
 

 
 
 
 
 
 

A New Estimation Approach to Integrate Latent Psychological Constructs in Choice 
Modeling 

 
 
 
 
 
 

Chandra R. Bhat* 
The University of Texas at Austin 

Department of Civil, Architectural and Environmental Engineering 
301 E. Dean Keeton St. Stop C1761, Austin TX 78712 

Phone: 512-471-4535; Fax: 512-475-8744 
Email: bhat@mail.utexas.edu 

and 
King Abdulaziz University, Jeddah 21589, Saudi Arabia 

 
 

and 
 
 

Subodh K. Dubey 
The University of Texas at Austin 

Department of Civil, Architectural and Environmental Engineering 
301 E. Dean Keeton St. Stop C1761, Austin TX 78712 

Phone: 512-471-4535, Fax: 512-475-8744 
E-mail: subbits@gmail.com 

 
 
 

*corresponding author 
 
 

 

 

 

July 27, 2013 



ABSTRACT 

In the current paper, we propose a new multinomial probit-based model formulation for 

integrated choice and latent variable (ICLV) models, which, as we show in the paper, has several 

important advantages relative to the traditional logit kernel-based ICLV formulation. Combining 

this MNP-based ICLV model formulation with Bhat’s maximum approximate composite 

marginal likelihood (MACML) inference approach resolves the specification and estimation 

challenges that are typically encountered with the traditional ICLV formulation estimated using 

simulation approaches. Our proposed approach can provide very substantial computational time 

advantages, because the dimensionality of integration in the log-likelihood function is 

independent of the number of latent variables. Further, our proposed approach easily 

accommodates ordinal indicators for the latent variables, as well as combinations of ordinal and 

continuous response indicators. The approach can be extended in a relatively straightforward 

fashion to also include nominal indicator variables. A simulation exercise in the virtual context 

of travel mode choice shows that the MACML inference approach is very effective at recovering 

parameters. The time for convergence is of the order of 30 minutes to 80 minutes for sample 

sizes ranging from 500 observations to 2000 observations, in contrast to much longer times for 

convergence experienced in typical ICLV model estimations. 

 

Keywords: Multinomial probit, ICLV models, MACML estimation approach. 
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1. INTRODUCTION 

Economic choice modeling has been the mainstay of human behavioral modeling in many fields, 

including geography, urban planning, marketing, sociology, and transportation. The typical 

paradigm is based on a latent construct representing the value or utility that an individual 

decision-maker assigns to each of many available and mutually exclusive alternatives. The 

choice of an alternative is assumed to be the result of that alternative’s utility being higher than 

its competitors in the perception space of the decision-maker. This utility itself is typically 

mapped to observed characteristics of the decision-maker (such as the socio-demographics of an 

individual in work mode choice modeling) and observed characteristics of the alternatives (such 

as travel time and travel costs by alternative modes in work mode choice modeling). To 

acknowledge that there may be unobserved characteristics of decision-makers (such as attitudes 

and lifestyle preferences) that are likely to impact choice, one of three approaches has been used 

in the literature. The first approach allows the intrinsic preference for alternatives as well as the 

sensitivities to alternative attributes to vary across decision-makers, using discrete (non-

parametric) or continuous (parametric) random distributions to capture sensitivity variations (or 

taste heterogeneity). Early examples include the studies by Revelt and Train (1996), Bhat (1997), 

and Bhat (1998), and there have now been many applications of this approach, using latent 

multinomial logit and mixed logit formulations. A problem with this approach, though, is that 

some of the attitudes may be correlated with explanatory variables. Thus, an individual who is 

environmentally-conscious (say an unobserved variable) may locate herself or himself near 

transit stations, generating a correlation between the unobserved variable and a transit travel time 

variable used as an explanatory variable. Such correlations lead to inconsistent estimation. 

Besides, this method treats unobserved psychological preliminaries of choice (i.e., attitudes and 

preferences) as being contained in a “black box” to be integrated out. The second approach uses 

indicators of attitudes directly as explanatory variables in choice models. Such a technique has 

been used by Koppelman and Hauser (1978), Bhat et al. (1993), and many other subsequent 

studies. But this approach assumes that the indicators of attitudes directly represent the 

underlying attitudes that actually impact choice, which may not be the case. Rather, the 

indicators may be proxies of attitudes that are captured with some measurement error. Ignoring 

measurement error will, in general, lead to inconsistent estimation (see Ashok et al., 2002). 

Further, the attitude indicators may be correlated with other unobserved individual-specific 
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factors that influence choice, rendering the estimation potentially inconsistent. In addition, the 

lack of a structural model to relate the attitudes to observed explanatory variables implies that the 

estimated model cannot be used in forecasting mode. The third approach is to undertake a factor 

analysis of the indicators to develop latent variables, typically using a multiple indicator multiple 

cause (MIMIC) model in which the latent variables are explained by a combination of observable 

indicators and observed (individual and alternative-specific) covariates. Essentially, factor 

analysis has the purpose of reducing the high number of correlated attitudinal indicators to a 

more manageable and relatively orthogonal set of latent variables, which are subsequently used 

as “error-free” explanatory variables (along with other covariates) in the choice model of 

interest. But such an approach, like the second approach discussed earlier, is, in general, 

econometrically inconsistent. This is because latent variables specific to individual alternatives 

(such as comfort level of traveling on a bus in a mode choice model), or latent variables 

interacted with variables that vary across alternatives (such as perceptions of security that may 

interact with the travel time on the mode), lead to heteroscedasticity across the errors of the 

alternatives in the choice model, and latent variables applicable to a subset of alternatives (such 

as the sociable nature of the individual that may affect the utility ascribed to all transit modes) 

generate correlation patterns across the errors of the alternatives. Further, if the latent variables 

are interacted with individual-specific observed variables (such as the comfort level of traveling 

on the bus affecting bus utility through its interaction with the travel time on the bus), the result 

is also heterogeneity across individuals in the entire covariance matrix of alternatives (this is an 

issue that does not seem to have been acknowledged in the previous literature). Such a complex 

covariance matrix structure across alternatives and across individuals necessitates the explicit 

consideration of stochasticity in the latent variables. 

 A rapidly growing field of study that integrates latent psychological constructs such as 

attitudes and preferences within traditional choice models takes the form of a hybrid model that 

is commonly referred to as the Integrated choice and latent variable (ICLV) model (see Ben-

Akiva et al., 2002 and Bolduc et al., 2005). In this approach, the objective is to gain a deeper 

understanding into the decision process of individuals by combining traditionally used “hard” 

covariates with “soft” psychometric measures associated with individual attitudes and 

perceptions. In this way, there is recognition that latent individual-specific variables (attitudes 

and perceptions) may be just as important as observed covariates in shaping choice and that their 
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inclusion is likely not only to shed more light on the actual decision process but also potentially 

enhance the predictive ability of the model (Temme et al., 2008, Bolduc and Alvarez-Daziano, 

2010). A typical ICLV model includes a latent variable structural equation model that relates 

latent constructs of attitudes and perceptions to observed covariates. Further, the latent constructs 

(or variables) themselves are viewed as being manifested through the attitudinal and perception 

indicator variables in a latent measurement equation model, which recognizes the presence of 

measurement error in capturing the intrinsic latent constructs. In the event that one of more of the 

indicators are not observed on a continuous scale, but observed on an ordinal or nominal scale, 

the measurement equation also serves the role of mapping the continuous latent constructs to the 

ordinal or nominal scale of the observed attitudinal indicator variables. Finally, the “soft” latent 

variables and the “hard” observed variables are used together to explain choice in a random 

utility maximizing choice model set-up.   

 While the number of applications of ICLV models has been on the rise in recent years 

(see, for example, Johansson et al., 2006, Bolduc et al., 2005, Temme et al., 2008, Alvarez-

Daziano and Bolduc, 2013, and Daly et al., 2012), the use of such models is severely hampered 

by (1) the restrictive specifications used in application, (2) the difficulties encountered in 

estimation, and (3) the amount of time it takes to estimate these models (typically of the order of 

a day for one specification run). Thus, earlier applications of the ICLV model typically use an 

independent and identically distributed Gumbel error term for the stochastic component of the 

utility of alternatives, imposing a priori the notion that, net of the latent attitudinal factors and 

observed covariates, there is no remaining correlation across the utilities of alternatives. 

