
Copyright

by

Jose Luis Loyola

2017

The Report Committee for Jose Luis Loyola
Certifies that this is the approved version of the following report:

Eksen: Regression Test Selection for VHDL

APPROVED BY

SUPERVISING COMMITTEE:

Sarfraz Khurshid, Supervisor

Milos Gligoric

Eksen: Regression Test Selection for VHDL

by

Jose Luis Loyola

REPORT

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2017

Dedicated to my wife and parents.

Eksen: Regression Test Selection for VHDL

Jose Luis Loyola, M.S.E.

The University of Texas at Austin, 2017

Supervisor: Sarfraz Khurshid

Regression testing —running tests after a change —has become a criti-

cal component of software development, but as projects grow bigger it becomes

a time consuming task. For this reason Regression Test Selection (RTS) tech-

niques have become very important. RTS consists of analyzing the changes to

a code base and selecting a subset of tests to be run based on these changes.

In the context of regression testing, VHDL development is not so different

from any other programming language. Modules have unit tests and integra-

tion tests. Similarly, the larger the project, the longer it takes to run the test

suite. We propose Eksen, a tool for VHDL test selection inspired by the Ek-

stazi tool for Java. Eksen keeps track of which files have changed including

its dependencies and uses this information to select which tests must be run.

Eksen statically analyzes the VHDL file dependency tree, it determines which

files are affected by the change and only run the tests from that dependency

branch. By targeting only the tests on the dependency branch, Eksen can

significantly reduce the test suite execution time. For evaluation purposes, we

v

implemented two versions of Eksen: one using VUnit (an open-source VHDL

testing framework). The second using a proprietary enterprise VHDL com-

piler. This allowed us to verify the time savings on a real industrial projects.

Eksen was able to cut test time in half on some of these projects. The results

of this experiment are presented in the evaluation section.

vi

Table of Contents

Abstract v

List of Tables ix

List of Figures x

Chapter 1. Introduction 1

Chapter 2. Implementation 4

2.1 Eksen: VUnit Implementation 4

2.1.1 Analysis . 5

2.1.2 Execution . 6

2.1.3 Collection . 7

2.1.4 Usage . 7

2.2 Eksen: Industrial Implementation 8

2.2.1 Analysis . 8

2.2.2 Execution . 10

2.2.3 Collection . 10

Chapter 3. Evaluation 12

3.1 Eksen: VUnit Evaluation . 12

3.1.1 Eksen: VUnit Results 14

3.2 Eksen: Industrial Evaluation 15

3.2.1 VHDL Project α . 16

3.2.2 VHDL Project β . 17

3.2.3 VHDL Project γ . 20

Chapter 4. Related Work 23

vii

Chapter 5. Conclusion 25

Bibliography 27

viii

List of Tables

3.1 VUnit evaluation VHDL project revisions per file 15

ix

List of Figures

3.1 VUnit evaluation project dependency graph. 13

3.2 Results obtained from project α 18

3.3 Results obtained from project β 19

3.4 Results obtained from project γ 22

x

Chapter 1

Introduction

Regression testing is the process of testing software that has been mod-

ified, either because a new feature was added or a bug was fixed. The main

goal of regression testing is to discover new bugs introduced by those changes.

However, as more features are added and the product evolves, more tests are

added to the test suite, which increases the overall execution time; because

the test execution time is directly proportional to complexity of software and

the size of the test suite [12].

Very High Speed Integrated Circuit Hardware Description Language

(VHDL) [11] is an industry standard hardware description language. VHDL

allows programmers to describe digital circuits in a text based manner [1]. The

language allows description of the structure, hierarchy, and functionality of a

digital design. The VHDL code can be simulated and tested for correctness

before manufacturing it on silicon. After the hardware has been verified, it

can be later synthesized and deployed on actual hardware like an Applica-

tion Specific Integrated Circuit (ASIC) or a Field Programmable Gate Array

(FPGA). Since VHDL code synthesis can take a significant amount of time, it

is commonly seen as best practice to create testbenches and run tests before

1

deploying into real hardware. This is even more crucial on ASICs development.

It is critical to verify a digital design before converting it into silicon.

