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This dissertation addresses the problem of creating computer simu-

lations for multi-scale domains. These domains span a wide range of both

spatial and temporal scales. Creating realistic simulations based on computer

models for such domains requires very large memory overhead and computing

resources.

A framework for modeling such multi-scale domains is described here.

The proposed approach creates an initial geometric scaffold (grid) for the do-

main. This scaffolding can be further (locally) refined to closely match the

geometric features of the domain. Functions can be defined on this grid to

model different physical parameters of interest. These piecewise linear func-

tions are interpolated within a cell to provide uniform global C0 functions over

the complete domain. Of particular interest are the geometry and physics
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functions that are formulated over this scaffold, which enable geometric and

computational modeling of the domain.

Given a set of processes of interest on the domain, the next step fo-

cuses on creation of a computational model of the domain by defining another

set of functions over the same scaffold. Finally, the physics model is numeri-

cally solved over the domain geometry in an attempt to simulate the physical

process.

To demonstrate that the approach works, a case study of the classical

problem of heat conduction through porus media is presented. For this, high

resolution geometric models for a powder bed in the Selective Laser Sintering

(SLS) process are developed. This comprehensive multi-scale model is then

validated with a simulation of the percolation process to study the effect of heat

conduction through the media. The key phenomenon of interest is the manner

in which the heat flows through the domain containing a given configuration

of the composite.

The main focus of this research is to provide a robust and comprehen-

sive framework for creating realistic computational and geometric multi-scale

models. These models are then interleaved to yield a comprehensive numerical

simulation of the process.
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Chapter 1

Introduction

Many natural phenomena occur over varying ranges of length and time

scales. Some atomic phenomena inside living bodies occur at the time scale of

a few femtoseconds (10−15), while other galactic processes occur at the time

scale of a few million years. Refer to Figure 1.1. Such domains are called

multi-scale domains and their models are called multi-scale models. Similarly,

in the spatial domain, the atomic scale is of the order of a few Angstroms,

while most of the daily objects in use are at the metric scale. While good

and accurate models are available for most of these processes, the problems

arising from creating realistic and comprehensive computer simulations are

not often completely solved by using single scale models. One big limitation

is the accuracy of the solutions offered by single scale models. As one desires

better accuracy, multi-scale models begin to offer a wider range of options

with improved accuracy. Furthermore single scale models completely neglect

the effect of changes occurring at the other scales. Thus, by coupling models

at different scales, it is possible to merge their relative advantages and present

a more unified, comprehensive and realistic model. Some typical examples are

listed below:
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Figure 1.1: An example of the different temporal and spatial scales in nature
[23].

• Nanotechnology: With giant strides in technology in the recent years,

fabrication of products at the nanoscales is being actively pursued and

might soon become a reality. The basic laws of classical physics such

as Newton’s laws are not applicable to nano particles. Techniques from

quantum mechanics are needed to deal with these phenomena [34].

• Computational Biology: Consider the classical problem of protein fold-

ing. The vibrations of the covalent bonds are of the order of femtosec-

onds, while the protein folding process itself is of the order of seconds.

• Computational Physics: Seismology is an important branch that deals

with the analysis and prediction of earthquakes. At the macro-scale, the

focus is on the physics and deformation and the general magnitude of

2



the quakes. At the micro-scale, research focuses on fracture and rupture

analysis [34].

With recent advances in computational power, multi-scale problems

can be solved. These often require the generation of a good mesh as a pre-

processing step, over which the rest of the computations are formulated and

solved. Traditional approaches include multi-grid methods, domain decompo-

sitions [99], adaptive mesh refinement techniques [109] and multi-resolution

methods using wavelets [34]. All of these have been developed to tackle the

problem of large scale data.

1.1 Multi-Scale Domain Modeling Pipeline

Figure 1.2 shows the conceptual design of a multi-scale modeling pipeline.

Starting from the input specifications, first the volumetric representations are

generated as the common data format for the models. Then, using volumetric

sculpting operations, the final volumetric mesh for the given domain is cre-

ated. As indicated, there are two major stages in the pipeline. The different

types of input data are first converted into volumetric representations. Then,

volumetric sculpting operations are performed to create a geometric domain

model. This is the physically based geometric modeling phase. Then, the

computational model is created for this domain and solved on the geometric

model. Thus, a simulation is performed and the model is used to make physi-

cal predictions. Volumetric and boundary (surface) meshes can also be output

from the representations, as desired.

3



Figure 1.2: The multi-scale modeling pipeline.

The input data could be specified in any of the following formats:

• Imaging data: This data is often obtained from Magnetic Resonance

Imaging (MRI), Computerized Tomography (CT), Electron Microscopy

(EM) or CryoEM, and is in the form of 2D slices.

• Molecular data: A molecule is a set of atoms. Each atom is specified

by its center and radius and is approximated as a sphere. In addition

to this, the secondary and tertiary structures are specified to completely

represent a molecule. All this information is present in the popular PDB

file format [19] for each molecule.

• CAD data: Here, the input models can be in the form of Construc-

tive Solid Geometry (CSG), Boundary Representations (B-reps) or Non-

Uniform Rational B-Splines (NURBS), to name a few [45, 59]. They can

be readily converted into tesselated geometry, typically triangles. Popu-

lar examples include StereoLithography (STL) files and Initial Graphics

Exchange Specification (IGES) formats.
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• Implicit Surfaces: The geometry can be specified by a set of implicit

surfaces. In some cases, this is useful, as the complete domain could

simply consist of multiple copies of the same object. A typical example

could be a box of embedded particles, with each particle modeled with

a function (e.g. a sphere).

In a typical multi-scale domain, one set of geometry describes the

macro-scale object, while a second set(s) of geometry describes the embed-

ded fine features in the domain. These two geometries are at different length

scales. So, the domain geometry needs to be interactively edited and the

features placed on it. This operation is called Volumetric Sculpting.

Once the comprehensive domain geometric representation is created,

an appropriate physics model that can be applied is then identified. This

is achieved by defining another set of physics functions over the volumetric

representations that are used to model the geometrical entities of the domain.

Finally, a numerical discretization is performed and computationally solved.

As a by-product of the geometric representation, high quality meshes

can also be output if needed. It is worthwhile to mention that these meshes are

not directly used in the simulations, but are used only for visualization pur-

poses. Using direct contouring methods, both surface and volumetric meshes

can be extracted from the framework. These finite element meshes can then

be used for other applications as desired.
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1.2 Problem Statement

The focus of this research is to establish a new framework for modeling

the geometry of multi-scale domains in a manner that supports simulation

of physical phenomena at multiple scales. The primary goal is to construct

a comprehensive geometrical representation of the domain, using volumetric

sculpting based techniques. Then, a computational model is constructed us-

ing this geometrical representation to perform simulations for a given physics

domain.

1.2.1 Research Objectives

The principal research objectives are as follows:

Given a surface S and a set of surfaces of arbitrary genus Ci with

different length scales, and a function F describing the distribution of Ci on

S, the goal is to first construct a geometric representation of the complete

domain.

Next, a set of partial differential equations governing the physical pro-

cess of interest is described as part of the computational model and solved

numerically on the geometrical domain representation. Specifically, the re-

search focuses on the following three areas:

• Geometric modeling: First the set of input macro-scale and micro-scale

geometry needs to be converted into a common representation. Then,

6



these models should be used to construct a comprehensive domain rep-

resentation using volumetric sculpting based techniques.

• Computational modeling: The resulting representation of the domain

needs to be validated with the domain functionality. This can be checked

by numerically solving a set of (partial) differential equations governing

the physical process in the domain, thus simulating the actual intended

application for the product.

1.2.2 Research Scope

As mentioned in Section 1.1, the framework is specially suited for first

creating geometrical representations for domains that span multiple length

scales. The representation scheme is inherently recursive, intuitively hierar-

chical, spatially adaptive and has great flexibility.

In general, depending upon the particular application domain, usually

different sets of physics models are proposed at different length scales (e.g.

oil/gas reservoir simulations). This means that one function needs to be de-

fined for each of the physical parameters in the models (one function for each

degree of freedom or state variable). Conversely, it is also possible for domains

to have only one physics model to describe the entire range of length scales

(e.g. heat conduction).

While the proposed framework is general and can handle a wide range of

applications, the current research scope is restricted to one sample application

7



domain. The various assumptions for the current implementation are listed

here.

• Single physics model: only those domains that can be completely de-

scribed by a single physics model are identified and used. This simplifies

the implementation for the numerical solver. This is also the primary

reason that the scope is restricted to heat conduction through porous

media.

• Steady State Analysis: This is a rather direct consequence of the chosen

application domain. Only the steady state simulations are considered in

the research. However, Section 4.5 outlines the steps that are needed to

adapt the framework for analyzing transient state simulations.

As mentioned above, these assumptions can be relaxed readily to create

a general purpose framework.

1.3 Overview of Dissertation

The remainder of the text is arranged as follows. In chapter 2, an

overview of the relevant previous work is presented. Specifically, the areas

of geometric modeling and computational modeling are covered along with a

brief discussion of the chosen application domain.

Chapter 3 describes the details of the geometric modeling phase of

the framework. The input data (in any of the forms described in Section

8



3.1) is first converted into volumetric representations which are then sculpted

together to form the multi-scale volumes. This provides a hierarchical multi-

scale volumetric grid that is then used as the basis for subsequent simulations.

In chapter 4, the basics of numerical simulations based on computa-

tional modeling of domains are covered. Then, a means to customize numeri-

cal techniques to the proposed framework is shown, along with the definition

of appropriate functions needed for the simulations.

Chapter 5 shows the application of the framework to the domain of

selective laser sintering and addresses implementation details.

Future extensions to the current framework are discussed in chapter 6

along with conclusions.
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Chapter 2

Background and Previous Work

In this chapter, state of the art approaches in geometric domain mod-

eling and multi-scale computational modeling are presented. This is followed

by a closer look at the selected case study domain of Selective Laser Sintering

(SLS).

2.1 Preliminaries

First, a few fundamental concepts and basic terms used in this disser-

tation are defined.

Domain: For the purpose of this dissertation, a domain is defined

as any real product(s) governed by a set of physical principles. Of specific

interest are the domains in R3 space, particularly those which span across

several length scales.

Manifold: A topological space M ⊆ Rm is called a manifold if at each

and every point in the space P ∈ M , there exists an open set O ∈ M such

that: P ∈ O and the open space O is homeomorphic to Rn and n is fixed for

all the points in M . Then the n−dimensional manifold is said to be embedded

in the m−dimensional space. Implicit in the definition is the condition m ≥ n

10



[68]. From this definition, it follows that a 2-manifold (or surface) is said to

be embedded in R3, if every point on it is homeomorphic to a plane.

Grid: A lattice structure consisting of uniformly spaced points along

the (local or global) co-ordinate axis directions is called a grid. If the spacing

between incident points is the same along all directions, then it is an isotropic

grid, otherwise it is an anisotropic grid.

Mesh: A mesh provides a discretization of the domain using a set of

nodes and elements with strictly defined connectivity, such that the union of

these elements gives a complete and unambiguous representation of the do-

main. The mesh elements could be linear or higher order entities. For a

given domain in R3, it is possible to have a surface mesh which typically con-

tains polygonal elements and a volumetric mesh which consists of polyhedral

elements. These shapes provide only a linear shape description across each

element.

Computational modeling: A mathematical model is formulated to

predict the behavior of the domain under the prescribed physical conditions.

Research Assumptions: For the sake of this dissertation, the vast

range of potential applications where the framework can be used has been

restricted. Some of these limitations are imposed by the choice of repre-

sentations, while others greatly simplify the modeling (both geometric and

computational) efforts.

