
Copyright

by

Shadi Abdul Khalek

2011



The Dissertation Committee for Shadi Abdul Khalek
certifies that this is the approved version of the following dissertation:

Systematic Testing Using Test Summaries: Effective

and Efficient Testing of Relational Applications

Committee:

Sarfraz Khurshid, Supervisor

Adnan Aziz

Don Batory

E. Allen Emerson

Dewayne Perry



Systematic Testing Using Test Summaries: Effective

and Efficient Testing of Relational Applications

by

Shadi Abdul Khalek, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2011



Dedicated to my fiancee and family.



Acknowledgments

I cannot thank my family enough for the support, love, and encour-

agement they gave me throughout my studies. The fact that they will be

absolutely as happy as I am with any of my accomplishments makes me desire

it more. My father calling me ”Dr. Shadi”, even through my master’s years,

kept me going till the end. My mother’s encouragement asking me not to

procrastinate since my first year till the last minute of writing this acknowl-

edgment has always been priceless, and my siblings looking up for me made

me work harder to prove them right. I am so grateful to have them around

me in my life.

My heartfelt gratitude goes to my fiancee Rana. She has been my

inspiration to graduate and fulfill further dreams in my life. She kept me

focused all the time. The last two years of my PhD. studies wouldn’t have

been the same without her in my life. Thank you for being patient all these

years!

It has been an incredible journey here at UT Austin. I am so lucky to

have been picked by Prof. Sarfraz Khurshid to join his team. I thank him so

much for his continuous support, great guidance, and everlasting knowledge

and advice he shared. Having him as my advisor was an honor. I wish him all

the success and happiness in his life and career.

v



I would like to thank my committee members, Prof. Adnan Aziz, Prof.

Allen E. Emerson, Prof. Don Batory, and Prof. Dwayne Perry, for their great

advice, feedback, and support for my work. It is a privilege having them on

my committee. I thank my professors at the American Univerisity of Beirut,

Professors Elie Kayrouz, Paul Attieh, Fatima Abu Salem, Haidar Safa, and

Wassim Masri.

I thank Dr. Fadi Zaraket for his warm welcome at Austin, he made me

feel home since my first day.

I thank Dr. Bassem EL-Karablieh for the jump start he helped me with

in my research track. I am very thankful for his good advice and the research

knowledge and experience he shared with me. I am grateful to have him as a

colleague and good friend.

Special thanks to all my colleagues in the Software Verification Val-

idation and Testing group. It was a pleasure to working with smart and

fun researchers: Dr. Engin Uzuncaova, Dr. Danhua Shao, Zubair Malik,

Junaid Haroun, Guowei Yang, Divya Gopinath, Razieh Nokhbeh, and Ling-

ming Zhang. I wish them the best of luck and success in achieving their

goals and getting their degrees. In addition, I thank the Students in Software

Engineering for uniting software engineering students together in a friendly

environment.

On top of all, my experience at UT Austin could not have been as great

without the good friends I had. First, I would like to thank the Fakhreddine’s:

vi



Mohamed (Moh), Ali, Suraya and Faris, Sarah, and Mohammad. I thank

them for making me part of their family. I thank Yehia Zayour, Hala Nasser,

Michele Saad, Salam Akoum, Omar El-Ayache, Marcel Nassar, Amin Abdel

Khalek, and all of the Lebanese Social Club members. I thank my friends at

Google, Andrew Chen, Ziad Hatahet, Evan Golschmidt, Camilo Arango, and

Yongrim Rhee. You all made my journey cheerful.

I also thank my friends in Lebanon, all of whom kept in touch with me

despite the distance. I thank Ali Abdel Khalek, Ragheed Abdel Khalek, Rabih

Abdel Khalek, Fares Samara, Abdalla El-Horr, Amine Chehab, and Alfaisal

Jauhary.

A special thank you to Melanie Gulik for helping me with any problem

I had as a Student. She has always been there for all the graduate students

and treated our problems as hers.

The work presented in this dissertation was funded in part by the

National Science Foundation (awards CCF-0845628, IIS-0438967, and CCF-

0702680) and the Air Force Office of Scientific Research (award FA9550-09-1-

0351).

vii



Systematic Testing Using Test Summaries: Effective

and Efficient Testing of Relational Applications

Publication No.

Shadi Abdul Khalek, Ph.D.

The University of Texas at Austin, 2011

Supervisor: Sarfraz Khurshid

This dissertation presents a novel methodology based on test sum-

maries, which characterize desired tests as constraints written in a mixed

imperative and declarative notation, for automated systematic testing of rela-

tional applications, such as relational database engines. The methodology has

at its basis two novel techniques for effective and efficient testing: (1) mixed-

constraint solving, which provides systematic generation of inputs character-

ized by mixed-constraints using translations among different data domains;

and (2) clustered test execution, which optimizes execution of test suites by

leveraging similarities in execution traces of different tests using abstract-level

undo operations, which allow common segments of partial traces to be executed

only once and the execution results to be shared across those tests.

A prototype embodiment of the methodology enables a novel approach

for systematic testing of commonly used database engines, where test sum-
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maries describe (1) input SQL queries, (2) input database tables, and (3)

expected output of query execution. An experimental evaluation using the

prototype demonstrates its efficacy in systematic testing of relational applica-

tions, including Oracle 11g, and finding bugs in them.
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Chapter 1

Introduction

1.1 Overview and Problem Description

Reliability of complex software systems is a crucial goal to increase

software dependability. The cost of failures in systems and data lost can be

very expensive [40, 101]. Current methodologies depend heavily on testing

to validate systems. Conceptually, testing is simple: run a program against

a set of test inputs and check the correctness of the outputs. In practice

however, testing remains expensive and largely manual. Many existing tools,

e.g. JUnit [68], support the automation of test execution and error reporting.

However, the crucial part of the test generation is least automated and involves

manual effort.

Automating test generation for complex relational applications, such

as database management systems (DBMS) is a challenging task. Automatic

DBMS testing includes generating (1) test queries for a given database schema,

(2) a set of test databases, and (3) oracles to verify the result of executing the

queries on the input databases using the DBMS. Some approaches exist to

automate the first two artifacts of the tests [90, 95]. SQL test queries can

be generated using grammar based generators [44] and test data can be gen-
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erated using query aware test input generators [16, 17]. Database generation

approaches, however, do not provide mechanisms to verify the result of execut-

ing test queries on the generated databases. This process is usually performed

either manually or by differential testing, i.e. comparing the execution results

of a previous version of the DBMS with the current version to verify that any

changes did not break a working component.

In this dissertation, we present a framework for automated black-box

testing of database engines using test-summaries, abstract properties of de-

sired tests, leveraging state-of-the art constraint solvers. We automate the

generation of all three main artifacts, and show the effectiveness of using test-

summaries in finding bugs in widely used commercial and open source database

systems [1, 2, 3].

Our approach is based on writing summaries as logical constraints, each

test summary consists of: input constraints that define desired test inputs and

output constraints that characterize the test oracles (correctness checks) and

defines the relations between inputs and outputs. We use tools that analyze

those constraints and perform exhaustive bounded testing against all inputs

from a bounded input space [1, 71]. This systematic, intent-driven approach

allows developers to focus on the creative aspect of designing tests and test

strategies while the tools perform the tedious tasks such as creation, execution,

and verification of output of concrete tests.

Writing constraints and modeling systems using different modeling lan-

guages is receiving increased attention from developers and testers. They al-
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ready write some constraints as assertions in their code and use them routinely

for runtime checking. However, requiring a different language for writing con-

straints makes the learning burden high for developers. At the same time,

some languages and constraint solvers are more effective than others.

In this dissertation, we present a new approach, and techniques that

embody it, to increase the usability, efficiency, and effectiveness of systematic

constraint-based testing and apply it to the domain of relational applications.

1.2 Overview of Our Approach

Our approach has three core research thrusts:

Usability : Writing Mixed-Notation Constraints. We present a

novel technique for mixed declarative and imperative formulation of structural

constraints. In specific, we introduce a new notation to support a mixed style

for writing specifications that represent input constraints, which describe de-

sired test inputs, using a combination of declarative and imperative program-

ming styles. Specifically, the user formulates constraints using a combination

of the expressive Alloy language [65] — a declarative, first-order logic based

on sets and relations — and the widely used imperative Java programming

language. This approach enables the user to write and mix constraints freely

using the two different paradigms. Alloy, with its support for path (navigation)

expressions using transitive closure, allows succinct formulations of complex

structural properties, such as those of class invariants in object-oriented code.

Java, with its wide use, provides a familiar notation that is likely to pose a

3



minimal learning burden.

Effectiveness: Combining Constraint Solvers. We present new

techniques for solving input constraints using a combination of solvers that

support different classes of input constraints written using different program-

ming paradigms. Specifically, we leverage the Alloy Analyzer [63] — a fully

automatic SAT-based tool-set for checking Alloy formulas — and the Java

PathFinder (JPF) [108] — an explicit state, open-source software model checker

for Java — and use them in synergy for solving structural constraints and en-

able automated test generation.

Efficiency : Clustered Test Execution. We present a novel tech-

nique for efficiently executing suites of unit tests, where several tests in a suite

may contain a common initial segment of execution – a property often ex-

hibited by systematically generated suites, e.g., those for bounded exhaustive

testing. Our insight is that we can cluster execution of such tests by defining

abstract-level undo operations [41, 91], which allow a common execution seg-

ment to be performed once, and its result to be shared across the tests, which

then perform the rest of their operations.

1.3 Contributions

This dissertation makes the following contributions [1, 2, 3, 4, 5, 6]:

4



1.3.1 Mixed-notation for writing Constraints [5]

We present JABAL, a framework for mixed declarative and impera-

tive formulation of structural constraints. Our approach enables the user to

leverage the widely used Java language and the expressive Alloy language to

model constraints. Thus, it does not require the user to follow one specific

programming paradigm, rather it enables them to write a constraint using

a paradigm they find more suitable for the specific constraint and to mix it

freely with other constraints that may be written using a different paradigm.

We introduce a new notation for writing mixed constraints; specifically we in-

troduce the semi-colon operator which enforces an explicit dependency among

constraints, akin to sequencing of statements in an imperative language.

1.3.2 Solving Mixed Constraints for Test Input Generation [5]

We enable JABAL to leverage different constraint solvers, namely the

Alloy Analyzer and JPF, using data translations based on a relational model

of the program heap. Abstraction translations translate Java data structures

into Alloy instances and concretization translations translate Alloy instances to

concrete Java data structures. We introduce def-use annotations, which state

the sets of fields defined and used by a constraint, to combine the different

solvers and guide solving of constraints.

5



1.3.3 Constraint-based SQL Query Generation [2]

We present a new technique that leverages the Alloy tool-set to model

the language constraints of a useful subset of SQL and provides automated

generation of syntactically and semantically valid SQL queries (with respect

to the constraints). Queries generated using our technique are used as inputs

for systematic relational database engine testing.

1.3.4 Systematic Testing of Relational Database Engines [1, 3]

We present a technique for systematic testing of relational databases.

We present a novel use of test summaries to automate systematic testing of

relational database management systems. Our framework uses test summaries

to automatically generate: (1) SQL test queries with respect to a database

schema, (2) a set of test databases (data populating tables), and (3) oracles

to verify the result of executing the queries on the input databases using the

test database management system.

1.3.5 Clustered Test Execution [4]

We present a technique for clustered execution of unit tests for Java

programs. Given a set of tests, our framework analyzes the tests to build a

cluster tree – a trie [99] structure that represents the sharing of initial code seg-

ments across the tests. Each node represents a code segment in a test. Thus,

each path in the cluster tree represents a test case. A depth-first traversal of

the cluster-tree forms the basis of test execution: visiting a node represents

6



executing the corresponding code segment. The search backtracks by perform-

ing user-defined abstract-level undo operations, which enable sharing of results

for initial segments of execution common to different tests.

1.3.6 Implementation [6]

We developed a prototype implementation for each of our techniques.

We developed Alloy models which create the skeleton for SQL queries and

database schemas. These models can be extended to cover additional parts

of the SQL grammar and to add user constraints or specifications for more

specific test suites. We also developed an Eclipse [39] plug-in for writing Alloy

constraints within Java classes. This plug-in is extensible and can be further

extended to support mixed-constraints notation.

1.3.7 Experimental Evaluation

We present an experimental evaluation to show the applicability and

effectiveness of each of our approaches using a suite of relational applications

and commonly used data structures.

1.4 Organization

This dissertation is organized as follows: Chapter 2 presents our ap-

proach for mixed-notation formulation syntax and semantics, followed by Chap-

ter 3 describing our approach for mixed constraint solving and experimental

evaluation.

7



Chapter 4 presents our framework which uses test summaries for sys-

tematic black-box testing of relational database management systems, and

related experimental evaluation on different databases.

Chapter 5 presents our approach for efficient test execution through

clustering using abstract undo operation, and experimental evaluation.

Finally, Chapter 6 compares our work with related work in the field of

constraint solving, database testing, and optimizing test execution.
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Chapter 2

Test Summaries: A Mixed-Constraint

Notation

2.1 Overview

The benefits of using specifications in software testing have long been

known [53]. Traditional specification-based techniques required much man-

ual effort, and hence posed a burden on the user and remained primarily

confined to academic settings. Recent years have seen much work in automa-

tion of specification-based techniques. A significant part of automation is due

to the advancements in constraint solving techniques, which have been well-

supported by the wide availability of faster processors. Witness, for example,

the recent resurgence of symbolic execution, which was developed over three

decades ago [27], but has only recently started to find its way into industrial

settings [111].