Similarly, the error correlations in the latent variables are almost always ignored within the latent 

variable structural equation model. Such correlations in the latent variables may arise because of 

common underlying unobserved individual values that are precursors to attitude formation and 

that may impact multiple attitude variables at once (see Temme et al., 2008). Also, the 

estimation method of choice for ICLV models has been the maximum simulated likelihood 

approach, similar to those developed for the traditional mixed logit model with random 

coefficients or error components (see Bhat, 2001). However, while these simulation techniques 

work quite well for the traditional mixed logit, their use in ICLV models has been problematic 

because the integrand in ICLV models is itself a mixture of two probabilities (the probability of 

choice conditional on explanatory and latent variables, and the probability of the latent variable 
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conditional on explanatory variables), which has to be integrated over the distribution of the 

latent variables conditional on explanatory variables. On the other hand, the integrand in the 

mixed logit model is simply the multinomial probability that has to be integrated over the 

distribution of the unobservables, which is far easier and less involved. As a result, it is quite 

routine to encounter convergence problems in ICLV models. For example, Alvarez-Daziano and 

Bolduc (2013) indicate that, unless the second derivatives of the logarithm of the likelihood 

function of ICLV models is analytically coded and provided, it is difficult to obtain convergence 

in ICLV models using simulation techniques. In this regard, they note that most software that 

allow for custom likelihood provision but use approximations to the Hessian during optimization 

do not guarantee convergence in ICLV models. This is particularly the case with many latent 

variables or constructs, since the number of latent variables has a direct bearing on the 

dimensionality of the integral that needs to be evaluated in the log-likelihood function of ICLV 

models. The consequence has been that most ICLV models in the literature have gravitated 

toward the use of a limited number of latent constructs, rather than exploring a fuller set of 

possible latent variables.  

In the current paper, we propose a different model formulation for the ICLV model, 

based on a multivariate probit (MNP) kernel that alleviates the specification and estimation 

challenges discussed above. To our knowledge, this is the first study to use a probit kernel within 

an ICLV setting. As we show in the rest of this paper, doing so has many advantages, especially 

when combined with our proposal to estimate the resulting model using Bhat’s maximum 

approximate composite marginal likelihood (MACML) inference approach. In particular, the 

dimensionality of integration in the log-likelihood function is independent of the number of 

latent variables, and is only of the order of the number of alternatives in the choice model. Given 

that the number of alternatives in most applications of ICLV models is small, our formulation 

has a distinct advantage over the traditional ICLV formulation. In this context, it is quite 

remarkable that no earlier ICLV formulation has considered using an MNP kernel. We believe 

that this is because of a fixation with the mixed logit model, which may be easier to estimate 

than the MNP model in a traditional choice model when there are a number of alternatives and 

few random coefficients or error components to integrate over. But the situation changes with the 

ICLV model, and, in general, the MNP kernel is much more convenient to use. Further, the use 

of our analytic approximation in the MACML approach to evaluate the multivariate cumulative 
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normal distribution (MVNCD) function in our MNP-based ICLV model does away with the 

convergence problems associated with the MSLE estimation. This is because of the smoothness 

of our analytically approximated log-likelihood surface, which leads to well-behaved surfaces for 

the gradient and hessian functions. In turn, this allows the use of widely available optimization 

software in which the Hessian is approximated numerically. Further, our approach very easily 

handles the case of ordinal indicators for the latent variables, as well as combinations of ordinal 

and continuous response indicators, rather than assuming these indicators to all be continuous (as 

in Alvarez-Daziano and Bolduc, 2013) or all be ordinal (Daly et al., 2012).  In this regard, we 

develop a blue print, complete with appropriate matrix notation, for the formulation, estimation, 

and software coding of ICLV models with a combination of two different kinds of response 

indicators (the approach is extendible even to nominal indicators, though, for focus and 

presentation ease, we confine attention in this paper to ordinal and continuous variables). Finally, 

we provide some computational time statistics for estimating our MNP-based ICLV model using 

the MACML procedure, and show how our approach substantially reduces the time for 

estimating ICLV models. The order of magnitude reduction in computation time can then be 

used by analysts to explore a wide array of observed and latent variable specifications, rather 

than examining just a few specifications and settling quickly on one that may not be the best.  

The remainder of this paper is structured as follows. In the next section, we formulate our 

MNP-based ICLV model. In Section 3, we discuss identification considerations and the 

estimation procedure. In Section 4, we develop the experimental design to generate a simulated 

mode choice data set that is then used in Section 5 to examine the performance of the proposed 

estimation procedure in terms of recovering parameters and evaluating the finite-sample 

behavior of the proposed estimator.  Our use of a simulated data set rather than real data allows 

us to assess the performance of our estimation approach for different sample sizes. Finally, 

Section 6 summarizes the key findings of the paper and identifies directions for further research. 

 

2. MODEL FORMULATION 

There are three components to the model: (1) the latent variable structural equation model, (2) 

the latent variable measurement equation model, and (3) the choice model. These components 

are discussed in turn below. In the following presentation, for ease in notation, we will consider a 

cross-sectional model. However, extension to the case of a panel model with multiple choice 
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instances from the same individual is quite straightforward. Also, we will use the index l for 

latent variables (l=1,2,…L), and the index i for alternatives (i=1,2,…I). As appropriate and 

convenient, we will suppress the index q for individuals (q=1,2,… Q) in parts of the presentation.  

 

2.1. Latent Variable Structural Equation Model 

For the latent variable structural equation model, we will assume that the latent variable *
lz  is a 

linear function of covariates as follows: 

,*
liz η+′= wαl       (1) 

where w  is a )1~( ×D  vector of observed covariates, lα  is a corresponding )1~( ×D  vector of 

coefficients, and lη  is a random error term assumed to be normally distributed. In our notation, 

the same exogenous vector w  is used for all latent variables; however, this is in no way 

restrictive, since one may place the value of zero in the appropriate row of lα  if a specific 

variable does not impact *
lz . Also, since *

lz  is latent, it will be convenient to impose the 

normalization discussed in Stapleton (1978) and used by Bolduc et al. (2005) by assuming that 

lη  is standard normally distributed. Next, define the )~( DL × matrix ),...,( 21 ′= Lαααα , and the 

)1( ×L vectors )( **
2

*
1 ′= Lzzz ,...,,z*  and )'.,,,,( 321 Lηηηη …=η  To allow correlation among the 

latent variables, η  is assumed to be standard multivariate normally distributed: ],[~ Γ0η LN , 

where Γ  is a correlation matrix (as indicated earlier in Section 1, it is typical to impose the 

assumption that η  is diagonal, but we do not do so to keep the specification general). In matrix 

form, Equation (1) may be written as: 

η+= αwz* .          (2) 

 

2.2. Latent Variable Measurement Equation Model 

For the latent variable measurement equation model, let there be H continuous variables 

) ..., , ,( 21 Hyyy with an associated index h ) ..., ,2 ,1( Hh = . Let hhhh δy ξ~~~
+′+= *zd  in the usual 

linear regression fashion, where hδ
~  is a scalar constant, hd~  is an )1( ×L vector of latent variable 

loadings on the hth continuous indicator variable, and hξ
~  is a normally distributed measurement 
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error term. Stack the H continuous variables into a )1( ×H -vector y, the H constants hδ
~  into a 

)1( ×H vector δ~ , and the H error terms into another )1( ×H  vector )~ ..., ,~ ,~(~
21 Hξξξ=ξ . Also, let 

yΣ  be the covariance matrix of ξ~ . And define the )( LH ×  matrix of latent variable loadings 

( ) .~,...,~,~~ ′
= H2,1 dddd Then, one may write, in matrix form, the following measurement equation 

for the continuous indicator variables: 

ξdzδy * ~~ ++= .                               (3) 

Similar to the continuous variables, let there also be G ordinal indicator variables, and let 

g be the index for the ordinal variables ) ..., ,2 ,1( Gg = . Let the index for the ordinal outcome 

category for the gth ordinal variable be represented by gj . For notational ease only, assume that 

the number of ordinal categories is the same across the ordinal indicator variables, so that 

}. ..., ,2 ,1{ Jjg ∈  Let *
gy  be the latent underlying variable whose horizontal partitioning leads to 

the observed outcome for the gth ordinal indicator variable, and let the individual under 

consideration choose the gn th ordinal outcome category for the gth ordinal indicator variable. 