• Domain: The governing computational model for the domain can contain

11



at most one physical parameter. Also, a single computational model

should be able to predict the performance of the domain. This eliminates

the need to synchronize more than one computational model for every

iteration of the simulation (See Sections 2.3.2 and 4.5 for details.)

• 2-manifold: Since volumetric representations are extensively used for

the shape representations, this restricts the geometric models to only

closed surfaces, where the boundary clearly separates the interior from

the exterior. Such objects are also called solid models.

2.2 Geometric Modeling Tools

Implicit surfaces are represented in a compact mathematical form in

a volumetric domain [22]. Examples of implicit surfaces include iso-surfaces,

level sets, Gaussian surfaces and blobby models. In this text, of primary con-

cern are the first two representations. Since both of them require a background

in volumetric representations, this and related concepts are closely examined

first.

2.2.1 Volumetric Representations

The volumetric domain is represented by a 3D array of points with

a function defined at each point. In the simplest form, these points can be

associated with a binary value indicating whether they are inside or outside

the object to be modeled [45, 59]. However, this leads to aliasing, where a

straight line would be represented by a jagged sequence of voxels [96]. A

12



better approximation of the object is achieved by storing a set of scalar values

that are sampled from a characteristic function f : R3 → R. A standard

example of this is the Signed Distance Function (SDF) from the volumetric

grid point to the boundary surface of the solid [40] (Please also see Section

2.2.2).

F (x, y, z) = F000(1−x)(1−y)(1−z)+F001(1−x)(1−y)(z)+F010(1−x)(y)(1−z)

+ F100(x)(1− y)(1− z) + F011(1− x)(y)(z) + F101(x)(1− y)(z)

+ F110(x)(y)(1− z) + F111(x)(y)(z) (2.1)

Thus, a function is defined over this grid such that the “zero” of the

function yields the original boundary surface (also called the iso-surface) [58].

This is shown in Equation 2.1 [57]. The accuracy of the surface reconstruction

depends on the grid resolution and surface polygonization algorithms [5, 40].

Recently, vector signed distance fields [50] have also been used, while Frisken

et al. [40] have experimented with using adaptive distance fields to improve

the computational cost and efficiency. Marching cubes algorithms, which were

first proposed by Lorensen et al. [58], have been used to extract structured

meshes from volumetric representations. Primal contouring [53] has been used

to extract good quality structured meshes. Dual contouring [49] yields adap-

tive hierarchical meshes based on an error tolerance. It is also possible to

extract tetrahedral meshes from the above representations as shown by Ning

et al. [71]. However, the volumetric representations using distance fields are

13



particularly suited for hexahedral mesh generation and hence research has

focused on this problem. Schneiders [86, 87] provides templates for creating

conforming hexahedral meshes from adaptive representations, and Zhang et

al. [109] extend this scheme to generate high quality meshes. Bajaj et al. [9]

have used subdivision based schemes to extract optimal error bounded mesh

elements.

2.2.2 Signed Distance Function Computations

Computing the signed distance function is a very crucial first step in

generating the volumetric representation of various datasets. Here, the focus

is on computing the SDF for a given tessellated closed surface.

The brute force approach demands the computation of the actual Eu-

clidean distance for each grid point of the volume representation from the

given surface. This algorithm is O(NM) in computational cost, where N is

the number of grid points and M is the number of surface polygons. In prac-

tice, N is very high, depending upon the resolution of the volumetric grid, and

can be as high as 1878×1728×800 or about 15 gigabytes, as in the case of the

visible human dataset [95]. Hence, this is a very computationally expensive

approach.

Previous work has focussed on mainly two approaches to speed up these

computations:

• Voronoi Diagrams: First, the Voronoi diagram is constructed for the
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input domain geometry consisting of the points, edges and polygons.

Then each grid point is located in a Voronoi 3D cell and the closest

distance to the polygons in those cells can be computed easily. Thus,

the Voronoi diagram acts as a spatial partitioning technique and then the

Euclidean distance is computed locally. The overall time complexity of

the algorithm is O(N2) in the worst case and O(NlogN) in the average

case [9, 62].

• Distance Transforms: The actual Euclidean distance for the boundary

voxels is first computed. Then, this distance is propagated to the rest of

the interior voxels using distance transforms. These can be further cat-

egorized as chamfer distance transforms and vector distance transforms.

Both work in the same way, except that in the former case, the scalar dis-

tance values are propagated, while in the latter, the vector components

are propagated [84, 85].

With recent advances in graphics hardware, research has also focused

on performing some computations on the Graphics Processing Unit (GPU),

instead of the CPU [8, 93]. Programming directly on the graphics card results

in accelerated rendering. This has improved the overall performance manyfold.

2.2.3 Volumetric Sculpting

Freeform modeling started in the mid 1980s by Sederberg et al. [89]

as a new paradigm for modeling shapes. The discretized volume space is
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represented by small continuous lattices (uniform cells). The desired surface

patch inside each of these lattices is defined by a tensor product tri-cubic Bezier

volume as:

F (u, v, w) =
3∑

i=0

3∑
j=0

3∑

k=0

PijkBi(u)Bj(v)Bk(w) (2.2)

with 0 ≤ u, v, w ≤ 1, the Bi(t) are the degree 3 Bernstein Polynomials given

as Bm
i (t) =

(
m
i

)
ti(1 − t)m−i, and Pijk are the control points. These control

points are defined for each such surface patch and they provide local control

of the surface inside the control (sub)volume. The immediate problem with

the approach was that the manipulation of these control points soon became

cumbersome and in some cases, too complex. Also, some skill is required

on the part of the user to manipulate the control points to get the desired

shape. Coquillart [29] provided the additional flexibility of configuring the

initial lattice structure to better approximate the surface. Instead of having

to deal with the massive array of control points, Hsu et al. [46] provided a

simple framework where the user performs basic operations on a sample set

of points and these are applied to the total surface (or some local region of

interest). Implicit functions are used to interactively model complex surfaces

with optimal modeling elements [22]. Skeletons of standard primitive shapes

are built and interactively modified using weighted blending functions based

on control points [27].

In the early 1990s, volumetric sculpting was first introduced by Galyean
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et al. [41] as a new freeform modeling technique for interactively modeling

topologically complex shapes1. While the approach was intuitive to the user,

it could not guarantee accuracy, precision or close tolerances. Starting from

a voxelized grid containing scalar values at the grid points (similar to the

volumetric representations described in Section 2.2.1), they provide the user

with a suite of tools that can change the function values at these grid points,

thus changing the shape of the resulting iso-surface. Their work was based on

previous work for implicit surface modeling by Bloomenthal [22] and Coquillart

[29].

Here, the solid object is represented by a 3D raster of voxels. Specific

local properties like shape (topology), size (geometry), look and feel (object

properties like texture and color) and material properties (like density, elastic-

ity, stiffness etc.) can be stored in each voxel. However, in practice, in most

cases, instead of storing all of this information, only a scalar value like the

intensity [41] (for images) or the signed distance function [82] (for objects) is

chosen. The rest of the features like the object properties (e.g. color, texture)

and material properties (e.g. elasticity) can be defined using transfer func-

tions [36, 37]. McDonnell et al. [64] use this concept extensively to perform

interactive sculpting in their software DigitalSculpture.

There has been considerable interest in volumetric sculpting since it was

first introduced in the early 1990s. Wang et al. [103] extended the original

1Please refer to [83] and [59] for a good survey of the existing modeling techniques in the
late 1980’s.
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approach to provide more sculpting operations and interactivity to the user.

Raviv et al. [82] represented the sculpted object as the zero set of a scalar

tri-variate B-spline function. Sculpting was performed by changing the values

of the coefficients of the basis functions. For rendering, they polygonized the

function. Ferley et al. [36] extended the sculpting paradigm to include freeform

based tool shapes and focused on improving the rendering quality using texture

maps. Frisken et al. [80] created the volumetric models using an Adaptively

sampled Distance Field (ADF) which creates optimal meshing elements in their

popular software called Kizamu for sculpting digital characters. Chandru et al.

[26] have extended the concept to Solid Freeform Fabrication (SFF), using the

volumetric representations to create solid models of complex shapes. Singh et

al. [94] use skeletons as a first approximation to the object and then specify the

deformations along the mesh elements therein to produce a real-time volume

modeling environment. Rappoport et al. [81] use a set of solid primitives

to approximate the object. Then, they recast the local deformations on each

of these as a global optimization problem, whose solution yields the desired

boundary surface while preserving the enclosed volume of the solid.

The volumetric representation makes it easy to think of an object as

blocks of material, from which material can be progressively removed in dif-

ferent forms to yield the desired shape. The tools required by these sculpting

operations are also represented by a similar 3D array of voxels. In the most

naive case, only binary values indicating the shape of the tool can be used

[41]. However, to reduce aliasing [96], a volumetric representation similar to
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the one described above for the object is also used for the tool [14, 82, 103] but

at a higher resolution [36, 103]. The tool can be moved around interactively

in the 3D volume of the object. When the tool is engaged, the associated

operation is performed on the two overlapping volumes.

2.2.3.1 Sculpting Operations

Broadly, the various sculpting operations can be categorized as follows:

• Subtractive operations: These operations remove the material from the

object and include:

1. Sawing : This tool removes regular block shapes from the volume,

like a carpenter removing a chunk of material.

2. Carving : Here, the tool shape is arbitrary. The volume is carved

with this tool to replicate its shape in the object. Carving and

Sawing are the stock operations used in sculpting.

3. Heat Gun : The tool melts away the material.

• Additive operations: These add material to the object. These operations

include:

1. Painting : This tool can change the local function value at a voxel.

This is used for finer control.

2. Squirt : This is like squeezing toothpaste out of a tube.
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3. Pasting : This can add material to the volume. The amount is

proportional to the shape of the tool.

• Smoothing operations: These operations are used to remove the aliasing

effects caused by discretizing smooth surfaces [96]. Smoothing tools do

not have any associated function values. With a smoothing tool, each

voxel within the tool’s range is replaced by a weighted average of its

current value and those of its six neighbors (1st ring neighbors). Other

anti-aliasing functions like Gaussian filters [36] and Catmull-Rom splines

[96] have also been used.

Cutler et al. [30] have described a scripting language based on physi-

cally based modeling for sculpting characters on surfaces.

2.2.4 Evolving Surfaces

Often, a first approximation to the desired surface can be modeled. The

desired surface can then be generated by iteratively refining this initial surface,

such that in the limit the desired (smooth) surface can be obtained. This could

be done by simply using a subdivision scheme such as Loop’s subdivision

scheme [56] or Multi-Linear-Centroid-Smoothing (MLCS) [11]. Subdivision

meshes are a popular scheme for defining a mesh. For an excellent survey of

different subdivision schemes, please refer to the tutorial by Zorin et al. [88].

Research has also addressed starting with a much closer approximation

(to the desired surface) and then defining some set of Partial Differential Equa-
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tions (PDEs) on this domain. Local and global control is possible by changing

the boundary conditions and the controlling functions. Classical examples in-

clude using Poisson equations for smoothing [107] and non-linear equations for

surface modeling [104].

Two or more meshes can also be merged to form a new mesh. Yu

et al. [107] define a Poisson equation to evolve the mesh globally and also

modify it locally by changing the gradient fields. DeCarlo et al. [32] provide

a hierarchical deformable framework where meshes can be blended gradually

to yield the desired mesh. They use a transformation to and from the object

space into the parametric space, where they do their blending.

2.2.5 Improving Mesh Quality

Mesh quality is an important aspect of mesh generation. Often meshes

can be rendered ineffective because of the huge number of computations and

memory overhead associated with them. Quality mesh generation has indeed

been an important topic over the last few decades and a lot of research has

focused on this [20, 92]. Bern et al. [20] and Berzins [21] provide good surveys

of the different aspects of mesh quality. Here, some of the criteria for defining

and improving mesh quality are presented.

