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Abstract

Background: Inflammatory breast cancer (IBC) is the most lethal form of locally invasive breast
cancer known. However, very little information is available on the cellular mechanisms responsible
for manifestation of the IBC phenotype. To understand the unique phenotype of IBC, we compared
the motile and adhesive interactions of an IBC cell line, SUM 149, to the non-IBC cell line SUM 102.

Results: Our results demonstrate that both IBC and non-IBC cell lines exhibit similar adhesive
properties to basal lamina, but SUM 149 showed a marked increase in adhesion to collagen I. In
vitro haptotaxis assays demonstrate that SUM 149 was less invasive, while wound healing assays
show a less in vitro migratory phenotype for SUM 149 cells relative to SUM 102 cells. We also
demonstrate a role for Rho and E-cadherin in the unique invasive phenotype of IBC.
Immunoblotting reveals higher E-cadherin and RhoA expression in the IBC cell line but similar
RhoC expression. Rhodamine phalloidin staining demonstrates increased formation of actin stress
fibers and larger focal adhesions in SUM 149 relative to the SUM 102 cell line.

Conclusion: The observed unique actin and cellular architecture as well as the invasive and
adhesive responses to the extracellular matrix of SUM 149 IBC cells suggest that the preference of
IBC cells for connective tissue, possibly a mediator important for the vasculogenic mimicry via
tubulogenesis seen in IBC pathological specimens. Overexpression of E-cadherin and RhoA may
contribute to passive dissemination of IBC by promoting cell-cell adhesion and actin cytoskeletal
structures that maintain tissue integrity. Therefore, we believe that these findings indicate a passive
metastatic mechanism by which IBC cells invade the circulatory system as tumor emboli rather than
by active migratory mechanisms.

Background The lethality of IBC stems from its highly invasive nature.
With an average five-year post-recovery survival rate of = Diagnosis of IBC is often complicated by lack of a palpa-
45%, inflammatory breast cancer (IBC) is the most lethal ~ ble precursor lesion commonly associated with breast
and aggressive form of locally advanced breast cancer [1].  cancer. Moreover, the correct diagnosis is hindered by
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inflammatory-like symptoms such as redness, warmth,
and edema. Characteristic of IBC is a change in breast skin
texture, similar to that of an orange, due to extensive inva-
sion of the dermal lymphatics by IBC tumor cell emboli.
These complications contribute to IBC lethality in that by
the time a proper diagnosis is made, the cancer has aggres-
sively infiltrated the surrounding tissue and lymphatics
system, leading to a lowered patient prognosis [2]. Com-
plicating treatment of this deadly form of breast cancer is
that very little information about the cellular mechanisms
responsible for the unique IBC phenotype is known.

Cancer cell invasion through the basal lamina and subse-
quent metastasis involves multiple steps including intra-
vasation through the surrounding tissue into the
lymphatic or vascular systems. Transient adhesion to
extracellular matrix (ECM) components as well as modifi-
cation of cell shape by reorganization of the actin
cytoskeleton is required for cancer cell infiltration into the
adjacent tissue. The Rho GTPases regulate actin cytoskele-
tal rearrangements, and are thus likely candidates for
involvement in cancer cell invasion and metastasis [3,4].
Further evidence for a relationship between cancer cell
mobilization and dysregulation of Rho GTPases is seen in
the overexpression of Rho proteins in numerous invasive
human cancers. The recent discovery of the overexpres-
sion of the Rho isoform RhoC by IBC tumors has been
implicated in the physiological mechanisms of this poorly
characterized form of breast cancer [5]. RhoC was demon-
strated to be overexpressed in metastatic tumors of pan-
creatic adenocarcinoma patients [6], murine melanomas
[7], and in the patient-derived IBC cell line SUM 149 [5].
Transient inhibition of RhoC in IBC cells by treatment
with farnesyl transferase inhibitors reduced invasion and
motility in vitro [8]. Recently it was reported that RhoC
overexpression in mammary epithelial cells resulted in a
significant increase in cell migration [9], mediated by the
MAPK pathway [10]. These findings led us to hypothesize
that RhoC overexpression may promote the highly inva-
sive phenotype of IBC and contribute to the uniquely
aggressive phenotype exhibited by IBC.

