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 Elucidation of mechanisms that generate and maintain population-level 

phenotypic variability provides insight into processes that influence within-species genetic 

divergence.  Historically, color pattern polymorphisms were used to infer population-level 

genetic variability, but recent approaches directly capture genetic variability using 

molecular markers.  Here, I clarify the relationship between genetic variability and color 

pattern polymorphism within and among populations using the Australian common 

froglet, Crinia signifera.  To illustrate genetic variability in C. signifera, I used phylogenetic 

analysis of mitochondrial DNA and uncovered three ancient geographically restricted 

lineages whose distributions are consistent with other southeastern Australian species.  

Additional phylogeographic structure was identified within the three ancient lineages and 

was consistent with geographic variation in male advertisement calls.   

Natural selection imposed by predators has been hypothesized to act on black-

and-white ventral polymorphisms in C. signifera, specifically through mimicry of another 
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Australian frog, Pseudophryne.  I used clay replicas of C. signifera to test whether predators 

avoid black-and-white coloration.  In fact, black-and-white replicas were preferentially 

avoided by predators in some habitats, but not in others, indicating that differential 

selection among habitats plays a role in maintaining color pattern polymorphism.  When 

black-and-white color patterns in a sample of C. signifera populations were compared with 

those in sympatric Pseudophryne, several color pattern characteristics were correlated 

between the species.  Furthermore, where C. signifera and Pseudophryne are sympatric, color 

patterns are more similar compared to those in allopatry. 

Extensive phylogenetic variability suggests that phylogenetic history and genetic 

drift may also influence C. signifera color pattern.  Fine-scale phylogenetic analysis 

uncovered additional genetic diversity within lineages and low levels of introgression 

among previously identified clades.  Measures of color pattern displayed low levels of 

phylogenetic signal, indicating that relationships among individuals only slightly influence 

color patterns.  Finally, simulations of trait evolution under Brownian motion illustrated 

that the phylogeny alone cannot generate the pattern of variation observed in C. signifera 

color pattern.  Therefore, this indicates a minimal role for genetic drift, but instead 

supports either the role of stabilizing selection due to mimicry, or diversifying selection 

due to habitat differences, in color pattern variation in C. signifera. 
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Chapter 1.  Mechanisms of the Evolution of Color Pattern Variation 

Understanding mechanisms that generate and maintain naturally occurring 

phenotypic and genetic variation in nature is fundamental in understanding the 

formation of new species.  The action of microevolutionary forces such as natural and 

sexual selection on phenotypes often results in genetic divergence among populations 

within species.  Similarly, genetic drift can generate phenotypic and genetic divergence 

across landscapes of populations.  Thus, elucidating the relationship between phenotypic 

and genetic variation can provide valuable insight into the process of speciation. 

 Historically, color pattern variability was used as a means to quantify genetic 

variation within and among populations because it was easily observed and commonly 

genetically determined (Milstead et al. 1974, Straughan and Main 1966, Kettlewell 1961).  

Quantifying frequencies of multiple forms of color patterns within a single population was 

used to infer genetic diversity within populations and to hypothesize processes acting 

differentially among populations.  Direct estimation of genetic variability using molecular 

markers (reviewed in Hedrick 2006) has replaced the use of color pattern-based frequency 

estimates, leaving the relationship between color patterns variability and genetic diversity 

unclear.  Natural selection (Phifer-Rixey et al. 2008), genetic drift (Hoffman et al. 2006) 

and gene flow (Merilaita 2001) have been invoked to explain variation in coloration that 

occurs within and among populations, but the evolutionary significance of coloration is 

not always straightforward.   

 Color patterns are commonly linked with selection through predation (Manríquez 

et al. 2008, Saporito et al. 2007).  Predator evasion is enhanced by color patterns either by 
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preventing detection (crypsis) or advertising unpalatability (aposematism).  Species that 

employ crypsis aim to resemble their visual background to avoid detection (Bond 2007, 

Endler 1978), whereas those that employ aposematism maximize their difference from the 

visual background to advertise to predators that they are unprofitable or even toxic (Cott 

1940).  Aposematic species are often associated with protective mimicry, where different 

species resemble one another to avoid predation.  Some authors suggest that mimicry 

should be viewed as a spectrum rather than discrete categories (Balogh et al. 2008, Speed 

and Turner 1999), but two forms of mimicry are generally recognized: Batesian (Bates, 

1862) and Müllerian (Müller 1879).  In Batesian mimicry, palatable mimic species 

resemble aposematic model species in order to deceive predators (Bates 1862).  Classical 

Batesian mimicry predicts that if the non-toxic mimics become too common, predators 

no longer associate the signal with toxicity, and Batesian mimicry will break down (Ries 

and Mullen 2008, Pfennig et al. 2007).  Müllerian mimicry, on the other hand, occurs 

when two unrelated toxic species converge on a single color pattern, and both species 

benefit from the reduced cost of training the predator (Müller 1869).   

 Directional selection imposed by predators is predicted to reduce variability in 

populations, but unexpectedly, extraordinary color pattern polymorphisms arise in 

cryptic and aposematic species (e.g., Franks and Oxford 2009, Jiggins et al. 2001, Mallet  

1993).  Poulton (1890) defined color pattern polymorphism as the occurrence of multiple 

distinctive cryptic pattern variants.  Some authors explicitly limit color pattern 

polymorphisms to refer to observations within populations (e.g., Bond 2007, Gray and 

McKinnon 2006), but here and by others, the designation is used synonymously with 
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variability observed within and among populations (e.g., Chapple et al. 2008, Mallet and 

Joron 1999).  Originally, Poulton (1890) proposed that populations with color pattern 

variants decreased the search efficiency of predators.  Others have suggested that 

polymorphisms arise as adaptations to heterogeneous habitats and are maintained 

through a balance between selection and migration (Bond 2007, Merilaita 2001, Endler 

1978).  Alone, predation can maintain polymorphisms in prey through frequency-

dependent (apostatic) selection when prey is cryptic (e.g., Merilata 2006, Olendorf et al. 

2006, Bond and Kamil 2002), or number-dependent selection in protective mimicry (e.g., 

Mallet and Joron 1999, Mallet 1993).  In addition, some theoretical studies have 

proposed that interactions between environmental heterogeneity and predation can 

maintain and promote the evolution of polymorphic coloration (Forsman and Åberg 

2008, Forsman et al. 2008).  

The possibility that the persistence of a polymorphism is due to neutral processes, 

such as drift or migration, is often neglected.  A few recent studies have attempted to rule 

out the contribution of neutral factors to phenotypic variation before performing 

experiments regarding a hypothesized selective mechanism by estimating population 

structure from genetic markers (Hoffman et al. 2006, Nicholls and Austin 2005, Brisson et 

al. 2005, Storz 2002).  In these studies, patterns observed in neutral genetic markers are 

contrasted to patterns of phenotypic differentiation.  Neutral evolution is inferred when a 

correlation between the genetic and phenotypic patterns is strong.  The absence of a 

correlation between phenotypic and genetic differentiation provides motivation to 

experimentally test for evidence of selection.  For example, in a study of Drosophila 
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polymorpha, color pattern was independent of genetic and geographic variation, but was 

strongly correlated to desiccation resistance.  Specific tests for selection in dry habitats 

showed higher survival in flies with darker coloration (Brisson et al. 2005).  In the satin 

bowerbird, similar methods were employed to test hypotheses of advertisement call 

variation.  Calls were independent of genetic variation, but strongly correlated to 

differences among habitats.  Thus, call differences were attributed to differing selective 

pressures imposed among habitats (Nicholls and Austin 2005).  Unlike the former 

examples, tests for selection in color pattern polymorphisms in leopard frogs (Rana pipiens) 

found no evidence that color pattern polymorphism exceeded the variability expected 

according to multiple neutral loci (Hoffman et al. 2006).  Similarly, in the poison frog 

Dendrobates tinctorius, a strong association was found between geographic patterns in 

polymorphic color pattern and a neutral genetic marker (Wollenberg et al. 2008).  These 

results emphasize the importance of testing for evidence of selection before investing in 

measurements of selection on polymorphisms (Hoffman et al. 2006).  

 In both apostatic selection and mimicry, the perception of the predator is critical 

for understanding the processes that generate polymorphism (Bond 2007, Mallet and 

Joron 1999).  Prey species use color and pattern to signal to their predators.  Effective 

communication of the signal relies on the predator receiving the appropriate message.  

Perception of coloration and pattern by a predator depends upon the visual system of the 

predator (Endler 1990) and the ambient light in natural environments (Endler 1993).  For 

example, non-human predatory mammals are unable to detect colors (e.g., red, yellow) 

because they lack eye pigments that allow color perception in humans and birds (Endler 
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1978).  To account for these potential issues, two strategies are often employed when 

exploring the role of color pattern in avoiding predation.  First, the ambient light and 

color reflected by prey species in their natural habitats are quantified relative to the visual 

background, and compared to the visual system of putative predators (e.g., Darst and 

Cummings 2006, Endler 1993, 1990).  Second, artificial models that resemble prey 

species are constructed and exposed to predators in their natural environments (e.g., 

Pfennig et al. 2007, Saporito et al. 2007, Kuchta, 2005, Brodie 1993). 

 Much of what is understood about the relationship between color pattern 

polymorphism and predation has been ascertained using invertebrate prey and avian 

predators.  Invertebrate species often exhibit polymorphisms (e.g., Hanlon et al. 2009, 

Manríquez et al. 2008, Phifer-Rixey et al. 2008, Chittka and Osorio 2007, Jiggins et al. 

2001, Cook 1986) and their bird predators perceive and recognize the color to choose 

their prey (Osorio et al. 1999, Endler 1978).  Vertebrates also commonly exhibit color 

pattern polymorphisms (e.g., Chapple et al. 2008, Woolbright and Stewart 2008, Galeotti 

et al. 2003, Santos et al. 2003, Wente and Phillips 2003, Symula et al. 2001, Hoffman and 

Blouin 2000, Summers et al. 1999).  Color pattern polymorphisms are extremely common 

in frogs and havebeen attributed to mimicry (Symula et al. 2001), apostatic selection 

(Hoffman and Blouin 2000, Bull 1975), sexual selection (Maan and Cummings 2008, 

Summers et al. 1999) and genetic drift (Wollenberg et al. 2008, Hoffman et al. 2006).  As in 

invertebrates, much of what we know about predation on frog color pattern 

polymorphisms has been assessed based upon avian predators (Darst and Cummings 

2006, Saporito et al. 2007). 
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 One example of color pattern polymorphism in frogs occurs in the Australian 

myobatrachid genus Crinia.  Nearly all Crinia exhibit the same dorsal polymorphism 

(reviewed in Hoffman and Blouin 2000) suggesting that it is a retained ancestral 

polymorphism in Crinia (Bull 1975).  Minimally, three different morphs are recognized: 

lyrate, smooth and ridged (striped).  Crosses performed among morphs revealed that the 

dorsal polymorphism is determined by a single locus with either two co-dominant alleles 

(Main 1965) or, in some species, two alleles with simple dominance (Bull 1975).  In some 

species, additional morphs resulted from laboratory crosses suggesting that multiple loci 

may contribute to the polymorphism (Bull 1977, 1975, Main 1968, 1965, 1961).  Early 

field experiments and fitness assays across several different species proposed that 

polymorphisms are maintained by seasonal variation in selective advantage of the 

different morphs (Bull 1977, Main 1968, 1961).  Alternatively, others observed lower 

frequencies of putatively more cryptic morphs in some habitats and deduced that 

polymorphism in dorsal pattern serves as a defense against predation (Odendaal and Bull 

1982, Bull 1975, Littlejohn and Martin 1965).    

 Though the dorsal color and pattern polymorphism is well documented, apparent 

ventral color pattern polymorphism in Crinia has been essentially overlooked.  In many 

early species descriptions, black-and-white ventral coloration was characterized, but 

multiple subsequent taxonomic reorganizations made it unclear which Crinia species 

exhibit black-and-white ventral coloration (Straughan and Main 1966, Parker 1940).  

Presently, four species of Crinia have been shown to reveal bold ventral coloration when 

under simulated predator attack (Williams et al. 2000).  In the remaining species, venters 
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are pale colored and are either solid in color or bear light gray flecking (Fig. 1.1) 

(Robinson 2002, Cogger 2000).  In contrast, C. glauerti, C. riparia and C. signifera bear bold 

black-and-white ventral markings (Cogger, 2000), and C. tasmaniensis has a similar pattern 

with red markings instead of black (Parker 1940, Blanchard 1929).  In the Western 

Australia endemic, C. glauerti, black-and-white coloration is limited to females (Main 1957, 

Loveridge 1935), but is found in both sexes in the eastern species C. riparia and C. signifera 

(Littlejohn 2003, Cogger 2000, Williams et al. 2000).  Unlike the other species, ventral 

coloration in C. signifera is polymorphic.  Some individuals bear bold black-and-white 

whereas others have solid gray or white venters (Fig. 1.1).   

 The black-and-white ventral coloration found among species of Crinia is similar to 

ventral coloration found in another myobatrachid frog genus, Pseudophryne (Fig. 1.2).  In 

Pseudophryne all species play dead in response to artificial predator attack (Fig. 1.2; 

Williams et al. 2000).  Further, all examined species are known to secrete alkaloid skin 

toxins (Daly et al. 1990, 1984).  These features combined suggest that ventral coloration 

and defensive behavior form an aposematic display that warns potential predators of their 

toxicity.  Similarly, some populations of C. signifera also bear black-and-white coloration 

and 'play dead' when under simulated predator attack (Williams et al. 2000).  Though 

closely related, phylogenetic analysis indicates that Crinia and Pseudophryne are not sister 

taxa (Read et al. 2001).  Therefore, black-and-white coloration appears to have evolved 

independently in the two lineages.  Finally, skin toxin analysis of C. signifera revealed that 

some peptides are secreted, but it is unknown whether these compounds deter predators 

(Masseli et al. 2004, Erspamer et al. 1984).  Snakes consume C. signifera (Shine 1977), 
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despite the presence of these compounds (Erspamer et al. 1984).  Thus, shared behavior 

and coloration is thought to be a form of defensive mimicry (Williams et al. 2000).  

 Evolutionary relationships among Crinia species with bold ventral color pattern 

were inferred in an effort to resolve conflicting phylogenetic hypotheses of the Australian 

endemic myobatrachid subfamily, Myobatrachinae (Read et al. 2001).  Using 

mitochondrial DNA (mtDNA) markers, phylogenetic analysis uncovered strong support 

for monophyly in Crinia, but individuals that bear bold ventral patterns are not all closely 

related.  Crinia tasmainiensis is the sister group to the remainder of the genus.  Crinia glauerti 

is more closely related to other western Crinia than to the other two black-and-white 

species.  Southern and eastern C. signifera and C. riparia were parapatric sister taxa, but this 

relationship was weakly supported.  A few individuals of C. signifera from different 

geographic regions were also examined and substantial genetic divergence was found 

among them (Read et al. 2001). 

 The geographic patterns in C. signifera revealed by the molecular phylogeny 

complemented geographic patterns in C. signifera advertisement call (Littlejohn and 

Wright 1997, Odendaal et al. 1986, Littlejohn 1964, 1959).  Geographic patterns in 

advertisement calls have been attributed to dispersal between Tasmania and mainland 

Australia following Pleistocene glaciation cycles and sea level fluctuations (Littlejohn 

2005, 1967, 1964).  However, southeastern Australia has been influenced by other drastic 

changes in habitat and climate since the Tertiary (Markgraf et al. 1995).  Marine 

incursions, secondary uplift of the Great Dividing Range, and glaciation at high 

elevations during the late Miocene and early Pliocene fragmented faunal distributions 
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(Bowler 1982, Barrows et al. 2002, Dickson et al. 2002, Gallagher et al. 2003).  In the 

Pleistocene, glaciation cycles caused sea level fluctuations (Lambeck and Chappell 2001, 

Holdgate et al. 2003) and repeated contraction and expansion of forest refuges (Williams et 

al. 2006, Hewitt 2004, Hope et al. 2004, McKenzie and Kershaw 2004, Desmarchelier et 

al. 2000, Markgraf et al. 1995).  Sea level changes repeatedly opened and closed a land 

bridge between Tasmania and mainland Australia (Lambeck and Chappell 2001) and 

sundered eastern Victoria (East Gippsland) into small patches of terrestrial habitat 

(Holdgate et al. 2003, Bowler 1982).  

 Apparent color pattern polymorphism, substantial genetic divergence among 

geographic regions and wide geographic distribution make C. signifera an ideal system to 

investigate processes that generate and maintain phenotypic polymorphisms and assess 

the relationship between these polymorphisms and genetic variability.  In addition, the 

proposed hypothesis of mimicry suggests a mechanism that may contribute to evolution of 

color pattern polymorphism.  In the following chapters, I use molecular phylogenetixcs to 

reconstruct population-level phylogeographic relationships among C. signifera, assess the 

role of predation, and contrast the contributions of mimicry and genetic drift in the 

evolution of color pattern in C. signifera.  

 



Figure 1.1.  A sample of  ventral color pattern variation in C. signifera.  Individuals on the left 
(a.-c.) are putative mimics of  Pseudophryne.  Individuals with dark throat color are males and 
those with white throats are females.  Individuals on the right (d.-f.) are found in populations 
either with or without the putative mimics and resemble individuals of  other Crinia species that 
lack bold black-and-white coloration.  
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b.a.

Figure 1.2.  An example of  color patterns associated with the putative mimicry between (a.) C. 
signifera and (b.) Pseudophryne.  Both species are shown in the posture assumed when under 
simulated predator attack. 

11
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Chapter 2.  Ancient phylogeographic divergence in southeastern Australia 

among populations of the widespread common froglet,  

Crinia signifera. 

Summary 

Geographic patterns of species diversity in southeast Australia have been 

attributed to changes in Pleistocene climate, but related phylogeographic patterns and 

processes are relatively understudied.  12S and 16S mitochondrial DNA sequences in 

Crinia signifera populations were used to infer historical patterns and processes in southeast 

Australia.  Phylogenetic analysis identified three geographically restricted ancient lineages 

and several geographically restricted sub-clades.  Present-day features that may prevent 

gene flow are absent between these geographic regions.  Divergence among the three 

lineages corresponds to a late-Miocene origin, approximately 9 million years ago (mya).  

The geographic breaks among the lineages are consistent with Miocene-Pliocene uplift in 

the Great Dividing Range and elevated sea levels in East Gippsland.  Divergence among 

sub-clades in Victoria and South Australia is estimated to be within the early Pliocene, 

whereas sub-clades in New South Wales are estimated to have diverged near the Plio-

Pleistocene boundary, approximately 2 mya.  Geographic limits of sub-clades are 

consistent with geographic variation in advertisement calls, but are inconsistent with 

phylogeographic limits previously identified in other southeastern species. 
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2.1 Introduction  

The impact of abiotic factors, such as climate cycles, on the genetic structure of 

organisms is of great interest in understanding patterns of divergence and speciation.  

Since the Tertiary, drastic changes in habitat and climate are hypothesized to have 

influenced genetic patterns in southeast Australia (Markgraf et al. 1995).  Late Miocene 

and early Pliocene marine incursions and secondary uplift of the Great Dividing Range, 

coupled with glaciation at high elevations, fragmented faunal distributions (Gallagher et 

al. 2003, Barrows et al. 2002, Dickson et al. 2002, Bowler 1982).  Pleistocene glaciation 

cycles caused sea level fluctuations (Holdgate et al. 2003, Lambeck and Chappell 2001), 

repeated contraction and expansion of forest refuges (Williams et al. 2006, Hewitt 2004, 

Hope et al. 2004, McKenzie and Kershaw 2004, Desmarchelier et al. 2000, Markgraf et al. 

1995) and, to a lesser extent, glacier formation (Barrows et al. 2002, Colhoun et al. 1996).  

Pollen core studies show that habitats fluctuated between temperate wet-forest and more 

arid heathland throughout the Pleistocene (Williams et al. 2006, Hope et al. 2004, 

McKenzie and Kershaw 2004, McKenzie 2002, Hope 1994, Kershaw et al. 1991).  Sea 

level changes repeatedly opened and closed a land bridge between Tasmania and 

mainland Australia (Lambeck and Chappell 2001) and sundered eastern Victoria (East 

Gippsland) into small patches of terrestrial habitat (Holdgate et al. 2003, Bowler 1982).   

 Numerous fine-scale studies in other Australian regions have shown that genetic 

variation within species is correlated with climate changes associated with glaciation 

cycles in the Pliocene (Edwards et al. 2007, Schaüble and Moritz 2001, James and Moritz 

2000, Schneider et al. 1998) and in the Pleistocene (Garrick et al. 2007, Dolman and 
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Moritz 2006, Graham et al. 2006, Hugall et al. 2002, McGuigan et al. 1998).  In contrast, 

the impact of climate fluctuations on southeastern mainland fauna has received little 

attention.  Most such studies have examined patterns among species (e.g., Rockman et al. 

2001, Donnellan et al. 1999) or across smaller geographic scales (e.g., Blacket et al. 2006, 

Nicholls and Austin 2005, Wong et al. 2004).  These studies predict geographical genetic 

structuring in the southeast despite the absence of apparent geographic barriers to gene 

flow.  However, large-scale phylogeographic studies of wide-ranging southeastern species 

are lacking (but see Chapple et al. 2005, Chapple and Keogh 2004, Houlden et al. 1999). 

  The southeastern Australia common froglet, Crinia signifera (Myobatrachidae), is 

well suited for testing hypotheses concerning the phylogeographic history of southeastern 

Australia owing to the wide breadth of its distribution (Fig. 2.1a).  However, delimiting 

the extent of its distribution has been challenging.  Morphologically indistinguishable frog 

populations in southwestern and southeastern Australia were originally assigned to Crinia 

signifera sensu lato.  Biochemical data (Heyer et al. 1982), advertisement call data (Barker et 

al. 1995, Littlejohn, 1964, 1959, 1958), and experimental crosses resulting in hybrid 

inviability and gross morphological deformities (Main 1957, Moore 1954) revealed that C. 

signifera sensu lato comprised several species.  Identification of these species is supported by 

phylogenetic analysis of mitochondrial DNA (mtDNA) sequence data (Read et al. 2001).  

Within C. signifera, subspecies were described (Parker 1940), but phonotaxis experiments 

(Straughan and Main 1966, Moore 1954) demonstrated that females do not discriminate 

among males of different subspecies (Parker 1940) or males from other geographically 

disparate localities.  Thus, C. signifera sensu stricto (hereafter C. signifera) is limited to 
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southeast Australia (Fig.1a).   

 Although these lines of evidence suggest that C. signifera is a single species, 

phylogenetic analysis of mtDNA identified unexpected genetic diversity among four 

geographically separate populations (Read et al. 2001).  Also, several studies revealed 

geographic variation in advertisement calls in the southern portion of its distribution (Fig. 

2.1b; Littlejohn 2005, Littlejohn and Wright 1997, Odendaal et al. 1986, Littlejohn, 1964, 

1959, 1958).  Two clear patterns are evident in the advertisement call data.  First, there 

are five distinct call types that vary geographically, primarily in pulse rate (Fig. 2.1b).  Call 

types were designated either by comparing means (Littlejohn 2005, 1959) or by 

implementing ANOVA (Littlejohn 2005, Littlejohn and Wright 1997, Odendaal et al. 

1986).  Second, frogs from eastern Victoria, southern New South Wales and Tasmania 

have indistinguishable calls (call type 5; Littlejohn 2005, 1964).  Both geographic patterns 

have been attributed to dispersal between Tasmania and mainland Australia following 

Pleistocene glaciation cycles and sea level fluctuations (Littlejohn 2005, 1967, 1964).  

Littlejohn (2005) proposed that populations that share call type 5 are closely related 

because they were colonized by individuals from Tasmanian populations that dispersed 

across the Bass Strait land bridge during the Pleistocene.   

In this study, we investigate phylogeographic variation in C. signifera in southeast 

Australia.  Specifically, we reconstruct the phylogenetic relationships among C. signifera 

populations.  Then, divergence times among C. signifera clades are estimated and 

compared to corresponding geological events.  Finally, we examine advertisement call 

variation in light of the phylogenetic relationships and test the hypothesis that C. signifera 
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populations from southern New South Wales, eastern Victoria and Tasmania share 

similar advertisement calls because they are closely related. 

 

2.2 Methods  

Sample collection, DNA sequencing and alignment 

 

  Samples of C. signifera, C. riparia and C. parinsignifera were collected between March 

and August 2004 and in June 2007.  Crinia signifera were collected at approximately 100 

km intervals (Fig. 2.1a; Permit Nos.  NSWPWS S1119, VIC DSE 10002786, NSW 

ACEC 04/377, ANU AEEC Protocol Nos: F.BTZ.68.04, F.BTZ.08.07, Environment 

ACT LK20048, LT200488, TAS FA07096).  Frogs were located using advertisement 

calls to ensure correct identification.  Formalin-fixed voucher specimens were deposited 

in museums from the state or territory where they were collected (Table 2.1).  All tissue 

samples were stored in 95% ethanol.  Additional tissue samples of C. signifera were 

obtained from the South Australia Museum.  Localities, GPS coordinates and specimen 

identification numbers are listed in Table 2.1.   

 Individuals listed in Table 2.1 were used for DNA sequencing.  Total genomic 

DNA was extracted from toe clips or liver samples using Viogene Blood and Tissue 

Genomic DNA Extraction Miniprep System (Viogene, Inc., Taipei, Taiwan).  

Completely overlapping fragments of mitochondrial 12S and 16S rRNA genes were 

amplified using Failsafe PCR 2X PreMixes Buffer F (Epicentre Biotechnologies, Madison, 

WI) for polymerase chain reaction (PCR) in order to generate sequences corresponding to 
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positions 2153-4574 in the complete mitochondrial sequence of Xenopus laevis (GenBank 

Accession No.  NC 001573, derived from M10217).  Read et al. (2001) demonstrated that 

these genes have sufficient variation for phylogenetic analysis.  Primers used for PCR 

reactions (Table 2.2) were designed to amplify overlapping segments of the complete 12S 

and 16S genes.  All PCR reactions used the following cycle: Initial denaturation 94 ºC for 

2 min, 30-35 cycles of 94 ºC for 30 s, 46-55 ºC for 30 s, and 72 ºC for 60 s and a final 

extension at 72 ºC for 7 min.  PCR products were purified from 0.8% agarose using 

Viogene Gel-M Gel Extraction System (Viogene Inc., Taipei, Taiwan).  Purified products 

were used as templates for sequencing reactions using ABI Prism BigDye Terminator 

v3.1 chemistry (Applied Biosystems, Foster City, CA).  Sequencing reactions were cleaned 

using 1.5% Sephadex G-50 (S-6022 Sigma, St. Louis, MO) in Centrisep 8-strip columns 

(Princeton Separations, Adelphia, NJ) and sequenced on an ABI Prism 3100 Genetic 

Analyzer (Applied Biosystems).   