• Error Tolerance: The error between the mesh boundary (surface) and the

true surface must be kept within a tight bounds [28]. Usually, this can be

accomplished by using higher order elements or by further subdividing

the mesh to form smaller elements that can then be repositioned to
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reduce the error. Standard subdivision schemes like Loop’s scheme [56],

Kobbelt’s Butterfly scheme [50], or Bajaj et al.’s Multi-Linear Centroid

Smoothing Scheme (MLCS) [11] can be used for refining the mesh.

• Aspect Ratios: The aspect ratio is defined as the ratio of the length of

the maximum edge of an element to the length of the minimum altitude

[92]. Large (and small) values of aspect ratios can lead to degeneracies

in the solver, resulting in incorrect results and longer running times [20].

• Condition Numbers: If x ∈ <3 is the position vector of a grid vertex and

xi ∈ <3 for i = 1, ..., m are its neighboring vertices, then an edge vector

is defined as ei = xi−x with i = 1, ..., m and the Jacobian J = [e1, ..., em]

[109] (for triangular/quad meshes, m=2 and for tetrahedral/hexahedral

meshes m=3). The determinant of the Jacobian matrix is called the

Jacobian or scaled Jacobian, if the edge vectors are normalized. An

element is inverted if its Jacobian ≤ 0. The condition number of the

Jacobian is defined as κ(J) = |J ||J−1|, where |J−1| = | bJ |
det(J)

and |Ĵ | is

the adjoint of the Jacobian. The goal is to remove the inverted elements

and improve the worst condition number [9].

• Mesh Optimality: It can be shown that the running time of a finite

element analysis is O(na), where n is the number of mesh elements and

a is at least one, depending upon the numerical solver used. Mitchell [66]

gives a sample theoretical proof for the number of tetrahedral elements

in a mesh. He has a scheme that is guaranteed to converge with bounded
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aspect ratios for its elements.

• Robustness: Finite element meshes used to model critical components

need to be robust [21]. The algorithms for mesh generation often pro-

duce degeneracies due to the floating point errors which are inherent in

the discretizations and in the computations. Topological inconsistencies

arise from these degeneracies and need to be dealt with [20, 21].

• Feature Adaptivity: The embedded features in the mesh are very impor-

tant for both computation and visualization purposes. In some applica-

tions, it is desired that the mesh be feature adaptive, so as to decrease

the number of meshing elements of the overall mesh, yet be fine enough

to capture all the necessary details and features in the domain. Kobbelt

et al. [51] provide a framework to identify and extract features in the

domain. Ho et al. [44] present a realtime feature editing tool.

2.2.6 Visualization Techniques

Different schemes are available for visualizing the model based on volu-

metric representations. Traditional techniques like ray casting [5, 103], volume

rendering [36, 37], iso-surface extraction [40, 41] or level set methods [80, 82]

can be used. For efficiency reasons, iso-surfaces are used for rendering vol-

ume sculpted models. First, each voxel of the object space is visited and

the (polygonized) iso-surface is extracted and rendered. Then, for subsequent

operations, as only certain regions of the model change during sculpting, an

incremental marching cubes algorithm is used [41, 82]. Due to recent advances
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in the graphics hardware, most of the (computationally expensive) polygon

transformations, manipulations and rendering can be done at the hardware

level on the graphics card of the display [36, 80], which results in significantly

improved rendering rates and are almost real time and interactive. Elvins [35]

has presented a good survey on volume visualization algorithms.

2.3 Computational Physics Modeling

Computational modeling deals with the simulation of actual physics of

the model. For the purposes of this research, physically based computational

modeling will be used in conjunction with the geometric domain models to

perform realistic physics driven computer simulations. Much literature [34],

[23] is available on studying the multi-scale physical models behind most prob-

lems. In such cases, there are usually two (or more) physical models describing

the domain at different scales, e.g. crack propagation at the macro-scale and

fracture analysis at the micro-scale. The key issue here is how to pass infor-

mation and data from one model to the other and back. A large amount of

literature is available that addresses these problems, chief among them be-

ing heterogeneous multi-scale methods [34], domain decomposition techniques

[100], multigrid approaches [63] and wavelet based methods [73].

Selected work on the modeling efforts in single physical scale, yet large

scale domain models is presented. Since this scope is very large, heat con-

duction problems are presented as these are related to the selected case study

domain of SLS (See Section 2.4 below). Broadly speaking, the different models
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are classified as follows.

2.3.1 Types of Domain Models

Different models have been proposed to model the conduction of heat

across a domain. While some of them involve modeling the local flow patterns

using the underlying physics of the problem, other approaches have relied on

a more stringent (global) mathematical formulation and subsequently solving

it on a grid that approximates the given domain. These are called continuum

models and discrete models respectively. These are described below.

2.3.1.1 Continuum Models

Traditionally, this approach has involved the use of Finite Element (FE)

methods to solve the diffusion problem. First a mesh is generated that closely

approximates the domain of interest. Then, (partial) differential equations

governing the physical process are defined on this mesh and solved numerically.

This is a computationally intense approach, especially if the mesh sizes are very

large (of the order of 106 mesh elements or higher) [9], [109].

2.3.1.2 Discrete Formulations

Often it is not possible to generate an exhaustive geometric model that

captures all the intricate features of the domain. Furthermore, due to the

limited computing resources available, it might not be feasible to numerically

solve a differential equation on a dense mesh. In such cases, discrete formu-
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lations are often preferred. Classical examples include Monte Carlo (MC)

simulations, Brownian Dynamics (BD), and Newtonian Molecular Dynamics

(MD) [97].

Compared to the discrete schemes, the continuum models yield a more

accurate solution. The accuracy can be further improved by using higher

order approximations in the numerical solver. In general, continuum models

are the preferred choice for modeling large scale domains because of their

feature adaptivity. Complicated geometries can be modeled in continuum finite

element methods. This, along with adaptive timesteps can help simulate the

diffusion process for longer timescales.

2.3.2 Multi-Scale Computational Modeling

In most multi-scale domain models, the coarse model (larger length

scales) is modeled with continuum properties. The refined meshes (smaller

length scales) are modeled typically with quantum mechanics, molecular dy-

namics or Monte Carlo simulations, depending upon both the actual magni-

tude of the length scale and the physical domain [97, 108]. In general, there

are two “coupling” schemes for the information to be communicated between

the coarse and refined meshes [108].

1. Hierarchical multi-scale coupling: Here, the information from one model

is used to drive the simulation for the other model. In practice, at each

time step, the coarser grid imposes a set of boundary conditions for the

refined grids at the interface between the two. Note that the solution
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can be obtained either by numerically solving the physical model, by

analytical expressions for the refined mesh, or even by physical experi-

mentation. Then, the coarser mesh uses this information to advance in

its simulation.

2. Concurrent (or embedded) multi-scale coupling: This scheme allows both

the coarse and refined solutions to concurrently co-exist in the same given

region. The coupling between the two grids is handled by a traditional

bridging scale method such as [34, 55, 78].

2.3.3 Heat Conduction Continuum Model

The basic Fourier heat conduction model for a 3D domain is given by

Equation 2.3

Kx
∂2T

∂x2
+ Ky

∂2T

∂y2
+ Kz

∂2T

∂z2
+ q

′′′
= ρCp

∂T

∂t
(2.3)

where, T = T (x, y, z, t) is the temperature distribution at any point (x, y, z) at

any given time t in the domain Ω; Kx, Ky, Kz are the thermal conductivities

of the material in the x, y, z directions; ρ is the material density; Cp is the

specific heat of the material; and q
′′′

is the rate of internal heat generated in

the domain per unit volume.

In situations where the material can be assumed to be isotropic, Kx =

Ky = Kz = K. Then, the above equation simplifies to
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∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
+

q
′′′

K
=

ρCp

K

∂T

∂t
=

1

Ψ

∂T

∂t
(2.4)

where Ψ is the thermal diffusivity of the material; the diffusivity is the ratio of

the thermal conductivity to thermal capacity and it is a measure of the ability

of the material to conduct heat with respect to time. Note that any effects due

to phase changes, convection and radiation in the above model are neglected.

(See Section 2.4 for details.)

A well posed problem of heat conduction over a given domain also

requires a description of the boundary and initial conditions. For the example

case of an 3D problem, the boundary conditions can be defined in the following

ways:

• Dirichlet Boundary Conditions: Here, the value of the function is defined

as T (x, y, z) = F . Thus, the actual function is known. This type is used

to describe surfaces with (constant) known temperature profiles.

• Neumann Boundary Conditions: Here, the value of the function is de-

fined as ∂T
∂s

.n̂ = F , where n̂ is the surface normal. Thus, the derivative

of the actual function is known and is used to describe the net heat flux

over a surface.

• Robin Boundary Conditions: Here, the value of the function is defined

as αT +β ∂T
∂s

.n̂ = F , where α and β are constants. This is a combination

of the Dirichlet and Neumann conditions.
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The initial conditions are given by usually describing the initial tem-

perature distribution T (x, y, z, 0) = T0.

2.4 Case Study Domain: Selective Laser Sintering

Selective Laser Sintering (SLS) is a rapid prototyping process. A layer

of powder is selectively heated up to its fusing point by a focused laser beam.

This causes the layer to bind to the previous powder layer. By manipulating

the position of the laser beam, a 3D shape can be formed out of the powder.

Complex shapes retaining functional properties can be formed by varying the

materials and other process parameters [72].

The powder bed comprises both the powder particles and air. Thus

the average composition of the bed is defined by the porosity P of the powder.

This is given by Equation 2.5, where V is the volume of the powder and Vs is

the volume of the entire sample.

P (%) = 100(1− V

Vs

) (2.5)

2.4.1 Heat Transfer Mechanisms for SLS

The heat transfer process in the SLS powder bed comprises the follow-

ing different mechanisms. This is shown in Figure 2.1.

1. Thermal conduction between the solid powder particles

2. Thermal conduction between the trapped air particles
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Figure 2.1: The different modes of heat transfer are shown in the powder bed
here. [72]

3. Thermal radiation between the surfaces of the powder particles

4. Thermal radiation between the neighboring air particles (void regions)

5. Thermal conduction through the fluid film adherent to any surface

6. Thermal convection between the solid powder particles

7. Thermal convection due to the lateral mixing of the air particles

The total bulk thermal conductivity of the material is a function of

all of the above heat transfer mechanisms. In reality, all these modes of heat

transfer are coupled and it is difficult to model the total thermal conductivity

of the powder bed. Usually, experiments are conducted to determine the net

thermal conductivity of a powder bed for a prescribed working environment.
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Furthermore, the thermal conductivity of the powder bed also depends upon

the temperature of the powder and the geometric configuration of the bed.

Detailed analysis of these different factors is presented by Norrell [72].

2.4.2 Modeling Heat Percolation

Many models have been proposed to understand the interesting and

intricate phenomenon of heat conduction through porous media like the pow-

der beds in SLS. The primary goal in this research is to first approximate the

effective thermal conductivity for the powder bed.

While a lot of effort has focused on physical experimentation to under-

stand this, analytical models have also been proposed. The work can broadly

be divided based on purely analytical modeling and empirical modeling. The

analytical approaches can be further categorized as based on continuum mod-

els or representative element volume based approaches [72].

2.4.2.1 Theoretical Models

Purely volume weighted schemes have been proposed as (preliminary)

approximate models [15]. These models are simplified, in that they consider

only the overall heat conduction without looking at the packing arrangements

and the inter-particle and particle-air contact areas. Bear [15] and the Xue-

Barlow [105] models are good examples for theoretical models.