Inspired by the unit testing philosophy of traditional software tools like

JUnit1, VUnit was created [2]. VUnit, which stands for V(HDL)Unit, is an

open source framework that provides the functionality to have an automated

testing suite for VHDL programs. It incorporates features like a Python2 inter-

face; scanners for identifying files, tests, dependencies and file changes; VUnit

also creates report files so it could be integrated easily in other continuous

integration testing environment like Jenkins3; among others. However, VUnit

implements full regression testing, which is costly. By default, VUnit runs

all tests identified by searching for HDL files in given directories. This forces

the test suite to spend time on tests that are not affected by the files that

changed. This is where regression test selection becomes useful. Regression

test selection (RTS) is the technique to effectively select only the tests that

are affected by a set of changes in specific files [9]. It does so, by analyzing

the new and old software revisions, the dependency information from the test

runs on the old revision, and the test suite on the new version. Later, selecting

tests to be run on the new revision.

Eksen is a practical test selection algorithm based on Ekstazi [6]. Ek-

stazi is a Java library for lightweight test selection [8]. Ekstazi does not com-

1http://junit.org/
2https://www.python.org/
3https://jenkins.io

2

pare directly the old and new revisions. Instead, it computes the file depen-

dencies of each test class [7]. If no file dependency has changed the test is

not run. With Eksen we implemented a similar approach for VHDL. Eksen

determines which tests need to be run by checking which files or dependen-

cies have changed since the last time the test suite was run. Based on these

changes, Eksen chooses only the subset of tests from the files impacted by the

changes. In Chapter 2 we explain how Eksen works and the steps it follows

to perform test selection. Chapter 3 presents the time saving results of using

Eksen on small projects and also on Industrial VHDL code bases. Lastly, in

Chapter 5 we present conclusions on the results obtained.

3

Chapter 2

Implementation

An RTS technique typically has three phases [6]: Analysis where the

tests to be run are selected, Execution where the tests selected in the previous

phase are run, and finally the Collection phase where some extra information is

recorded, in order to be used in the Analysis phase again for the next software

revision.

We developed two versions of Eksen: the first one uses open-source

tools (VUnit, GHDL). The second one uses a proprietary compiler used at

National Instruments. The VUnit version of Eksen was developed first as

a proof of concept. The latter was developed to evaluate the benefits of us-

ing RTS on real-world industrial projects. The implementation for both is

explained in Sections 2.1 and 2.2, respectively.

2.1 Eksen: VUnit Implementation

This was the first version of Eksen. It was developed in Python since

VUnit already had a Python interface. The VUnit Python API simplified the

scanning, compilation, and test execution of VHDL testbenches. The following

subsections describe the details of this version of Eksen and mention how it

4

differs from Ekstazi.

2.1.1 Analysis

During this phase, Eksen tests are selected based on their file depen-

dencies. If a file dependency has changed in the new revision, compared to the

old revision, the test is selected. The comparison, however, does not occur by

directly comparing file contents. Instead it computes the MD5 checksum of

the new file revision and compares it against the previously stored checksum.

If there is no checksum history for a file, the test is by default selected. There

are a couple of differences in this phase between Eksen and Ekstazi. First, the

way Eksen computes the checksum is fairly simple, since it reads the object

file generated by the compiler for each dependency (on Windows it computes

the checksum directly from the VHDL source file, because those object files

are not generated [5]). On the other hand, Ekstazi computes a smart checksum

that avoids marking trivial changes, like instructions that after being compiled

are equivalent (e.g. a+=1 and a++), as well as debug information (comments).

This difference could be seen as an advantage or a disadvantage: Ekstazi takes

an additional step to filter imprecise changes. Eksen on the other hand, takes

a conservative approach and flags a file as changed when its checksum does

not match. Ekstazi will tend to select fewer tests since it ignores imprecise

changes. Eksen however, selects the required tests whether the change done

was functional or not. In this sense, Eksen will always run the necessary tests

and possibly some additional ones (caused by imprecise changes).

5

It is important to mention that VUnit already computes checksums

for identified files by its scanners, so it does not have to recompile files that

changed in the new software revision (thus, saving important compilation

time). Another difference between Eksen and Ekstazi is the way file de-

pendencies are calculated. Ekstazi instruments Java code to detect the files

that are accessed during the execution phase. Eksen on the other hand, stati-

cally gathers the list of compilation dependencies per test entity. Since VHDL

usually does not access configuration files because the code is meant to be run

on specialized hardware [13]. Therefore to calculate the list of file dependen-

cies we use VUnit’s Python interface, which retrieves the compile order of a

specific source file given as parameter. When a checksum difference is detected

(or the checksum does not exist) on a specific file F, the tests from F and any

other files that depend on F will be added to the list of selected tests. After

all the files have been analyzed, Eksen moves to the Execution phase.

