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Abstract 

 

Extending PrAGMATiC: Modeling covariances between responses 

across the human cortex 

 

Daniel Alejandro Noble Hernandez, MSCompSci 

The University of Texas at Austin, 2021 

Supervisor:  Alexander G. Huth 

 

The human brain can be understood and organised as a topographic map of 

cortical areas. Dividing the brain into these distinct subsections has long been an ongoing 

effort, with a number of often disagreeing attempts to create this map – representative 

across individuals – being made over time. Both surgical and computational techniques 

have been broadly utilized in this pursuit, focusing on characterizing these chosen 

cortical areas based on their structural and functional similarities across individuals. 

Because the general anatomy is fairly well-understood now, computational methods are 

favoured; a popular approach taken involves measuring the responses of areas of the 

cortex according to functional magnetic resonance imaging (fMRI) data. We take a 

related – but modified – approach in this paper, delineating a model that uses the 

covariances oof the responses across the cortex rather than the cortical responses 

themselves. An extension of the existing hierarchical, Bayesian, probabilistic and 

generative model PrAGMATiC, our mathematical formulation of the model assumes and 

samples from an underlying Wishart, rather than Gaussian, distribution. This will allow 

the model to learn parameters to describe the functional covariances of responses at 



 vii 

vertices across the cortex. Since direct comparisons of functional values, rather than their 

covariances, are not readily achieved in resting state fMRI, this formulation will be able 

to identify cortical parcellations using resting state fMRI data by providing a framework 

under which comparisons are possible. 
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Chapter 1: Introduction 

 

The human cortex—a millimeters-thick layer on the surface of the brain dictating 

who we are as individuals—is one of the most complex pieces of matter that we know of. 

The cortex not only orients us to the world around us and directs our interactions with it, 

but is responsible for our cognition, languages, emotions, and personalities, amongst 

other higher mental functions. How it functions and how it is organized—both at a low 

and high level—are fascinating, and, as yet, largely unsolved questions. As is currently 

understood in modern neuroscience, the cortex of the human brain is functionally 

organized in a hierarchical manner [1]. To provide some context regarding current ideas 

of cortical organization, we briefly present a top-down understanding of the brain’s 

organization. 

 

1.1 Early mapping efforts 

 

At the topmost level, the cortex is divided into four lobes—frontal, parietal, 

temporal, and occipital—each responsible for a broad array of functions; taking the 

parietal lobe for instance, it is widely responsible for sensory processing and higher 

visual processing [13]. A more specific schema of organization put forth by Korbinian 

Brodmann lays out 52 aptly named Brodmann areas—many of which have been further 

subdivided over time—based on the neuron-level organization he observed when staining 

neurons across the cortex [15]. As it happened, these purely anatomically based 

parcellations proved to closely correlate with the actual cognitive functions of the areas 

they represented. One such area, Brodmann area 17, maps the primary visual cortex, 

receiving raw visual information directly from the retina, after being relayed through the 
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lateral geniculate nucleus; area 17, commonly termed V1, is responsible for the first low-

level processing of visual data before feeding it to higher areas of the cortex [10].  

The anatomical maps revealed by Brodmann were later refined by functional 

neurophysiologists. Early efforts by Wilder Penfield and his colleagues led to the 

uncovering of the motor cortex—encompassing Brodmann areas 1, 2 and 3—on the 

precentral gyrus of the frontal lobe and the somatosensory cortex—Brodmann area 4—on 

the postcentral gyrus of the parietal lobe. The somatosensory cortex is the part of the 

brain that receives and processes the sensation of touch, whilst the motor cortex directs 

voluntary movement. Penfield, a neurosurgeon, mapped these areas on the brains of 

epileptic patients during surgery; he stimulated parts of the cortex using electrodes and 

took note of the motions and perceived sensations that each area’s stimulation evoked [9]. 

In a more general sense, the other areas and sub-areas of the cortex serve both specific 

and hugely varied cognitive functions. 