Another approach for the net heat transfer phenomenon has focused on

creating analogous electrical networks for the composite medium of powder and
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air. Using the concept of electrical resistances to model thermal conductivity,

an electrical network can be built for the entire domain. This is described in

detail in [60] and [61].

Finite elements have also been used in modeling the heat flow through

such graded composites [47]. Here, the entire domain consists of a discrete

network of points (placed over the simple lattice structure). Then, all the

bonds in this network corresponding to the conducting clusters are tagged

and assigned a high conductance value. All the remaining bonds correspond

to the non-conducting medium of the composite. Then, Kirchoff’s laws [47]

are applied over various elements to determine the net electrical current (flow)

across the medium.

2.4.2.2 Representative Element Volume Based Models

The arrangement of the powder particles in the bed is assumed to be

uniform everywhere in all directions. Then, analyzing a representative element

is indicative of the entire bed. These are also called unit cell based models.

They can be uniform cubic structures or orthorhombic structures, depending

upon the orientation with respect to the principal axes. In all of these models,

the powder particles are idealized as spheres.

The standard uniform cubic cell geometries focus on simple cubic, body

centered cubic and face centered cubic structures. In these, fractions of the

spherical powder particles are present at the 8 corners of the unit cell. Their

geometries are fixed, hence their porosity values are also known [25]. This
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does somewhat restrict their applicability to a general packing arrangement.

Krupiczka [52] has presented a few models that predict the thermal

conductivities for these 3 geometries. The models provided by Yagi-Kunii [106]

assume that the gas trapped between the spherical particles is motionless and

hence, the effects of radiation and convection are neglected.

It is also worthwhile to mention the work by Chan-Tien [25] which

agrees very closely with experimental results for powders with low thermal

conductivities. However, the model predicts thermal conductance, while the

research here focuses on the thermal conductivity.

2.4.2.3 Empirical Models

Empirical models have also been proposed on the basis of physical ex-

perimentation for certain types of powders over a range of working tempera-

tures. While these models are usually restricted because of the specific powder

types, they serve as a good validity check for the above models. Sun et al. [98]

present such an empirical model, which is not material specific, but assumes

that the thermal conductivities of both the particles and the air are low. This

model has been developed almost exclusively for the selective laser sintering

process.

2.5 Summary

A brief review of the relevant related work is presented in this chapter.

Grid based geometric representations and volumetric sculpting are presented.
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Computational physics modeling, in particular heat conduction in powder beds

is introduced. Next, the first stage in the research pipeline, geometric modeling,

is described in chapter 3.
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Chapter 3

Geometric Modeling

In this chapter, the process to construct a comprehensive domain geo-

metrical representation starting from the raw input data is described. Next,

the scheme to sculpt together these volumes to construct a hierarchical adap-

tive volumetric representation of the complete domain is outlined.

3.1 Creating Volumetric Representations

The first step in the algorithm is to convert all of the input data into

a common representation that can then be used for further processing. For

this, the standard volumetric representation technique is chosen. In this, the

object is represented by a (regular or adaptive) grid with a geometric function

defined at each grid point. This function describes the shape and topology of

the object. Tri-linear interpolation is used to compute the value of the function

in the interior of the grid. Standard schemes are available to reconstruct the

geometric object from a given volume: primal contouring a.k.a marching cubes

[58], dual contouring [49], volumetric meshing [109] etc. to name a few. In

this section, schemes for the construction of these volumetric representations

from the different types of input data are presented.
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If the input data is presented in the form of imaging data, then, the data

is in the form of 2D slices with each pixel representing the intensity value in the

datasets. Note that this physical interpretation is perfectly valid especially for

data taken from conventional imaging modalities like MRI, CT and EM. Then,

a series of initial pre-processing steps is performed to smooth noise and enhance

sharp features: First, contrast and image enhancement are performed on this

data to remove the noise and enhance the features in the dataset. This is

followed by image filtering to further enhance the 1D and 2D features, followed

by image classification whereby the different feature intensity intervals are

identified and tagged. Next, image segmentation is performed on the data,

where different regions of the dataset are grouped together based on their

intensity values. This produces a set of (closed) contours which are then tiled

together to reconstruct the original surface. The resulting surface can then

be converted into the volumetric representation by using traditional distance

fields [35]. Details about the imaging to volumetric representation schemes

can be found in [12].

If the input data is presented in the form of molecular data, first, the

data is parsed into a hierarchical and robust data structure called the Flex-

ible Chain Complex (FCC) [8]. This is the internal representation for each

molecule that is capable of storing the primary, secondary and tertiary struc-

tures of the protein. Next, each atom in the molecule is approximated by a

Gaussian function which is defined at the center of the atom with its radius

proportional to the Van Der Waals radius of the atom. Then, this function can
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be simply sampled over a volumetric grid to compute the desired volumetric

representation of the protein. Details about this scheme are presented in [8].

If the input data is presented in the form of CAD data, the data (a

boundary representation of a manifold surface) is already present in the form

of tessellated mesh elements (triangles or quads). In such cases, a grid can

be simply defined over the desired domain and for each grid point, the signed

distance to the surface can be computed. Note that this scheme is the basic

routine that can be used for almost all types of input data, as almost all objects

need to be tessellated before they can be rendered. Once an object is tessel-

lated, this routine can be called to convert it into a volumetric representation.

Details about this scheme are presented in Section 3.2.

Finally, if the input data is presented in the form of implicit surfaces,

then the task becomes trivial. A grid can be simply defined over the desired

region and the input data can be sampled over this grid. Note that this

form of data includes the common geometric primitives sphere, cylinder, block

and torus. All of these are treated internally as implicit functions and then

converted into volumetric representations.

Clearly, most types of surface definitions can be processed. This is one

advantage of choosing the volumetric representation as the common data rep-

resentation type. Also, this ensures that when performing boolean operations

on two objects only their respective function values defined at the same points

in space need to be compared. Thus, the operations become very simple and

computationally cost effective [41, 103].
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In the remainder of the chapter, the different sub-problems in construct-

ing the geometrical representations for a multi-scale domain are discussed in

detail. The models for both the macro-scale and micro-scale geometries will be

developed independently at their respective length scales. Then, the models

for the intermediate scales will be generated and finally sculpted together for

the comprehensive domain representation. Details of the application of this

scheme to an example domain are presented in Section 3.7.

3.2 Signed Distance Field Computations

Computing accurate signed distance fields is a very crucial pre-processing

step in the pipeline, while generating the volumetric models. As mentioned

above, the brute force algorithm is very slow and often takes days to com-

pute the complete distance fields for large resolution datasets (1283 or higher).

Hence, it is very important to achieve a speed-up using the latest state of the

art schemes. Here, a brief overview is presented for the modifications that have

been incorporated in the standard algorithm to achieve a very high speedup.

The time to compute the distance fields is now reduced to a few seconds.

Both the space partitioning and the distance transforms schemes have

been combined in the current approach to compute fast and accurate distance

fields calculations (Please refer to Section 2.2.2). Starting from the input

domain, first an adaptive octree1 is constructed. This acts as the space par-

1An octree is a space subdivision technique where in 3D, each grid cell is uniformly
divided into 8 equal cells. For more details, please refer to [37] and [90].
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titioning data structure. This also provides a list of the boundary voxels and

cells.

Then, the sign for each of the grid points is computed. This is a useful

piece of information that is required by the distance propagation algorithm. A

numerically stable, accurate and computationally inexpensive algorithm intro-

duced by Segura et al. [90] for these computations is used for this. Next, the

Euclidean distances for these boundary voxels are computed using the scheme

given by Payne et al. [79]. Note that just this information is enough to extract

the isosurface locally.

Next, these function values are propagated into the volume using the

3× 3 chamfer city distance transforms2 [84, 85]. This is a very fast algorithm

that can compute the approximate values of the distance fields at the interior

voxels. However, this is an approximate scheme and in reality, better results

are achieved by storing at each grid point the closest point to the surface

[102]. Propagating this information to the interior voxels using the distance

transforms yields an accurate representation.

3.3 Scale Bridging

The sub-problem here is, given two geometries (volumetric represen-

tations in this case) at different length scales, providing a smooth transition

from the macro-scale to the micro-scale. The data structures have to be hier-

2The SDF values for the new voxels are computed from its neighbors by using a distance
template. In 3D, a 3× 3× 3 neighborhood is used.
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archical and scalable. Once the volumetric representations for S (referred to

as Vs) and the Ci (referred to as Vc) are created, the next step is to register

them together in one volume.

The actual difference in scales between the S and the Ci surfaces deter-

mines the nature and complexity of the data structures. For example, consider

the case of the surface roughness example shown in Section 3.7, where S is of

the order of a few centimeters (10−2), and Ci are of the order of a few microns

(10−6). The difference in scales is 4. This is typical of most applications, with

some domains having even higher scale differences.

For a dense particle distribution, where most of the particles are scat-

tered over the entire domain, it is possible to use a high resolution single

volumetric representation that spans the entire length scales of the domain.

But, for sparse distributions, having a large single representation results in un-

necessary memory and processing overheads that lead to exponentially slower

simulation times (See Section 5.5 for a detailed analysis of the time and cost

analysis for simulations based on volumetric representations.). Hence, inter-

mediate volumes are needed to bridge the scales, thus providing a smooth

transition from the macro-scale to the micro-scale.

Consider the volume Vs. From the particle distribution function F , the

exact location of the particles in this volume is known. Hence, a recursively

adaptive subdivision of this volume is performed, such that the locations of

Ci have a finer geometric representation. The goal of this step is to bridge

the scale difference between the volumetric representations for the different
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Figure 3.1: The sketch of the hierarchical data structures used for scale bridg-
ing.

components of the domain.

In the example shown in Figure 3.1, the resolution of Vs is chosen to

be of 64 × 64 × 643 (for the sake of clarity, only a 20 × 20 grid for Vs is

shown.). The resolution of the Vc is chosen to be 8 × 8 × 8, because there

are relatively few complex features in these particles. Now, each cell in the

volume Vs that contains a particle Ci is further subdivided into an uniform

intermediate volume Vr (The sub-volumes in Figure 3.1 are shown with 8×8.).

Then, depending upon the exact location of the particle Ci given by F , the

two volumes can be sculpted together, which are now of the same scale. This

is explained in Figure 3.1. The smallest resolution (grid cell size) of Vs is 10
64

mm, and that in the Vr is 10
64
× 1

8
mm or approximately 20 µm and finally in

Vc is 10
64
× 1

8
× 1

8
mm or approximately 3 µm. Thus, we can successfully create

3For reasons mentioned in Section 5.4, the chosen resolutions are 2m, where m is an
integer between 2 and 8.
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a smooth transition from centimeter scale to the micron scale.

Note that the choice of the resolution of Vr is affected by the actual

difference in scales. In turn, it affects the level of hierarchy of the volumes (i.e.

the number of intermediate Vr). If the resolution of Vs is chosen as 64×64×64,

then, Vr needs to be 8 × 8 × 8 to take us into the micrometer domain range.

Finally, each cell in the last Vr can have a pointer to the actual volume Vc,

whose resolution is also 8× 8× 8.

Thus, by creating a series of intermediate volumes Vr, it is possible

to bridge the scale difference between Vs and Vc. In practice, a maximum

resolution of 256 × 256 × 256 is recommended because of dynamic memory

limitations and this leads to hierarchical Vr volumes and a minimum limit of

8× 8× 8 is chosen to have fewer Vr subvolumes.

3.4 Generating the Intermediate Volumes

The sub-problem here is, given a volume representation at a fixed reso-

lution Vo, generating a high resolution volume Vf over the same domain space.

