

as downtown or suburban centers, often generate and attract crowded traffic. Congestion 

is born with agglomeration; both congestion and agglomeration come from the spatial 

concentration of activities and traffic. Both residents and businesses can benefit from 

agglomeration. For example, people can benefit from living and working closer to each 

other. Firms can benefit from locating closer to each other for easier access to 

intermediate inputs and labor, lower transaction costs, easier job-worker matching, and 

knowledge spillovers (Fujita & Thisse, 2002; Puga, 2010; Rosenthal & Strange, 2004). 

Consequently, the congestion diseconomy is a type of agglomeration diseconomy, while 

the agglomeration economy can be seen as a kind of congestion benefit. Humans desire a 

certain degree of congestion, probably largely due to a need for strong agglomeration 

economies.  Congestion is efficient if the agglomeration economy can fully compensate 

the congestion diseconomy.  

Figure 2.3 provides a graph analysis of how congestion and agglomeration 

externalities together affect excessive congestion. While agglomeration externalities are 

on the production side, Figure 2.3 is a simplified interpretation assuming that increasing 

traffic volumes indicate increasing agglomeration benefits. This assumes that the external 

benefits to firms will be transferred to workers and that workers will use these benefits to 

make their travel decisions. The existence of agglomeration externality thus makes the 
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MSB greater than the MPB. The market reaches an optimum when the MSB equals the 

MSC—i.e., at point c—and TSO is the socially optimal level of traffic when both 

externalities are fully corrected. TFM is the equilibrium traffic volume in the free market, 

and TPCT is the equilibrium level of traffic when only congestion externalities are 

corrected (e.g., by using Pigouvian congestion toll policies). The optimal level of traffic 

differs from the level when only congestion externalities are accounted for, i.e., at point 

b. 

After internalizing both externalities, driving demand and congestion in the free 

market are not always excessive (Figure 2.3a) but are insufficient (Figure 2.3b) compared 

to those in the social optimum category. As shown in Figure 2.3a, if agglomeration 

economies are not considered excessive, traffic volume is TFM -TPCT and the congestion 

diseconomy is the triangle area bef. After considering agglomeration externalities, the 

excessive traffic volume becomes TFM-TSO and the congestion diseconomy decreases to 

the field of cde. These findings demonstrate that a part of congestion diseconomy is 

compensated by the agglomeration economy, i.e., the area bcdf. Excessive congestion 

may be overestimated if researchers recognize the cost and benefit of travel in the 

transportation market but overlook the extra benefit of helping to shape agglomeration. It 

is essential to estimate excessive congestion and congestion diseconomies within a 

framework that internalizes both congestion and agglomeration externalities.  
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Notes: MSC is the curve of marginal social costs; MPC is the curve of marginal private costs; MPB is the 

marginal private benefit; MSB is the marginal social benefit after accounting potential agglomeration 

economies. TFF is the traffic volume in free-flow situation; TSO is the socially optimal level of traffic 

volume; TFM is the equilibrium level of traffic in the free market; TPCT is the equilibrium level of traffic 

when only congestion externalities are fully priced using Pigouvian congestion toll policies.  

Figure 2.3 Congestion and Agglomeration Externalities Leading to Excessive or 

Insufficient Congestion 
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After recognizing potential extra benefits from crowding, the socially optimal 

policy should not aim for eliminating all excessive congestion but for reducing excessive 

traffic to the optimal level. According to Figure 2.3, the optimal level occurs when the 

marginal congestion externality (MCE) equals the marginal agglomeration externality 

(MAE). When anti-congestion policies reduce traffic volumes from TFM to TPCT, they can 

bring welfare gains (i.e., net social benefits) at first, but eventually result in losses (e.g., 

from TSO to TPCT) because the agglomeration economy reduced by these policies exceeds 

the reduced congestion diseconomy, leading to a net social loss. 

Figure 2.3b provides an example of an efficient market that may desire more, 

rather than less, travel and more congestion. Although increasing congestion will raise 

the amount of congestion diseconomy, this increased diseconomy can be offset by a rise 

in agglomeration economy. For example, when traffic volumes increase from TPCT to TFM 

the increased congestion diseconomy bdf is compensated by the increased agglomeration 

economy abfe, leading to a net social benefit of abde. In this case, efficient policies are 

those subsidizing agglomeration or travel rather than those against congestion. This 

finding is not to suggest that creating more congestion is necessary; it is to argue that a 

greater travel demand could be socially desirable. Even though congestion is insufficient, 

planners cannot rely on supply-side policies (e.g., narrowing down road space) but must 

instead rely on demand-side policies like subsidizing firm innovation and agglomeration.  

When congestion is “insufficient,” intensifying congestion may be a sign of 

economic growth. For example, when traffic levels increase from TSOLR to TSO, the city 

economy improves. In this process, despite the increases in congestion diseconomy, the 

agglomeration economy also rises at an even faster rate. Only when additional traffic 

leads to a larger diseconomy than the economy (i.e., MCE>MAE) can increasing 

congestion slow the city’s economic development. Empirical studies often support the 
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latter findings and report that traffic congestion can harm the city economy through 

slowing employment growth (Hymel, 2009), decreasing gross output (Boarnet, 1997), 

and reducing marginal agglomeration benefits (Graham, 2007; Weisbrod, Vary, & Treyz, 

2001). While these studies assume that congestion is thoroughly negative to the city 

economy, fewer recognize the potential benefit of a certain level of congestion in 

economically healthy cities. Sweet (2014) provided an empirical study relying on the 

panel data of 88 U.S. metropolitan areas. His findings suggest that congestion will slow 

employment growth only when the levels of congestion measured by travel delay or daily 

traffic per lane exceed a threshold level. 

In brief, these findings demonstrate the importance of incorporating congestion 

and agglomeration externalities in addressing congestion issues. Optimal anti-congestion 

policies should not only aim to alleviate traffic congestion but also to avoid eroding 

agglomeration economies. Anti-congestion studies should examine the interactions 

among transportation, land use, and production (labor) markets. 

Excessive Congestion as a Result of Planning Failures 

  

“There is a near-universal acknowledgment among transportation and 

land-use researchers that municipalities regularly employ their land-use 

regulatory powers to exclude denser development (e.g., Gordon and 

Richardson 2001; Boarnet and Crane 1997; Cervero 1989). Thus, a 

prerequisite to the development of alternatives is the liberalization of 

restrictive regulations that compel a low-density development pattern. If 

municipal regulations constrain development to this pattern despite market 

interest in alternatives, a paucity of these options is not a market failure 

but a product of regulatory policy, a “planning failure” (Cervero 1996). 

Sprawl’s claim to being the market – and hence default – solution from 

which deviations demand justification in science would be undermined. 

Quite independent of travel behaviors benefits, the immediate payoff of 

such policies would be the expansion of transportation and land-use 

choice – that is, the ability of households to find the environments that fit 

their needs and preferences in housing type, neighborhood characteristics, 

and travel options.” (Levine, 2006:9-10)   
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Planning failure is a type of government or regulatory failure, which is a public 

sector analogy to market failure, and occurs when government intervention deters 

efficient allocation of goods and resources (Datta-Chaudhuri, 1990; Grand, 1991; 

Winston, 2000). While there are many planning policy departments, this research 

primarily tackles failures caused by inefficient land use regulations. Like market failures, 

these planning failures can cause significant market distortions. For example, many 

economic studies have explored the side effects of land use regulations by investigating 

their impacts on housing supply, affordability, productivity, and social welfare (Glaeser 

& Gyourko, 2003; Glaeser, Gyourko, & Saks, 2005; Gyourko, Mayer, & Sinai, 2006; 

Hsieh & Moretti, 2015; Mayer & Sommerville, 2000; Quigley & Rafael, 2005; Turner et 

al., 2014). Land use regulations mainly include those restricting the supply of housing 

and lands, such as low-density zoning, urban growth boundaries (UGBs), and other urban 

containment policies limiting land supply. Despite this line of research remaining 

inconclusive, many studies find that restrictive land use regulations can produce 

escalating housing prices or rent and losses of social surplus in the land market (Turner et 

al., 2014). Hsieh and Moretti (2015) provided an estimate that the U.S. GDP from 1964 

to 2009 would likely have increased by 13.5% if high-productivity cities had removed all 

restrictions on housing supply.  

While much economic literature has discussed the distortion in the land market 

caused by planning failure, less literature has extended this debate to the potential 

transportation impact. Few theoretical and empirical studies have assessed the effects of 

planning failure on mobility, accessibility, and congestion. These effects require an 

integrated investigation of the connection between land use and transportation, including 

questions of how land use regulations affect land development, how development affects 

accessibility and travel demand, and how all of these affect congestion on the roads. Only 

https://scholar.google.com/citations?user=mUleW6QAAAAJ&hl=en&oi=sra
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limited studies in the planning field have recognized and examined the potential roles of 

planning failure in the transportation market. For example, Cervero (1996) argued that 

local regulations such as single-use zoning exclude the potential for market-driven, job-

housing proximity, leading to overloaded vehicle miles of travel(VMT). Levine (2006) 

presented a theoretical analysis of how planning failure differs from market failure in 

affecting travel behavior. He developed a novel paradigm to investigate and compare the 

potential difference between the supply and demand of alternative development with and 

without regulatory policies (for discussion about these empirical findings, refer to 

following sections). While this approach is highly likely to justify whether planning 

failure exists, and whether alternative development is preferred, it cannot quantify the 

cost and benefit of planning failure and its impact on the transportation market.  

This dissertation develops an innovative approach to analyzing the connection 

between excessive congestion and planning failure, based on a similar supply and 

demand equilibrium analysis for market failure. This research primarily focuses on 

planning failures in the U.S. resulting from exclusionary zoning and low-density 

regulations that restrict maximum density, maximum height, minimum lot size, and 

single-use land. The underlying presupposition is that these land use regulations, mainly 

in the suburbs, have zoned out denser developments desired by the market. This zoned-

out effect can lead to excessive urban sprawl, job-housing imbalance, lower accessibility, 

extra auto travel distance, and an overwhelming dependence on the vehicle. All these 

consequences will result in excessive demand for vehicle use and cause excessive 

congestion.  
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Notes: MSC is the curve of marginal social costs; MPC is the curve of marginal private costs; MSB1 is the 

marginal social benefit after implementing low-density regulations;  MSB2 is the marginal social benefit 

without regulations. TFF is the traffic volume in free-flow situation; TSO is the socially optimal level of 

traffic volume; TFM is the equilibrium level of traffic in the free market; TSOLR is socially optimal level 

under land use regulations; TFMLR is the free-market equilibrium level under regulations. The shaded area ijk 

represents the total diseconomy from market failure, and the area dikm represents that from planning 

failure. 

Figure 2.4 Planning and Market Failures Together Causing Excessive Congestion 

Figure 2.4 demonstrates how planning and market failures trigger excessive 

congestion on the roads in a city under low-density regulations. By comparing Figures 

2.2 and 2.4, one can see there are two MSB curves in Figure 2.4, which represent the 

MSB before and after implementing low-density regulations. Because regulations could 

induce excessive driving demand, the MSB2 curve will shift right to MSB1 if regulations 

exist. The equilibrium levels of traffic are, respectively, TFMLR and TFM in the free market 

with and without low-density regulations.  The congestion level is socially optimal when 

MSB2 intersects with MSC, making the TSO the socially optimal level of traffic. In 

contrast, TSOLR is the optimal level of traffic under the restriction of low-density zoning. 
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Accordingly, the individually optimal level of traffic in cities with low-density 

regulations is TFMLR while the socially optimal level is TSO. The total amount of excessive 

travel demand equals TFMLR - TSO. The excessive congestion can be divided into two parts. 

The first part comes from the excessive travel demand (TFMLR - TSOLR) due to market 

failure, while the second part (TSOLR - TSO) is caused by planning failure. The congestion 

diseconomy is the sum of two shaded areas – the trapezoid idmk due to planning failure 

and the triangle ijk due to market failure – that is, the triangle dmj. 

While market failure can be fully remedied by charging underpriced travel a 

Pigouvian congestion toll, planning failure can be fully corrected by eliminating all 

regulations or allowing for denser or more compact development, encouraging market 

outcomes. The research framework placing market and planning failures together needs 

to examine the interaction between land use and transportation. In theory land use 

policies can be used to fully correct market failure, assuming land use and densities are 

regulated to the optimal land use pattern (e.g., Pines & Sadka, 1985; for more discussion, 

refer to Chapters 3 and 5). However, pricing strategies probably cannot fully correct the 

planning failure, because the constraints on land use are insensitive to pricing signals. 

That is, pricing probably cannot remove regulations. However, pricing policies could 

help residents or firms leave the planning area with regulations (for more discussion, 

refer to Chapter 5). Therefore, congestion relief needs to incorporate both land use and 

pricing policies. If planning failure exists, land use policies can play a dominant role, 

rather than a replaceable role, as advocated by the proponents of pricing in congestion 

reduction. 

Market versus Planning Failures 

Figure 2.5 explicates in which situations planning (or market) failure plays a more 

important role in determining excessive congestion, as a straightforward response to my 
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research question (2). As shown in Figure 2.5a, market failure will dominate when 

marginal external costs are high and when zoning regulations are less restrictive and have 

an insignificant impact on driving demand. When market failure dominates, pricing 

policies can reduce most of the excessive congestion. In contrast, land use policy is a 

dominant policy for alleviating most excessive congestion when planning failure 

dominates (Figure 2.5b). This situation occurs when land use regulations increase 

significant driving demand and worsen accessibility, and when marginal external costs of 

congestion are relatively small. 

In summary, it is unfair to conclude that economic policies are always superior to 

land use policies or vice versa. The evaluation of anti-congestion policies should compare 

the congestion diseconomy caused by the market with that caused by planning failures. 

This will help to determine which land use and pricing policies are efficient. 
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Notes: TSO is the socially optimal level of traffic volume; TFM is the equilibrium level of traffic in the free 

market; TSOLR is socially optimal level under land use regulations; TFMLR is the free-market equilibrium level 

under regulations. The shaded area ijk represents the total diseconomy from market failure, and the area 

dikm represents that from planning failure. 

Figure 2.5 Congestion Diseconomy from Market versus Planning Failures 
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REASONING BEHIND AND FINDINGS OF ANTI-CONGESTION POLICIES 

This section reviews two anti-congestion policies: land use planning and 

congestion pricing. Many research fields have widely discussed the impact of these 

policies on travel behaviors and transportation performance, including the areas of urban 

planning, transport engineering, economics, geography, regional science, and public 

health.  

Land Use Policies 

There are three major lines of reasoning addressing why land use policies can be 

an effective strategy for reducing travel costs and congestion. These are explored below. 

Land Use Design for Reducing Local Travel Times and Costs 

Land use characteristics such as land use designs, diversities, and densities are 

assumed to affect the time, length, frequency, and cost of local trips. Many studies have 

provided the behavioral reasoning behind the connection between land use and travel 

(Boarnet & Crane, 2001; Cao, Mokhtarian, & Handy, 2009; Cervero & Kockelman, 

1997; Kockelman, 1997; Zhang, 2004). For example, compared to cul-de-sac street 

patterns, the grid street design lowers travel costs of both walking and driving and 

increases the comparative advantage of walking for longer trips (Boarnet & Crane, 2001). 

Mixed-use neighborhoods are often more walkable, reducing local vehicle travel. They 

can also capture a larger share of local trips and decrease more regional travel than 

single-use neighborhoods, reducing total travel length and traffic volume (Ewing, 

Greenwald, Zhang, Walters, Feldman, et al., 2011).  

Neighborhood-level land use is often summarized as the three Ds: density, 

diversity, and design (Cervero & Kockelman, 1997). The three Ds were later extended to 

five Ds by including distance to transit and destination accessibility (Ewing & Cervero, 

2001), and then to seven Ds by adding demand management and demographics (Ewing et 
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al., 2011). The effectiveness of a land use policy is often justified by a research paradigm, 

which generally applies a reduced-form model (e.g., regression models) to examine 

whether desirable land use exerts significant impact on travel behaviors (see reviews by 

Badoe & Miller, 2000; Crane, 1999; and Ewing & Cervero, 2001, 2010). Despite varying 

empirical results, most studies demonstrated that compact development with high-

density, mixed-use, transit-oriented, and pedestrian-friendly built environments is a more-

or-less effective strategy to reduce driving (e.g., Ewing & Cervero, 2001, 2010; Litman, 

2014).  

This paradigm of research can evaluate traffic benefits of land use policies and 

help to improve the standards of architecture, neighborhood design, and engineering 

design for reducing inefficient travel. However, these reduced-form studies are 

insufficient to determine whether land use policies are desired by residents, 

neighborhoods, or the market. A major challenge is that the travel benefits of land use 

policies are often evaluated locally while the congestion diseconomy is often assessed 

regionally.  

Another challenge comes from residential self-selection studies, which argue that 

people’s attitudes can affect residential location choice and related travel outcomes. As a 

result, land use impact on travel behaviors could be misestimated without considering 

travel preference (Handy, Cao, & Mokhtarian, 2006; Cao et al., 2009; van Wee, 2009). 

The underlying assumption is that residents will “vote with their feet” into their desirable 

neighborhoods based on their travel preferences. Compact neighborhoods may be 

desirable only for those preferring nonauto modes to driving. Thus, travel benefits of land 

use policies found in empirical studies are insufficient to identify the desirable demand of 

specific land use patterns, the desirable travel varying with modes, and the desirable level 

of congestion. 
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Land Use Planning as an Alternative Policy for Correcting Market Failures 

 

“In the absence of true market-based pricing of transportation, public 

initiatives that reduce automobile dependence and thus help conserve 

finite resources must be turned to.  In the jargon of economists, physical 

land-use planning becomes a second-best response to the inability to 

introduce first-best, Pareto-optimal pricing.” (Cervero, 1998: 18) 

 

As noted in previous sections, the existence of congestion externalities
4
 is the 

primary source of market failure, causing excessive auto travel and congestion. If road 

users paid only for the private cost of their driving, they would balance private costs and 

benefits to achieve an individually optimal level of driving. However, the private cost 

never includes the external cost imposed on others. When driving is underpriced, the 

individually optimal level of driving is greater than the socially optimal level, leading to 

excessive travel and congestion. To eliminate the excessive congestion, there are two 

approaches to moving the traffic volume from the individually desirable level to the 

socially desirable level. These include pricing and quantity regulation strategies. While 

pricing policies will be discussed in the following sections, this section focuses on land 

use policies as an alternative regulation for eliminating excessive congestion.  

Relationships between land use and excessive congestion are complicated and 

require an analytical framework for connecting land use and transportation markets. This 

                                                           
4
 The economic justification for land use planning or zoning regulation is primarily related not to 

congestion externalities but to land use externalities. The first type of land use externalities comes from the 

publicly provided good (Tiebout, 1956) and zoning is effective to sustain an optimal community size for 

using public property; for example, avoiding overcrowding. Exclusionary zoning is also effective to 

prevent “free riders,” low-income outsiders who seek to live near neighbors with higher housing 

consumption than themselves. Without excluding these free riders, some people will pay less on property 

taxes even though they share the same benefit from public goods with those paying more (Hamilton, 1975). 

The second type of land use externalities comes from the potential adverse effects related to the proximity 

of incompatible land uses. Land use regulation can be seen as a tool to correct these negative externalities, 

protect property rights, and enhance the system of nuisance law (Clawson, 1971; Ellickson, 1973; Fischel, 

1985). These land use externalities, however, are less related to traffic congestion and thus are not 

considered in this dissertation research. For related discussion, refer to Fischel (1985) and Levine (2006). 
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line of research primarily lies in the field of urban economics. Many studies have applied 

the Alonso-Muth-Mills (AMM) model, that is, the monocentric model, to investigate 

traffic congestion (e.g., Brueckner, 2007; Kono & Joshi, 2012; Pines & Sadka, 1985; 

Wheaton, 1998). They demonstrate that land use allocations in the free market with 

underpriced driving would cause more sprawling than the optimal allocation. The 

Pigouvian congestion toll policy that charges each driver a toll to cover the gap between 

the MPC and MSC of each trip is the optimal (first-best) tolling strategy. In a closed-form 

region with a fixed population, a first-best congestion toll would raise residential 

densities near the urban core and slightly lower-edge densities near the city boundary 

(Pines & Sadka, 1985; Wheaton, 1998; Kono & Joshi, 2012). An appropriate policy of 

lot-size zoning can replace the first-best pricing to reach the social optimum, including an 

upward adjustment of central densities and a downward adjustment of edge densities 

(Figure 2.6). In theory, if a city can implement the first-best pricing policy and the 

optimal land use regulation, the efficiency of either policy is equivalent. While many 

urban economists embrace the pricing policy, they often regard land use policies as 

second best or substitutable. 

 

Figure 2.6 Market density and optimal density (under the first-best tolling) in a 

monocentric model (Kono and Joshi, 2012) 
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While the search for optimal land use policies for eliminating excessive 

congestion largely relies on analytical and simulation studies, optimal land use planning 

policies are never observed in practice. Only second-best or third-best land use policies 

are implemented in reality. For example, an imposition of an UGB may be an effective 

second-best policy to reduce excessive congestion because a UGB increases densities. 

However, Brueckner (2007) argued that UGBs achieve much lower welfare 

improvements than first-best tolling strategies. His monocentric spatial equilibrium 

model found that the best UGB offered just 0.8% of the welfare gain from levying 

congestion tolls. Presumably, the UGB could not foster strong central densification. 

Similar results can be found in Kono, Joshi, Kato, and Yokoi (2012), who discovered that 

a UGB policy alone is a poor substitute for first-best tolling, and that optimal regulation 

of building size for higher central densities, plus a suitable UGB, is an effective second-

best remedy. It seems that welfare gains from restrictive UGBs are largely offset by 

welfare losses from their side effects, such as land rent escalation and reduced areas for 

development.  

Many empirical studies have also reported that housing rents or prices inside the 

UGBs rise faster than outside the UGBs (Cho, Poudyal, & Lambert, 2008; Staley, 

Edgens, & Mildner, 1999). While the confines of a boundary, higher-density 

development on pace with population growth and immigration is important, it can be 

challenging. Speculation is also problematic in various settings. For example, London, 

England and Auckland, New Zealand have reportedly experienced major rent escalations 

due to relatively low housing supply from the release of land for new development (Cox, 

2010). Home affordability is thus a critical topic for debate in growth-management 

discussions (Downs, 2004). Moreover, development activities in 95 relatively contained 

U.S. metro areas (as contained by city limits, greenbelts, and/or UGBs) are more 
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agglomerated near their central cities than those in uncontained areas (Nelson, Arthur, 

Raymond, et al., 2004).  

Therefore, land use policies could be an alternative strategy for reducing 

excessive congestion. Further studies are needed to investigate how first-best and second-

best congestion pricing affect land use, how second-best land use policies affect 

excessive congestion, and whether there are potentially negative consequences of second-

best land use policies. 

Land Use Planning as a Prerequisite Policy for Correcting Planning Failures 

To reduce excessive congestion by correcting planning failure, researchers often 

discuss two practical policies: liberalizing land use regulation via regulatory reform and 

promoting market-desired denser development. These policies often promote 

development patterns as alternatives to auto-oriented or sprawling development, such as 

compact development, mixed-use development (MUD), and transit-oriented development 

(TOD). Land use regulations, including low-density and single-use zoning, can produce 

low-density urban sprawl and more auto dependence than desired by the market, leading 

to an inefficient land market (Bogart, 1998; Fischel, 1985; Gordon & Richardson, 2001; 

Pendall, 1999; Talen & Knaap, 2003).  

Rather than providing scientific proof of the traffic benefits of land use policies, 

Levine (2006) advocated a new research paradigm. This paradigm only needs to 

investigate whether people demand alternative development, whether the supply of such 

development is below people’s demand, and whether existing land use regulations cause 

an undersupply of alternative development. Levine and Inam (2004) conducted a stated 

preference survey of 676 U.S. developers and found that most developers believe there is 

an oversupply of auto-oriented development and an undersupply of alternative 
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development, such as TOD and MUD. They ascribed the mismatch between supply and 

demand to low-density zoning regulation.  

On the demand side, the land use supply under low-density regulations may not fit 

a household’s demand for their expected residential land use. In this case, two groups are 

assumed to emerge. The first is the matched group whose current residential land use 

corresponds to their residential preference. The other is the mismatched group whose 

current living environment conflicts with their residential preference. For instance, 

Schwanen and Mokhtarian (2004) discovered that 23.6% of workers in the San Francisco 

Bay Area can be classified as part of the mismatched group. These workers lived in urban 

(versus suburban) neighborhoods but had a low (versus high) preference of denser 

neighborhoods. Frank, Saelens, Powell, & Chapman (2007)’s study in Atlanta showed 

that 51% of surveyed residents lived in neighborhoods with high walkability and liked 

walking, while 28% lived in neighborhoods with low walkability and preferred less 

walking. In contrast, 17% lived in neighborhoods with low walkability but preferred high 

walkability, and only 5% lived in neighborhoods with high walkability and preferred low 

walkability. Thus, a total of 22% of households had mismatched residential preferences. 

A relaxation of regulatory barriers to alternative development is suggested to reduce the 

number of mismatched groups (Levine, Inam, &Torng, 2005).  

While these studies demonstrate the necessity of promoting regulatory reform and 

alternative development for correcting planning failure, they do not estimate benefits and 

costs of these policies. When they recommend for more alternative development projects, 

they can neither tell how many projects of this kind are socially desirable nor evaluate the 

effectiveness of an alternative development project on reducing congestion.  
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Congestion Pricing Policies 

Congestion pricing strategy is an economic approach to correcting market failures 

by charging the external cost of congestion as a toll to whomever causes it. Ideally, the 

congestion toll should equal the marginal external cost, that is, the gap between the 

marginal social and private costs. As a result, the Pigouvian congestion toll scheme 

would fully correct the market failure of traffic congestion and adjust the market to its 

optimal level (first-best). However, the optimal toll is difficult to estimate and charge in 

reality. Many practical pricing schemes adopt alternative pricing methods (second-best), 

for example, in the form of cordon charges, area-wide pricing, and variable-rate highway 

tolling. Pioneering examples around the world include Singapore’s cordon charge in the 

early 1970s, Norway’s toll rings in the mid-1980s, and London’s area-based toll in 2003 

(Santos, 2005; Ieromonachou, 2006).  

In the U.S. increasing numbers of metropolitan areas have built or are building 

toll roads. A recent report from the United States Government Accountability Office 

(GAO) summarized all congestion pricing projects that receive federal funding including 

either high-occupancy toll (HOT) lanes or expressways (USGAO, 2012). Most tolls in 

these managed lanes are variably priced across traffic periods and locations and range 

from 25 cents to $14 around the U.S. (USGAO, 2012). Twelve HOT facilities were 

operated in 10 metropolitan areas until late 2011, when 13 HOT lanes were under 

construction or extension (USGAO, 2012). According to the Federal Highway 

Administration (FHWA), from 1998 to 2010 tolled miles in urbanized areas jumped 36% 

(2012). We can foresee a future of booming toll-road construction. The federal 

government, which traditionally prohibited federal funding for toll roads, has turned to 

permitting federal participation in tolling projects, authorized in the transportation bill 

Moving Ahead for Progress in the 21st Century Act (MAP-21), passed in 2012. 
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Pricing’s Effects on Travel and Traffic 

Congestion pricing is regularly regarded as a policy affecting various aspects of 

travel behaviors, including route choice between priced lanes or unpriced lanes, travel 

departure time trading off between avoiding tolls or saving time in congested periods, 

travel mode, destination, trip chains, trip frequency, activity selection, and car ownership 

(Deakin, Harvey, Pozdena, & Yarema, 1996; Giuliano, 1994).  Numerous empirical 

studies have explored the effects of existing and potential congestion pricing projects or 

policies on travel demand and congestion (Table 2.1).  

Early studies such as Bhatt (1993) and Harvey (1994) relied on very limited 

aggregate data of travel to conduct ex-ante research, such as predicting pricing elasticities 

of travel demand (traffic volume or VMT). They discovered that the pricing elasticities of 

travel demand may vary across cities and locations, but are often negative and range 

between 0 and –1. This range indicates that pricing effects are relatively inelastic 

compared to other goods or services, and that doubling travel costs cannot bring a double 

reduction of peak-hour travel demand. Yet, pricing policies can indeed decrease travel 

demand, and a small change of motorist’s behaviors may bring much improvement in 

travel flow (TRB, 1994).  

Several studies directly explore the pricing impact on the regional or citywide 

aggregate travel demand based on different travel demand models. Using a systematic 

travel demand analysis, Deakin et al. (1996) provided a more realistic ex-ante travel 

demand analysis under several pricing scenarios. The scenarios with congestion pricing 

as one important component suggest that appropriate pricing policies can lead to an 

abundance of benefits, including a reduction in VMT, fuel use, and emissions. Two 

recent studies in Austin, Texas, relying on a more rigorous travel demand model with a 

joint destination-mode choice model, suggested that a Pigouvian congestion toll scheme 



38 

on either major or all freeways could significantly reduce average peak travel time and 

total system VMT in the short and long term (Gulipalli & Kockelman, 2008; Kalmanje & 

Kockelman, 2004).  

After the 1990s, because a considerable number of congestion pricing projects 

were built around the world, much recent research has begun to conduct ex-post 

evaluations (Matas & Raymond, 2002; Odeck & Brathen, 2008). Although most ex-post 

analyses focus on local impact rather than the regional effects of toll road projects, many 

findings are comparable to the ex-ante studies. For example, they have found that higher 

road tolls may result in a decline in travel demand in the short and long term. A study of 

19 toll road projects in Norway revealed that the average long-term pricing elasticity (–

0.82) is about twice as high as the short-term one (–0.45) (Odeck & Brathen, 2008). A 

report by the U.S. GAO (2012) presented a more direct comparison of travel change 

before and after pricing was imposed. This report used data from the Department of 

Transportation and summarized 14 congestion pricing projects in 5 HOTs and 9 peak-

period roads. The findings demonstrated that congestion pricing facilities can improve 

traffic conditions and reduce congestion. Specifically, HOT lane projects generate a 

significant reduction in travel time and vehicle throughput and an increase of travel speed 

in both priced and unpriced lanes. Although peak-period pricing projects tend to exert no 

impact on aggregate traffic demand, they probably cause drivers to shift trips from on-

peak to off-peak periods.  

Besides the effects on travel time and congestion, a small number of empirical 

studies have explored the impact of anti-congestion policies on local and regional effects 

on transit use or ridership. However, their findings are mixed. Among four HOT lane 

projects evaluated in the U.S. GAO’s report, only Interstate 95 in Miami generated a 

significant increase in transit ridership, a 57% increase within 2 years after the toll road 
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was opened. Gulipalli and Kockelman (2008) predicted the effects of the marginal cost 

pricing, i.e., the Pigouvian congestion toll, on travel mode shifting in the Dallas-Fort 

Worth (DFW) region of Texas. They found no significant evidence of the relationship 

between pricing and mode shifts. However, the effect of pricing on transit ridership 

relates to not only the pricing mechanism but also the availability of public transit. That is 

the reason many successful congestion pricing schemes occur in metropolitan areas with 

excellent public transit systems. Improved public transport and significant use of public 

transport are potentially important policy complements to congestion pricing (Anas & 

Lindsey, 2011). 

In summary, most of the empirical studies, either from ex-ante or ex-post 

analyses, have shown significant effects of congestion pricing on the reduction of travel 

time (particularly peak-hour travel time), congestion, VMT, and traffic throughput in 

both local and regional areas.  More ex-post studies of tolling effects are needed, 

especially of the local impact, because toll roads in most U.S. cities would mainly 

generate local rather than regional effects at first.  However, less empirical research has 

paid attention to the potential local impacts on non–road users who live or work in the 

neighborhoods affected by toll roads. These people might not use adjacent toll roads. 

However, these toll roads or tolling policies may affect these people’s travel decisions in 

the short run and their residential and job location choices in the long term. Such indirect 

but likely important effects of congestion pricing need more studies with a 

comprehensive framework accounting for the relationship between congestion pricing, 

neighborhood land use, and job markets. 
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Table 2.1 Empirical Studies of Pricing Effects on Travel Behaviors, Land Use, and 

Social Welfare 

Source Cases Role of Congestion 

Pricing 

Quantitative Effects  Methodology 

Travel & Traffic 

Bhatt(1993) Metropolitan 

Washington 

Region 

• A price increase would 

result in a decline in 

travel demand. 

• Estimated the pricing 

elasticity of travel demand: -

0.01to -.015 at the low end, 

-0.3 to -.4 at the high end 

Projected 

elasticity 

analysis 

Harvey(1994) San Francisco 

and Los 

Angeles 

• Regional wide pricing 

would reduce VMT, and 

largely shift trips to off-

peak hours 

• San Francisco: 1.8% 

reduction in VMT 

• Los Angeles: 5% reduction 

in VMT 

• 10-15 minutes round-trip 

saving in peak-hour travel 

Projection 

Deakin et al. 

(1996) 

Los Angeles, 

Bay Area, 

San Diego, 

and 

Sacramento 

metropolitan 

areas 

• Transportation pricing 

measures could 

effectively relieve 

congestion, lower 

pollutant emissions, 

reduce energy use, and 

raise revenues. 

• A combination of 

congestion pricing, 

employee parking charges, a 

50 cent gas tax, and mileage 

and emissions feeds would 

reduce VMT and trips by 5-

7% and cut fuel use and 

emissions by 12-20%, 

varying with region. 

Simulation 

using a travel 

demand 

modeling 

package, 

STEP 

Matas and 

Raymond 

(2002) 

18-year panel 

data of 72 

road sections 

in Spain 

• Travel demand is 

relatively sensitive to 

toll changes 

• Elasticities: -0.21 to -0.83 Elasticity 

analysis by 

panel data 

model 

Kalmanje and 

Kockelman 

(2004) 

Austin, TX • Pigouvian congestion 

toll reduces peak-hour 

travel time. 

• Average peak travel times 

decreased by roughly 1.6% 

(3.3% on main roads), with 

tolls averaging roughly 1.5 

cents per mile on main 

roads during peak 

congestion. 

A standard 

four-step 

travel 

demand with 

joint 

destination-

mode choice 

models 

Gulipalli and 

Kockelman 

(2008) 

Dallas-Fort 

Worth (DFW) 

region of 

Texas 

• Both two MCP 

scenarios (MCP-on-

freeways and MCP-on 

all-roads) reduced total 

VMT. 

• No significant mode 

shifts were found. 

• Total system VMT for both 

the MCP scenarios would 

fall by about 6-7% in the 

short term and 7–8% in the 

long run. 

Forecast 

model with 

joint 

destination-

mode choice 

models 

Odeck & 

Brathen (2008) 

19 toll road 

projects in 

Norway 

• Pricing elasticities of 

travel demand vary with 

road type and project 

location.  

• A mean short-run elasticity 

at -0.45.  

• A mean long-run elasticity 

at -0.82. 

Elasticity 

analysis by 

empirical 

data 
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Table 2.1 (Continued) 
Source Cases Role of Congestion 

Pricing 

Quantitative Effects  Methodology 

USGAO(2012) 14 congestion 

pricing 

projects (5 

HOTs and 

nine peak-

period 

expressways) 

in the US. 

Data from 

FHWA&DOT 

• Both travel time and 

speed improve on at 

priced and/or unpriced 

lanes of all five HOT 

projects. No effects are 

found on nine peak-hour 

expressways. 

• Vehicle throughput is 

increased in 5 HOT lane 

projects while no effects 

are found on 

expressways. 

• Peak-hour pricing 

projects motivates a 

driver to take trips at an 

off-peak time. 

• Mixed results exist in 

the HOT’s effects 

transit ridership while 

no effects are found on 

the peak-hour projects 

• Settle SR167 HOT: 19% 

increase of peak-hour speed 

on unpriced lanes 

• San Diego I-15 HOT: 20 

minutes less in HOT lanes 

than unpriced lanes in 

congested time 

• Miami I-95 HOT: 14 mins 

less in the HOT lanes and 

11 mins less in the adjacent 

unpriced lanes per trip 

• Minneapolis I-394 HOT: 9-

13% increases in vehicle 

throughput in the HOT 

lanes, 5% increases in the 

unpriced lands 

• Orange County SR 91 HOT: 

21% increases in vehicle 

throughput on the entire 

roadway 

• Miami I-95 HOT: 57% 

increase in weekday 

ridership 

Before-and- 

after 

comparison 

Land Use (households’ & firms’ locations) 

Boarnet and 

Chalermpong 

(2001) 

Toll roads in 

Orange 

County, CA, 

• New highways may 

raise house prices, and 

home buyers are willing 

to pay for the increased 

access that the new 

roads provide. 

• No specific effects of tolling 

are studied 

Before-and-

after study 

Kalmanje and 

Kockelman 

(2004) 

Austin, TX • Home values are 

predicted to fall slightly 

in almost all areas when 

all roads are the price. 

• Residential property 

prices are estimated to 

fall marginally in the 

most area when pricing 

only major roads. 

• Pricing on all roads: Home 

values are estimated to fall 

between 1.5% and 6.4% in 

southwest Austin, but other 

regions (including the CBD) 

are predicted to experience 

lesser drops. 

• Pricing on the main roads: 

Home values again dropped 

slightly in most areas, but 

home values in some CBD 

areas were predicted 

actually to increase 

marginally. 

A standard 

four-step 

travel 

demand  

relying 

on logit 

models of 

departure 

time, mode, 

and 

destination 
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Table 2.1 (Continued) 
Source Cases Role of Congestion 

Pricing 

Quantitative Effects  Methodology 

Gupta, 

Kalmanje, & 

Kockelman 

(2006) 

Austin, TX • Toll roads are not found 

to impact Austin's land 

use pattern significantly, 

but they are predicted to 

initiate some 

development in 

localized areas along the 

toll corridors 

• 75% of Austin’s population 

is predicted to experience 

welfare gains of less than 3¢ 

per day under a toll road 

policy of 10¢/mile 

• Drivers in 14 zones suffer 

from welfare loss of less 

than 2¢ per day per 

individual. 

Simulation in 

DRAM-

EMPAL 

models 

Ubbels & 

Verhoef 

(2008) 

Dutch Three policy schemes  

with flat kilometer 

charge reveal that 

congestion pricing may 

have a considerable 

effect on car use, road 

usage, car ownership, 

and residential/job 

relocation 

• Car use: 6-15% fewer of 

car-based trips 

• Car ownership: about 2% of 

the respondents would sell 

at least one of their cars, and 

1.6% would consider giving 

up using cars. 

• Relocation: 4% of 

households would probably 

change their residence 

location, and 11% would 

probably change their job 

location. 

State 

preference 

survey on the 

Internet 

Tillema, van 

Wee, 

Rouwendal, & 

van Ommeren 

(2008) 

Dutch A kilometer charge may 

change firm’s behaviors 

in trip decision,   

• 30-40% of firms would 

change decisions in firm-

related travel. 

• 30% of the employers 

would reimburse their 

employees for the loss due 

to pricing. 

• 7.8% of firms would 

probably relocate. 

State 

preference 

questionnaire 

Pugh & 

Fairburn 

(2008) 

The 

Staffordshire 

part of the M6 

Toll corridor, 

UK 

The toll road has caused 

a positive industrial land 

development effect at 

the sub-regional level. 

• Increased industrial land 

development of 3.01 

hectares were found in 

location within a five-

minute drive time of an M6 

Toll Junction; 1.24 hectares 

for those within a 10-minute 

drive time; and no effects 

for within a 15-minute drive 

time. 

Before-after 

panel data 

models 

Vadali (2008) Several toll 

road segments 

in Dallas 

County, 

Texas 

Toll roads increased 

property values at the 

0.25-1-mile areas even 

in several years before 

the toll road was open. 

Both toll road extension 

and new toll roads can 

bring development. 

• The spatial effects of toll 

roads on property value 

would decrease by distance. 

Before-after 

panel data 

models 
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Table 2.1 (Continued) 
Source Cases Role of Congestion 

Pricing 

Quantitative Effects  Methodology 

Anas (2013) Chicago MSA Tolling only the major 

roads decentralizes jobs 

and residences out of 

the City and the inner 

suburbs to the outer 

suburbs causing land 

development to 

increase.  

• When all roads are tolled 

then more employment and 

residents move out of the 

inner suburbs and 

concentrate much more in 

the CBD and the rest of the 

City and increase less in the 

outer suburbs, and land 

development is also higher. 

Simulation 

based on 

RELU-

TRAN2 

Pricing’s Effects on Land Use and Development 

Empirical research has paid little attention to congestion pricing land use impact, 

despite much literature endorsing pricing as an effective management policy for reducing 

congestion, as summarized in the previous section. Congestion pricing probably differs 

from other sources of transport revenue such as fuel tax, sales tax, and income tax in its 

potential to affect decision making about land use development (Urban Land Institute 

[ULI], 2013). Tolling and related schemes to charge a tax or fee for every mile driven 

will influence land use decisions much more directly (Deakin et al., 1996; ULI, 2013) 

because tolls affect travelers’ budget constraints and lead to mode switching and 

redistribution of trips. Tolls may also affect firms’ labor costs and production and service 

demand, and can result in geographic redistribution of businesses (Deakin et al., 1996; 

Santos & Shaffer, 2004; Zhang & Kockelman, 2014).  