 Contiguous sequences of completely overlapping fragments were generated and 

cleaned using Sequencher v4.6 (Gene Codes Corp., Ann Arbor MI).  Sequences were 

aligned manually in MacClade v4.06 (Maddison and Maddison 2004) using aligned 12S 

sequences from Read et al. (2001) and 12S and 16S Limnodynastes salminii sequence (Darst 

and Cannatella 2004) as references.  Alignments were straightforward and did not require 

the aid of RNA secondary structure models.  Single base changes were verified by 

examining if each peak in the chromatogram was assigned the correct base.   

 

Phylogenetic analysis and genetic divergence  
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 All analyses were run using sequences listed in Table 2.1 and in Read et al. (2001) 

unless otherwise specified.  Data from Read et al. (2001) included only 691 base pairs (bp) 

of 12S sequence.  Read et al. (2001) recovered a potential cryptic species near Coffs 

Harbour, NSW.  To confirm this finding, 12S sequence from additional Coffs Harbour 

samples are included in the analysis.  New sequences of C. riparia, the sister taxon to C. 

signifera (Read et al. 2001), and C. parinsignifera were included in all analyses.  These species, 

which are morphologically similar and sympatric with C. signifera, were included to insure 

correct identification of C. signifera.  Complete sequences of C. riparia and C. parinsignifera 

from this study were used as outgroups based on the Read et al. (2001) phylogeny.   

 Ambiguous regions of sequences were removed before phylogenetic analysis.  The 

beginning and end of some sequences were excluded to minimize regions with missing 

data.  Three regions of ambiguous alignment were excluded (corresponding to positions: 

402-409, 967-1038, 1464-1482 in Xenopus).  Sites for which an individual sequence had a 

single base insertion were also excluded.   

 Evolutionary relationships among localities of C. signifera were inferred using 

Maximum Likelihood (ML) and Bayesian inference.  The most appropriate model of 

evolution was determined using the Bayesian Information Criterion in MODELTEST 

(Posada and Crandall 1998).  Three replicate analyses were run using the default 

parameters in GARLI 0.951 (www.bio.utexas.edu/grad/zwickl/web/garli.html) to 

estimate the best ML tree.  GARLI uses a genetic algorithm to estimate ML topologies 

and parameters.  Nonparametric bootstrapping was performed in GARLI to assess nodal 

support using 1000 bootstrap replicates.   
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 Bayesian analyses were performed using MRBAYES 3.1.2 (Ronquist and 

Huelsenbeck 2003).  Two runs each with two separate replicates were performed on a 

NPACI Rocks cluster using four Markov chains per replicate and the temperature 

parameter set at 0.2.  Chains were sampled every 1000 generations for 10 million 

generations.  Analyses ran until the standard deviation of split-frequencies reached 0.01 

for the replicates in each run, indicating both runs had converged on the same posterior 

distribution.  Stationarity and burn-in were estimated using MrConverge 

(www.evotutor.org/MrConverge; Brown and Lemmon 2007).  MrConverge defines 

stationarity as the first sample where the likelihood score is greater than 75% of the 

previously estimated scores.  Burn in is estimated by maximizing the precision of the 

posterior probability estimates and is calculated as the sum of the standard deviations of 

the posterior probability estimates for each of the four replicates.  The burn-in is then set 

as the higher of the values determined for stationarity and burn-in.  For these runs, burn-

in was set as 486,000 generations.  Plots of model parameters and likelihood scores versus 

generations were examined to determine whether the set of post burn-in trees had 

converged on the same region of tree space in TRACER 1.4 (beast.bio.ed.ac.uk).   

 To test whether missing 16S rRNA sequence data in Read et al. (2001) influences 

C. signifera relationships, two datasets were analyzed (Wiens 2003).  First, ML analysis 

methods described above were run without Read et al. (2001) data.  Second, a truncated 

dataset (12S only, 691 bp) was analyzed using all taxa and the same ML methods.  When 

analyzed without Read et al. (2001) samples, relationships among C. signifera samples are 

entirely consistent with relationships in the complete dataset.  GARLI analyses of the 
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truncated sequence dataset also recover monophyly of the major clades and sub-clades 

identified in the complete dataset.  However, the relationship among some sub-clades is 

poorly resolved.  Therefore, there does not appear to be an impact of missing data 

because the relationships among clades and sub-clades remain the same, and the results 

are presented for the complete dataset.   

 Frequency-based measures of diversity were not appropriate for this study because 

all but 10 sequences represent unique haplotypes.  Therefore, average pairwise genetic 

distances were calculated using uncorrected p-distances to assess the diversity among 

haplotype clades and sub-clades identified by the phylogenetic analyses.  Genetic 

distances were only compared among individuals with complete 12S and 16S sequence.   

 

Estimates of divergence time  

 To determine whether divergence of the haplotype clades is consistent with 

known geological events in southeast Australia, divergence times were estimated in r8s 

1.71 (Sanderson 2003).  Fossil data are typically used to calibrate divergence times, but 

appropriate fossils are not available for C. signifera.  Instead, the methods introduced by 

Leys et al. (2004) are implemented for calibration of the nodes.  The age of the root node 

was determined to be the age that matched two independent estimates of substitution 

rates for 12S and 16S genes in frogs (Evans et al. 2004: 0.00249; and Lemmon et al. 2007: 

0.00277).   

 The best tree found by GARLI was pruned to remove approximately zero-length 

branches resulting in a topology with a representative from each sub-clade (Fig. 2.3).  In 
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sub-clades B2 and C4, a single sample from west of the Great Dividing Range and one 

sample from Kangaroo Island, respectively, were retained because their genetic 

divergence relative to the remainder of the sub-clade was large.  This pruned tree was 

used to reconstruct divergence times by implementing the semi-parametric penalized 

likelihood (PL) method in r8s (Sanderson 2003).  This method uses a smoothing 

parameter to estimate times simultaneously with rate change along each branch.  Cross-

validation procedures were used to determine an optimal smoothing parameter with the 

root node of C. signifera arbitrarily fixed to 23.  All estimates of divergence times were 

performed using the optimal smoothing parameter from the cross-validation procedure, 

10 replicates of initial starting conditions and the "check gradient" option to insure 

correctness of solutions.  To identify the age at which the average substitution rate was 

approximately equal to the rates from the previous studies, multiple iterations were 

performed by fixing the age of the root of C. signifera.  In each iteration, the root was fixed 

to a different age (23, 19, 18.5, 18, 17.5, 17, 16.5, 16, 13, 8, 5, 3 or 1.8 million years ago 

(mya)).   

 The root of the tree was fixed to 17.75 mya (determined above) to calculate 

confidence intervals around the estimated ages of C. signifera nodes using nonparametric 

bootstrapping.  Bootstrap replicates were generated using the complete dataset in GARLI 

with the pruned tree enforced as a topological constraint.  This forces the topology to 

remain the same while estimating different possible branch lengths for the topology.  

Individuals were subsequently pruned from the bootstrapped trees so that those retained 

on the replicate trees were identical to those in the pruned tree used above.  Confidence 
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intervals of the estimated ages of the nodes were then calculated in r8s using the 100 

bootstrap replicates of the pruned tree.   

 

Hypothesis testing  

 Hypotheses of diversification in C. signifera are based primarily on differences in 

advertisement calls.  Littlejohn (2005) proposed that similarity in advertisement call in 

populations from Tasmania, East Gippsland, Victoria and southern New South Wales is 

due to dispersal of Tasmanian populations across the Bass Strait land bridge (Fig. 2.1a) 

and subsequent colonization along the east coast of mainland Australia during the 

Pleistocene.  Thus, we tested the alternative hypothesis that these localities share a 

common ancestor.   

 The Bayesian posterior distribution of trees represents the total set of trees that 

can be supported by the data.  We calculated the proportion of trees in the Bayesian 

posterior distribution consistent with the alternative hypothesis that samples from 

Tasmania (Sites 44-47), East Gippsland, Victoria (Sites 20-22) and southern New South 

Wales (Site 19) are monophyletic.  Post-burn-in trees consistent with the alternative 

hypothesis were filtered in PAUP* 4.0b10 (Swofford 2003).  If the proportion of trees 

consistent with the alternative hypothesis in the posterior distribution is less than 0.05, 

than the hypothesis of advertisement call similarity due to common ancestry is rejected.   
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2.3 Results  

Phylogenetic analysis and genetic divergence  

 The final analyses were run with an alignment of 2317 bases and included all 

individuals in Table 2.1 unless otherwise specified.  Only ten complete 12S and 16S 

sequences, two from each of five localities, share identical haplotypes (Fig. 2.2).  For the 

remainder, each sequence represents a unique haplotype.  Average pairwise genetic 

distances are summarized in Table 2.3.  Both ML and Bayesian analyses yielded similar 

relationships among individuals and any differences between ML and Bayesian analyses 

are reported below.  Thus, the ML tree is presented with Bayesian posterior probabilities 

(bpp) and nonparametric bootstrap support given for each node (Fig. 2.2).  

MODELTEST chose GTR+I+ Γ as the model of sequence evolution.  The best of three 

ML trees found by GARLI had a -ln likelihood score of 8272.1583 (Fig. 2.2).  Base 

frequencies were estimated as A = 0.330 C = 0.268 G = 0.188 T = 0.214; rate matrix: A-

C = 3.714, A-G = 10.816 A-T = 3.007 C-G = 1.005 C-T = 27.483 G-T = 1.000; gamma 

shape parameter: 0.643; proportion of invariant sites: 0.646.  Bayesian analysis recovered 

a consensus topology identical to the best ML tree.   

 Crinia riparia is the sister species of C. signifera (Fig. 2.2).  Two geographically 

isolated clades are apparent in C. riparia, but the divergence is not clearly associated with 

large geographic distances.  Nearly 5% sequence divergence was uncovered between 

localities less than 100km apart.  These results suggest phylogeographic structure in C. 

riparia, but further discussion lies outside the scope of this paper.   

 Crinia signifera is also monophyletic and comprises the same three clades (A, B, and 



 24 

C) in both analyses (Fig. 2.2).  Average among-clade distances were greater than 2.9% 

(Table 2.3).  Clade A (bpp = 1.00, 100% bootstrap support) comprises samples from East 

Gippsland, Victoria.  Pairwise distances (Table 2.3) in clade A range from 0.0014-0.0063 

with a mean of 0.0023.  Clade B (bpp = 1.00, 99%) comprises most samples from New 

South Wales and the Australian Capital Territory.  In clade B, pairwise distances range 

from 0.0022-0.0194 with a mean of 0.0093.  Clade C comprises samples from South 

Australia, Tasmania and Victoria (excluding East Gippsland; bpp = 0.99, 84%).  Average 

pairwise genetic distances are between 0-0.0658 with a mean of 0.0249 within clade C.  

The relationship among the three clades is poorly resolved.  Based on the Bayesian 

analysis, 56% of the trees in the posterior distribution support clade A as the sister taxon 

to clade C.  For the nonparametric bootstrap replicates, 44% of the trees place clade A as 

the sister taxon of clades B and C.  Only 35% of the nonparametric bootstrap replicates 

support the most frequent Bayesian topology.   

 In clades B and C, several resolved sub-clades were also found (Fig. 2.2).  Sub-

clades are arbitrarily defined as those within major clades that have minimally 2% 

average among-sub-clade distance.  Within clade B, two sub-clades are identifiable; B1 

comprises northern New South Wales samples including samples of the potentially cryptic 

species from Coffs Harbour (bpp = 0.99, 94%) and B2 includes the remainder of central 

New South Wales and the Australian Capital Territory samples (bpp = 0.91, 74%).  

There are five sub-clades within clade C (Fig. 2.2).  The first, C1 (bpp = 1.00, 99%), 

includes central Victoria and eastern South Australia.  The second, sub-clade C2 (bpp = 

0.99, 92%) comprises the remaining locality from New South Wales and those from the 
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New South Wales border of central Victoria (Fig. 2.2).  Sub-clade C3 (bpp = 0.99, 96%) 

comprises samples from southern Victoria and the Fleurieu Peninsula.  Sub-clade C4 

(bpp = 0.97, 59%) comprises samples from Kangaroo Island and the westernmost region 

of South Australia.  There are two monophyletic groups in sub-clade C4.  One of these 

clades (bpp=1.0, 99%) comprises the Kangaroo Island samples from Read et al. (2001).  

Average pairwise genetic distances between Kangaroo Island samples and others in sub-

clade C4 are greater than 2%, but only have 12S data and may be skewed by missing 

data.  Thus, these were left in sub-clade C4.  Finally, sub-clade C5 (bpp = 1.0, 100%) 

comprises samples from Tasmania.   

 

Divergence time estimates  

 The best GARLI tree was pruned and converted to an ultrametric tree using PL 

and the optimal smoothing parameter (32) calculated in r8s (Fig. 2.3b).  Multiple 

iterations of divergence time estimates with different fixed ages of the root node 

determined that a root age between 16.5-19 mya best approximates the substitution rates 

of 0.00249 (Evans et al. 2004) and 0.00277 (Lemmon et al. 2007).  Average substitution 

rates calculated from the different fixed ages are shown in Fig. 2.3a.   

 Confidence intervals were calculated with the root node fixed to the average of 

the two best ages (17.75 mya).  The estimated age of each node (95% confidence interval) 

is shown in Fig. 2.3b.  Divergence times were not estimated for nodes with short branches 

and low support.  The divergence between the three major clades (A, B, C) was estimated 

at 8.99 (6.73- 11.87) mya corresponding to a late Miocene divergence.  Within clade B, 
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the sub-clades diverged 2.21 (0.81-3.43) mya, near the Plio-Pleistocene boundary.  All 

divergences between the sub-clades in clade C are Tertiary in origin.   

 

Hypothesis testing  

 Of the complete set of the post-burn in trees, none of these trees was consistent 

with the alternative hypothesis.  Therefore, we reject that advertisement calls from East 

Gippsland, Victoria, Tasmania and southern New South Wales populations are similar 

based on common ancestry.   

 

2.4 Discussion  

Phylogenetic analysis, genetic divergence and divergence time estimates  

 Phylogenetic relationships and genetic divergences have a strong association with 

geographic location and distance among samples (Fig. 2.2).  All clades and nearly all sub-

clades are geographically restricted.  Only sub-clade C2 contains geographically disjunct 

samples (central Victoria and the Fleurieu Peninsula, South Australia; Fig. 2.1a).  

Littlejohn (2005) hypothesized that these areas were connected along coastal regions 

when the sea level was lower (Lambeck and Chappell 2001).  Most large genetic 

divergences are among geographically disparate locations.   

 Geographic limits of major clades of C. signifera are consistent with geographic 

limits identified in other studies.  The area relationship between clades A and B was 

initially described in frogs of the Litoria citropa species group (Donnellan et al. 1999), 

identified later in open forest frogs, Limnodynastes (Schäuble and Moritz 2001), and the 
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scincid lizard Egernia whitii (Chapple et al. 2005).  The genetic break between clades A and 

C has also been recovered in Planipapillus velvet worms (Rockman et al. 2001) and the 

satin bowerbird, Ptilonorhynchus violaceus (Nicholls and Austin 2005).  In other studies, the 

East Gippsland (clade A) region harbors unique haplotypes in koalas (Houlden et al. 1999) 

and chromosomal races in spiders (Rowell 1990).  The consistency among studies in these 

genetic breaks is notable because they do not coincide with conspicuous geographic 

barriers.   

 The estimates of divergence time among the major clades and lack of apparent 

geographic barriers strongly suggest that genetic breaks in C. signifera were impacted by 

geological events in the late Miocene and early Pliocene.  Although clade C is isolated 

from clades A and B by the Eastern Highlands of the Great Dividing Range, the present 

Great Dividing Range does not seem to act as a barrier to gene flow, as C. signifera is 

found at the tops of mountains (Barker et al. 1995).  However, during the Miocene and 

Pliocene, glaciation of the Eastern Highlands (Barrows et al. 2002) eliminated suitable 

habitat and may have led to the isolation of clade C from the remainder of C. signifera.  

Geological evidence also suggests that late Miocene sea level changes in East Gippsland 

resulted in the formation of isolated patches of suitable habitat that may have isolated 

clade A from the remainder of the mainland (Gallagher et al. 2003, Dickson et al. 2002).   

 In contrast to the major clades, comparative evidence consistent with 

phylogeographic breaks between sub-clades is lacking.  Comparisons between the clade B 

pattern in C. signifera and other organisms is difficult because only two other studies have 

spanned the break between sub-clades B1 (northern New South Wales) and B2 (central 
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New South Wales; Fig. 2.2), and in those studies, sampling is sparse.  The northern New 

South Wales and Queensland populations of Limnodynastes are distinct from central New 

South Wales populations (Schäuble and Moritz, 2001).  In the tree frog, Litoria fallax, the 

McPherson range at the border of Queensland and New South Wales has acted as a 

significant barrier to dispersal between Queensland and New South Wales populations 

(James and Moritz, 2000).  This study lacks Queensland C. signifera samples and thus, 

cannot be directly compared to the other studies.  Similarly, in clade C there is little 

comparative support for C. signifera sub-clades because few studies include samples that 

span the range of clade C.  Samples from the geographic region of sub-clade C1 also 

form monophyletic groups in the skink, Egernia whitii (Chapple et al. 2005) and 

Limnodynastes tasmaniensis (Schäuble and Moritz 2001).  However, in these two species and 

in tiger snakes, Notechis scutatus (Keogh et al. 2005), relationships among populations differ 

substantially from the clade C sub-groupings in C. signifera.   

 All of the sub-clades diverged in the Pliocene (Fig. 2.3b).  Most sub-clade breaks 

do not correspond to Holocene or known Pliocene geological events.  Only three specific 

instances potentially can be attributed to geological events.  First, geological evidence 

indicates that Tasmania was last connected to the mainland 17,000 years ago (ya) via the 

Bass Strait land bridge (Lambeck and Chappell 2001).  Tasmanian populations diverged 

from the mainland 6.02 (4.09-7.83) mya suggesting that the recent separation of 

Tasmania is not responsible for the divergence between sub-clade C5 and mainland sub-

clades.  Second, Kangaroo Island populations diverged from mainland Australia 

populations approximately 3.29 (1.35-5.18) mya in the Pliocene, but Kangaroo Island 
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was most recently connected to the mainland 25,000 ya (Lambeck and Chappell 2001).  

Interpretation of this result is limited because sequences from Kangaroo Island have only 

12S data.  Third, the sister taxon to sub-clade B2 is from the western side of the Great 

Dividing Range and diverged 2.07 (1.30-3.03) mya at the Plio-Pleistocene boundary.  

This date is consistent with glaciation of parts of the Great Dividing Range (Dickinson et 

al. 2002).  However, this is only a single representative from the western side of the range; 

this relationship should be tested with additional sampling.  

 Many studies attribute within-species phylogeographic sub-structure to 

Pleistocene fluctuations that produced recurring contraction and expansion of suitable 

habitat (Graham et al. 2006, Sunnucks et al. 2006, Hugall et al. 2002, Schaüble and Moritz 

2001).  However, C. signifera clades and sub-clades appear to have diverged much earlier, 

during the Miocene and Pliocene.  This result is not unprecedented as studies in other 

species show late Tertiary divergences (Edwards et al. 2007, Chapple et al. 2005, James 

and Moritz 2002).   

 

Phylogenetic and Advertisement call patterns  

 Advertisement call types (Fig. 2.1b) have been used as the primary evidence to 

develop hypotheses of genetic differentiation in C. signifera (Littlejohn 2005, 1967, Moore 

1954).  Littlejohn (2005) hypothesized that dispersal from Tasmania to East Gippsland 

and southern New South Wales resulted in a similar advertisement call (call type 5) 

among populations from the eastern mainland and Tasmania.  Call type 5 is found in 

Tasmania, East Gippsland and southern New South Wales (Fig. 2.1b) suggesting that 
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individuals from these regions may be closely related.  The Bayesian analysis did not 

identify any trees consistent with the hypothesis that individuals from these localities are 

monophyletic.  Rejection of Pleistocene dispersal between Tasmania and the eastern 

mainland is not surprising as the data presented here suggest much older divergences 

between Tasmania and the mainland.  It is more likely that the similarity in 

advertisement calls in these regions is due to the retention of an ancestral call type rather 

than an indication of close relationship.   

 In contrast, phylogenetic relationships within clade C sub-clades reflect 

advertisement call differences.  The geographic regions sampled for call types 1 and 2 

(Fig. 2.1b) correspond to sampling sites in clades C1 and C2, respectively (Littlejohn, 

1964, 1959, 1958).  However, call types 1 and 2 cannot be statistically compared to one 

another because they were collected and analyzed differently (Littlejohn et al. 1993, 

Odendaal et al. 1986, Littlejohn, 1959, 1958).  Therefore, whether sub-clades C1 and C2 

have distinctive calls is not clear, but they do differ from all other localities (Fig. 2.1b).  

The disjunct localities in sub-clade C3 share call type 3 (Littlejohn and Wright 1997, 

Littlejohn 1964).  Call type 4 in western South Australia is different from call type 3, and 

corresponds to the region encompassed by sub-clade C4 (Littlejohn 2005, Littlejohn and 

Wright 1997).  However, like call types 1 and 2, call type 4 has not been compared to all 

other call types (Littlejohn 2005, Littlejohn et al. 1993, Odendaal et al. 1986, Littlejohn, 

1959, 1958).  Thus, differences in advertisement calls appear to be an appropriate 

predictor of sub-clade membership within clade C, but are apparently much older than 

proposed by Littlejohn (2005, 1964) and Littlejohn et al. (1993).   
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Taxonomic relationships  

 High levels of genetic divergence were recovered among samples of C. signifera 

(Table 2.3).  Several pairwise comparisons in this 16S rRNA dataset are above 5%, 

suggesting three cryptic species might be recognized.  However, studies of reproductive 

isolation suggest that C. signifera represents a single species.  Experimental crosses have 

been performed among populations from clade B and C (Main 1968, Straughan and 

Main 1966, Moore 1954).  All crosses resulted in normal development and therefore 

suggest no post-zygotic isolation exists among them.  These crosses contrast with those 

between closely related species of Crinia that result in gross abnormalities and incomplete 

or retarded development of embryos (Main 1968).  Further, phonotaxis experiments 

showed that Queensland females do not discriminate between calls from their own 

populations and those from Seymour, VIC (Straughan and Main 1966).  Though we find 

historically distinct lineages, the reproductive biology is insufficiently divergent to identify 

the three lineages as different species.  Thus, we argue that it is premature to elevate these 

three clades to species-level status without detailed studies of morphological variation, 

intensive phonotaxis experiments (e.g., Kime et al. 1998) and analysis of nuclear DNA 

sequence data.
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Table 2.1.  Individual identification numbers and sampling localities of individuals used for DNA 
sequencing.  Tissues from the South Australia Museum are indicated by *.  Samples and DNA 
sequence presented from the analysis of Read et al. 2002 are marked with †.  Localities are 
arranged from north to south along the east coast and then from east to west.  Numbers in the 
left column correspond to localities on the map and tree in Fig. 2.2.  Latitude and longitude are 
in decimal degrees.  States are abbreviated as follows:  NSW, New South Wales; VIC, Victoria; 
SA, South Australia; TAS, Tasmania.  Museums used for voucher deposition are abbreviated as 
follows: South Australia Museum, SAM; Museum Victoria, MV; Australian National Wildlife 
Collection, ANWC; Australian Museum, AM; Queen Victoria Museum, QVM. 
Site Individual Species Locality State Region Latitude 

Longitude 
Museum GenBank 

1 BS054 C. signifera Evans Head NSW Northern 
NSW 

-29.09 153.59  AM EU443860 

2 ABTC25425* C. signifera Glenn Innes NSW NSW -29.71 151.75 -- EU443863 
3 ABTC12334* C. signifera Armidale  NSW NSW -30.22 151.67 -- EU443873 
4 BS040, Cr50060, 

Cr50062-64, 
Cr50066-68† 

C. signifera Coffs Harbour  NSW Northern 
NSW 

-30.30 153.11 -- EU443861, 
EU448122-
EU448128 

5 BS035 C. signifera Port Macquarie NSW NSW -31.50 152.90 AM EU443872 
6 BS033 C. signifera Clarencetown NSW NSW -32.57 153.44 AM EU443874 
7 BS011 C. signifera Cooranbong NSW NSW -33.13 151.33 AM EU443875 
8 BS154 C. signifera Macquarie Woods NSW NSW -33.41 149.31 AM EU443862 
9 BS022 C. signifera Coogee NSW NSW -33.93 151.26 AM EU443866 
10 ABTC17627* C. signifera Heathcote NSW NSW -34.07 151.02 AM EU443867 
11 BS162 C. signifera Kangaroo Valley NSW NSW -34.74 150.54 AM EU443870 
12 ABTC12884-85* C. signifera Wagga Wagga NSW VICSA -35.13 148.23 -- EU443883, 

EU443880 
13 87-88† C. signifera Mullingans Flat ACT NSW -35.17 149.17 -- EU448130- 

EU448131 
14 BS240-241 C. signifera Canberra ACT NSW -35.24 149.11 ANWC EU443864-

EU443865 
15 BS060 C. signifera Ulladulla NSW NSW -35.35 150.45 AM EU443871 
16 ANWC 2048† C. signifera Jerrabombera ACT NSW -35.35 149.15 -- EU448132 
17 86† C. signifera Braidwood NSW NSW -35.43 149.80 AM EU448129 
18 BS164 C. signifera Kianga NSW NSW -36.20 150.13 AM EU443869 
19 BS067 C. signifera Eden NSW NSW -37.05 149.90 AM EU443868 
20 99† C. signifera Noorinbee VIC East 