Then, in the usual ordered response formulation, we may write: gggg δy ξ+′+= *zd* , 

gg nggng y ,
*

1, ψψ <<− , where gδ  is a scalar constant, gd is an )1( ×L vector of latent variable 

loadings on the underlying variable for the gth indicator variable, and gξ  is a standard normally 

distributed measurement error term (the normalization on the error term is needed for 

identification, as in the usual ordered-response model; see McKelvey and Zavoina, 1975). Note 

also that, for each ordinal indicator variable, 

+∞==−∞=<<<< − JgggNNgggg gg ,1,0,1,2,1,0, and,0 ,  ;... ψψψψψψψψ . For later use, let 

.),...,(,),...,,( 1,3,2, ′′′′=′= − G21g ψψψψψ andJggg ψψψ  Stack the G  underlying continuous variables *
gy  into 

a )1( ×G vector *y  and the G constants gδ  into a )1( ×G vector δ . Also, define the )( LG ×  

matrix of latent variable loadings ( ) ,,...,, ′= G2,1 dddd  and let *y
Σ  be the correlation matrix of 

) ..., , ,( 21 Gξξξ=ξ . Stack the lower thresholds ( )Gg
gng  ..., ,2 ,11, =−ψ  into a )1( ×G  vector lowψ  
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and the upper thresholds ( )Gg
gng  ..., ,2 ,1, =ψ  into another vector .upψ  Then, in matrix form, the 

measurement equation for the ordinal indicators may be written as: 

up
*

low
** ψyψ ξ,dzδy <<++= .      (4)  

Define [ ] .),
~

(and,),~( ,),~(,, * ′′′=′′′=′′′=
′
⎟
⎠
⎞

⎜
⎝
⎛ ′′= ξξξdddδδδyyy  Then, the continuous parts of 

Equations (3) and (4) may be combined into a single equation as: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+

=++=
**

*

)(Var and ,
~~

) E(with
y

y

ΣΣ
ΣΣ

Σ '
yy

yyξ
dzδ 

zdδ
y,ξzdδy

*

*
*      (5) 

 

2.3. Choice Model 

Assume a typical random utility-maximizing model, and let i be the index for alternatives (i = 1, 

2, 3, …, I). Note that some alternatives may not be available for some individuals, but the 

modification to allow this is quite trivial. So, for presentation convenience, we will assume that 

all alternatives are available to all individuals. The utility for alternative i is written as:  

,) iiiiU ε+′+′= *
i z(γxβ ϕ   (6) 

where ix is a (D×1)-column vector of exogenous attributes. β  is a (D×1)-column vector of 

corresponding coefficients, iϕ  is a )( LN i × -matrix of variables interacting with latent variables 

to influence the utility of alternative i, iγ  is a )1( ×iN -column vector of coefficients capturing 

the effects of latent variables and its interaction effects with other exogenous variables, and iε is 

a normal error term. The notation above is very general. Thus, if each of the latent variables 

impacts the utility of alternative i purely through a constant shift in the utility function, iϕ  will 

be an identity matrix of size L , and each element of iγ  will capture the effect of a latent variable 

on the constant specific to alternative i. Alternatively, if the first latent variable is the only one 

relevant for the utility of alternative i, and it affects the utility of alternative i through both a 

constant shift as well as an exogenous variable, then iN =2, and iϕ  will be a )2( L× -matrix, with 

the first row having a ‘1’ in the first column and ‘0’ entries elsewhere, and the second row 

having the exogenous variable value in the first column and ‘0’ entries elsewhere. A whole range 
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of other latent variable specifications may also be considered based on appropriately configuring 

the matrix iϕ .  

To proceed further, let the variance-covariance matrix of the vertically stacked vector of 

errors ]) ..., , ,([ 21 ′= Iεεεε  be .Λ  The choice model above may be written in a more compact 

form by defining the following vectors and matrices: ),...,,( 21 ′= IUUUU  1( ×I  vector), 

),...,,,( ′= I321 xxxxx DI ×(  matrix), and ),...,, 21 ′′′′= Iϕϕϕ(ϕ  ⎟
⎠

⎞
⎜
⎝

⎛ ×∑
=

LN
I

i
i

1

 matrix. Also, 

define the  ⎟
⎠

⎞
⎜
⎝

⎛ ×∑
=

I

i
iNI

1

matrix γ , which is initially filled with all zero values. Then, position the 

)1( 1N×  row vector 1γ ′  in the first row to occupy columns 1 to 1N  , position the )1( 2N×  row 

vector 2γ ′  in the second row to occupy columns 1N +1 to ,21 NN +  and so on until the )1( IN×  

row vector Iγ ′  is appropriately positioned.  Then, in matrix form, Equation (6) may be written 

as : 

ε,zλxβεzγxβU ** ++=++= )( ϕ  with ϕ.γλ =      (7)
 

Consider now that the individual under consideration chooses alternative m . Under the utility 

maximization paradigm, mi UU −  
must be less than zero for all mi ≠ , since the individual 

chose alternative m . Let )(* miUUu miim ≠−= ,  and stack the latent utility differentials into a 

vector ( ) ⎥⎦
⎤

⎢⎣
⎡ ≠

′
= miuuu Immm ;,...,, **

2
*
1

*u .  

In the context of the choice model formulation above, several important identification 

issues need to be addressed (in addition to the usual identification consideration that one of the 

alternatives has to be used as the base for each nominal variable when introducing alternative-

specific constants and variables that do not vary across the I  alternatives). First, only the 

covariance matrix of the error differences is estimable. Taking the difference with respect to the 

first alternative, only the elements of the covariance matrix Λ  of ),,...,,( 32 Iςςςς =  where 

1εες −= ii   ( 1≠i ) , are estimable. However, the condition that 1−< I0u*  takes the difference 

against the alternative m  that is chosen. Thus, during estimation, the covariance matrix Λ  (of 

the error differences taken with respect to alternative m  is desired). Since m  will vary across 
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individuals, Λ will also vary across households. But all the Λ
 
matrices must originate in the 

same covariance matrix Λ  for the original error term vector ε . To achieve this consistency, Λ  

is constructed from Λ  by adding an additional row on top and an additional column to the left. 

All elements of this additional row and column are filled with values of zeros. Second, an 

additional scale normalization needs to be imposed on Λ . For this, we normalize the first 

element of Λ  to the value of one. Third, in MNP models, identification is tenuous when only 

individual-specific covariates are used (see Keane, 1992 and Munkin and Trivedi, 2008). In 

particular, exclusion restrictions are needed in the form of at least one individual characteristic 

being excluded from each alternative’s utility in addition to being excluded from a base 

alternative (but appearing in some other utilities). But these exclusion restrictions are not needed 

when there are alternative-specific variables.  

 

3. MODEL SYSTEM IDENTIFICATION AND ESTIMATION 

In all earlier studies of ICLV models, we assume that the error vectors η , ξ , and ε  are 

independent of each other. Let θ  be the collection of parameters to be estimated: 

, ]Vech( ),Vech( , ),Vech( , ),(Vech, ),(Vech),Vech([ )ΛΣΓ γβψdδαθ =  where )(Vech α , 

)(Vech d , and )(Vech γ  represent vectors of the elements of the α ,   d , and γ , respectively, to 

be estimated, and  Γ)(Vech  represents the vector of the non-zero upper triangle elements of Γ  

(and similarly for other covariance matrices). The data for estimation include, for each 

individual, (1) the ϕ ,x  and w  covariate matrices, (2) The )1( ×H -vector of continuous indicator 

variables, (3) the gn th outcome category for each of the g ordinal indicator variables, and (4) the 

observed choice outcome m (note that a particular empirical context may not have any 

continuous indicator variable, or may not have any ordinal indicator variable, but we will assume 

the presence of a combination of the two to reflect the general case).  

To develop the reduced form equations, replace the right side of Equation (1) for *z in 

Equations (5) and (7) to obtain the following system: 

ξηdαwdδξη)w(dδξzdδy * +++=+++=++= α        (8)                         

εληαwλxβεη)λ(αwxβεzλxβU * +++=+++=++=    (9) 
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Now, consider the )]1)[( ×++ IGH  vector [ ]′′′= U,yYU . Define 

⎥
⎦

⎤
⎢
⎣

⎡

+
+

=
αwλxβ
αwdδ

B   and  ⎥
⎦

⎤
⎢
⎣

⎡

+′′
′+′

=
ΛΓΓ

ΓΣΓΩ
λλdλ
λddd

    (10) 

Then ).( ΩB,MVN ~YU IGH ++                                       (11) 

All parameters to be estimated in the B  vector and Ω  matrix are identifiable by ensuring 

that Γ  is a correlation matrix, and Σ  is diagonal with the elements corresponding to the ordinal 

variables being normalized to 1. Stapleton (1978) provides an excellent discussion of these 

identification conditions for the MIMIC model that includes the latent variable structural and 

measurement equations; Stapleton’s conditions also apply to the current model that includes a 

choice model. Technically speaking, Stapleton’s conditions overidentify the d  and α  

parameters in the MIMIC model, but this is common practice in ICLV and structural equations 

modeling. Of course, in addition, Λ  should adhere to the conditions discussed in Section 2.3. 

With that, the parameter vector β  and the parameter matrix γ  embedded in λ  within the choice 

model specification also become identifiable.  