 

1.2 Computational methods 

 

Since Penfield’s time, significant advances in medical imaging—particularly with 

magnetic resonance imaging (MRI)—have been made, allowing the focus to shift to non-

invasive studies to capture enormous amounts of brain data [7]. The organization of the 

brain discussed above is based largely on the structural anatomy of the underlying 

neurons found in each region, and these modern methods, relying in particular on fMRI 

data, have allowed for much more fine mappings of cortical areas. Although significant 

progress has been made in this regard, much of the cortex and its functions remains to be 

mapped definitively; furthermore, the connectivities of brain areas differ between 

individuals [5], presenting further considerations in coming up with a general map. Until 
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fairly recently, such parcellations have been generated using a single property—such as 

functional connectivity, neuronal architecture, or function. This has biased the resulting 

cortical maps in a sense, as though significant overlap of areas should be expected across 

each of these generated maps, they are likely to vary along each of these properties. In 

their 2016 paper, Glasser et al. address precisely this problem, setting out a multi-modal 

approach of parcellating the cortex. Rather than use a single property as the basis for their 

model, utilizing data offered by the Human Connectome Project, they took measures of 

cortical myelin content and cortical thickness to capture structure, task fMRI from seven 

tasks to capture cortical function, and used resting state fMRI to capture functional 

connectivity in their model [4]. The general approach used by Glasser et al. is illustrated 

below in Figure 1. The authors point out that in this manner, not only were they able to 

confirm information from a single modality with that from the others, but they were also 

able to capture more fine-grained details in their maps that would have been missed by a 

single property.  

 

 

 

 

 

 

Figure 1: Task-based fMRI captured cortical function, myelin mapping captured 
structure, and resting state fMRI captured functional connectivity in the multi-modal 
approach employed by Glasser et al. 
 

[14] 
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Though the above multi-modal approach is robust, it is not without its 

drawbacks—there were costs associated with switching between what are sometimes 

conflicting modalities, as discussed by Schaefer et al. in their 2018 paper. There remains 

significant interest in generating parcellations of the cortex based on one of the 

properties—functional connectivity. Resting state fMRI has been used broadly to cluster 

areas with similar functional connectivity patterns based on these rfMRI signals [11]. 

Rather than directly compare functional responses across the cortex, we seek to 

provide a framework that compares the covariances of the functional responses. The 

PrAGMATiC model upon which our work is based assumes that functional values are 

directly comparable across subjects, but for resting state fMRI, no such first-order 

relationships exist [5]. However, covariances of these values appear to be conserved 

across individuals, providing an opportunity to make these direct comparisons. Our 

model is an extension of PrAGMATiC, under which we assume that the covariance of the 

functional values across brain areas is drawn from a Wishart distribution. The rest of the 

paper provides necessary background on the model that inspired this work, discusses the 

mathematical basis for the model’s learning, presents preliminary results, and discusses 

the implications of the work and future directions that the research will take.   
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Chapter 2: Background 

 

PrAGMATiC—a probabilistic and generative model of areas tiling the cortex—is 

a hierarchical Bayesian model that learns parameters to generate functional maps that are 

common across the cortices of a set of subjects [5] and it is the basis for the work 

described below. We begin with a brief overview of the difficulty posed by high 

dimensional models and how PrAGMATiC addresses the issue to predict cortical maps, 

followed by a discussion of PrAGMATiC’s learning formulation, which is the subject of 

extension.  

 

2.1 Cortical map prediction 

 

Though more well-established maps of parts of the cortex, such as the visual and 

motor cortices, have low dimensional structure—the retina shows a one-to-one mapping 

onto the visual cortex within 3 dimensions for instance—most of the cortex does not have 

a known functional map, and defining these functional dimensions is a complex task [5].  

An established method of obtaining these functional dimensions is to apply independent 

component analysis (ICA) to resting state fMRI data [3]. A number of studies using ICA 

on brain data have revealed components similar to the more well-established visual 

cortical networks and have come up with similar functional areas across subjects, 

indicating the effectiveness of this approach [2]. Nonetheless, as Huth et al. discuss in 

their 2017 paper, quantifying these functional maps is complicated by the variability 

across subjects given that, though similar, all subjects’ cortical anatomies are unique, and 

is further complicated by the intrinsic difficulty of visualizing and understanding higher 

dimensional data. 
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To address the problems presented by higher dimensional cortical maps, Huth et 

al. designed PrAGMATiC, a Bayesian model that generates functional maps across the 

cortex shared by a set of subjects. PrAGMATiC treats each subject’s functional data as 

drawn from a single probability distribution underlying the full subject population, and 

this probability distribution is split into two parts—an arrangement model distribution 

and an emission model distribution [5]. The arrangement model features a set of hidden 

variables 𝐻 representing the physical arrangement of control points across the cortex 

upon which the functional maps are ordered; 𝑃(𝐻; 𝐿, 𝐾) is the distribution over 

arrangements constrained by the lengths, 𝐿, and spring constants, 𝐾, of springs that 

connect each of the control points [5]. The emission model is described by a set V of 

functional data, with 𝑃(𝑉|𝐻,𝑀) as the distribution over the functional data given the 

arrangement, allowing functional data to be drawn from a Gaussian distribution with a 

unique mean, 𝑀, for each area [5]. Combining the distributions gives the joint 

distribution for a single subject, 𝑠: 