Another unique feature of IBC is the overexpression of E-
cadherin, a transmembrane protein involved in cell-cell
adhesion, which is generally lost in highly invasive can-
cers. It seems somewhat paradoxical that such an aggres-
sive cancer that overexpresses proteins involved in actin
cytoskeleton rearrangement and promotion of migration
(i.e., RhoC) also overexpresses cell-cell junction proteins
such as E-cadherin [11-15]. The literature thus far seems
to hold to two schools of thought about the contradictory
protein expression seen in IBC. One tends to support the
idea that E-cadherin expression fluctuates with disease
progression and decreases as IBC cells become invasive
[15]. The second school supports the theory of passive
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metastasis by IBC [11,12]. In passive metastasis, strong
tumor cell-cell adhesions are maintained during dissemi-
nation that proceeds via vasculogenesis through secretion
of differentiation factors by the tumor cells causing de novo
vessel formation [16]. This results in a cancer cell cluster
within the vessel, reminiscent of the IBC tumor emboli
seen in IBC histology. Furthermore, RhoC overexpression
in human mammary epithelial cells has been shown to
increase production of angiogenic factors, some of which
might mediate passive or active metastasis [17].

The IBC phenotype has mystified clinicians due to its
inflammatory-like symptoms. However IBC symptomol-
ogy is not considered to be a true immunoreaction, but
rather a consequence of cancer cell invasion to the lym-
phatics system. The mechanism by which IBC invades is
unclear and further experimentation with IBC models is
required to clarify the exact mechanism by which this
form of breast cancer is disseminated. Using the SUM 149
IBC cell line, we have examined the adhesive and migra-
tory capacities in an effort to understand the invasive
behavior of IBC for future experimentation with in situ
imaging of IBC in animal models. SUM 149 was com-
pared to a control cell line, SUM 102, which was selected
because it shares a deletion in the LIBC (lost in inflamma-
tory breast cancer) gene with the SUM 149 cell line but
reportedly expresses RhoC mRNA at low levels [5]. We
show that SUM 149 is less invasive and adhesive to basal
lamina components in vitro than SUM 102, and that SUM
149 expresses more Rho proteins and E-cadherin. These
data shows that SUM 149 is not highly motile and there-
fore possibly not actively invasive, suggesting passive
metastasis as the mechanism of IBC dissemination.

Results

Endogenous Levels of Rho

Figure 1A presents the relative protein levels of the various
Rho isoforms in the IBC cell line SUM 149 versus the non-
IBC cell line SUM 102. Previous investigators have
reported overexpression of RhoC mRNA in IBC cells com-
pared to SUM 102 [5]. To verify overexpression of RhoC
at the protein level, we preformed Western blots on cell
lysates using a RhoC polyclonal antibody (Santa Cruz
Biotechnology, CA). We found no significant difference in
RhoC protein levels between the SUM 149 and the SUM
102 cell lines. However, immunoblotting revealed a sig-
nificant difference in Rho (A, B, and C), with the IBC cell
line expressing much higher Rho protein levels. We then
examined RhoA protein levels and found a significant
overexpression of RhoA in the IBC cell line. This finding is
interesting considering that RhoA has been shown to play
a vital role in actomyosin-mediated contractility [21,24].
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I A. Rho GTPase protein expression levels in the IBC cell line SUM 149 versus SUM 102. I B. F-actin and focal
adhesion distribution in SUM 149 and SUM 102 human breast cancer cell lines. |A. Equal protein amounts were
separated by 10% SDS-PAGE, transferred to nitrocellulose, and probed for RhoA, RhoC, and Rho (A, B, and C). Images are
representative of at least three independent experiments with actin serving to verify equal protein loading. |B. SUM 149 and
SUM 102 cells were starved in unsupplemented F-12 Hams media for 24 hours and stimulated for 10 minutes with PBS (con-
trol), EGF (50 ng/ml), or FBS (5%). Cells were stained with rhodamine phalloidin (red) to visualize F-actin and anti-phosphoty-

rosine (green) to visualize focal adhesion. Micrographs were taken at 1000% magnification. Images are representative for at
least three independent experiments.
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Figure 2