To estimate the model, we need to develop the distribution of the vector 

′
⎟
⎠
⎞

⎜
⎝
⎛ ′′′=

′
⎟
⎠
⎞

⎜
⎝
⎛ ′′= ** uy,yuyYu ,, * . To do so, define a matrix M  of size 

[ ] [ ]IHGIHG ++×−++ 1 . Fill this matrix up with values of zero. Then, insert an identity 

matrix of size HG + into the first HG +  rows and HG + columns of the matrix M . Next, 

consider the last )1( −I  rows and last I  columns, and insert an identity matrix of size )1( −I  

after supplementing with a column of ‘-1’ values in the column corresponding to the chosen 

alternative. Then, we can write ),~~( Ω,BMVN ~Yu 1-IGH ++  where BB M=~  and .MMΩΩ ′=~  

Next, partition the vector B~  into components that correspond to the mean of the vectors 
*uyy and, , * , and the matrix Ω~  into the variances of *uyy and, , * and their covariances: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

*

*

u

y

y

B
B
B

B
~
~
~

~  and 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′′

′=

**

**

uyy

yyy

yyy

ΩΩΩ
ΩΩΩ
ΩΩΩ

Ω
~~~
~~~
~~~

~

    

      

      

**

**

**

uu

uy

uy

           (12) 

Define ( )′= *'*' uyu ,~ , so that  .)~,( ′′′= uyYu  Re-partition B~  and Ω~  in a different way such that: 
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The conditional distribution of u~ , given y, is multivariate normal with mean 

( )yyuyuu ByBB ~~~~ 1
  ~~~ −′+= −ΩΩ  and variance   ~