According to a 2012 report by the ULI, more than 35 experts in the fields of 

transportation and land use planning believed that a VMT tax may accelerate new 

development in compact, mixed-use, and walkable nodes and may affect land use for 

industry, office, and especially retail (ULI, 2013). The land use along toll roads is 

perceived to be more compact than that along highways (Litman, 2011), although the 

practical expressway’s effects on real estate remain blurry.  For example, in Austin 

mixed-use development is found along the toll road 183A in the fast-developing north 
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suburbs, while less development has emerged along the toll roads in the southern suburbs 

(Spivak, 2013). 

Although casual relationships between pricing and land use remain ambiguous, 

this section summarizes four primary arguments in the literature. First, pricing schemes 

on toll roads may promote more compact development along toll roads than unpriced 

highways.  For example, Ubbels and Verhoef (2008) and Tillema et al. (2008) conducted 

a stated preference survey in Netherlands and discovered that a significant number of 

residents and firms would relocate for closer job-housing proximity after the imposition 

of a linear congestion toll.  Road tolling can partially correct market failure from 

congestion externalities, reduce urban sprawling due to the unpriced highway, and raise 

surrounding population and employment densities and land use mixtures. Litman (2014) 

suggested that tolling may lead to more compact development and more traffic 

improvement than enhancing public transit infrastructure. Similar results were found in a 

simulation study in the Austin area by Gupta, Kalmanje, and Kockelman (2006). Their 

findings suggested that congestion pricing could catalyze land development surrounding 

toll roads but have less influence on most other areas. Also, tolling may cause job 

decentralization. For example, Anas (2013) discovered that tolling on major roads can 

decentralize employment and residence from the inner suburbs to the outer suburbs, 

increasing land development in suburban areas. 

Second, congestion pricing may redistribute traffic from toll roads to freeways, 

from tolling regions to no-toll regions, and from tolling periods like peak hours to no-toll 

periods.  These redistribution effects may not change land use much. However, little 

empirical research has been conducted to justify this argument and what exists does not 

compare the potential development difference along tollways and highways. Instead, 

most studies have focused only on the effect of highways on real estate development in 
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housing and industry (Ewing, 2008; Pugh & Fairburn, 2008), land rent change (Boarnet 

& Chalermpong, 2001; Vadali, 2008; Ewing, 2008), and demographic shifts due to 

relocations of residents and firms (Chi, 2012).  

The third argument is that congestion pricing is a necessary condition but not a 

sufficient condition for triggering compact development if planning failures exist. Even 

an optimal pricing scheme could not create an optimal land use pattern if land use 

regulations in the past and present restrict the generation of optimal land use. As argued 

by Deakin, “zoning regulation would prevent landholders from increasing the density of 

development” (1994, p. 235). Low-density zoning regulations and separate-use 

subdivisions are two major sources of planning failure leading to urban sprawl (Levine, 

2006), which may damage mobility, accessibility, and social welfare. Langer and 

Winston (2008) presented an empirical analysis that found an interactional effect of 

population density and congestion pricing on net social benefits.  Improving land use 

compactness by relaxing low-density zoning would make congestion pricing policies 

more efficient. 

Finally, a self-selection effect may exist in the relationship between congestion 

pricing and land development. Congestion pricing projects are more welcome in areas 

with enough facilities to support travel alternatives to driving and less welcome in areas 

with dispersed land use patterns and no transit service, because “those who find the tolls 

to be too expensive may not have a viable alternative” (Mahendra, Grant, & Swisher, 

2012: 17). In this case, one cannot easily judge whether congestion pricing causes 

compact development or compact development attracts pricing projects, especially when 

tolls are imposed on old highway facilities. On the other hand, this potential self-selection 

effect may emphasize the importance of coordinating congestion pricing and land use 

policies.  
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However, both theoretical and empirical evidence of incorporating land use and 

congestion pricing remains ambiguous. Only limited numbers of empirical studies 

suggest that combining pricing and land use policies may lead to less driving, more 

transit use and walking, and lower VMTs than enacting either policy alone (Guo et al., 

2011; Lee & Lee, 2003). Some studies of planning practices, such as combining HOT and 

Bus Rapid Transit (BRT), also report that HOT may be a promising strategy to increase 

public transit ridership, suggesting a need to connect the compact development with HOT 

projects (Brinkerhoff, 2009). Therefore, it is important to enrich recent literature by 

developing theories and empirics to justify incorporating land use and pricing policies.   

SUMMARY 

This chapter reviewed theories of market failures from the field of economics and 

planning failures from the area of planning and bridged them into a consistent framework 

for conceptualizing excessive congestion. The framework illuminates that excessive 

congestion is shaped by market failures from congestion and agglomeration externalities 

and planning failures from land use regulations. Excessive congestion occurs when the 

individually desirable amount of driving exceeds the socially desirable level at which the 

MSB of travel equals the MSC. It is important to measure optimal and excessive 

congestion by internalizing not only the external cost of congestion but also the external 

benefit of crowding activity and traffic from urban agglomeration. While little literature 

has discussed the benefit of congestion, the following chapter will investigate how 

economic agglomeration connects with congestion and how anti-congestion policies 

affect agglomeration economies.  

More importantly, this chapter demonstrated that planning failure can play a 

dominant role leading to excessive congestion and social inefficiency. Planning failures 

from low-density and exclusionary zoning regulations could increase travel distance and 
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auto dependence, produce excessive driving demand, and cause excessive traffic on the 

streets and highways. Differing from market failures, planning failures are insensitive to 

pricing signals and could be better corrected by regulatory reform or innovative land use 

planning. In most cases, both market and planning failures contribute to excessive 

congestion. Evaluating congestion-relief policies needs an innovative analytical 

framework able to internalize both failures. Therefore, Chapter 3 aims to develop such an 

innovative model to scrutinize how market and planning failures affect excessive 

congestion, land use patterns, economic performance, and social welfare. Relying on 

simulations, Chapter 3 will investigate the optimal policies for correcting both failures 

and reducing excessive congestion.  Chapters 4–5 then extend Chapter 3’s discussion to 

tackle more practical land use and pricing remedies for market and planning failures.  

Many empirical studies for congestion relief have investigated land use planning 

and congestion pricing strategies. The land use–travel connection has been widely studied 

in the planning and transportation fields. This chapter reviewed and summarized three 

categories of land use planning’s mechanism. First, land use planning strategies 

promoting less auto-oriented design can facilitate nonauto travel modes and reduce 

driving demand thus mitigating congestion. Second, land use planning strategies such as 

UGBs and urban densification policies can serve as alternative tools to adjust the cost of 

travel close to the socially desirable level, especially when pricing policies are not 

feasible. Third, land use planning for alternative development can meet the unmet 

demand for non–auto-oriented neighborhoods when existing land use regulations restrict 

such a development preference.  

On the other hand, the reasoning underlying congestion pricing strategies is 

straightforward. They are primarily used to increase the cost of underpriced travel and 

adjust traffic volume to the socially desirable level. Most empirical studies have been 
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concerned only with the congestion pricing’s efficiency in the transportation market, 

while an increasing number of studies have turned to the congestion pricing’s impact on 

land use and development.  

However, less theoretical and empirical research has fully recognized that 

inefficient congestion is a consequence resulting from market and planning failures. 

There are only a limited number of empirical studies that have looked at the interaction of 

impact of land use and pricing policies. Therefore, Chapter 6 will present an empirical 

study to justify incorporating land use and pricing policies and substantiate some of the 

theoretical and simulation findings analyzed in Chapters 3 through 5.   
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CHAPTER 3: OPTIMAL POLICIES FOR REDUCING EXCESSIVE CONGESTION 

IN CITIES WITH MARKET AND PLANNING FAILURES 

This chapter develops an analytical framework to internalize both market and 

planning failures, simulate how these failures cause excessive congestion, and examine 

the theoretical findings articulated in Chapter 2. This research aims to identify and 

evaluate the optimal policies for alleviating excessive congestion, changing land use 

patterns, and improving social efficiency.  

Specifically, this chapter first develops a new spatial general equilibrium model 

with endogenously determined congestion and agglomeration externalities. This model 

examines optimal and excessive levels of congestion and the efficiency of first-best 

policies and other instruments, like simply Pigouvian congestion toll and simply 

Pigouvian labor subsidy. For the first-best interventions, this model investigates welfare 

gains and land use patterns in the social optimum along with the challenges to designing 

first-best instruments, because these topics are seldom discussed in cities with multiple 

externalities. The congestion diseconomy and welfare outcomes of the Pigouvian 

congestion toll and Pigouvian labor subsidy alone policies are compared. A robustness 

analysis is conducted by changing the congestion and agglomeration parameters to 

investigate how optimal policies and their welfare and land use outcomes vary with the 

levels of externalities.  

Next the new model is extended to account for planning failures sourced from 

land use regulations, such as exclusionary zoning and low-density zoning. Extended 

simulations are thus applied to evaluate how market and planning failures together cause 

excessive congestion and to show evidence for incorporating land use and pricing 

policies. 
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LIMITATIONS OF URBAN ECONOMIC ANALYSES 

Cities are full of externalities. The external costs of traffic congestion and the 

external benefits of firm agglomeration are widely discussed in urban economics 

literature. Congestion, for example, delays other travelers, adds air pollution and 

greenhouse gases, and raises a community’s energy demands. Firm agglomeration 

economies can largely explain the geographical centralization of firms, as well as the 

emergence and evolution of cities. Firms benefit from locating close to each another, via 

access to intermediate inputs and labor, easier job-worker matching, knowledge 

spillovers, and other sources (Fujita and Thisse, 2002; Puga, 2010; Rosenthal and 

Strange, 2004). Such agglomeration externalities rise with the density of economic 

activities and proximity to other firms. As a result, doubling job density or doubling city 

size at the aggregate metropolitan level is often associated with a 4%-10% or 3%-8% 

increase, respectively, in productivity (Combes, Duranton, Gobillon, & Roux, 2010; 

Rosenthal and Strange, 2004). Some studies at the micro-geographical level (e.g., census 

tract) find an even larger agglomeration benefit that decay with distance (Arzaghi and 

Henderson, 2008; Rosenthal and Strange, 2008). 

While urban economists have long recognized either negative congestion 

externalities (e.g., Solow 1972; Arnott, 1979; Pines and Sadka, 1985; Wheaton, 1998; 

Anas and Xu, 1999; Brueckner, 2007) or positive agglomeration externalities (Fujita and 

Ogawa, 1982; Lucas and Rossi-Hansberg [LRH], 2002; Berliant et al., 2002; Rossi-

Hansberg, 2004; Borck and Wrede, 2009), few have considered their interactions. 

Incorporating both externalities in urban economic analysis is important, since urban 

policies for coping with one externality in one distorted market may neglect the spillover 

effects of this policy on the other distorted market. For example, a Pigouvian congestion 

tolling strategy charges marginal external costs to travelers who impose such costs, and is 
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regarded as a first-best instrument for correcting distortions from negative congestion 

externalities. In isolation, this strategy is not first-best for cities, because tolls affect labor 

costs, land use patterns, and rents, and thereby affect agglomeration economies and firm 

productivity. By better understanding the interactions between congestion and 

agglomeration, one can avoid policy distortions informed by partial equilibrium analyses 

with only one externality, and thereby design more appropriate “first-best” policies while 

evaluating the benefits and limitations of second-best tolling, labor subsidies, and land 

use policies.  

Few researchers have endogenized multiple urban externalities, and most rely on 

aspatial settings. For instance, Parry and Bento (1999) explored the interaction of 

distorted labor and transportation markets and evaluated the welfare effects of a 

congestion tax in the presence of a labor tax. They found that the congestion tax could 

reduce labor supply if total toll revenues are equally redistributed to residents, and 

stimulate labor supply if revenues are used to subsidize labor, with the latter form of 

revenue recycling generating more welfare improvement. Arnott (2007) developed a two-

island model internalized both negative congestion and positive production externalities. 

In the simplified model, residents locate at an island and firms locate at the other island, 

with a road of fixed capacity crossing the two islands. He found that a Pigouvian 

congestion toll only is not the optimal policy since it may harm agglomeration economies 

and productivity. The optimal congestion tolls should be lower than the Pigouvian level 

when there is no policy in place to manage agglomeration externalities. He believes that 

these findings are consistent even though the model is extended to internalize time-

varying congestion, heterogeneous individuals and/or firms, residential location and land 

decisions, and multiple employment centers. These two studies identify the policy 

importance on incorporating multiple externalities. However, they either neglect the 
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spatial distribution of externalities or assume an exogenously determined urban form 

(e.g., two islands), failing to fully analyze the interaction between externalities and urban 

form, which may significantly affect the optimal design of urban policies. 

Externalities affect urban form, and urban form affects externalities. Some models 

rely on discrete spatial settings to track multiple externalities. For example, Anas and 

Kim (1996) presented a spatial computable general equilibrium (spatial CGE) model 

integrating congestion and agglomeration externalities for consumers in a linear city) 

with discrete zones. Here, consumers are assumed to make more shopping trips to larger 

shopping centers (i.e., those exhibiting retail-job agglomerations). Their simulation 

results suggest that congestion externalities disperse urban form, while shopping 

agglomeration favors more compact forms, with fewer and more job-rich centers. Anas 

(2012) also recently developed a core-periphery model to explore social optima after first 

recognizing highway congestion’s external costs and transit’s external benefits, and then 

allowing for Marshallian agglomeration externalities. His comparative static analysis 

revealed that the optimal policy in a closed city with two or more externalities (or 

activities with economies of scale) should satisfy the general Henry George Theorem.  

Other studies have internalized multiple spatial externalities by extending the 

traditional monocentric model. For example, Verhoef and Nijkamp (2004) modeled both 

agglomeration externalities (of firms) and pollution externalities (from commutes) under 

monocentric settings. They highlighted the importance of using a spatial equilibrium 

framework to understand urban externalities since congestion pricing and labor subsidies 

are not perfect (opposite) substitutes in the presence of spatial interactions. Their 

simulations show how second-best tolls or subsidies are lower than the Pigouvian levels. 

Wheaton (2004) combined a congestion externality and center-agglomeration forces into 

a circular monocentric framework, suggesting that worse congestion is associated with 
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more centralized firm agglomeration. However, such monocentric models often do not 

internalize land inputs/rents in any production function; they rely on simplified, aspatial 

measures of agglomeration and thus overlook interactions between agglomeration 

externalities and urban form.  

Therefore, the following section first develops and then applies a spatial general 

equilibrium model with endogenously determined congestion and agglomeration 

externalities in a continuous, non-monocentric city space. The agglomeration externality 

is a Marshallian production externality and defined to be proportional to each site’s local 

jobs density and an integral of inverse-exponential distance-weighted job counts within a 

pre-existing cluster around the region’s center point. This assumption pivots off those in 

Fujita and Ogawa (1982) and LRH (2002). Fujita and Ogawa (1982) were among the first 

to explore the economics of non-monocentric urban economies with production 

externalities, using a linear city form. Production externalities, or location potential (as 

defined in their paper), is reflected in firm productivity, which varies over space, thanks 

to clustering of economic activities. LRH (2002) extend the Fujita-Ogawa model to a 

continuous, circular city setting. Rossi-Hansberg (2004) then applied the LRH model to 

evaluate labor subsides and zoning restrictions, but without congestion externalities. 

Thus, the model developed here is among the first to incorporate Fujita-Ogawa- and 

LRH-type agglomeration economies and congestion externalities in a continuous urban 

space, enabling more comprehensive policy assessments. 

A SPATIAL GENERAL EQUILIBRIUM MODEL WITH ENDOGENOUSLY DETERMINED 

CONGESTION AND AGGLOMERATION 

 The model developed here mainly refers to LRH (2002). While the LRH model 

has well established a nonmonocentic model with agglomeration externalities, the model 
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here extends it to consider traffic congestion and contributes to the discussion of optimum 

versus equilibrium under congestion and agglomeration externalities.  

Also, there are several differences with basic modeling settings. First, the model 

relaxes the constraint of fixed city boundary in the LRH model, allowing for an 

endogenously determined boundary under an additional constraint that the city edge land 

rent equals a fixed agriculture land rent. The latter constraint is often used in monocentric 

models (e.g., Wheaton, 1998; Brueckner, 2007). This change can internalize city size, 

which may affect the spatial distribution of land use and commute distance/cost. Second, 

while the LRH model measures commute time costs determined by travel time and wage, 

our model’s measure is simplified to commute money costs determined only by distance 

(and traffic volume after considering congestion). In reality, the commute costs consist of 

the cost of time and money. Third, our model is built in a closed-form city with a fixed 

population and all revenues (or subsidies) uniformly redistributed to residents (or firms), 

while the LRH model is built in an open-form city with a fixed utility and without 

revenue redistribution. These changes increase the complexity of computational 

simulations, but make this type of nonmonocentric model more flexible for optimal 

policy analysis.   

The model assumes a continuous symmetric circular region of radius 𝑥̅ . The 

symmetry assumption implies that workers travel only towards or away from the center, 

along radial street networks. Two homogeneous agent types, households and firms, exist 

and can reside at the same location inside the region. For any location x(0 ≤ 𝑥 ≤ 𝑥̅), 

𝜃𝑓(𝑥), 𝜃ℎ(𝑥) and 𝜃𝑡 represent the fractions of land area used by firms, households, and 

transportation infrastructure. 𝜃𝑓(𝑥) and 𝜃ℎ(𝑥) are endogenously determined, while 𝜃𝑡  is 

exogenously given. 
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Household and Congestion Externality 

Each household living in location x and working at location 𝑥𝑤  consumes a 

quantity of goods 𝑐(𝑥, 𝑥𝑤) (with price p = 1) and enjoys a residential lot size 𝑞(𝑥, 𝑥𝑤), 

resulting in utility level 𝑢(𝑐(𝑥, 𝑥𝑤), 𝑞(𝑥, 𝑥𝑤)). Its willingness to pay for land is rental rate 

𝑟ℎ(𝑥). Each household has one worker, earning net income 𝑦(𝑥, 𝑥𝑤). This net income is 

comprised of three components: wage income paid by firms at location 𝑥𝑤 , 𝑤(𝑥𝑤) , 

minus commuting costs 𝑇(𝑥, 𝑥𝑤), plus the return of aggregate rent and toll revenues, 𝑦̅. 

Thus, the optimization problem of each household is as follows: 

 

Problem 3.1 For each household living at location x (0 < 𝑥 ≤ 𝑥̅), choose a job location 

𝑥𝑤 (0 < 𝑥𝑤 ≤ 𝑥̅) and evaluate functions 𝑐(𝑥, 𝑥𝑤) 𝑎𝑛𝑑 𝑞(𝑥, 𝑥𝑤), so as to maximize utility 

 𝑢(𝑐(𝑥, 𝑥𝑤), 𝑞(𝑥, 𝑥𝑤)) (3.1) 

subject to the budget constraint: 

 𝑐(𝑥, 𝑥𝑤) + 𝑟ℎ(𝑥)𝑞(𝑥, 𝑥𝑤) ≤ 𝑦(𝑥, 𝑥𝑤) = 𝑤(𝑥𝑤) + 𝑦̅ − 𝑇(𝑥, 𝑥𝑤) (3.2) 

where  

 𝑦̅ =
1

𝑁
(𝑦𝑟𝑒𝑛𝑡 + 𝑦𝑡𝑜𝑙𝑙 − 𝑦𝑠𝑢𝑏𝑦) (3.3) 

 𝑇(𝑥, 𝑥𝑤) = ∫ (𝑡(𝑠) + 𝜏(𝑠))𝑑𝑠
𝑥𝑤

𝑥

 (3.4) 

Eq. (3.3) guarantees that aggregate revenues from land rents 𝑦𝑟𝑒𝑛𝑡 and tolls 𝑦𝑡𝑜𝑙𝑙, 

net of the labor subsidy 𝑦𝑠𝑢𝑏𝑦, are uniformly distributed to households, consistent with a 

closed-form city of (given) population N. This setting allows one to compare more 

equitably the welfare effects of different policy scenarios. Eq. (3.4) shows that 𝑇(𝑥, 𝑥𝑤) 

is an accumulation of marginal travel costs, from x to 𝑥𝑤 . Here, 𝑡(𝑥) represents the 

average travel cost per mile at location x, with a negative sign representing inward travel 
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and a positive sign representing outward travel. 𝜏(𝑥) represents a potential congestion toll 

on drivers passing location x. Consistent with prior works (e.g., Brueckner, 2007; 

Wheaton, 1998, 2004), 𝑡(𝑥) is proportional to a power function of the traffic volume 

crossing the ring at x, 𝐷(𝑥), relative to the road supply or width at x – plus the free-flow 

travel-cost component, 𝜑 (in dollars per mile). Thus, 

 𝑡(𝑥) =

{
 
 

 
 −𝜑 − 𝜌 (

−𝐷(𝑥)

2𝜋𝑥𝜃𝑡
)

𝜎

 𝑖𝑓 𝐷(𝑥) < 0

𝜑 + 𝜌 (
𝐷(𝑥)

2𝜋𝑥𝜃𝑡
)

𝜎

    𝑖𝑓 𝐷(𝑥) > 0

𝜑   𝑜𝑟 − 𝜑              𝑖𝑓 𝐷(𝑥) = 0

 (3.5) 

where 𝜌 and 𝜎 (𝜎 ≥ 1) are positive parameters designed to reflect network congestibility 

(very much like the standard Bureau of Public Roads [BPR 1964] formulation for travel 

times ). As with travel costs, traffic volumes, 𝐷(𝑥), are negative when flow is inward at 

location x, and positive when flows are outward. When 𝐷(𝑥) = 0, no traffic crosses 

location x, and the marginal travel cost equals the free-flow cost (which can be either 

positive or positive).  

 

Proposition 3.1: Suppose 𝑐∗(𝑥, 𝑥𝑤)and 𝑞∗(𝑥, 𝑥𝑤) are the solutions to Problem 1 and 𝑢̅ is 

the maximized utility level; then, the following are true: 

(a) For those households living in location x, regardless of where they work, they 

earn an identical net income, 𝑦(𝑥), so that: 𝑦(𝑥, 𝑥𝑤) ≡ 𝑦(𝑥), ∀ 𝑥𝑤 > 0; and 

they consume the same amount of goods and lot size, 𝑐∗(𝑥) and 𝑞∗(𝑥), so that: 

𝑐∗(𝑥, 𝑥𝑤) ≡ 𝑐
∗(𝑥) and 𝑞∗(𝑥, 𝑥𝑤) ≡ 𝑞

∗(𝑥), ∀ 𝑥𝑤 > 0.  

(b) 𝑞∗(𝑥) = 𝑞∗(𝑦(𝑥), 𝑢̅) and 𝑐∗(𝑥) = 𝑐∗(𝑦(𝑥), 𝑢̅) satisfy the equations 𝑐(𝑥) +

𝑞(𝑥)𝑢𝑞/𝑢𝑐 = 𝑦(𝑥) and 𝑢(𝑐(𝑥), 𝑞(𝑥)) = 𝑢̅; 

(c) 𝑦(𝑥) = 𝑤(𝑥) + 𝑦̅; and 

(d) 𝑦′(𝑥) = 𝑤′(𝑥) = 𝑡(𝑥) + 𝜏(𝑥). 
 

Proof. See A1 in the Appendix. 

From Proposition 3.1a, household attributes at location x, including 

𝑐(𝑥, 𝑥𝑤), 𝑞(𝑥, 𝑥𝑤), and 𝑦(𝑥, 𝑥𝑤), can be written simply as 𝑐(𝑥), 𝑞(𝑥), and 𝑦(𝑥) in the rest 
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of this article. From Proposition 3.1b, if one assumes a Cobb-Douglas utility function, as 

follows: 

 𝑢(𝑐(𝑥), 𝑞(𝑥)) =  𝑐(𝑥)𝛼𝑞(𝑥)1−𝛼,  0 < 𝛼 < 1 (3.6) 

then, the solutions to Problem 1 are: 

 𝑞∗(𝑥) = 𝛼−𝛼 (1−𝛼)⁄ 𝑦(𝑥)−𝛼 (1−𝛼)⁄ 𝑢̅1 (1−𝛼)⁄  
(3.7) 

 𝑐∗(𝑥) = 𝛼𝑦(𝑥) (3.8) 

and maximized bid-rents from households are: 

 𝑟ℎ
𝑚(𝑥) = (1 − 𝛼)𝛼𝛼 (1−𝛼)⁄ (

𝑦(𝑥)

𝑢̅
)

1 (1−𝛼)⁄

 (3.9) 

Equations (3.7) to (3.9) show that optimal lot size and good consumption and 

maximum bid-rent at location x are determined by household’s net income, 𝑦(𝑥), which 

relates to wages earned and commuting costs, as shown in Eq. (3.1). Proposition 3.1c 

demonstrates that the net income of households residing at x equals the wage income paid 

by firms at x plus redistributed revenues. From Proposition 3.1d, the condition that both 

the wage gradient and the net-income gradient equal the marginal travel cost should be 

satisfied when maximizing utilities. This condition supports the intuition that no worker 

can achieve a higher net income (net of commute costs, plus labor subsidies or toll 

revenue redistributions) by changing his or her job location.  

Firms and Agglomeration Externalities 

Each firm is a price taker in input and output markets. If a competitive firm 

located at x operates under constant returns to scale, its total production 𝑃(𝑥) depends on 

the amounts of labor 𝐿(𝑥)  and land area 𝐻(𝑥) used, and its total factor productivity 

(TFP) 𝐴(𝑥), such that: 
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 𝑃(𝑥) = 𝐴(𝑥)𝐿(𝑥)𝜅𝐻(𝑥)1−𝜅 (0 < 𝜅 < 1) (3.10) 

The production per unit of land, 𝑝(𝑥), is therefore as follows: 

 𝑝(𝑥) =
𝑃(𝑥)

𝐻(𝑥)
= 𝐴(𝑥)𝑛(𝑥)𝜅 (3.11) 

where 𝑛(𝑥)  is labor density along ring x and 𝜅  is the production function’s 

elasticity parameter. One can internalize agglomeration economies in the TFP, by 

assuming that the agglomeration externality 𝐹(𝑥) at location x determines the 

productivity: 

 𝐴(𝑥) = 𝛿𝐹(𝑥)𝛾 (𝛿 > 0, 0 < 𝛾 < 1) (3.12) 

Here, 𝛿 is the productivity scale parameter, and 𝛾 is the elasticity of productivity 

with respect to agglomeration externalities at location x. Fujita and Ogawa (1982) 

provided a measure of agglomeration economies for firms based on location potential in a 

linear city setting: they used job densities and distances to other firms or workers. LRH 

(2002) extended this measurement to circular space
5

. Similar to LRH’s setting, 

agglomeration externalities are defined here to be proportional to the local employment 

density (at location x) and the integral of an inverse-exponential distance-weighted job 

                                                           
5
 One can set a more general formation of the agglomeration externality function, for example:  

𝐹(𝑥) = ∫ 𝑏(𝑟)𝑑(𝑟, 𝑥)𝑑𝑟
𝑥̅̅

0

 

Here, 𝑏(𝑟) represents the density of firms or workers at location r. 𝑑(𝑟, 𝑥) is a distance-based decay 

function from location r to x. Two specifications of 𝑑(𝑟, 𝑥) are widely used. For example, in a linear city, 

𝑑(𝑟, 𝑥) could be a linear form, 1 − 𝜙|𝑟 − 𝑥| (e.g., Ogawa and Fujita, 1980; Duranton and Puga, 2014), or 

an inverse-exponential form, 𝑒−𝜙|r−x| (e.g., Fujita and Ogawa, 1982). These two formations are equivalent 

when 𝜙|𝑟 − 𝑥| is small enough. In simulation experiments in this dissertation, I compared the results using 

the two types of externality specifications, finding that these two specifications do not bring substantial 

difference in modeling results (e.g., land use and welfare outcomes). These findings also correspond to 

those in the linear model (e.g., by comparing Ogawa and Fujita [1980] and Fujita and Ogawa [1982]). Thus, 

the following discussions only depend on the inverse-exponential specification. 
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count within the city boundary
6
. Thus, the agglomeration externality at each location 

along the annulus at radius x is specified as  

 𝐹(𝑥) = 𝜁 ∫ ∫ 𝑟𝜃𝑓(𝑟)𝑛(𝑟)𝑒
−𝜁𝑙(𝑥,𝑟,𝜓)𝑑𝜓𝑑𝑟

2𝜋

0

𝑥̅

0

 (3.13) 

where 𝜁 is the production externality scale parameter, and is exogenously determined. 

𝜓 is the polar angle around the center (ranging from 0 to 2𝜋 ), and 𝑙(𝑥, 𝑟, 𝜓)  is the 

straight-line distance between a firm at a specific location along annulus x and each firm 

lying within 𝑥̅ miles of the center (at a counter-clockwise angle of 𝜓 from the first firm). 

Thus, 

 𝑙(𝑥, 𝑟, 𝜓) = √𝑥2 + 𝑟2 − 2𝑥𝑟𝑐𝑜𝑠(𝜓) (3.14) 

The firms then maximize the profit function with respect to employment density 

𝑛(𝑥), with firm output price set at 1 (without loss of generality):  

 𝑴𝒂𝒙 𝜋(𝑛(𝑥)) = 𝛿𝑛(𝑥)𝜅𝐹(𝑥)𝛾 − 𝑛(𝑥)(𝑤(𝑥) − 𝑠(𝑥)) − 𝑟𝑓(𝑥) (3.15) 

where 𝑠(𝑥)  represents a potential labor subsidy for firms at location x to hire each 

worker. 

From the first-order condition of profit maximization with respect to 𝑛(𝑥), one 

can obtain optimal employment density at location x as follows: 

 𝑛∗(𝑥) = (
𝜅𝛿𝐹(𝑥)𝛾

𝑤(𝑥) − 𝑠(𝑥)
)

1/(1−𝜅)

 (3.16) 

                                                           
6
 LRH’s model sets a fixed-boundary assumption while our model estimates an endogenous 𝑥̅ under the 

constraint of edge land rent. This change can endogenize city size. Zhang and Kockelman (2014) use a 

similar measure but assume that production externalities come only from firms within a pre-existing cluster 

around the region’s center point, up to an (exogenously set) boundary distance of 𝑟̅. This assumption allows 

for modeling a city system with larger decentralized forces (e.g., congestion diseconomies) than centralized 

forces (e.g., agglomeration economies). Without such an assumption, an equilibrium city always appears 

has a larger centripetal force. But this setting may constrain the emergence of polycentricity (see next 

chapter’s discussions).The model here thus relaxes such a constraint. 
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Given perfectly competitive input and output markets, all firms make zero 

(excess) profit, with land rents rising to their maximum values to ensure this, as follows: 

 𝑟𝑓
𝑚(𝑥) = (1 − 𝜅)𝛿1/(1−𝜅)𝐹(𝑥)𝛾/(1−𝜅) (

𝜅

𝑤(𝑥) − 𝑠(𝑥)
)
𝜅/(1−𝜅)

 (3.17) 

The Land Market’s Equilibrium Conditions 

Since both firms and households can exist in the same location, a competitive 

market requires they bid for the land via their willingness to pay (or maximum bid rents). 

Given the maximized bid-rents from the partial equilibrium of households and firms at 

each location x (as shown in Eqs. (3.9) and (3.17)), the land market equilibrium requires 

that land rents, 𝑟(𝑥), satisfy the following two equations: 

 𝑟(𝑥) = 𝑚𝑎𝑥{𝑟ℎ
𝑚(𝑥), 𝑟𝑓

𝑚(𝑥), 𝑅𝑎} (3.18) 

 𝑟(𝑥̅) = 𝑅𝑎 (3.19) 

Eq. (3.19) defines the edge land rent 𝑟(𝑥̅), which equals the agricultural land rent 

(or opportunity rent) 𝑅𝑎. If both 𝑟𝑓
𝑚(𝑥) and 𝑟ℎ

𝑚(𝑥) are less than 𝑖, the equilibrium land 

use share for firms 𝜃𝑓
∗(𝑥) and the equilibrium land use share for household 𝜃ℎ

∗(𝑥) will 

equal zero. If 𝑟𝑓
∗(𝑥) equals 𝑟ℎ

∗(𝑥), a mixed land use pattern will emerge at location x, and 

the equilibrium number of jobs at that location will equal the number of households (or 

residing workers) at that location (LRH, 2002). Given that both 𝑟𝑓
𝑚(𝑥) and 𝑟ℎ

𝑚(𝑥) will 

exceed 𝑅𝑎 (except at the developed region’s edge), 𝜃𝑓
∗(𝑥) and 𝜃ℎ

∗(𝑥) at each location x 

are as follows: 

 𝜃𝑓
∗(𝑥) =

{
 
 

 
 1 − 𝜃𝑡                                           𝑖𝑓 𝑟𝑓

𝑚(𝑥) > 𝑟ℎ
𝑚(𝑥)

𝑛∗(𝑥)𝑞∗(𝑥)

𝑛∗(𝑥)𝑞∗(𝑥) + 𝑞∗(𝑥)
 (1 − 𝜃𝑡)          𝑖𝑓 𝑟𝑓

𝑚(𝑥) = 𝑟ℎ
𝑚(𝑥) 

0                                                    𝑖𝑓  𝑟𝑓
𝑚(𝑥) < 𝑟ℎ

𝑚(𝑥)

 (3.20) 

 𝜃ℎ
∗(𝑥) = 1 − 𝜃𝑡 − 𝜃𝑓

∗(𝑥) (3.21) 
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Eq. (3.21) represents the land market clearing so that all available land or 

properties are assigned to either firms/jobs, households, or transport infrastructure. 

Moreover, total city/region land rents (net of the base rent,  𝑅𝑎 ), 𝑦𝑟𝑒𝑛𝑡 , in a spatial 

equilibrium will satisfy the following equation: 

 𝑦𝑟𝑒𝑛𝑡  = ∫ 2𝜋𝑥{𝜃𝑓
∗(𝑥)(𝑟𝑓

𝑚(𝑥) − 𝑅𝑎) + 𝜃ℎ
∗(𝑥)(𝑟ℎ

𝑚(𝑥) − 𝑅𝑎)}𝑑𝑥
𝑥̅

0

 (3.22) 

The Labor Market’s Equilibrium Conditions 

Under equilibrium, the commute demand generated in the interval dx from x to 

x+dx (or absorbed in dx from x+dx to x ), 𝐷′(𝑥)𝑑𝑥 (or −𝐷′(𝑥)𝑑𝑥), will equal the number 

of workers who need to work outside the interval (or the job vacancies in 𝑑𝑥)
7
. Thus, 

 𝐷′(𝑥) = 2𝜋𝑥 (
𝜃ℎ
∗(𝑥)

𝑞∗(𝑥)
− 𝜃𝑓

∗(𝑥)𝑛∗(𝑥)) (3.23) 

A spatial equilibrium requires that travel demand at the city edge, 𝐷(𝑥̅), and in 

the city center point, 𝐷(0), equals zero (since there are no jobs or workers beyond this 

boundary, to attract or generate such trips). Thus, the two boundary conditions for 

commute demand are: 

 𝐷(0) = 0  𝑎𝑛𝑑  𝐷(𝑥̅) = 0 (3.24) 

These two boundary constraints also guarantee the second condition for labor 

market clearing: the total number of workers will equal the number of households, N: 

 ∫ 2𝜋𝑥
𝜃ℎ
∗(𝑥)

𝑞∗(𝑥)
𝑑𝑥

𝑥̅

0

= ∫ 2𝜋𝑥𝜃𝑓
∗(𝑥)𝑛∗(𝑥)𝑑𝑥

𝑥̅

0

= 𝑁 (3.25) 

                                                           
7 Here, households living and working at the same location x are assumed to generate no commute. The 

setting of Eq.(23) refers to Wheaton (2004) and can be comparable with the LRH(2002)’s model. The LRH 

paper explains D(x) (labeled as H(x)) as the stock (work hour) of unhoused workers at x. Since the LRH 

model measures commute costs using travel time and the total time for working and commuting is fixed, 

the changed stock of unhoused workers from x to x+dx (or x-dx) include two parts. The first part is the net 

number of unhoused workers in the interval dx. Another part is the lost work hours due to passing the 

interval. The second part is not included in our model, since our model only considers the distance-based 

commute money costs and no work hours are lost due to commuting change. 
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Spatial General Equilibrium 

One can combine households’ and firms’ partial equilibria with equilibrium 

conditions for labor and land markets, thereby creating a spatial general equilibrium 

model for the region. Given 𝑢̅  and other parameters, this model has 20 unknowns, 

including 15 functions of x: 𝑐∗(𝑥), 𝑞∗(𝑥), 𝑟ℎ
𝑚(𝑥), 𝑦(𝑥), 𝑡(𝑥), 𝜏(𝑥), 𝐷(𝑥), 𝑤(𝑥), 𝑛∗(𝑥),  

𝑟𝑓
𝑚(𝑥), 𝑠(𝑥), 𝐹(𝑥), 𝑟(𝑥), 𝜃ℎ

∗(𝑥), 𝜃𝑓
∗(𝑥), and 5 scalars: 𝑥̅, 𝑦̅, 𝑦𝑟𝑒𝑛𝑡, 𝑦𝑡𝑜𝑙𝑙 , 𝑦𝑠𝑢𝑏𝑦. 20 equations 

are needed to resolve this model, including 16 equations described above (Eqs. (3.2) and 

(3.4), Proposition 3.1(c) and (d), Eqs. (3.7)-( 3.9), (3.13), and (3.16)-( 3.23)) plus 4 other 

equations that define the tolling instrument, 𝜏(𝑥) and 𝑦𝑡𝑜𝑙𝑙 , and the subsidy, 𝑠(𝑥) and 

𝑦𝑠𝑢𝑏𝑦, which vary across policy scenarios. 

Table 3.1 summarizes these four functions, 𝜏(𝑥), 𝑠(𝑥), 𝑦𝑡𝑜𝑙𝑙, and 𝑦𝑠𝑢𝑏𝑦, across six 

spatial equilibria. In the free-market equilibrium, neither a toll nor a subsidy is imposed, 

so  𝜏(𝑥) = 0, 𝑠(𝑥) = 0, 𝑦𝑡𝑜𝑙𝑙 = 0, 𝑎𝑛𝑑 𝑦𝑠𝑢𝑏𝑦 = 0 . Given the simultaneous existence of 

two externalities in the model, a free-market equilibrium is inefficient; thoughtful policy 

intervention is needed to cope with market inefficiency. As noted earlier, four types of 

intervention are considered here: the simultaneous application of two first-best 

instruments, application of just Pigouvian congestion toll, and application of just 

Pigouvian labor subsidy.  

Table 3.1 Policy Instrument Values {𝜏(𝑥), 𝑠(𝑥), 𝑦𝑡𝑜𝑙𝑙 , 𝑦𝑠𝑢𝑏𝑦} for Urban Equilibria under 

Four Policy Interventions 

Policy Interventions Equations 

Free-Market 𝜏(𝑥) = 0; 𝑠(𝑥) = 0; 𝑦𝑡𝑜𝑙𝑙 = 0; 𝑦𝑠𝑢𝑏𝑦 = 0  

First-Best 𝜏(𝑥) = 𝜏𝑝𝑐𝑡(𝑥); 𝑠(𝑥) = 𝑠𝑝𝑙𝑠(𝑥); 𝑦𝑡𝑜𝑙𝑙 = ∫ 𝜏(𝑥)𝐷(𝑥)𝑑𝑥
𝑥̅

0
;  

𝑦𝑠𝑢𝑏𝑦 = ∫ 2𝜋𝑥𝜃𝑓
∗(𝑥)𝑛∗(𝑥)𝑠(𝑥)𝑑𝑥

𝑥̅

0
. 

Pigouvian Congestion 

Toll Alone (PCT-Alone) 
𝜏(𝑥) = 𝜏𝑝𝑐𝑡(𝑥); 𝑠(𝑥) = 0; 𝑦𝑡𝑜𝑙𝑙 = ∫ 𝜏(𝑥)𝐷(𝑥)𝑑𝑥

𝑥̅

0
; 𝑦𝑠𝑢𝑏𝑦 = 0.  

Pigouvian Labor 

Subsidy Alone (PLS-

Alone) 

𝜏(𝑥) = 0; 𝑠(𝑥) = 𝑠𝑝𝑙𝑠(𝑥); 𝑦𝑡𝑜𝑙𝑙 = 0; 

𝑦𝑠𝑢𝑏𝑦 = ∫ 2𝜋𝑥𝜃𝑓
∗(𝑥)𝑛∗(𝑥)𝑠(𝑥)𝑑𝑥

𝑥̅

0
. 