Both the volumes need to be co-registered so that the transition from one

resolution to the other is smooth.

There are two approaches to do this computation. In the brute force

approach the same techniques mentioned in Section 3.2 can be used to generate

a fixed resolution volume using the signed distance fields. For this, the desired

volume Vf can be treated as an individual volume and generated from the input
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domain description described in Section 3.1 above. While this guarantees

a good and accurate volume, the major drawback is the need to re-create

the computationally expensive octree for the input description. Also, once

the volume is computed, to form a conforming and co-registered volume, an

interpolation might have to be performed between the newly computed Vf and

the given Vo. This is an approximation and does not work well in practice.

Hence, an alternate approach is proposed.

Given the volume Vo, it is possible to define a tri-linear function ap-

proximation over the entire domain using Equation 2.1. This gives an approx-

imation to the true function based on the sampling rate of Vo. Then a grid

of the desired resolution can be defined anywhere in the domain and the Vf

volume can be generated by simply sampling this function at the grid points.

Note that this approach guarantees that the two volumes are co-registered,

while avoiding any costly computations.

3.5 Volumetric Sculpting

Here, the sub-problem is given two (or more) overlapping volumes Vv,

sculpting them together to yield a final volume Vd such that Vd is the boolean

union of Vv. First all the volumes Vv have to be sampled at the same exact

locations in space (i.e. they are overlapping). This can be done by simply

using the tri-linear interplant defined in Equation 2.1 and sampling it at the

desired locations on a fixed grid. Once all the volumes Vv are overlapping,

then sculpting can be performed by simply using a series of if-else branching
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statements to determine the final function value at each grid point. This is

shown in Figure 3.2.

3.6 Volumetric Domain Representations

Volumetric grids can be interpreted and leveraged in the following man-

ner:

• Domain decomposition: Volumetric representations provide a natural

framework to subdivide the domain into smaller regions. For a regular

grid with no embedded subvolumes, the grid can also double as a volu-

metric mesh comprising hexahedral elements, where each grid cell is one

hexahedron. A very similar scheme is used in [9] to extract hexahedral

meshes using distance fields.

• Hierarchy: The multi-scale domain volumetric representation described

in Sections 3.3 and 3.4 provides a hierarchy of subvolumes. This can be

visualized as a tree structure, with the “root” node as Vs. The embedded

subvolumes Vr can then be expanded and thus the tree can be traversed

to reach the final nodes Vc.

• Adaptivity: The embedded subvolumes are added to Vs only when higher

resolution is needed at a certain portion of the domain. Thus, depend-

ing upon the situation, subvolumes could be added to further refine a

geometric feature, as described in Section 3.3. However, for numerical
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#define abs(val) ((val) < 0 ? -(val) : (val))

input: overlapping volumetric representations V1 and V2

output: sculpted volumetric representation Vf , where Vf = V1 ⊕ V2

for each midpoint P(i,j,k) in the volumes
{

v1 ← V1(P )
v2 ← V2(P )
if ( (sign(v1) == 0) AND (sign(v2) == 0) )

sign(v3) ← 0
else if( (sign(v1) == 0) AND (sign(v2) < 0) )

sign(v3) ← -1
else if( (sign(v1) == 0) AND (sign(v2) > 0) )

sign(v3) ← 0
else if( (sign(v1) < 0) AND (sign(v2) == 0) )

sign(v3) ← -1
else if( (sign(v1) > 0) AND (sign(v2) == 0) )

sign(v3) ← 0
else if( (sign(v1) > 0) AND (sign(v2) > 0))

sign(v3) ← 1
else if( (sign(v1) > 0) AND (sign(v2) < 0))

sign(v3) ← -1
else if( (sign(v1) < 0) AND (sign(v2) > 0) )

sign(v3) ← -1
else if( (sign(v1) < 0) AND (sign(v2) < 0) )

sign(v3) ← -1
end if
value(v3) ← min( abs(v1), abs(v2) )
Vf (P ) ←( sign(v3) × value(v3))

}
end for

Figure 3.2: Algorithm for the volumetric sculpting routine
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simulation, certain regions of the domain might also need to be exam-

ined at a higher resolution. It is also possible to create subvolumes for

such regions by using any of the methods described in Section 3.4 and

skipping the final volumetric sculpting step.

• Overlaid grids: While, the subvolumes created in the scale bridging op-

eration are sculpted together into the parent volume, they can also be

thought of as individual volumes. This idea is crucial in the numerical

simulation algorithm, where each subvolume can then be numerically

solved separately (For details, see Sections 4.4 and 4.5).

• Adaptive mesh refinement: The resulting grid structure after volumetric

sculpting looks very similar to the Adaptive Mesh Refinement (AMR)

structure proposed by Oliger and Berger [18]. In their algorithm [18, 77],

an error estimation procedure based on the numerical solution deter-

mines any additional refinements on the grid. In contrast, in the present

case, initially, the geometry of the domain determines the refinements.

However, for subsequent refinements, an error estimation procedure can

also be used to produce a smoother function.

3.7 Surface Roughness Models

Consider an example of constructing a geometrical model for surface

roughness (surface irregularities or imperfections) of idealized spherical parti-

cles. These problems impact the areas of tribology and fracture mechanics,
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where a wealth of research has focused [1, 6, 7, 61]. The problem is essentially

multi-scale in nature, where at one end of the scale, the bulk material is present

and at the other end, the microscopic surface irregularities are present. The

length scales vary from a few millimeters to a few microns across the entire

domain [7]. The existing research focuses on the aspects of contact resistances

at the micro-scales and their effects at the macro-scales.

For the example of surface roughness models, implicit surface repre-

sentations for perfect spherical shapes are first formulated and then converted

into volumetric representations using the scheme outlined above. Then, noise

is introduced into these models using small perturbations along the boundary

voxels. This is achieved by simply tweaking the signed distance values within

a certain user defined tolerance σ to locally change the shape of the resulting

iso-surface. Bahrami et al. [6, 7] show that at the micro-scale, the surface

roughness models are defined by their distribution over the idealized surface,

Root Mean Square (RMS) values of the perturbations and the mean absolute

surface slope values. These three parameters control the distribution, size and

shape of the perturbations. In the case of volumetric representations, a space

subdivision is provided naturally by the octree structure. Since, the pertur-

bations are only over the boundary of the idealized geometry (spheres), all

the boundary voxels of the volumetric representations are first selected. From

this list, the set of boundary voxels that are close to the contact areas of the

idealized spheres are tagged. These are the basic units for further processing.

The signed distance values at the grid points of these tagged voxels are
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Figure 3.3: Surface roughness models with different values of σ and grid reso-
lution.

48



Figure 3.4: Comprehensive geometric domain representation showing 3 levels
of hierarchy.

then perturbed by adding a small amount σ equal to the desired RMS value

of the perturbations. This controls the size of the roughness models. This is

shown in Figure 3.3. The models shown in the first column are the idealized

spherical geometries. The second column shows the models with σ = 0.04µm

and the last column shows the models with σ = 1.0µm. All models shown in

Figure 3.3 are obtained from an unit sphere.

The shape of the models can be controlled by varying the grid resolu-

tion of the volumetric representations. Figure 3.3 shows the different shapes

obtained by different grid resolutions. The first row is of resolution 16×16×16,
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the center row is of 32× 32× 32 and the bottom row is of 64× 64× 64.

The intermediate volumetric representations are generated by simply

computing high-resolution signed distance functions using the same set of input

implicit surface definitions. This guarantees that in the limit, as the grid

spacing decreases, perfectly smooth spherical shapes are generated.

The comprehensive domain representation is shown in Figure 3.4 where

the macro-scale volumetric representation grid has a resolution of 64×64×64.

The intermediate and micro-scale volumetric representation grids are each of

8 × 8 × 8 resolution. The volumetric grids labelled 1, 2 and 3 are the Vs, Vr

and Vc respectively. With the parameters chosen above, the smallest grid cell

size in Vc is 3µm. Thus the smallest feature that can be efficiently modeled

with this representation is of the order of a few µm.

3.8 Summary

As described in this chapter, starting from the surface descriptions for

S and Ci, a comprehensive (geometric) domain model using volumetric rep-

resentations is first constructed. The grid that is constructed is re-used to

create the initial scaffolding of the domain, and then a set of functions are

described over this grid. In this section, it can be seen that using geometric

shape functions such as the signed distance function, it is possible to create

efficient and accurate descriptions of the domain geometry. In the next chap-

ter, this framework is used to describe the computational function(s) used for

numerical simulations.
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Chapter 4

Computational Modeling

This chapter presents the approach for computational modeling. As

mentioned in Section 2.1, the scope of the function models is restricted to

domains which have one set of underlying physical equations. This assump-

tion can be relaxed without affecting the geometric modeling aspects of the

research. Any number of functions can be defined over the initial scaffold,

e.g. some to model the macro-scale physics and the others to model the

micro-scale physics. However, these models will then have to communicate

information and data back and forth for each timestep in the simulation. To

avoid these costly computations, only one function is needed to describe the

physical model of the domain. This greatly simplifies the algorithm for the

numerical solver.

Once the volumetric representation for the domain is constructed, the

computational model for the domain is then developed. Next, the numerical

approximation of the solution is formulated. After the boundary and initial

conditions are defined over the domain, a numerical simulation of the physical

process is performed. In this case, the solution function is sampled at the

grid points of the volume, similar to the geometric function defined in Section

51



3.1. Details of the application of this scheme to an example heat conduction

problem are presented in Section 4.6.

4.1 Finite Difference Models

The scope of the computational modeling efforts is restricted by focus-

ing on models applicable to the selected application domain of selective laser

sintering described in Section 5.2. A simple heat conduction model is used to

demonstrate the framework. Since an explicit solver1 (for reasons explained in

Section 4.5) is used, the necessary finite difference equations are provided here.

The 3D heat conduction equation for an isotropic domain is given in Equation

2.4. For the case of no internal heat generation, this reduces to Equation 4.1.

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
=

1

Ψ

∂T

∂t
(4.1)

Consider the 3D neighborhood of a grid point P. The grid points inci-

dent to it are: A
′
and B

′
in the X direction, C

′
and D

′
in the Y direction and

E
′
and F

′
in the Z direction. Assume that the boundary surface intersects the

grid at points A, B, C, D, E and F as shown in Figure 4.1. These boundary

points A, B, C, D, E and F are at distances α∆x, β∆x, γ∆y, δ∆y, λ∆z, µ∆z,

respectively from P. If the point P is a boundary grid point (as shown in the

Figure 4.1), then all these incident edges are sign change edges2 (Please refer

1In an explicit scheme, the new solution function values Tn+1 are defined in terms of
already known Tn function values.

2In reality, this situation can happen only in highly degenerate cases, where the material
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Figure 4.1: Finite difference scheme at the boundary.

to Section 4.3 for details). An explicit scheme based on Forward Time Center

Space (FTCS) is used for transient state equations. Then the finite difference

formulation for the Equation 4.1 is given by Equation 4.2.

T n+1(P ) =
2rx

(α + β)
(
T n(A)

α
+

T n(B)

β
) +

2ry

(γ + δ)
(
T n(C)

γ
+

T n(D)

δ
)+

2rz

(λ + µ)
(
T n(E)

λ
+

T n(F )

µ
) + [1− 2rx

αβ
− 2ry

γδ
− 2rz

λµ
]T n(P ) (4.2)

where rx = Ψ∆t
(∆x)2

, ry = Ψ∆t
(∆y)2

, rz = Ψ∆t
(∆z)2

. The rx, ry and rz are the Fourier

numbers in the X, Y and Z directions respectively. This equation is the general

form of the well known 7 point stencil for 3D Laplace equations. The derivation

at point P is isolated from its neighbors. Usually, for boundary points, the number of sign
change edges is between 1 and 5.
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for this is shown in Appendix A. The first 3 terms on the right hand side

arise from the finite difference equation in each of the 3 spatial co-ordinate

directions, while the last term is due to the finite difference in the temporal

dimension from Equation 4.1.