While the recent technological advances have increased the effectiveness

and efficiency of specification-based techniques, the use of specifications in

testing real applications is largely confined to simple assertions, and developers

often deem richer forms of specifications more trouble than they are worth.

Indeed, manually writing a complex specification, say an input constraint that
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defines complex inputs to a real program, requires careful thought and much

effort.

To facilitate writing specifications, researchers have developed frame-

works to support different programming paradigms, including support for

declarative languages and for imperative languages. However, existing frame-

works that provide automated analysis still require using one specific pro-

gramming paradigm for writing specifications. We believe this requirement

is too rigid and seriously impedes a wider scale deployment of specification-

based approaches. Moreover, having invested much effort in writing a complex

specification, it is natural for developers to expect an efficient and effective au-

tomated analysis that provides results that justify the effort.

We believe there are two primary research questions that must be ad-

dressed to make specifications more attractive to practitioners: (1) “how to

facilitate writing specifications?” and (2) “how to effectively utilize specifica-

tions to automate efficient analysis?”.

We present JABAL, Java and Alloy Based Language, — a novel frame-

work for mixed imperative and declarative formulation and solving of struc-

tural constraints — which addresses both these questions. Our approach en-

ables the user to leverage the expressive declarative language Alloy and the

widely used imperative language Java to write and mix constraints freely using

the two different paradigms.

JABAL introduces a new notation to support a mixed style for writing
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specifications that represent input constraints, which describe desired test in-

puts, using a combination of declarative and imperative programming styles.

Specifically, the user formulates constraints using a combination of the ex-

pressive Alloy language [65] — a declarative, first-order logic based on sets

and relations — and the widely used Java programming language. Alloy, with

its support for path (navigation) expressions using transitive closure, allows

succinct formulations of complex structural properties, such as those of class

invariants in object-oriented code. Java, with its wide use, provides a familiar

notation that is likely to pose a minimal learning burden. Thus, JABAL does

not require the user to follow one specific programming paradigm, rather it

enables them to write a constraint using a paradigm they find more suitable

for the specific constraint and to mix it freely with other constraints that are

written using a different paradigm.

Our framework increases the usability of systematic constraint-based

testing by introducing the following:

• A Mixed constraint notation and its semantics. We introduce a

new notation for writing mixed constraints using the declarative language

Alloy and the imperative language Java. We formally define syntax and

semantics of our notation.

• An Imperative-style sequencing in a declarative language. Our

notation introduces the semi-colon operator to Alloy, which enforces an

explicit dependency among constraints, akin to sequencing of statements
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in an imperative language. Specifically, constraints that follow a semi-

colon assume the constraints that precede it to hold, which makes it

easier to formulate constraints using different programming paradigms,

e.g., a Java constraint can assume an Alloy pre-condition and not have

to check it again.

2.2 Example

We present an example on how to write mixed constraints using our

notation and how JABAL proceeds with solving them. We use B-Trees [99]

as our example data structure. We first describe the general properties of

B-Trees, and then we describe modeling the constraints of the data structure

using our mixed constraint notation that is based on Alloy and Java.

A B-Tree is a generalized form of a binary search tree where each node

in the tree can have more than two children. B-Trees are often used in database

management systems to index the data and to provide fast access, insertions,

and deletions in logarithmic time.

Given an order d, i.e., the maximum number of children for each node

in a B-Tree, the following properties should hold:

1. The tree is full (all leaves have same height).

2. Every node except the root has at least d/2 children.

3. Every node has at most d children.

4. The root is either a leaf node or has at least 2 children.
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5. An internal node with m children contains m + 1 keys.

6. If a node is not a leaf, then for any 0 ≤ i < #keys,

minKey(sub[i]) < keys[i] < maxKey(subs[i + 1]).

Consider modeling the first four structural properties using Alloy [65],

and properties 5 and 6, which specify constraints on keys, using Java.

Alloy is a strongly typed specification language. It assumes a universe

of atoms (or elements) partitioned into subsets, where every type is associated

with a subset. An Alloy specification consists of a sequence of paragraphs

where a paragraph enables defining new types, introducing relations between

types, and adding constraints on these types and relations. Being an analyz-

able relational language, Alloy semantics are closely related to those of object

oriented programs.

We use Alloy signatures to model the objects of the data structure, and

relations on each signature represent the instance variables of each object:

1 one s i g BTree {
2 root : l one BTreeNode ,
3 nodeCount : one Int ,
4 keyCount : one Int
5}
6 s i g BTreeNode {
7 subs : seq BTreeNode ,
8 keys : seq Int ,
9 order : one Int

10}

The keyword one declares the relation nodeCount : BTree × Integer

to be a total function, i.e., each BTree must have a node count. The keyword
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Figure 2.1: JABAL main framework steps for solving mixed-constraints.

lone defines a partial function, i.e., each BTree has at most one root. The

seq construct represents a sequence of elements, which models arrays in Alloy,

where each element has a corresponding index. A BTreeNode in a B-Tree has

a sequence of children which are accessed through the subs relation, a sequence

of keys accessed by the keys relation, and an order relation which identifies

the maximum and minimum number of keys and children for each BTreeNode

element.

We model the first four properties in Alloy as follows:

1 pred t r e e ( ) {
2 a l l node : BTreeNode | l one subs . node //0 or 1 parent
3 lone node : BTreeNode | no subs . node // at most one roo t
4}
5 pred f u l l ( ) {
6 #BTreeNode . subs = 0 or ( a l l b1 , b2 : BTreeNode |
7 #b1 . subs=0 and #b2 . subs=0 => #b1 . ˜∗ ( subs )= #b2 . ˜∗ ( subs ) )
8}
9 pred a c y c l i c ( ) {
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10 a l l n : BTreeNode | n ! in n . ˆ subs
11}
12 pred orderPreserved ( ) {
13 a l l node : BTreeNode | #node . subs = 0
14 or (#node . subs > BTreeNode . order fun / div 2
15 and #node . subs <=BTreeNode . order )
16}
17 pred correctNodeCount ( ) {
18 BTree . nodeCount = #BTreeNode
19}

The tree predicate states that a BTreeNode element can be a child of

at most one BTreeNode element, plus there is at most one root for the B-Tree.

The full predicate states that all the leaf elements have the same height by

calculating the size of the transpose of subs relation of leaf nodes. The tilde op-

erator ‘∼’ represents relational transpose, the ‘* ’ operator represents reflexive

transitive closure, and the ‘#’ operator represents set cardinality. The acyclic

predicate states that the tree has no cycles. The orderPreserved predicate

states that the number of children of a BTreeNode can be between order/2

and order. Finally, the correctNodeCount states that the BTree.nodeCount

should be equal to the total number of nodes.

Next, we model the key constraints in a B-Tree using Java:

1 class BTree {
2 BTreeNode root ;
3 int keyCount ;
4 int nodeCount ;
5 . . .
6 boolean keysAreSorted ( ) { . . . }
7 boolean searchProperty ( ) { . . . }
8 boolean correctKeyCount ( ) {
9 return keyCount == countKeysRecurs ive ly ( root ) ;
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10 }
11}
12 class BTreeNode {
13 int [ ] keys ;
14 BTreeNode [ ] subs ;
15 int order ; . . .
16}

Finally, to solve the complete set of constraints, we combine the con-

straints written in Alloy with those in Java and guide the solver by using the

following MixedConstraints construct of JABAL:

1 MixedConstraints {
2 @MixedConstraints ( d e f s = {"BTree.root" ,"BTreeNode.subs" ,

"BTreeNode.order"})
3 t r e e [ ]
4 f u l l [ ]
5 a c y c l i c [ ]
6 orderPreserved [ ] ;
7 java : BTree . correctKeysSubsCount ( ) ;
8 java : BTree . searchProperty ( ) ;
9 java : BTree . correctKeyCount ( ) ;

10 @MixedConstraints ( d e f s = {"BTree.nodeCount"})
11 correctNodeCount [ ] ;
12}

We next describe how JABAL solves these mixed constraints. By de-

fault, the SAT-based back-end of Alloy is used for solving Alloy constraints,

and the Java PathFinder is used for solving Java constraints. The semi-colon

separator guides the solving process. Each set of constraints preceding a semi-

colon represents one step of solving. The defs annotation element provides a

guide for solving the corresponding constraints (Section 2.4).

For this MixedConstraints example, the first step is to solve the first
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four predicates. The defs element lists the fields that are generated by solving

the corresponding predicates. Thus, the Alloy Analyzer generates values for

BTree.root, BTree.subs, and BTreeNode.order variables. These values are used

as inputs to the next step to solve the Java-based constraints. In the second

step, the Java constraints are solved in the sequential order they appear in.

A Java constraint is identified by the java: keyword preceding the predicate

invocation. JPF is used to solve these constraints on keys. In the final step,

the output generated using Java constraints is used as an input to solve the

last correctNodeCount constraint in Alloy. This constraint is solved using the

Alloy Analyzer to generate a valid BTree.nodeCount value. The output of

the last step is a set of B-Tree data structures with all the instance variables

initialized subject to the given constraints.

2.3 Why Mixed Constraints?

Mixed constraints introduce a novel approach for writing and solving

constraints. The benefits of the approach are several-fold:

• JABAL eases the learning burden on the user — the ability to freely

mix constraints using two different programming paradigms allows the

user to choose their favorite paradigm to start using the framework and

then to gradually learn the other paradigm, which provides flexibility

and convenience in constraint formulation.

• JABAL provides a novel way of combining solvers that were originally de-
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signed for different programming paradigms, which allows our approach

to support new powerful analysis, e.g., the combination of Alloy and

JPF could even enable a novel approach for checking multi-threaded

data intensive applications.

• JABAL’s support for non-conventional solver combinations opens an av-

enue for novel techniques for highly optimized solving.

• The unification of two different paradigms allows traditional analysis

that were originally designed for programs in a particular paradigm to

be applied to programs in another paradigm, thereby enabling a host of

new analysis for existing programs, e.g., a traditional pointer analysis

could provide the basis of slicing an Alloy specification.

• JABAL provides a fresh perspective on incremental and online solving,

which is likely to become the backbone of future development environ-

ments that provide continuous feedback to the developer.

2.4 Syntax and Semantics

Our framework extends Alloy’s grammar to support writing mixed con-

straints. Fig. 2.2 presents syntax for a core of the Alloy grammar1 as well as

the additional syntax introduced by JABAL. The grammar uses the standard

BNF operators, in addition, x,* means zero or more comma-separated occur-

1For complete syntax of the Alloy grammar, refer to [65].
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rences of x. Every name ending with ID is an identifier and is a terminal.

Bold names are terminals as well.

The extended grammar of the framework is only used within the Mixed-

Constraints block. We represent a set of either Alloy constraints or Java con-

straints by a constraintSet. Each constraint set is separated from the other by

the use of a semicolon. Similar to commonly used imperative languages where

the semantics of a semicolon is to declare the end of an execution statement,

a semicolon in JABAL declares the end of a set of constraints, which are to

be solved together. A constraint set can have an optional corresponding an-

notation. The annotations conform to the following definition given using the

familiar style of defining annotations in Java:

1 public @inte r f a c e MixedConstraints {
2 St r ing [ ] d e f s ( ) ;
3 S t r ing [ ] uses ( ) ;
4 S t r ing s o l v e r ( ) ;
5}

The Mixed-Constraints annotation has three elements: (1) the defs ele-

ment representing the set of fields which the constraint solver defines by solv-

ing the corresponding constraint, (2) the uses element representing the set of

fields which the constraint solver uses in order to solve the corresponding con-

straints, and (3) the solver name which is responsible for checking constraints

and/or generating values for the fields in the data structure.

JABAL uses the annotations to analyze the role of a predicate in gen-

erating certain fields of the data structure and analyzes the information in
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module ::= module moduleID paragraph*

paragraph ::= sigDecl* factDecl* funDecl* predDecl* mixedPred runCmd

sigDecl ::= [abstract] sig sigID,+ [extends sigID] sigBody

sigBody ::= {(varID : sigID),*} [{alloyConstraints}]

factDecl ::= fact [factID] alloyConstraints

funDecl ::= fun funID (var:expr,*) : declExpr expr

predDecl ::= pred predId (var:expr,*) alloyConstraints

mixedPred ::= MixedConstraints { mixedConstraints }
mixedConstraints ::= [annotation] constraintSet ; mixedConstraints | ∅
constraintSet ::= alloyConstraints | javaConstraints

alloyConstraints ::= formula*

javaConstraints ::= java: BaseClassID.predicateMethodID() *

annotation ::= @MixedConstraints { use, def, solver }
use ::= use = { fieldID,* }
def ::= def = { fieldID,* }
solver ::= solver = ”solverID”

fieldID ::= ”BaseClassID.instanceVariableID”

solverID ::= ”miniSat” | ”ZChaff” | ”Sat4j” | ”JPF” | ”JVM”

formula ::= expr [!]in expr

| [all | no | lone | one | some] expr

| !formula

| formula and formula

| formula or formula

| all v : type | formula

| some v : type | formula

Figure 2.2: Extended grammar of Alloy supported by JABAL.
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expr ::= expr + expr

| expr & expr

| expr - expr

| ∼expr

| expr.expr

| ∗expr

| ˆexpr

| funID ( expr,*)

| Var

Var ::= var

| Var[var]

runCmd ::= run MixedConstraints [scope]

Figure 2.2: Extended grammar of Alloy supported by JABAL.

them to check and warn for proper user guidance of mixed constraint solving.