Adhesion of human breast cancer cells to extracellu-
lar matrix proteins. SUM [49 and SUM 102 cells (10°)
were plated on glass coverslips coated with laminin (50 g/
ml), collagen | (10 pg/ml), or collagen IV (10 pg/ml) and
allowed to adhere for |15 minutes. Micrographs were taken at
400% magnification. Adherent cells were quantified in 10 ran-
dom microscopic fields. Data are expressed as mean + SEM
of at least three independent experiments.

Subcellular Distribution of Focal Adhesions and
Filamentous Actin

Because RhoA is involved in actin stress fiber and focal
adhesion formation, we stained the cells with thodamine
phalloidin to visualize F-actin and anti-phosphotyrosine
to visualize focal adhesions. Figure 1B demonstrates F-
actin and focal adhesion distribution in both cell lines.
SUM 149 displayed larger focal adhesions and more actin
stress fibers than the SUM 102 cell line, as might be
expected from the high levels of RhoA in the SUM 149 cell
line. Upon stimulation of quiescent cells with EGF or FBS,
the SUM 102 cells formed large membrane ruffles (lamel-
lipodia). However, stimulation by both EGF and FBS
seemed to have little effect on the actin cytoskeleton of the
SUM 149 cells. An increase in focal adhesion was seen in
the SUM 149 cells after stimulation with EGF, but no clear
cell polarization was observed.

Adhesion to Extracellular Matrix Proteins

Invasion and metastasis is a multi-step process in which
cells must break local connections, move through the
basal lamina, survive in circulation, and reestablish cellu-
lar attachment at distant sites. Clearly, many of these steps
involve interaction with ECM components. Transient
adhesion to the ECM in conjunction with cytoskeletal
rearrangements are requirements for cell motility. To
examine the ability of the breast cancer cell lines under
study to adhere to the various ECM proteins, we per-
formed adhesion assays (Figure 2). Here, we demonstrate
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Figure 3

Haptotaxis of human breast cancer cells to extracel-
lular matrix proteins. SUM 149 and SUM 102 cells (103)
were placed into the top chamber of a Costar well coated
with laminin (50 pg/ml) or collagen | (10 pig/ml) and allowed
to invade for 24 hours. Invasive cells were stained with pro-
pidium iodide and quantified in 10 random microscopic fields.
Micrographs were taken at 200% magnification. Data are
expressed as mean * SEM of at least three independent
experiments.

that both SUM 149 and SUM 102 cells have similar adhe-
sive properties on laminin, the major component of the
basal lamina. A slight increase in adhesive properties for
the IBC cells was observed compared to the SUM 102 cells
on collagen IV. However, a marked increase in adhesion
to collagen I, the major component of connective tissue,
was seen for the SUM 149 cell line. Taken together, this
data suggest that the exacerbated invasive phenotype seen
in IBC is not due to differences in adhesive properties to
basal lamina components, but may indicate a preference
of IBC cells to the connective tissue, through which these
cells must invade before entering circulation. Further-
more, attachment to connective tissue components
maybe important for vasculogenic mimicry via tubulo-
genesis, as seen in IBC pathological specimens [25-27].