63 

 

 

 

Proposition 3.2: First-best instruments to correct congestion and agglomeration 

externalities satisfy either one of following conditions:  

 (a) A first-best combination of the Pigouvian Congestion Toll 𝜏𝑝𝑐𝑡(𝑥) at each location x 

and the Pigouvian Labor Subsidy 𝑠𝑝𝑙𝑏(𝑥) on every unit of labor supplied at each firm 

location x can be defined as follows: 

 𝜏𝑝𝑐𝑡(𝑥) = 𝑡′(𝐷(𝑥))𝐷(𝑥) =

{
 
 

 
 𝜌𝜎 (

|𝐷(𝑥)|

2𝜋𝑥𝜃𝑡
)

𝜎

,   𝑖𝑓 𝐷(𝑥) ≥ 0

−𝜌𝜎 (
|𝐷(𝑥)|

2𝜋𝑥𝜃𝑡
)

𝜎

, 𝑖𝑓 𝐷(𝑥) ≤ 0

 (3.26) 

 

𝑠𝑝𝑙𝑠(𝑥)

= ∫
𝑑 (2𝜋𝑟𝜃𝑓

∗(𝑟)𝑝(𝑟))

𝑑(2𝜋𝑥𝜃𝑓
∗(𝑥)𝑛∗(𝑥)𝑑𝑥)

𝑑𝑟
𝑥̅

0

= {
𝛾𝜅𝛿𝜁∫ ∫ 𝑟𝜃𝑓

∗(𝑟)𝑛∗(𝑟)𝐹(𝑟)𝛾−1𝑒−𝜁𝑙(𝑥,𝑟,𝜓)
2𝜋

0

𝑥̅

0

𝑑𝜓𝑑𝑟, 𝑖𝑓 𝜃𝑓
∗(𝑥) > 0 

0,                                                                                         𝑖𝑓 𝜃𝑓
∗(𝑥) = 0

 

(3.27) 

 (b) First-best road tolling for each mile driven at each location x, 𝜏𝑓𝑏(𝑥), is as follows:  

 𝜏𝑓𝑏(𝑥) = {

𝜏𝑝𝑐𝑡(𝑥),                   𝑖𝑓 𝜃𝑓
∗(𝑥) = 0

𝜏𝑝𝑐𝑡(𝑥) −
𝜕𝑠𝑝𝑙𝑠(𝑥)

𝜕𝑥
, 𝑖𝑓 𝜃𝑓

∗(𝑥) = 0
 (3.28) 

and the revenue generated by optimal tolls equals the aggregate congestion externality 

costs minus the aggregate agglomeration externality benefits.  

(c) First-best labor subsidy on every worker who lives at 𝑥𝑖 and works at 𝑥, 𝑠𝑓𝑏(𝑥𝑖, 𝑥) 

will be as follows: 

 𝑠𝑓𝑏(𝑥𝑖, 𝑥) = 𝑠𝑝𝑙𝑠(𝑥𝑖, 𝑥) − ∫ 𝜏𝑝𝑐𝑡(𝑟)
𝑥

𝑥𝑖

𝑑𝑟 (3.29) 

and the aggregate optimal subsidy equals the aggregate agglomeration externality 

benefits minus the aggregate congestion externality costs. 

 

Proof. See A2 in the Appendix. 
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In the socially optimal city, markets failures from both congestion and 

agglomeration externalities are needed to be corrected by first-best instruments. As noted 

in Proposition 3.2, the social optimum can be achieved via three types of first-best 

instrument. The city can simultaneously impose Pigouvian congestion toll and Pigouvian 

labor subsidy, both of which equal corresponding marginal externalities, as shown in Eqs. 

(3.26) and (3.27). The marginal congestion externality (MCE) at each x equals 

𝑡′(𝐷(𝑥))𝐷(𝑥). Intuitionally, the derivative of 𝑡(𝑥) of 𝐷(𝑥) represents the added marginal 

travel cost on each individual driver across x when one new driver is added, while 

𝜏𝑝𝑐𝑡(𝑥) represents total additional travel costs (imposed on other drivers), as caused by 

the added driver. The marginal external benefits by hiring additional workers at location 

x,  𝑑(2𝜋𝑥𝜃𝑓
∗(𝑥)𝑛∗(𝑥)𝑑𝑥) , equals the total gain aggregating marginal output at other 

locations r (0 ≤ 𝑟 ≤ 𝑥̅) , 𝑑 (2𝜋𝑥𝜃𝑓
∗(𝑟)𝑝(𝑟)).  

The city can also impose first-best tolls by internalizing external benefits of 

agglomeration into Pigouvian congestion toll levels. Proposition 3.2b suggests that the 

first-best tolls largely vary with locations. They should be set at corresponding Pigouvian 

levels in residential areas but not within-firm clusters. After considering the impact on 

agglomeration economies, the optimal tolling could be positive or negative (i.e., a 

subsidy), depending on the locational margin of agglomeration benefits, 𝑠𝑝𝑙𝑠
′ (𝑥) . In 

addition, the aggregate optimal toll should lie below the aggregate congestion externality 

cost. This finding is consistent with Arnott’s (2007) result for a relatively straightforward, 

non-spatial model, where the optimal toll is lower than congestion externality cost and 

even negative, if the agglomeration externality cannot be subsided. Similarly, when 

congestion tolls are not feasible (e.g., they may not be politically acceptable), the city can 

supply first-best subsidies to firms, and the total optimal subsidy will then lie below the 

total agglomeration benefit. But Proposition 3.2c suggests that such an optimal labor 
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subsidy will be very complicated, since it varies with not only firms’ locations but also 

worker’s residence. 

Both the Pigouvian congestion toll-alone and Pigouvian labor subsidy-alone 

policy instruments are not first-best strategies since they only correct one externality. 

Analytical equilibrium results are very difficult to compute here, for a 20-equation system 

with several non-linear equations and differential equations. The following section relies 

on numerical results, to compare the properties of the free-market, first-best and second-

best equilibrium settings, by setting function values for {𝜏(𝑥), 𝑠(𝑥), 𝑦𝑡𝑜𝑙𝑙, 𝑦𝑠𝑢𝑏𝑦}. 

PARAMETER SETTINGS IN NUMERICAL SIMULATION 

This chapter simulates an abstract circular, close-form city, where the number of 

workers N is fixed at 600,000 and the edge agricultural land rent Ra is set to $4,000,000 

per square mile per year. This comes from the assumption that farmland at the edge of a 

city sells for about $50,000 per acre, with amortization of such costs over 40 years at a 

discount rate of 5% resulting in rural land rents over $4,000,000 per square mile per year.  

Table 3.2 shows the parameter values of the base scenario8. Parameters of Cobb-

Douglas utility and production functions rely on LRH’s (2002) assumptions, where 𝛼 =

0.90 and 𝜅 = 0.95. The agglomeration parameters 𝛾 and 𝜁 are set at 0.06 and 2, which 

are well in line with the empirical estimates ranging from 0.04 to 0.10 (Combes et al., 

2010). The constant part of total factor productivity, 𝛿, is set at 30,000, by calibrating Eq. 

(3.16) under the assumption that per-capita money income is $30,000 (per year) and the 

city center holds over 100 persons per acre, on average. Following Wheaton’s (1998) 

study, roadways’ share of land is assumed to be 30%. The intercept parameter 𝜑  in 

                                                           
8
 While calibrating a realistic city using empirical data under the model framework developed here is 

possible and important, it is not a major focus of this paper. Some calibration examples can refer to several 

studies relying on monocentric models (e.g., De Lara et al., 2013; Rappaport, 2014) and non-monocentric 

models (e.g., Brinkman, 2013). 
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Equation (16)’s average travel cost function represents an average cost of free-flow 

travel, and is set at $20 dollar per mile per year. This figure is generated from the 

calculation that marginal free-flow travel cost is about $0.04 per mile when each worker 

works about 250 days a year. 𝜌 and 𝜎 reflect link congestibility, and are set as 0.00001 

and 1.5, respectively. In a highly congested location, for example, if there are 50,000 

travelers passing a point x = 1 mile from the region’s center, the marginal congestion cost 

at x = 1 will be $0.17 per vehicle-mile, accounting for about 30% of total marginal costs. 

In a lightly congested location, say 5,000 travelers per day at a distance x = 10 miles 

away, the marginal congestion cost will account for only 0.4% of total marginal social 

costs (MSCs) at that point in the network.  

Table 3.2 Parameter Value Assumptions in the Base Scenario 

N Ra 𝛼 𝜅 𝛾 𝜁 𝛿 𝜃𝑡 𝜆 𝜑 𝜌 𝜎 

600,000 $4M/sq.mi  0.9 0.95 0.06 2 30,000 0.3 0.5 20 0.00001 1.5 

COMPUTATIONAL SOLUTIONS: A NESTED FIXED-POINT ALGORITHM 

To iteratively solve for location-specific values, one can first divide the circular 

city into discrete, narrow rings, each of width ∆𝑥 (e.g., ∆𝑥 = 0.01 𝑚𝑖𝑙𝑒). Each location x 

can be labeled as 𝑥𝑖 = 𝑖∆𝑥 (𝑤𝑖𝑡ℎ 𝑖 = 1,2, … , 𝐼), with 𝑥1 representing the city center and 

𝑥𝐼 representing the city’s boundary 𝑥̅. According to the boundary condition in Eq.(3.24), 

the commute traffic demand for both locations 𝐷(𝑥1) and 𝐷(𝑥𝐼) equals zero.  

The spatial equilibria are solved by a nested fixed-point algorithm (three loops) 

using MATLAB. The inner part of the algorithm refers to LRH’s fixed-point algorithm 

(2002) for finding the fixed points of the agglomeration function 𝐹(𝑥). Meanwhile the 

middle loop of the algorithm is applied to find the fixed points of the redistributed 

revenue 𝑦̅. Notice that the boundary conditions in simulations differ from those in LRH’s 

models. While the LRH’s simulation assumes a fixed utility level and city boundary, this 
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simulation assumes a fixed population and edge land rent. In addition, the outer part of 

the algorithm is applied to find fixed points of the land share function 𝜃𝑓(𝑥). Detailed 

algorithms are described in A3 in the appendix. 

LRH (2002) provided a strict proof of the existence of a set of equilibrium 

solutions under certain assumptions of utility and production functions (e.g., when these 

functions are of Cobb-Douglas form). Rossi-Hansberg (2004) also provided a proof of a 

set of optimal solutions in his extension of LRH’s model to include agglomeration 

externalities. The substantial difference of our model from LRH’s and Rossi-Hansberg’s 

models is the inclusion of congestion externalities and governmental wealth redistribution 

(i.e., rents, tolls, and subsidies). Especially in the wealth redistribution process, 

simulations require proofs of whether there are fixed points of 𝑦𝑟𝑒𝑛𝑡, 𝑦𝑡𝑜𝑙𝑙 , and 𝑦𝑠𝑢𝑏𝑦. 

Instead of providing complicated and elusive analytical proofs, this model is solved 

computationally, so if an equilibrium can be computed, it exists. This is true for all 

models of this genre, such as Fujita-Ogawa (1982), Anas-Kim (1996), Brueckner (2007), 

etc. Simulation results suggest that there exists a set of equilibria or optimal solutions if 

the parameters are appropriately selected. 

In addition, for checking the existence of multiple equilibria, simulations in this 

research use several different initial functions of 𝜃𝑓(𝑥), 𝐹(𝑥), and 𝑦̅. If an equilibrium or 

optimum solution exists, it is the unique one within a family of urban configurations. If 

multiple families of urban configurations exist under the same set of parameters, the 

equilibrium solution generating the maximum utility is chosen as the Pareto-optimal one. 

For an example, refer to A4 in the appendix. 

PRICING POLICIES FOR ACHIEVING OPTIMAL CONGESTION LEVELS 

This section examines anti-congestion, welfare, and land use effects of three 

policy instruments, comparing to those in the free-market equilibrium. The policies 
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include first-best instruments correcting both congestion and agglomeration externalities, 

the Pigouvian congestion toll-alone instrument only fully correcting congestion 

externalities, and the Pigouvian labor subsidy-only instrument only fully correcting 

production externalities. These policies are first investigated in the base scenarios with 

parameters in Table 3.2, and thus in cities with varying agglomeration scales (by 

changing 𝛾 from 0.04 to 0.08) and congestion levels (by changing 𝜌 from 0.000005 to 

0.0001) in the next section.  

Table 3.3 Simulated Results of Policy Scenarios 

 Free 

Market 

First Best PCT- 

Alone 

PLS- 

Alone 

Utility Level, 𝑢̅ 5242 5258 5221 5225 

Avg. CV (relative to the FM case, $/hh./year)  113.86 -152.26 -118.38 

City Boundary, 𝑥̅ (miles) 15.57 15.26 16.10 14.94 

Tolls, 𝑦̅𝑡𝑜𝑙𝑙  ($/hh./year) 0 557 190 0 

Subsidy, 𝑦̅𝑠𝑢𝑏𝑦 ($/wk./year r) 0 2057 0 2081 

Rent Revenues Returned, 𝑦̅𝑟𝑒𝑛𝑡 ($/hh./year) 1494 1648 1218 1785 

Avg. Commute Distance (miles/day) 8.16 6.37 4.79 8.73 

Avg. Traffic (1000 vehicles/hr per section dx*dx), T 28.6 18.5 10.5 43.9 

Negative Congestion Externalities (million $/year) 583 334 114 1196 

Total Congestion Cost Benchmarked by the Free-Flow 

Cost ($million/year) 

971 223 76 1993 

Average TFP (compared to the constant) 1.809 1.816 1.743 1.905 

Agglomeration Externalities (million $/year) 1235 1235 1225 1249 

Avg. Labor Density (workers/sq. mile) 10510 11985 5879 28668 

Avg. Residential Density (hhs/sq.mi.) 1260 1299 1246 1305 

Avg. Rent for Firms (times Ra) 4.52 5.12 2.50 12.45 

Avg. Rent for Housing(times Ra) 1.05 1.09 1.06 1.06 

Avg. Labor Wage ($/year) 32660 30382 32260 30912 

Avg. Net Income ($/year) 33266 33527 33176 33193 

Table 3.3 shows major characteristics of urban equilibria under four policy 

schemes in the base scenario. In the free-market equilibrium, the utility level is 5242 and 
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the city’s boundary is 15.58 miles away from the city center when the edge land rent 

equals the agricultural land rent, Ra. 

Optimal and Excessive Levels of Congestion in the Base Scenarios 

According to Table 3.3, the average daily commute distance in the free-market 

case is 8.16 miles, and the average traffic volume passing a road section is 28,600 

vehicles per hour. These produce about 583 million dollars per year of congestion 

externalities impairing the society. First-best policies can generate lower total congestion 

externalities, i.e., 334 million dollars per year, a 43% decrease compared to the free-

market level. In the social optimum, all negative externalities to the society are 

compensated by the tolling revenue. The average commute distance and traffic volume 

decrease to 6.37 miles per day (a 22% fall) and 18,500 vehicles per hour (a 35% fall). 

After fully correcting congestion externalities, the Pigouvian congestion toll-alone policy 

generates a much lower travel demand and lower congestion levels compared to the free 

market. The average commute distance and traffic volume fall by 41% (4.8 miles per 

day) and 63% (10,500 vehicles per hour). These traffic conditions are even better than 

those under first-best interventions. In contrast, the Pigouvian labor subsidy-alone policy 

fully corrects agglomeration externalities, but causes worse congestion. This includes 

longer commute distance and larger traffic volume than the free-market levels, and up to 

double the total congestion externality.  

If congestion relief and VMT reduction effects are the primary objectives, the 

Pigouvian congestion toll-alone policy appears to be the most efficient. However, an 

economically healthy city probably demands more: not only less congestion, but also 

more agglomeration. Simulation results here suggest that anti-congestion policies can 

reduce negative externalities but at the same time, erode agglomeration benefits. The 

optimal level of congestion should balance congestion diseconomies and agglomeration 
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economies, both of which are caused by the spatial concentration of activities. Figure 3.1 

presents a diagram showing schematic curves of marginal benefits and costs of vehicle 

traffic in the four base scenarios. This diagram shows a schematic framework rather than 

mimicking the realistic simulation outcomes because the latter vary largely with location. 

However, this analytical diagram can be regarded as the average consequences of the four 

base scenarios. 

 

Notes: MSC is marginal social costs of traffic; MPC is marginal private costs. The gaps between MSC and 

MPC are marginal external costs of congestion that are not priced in the free market. MPB is marginal 

private benefits of travel; MSB is marginal social benefits. The gaps between MSB and MPB are marginal 

external benefits of agglomeration that are not priced in the free market. TPCT is the equilibrium traffic 

volume of the Pigouvian congestion toll-alone case; TFB is the equilibrium traffic of the first-best optimum; 

TFM is the free-market equilibrium level of traffic; and TPLS is the equilibrium traffic of the PLS-alone case. 

Figure 3.1 Excessive Congestion Caused by Free-Market, Pigouvian Congestion Toll 

Alone, and Pigouvian Labor Subsidy Alone Instruments in the Base 

Scenarios. 
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As shown in Figure 3.1, the free-market equilibrium in the base scenarios occurs 

when the MPC equals the MPB and the equilibrium traffic volume is TFM, i.e., 28,600 

vehicles per hour. The social optimum lies at the point of intersection of the MSC and 

MSB curves, and the optimal traffic level is TFM, i.e., 18,500 vehicles per hour. 

Therefore, on average, the excessive driving demand in the free market is 10,100 vehicles 

per hour. The excessive congestion leads to a diseconomy in which each household loses 

about $114 annually (Table 3.3). However, this diseconomy of congestion imposed on 

each household is much smaller (only 7%) than $1,618, which is “the total cost of 

congestion” including internal and external costs. The evaluation of transportation 

projects or congestion relief policies in practice relies largely on the estimation of “the 

total cost of congestion” (e.g., Grant-Muller & Laird, 2007; OECD, 2007; Bilbao-Ubillos, 

2008; Litman, 2009). Our findings suggest that it is socially inefficient to reduce all of 

“the total cost of congestion,” and policies targeting the free-flow speeds could erode 

agglomeration economies and cause substantial welfare loss. As stated by Goodwin, “The 

‘total cost of congestion’ is a large number, but it is practically meaningless and by 

‘devaluing the currency’ it distracts attention from more important, achievable, 

objectives” (2004, p. 3). 

This research suggests that anti-congestion policies should aim to reduce the net 

social cost of excessive congestion, i.e., the congestion diseconomy rather than “the total 

cost of congestion.” The application of “the total cost of congestion” may overestimate 

the damage of congestion and overrate some anti-congestion policies (OECD, 2007). In 

the base scenarios, about 93% of the total cost of congestion is necessary for guaranteeing 

agglomeration economies. Because free-flow traffic is probably never a desirable 

outcome of social efficiency, the evaluation of anti-congestion policies should not assume 

that the free-flow level of traffic is the socially optimal level. Policies aimed at the 
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socially optimal level of congestion should balance the reduction effects on both 

excessive congestion and agglomeration economies. 

This research also demonstrates the importance of integrating all potential 

externalities affecting the transportation market in congestion-relief studies. Much of the 

literature has recognized the negative congestion externality only as a primary market 

failure causing excessive congestion (OECD, 2007). After accounting for agglomeration 

externalities, the Pigouvian congestion toll-alone policy is no longer socially optimal 

because the congestion toll raises the travel price too much and thus reduces travel 

demand too much (e.g., 8,000 vehicles fewer than the socially optimal level). This 

pricing-oriented “restriction” on travel demand could lower the average traffic volume 

and the level of spatial concentration of activities and encourage dispersal distribution of 

firms for less crowding, and thus erode agglomeration economies. Finally, the Pigouvian 

congestion toll-alone policy incurs a greater total cost from the loss of the agglomeration 

economy than the total benefit it derives from congestion reduction, still leading to a net 

social loss. 

First-Best Policies in the Base Scenarios 

According to Proposition 3.2, there are three first-best interventions – a 

combination of Pigouvian congestion toll and Pigouvian labor subsidy, a first-best 

congestion toll (that varies by road location), and a first-best labor subsidy (that varies by 

firm or job location) – and these first-best instruments can each produce the same social 

optimum. This research uses the combination of Pigouvian congestion toll and Pigouvian 

labor subsidy to simulate the optimum. Results show that under the social optimum, the 

city need to impose an average toll of $557 per commuter per year while delivering an 

annual average labor subsidy of $2057 per job position (Table 3.3). This result does not 

imply that a combined, equivalent tax of $1500 (i.e., $2057-$557) on each worker will 
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achieve the first-best optimum: spatial variations in tolls and labor subsidies need to be 

considered.  

Figure 3.2a-b shows the corresponding toll and/or subsidy levels across locations 

in the social optimum. Under this combination instrument, as job densities (or travel 

flows) increase, the amount of optimal labor subsidy (or optimal tolling) rises. Within the 

firm cluster area increases from 2.85 mile to 5.55 mile in radius, subsidies increase from 

about $1198 to $2337 per year at the locations of peak labor density, and then fall to 

$1064 per year at the other edge of the firm cluster. Congestion tolls peak at the two ends 

of the firm cluster area, since these two places accumulate of the highest levels of 

outward and inward commute flows, generating the largest marginal negative 

externalities. Social optimum can be achieved by levying an optimal toll after 

internalizing agglomeration externalities. Figure 3.2c shows that the first-best toll equals 

the Pigouvian congestion toll in the residential areas, but varies quite a bit within the 

annulus of jobs, consistent with Proposition 3.2. The optimal toll levels across locations 

in the firm cluster area lie below the Pigouvian congestion toll and even become negative 

(thereby incentivizing such travel). These findings extend Arnott’s (2007) aspatial 

analytical discussion, underscoring the importance of enabling spatial variation in policy 

interventions, in order to optimally address urban externalities. 

Welfare improvement is visible under the first-best instruments. The utility level 

increases from 5242 to 5258, so it appears to be just 0.3% higher than that of the free-

market equilibrium (Table 3.3). However, utils are only ordinal in nature; the average 

worker’s willingness to pay to live in this optimally managed city, versus the free-market 

setting, is $114 per year (as a compensating variation
9
). This welfare gain comes from the 

                                                           
9
 Given the utility levels are u0 in the free-market case and u under a specific policy scheme, the average 

compensating variation is simply calculated as CV =
1

𝑁
∫ 2𝜋

𝜃ℎ(𝑥)

𝑞(𝑥)
(𝑢 − 𝑢0)

𝑑𝑦(𝑢,𝑞(𝑥))

𝑑𝑢
𝑑𝑥

x̅

0
. 
𝑢

𝑐

𝑑𝑦

𝑑𝑢
 represents the 
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benefit of excessive congestion reduction. When congestion externalities are internalized, 

the average commute costs rise from $0.27 to $0.57 per mile per day, leading to a 

decrease in travel demand and commute distance (which falls by 22%). With the 

Pigouvian labor subsidy, firms can hire workers by lower wage (the average wage drops 

by 7%), equaling social marginal costs that varies with locations (Figure 3.3a). The TFPs, 

however, in most job locations significantly improve (Figure 3.3b), with average TFP 

rising 0.42%. These findings suggest that first-best instruments simultaneously reduce 

congestion and enhance agglomeration benefits.  

 

 

Figure 3.2 Levels of Toll (a) and Subsidy (b) under the First-Best Instrument Combining 

Both Pigouvian Congestion Toll and Pigouvian Labor Subsidy and Levels 

of Toll (Compared to Pigouvian Congestion Toll-Only) under the First-Best 

Tolling Instrument after Internalizing Agglomeration Externalities (c). 

(𝜑=20, 𝜌=0.00001, 𝜎=1.5, 𝛾=0.06, 𝑁=600,000) 

                                                                                                                                                                             

point elasticity of net income with respect to utility level at location x, and (𝑢 − 𝑢0)
𝑑𝑦

𝑑𝑢
 represents the 

income change due to the utility level changes from u to 𝑢0.  
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Figure 3.3 Spatial Distribution of Wages (w), TFP (A/𝜹), job (n) and Residential 

Densities (1/q),  Land Rents (r) and Net Income (y) in the First-Best 

Optimum versus the Fee-Market Equilibrium (𝜑=20, 𝜌=0.00001, 𝜎=1.5, 

𝛾=0.06, 𝑁=600,000) 

Land use patterns are also affected, as shown in Figure 3.3. The first-best 

instrument causes firms to decentralize, away from the city center, and agglomerate in a 

smaller cluster, as an annulus, with average labor density rising by 14% (in that ring, 

versus the original jobs zone). This is a combined consequence of the imposition of 

Pigouvian congestion toll and Pigouvian labor subsidy. First, the Pigouvian labor subsidy 

encourages firms at locations of higher productivity to hire more workers, thereby 

reinforcing agglomeration externalities of their locations. Since labor supply is assumed 

fixed, firms at locations with lower productivity will lose labor and thus productivity. 

These shifts stimulate firms to locate closer to each other, clustering in a smaller area, 
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raising job densities and total agglomeration economies (Figure 3.3c). Second, the 

Pigouvian congestion toll increases the per-mile commuting costs, thereby encouraging 

firms and workers to co-locate closer together, to reduce travel costs. While road tolls are 

paid by workers, firms need to provide an attractive wage that internalizes much of the 

toll to remain competitive. Firm decentralization (and some inward migration of 

households) can bring them closer to their workers while reducing inward traffic flows. 

First-best instruments also centralize households, resulting in a shrinking city 

boundary from 15.57 to 15.26 miles and higher residential densities over most areas of 

the city, especially at locations closer to the firm cluster (Figure 3.3d). If comparing 

Figure 3.3d and 3.3e, we find that higher residential densities raise household bid-rents. 

The average land rents for firms and houses in the socially optimal setting are 4.52 and 

1.05 times the opportunity rent (i.e., the rent at the city edge, Ra), and 13% and 3.8% 

higher than those in the free-market equilibrium (Table 3.3). Given that all congestion 

tolls and rent revenues (net of labor subsidies) are uniformly returned to each household, 

net incomes rise in all locations (Figure 3.3f), with average net income rising by 0.8% 

(Table 3.3). Notice that utility values rise with net income levels and fall with residential 

rents, everything else equation (as evident in Eq. 3.8). Even though housing’s rent growth 

is about five times the net income growth, households still experience higher utility, since 

the elasticity of utility with respect to residential rent is much lower than that with respect 

to net income (0.1 versus 1).  

Pigouvian Congestion Toll Alone (PCT-Alone) Policy in the Base Scenarios 

The Pigouvian congestion toll-alone policy imposes a congestion toll that equals 

the MCE, but does not correct the agglomeration externality. Simulations shows that each 

worker driver needs to pay an average toll of $190 per year, about one-third of the 

average first-best toll (Table 3.3). The Pigouvian congestion toll-alone policy, however, 
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generates a significant welfare loss: the utility decrease to 5221 and the CV value relative 

to the free-market case is -152. This utility loss results from the negative side effect of 

Pigouvian congestion toll on the agglomeration economy. Compared to the free-market 

equilibrium, the Pigouvian congestion toll-alone equilibrium leads to a 92% decrease in 

congestion diseconomies and a 7.4% decline in the agglomeration benefits. While the 

average commute distance decreases by 41%, the average productivity drops by 3.6% 

(Table 3.3). 

 

Figure 3.4 Spatial Distribution of Job Density (n), Residential Densities (1/q), and Land 

Rents (r) in the Pigouvian Congestion Toll-Alone versus the Free-Market 

Equilibria (Left) and in the Pigouvian Labor Subsidy-Alone Equilibrium 

versus the Free-Market Equilibria (Right) (𝜑=20, 𝜌=0.00001, 𝜎=1.5, 

𝛾=0.06, 𝑁=600,000) 
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Figure 3.5 Utility Gains Relative to the First-Best Level (Left) and the Percent Changes 

in Aggregate Congestion Diseconomies and Agglomeration Economies 

(Right) under 10 Tolling Schemes. 

The Pigouvian congestion toll-alone policy leads to a more sprawling urban form 

and more job decentralization than the free-market equilibrium (Figure 3.4a-c) and first-

best optimum (Figure 3.3). The city boundary increases to 16.1 miles, creating 6.9% 

more land areas than the free-market case. Without the incentive of a Pigouvian labor 

subsidy to guarantee labor supply, the Pigouvian congestion toll-alone policy incentivizes 

firms and workers to locate closer to each other, to reduce commuting costs and better 

match labor supply and demand. For example, a Pigouvian congestion toll levied in 

location x will lessen the level of commute volume passing x to a socially optimal level, 
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making some workers relocate to avoid paying the toll at x. Some workers will change 

their workplace to the location outside x, while some workers will move inside to live 

near the city centerpoint for outward commuting. These demand-side adjustments will 

decentralize firms to relatively low-productivity locations, since the lower-productivity 

locations are closer to the edge of the firm cluster and thus households. Compared to the 

free-market equilibrium, the average residential and labor densities decrease by 1.1% and 

44%, and the residential and firm’s rents drop by 1.5% and 45% (Table 3.3). 

For seeking the impact of anti-congestion policies on agglomeration economies, 

Figure 3.5 tracked the change in utility and externalities under ten additional tolling 

schemes, which impose a fixed share (ranging from 0 to 0.9) of the Pigouvian congestion 

toll level on each mile driven. The figure presents the percent of utility gains relative to 

that in the first-best optimum and the percent change of two aggregate externalities 

relative to the free-market case. The second-best utility gains peak at about 47% of the 

first-best utility gains (compared to the based equilibrium), when the toll level is set as 

about 72% of the Pigouvian congestion toll level. As the share increases, the congestion 

and agglomeration externalities decline, indicating that anti-congestion policies may 

erode agglomeration economies. These findings also suggest that an efficient toll level 

should lie below the Pigouvian congestion toll level, as agglomeration economies are 

internalized. 

Pigouvian Labor Subsidy Alone (PLS-Alone) Policy in the Base Scenarios 

The Pigouvian labor subsidy-alone policy offers labor subsidies to firms in the 

amount of agglomeration’s marginal externality benefits, but does not correct the 

congestion externality. In the Pigouvian labor subsidy-alone equilibrium, the city needs to 

deliver an average subsidy of $2081 per job per year, so that agglomeration external 

benefits can be redistributed back to firms. Similar to the Pigouvian congestion toll-alone 
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policy, the Pigouvian labor subsidy could cause significant welfare loss, with an average 

$118 per year loss of CV value relative to the free-market equilibrium. But in contrast to 

the Pigouvian congestion toll-alone instrument, the Pigouvian labor subsidy-alone policy 

increases total agglomeration benefits and congestion costs by 26% and 105%, 

respectively. The growing agglomeration economies links with a 5.3% increase in 

average productivity and a 5.4% decrease in average wage cost, while the rising 

congestion diseconomies are resulted from a 6.9% increase in average commute distance 

(Table 3.3). 

The Pigouvian congestion toll-alone policy leads to a more compact urban form 

than the free-market equilibrium (Figure 3.4d-f) and first-best optimum (Figure 3.3). The 

city boundary decreases to 14.94 miles, causing a 7.9% decrease in land areas in 

comparison with the free-market case. Without the Pigouvian congestion toll’s 

congestion correction, the Pigouvian labor subsidy-alone intervention could encourage 

firms to locate closer to each other. After levying a Pigouvian labor subsidy policy, firms 

at locations with relative low productivity (often at the edges of firm clusters) will move 

to locations with higher productivity. This tendency would agglomerate firms in a smaller 

area (Figure 3.4d) and job densities increase near the centerpoint and drop at the edge of 

the firm cluster. The traffic volumes will thus rise within the firm cluster, triggering a rise 

in congestion. While job centralization accompanies with housing centralization, 

Pigouvian labor subsidy appears to have trivial direct impact on household’s spatial 

decision, as shown in Figure 3.4e.  
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Figure 3.6 Utility Gains Relative to the First-Best Level (Left) and the Percent Changes 

in Aggregate Congestion Diseconomies and Agglomeration Economies 

(Right) under 10 Subsidy Schemes. 

Similar to those tolling-only schemes, the policies with the labor subsidy level 

setting below the Pigouvian labor subsidy level may generate more welfare gains than 

those at the exact Pigouvian level. Figure 3.6 shows that the utility gains relative to the 

first-best level peak at 8.7%, when the labor subsidy is set at about 68% of the Pigouvian 

labor subsidy level. As the subsidy levels increase, both the aggregate congestion 

externality cost and agglomeration externality benefit rise. This finding suggests that the 

implementation of policies for promoting agglomeration economies should recognize 

their potential negative impact on worsening congestion. 
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Policy Evaluations Varying with Congestion and Agglomeration Scales 

Table 3.4 Policy Scenario Results under Varying Congestion Levels 

 Network Congestibility Parameter 𝜌 

5e-6 1e-5 1.5e-5 3e-5 1e-4 

Types of Urban Form at FM equilibria FH FH HFH HFH HFH 

CV of First-Best Policies (relative to FM 

cases, $/hh./year) 

171 114 209 190 103 

CV of PCT-Alone Policies (relative to FM 

cases, $/hh./year) 

-255 -152 -59 36 46 

CV of PLS-Alone Policies (relative to FM 

cases, $/hh./year) 

13 -118 -251 -379 -652 

Share of Congestion Diseconomy in Total 

Congestion Cost (%) 
17.72 7.04 20.91 23.37 9.30 

Total Externalities in the FM case (million 

$ /year) 

886 652 932 890 620 

Percent Change in Congestion Costs (from 

FM to FB, %) 

-38.40 -77.06 -76.92 -67.38 -56.48 

Percent Change in Agglomeration 

Benefits (from FM to FB, %) 

22.12 14.56 17.54 18.67 20.20 

Percent Change in City Boundary (from 

FM to FB, %) 

-2.95 -1.99 -3.32 -5.23 -7.97 

Percent Change in Avg. Labor Density 

(from FM to FB, %) 

101.44 14.04 37.53 50.50 63.37 

Percent Change in Avg. Residential 

Density (from FM to FB, %) 

2.86 3.37 4.11 7.26 12.89 

Percent Change in Avg. Rent for Firms 

(from FM to FB, %) 

103.09 13.26 36.94 49.66 63.34 

Percent Change in Avg. Rent for Housing 

(from FM to FB, %) 

2.33 3.84 3.86 6.30 12.35 

This section conducts a robustness analysis on pricing policies in cities with 

varying agglomeration or congestion levels, including two parts. The first part discusses 

the welfare gain/loss, measured by CV relative to corresponding free-market equilibria, 

of first-best optimum and Pigouvian congestion toll-alone and Pigouvian labor subsidy-

alone policies, as major findings summarized in Table 3.4 and 3.5. Meanwhile, by 

comparing the socially optimal level of traffic volume, one can identify whether 

congestion is excessive or insufficient in the other three equilibria. The diseconomies of 

congestion equal the difference in utilities or CV. The robustness analysis thus can 
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examine how inefficient levels of congestion change with agglomeration and congestion 

parameters.  

Table 3.5 Policy Scenario Results under Varying Agglomeration Levels 

 Agglomeration Parameter 𝛾 

0.08 0.07 0.06 0.05 0.04 

Types of Urban Form at FM equilibria FH FH FH HFH HFH 

CV of First-Best Policies (relative to FM 

cases, $/hh./year) 

196 129 114 122 65 

CV of PCT-Alone Policies (relative to FM 

cases, $/hh./year) 

-492 -301 -152 -67 18 

CV of PLS-Alone Policies (relative to FM 

cases, $/hh./year) 

5 -55 -118 -159 -196 

Share of Congestion Diseconomy in Total 

Congestion Cost (%) 

5.88 5.24 7.04 22.66 20.87 

Total Externalities in the FM case (million 

$ /year) 

885 742 652 737 566 

Percent Change in Congestion 

Diseconomies (from FM to FB, %) 

-47.76 -48.61 -77.06 -58.42 -59.39 

Percent Change in Agglomeration 

Economies (from FM to FB, %) 

20.65 20.24 14.56 18.98 17.33 

Percent Change in City Boundary (from 

FM to FB, %) 

-2.44 -3.11 -1.99 -4.82 -4.60 

Percent Change in Avg. Labor Density 

(from FM to FB, %) 

76.17 75.01 14.04 57.35 42.32 

Percent Change in Avg. Residential 

Density (from FM to FB, %) 

3.91 4.66 3.37 5.52 5.26 

Percent Change in Avg. Rent for Firms 

(from FM to FB, %) 

78.38 76.46 13.26 56.74 41.21 

Percent Change in Avg. Rent for Housing 

(from FM to FB, %) 

4.33 4.59 3.84 3.79 3.20 

The second part provides a sensitivity analysis on the land use impact of optimal 

policies. This helps to explore socially optimal land use patterns. There are two families 

of equilibrium urban configurations in our simulations, including “FH” and “HFH” 

(Table 3.4 & 3.5). “FH” represents the traditional monocentric urban structure, with 

firms/business surrounding the city center and housing locating at the annulus outside the 
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firm cluster. “HFH” represents a non-monocentric structure, in which housing occupies 

the areas near the city center and edge and firms locate at the middle annulus
10

.  

Welfare Impact of First-Best Policies 

Results suggest that first-best policies are able to lower congestion diseconomies 

and enhance agglomeration economies, leading to welfare improvement (Table 3.4 & 

3.5). The magnitude of welfare gains is determined by types of urban form and total 

externalities, i.e., agglomeration economies minus congestion diseconomies. An 

improvement of network congestibility (i.e., 𝜌  drops) or an enhancement of 

agglomeration (i.e., 𝛾 increases) can generate similar effects on urban form, changing 

from the HFH to FH type. In the same family of urban configuration, first-best policies 

can achieve higher welfare gains in cities with lower congestion levels (or larger 

agglomeration scales). This appears to contradict the partial equilibrium findings relying 

on traditional monocentric models with congestion externalities internalized only, which 

suggest that the welfare gains in the optimum are larger in higher-congestion cities (e.g., 

Brueckner, 2007).  

In general, the larger the total externalities, the more welfare gain created by first-

best policies. Our findings suggest that higher congestion levels may indeed create more 

negative external costs to the society but, meanwhile, discourage agglomeration and 

lower positive production externalities, leading to a decrease in total externalities (Table 

3.4 & 3.5). Similarly, higher agglomeration scales may bring increases in both congestion 

and production externalities. However, the increased amount of positive externalities is 

larger than the increased amount of negative externalities, leading to an increase in total 

                                                           
10

 In addition, mixed land use patterns could be an equilibrium solution but this equilibrium allocation is 

never Pareto-optimal under the modeling framework in this paper. Since the policy scenarios only compare 

the Pareto-optimal equilibria or optimum, the family of mixed urban forms is thus not this chapter’s focus. 

A detailed theoretical and simulation discussion can refer to Appendix A4. 
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externalities. Thus, it may be inappropriate for policy makers to apply optimal policies 

found in partial equilibrium models to improve market efficiency in cities with multiple 

externalities. 

Optimal Levels of Congestion 

Two key questions are surveyed here: (1) Do the diseconomies of congestion 

increase with the levels of network congestibility (i.e., 𝜌)? (2) How much of “the total 

cost of congestion” does the congestion diseconomy contribute? The answer to the first 

question is “yes” in the traditional monocentric models where only congestion 

externalities are internalized (Brueckner, 2007). After accounting for agglomeration 

externalities, the simulation results suggest that the diseconomies of congestion in free-

market cases vary with urban forms. Among the same type of urban form (e.g., FH or 

HFH), the congestion diseconomies appear to decrease with an increase in congestibility. 

In addition, the percentage of the congestion diseconomy in the total congestion cost 

ranges from 5% to 23%, varying with the two parameters.  

This section also examines when Pigouvian congestion toll-alone or Pigouvian 

labor subsidy-alone policies are somewhat effective in generating less inefficient 

congestion than the free-market case. According to Tables 3.4 and 3.5, Pigouvian 

congestion toll-alone policies generate positive welfare gains when the congestion levels 

are high enough (e.g., 𝜌 = 0.00003 and 0.0001) or the agglomeration levels are low 

enough (e.g., 𝛾=0.04). In some extreme situations where agglomeration externalities do 

not exist, i.e., 𝛾=0, the Pigouvian congestion toll-alone policies are first-best. Similarly, 

the Pigouvian labor subsidy-alone policies can be effective when the agglomeration 

levels are high (e.g., 𝛾=0.08) or the congestion level is low (e.g., 𝜌 = 0.000005). Many 

simulations, however, remind policymakers that correcting only for one externality in 

cities with multiple externalities may achieve very low, or even negative, welfare gains. 
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Land Use Effects  

 

Figure 3.7 Spatial Distribution of Job Density (n) and Residential Densities (1/q) in the 

First-Best Optimum versus the Free-Market Equilibrium, When the 

Congestion Parameter 𝜌 Increases from 0.000005 to 0.0001. (𝜑=20, 𝜎=1.5, 

𝛾=0.06, 𝑁=600,000) 

Network congestibility is an important determinant of equilibrium and optimum 

city size and land use patterns. Figure 3.7 shows land use densities and urban forms of the 

free-market equilibrium and the first-best optimum when road congestibility levels rise 

(i.e., 𝜌  increases from 0.000005 to 0.0001). As network congestiblities increase, 

firms/jobs in the free-market equilibria increasingly decentralize, leading to a change in 
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urban forms from monocentric (i.e., FH) to annular (i.e., HFH) structures (Figure 3.7). 

These findings are generally consistent with those of Fujita and Ogawa (1982), Berliant 

et al. (2002), and LRH (2002), although those other models do not allow for congestion 

and wealth redistribution. Such connections support the notion that job decentralization 

are at least in part driven by worsening congestion levels in existing, evolving regions, 

and in turn help relieve traffic congestion, as suggested by commute times and costs in 

Giuliano and Small’s (1991) and Crane and Chatman’s (2003) empirical work. 