The Alloy Analyzer uses SAT4J and MiniSat as incremental SAT solvers to

enumerate all possible solutions satisfying the model’s constraints, while the

other SAT solvers only provide one solution satisfying the constraints if any

exists. For example, the user can decide to solve a set of Alloy constraints

using MiniSat solver, enumerating all possible valuations satisfying those con-

straints and check for other constrains via ZChaff solver in order to prune out

invalid solutions.

The framework permits executing Java code on the data structure as

an independent step of the complete generation process. To execute Java code

without any automatic generation of values for fields, the user can set the
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M : formula→ env → boolean

X : expr → env → value

env = (var + type)→ value

value = (atom× ...× atom) + (atom→ value)

M [a in b] e = X [a] e ⊆ X [b] e

M [!F ] e = ¬M [F ] e

M [F and G] e = M [F ] e ∧M [G] e

M [F or G] e = M [F ] e ∨M [G] e

M [all v : t | F ] e =
∧
{M [F ] (e⊕ v 7→ x) | (x, unit) ∈ e(t)}

M [some v : t | F ] e =
∨
{M [F ] (e⊕ v 7→ x) | (x, unit) ∈ e(t)}

Figure 2.3: Semantics of formulas in Alloy.

CS : a constraintSet term

MC : a mixedConstraints term

M [CS] e =
∧
{M [F ] e | F ∈ CS}

M [CS ; MC] e = M [MC] (e⊕ e′) |M [CS] e′

⊕(e, e′) = (e ∪ e′)− {r ∈ e | (r.var) ∈ e′.var}

Figure 2.4: Semantics of mixed constraints in JABAL.

solver element in the annotation to JVM, indicating that the Java Virtual

Machine is running the code. This is useful for testing methods by checking

the correctness of the post-state of the data structures upon executing the

code. In addition, it is an easy way to modify the state of the data structure

before validating the remaining set of constraints.

Fig. 2.3 shows the main semantics for formula operations in Alloy lan-

22



guage. There are two functions: M which interprets a formula as true or

false, and X which interprets an expression as a value. An env, environment,

is a mapping of variables into values representing an Alloy instance; it is a

set of valuations for the variables in the model to concrete values or relations

between atoms. To define the sequential notation of solving constraints, we

extend the definition of function M to interpret the use of semicolons between

constraints. Fig. 2.4 shows the extended semantics for our mixed notation re-

flecting the semantics of the semicolon. Solving for a constraint set means that

all the functions belonging to the set must be satisfied via the environment. A

mixed constraint is a sequence of constraint sets. Each constraint set is solved

based on the environment by which the previous constraint set was satisfied.

To solve for all solutions of the mixed constraints, we define a function

S, which maps constraints in the context of their corresponding annotations

and a concretization of the latest instance into a new instance:

S : (annotations, constraintSet, instance)→ instance

Consider a mixed constraint predicate MC as follows:

MC = cs1; cs2; ...; csk;

Solving MC implies finding all instances, i.e. environments, ik such

that :

i0 = ∅ (empty instance with no bindings of variables)

S[cs1]a1, i0 = i1

23



S[cs2]a2, i1 = i2

...

S[csk]ak, ik−1 = ik

This property is defined in the semantics by having a mixed constraint

MC satisfiable by (e ⊕ e′) where e′ is the instance which satisfied the previous

constraint set CS. (e ⊕ e′) implies an environment where valuations in e are

overridden by the valuations of e′.

Finally, running JABAL requires providing the run command, as de-

fined in the Alloy language, with MixedConstraints as its first parameter and

the scope of elements of the model similar to usual Alloy run commands.
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Chapter 3

Solving Mixed Constraints

3.1 Overview

Our framework improves the efficiency of systematic constraint-based

testing by introducing new techniques for solving input constraints — us-

ing a combination of solvers that support input constraints written in differ-

ent programming paradigms. Specifically, JABAL leverages the Alloy Ana-

lyzer [63] — a fully automatic SAT-based tool-set for checking Alloy formulas

within a given scope, i.e., bound on the universe of discourse tool — and

the Java PathFinder (JPF) [108] — an explicit state, open-source software

model checker for Java — and uses them in synergy for solving structural

constraints and enable automated test generation. To optimize solving, we

introduce def-use annotations, which states the sets of fields defined and used

by a constraint.

A key challenge in solving constraints written using a combination of

paradigms is to handle the likely differences in data models native to each

paradigm. For example, Alloy’s data model is entirely based on sets and rela-

tions over atoms, whereas Java data-types include primitives, references, and

arrays. To bridge this gap in the data models, we use data translations based
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on a relational model of the program heap: abstraction translations translate

Java data structures into Alloy instances and concretization translations trans-

late Alloy instances to concrete Java data structures. Such translations were

originally developed for specification-based testing of Java programs using the

Alloy tool-set [71].

3.2 Framework

This section describes the framework for writing and solving declarative

and imperative constraints in synergy for automatic generation of complex

data structures. JABAL allows the user to define constraints declaratively in

the Alloy language, in addition to describing constraints imperatively using the

Java programming language, which provides flexibility in writing constraints

and reduces the learning burden on the user. Additionally, the user can guide

solving those constraints using annotations provided by JABAL. This allows

the user to benefit from strengths of different constraint solvers.

Fig. 2.1 shows an overview of the framework. It takes as input a set of

mixed constraints written in Alloy and Java defined by the MixedConstraints

construct. The first step of the framework is to divide the constraints into

separate groups based on their type and annotations provided by each group.

In the next step, each group of constraints is solved using a solver for

those constraints. For Alloy constraints, the user can choose between different

SAT solvers, and for Java constraints the user can choose between using the

Java PathFinder as a solver or directly running the Java code as given using
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the Java virtual machine (JVM) to set desired field values of the input partial

solution. A solving step may generate several solutions (if desired). Each solu-

tion stored and used in turn. Since solutions generated by the Alloy Analyzer

are Alloy instances, we apply a concretization translation to convert them into

concrete Java data structures. Each partial solution is input for solving the

next group of constraints. To support arbitrary interleaving of constraints,

we apply an abstraction translation to convert Java data structures to Alloy

instances.

Each group of constraints is used to generate values for certain fields

of the complete data structure being generated. Based on the annotations on

each group of constraints, the input partial solution might be either updated

to include the changes on the fields generated or it might be pruned from the

set of partial solutions if cannot be updated to satisfy the group’s constraints.

3.2.1 Solving mixed constraints

Alloy’s relational basis provides a natural embedding of the Java heap

into the Alloy data-model. The following translation template shows how our

approach models the basic Java types in Alloy:

1 class A {}
2 class B extends A {
3 T x ;
4 T [ ] y ;
5 B z ;
6}

→

1 s i g A {}
2 s i g B extends A {
3 x : T,
4 y : seq T,
5 z : l one B
6}
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T represents a primitive data type; B represents a reference to an object

type and can be null. Not all primitive types supported by Java are supported

by Alloy. We enable user defined translations for certain types. For example,

for Boolean variables we define an abstract signature Boolean in Alloy and

have two other signatures extend it to represent true and false values:

abstract sig Boolean {}

one sig true, false extends Boolean {}

Even though Alloy does not support all primitive types, JABAL can

use the mixed constraint solvers to solve for desired primitive values using Java

solvers and combine the solutions with Alloy’s valuations. Fig. 2.1 shows the

framework for integrating outputs from different constraint solvers. Starting

with the mixed constraints predicate defined by the user, JABAL performs

analysis on the annotations of the constraints within the mixed constraint

block and extracts the first set of constraints to be solved. Initially, the partial

solution set is empty, so the output of solving the first constraint is stored

as the first partial solution. We run a concretization algorithm, based on

previous work [71], to update the partial solution. The concretization step

converts Alloy’s abstract instances into concrete data structures updating the

changes to any fields which exist or adding new fields valuations to the partial

solution. Once the first set of constraints is solved, JABAL proceeds to solve

the next set. It makes sure that the next set of constraints are solved based on

the current partial solution. An abstraction translation is used to update the

Alloy model with the partial solution in order to achieve the desired output.
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3.2.1.1 Analyzing def-use chain

The first step in solving the mixed constraints is analyzing the anno-

tations of every constraint group. JABAL analyzes the def-use chain between

all the constraints in sequence within the MixedConstraints block. Fig. 3.1

shows the algorithm for our analysis. It validates that the uses of the first

constraint set is empty, and a global set of defs is maintained by adding to it

the fields that are solved for at each step. Following the first constraint set, it

validates that the uses set of the consequent constraint set is a subset of the

globalDefs set.

For example consider the following two predicates with their corre-

sponding annotations:

1 @MixedConstraints (
2 uses = {} , d e f s = {"BTree.root" , "BTreeNode.subs" ,
3 "BTreeNode.order"} , s o l v e r = "SAT4J")
4 t r e e [ ] ;
5
6 @MixedConstraints (
7 uses={"BTree.root" ,"BTreeNode.subs" ,"BTreeNode.order"} ,
8 d e f s = {"BTreeNode.keys"} , s o l v e r = "JPF" )
9 java : BTree . correctKeysSubsCount ( ) ;

The def-use analysis checks that the global defs set, at the time of

solving the second constraint, contains all the uses elements of the second

constraint. Then after solving the second constraint it adds to the defs set the

defs elements of the second constraint. The process is similar to the remaining

constraints. As a default setting, if a defs set of a constraint is empty then we

assume that it generates all elements which have not been previously defined.
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Set globalDefs ← ∅
for each annotation in Annotation Sequence do

localDefs← definitions using static analysis
localUses← uses using static analysis
//Check for Errors
if annotation.uses 6⊆ globalDefs then

ERROR def-use chain broken
end if
//Check for Warnings
if localDefs 6⊆ annotation.defs then

WARN fields defined not in annotation defs set
end if
if localUses 6⊆ annotation.uses then

WARN fields used not in annotation uses set
end if
if annotation.defs ∩ globalDefs 6= ∅ then

WARN multiple field generation
end if
//Update global defs set
if annotation.defs = ∅ then

globalDefs← globalDefs ∪ localDefs
else

globalDefs← globalDefs ∪ annotation.defs
end if

end for

Figure 3.1: Algorithm for def-use analysis.

JABAL also performs a static analysis of the code and reports any fields

which are used or defined that are not included in the annotations. It is not

necessary to include all the fields in the annotations, however the analysis pro-

duces warnings to avoid missing fields or generation of fields accidently. Since

solving constraints in an imperative order can update fields independently of

previous constraints as the user desires and describes in the model, our frame-

work can not claim that solving all the constraints in sequence implies that

all the constraints are satisfied at the end of the process. This claim can-
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not be achieved since each constraint set can update fields that might break

the validity of a previous constraint. JABAL warns the user about possible

overlapping of fields generation or update by multiple constraint solvers.

3.2.1.2 Abstraction

The purpose of the abstraction step is to convert a concrete data struc-

ture into Alloy, and enforce the state of that structure into the model. We

abstract the partial solution in an Alloy model when the next solver is a SAT

solver. The algorithm traverses all the objects and their fields in the partial so-

lution and maps them into corresponding Alloy segments. However, not all of

the fields are included in the abstraction. The set of fields which do not belong

to neither the uses nor the defs sets of the annotation of the next constraint

set are excluded from the abstraction process. This selection of fields which is

done at every abstraction call makes constraint solving faster. For example,

having the model of a B-Tree in the example and solving for acyclicity of the

structure, the Alloy Analyzer does not have to solve for any key fields, yielding

a smaller set of clauses to solve by the SAT solver.

For example, based on the definition in section 2.2, a BTree with one

root and two BTreeNode elements as its subs can be abstracted as follows:

1 abstract s i g BTree { . . . }
2 abstract s i g BTreeNode { . . . }
3
4 one s i g BTree 0 extends BTree {}
5
6 one BTreeNode 0 extends BTreeNode {}
7 one BTreeNode 1 extends BTreeNode {}
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8 one BTreeNode 2 extends BTreeNode {}
9

10 f a c t {
11 BTree 0 . root = BTreeNode 2
12 BTreeNode 0 = BTreeNode 2 . subs [ 0 ]
13 BTreeNode 1 = BTreeNode 2 . subs [ 1 ]
14}

Notice the addition of abstract keyword to the main signatures of BTree

and BTreeNode. Its purpose is to explicitly define those sets by the elements

that extends them. Thus there is only one BTree element that can exist,

namely the BTree 0 element, similarly for the three BTreeNode elements. The

fact block represents a constraint that should hold true for all instances gener-

ated. This abstraction considers that the constraints at this step use the root

and subs fields, and they are not altered.

3.2.1.3 Concretization

The concretization process is required to convert Alloy instances gener-

ated by the Alloy Analyzer from their abstract state into concrete Java objects.

The main approach is taken from [71], however our approach is different be-

cause we need to take into consideration the existence of a partial solution

that needs to be updated at each step.

For every element in an Alloy instance, we check if there is a Java object

corresponding to that element ID in the partial solution. If the object exists,

then we update the instance variables of that object by the relation fields in

the Alloy instance. Otherwise, we create a new Java object and map it to a
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unique ID.