Haptotaxis Stimulated Invasion

An aggressively infiltrative cancer must invade surround-
ing tissue by movement through the ECM. Haptotaxis, or
cell movement toward ECM proteins, was assayed in vitro
and is presented in Figure 3. SUM 149 cells were signifi-
cantly less invasive into laminin (basal lamina compo-
nent) and collagen I (connective tissue component) after
24 hours than the SUM 102 cell line. Therefore, SUM 149
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Human breast cancer cell migration in response to wounding. SUM 149 and SUM 102 cells were grown to confluency
on glass coverslips and wounded with a sterile razor blade. Closure of the wound was monitored over 7.5 hours. Cells were
stained with rhodamine phalloidin to visualize F-actin reorganization in response to cell migration. Arrows indicate the wound
edge. Micrographs were taken at 1000 magnification. Images are representative of at least three independent experiments.

was less invasive when assayed in a manner that requires
individual cell movement by an active motile mechanism
through a membrane with 8 pm pores.

Subcellular Distribution of Filamentous Actin Subsequent
to Cellular Polarization

To induce cell polarization and migration that does not
involve active migration of individual cells but rather col-
lective cell migration over a wound edge, we performed
wound healing assays as described in [28]. A confluent
monolayer of cells was wounded, leading to the release of
chemotractant signals by the cells at the wound edge, thus

mimicking cell motility cues in vivo (Figure 4). Here, we
present that the IBC cell line SUM 149 was less responsive
to the cell-derived migration signals after 7.5 hours. By
this time, the SUM 102 cell line was much more invasive
into the wound space and had nearly closed the wound
entirely. Thus, active migration as a sheet of cells is not
likely the mechanism by which IBC is disseminated.

Endogenous Expression of E-cadherin

An interesting and perplexing characteristic of IBC is the
expression of E-cadherin by this invasive form of breast
cancer. Usually the loss of E-cadherin correlates with
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5A. E-cadherin distribution in SUM 149 and SUM 102 human breast cancer cells. 5B. E-cadherin protein
expression levels in the IBC cell lineSUM 149 versus SUM 102. 5A. Cells were grown to 60% confluency and stained
with anti-E-cadherin (green). Arrows indicate cell-cell adhesions containing E-cadherin. Micrographs were taken at 1000% mag-
nification. Images are representative for at least three independent experiments. 5B. Cell lysates were separated by 8% SDS-
PAGE, transferred to nitrocellulose, and probed for E-cadherin. Images are representative of at least three independent exper-

iments with actin serving to verify equal protein loading.

increased invasive and metastatic potential [29]. To verify
E-cadherin expression in the IBC cell line SUM 149, we
performed immunofluorescence experiments (Figure 5A).
Both SUM 149 and SUM 102 show E-cadherin staining
localized to the shared margins between neighboring
cells, however this staining is much more intense in the
SUM 149 cell line. Immunoblotting analysis likewise
demonstrates E-cadherin expression by both cell lines
with higher levels of E-cadherin expressed in the SUM 149
cells (Figure 5B).

Discussion

IBC is a unique and highly aggressive form of locally
advanced breast cancer with distinct clinical presentation.
We hypothesized that upregulated expression of RhoC, as
reported by others to be characteristic of IBC, contributes
to the unusual pathological presentation of IBC. For the
first time, we have compared the actin architecture, inva-
sive, and adhesive properties of the IBC cell line SUM 149
with a cell line reported to express less RhoC mRNA com-
pared to SUM 149 but share a deletion in LIBC [5]. Using
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a commercially available specific antibody to RhoC, we
report that RhoC is not overexpressed at the protein level
by the IBC cell line SUM 149. Interestingly, we confirmed
overexpression of RhoA by utilizing an anti-RhoA specific
antibody. However, post-transcriptional regulation of
RhoC expression may account for the observed discrep-
ancy. It is possible that our results do not agree with the
reported mRNA expression due to specificity problems
with  the commercially developed antibodies.
Furthermore, we demonstrate that, compared to SUM
102, SUM 149 is less invasive and migratory, and displays
impaired adhesion to basal lamina components but
strong adhesion to connective tissue proteins.