1
  ~  ~  ~

~~~~
uyyuyuu ΩΩΩΩΩ −′−= . Next, supplement the 

threshold vectors defined earlier as follows: ( )
′

⎥⎦
⎤

⎢⎣
⎡ ′−′= − ,,~

1I∞lowlow ψψ , and ( )
′

⎥⎦
⎤

⎢⎣
⎡ ′′= −1,~

Iup 0ψψup , 

where  1I−− ∞  is a 1)1( ×−I -column vector of negative infinities, and 1−I0  is another 1)1( ×−I -

column vector of zeros. Then the likelihood function may be written as: 

[ ] ,~~~ Pr)~|~()(   uplowHfL ψuψByθ yy ≤≤×−= Ω  (14)  

,),|~()~|~(   ~~1  
~

duff IG
D

H

u

uuyy BuBy ΩΩ −+∫×−=
     

 

where the integration domain }~~~:~{~ uplowu
D ψuψu ≤≤=  is simply the multivariate region of the 

elements of the u~  vector determined by the observed ordinal indicator outcomes, and the range 

)0,( 1I−−∞  for the utility differences taken with respect to the utility of the observed choice 

outcome variable. (.)1−+ IGf  is the multivariate normal density function of dimension .1−+ IG  

The likelihood function for a sample of Q individuals is obtained as the product of the 

individual-level likelihood functions. If all the indicator variables are ordinal, then there is no y  
vector and the first term in the likelihood equation above drops out. On the other hand, if all the 

indicator variables are continuous, then there is no *y  vector in the u~  vector , and the dimension 

of integration drops to 1−I . 

The above likelihood function involves the evaluation of a 1−+ IG dimensional integral 

for each individual. As can be noticed, the dimensionality of integration does not increase with 

an increase in the number of latent variables in the model. This has been a major restrictive 

challenge in the typical way that ICLV models have been formulated and estimated, but not 

when we change to a probit kernel as we do here in this paper. Indeed, the independence of the 

integral dimensionality from the number of latent variables is remarkable, and should 

substantially enhance the applicability of the ICLV model., However, the dimensionality of the 
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integration is still 1−+ IG , which can be computationally expensive if there are several ordinal 

variables, or if the choice variable has a number of alternatives. So, the Maximum Approximate 

Composite Marginal Likelihood (MACML) approach of Bhat (2011), in which the likelihood 

function only involves the computation of univariate and bivariate cumulative distributive 

functions, is used in this paper. 

 

3.1. The MACML Estimation Approach 

The MACML approach, similar to the parent CML approach (see Varin et al., 2011, Lindsay et 

al., 2011, Bhat, 2011, and Yi et al., 2011 for recent reviews of CML approaches), maximizes a 

surrogate likelihood function that compounds much easier-to-compute, lower-dimensional, 

marginal likelihoods. The CML approach, which belongs to the more general class of composite 

likelihood function approaches (see Lindsay, 1988), may be explained in a simple manner as 

follows. In the multi-dimensional model, instead of developing the likelihood function for the 

entire set of the choice outcome and observed ordinal indicators at once, as in Equation (14), one 

may compound (multiply) the probabilities of each pair of the choice outcome with an ordinal 

indicator, as well as the probabilities of each pair of ordinal indicators. The CML estimator (in 

this instance, the pairwise CML estimator) is then the one that maximizes the compounded 

probability of all pairwise events. The properties of the CML estimator may be derived using the 

theory of estimating equations (see Cox and Reid, 2004, Yi et al., 2011). Specifically, under 

usual regularity assumptions (Molenberghs and Verbeke, 2005, page 191, Xu and Reid, 2011), 

the CML estimator is consistent and asymptotically normally distributed (this is because of the 

unbiasedness of the CML score function, which is a linear combination of proper score functions 

associated with the marginal event probabilities forming the composite likelihood; for a formal 

proof, see Yi et al., 2011 and Xu and Reid, 2011).  

In the context of the proposed model, consider the following (pairwise) composite 

marginal likelihood function: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==×−= ∏∏ ∏

=

−

= +=′

G

g
gg

G

g

G

gg
ggggHCML minjnjnjfL

1

1

1 1
  ),,Pr(),Pr()~|~()( ''yyByθ Ω   (15) 

where i  
is an index for the individual’s choice for the choice variable. In the above CML 

approach to estimating the ICLV model, the MVNCD function appearing in the CML function is 

of dimension equal to 2 for the second component in the equation above (corresponding to each 
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pair of observed ordinal indicators), and equal to I  for the probabilities corresponding to the 

third component in the equation above (corresponding to each pair of the choice outcome and an 

ordinal indicator outcome). In the MACML approach, we estimate the third set of components of 

the CML function involving the choice outcome (that is, those components that have 

I dimensions of integration) with an analytic approximation method rather than a simulation 

method. This combination of the CML with an analytic approximation for the MVNCD function 

is effective because it involves only univariate and bivariate cumulative normal distribution 

function evaluations. The MVNCD approximation method used here is based on linearization 

with binary variables (see Bhat, 2011). As has been demonstrated by Bhat and Sidharthan 

(2011), the MACML method has the virtue of computational robustness in that the approximate 

CML surface is smoother and easier to maximize than traditional simulation-based likelihood 

surfaces.  

To explicitly write out the CML function in terms of the standard and bivariate standard 

normal density and cumulative distribution function, define Δω  as the diagonal matrix of 

standard deviations of matrix Δ , );(. **ΔRφ  for the multivariate standard normal density function 

of dimension R and correlation matrix *Δ  ( 11* −
Δ

−
Δ= ωΔωΔ ), and );(. *ΔEΦ  for the multivariate 

standard normal cumulative distribution function of dimension E and correlation matrix *Δ . Let 

gS  be a )1( −+× IGI selection matrix constructed as follows. To begin with, fill this matrix 

with values of zero for all elements. Then, position an element of ‘1’ in the first row and the gth 

column.  Also, position an identity matrix of size 1−I  in the last 1−I  rows and last 1−I  

columns. Let  
[ ] [ ]

[ ]gg

gug
upg

 ~

~

,

~

u

up Bψ

Ω

−
=ϑ , 

[ ] [ ]
[ ]gg

guglow
lowg

 ~

~

,

~

u

Bψ

Ω

−
=ϑ , 

[ ]
[ ] [ ] gggg

gg
gg

′′

′
′ =

 ~ ~

 ~

* uu

u

ΩΩ

Ω
υ , 

lowlow, ψSψ ~
gg = , ugug ~~ BSB = , and ggug SS u ′=  ~  ~ ΩΩ , where [ ]gg ~uΩ represents the thgg  element of 

the matrix  ~uΩ . Then, the CML function to be maximized is: 
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   (16) 

In the above expression, [ ]gϑ  represents the thg  element of the column vector ,ϑ  and similarly 

for other vectors. The reader will note that the expression in Equation (16) involves an MVNCD 

function evaluation that is utmost of dimension I. That is the dimensionality is purely a function 

of the number of alternatives in the choice model, irrespective of the number of latent variables 

or the number of ordinal indicators involved. Further, the MVNCD function of dimension I is 

itself approximated with the analytic approach in Bhat (2011), so that only univariate and 

bivariate normal cumulative distributions need to be evaluated. Write the resulting equivalent of 

Equation (16) as )(, θqMACMLL , after introducing the index q for individuals. The MACML 

estimator is then obtained by maximizing the following function: 

log .)(log)(
1

,∑
=

=
Q

q
qMACMLMACML LL θθ   

The covariance matrix of the parameters θ   may be estimated by the inverse of 

Godambe’s (1960) sandwich information matrix (see Zhao and Joe, 2005).  

[ ] == −1)()( θθ GVMACML
11 )]()][([)]([ −− θθθ HJH ,   

)(θH  and )(θJ  can  be estimated in a straightforward manner at the MACML estimate MACMLθ̂  

as follows: 

.
)(log)(log

)ˆ(ˆ

and  ,
)(log

)ˆ(ˆ

ˆ

,,

1

ˆ

,
2

1

MACMLθ

θ

θ
θ

θ
θ

θ

θθ
θ

θ

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

⎥
⎦

⎤
⎢
⎣

⎡
′∂∂

∂
−=

∑

∑

=

=

qMACMLqMACML
Q

q

qMACML
Q

q

LL
J

L
H

MACML                                                        (17) 
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3.2. Ensuring the Positive-Definiteness of Matrices 

The   
~

yΩ and   ~uΩ covariance matrix in the CML function need to be positive definite. This can be 

assured by ensuring that the covariance matrix Ω~  is positive definite, which itself requires that 

Ω  be positive definite. From Equation (10), Ω  will be positive definite if the matrices Γ , Σ , 

and Λ  are positive definite.  The simplest way to ensure the positive-definiteness of these 

matrices is to use a Cholesky-decomposition and parameterize the CML function in terms of the 

Cholesky parameters (rather than the original covariance matrices). Also, the matrix Γ  is a 

correlation matrix, which can be maintained by writing each diagonal element (say the aath 

element) of the lower triangular Cholesky matrix of Γ  as ∑
−

=

−
1

1

21
a

j
ajd , where the ajd  elements 

are the Cholesky factors that are to be estimated. In addition, note that the top diagonal element 

of Λ  has to be normalized to one (as discussed earlier in Section 2.3), which implies that the 

first element of the Cholesky matrix of Λ  is fixed to the value of one. Finally, the matrix  Σ  is 

diagonal, and hence the Choleski matrix of Σ  is also diagonal (and comprises standard 

deviations of ξ ). The diagonals corresponding to ordinal variables in the Choleski matrix of Σ  

are fixed to one for identification.  

 

4. SIMULATION STUDY 

The simulation exercise undertaken in this section examines the ability of the MACML estimator 

to recover parameters from finite samples in an ICLV model of travel mode choice. The use of a 

simulated travel mode choice exercise is valuable because the true parameters underlying the 

data generating process (DGP) are set by the analyst, and the analyst can evaluate the behavior of 

the MACML estimator for different finite sample sizes. This is important to do when a new 

estimator is being proposed. Also, the framing of the simulation in the context of mode choice is 

purely for ease in interpretation and understanding; the results from the simulation exercise 

should be applicable to any other empirical context.  

 In the simulation experiments, we consider three modal choice alternatives in a weekday 

intercity travel context: Drive, air, and bus.  
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4.1. Experimental Design 

In the latent variable structural equation model of Equation (2), consider five latent variables as 

follows: (1) Flexibility of travel by air ( *
1z ), (2) flexibility of travel by bus ( *

2z ), (3) comfort of 

travel by air ( *
3z ), (4) comfort of travel by bus ( *

4z ), and (5) environmental consciousness ( *
5z ). 

Of the five variables above, the first four are qualitative attributes specific to two modes (air and 