For example, consider the following Alloy instance:

1 BTree = {BTree$0}
2BTree<: root = {BTree$0−>BTreeNode$0}
3BTreeNode = {BTreeNode$0 , BTreeNode$1 , BTreeNode$2}
4BTreeNode<: subs = {BTreeNode$0−>0−>BTreeNode$1 , BTreeNode$0

−>1−>BTreeNode$2}

The solution for every signature and relation is a set of valuations. We

translate the Alloy instance into Java objects equivalent to the following code1:

1 BTree BTree$0 = new BTree ( ) ;
2BTreeNode BTreeNode$0 = new BTreeNode ( ) ;
3BTreeNode BTreeNode$1 = new BTreeNode ( ) ;
4BTreeNode BTreeNode$2 = new BTreeNode ( ) ;
5 BTree$0 . root = BTreeNode$0 ;
6 BTreeNode$0 . subs [ 0 ] = BTreeNode$1 ;
7 BTreeNode$0 . subs [ 1 ] = BTreeNode$2 ;

3.2.1.4 Maintaining partial solutions

Every solution generated by solving a set of constraints updates the

partial solution. To track the changes on the data structures through different

steps of solving the constraints, JABAL maintains a map for every object

created and a unique ID associated with it. Each of the abstraction and

concretization steps search this map table for existing objects by ID to update

it. Abstracting the data structure to Alloy uses the map table to name the

unique signatures for each data element. This guarantees that the abstract

representation maps to the same concrete representation.

1We use reflection to create the objects.
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Each partial solution can be the input to a constraint set, which upon

solving generates a set of other partial solutions. Since this approach can

generate numerous possibilities, we try to limit the number of solutions upon

reaching a threshold value.

3.2.2 Solving Java constraints using JPF

In this section we describe the use of JPF solver in solving Java con-

straints. Java PathFinder (JPF) is an explicit state model checker for Java

programs. It has been used for test input generation in [109] and for finding

errors in complex systems in [10]. We use a similar approach to test input

generation using JPF with several optimizations.

After analyzing the defs set of the annotations of a Java constraint,

JABAL instruments the Java code to automate the generation of values for

defs fields. Performing analysis on the code, JABAL replaces the use of any

field in the defs set by a corresponding method call which uses JPF’s main

Verify class that implements non-deterministic choices over a range of possible

valuations. We explain this approach by an example.

Consider the following Java predicate method which checks if the keys

in a BTreeNode, defined in Section 2.2, are sorted:

1 @MixedConstraints (
2 uses = {"BTree.root" , "BTreeNode.subs"} ,
3 d e f s = {"BTreeNode.keys"} , s o l v e r = "JPF"
4 )
5boolean keysAreSorted ( ) {
6 for ( int i = 0 ; i < numKeys − 1 ; i++) {
7 i f ( keys [ i ] >= keys [ i + 1 ] ) {
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8 return fa l se ;
9 }

10 }
11 return true ;
12}

The annotation for the predicate method specifies that it should be

solved after the root and the subs fields have been defined, which is expected

since we cannot solve for keys for an undefined structure. JABAL reads the

defs sets and instruments the code to generate keys values using JPF. Every

use of the keys fields is replaced by a call to get keys(int i) which is defined

as follows:

1 int g e t k e y s ( int i ) {
2 int cho i c e = Ver i fy . random ( intVector . s i z e ( ) − 1) ;
3 keys [ i ] = intVector . elementAt ( cho i c e ) ;
4 return keys [ i ] ;
5}

The intVector is a vector containing all possible integer values based

on the scope for integers defined by the user. The Verify.random(n) method

returns values [0, n] nondeterministically. If a constraint is not satisfied after

calling get keys, JPF back-tracks and assigns a new value to keys[i] until all

possible values are explored. We use Verify.randomBool() method to return

a Boolean value nondeterministically, and Verify.ignoreIf(cond) to force the

model checker to backtrack when cond evaluates to true.

One of the optimizations that we use upon generating object types is

lazy initialization [73]. The idea is to initialize fields when they are first ac-

cessed. The algorithm nondeterministically initializes a newly accessed field
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to either null, a reference to a newly created instance of the object with unini-

tialized fields, or to a reference of an object created during a prior field ini-

tialization. Thus, we add to each field in the class declaration a Boolean field

to determine whether the field has been previously assigned a value or not.

Once a field is accessed we set it to true. For example, the previous code is

instrumented as follows2:

1 int g e t k e y s ( int i ) {
2 i f ( ! k e y s i n i t i a l i z e d [ i ] ) {
3 int cho i c e = Ver i fy . random ( intVector . s i z e ( ) − 1) ;
4 keys [ i ] = intVector . elementAt ( cho i c e ) ;
5 k e y s i n i t i a l i z e d [ i ] = true ;
6 }
7 return keys [ i ] ;
8}

Experiments have also shown that setting JPF choice generator to ran-

domized generator can lead to a better performance especially for selecting

primitive values.

3.3 Experiments

In this section, we demonstrate potential benefits of JABAL in generat-

ing complex data structures. We consider the following two research questions:

(1) “Can JABAL perform better than SAT?”, and (2) “Can JABAL perform

better than JPF?”. We perform three case studies tailored at generating dif-

ferent data structures as inputs. The experiments are run on an Intel Core i7

2For object references, we instrument a get new field() to help the nondeterministic
choice. Refer to [73] for details.
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CPU (Quad Core) 2.8GHz with total 8GB RAM.

3.3.1 Comparison of Alloy/SAT and JABAL

We perform three experiments to compare the performance of JABAL

with Alloy/SAT. In the first experiment, we generate sorted singly linked lists

where each node in the list contains an integer value. We model the linked list

in Java as follows:

1 class L i s t {
2 Node head ;
3 int s i z e ;
4}
5 class Node {
6 int value ;
7 Node next
8}

The constraints on the linked list are the following:

1. Acyclic: the list has no cycles.

2. Sorted: the values in the list are sorted, i.e. for each node n except the

last, n.value < n.next.value.

3. Correct size: the size field value of the linked list is equal to the number

of nodes in the list.

To measure the performance of JABAL compared with SAT, we model

the linked list data structure and its constraints in Alloy, and use the Alloy

Analyzer to solve it. On the other hand, we run JABAL on mixed constraints
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(c) Linked lists with B-Tree of size 7

Figure 3.2: Comparison of SAT and JABAL.
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written using Alloy and Java. We select Alloy to express acyclicity and Java

to express the other two properties. The acyclicity constraint defines the

List.head and Node.next fields in the linked list, while the other two constraints

define the List.size and Node.value fields.

Fig. 3.2a shows the results of this experiment. The values shown rep-

resent the time needed to generate the first data structure which satisfies all

the constraints. We compare results based on the size of the data structure.

JABAL outperforms Alloy as the number of nodes increases because it bene-

fits for the fast performance of JPF in solving linear integer constraints on the

linked list, and as the number of nodes increases, the integer representation in

Alloy expands exponentially yielding poor results for larger lists.

In the second experiment, we generate B-Tree data structures, which

were introduced in Section 2.2. We model the B-Tree and its constraints solely

in Alloy and compare it to JABAL where properties 1 to 4 are written in Alloy

while properties 5 and 6 are written in Java.

Fig. 3.2b shows the results of the second experiment. Alloy performs

better than JABAL since JPF, which is used for solving properties 5 and 6,

performs a brute force search to solve these constraints.

In the third experiment, we consider generating inputs for a method

that has two parameters. Specifically, we consider generating data structures

to test a method in the BTree class which adds elements from a linked list into

the B-Tree receiver object. We use JABAL to generate both inputs simulta-
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neously: (1) the B-Tree receiver objects, and (2) the linked lists parameter

objects. For mixed constraints, we express linked lists constraints using Java

and the B-Tree constraints using Alloy; solving is done by JPF and Alloy

Analyzer. To compare with SAT, we generate both inputs using SAT alone.

Fig. 3.2c shows the results of generating the first B-Tree of order 3 and

size 7 with linked list of different sizes. JABAL outperforms SAT in generating

the data structures in conjunction since it benefits from SAT to generate B-

Trees and JPF to generate linked lists.

Overall, JABAL provides more efficient solving than SAT in two of

three studies.

3.3.2 Comparison of JPF and JABAL

To answer the second research question, we perform three experiments

similar to the first set of experiments. However, in these experiments we

compare JABAL to JPF. We write the constraints of the data structures purely

in Java and use JPF to solve for all the fields and compare it to solving mixed

constraints using JABAL.

Fig. 3.3a shows the results of the first experiment in generating sorted

singly linked lists. JPF performs better than JABAL due to the optimization

techniques described in Section. 3.2.1.3.

Fig. 3.3b shows the results of the second experiment in generating B-

Trees of order 3. JABAL performs better than JPF. The complexity of B-Trees
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Figure 3.3: Comparison of JPF and JABAL.
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make the generation by JPF inefficient, while JABAL is able to benefit from

Alloy and JPF combined.

Similar to the first set of experiments, Fig. 3.3c shows the results of

generating the first B-Tree of order 3 and size 7 with linked list of different sizes.

JABAL outperforms JPF in generating the data structures in conjunction since

it benefits from SAT to solve B-Trees and JPF to solve for Linked Lists.

Overall, JABAL provides more efficient solving than JPF in two of

three studies.
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Chapter 4

Test Summaries for Testing Relational

Database Engines

In this Chapter, we discuss test summaries as a basis for systematic

black-box testing of relational database management systems (DBMS). There

are three fundamental steps in testing a DBMS: (1) generating test queries with

respect to a database schema, (2) generating a set of test databases (tables),

and (3) generating oracles to verify the result of executing the queries on the

input databases using the DBMS.

In the following sections, we discuss the details of our framework which

combines the three major steps together. In addition, we present experimental

results which show the ability of the framework in detecting bugs in different

database management systems.

4.1 Overview

Database management systems have been used widely for decades.

They are steadily growing in complexity and size. At the same time relia-

bility is becoming a more vital concern; the cost of user data loss or wrong

query processing can be prohibitively expensive. DBMS testing, in general,
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is a labor intensive, time consuming process, often performed manually. For

example, to test the correctness of a query execution, the tester is required to

populate the database with interesting values that enable bug discovery, and

manually check the execution result of the query based on the input data. Au-

tomating DBMS testing not only reduces development costs, but also increases

the reliability in the developed systems.

We presents a novel use of test summaries to automate systematic test-

ing of database management systems. There are three fundamental steps in

testing a DBMS: (1) generating test queries with respect to a database schema,

(2) generating a set of test databases (tables), and (3) generating oracles to

verify the result of executing the queries on the input databases using the

DBMS.

The insight of our work is that a relational engine backed by SAT

provides a sound and practical basis of a unified approach that supports all

the three fundamental steps in DBMS testing and allows generation of a higher

quality test suite: queries generated are valid, database states generated are

query-aware, and expected outputs represent meaningful executions. Thus,

each test case checks some core functionality of a DBMS.

We have leveraged our work on ADUSA1 [1] to provide a framework

which fully automates the process of systematic testing of database manage-

ment systems. ADUSA is a framework for query aware test generation. It uses

1ADUSA: Automated database testing using SAT solvers.
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CREATE TABLE students( CREATE TABLE grades(
id int, studentID int,
name varchar(50) courseID int,

); grade int
);

Figure 4.1: Example database schema.

the Alloy Analyzer which in turn uses SAT to generate test data and test or-

acles. Syntactically and semantically valid SQL queries combined with query

aware data generators and the expected output oracles is the backbone of our

framework. The framework builds on that and automates the validation of

each test suite on a DBMS, reporting any errors and information to reproduce

them.

4.2 Example

In this section we illustrate our testing approach by applying our frame-

work on a test database schema. We start with describing our test input

database schema and show how the framework produces the corresponding

Alloy specifications which generate (1) SQL queries to test the database, (2)

input test data to populate the database, and (3) the expected output of

running each query on every set of test data.

Let us consider a sample database schema as shown in Fig. 4.1. These

SQL statements create two relations (aka tables): (1) students table with two

attributes, id of type int, and name of type varchar, (2) grades table with
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three attributes, studentID of type int representing a student ID number,

courseID of type int representing the course ID number and grade of type

int representing the grade which the student earned in that course.

The first step in our framework is to automatically generate valid SQL

queries for testing. Let us consider a subset of SQL grammar consisting of

selecting up to two table attributes from either one table or cross product of two

tables. The terminal strings of the grammar are the table names and attribute

names: students, grades, id, name, studentID, and courseID. In addition, we

consider that the grammar allows the use of aggregate functions when selecting

a field. We consider MAX and MIN aggregate functions in this example. Below

is the grammar of SQL queries that we consider in this example:

QUERY ::= SELECT FROM
SELECT ::= ’SELECT’ selectTerm+
FROM ::= ’FROM’ (table | table JOIN table)
selectTerm ::= term | agg(term)
table ::= ’students’ | ’grades’
term ::= ’id’|’name’|’studentID’|’courseID’|’grade’
agg ::= ’MAX’ | ’MIN’

After automatically generating the complete Alloy model for this SQL

grammar, the Alloy analyzer, based on SAT, converts all Alloy formulas into

Boolean formulas and enumerates all possible solutions satisfying the model.

We run the output through our concretization program to convert Alloy in-

stances into complete SQL queries. For the grammar in this example, consid-

ering up to two SELECT terms, up to two FROM tables, and two aggregate
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SELECT courseID, studentID FROM GRADES, STUDENT;
SELECT MAX (courseID), MAX (studentID) FROM GRADES, STUDENT;
SELECT MIN (courseID), MIN (studentID) FROM GRADES, STUDENT;
SELECT courseID FROM GRADES, STUDENT;
SELECT MAX (courseID), MIN (NAME) FROM GRADES, STUDENT;
SELECT MAX (courseID), MIN (courseID) FROM GRADES;
SELECT MAX (studentID), MIN (studentID) FROM GRADES;
SELECT MAX (grade), MIN (grade) FROM GRADES;
SELECT grade, MAX (grade) FROM GRADES;
...