Several findings are comparable to those found in monocentric settings. For 

example, under free-market equilibria, higher congestion levels may make the city/region 

more compact (as noted in Brueckner [2007]). The boundary of 15.59 mile defines the 

region’s radius under the less congestion case (𝜌 = 0.000005), falling to 15.57 mile in 

the higher congestion case (𝜌 = 0.00001). However, several findings differ from, or not 

easily detected in, a monocentric model. When the congestion levels increase to relatively 

high levels, the urban form changes to HFH structure and higher levels may make the city 

more sprawling, rather than more compact. As 𝜌 increases from 0.000015 to 0.0001, the 

equilibrium city boundaries rise from 15.94 to 16.06 miles. In the monocentric models 

without internalizing firm’s spatial decisions, an increase in congestion levels can only 

affect households’ behaviors and make them live closer to the city center, leading to a 

compact city size. However, when firm’s spatial decisions are internalized in our model, 

an increase in congestion levels not only encourage job-housing proximity, but also make 

firms decentralized and distribute within a larger area. The combination of these spatial 

impacts could lead to a sprawling city size.  

Figure 3.8 compares land use densities and urban forms of the free-market 

equilibrium and the first-best optimum. As the agglomeration parameter 𝛾 increases from 

0.04 to 0.08, firms become increasingly centralized and the urban structure changes from 
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the HFH to FH form. No matter in which urban forms, a higher 𝛾 is associated with a 

smaller firm cluster area but a larger city size, with the boundaries ranging from 15.23 at 

𝛾 = 0.04 to 16.83 at 𝛾 = 0.08. As 𝛾 increases, firms are more willing to locate closer to 

other firms for earning external benefits. This cause firms to agglomerate in a smaller 

area (Figure 3.8), raising job densities, locational productivity, bid-rents, and wage. The 

increase in workers’ wage income thus allows them to live in larger house and pay for 

farther commute, leading to lower residential densities and a larger city size (Figure 3.8).  

First-best policies lead to more compact urban forms, regardless of congestion 

and agglomeration levels. The optimal city boundaries are always smaller than the 

equilibrium boundaries, and residential densities significantly raise at most locations 

(Figure 3.7). The percentage changes in average residential density after levying the 

optimal policies increase from 2.9% to 12.9% when 𝜌  increases (Table 3.4). These 

residential densification effects of first-best policies are similar to monocentric studies 

(e.g., Brueckner, 2007). In addition, optimal policies can largely raise job densities and 

land rents for firm use, while bringing relatively smaller increases in residential densities 

and housing land rents (Table 3.4).  
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Figure 3.8 Spatial Distribution of Job Density (n) and Residential Densities (1/q) in the 

First-Best Optimum versus the Free-Market Equilibrium, When the 

Agglomeration Parameter  𝛾 Increases from 0.04 to 0.08. (𝜑=20, 

𝜌=0.00001, 𝜎=1.5, 𝑁=600,000) 

On the other hand, depending on 𝜌 and 𝛾, first-best policies may differently affect 

the spatial distribution of firms and jobs (Figure 3.7 and Figure 3.8). In the low-

congestion (𝜌 = 0.000005) or high-agglomeration case (𝛾=0.07 and 0.08), the optimal 

policy leads jobs and firms more centralized in a smaller firm cluster area near the 

centerpoint, causing signficiantly increase in average job densities (Table 3.4 & 3.5). In 



90 

the median-congestion (𝜌=0.00001 and 0.000015) or median-agglomeration (𝛾=0.06) 

cases, the optimum generates significant job decentralization and still an increase in job 

densities. In the high-congestion (𝜌=0.00003 and 0.0001) or low-agglomeration (𝛾=0.04 

and 0.05) cases, firms in the free-market equilibria appear over-decentralized and first-

best policies thus cause a more centralized firm cluster. Thus, while first-best policies 

will always cluster firms in smaller areas with higher job densities, they can lead to either 

job centralization (in very low or very high congestion or agglomeration levels) or 

decentralization (in median congestion or agglomeration levels). 

EXCESSIVE CONGESTION IN CITIES WITH PLANNING AND MARKET FAILURES 

While the above simulation findings suggest that nonmonocentric urban forms are 

market desirable or socially optimal outcomes, especially for those with high-level 

congestion, this type of urban form is observed less often in our living cities. There 

appear to be some regulations – either from land use zoning law, infrastructure shortage, 

or other historical constraints – that deter the emergence of such nonmonocentric forms. 

In fact, our living cities are not only filled with externalities, but also zoning regulations, 

especially in the US. Two types of land use regulations are discussed in this chapter: 

exclusionary zoning and low-density zoning. As discussed in Chapter 2, such 

exclusionary and low-density regulation can cause more auto-travel demand than desired 

by the market and the society, leading to excessive congestion. This section extends the 

model framework developed in previous sections to evaluate the optimal and excessive 

levels of congestion in cities with both market and planning failures. The modeling 

results will be compared with those that account only for market failures. 
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Modeling Land Use Regulations 

Exclusionary zoning is probably the most popular land use regulation that 

excludes certain types of land use from a particular area such as a subdivision. The direct 

consequence of exclusionary zoning is the separation of land use and the single-use 

landscape. Because the analysis here relies on an abstract model with only two types of 

land use, residential and commercial, we simply define the exclusionary zoning as the 

regulation that excludes firms from suburban residential areas. Thus, the share of 

commercial land use for firms under exclusionary zoning 𝜃𝑓
𝑟(𝑥) is defined below: 

 
𝜃𝑓
𝑟(𝑥) = {

𝜃𝑓
∗(𝑥), 𝑥 ∈ [𝑥0, 𝑥1]

0,                  𝑥 ∉ [𝑥0, 𝑥1]
 (3.30) 

Density regulation is another widely used zoning ordinance that restricts the 

maximum density that may be constructed within an area. Different municipalities have 

variable approaches to establishing a low-density zoning regulation, including restrictions 

on maximum numbers of houses per acre, the minimum lot size, the maximum floor area 

ratio (FAR), and the maximum height of buildings. This modeling analysis provides a 

general and straightforward way to internalize low-density regulations. Under low-

density zoning regulations, no residential densities can exceed a preset density cap M. 

When the market-desirable density at location x, i.e., the inverse of 𝑞∗(𝑥) in Eq.(3.7), is 

below the density cap, the residential density under regulation 
1

𝑞𝑟(𝑥)
 equals the density the 

market desired. 𝑞𝑟(𝑥)  is the equilibrium outcome of residential density at location x 

under low-density zoning. Once the market-desirable density is above M, the derived 

density under regulation equals the cap level M. Thus, the equilibrium residential density 

at location x under low-density regulation is defined as follows: 
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1

𝑞𝑟(𝑥)
=

{
 

 
1

𝑞∗(𝑥)
,       𝑖𝑓 

1

 𝑞∗(𝑥)
< 𝑀 

𝑀,              𝑖𝑓 
1

 𝑞∗(𝑥)
≥ 𝑀

 (3.31) 

Low-density zoning regulation will also affect residential rents. When the city 

reaches equilibrium, residents’ utility levels will be maximized at 𝑢̅. The equilibrium rent 

under low-density regulations 𝑟ℎ
𝑟(𝑥), which differs from the level in the free market 

equilibrium 𝑟ℎ
𝑚(𝑥) in Eq.(3.8), is defined as follows: 

 
𝑟ℎ
𝑟(𝑥) =

𝑦(𝑥) − 𝑢̅
1
𝑎𝑞𝑟(𝑥)

𝑞𝑟(𝑥)
 (3.32) 

This section continues to use computational simulations to evaluate the impacts of 

zoning regulations on travel demand, congestion, land use, and social welfare. All 

experiments were conducted in the context of base scenarios (with 𝛾 =0.06 and 

𝜌 =0.00001). The simulations will examine two packages of regulation including 

exclusionary zoning and LUZ. For robustness analysis, we increase the restrictions on 

firms’ limits from 4 to 3 to 2 miles; that is, firms can locate only at the planning areas 

from (0, 4] to (0, 3] to (0, 2]. In addition, the density caps M decrease from 1,250 to 1,000 

to 800 households per square mile. Under these regulations, simulations solve for the 

equilibrium in the free market and social optimum with a combination of Pigouvian 

congestion toll and Pigouvian labor subsidy. The results are compared to the free-market 

equilibrium and social optimum in cities without land use regulations, as described in 

previous sections.  

Excessive Congestion under Land Use Regulations: Market Failures versus 

Planning Failures 

The total amount of diseconomy (net social costs) of excessive congestion is 

calculated by the utility difference (monetized by the values of compensating variation 

CV) of the free-market equilibrium under regulations and the social optimum without any 
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regulations. Among them the utility differences between the free-market and first-best 

equilibria under regulations represent the diseconomy from market failures, while the 

utility differences between first-best optimum with and without regulations are the 

diseconomy from planning failures (for more discussion of the calculation principles, 

refer to Chapter 2).  

Table 3.6 summarizes simulation results from the net costs of excessive 

congestion from six scenarios of land use regulations and identifies which costs come 

from planning versus market failures. In the base scenarios without any regulations 

(Table 3.3), firms are agglomerated in the urban center from 0 to 5.09 miles; i.e., in the 

circular interval [0, 5.09 miles]. As shown in Table 3.6, after an exclusionary zoning 

regulation is imposed to exclude firms from the area outside the circular interval [0, 4 

miles], the net social costs of excessive congestion for each household are about $52 per 

year, in which 47% are from market failure and 53% are from planning failure. This 

suggests that first-best pricing policies (e.g., a combination of Pigouvian congestion toll 

and Pigouvian labor subsidy) can correct only 47% of excessive congestion, while first-

best land use policies removing all regulations can correct 53% of excessive congestion. 

When exclusionary zoning regulations become increasingly restrictive with the zoning 

area from the intervals outside 4, 3, and 2 miles, the total diseconomies of excessive 

congestion gradually increase from $52 to $154 to $609 per household per year. 

Meanwhile, the shares of costs from planning failures increase from 53% to 85% to 96%. 

When firms are allowed to locate only at the urban core 2 miles from the center point, the 

planning failure from the exclusionary zoning regulation is the dominant cause of 

excessive congestion and causes about $584 in losses per year for each household. 

Similar results are found in the scenarios with low-density zoning regulations. 

This research sets three density caps under the average residential density in the free 
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market without regulations (i.e., 1,260 households per square mile as shown in Table 

3.3): 1,250, 1,000, and 800 households per square mile. Simulations show that the lower 

the maximum levels of residential density, the more total diseconomies of excessive 

congestion occur (Table 3.6). When the density cap is limited to 1,250 households per 

square mile, each household incurs a $142 loss, only 16% from regulation and 84% from 

market failure. Above 85% of excessive congestion results from planning failure when 

residential densities are constrained to under 800 households per square mile. Thus 

planning failure plays a more important role in affecting congestion and social welfare 

when more restrictive density regulations are imposed.  

Table 3.6 Components of Total Diseconomy of Excessive Congestion: From Planning 

versus Market Failures in the Base Scenarios (𝛾=0.06 and 𝜌=0.00001) 

Land Use Regulation Net Social 

Cost of 

Excessive 

Congestion 

($/hh/year) 

Costs from Planning 

Failures ($/hh/year) 

Costs from Market 

Failures ($/hh/year) 

Exclusionary Zoning, Firm Cannot 

Locate outside [0,4] 
51.67 27.43 53.08% 24.24 46.92% 

Exclusionary Zoning, Firm Cannot 

Locate outside [0,3] 
154.08 131.62 85.42% 22.46 14.58% 

Exclusionary Zoning, Firm Cannot 

Locate outside [0,2] 
609.29 583.98 95.85% 25.31 4.15% 

Low-Density Zoning, Residential 

Density Cap is 1250 hhs/sq.mi. 
141.90 22.75 16.03% 119.16 83.97% 

Low-Density Zoning, Residential 

Density Cap is 1000 hhs/sq.mi. 
283.78 172.93 60.94% 110.85 39.06% 

Low-Density Zoning, Residential 

Density Cap is 800 hhs/sq.mi. 
661.88 563.75 85.17% 98.13 14.83% 

These findings suggest that planning failures can be more serious, causing more 

excessive congestion and welfare loss than market failures from congestion and 

agglomeration externalities. This demonstrates the importance of combining both land 

use and pricing policies. Neither single policy can fully and feasibly correct both failures. 

Even the first-best pricing policies cannot correct planning failure from exclusionary 
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zoning and low-density zoning. While economists often believe pricing policies are 

superior to land use policies for mitigating traffic congestion (Brueckner, 2000), this 

research suggests that land use planning could be superior to economic policies. In cases 

when planning failures dominate, the first-best pricing policies can reduce only a very 

low percentage of excessive congestion, and they produce low welfare improvement. 

Instead, many planners often embrace only land use policies such as regulation reform 

and development of alternatives to low-density sprawl (Levine, 2006). This research 

suggests that land use planning-promoting alternative developments are important when 

land use regulations largely constrain development desired by the market, but could be 

trivial when planning failures are negligible. 

Table 3.7 Anti-Congestion Effects of Combined Congestion Pricing and Land Use 

Planning strategies 

 Comparisons to NO Policies (%) 

Optimal 

Congestion 

Pricing(CP) 

Optimal 

Land Use 

Planning(L

UP) 

CP+LUP 

Exclusionary Zoning, Firms 

Cannot Locate outside [0,2] 

Avg. Commute Distance 

(miles/day) 
-4.95 -3.86 -24.96 

Avg. Traffic (vehs/hr) 0.81 -37.53 -59.60 

Exclusionary Zoning, Firms 

Cannot Locate outside [0,3] 

Avg. Commute Distance 

(miles/day) 
-3.86 -2.24 -23.69 

Avg. Traffic (vehs/hr) -0.01 -24.99 -51.50 

Exclusionary Zoning, Firms 

Cannot Locate outside [0,4] 

Avg. Commute Distance 

(miles/day) 
-4.16 -0.94 -22.68 

Avg. Traffic (vehs/hr) -4.18 -13.10 -43.81 

Low-Density Zoning, 

Residential Density Cap is 

1250 hhs/sq.mi. 

Avg. Commute Distance 

(miles/day) 
-18.32 -1.41 -23.05 

Avg. Traffic (vehs/hr) -32.54 3.43 -33.12 

Low-Density Zoning, 

Residential Density Cap is 

1000 hhs/sq.mi. 

Avg. Commute Distance 

(miles/day) 
-13.44 -12.14 -31.42 

Avg. Traffic (vehs/hr) -26.33 7.46 -30.51 

Low-Density Zoning, 

Residential Density Cap is 

800 hhs/sq.mi. 

Avg. Commute Distance 

(miles/day) 
-12.79 -22.43 -39.45 

Avg. Traffic (vehs/hr) -27.76 9.82 -28.99 
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Table 3.7 compares simulated anti-congestion effects of optimal congestion 

pricing, optimal land use planning, and a combination of congestion pricing and land use 

planning policies. Findings indicate the effectiveness of incorporating land use and 

economic policies as a strategy to reduce auto travel and relieve congestion. An 

interesting finding is that either a congestion pricing-alone or land use planning-alone 

policy may worsen congestion with more commutes or traffic on the roads. For example, 

in cities with very restricted exclusionary zoning regulation (i.e., firms are regulated at 

[0,2] only) optimal pricing can reduce commute distance by about 5%, but increase 

average traffic by 0.8%. Under low-density zoning regulations, the average levels of 

traffic volume will increase and traffic congestion will become worse. On the other hand, 

the policy incorporating congestion pricing and land use planning can serve as the most 

effective strategy to reduce excessive commute demand and congestion, and the 

combination policy may perform much better than either policy alone. 

Land Use Impacts of Regulations 

Apart from land use regulations’ travel impact, this section focuses on their 

influences on urban form, land use distribution, and land rent. Figure 3.9 shows simulated 

urban forms and densities of a metropolitan area with and without exclusionary zoning 

regulation. After imposing exclusionary zoning regulations, the city has a more compact 

urban size (Table 3.8) because firm decentralization is restricted. While the socially 

optimal location of the firm cluster will decentralize to the surrounding area from 3 to 5.5 

miles, the exclusionary zoning regulation will restrict such firm and job decentralization 

and cause welfare loss. According to Table 3.8, exclusionary zoning regulations may 

trigger a large increase in the densities of firms and jobs (by 62% to 546%) but bring a 

relatively low increase in average residential density (by 0.3% to 3%).  
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Figure 3.9 Residential and Job Densities of Free-Market (upper) and First-Best (below) 

Equilibria with and without Exclusionary Zoning that Excludes Firms in the 

Area outside 3 Miles from the Center 

Low-density zoning regulations differ from exclusionary zoning in their land use 

impacts. Low-density zoning does not place a constraint on firm decentralization but does 

restrict the maximum density of housing or residents. Figure 3.10 shows density 

distribution and urban form before and after imposing a particular low-density zoning. 

Simulations show that cities with low-density zoning may have a relatively sprawling 

urban form. The city will spread out with low, flat density and a larger city size. This 
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corresponds to many planning studies that believe low-density zoning regulation is a 

major factor in creating urban sprawl. As estimated in Table 3.8, low-density zoning can 

lower densities of both firms/jobs and housing/residents. 

Table 3.8 Percentage Change of Land Use Characteristics before and after Regulations in 

the Free-Market Cases 

Percentage Change 

After Regulations in 

the Free Market 

City 

Area 

(sq. mi.) 

Avg. Labor 

Density 

(wks./sq. 

mi.) 

Avg. 

Residential 

Density (hhs 

/sq. mi.) 

Avg. Rent 

for Firms 

($/sq. ft.) 

Avg. Rent 

for Housing 

($/sq. ft.) 

Avg. 

Labor 

Wage 

($/yr.) 

Exclusionary Zoning, 

Firm Cannot Locate 

outside [0,2] 

-11.59 545.75 2.93 547.41 1.80 0.26 

Exclusionary Zoning, 

Firm Cannot Locate 

outside [0,3] 

-7.93 187.48 1.07 188.61 1.09 0.39 

Exclusionary Zoning, 

Firm Cannot Locate 

outside [0,4] 

-4.32 61.84 0.26 62.23 0.52 0.24 

Low-Density Zoning, 

Residential Density 

Cap is 1250 

hhs/sq.mi. 

2.85 -8.45 -2.04 -8.40 -0.13 0.06 

Low-Density Zoning,  

Residential Density 

Cap is 1000 

hhs/sq.mi. 

24.17 -8.45 -20.61 -8.50 -0.63 -0.05 

Low-Density Zoning,  

Residential Density 

Cap is 800 hhs/sq.mi. 

51.59 -3.81 -36.43 -3.84 -1.10 -0.03 
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Figure 3.10 Residential and Job Densities of Free-Market (upper) and First-Best (below) 

Equilibria with and without low-density zoning that Restrict the Maximum 

Residential Density as 1000 Households per Square Mile 

A much-discussed aspect of land use regulations in academics is their impacts on 

land rents and housing price. Many empirical studies have reported that low-density 

regulations restrict the supply of housing and land, thus producing escalating housing 

prices or rent and decreasing social surplus in land markets (Mayer & Sommerville, 

2000; Glaeser & Gyourko, 2003; Glaeser, Gyourko, & Saks, 2005; Gyourko, Mayer, & 

Sinai, 2006; Quigley & Rafael, 2005; Turner et al., 2014). However, our simulation 

results suggest that exclusionary zoning regulations may have very slight rising impacts 
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on residential land rents (Figure 3.11), ranging from 0.5% to 1.8%, while low-density 

zoning may actually lead to slight decreases in residential land rents (–0.1% to –1.1%). 

This is mainly because low-density zoning may limit the supply of land and housing in 

the short term but may have no significant impact in the long term if the city is allowed to 

sprawl out as assumed in the model here. In reality, physical limitations or urban growth 

boundaries (UGBs) restrict such spatial extension, and these factors could limit land 

supply in either the short or long term.  

 

 

Figure 3.11 Land Rents for Residential Use in Free-Market Equilibria with and without 

Land Use Regulations 



101 

SUMMARY 

This chapter developed and then applied a new spatial general equilibrium model 

to explore congestion relief, welfare, and land use effects of optimal policies in cities 

with market and planning failures. This new model differs from many existing studies 

(e.g., Fujita & Ogwa, 1982; Anas & Kim, 1996; Lucas & Rossi-Hansberg, 2002; 

Wheaton, 2004; Verhoef & Nijkamp, 2004; Arnott, 2007; Anas, 2012) by recognizing 

both congestion externalities and agglomeration externalities on production while 

allowing endogenous land use decisions by households and firms under land use 

regulations, such as exclusionary zoning and low-density zoning.  

Simulation findings in this research demonstrate that congestion is born with 

agglomeration; increasing congestion diseconomy is associated with increasing 

agglomeration economy. Anti-congestion policies can reduce the congestion diseconomy 

but at the same time erode agglomeration economies. For example, the Pigouvian 

congestion toll-alone policy is no longer socially optimal once we consider agglomeration 

externalities, because this policy could reduce agglomeration economy more than 

congestion diseconomy, leading to a net loss. In some cases an imposition of congestion 

pricing could even bring a greater welfare loss than continuing without such pricing 

policies, i.e., in the free market. Thus these findings validate the importance of 

integrating congestion and agglomeration to assess congestion relief projects in practice.  

This research also demonstrates that the socially optimal level of congestion 

would probably never occur under the free-flow status. Those congestion indices 

benchmarked at free-flow speeds, such as travel time index and annual congestion costs 

such as from TTI (2012), are widely used to indicate the social costs of congestion. 

However, these indices that assume free-flow speed is the objective could exaggerate the 

real costs of congestion because they overlook the potential “benefits” of congestion. 
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Simulations in this research show that the net social cost (i.e., diseconomy) of congestion 

is about 5% to 23% of the total congestion costs, varying with the levels of congestion 

and agglomeration.  

More importantly, the research in this chapter is among the first to present an 

economic analysis of how planning failures cause excessive congestion. Simulation 

results suggest that excessive congestion and social inefficiency could be largely 

increased by land use regulations such as zoning excluding firms from areas outside the 

urban core or restricting the maximum density in residential areas. Both exclusionary 

zoning and low-density zoning regulations could lead to longer travel distances and more 

traffic volume on the roads, incurring substantial diseconomy of congestion. These 

negative impacts are mainly rooted in that fact that regulations constrain the occurrence 

of the market-desirable urban form. For example, exclusionary zoning regulations could 

largely restrict the decentralization of firms and jobs, while low-density zoning 

regulations could restrict denser development and lead to urban sprawl.  

Facing both markets and planning failure, neither congestion pricing nor land use 

planning alone could fully reduce excessive congestion. Even the first-best pricing policy 

(e.g., a combination of Pigouvian congestion toll and Pigouvian labor subsidy) may not 

be effective for congestion relief. For example, in a simulated city with 600,000 workers 

and jobs, if all firms are restricted to the urban core of a 2-mile radius, even the first-best 

pricing policy can reduce only 4% of excessive congestion. Planning failure dominates in 

such a city; land use planning strategies via regulatory reform or promoting alternative 

development could reduce up to about 96% of excessive congestion and social 

inefficiency. This example is somewhat extreme but demonstrates the importance of 

acknowledging the role of planning failure. This study also suggests that pricing 
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strategies are not always superior to land use planning strategies. In most cases, effective 

policies need to incorporate both land use and pricing policies.  

However, both optimal pricing and land use policies are infeasible in practice due 

to corresponding technical, political, or financial issues. Allowing for more diverse and 

realistic policies like flat-rate tolls on freeways, cordon area congestion pricing, UGBs, 

densification in particular areas, and suburban centers would be meaningful. Therefore, 

the following two chapters focus on investigations of these practical policies.  
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CHAPTER 4: PRACTICAL PRICING POLICIES FOR REDUCING EXCESSIVE 

CONGESTION:  LAND USE AND SOCIAL WELFARE IMPACTS 

Optimal pricing policies for alleviating excessive congestion are seemingly never 

found in reality, though they are widely discussed in theory, as addressed in Chapter 3. 

Most applications of congestion pricing strategies are more practically feasible and 

second-best, rather than first-best, in the form of strategies such as cordon charges, area-

wide pricing, variable-rate highway tolling, and VMT tax. Pioneering examples include 

Singapore’s Area Licensing Scheme in the early 1970s, its Electronic Congestion Pricing 

policy in 1998, and London’s 2003 introduction of an area-wide toll (Santos, 2005). By 

2011, 10 U.S. metropolitan areas had introduced 12 high-occupancy toll (HOT) facilities 

on freeways, and 13 new HOT lanes were under construction or extension (GAO, 2012). 

Congestion pricing schemes in these regions are expected to reduce congestion, moderate 

negative congestion externalities (like traffic delays, air pollution, and greenhouse gas 

emissions), and offer revenues to fund transport system improvements, including public 

transit.  

This chapter extends Chapter 3’s model to explore the congestion relief and land 

use effects of two practical pricing policies, distance-based VMT taxes and cordon tolls, 

after controlling for these policies’ effects on firms’ agglomeration economies. Because 

pricing policies are focused on here and are insensitive to planning failures, the model 

discussed will account for market failure from only two externalities. The practical 

congestion pricing policies are compared with the first-best policies. The resulting model 

endogenously determines monocentric and polycentric structures, where the latter is a 

duocentric urban form (i.e., a center plus an annulus). In this way, the work compares the 

effectiveness of second-best pricing policies in monocentric versus polycentric settings. 

While the anti-congestion effects of congestion pricing strategies are straightforward, this 
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chapter primarily focuses on land use effects of these congestion pricing policies. They 

can also help to design second-best land use policies (see more discussion in Chapter 5).   

LAND USE MODELS EVALUATING CONGESTION PRICING 

Congestion pricing strategies differ from many other sources of transport funding 

(e.g., fuel, sales, and property taxes) and can influence land use decisions rather directly, 

since trip charges affect travel routes, destinations, timing, and ultimately home and 

business location decisions. Tolls can affect firms’ labor costs, productivity, and 

customer access. Many experts believe that a tax on vehicle-miles traveled (VMT) may 

accelerate new development of compact, mixed-use, walkable neighborhoods, and may 

modestly affect commercial land uses, especially retail (ULI, 2013). Gupta et al.’s (2006) 

simulations of Austin, Texas suggest that congestion pricing may catalyze land 

development around tolled roads, while London’s area-based charge has had a somewhat 

negative effect on the city center’s economy, particularly in retail (Santos and Shaffer 

2004). Associations between congestion tolls and land use patterns in Singapore and 

Stockholm remain ambiguous (Bhatt, 2011; Litman, 2011).  

This chapter develops modeling improvements for analyzing congestion pricing’s 

anti-congestion and land use effects. Many studies (e.g., Brueckner, 2007; Kono and 

Joshi, 2012; Pines and Sadka, 1985; Wheaton, 1998) provide theoretically rigorous 

frameworks to explore land use patterns under Pigouvian congestion toll strategies in 

monocentric settings, with firms’ location decisions exogenously given (i.e., all jobs are 

placed in the central business district, or CBD). In a city or region with only congestion 

externalities, Pigouvian congestion toll is a first-best policy to reflect the gap between 

marginal social and marginal private costs of each trip. In a closed-form monocentric 

model, Pigouvian congestion toll raises residential densities near the CBD, while slightly 

lowered edge densities (Pines and Sadka, 1985; Wheaton, 1998; Kono and Joshi, 2012). 
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A well-executed lot-size zoning policy can replace such Pigouvian congestion toll 

policies and still reach the first-best optimum, including an upward adjustment of central 

densities and downward adjustment of edge densities. However, these findings largely 

rely on the monocentric assumption and hardly reflect most regions’ polycentric reality, 

with firm location decisions endogenous and dependent, to some extent, on household 

choices.  

Several studies have explored the effects of first-best congestion pricing strategies 

in polycentric cities and their land use effects on both firm and household location 

choices. For example, Anas and Xu (1999) developed a spatial general equilibrium model 

without predetermined firm locations to explore the locational effects of Pigouvian 

congestion toll in a linear city with discrete zones. They found that the addition of 

Pigouvian congestion toll policies could disperse producers away from the regional center 

while centralizing households, thus bringing jobs and workers closer together. However, 

their model did not treat the Marshallian agglomeration economies that can cause firms to 

locate close to one another, arising from nonmarket interactions, and thus can somewhat 

misestimate congestion pricing’s effects on job dispersion
11

.  

Several other studies have built models for continuous space, allowing more 

direct comparison of results to those of the traditional monocentric setting. For example, 

Wheaton (2004) extended a monocentric model to involve both congestion and center-

agglomeration externalities, and found that higher congestion levels may cause greater 

job decentralization12. Though his model did not test the toll policy’s efficiency, his 

                                                           
11

 Anas and Xu’s (1999) model endogenizes firm locations and so can treat the agglomeration benefits from 

firms locating near their workers.  
12

 Based on discrete spatial structure, an early model developed by Anas and Kim (1996) already reflects 

both congestion externalities and agglomeration externalities (on the producer and consumer sides). Firms 

are allowed to exchange inputs with each other and thus benefit from locating close to one another. 

Consumers are assumed to make more shopping trips to larger shopping centers, leading to retail-job 

agglomeration. They found similar results to these from monocentric models in that higher congestion 

levels may lead to larger numbers of job sub-centers.  
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results suggest that land use-congestion studies of this sort should not overlook 

interactions between congestion and agglomeration externalities
13

.  

Several theoretical papers have investigated the land use effects of second-best 

pricing in a monocentric framework (see, e.g., Mun, Konoshi, & Yoshikawa, 2003; 

Verhoef, 2005; De Lara, de Palma, Kilani, & Piperno, 2013). Some have sought to extend 

the monocentric model by involving non-monocentric features, like allowing flexible 

commute-trip destinations, instead of requiring that all such trips head to the CBD (Mun, 

Konoshi, & Yoshikawa, 2005), or positing two CBDs, instead of one (De Lara et al., 

2013). Such improvements still heavily rely on the assumption that firms’ location 

choices are exogenously given, so they cannot anticipate congestion pricing’s effects on 

job location patterns. Recent studies relying on discrete non-monocentric settings have 

examined the spatial redistribution of population and employment after levying a cordon 

toll or instituting area pricing. For example, Fujishima (2011) extended Anas and Xu’s 

(1999) model to compare the cordon toll and area pricing impacts and found both 

schemes can lead to population centralization and job dispersion in Osaka, Japan. Anas 

and Hiramatsu (2013) applied the RELU-TRAN model to the Chicago region, to offer a 

more comprehensive evaluation of cordon tolling’s land use and welfare effects. Their 

findings suggest that restrictive cordons around Chicago’s CBD may decentralize jobs, 

while cordons around inner suburbs may centralize jobs. Related research is less common 

when using urban economic models with continuous space. 

                                                           
13

 Other researchers tend to focus on second-best land use policies, instead of second-best pricing schemes. 

These include urban growth boundaries in monocentric regions (Kanemoto, 1977; Pines and Sadka,1985; 

Brueckner, 2007) and polycentric regions (Anas and Rhee, 2006) , and building size/floor-area-ratio 

regulations in monocentric regions (Pines and Kono, 2012; Kono et al., 2012). 
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EXTENSIONS OF CHAPTER 3’S MODEL 

While the extended model developed here has the same settings of geographical 

context, household behaviors, and congestion as the Chapter 3’s model, the major 

differences are the setting of agglomeration externalities and equilibrium conditions 

under different congestion pricing policies.  

Agglomeration Externalities 

A larger market may benefit more from the sharing of facilities and suppliers, a 

better matching between firms and workers, and the facilitation of social learning through 

knowledge transmission (Rosenthal and Strange, 2004; Puga, 2010). The setup used here 

mainly considers the agglomeration effects that come from sharing of facilities and social 

learning, by assuming that clustered firms benefit more from their workers’ knowledge 

spillovers. Although the model is designed to deliver in a static, long-term spatial 

equilibrium, it is based on a dynamic agglomeration economy, which assumes that both 

current and historical economic activities at a given location affect agglomeration 

economies in production (Henderson, 2003; Rosenthal and Strange, 2004). Thus, 𝐹(𝑥) 

consists of two components:  

 𝐹(𝑥) = 𝐹0(𝑥) + 𝐹1(𝑥) (4.1) 

where 𝐹0(𝑥) represents a given historical agglomeration economy that reflects the natural 

advantage and long-term benefits from the sharing of facilities at location x, and 𝐹1(𝑥) is 

the current agglomeration effect at location x. When  𝐹1(𝑥) = 0 for any locations, 𝐹(𝑥) 

becomes pre-determined/exogenous, and the model collapses to a traditional monocentric 

model. In this paper, 𝐹1(𝑥) is defined as the integral of exponentially distance-weighted 

job counts within a given boundary
14

, 𝑟̅:  

                                                           
14

 Fujita and Ogawa (1982) first provided a measure of agglomeration economies for firms based on job 

densities and distances to other firms or workers in a linear city setting (termed locational potential or 

communication externalities, in Fujita and Thisse [2002]). In their “LRH” model, Lucas and Rossi-
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 𝐹1(𝑥) = 𝜁 ∫ ∫ 𝑟𝜃𝑓(𝑟)𝑛(𝑟)𝑒
−𝜁𝑙(𝑥,𝑟,𝜓)𝑑𝜓𝑑𝑟

2𝜋

0

𝑟̅

0

 (4.2) 

where 𝜁  is exogenously determined to describe the strength/level of production 

externalities that exist, 𝜓 is the polar angle around the center (ranging from 0 to 2𝜋), and 

𝑙(𝑥, 𝑟, 𝜓) is the straight-line distance between a firm at location x and any firm lying 

within 𝑟̅ miles of the center (at a counter-clockwise angle of 𝜓 from the first firm).  

If 𝐹0(𝑥) = 0 for any locations and Eq. (4.2) holds, this model setting is basically 

equivalent to Zhang and Kockelman’s (2013) model, which can achieve either 

monocentric or single-ring structure
15

 but not polycentric urban forms. Based on Eq. 

(4.2), once the firm cluster shifts away from the city center, agglomeration benefits to 

firms near the city center fall; firms leave the centerpoint CBD and form an annulus. This 

annulus structure is rarely (if ever) observed in practice, mainly because of the presence 

of a historical agglomeration economy 𝐹0(𝑥) at the CBD. In other words, cities evolve 

from small towns, so the centerpoint generally retains a long-term advantage.  

Based on Eqs. (4.1) and (4.2), one can calculate the marginal production benefit to 

firms at location x of hiring an additional worker, 𝑠(𝑥),. One more worker employed in 

location x will affect the productivity of firms not only at location x but nearby (e.g., r 

distance away), through 𝐹(𝑟)’s labor effects. As shown in Zhang and Kockelman (2014), 

𝑠(𝑥) thus equals: 

 𝑠(𝑥) = 𝜁 ∫ 𝑟𝜃𝑓(𝑟)𝑝𝐹(𝑟)∫ 𝑒−𝜁𝑙(𝑥,𝑟,𝜓)𝑑𝜓
2𝜋

0

𝑑𝑟
𝑟̅

0

 (4.3) 

                                                                                                                                                                             
Hansberg (2002) extended this idea to circular space. The only difference in the current formulation 

(provided here) is that LRH’s model considers production externalities from all firms in the entire city 

(inversely weighted by distance), and assumes a fixed city boundary. Our model assumes that production 

externalities come only from firms within a pre-set area, and the city’s boundary/limit is endogenously 

determined.  
15

 Here, single-ring structure occurs when households occupy the urban core and firms are clustered in an 

annulus outside this core area. 
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where 𝑝𝐹(𝑟) is the marginal product (per unit of land) 𝑝(𝑟) of  𝐹(𝑟), i.e., 𝜕𝑝(𝑟) 𝜕𝐹(𝑟)⁄ . 

The aggregate agglomeration benefit, S, of firms in the city is thus as follows: 

 𝑆 = ∫ 2𝜋𝑥𝜃𝑓(𝑥)𝑛(𝑥)𝑠(𝑥)𝑑𝑥
𝑥̅

0

 (4.4) 

The price of firm output is set to 1.0 (as the numeraire) without loss of generality; 

thus, a firm’s profit per unit of land at location x, 𝛱(𝑥), can be given by the following: 

 𝛱(𝑥) = 𝑓(𝑛(𝑥))𝐴(𝐹(𝑥)) − 𝑤(𝑥)𝑛(𝑥) − 𝑟𝑓(𝑥) (4.5) 

where 𝑤(𝑥) is the wage paid to each laborer and 𝑟𝑓(𝑥) is the rent firms are willing to pay 

(per unit of land) at location x. 

Solving for the General Spatial Equilibria 

Given the transportation parameters described above, one can combine the 

households’ and firms’ partial equilibria with equilibrium conditions for labor and land 

markets, thereby creating a general spatial equilibrium model for the region. Four types 

of spatial equilibrium are discussed here, including the no-toll (i.e., free-market) city, the 

Pigouvian congestion toll equilibrium, and the VMT tax and cordon toll equilibria. The 

existence of both congestion and agglomeration externalities increases the difficulty of 

comparing congestion pricing policies, since the pricing instruments can affect 

agglomeration economies (Verhoef and Nijkamp, 2004; Zhang and Kockelman, 2014). 

This paper focuses on the efficiency of tolling policies for correcting negative congestion 

externalities and their spatial consequences, after agglomeration externalities are 

corrected via a uniform labor subsidy to firms (per hired worker). The equilibrium 

population under the three pricing policies is set to equal those in the no-toll (base case) 

equilibrium. 
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The No-Toll Equilibrium 

The no-toll equilibrium is an efficient market solution if both congestion and 

production externalities do not exist. Thus, given 𝑡(𝑥) and 𝐹(𝑥), the solution to a no-toll 

equilibrium is achieved by determining five factors, {𝑛(𝑥), 𝑞(𝑥), 𝑐(𝑥), 𝜃𝑓(𝑥), 𝐷(𝑥)}, at 

each location x, so as to maximize household utility levels under the five constraints 

(4.6)–(4.10), as defined in Problem 1.  

 

Problem 4.1. Choose functions 𝑛(𝑥), 𝑞(𝑥), c(𝑥), 𝜃𝑓(𝑥), 𝐷(𝑥) so as to maximize 

𝑢(𝑐(𝑥), 𝑞(𝑥)) 
subject to the following conditions: 

 𝑐(𝑥) + 𝑟ℎ(𝑥)𝑞(𝑥) = 𝑦(𝑥) = 𝑤(𝑥) + 𝑦̅ (4.6) 

 𝑓(𝑛(𝑥))𝐴(𝐹(𝑥)) − (𝑤(𝑥) − 𝑠̅)𝑛(𝑥) − 𝑟𝑓(𝑥) ≥ 0 (4.7) 

 𝜃ℎ(𝑥) + 𝜃𝑓(𝑥) + 𝜃𝑡 = 1 (4.8) 

 𝐷′(𝑥) ≤ 2𝜋𝑥 (
𝜃ℎ(𝑥)

𝑞(𝑥)
− 𝜃𝑓(𝑥)𝑛(𝑥)) (4.9) 

 

∫ {2𝜋𝑥 (𝜃𝑓(𝑥)𝑓(𝑛(𝑥))𝐴(𝐹(𝑥)) −
𝜃ℎ(𝑥)

𝑞(𝑥)
𝑐(𝑥) − (1 − 𝜃𝑡)𝑅𝐴)

𝑥̅

0

− 𝑡(𝑥)𝐷(𝑥)} 𝑑𝑥 ≥ 0 

(4.10) 

for all 𝑥 ∈ [0, 𝑥̅], with boundary conditions: 

 𝑟(𝑥̅) = 𝑅𝐴 (4.11) 

 𝐷(0) = 0 𝑎𝑛𝑑 𝐷(𝑥̅) = 0 (4.12) 

 ∫ 2𝜋𝑥
𝜃ℎ(𝑥)

𝑞(𝑥)
𝑑𝑥

𝑥̅

0

= 𝑁 (4.13) 

where 𝑅𝐴 is the opportunity cost of land inside a city, which is assumed to equal the 

exogenous rent of agriculture use outside the city (as done by Pines and Sadka [1986] and 
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Bruckner [2007]).  𝑟(𝑥)  is the highest bid-rent at location x, so 

𝑟(𝑥) = 𝑚𝑎𝑥{𝑟ℎ(𝑥), 𝑟𝑓(𝑥), 𝑅𝐴}, and N is the exogenously given regional population total. 

Constraint (4.6) is the household budget constraint. Since no toll revenue is 

earned, 𝑦̅𝑡𝑜𝑙𝑙 = 0 and 𝑦̅ = 𝑦̅𝑟𝑒𝑛𝑡, where 𝑦̅𝑟𝑒𝑛𝑡 is set as follows: 

 𝑦̅𝑟𝑒𝑛𝑡 =
1

𝑁
∫ 2𝜋𝑥(1 − 𝜃𝑡)(𝑟(𝑥) − 𝑅𝐴)𝑑𝑥
𝑥̅

0

 (4.14) 

Constraint (4.7) guarantees non-negative profits for each firm. A uniform/constant 

labor subsidy, 𝑠̅, is paid to all firms per worker hired and the aggregate labor subsidy 

expended equals the equilibrium agglomeration benefit, S, as defined in Eq.(4.3). This 

per-capita subsidy, 𝑠̅, is thus calculated as follows: 

 𝑠̅ =
𝑆

𝑁
=
1

𝑁
∫ 2𝜋𝑥𝜃𝑓(𝑥)𝑛(𝑥)𝑠(𝑥)𝑑𝑥
𝑥̅

0

 (4.15) 

Constraint (4.8) represents land market clearance, so that all available land or 

properties are assigned to agents, while the city’s edge rent equals the agricultural land 

rent, as defined in boundary condition (4.11). Constraint (4.8) guarantees that an 

additional number of travelers passing the infinitesimal interval dx (from x+dx to x or 

from x-dx to x), 𝐷′(𝑥)𝑑𝑥, will not exceed the maximum travel demand generated in the 

interval dx: 2𝜋𝑥𝑑𝑥 (
𝜃ℎ(𝑥)

𝑞(𝑥)
− 𝜃𝑓(𝑥)𝑛(𝑥)). This constraint relates to boundary condition 

(4.12), in which no travel demand exists at the regional center point or at the city’s edge. 