For the case of steady state analysis, in the Equation 4.1 the right

hand side vanishes. Hence, the corresponding finite difference model is given

by Equation 4.3. Appendix A shows the derivation for this equation.

[
1

αβ(∆x)2
+

1

γδ(∆y)2
+

1

λµ(∆z)2
]T (P ) =

1

(α + β)(∆x)2
(
T (A)

α
+

T (B)

β
) +

1

(γ + δ)(∆y)2
(
T (C)

γ
+

T (D)

δ
)+

1

(λ + µ)(∆z)2
(
T (E)

λ
+

T (F )

µ
) (4.3)

4.2 Stability Analysis

For a numerical scheme to be stable, the error accumulated at any

given timestep (due to various errors like truncation error, round-off error

etc.) should be bounded and not propagated to the next timestep. It can be

shown that for schemes to be stable, the Fourier number has to be less than

unity [4]. For schemes with Fourier number larger than unity, the solutions

are unstable and unreliable because the amplitude of the errors increases very

rapidly from one timestep to the next.

The term mesh ratio m is defined as the ratio of time step to space
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Table 4.1: Stability Analysis for constant mesh ratio m
Mesh Number Mesh size (∆x) Time step (∆t) Fourier Number (r)

Vs ∆x1 =∼ 10−3 t1
t1

∆x1

Vr ∼ 10−5 t1
102 102( t1

∆x1
)

... ... ... ...
Vc ∼ 10−9 t1

106 106( t1
∆x1

)

(mesh) step on all grids [34]. In their numerical simulations for hyperbolic

equations, Berger et al. [18] and Almgren et al. [4] maintain a constant mesh

ratio over both the spatial and temporal domains.

Choosing a constant mesh ratio m has first been experimented with.

For the problem shown in Equation 4.1, Table 4.1 shows the results for this.

By using a fixed mesh ratio and an initial timestep for the coarsest grid (Vs),

the timesteps for the remaining grids are computed. Closer analysis reveals

that the Fourier number for progressive grids keeps increasing in the same ratio

as the mesh (or time) step. This means that as the grid is further refined, the

Fourier number increases. This leads to unstable solutions. Hence, a constant

mesh ratio cannot be chosen for the solutions.

However, if a constant Fourier number is chosen the timesteps for all

grid sizes can also be similarly computed as above. This is shown in Table

4.2 for the problem in Equation 4.1. This ensures that the scheme is stable.

Thus, constant Fourier numbers are chosen depending upon the dynamics of

the actual domain that are modeled.

D’Acunto presents the theoretical proofs for the convergence and con-

sistency of this explicit scheme for the heat conduction equation shown in
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Table 4.2: Stability Analysis for constant Fourier number r
Mesh Number Mesh size (∆x) Time step (∆t) Mesh Ratio (m)

Vs ∆x1 =∼ 10−3 t1
t1

∆x1

Vr ∼ 10−5 t1
104

1
102

t1
∆x1

... ... ... ...
Vc ∼ 10−9 t1

1012
1

106
t1
∆x

Equation 4.1. Although the scheme he considered is for a simple 1D heat

conduction, it is straightforward to extend it to the general case of 3D.

4.3 Modeling Initial and Boundary Conditions

The initial conditions are defined over the interior of the entire domain.

The given function is simply sampled at the grid points of the volumetric

representation. Within each grid cell, the same tri-linear interpolation given

by Equation 2.1 that is used for the interpolation of the geometric function,

is utilized.

For the boundary conditions, first, the exact points where the boundary

of the input geometry cuts the grid need to be computed. Closer inspection

of the geometry function (described in Section 3.2) reveals that evaluating

the implicit function given in Equation 2.1 at an iso-value of 0, provides us

with the required points along the edges of the grid (along with their con-

nectivity information). Hence, all the sign change edges3 in the volumetric

3An edge is called a sign change edge if one vertex lies inside (or on) the boundary of
the surface and the other vertex lies outside (or on) the boundary. Thus the boundary is
guaranteed to intersect the edge at a unique point.
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Figure 4.2: Neumann boundary conditions on a curved boundary. The sign
change edges are shown in blue and the actual points of intersection in red.
The surface normals at these points are computed and shown in green. At
point H, the normal is flipped and intersected with the grid at point E.

representations are processed first, using the signed distance function. For

each such edge, the exact location where the boundary surface intersects the

edge is computed. Next, the surface normal at that point can be computed

from the input surface geometry description. This information is stored at the

grid vertex which is outside the boundary. This is shown in Figure 4.2.

The Dirichlet boundary conditions are the simplest to model as the

function is explicitly given. In such cases, the function at the grid points of

the volume is simply sampled.

The Neumann boundary conditions can also be similarly modeled with

a slight modification. For the Neumann boundary condition at point H on the

boundary, the intersection E between the surface normal at H and the grid

inside the boundary is computed. For this, the normal needs to be flipped to

direct it inside the boundary. Thus the Neumann condition at H is defined as
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(see Figure 4.2):

dT

dS |H
=

T (E)− T (H)

d(EH)
(4.4)

where d(EH) is the Euclidean distance between points E and H.

For the sake of completeness, in the case of inhomogeneous materials

(materials with different physical properties), the initial conditions on either

side of the material boundary can be different. In such cases, at the outside

boundary grid points, both the initial condition and the boundary condition

are stored. For datasets with only one material, only the boundary condition

at these outside boundary grid points is stored.

Once the initial and boundary conditions are imposed on the volumetric

representation grids, the excellent theoretical work from the field of numerical

simulations using AMR data structures can be leveraged. This is described in

detail in the remainder of this chapter.

4.4 Steady State Simulations

In the domain geometrical representation, the coarse and fine grids are

sculpted together to form one comprehensive representation. These individual

sub-grids can also be considered independent grids, except at the boundaries,

where they interface with the neighboring grids. It is this property of the

representation that is exploited in the numerical simulations. The solver is set
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up such that it can numerically march through each grid subject to the local

boundary and initial conditions of the grid. At the end of each iteration, the

function values across the common interface need to be synchronized.

In each iteration, the 7 point stencil for finite differences as given in

Equation 4.3 is used for updating the values of the physical function during

each iteration. After all the grid points are updated once, the embedded

subvolumes are next updated. For each subvolume, the same 7 point stencil

given in Equation 4.3 is applied to updates its grid points. However, a crucial

step before doing this is to define the boundary conditions at the interface

between the coarse and fine grids. This is essential in order to synchronize the

function values from both the grids.

4.4.1 Boundary Conditions at the Coarse-Fine Grid Interface

For the embedded fine grid, the values at the interface with the coarse

grid need to be specified before advancing it. This is done by linearly interpo-

lating in space the values from the coarse grid. In the 3D grid representation,

only the 8 corner grid values are known from the coarse grid cell. These val-

ues are used to interpolate the values along the 6 faces of the fine grid (the

coarse-fine grid interface) using bi-linear interpolation.

4.5 Transient State Simulations

In general, there are two types of time dependant solvers: explicit

solvers and implicit solvers. Depending upon the class of PDE, for stabil-
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ity and convergence of the numerical solution, explicit solvers are used if the

problems are non-stiff, and implict methods are used for stiff problems. For

adaptively refined grids, time dependant solvers can also be classified as: syn-

chronized time step methods and local time step methods [17, 54].

At each timestep, the macro-scale grid is first advanced. Next, the un-

derlying micro-scale grids are advanced to the same time, using finer timesteps

as given by the mesh ratio. Then, the continuity constraints at the interface of

the micro-scale and macro-scale grids are imposed by interpolating the values

from the two simulations. The details of this synchronization step using the

flux correction step are given by Berger et al. [18] for 2D grids and generalized

to 3D grids in [4].

Almgren et al. [4] provide an excellent review of the techniques used

for time simulations on Adaptive Mesh Refinement (AMR) grids. In general,

they have overlapping grids where for the overlapping portions, the coarse grids

define the Dirichlet boundary conditions for the fine grids. Then, after both

grids are advanced to the same time instant, the fine grids simply overwrite

the values in the coarse grids at these overlapping regions. This is called the

grid restriction step.

If the refinement level between two nested grids is r, then, for an explicit

solver, for each coarser grid time step, the finer grid has to be advanced by r

time steps. This is to ensure that the CourantFriedrichsLewy condition (CFL

condition) number remains the same for all grids [54] to ensure stability and

convergence.
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4.5.1 Boundary Conditions at the Coarse-Fine Grid Interface

Linear interpolation in both space and time is used to compute the

function values at the interface between the coarse and fine grids. However,

in the case of the transient solver, this is complicated as the timesteps for

integration are different for both grids.

Similar to the steady state solver, linear interpolation is used to com-

pute the function values along the 6 faces of the interface. However, for the

intermediate timestep values of the fine grid, for which the coarse grid function

values at the 8 corner vertices are not defined, linear interpolation in time is

used to compute the 8 function values. Once this is done, these values are

used to linearly interpolate in space to compute the values along the 6 faces

of the coarse-fine grid interface [17].

4.6 Heat Conduction Models

Consider an example of simulating the heat conduction process through

a domain such as a metal bar. Consider the case of uni-directional heat flow

where four faces of the bar are insulated and heat can flow only across the

remaining two faces. Assume there is no internal heat generation and heat

transfer in the domain results from a net temperature differential across the

two un-insulated faces. The governing physics model for this process is given in

Equation 4.1. The finite difference formulation for this is derived in Appendix

A and implemented in the numerical solver for both the steady state and

transient state models. The same process is modeled using a commercial third
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party solver ANSYS [48] and the results are compared to the current solver.

4.6.1 Steady State Simulations

The steady state model for the domain is presented in Equation 4.3.

The geometrical model for the domain as created in ANSYS is scaled 1:1:4 in

the 3 co-ordinate directions and contains 108 hexahedral mesh elements. The

grid spacing is the same in all 3 directions. The original geometrical repre-

sentations are shown in the first row of Figure 4.3. The model created using

volumetric distance fields has a grid resolution of 16. Both the geometric mod-

els have the same number of hexahedral mesh elements. Heat is allowed to

flow only along the Z direction and these two faces are maintained at 100oC

and 500oC, while the other four faces of this mesh are insulated. Initially,

the temperature throughout the domain is maintained at 100oC. The tem-

perature distribution profiles are shown in the second row of Figure 4.3. The

temperature distribution and the heat flux values across the domain are in

close agreement with the results from ANSYS.

4.6.2 Transient State Simulations

The transient state model for the domain is presented is Equation 4.2.

The necessary simulation parameters are shown in Table 4.3. For the numerical

stability of the solver, the restriction on the time step is given in Equation 4.5.

∆t

(∆x)2
+

∆t

(∆y)2
+

∆t

(∆z)2
≤ 1

8
(4.5)
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Figure 4.3: Results from the heat conduction simulation.
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Table 4.3: Simulation values for 3D heat conduction simulation
Parameter Symbol Value

Grid spacings ∆x, ∆y, ∆z 1m
Thermal conductivity K 5 W/m-K

Material density ρ 920 kg/m3

Specific heat Cp 2.04 KJ/Kg-K
Start time t0 0 sec
End time tf 2 sec
Time step ∆t 0.02 sec

Using the time step value from Equation 4.5 for the chosen grid spacings

as shown in Table 4.3, the temperature distribution profiles for the transient

analysis after a simulation time of 2 seconds, are shown in the last row of

Figure 4.3. These are similar to the ones from ANSYS at all the grid points

in the domain. Differences in the interpolation scheme lead to small variances

for temperature distributions and fluxes across the element shapes. Similar

trends were observed for other values of simulation time.