2.1.2 Execution

In this phase, both techniques are very similar, since they only run the

tests selected in the analysis phase. Perhaps, as said before, the only difference

is that Eksen does not instrument the code that is running, because there is

no need to [13]. Eksen sends the list of files that must be run through VUnit

command line interface and executes the tests.

6

2.1.3 Collection

If the selected tests complete successfully, Eksen saves the newly com-

puted checksums of all affected files, i.e. all dependencies that changed. This

is done by creating a directory structure similar to the new software revision,

and creating a homologous file with the same name as the source file, but

different file extension. The created file contains the checksum for the associ-

ated source file. It is important to note that if any of the selected tests fail,

Eksen will not update the newly computed checksums. This guarantees that

the selected tests will run every time Eksen is executed, until the tests pass.

2.1.4 Usage

Eksen is a command line interface written in Python thought to be

integrated with continuous integration systems. Particularly integrating with

VUnit to accomplish it.

python Eksen <source> <lib>

Where the parameter source is the path to the directory containing

VHDL source and its testbench code. lib is the name of the library that is

chosen in case of having different VHDL libraries to evaluate. This makes

Eksen flexible to be used in different projects on the same machine (e.g. A

continuous integration machine that runs regression tests for different projects

in a company). Eksen uses VUnit scanners to find all VHDL source files

within the directory given as parameter. Next, it builds a dependency graph

computed by all instances needed by each file. This gives us the file compilation

7

order. Eksen uses this dependency graph to detect the files that might be

affected by a particular set of changes between software revisions. Finally it

will run only the selected tests via VUnit Python interface.

2.2 Eksen: Industrial Implementation

To evaluate the effectiveness of RTS techniques on VHDL projects, we

ported Eksen to an industrial environment. This allowed us to apply RTS

to industrial VHDL projects whose code is deployed on real products. The

company we tested it at uses a proprietary VHDL compiler. This compiler

also offers a Python API. Unfortunately, we had to do a complete rewrite

of the version explained in section 2.1 because the VUnit API is completely

different. Furthermore, the company uses Mentor Graphics ModelSim1 to run

the VHDL testbenches (instead of GHDL). The industrial version of Eksen

was also implemented in Python and it goes through the same phases explained

above. On the following subsections we present the improvements added to

the industrial version of Eksen.

2.2.1 Analysis

The analysis stage of the industrial version of Eksen is very similar to

the one explained on section 2.1.1. The proprietary compiler keeps a database

of the current state of the project. We added a new command line option to

the proprietary compiler to run Eksen. This allowed the tool to get access to

1https://www.mentor.com/products/fv/modelsim/

8

the compiler’s database and also it is better aligned with the user-experience

developers were accustomed. One of the elements stored in the database is

the MD5 checksum of each VHDL source file. The compiler uses this to know

which files need to be recompiled. Eksen queries this database to obtain

the latest checksum of each file and compares them to the Eksen-specific

checksum database created at the end of each successful run of the test suite.

If the checksums do not match, Eksen adds the testbench for that file to the

list of tests to run. When the checksum matches Eksen skips the testbench

for that file. This process is done to every source file in the project.

In contrast to VUnit, the proprietary compiler does not have a di-

rect way to run the selected tests. To get around this limitation, Eksen

code-generates a top-level testbench that instantiates the selected testbenches

based on file changes. This gave us a single file containing all the required

tests. This turned out to be a challenging task because industrial testbenches

can get very complex. We encountered testbenches that instantiated other

testbenches. Others that get instantiated multiple times with different values

on its generics2, each of these values tests a module on a different config-

uration so Eksen has to take them into account. The tool takes on these

complications by performing an additional step. After the files that changed

have been found, Eksen searches for all the unit and integration testbenches

available. The tool keeps a record of how many times each test is instantiated,

2In VHDL, generics are constants declared in the header of a component or entity that
change a specific characteristic of the design, e.g. the width of a bus, the depth of a FIFO,
the size of a memory, the frequency of a clock, among others.