This ensures a city-wide jobs-housing balance. Finally, Constraint (4.9) is the output 

market’s clearing condition. Given that aggregate land rents (net of the opportunity costs) 

will be returned uniformly to each household (due to the closed-city formulation, which 

facilitates welfare comparisons across settings, and as done in Solow [1973], Pines and 

Sadka [1986], Anas and  Xu [1999] and Brueckner [2007], for example), the net surplus 

is equivalent to aggregate production minus consumption of goods produced by the firms, 

plus land opportunity costs, minus commuting costs. In order to arrive at a closed-form 
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solution, the equilibrium population equals an exogenous value, N, as shown in boundary 

condition (4.13). The resulting solution will satisfy the following proposition:  

 

Proposition 4.1. In a closed city with 𝑢̅ as the equilibrium utility level, the equilibrium 

solution set {𝑛∗(𝑥), 𝑞∗(𝑥), 𝑐∗(𝑥), 𝜃𝑓
∗(𝑥)} satisfies the following equations: 

(a) 𝑛∗(𝑥) = 𝑛∗(𝑤(𝑥)), and 𝑛∗(𝑥) satisfies 𝑓𝑛(𝑛
∗(𝑥)) = 𝑤(𝑥)/𝐴(𝐹(𝑥));  

(b) 𝑞∗(𝑥) = 𝑞∗(𝑤(𝑥), 𝑢̅) and 𝑐∗(𝑥) = 𝑐∗(𝑤(𝑥), 𝑢̅) , and 𝑞∗(𝑥) and 𝑐∗(𝑥) satisfy the 

equation set: {
𝑐(𝑥) + 𝑞(𝑥)𝑢𝑞/𝑢𝑐 = 𝑦(𝑥)

𝑢(𝑐(𝑥), 𝑞(𝑥)) = 𝑢̅                
 

(c) 𝜃𝑓
∗(𝑥) = {

1 − 𝜃𝑡           𝑖𝑓 𝑟𝑓(𝑥) > 𝑟ℎ(𝑥)

(0,1 − 𝜃𝑡)    𝑖𝑓 𝑟𝑓(𝑥) = 𝑟ℎ 

0                    𝑖𝑓 𝑟𝑓(𝑥) < 𝑟ℎ(𝑥)

 

(d) 𝑦′(𝑥) = 𝑤′(𝑥) = 𝑡(𝑥) 
Proof. Appendix A5 provides this proof. 

 

In equilibrium, households pursue optimal good consumption, 𝑐∗(𝑥), and housing 

lot sizes, 𝑞∗(𝑥), by minimizing expenditures given the target utility level (Proposition 

4.1[b]). Firms pursue optimal employment densities, 𝑛∗(𝑥), in order to maximize their 

profits (Proposition 4.1[a]). At the same time, available land and property are assigned to 

agents offering the highest bid rents, while city edge rents equal the background 

(agricultural) land rent and jobs and housing are in balance, consistent with Proposition 

4.1(c). Proposition 4.1(d)’s differential equation suggests that the net-income gradient 

and the wage gradient both equal 𝑡(𝑥)  only, since no congestion toll is levied on 

workers/travelers. This condition guarantees that all workers are equivalent in the eyes of 

each firm owner, and all firms are equivalent in the eyes of each worker. 

Propositions 4.1(a)-(c) show how equilibrium values 

𝑛∗(𝑥), 𝑞∗(𝑥), 𝑐∗(𝑥), 𝑎𝑛𝑑 𝜃𝑓
∗(𝑥) are only determined by 𝑤(𝑥), when given 𝑢̅, 𝐹(𝑥), and 𝑦̅. 

If the wage function is derived first, all other solution values for this no-toll equilibrium 

can then be generated. Moreover, if one knows 𝑤(1) or 𝑤(𝑥̅), one can derive 𝑤(𝑥) at 
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any other location x, and so derive all other solution values. This suggests that the urban 

equilibrium problem here can be resolved using a recursive algorithm, which searches for 

a unique 𝑤(1) and 𝑢̅ until the boundary conditions (4.11)-(4.13) are entirely satisfied. 

Following Eqs. (4.3) and Proposition 4.1’s equilibrium solutions, one can derive the 

agglomeration economies,  𝑆𝑛𝑡 , and congestion diseconomies, 𝛤𝑛𝑡 , under the no-toll 

equilibrium.  

The Pigouvian Congestion Toll Equilibrium 

The Pigouvian congestion toll case represents the spatial equilibrium under a 

“perfect” congestion pricing policy. Here, negative congestion externalities are fully 

internalized in the Pigouvian congestion toll equilibrium, while the aggregate 

agglomeration benefit is endogenously adjusted to equal that arising in the no-toll 

equilibrium (i.e., 𝑆 𝑛𝑡 ), in order to equitably compare each policy’s results. The 

optimization problem setup of the Pigouvian congestion toll case thus matches that of 

Problem 4.1 (defined above, for the no-toll case), but with an additional constraint on 

travel costs. By resolving this optimization problem, one can prove that the equilibrium 

solutions in Proposition 4.1(a)-(c) still hold, while the wage gradient in Proposition 4.1d 

becomes the following: 

 𝑦′(𝑥) = 𝑤′(𝑥) = 𝑡(𝑥) + 𝜏𝑚𝑐𝑒(𝑥) (4.16) 

This condition shows that the net-income and wage gradients need to cover the 

marginal social costs of travel, which reflect both marginal private costs (MPBs) and 

marginal external (delay) costs imposed on other travelers, 𝜏𝑚𝑐𝑒(𝑥) . A Pigouvian 

congestion toll, 𝜏𝑃𝐶𝑇(𝑥), equaling the marginal congestion externality 𝜏𝑚𝑐𝑒(𝑥), needs to 

be levied on each worker/each traveler passing location x: 
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 𝜏𝑃𝐶𝑇(𝑥) = 𝜏𝑚𝑐𝑒(𝑥) =

{
 
 

 
 −𝜌𝜎 (

|𝐷(𝑥)|

2𝜋𝑥𝜃𝑡
)

𝜎

, 𝑖𝑓 𝐷(𝑥) ≤ 0

𝜌𝜎 (
|𝐷(𝑥)|

2𝜋𝑥𝜃𝑡
)

𝜎

, 𝑖𝑓 𝐷(𝑥) > 0

 (4.17) 

Thus, this Pigouvian congestion toll instrument is an optimal policy for correcting 

the system’s negative congestion externalities. 

In a closed-form city, a lump-sum amount of congestion toll revenues, 𝑦̅𝑡𝑜𝑙𝑙, may 

be returned to each worker, such that: 

 𝑦̅𝑡𝑜𝑙𝑙 =
1

𝑁
∫ 𝜏𝑚𝑐𝑝(𝑥)𝐷(𝑥)𝑑𝑥
𝑥̅

0

 (4.18) 

The VMT-Tax and Cordon-Toll Equilibria 

In practice, second-best congestion pricing policies typically involve a cordon or 

area-based toll (𝜏𝑐̅𝑡, levied at location 𝑥̅𝑐𝑡) or a (flat-rate) distance-based (VMT) tax (of 

𝜏𝑣̅𝑚𝑡 ). If 𝜏(𝑥)  represents the congestion toll levied on each worker crossing ring x 

(positive for outward travel and negative for inward travel), the magnitudes of these two 

distinctive tolls can be presented as follows: 

 |𝜏(𝑥)| = {
𝜏𝑣̅𝑚𝑡                                 𝑉𝑀𝑇 𝑡𝑎𝑥 

{
𝜏𝑐̅𝑡,   𝑖𝑓 𝑥 = 𝑥̅𝑐𝑡
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

         𝐶𝑜𝑟𝑑𝑜𝑛 𝑡𝑜𝑙𝑙
 (4.19) 

 

Proposition 4.2. In both the cordon-toll and VMT-tax equilibria (agglomeration 

externalities are corrected), if the aggregate tolling revenues cover  
1

1+𝜎
 of the overall 

social costs of the congestion externality, 𝛤 (as defined in Eq. (12)): 

 ∫ 𝜏(𝑥)𝐷(𝑥)
𝑥̅

0

𝑑𝑥 =
1

1 + 𝜎
𝛤 (4.20) 

then, the corresponding tolling level, 𝜏(𝑥), is second-best optimal. 

Proof.  See A6 in the Appendix.  

 

An imperfect cordon toll or VMT tax (with revenues lying below or above 
1

1+𝜎
 of 

the overall congestion diseconomies) will lead to labor market distortions, where workers 

are overpaid or underpaid by firms, to help cover travel costs and/or tolls. Only when the 
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toll equals the optimal level defined in Proposition 4.2 will it not distort the labor market. 

Proposition 4.2 also illuminates the “second-best” nature of a second-best congestion 

pricing, which demonstrates that such toll policies cannot (fully) correct the market 

failure of negative congestion externalities. The second-best optimum only corrects 
1

1+𝜎
 

(less than 1.0) of overall congestion externalities. 

Based on Proposition 4.2, one can calculate the optimal VMT tax as follows: 

 𝜏𝑣̅𝑚𝑡
∗ =

𝛤

(1 + 𝜎)∫ 𝐷(𝑥)
𝑥̅

0
𝑑𝑥

 (4.21) 

and, the optimal cordon toll at (exogenously given) location 𝑥̅𝑐𝑡 will be:  

 𝜏𝑐̅𝑡
∗ =

𝛤

(1 + 𝜎)𝐷(𝑥̅𝑐𝑡)
 (4.22) 

Finding optimal prices is almost any urban economic model is a challenge. In 

traditional monocentric models, the basic strategy uses a heuristic search method to 

identify 𝜏𝑣̅𝑚𝑡
∗  or  𝑥̅𝑐𝑡 and  𝜏𝑐̅𝑡

∗ , by seeking maximum utility or social surplus (Mun et al., 

2003; Verhoef, 2005; De Lara et al., 2013). Proposition 4.2 provides an alternative, 

effective approach for non-monocentric simulations, by increasing 𝜏𝑣̅𝑚𝑡 or 𝜏𝑐̅𝑡 until Eq. 

(20) is satisfied. 

SYSTEM SIMULATIONS 

The model system and its parameters are specified so as to yield both monocentric 

and polycentric structures. The general urban form is largely determined by parameters 

that reflect past and present contexts, such as 𝐹0(𝑥) and 𝑟̅, while specific land use details 

(like densities and distribution of firms and households) are determined mostly by other 

parameters. This paper emphasizes the monocentric versus polycentric urban forms in a 

series of policy scenario evaluations, rather than exploring how specific parameter value 

choices lead to different urban structures. It seeks to show how the three styles of pricing 
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policy are likely to affect land use patterns under the monocentric and polycentric 

settings. 

In order to achieve a monocentric urban equilibrium, one can set 𝐹0(𝑥) = 0 for 

any x, 𝑟̅ = 1 , and 𝑢̅ = 3500  utils in the no-toll case. These settings may reflect an 

emerging city, where the CBD is relatively new and firm agglomeration exists in a 

relatively small area. For a polycentric case, we set 𝐹0(𝑥)  to be the equilibrium 

production externality function 𝐹(𝑥),  as solved for in the monocentric no-toll 

equilibrium. The agglomeration limit extends to 𝑟̅ = 6, while 𝑢̅ increases to 4000 utils. 

These settings will generate a sub-center ring of development/density in the suburbs. This 

two-center equilibrium can be understood as an evolution from the initially monocentric 

city, after population, jobs and utility levels grow.  

Using these two city settings (mono- and poly-centric cases), four policy 

scenarios (a no-toll base case, an Pigouvian congestion toll case, a VMT-tax case, and a 

cordon-toll case) were simulated. The spatial equilibria were solved using MATLAB, 

following a fixed-point algorithm, as described in Chapter 3. Using Proposition 4.1, given 

pre-set values of 𝐹(𝑥)  and 𝑦̅ , the process of finding an equilibrium corresponds to 

seeking an equilibrium initial wage 𝑤(1) to clear all land and labor markets and to satisfy 

the boundary conditions defined in Eqs. (11)-(13). New 𝐹(𝑥) and 𝑦̅ can be derived, along 

with a new equilibrium initial wage at the region’s centerpoint, 𝑤(1). The equilibrium 

solutions process achieves convergence when the iterations find fixed-point 𝐹(𝑥) and 𝑦̅ 

values.  

PRICING POLICIES IN MONOCENTRIC CITIES 

Table 4.1 summarizes simulation results under different pricing regimes in a 

monocentric city. The four monocentric solutions rely on the same final population, of N 

= 711,000 workers. This baseline population was derived from the no-toll equilibrium 
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solution, when worker or household utility levels were set to 3500 utils. Under this setup, 

the optimal Pigouvian congestion toll toll rates range from $0 per mile of travel at the city 

edge to a peak of $3.38 per mile at the fringe of the monocentric city’s firm cluster 

(assuming 250 workdays per year). The average toll in the Pigouvian congestion toll 

equilibrium is $0.94 per trip-mile (since the average toll payment per worker is $2,556 

per year and the average commute distance [one-way] is 5.44 miles per day). The (flat) 

VMT tax is computed to be $0.46 per mile (each way). The optimal cordon location and 

toll is calculated to be about 3.5 miles away from the city center and $1,500 per year per 

commuter, $120 per month, or about $6 per workday (assuming 250 workdays per year, 

Table 4.1). 

Table 4.1 Simulation Results under Different Pricing Regimes in a Monocentric City 

 No Toll PCT VMT Tax Cordon Toll 

Utility level, 𝑢̅ (utils per household) 3500.00 3500.78 3500.35 3500.34 

CV, ($/year/household)  129 48 41 

Average commute distance per worker 

(miles/day) 

6.06 5.44 4.83 5.45 

Average travel costs ($/year/worker) 3,305 2,790 2,822 3,053 

Rent revenues returned, 𝑦𝑟𝑒𝑛𝑡 
($/year/worker) 

2,040 2,302 2,522 2,185 

Toll revenues returned, 𝑦𝑡𝑜𝑙𝑙  
($/year/worker) 

0 2,556 1,113 1,182 

Labor subsidy, 𝑦𝑙𝑡 ($/year/worker) 761 637 715 722 

City boundary, 𝑥̅ (miles) 11.28 10.88 9.82 10.83 

Central wage, 𝑤(1) ($ per year per 

worker) 

25,094 25,235 25,220 25,092 

Central rent, 𝑟(1) (million $/sq.mi.) 252 173 212 256 

Jobs density, 𝑛(1) (workers/sq.mi.) 190,510 130,207 159,576 193,795 

Residential density at edge, 1/𝑞(𝑥̅) 
(hhs/sq.mi.) 

1,806 1,805 1,807 1,805 

Since both land rents and toll revenues are assumed to be uniformly redistributed 

across workers or households, the welfare gains per household under different pricing 

regimes can be calculated using the average CV change in a household’s income minus 
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any changes in the labor subsidy
16

. The welfare gain, when moving from the no-toll to 

Pigouvian congestion toll equilibrium case, is estimated to be $129 per household per 

year.  Welfare gains for the VMT-tax and cordon-toll policies are $48 and $41 per 

household per year, and thus about 37% and 32% of the gains under Pigouvian 

congestion toll policies (Table 4.1). 

In addition, the total diseconomy caused by excessive congestion is $129 per 

household per year in the free market, reducing to $81 in the VMT-tax equilibrium and 

$88 in the cordon-toll equilibrium (Table 4.1). These findings suggest that the two 

second-best pricing policies can partially reduce excessive congestion. Meanwhile, the 

VMT tax can lead to lower average commuting distance but higher average travel cost 

than the Pigouvian congestion toll policy. Similarly, the average commute distance in the 

cordon-toll scheme basically equals to that in the Pigouvian congestion toll scheme, while 

the average travel costs increase by 9.4% (from $2,790 to $3053 per household per year). 

These findings indicate that the VMT-tax and cordon-toll policies will generate higher 

levels of congestion than the Pigouvian congestion toll policy. 

All three pricing strategies lead to a more compact city sizes than the no-toll 

equilibrium case (of city radius 11.28 miles). The Pigouvian congestion toll narrows the 

city boundary to 10.88 miles, a net decrease of 0.4 mile, causing an area reduction of 

about 28 square miles (a 7% drop in city area). The VMT tax is associated with a 1.45-

mile decrease in boundary and a 24% reduction in city area, while the optimal cordon toll 

generates a 0.45-mile decrease of boundary and an 8% reduction of city area (Table 4.1).  

                                                           
16

 The welfare change calculation refers to Anas and Hiramatsu (2013), which suggested that the citywide 

welfare change under a cordon-toll regime consists of the utility gain of consumers (measured by 

compensating variation values), the gains of real estate investors (i.e., change in property values), 

government gains (in tolls and taxes collected), and the gain of firms (i.e., zero profits in a competitive 

product market). Since our model assumes a government-distributed labor subsidy, government gains equal 

toll revenues minus expenditure on labor subsidies. 



120 

Congestion pricing’s effects on compactness are also reflected in the three 

policies’ travel distance impacts. The average commute distance per day falls from 6.06 

miles in a no-toll equilibrium to 5.44 miles in the Pigouvian congestion toll equilibrium 

(a 10% drop), 4.83 miles in a VMT-tax case (a 20% drop), and 5.45 miles in a cordon-toll 

case (a 10% drop) (Table 4.1). These are practically very significant changes in residents’ 

travel patterns, and are reflected in the land use patterns. 

 

 

Figure 4.1 Land Rent Distribution under Different Pricing Policies in a Monocentric 

Setting (N=711,000, 𝑟̅ = 1) 

Equilibrium land rents vary across policies and locations (Figure 4.1). To 

facilitate this discussion, we separate the monocentric city into three areas: an urban core 

area near the city center, an edge area near the city boundary, and a middle area between 

these two. In the urban core, both the Pigouvian congestion toll and the VMT tax bring a 

sharp decrease in land rents. The center-point rent, which is about $252 million per 

square mile (or $6M per acre) in the no-toll equilibrium, falls to $273 million (a 31% 
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drop) in the Pigouvian congestion toll equilibrium and $212 million (a 16% decrease) in 

the VMT-tax equilibrium. Peak land rents (almost one mile from the regional center) also 

decrease: from $269 million to $206 million (a 23% drop) after the Pigouvian congestion 

toll, and to $259 million (a 3.7% drop) after an optimal VMT tax. In contrast, a cordon 

toll causes a modest increase in land rents in the urban core: about 1.7% higher center-

point and peak values. In most of the central area, the Pigouvian congestion toll and the 

VMT tax significantly elevate land rents: The Pigouvian congestion toll equilibrium is 

estimated to raise land rents by up to 91%, and the VMT tax raises rents by up to 64%. 

Since the optimal cordon locates at the middle area, land rents within the cordon are up to 

62% higher, and those outside the cordon drop sharply, falling below no-toll rents in 

various locations. In the edge area, all three pricing scenarios cause a slight rent decrease. 

These findings in the middle and the edge areas are consistent with those found in 

traditional monocentric models (Verhoef, 2005; De Lara et al., 2013). But the spatial 

distribution of land rents in the urban core area is less commonly observed, since most 

monocentric models regard the urban core as an exogenously determined CBD.  

Third, congestion pricing policies have significant impacts on firms’ equilibrium 

distributions. Figure 4.2 compares job densities or firm distributions under different 

pricing scenarios
17

. The Pigouvian congestion toll policy increases the per-mile 

commuting costs and thereby encourages firms to decentralize, to locate closer to their 

workers. Thus, the Pigouvian congestion toll policy largely decreases central job densities 

but raises job densities near the edge of the firm cluster, indicating that firms are less 

agglomerated and jobs are more decentralized. Similar shifts emerge under the VMT-tax 

                                                           
17

 Regardless of pricing policies, land rents and job densities increase with distance near the center (at about 

0.8 miles from the centerpoint). These spatial consequences relate closely to trends in technology and wage 

levels. A location with better technology and/or wage levels will attract more jobs/firms, thus raising job 

densities and bid rents. Near the city center, wage levels fall with radial distance and technology levels rise 

and peak at a location about 0.8 miles from the center. These factors cause a rising trend of rents and job 

densities near the city center. 
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equilibrium, though the drop in central job density is weaker. The Pigouvian congestion 

toll policy gives the market a clear signal that commuters need to pay the social costs of 

congestion if the city is over-concentrated, so a dispersal force emerges against 

agglomeration economies. As compared to the no-toll equilibrium, the Pigouvian 

congestion toll equilibrium encourages firms and jobs to decentralize toward the edge of 

the monocentric region’s firm cluster. The VMT tax generates a similar job 

decentralization, since some firms may desire to pay fewer VMT taxes for their workers 

(in the form of higher wages), and decide to relocate away from the central area for 

proximity to their workers. 

 

 

Figure 4.2 Firm Distribution and Job Densities under Different Pricing Scenarios in a 

Monocentric Setting 
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While approximations of Pigouvian congestion toll and VMT-tax policies exist in 

some corridors and cities, area or cordon charge schemes are simpler to apply and more 

popular, especially in cities with very strong CBDs, like Singapore and London. One 

interesting question for practice is how a cordon toll affects a CBD’s economy (Santos 

and Shaffer 2004; Bhatt, 2011; ULI, 2013). Our simulation suggests that, in a 

monocentric setting, the optimal cordon toll tends to create more firm agglomeration, 

with slightly higher densities in a smaller area, but these effects appear practically 

insignificant (Figure 4.2). These results reveal that firm and labor markets are probably 

more sensitive to Pigouvian congestion toll and the VMT-tax policies than to area or 

cordon charges. However, if the cordon is not set at or near the theoretically optimal 

location (at 3.5 miles) and the toll is far from optimal, such tolls may encourage firms 

near the CBD’s edge to move just outside the cordoned area (as shown in Figure 5.3, 

when the cordon is placed at 2.2 miles). In such settings, households may provide higher 

bid rents (to avoid regular commute charges) than firms can just inside the cordon line. In 

such cases, a cordon toll creates an “edge” effect for firm and household location choices. 

 

Figure 4.3 Effects of Different Cordon Locations on Firm Distribution in a Monocentric 

Setting. 
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The travel pricing effects on household locations and residential densities found 

here are similar to those found in most monocentric modesl (Wheaton, 1998; Verhoef, 

2005; Kono and Joshi, 2012; De Lara et al., 2013). According to Figure 4.4, Pigouvian 

congestion toll tolling shifts market population densities down near the city edge, and 

upward near the central firm cluster. The VMT tax causes similar effects, with a 

relatively flat population density gradient near the center and a relatively sharp density 

gradient near the edge. In addition, the cordon charge generates a dramatic drop or 

“plummet”: residential densities in the area inside the cordon area are quite high, while 

those just outside the cordon fall off sharply 

 

 

Figure 4.4 Household Distribution and Residential Densities under Different Pricing 

Scenarios in a Monocentric Setting 
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PRICING POLICIES IN POLYCENTRIC CITIES 

The no-toll polycentric setting’s urban form was endogenously determined after 

assuming household levels to be 4000 utils, yielding a population of N = 1,048,000 

workers (Table 4.2). The no-toll equilibrium yields two city “centers” or densely 

developed rings of clustered firms. The first firm cluster, at the city center, is referred to 

here as the “traditional CBD”, while the second, in the suburban area (about 4.5 to 6.5 

miles away from the center), is called the region’s sub-center. Simulation results suggest 

that the optimal Pigouvian congestion toll tolls rise as high as $3 per mile of travel, while 

the average Pigouvian congestion toll across locations is $0.71 per mile. In addition, the 

optimal VMT tax is computed to be $0.40 per mile of travel. The cordon toll’s optimal 

location is found to be about 2 miles away from the city center
18

, with an optimal cordon 

fee of $1,210 per year per worker – roughly $5 per workday, or $100 per month.  

The utility values rise about 0.86% in the Pigouvian congestion toll equilibrium, 

0.59% in the VMT-tax equilibrium, and up to 0.58% in the cordon-toll equilibrium 

(Table 4.2), while the corresponding welfare gains are estimated to be $156, $59, and $41 

per household per year, respectively. These amount to 0.54%, 0.21%, and 0.14% of the 

average net income. The VMT-tax and cordon-toll policies can reduce the diseconomy of 

excessive congestion by about 38% and 26%, respectively.  

Similar to the monocentric setting, the polycentric city solutions becomes more 

compact after Pigouvian congestion toll and VMT taxes are imposed (Table 4.2). The city 

boundary distance falls from 14.76 miles in the no-toll equilibrium to 14.40 miles in the 

Pigouvian congestion toll case (a 4.8% drop in total city area) and 13.88 miles in the 

VMT-tax case (a 6.7% drop in area). The cordon toll policy appears to slightly expand 

                                                           
18

 Cordon locations between 2 and 2.5 miles generate nearly constant maximized utility levels, based on the 

solution routine’s simulation accuracy. Thus, without loss of generality, we chose 2 miles for the optimal 

cordon location. 
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the city, rather than restrict it, with a 1.8% increase in city area. Such pricing policies also 

reduce average travel distances in the polycentric region, by 20%, 18%, and 11% under 

the Pigouvian congestion toll, VMT tax, and cordon toll cases, respectively, relative to 

the no-toll base case. 

Table 4.2 Simulation Results under Different Pricing Regimes in a Polycentric City  

 No-Toll PCT VMT Tax Cordon Toll 

Utility level, 𝑢̅ (utils per household) 4000.00 4034.58 4023.56 4023.28 

Average CV, relative to No Toll case ($ per 

worker per year) 

 156 59 41 

Average travel distance per worker 

(miles/day) 

6.27 4.97 5.16 5.57 

Average travel costs ($/year/worker) 2,446 1,582 1,898 1,801 

Rent revenues returned, 𝑦𝑟𝑒𝑛𝑡 
($/year/worker) 

2,256 2,241 2,487 2,053 

Toll revenues returned, 𝑦𝑡𝑜𝑙𝑙  ($/year/worker) 0 883 518 418 

Labor subsidies, 𝑦𝑙𝑠 ($/year/worker) 527 602 625 642 

City boundary, 𝑥̅ (miles) 14.76 14.4 13.88 14.89 

Central wage, 𝑤(1) ($ per year per worker) 28,504 29,070 28,663 28,844 

Central rent, 𝑟(1) (million $/sq.mi.) 254 173 228 201 

Jobs density, 𝑛(1) (workers/sq.mi.) 169,510 113,081 151,183 132,685 

Residential density at edge, 1/𝑞(𝑥̅) 
(hhs/sq.mi.) 

1588 1566 1571 1571 

Average rent in the CBD ($M/sq.mi.) 115.73 98.95 83.58 111.89 

Average rent in the sub-center ($M/sq.mi.) 18.99 24.26 22.42 22.94 

Jobs in the sub-center (1,000) 470 648 530 659 

Percentage of jobs in the sub-center (%) 44.83 61.8 50.53 62.89 

Job density in the CBD (workers/sq.mi.) 54,373 45,704 55,791 51,537 

Job density in the sub-center (wrkrs/sq.mi.) 9,888 12,716 11,704 11,926 

In this two-center city, tolling policies cause interesting effects on land rent 

distributions. A major tendency is for central-area/CBD land rents to fall significantly, 

while sub-center land rise (Figure 4.5). The average CBD rent falls by 15%, 28%, and 

3.3% under the Pigouvian congestion toll, VMT-tax, and cordon-toll equilibria, 

respectively (Table 4.2). Meanwhile, the average rent in the sub-center increases by 28%, 
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18%, and 21% in the Pigouvian congestion toll, VMT-tax, and cordon-toll schemes. All 

available land outside the CBD and the sub-center goes to housing. The land rent effects 

for housing in the polycentric setup are similar to those discussed above, for the 

monocentric cases. Under the Pigouvian congestion toll and VMT-tax schemes, 

residential land rents rise either in the area between the CBD and the sub-center or in the 

area near the sub-center, dropping near the city edge. Under the cordon-toll equilibrium, 

residential land rents inside the cordon area mostly rise, while those outside the cordon 

line fall. 

 

Figure 4.5 Land Rent Distribution under Different Pricing Policies in a Polycentric 

Setting (N = 1,048,000, 𝑟̅ = 6) 
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Figure 4.6 Firm Distribution and Job Densities under Different Pricing Policies in a 

Polycentric Setting (N = 1,048,000, 𝑟̅ = 6) 

Figure 4.6 shows the distinct tendency toward job decentralization after the 

implementation of pricing policies. In the no-toll equilibrium, about 55% of jobs locate in 

the CBD and 45%  in the sub-center. The Pigouvian congestion toll scheme causes about 

17% of jobs to move outside the CBD and relocate at the sub-center. Levying a VMT tax 

is associated with a 5% increase in sub-center jobs, while the cordon toll is associated 

with an 18% increase in sub-center jobs. These job-decentralization effects are similar to 

those found in Fujishima (2011) and Anas and Hiramatsu (2013), though those two 

studies rely on a rather different modeling framework. Pricing also tends to significantly 

lower CBD job densities, while raising sub-center job densities (Figure 4.5): average 

CBD’s job densities are computed to fall 16% and 5.2% under the Pigouvian congestion 

toll and cordon-toll equilibria (versus the no-toll base case), but rise 2.6% in the VMT-tax 

case (Table 4.2). This VMT-tax result emerges because, while a number of firms depart 
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the center, those remaining in the CBD become more agglomerated (so the CBD’s area 

becomes smaller). In addition, the average sub-center job densities rise 29%, 18%, and 

21% in the Pigouvian congestion toll, VMT-tax, and cordon-toll equilibria (versus the 

base case). Firms leaving the CBD will enhance agglomeration economies in the sub-

center areas. 

Pricing’s effects on residential densities are similar to those discussed earlier, for 

the monocentric setting. Policymakers’ and planners’ residential density targets in a 

polycentric city will presumably need upward adjustment near the city center, and 

downward adjustment near the city boundary (Figure 4.7). According to Table 4.2, the 

average residential density slightly decreases after an imposition of one of these three 

pricing policies (around 1%).  

 

 

Figure 4.7 Household Distribution and Residential Densities under Different Policies of 

Congestion Pricing in a Polycentric Setting (N = 1,048,000, 𝑟̅ = 6) 
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SUMMARY 

Relying on internalized congestion and agglomeration externalities, this chapter 

examined three pricing policies—Pigouvian congestion toll, VMT tax, and a cordon toll, 

alongside a no-toll base case—and compared their land use, travel, and rent impacts 

under both monocentric and polycentric settings. The practical pricing policies like VMT 

tax and cordon toll partially reduce excessive congestion: around 30% of total excessive 

congestion from simulations in this research. They can also produce significant decreases 

in average commute distance and travel costs.  

The simulation results reveal that all pricing policies deliver more compact 

city/regional forms. Both the VMT tax and the cordon toll can generate somewhat higher 

household utility, although their welfare improvement is less than that of the Pigouvian 

congestion toll policy, as expected. The VMT tax is predicted to generate a more compact 

urban form than the Pigouvian congestion toll policy by incentivizing firms and 

households to locate closer together to reduce commuting distance, while the Pigouvian 

congestion toll may allow firms and/or households to trade a longer travel distance for 

less congestion. The compactness effects are also reflected in the findings that all three 

congestion pricing policies can reduce daily travel distance by more than 10% (with 

results ranging from 10% to 20%, varying across settings and policies). 

The Pigouvian congestion toll scheme’s land use patterns are more efficient than 

those in a free (no-toll but congestible) market. In the closed-form polycentric-city 

setting, efficient land use regulation may promote some job decentralization from the 

CBD to subcenter locations (because simulations showed more than 17% of the CBD-

ring jobs moving to the suburban jobs ring). Regulation recommendations for residential 

densities in a polycentric city are similar to those for the monocentric setting: raise 

central-area population densities and reduce edge densities. The VMT tax results are not 
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too far from those of the Pigouvian congestion toll and should be much easier to achieve 

in practice; unfortunately, no pricing policy is easy to get right, especially in the context 

of heterogeneous regions and travel plans that regularly shift (from day to day and year to 

year). Cordon or area tolls are more popular in practice and estimated here to have 

different impacts on firms when moving from a monocentric to polycentric setting. In the 

monocentric case, the cordon toll raised most CBD-area job densities, while a cordon line 

near the edge of a polycentric city’s central ring may cause significant CBD-area job loss 

(18% simulated here). While both first-best and second-best congestion pricing strategies 

can lead to a significant change in city land use patterns, the following chapter will focus 

on practical land use planning strategies for reducing excessive congestion. 
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CHAPTER 5: LAND USE PLANNING FOR REDUCING EXCESSIVE 

CONGESTION: REMEDIES FOR MARKET AND PLANNING FAILURES 

This chapter relies on the urban economic model developed in Chapter 3 to 

evaluate the efficiency of second-best land use policies for reducing excessive 

congestion. This chapter includes two parts. The first part assesses land use planning 

strategies in cities with market failures only and examines the welfare and anti-

congestion effects of second-best land use policies such as urban growth boundaries 

(UGBs) and firm cluster zoning. The effectiveness of UGB policies on congestion relief 

remains ambiguous. Some studies have suggested that imposition of a UGB may be an 

effective second-best policy to reduce excessive congestion because a UGB increases 

densities and reduces travel distances, much like optimal pricing will do (Pines & Sadka, 

1985), while others have argued that UGBs have a lower, or even negative, welfare 

impact than Pigouvian congestion toll strategies (Anas & Rhee, 2006; Brueckner, 2007; 

Kono et al., 2012). Another debate concerning UGB regulation is whether such 

boundaries facilitate central-city revitalization via raising productivity and attracting new 

development activities (Nelson et al., 2004). For comparison, this research also discusses 

another coarse land use policy by designating a cluster zone exclusively for firm/business 

use, i.e., firm cluster zoning. Our simulation results suggest that optimal firm cluster 

zoning policies cause a much greater welfare improvement than the optimal UGB policy. 

Such questions and comparisons relate closely to planning practices and planning debates 

and so merit exploration here. 

The second part of this chapter extends the research to explore the second-best 

land use policies for congestion relief when land use regulations cannot be totally 

removed (due to political or property rights issues). Two policies are discussed here: the 

residential densification policy in a particular suburban area, which is against low-density 
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zoning regulations, and job decentralization policies, such as planning a new employment 

center in the suburbs to decentralize firms and jobs and reduce congestion in urban areas. 

LAND USE PLANNING FOR CORRECTING MARKET FAILURES 

Although first-best interventions presumably are the best choice for a city 

authority wishing to pursue welfare improvements (Chapter 3), they may be associated 

major construction and operations costs (for variable toll collection, for example) that are 

generally not internalized in theoretical models. And a combination of Pigouvian 

congestion toll and Pigouvian labor subsidy may require much coordination between 

transportation agencies and departments of labor, which presents added transaction costs 

and political difficulties. A first-best tolling/subsidy-only may reduce the need for 

coordination, but optimal toll/subsidy levels for each location are difficult to set.  

This section turns to the welfare and land use effects of second-best land use 

policies that are easier performed in planning practice in including UGBs and a novel 

firm cluster zoning policy. The UGB policy is a land-use regulation without any pricing 

adjustments, where the fixed-land-rent assumption at the city edge is replaced by fixing a 

city boundary, 𝑥̅𝑢𝑔𝑏. The firm cluster zoning policy imposes a relatively idealistic land 

use zoning regulation by designating one or more cluster areas for firm use only and the 

rest areas for residential use. While the UGB policies have been applied in several cities, 

the firm cluster zoning policies appear less discussed in theory and practice. In fact, many 

cities have implemented zoning policies close to firm cluster zoning, such as planning for 

industrial parks and/or high-tech development zones.  

For modeling specification, after imposing a UGB in a free-market city, the 

condition of edge rent in Eq. (3.18) is replaced by the fixed-boundary condition: 

𝑥̅ = 𝑥̅𝑢𝑔𝑏      (5.1) 
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Similarly, after imposing firm cluster zoning boundaries which begin at location 

𝑥0 and end at location 𝑥1, the equilibrium share of firm’s land use at location x is defined 

as follows: 

𝜃𝑓
𝑧(𝑥) = {

1 − 𝜃𝑡 , 𝑥 ∈ [𝑥0, 𝑥1]
0, 𝑜𝑡ℎ𝑒𝑟𝑠

       (5.2) 

Urban Growth Boundary Policies 

Table 5.1 Welfare and Land Use Effects of Optimal UGB Policies in Cities with Varying 

Congestion and Agglomeration Levels 

 Congestibility Parameter 𝜌 Agglomeration Parameter 𝛾 

5e-6 1e-5 3e-5 0.08 0.06 0.04 

Types of Urban Form at FM equilibria FH FH HFH FH FH HFH 

CV of UGB Policies (relative to FM cases, 

$/hh./year) 

22.11 9.13 15.33 4.71 9.13 23.76 

% UGB CV relative to the First-Best CV 12.95 8.02 8.06 2.4 8.02 36.29 

Percent Change in Avg. Labor Density 

(from FM to UGB) 

7.16 0.79 9.46 1.23 0.79 9.42 

Percent Change in Avg. Residential Density 

(from FM to UGB) 

6.26 4.38 10.79 5.17 4.38 9.23 

Percent Change in Avg. Rent for Firms 

(from FM to UGB) 

7.16 0.8 9.50 1.23 0.8 9.26 

% UGB Business Rent Rise relative to the 

First-Best Rent Rise 

6.95 6.03 19.13 1.57 6.03 22.47 

Percent Change in Avg. Rent for Housing 

(from FM to UGB) 

7.2 5.17 12.35 5.7 5.17 10.42 

% UGB Housing Rent Rise relative to the 

First-Best Rent Rise 

309.0 134.6 196.0 131.6 134.6 198.1 

Although there are no analytical solutions to the optimal location of UGBs, our 

simulation results demonstrate that the optimal UGBs should be located at the 

equilibrium boundary of the first-best optimum
19

. The optimal UGB policies can improve 

citywide welfare and the welfare gains range from 2.4% to 36% of the firm-best 

optimum. The UGB policies appear more effective in the cities with relatively lower 

agglomeration scale or higher congestion levels. Under the base scenario (𝜌 = 0.00001 

                                                           
19

 To find the optimal UGBs in simulations, we applied a bisection algorithm to search an optimal location 

for UGBs in the interval [2𝑥̅𝑓𝑏 − 𝑥̅𝑓𝑚, 𝑥̅𝑓𝑚]. Here, 𝑥̅𝑓𝑏  is the optimal boundary in the first-best case and 𝑥̅𝑓𝑚 

is the equilibrium boundary in the free-market case. 
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and 𝛾=0.06), the CV of the UGB policy relative to the free-market case is 8% of the first-

best CV level. When 𝛾  decreases to 0.04, the CV gain increases to 36% of the 

corresponding first-best level, though the CV value is still low, at about $24 per 

household per year. 

In addition, the UGB equilibrium could produce worse land market distortion than 

the free-market equilibrium. Figure 5.1 compares the spatial patterns of job and 

residential densities and land rents for firm and residential use in the UGB, first-best, and 

free-market equilibria under varying agglomeration parameters. The UGB policies could 

largely raise residential densities and escalate residential rents over the optimum levels at 

most locations, regardless of urban forms. The average residential rents under the optimal 

UGB policies are more than 30% larger than those under first-best instruments (Table 

5.1). For 𝜌 = 0.000005, the average residential rent in the UGB equilibrium is even 

three times that in the first-best optimum. In addition, UGBs can slightly centralize firms, 

leading to a trivial increase in productivities. But the increases in job densities and firms’ 

rents caused by the optimal UGB policies are much smaller than those by the first-best 

instruments. Thus, restrictive UGBs appear have less significant impact on firms’ spatial 

distribution and rents but excessively raise residential densities and rents. This may 

explain why even the optimal UGB regulation gains a relatively low welfare 

improvement. 
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Figure 5.1 Spatial Distributions of Job and Residential Densities and Land Rents for 

Firm and Residential Use in the UGB, First-Best, and Free-Market 

Equilibria Varying between the FH(i.e., monocentric, Left) and HFH (i.e., 

Nonmonocentric, Right) Urban Forms (𝜑=20, 𝜌=0.00001, 𝜎=1.5, 𝛾=0.05 or 

0.07, 𝑁=600,000) 

Firm Cluster Zoning Policies 

The optimal firm cluster zoning policies need to delimit a zone exclusively 

regulated for firm use (commercial and industrial), with the zonal boundaries setting at 

the locations of the firm cluster in the first-best optimum20. Simulations suggest that the 

                                                           
20

 There is no analytical solution to the optimal firm cluster zoning setting. The optimal firm cluster zoning 

defined here is derived from simulations.  
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optimal firm cluster zoning policies are more effective than the optimal UGB policies. 