4.7 Summary

The computational modeling work is presented in this chapter. An

example parabolic heat conduction equation is considered and its numerical

approximation for the volumetric representation framework is developed. The

numerical solver based on this scheme is then implemented and the results from

the simulation are validated with a commercial solver. Next, this framework

is applied to the application domain of SLS in chapter 5.
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Chapter 5

Application Domain: Selective Laser Sintering

In this chapter, the proposed multi-scale domain modeling framework

is applied to the Selective Laser Sintering (SLS) process. Of special interest is

the modeling of heat transfer processes through the powder bed.

5.1 Introduction

The powder bed for the SLS process consists of many layers of pow-

der particles. The sintering process occurs when a laser focuses a beam of

energy on these layers of powder. To efficiently model the heat transfer pro-

cess through the powder bed, an approximate Effective Thermal Conductivity

(ETC) for the powder is required. This is a function of several factors including

the material properties of the powder and air and the geometrical arrangement

of the powder particles.

The first assumption about the powder bed is that the powder packing

is regular and powder particle size is uniform. Furthermore each particle is

modeled as an idealized sphere. For the preliminary models shown in Section

5.2, a perfect spherical shape is assumed and then imperfections are introduced

due to surface roughness for the later models in Section 5.3. Finally, the air
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trapped between the particles is assumed to be stationary, so there is negligible

convection between the air voids.

For the unit cell models, a key consideration is the contact areas of

the powder particles. For simply touching spheres these are simply points.

For the case of intersecting spheres, these are circles of finite radii. In the

geometric modeling phase, the entire unit cell model is chosen as the macro-

scale geometry and these contact areas are the micro-scale geometry where the

grids are refined. Also, an uni-directional heat flow across two opposite faces of

the cube is assumed. The temperature at the top face is maintained constant at

373oK, while the bottom face is maintained at 323oK. The initial temperature

everywhere is also 323oK. The other 4 faces of the cube are insulated, so that

no heat can travel across them. These conditions are identical to the ones

mentioned in the literature for polycarbonate-air beds [72, 98, 105] and are

hence chosen because of their ease for comparing the results to theirs.

As described in Section 2.4, the packing arrangements for the Simple

Cubic (SC), Body Centered Cubic (BCC) and Face Centered Cubic (FCC)

structures are analyzed. These are the standard types of arrangements which

are used to approximate most regular packing structures. The geometry and

hence the porosity values for these structures are also fixed [7, 25]. While the

SC structure gives an upper bound on the porosity, the FCC gives a lower

bound on the porosity values for the packing patterns.
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Table 5.1: Results for ETC (W/m-K) for Polycarbonate-Air bed
Geom Continuum Models Unit Cell Models Empr Multi-Scale
Type Bear Xue-Barlow Krupiczka Yagi Xue Sphere SR
SC 0.108 0.095 0.121 0.073 0.072 0.0912 0.0914

BCC 0.131 0.120 0.121 0.107 0.106 0.1161 0.1166
FCC 0.141 0.130 0.121 0.120 0.121 0.1469 0.1480

5.2 Unit Cell Models

For a preliminary study of the SLS domain, just the multi-scale domain

of idealized spherical particles was considered. Table 5.1 shows the simulation

results for a powder bed comprising polycarbonate-air particles. Polycarbon-

ate is widely used in the fabrication of design prototypes [72] and is a good

material for comparing the present models with the theoretical models shown

here. The thermal conductivities of bulk polycarbonate and air are 0.18 and

0.028 W/m-K respectively.

The results were compared with the available models in the literature

outlined in Section 2.4.2. Some of these models are also shown graphically in

Norrell’s dissertation [72] in Figure 2.2 and the general trends predicted from

the simulations agree with those models. As the porosity of the powder bed

decreases, the particles are more closely and tightly packed together. This pro-

vides more conduction paths for heat transfer, so the net thermal conductivity

of the bed increases. At the working temperature ranges that were chosen, the

effects of radiation are negligible [72].

An example for the BC dataset is shown in Figure 5.1. Only two

contact regions are shown with multi-scale volumetric representations. The
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Figure 5.1: The multi-scale domain model for the body centered cubic dataset.
Two contact regions are shown with multi-scale representations.

grid to the left shows the entire multi-scale domain representation, while the

grid to the right shows the iso-surfaces from the same representation. Note

the high resolution surfaces from the subvolumes at the contact areas. The

macro-scale grid has a resolution of 16 × 16 × 16, while the subvolumes have

a resolution of 8× 8× 8.

5.3 Modeling Surface Roughness

The actual particles in the powder bed are not perfectly spherical in

shape. There are minor surface imperfections due to which the actual contact

areas are not simply point contacts (in the case of touching spheres, used in the

models in Section 5.2). Hence, the effects of surface roughness at the contact

areas need to be considered for a realistic heat conduction model.

The geometric models for surface roughness are presented in Section

3.7. Using the same computational model as in Section 5.2, the ETC values
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for the three packing arrangements were obtained. The last column in Table

5.1 shows the results from the surface roughness models. Notice that the values

for the ETC are larger than the ones from idealized spherical models. This is

due to the increase in the contact areas due to the surface roughness shapes

(see Figure 3.3), which lead to more heat conduction paths.

5.4 Implementation Details

In the current implementation, an octree data structure is maintained

internally to efficiently represent the geometrical details of the domain. This

choice is primarily influenced by the significant speed-up that is achieved, in

computational cost while computing the signed distance fields for complicated

datasets. See Section 3.2 for details.

At each vertex of the volumetric representation, geometry information

in the form of signed distance fields and computational information for the

physical function that is modeled are stored. For each such parameter of

the computational model, its values for both the current and next iteration

(timestep) are stored.

In addition, if a vertex has a sign change edge, then additional informa-

tion has to be stored to successfully impose the requisite boundary condition.

However, in a typical dataset, only a few vertices need this extra storage for

the BC. Hence, at each vertex, only a pointer to the data structure for the BC

is stored, and memory is allocated only if needed. The aforementioned data

structure for the BC stores the type of BC (Dirichlet, Neumann or Robin),

69



the value of the BC, the surface normal at the interpolated point H along the

sign change edge and the interior point E as shown in Figure 4.1.

For visualization purposes, iso-surfaces from the volumetric representa-

tions using the standard marching cubes techniques are extracted, as outlined

in Section 2.2.6. A hash table is maintained for the sign change edges in

the boundary cells for fast retrieval. Since the volumes that are generated

are very large scale, extracting the iso-surfaces from these volumes might be

cumbersome and time consuming. The contour spectrum approach is used

for narrowing down the range of interesting iso-values [10]. For complicated

datasets, this library can be used to narrow the range of iso-values to choose

from.

The final point of interest is the resolution of the volumes that are

created as this depends on the features present in the input data. Finer features

require higher Level-of-Detail (LoD) and hence, a larger resolution for the

volume. Based on experience, a value of 64 as the octree resolution for most

objects and 128 for fine features or thin shell elements are recommended [8, 9,

109].

The implementation is in C++ using a MSVC 6.0 compiler. The com-

prehensive geometric domain models for the surface roughness analysis (shown

in Table 5.1) were developed on a PC equipped with a Pentium III 2.60 GHz

processor with 512 MB of main memory and a GEForce FX 5200 graphics card.

Interactive visualization was possible with this hardware for these datasets.
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5.5 Time and Space Complexity Analysis

In this section, the time and space complexity for the multi-scale vol-

umetric modeling framework are analyzed. A key parameter in this analysis

is the grid resolution at each scale. While, this directly affects the spatial

storage requirements for a given domain, this is also responsible for providing

an upper bound for the timestep of the numerical solver.

First, the general values for arbitrary grid resolutions are computed

and then some sample values are plugged in to estimate the spatial and com-

putational requirements.

5.5.1 General Time and Space Complexity Requirements

Given a domain D, with a scale difference of 5, first an adaptive hierar-

chical recursive volumetric (geometric) representation of the domain needs to

be created. Next for the computational simulations, the simulation parame-

ters on this grid are defined and the computational requirements are estimated.

Also, the total simulation period is assumed to be 100 seconds.

Let ∆x, ∆y, ∆z and ∆t be the grid spacings in the X, Y and Z directions

and the chosen timestep for the numerical simulation on this grid. For the sake

of simplicity, the Domain D is assumed to be isotropic (∆x = ∆y = ∆z) and

the same grid resolution g is chosen at each level in the recursive structure.

Note that the assumption about the isotropy of the physical domain is valid

in most situations.
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For the stability of the numerical solver based on explicit FTCS schemes

for solving the heat conduction problem in Equation 4.2, the relation given in

[31], Equation 5.1 has to be satisfied.

(
1

∆x
)2 + (

1

∆y
)2 + (

1

∆z
)2 <

1

8
× 1

∆t
(5.1)

5.5.2 Spatial Storage

To achieve a multi-scale domain decomposition of 5 orders of magni-

tude, using recursive grid resolutions of g, the first calculation is to decide

how many recursive sub-grid levels n the representation needs to have. For

this Equation 5.2 is used.

(
1

g
)n = (

1

10
)5 (5.2)

On simplification, this gives the number of sub-grids as in Equation 5.3

n = logg 105 (5.3)

At each level of the recursive grid hierarchy, the number of voxels stored

is g3. Since there are n such grids, the total space requirement for the entire

multi-scale volume grid is given in Equation 5.4.

Os(n) = (g3)n = (g)3n (5.4)
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5.5.3 Time Complexity

From the constraint given in Equation 5.1, for an isotropic grid, ∆x =

∆y = ∆z = 1
g

g2 + g2 + g2 <
1

8
× 1

∆t
(5.5)

On simplification, the timestep for the simulation for the given grid is

given in Equation 5.6.

∆t <
1

3
× 1

8
× 1

g2
<

1

24
× 1

g2
(5.6)

Thus, the total number of time steps for one grid is tsteps = 25 × g2.

At each time step, each of the voxels in the volume grid needs to be updated.

Thus, the total number of computations is given in Equation 5.7. Note that

this is actually a summation for each grid level, from the coarsest one to the

the finest grid level.

Ot(n) =
n∑

i=1

(g3)i × (24× g2)i =
n∑

i=1

24i × g5i (5.7)

Also, the expressions for time and space complexity given in Equations

5.7 and 5.4 are for the worst case scenarios. In practice, the hierarchical volume

grids are adaptive, hence the run times and space storage requirements are less

than predicted by these equations.

73



5.5.4 Analysis

The space complexity expression is exponential, and the time complex-

ity is polynomial. In practice, the values of g need to be powers of 2, to build

an octree1. Smaller values of g lead to very coarse and jaggy geometric ap-

proximations, while higher values need high processing times and more disk

storage. Usually, values such as 32, 64, 128 and 256 are acceptable for most

datasets [9, 109].

From the computational simulation perspective, at the interface where a

grid cell is split into a sub-grid, the function values from the two cells need to be

synchronized to satisfy the flux conservation law [16]. An abrupt difference in

the grid resolution between adjacent cells leads to inaccuracies in the numerical

solver. Hence, it is preferred to have smaller values for g like 2, 4 or 8. These

values have been experimented with in [77], while they generally use only 2 or

4.

Thus, for the geometric modeling, values for g from 32 to 256 are gener-

ally possible, while, for the computational modeling, smaller values from 2 to

8 are needed. Thus, the total working range for considering the grid resolution

g is from 2 to 256, in steps of powers of 2.