The role of the Rho protein in cancer cell invasion is some-
what controversial. RhoA is known to be involved in cell
contractility, both in the formation of bundled actin fibers
and through the activation of Rho kinase and subsequent
activation of myosin light chain [30]. Such contractile
cells have previously been shown to be less motile [31].
However, Rho overexpression has been documented in
various human cancers such as bladder and ovarian, and
correlates with lymph node invasion, metastasis, and
poor patient prognosis [32,33]. Overexpression of RhoC
by human mammary epithelial cells increased invasion,
motility, and anchorage independent growth, similar to
SUM 149 [9]. Expression of dominant negative Rho T19N
has been demonstrated to block melanoma cell invasion
[34]. Some investigators report that Rho overexpression
has little impact on invasion and cell motility, while
others demonstrate a positive correlation between Rho
expression and cell migration capacity [35-37]. Rho is
required for cell body contraction and tail retraction dur-
ing directed cell motility, while active Rac and Cdc42 are
required for lamellipodia and filopodia extension at the
leading edge [30]. Thus, invasive potential is considered
to be a balance between Rac, Cdc42, and Rho activities.
Overexpression or activation of one of these Rho GTPases
will shift this balance and result in a cellular phenotype
dominated by the actin structure promoted by the acti-
vated Rho GTPase [38]. SUM 149 may display reduced
invasion and migration in vitro compared to SUM 102 due
to the overexpression of RhoA alone, thus masking the
motile effects of Rac and Cdc42.

Another aspect that makes IBC so remarkable is that this
form of aggressive breast cancer maintains strong E-cad-
herin expression [11-15]. Typically, loss of E-cadherin
expression correlates with progression to metastatic
disease since cancer cells must break inter-cell adhesions
before attaining a motile phenotype [29]. Here, we
demonstrate that the SUM 149 model of IBC maintains
strong E-cadherin expression in culture, as seen in other
IBC xenograft models and IBC pathological specimens.
Previous reports indicate the E-cadherin axis is also com-
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plete and functional [11]. IBC histology reveals an exten-
sive invasion of E-cadherin positive tumor cell emboli
within the dermal lymphatics [11-15]. The expression of
E-cadherin may be critical for invasion in that IBC is
thought by some to be passively disseminated, an
invasion mechanism that necessitates cell-cell attachment
[12]. In this scenario, tumor cells maintain strong cell-cell
connections and enter circulation via vasculogenesis
around a tumor cell embolus. Others hold that E-cadherin
expression varies with the malignant stage of the disease,
and is lost during invasion but reestablished once tumor
cells invade the vasculature [15]. The finding reported
here, in which the IBC cell line SUM 149 was less invasive
and adhesive in vitro compared to the reportedly less
aggressive breast cancer cell line SUM 102, seems to sup-
port an alternative mode for IBC dissemination from clas-
sic actin cytoskeleton- mediated cell motility.

The high expression levels of both E-cadherin and RhoA
by SUM 149 may contribute to the uniquely invasive phe-
notype of IBC. However, signaling via E-cadherin to Rho
is unclear with E-cadherin-mediated Rho activation and
inhibition reported in a cell line specific manner [39].
Dominant negative RhoA expression in EL and nEaCL
cells has been reported to reduce E-cadherin activity [40].
During the embryonic development of stratified epithe-
lium, it was found that da-catenin, Rho, and Rho kinase
were vital for coordinated tissue movement. In this sense,
cells maintain tissue architecture via cadherin binding but
move as a unit through actin reorganization mediated by
Rho and its downstream effector Rho kinase [41]. A paral-
lel argument could be made for the dissemination of IBC,
in which tightly bound tumor cells move as a coordinated
front. This possibility was tested in a wound healing assay,
in which we found that the SUM 149 cells do not polarize
or move into the wound after 7.5 hours, suggesting that
this form of invasion is not the mechanism by which IBC
is dissemination.