Gippsland 
-35.17 149.15 MV EU448133 

21 BS175, BS180 C. signifera Cann River VIC East 
Gippsland 

-37.56 149.15 MV EU443876, 
EU443878 

22 BS183-184 C. signifera Bairnsdale VIC East 
Gippsland 

-37.67 147.56 MV EU443877, 
EU443879 

23 ABTC12882-83* C. signifera 0.5k E Granya VIC VIC-SA -36.10 147.32 -- EU443881-
EU443882 

24 BS088, BS093 C. signifera Lilydale VIC Central 
VIC 

-37.78 145.36 MV EU443900, 
EU443898 

25 BS185, BS189 C. signifera Seymour  VIC Central 
VIC 

-37.01 145.14 MV EU443901-
EU443902 

26 BS001 C. signifera Bundoora VIC Central 
VIC 

-37.72 145.05 MV EU443899 

27 BS195-196 C. signifera Maryborough VIC VIC-SA -37.31 143.98 -- EU443891-
EU443892 
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Table 2.1.  Continued  
Site Individual Species Locality State Region Latitude 

Longitude 
Museum GenBank 

28 BS197-198 C. signifera Stawell VIC VIC-SA -37.07 142.76 MV EU443893-
EU443894 

29 BS141 C. signifera Hamilton VIC Central 
VIC 

-37.70 141.91 MV EU443897 

30 BS131 C. signifera Portland VIC VIC-SA -38.37 141.61 MV EU443884 
31 ABTC37438* C. signifera Mount Gambier SA VIC-SA -38.05 140.94 SAM EU443888 
32 ABTC14924† C. signifera Penola SA VIC-SA -37.37 140.83 SAM EU448134 
33 BS212-213 C. signifera Naracoorte SA VIC-SA -37.10 140.79 SAM EU443895-

EU443896 
34 BS227 C. signifera Mary Seymour 

Conservation Park 
SA VIC-SA -37.16 140.62 SAM EU443886 

35 ABTC37700-01* C. signifera Padathaway SA VIC-SA -36.69 140.48 -- EU443889-
EU443890 

36 ABTC58307* C. signifera Gum Lagoon 
Conservation Park 

SA VIC-SA -36.27 140.02 -- EU443885 

37 ABTC58814* C. signifera Milang SA Fleurieu 
Peninsula 

-35.40 139.97 -- EU443904 

38 ABTC36237* C. signifera Kingston SA VIC-SA -36.82 139.85 -- EU443887 
39 BS096-98 C. signifera Adelaide Hills  SA Western 

SA 
-35.06 138.75 SAM EU443918-

EU443920 
40 BS116-118,    

BS127-129 
C. signifera Clare SA Western 

SA 
-33.84 138.62 SAM EU443921-

EU443926 
41 BS106-108 C. signifera Crystal Brook SA Western 

SA 
-33.33 138.24 SAM EU443915-

EU443917 
42 ABTC33253* C. signifera Second Valley  SA Fleurieu 

Peninsula 
-35.52 138.22 -- EU443903 

43 ANWC1706, 
ANWC1708-10† 

C. signifera Kangaroo Island SA Western 
SA 

-35.75 137.62 SAM EU448136, 
EU448138, 
EU448139, 
EU448137 

44 BS433-435 C. signifera Sheffield TAS TAS -41.39 146.33 QVM EU443909-
EU443911 

45 BS423-425 C. signifera Epping Forest TAS TAS -41.78 147.32 QVM EU443912- 
EU443914 

46 BS413-416 C. signifera Wielangta Forest TAS TAS -42.65 147.90 QVM EU443905- 
EU443908  

47 ABTC17180† C. signifera Nugent TAS TAS -42.70 147.75 -- EU448135 
-- ABTC26421, 

Cr50061, 
Cr50065† 

C. sp Coffs Harbour NSW -- -- -- EU448118- 
EU448120 

-- ABTC14772* C. riparia Mambray Creek SA Flinders 
Ranges 

-- -- EU443858 

-- BS207 C. riparia Warren Gorge SA Flinders 
Ranges 

-- SAM EU443856 

-- BS222-223 C. riparia Telowie Gorge  SA Flinders 
Ranges 

-- SAM EU443859, 
EU443857 

-- BS153 C. parinsignifera Macquarie Woods  NSW -- -33.41 149.31 AM EU443855 
-- ABTC17569† C. parinsignifera Wagga Wagga NSW -- -- SAM EU448117 
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Table 2.2.  Primers used for PCR and DNA sequencing.  Positions are in reference to Xenopus 
(GenBank Accession No. NC001573, derived from M10217).  Primers designed specifically to 
amplify difficult regions in Crinia species are designated as: This paper.  All other primers were 
designed in the labs of D.M. Hillis and D.C. Cannatella.  

Primer Name Sequence (5'-3') Position Reference 
MVZ59 ATAGCACTGAAAAYGCTDAGATG 2153-2180 Goebel et al. 1999 
tRNA-VAL GGTGTAAGCGARAGCTTTKGTTAAG 3034-3059 Goebel et al. 1999 
12SM GGCAAGTCGTAACATGGTAAG 2968-2988 Cannatella et al. 1998 
16SA ATGTTTTTGGTAAACAGGCG 3956-3975 Goebel et al. 1999 
12L1 AAAAAGCTTCAAACTGGGATTAGATACCCCACTAT 2475-2509 Goebel et al. 1999 
16SH GCTAGACCATKATGCAAAAGGTA 3282-3304 Goebel et al. 1999 
16SC GTRGGCCTAAAAGCAGCCAC 3623-3642 -- 
16SD CTCCGGTCTGAACTCAGATCACGTAG 4549-4574 -- 
12Sb-H GAGGGTGACGGGCGGTGTGT 2897-2916 Goebel et al. 1999 
PC3000r CGGTGGTTTAGTGTGGGGGTGT 3000-3022 This paper 
PC3000f CCCACACTAAACCACCGCCACT 3000-3022 This paper 
PC3800r DGGGTGTATTACCCGGGGGCTG 3800-3822 This paper 
PC3800f CCGACAAAGTGGGCCTAAAAGC 3800-3822 This paper 
SBC16Sc-50down ATHATGCTAGAACTAGTAACAAGAA 3673-3698 This paper 
BS223R TCGCCTGTACTAGATTGTTAGAATG 3050-3075 This paper 
BS223F CATTCTAACAATCTAGTACAGGCGA 3050-3075 This paper 
12S1R CCACCTAGAGGAGCCTGTCC 2601-2620 This paper 
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Table 2.3.  Summary of pairwise uncorrected p-distance within and among clades.  Clades refer 
to major clades in Fig. 2.2. 

Uncorrected p-distance 
 Mean  Standard 

Deviation 
Range 

All samples 0.0026 0.0097 0-0.0459 
Among clades    
A-B 0.0330 0.0027 0.0072-0.0282 
A-C 0.0302 0.0037 0.0256-0.0375 
B-C 0.0314 0.0057 0.0148-0.0244 
Within Clades    
Clade A 0.0036 0.0023 0.0014-0.0063 
Clade B 0.0093 0.0047 0.0022-0.0194 
Clade C 0.0249 0.0118 0-0.0658 
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Figure 2.2.  (Next page) Relationships among populations of  C. signifera and the geographic 
distribution of  clades and sub-clades.  The best ML tree estimated using GARLI 
(-lnL=8372.1583) is shown.  Solid black dots represent Bayesian posterior probabilities above 
0.95 and nonparametric bootstrap support >85%. White dots represent Bayesian posterior 
probabilities >0.95 and nonparametric bootstrap support <85%.  Branches without dots indicate 
support <0.95 Bayesian posterior probability and <75% nonparametric bootstrap support.  
Individuals with identical haplotypes are indicated on the tree by *.  The scale on the tree is in 
substitutions per site.  Shading behind the clades corresponds to shading on the map.  Numbers 
next to localities on the tree correspond to numbers in Table 2.1 and on the map to the left of  the 
tree.  Dots and numbers on the map show sampling localities listed in Table 2.1.  Abbreviations 
on the map are: ACT, Australian Capital Territory; NSW, New South Wales; QLD, Queensland; 
SA, South Australia; TAS, Tasmania; VIC, Victoria.  
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Figure 2.3.  Calibration of  the divergence time estimates and chronogram indicating estimated 
divergence times.  (a.) Calibration of  the C. signifera tree.  Multiple iterations were performed with 
the root node fixed to different ages.  Each iteration produced a substitution rate.  The plot shows 
the fixed age of  the node and the corresponding substitution rate estimated by r8s.  The best 
estimate of  the root age is approximately equal to the substitution rates determined from two 
independent studies.  The estimates from the previous studies are based on fossil calibrations, and 
are shown on the graph as a dashed and dotted line and a dashed line.  (b.) Chronogram of  the 
best GARLI tree resulting from fixing the age of  the root to17.75 mya.  Clades and sub-clades 
(shaded triangles) are labeled based on the inclusion of  a single representative from that clade.  
Shading of  the triangle corresponds to shading in Fig.  2.2.  Two individuals were included from 
B2 and C4 because the divergence between the individuals was higher than most others in the 
sub-clade.  The extra individual remains outside of  the sub-clade triangle.  Gray boxes behind 
the nodes are confidence intervals calculated from 100 nonparametric bootstraps of  the best 
GARLI tree topology.
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Chapter 3.  Differential predation on color pattern variants of the 

Australian common froglet, Crinia signifera. 

Summary 

 Color pattern polymorphisms, the presence of multiple color patterns in a single 

population, are commonly associated with predation through mechanisms such as 

frequency-dependent selection or differential selection among heterogeneous habitats.  

Understanding how predation influences vertebrate color pattern polymorphisms is 

enhanced by using predators in their natural habitats.  However, identification of 

predators that prey upon vertebrates is challenging.  In this study, I used attack markings 

on clay replicas of the polymorphic Australian common froglet, Crinia signifera, to identify 

natural predators and to test whether predators discriminate between two different color 

patterns (black-and-white and white).  Transects were established in two habitat types 

(woodland and vineyard) in order to evaluate potential predator composition differences 

between habitats.  Predation rates were unexpectedly high in both transects (woodland = 

43.96%, vineyard = 20.21%).  Both attack rates and the proportion of attacks on different 

color patterns were significantly different between transects (GH Rate = 10.85, p = 0.0099; 

GH Color = 5.23, p = 0.02) suggesting a correlation between habitat differences and 

predation on different color patterns.  Mammals were identified as the primary attackers 

of the replicas, as has been demonstrated by similar studies in Australia.  Binomial tests of 

predator choice indicated no difference between incidence of attacks on black-and-white 

and white replicas in the woodland (p = 0.676), but demonstrated that black-and-white 

replicas were attacked significantly less frequently in the vineyard (p = 0.0021).  Binary 
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logistic regression indicates that black-and-white coloration is attacked significantly less 

often in the vineyard habitat (Wald's χ2 = 4.59, p = 0.032) suggesting that black-and-

white coloration is advantageous in the vineyard.  The combination of differences in 

attack rate and avoidance of black-and white coloration among habitats suggest that 

predation contributes to the evolution and maintenance of color pattern polymorphism in 

C. signifera.   

 

3.1 Introduction 

 Color pattern polymorphism is defined as the simultaneous occurrence of multiple 

different variants or morphs in the same population at frequencies too high to be a result 

of mutation (Ford 1975, Poulton 1890).  Animals that exhibit color pattern 

polymorphisms provide an opportunity to investigate the origin and maintenance of 

natural variation within and among populations.  Color polymorphisms are commonly 

linked with selection either through predation or adaptation to heterogeneous habitats 

(e.g., Manríquez et al. 2008, Phifer-Rixey et al. 2008).  Often, coloration is used as a signal 

to escape predation either by avoiding detection (crypsis) or advertising noxiousness 

(aposematism).  Cryptic species (Cott 1940, Poulton 1890) minimize their detectability by 

resembling their visual background (Bond 2007, Endler 1978), while aposematic species 

maximize their conspicuousness to warn predators that they are unpalatable or toxic 

(Cott 1940).   

 Directional selection imposed by predators is predicted to reduce variability in 

populations, but unexpectedly, phenotypic polymorphisms are apparent within both 
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cryptic and aposematic species.  Predation can maintain polymorphisms in prey through 

frequency-dependent (apostatic) selection when prey is cryptic (e.g., Merilata 2006, 

Olendorf et al. 2006, Bond and Kamil 2002), or number-dependent selection (Mallet and 

Joron 1999) when one prey species mimics another aposematic species (e.g., Mallet 1993).  

Alternatively, polymorphisms can arise as adaptations to heterogeneous habitats (or 

microhabitats) and can be maintained through a balance between selection and gene flow 

(Bond 2007, Endler 1978).  In addition, theoretical studies have proposed that 

interactions between environmental heterogeneity and predation maintain and promote 

the evolution of polymorphic coloration (Forsman and Åberg 2008, Forsman et al. 2008).   

 To examine the contribution of predation and habitat differences to color 

polymorphism, it is critical to identify natural predators.  Many studies of predation on 

phenotypically polymorphic species focus on invertebrate prey species.  These studies 

benefit from the ability to identify natural predators and quantify their impact (e.g., 

Hanlon et al. 2009, Manríquez et al. 2008, Phifer-Rixey et al. 2008, Cook 1986).  

Identifying predators of vertebrates is more challenging because it relies on rare 

observations of predation events or gut content analyses.  Experiments that test whether 

predators avoid vertebrate prey often use hypothetical or unnatural model predators, 

such as chickens (e.g., Svádová et al. 2009, Darst and Cummings 2006).  While these 

studies are crucial for understanding predation dynamics, the outcomes of some studies 

using model predators conflict with outcomes of similar studies that use natural predators 

(reviewed by Speed 2000).  Therefore, addressing questions relating to natural 
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evolutionary processes that maintain color pattern polymorphism in the wild is difficult in 

the absence of known predators.   

Clay replicas have been successfully used as a means to identify natural predators 

and quantify predation pressure (e.g., Pfennig et al. 2007, Kuchta, 2005).  Furthermore, 

soft clay can be used to identify natural predators because beak and tooth impressions are 

left following a predatory attack (Berry and Lil 2003, Boulton and Clarke 2003, Brodie 

1993).  Even in small vertebrates, like frogs, clay replicas have been used successfully to 

assess predator discrimination among color patterns (Saporito et al. 2007, Kuchta 2005). 

 In Australia, several myobatrachid frogs are polymorphic in color pattern 

(Hoffman and Blouin 2000) and many exhibit putative anti-predator defenses (Williams et 

al. 2000).  However, a relationship between color patterns and predator evasion strategies 

has not been demonstrated.  Specifically, Crinia signifera, the common froglet, is an 

example of a widely distributed taxon with relatively well-understood ecology, life history 

and reproductive biology, but for which mechanisms driving geographic patterns of 

phenotypic polymorphisms have not been investigated in the context of predation 

(Lemckert 2005a, b, Lauck 2005, Williamson and Bull 1996).  Among potentially 

interbreeding populations, individual members of each population vary in the proportion 

of black on the ventral surface (Cogger 2000).  Within populations, black-and-white 

individuals co-exist with individuals that have solid white, gray or black ventral surfaces 

(Fig. 3.1).  When attacked by a predator, C. signifera "plays dead" (thanatosis), exposing its 

ventral surface (Williams et al. 2000).  All C. signifera individuals play dead regardless of 

ventral coloration (Symula unpubl. data) and individuals from some populations secrete 
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peptides that have been shown to result in smooth muscle contraction in vitro (Maselli et al. 

2004, Erspamer et al. 1984).  The combination of a defensive behavior, bold coloration 

and potentially noxious skin secretions may function to deter predators.  However, 

whether the signal is aposematic remains untested partially because records of predation 

on C. signifera are limited to rare predation by a few elapid snake species (Shine 1977).   

 One hypothesis suggests that the exposure of black-and-white ventral coloration 

by C. signifera is due to mimicry of frogs in the genus Pseudophryne (Williams et al. 2000).  All 

Pseudophryne species play dead and have black-and-white mottled venters (Cogger 2000), 

but the Pseudophryne display is accompanied by secretion of the skin alkaloid, 

pseudophrynamine (Daly et al. 1990).  Some similar alkaloids are known to cause paralysis 

and death in mice (Smith et al. 2002, Daly 1995, Daly et al.1990, 1984).  When brightly 

colored, dendrobatid poison frogs that secrete alkaloids are avoided by predators (Darst 

and Cummings 2006).  Therefore, by sharing coloration and defensive behavior with 

Pseudophryne, C. signifera may be afforded protection from predators. 

 No tests have been conducted to evaluate whether the black-and-white coloration 

(or the playing dead behavior) deters predators in either C. signifera or Pseudophryne.  

Elucidation of the effect of natural predators can provide insight into how polymorphism 

is maintained in populations of C. signifera.  However, natural predators of C. signifera or 

Pseudophryne are unknown.  Diet composition and foraging behavior suggest that reptiles, 

birds and mammals are potential predators of frogs.  Gut content analyses of birds, 

though they reveal small frogs in the diet, do not conclusively identify C. signifera or 

Pseudophryne as part of the diet (Higgins and Davies 1996, Marchant and Higgins 1990a, 
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b, 1993, Barker and Vestjens 1979, Lowe 1978).  Likewise, small frogs have been found in 

gut contents of native mammals that frequently forage among vegetation along freshwater 

shorelines (e.g., Antechinus, water rats), but the frogs consumed can only be confidently 

assigned to the family (Strahan 1995).  In a survey of gut contents, only a single species of 

snake contained either C. signifera or Pseudophryne bibronii, but these frogs made up less than 

0.6% of the diet of the snake (Shine 1977).   

 In this study, I used soft clay replicas to test the response of predators to 

polymorphic coloration of C. signifera.  Though C. signifera is variable in black-and-white 

color pattern among populations, I focus on within-population polymorphism in this 

study by using clay replicas of two different C. signifera morphs (black-and-white and 

white; Fig. 3.1).  I specifically aimed to test whether the black-and-white coloration in C. 

signifera affords protection from predators, and to identify putative predators of C. signifera 

in different habitats. 

 

3.2 Methods 

Replica construction 

 Plaster molds were made from a plastic frog that was approximately the size of C. 

signifera (snout-vent-length = 25mm).  From the molds, 448 replicas were constructed 

using white Original Sculpey Modeling Compound (Polyform Products Co., Elk Grove 

Village, IL).  All replicas were painted on the dorsal surface with brown acrylic paint to 

resemble the dorsal coloration of C. signifera.  Half of the replicas (224) were painted on 

the ventral side to resemble black-and-white (putatively mimetic) individuals previously 
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captured at the site.  The remaining 224 replicas were left white to represent non-mimetic 

individuals from the experimental site (Fig. 3.1).  

 

Transect set-up 

 The experiment was performed at Noorinbee Selection Vineyards and Winery in 

Cann River, Victoria, Australia between 26 May-7 June 2007.  Transects were 

established over a 48 h period in two habitat types.  One transect was set up in a 

woodland area and a second transect was set up along drainage ditches in a vineyard.  

Both sites were observed to have natural populations of C. signifera.   

 Pairs of a mimetic (black-and-white) and a non-mimetic (white) replica were 

placed along both transects with spacing of 5 m between pairs.  A small green marker was 

placed approximately 1 foot from each pair to ensure that missing pairs could be 

identified.  Pairs of clay replicas were set on the ground, ventral side up, with 

approximately 3-5 cm between each replica.  Thus, although the color pattern normally 

is displayed along with a defensive behavior, this experiment specifically emphasized the 

effect of the color pattern without the potentially confounding effects of the behavior.  

Transects were left for 24 h before observations.   

 

Data collection and scoring of attacks 

 Observations began on 28 May 2007.  Both transects were observed in late 

morning and early afternoon to avoid interfering with peak bird activity.  Due to an 

unexpectedly high predation rate, the woodland was observed daily.  The vineyard 
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transects were observed every second day.  If replicas were damaged, bitten or otherwise 

irreparable, both members of the pair were removed.  Disturbances, bite marks or other 

damages were recorded.  For each observation of recent predator activity on a pair (i.e., 

attacked or damaged), pair number, color pattern of the affected individuals and type of 

activity were scored.  Each activity was categorized as activity on both replicas, activity on 

only white replicas or only black-and-white replicas.  Type of activity on replicas was then 

categorized as attacked or damaged.  Pairs were categorized as “attacked” if they were 

disturbed (replicas were moved away from original positions or were flipped without 

damage), bitten (replicas bore obvious teeth or beak marks and were intact), destroyed 

(replicas no longer resembled frogs or were in tiny pieces) or missing (replicas were absent 

from original site).  Individuals that were bitten or destroyed were categorized into 

different types of bites based on putative predator.  Replicas were scored as “damaged” 

when the damage incurred was not caused by a predator (e.g., weathering of paint).   

 To account for damaged replicas and non-independent attacks, an adjusted 

dataset was created removing some observations from statistical analyses.  First, on each 

transect the total number of pairs was reduced by the number of damaged pairs and then 

by the number of pairs attacked by animals that were unlikely predators (e.g., wallabies).  

Second, adjacent pairs that were attacked on the same day were categorized as pseudo-

replicates unless it was determined that different predators were responsible for the attack.  

Each pseudo-replicate was counted as a single attack and these pairs were scored based 

on the color of the replica that was attacked.  For example, if white members of each of 

two pairs were attacked, the disturbance was categorized as a single attack on a white 
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replica.  However, if a black-and-white replica was attacked in one pair and a white in the 

second pair, the attack was scored as a single attack on both replicas.  Then, the total 

number of pairs was reduced to account for the number of pseudo-replicates.   

 

Statistical analyses 

 All statistical analyses were performed on the adjusted dataset.  The two transects 

represented two experimental replicates.  If the two replicates meet the null expectation 

that attack frequencies are equivalent, results from the two transects can be pooled as a 

single statistical population (Sokal and Rohlf 1995).  To determine whether results from 

the different habitats could be pooled, G-tests were performed in two ways.  First, G-tests 

of heterogeneity were used to test whether the total number of attacks differed among 

sites.  Second, to test the hypothesis that the color attack frequency differed among 

habitats, G-tests of independence were performed (Sokal and Rohlf 1995).  Then, binary 

logistic regression was used to test whether the probability of attack on black-and-white 

replicas was significantly different among habitats.  Finally, to test whether white replicas 

were attacked more frequently than black-and-white replicas, a binomial test was 

performed.  This test includes only data where a clear choice was made between the two 

different color patterns and disregards pairs where both replicas were attacked.  The 

binomial test was chosen over the G-test of independence because the experiment was 

designed as a predator choice test where each pair represents a single trial.   
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Bite mark identification  

 To identify mammal predators that left bite marks in the clay replicas, I used a 

two-step method.  First, to generate a set of prints to compare to those in experimental 

replicas, skulls from the Museum Victoria (Melbourne, Australia) collection were used to 

make teeth prints in fresh clay.  Second, clear bite impressions on replicas were cast using 

Easycast Very fast cure polyurethane resin (Barnes Products Pty. Ltd.).  Tooth casts were 

then compared to teeth from skulls of predatory mammals, and to images on Museum 

Victoria's Bioinformatics website (http://museumvictoria.com.au/bioinformatics/ 

mammals/images/thumbindex.htm), and identified using a key that characterizes traces 

left behind by Australian mammals (Triggs 2004).  Many observed bite marks did not 

leave marks of the entire jaw or even complete individual teeth.  As a result, predator 

identification was limited to when a clear incisor, premolar or partial jaw was left, in 

isolation, or when a replica retained key jaw or tooth features (Triggs 2004).  Also, 

because clay was chewed or bitten multiple times, prints were often longer than the actual 

tooth, distorting the resulting casts.  Finally, many replicas were destroyed, and left in tiny 

pieces from which no tooth casts could be made. 

 

3.3 Results 

Data collection and scoring of attacks 

 Adjusted totals for both transects are shown in Table 3.1.  In the woodland 

transect, of the total 101 pairs 91 pairs met the criteria for including data.  Eight pairs 

were excluded due to pseudoreplication, one pair due to a bite by a Swamp Wallaby 



 50 

(Wallabia bicolor) and one pair due to human induced damage.  Swamp Wallabies are 

primarily herbivorous, so the attack was removed because it is unlikely to represent a 

major predator of C. signifera.  Data collected after 4 June were discarded because 30 pairs 

of replicas disappeared, over a 24-hour period on 4 June.  It is likely that a predator 

discovered the transect and removed these pairs.  Thus, to avoid artificially inflating 

estimated predation rates these data were not included.   

 Of the 123 pairs on the vineyard transect, 94 met the inclusion criteria.  One pair 

was excluded due to pseudoreplication and 27 pairs were excluded due to environmental 

damage.  In these 27 pairs, clay was often scraped off by something other than a 

predator, potentially a slug.  Pairs with this type of damage were removed as they were 

found.   

In the woodland, there were 16 instances where both members of the pairs were 

attacked.  In these, there were only five cases where the attack category (Disturbed, 

Bitten, Destroyed, Missing) differed between the color patterns.  These attacks were 

scored as events in which both replicas were attacked by a single predator to avoid 

arbitrary differentiation of attack severity.   

 

Attack rates and predator preferences 

 Attack rates are the ratio of the total number of attacks to the adjusted total 

number of replicas on the transect.  In the woodland, 43.96% of the pairs were disturbed, 

bitten or destroyed compared to 20.21% in the vineyard.  The G-test of heterogeneity on 

attack rates indicated that total attack rates were significantly different between the 
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vineyard and woodland transects (GH = 10.85, p = 0.0099).  Therefore, data on attack 

rate could not be pooled and each transect was considered separately.  Figure 2 illustrates 

the attack rate based on color morph for each transect.  The G-test of independence on 

color morph indicated that the proportion of attacks on only black-and-white replicas and 

only white replicas were significantly different (GH = 5.23, p = 0.02) between the vineyard 

and woodland, so predator choice tests were examined for each transect separately.  

Similarly, binary logistic regression indicated that the probability of attack on black-and-

white replicas was significantly higher in the woodland (Wald's  χ2 = 4.59, p = 0.032). 

 By using pairs of clay replicas on each transect, each pair represented a single 

replicate of a predator choice test.  Thus, for statistical analyses, attacks on both 

individuals were not included because choice could not be assessed.  On the woodland 

transect, the binomial test indicated no difference between attacks on black-and-white 

and white replicas (Binomial test p = 0.676).  In the vineyard, white replicas were 

attacked significantly more often than black-and-white replicas (Binomial test, p = 

0.0021).   

 

Bite mark identification 

 Casting of teeth from clay replicas revealed that only mammalian teeth prints 

were observed, and all but one bite mark was made by potential frog predators.  The 

single exception was left by the herbivorous Swamp Wallaby (Wallabia bicolor).  Three 

other disturbances were potentially attributable to birds (peck marks).  It was not possible 

to positively confirm birds as predators based on these instances because none of the 
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attacked replicas had distinctive marks seen in comparable studies (e.g., Pfennig et al. 

2007, 2001, Brodie 1993).   