Taken the base scenario (𝜌 = 0.00001 and 𝛾=0.06) as an example (Table 5.2), the CV of 

the optimal firm cluster zoning instrument relative to the free-market equilibrium is 73% 

of the first-best CV level, above eight times the UGB level. The larger the agglomeration 

parameter 𝛾, the larger welfare gain the firm cluster zoning policies can obtain. In the 

highly agglomeration case (𝛾=0.08), the firm cluster zoning welfare gain is about 48% of 

the first-best level, but about 20% of the UGB level. These findings suggest that the firm 

cluster zoning policy is more likely to be a second-best policy for correcting both 

agglomeration and congestion externalities than the UGB policy. However, such an 

effective policy appears less discussed in the literature. The major reason is probably 

related to the fact that urban economic analysis remains heavily relying on monocentric 

models, which are unable to explore firms’ spatial behaviors and land use regulations on 

firms. 

Differing from the UGB policy, the firm cluster zoning policy can to some extend 

remedy for land market distortion by raising both residential and commercial rents closer 

to the first-best levels. In particular, the average commercial rents in the firm cluster 

zoning equilibrium are very close to the optimum level, regardless of the values of 𝜌 and 

𝛾. Though the average residential rents in the firm cluster zoning equilibrium are much 

smaller than the first-best levels, they remain larger than the free-market levels. More 

importantly, the firm cluster zoning policies will not lead to an excessive escalation in 

residential rents as the UGB policies do, and thus will not worsen the land market 

distortion due to the existence of urban externalities. Figure 5.2 shows the spatial patterns 

of densities and rents in the first-best, free-market, and firm cluster zoning equilibria. The 

distributions of job densities and commercial rents in the firm cluster zoning equilibrium 

are closer to the optimum while the allocation of residential densities and rents are closer 
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to the free-market equilibrium. These findings suggest that the firm cluster zoning 

policies have significant effects on firms’ spatial behaviors but fewer effects on 

household’s residential decision. While the UGB policies appear benefits firms more, the 

firm cluster zoning policies may benefit residents and commuters more. 

Table 5.2 Welfare and Land Use Effects of Optimal Firm Cluster Zoning Policies in 

Cities with Varying Agglomeration Levels 

 Congestibility Parameter 𝜌 Agglomeration Parameter 𝛾 

5e-6 1e-5 3e-5 0.08 0.06 0.04 

FCZ Policies             

CV of FCZ Policies (relative to FM cases, 

$/hh./year) 

138.58 83.12 161.68 93.51 83.12 52.69 

% FCZ CV relative to the First-Best CV 81.14 73 85.03 47.73 73 82.49 

Percent Change in Avg. Labor Density 

(from FM to FCZ) 

101.44 14.04 49.89 76.17 14.04 41.71 

Percent Change in Avg. Residential Density 

(from FM to FCZ) 

1.33 0.39 -9.93 -8.94 0.39 -9.13 

Percent Change in Avg. Rent for Firms 

(from FM to FCZ) 

102.05 13.13 49.36 76.89 13.13 40.83 

% FCZ Business Rents relative to the First-

Best Rents 

98.99 99.02 99.40 98.10 99.02 99.08 

Percent Change in Avg. Rent for Housing 

(from FM to FCZ) 

0.41 0.28 0.09 0.32 0.28 0.28 

% FCZ Housing Rents relative to the First-

Best Rents 

17.60 7.29 1.43 7.39 7.29 5.32 

By recognizing this advantage, those planner and policy makers who search for 

land use policies for reducing congestion and enhance agglomeration should consider the 

of firm cluster zoning policies. One difficulty for such firm cluster zoning policies should 

be the determination of the optimal cluster zone. Our simulations suggest that such an 

optimal firm cluster zoning area could be more centered (e.g., 𝛾=0.05) or decentered 

(e.g., 𝛾=0.06). If a city prefers to enhance agglomeration economies, the optimal firm 

cluster zoning area should be more compact than the free-market firm cluster area. 

Instead, if a city prefers to reduce congestion diseconomies, the optimal firm cluster 

zoning should allow for job decentralization.  
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Figure 5.2 Spatial Distributions of Job and Residential Densities and Land Rents for 

Firm and Residential Use in the Firm-Cluster-Zoning, First-Best, and Free-

Market Equilibria Varying with the FH(i.e., Monocentric, Left) and HFH 

(i.e., Nonmonocentric, Right) Urban Forms. (𝜑=20, 𝜌=0.00001, 𝜎=1.5, 

𝛾=0.05 or 0.07, 𝑁=600,000) 

LAND USE PLANNING FOR CORRECTING PLANNING FAILURES 

Similar to first-best pricing instruments, first-best land use policies that remove all 

land use regulations are probably unrealistic and politically infeasible in planning 

practice. Many zoning codes are regulations and laws enacted by the local government. 

There are significant costs for property owners or city authorities to change zoning codes. 
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This section investigates two relatively realistic land use planning strategies that could 

mitigate planning failure and excessive congestion. The first policy is an imposition of 

residential densification policies against low-density zoning regulations and the second is 

against exclusionary zoning regulations by building employment centers in the suburbs.  

Densification Policies 

The densification policies discussed indicate that city authorities promote and 

allow for denser development in a particular residential area through regulation reforms 

and redevelopment, such as zoning changes from large-lot to small-lot zoning or from 

single-family to multi-family use and relaxing building height restrictions. The modeling 

analysis assumes that low-density zoning regulation is fully relaxed in a particular 

annular interval [𝑥𝑑1, 𝑥𝑑2 ]. This interval is defined as a planning area in which land use 

planning policies are implemented. Thus, after imposing a densification policy in the 

planning area [𝑥𝑑1, 𝑥𝑑2 ], the equilibrium residential lot size 𝑞𝑑(𝑥) and density 
1

𝑞𝑑(𝑥)
 is 

defined as follows: 

 

1

𝑞𝑑(𝑥)
= {

1

𝑞∗(𝑥)
, 𝑖𝑓 

1

 𝑞∗(𝑥)
< 𝑀 𝑜𝑟 𝑥 ∈  [𝑥𝑑1, 𝑥𝑑2 ]

𝑀,                                                       𝑜𝑡ℎ𝑒𝑟𝑠

 (5.3) 

where 𝑞∗(𝑥) is the equilibrium residential lot size without low-density zoning as defined 

in Eq.(3.2) and M is the density cap.  

Excessive Congestion and Welfare Impacts.  

Policies allowing denser development in particular residential areas in the suburbs 

reduce excessive congestion and improve social welfare. These effects vary with the 

planning area [𝑥𝑑1, 𝑥𝑑2 ] for imposing densification policies and the locations of such 

planning areas. Simulation results demonstrate that densification policies are more 

effective when they are imposed in a larger planning area or at locations closer to the 
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urban core. For example, when a city has a zoning density cap of 1,000 households per 

square mile, the densification policy in the planning area [8, 9] improves the whole city’s 

welfare by about $28 per household per year, accounting for 16% of the largest welfare 

improvement by removing all regulations (Table 5.3). As the planning area enlarges to [7, 

9] or [8, 9], the average CV values increase to $47 and $43 per household per year, 

accounting for about 28% and 25% of total welfare improvement by removing all 

regulations. Such densification policies can make the average commute distance decrease 

by 1.6% to 3.6%, but at the same time increase the average traffic volume by 2.2% to 

2.5%. These findings suggest that the densification policies defined here are not as 

effective as the “optimal” policies that remove all land use regulations, but they can still 

partially correct planning failures and reduce excessive congestion.  

When the low-density zoning regulation becomes more restricted, as the density 

cap drops from 1,000 to 800 households per square mile, the same densification policies 

bring a larger amount of welfare improvement but become less efficient. For example, in 

the planning area [7, 9], densification policies produce a welfare gain of $119 for each 

household per year in the city under the relatively restrictive low-density zoning 

regulations (i.e., a cap of 800 hhs/sq mi.), about $72 higher than under less restrictive 

regulations (i.e., a cap of 1,000 hhs/sq mi.). Densification policies in more restrictive 

regulations are more effective for reducing commute distance and traffic volume on the 

roads. However, these policies reduce 11% of excessive congestion sourced from 

planning failures under the low-density zoning regulation with a cap of 800 hhs/sq mi., 

while they reduce 16% of excessive congestion under the low-density zoning with a cap 

of 1,000 hhs/sq mi. This finding indicates that a city with more restrictive low-density 

zoning regulations probably needs more planning areas allowing for denser development 

to reduce most excessive congestion and improve social efficiency.  
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Table 5.3 Impact of Densification Policies on Congestion and Welfare 

 Densification policies allowing 

denser development at [𝑥𝑑1, 𝑥𝑑2 ] 
in cities with a density cap of 

1000 hh./sq. mi. 

Densification policies allowing 

denser development at [𝑥𝑑1, 𝑥𝑑2 ] 
in cities with a density cap of 800 

hh./sq. mi. 

[8,9] [7,9] [8,10] [8,9] [7,9] [8,10] 

CV comparative to FM cases 

under low-density zoning 

27.81  46.98  42.72  60.29  119.37  116.67  

% CV in the largest CV earned 

by removing all low-density 

zoning 

16.37% 27.65% 25.14% 11.00% 21.78% 21.29% 

% change of avg. commute 

distance before and after 

densification policies 

-1.57% -3.64% -3.34% -4.38% -8.47% -8.26% 

% change of avg. traffic volume 

before and after densification 

policies 

2.39% 2.19% 2.52% -0.22% -0.60% 0.01% 

Land Use Impacts 

After implementing densification policies in the planning areas, the planning areas 

will have higher residential densities and rents. Figures 5.3 and 5.4 show the simulated 

changes of densities and rents before and after implementing densification policies. The 

base cases are cities with low-density zoning regulation of two levels of density caps. 

Table 5.4 shows the percentage change in various land use characteristics after 

implementing densification policies. All of these results are estimated from simulations. 

Inside the planning areas, densification policies can cause more than a 30% 

increase in residential densities when the density cap is set at 1,000 hhs/sq mi., and an 

increase of about 90% when the cap is 800 hhs/sq mi. (Figure 5.3). These result in an 

increase in average residential density but have no impact on job density and firm 

distribution (Table 5.4). Because densification policies can raise densities, the city 

becomes more compact after such policies are implemented. According to Table 5.4, 

densification policies in cities with more restrictive low-density zoning regulations 

generate higher average residential densities and more compact urban forms.  
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Table 5.4 Land Use Impact of Densification Policies 

% change of variable values 

before and after densification 

policies 

Densification policies allowing 

denser development at [𝑥𝑑1, 𝑥𝑑2 ] 
in cities with a density cap of 

1000 hh./sq. mi. 

Densification policies allowing 

denser development at [𝑥𝑑1, 𝑥𝑑2 ] 
in cities with a density cap of 800 

hh./sq. mi. 

 [8,9] [7,9] [8,10] [8,9] [7,9] [8,10] 

avg. city Area -2.52% -4.33% -4.45% -4.03% -7.67% -8.17% 

avg. job density  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

avg. residential density 2.29% 4.43% 4.57% 4.54% 9.03% 9.67% 

avg. rent for firms 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 

avg. rent for housing 0.26% 0.47% 0.46% 0.78% 1.54% 1.63% 

avg. labor wage 0.04% 0.04% 0.04% 0.00% 0.01% 0.01% 

Densification policies can raise land rents in the planning areas while other areas 

are restricted by low-density zoning regulations (Figure 5.4). In an aspatial perspective, 

the relaxation of density limits increases land and housing supply and lowers land value 

and housing prices given constant demand. However, when households’ spatial decisions 

are endogenized as in this research, households in the outer suburbs outside the planning 

area would be likely to move to the planning area for closer commuting to their 

workplace in the urban core. These moving households also provide larger bid rents for 

the new housing built inside the planning area from the savings on their travel costs. In 

this case, when the land market reaches equilibrium, the land price in the planning area 

increases rather than decreasing. The rent-escalation effects of densification policies are 

greater in cities with more stringent low-density zoning regulations (Table 5.4) 
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Figure 5.3 Land Use Effects After Relaxing Low-Density Regulations in Particular 

Areas 
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Figure 5.4 Land-Rent Effects After Relaxing Low-Density Regulations in Particular 

Areas 

Job-Decentralization Policies: Building Employment Centers in the Suburbs 

Chapters 3 and 4 suggest that job decentralization is often considered a market or 

socially desirable outcome for countering traffic congestion, as also found in many 

theoretical and empirical studies (e.g., Giuliano & Small, 1990; Gordon & Richardson, 

1996; Crane & Chatman, 2004; Anas & Rhee, 2006). According to a report by Kneebone 

(2009, p. 1), in the US, “only 21% of employees in the top 98 metro areas work within 3 
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miles of downtown, while over twice that share (45%) work more than 10 miles away 

from the city center” and “employment steadily decentralized between 1998 and 2006: 95 

out of 98 metro areas saw a decrease in the share of jobs located within 3 miles of 

downtown.”  

In this decentralization process, land use planning also plays an important role. 

While many land use regulations such as exclusionary zoning and low-density zoning 

regulations deter job densification, many land use planning strategies have instead been 

applied in practice to facilitate job decentralization. For example, building employment 

centers or subcenters in the suburbs has a long history in planning, from Ebenezer 

Howard’s (1902) “garden city” to concepts of “satellite town” (Taylor, 1915) and “edge 

cities” (Garreau, 1991). This section discusses the potential benefits of such job-

decentralization policies in cities under restricted exclusionary zoning regulations.
21

  

The first question is how to facilitate a new subcenter. In our model the new 

subcenter is a new employment annulus in the suburbs. Simulations find that the strategy 

of simply designating a planning area exclusively for firm use is often meaningless, and it 

is difficult to attract firms to move from the urban core to the subcenter. The major reason 

is that firms moving to the subcenter will have very high risks of losing the benefits from 

agglomeration. A strategy discussed here is to subsidize companies that move to the 

subcenter. For example, as assumed in this model, the city authority will pay a subsidy 

for each laborer hired in the suburbs to each firm and the total subsidy will be financed by 

the land rent income from the urban area. Once some firms move to the subcenter the city 

land use will reach equilibrium when the urban residents’ utility is equal to the suburban 

residents’ utility.  

                                                           
21

 In cities without any land use regulations, building subcenters is a possible equilibrium but will bring 

more losses than the free market without subcenters. 
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Basic Status: No policy 

in a city with an 

exclusionary zoning 

limit at 2 miles 

 

• Labor Subsidy: $535 

per worker for firms 

moving to subcenter 

• Moving Jobs: 350,000 

• Earned CV: $161 per 

household for the 

whole city 

 
• Labor Subsidy: $386 

per worker for firms 

moving to subcenter 

• Moving Jobs: 400,000 

• Earned CV: $165 per 

household 

 

 
• Moving Jobs: 450,000 

• Marginal Cost: $230 

per worker 

• Earned CV: $212 per 

household 

 

 
• Moving Jobs: 480,000 

• Labor Subsidy: $148 

per worker 

• Earned CV: $233 per 

household 

 

Figure 5.5 Evolution of Employment Subcenters 



148 

Simulation findings suggest that multiple equilibria can be found, and the welfare 

gains of these equilibria are determined by how much of the population moves to the 

subcenter (or stays at the urban center), which is determined by the magnitude of labor 

subsidies to firms in the subcenter. For example, based on our simulation scenarios, a 

subcenter equilibrium will not occur until the subcenter attracts more than around 

350,000 jobs, above 58% of the total worker population. When the jobs in the subcenter 

exceed around 490,000, about 82% of the total worker population, the urban center will 

no longer exist (i.e., all firms will have moved to the subcenter). Therefore, this job-

decentralization policy via building subcenters incorporates both land use planning and 

pricing policies. 

Figure 5.5 presents the evolution of employment subcenters from the dynamic 

simulations. The base case is that all firms locate in the urban core area [0, 2] under the 

exclusionary zoning regulation. When local municipality provides a labor subsidy ($535 

per year) to firms for each worker they hire in the subcenter, there are 350,000 jobs 

moved to the subcenter in the equilibrium situation. In this case, each household in the 

whole city, including those working at the urban and suburban centers, can earn about 

$161 per year. After that the local municipality provides a relatively low subsidy at $386 

per year to attract 50,000 more jobs to the subcenter, and the location of the subcenter 

area will move toward the urban core. When the subcenter has grown larger, firms 

moving to the subcenter will lose lower agglomeration benefits and the marginal cost 

(i.e., the labor subsidy) for moving them away from the center will fall. Thus the labor 

subsidy drops to $23 and $148 when the jobs in the subcenter increase to 450,000 and 

480,000. The corresponding welfare gains to each household in the whole city also 

increase to $212 and $232 yearly. These findings suggest that a policy incorporating land 

use planning and economic strategy has the potential to correct planning failure by 
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facilitating job decentralization and re-agglomeration and could reduce the economic 

scale of the urban center but significantly improve social welfare of all households in 

both urban and suburban areas. 

Congestion Impacts 

Table 5.5 summarizes the impact of job-decentralization policies on travel and 

congestion outcomes. Job-decentralization policies are more effective for reducing 

excessive congestion when they attract more jobs to the subcenter. When the number of 

jobs in the subcenter account for 58% of total jobs in the city, the excessive congestion 

from planning failures can be reduced by about 33% of excessive congestion from 

planning failure. As the share of suburban jobs increases to 80%, the excessive 

congestion from planning failure can be alleviated by 47%.  

These job-decentralization policies significantly reduce travel and congestion. For 

example, after 480,000 jobs are relocated to the suburbs the average commute distance 

for residents working in the urban and suburban centers will drop by over 55% and 42% 

respectively. Meanwhile the average traffic volume on roads in the urban and suburban 

areas will drop by 69% and 72% respectively. The more jobs move to the subcenter, the 

better the traffic conditions (shorter commute distance and less traffic) in the urban area 

will be. Although the traffic conditions become worse as the suburban jobs increase, they 

are still much better than in the monocentric case. These traffic conditions are even better 

than those in the social optimum after all market and planning failures are corrected. 

However, it is worth mentioning that while city residents can benefit hugely from the 

reduction in VMT and congestion, the city’s agglomeration economy is weakened. 
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Table 5.5 Impact on Congestion from job-decentralization policies 

Change of variable values 

before and after building 

subcenter 

Subcenter with 

350,000 jobs 

Subcenter with 

400,000 jobs 

Subcenter with 

450,000 jobs 

Subcenter with 

480,000jobs 

Reduced diseconomy of 

excessive congestion 

comparative to FM cases under 

exclusionary zoning 

161.70 165.40 211.80 233.48 

% excessive congestion from 

planning failure 

32.64% 33.38% 42.75% 47.13% 

% Avg. Commute Distance in 

the Urban area 

-34.96% -42.04% -50.04% -55.49% 

% Avg. Commute Distance in 

the Suburban area 

-60.73% -54.17% -46.89% -42.12% 

% Avg. Traffic Volume in the 

Urban area 

-45.94% -54.19% -63.17% -68.98% 

% Avg. Traffic Volume in the 

Suburban area 

-82.98% -79.63% -75.52% -72.44% 

Land Use Impacts 

Job-decentralization policies can generate efficient “sprawling.” The city area will 

increase by over 20%, varying with the level of decentralization. This can greatly reduce 

job densities and land rents for firms. For example, when the subcenter attracts 80% of 

the total jobs the average job density in the urban and suburban centers will drop by 58% 

and 94% respectively. Despite the subcenter having four times the jobs in the urban 

center, the job density in the urban center is higher than in the subcenter. The decreases in 

job densities also lower the bid rents of firms, leading to a trend of rent decline similar to 

density decline. Compared to the impacts on firms, the effect on residential densities and 

rents is relatively small. The job-decentralization policies can lead to a decline of around 

4% in the average residential density and the average land rent for housing in both urban 

and suburban areas.   
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Table 5.6 Impact on Land Use after Building Suburban Employment Center 

% change of variable values after 

building subcenters 

Subcenter 

with 350,000 

jobs 

Subcenter with 

400,000 jobs 

Subcenter with 

450,000 jobs 

Subcenter with 

480,000jobs 

city area 23.36% 23.96% 23.66% 21.99% 

avg. job density  

 

Urban -80.00% -75.00% -66.67% -58.33% 

Suburban -92.11% -92.80% -93.44% -93.81% 

avg. residential 

density  

 

Urban -4.72% -4.61% -4.06% -3.54% 

Suburban -4.02% -4.12% -4.56% -4.56% 

avg. rent for firms 

  

Urban -80.26% -75.28% -66.95% -58.61% 

Suburban -92.28% -92.96% -93.60% -94.00% 

avg. rent for 

housing  

 

Urban -4.89% -4.60% -4.12% -3.64% 

Suburban -3.89% -4.16% -4.57% -4.84% 

avg. labor wage Urban -1.32% -1.11% -0.85% -0.65% 

Suburban -2.05% -2.24% -2.46% -3.09% 

 

SUMMARY 

This chapter simulated the anti-congestion, welfare, and land use effects of four 

types of second-best but more practical land use planning strategies. Among them, UGBs 

and firm cluster zoning regulations were investigated as two policies for reducing 

excessive congestion sourced from market failures. Densification policies that allow 

denser development and job-decentralization policies that build new suburban 

employment centers were examined as two policies for reducing excessive congestion 

sourced from planning failures.  

The UGB regulations may partially correct distortions in both transport and labor 

markets, but may worsen land market distortion via the residential rent-escalation effects, 

leading to trivial utility gains. Such UGB distortions in land markets appear in regions 

like Portland, Oregon and Knoxville, Tennessee, where housing rents/prices inside the 

UGBs rise faster than those of properties in areas without UGBs (Staley & Mildner, 
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1999; Cho et al., 2008). London, England and Auckland, New Zealand have also reported 

major rent escalations due to relatively low housing or land supply for new development 

(Cheshire & Sheppard, 2005; Cox, 2010). Home affordability remains a key topic for 

debate in growth management discussions (Downs, 2004; Nelson et al., 2004). Of course, 

real cities are much more complex than the models allowed here. Human health, 

ecological conservation, social interaction, and other variables are at play and may 

counteract some or much of the rent escalation losses that tend to come with tight UGBs.  

The firm cluster zoning policies that regulate a zone’s land use exclusively for 

firm/business use are probably more efficient than the UGB policies for reducing 

congestion and enhancing agglomeration. They generate welfare improvement closer to 

the first-best level and will not create much excessive congestion or excessive escalation 

of housing rents, and they avoid the housing affordability issue raised by the UGB 

policies. While planning practice should pay more attention to such an effective policy, at 

least in theory, urban economic models should allow for land use policy scenarios related 

to firms. 

The objectives of policies for correcting planning failures differ from those for 

market failures. Remedies for market failures aim at anti-congestion and welfare effects 

by comparison with the free-market (bottom limit) and socially optimal (upper limit) 

cases, assuming no planning failure exists. In contrast, remedies for planning failures 

seek to compare anti-congestion and welfare effects with the free-market case with a 

bottom limit and without upper-limit regulations. For example, densification policies that 

relax low-density zoning regulations in a particular planning area partially correct 

planning failure from low-density zoning and reduce excessive congestion. A city with 

more stringent low-density zoning regulations probably allows more areas for denser 

development.  



153 

On the other hand, when firms are regulated against decentralization (e.g., due to 

exclusionary zoning), policies aimed at moving jobs to the subcenter need to incorporate 

both land use and pricing strategies. Simulation findings in this research suggest that a 

subsidy to firms (e.g., a labor subsidy for hiring workers) is the key trigger to firm 

decentralization. The optimal setting of job decentralization can reduce about half of 

excessive congestion and improve half of welfare. Job decentralization also brings other 

attractive land use and transportation consequences including significant drops in firm 

rents, VMT, and congestion, despite the disadvantage of declined agglomeration 

economies.  
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CHAPTER 6: INCORPORATING LAND USE AND ECONOMIC POLICIES: AN 

EMPIRICAL STUDY IN AUSTIN 

Previous chapters have presented theoretical (Chapter 2) and analytical (Chapters 

3–5) findings to demonstrate the importance of incorporating land use and economic 

policies for correcting market and planning failures that incur excessive congestion and 

social inefficiency. These findings suggest that a direct empirical analysis needs to 

estimate the amount of excessive congestion in metropolitan areas and explain the 

variations of the amount by the variations in land use regulations, pricing policies, and 

their interactions. This type of direct empirical models, however, appears to be difficult to 

build and estimate. One major reason is the lack of detailed data sets (e.g., local 

congestion data, individual travel consumption, land use regulation data, and pricing 

scheme data). The other major reason is the difficulty of measuring excessive congestion; 

it is difficult to identify the optimal travel demand of each individual traveler. Even we 

can accurately calibrate the analytical model developed in previous chapters using data of 

a realistic city, the corresponding empirical findings may not fit the reality well, since 

many modeling settings are oversimplified (e.g., continuous circular space, radial 

commute, no heterogeneity among residents and firms).  

This chapter thus creates an alternative approach to empirical analysis, with a 

focus on travel-related benefits of a combination of land use and pricing policies. These 

benefits are not directly compared to the optimal level of travel, as the measurement of 

excessive congestion does, but estimated by comparing different policies, including land 

use alone policy, pricing alone policy, and an combination of both policies. Specifically, 

this chapter provides an empirical study to investigate the interactional effects of land use 

and economic factors on auto travel behaviors. Specifically, relying on data from 

Austin’s 2005–2006 household activity-travel survey, this research develops a multilevel 
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multinomial logit (MML) model to estimate the impacts of travel costs and land use 

variables on travel mode choice. 

As reviewed in Chapter 2, while most empirical studies have focused on either 

congestion pricing or land use planning strategies for driving reduction, only limited 

studies have examined a combination of land use and pricing policies as a strategy to 

reduce excessive driving and congestion (e.g., Guo et al., 2011; Lee & Lee, 2014). For 

example, Guo et al. (2011) tracked a pilot mileage fee program in Portland, Oregon with 

130 household participants who needed to pay either a congestion pricing fee or a flat-

rate charge for travel over 10 months. They found that there was a “mutually supportive” 

relationship between congestion pricing and land use planning strategies. Congestion 

pricing can reduce vehicle-miles traveled (VMT) for those households in traditional 

neighborhoods with dense and mixed-use built environments. Also, compact land use 

policies may be more efficient for VMT reduction if congestion pricing is imposed. Lee 

and Lee (2013) investigated how gasoline prices and land use characteristics affect transit 

ridership in 67 urbanized areas from 2002 and 2010. They advocated a complementary 

land use and pricing policy and suggested that the effects of urban land use on transit 

ridership become greater when driving externalities are corrected.  

This chapter proposes a new study with a focus on how travel costs and land use 

variables mutually affect people’s travel mode choice among five alternatives: driving 

alone, shared driving, public transit, bicycling, and walking. Despite this analysis not 

directly measuring traffic congestion, it evaluates (1) whether pricing schemes that 

increase the cost of driving significantly reduce auto travel, (2) whether denser and more 

mixed-use developments lead to less auto dependence, and (3) what benefits from driving 

reduction are induced by incorporating land use and pricing policies. 
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RESEARCH DATA 

Data for this study primarily comes from the 2005–2006 household activity-travel 

survey conducted in Austin, the metropolitan capital area of Texas. The survey recorded 

household information, individual characteristics, vehicle information, and a 24-hour 

activity-travel diary of each adult member in households. The number of responses was 

1,499 households and 4,117 individuals, yielding 18,545 trip records. The study focuses 

on mode choice for nonwork trips, which play an increasingly important role in people’s 

everyday lives. National household travel surveys (NHTSs) from 1969 to 2001 revealed 

that the share of nonwork trips increased from 75% to over 85%, coupled with a 72% 

increase in total trips (USDOT, 2003). Most of the trips, including those of short 

distances (less than 2 miles), were made by driving. Many nonwork trips and activities 

are discretionary and therefore more likely to be influenced by policies than commute 

trips. In particular, the cross-sectional investigation in this study found it difficult to 

estimate the long-term impact of land use on commuting behaviors, as done in Chapters 

3–5. 
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Figure 6.1 Research Area and Locations of Household Sampled in 2005-2006 Austin 

Household Travel Surveyed 

For evaluating the impact of land use planning on travel behaviors, the selected 

research samples are those residents living in the neighborhood planning areas (NPAs) 

and activity centers in Austin (Figure 6.1). This research selects neighborhoods in the 

NPAs rather than TAZs or census blocks as the basic spatial unit for calculating land use 

characteristics. First, the definition of neighborhood boundaries is always based on 

natural objects, like rivers, parks, and transport networks; on socio-demographic and 

Household Locations

Behavioral Units

Non-MXD Neighborhoods

MXDs

¯
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census information; and/or is decided by public meetings and surveys. Residents living in 

a neighborhood are a group with close social and physical association. Second, the 

neighborhood or community is probably the basic spatial unity for marking city plans and 

many land use policies or regulations are imposed based on neighborhoods rather than 

TAZs or census blocks.  

In addition, this study identifies 27 activity centers or mixed-use development 

(MXD) zones in the NPAs, because activity centers have more heterogeneous land use 

and social components than regular neighborhoods and they are often located at the 

intersection of several neighborhoods. In practice the selection of the research sample of 

MXDs took a “bottom up” approach, based on local knowledge of city officials, 

professional planners, staff from the Capital Area Metropolitan Planning Organization 

(CAMPO), and academic experts (Zhang, Kone, Tooley, & Ramphul, 2009). The 

sampling process involved three working steps. First, a list of 49 communities in the 

region was created and the contact information of representative planners or public 

officials collected. Planners or officials were then interviewed by phone to identify 

MXD’s boundaries based on their professional and personal knowledge of their 

communities. Each interviewee was first given a definition of MXD: “A mixed-use 

development or district consists of two or more land uses between which trips can be 

made using local streets without having to use major streets. The uses may include 

residential, retail, office, and/or entertainment. There may be walk trips between uses.” If 

the planner required further clarification, an additional set of characteristics of mixed-use 

districts, as defined by the ULI (Witherspoon, Abbett, & Gladstone, 1976), was provided 

along with known examples, such as the Triangle area in Austin.  

Accordingly, there is a total of 27 MXD neighborhoods in Austin and 65 non-

MXD neighborhoods in Austin (Figure 6.1). After canceling some missing data and 

http://en.wikipedia.org/wiki/Census
http://en.wikipedia.org/w/index.php?title=Public_meetings&action=edit&redlink=1
http://en.wikipedia.org/wiki/Statistical_survey
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zones without households being surveyed, this study includes a sample of 2,141 trips 

recorded by 975 individuals in 427 households located in 79 neighborhoods.  

Land use data comes from ArcGIS-encoded zone data for the research areas, as 

obtained from the City of Austin and CAMPO. The survey also obtained the geographic 

coordinates of activity locations and trip ends (origins and destinations) of the surveyed 

travelers. For travel analysis, these trip ends were geocoded in ArcGIS. Network distance 

was estimated based on the assumption that the traveler took the shortest path in length 

between trip origin and destination. 

DESCRIPTION ANALYSIS 

Table 6.1 Mode Choice Shares of Nonwork Travel Mode and Related Mean Sample 

Values of Level-Of-Service Characters 

Mode Choice Frequency Percent (%) Cost (dollar/ 

mile) 

Time (minutes/ 

mile) 

Driving Alone (DA) 730 34.10  0.95 6.45  

Shared Ride (SR) 1185 55.35  0.41 8.20  

Public Transit(PT) 38 1.77  0.59 12.85 

Walking (WA) 134 6.26  0 28.44  

Bicycle (BI) 54 2.52  0 16.73  

Total 2141 100.00    

Note: The cost and time values are those from CAMPO’s skim file results. 

This research categorizes travel modes into five types: driving alone (DA), shared 

ride (SR), public transit (PT), walking (WA), and bicycling (BI). Among them, shared 

ride is the dominant mode of the nonwork trips of Austin’s residents, occupying as much 

as 55% of the total sample. This percentage is even greater than the mode of driving 

alone, occupying more than one-third of the total (Table 6.1). Nearly 90% of nonwork 

trips in Austin are conducted by automobile. Only 38 trips were recorded as using public 

transit, including bus and taxi, accounting for only 1.77%. More than 8% of the travelers 

employed nonmotorized modes, such as walking and bicycling. Table 6.1 provides 

averages of two level-of-service variables, travel cost and time. On average, the mode of 
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driving alone for a nonwork trip cost the most money and the least time as compared with 

other modes. Travelers walking and bicycling paid no out-of-pocket cost but consumed 

the most time, 28 and 17 minutes per mile on average, respectively.  

Table 6.2 Descriptive Statistics of the Multilevel Structure of Variables 

Variable Explanation Mean/Share Std. Dev. 

Level-1: Individual/Household 

AGE20 Age of the Traveler (1: if age<=20; 0: otherwise) 0.276   

AGE60 Age of the Traveler (1: if age>60; 0: otherwise) 0.201   

FEMALE Gender (1: if female; 0: otherwise) 0.533   

WHITE Race (1: if white, 0: otherwise) 0.501   

EMP Employment Status (1: if employed; 0: otherwise) 0.460  

HHSIZ Household Size (persons) 2.599 1.500 

VEPHM Vehicles per Household Members 1.677 0.813 

HHINC 
Household Income (transferring form degree variables, 

thousand dollars) 
46.083 40.080 

Level2 : MXD/ Neighborhood   

PODEN Population Density (persons/acre) 7.922  4.375  

EPDEN Employment Density (persons/acre) 4.475 5.869  

SWDEN Sidewalk Density (miles/acre) 0.045  0.018  

LUMIX Entropy Index of Land-Use Mix (0-1) 0.602  0.156  

DTNAC Distant to the Nearest Activity Center (miles) 0.922  0.992  

The explanatory variables contain two-level factors, the level of 

individual/household and the level of neighborhood/MXD, as delineated in Table 6.2. 

The individual-level attributes include age, gender, race, employment status, household 

size, and vehicle ownership in the household, while the neighborhood-level variables 

consist of population density, employment density, sidewalk density, land use mixture 

entropy, and distance to the nearest activity center. The entropy index of land use mixture 

is calculated as  j jj )Jln(/)]Pln(*P[ , where Pj is the proportion of developed land 
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in the jth use type and J is the number of land use categories considered. In this study J = 

6: residential, commercial, office, industrial, civic, and open space.  

MULTILEVEL MULTINOMIAL LOGIT MODEL 

The traditional analysis of travel mode choice relies on discrete choice models 

with an assumption of random utility maximization (RUM) (McFadden, 1974; Ben-Akiva 

& Lerman, 1985). Given that an individual i (i = 1,2, …, I) living in the neighborhood j (j 

= 1,2,…, J) chooses an alternative of travel mode m (m = 1,2,…, M), he or she will have 

the following utility function: 

𝑈𝑖𝑗𝑚 = 𝛼𝑗𝑚 + 𝜷𝒋
′
𝒛𝒊𝒋𝒎 + 𝜸𝒎

′
𝒙𝒊𝒋 + 𝜖𝑖𝑗𝑚                                       (6.1) 

where 𝛼𝑗𝑚 is a scalar utility term for alternative m associated with the neighborhood j of 

the individual. 𝒛𝒊𝒋𝒎 is an individual-specific covariate vector that varies with alternatives 

and may also vary over individuals and neighborhoods. The vector 𝒙𝒊𝒋  varies with 

characteristics of individuals and neighborhoods.  

The model developed here underscores the contextual effect of land use on travel 

mode choice. This contextual effect indicates that the impact of level-of-service factors 

on travel mode choice may vary with neighborhoods with diverse land use features. 

Specifically, the coefficients ( 𝜷𝒋) of the alternative-associated variables, such as travel 

cost and time, are hypothesized to vary across neighborhoods. 𝜸𝒎  is the coefficient 

vector of individual-associated variables such as age, income, and household size. They 

are assumed to vary across the alternatives only. 𝜖𝑖𝑗𝑚 is an unobserved standard extreme 

value random term, which represents all other factors affecting the utility of mode choice 

but not included in the regressors. One can assume 𝜖𝑖𝑗𝑚  to be independently and 

identically (IID) distributed. 
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Eq.(6.1) represents the individual-level variation of mode choice. The next step is 

to allow the intercept term 𝛼𝑗𝑚 and the coefficient vectors 𝛽𝑗 for interacting with land use 

variables in the neighborhood level. Thus the Level-2 model is given as follows 

𝛼𝑗𝑚 = 𝛿𝑚 + 𝝅𝒎
′
𝒘𝒋 + 𝜃𝑗𝑚                                                (6.2) 

𝜷𝒋 = 𝝆 +𝑾𝒋𝝁 + 𝝋𝒋                                                               (6.3) 

In Eq.(6.2) 𝛿𝑚  is an alternative-specific constant of the average effect of 

unobserved variables on the utilities associated with the mode m. 

𝒘𝒋 = (𝑤𝑗1, 𝑤𝑗2, …𝑤𝑗𝐾)
′  and 𝑤𝑗𝑘  are land use variables, such as density, walkable 

environment, accessibility, or land use mixture. 𝝅𝒎  is the corresponding coefficient 

vector related to mode m. 𝜃𝑗𝑚~𝑁(0, 𝜎𝑚
2 ) are random terms that represent unobserved 

idiosyncratic difference across neighborhoods. They are assumed to be normally and 

identically distributed across neighborhoods. The coefficients in Eq.(6.3) do not vary 

with the alternatives of travel mode. 𝝆 is an intercept vector indicating the average effect 

of unobserved variables on the slope of level-of-service factors. 𝑾𝒋 is a diagonal matrix 

of land use variables: 

𝑾𝒋 = (

𝑤𝑗1 0 …

0 𝑤𝑗2 …

⋮
0

⋮
0

⋱
…

    

0
0
⋮
𝑤𝑗𝐾

)                                             (6.4) 

𝝁 is the corresponding coefficient vector of land use variables. 𝝋𝒋 is a vector of 

random terms that capture unobserved variations across neighborhoods. All the elements 

of 𝝋𝒋 = (𝜑1, 𝜑2, … , 𝜑𝐾)
′ are assumed to be normally and identically distributed across 

neighborhoods, i.e., 𝜑𝑘(𝑘 =  1, 2, … , 𝐾)~ 𝑁(0, 𝜔𝑘
2).  

Combining the equations from (6.1) to (6.3), the integrated equation is as follows: 

𝑈𝑖𝑗𝑚 = (𝛿𝑚 + 𝝅𝒎
′
𝒘𝒋 + 𝝆

′𝒛𝒊𝒋𝒎 + 𝜸𝒎
′
𝒙𝒊𝒋 + 𝝁

′𝑾𝒋𝒛𝒊𝒋𝒎) + (𝜃𝑗𝑚 +𝝋𝒋
′
𝒛𝒊𝒋𝒎 + 𝜖𝑖𝑗𝑚)   

(6.5) 
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This equation includes two parts: fixed effects and random effects. The segment 

[ 𝛿𝑚 + 𝝅𝒎
′
𝒘𝒋 + 𝝆

′𝒛𝒊𝒋𝒎 + 𝜸𝒎
′
𝒙𝒊𝒋 + 𝝁

′𝑾𝒋𝒛𝒊𝒋𝒎 ] in Eq. (6.5) contains the fixed 

coefficients. The segment [𝜃𝑗𝑚 +𝝋𝒋
′
𝒛𝒊𝒋𝒎 + 𝜖𝑖𝑗𝑚] contains the random error terms. The 

terms 𝑾𝒋𝒛𝒊𝒋𝒎  are a list of interaction terms multiplying LOS variables 𝒛𝒊𝒋𝒎  by 

neighborhood-level land use variables 𝑾𝒋. From these interaction terms we can estimate 

how the effect of the travel cost and time on mode choice is adjusted or moderated by the 

land use context.  

Because 𝒛𝒊𝒋𝒎 connects with the random error vector 𝝋𝒋, the derived total error 

could vary with individual socio-economic attributes. The property of independence from 

irrelevant alternatives (IIA) in MNL models may fail in the multilevel structure. 

Individuals in the same neighborhood are probably interdependent due to unobserved 

heterogeneity within and between neighborhoods (Bhat, Carini, & Misra, 1999; 

Raudenbush & Bryk, 2002).  

Letting the error terms 𝜃𝑗𝑚 (𝑚 = 2,… ,𝑀) and 𝜑𝑘(𝑘 =  2, … , 𝐾) be conditioned, 

the probability of choice of mode m for individual i nested within living neighborhood j 

can be written in the traditional MNL form: 

𝑃𝑖𝑗𝑚|(𝜃𝑗2, … , 𝜃𝑗𝑀 , 𝜑2, … , 𝜑𝐾) =  
𝑒𝑥𝑝 (𝛿𝑚+𝝅𝒎

′
𝒘𝒋+ 𝝆

′𝒛𝒊𝒋𝒎+𝜸𝒎
′
𝒙𝒊𝒋+𝝁

′𝑾𝒋𝒛𝒊𝒋𝒎+𝜃𝑗𝑚+𝝋𝒋
′
𝒛𝒊𝒋𝒎)

∑ 𝑒𝑥𝑝 (𝛿𝑛+𝝅𝒏
′
𝒘𝒋+ 𝝆

′𝒛𝒊𝒋𝒏+𝜸𝒏
′
𝒙𝒊𝒋+𝝁

′𝑾𝒋𝒛𝒊𝒋𝒏+𝜃𝑗𝑛+𝝋𝒋
′
𝒛𝒊𝒋𝒏)

𝑀
𝑛

     

(6.6) 

The unconditional likelihood function for the multilevel choice model does not 

have closed-form solutions. In other words, the maximization of probability requires 

some integral approximation (Raudenbush & Bryk, 2002; Rabe-Hesketh, Skrondal, & 

Pickles, 2004; Grilli & Rampichini, 2007). This research adopts adaptive Gauss-Hermite 

quadrature to integrate the latent variables and obtain the marginal log-likelihood under 

the program gllamm (Rabe-Hesketh et al., 2004) running in the software STATA 12.  
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According to Raudenbush and Bryk (2002) and Rabe-Hesketh, Skrondal, & 

Pickles (2002), the adaptive Gauss-Hermite quadrature technique in maximum likelihood 

(ML) estimation can improve the accuracy of approximate methods compared to other 

techniques such as marginal quasi-likelihood (MQL), penalized quasi-likelihood (PQL), 

Markov Chain Monte Carlo (MCMC), and Gaussian quadrature (GQ). However, the 

adaptive quadrature estimation in the gllamm program could be very slow, particularly 

when the estimation includes many random effects (Rabe-Hesketh et al., 2002). Thus 

such an estimation often needs to first exclude random effects in those insignificant 

coefficients of the Level-1 variables (e.g., 𝛼𝑗𝑚 and 𝝆 in Eq.(6.1)) and to examine which 

random effects can be combined. These statistical adjustments also need to follow 

theoretical assumptions, and the final model should be a balanced structure that achieves 

accuracy and efficiency. 