In practice, the spatial requirements as given by Equation 5.4 have to

be multiplied with the actual amount of data stored at each voxel. The signed

1While, in general, other values of g are possible, they are usually re-sampled to the
closest power of 2 for easier processing.
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distance function value (for the geometric modeling) and the computational

function values for the current and next time step, per physical parameter

(for the computational modeling), are stored as floating points at each voxel.

Assuming a 32 bit architecture and 4 bytes for a floating point number, the

values from Equation 5.4 need to be multiplied with 3 × 4 to get the total

space storage requirements in bytes.

With recent advances in computer hardware, computer memory is get-

ting cheaper. Hence, the real bottleneck is the computational cost. Also, this

varies exponentially with the grid resolution g. Hence, it is faster to have

more levels of hierarchy and keep this number low. It is recommended to use

values of grid resolution as high as possible at the coarsest grid, and for the

subvolumes, to keep the grid resolution values between 4 and 8. This ensures

fewer grid hierarchies as well as fewer subvolumes at each level.

5.6 Summary

The framework for multi-scale domain modeling based on volumetric

representations has been applied to the SLS domain to model the heat transfer

through the powder bed. The results are presented here and they are in close

agreement with the available literature. The next chapter concludes the work.
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Chapter 6

Closure

In this dissertation, research on creating both geometric and compu-

tational models for multi-scale domains has been presented. This framework

was successfully applied to the SLS process.

6.1 Conclusions

A framework for creating comprehensive and realistic multi-scale ge-

ometric models is presented here. The input geometry descriptions are first

converted into a common representation. Scale bridging is then performed

to traverse the multiple length scales of the domain and then, using intuitive

sculpting operations, the final geometric model is constructed.

The representation is then used in a physics driven simulation of the

domain. A computational model is formulated and solved using numerical

techniques. Thus, the resulting representations are validated with respect to

the available literature to simulate simple physical processes. The models are

in close agreement and also follow similar trends.

Several established techniques such as volumetric representations and

volumetric sculpting have been leveraged to successfully establish a new paradigm
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for modeling multi-scale domains. This work is a small step toward the even-

tual goal for realistically simulating such domains.

6.2 Future Work

This section outlines the various steps that are recommended to extend

the current implementation to a more robust and all-purpose framework for

creating multi-scale models and simulations.

6.2.1 Geometric Modeling

The current implementation can process only regular distance fields.

This needs to be changed so that it can process adaptive distance fields [40, 80].

This would further reduce the memory (and also the computational) overheads

associated with maintaining the function values at several grid points.

Note that the approach described above is for regular (uniform) vol-

umetric grids only. However, in most cases, large regions of the regular grid

are empty as they do not contain the embedded isosurface. To simply ex-

tract an isosurface, only the boundary (feature) cells are needed. Eliminating

these vacant cells from the representation can save both the memory overhead

in terms of storing them and also the computational expenditure to process

them. Hence, an adaptive version of this scheme should be developed, where

only the voxels that contain the regions of interest are stored. This is very

similar to the work by Frisken et al. [40, 80].
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6.2.2 Computational Modeling

A numerical solver based on the FTCS scheme (see Section 4.1 for

details) has been used for the framework. Most computational multi-scale

problems developed in practice are time dependant in nature. Hence, this

work needs to be extended to include such domains. A fully implicit scheme

instead of the current explicit scheme (the FTCS scheme as mentioned in

Section 4.5) should be used to provide significant increase in efficiency and

speedup, while still guaranteeing a measure of stability and convergence of the

numerical scheme.

6.2.3 Volumetric Mesh Extraction

In some cases, it is advantageous to extract a high quality conform-

ing volumetric mesh for the comprehensive domain [9]. For this, a scheme

based on the work done by Zhang et al. [109] and Schneiders et al. [86, 87] is

presented. While these schemes provide templates to create conforming hexa-

hedral meshes from adaptive volumetric representations, in reality, the scheme

gets very complicated when the neighboring coarse and fine grid cells differ

by more than one level (for details, see Section 5.5 and Section 5.2 of [109]).

Hence, when hexahedral meshes have to be generated, a maximum grid reso-

lution value of 1 for all the subvolumes in the domain should be used. If the

comprehensive domain representation is already created with a different grid

resolution value, then the grid cells can be recursively collapsed to force this

condition. Once this is done, then the templates provided by Scheiders [86, 87]
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or Zhang et al. [109] can be used to extract the hexahedral meshes as desired.
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Appendix A

Modeling Boundary Conditions

This section presents a detailed description of the method to model the

boundary conditions using volumetric grids.

A.1 Taylor Series

Consider the general case of a curved boundary intersecting the regular

volumetric grid, shown in Figure A.1. First the simple 1D case is presented

and then extrapolated to the general 3D case of interest. The reader is also

advised to see [31] and [24] for further reading.

Using the Taylor series expansion at point B, the function at B is given

by Equation A.1.

T (B) = T (P ) + (β∆x)Tx(P ) +
(β∆x)2

2
Txx(P ) + O(∆x)3 (A.1)

Similarly, the function at point A is given by Equation A.2.

T (A) = T (P )− (α∆x)Tx(P ) +
(α∆x)2

2
Txx(P ) + O(∆x)3 (A.2)

Equations A.2 and A.1 form a set of simultaneous equations for Tx(P )

and Txx(P ). These are expressed in matrix form in Equation A.3.
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Figure A.1: Finite difference scheme at the boundary. Consider the 3D neigh-
borhood of point P. The boundary points A, B, C, D, E and F are at distances
α∆x, β∆x, γ∆y, δ∆y, λ∆z, µ∆z, respectively from P.

∣∣∣∣
T (B)− T (P )
T (A)− T (P )

∣∣∣∣ =

∣∣∣∣∣
β∆x (β∆x)2

2

−α∆x (α∆x)2

2

∣∣∣∣∣
∣∣∣∣
Tx(P )
Txx(P )

∣∣∣∣ (A.3)

Using Cramer’s rule, the value of Txx(P ) is given in Equation A.4.

Txx(P ) =

∣∣∣∣
β∆x T (B)− T (P )
−α∆x T (A)− T (P )

∣∣∣∣
∣∣∣∣∣

β∆x (β∆x)2

2

−α∆x (α∆x)2

2

∣∣∣∣∣

(A.4)

Txx(P ) =
2∆x

αβ∆x(∆x)2

∣∣∣∣
β T (B)− T (P )
−α T (A)− T (P )

∣∣∣∣
∣∣∣∣

1 β
−1 α

∣∣∣∣
(A.5)
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Txx(P ) =
2

(∆x)2
[
βT (A) + αT (B)− (α + β)T (P )

αβ(α + β)
] (A.6)

On simplification, this yields the expression for Txx(P ) in Equation A.7.

Txx(P ) =
2

(∆x)2
[

T (A)

α(α + β)
+

T (B)

β(α + β)
− T (P )

αβ
] (A.7)

Note that this equation is identical to Equation 11.4.5 in [31] and Equa-

tions 7.8.5 and 7.8.6 (on page 498) in [24]1 . Also, substituting α = β = 1

gives the well known form of the “3-point stencil” in 1D as Equation A.8. This

is used in the frequent situation where the grid points are uniformly spaced.

Txx(P ) =
1

(∆x)2
[T (A) + T (B)− 2T (P )] (A.8)

Similarly, the finite difference equations in the Y and Z directions can

also be written. These are given in A.9 and A.10.

Tyy(P ) =
2

(∆y)2
[

T (C)

γ(γ + δ)
+

T (D)

δ(γ + δ)
− T (P )

γδ
] (A.9)

Tzz(P ) =
2

(∆z)2
[

T (E)

λ(λ + µ)
+

T (F )

µ(λ + µ)
− T (P )

λµ
] (A.10)

1The authors show the derivation for the case of a curved boundary in 2D. The equation
can be compared to Equation A.13 after ignoring all the terms arising from the Z dimension.
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A.2 Steady State Heat Conduction Model

The steady state heat conduction (Laplace) equation is given in A.11.

Now using A.7, A.9 and A.10 from above, this equation transforms into Equa-

tion A.12.

Txx + Tyy + Tzz = 0 (A.11)

2

(∆x)2
[

T (A)

α(α + β)
+

T (B)

β(α + β)
− T (P )

αβ
]+

2

(∆y)2
[

T (C)

γ(γ + δ)
+

T (D)

δ(γ + δ)
− T (P )

γδ
]+

2

(∆z)2
[

T (E)

λ(λ + µ)
+

U(F )

µ(λ + µ)
− U(P )

λµ
] = 0 (A.12)

On simplification and re-arranging terms Equation A.13 is obtained.

This is the steady state finite difference model. As mentioned before, the

values of α, β, γ, δ, λ, µ are the fractions of the grid spacings in each of the

directions, as shown in Figure 4.1.

[
1

αβ(∆x)2
+

1

γδ(∆y)2
+

1

λµ(∆z)2
]T (P ) =

1

(α + β)(∆x)2
(
T (A)

α
+

T (B)

β
) +

1

(γ + δ)(∆y)2
(
T (C)

γ
+

T (D)

δ
)+

1

(λ + µ)(∆z)2
(
T (E)

λ
+

T (F )

µ
) (A.13)
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The values of α, β, γ, δ, λ, µ are equal to 1 at all the interior grid

points. For such cases, the simplified version of Equation A.13 can be used,

where the fractional values are all set to 1. This is given in Equation A.14.

[
1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2
]T (P ) =

T (A) + T (B)

2(∆x)2
+

T (C) + T (D)

2(∆y)2
+

T (E) + T (F )

2(∆z)2

(A.14)

A.3 Transient State Heat Conduction Model

Consider the transient state heat conduction equation given in Equation

A.15. Here, the symbol Ψ is used for thermal diffusivity.

Txx + Tyy + Tzz =
1

Ψ
Tt (A.15)

Now using A.7, A.9 and A.10 from above, this equation transforms into

Equation A.16.

2

(∆x)2
[

T n(A)

α(α + β)
+

T n(B)

β(α + β)
− T n(P )

αβ
]

+
2

(∆y)2
[

T n(C)

γ(γ + δ)
+

T n(D)

δ(γ + δ)
− Un(P )

γδ
]

+
2

(∆z)2
[

T n(E)

λ(λ + µ)
+

T n(F )

µ(λ + µ)
− T n(P )

λµ
] =

1

Ψ

Un+1(P )− T n(P )

(∆t)
(A.16)

On simplification and re-arranging terms, Equation A.17 is obtained.

This is the transient state finite difference model. As mentioned before, the
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values of α,β,γ,δ,λ,µ are the fractions of the grid spacings in each of the di-

rections, as shown in Figure A.1.

T n+1(P ) =
2rx

(α + β)
(
T n(A)

α
+

T n(B)

β
) +

2ry

(γ + δ)
(
T n(C)

γ
+

T n(D)

δ
)+

2rz

(λ + µ)
(
T n(E)

λ
+

T n(F )

µ
) + [1− 2rx

αβ
− 2ry

γδ
− 2rz

λµ
]Un(P ) (A.17)

where, rx = Ψ∆t
(∆x)2

, ry = Ψ∆t
(∆y)2

, rz = Ψ∆t
(∆z)2

Note that substituting α = β = γ = δ = λ = µ = 1 gives the well

known form of the 7-point stencil in 3D in Equation A.18. This equation is

used for the case of transient analysis of the 3D Heat equation where the grid

points are uniformly spaced.

T n+1(P ) = rx(T
n(A)+T n(B))+ ry(U

n(C)+T n(D))+ rz(T
n(E)+T n(F ))+

[1− 2rx − 2ry − 2rz]T
n(P ) (A.18)
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