9

the different values used for their generics, and if a testbench contains other

testbenches. Once the entire list of tests has been created, Eksen selects the

ones that must be run due to a file or dependency change. From this subset

of tests, Eksen creates a top-level testbench that instantiate all the required

tests with all the different values used on its generics. This ensures that the

test coverage for each module is maintained. After this top-level testbench has

been created, Eksen code-generates a script with the required instructions to

simulate it using Modelsim. This script is created to ease integration with re-

gression test tools like Jenkins. After the creation of this script, Eksen moves

to the Execution phase.

2.2.2 Execution

This stage is the same as section 2.1.2, the selected tests are executed.

At the end of each test Eksen calculates statistics like test run time, number

of failures, and number of tests executed. These are then stored on a source-

controlled file to keep a record of all the runs of the test suite. When the

testbench simulation is done, Eksen moves to the Collection phase.

2.2.3 Collection

When the simulation of the selected testbenches is done, Eksen stores

the checksums for all the source files in a single text file. This implementation

is different from the one described on section 2.1.3. This version stores the

checksums in a single centralized file instead of creating a checksum file per

10

source file. This made the implementation more scalable, especially with large

projects. To prevent the checksum database from keeping record of unused

files, during the Analysis stage Eksen creates a temporary file that contains

the checksums for all the files used in the project. If the tests execution is

successful, Eksen moves the contents of the intermediary file to the centralized

checksum file. On the other hand, if simulation fails, Eksen discards the

temporary file. This ensures that the selected tests are run until they pass.

11

Chapter 3

Evaluation

In this chapter we present the results obtained with both versions of

Eksen. For the VUnit implementation of Eksen we created a basic project

containing some VHDL instances with its respective testbenches. For the

industrial version of Eksen we used real-world VHDL projects to evaluate the

performance of the tool. The results obtained for each version are presented

in sections 3.1, 3.2, respectively.

3.1 Eksen: VUnit Evaluation

To evaluate the VUnit version of Eksen we created a simple VHDL

project containing a few entities with its respective unit tests. Figure 3.1

shows the dependency graph created by the project. Each file is represented

as a node in the directed graph, each node contains the name of the file. The

arrows represent the graph edges, each edge is described by two nodes: source

and target. Figure 3.1 displays dependencies as: A → B, meaning that file A

depends on file B. In other words, to prove the correctness of the technique,

we wanted to be able to query the dependency graph to obtain the set of tests

to run for a particular revision of the code. The tests to run are obtained by

12

Figure 3.1: VUnit evaluation project dependency graph.

grabbing all the nodes in the path from the first changed file back to the root

of the tree. We wanted to measure how much was the testing time reduced

and on which scenarios Eksen could help. We used the open-source VHDL

simulator / compiler GHDL [5] to simulate the testbenches. To test this simple

evaluation project, we modified one file at at time and verified that the actual

number of testbenches selected by Eksen matched the expected number of

tests based on the file hierarchy shown on the dependency graph (Fig. 3.1).To

give a better understanding of the time required to run the tests, first we shall

describe the relevant hardware used for the execution of Eksen. Processor :

Intel Core i7 @ 2.5Ghz and a SSD for massive storage with a read speed of

2Gb/s and a write speed of 1.2Gb/s, to try to reduce the bottleneck between

file system I/O and the actual execution.

13

3.1.1 Eksen: VUnit Results

The first time Eksen is executed, it analyzes all files and runs all

tests. For our evaluation example it took 27.50 seconds on average to run the

complete test suite of 6 testbenches. But Eksen took 28 seconds to complete

running the whole test suite, because it not only executes all the tests but also

analyzes the files and dependencies among files. However, once Eksen runs

again, it only registers a completion time of 0.43 seconds because none of the

files were changed, therefore, none of the tests were selected, and completion

time goes near zero. To test the correctness, we can modify any of the files in

the project, use the algorithm described in the previous section to know which

tests should be run and compare with the tests selected by Eksen. We chose

to modify the files on the evaluation project, each file with a different level of

dependency. Level of dependency in this case could be defined as, the number

of incoming arrows in the dependency graph. That way we can appreciate

better the results of test selection and testing time per file.