bus), while the last variable is an individual-specific qualitative attribute (that does not vary 

across modes). Also, consider six variables in the observed covariate vector w  to explain the 

latent variables: (1) Frequency of air service in the weekday ( 1w ), (2) frequency of bus service 

in the weekday ( 2w ), (3) travel time by air ( 3w ), (4) travel time by bus ( 4w ), (5) Income of 

traveler ( 5w ), and (6) Educational status of traveler ( 6w ). Then, we write Equation (2) as: 
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                                      (18) 

The α  matrix indicates the observed covariates influencing each latent variable. Thus, for 

example, the first row of the α  matrix indicates that the “flexibility of travel by air” )( *
1z  is 

affected by the frequency of air service in the weekday )( 1w  and the travel time by air )( 3w .  

The second row of the α  matrix indicates that the “flexibility of travel by bus” )( *
2z  is affected 

by the frequency of bus service in the weekday )( 2w  and the travel time by bus )( 4w . The effect 

of the frequency of service by a mode on the perception of flexibility for that mode is specified 

to be 0.5 for both the air and bus modes. Similarly, the effect of travel time by a mode on the 

perception of comfort for that mode is specified to be 0.6 for both the air and bus modes. The 

same is true for the effect of frequency of service on a mode on the comfort level of travel on 

that mode, with this parameter fixed to 0.3 for both the air and bus modes. The comfort 

perception for the bus mode )( *
4z  is negatively influenced by the income earnings of the 

individual )( 5w  (see the “-0.4” entry in the fourth column and fourth row of the α  matrix), and 
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environmental consciousness )( *
5z  is positively influenced by education status )( 6w  (see the 

“0.8” entry in the final column and final row of the α  matrix). The parameters to be estimated in 

the α  matrix may be stacked up in a vector 

].8.0and ,4.0 ,3.0 ,3.0 ,6.0 ,5.0 ,6.0 ,5.0[)Vech( 87654321 =−======== ααααααααα  The 

correlation matrix  Γ  of η  is specified as follows: 
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      (19) 

This generates a correlation in the unobserved factors impacting perceptions of flexibility and 

comfort for each of the air and bus modes. For ease, we maintain the same correlation 

coefficients between these two perceptions for each mode (as reflected by the value of 0.6 in the 

Γ  matrix in the first two rows). We also specify a correlation coefficient of 0.48 for the 

perceptions of comfort on the bus mode and environmental consciousness, to reflect the notion 

that those who are environmentally conscious may be more likely to view the bus mode as being 

comfortable than those less environmentally conscious. Thus, there are three parameters in the Γ  

matrix. As indicated earlier, to maintain positive definiteness, we work with the Cholesky 

decomposition elements. Then, there are three Cholesky matrix elements to be estimated in ΓL  

( 6.0 and,6.0,6.0 === Γ3Γ2Γ1 lll ), corresponding to the non-diagonal elements in the matrix 

(note that the diagonal elements are simply a function of the non-diagonal elements and are not 

estimated directly, because Γ is a correlation matrix with unit diagonals; see Section 3.2). 

Collectively, the three elements to be estimated in Γ , vertically stacked into a column vector, 

will be referred to as .Γl  

 In the latent variable measurement model of Equation (5), we assume one continuous 

indicator variable and four ordinal indicator variables: (1) Number of miles of non-motorized 
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travel on a typical day y  (the continuous indicator variable), (2) Ease of use of the air 

mode )( *
1y , (3) Ease of use of the bus mode )( *

2y , (4) level of relaxation on the air mode )( *
3y , 

and (5) level of relaxation on the rail mode )( *
4y . In the simulation experiments, we set the 

elements of the δ  vector to the value of ‘1’ for the continuous variable and ‘-1’ for the 

remaining four ordinal variables.  We assume that the number of miles of non-motorized travel 

on a typical day ( y ) is an indicator for environmental consciousness )( *
5z . The ease of use of the 

air mode )( *
1y  is a reflection of flexibility of travel by air )( *

1z , while the ease of use of the bus 

mode )( *
2y  is a reflection of flexibility of travel by bus )( *

2z . Similarly, the level of relaxation on 

each mode *
3( y  and )*

4y  is considered as an indicator variable for comfort of travel by that mode 

*
3(z  and )*

4z , respectively. Then, we write Equation (5) as:  
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The δ vector to be estimated has five elements: )1,1,1,1,1~( 4321 −=−=−=−=== δδδδδδ , 

and the d  matrix elements to be estimated also has five elements: 

).6.0,5.0,4.0,3.0,2.0~( 4321 ====== dddddd  The four ordinal variables are measured on a 

three point scale, so that 2,gψ=gψ for each ordinal variable g (g=1,2,3,4), and 

.),,( ′′′′′= 4321 ψ,ψψψψ  We set each of these thresholds to a value of 1.5. Thus, there are a total 

of four threshold parameters to estimate (with true parameter values of 1.5) across all the ordinal 

variables.  

The covariance matrix  Σ  of ξ  has to be diagonal for identification, with the elements 

corresponding to the ordinal variables being normalized to 1. So, the only element of Σ  to be 

estimated is the first element (= )~(Var ξ ). We set this value as 1, and estimate the standard error 

ξ~l  (for consistency with the Cholesky matrix elements in other covariance matrices) that also 

takes a true value of 1.  
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 Finally, we specify the choice model (Equation 7) as follows: 
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In the above equation, the parameters to be estimated include the elements of the
 
β  vector 

( airASC ,β =0.5, 0.1, −=busASCβ , 0.1−=TTβ , and 8.0−=TCβ ) and the elements of the γ  matrix 

stacked up in a vector ].3.0and,2.0,2.0,5.0,5.0,5.0[)Vech( 654321 ===−==== γγγγγγγ 1 

Next, we specify the covariance matrix  .Λ  for the error vector ε  as 

,
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6.00.10.0
0.00.00.0

0.16.00.0
0.00.10.0
0.00.00.0

36.160.000.0
60.000.100.0
00.000.000.0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=′=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= ΛΛLLΛ                       (22) 

There are two Cholesky matrix elements to be estimated in ΛL  ( 0.1,6.0 == Λ2Λ1 ll ). 

Collectively, these two elements, vertically stacked into a column vector, will be referred to as 

.Λl  

 To complete the simulation design, we draw values for the elements of the vector w (i.e., 

for 1w , 2w , 3w , 4w , 5w , and 6w ), and for the travel time and travel cost variables for each 

mode, from independent standard continuous uniform distributions. We consider different 

samples sizes to assess the accuracy and appropriateness of the asymptotic properties of the 

MACML estimator for finite sample sizes. In particular, we construct synthetic simulated data 

samples of 500, 1000, and 2000 by drawing the corresponding number of realizations of the 
                                                            
1 In the general notation of Equation (7), 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
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⎣

⎡
−=

10000
01000
00010
10000
00100
00001
00000

and
3.02.02.00.00.00.00.0
0.00.00.05.05.05.00.0
0.00.00.00.00.00.00.0

ϕγ
.  

ϕ  is fixed and pre-specified based on the discussion in Section 2.3 and Equation (21), and the elements of the γ  
matrix are to be estimated. 
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exogenous variables. Once drawn, the exogenous variables are held fixed for the rest of the 

simulation exercise. Next, for each data sample, the mean B  and covariance matrix Ω   for the 

vector YU   for each observation are computed based on Equation (10). Then, for each 

observation, we draw a realization of YU   from its multivariate distribution. The first five 

elements of the realization of the YU  vector for each observation correspond to y , *
1y , *

2y , *
3y , 

and *
4y . The value for y  is retained as is, and constitutes the continuous indicator value for each 

observation. The values for *
1y , *

2y , *
3y , and *

4y  are compared to the threshold values of 0 and 

1.5 and, based on  this comparison, ordinal indicator variables are assigned for each of the four 

ordinal variables for each observation. Next, the last three elements of YU  correspond to carU , 

airU , and busU .  The alternative with the highest utility is selected and designated as the chosen 

alternative for each observation. With this, a complete data set for each sample size (of 500, 

1000, 2000) is generated from which to estimate the following 38 parameters: 

,,,,,,,, 87654321 αααααααα ,,, Γ3Γ2Γ1 lll ,,,,,~
4321 δδδδδ ,,,,,~

4321 ddddd 4321 ψ ψψψ ,,, , ξ~l ,

airASC ,β , ,,busASCβ ,TTβ ,TCβ 654321 ,,,,, γγγγγγ .and, Λ2Λ1 ll  

For each sample size, the above data generation process is undertaken 50 times with 

different realizations of the YU   vector to generate 50 different data sets. After each data 

generation, we checked to ensure that there were adequate observations that “chose” each ordinal 

outcome for the ordinal indicator variables and “chose” each alternative for the choice variable. 

The estimator is then applied to each data set to estimate data specific values for the 38 

parameters. A single random permutation is generated for each individual (the random 

permutation varies across individuals, but is the same across iterations for a given individual) to 

decompose the multivariate normal cumulative distribution (MVNCD) function into a product 

sequence of marginal and conditional probabilities (see Section 2.1 of Bhat, 2011).2 The 

estimator is applied to each dataset 10 times with different permutations to obtain the 

approximation error. Thus, we run 500 estimations for each sample size (50 data sets × 10 runs 

                                                            
2 Technically, the MVNCD approximation should improve with a higher number of permutations in the MACML 
approach. However, when we investigated the effect of different numbers of random permutations per individual, 
we noticed little difference in the estimation results between using a single permutation and higher numbers of 
permutations, and hence we settled with a single permutation per individual. 
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with different permutations per data set). Given the three sample sizes, there are a total of 

500×3=1500 estimations undertaken. 

 

4.2. Performance Evaluation 

The performance of the MACML inference approach in estimating the parameters of the 

proposed model and the corresponding standard errors is evaluated, for each sample size, as 

follows: 

(1) Estimate the MACML parameters for each data set and for each of 10 independent sets of 

permutations. Estimate the standard errors (s.e.) using the Godambe (sandwich) 

estimator.  