Conclusion

Thus, our results demonstrate that the IBC cell line SUM
149 is less invasive than a similar cell line, SUM 102,
which expresses less Rho. This finding seems to support
an alternate mode of dissemination for IBC than that of
the classic invasive model, in which individual cells break
local attachments and move through the ECM via actin
cytoskeleton remodeling. A previously hypothesized
mode of invasion for IBC, termed passive metastasis,
would then seem the likely candidate (Figure 6A). In
passive metastasis, vasculogenesis, stimulated by secreted
differentiation factors, occurs around a tumor -cell
embolus that has maintained strong cell-cell attachments
[16]. IBC is known to secrete angiogenic and possibly also
vasculogenic growth factors, such as VEGF, bFGF, 1L-6,
and IL-8 [17]. Vasculogenic tubule formation by
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Figure 6

6A. Model of passive metastasis. 6B. SUM 149 cell spheroids expressing RFP. 6A. Tumor cells secrete unknown dif-
ferentiation factors, stimulating vasculogenesis and resulting in a cluster of tumor cells, termed embolus, located within the de
novo formed vessel. The embolus maintains cell-cell attachments as it moves through the vessel and lodges within a dermal

lymph node. 6B. 100% confocal projection image (10 images, Z = 20 um) of SUM 149 cell spheroids stably expressing RFP in 3-

dimensional matrigel culture after 5 days.

melanoma cells has been shown to be dependent on cad-
herin expression [42]. E-cadherin positive tumor cell
emboli located within the dermal lymphatics are typically
found in IBC histological specimens [15]. Three-dimen-
sional culture of SUM 149 cells in matrigel results in IBC
cell spheroids that are reminiscent of the tumor cell
emboli seen in pathology (Figure 6B). The probability
that IBC cells invade the circulatory system by a passive
metastasis mechanism as tumor emboli rather than by
active migratory mechanisms is being tested by in vivo
image analysis of fluorescent protein tagged SUM 149
mammary tumors in SCID mice. This investigation could
drastically change the course of IBC treatment and iden-
tify new therapeutic targets specific for this form of breast
cancer.

Methods

Cell Culture

The SUM cell lines used for the study have been recently
developed from pleural effusions of breast cancer patients
[18,19] and are generous gifts of Dr. Stephen Ethier, The
University of Michigan, MI. SUM 149 is an IBC cell line
that lacks expression of the gene LIBC and overexpresses
RhoC [5]. SUM 102, developed from a minimally invasive

human breast carcinoma [20] will be used as a model for
non-IBC human breast cancer cells. SUM 149 cells were
cultured in F-12 Hams (Gibco™, CA) supplemented with
5% fetal bovine serum (Tissue Culture Biologicals, CA),
insulin, and hydrocortisone. SUM 102 cells were cultured
in F-12 Hams (Gibco™, CA) supplemented with 5%
bovine serum albumin (BSA), epidermal growth factor,
T3, ethanolamine, and sodium selenite.

Adhesion Assays

Cell adhesion assays were performed according to [21].
Briefly, glass coverslips (Fisher Scientific, TX) were coated
with 50 pg/ml laminin (Gibco BRL, MD), 10 pg/ml of col-
lagen I (BD Biosciences, MA), 10 pg/ml of collagen IV (BD
Biosciences, MA) and incubated overnight at 4°C. The
coverslips were blocked for 1 hour with 1% heat-dena-
tured BSA (Sigma Chemical Corporation, MO) in PBS.
Cells (105) were placed on coverslips and allowed to
adhere for 15 minutes. Non-adherent cells were removed
by washing. The adherent cells were fixed in 3.7% formal-
dehyde (Sigma Chemical Corp., MO) and stained for F-
actin as described below to aid in quantification. The
number of cells per coverslip was quantified with a 40x
phase contrast objective.
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Haptotaxis Invasion Assay

Cell invasion assays were performed as described in [22].
Modified Boyden chambers (tissue culture treated, 6.5
mm diameter, 10 pm thickness, 8 pm pores, Transwell®,
Costar Corp., Cambridge, MA) were coated on the upper
surface (invasion), of the membrane with 50 pg/ml lam-
inin, 10 pg/ml collagen I, or 10 pg/ml collagen 1V over-
night at 4°C and then placed into the lower chamber
containing 500 pl culture media with 10% fetal bovine
serum (FBS). Serum starved cells (10>) were added to the
upper surface of each migration chamber and allowed to
migrate to the underside of the membrane for 24 hours
(invasion). The non-migratory cells on the upper mem-
brane surface were removed with a cotton swab, and the
migratory cells attached to the bottom surface of the
membrane stained with propidium iodide (CalBioChem-
Novabiochem Corp., CA). The number of invasive cells
per membrane was counted with an Olympus upright flu-
orescence microscope with a 40x objective.