 The primary predator in the woodland was the common Brushtail possum 

(Trichosurus vulpecula), identified by marks left by the incisors from the lower jaw (Fig. 3.3a), 

and in some replicas, claw marks.  Several other replicas contained remnants of sharp 

canine impressions.  Though some bore similarity to canines of Spot-tail quolls (Dasyurus 

maculatus), these replicas lacked the key feature of four incisors beside the canine (Triggs 

2004).  Without any incisors, these attacks could not be conclusively confirmed as quoll 

bites.  Similarly, most of the destroyed replicas were not identifiable (Fig. 3.3c).   

 In the vineyard, though many teeth prints yielded clear casts, most replicas did 

not have sufficient tooth detail to conclusively identify a predator.  However, there were 

obvious differences in predator composition between the vineyard and the woodland.  

First, none of the replicas in the vineyard were bitten by common Brushtail possums.  

Second, one vineyard replica (Fig. 3.3b.) bore a strong canine tooth and three of the four 

incisors indicative of a Spot-tail quoll (Triggs 2004).  Third, one replica had bite marks 

that could be tentatively confirmed as a rat (Hydromys chrysogaster), but tooth casts were too 

elongated and misshapen to confirm that identification.  Fourth, some markings suggest 

that birds may have pecked at least three replicas (Table 3.1).  Marks similar to the 

putative rat and birds were absent in the woodland.   
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3.4 Discussion 

 In this experiment, clay replicas of C. signifera were attacked frequently (20-45% of 

pairs attacked), with mammals imposing the greatest pressure (58.4% of all bites).  Black-

and-white replicas were preyed upon less frequently in the vineyard habitat (Wald's χ2 = 

4.59, p = 0.032).  Between experimental sites, there were significant differences in attack 

rates and in the proportion of black-and-white and white individuals attacked (p = 0.02, 

Fig. 3.2).  Testing for heterogeneity in predation was not possible owing to only a few 

conclusively identified predators on either transect.  However, the results suggest that the 

predator composition differed between habitats.   

 

Attack rates 

 The attack rate in the woodland habitat was notably high.  In clay replica studies 

performed in North America, attack rates range between 6.8% (Pfennig et al. 2001) and 

16.5% (Pfennig et al. 2007).  Similarly, in a clay replica study of aposematic frogs in Costa 

Rica, attack rates were 15.4% (Saporito et al. 2007).  In contrast, attack rates up to 86% 

were observed on clay egg replicas used to estimate nest predation levels in Australian 

(Berry and Lil 2003, Fulton and Ford 2003, Matthews et al. 1999).  In the woodland 

transect of this study, 45% of the pairs had suffered some sort of disturbance in less than 

one week.  This suggests that C. signifera, and potentially other similar-sized frogs, are 

under high predation risk.  Thus, developing defensive strategies may be particularly 

advantageous in these frogs.  Defensive strategies in frogs are common (Williams et al. 

2000).  Both C. signifera and Pseudophryne species play dead and expose a putatively 
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aposematic (warning) coloration to avoid predation.  Strategies of defense in other 

Australian frogs include noxious secretions and bright coloration on the dorsum (e.g., 

Notaden, Pseudophryne), inflation and elevation of the body (e.g., Limnodynastes, Neobatrachus) 

and defensive vocalizations (e.g., Litoria, Cyclorana; Cogger 2000, Williams et al. 2000).  

Further, other myobatrachid frog species bear black-and-white coloration that may be 

directed at avoiding similar predators (e.g., Pseudophyrne, Adelotus brevis; Barker et al. 1995).  

The results presented here suggest that the diversity of apparent defensive mechanisms in 

Australian frogs may have evolved in response to the apparent high risk of predation.   

 Relative to attack rates on white replicas, low rates on the black-and-white 

replicas in the vineyard suggest that display of the black-and-white coloration is 

advantageous in some habitats.  These results imply that Pseudophryne species that bear 

similar coloration are also afforded protection from predators.  Pseudophyrne were not 

found in either experimental site because the experiment was performed just before the 

breeding season, but were found later in the season.  This experiment does not directly 

provide evidence that C. signifera is a mimic of Pseudophryne, but only that color pattern is 

beneficial in some habitats.  Furthermore, I do not address whether the ventral coloration 

is aposematic in this study.  It is possible that black-and-white replicas were more difficult 

to detect in the high light environment of the vineyard.  When on dark soil backgrounds 

or in shaded areas, white replicas (and C. signifera with white venters) were easier to find 

than those that are black-and-white (R. Symula, pers. obs.).  Data demonstrating that one 

color is more easily detected might be obtained by constructing transects of replicas with 

some individuals on white paper (i.e., Wüster et al. 2004, Brodie 1993) or by illustrating 
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with digital photographs that the two different forms differ in the degree to which they 

resemble the background (i.e., Villafuerte and Negro 1998, Endler 1990).  In addition, 

aposematic prey species should indicate to predators that the prey is unprofitable (e.g., 

toxic or distasteful).  In C. signifera, peptide compounds secreted from the skin cause 

elevated heart rates in cell culture and may be detrimental to predators (Maselli et al. 

2004, Erspamer et al. 1984).  Experiments have not been performed with real predators to 

demonstrate that these compounds deter predators, partially because predators were 

previously unknown.  

Mammals were identified as the primary group of predators (58.4% of attacks).  

Certainly, frogs have been identified in the diet of Brushtail possums and Spot-tail quolls 

(Wells 2007, Strahan 1995).  In many studies, mammalian attacks on clay replicas are 

discarded because mammals tend to rely on olfactory cues and often cannot perceive 

color (Endler 1978).  Thus, non-human mammals are not considered visual predators.  

However, in studies of egg and nest predation where clay is used for model eggs, 

mammals frequently mistake models for food items (Piper and Catterall 2004, Boulton 

and Clarke 2003, Matthews et al. 1999).  In this study, differential attacks between color 

morphs suggest that visual cues rather than olfactory cues are used in the vineyard.  In 

many of the studies in which mammalian predation is disregarded, the visual signals are 

often composed of colors that reflect outside the mammalian visual spectrum (e.g., Brodie 

1993, Endler 1978).  Though reflectance data are lacking for C. signifera, neither the black 

nor white in Pseudophryne reflect outside of the human visual spectrum (R. Symula, unpubl. 
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data).  Thus, black-and-white color patterns of C. signifera and Pseudophryne are likely to be 

detectable by mammals.   

 Heterogeneity in overall attack rate between transects (GH = 10.85, p = 0.001), 

attack rate differences between white and black-and-white replicas (GH = 5.23, p = 0.02) 

and significant differences in the probability of attack on black-and-white replicas 

between habitats (Wald's �2 = 4.59, p = 0.032) is surprising because the transects were 

less than five km apart.  Several factors could contribute to these small-scale differences.  

First, predator composition between habitats may differ as supported by the examination 

of tooth prints.  Small teeth marks similar to rat (Hydromys chrysogaster) incisors were found 

on replicas from the vineyard, but not in the woodland.  Also, several replicas found in 

the woodland were destroyed, but that type of attack was not found in the vineyard.  Bites 

by Brushtail possums were common in the woodland (13 pairs confirmed by prints from 

incisors; Fig. 3.3, Table 3.1), but absent in the vineyard.  Lack of available possum habitat 

may explain the absence of bite marks on the vineyard transect.  Second, light conditions 

differ between habitats.  Though measurements of available light were not obtained, the 

woodland habitat had substantially more canopy cover than the vineyard.  As a result, the 

ability to detect the replicas between habitats may have differed.  Alternatively, predators 

may have been able to discern that these replicas were not real food items in the vineyard.  

Third, it is possible that heterogeneity is due to stochastic differences between transects.  

All replicas were constructed with identical plaster molds, clay and paint in an effort to 

minimize these differences, but other stochastic differences could contribute to the 
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differences among sites.  For example, during the weeks of observations, putative 

predators may not have been actively foraging in the vineyard.   

Habitat heterogeneity is thought to generate phenotypic polymorphisms when the 

selective advantage of each morphotype depends on the location where it occurs (Bond 

2007).  Gene flow between these habitats is posited to maintain the polymorphisms  

(Merilata 2001, Endler 1978).  For instance, when there is variation among habitats 

occupied by a single species, different color morphs may be more advantageous in some 

habitats.  If there is then gene flow among habitats, then polymorphisms may appear 

within each of the different habitats (Merilata 2001, Endler 1978).  Because the 

probability of being preyed upon is influenced by the ability of a predator to detect prey 

items, the characteristics of the habitat (e.g., amount of light, color of substrate, predator 

composition) may influence the strength of predation.  When habitats are heterogeneous 

at small scales, predation pressure may vary similarly among habitats.   

 Crinia signifera is a habitat generalist that occurs naturally in open or forested areas 

where there is pooling water (Cogger 2000, MacNally 1985) and may therefore be 

exposed to dramatic differences in habitat and predation.  The scale at which the 

differences occurred in this study was very small (<5 km among sites).  Dispersal distances 

have not been directly estimated in C. signifera, but frogs of similar size are capable of 

dispersing over 200m in a single breeding season (Williamson and Bull 1996) supporting 

the hypothesis that dispersal or gene flow could contribute to the polymorphisms found 

within populations or habitats.  The two study areas used here do not represent the extent 

of habitat variability found across the C. signifera distribution.  Therefore, given the 
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apparent differences in attack rate and the frequency of attacks on different color patterns 

found in this study, predation differences could be more pronounced across the 

distribution and contribute more substantially to the evolution of color polymorphism in 

C. signifera. 
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Table 3.1.  Summary of attack rates on individual clay replicas and potential predators of C. signifera.  Numbers shown in parentheses () 
indicate the number of pairs that were attacked in each category (Bitten, Flipped, Moved or Missing).  Numbers in brackets [] indicate 
number of instances where both members of a pair were attacked.  Question marks indicate uncertainty in identification of predators.  
For the total, the number of individuals within a pair is represented.   

Woodland Vineyard 

Type of Disturbance Replica Type of Disturbance Replica 

Bitten (24) [10] Putative predator Black & white White Bitten (15) Putative predator Black & white White 

 Common Brush-tail 

Possum (13) 

3 [9] 1 [9]  Bird (3?) 0 3 

 Spot-tail quoll (4?) 2 [1]  0 [2]   Spot-tail Quolls 

(1) 

0 [1] 0 [1] 

 Unknown (7) 1 [2]  4 [2]  Rat (2) 0 [1] 1 [1] 

     Unknown (9) 1 [1] 7 [1] 

Flipped (3) [0]  -- 1 [1] 1 [0]  Flipped (2) -- 1 1 

Moved (2) [0] -- 1 [0] 1 [2] Moved (2) -- 0 2 

Missing (11) [5] -- 3 [7] 2 [6]      

Total  30 30 Total  5 17 

Attack Rate (by color)  38.5% 38.5% Attack Rate (by color)  5.3% 18.1% 
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c.

b.

Figure 3.1.  Representative C. signifera and clay replicas.  (a.) Example of  an individual with white 
ventral coloration.  (b.) Example of  an individual with black-and-white ventral coloration.  Both 
individuals are from the experimental site.  (c.) Pair of  clay replicas and pair set-up used in 
experiment.
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Figure 3.2.  Proportions of  attacked replicas in (a.) Woodland and (b.) Vineyard.  Black bars 
indicate the attacked black-and-white replicas.  White bars indicate attacked white replicas and 
gray bars indicate instances where both replicas were attacked.  Numbers of  attacked individuals 
(n) are shown above each bar.
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Chapter 4.  Phylogenetically independent evolution of color pattern 

variation in the Australian common froglet, Crinia signifera, and the 

implications for mimicry. 

Summary 

 Elucidation of mechanisms that generate and maintain color pattern variation can 

provide insight into processes that influence genetic divergence within and among 

populations.  In Australia, the common froglet, Crinia signifera, is polymorphic in ventral 

coloration and is hypothesized to be a mimic of sympatric Pseudophryne.  Previous 

phylogenetic analyses revealed several deeply diverged cryptic lineages that, in turn, have 

high levels of genetic diversity within them.  Therefore, the combination of diversity in 

color pattern and molecular markers suggest a potential role for neutral processes, such as 

genetic drift, as non-selective alternatives for generating color pattern polymorphism.  In 

this study, I quantified color pattern variability in C. signifera in order to examine the roles 

of mimicry and phylogeny in maintaining phenotypic variability.  I compared color 

pattern between C. signifera and sympatric populations of Pseudophryne to test the hypothesis 

of mimicry.  Then, I used phylogenetic simulations to examine whether phylogenetic 

relationships alone can generate the observed pattern of variability in color pattern.  

Phylogenetic analysis revealed additional genetic diversity within lineages and identified 

low levels of introgression among previously identified clades and sub-clades.  Significant 

correlation between color pattern in C. signifera and Pseudophryne was found in two whole 

frog measures, Number of Black Patches (r = 0.819, p = 0.045) and Total White 

Perimeter (r = 0.812, p = 0.047) and several measures of patch shape.  Furthermore, 
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randomization tests indicate that sympatric C. signifera are more similar to Pseudophryne 

than those in allopatric populations for Proportion of White (U' = 4.77, p < 0.005) and 

Number of Black Patches (U' = 5.34, p < 0.005).  Despite the phylogenetic variation 

exhibited within and among lineages, simulations of trait evolution under Brownian 

motion illustrated that the phylogeny alone cannot generate the pattern of variation 

observed in C. signifera color pattern.  Therefore, it is unlikely that genetic drift along the 

phylogeny is responsible for the variability observed in C. signifera.  Combined, these 

results suggest a role for mimicry in shaping among-population variability in C. signifera 

color pattern. 

 

4.1 Introduction 

 A primary goal in evolutionary biology is to understand the mechanisms that 

generate and maintain phenotypic and genetic variation within species.  Historically, 

color pattern polymorphisms, the occurrence of distinct color pattern variants within 

populations (Hoffman and Blouin 2000, Poulton 1890), were used to infer population-

level processes that led to genetic variation.  The popularity of these markers arose from 

the ease of quantification and commonly simple mechanisms of genetic inheritance of 

color patterns.  Presently, molecular markers are used as an alternative means to infer 

evolutionary processes acting on populations (Hedrick 2006).  These molecular estimates 

of variation are often left decoupled from estimates generated from color patterns.  An 

array of mechanisms has been proposed to explain color pattern polymorphisms such as 

frequency-dependent selection (Allen and Weale 2005), natural selection (Pfennig et al. 
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2007), sexual selection (Maan and Cummings 2008), gene flow (Merilaita 2001) and 

genetic drift (Hoffman et al. 2006).  Similarly, these mechanisms can enhance or eliminate 

genetic divergence within and among populations.  Therefore, elucidating processes that 

simultaneously facilitate or limit both color pattern and genetic divergence can provide 

valuable insight into the process of speciation. 

Natural selection through predator avoidance is often invoked as a means to 

generate and maintain color pattern polymorphism specifically.  Often, color patterns 

serve as protective defenses that enhance predator avoidance either through crypsis, 

where prey resemble their habitat to minimize the probability of predator detection 

(Bond 2007), or through aposematism, where conspicuous prey maximize the probability 

of detection to warn predators of their toxicity (Servedio 2000, Mallet and Joron 1999).  

Directional selection through crypsis or aposematism should result in fewer color pattern 

variants, but counterintuitively, polymorphisms arise in both cryptic and aposematic 

species (See below).   

 Cryptic polymorphisms are often attributed to apostatic (frequency-dependent) 

selection (Allen and Weale 2005) and, less commonly, to habitat heterogeneity (Punzalan 

2005, Merilaita 2001).  Under apostatic selection, the presence of multiple color pattern 

variants hinders the ability of a predator to associate a particular variant with profitable 

prey (Poulton 1890).  Predators readily recognize the most common variant and it suffers 

the highest predation rate.  As a result, the frequency of this color pattern declines, and a 

different color pattern becomes relatively more common in a population.  Thus, when 

apostatic selection acts on polymorphic color patterns, fluctuations occur in color pattern 
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variant frequencies (e.g., Olendorf et al. 2006).  Habitat heterogeneity generates 

polymorphisms when cryptic color patterns vary in effectiveness within or among 

particular habitats.  This is best illustrated by the well-studied color pattern 

polymorphism in Cepaea snails where predation is highest on the most conspicuous color 

pattern (reviewed in Jones et al. 1977, Cain 1973).  If habitats are uniform and selection acts 

on the most conspicuous form, gene flow among habitat types can maintain the 

polymorphism, whereas in heterogeneous habitats, polymorphisms can be maintained 

within a single habitat because relative conspicuousness varies within the habitat (Phifer-

Rixey et al. 2008, Bond 2007).   

 Aposematic polymorphisms commonly arise from protective mimicry (Mallet and 

Joron 1999).  In protective mimicry (Pasteur 1982), species share similar color pattern in 

order to avoid predation (Müller 1879, Bates 1862).  In Batesian mimicry, non-toxic 

(mimic) species share color pattern with toxic (model) species and mimics are under 

negative frequency-dependent selection (Brower 1960, Fisher 1927).  When a mimic 

becomes common, predators no longer associate the shared color pattern with toxicity 

and the advantage of the color pattern decreases (Pfennig et al. 2007, Charlesworth and 

Charlesworth 1975).  Through diversifying selection, Batesian mimics can avoid the cost 

of becoming common by mimicking a novel model or by no longer bearing a mimetic 

signal.  In Müllerian mimicry (Müllerian convergence), toxic species share color patterns 

to reduce the cost of training a predator that a color pattern is distasteful.  Positive 

frequency-dependent selection predicts that Müllerian co-models will converge on a 

single color pattern (Mallet and Joron 1999, Müller 1879), but polymorphism is common 
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(e.g., Symula et al. 2001, Brower 1996, Brown and Benson 1974).  Experimental studies in 

Heliconius butterflies demonstrated higher survival rates in butterflies that match local co-

model species, and found divergent selection when models are geographically variable 

(Kapan 2001).  Simulations support the formation of polymorphic co-models under at 

least two scenarios, when predation is low or when gene flow is high (Sherratt 2006, Joron 

and Iwasa 2005).  Müllerian mimetic polymorphisms have been linked to the process of 

speciation when assortative mating results in genetic divergence among forms (e.g., 

Jiggins et al. 2001).   

 The contribution of neutral processes, such as genetic drift or gene flow, to the 

generation and maintenance of color pattern variation is often neglected.  However, 

neutral processes have been addressed in a few studies (Wollenberg et al. 2008, Hoffman et 

al. 2006, Nicholls and Austin 2005, Brisson et al. 2005, Storz 2002).  In these studies, 

patterns observed in neutral genetic markers are compared to patterns of phenotypic 

differentiation.  Neutral evolution is inferred when a correlation between genetic and 

phenotypic patterns is strong.  In contrast, the absence of a correlation between 

phenotypic and genetic differentiation provides motivation to experimentally test for 

signatures of selection.  For example, in Drosophila polymorpha, color pattern was 

independent of genetic and geographic variation, but strongly correlated to desiccation 

resistance.  Specific tests for selection in dry habitats showed higher survival in flies with 

darker coloration (Brisson et al. 2005).  In the satin bowerbird similar methods were 

employed to test hypotheses of advertisement call variation.  Calls were independent of 

genetic variation, but strongly correlated to habitat differences.  Thus, call differences 
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were attributed to selective pressures imposed in different habitats (Nicholls and Austin 

2005).  Unlike the former examples, in leopard frogs (Rana pipiens) and in the poison frog, 

Dendrobates tinctorius, evidence was found that color pattern variability did not exceed the 

variation expected according to neutral loci and was attributed to genetic drift 

(Wollenberg et al. 2008, Hoffman et al. 2006).   

 Most often, color pattern polymorphisms are examined in invertebrates (e.g., 

Hanlon et al. 2009, Manríquez et al. 2008, Phifer-Rixey et al. 2008, Jiggins et al., 2001, 

Cook 1986), but color pattern polymorphisms are also common in vertebrates, especially 

in frogs (e.g., Wollenberg et al. 2008, Hoffman et al. 2006, Croshaw 2005, Hoffman and 

Blouin 2000, Summers et al. 1999).  Cryptic dorsal color pattern polymorphisms in frogs 

have been attributed to drift (Hoffman et al. 2006) and selection (Bull 1975, Milstead et al. 

1974, Main 1965).  Aposematic color polymorphisms in frogs have most often been 

attributed to mimicry (Darst and Cummings 2006, Santos et al. 2003, Schaefer et al. 2002, 

Symula et al. 2001, Lamar & Wild 1995), but also to sexual selection (Maan and 

Cummings 2008, Summers et al. 1999) and genetic drift (Wollenberg et al. 2008).   

 Another example of polymorphic coloration in frogs occurs in the Australian 

common froglet, C. signifera.  Like others in the genus, C. signifera dorsal color pattern 

polymorphism is attributed to crypsis (Bull 1975, Straughan and Main 1966, Main 1965), 

but C. signifera ventral coloration is a putatively aposematic warning signal.  In some 

descriptions of C. signifera, a diagnostic feature is bold black-and-white ventral coloration 

(Cogger 2000).  Unexpectedly, field observations of C. signifera revealed that bold black-

and-white coloration varies in proportion of black among populations (Symula, unpubl. 
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data).  Furthermore, some populations lack black-and-white coloration altogether (Fig. 

1.1).  In addition, individuals that lack the black-and-white pattern are commonly found 

syntopically with black-and-white individuals.  Therefore, C. signifera apparently bears 

polymorphic ventral color pattern within and among populations.   

The black-and-white ventral coloration found in C. signifera is similar to that in 

another sympatric myobatrachid frog genus, Pseudophryne (Fig. 1.2).  Relative to C. signifera, 

Pseudophryne is rare and is limited by their breeding biology because they require terrestrial 

nesting sites (Mitchell 2005, Cogger 2000).  Thus, even though the species are co-

distributed, they are not always found syntopically.  In Pseudophryne, all species exhibit 

thanatosis (play dead) in response to artificial predator attack (Williams et al. 2000).  

Further, all examined species are known to secrete alkaloid skin toxins (Smith et al. 2002, 

Daly et al. 1990, 1984).  Combined, these features suggest that defensive behavior and 

ventral coloration form an aposematic display that warns potential predators of their 

toxicity.  Similarly, C. signifera 'play dead' under simulated predator attack (Williams et al. 

2000).  Crinia signifera secretes a variety of peptides, but the role of these compounds in 

deterring predators is unknown (Masseli et al. 2004, Erspamer et al. 1984).  Elapid snakes 

infrequently consume C. signifera (Shine 1977), despite the presence of these compounds 

(Erspamer et al. 1984).  However, predators avoid black-and-white coloration of C. signifera 

in the absence of chemical compounds (Chapter 3).  Thus, shared behavior and 

coloration is thought to be a form of defensive mimicry (Williams et al. 2000).   

Although the presence of the black-and-white color pattern may play a role in 

predator avoidance, within- and among-population color pattern variation may be a 
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product of neutral processes, such as genetic drift.  Phylogenetic analysis using mtDNA 

revealed several deeply diverged, phenotypically indistinguishable lineages among 

populations of C. signifera (Symula et al. 2008).  Within lineages, genetic divergence was 

also unexpectedly high.  Thus, high levels of genetic divergence and color pattern 

variation may indicate an association between color pattern variation and phylogenetic 

relationships within and among populations.   

In this study, I used ventral color pattern variation to examine the putative 

mimicry of Pseudophryne and investigate the potential role of genetic drift in generating 

phenotypic variation in C. signifera.  Specifically, I collected, measured and quantified C. 

signifera color pattern variation.  Then, from sites where C. signifera was observed to share 

the putative mimetic color patterns, I collected and measured color patterns from 

Pseudophryne, and tested for a correlation in color pattern between the species and for 

whether sympatric C. signifera populations were more similar to Pseudophyrne than allopatric 

populations.  Next, using randomization tests, I tested for a relationship between C. 

signifera color pattern and phylogeny.  Finally, to test whether genetic drift could generate 

the observed color pattern polymorphism, I compared the observed dataset to datasets 

generated by phylogenetic simulations under neutral models of trait evolution.   

 

4.2 Methods 

Sample collection 

 Crinia signifera samples were collected between March and August 2004 and 

between May and August 2007.  Frogs were located using advertisement calls to ensure 
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correct species identification.  From each site, between three and ten C. signifera were 

captured by hand, photographed and toe-clipped.  When present, two to ten Pseudophryne 

individuals were collected at each site.  For both species, individuals not retained as 

voucher specimens were released at the site of capture.  A complete list of all sampled 

localities, GPS coordinates, specimen identification numbers and total number of 

individuals collected per site are listed in Table 4.1 (C. signifera) and Table 4.2 

(Pseudophryne).  Geographic distribution of sampling sites is illustrated in Fig. 4.1.   

 

Specimen preparation and tissue collection 

After all frogs at a site had been photographed (see below), tissues were harvested 

from each individual.  Toes were clipped from all C. signifera.  At all sites, three individual 

C. signifera and no more than two Pseudophryne were euthanized and fixed in formalin as 

voucher specimens.  Livers were removed from vouchers before formalin fixation.  In 

order to prevent disruption of ventral color pattern on vouchers, livers were extracted 

through incisions made along the side of the frog.  All tissues were stored in 95% ethanol.  

Both tissues and voucher specimens of C. signifera were deposited in museums from the 

state or territory where they were collected (Table 2, 5).  Pseudophryne tissues were 

deposited in the Australian Biological Tissue Collection at the South Australian Museum 

and vouchers were deposited in the museums from the state or territory where they were 

collected (Table 4.2).   
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DNA sequencing and alignment 

To examine relationships among sites and samples of C. signifera, a truncated 

region of the 12S and 16S mtDNA gene was amplified and sequenced for phylogenetic 

analysis following methods used in Symula et al. (2008).  The mtDNA gene region was 

chosen for by examining a subset of samples.  First, up to two individuals from each site 

(Fig. 4.1) were sequenced for the entire 12S/16S gene.  Phylogenetic analysis using 

GARLI 0.951 (www.bio.utexas.edu/grad/zwickl/web/garli.html) was performed on this 

new dataset to assess relationships among newly added sample sites and those in Symula 

et al. (2008).  Second, the DNA sequence alignment was split into four truncated datasets.  

Each dataset included sequence data that spanned the region between one of each of the 

four overlapping primer pairs (mvz59-12Sb, 12L1-16Sh, 12Sm-16Sa, 16Sc-16Sd; Table 

2.1).  Third, each of the four truncated datasets were used to reconstruct phylogenies 

using maximum likelihood in GARLI 0.951 and maximum parsimony with 100 

bootstraps in PAUP* 4.0b10 (Swofford 2003).  Topologies and retention indices were 

compared among the four datasets.  The approximately 800 base pair fragment that 

amplified between the 12Sm and 16Sa primers recovered the topology most similar to 

that found in Symula et al. (2008) and had the second highest retention index of 0.896.  