As we can see in table 3.1, on average only 14.8% of the time was needed

to run the tests required by the set of changes on every revision. So far we’ve

seen two different scenarios where Eksen could be used and its effects on

testing execution. When there are no changes a normal regression test would

take it near 28 seconds to execute all tests. Eksen is capable of detecting the

changes, skip all tests in 0.48 s. When there are changes in some VHDL files

it selects a subset of the test suite to run the test, decreasing the execution

time to 14.8%. Finally, when all the test suite has to run (the first time or

14

Table 3.1: VUnit evaluation VHDL project revisions per file

File Level Testbenches selected Test time % of tests
AD7685 1 2 9.97s 33.33
AdcSpiInterface 0 1 5.72s 16.67
AluFifoTop 0 1 2.33s 16.67
PkgAdcFifoConfig 1 1 7.96s 16.67
PkgAd7685 3 3 20.45s 50
PkgAluFifoTop 1 1 4.43s 16.67
PkgSimpleAlu 3 2 6.90s 33.33
PkgTbSimUtilities 6 6 28.03s 100
PulseGenWithCount 0 1 10.94s 16.67
SimpleAlu 1 2 13.85s 33.33
StdFifo 1 2 3.69s 33.33

when the computed hashes files do not exist) Since Eksen uses the checksum

of the object files / source files without analyzing the changes, there could

be situations in which an imprecise change (e.g. update a comment, remove

trailing spaces) could cause Eksen to execute the tests from these files.

3.2 Eksen: Industrial Evaluation

We tested the industrial version of Eksen on three VHDL projects of

different sizes. The evaluation was done using the source-control history of

the projects; we ran Eksen sequentially on every revision of the code. For

each project, we started from the first revision, ran Eksen on it; then fetched

the next revision and ran Eksen again. This process was repeated for the

entire history of the code. On every iteration, we recorded the number of tests

15

executed and the time it took to run them. To get a base case, we did a second

run through the entire history of each project. This time we executed all the

tests available (RetestAll) on each revision of the code and recorded both, the

number of tests executed and the time it took to run them. Data collection

was a time-consuming process because these projects have more than a year

of history and the run-time for some of the tests is on the order of hours. The

results obtained for each project are presented in the following subsections.

We assigned the codenames α, β, and γ to identify them.

3.2.1 VHDL Project α

This was the first project we evaluated because it is the smallest. The

project has 160 files and over 98,000 lines of code. This project contains the

smallest number of tests but its top-level tests take a significant amount of time

to run. This caused an interesting behavior on the captured data. The results

for project α are presented in Figure 3.2. Plot 3.2a compares the number of

testbenches that were run with and without Eksen throughout the source-

control history of the project. This figure shows that Eksen significantly

reduces the number of testbenches. However, Figure 3.2b shows that the

time it took to run the tests was very similar even though the number of

selected testbenches was smaller. The results are skewed because the top-level

testbench takes the most amount of time. If a file change is detected, the

top-level testbench is guaranteed to run because it depends on all the files of

the project. In spite of this, Eksen reduced the average test time by 26%.

16

When imprecise changes were done to the code-base, Eksen detected that no

tests were required to run.

3.2.2 VHDL Project β

Project β shows the history of the last hardware revision from a prod-

uct. It has a larger number of files, more revisions logged into the source-

control server, and more testbenches. This project is composed of 384 files

and over 218,000 lines of code. Furthermore, the top-level testbench does not

take too long to run. This made it a better candidate to use Eksen. Figure 3.3

shows the results obtained from running Eksen on its entire revision history.

Figure 3.3a presents the number of tests that were run on each revision of the

code. The plot shows there were several revisions with very targeted changes;

Eksen detected this and selected the minimum set of tests required to run.

Eksen has another interesting feature, it automates the addition of new test-

benches into the RetestAll testbench. The RetestAll testbench is manually

maintained. If a developer creates a new testbench but forgets to add it to

the RetestAll it will not be run by the regression test suite. Eksen on the

other hand, explores the entire code base and it auto-generates a testbench

containing all the tests required to run. This ensures that new testbenches are

included because Eksen will not have any record of them, removing the need

to manually include new tests inside the RetestAll testbench.