(2) For each data set s, compute the mean estimate for each model parameter across the 10 

random permutations used. Label this as MED, and then take the mean of the MED 

values across the data sets to obtain a mean estimate. Compute the absolute percentage 

(finite sample) bias (APB) of the estimator as: 

100
 valuetrue

 valuetrue-estimatemean 
×=APB  

(3) Compute the standard deviation of the MED values across the 50 datasets, and label this 

as the finite sample standard error or FSEE (essentially, this is the empirical standard 

error). Calculate the FSEE as a percentage of the mean estimate.  

(4) For each data set, compute the mean standard error for each model parameter across the 

10 draws. Call this MSED, and then take the mean of the MSED values across the 50 

data sets and label this as the asymptotic standard error or ASE (essentially this is the 

standard error of the distribution of the estimator as the sample size gets large). Compute 

the ASE as a percentage of the mean estimate.  

(5) Next, to evaluate the accuracy of the asymptotic standard error formula as computed 

using the MACML inference approach for the finite sample size used, compute the 

relative efficiency of the estimator as: 

FSEE
ASEefficiency Relative =

  
      (23) 

Relative efficiency values in the range of 0.75-1.25 indicate that the ASE, as computed 

using the Godambe matrix in the MACML method, does provide a good approximation 
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of the FSSE. In general, the relative efficiency values should be less than 1, since we 

expect the asymptotic standard error to be less than the FSSE. But, because we are using 

only a limited number of data sets to compute the FSSE, values higher than one can also 

occur. The more important point is to examine the closeness between the ASE and FSEE, 

as captured by the 0.75-1.25 range for the relative efficiency value. 

(6) Compute the standard deviation of the parameter values around the MED parameter value 

for each data set, and take the mean of this standard deviation value across the data sets; 

label this as the approximation error (APERR).   

 

5.  SIMULATION RESULTS 

Tables 1, 2, and 3 provide the simulation results for the 500, 1000, and 2000 observation cases, 

respectively. The tables provide the true value of the parameters (second column), followed by 

the parameter estimate results and the standard error estimate results.  

Several observations may be made from the tables. First, the MACML procedure is able 

to recover the parameters remarkably well even with only 500 observations, with the APB value 

having a mean (across parameters) value of 5.10% (see the final row of Table 1 labeled “Overall 

mean value across parameters” under the column “Absolute Percentage Bias (APB)”). The 

individual parameter APB values range from 0.3% to 14%, though even the seemingly large 14% 

APB is rather deceiving since the true estimate for this parameter (the d~ parameter) is 0.20 and 

the mean estimate of the parameter is 0.228. Thus, the absolute finite sample bias is only 0.028, 

but gets inflated in percentage because of the small magnitude of the true value for the 

parameter. The APB values also, in general, reduce steadily (but rather marginally) with an 

increase in sample size. The mean APB value reduces to 4.807% (with a range of 0.133% to 

15.5%) with 1000 observations (see Table 2) and further to 4.158% (with a range of 0% to 

10.4%) with 2000 observations (see Table 3). Second, across the different sample sizes, the mean 

APB values for the )],,,,~([ 4321 ddddd=d  vector elements and for the γ  matrix elements 

( )]and,,,,,[)Vech( 654321 γγγγγγ=γ  are consistently higher than the overall mean APB. In 

particular, the mean APB values for the d vector elements are 8.413%, 8.860%, and 4.813% for 

the 500, 1000, and 2000 observations cases, and the corresponding mean APB values for the γ  

matrix elements are 7.939%, 6.035%, and 4.950%. This suggests that the coefficients on the 



24 

latent variable vector *z in the measurement equation (Equation 5) and in the choice model 

(Equation 7) are somewhat more difficult to recover than other parameters. This is not surprising, 

since these elements enter into the covariance matrix Ω  in a non-linear fashion (see Equation 

10), and Ω  itself enters into the composite likelihood function (Equation 15) in a complex 

manner. Third, the finite sample standard errors (FSSE) clearly decrease as the sample size 

increases. As a percentage of the mean estimate, the FSSE indicates an average value (across all 

parameters) of 47.7% for the case of 500 observations, 35.7% for 1000 observations, and 22.4% 

for 2000 observations. The same trend is observed for the asymptotic standard error (ASE), with 

the ASE (as a percentage of the mean estimate) having a mean value (across all parameters) of 

52.2% for 500 observations, 37.8% for 1000 observations, and 23.2% for 2000 observations. In 

general, these results indicate good empirical efficiency of the MACML estimator, especially 

when the sample size is of the order of 1000 or more. But, the FSSE and ASE values are 

particularly high for the γ  matrix elements, with the values (as a percentage of the mean 

estimate) being 86.7% (500 observations), 69.5% (1000 observations), and 44.3% (2000 

observations) for the FSEE, and 90.1% (500 observations), 72.2% (1000 observations), and 

43.3% (2000 observations) for the ASE. This suggests some caution in estimating models with 

small sample sizes when there are many latent variables, and when the indicators of these latent 

variables are observed as ordinal outcomes.3 Fourth, the FSEE and the ASE values are close to 

one another regardless of sample size, with the relative efficiency (RE) value between 0.75-1.25 

for all parameters in the case of sample sizes of 1000 and 2000, and the value between 0.75-1.25 

for all but one parameter in the case of a sample size of 500. Overall, across all parameters, the 

average relative efficiency is in the range of 1.06-1.10 for all sample sizes, indicating that the 

asymptotic formula is performing well in estimating the finite sample standard error even for a 

sample size of the order of 500. Finally, the last columns of the tables present the approximation 

error (APERR) for each of the parameters, because of the use of different permutations. These 

entries indicate that the APERR reduces with sample size, as expected. However, even for the 

case of 500 observations, the average APERR is only 0.030 and the maximum is only 0.078. 

                                                            
3 In our MACML estimation approach, this efficiency issue does not seem to be as much tied with the number of 
latent variables, as it is to the number of those variables whose indicators are observed in ordinal form. Indeed, our 
limited explorations with considering all the five indicators in our simulation design to be continuous showed very 
substantial gains in efficiency. Further simulation work is being undertaken to examine the effects of the number of 
latent variables and their observed indicator forms on the empirical efficiency of our estimator.  
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More importantly, the approximation error (as a percentage of the FSEE or the ASE), averaged 

across all the parameters, is only of the order of 12% of the sampling error. This statistic 

decreases to 8% when the sample size increases to 1000 or 2000. The implication is that even a 

single permutation (per observation) of the approximation approach used to evaluate the 

MVNCD function provides adequate precision, in the sense that the convergent values are about 

the same for a given data set regardless of the permutation used for the decomposition of the 

multivariate probability expression.  

The convergence time for the proposed approach has a median value of about 40 minutes 

for the case of 500 observations, one hour for the case of 1000 observations, and 80 minutes for 

the case of 2000 observations, all based on scaling to a desktop computer with an Intel Core™ i7 

860@2.80GHz processor and 8GB of RAM. The time to compute the covariance matrix of the 

parameters was of the same order as the time for convergence. However, a more thorough 

analysis of computational times is warranted using a single machine. Our main purpose in this 

study was to propose and apply the new method even if on many different computers in parallel 

(to make all the 1500 estimation runs happen). The important point is that completing 1500 

estimations of ICLV models with (a) the very general specifications for the covariance matrices 

adopted here, (b) the presence of five latent variables, and (c) the presence of five indicators 

(four of which are ordinal) is literally infeasible with the traditional logit kernel specification and 

the maximum simulated likelihood (MSL) estimation approach, at least with the computer 

hardware that we had at our disposal for this research (which is also the kind of computer 

hardware typically available to most analysts). The typical approach is notorious for very long 

estimation times (if convergence is achieved at all), with durations of 15 hours or more not at all 

uncommon. The order of magnitude reduction in computation time resulting from the use of our 

approach can then be used by analysts to explore a wide array of observed and latent variable 

specifications, rather than examining just a few specifications and settling quickly on one that 

may not be the best.  

 

6.  CONCLUSIONS 

Integrated choice and latent variable (ICLV) models are increasingly being considered in many 

fields as a means to gain a deeper understanding into the decision process of individuals as well 

as to potentially improve predictive ability. However, consideration and actual use of these 
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models have been two different things in the literature. In particular, the use of ICLV models has 

been severely hampered by the difficulties encountered in usual maximum simulated likelihood 

(MSL) estimation as well as the amount of time to estimate these models (typically of the order 

of a day for one specification run, and even that for rather restrictive specifications). The reason 

for the estimation problems and computation time issues is that, in the traditional way of doing 

things, the integrand in ICLV models is itself a mixture of two probabilities (the probability of 

choice conditional on explanatory and latent variables, and the probability of the latent variable 

conditional on explanatory variables), which has to be integrated over the distribution of the 

latent variables conditional on explanatory variables.  

In the current paper, we have proposed a different model formulation for the ICLV 

model, based on a multivariate probit (MNP) kernel for the choice component. To our 

knowledge, this is the first study to use a probit kernel within an ICLV setting. As we show in 

the paper, combining this MNP-based choice model formulation with Bhat’s maximum 

approximate composite marginal likelihood (MACML) inference approach immediately 