The 16Sc-16Sd dataset had the highest retention index, 0.905, but did not recover 

monophyly of the three major clades identified in Symula et al. (2008).  Therefore, the 

region between the 12Sm and 16Sa primers was used to examine relationships among all 

samples and sites. 

 Individuals from Table 4.1 were used for DNA sequencing.  Total genomic DNA 
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was extracted from toe clips or liver samples using Viogene Blood and Tissue Genomic 

DNA Extraction Miniprep System (Viogene, Inc., Taipei, Taiwan).  All polymerase chain 

reactions (PCR) were performed using the Failsafe PCR 2X PreMixes Buffer F (Epicentre 

Biotechnologies, Madison, WI) and the following cycle: Initial denaturation 94 ºC for 2 

min, 30-35 cycles of 94 ºC for 30 s, 46-55 ºC for 30 s, and 72 ºC for 60 s and a final 

extension at 72 ºC for 7 min.  Primers used for PCR reactions include those listed in 

Table 2 that amplify positions between 12Sm and 16Sa.  PCR products were purified 

from 0.8% agarose using Viogene Gel-M Gel Extraction System (Viogene Inc., Taipei, 

Taiwan).  Approximately 40ng of purified PCR products were sequenced at the 

University of Texas at Austin Institute for Cellular and Molecular Biology DNA 

Sequencing Core Facility using an ABI Prism 3730 DNA Analyzer (Applied Biosystems).   

 Consensus sequences were generated and edited using Sequencher v4.6 (Gene 

Codes Corp., Ann Arbor MI).  Sequences were aligned manually in MacClade v4.06 

(Maddison and Maddison 2004) using previously aligned 12S and 16S C. signifera 

sequences as references (Symula et al. 2008).  Single base changes were verified by 

examining if each peak in the chromatogram was assigned the correct base.   

 

Phylogenetic analysis  

 Phylogenetic analyses were performed using individuals listed in Table 4.1.  

Individuals from Read et al. (2001) were excluded from all phylogenetic analyses because 

they did not contain overlapping base pairs with the fragment used in this study.  

Previously obtained sequences of C. riparia (n=4) were used as outgroups based on Read et 
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al. (2001) and Symula et al. (2008). 

 Samples from Symula et al. (2008) were trimmed to exclude any characters not 

present in the new sequences to avoid potential issues with missing data.  Ambiguous 

regions of sequences were excluded from phylogenetic analysis.  The beginning and end 

of some sequences were excluded to minimize regions with missing data.  Sites for which 

an individual sequence or a few sequences had a single base insertion were also excluded.   

 Evolutionary relationships among localities of C. signifera were inferred using 

Maximum Likelihood (ML) and Bayesian inference.  The most appropriate model of 

sequence evolution was determined using the Bayesian Information Criterion in 

MODELTEST (Posada and Crandall 1998).  ML analyses were performed using GARLI 

0.951.  All redundant sequences were removed from ML analyses.  When using a random 

starting tree, initial searches repeatedly converged on a topology where major clades 

identified in Symula et al. (2008) were non-monophyletic.  To address this, 100 

independent runs were performed with the Neighbor-Joining (NJ) tree as the starting tree.  

In all 100 runs, major clades were monophyletic and all trees had significantly higher 

likelihoods than runs performed with a random starting tree.  Therefore, final analyses 

were performed with the pre-defined NJ starting tree. 

Bayesian analyses were performed using MRBAYES 3.1.2 (Ronquist and 

Huelsenbeck 2003).  Two separate replicates were performed on a NPACI Rocks cluster 

using four Markov chains per replicate and the temperature parameter set at 0.2.  Chains 

were sampled every 1000 generations for 50 million generations.  Plots of model 

parameters and likelihood scores versus generations were examined to determine whether 
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the set of post burn-in trees had converged on the same region of tree space in TRACER 

1.4 (beast.bio.ed.ac.uk).  For these runs, burn-in was set as 24,661,000 generations leaving 

2,000 trees in the posterior distribution.   

 

Digital Photography 

 At each site, the dorsal and ventral surfaces of each individual were photographed 

with an Olympus C-3020 Optical zoom 3.2 Megapixel digital camera (Olympus 

America, Inc. Center Valley, PA).  For each photo, frogs were placed in a small plastic 

container with a 2.5 cm square 18% gray card (Delta 1, Dallas, TX) used to calibrate 

internal camera light meters.  Though gray cards can be used to optimize color printing, 

they cannot be used to standardized color within an image because the absolute neutral 

gray is not reproduced in digital photographs (Stevens et al. 2007).  Instead, they are used 

here to optimize contrast of white and black on the ventral surface.  All images were 

taken with the built-in flash to ensure that lighting conditions were identical among 

individuals and sites.  Images were composed such that the height of each image was the 

same as the gray card length and were stored as both .JPG and .TIF digital files. 

 

Image standardization 

 All image manipulation was performed in the Image Processing Toolbox in 

MatLab v7.1 (The Mathworks, Inc., Natick, MA).  Color images were first converted to 

grayscale based on the gray card in each image.  Images were then rotated so that the 

edge of the gray card was perpendicular to the image edge.  Gray card length, in pixels, 
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was obtained using the "imtool" function.  The image was rotated a second time so that 

forelimb insertions of the frog were parallel to the top of the image.  Then, the gray card 

and background were cropped out of the image.  Due to characteristics of frog skin, flash 

reflection generates areas with saturated pixels scattered across an image.  Saturated 

pixels were removed from the image by implementing two different MatLab functions, 

"imextendedmax" and "roifill".  The first (imextendedmax) identifies saturated regions by 

finding pixels that have high values compared to neighboring pixels.  The second (roifill) 

fills saturated regions according to values of neighboring pixels.  Neighbors used to fill 

saturated regions are found at a user-specified distance from the center of the saturated 

area.  In the first function, detection of saturated areas depends upon whether the pixel is 

next to white or black pixels.  For example, when flash reflection occurs among a group of 

white pixels, the difference between saturated areas and neighboring pixels is much less 

than when saturated areas are among darker pixels.  Necessarily, values used to identify 

flash saturation were set separately for each image.  In some instances, small regions of 

flash reflection were removed manually from the binary image because automated 

commands filled in naturally occurring white patches in grayscale images.   

Color pattern in C. signifera and Pseudophryne covers the belly, hind limbs, forelimbs 

and, on females, the throat (Fig. 1.1, 1.2).  Though all members of C. signifera and 

Pseudophryne play dead, individuals often vary in limb position or posture and therefore, 

the areas of black-and-white coloration that are displayed.  In addition, vocal sacs on the 

throats of male frogs tend to be solid black whereas females have lighter throat colors.  To 

ensure images were comparable among individuals, the following steps were taken to 
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eliminate differences.  All limbs were manually trimmed from the image at the point of 

limb insertion, leaving behind only the image of the head and torso.  Crinia signifera, 

regardless of pattern or color, bear two small, raised white spots at the base of the throat 

at forelimb insertions (Fig. 3.2).  These mark the end of male-limited vocal sacs, so the 

throat region anterior to arm insertion spots was cropped out of the image.  Then, all 

images were rotated so that these spots were parallel to the top edge of the image.  

Pseudophryne lack comparable spots, so to make images directly comparable to C. signifera 

all Pseudophryne were cropped at the top of the forelimb insertion and rotated so that the 

top of the cropped image was horizontal.   

 

Pattern measurement 

 Measurements of ventral patterns were taken only if the images met the following 

conditions.  All images contained a complete gray card standard and the entire frog.  In 

all measured images, no part of the belly was obscured by limbs, toes, debris, posture or 

folded skin.  Images were discarded if male frogs had vocal sacs inflated, if individuals had 

apparent internal parasites that distorted the shape or area of the ventral surface, or if 

flash saturation could not be adequately removed.   

 Grayscale, cropped images were converted to binary images to facilitate 

measurement of pattern characteristics.  Conversion of a grayscale image renders white 

and lighter grays to white in the binary image, so this analysis does not allow 

identification of subtle differences between white and gray.  White pixels of binary images 

are scored with a value of one and black pixels are scored with a value of zero.  All white 
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measures were based on pixels with a value of one in the original binary image.  To 

measure black pattern characteristics, the binary image was inverted so that all black 

areas were scored with a value of one.   

Ventral surfaces of C. signifera or Pseudophryne are either solid in color or are 

comprised of black patches and white patches (Fig. 1.1, 1.2).  Two categories of 

measurements were collected from each frog (Table 4.3).  First, nine measurements that 

describe characteristics of the whole-frog ventral pattern were calculated (e.g., Proportion 

of White).  Second, 20 measurements were taken to describe the shape and size of 

individual patches on each frog (e.g., White Patch Area).  To avoid arbitrary 

identification of patches, MatLab algorithms that identify patches based on connectivity 

between white pixels in the binary image delimited each patch ("bwlabel").  Then, 

measurements were taken on each identified patch using the "region properties" function.  

Measurements for all patches with an area smaller than 10 pixels were discarded.  Where 

appropriate, the length of the gray card (2.5 cm) was used to convert all measures from 

pixels to length or area.  Then, individual patch measures were summarized for each frog 

by taking the mean of each measure.  These means were used along with whole-frog 

measures in subsequent analyses.  All measures are listed and described in Table 4.3 and 

MatLab Image Analysis Toolbox commands are provided following each description.  

Elaboration on how patches are defined and how each measure is calculated is describe in 

the Image Processing Toolbox documentation (The MathWorks, Natick, MA).   
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Statistical analyses of pattern measures 

 To identify pattern characteristics that contribute to the observed variation among 

individuals and sites, pattern measures were examined using Principal Components 

Analysis (PCA) in SPSS v16.0.2  (SPSS, Inc. 2007 Chicago, IL).  All factors with 

eigenvalues greater than one were extracted, and the slope of the scree plot was examined 

to determine the number of factors that contribute significant variance.  The initial 

solution was rotated to identify simple structure using Varimax and Oblimin rotations.  

Oblimin rotation revealed no correlation between factors, so the Varimax solution was 

used in subsequent analyses (Tabachnick and Fidell 2007).  Rotated factor scores were 

calculated for each individual using the correlation matrix so that variance was 

appropriately scaled. 

 

Mimicry between C. signifera and Pseudophryne 

Pseudophryne color patterns were collected from five sites where C. signifera were 

observed to bear black-and-white patterns.  In the geographic region where Pseudophryne 

were compared, there are two putative sympatric species, P. bibronii and P. dendyi that are 

distinguished by the length of the hind limb (Robinson 2002, Cogger 2000, Barker et al. 

1995).  Both species were collected for this study, but were not explicitly considered when 

measuring patterns.  No published phylogeny for Pseudophryne exists, however preliminary 

phylogenetic analysis suggests that east coast Australia Pseudophryne are composed of 

multiple cryptic species that are not geographically limited (T. Bertozzi, S. Donnellan pers. 

comm.).  Thus, the measures presented here are likely composite measures for at least two 
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Pseudophryne species. 

The hypothesis of mimicry predicts that model and mimic share similar color 

patterns.  Strong comparative evidence for mimicry is found when populations of a single 

species resemble different sympatric models.  Crinia signifera is sympatric with several 

species of Pseudophryne that bear different color patterns.  Therefore, under the hypothesis 

of mimicry, color pattern differences in C. signifera should be correlated to differences in 

Pseudophryne.  To test this hypothesis, means of each of the 29 measures were calculated at 

each of five sympatric sites for both C. signifera and Pseudophryne.  Table 4.1 (C. signifera) and 

Table 4.2 (Pseudophryne) indicate the number of individuals measured at each of the five 

sites.  Bivariate correlations were performed between each color pattern measure in 

SPSS.  The Bonferroni correction was applied to calculate experiment-wise alpha 

associated with performing multiple tests (Zar 1999).   

The hypothesis of mimicry also predicts that C. signifera should be more similar to 

Pseudophryne when they occur in sympatry.  To test whether the difference between color 

pattern in C. signifera and Pseudophyrne is significantly less in sympatry than in allopatry, a 

randomization test was performed.  The color pattern in both species is made up of black 

and white features, so one measure of black and one measure of white were examined.  

PCA factor scores were not used because the composition of these factors differed 

between C. signifera and Pseudophryne.  Instead, two raw measures, Proportion of White and 

Number of Black Patches, were used because the interpretation of aspects of color pattern 

quantified by these measures is straightforward.  Furthermore, Proportion of White did 

not load on any of the rotated factors and Number of Black Patches represented a 
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measure that was significant in bivariate correlations.  Means were calculated for each of 

48 C. signifera sites (Fig. 4.1, Table 4.1) and each of five Pseudophryne sites (Fig. 4.1, Table 

4.2) for both measures.  For both traits, 1000 pairs of C. signifera sites were paired 

randomly with the five Pseudophryne sites.  Pairs were designated as either sympatric 

(collected from the same site) or allopatric.  For each pair, the absolute difference between 

means of the two species was calculated.  Then, differences between all pairs were ranked 

from low to high, and a one-tailed Mann-Whitney test was performed to test whether the 

differences in sympatric means was significantly lower than allopatric means (Zar 1999).   

Phylogenetic correction for non-independence of data points was not performed 

for two reasons.  First, the majority of sampled sites are taken from clade B and 

individuals from these sites are not more closely related to sympatric individuals.  Second, 

tests for phylogenetic signal (below) indicate very low contribution of the phylogeny to the 

color pattern. 

 

Phylogenetic signal in C. signifera color pattern measures 

 Phylogenetic analyses of mtDNA uncovered multiple cryptic lineages in C. signifera 

and high genetic variation within and among sites (Symula et al. 2008).  Therefore, it is 

possible that color pattern variation is influenced by phylogenetic relationships among 

sampling sites.  To test whether closely related individuals resemble one another, 

detection of phylogenetic signal was performed using randomization tests in the MatLab-

based PHYSIG_LL (Blomberg et al. 2003).  The PHYSIG program randomly permutes 

tip data and, for each permutation, calculates the mean squared error (MSE) using 
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Generalized Least Squares (GLS).  When there is strong phylogenetic signal, the variance 

(MSE) among relatives is low, and randomly permuted tip data should generate higher 

variance than the observed data.  When 95% of randomly permuted datasets show 

greater variance than the observed data, then the null hypothesis of no phylogenetic 

signal can be rejected (Blomberg et al. 2003).  

Before the tests of phylogenetic signal were performed, the best GARLI tree was 

edited such that missing data was removed.  Crinia riparia, the sister group to C. signifera, 

was pruned from the tree using the PDTREE module of PDAP v 6.0 (Garland et al. 

1993).  Tips of C. signifera individuals that lacked color pattern data were pruned using 

PAUP* 4.0b10 (Table 4.1).  Overall tree length was scaled by a factor of two in the 

PDTREE module of the DOS version of PDAP to facilitate calculations of MSE.  Then, 

the tree was converted to phylogenetic covariance matrix in the PDDIST module of 

PDAP (Garland et al. 1993).  For each measure, multiple individuals were represented as 

the mean of all individuals with identical DNA sequences. 

Two of the original measures (Proportion of White and Number of White Patches) 

and the first three rotated factor scores obtained from PCA of color pattern measures 

were used to perform tests of phylogenetic signal.  The raw measures were chosen 

because they were not correlated with any of the Principal Components factors and 

because these measures quantify visually interpretable aspects of color pattern.  For each 

measure, 1000 permutations were performed on the scaled tree with no branch length 

transformations in PHYSIG_LL.  The following statistics were calculated: a descriptive 

statistic, K, that compares the observed pattern of tip data using the best ML tree to the 
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expected pattern under strict Brownian Motion on the same phylogeny; the likelihood 

scores of the trait evolving along the best ML tree and along a star phylogeny; the p-value 

for the randomization test. 

 

Phylogenetic simulations 

 To test whether color pattern polymorphism in C. signifera could be attributed to 

genetic drift, phylogenetic simulations using the Brownian motion (BM) model of trait 

evolution were performed as implemented in the PDSIMUL module of PDAP (Garland 

et al. 1993, Martins and Garland 1991).  BM models are reasonable approximations for 

trait evolution due to genetic drift (Felsenstein 1985).  Specifically, these simulations aim 

to test whether the combination of tree topology and branch lengths of the best ML tree 

could have generated the observed pattern of variance in color pattern found within and 

among populations of C. signifera.  Each simulation was performed with two traits and the 

correlation between the two traits set to zero.  Two combinations of traits were used.  The 

first used the raw measures Proportion of White and Number of White Patches and the 

second used the first two PCA factors (Black Patch Size and Shape and White Patch Size 

and Shape). 

 Two classes of simulations were performed.  The PDSIMUL module specifies two 

classes of BM, gradual and speciational.  In gradual BM (BMg), change is proportional to 

the branch lengths of the tree whereas in speciational BM (BMs), change is proportional 

to branching (speciation) events.  In both classes of BM, the probability of change is 

drawn from a bivariate normal distribution with mean of zero and variance of one 
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(Felsenstein 1988).  For both BMg and BMs simulations, the final means parameter was 

set to the observed mean and variance of the tip data.  Setting the final means parameter 

results in stochastically constant rates of trait change in BMg, but changing rates of trait 

evolution determined by the number of speciation events in BMs (Garland et al. 1993).  

Both classes of BM models were run under unbounded and bounded conditions.  

Unbounded simulations were performed first and examined to assess whether simulated 

trait values exceeded biologically realistic values.  In all cases, simulated trait values 

exceeded realistic values in unbounded simulations, so bounds were set as the observed 

minimum and maximum of each trait using the "soft-bounce" algorithm.  When 

simulated traits reach a specified bound, the simulated value is reflected away from the 

boundary approximately the same amount that it would have exceeded the boundary.  

For all simulations, 1000 new color pattern datasets were generated and a null 

distribution for each trait for each class or model of evolution was calculated in SPSS.  

Then, to test whether the phylogeny explained the pattern of variance, the simulated and 

observed datasets were compared.   

 To test whether the pattern of variance in the color pattern data is explained by 

the pattern of variance in the phylogeny, the MSE0/MSE ratio was used as a test statistic.  

This statistic is calculated as the ratio of the mean squared error of the trait values (MSE0) 

to the phylogenetic variance-covariance matrix (MSE).  MSE0 measures the mean 

squared error of the data using the phylogenetically corrected mean (ancestral trait value).  

When the phylogeny explains the pattern of variance in the observed data, then 

MSE0/MSE values are large, and closely related individuals resemble one another more 
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than distant relatives (Blomberg et al. 2003).  Therefore, if the observed MSE0/MSE is 

less than 95% of the simulated datasets then the null hypothesis can be rejected indicating 

that the observed data has more variability among close relatives than expected under the 

model of genetic drift. 

 

4.3 Results 

Sample collection 

 A total of 443 Crinia signifera samples were collected from 27 sites in 2004 and 22 

sites in 2007 (Table 4.1, Fig. 4.1).  For Pseudophryne, 24 individuals were collected from five 

localities.  A complete list of localities, GPS coordinates, specimen identification numbers 

and total number of individuals collected per site are listed in Table 4.1 (C. signifera) and 

Table 4.2 (Pseudophryne) and localities are illustrated in Fig. 4.1.    

 

DNA sequencing and alignment 

 The final mtDNA dataset comprised 852 base pairs of sequence data from 374 C. 

signifera individuals (Table 4.1).  In total, 57 redundant haplotypes were identified 

(n=174), and only eight of these were shared by more than four individuals.  The high 

degree of redundancy relative to Symula et al. (2008) is likely a combination of the 

increased sampling density at each site and the shortening of overall sequence length.  For 

example, seven sequences (accounting for 3 redundant haplotypes) that were unique in 

Symula et al. (2008) were identical in the new dataset.  In all but 16 haplotypes, 

individuals that share haplotypes were from the same sampling locality.  In 15 of the 16, 
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all redundant haplotypes are from geographically neighboring site localities.  In one 

instance, an individual from the region encompassed by the mainland Victorian clade C3 

was identical to sequences from the Tasmanian clade C5.  The most common haplotype 

(n=18) was shared among four geographically proximate sampling sites (Fig.10: Kalaru 

(Site 50), Eden (Site 19), Boydtown (Site 51), Mallacoota (Site 53)) from clade B2.  Thus, 

the short fragment only slightly underestimates variability in this mtDNA locus among 

individuals in C. signifera.   

 

Phylogenetic analysis  

MODELTEST chose the general time reversible (GTR+I+Γ) model of sequence 

evolution and the parameters estimated for this model are shown below.  The best of 100 

ML trees found by GARLI had a -ln likelihood score of 5558.435728 (Fig. 4.2).  Base 

frequencies were estimated as A = 0.365 C = 0.285 G = 0.147 T = 0.203; rate matrix: A-

C = 1.977, A-G = 13.951 A-T = 1.301 C-G = 0.869 C-T = 13.234 G-T = 1.000; gamma 

shape parameter (Γ): 0.557; proportion of invariant sites (I): 0.537.  Bayesian analysis 

recovered a consensus topology identical to the best ML tree.  Thus, the best of 100 

GARLI trees is illustrated in Fig. 4.2 with Bayesian posterior probabilities shown for 

nodal support.  For tips that represented multiple haplotypes, all individuals that shared 

the same mtDNA sequence are listed at that tip.  Clade and sub-clade labels are retained 

from Symula et al. (2008) for consistency. 

Both ML and Bayesian analyses identified C. signifera as a well-supported 

monophyletic group (bpp = 1.00) that comprised three geographically restricted clades 
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(A-bpp = 1.00; B-bpp = 1.00; C-bpp = 1.00; Fig. 4.2).  However, relationships among A, 

B and C are not strongly supported (bpp = 0.84).  These results are consistent with the 

phylogeny recovered in Symula et al. (2008; Fig. 2.2).  Adding additional sites extended 

the range of clade A to include samples to the south and west of the Great Dividing 

Range (see Fig. 2.1) and extended the range of clade C to the east (Fig. 4.2a, b).  

Additional sites and increased sampling density uncovered evidence of introgression 

among the major clades and some sub-clades.  Between clades A and B, haplotypes from 

Mallacoota (Site 53) were found in both clades A and B1 (Fig. 4.2b, c, d).  Between clades 

A and C, haplotypes from Drouin (Site 58) were found in clades A and C3 (Fig. 4.1, 10b, 

c, e).   

The shorter mtDNA 16S sequence revealed most of the same sub-clades as 

Symula et al. (2008).  Sub-clade B1 (bpp =  0.95) was composed of samples from Coffs 

Harbour (Site 4) and Evans Head (Site 1, Fig. 4.2b, d).  Sub-clade B2 was not recovered 

as a monophyletic group, but all newly collected samples from New South Wales belong 

to clade B.  Non-monophyly of sub-clade B2 was anticipated from preliminary, primer-

based analyses and was attributed to the use of fewer informative characters.  Some 

samples from Mallacoota, Victoria (Site 53; Fig. 4.1, 4.2b, c, d) are found within clade B.  

Within clade C, all of the sub-clades found in Symula et al. (2008) were recovered with 

strong support except for sub-clade C2 (Fig. 4.2a) as was anticipated based on the primer-

based analyses.  Most Victoria sites collected in 2007 fall within sub-clade C3.  Sub-clade 

C3 is the sister clade to C4 (bpp = 0.99; Fig. 4.2a, e), but relationships among other sub-

clades are not supported.  Samples on the western side of the Great Dividing Range from 
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Mansfield, Victoria (Site 57, Fig. 4.2b, f) formed a new sub-clade C6 (bpp = 0.99) along 

with two individuals from Seymour, Victoria (Site 25, Fig. 4.2b, f).  Unlike Symula et al. 

2008, sub-clades also had evidence of introgression among sites.  Individuals from 

Hamilton (Site 29, Fig. 4.1) and Portland, Victoria (Site 30, Fig. 4.1) were found in sub-

clades C1 and C3 (Fig. 4.2).  One individual from Warnambool, Victoria (Site 66) had 

the same haplotype as several individuals from Sheffield, Tasmania (Site 47, Fig. 4.2b, f).  

Individuals from Seymour (Site 25) are found in sub-clade C3 and C6.  Clade 

membership of localities was otherwise identical to those identified in Symula et al. (2008). 

 

Pattern measurement and Principal Components Analysis 

 Of the 443 C. signifera, 351 individuals were measured for pattern characteristics 

(Table 4.1).  PCA of all 29 measures identified eight components with eigenvalues greater 

than one that explained 83.76% of the variance in the C. signifera dataset (Table 4.4, 4.5).  

Based on the slope of the scree plot, only three of eight factors were shown to contribute 

significant variance (59.14%).  Each of the first three factors was composed of three or 

more variables with factor loadings above 0.7 (Table 4.5).  In addition, the remainder of 

the factors comprised two or fewer measures suggesting that those contribute more to the 

dataset when considered alone (Table 4.5; Tabachnick and Fidell 2007).  Following 

rotation in PCA, only three of the whole frog measures were not correlated with any 

other measure, Proportion of White, Total Black Area and White Patch Eccentricity.  

The measures Proportion of White and Number of White Patches were strongly 

correlated to other elements of the first principal component, but this correlation was 
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removed following rotation.  These two measures represent color pattern features that are 

easy to interpret (Fig. 4.3).  Thus, these two raw measures and the first three PC factors 

are considered in subsequent analyses. 

For Pseudophryne, 26 individuals from five sites were analyzed (Table 4.2).  Only six 

components with eigenvalues greater than one were extracted with PCA.  These six 

components explained 91.33% of the variance in Pseudophryne.  Based on the slope of the 

scree plot, three of the six components contributed significant variance.  Variables that 

were correlated with each factor are listed in Table 4.5.  Total White Perimeter, 

Proportion of White, White Euler Number and White Patch Squareness were not 

correlated with any of the rotated factors.   

The majority of measures correlated with Factors 1-3 were the same in C. signifera 

and Pseudophryne and differences in composition are shown in Table 4.5.  However, in 

Factors 4-6, only two measures are correlated to the same factors in C. signifera and 

Pseudophryne.  In both C. signifera and Pseudophryne, Factor 1 comprised measures that 

describe the size and shape of black patches and the amount of contrasting edge on the 

ventral surfaces.  Factor 2 was comprised of measures that describe size and shape of 

white patches.  For Factor 3, strongly correlated measures describe patchiness of the 

patterns.  Therefore, the following variables will be considered in discussion of the 

continuous variation in color patterns of both C. signifera and Pseudophryne: Proportion of 

White, Number of White Patches, Black Patch Size and Shape (Factor 1), White Patch 

Size and Shape (Factor 2) and Overall Patchiness (Factor 3).   