Figure 4.2: Example of a sample SQL queries generated by our approach.

functions, we get 186 unique non-isomorphic2 SQL queries generated, which is

what we would expect. Fig. 4.2 is a sample subset of the SQL queries generated

by our approach for this example.

For each of the SQL queries automatically generated, ADUSA auto-

matically generates test input and test oracle to verify the output of the query

upon running it on a database management system. The use of Alloy enables

specifying constraints on both the query as well as the results which enables

more precise test input generation. Using the same students table schema

described above, the framework adds Alloy constraints to model the relational

properties between the tables of the database schema such as primary and for-

eign key constraints. The following Alloy specification models the students

schema representation:

one sig student {

2In this example, two queries are considered isomorphic if they only differ in the order
at which the SELECT or the FROM tables are used.
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rows: Int -> varchar
} {

all x: rows.varchar | one x.rows
}

ADUSA continues by adding Alloy functions to model the SQL query

under test. Each section of the SQL statement is modeled as a separate Alloy

function which enforces the constraints on the data selected by the query. For

example, the following Alloy paragraphs model the query SELECT id FROM

STUDENT; :

fun query () : Int {
{select[from[student.rows]]}

}
fun select (rows: Int -> varchar) : Int {

{rows.varchar}
}
fun from(rows: Int -> varchar) : Int -> varchar {

{rows}
}

Functions (fun) used by Alloy represent named expressions. A fun

paragraph takes a relation as input and returns a relations with similar or

different arity. As the SQL queries get more complicated, ADUSA adds more

functions and predicated to model the WHERE, GROUP BY, and HAVING

clauses. After generating the Alloy specification for the schema and the query,

ADUSA uses the Alloy Analyzer to find database instances that satisfy the

specification, i.e. provide valuations for the types and relations that satisfy

all the constraints. The Alloy Analyzer finds all the instances within a given
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scope, i.e., a bound on the number of data elements of each type to be consid-

ered while generation. Below is an example of an instance generated by the

Alloy Analyzer:

varchar: {varchar$0, varchar$1}
student:{student$0}
rows: {(1, varchar$1), (2, varchar$0), (4, varchar$1)}
$query: {1, 2, 4}

In the above instance, the varchar set has two elements labeled as

varchar followed by the element number. The rows relation consists of three

tuples, each of which represent a row in the student table. The query set

represents the result of executing the query on the rows relation. Since the

example query is SELECT id FROM STUDENT;, the query set holds the id

attribute of the tuples, thus it is the set of integers {1, 2, 4}.

After generating the Alloy Instance, ADUSA translates the instance

into INSERT SQL queries that are used to populate an empty database. For

example, for the above Alloy instance, ADUSA identifies the rows relation

and generates the following SQL statements:

INSERT INTO student VALUES (1, varchar$1)
INSERT INTO student VALUES (2, varchar$0)
INSERT INTO student VALUES (4, varchar$1)

Once the database is populated with data, the given SQL query is

executed on the DBMS and the result is verified with the one found in the

Alloy instance. The process is repeated for each generated instance as well as

for each generated SQL query.
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4.3 Framework for DBMS Testing

In this section, we discuss the general algorithm for our approach. We

describe the integration of the automated SQL generator with ADUSA to

create a systematic fully automated testing framework. The full framework

models the syntax and semantics of both SQL queries and relational databases

without considering specific DBMS implementation details.

Figure 4.3 shows the complete framework for DBMS testing. Boxes

represent the processing modules; ovals represent the inputs and outputs of

these modules. The main components of the framework are divided as follows:

1.The Automated SQL Query Generator component, described in Sec-

tion 4.4, models the syntax and semantics of valid SQL queries. It in-

cludes two main modules:

(a)The SQL Model Generator module which generates an Alloy spec-

ification by modeling the user requirements in addition to the main

syntax and semantic requirements of valid SQL queries.

(b)The Alloy2SQL Query Translator module which translates the

Alloy instances into SQL query statements that are used to test the

database management systems.

2.The ADUSA component which automates the generation of test databases

and the expected output for a given test SQL query. It is comprised of

the following sub-modules:
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Figure 4.3: Full framework for DBMS testing.
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(a)The SQL2Alloy module which generates an Alloy specification by

translating a given set of SQL statements representing a database

schema and a test query.

(b)The Alloy2SQL module which translates the Alloy instances into

SQL statements that are used to populate the database on the

DBMS under test.

3.The Alloy Analyzer module which generates instances that satisfy the

translated Alloy specification. It used off-the-shelf SAT solvers to find

solutions for the formulas generated by the Alloy specifications. Both

previous two components use the Alloy Analyzer to find and enumerate

solutions for the Alloy models generated.

4.The Verifier module which automates the process of loading the test data

into the databases under test and comparing the DBMS with the Alloy

query results. It reports any inconsistencies found and provide a report

with the status of the database which is used for reproducing any errors.

5.The FullTest module which integrates all the modules together pro-

viding a benchmark of the queries tested and the ones remaining, plus

the number of inconsistencies found and useful testing measurement in-

formation.
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4.4 Test Summaries for SQL Query Generation

In this section, we present our approach for generating syntactically and

semantically correct SQL queries as inputs for testing relational databases us-

ing test summaries. Similar to ADUSA, we leverage the SAT-based Alloy

tool-set to reduce the problem of generating valid SQL queries into a SAT

problem. Our approach translates SQL query constraints into Alloy models,

which enable it to generate valid queries that cannot be automatically gener-

ated using conventional grammar-based generators.

Given a database schema and properties of SQL queries, which relates

different sections of a query together, we automatically generate the corre-

sponding predicates and constraints using Alloy. Then using the Alloy An-

alyzer, we generate solutions satisfying the constraints, those solutions are

translated into concrete SQL queries which can be executed on the database

schema.

4.4.1 Automated SQL Query Generator

In this section, we discuss the general algorithm for our approach. We

describe the SQL grammar supported and the advances of using SAT in gen-

erating valid queries. We also describe the integration of this approach with

our previous work on ADUSA, a SAT-based table generator, to automatically

generate input queries and table data as well as expected query execution

output.
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QUERY ::= SELECT FROM WHERE GROUP_BY HAVING
SELECT ::= ’SELECT’ selectTerm+
selectTerm :: term | aggregate(term)
FROM ::= ’FROM’ (table | table JOIN table)
WHERE ::= ’WHERE’ term operator (term | value)
GROUP_BY ::= ’GROUP BY’ term
HAVING ::= ’HAVING’ term operator value
aggregate ::= ’MAX’ | ’MIN’ | ’AVG’ | ’COUNT’
operator ::= ’<’ | ’<=’ | ’>’ | ’>=’ | ’=’

Figure 4.4: SQL Grammar supported

4.4.2 SQL Grammar

In our approach, we consider a subset of SQL query grammar. The

complete grammar supported by our approach is shown in Fig. 4.4.

Next, we describe how to write an Alloy specification to model a database

schema and a subset of the SQL query grammar. Then use the Alloy tool-set,

based on SAT, to generate syntactically and semantically valid queries. We

describe the subset of Alloy language that we use – more details about Alloy

can be found in [63,104].

Alloy is a strongly typed specification language. It assumes a universe

of atoms (or elements) partitioned into subsets, where every type is associated

with a subset. An Alloy specification consists of a sequence of paragraphs

where a paragraph enables defining new types, introducing relations between

types, and adding constraints on these types and relations. Being an analyz-

able relational language, Alloy semantics are closely related to those of rela-

tional databases. This enables systematic modeling of relational databases,
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and automated analysis of relational operations on databases.

Alloy can be used to model a relational database schema. To illustrate,

consider the example used in Section 4.2, the schema of the tables is shown in

Fig. 4.1. Our approach generates an Alloy specification that represents both

students and grades tables and each of their attributes. To systematically

generate Alloy models for all tables, we model a general representation of

tables and fields in Alloy as follows:

abstract sig FieldNames {}

abstract sig FieldTypes {}

abstract sig Field {

name : one FieldNames,

type : one FieldTypes

}

abstract sig TableNames {}

abstract sig Table {

name : one TableNames,

fields : some Field

}

We use signature paragraphs (sig) in Alloy to structure tables and

fields of the database schema. For example, the Table signature introduces

the general structure of a database table. Similarly, the Field signature

introduces the structure of a Field. We also use signatures to declare new
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types of elements, in other words sets of elements which have similar use in

our model. For example, we declare TableNames to store elements used as

names of the tables, FieldNames and FieldTypes to store names and types

of fields that are used in the schema.

In addition, Alloy allows us to declare relations between signatures.

For example, name is a one-to-one relation between a Table element and a

TableNames element. We use a one-to-one mapping because there must exist

exactly one name for every table in the database schema. The one-to-one

correspondence is set using the Alloy one keyword. On the other hand, we

use one-to-many mapping between every Table element and Field elements.

This is needed because every table can have more than one field declared for it.

The Alloy some keyword is used to specify that the fields of a table is a set of

minimum one field ensuring that we do not have a table with zero fields. Note

that in Alloy, sets do not contain duplicates by definition, thus this guarantees

that the set to which fields maps to does not contain any duplicate fields.

The abstract keyword before sig declarations identifies the signature

as an empty set and creating elements of this set is constrained to signatures

extending the set. In specific, we extend the Table and Field signatures

by modeling unique signatures for every table and field used in the database

schema.

We model aggregate functions by creating an abstract signature for all

aggregates and extending this signature with the ones that we want to use. If

we consider the aggregate functions MIN and MAX as in the grammar in our
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example, then the following Alloy code models these aggregates to be used in

the query generation:

abstract sig AggregateNames {}

one sig MAX extends AggregateNames {}

one sig MIN extends AggregateNames {}

Modeling the SQL grammar in Alloy requires modeling each of the

SELECT and FROM parts as separate entities. This guarantees the generation

of syntactically correct queries. After modeling the query grammar in Alloy,

we add constraints over the model which gives the ability to prune out queries

which are either not useful or semantically incorrect. The following Alloy code

models both the SELECT and FROM sections:

sig term {

field : one Field,

agg : lone AggregateNames

}

one sig SELECT {

fields : some term

}

one sig FROM {

tables: some Table

}
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The term signature represents a term in the SELECT section. Each

term element represents a field of a table, thus we create a one-to-one relation

called field which maps each term with exactly one Field element. Since

some aggregates are allowed to be used, we add a relation agg which relates

the term with an aggregate. The lone keyword specifies that this relation is

of degree zero or one, which makes the aggregate term optional. To model the

complete SELECT section, we add another signature called SELECT. Since a

SELECT statement constitutes of either one or more terms, we create a one

to many relation called fields inside the SELECT signature. Note that the

number of terms to be selected is not specified at this point. This constraint

is added later on, giving the power to the user to specify the number of terms

used in the SELECT section without changing the basic Alloy model. The

keyword one before the signature SELECT forces the set to be a singleton set,

meaning that there is only one SELECT statement in every query generated.

This size constraint must be changed for generating nested SELECT queries.

The FROM signature represents elements inside the FROM section. Similar

to the SELECT signature, there is only one FROM element and this element

has a one-to-many mapping with the set of tables in the schema. Later we

add a constraint to specify what is the total number of tables that can be

joined within the FROM section at once. We assume, for the simplicity of

this example, that only cross JOIN is allowed between tables in the FROM

section.

Our approach reads the database schema and automatically generates
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signatures and constraints for the tables and fields. First, we populate the

FieldNames and TableNames with elements representing all the names of

fields and tables that exist in the database schema. We use the extends

keyword to extend any of the existing signatures in the model. We also use the

multiplicity lone for these elements since they can be either singletons when

used in a query or empty when not used. The following Alloy code covers

all the field names and table names in our example that would be potentially

used in queries generated:

lone sig id, name, studentID, courseID, grade

extends FieldNames {}

one sig students, grades extends TableNames {}

We then automatically create a signature for each of the fields of the

tables. These signatures extend the Field type. In addition, for each Field

type extended we explicitly set the relation constraints, setting the name and

type of every field explicitly. Similarly for each table in the schema, we create

a signature extending the Table type. The code below shows the declarations

of such signatures for both fields and tables of the schema. Note that for

fields relation in the signatures extending table, we use the keyword in

which guarantees that the field (on the left hand side) belongs to the set of

fields for that table.

lone sig field_id extends Field {} {
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name = id

type = intType

}

lone sig field_name extends Field {} {

name = name

type = stringType

}

...

lone sig table_student extends Table {} {

name = students

field_id in fields

field_name in fields

}

lone sig table_grades extends Table {} {

name = grades

field_studentID in fields

field_courseID in fields

field_grade in fields

}

The operations used in the code above look similar to the ones we

used in declaring the skeleton code for tables and fields. Nevertheless, the

difference is significant. First, these signatures do not add any relations to the

Table and Field types. Thus, the empty pair of braces {} is used at the
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end of the declaration. Second, we add Alloy facts to these signatures. Facts

resemble explicit constraints that we want to satisfy. Thus we use another

pair of braces directly following the signature declaration (facts in Alloy can

be written as separate paragraphs as well, in this case we chose to embed them

in the signature declarations for the ease of read).