VARIATIONS IN MODE CHOICE FROM INDIVIDUAL VERSUS NEIGHBORHOOD VARIABLES 

The modeling analysis in this research includes two steps. The first step involves 

an estimation of a base model in which the Level-1 model includes only the alternative 

specific constant and level-of-service variables and the Level-2 model introduces only the 

constant and the error term. The base model, Model 1, is applied to the survey if there are 

neighborhood-level variations in the Level-1 coefficients. We use multiple modeling runs 

to examine coefficients of the LOS variables and the Level-1 intercepts. Results from the 

first-step analysis can show which coefficients of Level-1 variables significantly vary 

with neighborhoods. If no Level-1 variables have contextual effects, the multilevel model 

becomes unnecessary and collapses into the conventional single-level model. Thus Model 

1 is mainly used for estimating variations and to help determine a statistically efficient 

modeling structure.  
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Specifically, if the variances of the random component 𝜎𝑚
2 (𝑚 =  1,2, … ,𝑀) are 

zero, one can conclude that there are no between-neighborhood variations in the average 

log-odds of mode choice. The average log-odds can thus be predicted only by individual-

level variables. We first set 𝜎𝐷𝐴 and 𝜎𝑆𝑅 as random effects. Based on estimations, the 

random intercept variance 𝜎𝐷𝐴
2  is 3.37 with a standard error of 0.96, and 𝜎𝑆𝑅

2  is 2.89 with a 

standard error of 0.80. These results demonstrate that the between-neighborhood 

variations in the log-odds ratios of selecting DA or SR are statistically significant 

compared to other modes. Also, the covariance between 𝜎𝐷𝐴 and 𝜎𝑆𝑅 is estimated as 2.88 

with a standard error of 0.86. This suggests a high correlation between the log-odd of 

choosing DA and SR, indicating that these two random effects can be combined.  

Also, the random effects of 𝛼𝑗,𝑃𝑇, 𝛼𝑗,𝑊𝐴, and 𝛼𝑗,𝐵𝐼 are tested in Model 1. There are 

high correlations between 𝛼𝑗,𝐷𝐴  and 𝛼𝑗,𝑆𝑅  and between 𝛼𝑗,𝑊𝐴  and 𝛼𝑗,𝐵𝐼 . These findings 

suggest a combination of these pairs of random effects. In addition, the random intercept 

variance of public transit 𝜎𝑃𝑇
2  is 7.84 with a standard error of 4.40. The insignificance 

implies that the random effect 𝜎𝑃𝑇
2   can be set as 0. Therefore these variation estimates 

suggest that the model only internalizes the neighborhood-level variation between the 

mode by auto (𝜎𝐴𝑢𝑡𝑜
2 ) and by nonautomobile.  

Table 6.3 shows the results of the final intercept-only model. The utility variance 

of the auto mode, including DA and SR, across neighborhoods is 2.724 with a standard 

error of 0.577. Significantly, the null hypothesis H0: 𝜎𝐴𝑢𝑡𝑜
2  = 0 can be rejected by the t-

test value (t = 4.75). According to Hox (2002) the Level-1 variation of the MNL structure 

is approximated as 
𝜋2

3
 and the intralevel correlation for the null model is 0.453, i.e., 

2.724/(2.724+
𝜋2

3
). These findings show that over 45% of the variations of mode choice 

between auto and nonauto are determined by neighborhood-level contexts. Nearly 55% of 

the variations occur at the individual level. 



166 

Similar tests are conducted to examine the LOS variable. Model 2 adds LOS 

variables into the final Model 1(Table 6.3). The slopes of these level-of-service variables 

in the Level-1 equation represent the effect of a unit change in the value of service 

variables on individual-level log-odds of mode choice, all else being equal. After the 

coefficients of the level-of-service variables are examined only 𝜌1, the slope of the travel 

cost variable, varies significantly across neighborhoods. Therefore the following models 

will consider only the interaction effects between land use variables and the cost variable. 

Table 6.3 Intercept-Only Model with Random-Slope Effects of Level-of-Service 

Variables 

Fixed Effects Note 

Model 1: Base model 

Intercept-only 

Model 2: 

+ level-of-service var. 

Coef. t Coef. t 

Alternative specific constants (Driving alone is base) 

  Shared Ride (SR) 𝛿𝑆𝑅 0.484 10.3 0.235  4.44 

  Public Transit (PT) 𝛿𝑃𝑇 -4.008 -13.8 -4.515  -14.26 

  Walking (WA) 𝛿𝑊𝐴 -2.748 -10.74 0.888  4.15 

  Bicycle (BI) 𝛿𝐵𝐼 -3.657 -13.22 -3.532  -14.46 

Level-of-service variables 
     

  Cost ($) over household  

income (10,000$/yr) (Cost_Inc) 
𝜌1 

  
-9.466  -11.35 

  Travel time (min) 𝜌2 
  

-0.104  -11.53 

Random Effects   
 

      

var (𝜃𝐴𝑢𝑡𝑜) 𝜎𝐴𝑢𝑡𝑜
2  2.724 4.721 7.823  7.03 

var (𝜑𝐶𝑜𝑠𝑡_𝐼𝑛𝑐) 𝜔𝜌1
2  

  
114.792  5.36 

var (𝜑𝑇𝑖𝑚𝑒) 𝜔𝜌2
2  

  
0.031  1.57 

cov (𝜑𝐶𝑜𝑠𝑡_𝐼𝑛𝑐, 𝜃𝐴𝑢𝑡𝑜) 
    

-21.456  -7.26 

cov (𝜑𝑇𝑖𝑚𝑒 , 𝜃𝐴𝑢𝑡𝑜) 
    

-0.089  -0.99 

cov (𝜑𝑇𝑖𝑚𝑒 , 𝜑𝐶𝑜𝑠𝑡_𝐼𝑛𝑐) 
    

1.405  5.15 

Log-likelihood at convergence -2103.025  -1845.037  
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LAND USE VERSUS PRICING IMPACTS ON REDUCING DRIVING 

The second step sequentially enters sociodemographic variables and land use 

variables into the final model with intercept-only random effects derived from the first 

step. For example, Model 3 estimates a model by introducing only sociodemographic and 

level-of-service variables (Table 6.4). Model 4 adds neighborhood-level land use 

variables but still restricts their random effects. Five land use variables are included: 

population and employment density, sidewalk density, land use mixed entropy, and 

distance to the nearest activity center (Table 6.4). Model 5 continues to add random 

effects between and within neighborhood levels. These three models are compared and 

applied to validate land use and pricing effects on reducing driving. 

By comparing Models 3–5, one can conclude that the estimates of LOS 

coefficients are relatively robust. As expected, both coefficients of the cost and time 

variables are negative and both are significant at the 1% confidence level. When the 

median household income is set at $52,780 in Austin, from the 2010 census,
22

 the 

estimated value of time is $4.69 per hour for nonwork trips in Model 3 and $4.65 per 

hour after land use attributes are added in Model 4.  

The coefficients of sociodemographic variables demonstrate that individuals 

living in a larger household are more likely to use the vehicle. Individuals in households 

with more cars have a higher probability of selecting driving alone and shared ride 

modes. The nonwhite group appears more likely to use the nonauto mode but this effect 

is not statistically significant. The coefficient of FEMALE is significant at the 0.10 

confidence level, suggesting that women in the Austin area depend more on vehicle 

travel. Also, employed travelers are more likely to drive for nonwork activities than the 

unemployed. The young group under 20 years old prefers to travel by public transit, 

                                                           
22

 http://www.clrsearch.com/Austin_Demographics/TX/Household-Income 
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walking, and bicycling, whereas the elder group over 60 years old appears to rely more 

on driving. 

After adding land use variables into Model 3, Model 4 has a higher log-likelihood 

value at convergence, from –1,809.93 to –1,800.02 (Table 6.4). The variance components 

for the intercept also change from 3.45 to 3.10, implying that the selected land use 

variables explain 10% (i.e., (3.45 – 3.10)/ 3.45 = 0.101) of the variations in the average 

log-odds of mode choice across neighborhoods. In both Model 3 and Model 4, all the 

effects of LOS variables and sociodemographic variables are in the same direction; the 

magnitude of related coefficients and t-statistics are similar. These findings suggest that 

these variables preserve their significance to predict mode choice after land use variables 

are controlled. Also, land use variables have an independent influence on mode choice 

even after the effects of social demographics, travel cost, and time are monitored. These 

findings are consistent with previous studies in other cities (e.g., Cervero, 2002; Cervero 

& Kockelman, 1997; Zhang, 2004) despite the fact that these studies did not consider the 

contextual effects.  

The coefficients of the land use variables have the expected signs, although only 

two factors are significantly above the 0.05 confidence level (Table 6.4). For example, 

residents living in higher population and employment density areas correlate with a lower 

probability of driving for their nonwork activities but the impact of population density is 

not statistically significant. People living in a neighborhood that has highly mixed land 

use or that is near the mixed-use activity center are more likely to employ nonauto 

modes, such as walking and public transit, to accomplish their day-to-day operations. The 

t-statistics of relative coefficients are both larger than 1.65, approaching the edge of the 

90% significant level. 
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Table 6.4 Models with Socio-Economic Attributes and Land Use Variables 

Fixed Effects Note Model 3: 

+ Fixed effects of Level-1 

variables 

Model 4: 

+ Land-use contextual 

variables 

Coef. t Coef. t 

Alternative specific constants (Driving alone is base) 

  Shared Ride (SR) 𝛿𝑆𝑅 0.375 7.60 0.374 7.58 

  Public Transit (PT) 𝛿𝑃𝑇 0.499 0.85 -1.723 -0.67 

  Walking (WA) 𝛿𝑊𝐴 2.935 5.03 0.701 0.27 

  Bicycle (BI) 𝛿𝐵𝐼 0.155 0.26 -2.081 -0.8 

Level-of-Service Variables      

  Cost ($) over household income 

(10,000$/year) 
𝜌1 -3.173 -10.86 -3.198 -10.85 

  Travel time (min) 𝜌2 -0.047 -9.49 -0.047 -9.49 

Socio-demographic Characters  (specific to Auto mode) 

  Household Size 𝛾1 0.331 4.32 0.302 3.63 

  Vehicles per Household Members 𝛾2 5.819 9.59 5.789 9.4 

  Non-White  𝛾3 -0.135 -0.43 -0.078 -0.24 

  Female 𝛾4 0.396 1.9 0.381 1.81 

  Employed 𝛾5 1.211 3.43 1.267 3.56 

  Age less than 20 𝛾6 -1.219 -4.29 -1.2 -4.19 

  Age over 60 𝛾7 0.798 1.56 0.87 1.69 

Land-use Contextual variables  (For the intercept of  Auto) 

  Population Density (persons/acre) 𝜋1   -0.016 -0.24 

  Employment Density (persons/acre) 𝜋2   -0.061 2.04 

  Sidewalk Density (miles/acre) 𝜋3   -3.268 -0.17 

  Entropy Index of Land-Use Mixture 𝜋4   -2.776 1.65 

  Distant to the Nearest Activity Center 

(mile) 
𝜋5   0.123 1.66 

Random Effects Note Coef. t Coef. t 

var (𝜃𝐴𝑢𝑡𝑜) 𝜎𝐴𝑢𝑡𝑜
2  3.445 3.239 3.185 3.10 

var (𝜑𝐶𝑜𝑠𝑡_𝐼𝑛𝑐) 𝜔𝜌1
2      

cov (𝜑𝐶𝑜𝑠𝑡_𝐼𝑛𝑐, 𝜃𝐴𝑢𝑡𝑜) 
 

     

Log-likelihood at convergence -1809.934 -1800.022 
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Table 6.5 Models with Random Effects and Interaction Effect of Land Use and Cost 

Variables 

Fixed Effects Note Model 5 

+ Random effects of the 

slope of Cost_Inc. 

Model 6:  

+ land-use variables to 

explain the slope 

variation  

Coef. t Coef. t 

Alternative specific constants (Driving alone is base) 

  Shared Ride (SR) 𝛿𝑆𝑅 0.108 2.03 0.081 1.52 

  Public Transit (PT) 𝛿𝑃𝑇 0.078 0.04 -5.091 -2.62 

  Walking (WA) 𝛿𝑊𝐴 3.551 1.64 -1.562 -0.81 

  Bicycle (BI) 𝛿𝐵𝐼 -0.075 -0.03 -5.324 -2.75 

Level-of-Service Variables      

  Cost ($) over household income 

(10,000$/year) 
𝜌1 -7.473 -13.97 -7.768 -2.86 

  Travel time (min) 𝜌2 -0.065 -10.46 -0.068 -10.98 

Socio-demographic Characters  (specific to Auto mode) 

  Household Size 𝛾1 0.209 2.57 0.275 3.57 

  Vehicles per Household Members 𝛾2 8.147 10.09 7.932 10.83 

  Non-White  𝛾3 0.086 0.23 0.343 1.06 

  Female 𝛾4 0.324 1.4 0.355 1.53 

  Employed 𝛾5 1.321 3.31 1.572 3.78 

  Age less than 20 𝛾6 -1.839 -5.83 -1.79 -5.68 

  Age over 60 𝛾7 2.658 3.74 3.206 4.68 

Land-use Contextual variables  (For the intercept of  Auto) 

  Population Density (persons/acre) 𝜋1 -0.007 -0.12 -0.102 -2.35 

  Employment Density (persons/acre) 𝜋2 -0.056 -1.92 -0.098 -2.57 

  Sidewalk Density (miles/acre) 𝜋3 -11.72 -0.72 -6.936 -0.48 

  Entropy Index of Land-Use Mixture 𝜋4 -0.929 -0.37 -1.976 -1.99 

  Distant to the Nearest Activity Center 

(mile) 
𝜋5 0.138 1.5 0.487 4.38 

Land-use Contextual variables  (For the slope of  variable of Cost over Household Income) 

  Population Density (persons/acre) 𝜇1   -0.068 -0.63 

  Employment Density (persons/acre) 𝜇2   -0.075 -0.80 

  Sidewalk Density (miles/acre) 𝜇3   -48.078 -3.18 

  Entropy Index of Land-Use Mixture 𝜇4   2.563 0.68 

  Distant to the Nearest Activity Center 

(mile) 
𝜇5   -1.49 -8.20 
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Table 6.5 (Continued) 
Random Effects Note Coef. t Coef. t 

var (𝜃𝐴𝑢𝑡𝑜) 𝜎𝐴𝑢𝑡𝑜
2  9.084 4.08 18.743 5.63 

var (𝜑𝐶𝑜𝑠𝑡_𝐼𝑛𝑐) 𝜔𝜌1
2  106.177 6.28 69.893 6.39 

cov (𝜑𝐶𝑜𝑠𝑡_𝐼𝑛𝑐, 𝜃𝐴𝑢𝑡𝑜) 
 

 -18.262 -5.98 -20.909 -5.99 

Log-likelihood at convergence -1687.114 -1674.608 

A Need to Incorporate Land Use and Pricing Policies 

This section focuses on the interaction effect between land use and travel cost 

variables and investigates whether neighborhood land use contexts modify the impact of 

travel pricing on mode choice and whether land use policies for reducing driving are 

more efficient when travel costs are raised. Two models are discussed: Model 5 allows 

the slope of the Cost_Inc variable 𝜌1  to vary with neighborhoods and examines the 

random effects; Model 6 introduces land use variables to explain the random effects 

detected in Model 5.  

Table 6.5 presents the estimated results of Model 5 and Model 6. After the 

random effect of the coefficient of the cost variable is relaxed (i.e., from Model 4 to 

Model 5), the log-likelihood value proliferates from –1,800.02 to –1,687.11. This 

indicates that the model randomizing Cost_Inc’s impact on mode choice is a significant 

improvement. The variance components of the slope of Cost_Inc in Model 5 and Model 6 

are 106.18 and 69.89. This finding suggests that the five land use variables explain above 

34% (i.e., (106.17 – 69.89)/ 106.18 = 0.342) of the between-neighborhood variance of the 

slope. Without investigating such contextual effects, the model may underestimate the 

impact of land use and travel cost on mode choice.  

The underlying assumption in Model 6 is that a land use variable has a direct 

effect on mode choice as well as an “interacted” effect through modifying the influence 

of travel cost on mode choice. For example, a higher level of population or employment 
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density is directly associated with a lower probability of driving, including driving alone 

and sharing a ride (Table 6.5). However, the interacted effect of density variables is 

insignificant. These findings suggest that denser development or densification policies 

may lead to less driving and more nonauto trips, but the effectiveness of pricing policies 

for reducing driving demand and congestion may make no difference in denser and auto-

oriented neighborhoods.  

In contrast, the interacted effect of the variable of sidewalk density is significant 

while the direct effect is not. This implies that pricing policies may be more efficient for 

reducing driving in pedestrian-friendly neighborhoods than in auto-oriented 

neighborhoods. This finding is consistent with some empirical studies that argue the 

congestion pricing policies are more welcome in areas supporting other travel alternatives 

like public transit and walking (Mahendra et al., 2012).  

Similar to density variables, the local mixed-use index also has only significantly 

direct effects but insignificantly interacted effects on mode choice (Table 6.5). However, 

the variable of the distance to the nearest activity center, representing regional 

accessibility, has both significantly direct and interacted effects on mode choice. This 

implies that people living in proximity to an activity center will participate in less auto 

travel than those living far away from activity centers, and pricing policies may be more 

effective for those living in areas with higher levels of regional accessibility, e.g., near 

activity centers.  
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Table 6.6 Elasticities of Nonwork Mode Choice with Respect to Land-Use Contextual 

Variables 

Land-use contextual variable Driving 

Alone 

(DA) 

  Shared 

Ride (SR) 

  Public 

Transit 

(PT) 

  Walking 

(WA) 

  Bicycle 

(BI) 

Population Density 

(persons/acre) 

Direct -0.016  -0.010  0.252 0.212  0.151  

 Interacted      

Employment Density 

(persons/acre) 

Direct -0.008  -0.005  0.260  0.126  0.084  

 Interacted      

Sidewalk Density 

(miles/acre) 

Direct      

 Interacted -0.030 -0.007 0.022  0.297  0.194  

Entropy Index of 

Land-Use Mix 

Direct -0.024  -0.015  0.233  0.304  0.187  

 Interacted      

Distance to the 

Nearest Activity 

Center 

Direct 0.012  0.007  -0.192  -0.145  -0.087  

 Interacted 0.031  0.007  -0.015  -0.273  -0.163  

Notes: Only coefficients significant at 0.05 level are shown in the table. All Elasticities reported above are 

probability-weighted average individual elasticities for each mode (see Ben-Akiva & Lerman, 1985, p. 113). 

The elasticities of the ‘interacted’ effects of land use variables are calculated at the weighted average of 

travel cost over income (Cost_Inc). 

 

Table 6.6 reports the direct and interacted probability-weighted average 

elasticities with respect to land use variables for all travel modes calculated by the 

estimates in Model 6. The table lists only significant elasticities. The magnitudes of 

elasticities of driving with respect to land use variables are small (i.e., below 0.03) while 

those elasticities of nondriving are relatively larger, ranging from 0.02 to 0.3. This 

finding suggests that land use policies may be more efficient to promote nonauto travel, 

especially walking and bicycling, than to restrict auto trips. For example, doubling the 

population density in a neighborhood can lead to a 25%, 21%, and 15% increase in the 

likelihood of riding transit, walking, and bicycling, respectively. However, the 

corresponding decreased percentages for choosing driving-alone or shared-ride mode are 
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just 1.6% and 0.8%. As a result, nondriving modes are much more sensitive to 

densification policies than auto modes. 

The interacted effects of land use policies may be as large as, but no more than, 

the direct impact. For example, the direct elasticity of driving alone with respect to the 

distance to the nearest activity center is 0.012 while the interacted elasticity is 0.031. The 

interacted elasticities of walking and bicycling are also larger than the corresponding 

direct elasticities. These interaction effects between land use and travel cost variables not 

only indicate that pricing policies could be more efficient by incorporating with land use 

policies, but also suggest that land use policies are more effective for reducing driving 

demand when the cost of driving is high.  

These results support the theoretical and analytical findings in previous chapters, 

all of which call for incorporating land use and economic policies. Suppose there is 

congestion pricing levied on major roads of Austin, and the cost of driving increases. 

Congestion pricing may have less impact on those living in auto-oriented neighborhoods 

because they have no alternatives to driving. However, for those living in denser 

neighborhoods in proximity to activity centers, congestion pricing will probably make 

them leave their cars and use other travel modes. These evaluations are not limited to the 

congestion pricing. For example, when parking charges are raised, the cost differential 

decreases and driving becomes less likely. In areas with higher levels of sidewalk density 

the effect of raising parking charges on reducing driving is greater. For another example, 

when transit fare is raised, the cost differential between nondriving and driving will then 

increase. Consequently the probability of choosing transit will decrease as indicated by 

the negative coefficient of 𝜌1. The positive coefficient of 𝜇3 in the Level 2 cost model 

indicates that the effect of raising transit fare on choosing transit, however, is smaller in 

areas near activity centers with high regional access, such as downtown, than in areas 
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with low regional access, like a suburban neighborhood. These results indicate that the 

effectiveness of an economic policy like pricing may vary with different land use 

contexts—more compact and mixed-use land use can facilitate the function of pricing 

while low-density sprawling land use may damage the effects of economic policy 

associated with sustainable travel behavior. 

SUMMARY 

This chapter presented an empirical study using land use and travel data from the 

Austin metropolitan area to investigate land use versus pricing effects on travel mode 

choice as well as the interaction impact between land use and travel cost variables. This 

empirical research sought to echo the theoretical and analytical studies in previous 

chapters, which demonstrated a need for incorporating land use and economic policies to 

reduce excessive auto travel and congestion. Land use policies are necessary to correct 

planning failures, while pricing policies are remedies for market failures. This study also 

enriches recent empirical studies in planning for complementary land use and pricing 

policies (Guo et al., 2011; Lee & Lee, 2013).    

This chapter first developed a multilevel logit model with LOS and 

sociodemographic variables estimated at the individual level and land use variables 

estimated at the neighborhood level. Random effects between and within levels were also 

investigated. The key assumption was that land use characteristics not only affect travel 

mode choice directly, but also play a role in shaping neighborhood contexts in which the 

impact of travel costs on mode choice would be modified (i.e., land use contextual 

effects). This assumption was examined using several comparable models.  

The results suggest that neglect of land use contextual effects may lead to 

inaccurate estimation and misleading evaluation of transportation policy. Multilevel 

relationships between individual travel behavior and the neighborhood environment 
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cannot collapse into the traditional single-level regression framework. Over 45% of the 

variations in driving mode choice are determined by neighborhood land use variables, 

and about 55% are between individuals.  

Both land use and cost variables exert significant impacts on mode choice. The 

higher the travel cost to income ratio, the lower the probability of driving. Denser and 

more mixed-use developments significantly decrease the likelihood of auto travel and 

reduce driving frequency. These findings suggest that either land use or pricing policies 

alone reduce auto travel demand. The interaction effects between some land use variables 

and the cost variable are statistically significant. These land use variables include 

sidewalk density and access to the activity center. These findings support those found in 

previous chapters, which illuminate that land use policies could narrow down the 

marginal external costs that should be corrected by pricing, improving the effectiveness 

of pricing policies. In contrast, pricing policies reduce excess travel and congestion 

demand produced by planning failure; the same land use policies are more efficient once 

market failures are corrected. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

PRIMARY FINDINGS AND CONTRIBUTIONS 

This dissertation research places traffic congestion in a broader context of land 

use and economic linkages and contends that congestion relief requires incorporating land 

use and pricing policies. Anti-congestion policies should target at the socially optimal 

level of traffic, rather than the free-flow status without congestion. This research 

concentrates on three research questions: when congestion is excessive, what causes 

excessive congestion, and which policies are most efficient for excessive congestion 

reduction.  

Excessive congestion occurs when the individually desirable amount of auto 

travel exceeds the socially optimal level, in which the marginal social cost (MSC) of 

travel equals the marginal social benefit (MSB). This research articulates two underlying 

causes of excessive congestion: market failures from congestion and agglomeration 

externalities and planning failures from land use regulations such as exclusionary zoning 

and low-density zoning. While much literature recognizes the congestion externality as a 

source of excessive congestion (e.g. OECD, 2007; Anas and Lindsey, 2011), less 

explores how agglomeration externalities and planning failures shape the excessive 

congestion. This dissertation research filled the gap by developing a spatial general 

equilibrium framework internalizing congestion, agglomeration, and planning failures. 

The modeling framework was calibrated using data from the US cities and solved relying 

on computational simulations. This research relied on computational simulations of 

several policy scenarios to examine the moderate effect of agglomeration externalities on 

excessive congestion, estimate the diseconomy of congestion, theorize how market and 

planning failures together determine excessive congestion, and evaluate the optimal and 

practical policies for reducing excessive congestion. Simulation and empirical studies 
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focused on two categories of congestion-relief policies: land use planning and congestion 

pricing. The following sections summarize primary findings in this dissertation.  

Agglomeration Economies Moderate Excessive Congestion 

Simulation findings suggest that excessive congestion could generate a large cost 

to road users and the society while the agglomeration economy could partially 

compensate such a cost. The existence of agglomeration externalities moderates the level 

of excessive congestion because a certain degree of congestion is desired by enhancing 

agglomeration. These findings demonstrate the importance of integrating congestion and 

agglomeration in an analytical framework. Anti-congestion policies can certainly reduce 

the congestion diseconomy but meanwhile would erode the agglomeration economy 

(Chapter 2 and 3).  

An efficient policy for reducing congestion needs to balance the benefits from 

congestion reduction and the loss of reduced agglomeration economies. For example, the 

Pigouvian congestion toll alone policy is no longer socially optimal in cities with 

agglomeration externalities since this policy could reduce too many agglomeration 

economies over the benefits earned from congestion relief. In some simulation cases, an 

imposition of congestion pricing can even lead to a welfare loss than without such a 

pricing policy in the free market.  

The optimal congestion pricing policies need to internalize agglomeration 

externalities and are often hard to design in practice (see discussions in Chapter 3). The 

optimal toll levels across locations may lie below the Pigouvian congestion toll level and 

even become negative in high-productivity areas. In the latter case, the toll is essentially a 

travel subsidy. These findings are consistent with several economic studies (Arnott, 2007; 

Wrede, 2009; and Borck and Wrede, 2009); however, rather little empirical research has 

examined the effects of such a travel subsidy.  
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The Congestion Diseconomy Could Be Much Smaller Than the Total Cost of 

Congestion 

This dissertation research enriches recent debates on the cost of congestion. 

Although the estimation of the total cost of congestion has received substantial critiques 

(Goodwin, 2004; OECD, 2007), many anti-congestion projects in practice remains 

largely relying on the estimation of the total cost of congestion (e.g., Grant-Muller and 

Laird, 2006; OECD, 2007; Bilbao-Ubillos, 2008; Litman, 2009). This research suggests 

that policies aiming to reduce all cost of congestion can largely erode agglomeration 

economies and cause huge welfare loss. The free-flow speeds and traffic are probably 

never socially desirable. Studies should focus more on the estimation of the diseconomy 

of congestion, with considering both costs and benefits of travel captured in the 

transportation, land use, and economic systems. Simulations here show that the 

congestion diseconomy is about 5% to 23% of the total cost of congestion, varying wth 

the levels of congestion and agglomeration. Thus, the congestion diseconomy, or the 

social loss of excessive congestion, could be much smaller than the total cost of 

congestion; a large share of congestion cost is offset by travel benefits, including 

commute profits from wage income, shopping-travel benefits from goods consumption, 

and crowding benefits from agglomeration.  

Planning Failures Can Cause Excessive Congestion 

This dissertation research is among the first to present a theoretical analysis on 

how planning failures cause excessive congestion. The objectives of policies for 

correcting planning failure differ from those remedies for market failure. While policies 

for reducing excessive congestion from market failures often aim to achieve the optimal 

level of congestion, those policies for correcting planning failures aim at removing all 

regulations that deter market outcomes. The target level of congestion is thus the 
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equilibrium level in the free market without any regulations. However, realistic cities are 

full of regulations and externalities. In most cases, both market and planning failures 

contribute to excessive congestion and social inefficiency. Evaluating congestion-relief 

policies needs an innovative analytical framework enabling to internalize both failures. 

The identification of planning failure needs to justify whether market-desired land 

use patterns are constrained by land use regulations. The simulation in this research finds 

a type of optimal land use patterns with the firm cluster decentralized away from the 

urban core. However, this type of urban form is seldom found in reality. One potential 

reason is that planning failure from exclusionary zoning regulations restricts the 

decentralization of firms and jobs. Also, simulations also detect that low-density zoning 

regulations restrict denser development and lead to urban sprawl. 

Based on policy scenarios, planning failures from exclusionary zoning and low-

density zoning regulations could increase travel distance and auto dependence, produce 

excessive driving demand, and accumulate excessive traffic on the streets and highways. 

These findings correspond to the empirical studies from Cervero (1996) and Levine 

(2006). Planning failure can play a dominant role leading to excessive congestion and 

social inefficiency when regulations largely restrict the market-desirable development 

and when the external cost of congestion is small. Since planning failures are insensitive 

to pricing signals, remedies for planning failures require regulatory reform and innovative 

land use planning.  

Even First-Best Pricing Could Be Low Effective When Planning Failures Dominate 

Proponents of pricing policy often believe that economic policies are superior to 

land use policies and regard land use planning as a second-best and replaceable strategy 

for congestion mitigation (e.g., Brueckner, 2007; Kono, 2012). This perspective could be 

true if no planning failure exists in cities. Unfortunately, most municipalities have local 
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land use regulations, and our actual markets are never the free market result or the social 

optimum. Most regulations are insensitive to pricing signals at least at the short term. 

Facing both markets and planning failure, neither congestion pricing nor land use 

planning alone could fully reduce excessive congestion. Even the first-best pricing policy 

(e.g., a combination of Pigouvian congestion toll and Pigouvian labor subsidy) may be of 

very low effectiveness for congestion relief. For example, in a simulated city with 

600,000 workers and jobs, if all firms are restricted to the urban core of 2-mile radius, 

even the first-best pricing policy can only reduce 4% of excessive congestion. Planning 

failure dominates in such a city, land use planning strategies via regulatory reform or 

promoting alternative development could reduce up to about 96% of excessive congestion 

and social inefficiency (Chapter 3).  

This research does not suggest that land use planning strategies are always 

superior to pricing policies. Market failures are still the dominant cause leading to 

excessive congestion in many cases. Designing more efficient policies should bridge 

perspectives from economics and planning and incorporate land use and pricing policies 

in practice. 

Efficient Pricing Policies in Practice Should Concern Agglomeration Benefits and 

Land Use Impacts 

First-best pricing policies can maximize social welfare and eliminate all excessive 

congestion but are difficult to implement in practice, especially when recognizing spatial 

variations (Chapter 3). The first-best toll lies below its related marginal externality cost 

(or benefit), as also found in Arnott (2007) and Thissen et al.’s (2011) empirical analysis 

for the Netherlands. However, the specific optimal tolls levied on drivers can be both 

positive and negative, varying over space. While both first-best tolling and subsidy 

policies are equivalent in theory (Chapter 3), some may suggest that it is easier to 
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subsidize firms than charge drivers; because the public prefers to earn the subsidy rather 

than pay the tolls and subsidizing a few firms may be much easier than tolling the masses 

(e.g., Arnott, 2007). However, my findings challenge this belief since the aggregate 

optimal subsidy will equal the aggregate optimal toll. If the optimal toll is a true negative 

tax, firms need to pay labor tax, rather than receive a positive subsidy when hiring/paying 

a worker. These findings demonstrate that it is important to evaluate the potential impact 

of pricing on agglomeration economies.  

This dissertation research also investigates several more practical pricing policies, 

such as VMT tax and a cordon toll and compares their land use, travel, and rent impacts 

under both monocentric and polycentric settings (Chapter 4). The practical pricing 

policies like VMT Tax and Cordon Toll can partially reduce excessive congestion around 

30% of total excessive congestion from simulations in this research. They can also 

produce significant decreases in average commute distance and travel costs and deliver 

more compact city form. Both the VMT tax and the cordon toll can generate somewhat 

higher household utility although their welfare improvements are less than that of the 

Pigouvian congestion toll policy. They can also partially reduce excessive congestion.  

The VMT tax is predicted to generate a more compact urban form than the 

Pigouvian congestion toll policy, by incentivizing firms and households to locate more 

closely, to reduce commuting distance, while the Pigouvian congestion toll toll may 

allow firms and/or households to trade a longer travel distance for less congestion. The 

compactness effects are also reflected in the findings that all three congestion pricing 

policies can reduce daily travel distance by more than 10% (with results ranging from 

10% to 20%, varying across settings and policies). 

All congestion pricing policies facilitate job decentralization. Simulation results 

show how Pigouvian tolling of travel in the polycentric setting can cause many jobs (17% 
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in this example) to leave the central business district (CBD) and relocate to a relatively 

dense but suburban ring. To achieve city-wide welfare gains, efficient land use 

regulations should permit such job decentralization. Simulations also illuminate how 

simple, distance-based tolls generate lower welfare improvements, but stimulate similar 

land use effects. A cordon toll may agglomerate firms in a smaller CBD if monocentricity 

is required by the model or re-agglomerate companies in a polycentric sub-center ring of 

development.  

Efficient Land Use Policies in Practice Should not Deter Job Decentralization and 

Residential Densification 

This dissertation research surveys four land use planning strategies, including 

urban growth boundaries (UGBs) and firm cluster zoning for correcting market failures 

and residential densification policies and a job-decentralization policy by building a 

suburban employment center for correcting planning failures (Chapter 5). Simulation 

results discover that the UGB regulations may partially correct distortions in both 

transport and labor markets, but may worsen land market distortion via the residential 

rent-escalation effects. The congestion-relief and welfare improvement impact of UGBs 

are trivial. Thus, this finding suggests that UGBs are not an efficient policy for reducing 

congestion. The firm cluster zoning policies by regulating a zone’s land use exclusively 

for firm/business use are probably more efficient than the UGB policies for reducing 

congestion and enhance agglomeration. They can generate welfare improvement closer to 

the first-best levels and will not bring much excessive congestion and excessive 

escalation of housing rents, avoiding the housing affordability issue raised by the UGB 

policies.  

Densification policies by relaxing low-density zoning regulations in a particular 

planning area can partially correct planning failure from low-density zoning and reduce 
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excessive congestion. A city with more stringent low-density zoning regulations probably 

allows more areas for denser development. On the other hand, when firms are regulated 

against decentralization (e.g. due to exclusionary zoning), policies aiming at moving jobs 

to the subcenter need to incorporate both land use and pricing strategies. Simulation 

findings in this research suggest that a subsidy to firms (e.g., labor subsidy for hiring 

workers) is a key trigger to firm decentralization. The optimal setting of job 

decentralization can reduce about half of excessive congestion and improve half of 

welfare. Job decentralization also brings other attractive land-use and transportation 

consequences, including significant drops in firm rents, VMT, and congestion, despite the 

disadvantage from declined agglomeration economies.  

Congestion Relief Should Incorporate Land Use and Economic Policies 

The existence of externalities and regulations cause market and planning failures, 

leading to excessive congestion. While pricing policies are difficult to remedy planning 

failures, an integration of land use planning and pricing strategies are needed to correct 

both failures. This dissertation research first relies on the analytical model and 

computational simulations to quantify the effectiveness of land use planning-alone, 

congestion pricing-alone, and a complementary land use and pricing policies for reducing 

excessive congestion (Chapter 3). Simulation findings suggest that incorporating land use 

and pricing policies is more efficient than the other policies, although the efficiency of 

the land use planning-alone policy is proximity to the combination policy when planning 

failure dominates. Similarly, when cities have less restrictive land use regulations, the 

congestion pricing-alone policy can generate efficiency close to the combination policy. 

Chapter 6 also provides an empirical study relying on land use and travel data 

from the city of Austin. Despite this study does not directly measure the excessive 

congestion, it investigate the land use versus pricing effects on travel mode choice, as 
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well as the interaction impact between land use and travel cost variables. Modeling 

results suggest that the blind to land-use contextual effects may result in inaccurate 

estimation and misleading evaluation of transportation policy. Multilevel relationships 

between individual travel behavior and neighborhood environment cannot collapse into 

the traditional single-level regression framework. Neighborhood-level land use variables, 

determine over 45% of the variations in driving mode choice, and about 55% are within 

neighborhoods.  

Both land use and cost variables exert significant impacts on model choice. The 

higher the travel expenses over income, the less probability of driving occurs. Denser and 

more mixed-use development can significantly decrease the likelihood of auto travel and 

reduce driving frequency. These findings suggest that either land use or pricing policies 

alone can reduce auto travel demand. The interaction effects between some land use 

variables and the cost variable are statistically significant. These land use variables 

include sidewalk density and access to the activity center. These findings support those 

found in previous chapters, which illuminate that land use policies could narrow down 

the marginal external costs that should be corrected by pricing, improving the 

effectiveness of pricing policies. In contrast, pricing policies can reduce excessive travel 

and congestion demand produced by planning failure; the same land use policies can be 

more effective once market failures are corrected. 

Methodological Innovation 

This research serves as a fresh contribution to three important methodological 

debates surrounding multiple urban externalities and planning failures. The first debate 

focuses on the modeling framework applied in analyzing interactions between 

externalities. Both analytical and simulation results in this chapter support previous 

studies’ results, supporting the notion that it is important to use general equilibrium 
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frameworks, rather than non-spatial or partial equilibrium models, and internalize spatial 

interactions when analyzing urban externalities. The model here further suggests that it is 

critical to endogenize firms’ land use decisions (e.g., decentralization and 

agglomeration), which are always neglected in the traditional monocentric model. The 

Pigouvian congestion toll-alone or Pigouvian labor subsidy-alone policies could be the 

optimal policies in the partial equilibrium model that are internalizing congestion or 

agglomeration externalities only. However, in more realistic cities with both externalities, 

the Pigouvian congestion toll alone or Pigouvian labor subsidy alone policies could lead 

to significant land market distortions and welfare loss. Only by considering the land use 

decisions of both firms and households can one quantify such policy impacts. This work 

does not imply that aspatial, partial equilibrium, or monocentric models should be not 

used for policy analysis, but that decision makers should recognize the potential 

distortions when using such models in cities full of distinctive externalities. 

Second, while less research has formulated the economics of planning failure, this 

research develops models internalizing both planning and market failures. This modeling 

development allows the economic model, e.g., the spatial general equilibrium model, for 

investigating more realistic land use and transportation planning issues.  

Third, the empirical study in this dissertation developed a multilevel multinomial 

logit (MML) model to examine the interaction effects between land use and travel cost 

variables. Neighborhood-level land use characteristics are assumed to formulate a 

neighborhood context that modifies the impact of travel cost on travel mode choice. This 

model is innovative in the application of land use and travel studies.  

LIMITATIONS AND FUTURE WORK 

Explicit understanding of how market and planning failures cause excessive 

congestion is important for designing efficient policies of congestion mitigation. The 
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theoretical, simulation, and empirical analysis in this dissertation have investigated the 

efficiency of land use and pricing policies on congestion reduction, economic 

development, land use change, and social welfare improvement. These investigations are 

combined to offer an innovative interpretation of congestion. However, traffic congestion 

that people face every day is much more complicated than that formulated in theoretical 

and empirical models. The following is a discussion of key opportunities for extension of 

this research and modeling analysis.  

First, more anti-congestion policies can be discussed using the simulation 

framework developed here. For example, the theoretical and simulation models can be 

extended to investigate the supply-side policies, such as expanding highways and 

building new roads, and evaluate their effects on congestion reduction. The model can 

internalize land use (e.g., areas and locations) for transportation infrastructure (e.g., 

streets and highways), as done by Wheaton (1998) and De Lara et al. (2013). One can 

solve for this model relying on simulations and determine the optimal road space. Also, 

the model could be extended to consider more than one travel mode (like transit), to 

reflect differences in congestibility and mode-based pricing impacts. This extension is 

useful for evaluating whether public transit development helps to alleviate highway 

traffic congestion. Several monocentric studies have explored the effects of public transit 

on congestion and land development (e.g., Baum-Snow, 2007; Kilani, Leurent, & De 

Palma, 2010; Buyukeren and Hiramatsu, 2015).  