 

𝑃(𝑉!, 𝐻!|	𝑀, 𝐿, 𝐾) = 𝑃(𝐻!; 𝐿, 𝐾)𝑃(𝑉", |𝐻!𝑀) (1) 

 

which serves as the basis for the model’s learning [5]. The two main components 

of the model, arrangement and emission, are illustrated in Figure 2. 
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2.2 PrAGMATiC learning 

 

 Fitting PrAGMATiC is centered on learning each of the parameters – the area 

functional means, 𝑀, as well as the spring lengths and constants, 𝐿 and 𝐾. In order to do 

that, Huth et al. carried out maximum likelihood estimation (MLE); they maintained 𝑗 

Markov chains for each of the 𝑠 subjects, obtaining a gradient for each chain by drawing 

a sample for each learning step 𝑡: 

 

𝐻!
#,%~	𝑃(𝐻!|𝐻!

#,%&'; 𝐿%&', 𝐾%&')	 (2) 

[5] 

Figure 2: The arrangement model shown on the left illustrates the arrangement of the 
centroids across the cortical surface, joined by springs that allow variation in exact location 
across subjects, but the same organisation relative to one another. The emission model 
predicts the functional data based on the functional means of areas, and generates a map as 
seen on the right. 
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Following each Gibbs sweep, Huth et al. describe parameter learning by 

computing the gradients for each parameter, 𝑀, 𝐿, and 𝐾, and taking a step down each 

gradient, updating the current estimates: 

 

𝑀% = 𝑀%&' − 𝜖(
𝜕ℒ(𝑀%&'; 𝑉)*!)

𝜕𝑀%&' 	 (3) 

𝐿% = 𝐿%&' − 𝜖+
𝜕ℒ(𝐿%&'; 𝑉)*!)

𝜕𝐿%&'
(4) 

𝐾% = 𝐾%&' − 𝜖,
𝜕ℒ(𝐾%&'; 𝑉)*!)

𝜕𝐾%&'
(5) 

 

The area functional means, 𝑀, of the original PrAGMATiC represent the 

functional values that are assumed to be directly comparable, when no such first-order 

relationships exist between them across subjects in resting state fMRI experiments. This 

is the part of the model that we extend; we seek to replace the functional means with the 

covariance of the functional values. 
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Chapter 3: Model Extension 

 

Our extension to PrAGMATiC requires the replacement of the area functional 

means with a new parameter, the covariances of the functional values, thus allowing 

direct comparisons across subjects. Below, we discuss the general reasoning and 

formulation of this concept within the model, and provide the mathematical basis 

delineating the form that these changes take and how they were derived. 

 

3.1 Learning covariance 

 

In our extension, we replace the area functional means 𝑀 with Ω, the functional 

covariance between areas. In this way, we can define each element of the matrix Ω-,# as 

the average covariance between centroids 𝑖 and 𝑗.  In order to model the covariance 

between responses across cortical locations, we took a resting state time course of length 

𝑇 and assumed that the covariance of 𝑇 functional values across the visible units was 

drawn from a Wishart distribution; when a covariance matrix is not known, it can often 

be reliably sampled from the Wishart [12]. As such, with NV visible units – termed 

vertices through the rest of our description – and S as a symmetrical NV x NV matrix, we 

illustrate the sampling as 𝑉.𝑉	~	𝑊/!(Σ, 𝑇).  

Given that Ω represents the functional covariance between each pair of centroids, 

and bearing in mind that each centroid contained a number of vertices, we note that Σ@, our 

estimate of the covariance between pairs of vertices, is a blown-up version of Ω, and we 

relate the two to one another by defining a binary matrix 𝐵(𝐻) such that: 

 

Σ@(Ω, H) = 𝐵(𝐻)Ω𝐵.(𝐻)	 (6) 



 10 

 

Thus, with these definitions in mind, we considered the formulation of the total 

probability of the observed data given the parameters	𝑃(𝑉!)*!; 𝐿, 𝐾,𝑀), which was 

defined by the expectation of the full probability distribution over 𝐻. We replaced this 

equation in the original model with the following: 

 
𝑃(𝑉.𝑉|𝐿, Ω) =D𝑃(𝑉.𝑉|ℎ; Ω)𝑃(ℎ; 𝐿)

0

(7) 

 

We sought to use this formulation to learn the covariance parameters, spring 

lengths, and spring constants to maximize the log likelihood of the covariances across the 

subjects, changing equation (3) above to: 

 

 	

Ω% = Ω%&' − 𝜖1
𝜕ℒ(Ω%&'; 𝑉)*!)