Pattern description-Pattern characteristics that distinguish differences within C. 
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signifera and Pseudophryne color pattern are Proportion of White, Number of White Patches, 

and the first three factors from PCA; Black Patch Size and Shape (Factor 1) and White 

Patch Size and Shape (Factor 2), the Overall Patchiness  (Factor 3).  In order to represent 

the entire spectrum of apparent differences measured in color pattern, a subset of color 

patterns from C. signifera is illustrated in relationship to the two raw measures in Fig. 4.3, 

and the same subset of individuals is shown in relationship to each of the factors in Fig. 

4.4.  Pseudophryne measures are similar to those represented by BS012, BS015 and BS066. 

Quantification of Proportion of White and Number of White Patches 

distinguishes overall differences in color pattern (Fig. 4.3a).  High Proportion of White (> 

0.06) values described individuals with few black patches (e.g., BS180) and included 

individuals that have solid white or gray venters (e.g., BS432), whereas low Proportion of 

White (< 0.02) described individuals with primarily black venters (e.g., BS012).  Similarly, 

high Number of White Patches (> 40; Fig. 4.3b) described individuals with many small to 

medium sized patches, often with large black area (e.g., BS163).  Low Number of White 

Patches described individuals that have few large white patches (< 20; e.g., BS180).   

In contrast, PCA Factors distinguish fine-scale differences in overall patch 

measures, but only when considered simultaneously (Fig. 4.4).  Black Patch Size and 

Shape scores greater than one represented individuals with a bold black-and-white 

pattern with overall large black patch area and either few large white patches or many 

small white patches (e.g., BS066, BS163).  Intermediate and low Black Patch Size and 

Shape scores (e.g., < 1) made up approximately 85% of the dataset and represented a 

range of patterns (e.g., BS199, BS237, BS546).  Many individuals with a large amount of 
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white area had low Black Patch Size and Shape scores below zero (e.g., BS143, BS199).  

Counterintuitively, other individuals with low to intermediate scores had large black 

patch area with either many white patches or instead, white patches with extensive 

perimeter (e.g., Fig 4.5a: BS012, BS237).  The contribution of the Contrasting Edges 

measure to this factor apparently confounded the effect of Average Black Patch Area.  

Contrasting Edges is a ratio between the average black patch perimeter and average 

white patch perimeter (Table 4.3, 4.5).  Individuals with large black patch area still had 

small Black Patch Size and Shape values because few white patches with extensive 

perimeter forced the ratio to become very small.  Thus, low scores did not allow 

discrimination among more than 85% of the patterns in the dataset.  High White Patch 

Size and Shape scores (> 1) described individuals with large white patches and low values 

(< 1) described individuals with large black patches (e.g., Fig 4.5b; BS180, BS438).  High 

Overall Patchiness scores (> 1) described white individuals with several black patches 

(e.g., Fig 4.5c: BS438), whereas low Overall Patchiness (< 1) scores represented 

individuals that had black patterns with many white patches (e.g., Fig 4.5c: BS163).   

When factors are considered simultaneously, three color pattern trends emerge.  

First, individuals with overall large black area had high Black Patch Size and Shape and 

Overall Patchiness scores, but low to medium White Patch Size and Shape scores 

(BS012).  Second, individuals with large white area and few small black patches had low 

Black Patch Size and Shape and Overall Patchiness scores, but high White Patch Size 

and Shape scores (e.g., BS143).  Third, when individuals had many medium or large 

black patches, Black Patch Size and Shape scores were low, but White Patch Size and 
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Shape and Overall Patchiness were high (e.g., BS180, BS438). 

Within-site and regional variation-Although the aim of this study was not to 

quantify site-related differences among patterns, general trends are apparent based on 

standard box plots of within-site variation (Interquartile range; Fig. 4.5, 4.6).  In C. 

signifera, within-site variation differed among the raw measures, factors and sites (Fig. 4.5, 

4.6).  For Proportion of White (Fig. 4.5a), the median varied among sites, and within-site 

variance was large.  Sites with very low interquartile ranges are comprised of fewer than 

four individuals and variance at those sites is likely underestimated.  Regionally, medians 

were lower in populations from eastern New South Wales and eastern Victoria and 

higher in Victoria, Tasmania and South Australia sites.  For Number of White Patches 

(Fig. 4.5b), medians were more similar among sites.  A few sites (e.g., Bunyip (Site 60), 

Warnambool (Site 66)) have very high numbers of white patches.  Individuals from these 

sites have many small white flecks and therefore had higher medians (e.g., BS546, Fig. 

4.3b).  Within-site variation differed among sites, but neither within-site variation nor the 

medians appeared to differ regionally.  For Black Patch Size and Shape (Fig. 4.6a), 

medians varied among some sites, and within-site variation was markedly higher in some 

sites.  Regionally, high medians and large interquartile ranges were found in eastern New 

South Wales sites.  For White Patch Size and Shape (Fig. 4.6b), medians were similar 

among most sites, though a few sites had slightly higher medians.  Within-site variation 

was high only in sites that had small interquartile range in Black Patch Size and Shape.  

Regionally, highest variation in White Patch Size and Shape was found in populations in 

central Victoria and Tasmania.  For Overall Patchiness (Fig. 4.6c), medians vary among 
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most sites.  Within-site variation also varied substantially among sites.  Regionally, eastern 

New South Wales and some sites located west of the Great Dividing Range had the 

highest medians.  In addition, there are some differences in interquartile range among 

central Victoria and South Australia sites. 

In Pseudophryne, overall variance was less than in C. signifera for Proportion of White 

(σ2C. signifera=0.06, σ2Pseudophryne= 0.003; Fig. 4.7), and, following the removal of a single 

individual (see below), for Number of White Patches (σ2C. signifera=289.44, σ2Pseudophryne= 

258.48).  In Ulladulla, New South Wales (Site 15; Fig. 4.8), the large variance 

(interquartile range) among individuals is likely due to a single individual with several 

small white patches.  Much of the overall low variance observed in the Pseudophryne 

dataset may be due to the overall low number of samples and sites used in the dataset 

(Table 4.2).  However, samples were approximately the same size in two sites, Cann 

River, Victoria (Site 21) and Kalaru, New South Wales (Site 50).  When variance is 

compared between the species at these sites, C. signifera has higher variance in Number of 

White Patches (Cann River: σ2C. signifera=228.19, σ2Pseudophryne= 38.67, Kalaru: σ2C. 

signifera=532.95, σ2Pseudophryne= 167.90) and in Proportion of White (Cann River: σ2C. 

signifera=0.04, σ2Pseudophryne= 0.003, Kalaru: σ2C. signifera=0.04, σ2Pseudophryne= 0.001).  This suggests 

that the difference in variance between the species is not only due to sample size.  Within-

sites, variance in Pseudophryne was low on Proportion of White and on all factors.  A single 

difference in medians was apparent among sites (Fig. 4.8).  In Cann River, Victoria (Site 

21) the median for Number of White Patches and White Patch Size and Shape was 

higher than in other sites.  For Black Patch Size and Shape and Overall Patchiness, 
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medians and within-site variance (interquartile range) did not differ among sites (Fig. 4.9). 

Outliers identified in the box plots (Fig. 4.5, 4.6) represent extremes of color 

pattern or anomalies in factor composition where the measures summarized by a factor 

conflict strongly with one another.  For example, BS163 (Fig. 4.4) represents an extreme 

value and has an exceptionally high score for Black Patch Size and Shape (Factor 1) 

because, on average, it has many small white patches that have small perimeter.  Most 

black mottled individuals lack these additional white blotches.  The ratio of contrasting 

edges is strongly influenced by the overall perimeter of white patches.  As a result, both 

the average black patch area and contrasting edges are high for BS163.  

 

Mimicry between C. signifera and Pseudophryne 

 Pearson correlation coefficients and significance of bivariate correlations between 

each the color pattern measures and first three PCA factors are shown in Table 4.6.  In 

total, seven of the 29 measures were significant (Number of Black Patches: r = 0.819, p = 

0.045, Total White Perimeter: r = 0.812, p = 0.047, White Equivalent Diameter: r = 

0.980, p = 0.002, Black Fill Area: r = 0.980, p = 0.002, White Fill Area: r = 0.983, p = 

0.013, White Major Axis: r = 0.983, p = 0.001, White Patch Area: r = 0.980, p = 0.002).  

After correcting for multiple tests (p≤0.0016), only a single measure (White Patch Major 

Axis) remained statistically significant (p = 0.0013) suggesting that the overall phenotype 

is not correlated between C. signifera and Pseudophryne populations. 

 Randomization tests revealed that differences between means of C. signifera and 

Pseudophryne were significantly smaller than allopatric populations for Proportion of White 
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(U'=4.77, p< 0.005) and Number of Black Patches (U'= 5.34, p< 0.005).   

  

Phylogenetic signal in C. signifera color pattern measures 

 Table 4.7 summarizes the results of PHYSIG_LL analyses.  The different color 

pattern measures exhibit differing levels of phylogenetic signal.  For both raw measures 

and all three factors, K values were much smaller than one indicating that closely related 

individuals resemble each other less than expected if the traits evolved under Brownian 

Motion (BM) on the same phylogeny.  Of all tested measures, Proportion of White 

exhibited the highest phylogenetic signal (K = 0.00025) and the randomization test 

demonstrated that the distribution of tip values is significantly different from random (p = 

0.007).  White patch number is nearly significant and had a slightly smaller K value than 

Proportion of White (K = 0.00021, p = 0.064).  However, none of the factors had 

statistically significant phylogenetic signal, even though Black Patch Size and Shape had 

higher K than Number of White Patches.  For all factors, the log likelihood (lnL) of a star 

phylogeny was much greater (less negative) indicating that the star phylogeny fits the data 

better than the observed phylogeny.  This result is comparable to MSEStar values being 

smaller than MSETree (Blomberg et al. 2003).   

  

Phylogenetic simulations 

 The aim of the simulations performed in this study was to test whether the 

observed variation in color pattern could be attributed to the process of random genetic 

drift along the phylogeny.  A strong correlation between a trait and the phylogenetic 
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relationships are identified by high values of the ratio MSE0/MSE (p < 0.001).  

Simulation results are summarized in Table 4.8.  Gradual and speciational simulations 

differed in how well the phylogeny explained the pattern of trait variance.  First, 

simulated datasets generated under the BMg model (bounded and unbounded) always 

had significantly higher MSE0/MSE and therefore the phylogeny explained simulated 

trait variance better than the respective observed datasets.  Under the BMs model, 

MSE0/MSE for most traits was not significantly different between the observed and 

simulated datasets (Table 4.8).  Only for White Patch Size and Shape was MSE0/MSE 

significantly greater in the simulated datasets.  Therefore, phylogeny explained the 

variance significantly better in the simulated datasets for this trait. 

 

4.4 Discussion 

Phylogenetic analysis and phylogeographic patterns 

 Crinia signifera is monophyletic with three ancient geographically associated 

lineages and several sub-clades comparable to those found in Symula et al. (2008; Fig. 2.2, 

4.3).  The addition of sites did not clarify relationships among the major haplotype clades, 

but extended the range of clade A and sub-clade C3 (Fig. 4.2).  In eastern Victoria (Sites 

53-56), clade A encompasses areas south and east of the Great Dividing Range (Fig. 

4.2b,c), and is parapatric with sub-clade C3.  Extension of clade A northward to 

Mallacoota (Site 53, Fig. 4.2) and westward to Drouin (Site 58) and Welshpool (Site 56, 

Fig. 4.2) does not conflict with geographical limits of clades in other species (Chapple et al. 

2005, Nicholls and Austin 2005, Rockman et al. 2001, Donnellan et al. 1999).  However, 
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the extent of sampling in these studies is not identical.  A new haplotype sub-clade, C6 

(bpp = 0.99), was identified to the west of the Great Dividing Range that included 

samples from Mansfield (Site 57) and Seymour (Site 25), Victoria suggesting that 

investigation of sites within the Great Dividing Range may provide valuable insight into 

historical processes that shaped phylogeographic patterns in southeastern Australia.   

Several sites were identified where sympatric individuals belong to divergent 

clades or sub-clades (Mallacoota (Site 53), Drouin (Site 58), Seymour (Site 25), Hamilton 

(Site 29), Portland (Site 30)).  In all instances, the clades to which these individuals 

belonged were deeply divergent and parapatric (Fig. 4.2b).  Thus, because these 

individuals belong to divergent mtDNA haplotype clades and because individuals that 

share haplotypes are limited to geographically neighboring sites, this observation is 

unlikely to be a result of incomplete lineage sorting, but rather due to mitochondrial 

introgression (McGuire et al. 2007).  As a result, hybridization may occur in the contact 

zones between the major clades and sub-clades of C. signifera, implying the potential lack 

of pre-zygotic barriers among clades.  Although other studies of similarly distributed 

studies have not found equivalent evidence for introgression (Chapple et al. 2005, Nicholls 

and Austin 2005, Rockman et al. 2001, Donnellan et al. 1999), this is unlikely to be a 

characteristic unique to phylogenetic relationships among C. signifera.  Instead, this is 

probably because fewer individuals per site tend to be sampled in species with large 

distributions.  Few additional phylogeographic inferences can be drawn from the analysis 

of a single mtDNA marker, and are beyond the scope of this study. 

Advertisement call differences have been used to infer historical processes that 
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have led to population-level divergence in southeast Australia (Littlejohn 2005).  In frogs, 

males produce advertisement calls to attract potential mates and to avoid mating with 

heterospecifics (Duellman and Trueb 1986, Wells 1977).  When intraspecific variation 

arises in advertisement calls, sexual selection can lead to divergence among traits, 

generate pre-zygotic reproductive isolation and promote genetic divergence among 

lineages (Verrell 1999, Lande 1981).  In C. signifera, observed differences in advertisement 

call are hypothesized to be the product of adaptation to habitat differences that arose as 

the product of Pleistocene climatic fluctuations (Littlejohn 2005, 1964).  Symula et al. 

(2008) examined one hypothesis of geographic relationships among clades based on 

advertisement call data and demonstrated that advertisement call similarity between 

Tasmania and mainland populations (Mallacoota (Site 53) and Boydtown (Site 51)) likely 

reflects the retention of ancestral call characteristics and not phylogenetic history.  

However, in the present study, haplotypes from Mallacoota can be found in either clade 

A or B.  It is possible that the advertisement calls from these two mainland sites 

(Littlejohn 2005) were collected from individuals with clade B haplotypes.  Therefore, the 

similarity in advertisement calls between these mainland sites may be a product of 

phylogenetic history.  

Introgression between clade A and B implies a lack of pre-zygotic isolation 

between the clades and suggests females do not recognize differences that may occur 

between individuals in haplotype clades A and B.  Surprisingly, in Mallacoota (Site 53) at 

the contact zone between haplotype clades A and B, members of a single amplectant pair 

belonged to different clades.  Inferences that can be drawn from this observation are 
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limited because courtship between these individuals was not observed.  However, the 

observation supports that females do not always discriminate between males from 

different clades, and supports the absence of pre-zygotic barriers between clades A and B.  

It is entirely possible that there are not differences between calls in clade A and B, 

facilitating hybridization between the clades.  This seems unlikely because geographic 

differences in advertisement call occur among sites that belong to less divergent sub-

clades within clade C (Symula et al. 2008, Littlejohn 2005, 1964).  Instances of 

introgression were also identified between sub-clades within clade C with known call 

differences (Fig. 1.2, 4.2).  Thus, the presence of multiple instances of introgression among 

clades and sub-clades where there are known advertisement call variants provides an 

ideal situation to comparatively test the role of pre-zygotic isolation in the maintenance of 

genetically distinct lineages.  Certainly, the phylogenetic evidence and patterns of 

advertisement call data warrant further investigation into how cryptic lineages remain 

essentially isolated on the landscape in the absence of pre-zygotic barriers. 

 

Color pattern quantification 

Based upon color pattern quantification, three major features vary in C. signifera 

color pattern.  First, individuals can lack patches altogether (e.g., Fig. 1.1d-f).  These 

individuals tend to have a large proportion of white (> 0.6; Fig. 4.3a) or large numbers of 

small white patches (> 40; Fig. 4.3b).  Typically, these individuals have low Black Patch 

Size and Shape and Overall Patchiness (< 1; Fig. 4.4a, b), but high White Patch Size and 

Shape (> 1; Fig. 4.4c).  Second, individuals can be black-and-white with a low proportion 
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of white (e.g., Fig. 1.1a).  These patterns have small white area partitioned into few white 

patches (Fig. 4.3) and generally, score high on Black Patch Size and Shape (> 1; Fig. 

4.4a).  Third, individuals can be black-and-white with a high proportion of white (e.g., 

Fig. 1.1b-c).  In these patterns, both the Proportion of White and Number of White 

Patches are medium to low.  Also in these patterns, Black Patch Size and Shape scores 

are low (< 1) and White Patch Size and Shape and Overall Patchiness are high (> 1). 

Most differences in pattern are apparent based solely upon the Proportion of 

White and Number of White Patches (Fig. 4.3) and color pattern attributes described by 

the PCA factor scores should be interpreted with caution.  Simultaneous consideration of 

the first three factors does clearly identify the three major pattern variants.  However, 

fine-scale differences captured by the factors often skew factor scores.  For example, due 

to factor composition, some individuals have unexpected factor scores (e.g., BS014, Fig. 

4.4).  Using a strict interpretation of Black Patch Size and Shape, individuals with low 

scores should have low black patch area interrupted with many white patches and very 

low contrasting edges (Fig. 4.4).  However, the largely black pattern in BS014 has the 

lowest Black Patch Size and Shape score.  In BS014, white patches have extensive 

perimeter and therefore are confounded by the contribution of the contrasting edges 

measure (Table 4.3, 4.5).  Therefore, unexpected factor scores may capture unique 

attributes of individual color patterns.  In another instance, the exceptionally different 

Pseudophryne from Ulladulla (Site 15) was not notably different for Proportion of White, 

Number of White Patches, but was outstanding when White Patch Size and Shape was 

measured.  Thus, it is possible that variance accounted for by these factors was strongly 
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influenced by fine-scale individual differences.  At least in Pseudophryne, color-patterns vary 

to the extent that ventral patterns have been used for individual identification (Mitchell 

2005, Cogger 2000).  Thus, differences accounted for by factors do not necessarily have 

significant evolutionary implications.  Modes of ventral pattern inheritance could provide 

insight into factor interpretation, but genetic mechanisms have not yet been examined.   

Color pattern in C. signifera and Pseudophryne are proposed to be visual components 

associated with the playing dead behavior (Williams et al. 2000) and therefore depend on 

the perception of a predator (Chittka and Osorio 2007, Endler 1978).  Avian predators 

can discriminate fine-scale features that may not be detectable by the human eye (Osorio 

et al. 1999).  In the study of predation on clay replicas of C. signifera (Chapter 3), efforts 

were made to minimize differences among replicas, but fine-scale differences were evident 

among black-and-white individual patterns.  Regardless, individuals that had any black 

on the ventral surface were avoided more often in some habitats.  Therefore, the more 

significant characteristic used by predators may be proportion of black or white rather 

than those represented by the principal components.  Therefore, though principal 

components were examined relative to phylogenetic relationships, biological inferences 

on the role of the pattern characteristics quantified by the principal components are 

difficult to draw relative to predator avoidance of color pattern.   

Within-site and regional variation are also apparent in C. signifera.  Notably, 

medians differ among some sites for most of the measured features (Fig. 4.3, 4.4).  

However, even though medians differ, in nearly all populations, individuals that lack bold 

black-and-white color pattern (e.g., BS219 or higher, Fig. 4.3a) occur in most populations.  
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Unexpectedly, regional differences are also apparent among sites.  First, individuals with 

largely black patterns are concentrated in eastern New South Wales and eastern Victoria 

and are distributed beyond borders of the major clades (Fig. 4.5-14, 4.9).  Second, 

individuals that lack bold black-and-white color pattern are found in nearly all 

populations.  Although not quantified here, the frequency of individuals that lack black-

and-white color pattern are more common in central Victoria and South Australia.   

Ecological and geographical features that could potentially influence within-site 

and region-specific variation outside of genetic drift are not explicitly addressed in this 

study.  However, in comparison to C. signifera where largely black patterns were found in 

northern populations, in sympatric Australian Liopholis skinks, frequencies of individuals 

with a higher proportion of black increased in southern populations (Chapple et al. 2008).  

Furthermore, in the region where individuals with low proportions of white were most 

common in C. signifera, L. whitii lacks the black morphs altogether.  In one study, these 

geographical differences in squamate color patterns are attributed to geographical 

differences in predation pressures (Forsman and Shine 1995).  A second comparative 

study of all Australian reptiles found that polymorphic species exploit a wider variety of 

habitats and hypothesized that polymorphic coloration is maintained due to differential 

predator avoidance among habitats (Forsman and Åberg 2008).  Similarly, Symula 

(Chapter 3) demonstrated that the advantage to bearing black-and-white color pattern 

varies among habitats in C. signifera, but whether predators respond differently to 

proportion of black has not yet been tested.  Examination of C. signifera relative to 

geography and other ecological factors may provide insight into potential differences in 
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selective environments, but are beyond the scope of this study. 

 

Mimicry between C. signifera and Pseudophryne 

  As proposed by Williams et al. (2000), mimicry may explain the combination of 

shared black-and-white ventral coloration and defensive behaviors in C. signifera and 

Pseudophryne.  Bivariate correlations revealed significant relationships in some pattern 

characteristics (Table 4.6) between the species.  Whole frog measures Total Black Area (r 

= 0.819, p = 0.045) and Total White Perimeter (r = 0.812, p = 0,047) were significantly 

correlated.  Furthermore, randomization tests indicate that Proportion of White (U' = 

4.77, p < 0.005) and Number of Black Patches (U' = 5.34, p < 0.005) differed 

significantly less in sites were Pseudophryne was present.  Although, overall, the color 

patterns are not significantly correlated (Bonferroni p = 0.00165), these results suggest 

that color pattern between the two species is similar.  It was previously shown (Chapter 3) 

that C. signifera color pattern, deters predators in some habitats when there is black in the 

pattern (e.g., BS180).  Thus, the apparent similarity in color patterns between sympatric 

populations suggests that Pseudophryne would afford similar protection from predators.  

Together, these results suggest that the black-and-white color patterns are potentially 

similar due to mimicry and the shared advantage of avoiding predation.   

There are at least two apparent differences between Pseudophryne and C. signifera.  

First, Pseudophryne always bears bold black-and-white ventral coloration (Cogger 2000), 

whereas C. signifera populations can be composed of black-and-white individuals (e.g., 

BS012, BS180) or individuals with solid white, grey or flecked patterns (e.g., Fig. 4.5; 
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BS432, BS143).  Second, in this study, Pseudophryne all have black-and-white venters with 

a low proportion of white (Fig. 4.5).  In C. signifera, individuals had black-and-white 

patterns with similarly low proportion of white, but also had individuals with black-and-

white patterns with high proportion of white (e.g., BS237).  Field guides that include 

sympatric Pseudophryne depict individuals with large white patches (Robinson 2002, 

Cogger 2000, Barker et al. 1995).  Similarly, museum collections of Pseudophryne have 

representative individuals with higher proportion of white.  However, these color patterns 

were not observed in the field (Table 4.2) even though sampled localities were similar to 

those in museum collections.  Other surveys have found individual Pseudophryne with low 

proportion of white syntopic with individuals with high proportion of white (e.g., 

http://museumvictoria.com.au/bioinformatics/frog/images/dendlive5.htm) supporting 

that Pseudophryne color pattern variation is drastically underestimated (Fig. 4.6, 4.7).  

Despite this underestimation of pattern variation in Pseudophryne, the randomization tests 

demonstrated that the two species are similar when they are found in syntopy.  Therefore, 

similarity in color pattern in syntopic C. signifera and Pseudophryne populations support that 

that C. signifera is a mimic of Pseudophyrne.   

This study does not address the color in the pattern and there are potential 

differences in both black and white color between species.  Both black color differences 

(e.g., BS180, BS237) and white differences are apparent among C. signifera individuals 

(e.g., BS143, BS432).  These color differences are apparent in the field (Fig. 1.2), but are 

not captured by the method of pattern measurement used here.  Measurements of 

Pseudophryne from Ulladulla suggest that the colors only reflect in the visual spectrum, but 



 105 

measurements were not taken for C. signifera.  Quantification of these differences could be 

critical in assessing whether predators discriminate species-specific color characteristics 

(Endler 1978).  

Not all color pattern measures are correlated between C. signifera and Pseudophryne 

(Table 4.6).  While this may be an artifact of the types of measures quantified here, it 

implies that these species are not perfect model and mimic.  Numerous examples of 

imperfect mimics exist, with an array of proposed mechanisms that explain how the 

imperfection still results in protection from predators (Rowe et al. 2003, Holloway et al. 

2001).  The color patterns are proposed to be the visual component of an anti-predator 

display (Williams et al. 2000).  Therefore, the effectiveness of the display and mimicry 

relies on the visual systems and behavior of the predators (Endler 1990).  How similar the 

model and mimic have to be to afford protection depends on the predator's ability to 

perceive differences and how they search for prey (e.g., Osorio et al.1999).  For example, 

predators often generalize signals such that they ignore fine-scale differences in stimuli 

(color patterns), but extend their avoidance to very different color patterns (See review in 

Ghirlanda and Enquist 2003).  Generalization in avoidance behavior is well studied in 

birds (e.g., Darst and Cummings 2006, Osorio et al. 1999), but as demonstrated in the 

clay replica experiment (Chapter 3), birds are not the primary predators on these frogs.  

Evidence demonstrating generalization of color pattern in mammals is not available, but 

mammals generalize other stimuli (Ghirlanda and Enquist 2003).  Demonstration that 

mammalian predator avoidance is independent of these differences would further support 

the hypothesis of mimicry between C. signifera and Pseduophryne.    
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Sites where C. signifera and Pseudophryne were defined as allopatric were those 

where Pseudophryne was not found simultaneously with C. signifera.  Despite multiple 

attempts, it was not possible to collect Pseudophryne at each C. signifera collection site.  While 

drought conditions contributed to collections of Pseudophryne, some biological factors also 

limit detection.  First, C. signifera is much more flexible in breeding habitats and will breed 

in any area where there is pooling water (Lauck 2005, Lemckert 2005a,b).  Pseudophryne 

requires terrestrial nesting sites in habitats that are likely to be subjected to flooding 

(Mitchell 2005).  While the two species often are found syntopically, Pseudophryne does not 

occur in all habitats exploited by C. signifera.  Second, C. signifera will call year-round 

(Cogger 2000) making it more conspicuous whereas Pseudophryne breeds only during a 

short period in the winter (Mitchell 2005).  The combination of habitat-specificity and 

shorter breeding season implies that relative to C. signifera, Pseudophryne is rare.   