After modeling the main components in Alloy, this guarantees that

the SQL grammar is satisfied in the Alloy model. However, we need to add

constraints to the model to guarantee semantically correct queries. Looking

back at the SQL grammar in this example, and using a grammar based string

generator, it would generate queries such as:

SELECT courseID from STUDENT; (1)

SELECT name, name from STUDENT; (2)

SELECT id from STUDENT, STUDENT; (3)

These queries adhere to the syntax of the grammar in our example. They are

syntactically correct but not semantically. Query (1) selects a field which does

not belong to the table selected in the FROM section. It causes an error in

execution when run on a most database systems. To prune out similar queries

in our query generation we add Alloy constraints to the model. The constraint

is added by introducing a new fact paragraph as follows:

fact field_in_table {

all f: term.field | some t: FROM.tables |
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f in t.fields

}

The above Alloy fact paragraph reads as: for any of the fields of term

elements, there exists a table t in FROM tables, where the field belongs to t’s

fields. The all quantifier stands for universal quantification, the some quan-

tifier stands for existential quantification. The dot operation ’.’ represents a

relational join, e.g., FROM.tables returns the domain of the tables relation

and the t.fields returns the image of an element t in the fields relation.

Query (2) is semantically correct. It would run and execute on any

database system, however we would prefer selecting different fields in the SE-

LECT section to get more meaningful queries for testing. We add a new fact

to the model to enforce this property:

fact unique_select_terms {

all a, b : SELECT.fields.term |

(a.field = b.field and a.agg = b.agg ) => a=b

}

The above Alloy fact paragraph reads as follows: for any two elements

in the terms set of SELECT.fields image, if both are related to the same field

element and both have the same aggregate element, this implies those two ele-

ments are identical. The ’=’ operator in Alloy is not an assignment operator,

it is a boolean operator which checks if the elements on the right and left
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hand sides are the same. The ’and’ operator is a logical conjunction which

evaluates to true if and only if both sides of the equation are true. The ’=>’

operator is the implication operator as used in mathematical logic operators.

Thus we specify in this constraint that if any two fields belonging to the set

of selected fields have the same table field and aggregate, then make these se-

lected fields unique, guaranteeing that the SELECT section of the query does

not have duplicate terms.

Similar to query (2), query (3) is syntactically and semantically cor-

rect, but seldom is the case that queries require joining the same table to

itself. Adding a constraint to not join the table with itself in the grammar is

complex and could be done manually by enumerating all possible combinations

of tables to be cross joined and explicitly mentioning those in the grammar.

In our example, since we only have two tables to pick from, we can update the

grammar easily to not chose the same table twice. Anyway, in a more general

case where we have more tables to pick from, enumerating possible table joins

is tedious and prone to mistakes. In our approach, we add a constraint to the

model to guarantee not to pick same table twice. Similar to specifying unique

SELECT terms, we specify this fact as: for any two tables in the tables image

of the FROM element, if those tables map to the same table element then they

must be identical :

fact unique_tables {

all a, b: FROM.tables |
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a.table = b.table => a = b

}

4.4.3 SQL GROUP BY Constraints

Modeling the GROUP BY section requires declaring a new signature

paragraph in Alloy. We add a one-to-many relation to the GROUPBY signa-

ture named fields which maps to a set of term elements. The multiplicity

of the fields relation is at least one which is enforced by the Alloy some key-

word. The following Alloy code models the GROUPBY section of the query:

lone sig GROUPBY{

fields : some term

}{

fields in SELECT.fields

#fields.agg = 0

}

The main constraint in the GROUP BY section is that the terms used

within it should be a subset of the terms used within the SELECT section, not

considering the ones used with an aggregate function. Adding this constraint

to a conventional grammar based generator is complex. One way to do so,

is by marking each term in the SELECT section with a unique alias (using

SQL ’as’ keyword), and then having the terms in the GROUP BY section

group be selected out of those alias names. In our approach, we add a fact to
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the GROUPBY signature to indicate that the terms in the fields mapping

belong to the terms in the SELECT fields. Then we add another constraint

forcing the number of aggregate function in the GROUPBY terms to be exactly

zero, guaranteeing that the terms are out of the ones which are not aggregated.

For example, query (1) is valid while query (2) is not because NAME is not

selected in the SELECT clause without an aggregate fun:

SELECT ID,MAX(NAME) FROM STUDENT GROUP BY ID;(1)

SELECT ID,MAX(NAME) FROM STUDENT GROUP BY NAME;(2)

4.4.4 SQL HAVING Constraints

We introduce two new signatures for the HAVING section: HAVING and

havingTerm. The havingTerm represents the grammar ”aggregate function(term)

operator value”. Each of the havingTerm elements is related to one term

element, one Operator element, and one Value element. The HAVING signa-

ture contains the fields relation mapping it to a non-empty set of havingTerm

elements. The following Alloy code models the HAVING section of the query:

abstract sig Operator{}

abstract sig Value{}

sig havingTerm{

field : one term,

operator : one Operator,

value : one Value
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}

lone sig HAVING{

fields: some havingTerm

}{

fields.field in SELECT.fields

all f: fields.field | #f.agg = 1

}

The constraint of HAVING clause is that the terms used should be a

subset of the terms used in the SELECT queries with an aggregation function.

The fact following the HAVING signature declaration ensures two properties:

(1) all the terms in the HAVING clause are subset of the terms used in the

SELECT clause and (2) for any term in the HAVING clause, the term is used

with an aggregation function. For example, query (1) is valid while query (2)

is not because MAX (NAME) is not selected in the SELECT clause:

SELECT NAME, MAX (ID) FROM STUDENT GROUP BY

NAME HAVING MAX (ID) > 5; (1)

SELECT NAME, MAX (ID) FROM STUDENT GROUP BY

NAME HAVING MAX (NAME) > 5; (2)

4.4.5 SQL WHERE Constraints

We introduce two new signatures for the WHERE clause: whereTerm

and WHERE. The whereTerm elements represent a clause containing a term
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compared to another term or another constant value. The operator relation

maps the whereTerm element to a single operator. The WHERE signature maps

the where clause to a set of whereTerm elements. We discuss the relation

between the where terms in the discussion section. The following code models

the SQL WHERE clause and their constraints in Alloy:

sig whereTerm {

leftTerm : one term,

operator : one Operator,

rightTerm : one term + Value

}{

leftTerm != rightTerm

}

lone sig WHERE {

fields: some whereTerm

}

fact whereTerms {

all n:

(WHERE.fields.leftTerm +

WHERE.fields.rightTerm).field

| some t: FROM.tables | n in t.fields

all a, b: whereTerm | a.leftTerm =

b.leftTerm and a.rightTerm = b.rightTerm

and a.operator = b.operator => a = b
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}

We constrain comparing the same element with itself using the fact

’leftTerm != rightTerm’. We constrain that the terms in the WHERE

clause belong to one of the tables in the FROM clause inside the whereTerms

fact paragraph. The fact indicates that for any field in the either left or right

side terms of the where term, there exists a table in the FROM section which

the field belongs to. Another fact statement prunes out have same where terms

by specifying that for any two where terms, if they have the same fields on

the left and right hand side and the same operator, then these two fields are

identical.

4.4.6 Alloy2SQL Query Translator

The Alloy Analyzer tool-set compiles an Alloy model into a boolean

formula and uses SAT technology to solve it. It iterates over all possible

solutions for the Boolean formula. For every solution, it converts it into an

Alloy instance. In our approach, we take the Alloy instances and convert them

into a valid SQL queries that are used for testing databases and applications.

Fig. 4.5 shows a graphical representation of a SAT solution of a SQL

model mapped into Alloy elements. The graphical image is produced by the

Magic lay-out available in the Alloy Analyzer tool-set. The instance is con-

cretized into: SELECT MAX (NAME) FROM STUDENT;.

An Alloy instance generated by the Alloy analyzer is a set of valuations
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Figure 4.5: Sample Alloy output.
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for all sig : Instance.Signatures
for each valuation of sig in the solution

Create a Java object for the valuation
//map the Alloy object to Java object
map.add (AlloyObject, JavaObject)

for all sig : Instance.Signatures
for all field : sig.fields

//need a loop for non-singleton field
for every valuation of field

sourceObject = map.get (field.source)
targetObject = map.get (field.target)
sourceObject.setField(field.name,

targetObject)
print map.values()

Figure 4.6: Algorithm for translating an Alloy instance into a SQL query.

assigned to the signatures and relations declared by the Alloy model. To trans-

late an instance into a SQL query, we first identify the signatures associated

with the fields, tables, aggregate functions and other singleton elements which

serve as the initial parts of the grammar. Then we iterate over relations on

the signatures setting the corresponding field values for every relation. We

use Java classes to represent each part of the SQL grammar. Then we use a

mapping from Alloy objects into Java objects. We set the relations between

signatures by calling setter methods in the Java classes corresponding to the

field being set. Fig. 4.6 illustrates the basic algorithm for creating a concrete

SQL query out of an Alloy instance.
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4.4.7 Case Studies

In this section we discuss the use of our framework in different case

studies. We perform tasks for generating SQL queries based on different sub-

sets of the SQL grammar.

In each case study we use our approach to enumerate all possible valid

queries for a given schema. We compare the approach by applying it to differ-

ent subsets of the SQL grammar. We consider the same schema presented in

Fig. 4.1 consisting of the two tables: student and grades. The 3 subsets of

SQL grammar that we consider are presented in Table 4.1. Case#1 consists

of only SELECT and FROM clauses. For each of the tests, we consider two

cases: (1) up to one table in the FROM section, and (2) up to two tables in

the FROM section. So, queries generated in (1) are inclusive to (2).

Table 4.2 shows the solving time of each of the case studies. The

#Tables is the maximum number of tables in the FROM section. Primary

variables and total variables are the Alloy variables used in generating the

Boolean formula. The clauses are the Boolean clauses. Solving time is the

SAT time to generate the first possible solution for the Boolean formula (next

solutions take negligible time). Concretization time per query, is the processing

time our approach does to concretize an Alloy instance into a SQL query in

ms. The #Queries is the total number of queries generated for the specific

case study.

The total number of queries increases drastically for Case#2, this is
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Case# SQL Grammar

1

QUERY ::= SELECT FROM

SELECT ::= ’SELECT’ selectTerm+

FROM ::= ’FROM’ (table | table JOIN table)

2

QUERY ::= SELECT FROM WHERE

SELECT ::= ’SELECT’ selectTerm+

FROM ::= ’FROM’ (table | table JOIN table)

WHERE ::= ’WHERE’ term operator (term | value)

3

QUERY ::= SELECT FROM GROUP BY HAVING

SELECT ::= ’SELECT’ selectTerm+

FROM ::= ’FROM’ (table | table JOIN table)

GROUP BY ::= ’GROUP BY’ term

HAVING ::= ’HAVING’ term operator value

*

selectTerm ::= term | agg ( term )

term ::= ’id’ | ’name’ | ’studentID’ | ’courseID’ | ’grade’

agg ::= ’MAX’ | ’MIN’

table ::= ’students’ | ’grades’

Table 4.1: The SQL grammar used in each case study. (The * indicates
common terminal values.)
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because the fact that the WHERE clause can contain terms from the tables

which are not constrained by the SELECT statement, and the fact that each

term can be related to either another term or a value, thus the number of

possible queries increases. Case#3, using up to one table in the FROM section,

generates the minimum amount of queries. This is because both constraints for

GROUP BY and HAVING must be satisfied in all the queries generated. In the

grammar for Case#3, the GROUP BY and HAVING clauses are mandatory,

thus limiting the output space.

4.5 Test Summaries for Database Test Generation

We present a novel approach for effective black-box DBMS testing based

on our work in the master’s thesis [1]. Our approach uses model-based testing

to perform (1) query-aware database generation to construct a useful test

input suite that covers the various scenarios for query execution and (2) test

oracle generation to verify query execution results on the generated databases.

As an enabling technology, we use Alloy and the Alloy Analyzer. Alloy’s

relational basis provides a natural fit for modeling relational databases and

query operations. Given an input database schema and an input SQL query

(manually written by the user, or automatically generated by our automated

SQL query generator), our approach formulates Alloy specifications to model

both of the inputs, and then uses the Alloy Analyzer to generate all databases

that satisfy the given schema under a ceratin bound, as well as the expected

result of executing the given query on each of the generated databases. Each
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input/oracle pair is then used to test the query execution on the DBMS.

Our framework automates both test input and test oracle generation.

By incorporating both the schema and the query during the analysis, our ap-

proach performs query-aware data generation where executing the query on

the generated data produces meaningful non-empty results. We evaluated our

approach by testing the query execution correctness of three DBMSs including

two open source systems, HSQLDB [102] and MySql [98], and one commercial

DBMS, Oracle 11g [88]. Experimental results show that ADUSAwas able to

detect (1) a non-reported bug in Oracle 11g, (2) bugs that are previously re-

ported in the MySql bug repository, and (3) bugs that we injected in HSQLDB.

The following sections show an example illustrating the testing ap-

proach and the effectiveness of using Alloy for both test input and oracle

generation.

4.5.1 Example

We describe how to generate an Alloy specification to model a database

schema and a test query, and use the Alloy specification to test a DBMS. Alloy

can be used to model a relational database schema. To illustrate, consider the

student table described in the database schema in Fig. 4.1. We systematically

generate an Alloy specification to model the schema as follows:

1 s i g varchar {}
2 one s i g student {
3 rows : Int −> varchar
4}
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Alloy specifications can also be used to model operations on relational

databases. For example, consider the following SQL query:

SELECT DISTINCT id
FROM student
WHERE (id=1 OR (id>=3 AND id<=5));

The above query is a selection SQL statement that queries the student

relation, and returns all the id elements that are either equal to 1, or between

3 and 5. The following Alloy paragraphs model the SQL query.