𝜕Ω%&' 	 (8) 

 

	 

3.2 Mathematical basis 

 

Although the gradients for the spring likelihoods and spring constants were not 

modified, the computation for the gradient with respect to Ω had to be determined. We 

defined the gradient using the probability density function of the Wishart distribution: 

 
𝜕ℒ(Ω, 𝑉)*!)

𝜕Ω
=

𝜕
𝜕Ω

ln	(𝑃2J𝑉.𝑉; Σ@, 𝑇K) (9) 
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=
𝜕
𝜕Ω lnM

|𝑉.𝑉|(.&4&')/7𝑒&%8(9:"#;$;)/7

2.4/7OΣ@O./7Γ4(T/2)
S (10) 

 

We found that though three of the resulting five terms went away upon derivation, 

and though the fourth simplified nicely too, we had significant difficulty finding the 

derivative of the second term, and were left with: 

 
𝜕ℒ(Ω, 𝑉)*!)

𝜕Ω
= −

1
2
𝜕
𝜕Ω

𝑡𝑟JΣ@&'𝑉.𝑉K +
𝑇(Ω&').

2
(11) 

 

Without a clear-cut path to determining the derivative of the second term 

− '
7
<
<1
𝑡𝑟JΣ@&'𝑉.𝑉K theoretically, we turned to an analytical approach. Part of the 

difficulty of computing this term of (11) came from the substitution of Σ@&'with 

(BΩ𝐵.)&'. Since B was a non-square matrix, it was not possible to take its inverse as 

required by this derivation. Thus, we considered the pseudo-inverse of 𝐵, 𝐵= – allowing 

us to formulate such a scenario – and used this to define the generalized inverse of Σ@ as: 

 

Σ@&' =	𝐵=$Ω&'𝐵= (12) 

 

We used this formulation of the generalized inverse of Σ@ in our derivations, and in 

this manner, we were no long constrained by the non-invertibility of 𝐵. Even with this 

correction, we still faced a difficulty with calculating the partial derivative of the second 

term, so we employed the following analytical approach. Given the dimensions of each of 

the matrices involved, we suspected that the derivative of the second term would work 

out as: 
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𝐵.Σ@&'𝑉.𝑉Σ@&'𝐵 (13) 

 

We defined 𝑈 as: 

 

𝑈 = 	𝑉(𝐵Ω𝐵.)&'𝐵 (14) 

 

Using the pseudoinverse of 𝐵 as discussed above allowed us to simply 𝑈 as: 

 

𝑈 = 𝑉(𝐵.)&'Ω&' (15) 

 

Using equation (14) to rewrite (13) then told us that under our assumption, the 

second term could be computed with equation (15) simply as 𝑈.𝑈. With this presumed 

reduction mind, we sought to test our suspicion by running a simulation for it. 
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Chapter 4: Experiments 

 

Though our suspected reduction for our formula simplified nicely and would be 

relatively computationally efficient, we still needed to prove that it was correct, given 

that it was largely supposition. In order to show that it was sound, we implemented a 

simulation for it in a python testbed, as discussed below. 

 

4.1 Programming simulation 

 

The idea behind setting up the programming testbed was to construct an 

environment in which we defined some true Ω, from which we could compute a true Σ. 

Then, beginning with a random Ω, we used the suspected equation for the gradient, 
<ℒ(1,;%&')

<1
, to update the random Ω and approximate the true Ω. We used a Jupyter 

notebook to set up a simulation in which we defined a small number of centroids as 10, 

the number of vertices per centroid as 50, and the number of timepoints T in V as 200. 

We used these values to construct B as a 500 x 10 binary matrix of repeating identity 

matrices, visualized for clarity, along with its pseudoinverse in Figure 1 below. The 

figure provides an intuitive look at how a pseudoinverse functions for a non-square 

matrix, where though stretched along the x-axis in the pseudoinverse by a factor of 5, the 

values themselves are a smaller by a factor of 5.  
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We then randomly generated a true Ω and used this, along with the above 𝐵 and 

𝐵.to define a true Σ. The two are displayed below in Figure 2; as expected, they appear 

exactly the same, only differing in size given our construction of Σ as a blown-up version 

of  Ω.  