The lower relative abundance of Pseudophryne in contrast to C. signifera has 

implications for the hypothesis for mimicry.  Classical predictions of Batesian mimicry 

indicate that the protection afforded to a mimetic species should break down in the 

absence of a model (e.g., Pfennig et al. 2007) or when the mimic is more common than the 

model (e.g., Mallet and Joron 1999).  This prediction is supported in theoretical and 

laboratory studies (Rowland et al. 2007, Lindstrom et al. 2001).  However, recent studies 

on natural populations suggest that rarity of the model species may not necessarily 

eliminate mimicry (Ries and Mullen 2008, Darst and Cummings 2006), but rather limit 

the distribution of putative mimics.  Therefore, under the hypothesis of mimicry, the 

frequency of bold black-and-white coloration in C. signifera may be directly associated with 
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whether or not Pseudophryne is rare.  For example, in geographical regions where 

Pseudophryne has undergone recent declines (e.g., P. semimarmorata, Central Victoria), most 

populations of C. signifera lack black-and-white mottling.  Additionally, the maintenance of 

C. signifera without bold black-and-white coloration within populations could be 

influenced by the limited of areas of syntopy with Pseudophryne. 

 

Phylogenetic signal, genetic drift and color pattern variation 

 In all of the measured variables, phylogenetic signal (K) was low and was only 

significant for Proportion of White and Number of White Patches.  It is not surprising 

that Factors 1-3 did not have significant phylogenetic signal, because the characteristics 

quantified by these values are not apparent when considered independently and because 

it is possible that the factors measure individual-specific differences that are unlikely to be 

captured by the mtDNA marker.  Revell et al. (2008) investigated the properties of K 

under several simulated condition and showed that low values of K could be attributed to 

multiple different evolutionary processes including high rates of evolution, strong 

stabilizing selection and punctuated, divergent selection.  Thus, when K is low, the ability 

to infer evolutionary processes acting on traits is limited (Revell et al. 2008).  Furthermore, 

any error in phylogeny reconstruction (Blomberg et al. 2003) or measurement in the trait 

(Revell et al. 2008) may artificially lower K.   

In the absence of strong phylogenetic signal, inferences about trait evolution are 

better assessed using simulations (Ives et al. 2007, Garland et al. 1993) or by other model 

testing approaches (Lee et al. 2006, Butler and King 2004).  The simulations performed in 
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this study were performed to test whether the mechanism of genetic drift along the 

phylogeny could explain variance in color pattern traits.  In this study, the process of 

genetic drift was simulated under two different evolutionary models, gradual Brownian 

motion (BMg) and speciational Brownian motion (BMs).  Combined, the simulation 

results suggest that Brownian motion does not amply describe the variation observed in 

either Proportion of White or Number of White Patches in C. signifera (Table 4.8).  Thus, 

though there is evidence for phylogenetic signal in some of the measured traits, the 

hypothesis that variation in color pattern is a result of genetic drift can be rejected.   

Generally, the results from simulations of Black Patch Size and Shape (Factor 1) 

and White Patch Size and Shape (Factor 2) reject the gradual BM model, but are 

inconsistent with rejecting or failing to reject speciational BM (Table 4.8).  As addressed 

previously, the aspects of color patterns accounted for by these factors are difficult to 

explain unless the factors are considered simultaneously.  Furthermore, inferring 

expectations of how these traits might evolve along a phylogeny are not intuitive because 

they appear to incorporate individual-specific differences.  Therefore, these traits are not 

discussed further in light of genetic drift.  

Based on the simulations, it is hard to reject that genetic drift under speciational 

Brownian motion (BMs) does not explain variation in C. signifera color pattern (Table 4.8).  

In both bounded and unbounded simulations, there is no significant difference between 

the simulated and observed datasets (e.g., Proportion of White p = 0.237 BMBs, p = 

0.324 BMBu).  In general, it is challenging to draw evolutionary inferences from 

speciational models because they are heavily biased by taxon sampling and lineage 
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extinction (Ackerly 2000).  For example, accurate interpretation of this model requires 

that all branching events and lineages were sampled (Martins and Garland 1991).  

Therefore, relative to this C. signifera dataset, there are three potential sources of bias in 

the C. signifera dataset.  Clade A is the older, sister lineage to the remainder of C. signifera 

(Symula et al. 2008), and numerous extinction events have likely occurred in clade A that 

cannot be represented genetically or with color pattern.  Therefore, variation in clade A 

should be underrepresented in simulated datasets, and instead will be concentrated in the 

larger clades.  Second, the geographical distributions of the clades and sub-clades are 

drastically different in size.  Therefore, even if all historical lineages were represented, 

clade A (n = 30) would have disproportionately fewer branching events than either clade 

B (n = 75) or C (n = 140), again biasing the extent of simulated variation in clade A.  

Third, though this dataset consists of the most extensive range and most densely sampled 

phylogenetic analysis of southeastern Australia, there are still underrepresented 

geographic samples (e.g., the Great Dividing Range, western New South Wales, 

Queensland).  As such, the failure to reject the speciational model may be a result of bias 

introduced by characteristics of the C. signifera datasets.   

Addressing these biases is problematic.  Ackerly (2000) suggested that using sub-

samples might overcome the artificial inflation of variance.  Thus, one potential way to 

deal with the biases is to generate equivalently sized sub-samples among clades or sub-

clades.  However, this does overcome the bias due to random lineage extinction (Ackerly 

and Nyffeler 2004, Martins and Garland 1991).  Additionally, at some level, the genetic 

divergence in the mtDNA marker no longer represents organism-level or even 
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population-level phylogeny, but rather, the divergence is representative of organismal 

generations.  At this level, branching events are not equivalent to speciation events.  How 

to establish this level relative to branch lengths is not entirely clear, but one possibility is 

to effectively assign a hard polytomy to parts of the tree by reducing extremely short 

branch lengths to zero and then, examine whether the model still fits the data.   

Demonstration that the pattern of variation in color pattern is discordant with 

that predicted by the phylogeny suggests the possibility that another mechanism 

maintains variation in color pattern.  A simple way that the two color patterns could 

remain in the population is if the black-and-white color pattern is heterozygous.  As a 

result, even under strong selection like that identified in Chapter 3, disadvantageous color 

patterns will remain in a population.  Alternatively, natural selection can generate 

variation in color pattern through either diversifying or stabilizing selection.  When two 

phenotypes are equally advantageous, diversifying selection can generate polymorphic or 

variable populations.  It has been demonstrated that the black-and-white color pattern is 

advantageous in some populations (Chapter 3).  In the absence of selection in favor of the 

white pattern, the black-and-white pattern should become fixed in the population.  

However, C. signifera populations commonly have both color patterns in populations (Fig. 

4.7).  In the study using clay models, there were differences in proportion of attacks on 

black-and-white between two habitat types (Fig. 3.2).  Since only two habitats were 

examined and C. signifera exploits many habitat types, it is possible that the white pattern 

is advantageous in another habitat type.  Thus, diversifying selection could generate the 

variability seen in C. signifera.   
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 The process of stabilizing selection results in low variation centered on a given 

optimum (Felsenstein 1988).  This process can be modeled on a phylogeny using an 

Ornstein-Uhlenbeck process (Butler and King 2004).  Presently, the only biologically 

motivated optimum for color pattern in C. signifera is defined by the hypothesis of mimicry 

(Williams et al. 2000).  If C. signifera is a mimic of the different color patterns in the toxic 

Pseudophryne, C. signifera color pattern variation should resemble that of the sympatric 

Pseudophryne.  Under the hypothesis of mimicry, the color pattern of Pseudophryne could 

represent an optimal value for the color pattern in C. signifera.  Programs are available to 

simulate traits under this model and test for stabilizing selection (Butler and King 2004, 

Martins 2004, Blomberg et al. 2003, Garland et al. 1999).  However, it is unclear how the 

optimum trait value would be set for C. signifera.  It is possible to estimate the OU model 

parameters from the present C. signifera dataset, but this estimate will not necessarily be 

relevant to the hypothesis of mimicry because they would be based on C. signifera, not 

Pseudophryne (Ives et al. 2007, Butler and King 2004, Blomberg et al. 2003).  Another 

difficulty of implementing models of stabilizing selection to test the hypothesis of mimicry 

is the lack of adequate representation of variability in Pseudophryne color pattern (above).  

For example, P. semimarmorata lacks black-and-white coloration on the throat and instead 

has bright orange on the limbs.  In this study, estimation of color pattern variation for 

sympatric Pseudophryne species is limited to five sampling sites for only two species that are 

found in a very small portion of the C. signifera's distribution.  Several Pseudophryne species 

are present that are sympatric with limited regions of the C. signifera distribution (Cogger 

2000) and ventral color pattern can vary among these species.  Therefore, a different 
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optimum would need to be specified for each species distribution and Pseudophryne color 

pattern (Butler and King 2004), but is not possible using this dataset.  These types of 

model-based approaches would enhance understanding the interaction of mimicry and 

phylogenetic history on the evolution of C. signifera color pattern.  

The results presented in this study illustrate variation in color pattern in C. signifera 

and suggest that natural selection through mimicry may influence whether populations 

maintain black-and-white color patterns.  Several characteristics of color pattern in C. 

signifera and Pseudophryne are strongly correlated and color pattern in C. signifera is much 

more similar to Pseudophryne when the species are found syntopically.  This supports the 

hypothesis that the two species are involved in a mimetic relationship.  Color pattern is 

not strongly correlated with phylogenetic relationships indicating that color pattern 

variation in C. signifera is unlikely to have been shaped solely by neutral processes like 

genetic drift.  Combined, these two aspects of the study provide motivation to design 

alternative experiments designed to test specific aspects of the hypothesis of mimicry and 

to develop methods that model the expected evolution of color pattern along the 

phylogeny when under selection.
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Table 4.1.  Collection localities and individual identification numbers for C. signifera.  Sample 
sites, GPS coordinates, and museums where specimens were deposited for phylogenetic analysis 
and color pattern quantification are also shown.  All samples from Table 1 are included.  Sites 
are sorted into two groups.  First, individuals from localities and site numbers (1-47) assigned in 
Symula et al. 2008 added for phylogenetic analysis are arranged from north to south along the 
east coast and then east to west along the southern part of the distribution.  Second, localities and 
site numbers (48-66) from the 2007 field season are listed north to south along the east coast and 
east to west along the southern part of the distribution.  Individuals for which color pattern could 
not be quantified and which were pruned from phylogenetic trees are indicated with a †.  Site 
numbers in the left column correspond to localities on the maps in Fig. 2.1a, 5 and 9.  Latitude 
and longitude are in decimal degrees.  States are abbreviated as follows:  NSW = New South 
Wales, VIC = Victoria, SA = South Australia, TAS = Tasmania.  Museums used for voucher 
deposition are abbreviated as follows:  South Australia Museum = SAM, Museum Victoria = 
MV, Australian National Wildlife Collection = ANWC, Australian Museum = AM, Queen 
Victoria Museum = QVM. 
Site Individual  Locality State Latitude/ 

Longitude 
Museum Genbank 

1 BS050-051, BS053-054, 
BS056-059 

N = 8 Evans Head NSW -29.09 153.39 AM  

2 ABTC25425† N = 1 Glenn Innes NSW -29.71 151.75 AM  
3 ABTC12334† N = 1 Armidale NSW -30.22 151.67 AM  
4 BS040-042, BS044, 

BS046-048 
N = 7 Coffs Harbour NSW -30.32 153.11 AM  

5 BS035 N = 1 Port Macquarie NSW -31.50 152.90 AM  
6 BS031-033 N = 3 Clarencetown NSW -32.57 151.77 AM  
7 BS011, BS012, BS014, 

BS016, BS018-020 
N = 7 Cooranbong NSW -33.13 151.35 AM  

8 BS152, BS154†, BS156-
158, BS160-161 

N = 7 Macquarie Woods NSW -33.41 149.31 AM  

9 BS021-027 N = 7 Coogee NSW -33.93 151.26 AM  
10 ABTC17627† N = 1 Heathcote NSW -34.07 151.02 AM  
11 BS162-163 N = 2 Kangaroo Valley NSW -34.74 150.54 AM  
12 ABTC12884†-12885† N = 2 Wagga Wagga NSW -35.13 148.23 AM  
14 BS235-242 N = 8 Canberra ACT -35.24 149.11 ANWC  
15 BS060, BS063-066 N = 5 Ulladulla NSW -35.35 150.45 AM  
18 BS164-168, BS170-172, 

BS453, BS455 
N = 8 Kianga NSW -36.20 150.13 AM  

19 BS067-071†, BS072-076 N = 10 Eden NSW -37.05 149.90 AM  
21 BS173-174, BS175†-176, 

BS178-180, BS182 
N = 4 Cann River VIC -37.56 149.15 MV  

22 BS183-184 N = 2 Bairnsdale VIC -37.67 147.56 MV  
23 ABTC12882†-12883† N = 2 Granya VIC -36.10 147.32 MV  
24 BS088†-093, BS095 N = 7 Lilydale VIC -37.78 145.36 MV  
25 BS185-189, BS193-194 N = 7 Seymour VIC -37.56 145.14 MV  
26 BS001, BS005, BS007-010 N = 6 Bundoora VIC -37.72 145.05 MV  
27 BS195-196 N = 2 Maryborough VIC -37.07 143.73 MV  
28 197†-202, BS204-206 N = 9 Stawell VIC -37.07 142.76 MV  
29 BS141†-146, BS148 N = 7 Hamilton VIC -37.70 141.91 MV  
30 BS131-140 N = 10 Portland VIC -38.37 141.61 MV  
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Table 4.1. Continued 
Site Individual  Locality State Latitude/ 

Longitude 
Museum Genbank 

31 ABTC37438 N = 1 Mount Gambier SA -38.05 140.94 SAM  
33 BS212-219, BS221 N = 9 Naracoorte SA -37.10 140.79 SAM  
34 BS227-233 N = 7 Mary Seymour 

Conservation Park 
SA -37.16 140.62 SAM  

35 ABTC37700†-37701† N = 2 Padathaway SA -36.69 140.48 SAM  
36 ABTC58307† N = 1 Gum Lagoon 

Conservation Park 
SA -36.27 140.02 SAM  

37 ABTC58814† N = 1 Milang SA -35.40 139.97 SAM  
38 ABTC36237† N = 1 Kingston SA -36.82 139.85 SAM  
39 BS096-098, BS102-103 N = 5 Adelaide SA -35.06 138.75 SAM  
40 BS116-BS120, BS122-129 N = 13 Clare SA -33.84 138.62 SAM  
41 BS106-110, BS112-115 N = 19 Crystal Brook SA -33.33 138.24 SAM  
42 ABTC33253 N = 1 Second Valley SA -35.52 138.22 SAM  
44 BS433-435†, BS436-442 N = 10 Sheffield TAS -41.39 146.33 QVM  
45 BS423-432 N = 10 Epping TAS -41.78 147.32 QVM  
46 BS413-414†, BS415-417, 

BS420-422 
N = 8 Wielangta TAS -42.66 147.89 QVM  

48 BS443, BS445, BS447-448, 
BS450-452 

N = 7 Batemans Bay NSW -35.66 150.28 AM  

49 BS459-467 N = 9 Quaama NSW -36.47 149.87 AM  
50 BS470†-477 N = 8 Kalaru NSW -36.74 149.94 AM  
51 BS482-484, BS486-490 N = 7 Boydtown NSW -37.11 149.87 AM  
52 BS502-507, BS509-511 N = 9 Timbillica NSW -37.38 149.70 AM  
53 BS492-499, BS501 N = 10 Mallacoota VIC -37.55 149.73 MV  
54 BS516-BS524 N = 9 Nowa Nowa VIC -37.74 148.04 MV  
55 BS355-357, BS359, BS361 N = 5 Tyers VIC -38.14 146.53 MV  
56 BS365-367†, BS368-374 N = 10 Welshpool VIC -38.67 146.44 MV  
57 BS555-558, BS560-562, 

BS564 
N = 8 Mansfield VIC -37.05 146.08 MV  

58 BS385-394† N = 10 Drouin VIC -38.14 145.88 MV  
59 BS375-382, BS384 N = 9 Korumburra VIC -38.44 145.83 MV  
60 BS345-346†, BS347-348, 

BS350 
N = 5 Bunyip VIC -38.06 145.71 MV  

61 BS335-341†, BS342-343 N = 9 Beaconsfield VIC -38.03 145.43 MV  
62 BS395-398, BS400-404 N = 9 Waurn Ponds VIC -38.20 144.30 MV  
63 BS526-533, BS535 N = 9 Ballarat VIC -37.55 143.89 MV  
64 BS536-544 N = 9 Colac VIC -38.27 143.63 MV  
65 BS405-412 N = 8 Cape Otway VIC -38.76 143.49 MV  
66 BS545-549, BS551-554 N = 9 Warnambool VIC -38.36 142.51 MV  
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Table 4.2.  Collection localities and individual identification numbers for Pseudophryne.  Number 
of photographs GPS data, number of photographs and museum deposition information are also 
shown.  Individual numbers refer to those animals collected for voucher specimens at each site.  
Site numbers refer to localities on Figure 4.1 and are indicated with a star next to points on the 
map.  N refers to number of photographs that were used for digital photograph analyses.  Not all 
photographed individuals were kept as voucher specimens.  Museums used for voucher 
deposition are abbreviated as follows:  South Australia Museum = SAM, Museum Victoria = 
MV, Australian Museum = AM.  Tissues were all deposited in the SAM. 
Site Individual  Locality State Latitude/ 

Longitude 
Museum 

15 BS067-BS078 N = 10 Ulladulla NSW -35.35 150.45 AM 
21 BS514-BS515 N = 4 Cann River VIC -37.56 149.15 MV 
50 BS478-BS479 N = 6 Kalaru NSW -36.74 149.94 MV 
51 BS480-BS481 N = 3 Boydtown NSW -37.11 149.87 MV 
52 BS512-BS513 N = 2 Timbillica NSW -37.38 149.70 MV 
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Table 4.3.  Titles and descriptions of measures used to quantify black-and-white pattern on the 
ventral surfaces of C. signifera and Pseudophryne.  All measures listed under Patch Description are 
calculated as the mean of all measured patches on an individual.  MatLab commands used to 
obtain these measures are listed in parentheses after descriptions of the measures.  
Category Measurements Description 
I. Whole frog   
 Contrasting Edges Ratio of the average black blotch perimeter and the average 

white blotch perimeter. 
 Patch Number (black) Total number of black patches (numObjects). 
 Pattern Continuity (black) The difference between the number of black regions on the 

ventral surface and the holes (white areas) in the regions 
(bweuler). 

 Pattern Continuity (white) The difference between the number of white regions on the 
ventral surface and the holes (black areas) in those regions 
(bweuler). 

 Proportion of White Ratio of total white area to total measured area. 
 Patch Number (white) Total number of white patches (numObjects). 
 Total Perimeter (white) Sum of the perimeters of all white patches on an individual. 
 Total Area (black) Sum of the area (cm2) of all black pixels (bwarea). 
 Total Area (white) Sum of the area (cm2) of all white pixels (bwarea) 
II. Patches   
 Eccentricity (black) Average measure of how circular or stretched black patches are.  

Values closer to 0 are more circular and values closer to 1 are 
more oblong (regionprops, 'Eccentricity'). 

 Eccentricity (white) Average measure of how circular or stretched white patches are. 
Values closer to 0 are more circular and values closer to 1 are 
more oblong (regionprops, 'Eccentricity'). 

 Equivalent Diameter (black) Diameter of circle with same area as the black patches 
(regionprops, 'EquivDiameter'). 

 Equivalent Diameter (white) Diameter of circle with same area as the white patches 
(regionprops, 'EquivDiameter'). 

 Euler Number (black) Average measure of how many holes are in each black patch 
(regionprops, 'EulerNumber'). 

 Euler Number (white) Average measure of how many holes are in each white patch 
(regionprops, 'EulerNumber'). 

 Fill Area (black) Average of black area of patches with holes in patches filled 
(regionprops, 'FilledArea'). 

 Fill Area (white) Average of white area of patches with holes in patches filled 
(regionprops, 'FilledArea'). 

 Major Axis (black) Average of major axis estimated from an ellipse with the same 
second moments as the black patches (regionprops, 
'MajorAxisLength'). 

 Major Axis (white) Average of major axis estimated from an ellipse with the same 
second moments as the white patches (regionprops, 
'MajorAxisLength'). 

 Minor Axis (black) Average of minor axis length estimated from an ellipse with the 
same second moments as the black patches (regionprops, 
'MinorAxisLength'). 

 Minor Axis (white) Average of minor axis length estimated from an ellipse with the 
same second moments as the white patches (regionprops, 
'MinorAxisLength'). 

 Orientation (black) Average orientation (degrees) of each black patch (regionprops, 
'Orientation'). 
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Table 4.3. continued 
Category Measurements Description 
II. Patches   
 Orientation (white) Average orientation (degrees) of each white patch (regionprops, 

'Orientation'). 
 Patch Area (black) Average area of black patches scaled to total ventral surface area 

(regionprops, 'Area'). 
 Patch Area (white) Average area of white patches scaled to total ventral surface area 

(regionprops, 'Area'). 
 Solidity (black) Average proportion of black pixels that fill the smallest convex 

polygon that can encompass each patch (regionprops, 'Solidity'). 
 Solidity (white) Average proportion of white pixels that fill the smallest convex 

polygon that can encompass each patch (regionprops, 'Solidity'). 
 Squareness (black) Average proportion of black pixels that fill the smallest rectangle 

that can surround the patch.  Values closer to 1 are more 
rectangular (regionprops, 'Extent'). 

 Squareness (white) Average proportion of white pixels that fill the smallest rectangle 
that can surround the patch. Values closer to 1 are more 
rectangular (regionprops, 'Extent'). 
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Table 4.4.  Summary of variance explained by Principal Components Analysis (PCA).  Results 
for factors from Varimax (orthogonal) rotation are shown for all factors with eigenvalues greater 
than one.  Total variance for factors determined to be significant based on the scree plot are also 
presented. 

Crinia signifera Pseudophryne bibronii/Pseudophryne dendyi 
Factor (Rotated Principal 
Components) 

% Variance 
Explained 
(Rotated) 

Factor (Rotated Principal 
Components) 

% Variance 
Explained (Rotated) 

1 21.517 1 34.933 
2 19.704 2 29.080 
3 10.241 3 10.738 
4 7.697 4 7.261 
5 7.449 5 5.795 
6 7.233 6 3.526 
7 6.251 - - 
8 3.687 - - 
Total Explained variance 
(Eigenvalues > 1) 

83.760 Total Explained variance 
(Eigenvalues > 1) 

91.33 

Total explained variance 
(Scree plot (Factors 1-3)) 

59.140 Total explained variance 
(Scree plot (Factors 1-3)) 

74.751 
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Table 4.5.  Factors extracted in Principal Component Analysis (PCA) and the variables 
correlated with each factor.  Patch measures have the associated color (black/white) in 
parentheses following the variable name.  Underlined variables are those that differ between the 
C. signifera and Pseudophryne dataset.   

Crinia signifera Pseudophryne 
Factor Variables Factor  Variables 
1-Black area and shape Contrasting edges 

Patch area (black) 
Euler number (black) 
Eccentricity (black) 
Major axis (black) 
Minor axis (black) 
Fill area (black) 
Equivalent diameter (black) 

1-Black area and shape Contrasting edges 
Patch area (black) 
Euler number (black) 
Eccentricity (black) 
Major axis (black) 
Minor axis (black) 
Fill area (black) 
Equivalent diameter (black) 
Number of patches (black) 
Squareness (black) 
Solidity (black) 

2-White area and shape Patch area (white) 
Major axis (white) 
Minor axis (white) 
Fill area (white) 
Equivalent diameter (white) 
Euler number (white) 

2-White area and shape Patch area (white) 
Major axis (white)  
Minor axis (white)  
Fill area (white) 
Equivalent diameter (white) 
Solidity (white) 
Eccentricity (white) 

3-Overall patchiness Pattern continuity (black) 
Pattern continuity (white) 
Number of patches (black) 

3-Overall patchiness Pattern continuity 
Pattern continuity 
Number of patches (white) 

4-  Solidity (black) 
Squareness (black) 

4- Total area (white) 
Total area (black) 

5- Squareness (white) 
Solidity (white) 

5-  Orientation (white) 
Proportion of white  

6- Number of patches (white) 
Total perimeter (white) 

6- Orientation (black) 

7- Total area (white) - - 
8- Orientation (black) - - 
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Table 4.6.  Summary of bivariate correlations of color pattern measurements between C. signifera 
and Pseudophryne.  Comparisons were made between five sites.  A single * indicates significance at 
α ≤ 0.05.  Two * indicate significance following Bonferroni correction with  α ≤ 0.00165.  
 

 
 

Measurements Pearson Correlation p-value 

I. Whole frog    
 Contrasting edges 0.611 0.137 
 Number of patches (black) 0.819 0.045* 
 Pattern continuity (black) 0.663 0.111 
 Pattern continuity (white) 0.235 0.352 
 Proportion of white -0.089 0.443 
 Number of patches (white) 0.641 0.122 
 Total perimeter (white) 0.812 0.047* 
 Total area (black) -0.190 0.488 
 Total area (white) -0.502 0.195 
II. Patches    
 Eccentricity (black) -0.100 0.437 
 Eccentricity (white) -0.763 0.067 
 Equivalent diameter (black) 0.685 0.101 
 Equivalent diameter (white) 0.980 0.002* 
 Euler number (black) 0.428 0.236 
 Euler number (white) 0.694 0.097 
 Fill area (black) 0.980 0.002* 
 Fill area (white) 0.923 0.013* 
 Major Axis (black) 0.668 0.109 
 Major Axis (white) 0.983 0.001** 
 Minor Axis (black) 0.769 0.064 
 Minor Axis (white) 0.769 0.064 
 Orientation (black) -0.498 0.200 
 Orientation (white) 0.451 0.223 
 Patch Area (black) 0.592 0.146 
 Patch Area (white) 0.980 0.002* 
 Solidity (black) -0.339 0.289 
 Solidity (white) 0.140 0.411 
 Squareness (black) -0.596 0.145 
 Squareness (white) -0.493 0.200 
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Table 4.7.  Summary of tests for phylogenetic signal.  Estimated values for phylogenetic signal as performed in PHYSIG_LL for each 
Proportion of White, Number of White Patches and the first three PCA factors with eigenvalues greater than one.  MSE0 represents 
mean squared error estimated using the phylogenetically correct mean.  MSEStar represents the mean squared error estimated from a 
star phylogeny.  MSETree represents the mean squared error estimated from the best GARLI tree.  K indicates the level of 
phylogenetic signal estimated from the best GARLI tree.  K* represents a measure of phylogenetic signal estimated from 
contemporaneous tips and is reported as a comparison to other studies.  Log likelihoods for a star phylogeny and the best GARLI tree 
are represented as lnLStar and lnLObserved, respectively.  The p-value shown was calculated following 1000 permutation tests.   
 