Figure 3.3b compares the test times with and without Eksen. The plot

presents a significant reduction in test time. The biggest contributing factor

17

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35 40 45

N
u

m
b

e
r

o
f

te
st

b
e

n
ch

e
s

Revision Number

Testbenches run over project life

RetestAll
RTS

(a) Number of Tests

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45

RetestAll Mean = 92.0333

RTS Mean = 67.4116

T
e

st
 T

im
e

 (
m

in
)

Revision Number

Test times over project life

RetestAll
RTS

(b) Test times

Figure 3.2: Results obtained from project α

18

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90

N
u

m
b

e
r

o
f

te
st

b
e

n
ch

e
s

Revision Number

Testbenches run over project life

RetestAll
RTS

(a) Number of Tests

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90

RetestAll Mean = 39.047

RTS Mean = 6.84756

T
e

st
 T

im
e

 (
m

in
)

Revision Number

Test times over project life

RetestAll
RTS

(b) Test times

Figure 3.3: Results obtained from project β

19

for this reduction is the fact that the top-level testbench does not take too

much time to run. Eksen will always select the top-level testbench whenever

there is a change done to the code base. If it takes too long to run, Eksen

will not reduce test-time by much (like it did on project α). Project β on the

other hand, does most of the testing at the component-level; allowing Eksen

to cut test times down by skipping component-level tests from unchanged

files. Project α and β show the impact the testbench architecture has on the

performance of Eksen. If a project performs most of its testing at the top-

level, Eksen will only reduce test time when there are revisions where no tests

are required to run (e.g. documentation changes). However, Eksen will have

a big impact when a project has exhaustive component-level testing and just

sanity integration tests.

3.2.3 VHDL Project γ

Project γ is larger and more complex than the others. This project

contains the code for multiple modules, but the code base is treated as a

single repository. Because of this, it contains more files and takes longer to

execute all of its tests. The project is composed of 582 files and over 301,000

lines of code. This code base was a great candidate to evaluate Eksen since

the changes usually affect only a few modules, so the tests for the unchanged

modules are not required to run. Figure 3.4 presents the results obtained

from running all the tests and using Eksen. The evaluation was done on

an entire year of the code base history. Figure 3.4a shows how the changes

20

usually affect a few modules and on this evaluation there was not a change that

required to run all the tests; Eksen always selected fewer tests. During the

evaluation of this project we noticed an interesting behavior: there were code

revisions that had changes that broke compilation on several modules. When

compilation fails, the tests for that module are not run (since the code does

not compile). Because of this, the number of tests run by RetestAll were fewer

than the previous run. These data points were excluded from the data because

compilation failures reduce the number of tests run and do not represent the

actual test time required by RetestAll.

Figure 3.4b compares the time it took to run all the tests versus the

time it took when using Eksen. Here we also see a significant reduction in

test time because Eksen always selected fewer tests. Since project γ contains

more files, and hence more tests, the probability that a given change affects all

the modules is small. Because of this, Eksen is able to reduce total test time

by skipping unnecessary tests. If we add all the points from the RetestAll plot

on figure 3.4b, i.e. the total time it took to run all the tests on all revisions,

we found it was around 5.3 days. If we do the same for the RTS plot we found

that it was around 1.8 days; that is a 66% reduction in test time. Project

γ showed that if the code base is very large, Eksen can have a significant

reduction in the total test time.

21

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35

N
u

m
b

e
r

o
f

te
st

b
e

n
ch

e
s

Revision Number

Testbenches run over project life

RetestAll
RTS

(a) Number of Tests

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35

RetestAll Mean = 178.915

RTS Mean = 64.4877

T
e

st
 T

im
e

 (
m

in
)

Revision Number

Test times over project life

RetestAll
RTS

(b) Test times

Figure 3.4: Results obtained from project γ

22

Chapter 4

Related Work

We mentioned Ekstazi [6], which is a Java library for test selection.

The algorithm implemented by Eksen was based on the work from Gligoric,

Eloussi, and Marinov [8]. Ekstazi collects the file dependencies as the tests

are executed and it uses the data from previous runs to filter the number of

tests to be executed. A key element from Ekstazi is that it uses non-debug

checksums. This filters even more tests because it ignores source file changes

that do not affect functionality.

Ekstazi has also been ported to the .NET environment [15]. This ver-

sion is called Ekstazi# and it is written in C#. Ekstazi# instruments code

statically (before executing tests) due to the fact that .NET does not sup-

port dynamic class rewriting. Ekstazi# also implements non-debug check-

sums, which ignores imprecise changes. This library was tested on several

open source projects and was proven to reduce overall test time compared to

RetestAll.