 

Figure 1: The left plot (a) shows matrix 𝐵 as defined above, whilst the right plot (b) 
illustrates its pseudoinverse, 𝐵=. 

(a) 

(a) 
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Following this, since we could not sample 𝑉.𝑉 directly from a Wishart 

distribution in the testbed, we sampled 𝑉 from 𝑃(𝑉|Σ) by drawing a 𝑉 from a 

multivariate normal distribution with true Σ as the covariance of the distribution. Using 

this sampled value of 𝑉, we were able to compute 𝑉.𝑉, and we defined a random omega 

which we’d update over iterations. 

 

Having set up the experiment and all of the necessary matrices, we ran our 

learning algorithm based upon the full equation: 

 
𝜕ℒ(Ω, 𝑉)*!)

𝜕Ω
= 𝑈.𝑈 − Ω&'𝑇 (16) 

 

For each epoch, we computed the gradient using equation (16) and with this 

gradient, updated our estimate of Ω with equation (8). We ran the learning algorithm over 

5,000 iterations and found that it converged with an error of 0.0494 by the end of the 

(a) (b) 

Figure 2: The left plot (a) shows the defined true	Ω, whilst the right plot (b) shows the 
corresponding true Σ. 
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iterations. We illustrate the convergence in Figure 3 below, which displays the errors 

over the learning.   

 

 

 

 

 To confirm the convergence suggested by Figure 3, we illustrate the original 

random Ω, which was simply initialized as the identity matrix, alongside the 

approximated random Ω and the true Ω in Figure 4. This comparison clearly shows the 

convergence of random Ω to true Ω based on the similarities of Figure 4(b) and Figure 

4(c).   

 

Figure 3: Diminishing error of random Ω approximation over iterations, 
converging at 4.94% error after 5000 iterations. 



 17 

 

 

 

 

The results illustrated in Figure 3 and Figure 4 confirmed our supposition and 

allowed us to use the proposed equation (16) to determine the Ω gradient, giving us a 

fairly clear-cut path forward.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Plot (a) displays the original random Ω generated as the identity matrix, (b) 
illustrates the approximation of this matrix by the end of 5000 iterations, and (c) shows the 
true Ω.   

(a) (b) (c) 
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Chapter 5: Discussion and Conclusion 

 

With the correctness of the underlying mathematical basis for the model 

established by our preliminary results, we discuss the implications of our research and the 

next steps we intend to take for our model extension. 

 

5.1 Implications and future direction 

 

The results derived from the programming testbed confirmed the correctness of 

equation (16) in determining the Ω gradient; at this stage, we have derived the necessary 

changes needed to be made in the mathematical formulation of the original PrAGMATiC 

to replace the area functional means with covariances of the functional values.  

Though we have made the changes in the code based on the preliminary results, 

due to time constraints, we have not finalized the changes to the dataset to run the model 

with visualizations effectively. This leaves a clear avenue for future direction on the 

ongoing research – to implement the necessary changes to PrAGMATiC so as to 

visualize the results of learning the covariances.   

Toward this end, we note first that it is nontrivial to visualize the learned Ω given 

that the matrix has dimensions of number of centroids by number of centroids, when we 

ultimately would like to visualize this as a 1 by number of vertices vector. With this line 

of reasoning, it is possible to find the first eigenvector 𝒗 of Ω to project that onto the 

brain. This can be achieved by computing 𝒗 ∗ 𝐵. The first eigenvector of the covariance 

matrix represents the ordering of the values whose covariances are being computed along 

one dimension. In more detail, this first eigenvector of the covariance matrix, sometimes 

referred to as the principal gradient of connectivity, has been shown to account for the 
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positions of networks over the primary sensory and motor regions [8]. Values that covary 

significantly will end up in similar places, whilst values that do not covary as much will 

appear in different places along that dimension. This is how we will approach the 

problem of visualizing the covariance learning of our extension of PrAGMATiC.  

 

5.2 Conclusion 

 

Extending PrAGMATiC as a covariance-based model presents a novel approach 

of generating functional maps across the cortex. Building off of the original 

PrAGMATiC algorithm’s formulation of the functional mapping of the brain as a 

probability distribution that can be used to sample subjects, our modification to the model 

will estimate the covariance of the functional values rather than directly estimating the 

means of the areas. This will allow us to make direct comparisons between subjects – an 

assumption that PrAGMATiC has to make – thus enabling us to generate cortical 

parcellations using exclusively resting state fMRI. 
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