alleviates the specification and estimation challenges discussed above, and provides substantial 

computational time advantages. In particular, the dimensionality of integration in the log-

likelihood function is independent of the number of latent variables, and we are able to specify 

quite general covariance structures (up to certain identification limits) in the error terms involved 

in the ICLV set-up. Further, our proposed approach easily accommodates ordinal indicators for 

the latent variables, as well as combinations of ordinal and continuous response indicators. The 

approach can be extended in a relatively straightforward fashion to also include nominal 

indicator variables.  

The paper designed a simulation experiment in a virtual context of travel mode choice, 

and undertook a simulation exercise to evaluate the ability of the MACML approach to recover 

model parameters. The simulation results show that, irrespective of the sample size used in 

estimation (the sample sizes tested were 500, 1000, and 2000 observations), the MACML 

estimator recovers the parameters of the model remarkably well. The MACML estimator is also 

quite efficient in the overall, though the results indicate the need for larger sample sizes as the 

number of ordinal indicator variables rises. This is needed to pin down the effects of the latent 

variables in the choice model. For all sample sizes, the asymptotic formula (based on the inverse 

of the Godambe information matrix) is performing well in estimating the finite sample standard 
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errors. Also, the approximation error due to the use of a single permutation (per observation) in 

the analytic approximation for the MVNCD function evaluation is so small that it is a non-issue.  

There were no convergence issues in our proposed approach even though we have not yet 

coded the Hessian of the analytically approximated CML function that is maximized (rather, we 

currently use a numerical procedure to obtain the Hessian, and then use the numerical Hessian 

and the analytic gradient in the computation of the Godambe covariance matrix of Equation 17). 

Additionally, the computational time is much lesser than for traditional logit-based kernels and 

associated MSL estimation procedures. Importantly, it is quite remarkable that this paper is the 

first ICLV formulation that has considered an MNP kernel for the choice model. This is far more 

convenient for the usual applications for the ICLV models where the number of alternatives is 

few, and the number of latent variables can be many.  

In closing, it is hoped that our new ICLV formulation and associated inference approach 

will unshackle researchers and practitioners from the constraints imposed by the traditional 

ICLV formulation, and open the door for the extensive use of “soft” psychometric measures 

(along with traditionally used “hard” covariates) in discrete choice modeling. 
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Table 1: Simulation results for the 500 observations case with 50 datasets                      
(based on a total of 50×10 runs/dataset=500 runs) 

Parameters True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE) 

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

1α  0.5 0.482 0.018 3.600 0.284 0.277 0.978 0.0350 

2α  0.6 0.588 0.012 2.000 0.203 0.225 1.105 0.0388 

3α  0.5 0.511 0.011 2.200 0.290 0.334 1.155 0.0298 

4α  0.6 0.622 0.022 3.667 0.303 0.324 1.070 0.0354 

5α  0.3 0.317 0.017 5.667 0.272 0.300 1.104 0.0237 

6α  0.3 0.314 0.014 4.667 0.133 0.161 1.207 0.0176 

7α    -0.4 -0.413 0.013 3.250 0.203 0.238 1.173 0.0246 

8α  0.8 0.843 0.043 5.375 0.351 0.385 1.097 0.0201 

1Γl  0.6 0.573 0.027 4.500 0.266 0.296 1.114 0.0400 

2Γl  0.6 0.537 0.063   10.500 0.227 0.249 1.099 0.0282 

3Γl  0.6 0.576 0.024 4.000 0.256 0.316 1.235 0.0205 

δ~  1.0 1.004 0.004 0.400 0.056 0.066 1.193 0.0023 

1δ    -1.0 -1.029 0.029 2.900 0.231 0.255 1.104 0.0122 

2δ    -1.0 -1.060 0.060 6.000 0.239 0.274 1.148 0.0512 

3δ    -1.0 -1.027 0.027 2.700 0.262 0.279 1.065 0.0262 

4δ    -1.0 -1.024 0.024 2.400 0.174 0.200 1.150 0.0250 

d~  0.2 0.228 0.028   14.000 0.156 0.175 1.120 0.0047 

1d  0.3 0.330 0.030   10.000 0.163 0.184 1.131 0.0249 

2d  0.4 0.428 0.028 7.000 0.311 0.375 1.206 0.0780 

3d  0.5 0.512 0.012 2.400 0.342 0.395 1.156 0.0422 
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Table 1: (Continued) Simulation results for the 500 observation case with 50 datasets 
(based on a total of 50×10 runs/dataset=500 runs) 

Parameters True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE)  

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

4d  0.6 0.652 0.052 8.667 0.211 0.268 1.268 0.0440 

1ψ  1.5 1.479 0.021 1.400 0.136 0.153 1.126 0.0125 

2ψ  1.5 1.572 0.072 4.800 0.283 0.296 1.044 0.0678 

3ψ     1.5 1.538 0.038 2.533 0.315 0.325 1.031 0.0345 

4ψ     1.5 1.511 0.011 0.733 0.217 0.243 1.117 0.0316 

1ξl     1.0 0.967 0.033 3.300 0.099 0.088 0.882 0.0012 

airASC ,β  0.5 0.498 0.002 0.400 0.378 0.428 1.133 0.0174 

busASC,β   -1.0 -0.997 0.003 0.300 0.476 0.569 1.195 0.0275 

TTβ   -1.0 -1.071 0.071 7.100 0.250 0.256 1.023 0.0298 

TCβ   -0.8 -0.869 0.069 8.625 0.196 0.209 1.066 0.0241 

1γ  0.5 0.540 0.040 8.000 0.214 0.258 1.204 0.0482 

2γ  0.5 0.530 0.030 6.000 0.483 0.493 1.021 0.0475 

3γ   -0.5 -0.496 0.004 0.800 0.212 0.257 1.209 0.0216 

4γ  0.2 0.221 0.021    10.500 0.244 0.287 1.174 0.0233 

5γ  0.2 0.222 0.022 11.000 0.327 0.269 0.823 0.0385 

6γ  0.3 0.334 0.034 11.333 0.297 0.326 1.095 0.0152 

1Λl  0.6 0.621 0.021 3.500 0.459 0.460 1.002 0.0397 

2Λl  1.0 0.924 0.076 7.600 0.430 0.434 1.011 0.0353 

Overall mean value across 
parameters 0.030 5.100 0.262 0.288 1.106 0.0300 
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Table 2: Simulation results for the 1000 observations case with 50 datasets  
(based on a total of 50×10 runs/dataset=500 runs) 

Parameters True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE)  

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

1α  0.5 0.496 0.004 0.800 0.136 0.161 1.184 0.0209 

2α  0.6 0.574 0.026 4.333 0.158 0.193 1.222 0.0243 

3α  0.5 0.454 0.046 9.200 0.180 0.208 1.156 0.0152 

4α  0.6 0.537 0.063   10.500 0.176 0.194 1.097 0.0171 

5α  0.3 0.311 0.011 3.667 0.211 0.222 1.047 0.0118 

6α  0.3 0.319 0.019 6.333 0.189 0.206 1.090 0.0118 

7α    -0.4 -0.409 0.009 2.250 0.179 0.176 0.983 0.0161 

8α  0.8 0.824 0.024 3.000 0.279 0.292 1.047 0.0142 

1Γl  0.6 0.585 0.015 2.500 0.198 0.184 0.929 0.0187 

2Γl  0.6 0.606 0.006 1.000 0.154 0.134 0.870 0.0111 

3Γl  0.6 0.550 0.050 8.333 0.217 0.191 0.876 0.0139 

δ~  1.0 0.988 0.012 1.200 0.047 0.044 0.957 0.0015 

1δ    -1.0 -1.021 0.021 2.100 0.149 0.120 0.805 0.0069 

2δ    -1.0 -1.056 0.056 5.600 0.189 0.191 1.011 0.0230 

3δ    -1.0 -1.020 0.020 2.000 0.131 0.138 1.062 0.0141 

4δ    -1.0 -1.029 0.029 2.900 0.174 0.194 1.115 0.0131 

d~  0.2 0.231 0.031   15.500 0.079 0.090 1.139 0.0020 

1d  0.3 0.320 0.020 6.667 0.066 0.079 1.197 0.0171 

2d  0.4 0.424 0.024 6.000 0.248 0.255 1.028 0.0344 

3d  0.5 0.544 0.044 8.800 0.192 0.234 1.219 0.0251 
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Table 2: (Continued) Simulation results for the 1000 observations case with 50 datasets 
(based on a total of 50×10 runs/dataset=500 runs) 

Parameters True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE)  

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

4d  0.6 0.644 0.044 7.333 0.226 0.269 1.190 0.0237 

1ψ  1.5 1.453 0.047 3.133 0.090 0.098 1.089 0.0084 

2ψ  1.5 1.529 0.029 1.933 0.226 0.219 0.969 0.0287 

3ψ     1.5 1.491 0.009 0.600 0.127 0.137 1.079 0.0165 

4ψ     1.5 1.498 0.002 0.133 0.169 0.200 1.183 0.0156 

1ξl     1.0 0.983 0.017 1.700 0.031 0.035 1.129 0.0006 

airASC ,β  0.5 0.474 0.026 5.200 0.279 0.326 1.168 0.0119 

busASC,β   -1.0 -1.036 0.036 3.600 0.316 0.306 0.968 0.0195 

TTβ   -1.0 -1.064 0.064 6.400 0.182 0.193 1.060 0.0201 

TCβ   -0.8 -0.855 0.055 6.875 0.147 0.158 1.082 0.0158 

1γ  0.5 0.491 0.009 1.800 0.205 0.221 1.078 0.0364 

2γ  0.5 0.522 0.022 4.473 0.311 0.337 1.084 0.0242 

3γ   -0.5 -0.521 0.021 4.271 0.227 0.234 1.026 0.0124 

4γ  0.2 0.220 0.020   10.000 0.164 0.188 1.146 0.0121 

5γ  0.2 0.220 0.020   10.000 0.305 0.299 0.980 0.0102 

6γ  0.3 0.317 0.017 5.667 0.187 0.183 0.979 0.0089 

1Λl  0.6 0.593 0.007 1.167 0.376 0.364 0.968 0.0207 

2Λl  1.0 0.943 0.057 5.700 0.270 0.311 1.152 0.0198 

Overall mean value across 
parameters 0.027 4.807 0.189 0.200 1.062 0.0163 
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Table 3: Simulation results for the 2000 observations case with 50 datasets  
(based on a total of 50×10 runs/dataset=500 runs) 

Parameters True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE)  

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

1α  0.5 0.4 0.019 3.800 0.098 0.103 1.051 0.0082 

2α  0.6 0.563 0.037 6.167 0.135 0.141 1.044 0.0099 

3α  0.5 0.448 0.052   10.400 0.100 0.118 1.180 0.0011 

4α  0.6 0.562 0.038 6.333 0.101 0.113 1.108 0.0128 

5α  0.3 0.290 0.010 3.333 0.068 0.054 0.806 0.0051 

6α  0.3 0.278 0.022 7.333 0.075 0.076 1.013 0.0058 

7α    -0.4 -0.408 0.008 2.000 0.124 0.136 1.097 0.0096 

8α  0.8 0.863 0.063 7.875 0.216 0.212 0.981 0.0072 

1Γl  0.6 0.606 0.006 1.000 0.069 0.051 0.750 0.0139 

2Γl  0.6 0.623 0.023 3.833 0.096 0.089 0.927 0.0086 

3Γl  0.6 0.541 0.059 9.833 0.158 0.170 1.076 0.0130 

δ~  1.0 0.999 0.001 0.100 0.033 0.032 0.970 0.0011 

1δ    -1.0 -1.081 0.081 8.100 0.098 0.101 1.031 0.0031 

2δ    -1.0 -1.024 0.024 2.400 0.106 0.116 1.094 0.0166 

3δ    -1.0 -1.037 0.037 3.700 0.092 0.105 1.130 0.0108 

4δ    -1.0 -1.020 0.020 2.000 0.114 0.132 1.158 0.0077 

d~  0.2 0.200 0.000 0.000 0.052 0.058 1.115 0.0013 

1d  0.3 0.321 0.021 7.000 0.061 0.066 1.082 0.0070 

2d  0.4 0.422 0.022 5.500 0.124 0.125 1.008 0.0277 

3d  0.5 0.532 0.032 6.400 0.125 0.141 1.128 0.0174 
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Table 3: (Continued) Simulation results for the 2000 observations case with 50 datasets 
(based on a total of 50×10 runs/dataset=500 runs) 

Parameters True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE)  

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

4d  0.6 0.631 0.031 5.167 0.135 0.145 1.149 0.0153 

1ψ  1.5 1.461 0.039 2.600 0.056 0.066 1.179 0.0034 

2ψ  1.5 1.493 0.007 0.467 0.109 0.129 1.183 0.0218 

3ψ     1.5 1.503 0.003 0.200 0.113 0.122 1.080 0.0134 

4ψ     1.5 1.483 0.017 1.133 0.120 0.141 1.175 0.0098 

1ξl     1.0 0.997 0.003 0.300 0.016 0.018 1.125 0.0003 

airASC ,β  0.5 0.527 0.027 5.400 0.180 0.203 1.128 0.0086 

busASC,β   -1.0 -1.026 0.026 2.600 0.223 0.217 0.973 0.0157 

TTβ   -1.0 -1.030 0.030 3.000 0.129 0.149 1.155 0.0141 

TCβ   -0.8 -0.821 0.021 2.625 0.108 0.121 1.120 0.0115 

1γ  0.5 0.481 0.019 3.800 0.141 0.168 1.191 0.0144 

2γ  0.5 0.474 0.026 5.200 0.226 0.230 1.013 0.0198 

3γ   -0.5 -0.501 0.001 0.200 0.165 0.170 1.030 0.0100 

4γ  0.2 0.219 0.019 9.500 0.086 0.092 1.070 0.0098 

5γ  0.2 0.216 0.016 8.000 0.160 0.127 0.794 0.0059 

6γ  0.3 0.309 0.009 3.000 0.132 0.132 1.000 0.0077 

1Λl  0.6 0.609 0.009 1.500 0.247 0.246 0.992 0.0183 

2Λl  1.0 0.938 0.062 6.200 0.265 0.311 1.174 0.0094 

Overall mean value across 
parameters 0.025 4.158 0.122 0.130 1.060 0.0105 

 