1 fun query ( ) : Int {
2 { s e l e c t [ where [ from [ student . rows ] ] ] } }
3 fun s e l e c t ( rows : Int −> varchar ) : Int {
4 { rows . varchar }}
5 fun where ( rows : Int −> varchar ) : Int −> varchar {
6 {x1 : rows . varchar , x2 : x1 . rows | cond i t i on [ x1 ]}}
7 pred cond i t i on ( x1 : Int ) {
8 {eq [ x1 , 1 ] or ( gte [ x1 , 3 ] and l t e [ x1 , 5 ] ) }}
9 fun from ( rows : Int −> varchar ) : Int −> varchar {

10 { rows}}

After generating the Alloy specification for the schema and the query,

ADUSA uses the Alloy Analyzer to find database instances that satisfy the

specification, i.e., provide valuations for the types and relations that satisfy

all the constraints. The Alloy Analyzer finds all the instances within a given

scope, i.e., a bound on the number of data elements of each type to be consid-

ered while generation. Below is an example of an instance generated by the

Alloy Analyzer:

varchar: {varchar$0, varchar$1}
student:{student$0}
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rows: {(1, varchar$1), (2, varchar$0), (4, varchar$1)}
$query: {1, 4}

In the above instance, the varchar set has two elements labeled as

varchar followed by the element number. The rows relation consists of three

tuples whereby two tuples satisfy the condition of the condition predicate.

The query set represents the result of executing the query on the rows re-

lation. The query set holds the id attribute of the tuples that satisfy the

condition predicate. For this example, the result is the set of integers {1,

4}. After generating the Alloy Instance, ADUSA translates the instance into

INSERT SQL queries that are used to populate an empty database. For ex-

ample, for the above Alloy instance, ADUSA identifies the rows relation and

generates the following SQL statements:

INSERT INTO student VALUES (1, varchar$1)
INSERT INTO student VALUES (2, varchar$0)
INSERT INTO student VALUES (4, varchar$1)

Once the database is populated with data, the given SQL selection

query is executed on the DBMS and the result is verified with the one found

in the Alloy instance. This process is repeated for each generated instance.

4.5.2 Query-aware Test Generation

By incorporating information from the SQL query and the schema, our

approach performs effective query-aware generation where the generated test

cases are guaranteed to produce meaningful results upon query execution as
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opposed to query unaware generators where the execution results are highly

likely to be empty.

To illustrate the effectiveness of the query-aware generator in ADUSA,

we used it to generate a set of databases for testing the following query:

SELECT *
FROM student
WHERE id < 3 and name = ’John’

Figure 4.7 shows an example of 3 instances generated by ADUSA. The

integer values generated by ADUSA are closely related to the predicate (id <

3) described in the query. Based on the given predicate, ADUSA partitions

the integer space into two regions: integers with values less than three and

integers with values greater than or equal to three. ADUSA then generates

tuples with integer values from each of the regions, as well as tuples with

integer values from both regions. The same approach is performed for the

string types. ADUSA generates strings that are either equal to ”John” or not.

The generated instances are then constructed using values from these spaces.

For example, the first instance from Figure 4.7 only contains integers with

values less than three, and strings with values equal or unequal to ”John”;

the second instance only contains integers with values greater than or equal

to three; and the third instance contains both.

Executing the query on the generated input results in one tuple for the

first instance, no tuples for the second, and two tuples for the third instance.
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Instance 1 - rows: {(0, varchar), (1, John)}
Instance 2 - rows: {(4, John), (6, varchar), (3, varchar)}
Instance 3 - rows: {(0, John), (3, varchar), (2, John)}

Figure 4.7: Alloy instances for a database table generated using ADUSA.

The use of the Alloy Analyzer enables enumerating different instances that

cover the spaces for the data types involved in the query constraints.

4.5.3 Test Oracle Generation

Almost all academic and commercial test data generators don’t provide

a mechanism for verifying the result of a query execution on the generated

data. An obvious approach to do this is by using a trusted (golden) DBMS

as an oracle. This process includes running the query on both the test and

the golden DBMSs and matching the results to assure correctness. Using this

approach requires the existence of a more advanced DBMS that supports the

features under test as well as the correct implementation of those features.

A key advantage of using Alloy as a modeling language is the ability to

generate test oracles. While performing data generation, the Alloy Analyzer

automatically labels a subset of the generated data as the query result. Such

feature provides an automatic and efficient way to verify the execution result

of the DBMS under test. A more subtle advantage is that we can even specify

constraints on query results, and generate input databases that satisfy these

constraints, e.g., cardinality constraints on the results’ size.
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4.6 Experiments

In this section we discuss the results of experimenting our full frame-

work with Oracle11g database management system. We perform tasks for

generating SQL queries based on different subsets of the SQL grammar and

automatically verify the output of the DBMS. Our experiments successfully

identified new queries which result in erroneous output.

We describe the results of full tests which illustrate the functionality

of the framework while testing Oracle11g (Release 1) [88]. The first set of

tests shows the performance and complexity of the Alloy models as the num-

ber of selected tables increases. The second set of tests focuses on queries

which revealed bugs in the Oracle DBMS. Our previous work on ADUSA was

successfully able to reproduce and provide a counter example for a bug in Ora-

cle11g. Nevertheless, this bug was only reproduced using a specific SQL query.

Using our automated framework, we were able to identify 5 new queries which

reveal erroneous output in Oracle11g which we were not previously aware of,

and the required data to reproduce each of them.

4.6.1 Generating full tests

First we demonstrate the effectiveness of our framework in providing

a complete test cycle for testing databases. Our framework generates valid

SQL queries for test and each query is modeled in Alloy in addition to the

database schema. Then it produces test inputs to populate the database and

the expected output of running the query on each test input.
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In the following tests, we consider a database schema constituting of 3

tables: (1) student table with ID (primary key) and Name fields, (2) course

table with cID (primary key) and Name fields, and (3) department with ID

(primary key) and Name fields. We consider all fields of the tables to be of

varchar type. Given this schema, we consider automatically generating all

valid SQL queries satisfying the following grammar:

QUERY ::= SELECT FROM
SELECT ::= ’SELECT’ selectTerm+
selectTerm :: term | aggregate(term)
FROM ::= ’FROM’ (table |
table NATURAL JOIN table |
table NATURAL JOIN table NATURAL JOIN TABLE)

aggregate ::= ’COUNT’
term ::= ’ID’ | ’NAME’ | ’CID’ | *

We add to the constraints while generating SQL queries that no table is

selected twice in the FROM clause, this guarantees that a table is not crossed

joined by itself. In addition, we do not have to distinguish fields with same

names between tables since NATURAL JOIN joins tables based on common

fields names3. In addition, we add a specific constraint for the COUNT aggregate

function; we specify that there are no other terms selected if COUNT is used.

Another constraint added is that if the * term is selected then no other terms

can be selected at the same time to guarantee a correct SQL query syntax.

3Our approach supports tables with same field names by creating alias names for the fields
of the tables selected, thus every field is uniquely represented as table name.field name.
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Using the schema and subset SQL grammar discussed above, our auto-

mated query generator produces 57 unique queries. To show the results, due to

lack of space, we group the queries into 7 groups. Each group is identified by

the tables in the FROM clause. We show the average time needed to generate

a database instance and verify the correctness of execution by comparing it

to the oracle (expected result). Table 4.3 shows the details of the test suites

execution. The tests were run on an Intel Core 2 Duo 2.0GHz, 2GB RAM

with Java Runtime Environment 1.6.0.

Table 4.3 shows the details of testing Oracle11g with sets of queries;

for each query generated, ADUSA enumerates all test cases and checks the

DBMS output for correctness. The FROM Clause Set identifies the queries by

the tables in the FROM clause. The ’x’ identifies NATURAL JOIN between

tables; S, D, and C were used as abbreviations of table names for simplicity.

#Queries is the total number of queries within the FROM Clause set. Total

#DB tests is the total number of database instances which ADUSA generated

for testing the database. Avg. #tests query is the average number of database

instances generated for each query by ADUSA. Primary variables and clauses

are the average variables and clauses in the Alloy model generated by ADUSA

to produce a test. Average time per query is the average time ADUSA takes

per query to enumerate all possible database instances, delete data from the

database for every instance, populate the database with new database instance

data, query the database, and verify the correctness of the DBMS output.

Total time is the total time consumed by ADUSA to verify the correctness of
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all the queries in a given FROM Clause set. The scope of variables used by

ADUSA in all the tests above is 3 varchar and 4 bits for Int.

We set a threshold of 1,000 database instances to test per query. In

most cases, in less than 10 seconds ADUSA was able to verify 1,000 test cases

for correctness for each query. It is worth mentioning that for each test case

there is an overhead time consumed in emptying the database, inserting new

elements into it, and finally querying it. The time required for concretizing the

oracle (expected output) from an Alloy instance into real data and comparing

it to the actual DBMS output is negligible. For each query, we establish a

database connection once and close it after all instances generated by ADUSA

for that query has been tested. Note that in Table 4.3 the average time (ms)

per query is the time elapsed to test all instances generated for one query. In

almost cases, the number of database instances is more than 500.

In addition to testing Oracle11g, we ran the same tests on MySQL 5.0.

The most noticeable difference is the time consumed for running the tests. It

took in almost all cases, half the time to run the tests on MySQL compared

to Oracle11g. Which points out that the overhead of database connection and

querying is a bottle neck.

4.6.2 Experimenting with Oracle11g

Table 4.3 shows that out of the total 11,000 tests on the FROM set

which includes student NATURAL JOIN course NATURAL JOIN department,

there were 988 tests which revealed failures. We experiment more on these
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queries showing bugs. We examine the relevance of the scope of variables to

finding a bug faster verses complexity of the Alloy model. Increasing the scope

used by ADUSA can significantly blow up the number of database instances

generated. On the other hand, having a richer set of test cases may reveal

bugs faster.

The set of test queries with the NATURAL JOIN of three tables is as
follows:

SELECT DISTINCT id FROM ...
SELECT DISTINCT id,NAME FROM ...
SELECT DISTINCT id, NAME, cID FROM ...
SELECT DISTINCT NAME FROM ...
SELECT DISTINCT NAME,cID FROM ...
SELECT DISTINCT cID FROM ...
SELECT DISTINCT id, cID FROM ...
SELECT COUNT (DISTINCT cID) FROM ...
SELECT COUNT (DISTINCT id) FROM ...
SELECT COUNT (DISTINCT NAME) FROM ...
SELECT COUNT (*) FROM ...

All these queries select from student NATURAL JOIN course NATURAL

JOIN department. They constitute all possible valid queries adhering to the

constraints and grammar we specified for these tests. Using ADUSA frame-

work to test these queries on Oracle11g we were able to identify bugs in 6

queries.

Table 4.4 shows the queries which revealed unexpected wrong output.

The scope is the maximum number of varchar elements used to populate the

database with test instances. #DB tests is the number of database test in-

stances, generated by ADUSA, considered for each query. #Failures is the
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number of tests which produced an inconsistence result with the expected

output. The first 5 queries were newly discovered using our approach. The

6th query was discovered in our previous work on ADUSA. To verify that a

bug exists, we used two methods. First, for every failure detected, ADUSA

provides us with efficient data needed to reproduced it. We use the same

data to test the query on a different database, for instance MySQL 5.0, which

has the same database schema saved on it as well. For all the queries which

revealed failures, none of them showed any inconsistencies with MySQL 5.0.

Second, we ran random manual verifications. For random counter examples,

we manually analyzed the data, predicted the output and verified our analysis.

Indeed, our manual verification results were consistent with ADUSA’s.

Table 4.4 shows the number of database instances generated and cor-

responding inconsistencies found. An interesting query is Query#4, where

ADUSA was able to find an inconsistency after enumerating 3,798 instances

with scope of exactly 3 varchar; and it took 2,148 instances to reproduce the

bug with a scope of 4 varchar. This indicates that a tester can easily come

up with a test suite out of the thousands of possible tests and not detect the

bug. Trying to manually generate data to reproduce the bug would have taken

hours, while exhaustive bounded checking can guarantee that up to a given

scope all possible instances have been verified. Nevertheless, this keeps the

possibility of finding a bug with bigger scopes.

We compare running the tests with scope of 3 versus 4 for the last 3

queries in Table 4.4. The results show that using a bigger scope there was a
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higher possible of detecting the bug faster. For example, tests with scope of 4

on Query#5 showed only 1 inconsistency in the first 1,000 tests, but it revealed

138 more inconsistencies in the next 1,000 tests. While using scope of 3, the

first inconsistency was detected after 2,721 tests. On the other hand, using a

bigger scope puts a load on the clauses generated by Alloy and running the tests

with bigger scopes is a little slower, but compared to the database overhead

the time to run the tests with higher scopes is negligible. The time consumed

increased significantly in most cases because of the blow up in possible database

instances to generate. Originally we used 1,000 instances as a threshold to

stop ADUSA from generating more instances. As our experience in finding

erroneous queries increase, we think that a higher threshold might be needed

for higher confidence in the results.

Fig. 4.8 shows a screen shot of the data produced by ADUSA to gener-

ate a counter example for Query#5 of Table 4.4 on Oracle11g. The expected

output of the query is ’varchar$0’ while Oracle11g reports ’varchar$3’ and ’var-

char$0’ as output which is wrong. It is worth mentioning that without using

our framework, we were not aware of any bugs found in the first 5 queries of

Table 4.4 and it would have been hard to find and reproduce them.