Wound Healing Assay

Cells were first grown to a confluent monolayer, wounded
with a sterile razor blade and allowed to migrate for 7.5
hours before fixing, permeabilizing, and blocking. Cells
were then stained for F-actin as described below and visu-
alized wusing an Olympus upright fluorescence
microscope.

Immunofluorescence Microscopy

For focal adhesion and F-actin staining, cells were cul-
tured on coverslips until they reached 60% confluency
and starved for 24 hours in unsupplemented F-12 Hams.
Cells were then stimulated with 50 ng/ml epidermal
growth factor (EGF), 5% FBS, or PBS control for 10 min-
utes, fixed in 3.7% formaldehyde (Sigma Chemical Corp.,
MO), permeabilized with 0.2% Triton X-100 (Sigma,
MO), and blocked with 5% goat serum (Gibco™, CA), and
5% BSA (Sigma Chemical Corp., MO) in PBS. Cells were
stained with rhodamine phalloidin (Molecular Probes
Inc., OR) to visualize F-actin, and a mouse monoclonal
anti-phosphotyrosine antibody, clone 4G10 (Upstate Bio-
technology, NY), followed by FITC-conjugated goat anti
mouse IgG (ICN Biomedicals Inc., CA) to visualize the
focal adhesions. Phosphotyrosine staining to is com-
monly utilized to visualize focal adhesions [23]. For E-
cadherin staining, cells were cultured until 60% conflu-
ency, fixed in methanol at -20°C for 15 minutes, and
blocked with 5% goat serum (Gibco™, CA) and 5% BSA
(Sigma Chemical Corp., MO) in PBS. Cells were stained
with a mouse monoclonal anti-E-cadherin antibody,
clone G-10 (Santa Cruz Biotechnology, CA) followed by
FITC-conjugated goat anti-mouse IgG (ICN Biomedicals
Inc., CA). Cells were imaged using an Olympus upright
fluorescence microscope with Spot Advanced digital
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camera software, Version 2.2.1 (Diagnostic Instruments
Inc., MI).

Immunoblotting

Cells were cultured to confluency on 6 cm plates,
trypsinized and the pellet washed in 1X PBS. The cell pel-
let was then lysed in 1% NP-40 lysis buffer. Equal
amounts of protein, as determined by Bio-Rad (Hercules,
CA) total protein assay, were then separated by 10% SDS-
PAGE gel for Rho (A, B, and C), RhoA, and RhoC, or 8%
SDS-PAGE gel for E-cadherin. Cellular proteins were then
transferred to a nitrocellulose membrane. Membranes
were blocked with 4% milk 0.05% Tween and probed
with rabbit polyclonal anti-Rho (A, B, and C) (Upstate
Biotechnology, NY), mouse monoclonal anti-RhoA
(Santa Cruz Biotechnology, CA), goat polyclonal anti-
RhoC (Santa Cruz Biotechnology, CA), or mouse mono-
clonal anti-E-cadherin (Santa Cruz Biotechnology, CA)
followed by horseradish peroxidase-conjugated goat anti-
mouse antibody (Pierce Endogen, IL) for Rho or alkaline
phosphatase conjugated goat anti mouse antibody for E-
cadherin (Pierce Endogen, IL). Rho immunoblots were
detected with the Super Signal West Femto-Substrate
chemiluminescence kit (Pierce Endogen, IL) and Kodak
Biomax MR film (Fisher Scientific, TX). E-Cadherin
immunoblots were detected with NBT/BCIP alkaline
phosphatase substrate (Pierce Endogen, IL).
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