Variable (Measure) MSE0 MSEStar MSETree Observed 

MSE0/MSE 

Expected 

MSE0/MSE 

K 

(Obs./Exp.) 

K* lnLStar lnL 

Observed 

p-

value 

Proportion of white 0.075 0.057 16.687 0.0045 17.506 0.00026 0.00024 2.731 -693.25 0.007 

White Patch number 242.670 197.429 65929.209 0.0037 17.506 0.00021 0.00021 -994.598 -1706.44 0.064 

Factors           

1. Black area and shape 0.852 0.747 219.655 0.0038 17.506 0.00022 0.00024 -311.365 -1007.67 0.196 

2. White area and shape 0.814 0.789 6008.801 0.0001 17.506 0.000008 0.000009 -318.118 -1413.01 0.890 

3. Patchiness 0.856 0.851 2333.348 0.0004 17.506 0.00002 0.00036 -327.382 -1297.13 0.588 
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Table 4.8.  Summary of color pattern simulations under Brownian motion (BM) models of trait evolution.  Observed values are listed 
for each of the four traits examined.  Black Patch Size and Shape and White Patch Size and Shape are shown as Factor 1 and Factor 
2, respectively.  Test statistics were compared using the null distribution generated from 1000 datasets for each model of trait 
evolution.  Phylogenetic variance MSE0/MSE was used to test whether the null model fits the phylogenetic pattern of MSE0 better 
than the observed.  Null and alternate hypotheses are given for each of the test statistics.  BMBg represents bounded, gradual BM 
simulations.  BMUg represents gradual, unbounded BM simulations.  BMBs and BMUs represent bounded and unbounded 
simulations, respectively.  The * indicates significance in favor of HA.  Non-significant p-values are otherwise reported as the 
proportion of simulated datasets that are greater than the observed test statistic.   
 
Test Hypotheses Model Observed Values p-values 

   Proportion 

of White 

White Patch 

Number 

Factor 1 Factor 2 Proportion 

of White 

White Patch 

Number 

Factor 1 Factor 2 

Phylogenetic covariance H0: MSE0/MSESim=MSE0/MSEObs 

HA: MSE0/MSESim>MSE0/MSEObs 

BMBg 0.0037 0.0045 0.0039 0.0001 < 0.001* < 0.001* <0.001* <0.001* 

  BMUg 0.0037 0.0045 0.0039 0.0001 < 0.001* < 0.001* < 0.001* < 0.001* 

  BMBs 0.0037 0.0045 0.0039 0.0001 0.237 0.287 0.261 < 0.001* 

  BMUs 0.0037 0.0045 0.0039 0.0001 0.324 0.393 0.369 < 0.001* 
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Figure 4.1.  Geographic localities for collection sites of  C. signifera and Pseudophryne.  Localities 
represented by circles are sites where C. signifera were collected.  Closed circles indicate sites from 
Symula et al. (2008) that were collected in 2004 and open circles indicate localities collected in 
2007.  Samples from Tasmania were collected in 2007, but included in Symula et al. (2008) 
analyses.  Stars indicate localities where Pseudophryne were collected.  Shading represents clades 
identified in Symula et al. (2008) relative to new sampling localities.   
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Figure 4.2.  The best maximum likelihood tree of  C. signifera , geographic distribution of  clades 
and sub-clades and areas of  introgression.   The overall topology and branch lengths are shown 
for the best maximum likelihood tree estimated by GARLI 0.951 with Bayesian posterior prob-
abilities shown for nodal support.  Black-filled dots represent posterior probabilities (bpp) > 0.95 
and white-filled dots represent bpp > 0.90. Each clade is expanded to show all sequenced indi-
viduals in the tree.  Individuals that represented redundant haplotypes are separated by a comma 
and shown on a single tip except for in the two most common haplotypes.  One haplotype is 
represented by BS471 (Clade B2) and includes individuals: Kalaru, NSW (Site 50): BS471, 
BS474; Eden, NSW (Site 19): BS067, BS068, BS069, BS070, BS071, BS073, BS074, BS076; 
Boydtown, NSW (Site 51): BS482, BS484, BS486, BS489, BS490; Timbilica, NSW (Site 52): 
BS504, BS506; Mallacoota, VIC (Site 53): BS497.  The second haplotype is represented by 
BS545 (Clade C3) and includes individuals:  Waurn Ponds (Site 61): BS401, BS404; Colac, VIC 
(Site 64): BS541; Warnambool, VIC (Site 66): BS545, BS546, BS551, BS552; Cape Otway, VIC 
(Site 68): BS405, BS406, BS408, BS411, BS412.  Locations of  the clades and sub-clades are 
shown relative to geographic sampling localities.  Shading corresponds to shading on the phylog-
eny.  States are abbreviated as follows: New South Wales (NSW), Victoria (VIC), Tasmania (TAS), 
South Australia (SA), Queensland (QLD).  The square outline within the map illustrates the 
region of  the map expanded to show areas of  apparent introgression.  Dotted lines and arrows 
leading from a sampling locality indicate to which clade individuals from that site belong.  Arrows 
are not drawn to indicate gene flow or dispersal, but only to clarify potential clade membership.

124



A

0.01

BS494 
BS176

Mallacoota VIC (53)

Welshpool VIC (56)

Tyers VIC (55)

Tyers VIC (55)

Drouin VIC (58)

Nowa Nowa VIC (54)

Welshpool VIC (56)BS368
BS369

BS374

BS524
BS517

BS175

BS179 

BS372

BS359 

BS183 Bairnsdale VIC (22)

BS356

BS520

BS496 
BS495

BS180

BS392

BS519 

BS361

BS178

BS355

BS370

BS182

BS387

BS521

Cann River
VIC (21)

BS366

BS173
BS174

BS357

BS522

1.0

1.0

1.0

1.0

1.0

0.99

1.0

1.0

1.0

0.84

1.0

B

C

A

C1

C6

C5

C4

C3

C2

B1

B2

Figure 4.2 

0.02

Epping TAS (45) 

Epping TAS (45) 

BS432

BS429

BS424

BS430

BS431

BS415

BS421

BS439
BS420

BS417

BS441 Sheffield TAS (47)

BS414 

BS413 

BS423

BS553 Warnambool VIC (66), BS433
BS434, BS436-BS438, BS440, BS442

BS425

BS428
BS426 

 Wielangta TAS (46) 

Sheffield 
TAS (47) 

BS555 

BS187 Seymour VIC (25)

BS556, BS561 

BS557 

BS564

BS193 Seymour VIC (25)

BS560 

BS562 

BS558 
Mansfield VIC (57)

Mansfield
VIC (57)

Wagga Wagga NSW (12) ABTC12884
ABTC12882 Granya VIC (23)

ABTC12885

BS228

BS136

BS200

ABTC37438 Mount Gambier SA (31)

BS214

BS195-196, 198,
ABTC58307 Gum Lagoon SA (36) 
BS232-233

BS140

BS137

BS131 

BS134

BS221 

BS142
BS143

BS139 

BS215

ABTC37700 Padathaway SA (35)

BS213
BS212
BS230 Mary Seymour SA (34)

BS201

BS135 

BS229 Mary Seymour SA (34)

BS227

ABTC36237 Kingston SA (38)

BS218

BS146

BS197 Stawell VIC (32)

BS199

BS216 

BS231

BS202

BS144

BS217, BS219

BS132,
BS148 Hamilton VIC (29)

 Naracoorte SA (33) 

Naracoorte SA (33)

Mary Seymour SA (34) 

Stawell, VIC (32)

Portland, VIC (30)

Hamilton, VIC (29)

Portland, VIC (30)

0.02
C2

C5

C1

C6

C4

TAS

NSW
QLD

SA

VIC

ACT

B1

B2

A

C1

C3

C4

C2

C5

C6

0 280 560 km

54

5866

65

64
63

62

46 47

45
44

56
5558

57

59

60
6124

22 54
21
2020

53

52 19,51
50

49 18

1

2
3 4

48

41

40

39
3842

36

37
35

32 33
34

31

5

6
7

8
9

1011
12

1517

23

27 2528
29

30

26

1314

16

TAS

66

44

57

60

5125
29

30

53

125



C

B

A

B1

B2

Figure 4.2 continued 

Epping TAS (45) 

Epping TAS (45) 

BS432

BS429

BS424

BS430

BS431

BS415

BS421

BS439
BS420

BS417

BS441 Sheffield TAS (47)

BS414 

BS413 

BS423

BS553 Warnambool VIC (66), BS433
BS434, BS436-BS438, BS440, BS442

BS425

BS428
BS426 

 Wielangta TAS (46) 

Sheffield 
TAS (47) 

BS555 

BS187 Seymour VIC (25)

BS556, BS561 

BS557 

BS564

BS193 Seymour VIC (25)

BS560 

BS562 

BS558 
Mansfield VIC (57)

Mansfield
VIC (57)

Wagga Wagga NSW (12) ABTC12884
ABTC12882 Granya VIC (23)

ABTC12885

BS228

BS136

BS200

ABTC37438 Mount Gambier SA (31)

BS214

BS195-196, 198,
ABTC58307 Gum Lagoon SA (36) 
BS232-233

BS140

BS137

BS131 

BS134

BS221 

BS142
BS143

BS139 

BS215

ABTC37700 Padathaway SA (35)

BS213
BS212
BS230 Mary Seymour SA (34)

BS201

BS135 

BS229 Mary Seymour SA (34)

BS227

ABTC36237 Kingston SA (38)

BS218

BS146

BS197 Stawell VIC (32)

BS199

BS216 

BS231

BS202

BS144

BS217, BS219

BS132,
BS148 Hamilton VIC (29)

 Naracoorte SA (33) 

Naracoorte SA (33)

Mary Seymour SA (34) 

Stawell, VIC (32)

Portland, VIC (30)

Hamilton, VIC (29)

Portland, VIC (30)

0.02
C2

C5

C1

C6

B1

BS164-BS165

BS168 Kianga NSW (18)

BS024 Coogee NSW (9)

BS154, BS161 

BS476, 
BS503 Timbillica NSW (52)

BS239-BS240

BS445, BS448, BS450,
BS060, BS066

BS163

BS471*

BS160

BS236, BS242

BS459

BS472

BS460 Quaama NSW (49)

BS019-BS020

BS167, BS172

ABTC12334 Armidale NSW B2 (3)

BS158 

BS492 Mallacoota VIC (53)

BS031

BS162

BS012

BS022

BS510 Timbilica NSW (52)

BS023, BS027
BS171

BS021

BS065 

BS035 Port Macquarie NSW (5) 

BS463

BS072, BS488 Eden NSW (19)

BS032

ABTC17627 Heathcote NSW (10)

BS026 Coogee NSW (9)

BS156

BS166 

BS241

BS498 Mallacoota VIC (53)

BS016, BS018

BS464

BS170 

BS461

BS462
BS507, BS502, BS509 Timbilica NSW (52) 

BS487 Boydtown NSW (51)

BS470

BS075, BS483, BS505 Eden NSW (19)

BS033

BS453

BS451

BS238 

BS157

BS063, BS447

BS237 Canberra ACT (14) 

BS235

BS455 

BS443

BS473

BS152

BS475 Kalaru NSW (50)

BS467 

BS025 Coogee NSW (9)

BS477 Kalaru NSW (50)

ABTC25425 Glen Innes NSW (2)

BS511 Timbilica NSW (52)

BS064, BS452

BS466

BS042 

BS057

BS050, BS053, BS056

BS047

BS040
BS046

BS048

BS044

BS041

BS058 

BS054, BS059
BS051

Coffs Harbour
NSW (4)

Evans Head
NSW (1)

Quaama NSW (49)

Cooranbong NSW (7)

Clarencetown NSW (6)

Canberra ACT (14)

Macquarie Woods 
NSW (8)

Coogee NSW (9)

Kianga NSW (18)

Quaama NSW

Kalaru NSW (50)

Batemans Bay NSW (48)

Ulladulla NSW (15)

Kangaroo Valley NSW (11)

0.01 B1

C4

TAS

NSW
QLD

SA

VIC

ACT

B1

B2

A

C1

C3

C4

C2

C5

C6

0 280 560 km

54

5866

65

64
63

62

46 47

45
44

56
5558

57

59

60
6124

22 54
21
2020

53

52 19,51
50

49 18

1

2
3 4

48

41

40

39
3842

36

37
35

32 33
34

31

5

6
7

8
9

1011
12

1517

23

27 2528
29

30

26

1314

16

TAS

66

44

57

60

5125
29

30

53

126



BS532 

BS350 Bunyip VIC (60) 

BS540

BS347 Bunyip VIC (60)

BS186

BS395

BS338 Beaconsfield VIC (61)BS389 

BS194

BS538

BS092 Lilydale VIC (24) 

BS377-380,382, 384

BS531

BS386

BS188

BS390 

BS410 Cape Otway VIC (65)

BS008

BS544 Colac VIC (64)

BS537 Colac VIC (64) 

BS133

BS093

BS138

BS533 

BS396 Waurn Ponds VIC (62)

BS343

BS375 

BS407 

BS091

BS536

BS141 Hamilton VIC  (29) 

BS090

BS530

ABTC58814 Milang SA

BS376, BS381

BS527

BS391 Drouin VIC (58)

BS402

BS189

BS185

BS397 Waurn Ponds VIC (62) 
BS547 Warnambool VIC (66) 

BS336

BS009 Bundoora VIC (26)

BS005

BS346

BS001

BS39

BS388

BS088-BS089

BS535

BS339

BS529

BS548

BS345

BS554 

BS528

BS337

BS526
BS545 

BS145 Hamilton VIC (29)

BS542-BS543

BS010 Bundoora VIC (26)

BS393 Drouin VIC (58)

BS335 Beaconsfield VIC (61)

BS342 Beaconsfield VIC (61)

BS348 Bunyip VIC (60)

BS549

BS095

BS409 

BS539  Colac VIC (64)

Lilydale VIC (24)

Bundoora VIC (26)

Korumburra 
VIC (59)

Seymour VIC (25)

Ballarat VIC (63)

Ballarat VIC (63)

Colac VIC (64)

Bunyip VIC (60)

Beaconsfield VIC (61)

Warnambool VIC (66)

Beaconsfield VIC (61)

Lilydale VIC (24)

Drouin VIC (58)

Warnambool VIC (66)

Waurn Ponds VIC (62)

Cape Otway VIC (65)

Colac VIC (64)

Portland VIC (30)

BS115

BS102

BS122

BS098 

BS106

BS120

BS119, BS123, BS125, BS126, BS129

BS096- BS097

BS116-BS117
BS118, BS128

BS112

BS107-BS109, BS113, BS117

BS105

BS110 

BS124 

BS103

BS127

Crystal Brook
 SA (41)

Adelaide SA (39)

Clare 
SA (40)

C3

C4

0.01

C

B

A

C4

C3

Figure 4.2 continued 

B1

BS164-BS165

BS168 Kianga NSW (18)

BS024 Coogee NSW (9)

BS154, BS161 

BS476, 
BS503 Timbillica NSW (52)

BS239-BS240

BS445, BS448, BS450,
BS060, BS066

BS163

BS471*

BS160

BS236, BS242

BS459

BS472

BS460 Quaama NSW (49)

BS019-BS020

BS167, BS172

ABTC12334 Armidale NSW B2 (3)

BS158 

BS492 Mallacoota VIC (53)

BS031

BS162

BS012

BS022

BS510 Timbilica NSW (52)

BS023, BS027
BS171

BS021

BS065 

BS035 Port Macquarie NSW (5) 

BS463

BS072, BS488 Eden NSW (19)

BS032

ABTC17627 Heathcote NSW (10)

BS026 Coogee NSW (9)

BS156

BS166 

BS241

BS498 Mallacoota VIC (53)

BS016, BS018

BS464

BS170 

BS461

BS462
BS507, BS502, BS509 Timbilica NSW (52) 

BS487 Boydtown NSW (51)

BS470

BS075, BS483, BS505 Eden NSW (19)

BS033

BS453

BS451

BS238 

BS157

BS063, BS447

BS237 Canberra ACT (14) 

BS235

BS455 

BS443

BS473

BS152

BS475 Kalaru NSW (50)

BS467 

BS025 Coogee NSW (9)

BS477 Kalaru NSW (50)

ABTC25425 Glen Innes NSW (2)

BS511 Timbilica NSW (52)

BS064, BS452

BS466

BS042 

BS057

BS050, BS053, BS056

BS047

BS040
BS046

BS048

BS044

BS041

BS058 

BS054, BS059
BS051

Coffs Harbour
NSW (4)

Evans Head
NSW (1)

Quaama NSW (49)

Cooranbong NSW (7)

Clarencetown NSW (6)

Canberra ACT (14)

Macquarie Woods 
NSW (8)

Coogee NSW (9)

Kianga NSW (18)

Quaama NSW

Kalaru NSW (50)

Batemans Bay NSW (48)

Ulladulla NSW (15)

Kangaroo Valley NSW (11)

0.01 B1

C4

TAS

NSW
QLD

SA

VIC

ACT

B1

B2

A

C1

C3

C4

C2

C5

C6

0 280 560 km

54

5866

65

64
63

62

46 47

45
44

56
5558

57

59

60
6124

22 54
21
2020

53

52 19,51
50

49 18

1

2
3 4

48

41

40

39
3842

36

37
35

32 33
34

31

5

6
7

8
9

1011
12

1517

23

27 2528
29

30

26

1314

16

TAS

66

44

57

60

5125
29

30

53

127



A

0.01

BS494 
BS176

Mallacoota VIC (53)

Welshpool VIC (56)

Tyers VIC (55)

Tyers VIC (55)

Drouin VIC (58)

Nowa Nowa VIC (54)

Welshpool VIC (56)BS368
BS369

BS374

BS524
BS517

BS175

BS179 

BS372

BS359 

BS183 Bairnsdale VIC (22)

BS356

BS520

BS496 
BS495

BS180

BS392

BS519 

BS361

BS178

BS355

BS370

BS182

BS387

BS521

Cann River
VIC (21)

BS366

BS173
BS174

BS357

BS522

C

B

A

C1

C6

C5

C2

Figure 4.2 continued 

Epping TAS (45) 

Epping TAS (45) 

BS432

BS429

BS424

BS430

BS431

BS415

BS421

BS439
BS420

BS417

BS441 Sheffield TAS (47)

BS414 

BS413 

BS423

BS553 Warnambool VIC (66), BS433
BS434, BS436-BS438, BS440, BS442

BS425

BS428
BS426 

 Wielangta TAS (46) 

Sheffield 
TAS (47) 

BS555 

BS187 Seymour VIC (25)

BS556, BS561 

BS557 

BS564

BS193 Seymour VIC (25)

BS560 

BS562 

BS558 
Mansfield VIC (57)

Mansfield
VIC (57)

Wagga Wagga NSW (12) ABTC12884
ABTC12882 Granya VIC (23)

ABTC12885

BS228

BS136

BS200

ABTC37438 Mount Gambier SA (31)

BS214

BS195-196, 198,
ABTC58307 Gum Lagoon SA (36) 
BS232-233

BS140

BS137

BS131 

BS134

BS221 

BS142
BS143

BS139 

BS215

ABTC37700 Padathaway SA (35)

BS213
BS212
BS230 Mary Seymour SA (34)

BS201

BS135 

BS229 Mary Seymour SA (34)

BS227

ABTC36237 Kingston SA (38)

BS218

BS146

BS197 Stawell VIC (32)

BS199

BS216 

BS231

BS202

BS144

BS217, BS219

BS132,
BS148 Hamilton VIC (29)

 Naracoorte SA (33) 

Naracoorte SA (33)

Mary Seymour SA (34) 

Stawell, VIC (32)

Portland, VIC (30)

Hamilton, VIC (29)

Portland, VIC (30)

0.02
C2

C5

C1

C6

B1

BS164-BS165

BS168 Kianga NSW (18)

BS024 Coogee NSW (9)

BS154, BS161 

BS476, 
BS503 Timbillica NSW (52)

BS239-BS240

BS445, BS448, BS450,
BS060, BS066

BS163

BS471*

BS160

BS236, BS242

BS459

BS472

BS460 Quaama NSW (49)

BS019-BS020

BS167, BS172

ABTC12334 Armidale NSW B2 (3)

BS158 

BS492 Mallacoota VIC (53)

BS031

BS162

BS012

BS022

BS510 Timbilica NSW (52)

BS023, BS027
BS171

BS021

BS065 

BS035 Port Macquarie NSW (5) 

BS463

BS072, BS488 Eden NSW (19)

BS032

ABTC17627 Heathcote NSW (10)

BS026 Coogee NSW (9)

BS156

BS166 

BS241

BS498 Mallacoota VIC (53)

BS016, BS018

BS464

BS170 

BS461

BS462
BS507, BS502, BS509 Timbilica NSW (52) 

BS487 Boydtown NSW (51)

BS470

BS075, BS483, BS505 Eden NSW (19)

BS033

BS453

BS451

BS238 

BS157

BS063, BS447

BS237 Canberra ACT (14) 

BS235

BS455 

BS443

BS473

BS152

BS475 Kalaru NSW (50)

BS467 

BS025 Coogee NSW (9)

BS477 Kalaru NSW (50)

ABTC25425 Glen Innes NSW (2)

BS511 Timbilica NSW (52)

BS064, BS452

BS466

BS042 

BS057

BS050, BS053, BS056

BS047

BS040
BS046

BS048

BS044

BS041

BS058 

BS054, BS059
BS051

Coffs Harbour
NSW (4)

Evans Head
NSW (1)

Quaama NSW (49)

Cooranbong NSW (7)

Clarencetown NSW (6)

Canberra ACT (14)

Macquarie Woods 
NSW (8)

Coogee NSW (9)

Kianga NSW (18)

Quaama NSW

Kalaru NSW (50)

Batemans Bay NSW (48)

Ulladulla NSW (15)

Kangaroo Valley NSW (11)

0.01 B1

C4

TAS

NSW
QLD

SA

VIC

ACT

B1

B2

A

C1

C3

C4

C2

C5

C6

0 280 560 km

54

5866

65

64
63

62

46 47

45
44

56
5558

57

59

60
6124

22 54
21
2020

53

52 19,51
50

49 18

1

2
3 4

48

41

40

39
3842

36

37
35

32 33
34

31

5

6
7

8
9

1011
12

1517

23

27 2528
29

30

26

1314

16

TAS

66

44

57

60

5125
29

30

53

128



N
um

be
r o

f W
hi

te
 P

at
ch

es

160

60

40

20

0

BS014 BS199BS237 BS546BS012BS143BS180 BS432BS438 BS219BS397 BS075 BS066 BS163

1.0

0

0.2

0.4

0.6

0.8

P
ro

po
rti

on
 o

f W
hi

te

BS014 BS199BS237BS546 BS012 BS143BS180 BS432BS438BS219 BS397BS075 BS066BS163

Figure 4.3.  A sample of  C. signifera color pattern variation for two traits: (a.) Proportion of  
White and (b.) Number of  White Patches.  Below the images of  frogs, samples of  binary 
images that result from automated conversion in MatLab are illustrated in order to show 
how varying degrees of  white or gray are similarly categorized.  Note that frogs are not 
shown in the same order between measures.
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Figure 4.4.  A sample of  C. signifera color patterns relative to variation in each of  the first three 
rotated PCA factors: (a.) Size and Shape of  Black Patches (Factor 1), (b.) Size and Shape of  
White Patches (Factor 2), (c.) Overall Patchiness (Factor 3).  Below the images of  frogs, samples 
of  binary images that result from automated conversion in MatLab are illustrated in order to 
show how varying degrees of  white or gray are similarly categorized.  Note that frogs are not 
shown in the same order among factors and that the scale of  variance differs among factors. 
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Figure 4.5.  Within- and among-site variation of  color patterns in C. signifera represented by box 
plots: (a.) Proportion of  White and (b.) Number of  White Patches.  Boxes represent the first 
inter-quartile range, lines across the middle of  the box represent the median and the whiskers 
represent the third interquartile range.  Outliers (dots) are those points that lie beyond one and a 
half  times the interquartile range.  Notches in the boxes represent median variability.  Sites listed 
along the x-axis are arranged from north to south along the east coast of  Australia and east to 
west along the south as illustrated on the map above the graphs.  Site numbers are shown in Fig. 
4.1.  
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Figure 4.6.  Within- and among-site variation of  color patterns in C. signifera represented by box plots for 
each of  the three rotated PCA factors: (a.) Size and Shape of  Black Patches, (b.) Size and Shape of  White 
Patches, (c.) Overall Patchiness.  Note that the scale of  variance differs among factors.  Boxes represent 
the first inter-quartile range, lines across the middle of  the box represent the median and the whiskers 
represent the third interquartile range.  Outliers are those points that lie beyond one and a half  times the 
interquartile range.  Notches in the boxes represent median variability.  Sites listed along the x-axis are 
arranged from north to south along the east coast of  Australia and east to west along the south as 
illustrated on the map above the graphs.  Site numbers are shown in Fig. 4.1.    
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Figure 4.8.  Within- and among-site variation of  color pattern variation in Pseudophryne repre-
sented by Box plots for each of  the three rotated PCA factors: (a.) Size and Shape of  Black 
Patches, (b.) Size and Shape of  White Patches, (c.) Overall Patchiness.  Boxes represent the first 
inter-quartile range, lines across the middle of  the box represent the median of  the trait and the 
whiskers represent the third interquartile range.  Outliers are those points that lie beyond one 
and a half  times the interquartile range.  Notches in the boxes represent median variability.  
Sites are arranged from north to south along the east coast of  Australia on the x-axis along with 
site numbers shown on Fig. 4.1 (stars) and in Table 4.2.  Note that the scale of  variance differs 
among the graphs.
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