Second, allowing for travel mode and trip scheduling flexibility is important in 

appreciating congestion toll effects. A model that enables a gradual, dynamic city 

evolution is important to explore. The one-shot, static equilibrium typical of papers in 

urban economics is never achieved in practice. In reality, most cities already exist, and 

populations regularly expand, in the midst of great uncertainty and imperfect information, 
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along with speculation and another complex -- but very realistic – human behaviors. 

Several recent studies have explored this topic (e.g., Boucekkine, Camacho, & Zou, 

2009; Desmet and Rossi-Hansberg, 2010). Zhang and Kockelman (2015) developed a 

dynamic spatial general equilibrium model to enable more heterogeneous agents, land use 

detail, population growth, and transitional dynamics, and investigates the zoned-out 

effects on land use and housing affordability. These applied models are powerful for 

simulating the reality, although they are difficult to derive the optimal congestion level. 

They can evaluate more flexible land use and pricing policies applied in our living cities 

and easily connect congestion with urban dynamics of demographics and land use.  

Third, more empirical studies are needed. It is challenging to measure excessive 

congestion directly since it is a relative concept. Empirical studies should break 

congestion issues into several aspects, including direct impacts of congestion on mobility 

and accessibility and indirect impacts on housing selection, land development, and 

agglomeration economies. Moreover, only limited studies have examined the 

effectiveneses of an incorporation of both land use and pricing policies as a strategy for 

reducing driving, VMT, and travel delay (Langer and Winston, 2008; Guo et al., 2011; 

Lee and Lee, 2014). Also, while many empirical studies have focus on the wider 

economic effects of transportation infrastructures (e.g., Graham, 2005; Lakshmanan, 

2011), fewer of them have tackled the wider economic effects of congestion-relief 

policies. Empirical studies should examine the impact of congestion on surrounding land 

and economic development. Since many cities have imposed congestion tolls, it is 

important to evaluate realistic tolling impacts on traffic performance, land development, 

and social welfare.  
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Appendices  

A1: PROOF OF PROPOSITION 3.1 

(a) Since utility maximization and expenditure minimization are fully equivalent, the 

minimum expenditure at the equilibrium utility 𝑢̅ equals the net income 𝑦(𝑥, 𝑥𝑤), i.e., 

𝑦(𝑥, 𝑥𝑤) = 𝑒(𝑟ℎ(𝑥), 𝑢̅). Since 𝑟ℎ(𝑥) is only relevant to location x, one has 

𝑦(𝑥, 𝑥𝑤) ≡ 𝑦(𝑥). Under utility maximization, 𝑐∗(𝑥, 𝑥𝑤) = 𝑐
∗(𝑦(𝑥, 𝑥𝑤)) ≡

𝑐∗(𝑦(𝑥)) = 𝑐∗(𝑥), and 𝑞∗(𝑥, 𝑥𝑤) = 𝑞
∗(𝑟ℎ(𝑥), 𝑦(𝑥, 𝑥𝑤)) ≡ 𝑐∗(𝑟ℎ(𝑥), 𝑦(𝑥)) = 𝑐

∗(𝑥).  

(b) From the first-order conditions of this utility maximization problem, one can derive 

the following: 𝑐(𝑥) + 𝑞(𝑥)𝑢𝑞/𝑢𝑐 = 𝑦(𝑥). In combination with 𝑢(𝑐(𝑥), 𝑞(𝑥)) = 𝑢̅, 

one calculates that 𝑞∗(𝑥) = 𝑞∗(𝑦(𝑥), 𝑢̅) and 𝑐∗(𝑥) = 𝑐∗(𝑦(𝑥), 𝑢̅).  

(c) Since 𝑡(𝑥, 𝑥) = 0, 𝑦(𝑥) = 𝑦(𝑥, 𝑥) = 𝑤(𝑥) − 𝑡(𝑥, 𝑥) = 𝑤(𝑥).  

(d) Since 𝑤(𝑥) ≡ 𝑤(𝑥𝑤) − 𝑡(𝑥, 𝑥𝑤), ∀ 𝑥𝑤 > 0, 𝑤(𝑥𝑤) −  𝑤(𝑥) = ∫ [𝑡(𝑠) + 𝜏(𝑥)]𝑑𝑠
𝑥𝑤

𝑥
. 

Thus,𝑤′(𝑥) = 𝑡(𝑥) + 𝜏(𝑥). From (c), 𝑦′(𝑥) = 𝑡(𝑥) + 𝜏(𝑥). 

A2: PROOF OF PROPOSITION 3.2 

The solutions to the social optimum is achieved by determining each of six 

factors, {𝑛(𝑥), 𝑞(𝑥), 𝑐(𝑥), 𝜃𝑓(𝑥), 𝐹(𝑥), 𝑡(𝑥)}, at each location x so as to maximize the 

households’ utility level under constraints (A1)-(A5), as defined in Problem A. 

Problem A. Choose functions 𝑛(𝑥), 𝑞(𝑥), 𝑐(𝑥), 𝜃𝑓(𝑥), 𝐹(𝑥) so as to maximize 

𝑢(𝑐(𝑥), 𝑞(𝑥)) 

subject to 

(A1) ∫ {2𝜋𝑥 [𝜃𝑓(𝑥)𝛿𝑛(𝑥)
𝜅𝐹(𝑥)𝛾 −

𝜃ℎ(𝑥)

𝑞(𝑥)
𝑐(𝑥) − (1 − 𝜃𝑡)𝑅𝐴] − 𝑡(𝑥)𝐷(𝑥)} 𝑑𝑥

𝑥̅

0
≥ 0 

(A2) 𝜃ℎ(𝑥) + 𝜃𝑓(𝑥) + 𝜃𝑡 = 1 

(A3) 𝐹(𝑥) = 𝜁 ∫ ∫ 𝑟𝜃𝑓(𝑟)𝑛(𝑟)𝑒
−𝜁𝑙(𝑥,𝑟,𝜓)𝑑𝜓𝑑𝑟

2𝜋

0

𝑥̅

0
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(A4) |𝑡(𝑥)| = 𝜑 + 𝜌 (
|𝐷(𝑥)|

2𝜋𝑥𝜃𝑡
)
𝜎

 

(A5) 𝐷′(𝑥) = 2𝜋𝑥 (
𝜃ℎ(𝑥)

𝑞(𝑥)
− 𝜃𝑓(𝑥)𝑛(𝑥)) 

for all x ∈ [0, x̅], with boundary conditions: 

(A6) 𝐷(0) = 0 𝑎𝑛𝑑 𝐷(𝑥̅) = 0 

(A7)  𝑟(𝑥̅) = 𝑅𝐴 

(A8) ∫ 2𝜋𝑥
𝜃ℎ(𝑥)

𝑞(𝑥)
𝑑𝑥

𝑥̅

0
= 𝑁 

Equations (A1)-(A8) are present in the body text of this paper, with the exception 

of constraint (A1), which guarantees a non-negative net social surplus. Given that 

aggregate land rents (net of the opportunity costs) are equally returned to each household 

(in this closed system), the net surplus equals the total value of production, minus general 

consumption, minus and opportunity costs of land, and minus workers’ commute costs. 

The Hamiltonian function of the Problem A is given by: 

𝐻(𝑛, 𝐹, 𝑞, 𝑐, 𝜃𝑓 , 𝑡, 𝐷, 𝛽1, 𝛽2, 𝛽3)

= 𝜆(𝑥)𝑢(𝑐(𝑥), 𝑞(𝑥))

+ 2𝜋𝑥 [𝜃𝑓(𝑥)𝛿𝑛(𝑥)
𝜅𝐹(𝑥)𝛾 −

1 − 𝜃𝑡 − 𝜃𝑓(𝑥)

𝑞(𝑥)
𝑐(𝑥) − (1 − 𝜃𝑡)𝑅𝐴]

− 𝑡(𝑥)𝐷(𝑥) + (𝛽1(𝑥)𝐹(𝑥) − 𝜁 ∫ ∫ 𝛽1(𝑟)𝑟𝜃𝑓(𝑟)𝑛(𝑟)𝑒
−𝜁𝑙(𝑥,𝑟,𝜓)𝑑𝜓𝑑𝑟

2𝜋

0

𝑥̅

0

)

+ 𝛽2(𝑥) (𝑡(𝑥) − 𝜑 − 𝜌 (
|𝐷(𝑥)|

2𝜋𝑥𝜃𝑡
)

𝜎

)

+ 𝛽3(𝑥)2𝜋𝑥 (
1 − 𝜃𝑡 − 𝜃𝑓(𝑥)

𝑞(𝑥)
− 𝜃𝑓(𝑥)𝑛(𝑥)) 

From the conditions of the maximum principle, some of the first-order conditions 

are derived as: 

(A9) 
𝜕𝐻

𝜕𝑛
=

𝜕𝐻

𝜕𝑛(𝑥)
+

𝜕𝐻

𝜕𝑛(𝑟)
=

2𝜋𝑥𝜃𝑓(𝑥)[𝛿𝜅𝑛(𝑥)
𝜅−1𝐹(𝑥)𝛾 − 𝛽3(𝑥)] − 𝜁 ∫ ∫ 𝛽1(𝑟)𝑟𝜃𝑓(𝑟)𝑒

−𝜁𝑙(𝑥,𝑟,𝜓)2𝜋

0

𝑥̅

0
𝑑𝜓𝑑𝑟 = 0 

(A10) 
𝜕𝐻

𝜕𝐹
= 2𝜋𝑥𝜃𝑓(𝑥)𝛾𝛿𝑛(𝑥)

𝜅𝐹(𝑥)𝛾−1 − 𝛽1(𝑥) = 0 
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(A11) 
𝜕𝐻

𝜕𝐷
= −𝛽3′(𝑥)  𝛽3′(𝑥) = 𝑡(𝑥) + 𝜌𝜎 (

|𝐷(𝑥)|

2𝜋𝑥𝜃𝑡
)
𝜎

 

From (A9) and (A10), one can obtain the following relationship in the firm 

cluster: 

(A12) 𝛿𝜅𝑛(𝑥)𝜅−1𝐹(𝑥)𝛾 = 𝛽3(𝑥) − 𝜁𝛾𝛿 ∫ ∫ 𝑟𝜃𝑓(𝑟)𝑛(𝑟)
𝜅𝐹(𝑟)𝛾−1𝑒−𝜁𝑙(𝑥,𝑟,𝜓)

2𝜋

0

𝑥̅

0
𝑑𝜓𝑑𝑟 

When firms’ profits are maximized, from Eq. (3.16), one can derive the 

following: 

(A13) 𝛿𝜅𝑛(𝑥)𝜅−1𝐹(𝑥)𝛾 = 𝑤(𝑥) − 𝑠(𝑥) 

In a socially optimal city, both conditions (A12) and (A13) should be satisfied. 

Thus, 

(A14) 𝛽3(𝑥) = 𝑤(𝑥) − 𝑠(𝑥) + 𝜁𝛾𝛿 ∫ ∫ 𝑟𝜃𝑓(𝑟)𝑛(𝑟)
𝜅𝐹(𝑟)𝛾−1𝑒−𝜁𝑙(𝑥,𝑟,𝜓)

2𝜋

0

𝑥̅

0
𝑑𝜓𝑑𝑟 

Comparing the first-order condition (A11) and Eq.(A14), one can derive the 

following equations: 

(A15) 𝑤′(𝑥) = (𝑠(𝑥) − 𝜁𝛾𝛿 ∫ ∫ 𝑟𝜃𝑓(𝑟)𝑛(𝑟)
𝜅𝐹(𝑟)𝛾−1𝑒−𝜁𝑙(𝑥,𝑟,𝜓)

2𝜋

0

𝑟̅

0
𝑑𝜓𝑑𝑟)

′

+ 𝑡(𝑥) +

𝜌𝜎 (
|𝐷(𝑥)|

2𝜋𝑥𝜃𝑡
)
𝜎

 

When household’s utility is maximized, from Proposition 1d and (A15), one can 

obtain the following relationship: 

(A16) 𝜏(𝑥) − 𝜌𝜎 (
|𝐷(𝑥)|

2𝜋𝑥𝜃𝑡
)
𝜎

=

(𝑠(𝑥) − 𝜁𝛾𝛿 ∫ ∫ 𝑟𝜃𝑓(𝑟)𝑛(𝑟)
𝜅𝐹(𝑟)𝛾−1𝑒−𝜁𝑙(𝑥,𝑟,𝜓)

2𝜋

0

𝑟̅

0
𝑑𝜓𝑑𝑟) ′ 

 

In order to fulfill Eq. (A16) for each location x, we have three strategies: 

(a) A combination of two instruments: 

(A17) {
𝜏(𝑥) = 𝜏𝑝𝑐𝑡(𝑥) = 𝜌𝜎 (

|𝐷(𝑥)|

2𝜋𝑥𝜃𝑡
)
𝜎

                                                                    

𝑠(𝑥) = 𝑠𝑝𝑙𝑠(𝑥) = 𝜁𝛾𝛿 ∫ ∫ 𝑟𝜃𝑓(𝑟)𝑛(𝑟)
𝜅𝐹(𝑟)𝛾−1𝑒−𝜁𝑙(𝑥,𝑟,𝜓)

2𝜋

0

𝑟̅

0
𝑑𝜓𝑑𝑟 

 

(b) When 𝑠(𝑥) = 0, 𝜏(𝑥) = 𝜏𝑝𝑐𝑡(𝑥) − 𝑠𝑝𝑙𝑠′(𝑥), which represents the first-best 

toll at location x. Given Eq. (A5), the total toll revenues thus equal: 
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(A18) ∫ 𝜏(𝑥)𝐷(𝑥)𝑑𝑥
𝑥̅

0
= ∫ (𝜏𝑝𝑐𝑡(𝑥) − 𝑠𝑝𝑙𝑠′(𝑥))𝐷(𝑥)𝑑𝑥

𝑥̅

0
=

∫ 𝜏𝑝𝑐𝑡(𝑥)𝐷(𝑥)𝑑𝑥
𝑥̅

0
− ∫ 2𝜋𝑥𝜃𝑓(𝑥)𝑛(𝑥)𝑠𝑝𝑙𝑠(𝑥)𝑑𝑥

𝑥̅

0
 

Therefore, revenues provided by optimal tolling across the region equal the total 

congestion externality costs of the work commute traffic (or total revenues from the 

Pigouvian congestion toll policy) minus total agglomeration externality benefits (or total 

payments under the Pigouvian labor subsidy policy).   

(c) When τ(x) = 0, s′(x) = spls′(x) − τpct(x). Thus, s(xi, x) = spls(xi, x) −

∫ τpct(x)dx
x

xi
, which represents the first-best subsidy to workers living at xi but 

working at x. Given Eq. (A5) and the fact that θh(x) = 0 , the total first-best 

subsidies equals the following: 

(A19) ∫ 2𝜋𝑥𝜃𝑓(𝑥)𝑛(𝑥)𝑠(𝑥)𝑑𝑥
𝑥̅

0
= −∫ 𝑠(𝑥)𝐷′(𝑥)𝑑𝑥

𝑥̅

0
= ∫ 𝑠′(𝑥)𝐷(𝑥)𝑑𝑥

𝑥̅

0
−

𝑠(𝑥)𝐷(𝑥)|
0

𝑥̅

= ∫ (𝑠𝑝𝑙𝑠′(𝑥) − 𝜏𝑝𝑐𝑡(𝑥))𝐷(𝑥)𝑑𝑥
𝑥̅

0
= ∫ 2𝜋𝑥𝜃𝑓(𝑥)𝑛(𝑥)𝑠𝑝𝑙𝑠(𝑥)𝑑𝑥 −

𝑥̅

0

∫ 𝜏𝑝𝑐𝑡(𝑥)𝐷(𝑥)𝑑𝑥
𝑥̅

0
 

Thus, total optimal subsidy to workers equals the overall benefits of 

agglomeration to the region’s firms minus total external congestion costs. 

A3: A NESTED FIXED-POINT ALGORITHM 

The following computational procedures describe detailed algorithms for solving 

for the optimum and equilibria defined in Chapters 3-5. 

 

Step 0: Set the model’s parameters (following Table 3.2) and tolerances. In our 

simulation, the tolerances 𝜖1~𝜖6 are all set at 1. 

Step 1: Given an initial function 𝜃𝑓
0, there exist a set of equilibrium functions 

{𝐹∗, 𝑤∗, 𝑞∗, 𝑛∗, 𝐷∗, 𝑡∗, 𝜏∗} and equilibrium values {𝑦𝑟𝑒𝑛𝑡
∗ , 𝑦𝑡𝑜𝑙𝑙

∗ , 𝑦𝑠𝑢𝑏𝑦
∗ } that solve Problem 

A. 
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Step 1.0: Define the initial values of the function 𝜃𝑓
0(x). In order to check the 

existence of multiple equilibria, simulations in this paper often use several different 

initial functions of 𝜃𝑓
0(𝑥𝑖), such as: 

𝜃𝑓
0(𝑥𝑖) = {

1 − 𝜃𝑡 , 𝑥𝑖𝜖[1,100]
0,                  𝑜𝑡ℎ𝑒𝑟𝑠

 or {
1 − 𝜃𝑡 , 𝑥𝑖𝜖[1,600]
0,                  𝑜𝑡ℎ𝑒𝑟𝑠

 

               or {
1 − 𝜃𝑡 , 𝑥𝑖𝜖[100,700]
0,                       𝑜𝑡ℎ𝑒𝑟𝑠

 or {
1 − 𝜃𝑡 , 𝑥𝑖𝜖[300,800]
0,                       𝑜𝑡ℎ𝑒𝑟𝑠

 

Step 1.1: Given a set of initial values, 𝐹0,𝑦𝑟𝑒𝑛𝑡
0 , 𝑦𝑡𝑜𝑙𝑙

0 , 𝑦𝑠𝑢𝑏𝑦
0 , one can find an unique 

wage at the city center 𝑤∗(𝑥1) and an unique utility level 𝑢∗ that satisfies the first-

order conditions and the Maximum Principle conditions of Problem A.  

Step 1.1.0: Define the initial values of 𝐹0,𝑦𝑟𝑒𝑛𝑡
0 , 𝑦𝑡𝑜𝑙𝑙

0  and 𝑦𝑠𝑢𝑏𝑦
0 . Our 

simulations set 𝑦𝑟𝑒𝑛𝑡
0 , 𝑦𝑡𝑜𝑙𝑙

0  and 𝑦𝑠𝑢𝑏𝑦
0  as 2000, 0, and 0. The initial values of 

𝐹0(𝑥𝑖) vary with the setting of 𝜃𝑓
0(𝑥𝑖). For example, 𝐹0(𝑥𝑖) = 𝜃𝑓

0(𝑥𝑖) × 10
6. 

Step 1.1.1: Given an initial utility 𝑢0, select an initial wage at 𝑥1, 𝑤0(𝑥1), 

calculate 𝑞0(𝑥1) and 𝑛0(𝑥1) by Eqs. (3.7) and (3.16), then 𝐷0
′(𝑥1) using Eq. 

(3.23). Given 𝐷0(𝑥1) is known, calculate 𝐷0(𝑥2) = 𝐷0(𝑥1) + 𝐷0
′(𝑥1)𝛥𝑥. Given 

𝐷0(𝑥2), calculate 𝑡0(𝑥2) by Eq. (3.5) and 𝜏0(𝑥2) under different policy 

scenarios as defined in Table 3.1. Given 𝑡0(𝑥2), 𝜏0(𝑥2), and 𝑤0(𝑥1), calculate 

𝑤0(𝑥2)=𝑤0(𝑥1)+(𝑡0(𝑥2) + 𝜏0(𝑥2))𝛥𝑥. Repeat the previous calculation, one can 

derive a set of paths {𝑤0(𝑥), 𝑞0(𝑥), 𝑛0(𝑥), 𝐷0(𝑥), 𝑡0(𝑥), 𝜏0(𝑥)}, ∀𝑥1 ≤ 𝑥 ≤ 𝑥𝐼. 

These iterative calculations stop at 𝑥𝐼, that satisfies: 

𝐷0(𝑥𝐼−1) ≤ 0 𝑎𝑛𝑑 𝐷0(𝑥𝐼) ≥ 0 

Step 1.1.2: Calculate the edge household bid-rent 𝑟ℎ(𝑥𝐼). If the boundary 

condition satisfies 

{
|𝑟ℎ(𝑥𝐼) − 𝑅𝑎| < 𝜖1, 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑈𝐺𝐵 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠
𝑥𝐼 = 𝑥𝑢𝑔𝑏 ,                        𝑖𝑓 𝑡ℎ𝑒 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 𝑖𝑠 𝑈𝐺𝐵 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠

, 
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return 𝑤∗(𝑥1) = 𝑤0(𝑥1) and go to Step 1.1.3. Instead, repeat Step 1.1 to find a 

continuous series of central wage 𝑤0(𝑥1), 𝑤1(𝑥1), …, 𝑤𝑛𝑤(𝑥1) until finding the 

𝑤∗(𝑥1). 

Step 1.1.3: Based on 𝑤∗(𝑥1), calculate a set of equilibrium function 

{𝑤∗, 𝑞∗, 𝑛∗, 𝐷∗, 𝑡∗, 𝜏∗}. If the city population reaches the given number, i.e., 

satisfying: 

|∑2𝜋𝑥𝜃𝑓
0(𝑥𝑖)𝑛

∗(𝑥𝑖)𝛥𝑥

𝐼

𝑖=1

− 𝑁| < 𝜖2 

return 𝑢∗ = 𝑢0 and go to Step 1.2. Else, adjust the value of 𝑢0 and repeat the 

Step 1.1.1and 1.1.2 to find a continuous series of 𝑢0
0, 𝑢1

0, …, 𝑢𝑛𝑢
0 until the 

population condition is satisfied 

Step 1.2: Based on 𝑢∗ and {𝑤∗, 𝑞∗, 𝑛∗, 𝐷∗, 𝑡∗, 𝜏∗}, compute land rent as follows: 

𝑟(𝑥) = {

𝑟𝑓(𝑥), 𝑖𝑓 𝜃𝑓
0(𝑥) > 0 𝑎𝑛𝑑 𝑟𝑓(𝑥) > 𝑅𝑎 

𝑟ℎ(𝑥), 𝑖𝑓 𝜃𝑓
0(𝑥) = 0 𝑎𝑛𝑑 𝑟ℎ(𝑥) > 𝑅𝑎

𝑅𝑎,              𝑖𝑓  𝑟ℎ(𝑥) ≤ 𝑅𝑎𝑎𝑛𝑑 𝑟𝑓(𝑥) ≤ 𝑅𝑎

 

Calculate 𝑦𝑟𝑒𝑛𝑡 and 𝐹(𝑥) using Eq.(3.22) and Eq. (3.13)
23

. And calculate 𝑦𝑡𝑜𝑙𝑙 and 

𝑦𝑠𝑢𝑏𝑦 according to the definition in different policy scenarios (Table 3.1). If the 

following conditions are satisfied:  

|𝑦𝑟𝑒𝑛𝑡 − 𝑦𝑟𝑒𝑛𝑡
0 | < 𝜖3 

|𝑦𝑡𝑜𝑙𝑙 − 𝑦𝑡𝑜𝑙𝑙
0 | < 𝜖4 

|𝑦𝑠𝑢𝑏𝑦 − 𝑦𝑠𝑢𝑏𝑦
0 | < 𝜖5 

                                                           
23

 The calculation here of the integral in F(x) follows LRH’s (2002) to use an approximation over a radial 

coordinate system, while Dong and Ross (2015) suggested that the approximation of the production 

externality function F(x) over a rectangular grid system is more precise than a radial coordinate system. 

Dong and Ross argued that the radial coordinate approximation could lead to inaccurate simulated 

outcomes, such as a decrease in job density near the city center, which should never occur in theory. Our 

simulation experience suggests that the two coordinate systems could generate the same approximation of 

F(x) if the interval of angle (or grid) is small enough. While both approximation approaches could bring 

inaccuracy, we believe the imprecision generated by radial coordinate approximation is tolerable in our 

modeling simulations. 
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𝑚𝑎𝑥
∀𝑥𝑖

|𝐹(𝑥𝑖) − 𝐹
0(𝑥𝑖)| < 𝜖6 

return 𝑦𝑟𝑒𝑛𝑡
∗ = 𝑦𝑟𝑒𝑛𝑡, 𝑦𝑡𝑜𝑙𝑙

∗ = 𝑦𝑡𝑜𝑙𝑙, 𝑦𝑠𝑢𝑏𝑦
∗ = 𝑦𝑡𝑜𝑙𝑙, 𝐹

∗ = 𝐹 and go to Step 2. Else, 

replace 𝑦𝑟𝑒𝑛𝑡
0 , 𝑦𝑡𝑜𝑙𝑙

0 , 𝑦𝑠𝑢𝑏𝑦
0 , and 𝐹0 with 𝑦𝑟𝑒𝑛𝑡, 𝑦𝑡𝑜𝑙𝑙, 𝑦𝑡𝑜𝑙𝑙, and 𝐹, and go back to Step 

1.1. 

Step 2: Based on the equilibrium functions {𝐹∗, 𝑤∗, 𝑞∗, 𝑛∗, 𝐷∗, 𝑡∗, 𝜏∗} and equilibrium 

values {𝑦𝑟𝑒𝑛𝑡
∗ , 𝑦𝑡𝑜𝑙𝑙

∗ , 𝑦𝑠𝑢𝑏𝑦
∗ }, calculate a new land use share function 𝜃𝑓(𝑥) using Eqs. 

(3.20) and (3.21). If 𝜃𝑓(𝑥) = 𝜃𝑓
0(𝑥), the simulation ends. Else, set 𝜃𝑓

0(𝑥) = 𝜃𝑓(𝑥) and go 

back to Step 1. If a converged 𝜃𝑓 were not found, one could try different initial values of 

𝜃𝑓 and/or F. 

 

A4: DISCUSSION ON MIXED URBAN CONFIGURATIONS UNDER MULTIPLE 

EXTERNALITIES 

The existence of mixed-use equilibrium has been discussed in several studies 

(e.g., Ogawa and Fujita, 1982; Lucas and Rossi-Hansberg [LRH], 2002; Rossi-Hansberg, 

2004; Duranton and Puga, 2014). These require urban models that endogenize both firms’ 

and households’ location decisions and their interactions, which are difficult to examine 

through traditional monocentric models. The model developed in this paper extends to 

internalize both agglomeration and congestion externalities, thus enabling to discuss the 

existence of mixed urban configurations with multiple externalities. Our theoretical and 

simulation analyses suggest that the partially or completely mixed land use pattern could 

be an equilibrium solution when the congestion level increases or the agglomeration scale 

decreases, as found in those existing literature (e.g., Ogawa and Fujita, 1982; Lucas and 

Rossi-Hansberg, 2002; Duranton and Puga, 2014). However, our findings also show that 

mixed-use equilibrium allocation is never Pareto-optimal in either the free-market or 
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first-best cases. There exists a non-mixed use equilibrium that produces an increase in 

Pareto efficiency, compared to the mixed-use equilibrium allocation.  

 

Figure A1 Spatial Distributions of Job and Residential Densities in Mixed and Non-

Mixed Equilibria (𝜑=60, 𝜌=0.00001, 𝜎=1.5, 𝛾=0.06, 𝑁=600,000) 

Figure A1 provides a simulation example. Under the same parameter sets, the 

solutions to the free-market equilibrium and first-best optimum are not unique. The 

solution can be a mixed urban form (Figure A1a and A1b) or a non-mixed, annular urban 

form (A1c-A1d). In the free-market cases, the utility level in the annular urban 

equilibrium (u=5195) is larger than that in the mixed urban equilibrium (u=5185), leading 

to a CV gain of $72 per household per year. The corresponding first-best policies can 

obtain a CV of $125 per household per year in the mixed-use optimum and $171 per 

household per year in the annular urban optimum. These findings suggest that the non-

mixed equilibrium allocations are more efficient than the equilibrium mixed-use 

allocations in both the laissez-faire cities and the cities with optimal policies correcting 

externalities.  

In theory, the question of whether mixed land use patterns is Pareto-optimal is 

discussed in three situations. The first is a free market where both congestion and 
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agglomeration externalities are not internalized. The second one is that the society 

recognizes both externalities, but do correct them by introducing policy instruments. The 

third one is the social optimum, where the externalities are internalized and fully 

corrected. 

In the free-market case, the constraints (A3) and (A4) in Problem A are relaxed. 

Suppose firms exist at location x, i.e., 𝜃𝑓(𝑥) > 0, the solutions to Problem A satisfy a 

condition on 𝑛∗(𝑥): 

(A20) 𝛿𝜅𝑛∗(𝑥)𝜅−1𝐹(𝑥)𝛾 − 𝛽3(𝑥) = 0, 

and the solutions to the firms’ profits maximization problem require the optimal 𝑛∗(𝑥) 

satisfies:  

(A21) 𝛿𝜅𝑛∗(𝑥)𝜅−1𝐹(𝑥)𝛾 = 𝑤(𝑥) 

Thus, the optimal 𝛽3
∗(𝑥) in the free-market equilibrium should equal 𝑤(𝑥), i.e., 

(A22) 𝛽3
∗(𝑥) = 𝑤(𝑥), if 𝜃𝑓(𝑥) > 0 

If households exist at location x, i.e., 𝜃ℎ(𝑥) > 0, from the first-order conditions 

on  𝑐(𝑥) and 𝑞(𝑥) of Problem A, one can derive the optimal 𝑐∗(𝑥) and 𝑞∗(𝑥) satisfy the 

following condition:  

(A23) 
𝑐∗(𝑥)−𝛽3

∗(𝑥)

𝑞∗(𝑥)
=

𝜕𝑢

𝜕𝑞

𝜕𝑢

𝜕𝑐
⁄  

By comparing the condition (A23) and the conditions of utility maximization, i.e., 

Eqs. (3.7) and (3.8), one can derive: 

(A24) 𝛽3
∗(𝑥) = 𝑦(𝑥) = 𝑤(𝑥) + 𝑦̅, if 𝜃ℎ(𝑥) > 0 

Combining Eqs. (A22) and (A24): 

(A25) 𝛽3
∗(𝑥) = {

𝑤(𝑥) + 𝑦̅, 𝑖𝑓  𝜃ℎ(𝑥) > 0

𝑤(𝑥),         𝑖𝑓  𝜃𝑓(𝑥) > 0 
 

Thus, if 𝑦̅ ≠ 0 , there exist no mixed land use at any location x. If the 

governmental incomes including rent and toll revenues net of subsidy expenditures were 

redistributed back to residents, a mixed urban form would be never Pareto-optimal. 
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However, if the governmental incomes are considered to be owned by an absent landlord 

and/or city authority and are not redistributed, a mixed land use pattern could be an 

optimal solution. This is why a completely or partially mixed urban configuration could 

be a Pareto-optimal solution to the models of Ogawa and Fujita (1982) and Lucas and 

Rossi-Hansberg (2002).  

Under the second situation, Problem A includes the constraints (A3) and (A4) and 

sets 𝜏(𝑥) = 0  and 𝑠(𝑥) = 0 . Similar to the free-market case, one can compute the 

optimal 𝛽3
∗(𝑥) as follows: 

(A26) 𝛽3
∗(𝑥) =

{
𝑤(𝑥) + 𝑦̅,                                                                                         𝑖𝑓  𝜃ℎ(𝑥) > 0

𝑤(𝑥) + 𝜁𝛾𝛿 ∫ ∫ 𝑟𝜃𝑓(𝑟)𝑛(𝑟)
𝜅𝐹(𝑟)𝛾−1𝑒−𝜁𝑙(𝑥,𝑟,𝜓)

2𝜋

0

𝑥̅

0
𝑑𝜓𝑑𝑟,   𝑖𝑓  𝜃𝑓(𝑥) > 0

 

Obviously, there are no mixed land use at any location x even the governmental 

incomes equal zero. Thus, if externalities are realized in the city market but no policy 

instruments are adopted, the optimal urban configuration has no mixed land use areas. 

This finding in fact is consistent with the Theorem 1 in Rossi-Hansberg (2004), though 

his research only internalizes agglomeration externalities.  

Under the third situation, Problem A includes the constraints (A3) and (A4) and 

both 𝜏(𝑥) and 𝑠(𝑥) are set at their optimal levels (equaling their corresponding marginal 

externalities). The optimal 𝛽3
∗(𝑥) equals that in the free-market case, as follows: 

(A27) 𝛽3
∗(𝑥) = {

𝑤(𝑥) + 𝑦̅,  𝑖𝑓  𝜃ℎ(𝑥) > 0

𝑤(𝑥),            𝑖𝑓  𝜃𝑓(𝑥) > 0
 

Thus, similar to the free-market case, the socially optimal land use patterns would 

have no mixed areas, if the rent and toll revenues net of subsidy expenditures were 

partially or totally returned back to residents. 

A5: PROOF OF PROPOSITION 4.1 

Problem 1’s Hamiltonian function is as follows: 
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𝐻1(𝑛, 𝑞, 𝑐, 𝜃𝑓 , 𝛽1, 𝛽2, 𝛽3)

= 𝑢 (𝑐(𝑥), 𝑞(𝑥)) 𝜆(𝑥)⁄

+ 2𝜋𝑥 [𝜃𝑓(𝑥)𝑓(𝑛(𝑥))𝐴(𝐹(𝑥)) −
1 − 𝜃𝑡 − 𝜃𝑓(𝑥)

𝑞(𝑥)
𝑐(𝑥)

− (1 − 𝜃𝑡)𝑅𝐴] − 𝑡(𝑥)𝐷(𝑥)

+ 𝛽1(𝑥)[𝑐(𝑥) + 𝑟ℎ(𝑥)𝑞(𝑥) − 𝑤(𝑥) − 𝑦̅]

+ 𝛽2(𝑥)[𝑓(𝑛(𝑥))𝐴(𝐹(𝑥)) − 𝑤(𝑥)𝑛(𝑥) − 𝑟𝑓(𝑥)]

+ 𝛽3(𝑥)2𝜋𝑥 (
1 − 𝜃𝑡 − 𝜃𝑓(𝑥)

𝑞(𝑥)
− 𝜃𝑓(𝑥)𝑛(𝑥)) 

From the Maximum Principle (Pucci and Serrin, 2007), the first-order conditions 

are as follows: 

(A28) 
𝜕𝐻1

𝜕𝑛
= 2𝜋𝑥𝜃𝑓(𝑥)[𝑓𝑛(𝑛(𝑥))𝐴(𝐹(𝑥)) − 𝛽3(𝑥)] + 𝛽2(𝑥)[𝑓𝑛(𝑛′(𝑥))𝐴(𝐹(𝑥)) −

𝑤(𝑥)] = 0 

(A29) 
𝜕𝐻1

𝜕𝑐
=

𝑈𝑐

𝜆(𝑥)
− 2𝜋𝑥

1−𝜃𝑡−𝜃𝑓(𝑥)

𝑞(𝑥)
+ 𝛽1(𝑥) = 0 

(A30) 
𝜕𝐻1

𝜕𝑞
=

𝑈𝑞

𝜆(𝑥)
+ 2𝜋𝑥

1−𝜃𝑡−𝜃𝑓(𝑥)

𝑞2(𝑥)
𝑐(𝑥) + 𝛽1(𝑥)𝑟ℎ(𝑥) − 𝛽3(𝑥)2𝜋𝑥

1−𝜃𝑡−𝜃𝑓(𝑥)

𝑞2(𝑥)
= 0 

(A31) 
𝜕𝐻1

𝜕𝜃𝑓
= 𝑓(𝑛(𝑥))𝑔(𝐹(𝑥)) +

𝑐(𝑥)

𝑞(𝑥)
−
𝛽3(𝑥)

𝑞(𝑥)
− 𝛽3(𝑥)𝑛(𝑥) = 0 

(A32) 
𝜕𝐻1

𝜕𝐷
= −𝛽3′(𝑥), and thus 𝛽3′(𝑥) = 𝑡(𝑥). 

 

(a) (A28)  𝑓(𝑛′(𝑥))𝐹(𝑥)𝛾 − 𝑤(𝑥) = 0 and 𝑓(𝑛′(𝑥))𝑔(𝐹(𝑥)) − 𝛽3(𝑥) = 0. Then, 

𝛽3(𝑥) =  𝑤(𝑥), and 𝑓(𝑛′(𝑥)) = 𝑤(𝑥)/𝑔(𝐹(𝑥)), so 𝑛∗(𝑥) = 𝑛∗(𝑤(𝑥)). 

(b) Given 𝑟ℎ(𝑥) =
𝑦(𝑥)−𝑐(𝑥)

𝑞(𝑥)
 , (A29)/(A30) = 𝑐(𝑥) + 𝑞(𝑥)𝑢𝑞/𝑢𝑐 = 𝑦(𝑥). Thus, given 

𝑢(𝑐(𝑥), 𝑞(𝑥)) = 𝑢̅, one can solve for 𝑞∗(𝑥) = 𝑞∗(𝑤(𝑥), 𝑢̅) and 𝑐∗(𝑥) =

𝑐∗(𝑤(𝑥), 𝑢̅). 

(c) (A31)  
𝜕𝐻1
𝜕𝜃𝑓

= 𝑟𝑓(𝑥)− 𝑟ℎ(𝑥). Thus, if 𝑟𝑓
∗(𝑥) > 𝑟ℎ

∗(𝑥)   
𝜕𝐻1

𝜕𝜃𝑓
> 0, the larger the 

𝜃𝑓(𝑥), the larger the H. Since 0 ≤ 𝜃𝑓(𝑥) ≤ 1 − 𝜃𝑡, 𝜃𝑓
∗(𝑥) = 1 − 𝜃𝑡. Similarly, if 
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𝑟𝑓
∗(𝑥) < 𝑟ℎ

∗(𝑥), then 𝜃𝑓
∗(𝑥) = 0. If 𝑟𝑓

∗(𝑥) = 𝑟ℎ
∗(𝑥), then 0 < 𝜃𝑓

∗(𝑥) < 1 − 𝜃𝑡 , and 

both firms and households will locate at location x, which is a mixed use area.  

(d) From (a) and (A32) we have 𝑤3′(𝑥) = 𝑡(𝑥). 

A6: PROOF OF PROPOSITION 4.2 

The search for a second-best optimal congestion toll (e.g., a VMT tax and a 

cordon toll) is equivalent to solving Problem 4.1’s optimization by adding constraints on 

𝑡(𝑥) and 𝑤(𝑥) and imposing the following condition: 

(A33)  ∫ 𝜏(𝑥)𝐷(𝑥)
𝑥̅

0
𝑑𝑥 = 𝜖 ∫ 𝜏𝑚𝑐𝑒(𝑥)𝐷(𝑥)𝑑𝑥

𝑥̅

0
, 𝜖 ≠ 1 : 

Eq. (4.10)’s constraint represents the internalized travel cost, while proposition 

4.1d guarantees that the wage gradient equals the marginal private travel cost plus a 

congestion toll, which is s a critical condition for Pareto efficiency. The condition (A33) 

implies that second-best tolls cannot correct all the aggregate congestion externalities; 

such tolls cover just an 𝜖 (𝜖 < 1) share of those external costs.  

With the condition (A33), the first-order condition of the corresponding 

Hamiltonian function with respect to 𝐷(𝑥) is as follows: 

(A34)  𝛽3
′(𝑥) = 𝑡(𝑥) + 𝜌𝜎 (

|𝐷(𝑥)|

2𝜋𝑥𝜃𝑡
)
𝜎

+ 𝜏(𝑥) − 𝜖(1 + 𝜎)𝜌𝜎 (
|𝐷(𝑥)|

2𝜋𝑥𝜃𝑡
)
𝜎

 

Since 𝛽3(𝑥) =  𝑤(𝑥) still holds here (as noted in Appendix A5), (A34) become 

the following: 

(A35)  𝑤′(𝑥) = 𝑡(𝑥) + 𝜌𝜎 (
|𝐷(𝑥)|

2𝜋𝑥𝜃𝑡
)
𝜎

+ 𝜏(𝑥) − 𝜖(1 + 𝜎)𝜌𝜎 (
|𝐷(𝑥)|

2𝜋𝑥𝜃𝑡
)
𝜎

 

Comparing (A35) and the Pareto condition on the wage gradient (Eq. 9), one can 

derive that the optimal toll 𝜏∗(𝑥) needs to reflect/correct for  
1

1+𝜎
 of overall congestion 

externalities. 
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Glossary 

CP:  Congestion Pricing 

CV: Compensating Variation 

EC:  Excessive Congestion 

EZ:  Exclusionary Zoning 

FB:  First Best 

FCZ:  Firm Cluster Zoning 

FM:  Free Market 

HOT:  High-Occupancy Toll 

LDZ:  Low-Density Zoning 

LOS:  Level of Service 

LUP:  Land Use Planning 

MCP:  Marginal Cost Pricing 

MML: Multilevel Multinomial Logit 

MPB:  Marginal Private Benefit 

MPC:  Marginal Private Cost 

MSB:  Marginal Social Benefit 

MSC:  Marginal Social Cost 

PCT:  Pigouvian Congestion Toll 

PLS:  Pigovian Labor Subsidy 

TFF:  Traffic Free Flow 

TFP: Total Factor Productivity 

UGB:  Urban Growth Boundary 

VMT:  Vehicle-Miles Traveled 

https://en.wikipedia.org/wiki/Compensating_variation
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