Celik et al. [4] present a dynamic RTS technique that moves up to

the operating system level to detect all the dependencies of a test. This tool

is implemented as a loadable Linux kernel module, this allows it to explore

23

beyond the Java virtual machine. The experiments done show that this tool

achieved similar savings as the original Ekstazi for Java.

24

Chapter 5

Conclusion

In this report we presented Eksen, a tool that performs regression test

selection for VHDL projects inspired by Ekstazi for Java. Eksen keeps record

of the hashes for all the files in the project and uses them to select which tests

must be run. In Chapter 2 we presented how Eksen works and analyzed the

differences between Eksen and Ekztazi. In Chapter 3 we presented the effects

the testbench architecture has on the efficiency of Eksen. If the project does

most of its testing at the top-level, then Eksen will run the top-level testbench

whenever there is a change. In this case, Eksen will only help when no tests

were required to run (this effect was shown on project α). On the other hand,

if most of the testing is done at the component level, then Eksen will have

a considerable reduction on test time. This effect was shown on project β.

Finally, we observed the impact the size of the project has on test time. If

the code repository consists of several modules (each with its own top-level

testbench), Eksen can have a significant reduction in test time. This effect

was shown in project γ. Eksen helps reduce test time of a VHDL project.

If Eksen is paired with a continuous integration system, it can help prevent

code-rotting (code that no longer compiles, or tests that no longer pass due

to changes) while minimizing test times. Reducing test time gives developers

25

feedback faster. Faster feedback lets developers know sooner if a there is a

problem that needs to be fixed. This helps to reduce the overall development

cycle of a project and at the same time reducing the development costs for the

project.

26

Bibliography

[1] Peter J. Ashenden. The VHDL Cookbook. Peter J. Ashenden, Dept.

Computer, Science University of Adelaide, South Australia, 1 edition, 7

1990.

[2] Lars Asplund. Vunit: A test framework for hdl. https://vunit.

github.io/, 2016. [Online; accessed 21-April-2016].

[3] Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Suku-

maran. Regression test selection techniques: A survey. Informatica,

35(3), 2011.

[4] Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric. Re-

gression test selection across jvm boundaries. FSE., 2017.

[5] Tristan Gingold. Ghdl. http://ghdl.free.fr/.

[6] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Ekstazi: Lightweight

test selection. International Conference on Software Engineering, pages

713–716, 5 2015.

[7] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practical regression

test selection with dynamic file dependencies. International Symposium

on Software Testing and Analysis, pages 211–222, 7 2015.

27

[8] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Ekstazi: Lightweight

test selection. http://www.ekstazi.org/, 2016. [Online; accessed 21-

April-2016].

[9] Milos Gligoric, Rupak Majumdar, Rohan Sharma, Lamyaa Eloussi, and

Darko Marinov. Regression test selection for distributed software his-

tories. International Conference on Computer Aided Verification, pages

293–309, 7 2014.

[10] Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and

Gregg Rothermel. An empirical study of regression test selection tech-

niques. ACM Trans. Softw. Eng. Methodol., 10(2):184–208, April 2001.

[11] IEEE. Ieee standard vhdl language reference manual. IEEE Std 1076-

2008 (Revision of IEEE Std 1076-2002), pages c1–626, Jan 2009.

[12] John Micco and Developer Infrastructure. Continuous integration at

google scale. h ttp://eclipsecon. org/2013/sites/eclipsecon. org, 2013.

[13] Douglas E Ott and Thomas J Wilderotter. A designer’s guide to VHDL

synthesis. Springer, 2013.

[14] G. Rothermel and M. J. Harrold. Analyzing regression test selection

techniques. IEEE Transactions on Software Engineering, 22(8):529–551,

Aug 1996.

28

[15] Marko Vasic, Zuhair Parvez, Aleksandar Milicevic, and Milos Gligoric.

File-level vs. module-level regression test selection for .net. In Symposium

on the Foundations of Software Engineering, Industry Track, 2017.

[16] Shin Yoo and Mark Harman. Regression testing minimization, selection

and prioritization: a survey. Software Testing, Verification and Reliabil-

ity, 22(2):67–120, 2012.

29