Previously, having known that Query#6 produces a bug from our pre-

vious work, we suspected a bug in the implementation of the COUNT aggregate

function, but using our full framework for automating tests enabled us to de-

tect new queries producing erroneous output. The queries show that the bug

is not related to the aggregate function and it could be that multiple bugs are
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Figure 4.8: Snapshot of an erroneous query output in Oracle11g detected by
our framework. The counter example is automatically produced. The correct
query execution should return ’varchar$0’.

related in these queries.
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Chapter 5

Clustered Test Execution

In this Chapter, we present a novel technique for efficiently executing

suites of unit tests, where several tests in a suite may contain a common initial

segment of execution – a property often exhibited by systematically generated

suites, e.g., those for bounded exhaustive testing [18, 51, 71, 89]. Our insight

is that we can cluster execution of such tests by defining abstract-level undo

operations [41,91], which allow a common execution segment to be performed

once, and its result to be shared across the tests, which then perform the rest of

their operations. Thus, unlike existing techniques for test execution, distinct

tests that execute different program paths to explore different behaviors do

not have to be executed separately (one by one), and their common (initial)

operations do not have to be performed repeatedly (once for each test).

5.1 Overview

During the last decade, much progress has been made to address these

practical shortcomings of testing. Frameworks, such as JUnit [13], allow auto-

mated test execution and error reporting, and have become an integral part of

development environments. Novel techniques, such as TestEra [71], Korat [18],
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DART [51], and RANDOOP [89], allow automated generation of test inputs

– a largely manual task in traditional testing – and have provided the basis

for systematic approaches, e.g., bounded exhaustive testing, where a program

is checked against all inputs within a given bound on input size. While such

bounded exhaustive approaches enhance our ability to find bugs in real pro-

grams [82], they require executing a large number of tests, which can be a time

consuming and expensive task, especially for tests that execute operations on

external resources, such as a file system or a network.

We present our framework for clustered execution of unit tests for Java

programs. Given a set of tests, our framework analyzes the tests to build a

cluster tree – a trie [99] structure that represents the sharing of initial code seg-

ments across the tests. Each node represents a code segment in a test. Thus,

each path in the cluster tree represents a test case. A depth-first traversal of

the cluster-tree forms the basis of test execution: visiting a node represents

executing the corresponding code segment. The search backtracks by perform-

ing user-defined abstract-level undo operations, which enable sharing of results

for initial segments of execution common to different tests.

Abstract-level undo operations provide a powerful mechanism for back-

tracking, which enables clustered test execution. While backtracking is a prim-

itive idiom in model checking, general purpose model checkers, such as Java

PathFinder [108] and SpecExplorer [28], do not directly support clustered test

execution, since either they need to store and retrieve entire program states,

which is not feasible for programs that perform operations on external re-
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sources, or they re-execute from start, which amounts to running the tests one

by one. Thus, backtracking operations on external resources necessitates the

usage of undo operations on those resources.

5.2 Example

To illustrate our approach, we present an example of using checkpoint-

based clustering of unit tests for database management systems. We consider

black-box database tests. We first describe an example database schema and

present several corresponding unit tests. Then we describe how our approach

clusters those tests using check-point undo operations on the database system.

Let us consider the following SQL statement for describing our database

schema containing one table:

CREATE TABLE student (

s_id int,

s_name varchar(50),

PRIMARY KEY (s_id)

);

The above SQL statement creates a student table with two attributes,

s id of type int, and s name of type varchar. The statement also specifies

the PRIMARY KEY property on the s id attribute which restricts the number

of tuples in the student table with the same s id attribute to one. That is,

every student entry in the table has a unique id.
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Based on the above schema, let us consider the four unit tests in Fig-

ure 5.1. Each test initially calls a emptyTables() method which empties the

database from any data in the tables. We call this method to make sure that

each test runs on an empty database in order to verify the test results. Then

each test inserts test data into the database and runs a SQL SELECT query

on the database and asserts some properties of the result.

As the four tests show, the initial six statements are common between

them all. Commonly a setUp() method, available in JUnit framework [13], is

used to encapsulate those statements in one method and run it prior to every

test. Nevertheless, setUp() methods should be manually written and do not

provide any performance improvement since it is run for each test.

Even though the four tests share some initial execution trace, tradi-

tional state-based checkpointing, such as recording the program state at the

point where execution paths differ between two tests, cannot be applied in this

scenario. For example, a state-full model checker stores the program state at

line 7 then retrieves it for each test instead of executing the same code again.

However, in our example, doing so results in erroneous output since the state

of the database is not stored in the Java heap space and cannot be retrieved

by a simple storage of the program state.

Our approach overcomes this limitation by introducing abstract undo

operations for clustering tests. The programmer defines undo operations at the

level of method calls which restore the state of the heap or external memory,

such as a database. The undo operations are meant to be defined at the
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1 @Test public void t e s t 1 {
2 emptyTables ( ) ;
3 StudentDBManager db = getDBManager ( ) ;
4 db . addToStudent (1 , "name1") ;
5 db . addToStudent (2 , "name2") ;
6 db . addToStudent (3 , "name3") ;
7 db . addToStudent (4 , "name4") ;
8 Resu l tSet r s = db . executeQuery ("SELECT COUNT(*) FROM student") ;
9 as se r tTrue ( r s . g e t F i r s t R e s u l t ( ) . equa l s ("4") ) ;

10 }

1 @Test public void t e s t 2 {
2 emptyTables ( ) ;
3 StudentDBManager db = getDBManager ( ) ;
4 db . addToStudent (1 , "name1") ;
5 db . addToStudent (2 , "name2") ;
6 db . addToStudent (3 , "name3") ;
7 db . addToStudent (4 , "name4") ;
8 db . deleteStudentByID (1) ;
9 Resu l tSet r s = db . executeQuery ("SELECT COUNT(*) FROM student") ;

10 asse r tTrue ( r s . g e t F i r s t R e s u l t ( ) . equa l s ("3") ) ;
11 }

1 @Test public void t e s t 3 {
2 emptyTables ( ) ;
3 StudentDBManager db = getDBManager ( ) ;
4 db . addToStudent (1 , "name1") ;
5 db . addToStudent (2 , "name2") ;
6 db . addToStudent (3 , "name3") ;
7 db . addToStudent (4 , "name4") ;
8 db . deleteStudentByID (4) ;
9 db . deleteStudentByID (3) ;

10 Resu l tSet r s = db . executeQuery ("SELECT MIN(s_id) FROM student") ;
11 asse r tTrue ( r s . g e t F i r s t R e s u l t ( ) . equa l s ("1") ) ;
12 }

1 @Test public void t e s t 4 {
2 emptyTables ( ) ;
3 StudentDBManager db = getDBManager ( ) ;
4 db . addToStudent (1 , "name1") ;
5 db . addToStudent (2 , "name2") ;
6 db . addToStudent (3 , "name3") ;
7 db . addToStudent (4 , "name4") ;
8 db . deleteStudentByID (4) ;
9 db . deleteStudentByID (1) ;

10 Resu l tSet r s = db . executeQuery ("SELECT MAX(s_id) FROM student") ;
11 asse r tTrue ( r s . g e t F i r s t R e s u l t ( ) . equa l s ("3") ) ;
12 }

Figure 5.1: Example: four unit tests for testing a DBMS.
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class addToStudentUNDO extends UndoOperation {
StudentDBManager db ;
int s i d ;

public addToStudentUNDO( StudentDBManager db , int s i d ,
Sr ing name) {

th id . db = db ;
this . s i d = s i d ;

}

public void undo ( ) {
// check database i s s t i l l a c c e s s i b l e . . .
i f (db == null ) {

db = getDBManager ( ) ;
}
db . deleteStudentByID ( s i d ) ;

}
}

Figure 5.2: A class definition implementing undo semantics of addToStudent
method.

operational abstract level benefitting from the semantics of the code rather

than the low level data and heap values. For example, consider the undo

operation definition in Figure 5.2 for the addToStudent method.

An instance of addToStudentUNDO class undoes the operational se-

mantics of the addToStudent method. The undo operation is defined in a

class whose constructor takes the receiver object of the original addToStudent

method call, and other parameters identical to the parameters required to do

a addToStudent method call. Since the student table defined in our schema

has s id as a primary key, then deleting the student entry with the same s id

restores the state of the database to an equivalent state prior to adding the
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entry in the first place. Thus we only need to store the s id value to perform

the undo operation. Even though this undo operation does not retrieve the

original state of the database in terms of the internal data structures repre-

sentation and file indices, an equivalent state is restored which contains the

same entries in the database tables. In other database application contexts,

different definitions for undo operations might be needed. In Section 5.4, we

explore using database native save-point/roll-back operations to restore the

state of the database.

Given the required definitions of undo operations by the user, based

on the semantics of the tests, our approach performs a source-code analysis

of the tests and builds an execution trie, similar to a prefix-tree [99] of the

source code of the tests. We define a checkpoint to be the point where two or

more tests have different execution statements, irrespective of pure methods.

A method is annotated by the user as pure if it does not change the program

state, thus it is not required to revoke its effects on the program in order to

execute subsequent tests.

Figure 5.3 shows the equivalent execution trie for the four example unit

tests. Running the four tests can now be seen as one test which executes the

four tests consecutively. The operational semantics of the tests are maintained

by running undo operations which restore the state of the database at each

checkpoint. For example, to run test 3 after executing test 2, we execute

the undo operations corresponding to the previous step, specifically we run the

undo operation for line 8 of test 2. This restores the student entry which had
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s id equals 1, and thus restoring the database state equivalent to executing

lines 1 through 7 of test 3.

In our simple example, our automated approach for clustering the four

unit tests was able to reduce the number of database calls from 29 to 17, includ-

ing the undo operation database calls. Section 5.4 shows how this approach

scales on larger tests in different experiments and the significant speed-ups

gained.

5.3 Framework

This section describes our approach for clustering tests based on state

storage and retrieval using abstract undo operations. We first define the inter-

face for Undo operations, then we describe the algorithms for clustering tests

together and executing them.

Our approach for clustering tests is similar to systematic search al-

gorithms [72, 93] in its essence. Model checkers, for instance, perform a

bounded exhaustive exploration of the search space by exploring nondetermin-

istic choices of the search variables. Some model checkers, example [108], store

the state of the program, including the heap, stack, and static memory, at ev-

ery choice point, i.e. the program statement where a nondeterministic choice is

performed. Upon reaching a termination point, i.e. a program statement that

specifies the end of a search path, the model checker retrieves the last stored

program state and continues with the next possible choice in the search. This

step is called the back tracking step. Figure 5.4, gives an abstraction of the
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(UNDO changes)

db.addToStudent(1, "name1");

db.addToStudent(2, "name2");

db.addToStudent(3, "name3");

db.addToStudent(4, "name4");

DBManager db = getDBManager();

emptyTables();

ResultSet rs = db.executeQuery

  ("SELECT COUNT(*) FROM student");

assertTrue(rs.getFirstResult().equals("4"));

ResultSet rs = db.executeQuery

  ("SELECT COUNT(*) FROM student");

db.deleteStudentByID(1);

assertTrue(rs.getFirstResult().equals("3"));

test_2

  

db.deleteStudentByID(4);

db.deleteStudentByID(3);
ResultSet rs = db.executeQuery
  ("SELECT MIN(s_id) FROM student");
assertTrue(
  rs.getFirstResult().equals("1"));

test_3

ResultSet rs = db.executeQuery
  ("SELECT MAX(s_id) FROM student");
assertTrue(
  rs.getFirstResult().equals("3"));

db.deleteStudentByID(1);

test_4

All tests: 

test_1

(UNDO changes)

(UNDO changes)

Figure 5.3: Example: clustered execution of unit tests.

storing/retreiving process for backtracking program execution. White nodes

are the choice points and black nodes are terminations points. Backtracking
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takes place after executing a termination point to go back to a choice point,

or from a choice point to a prior choice point if all nondeterministic choices

have been explored. In general, this approach can be used for combining tests

that share program execution. However, applications that interact with ex-

ternal memory, such as database applications and web applications, cannot

have their program state retrieved by a conventional state storage/retreival

approach.

In the context of running unit tests, our search space is the set of tests

available. The choice points are the specific statements where two or more

tests differ, and the termination points are the end of each test. A simple

straight forward approach for storing the program state by taking a snapshot

sto
re
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ie

v
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retriev
e

re
tr
ie

v
e

retriev
e

root

st
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sto
re

st
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re

Figure 5.4: Backtracking process: White nodes are choice points while black
nodes are termination points. Backtracking takes place after executing a ter-
mination point to go back to a choice point, or from a choice point to a prior
choice point if all nondeterministic choices have been explored.

99



Figure 5.5: Clustered test execution framework.

of the program at each choice point imposes a huge overhead. In the cases

where storing the program state can be used for back tracking, i.e. there is no

external resources affected by the program execution, our experiments showed

that the overhead of using a full state storage and retrieval mechanism was

usually as slow as rebuilding the state though re-execution of the test code.

Our framework of clustering and executing unit tests is described in

Figure 5.5. The framework takes as input a set of unit tests which are likely to

share code execution paths. The framework then analyzes the tests and builds

a tree representation of common paths between the tests. Then it instruments

a list of clustered tests out of the original set of tests. The clustered tests
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include the instrumented code necessary for storing and backtracking states

between the tests. Finally, it runs the clustered tests and reports passes and

failures. The reports are mapped to the original unit tests for a better view

of the results.

The following sections explain the different parts of the framework and

the algorithms used in each.

5.3.1 Undo Operations

We propose an alternative approach for storing and backtracking a pro-

gram state. Our approach is based on the Command design pattern [48], where

a command is an entity in the program that can perform two operations: (1)

the execute operation which executes the intended behavior of the command

and (2) the undo operation which reverses the effects of a previous call to

execute. Using this technique, a state of a program can be stored by main-

taining a history list of executed commands. Retrieving the program state is

achieved by traversing the list backwards and executing the undo operation of

each command in the list. Each command stores the required information in

order to be capable of reversing its execution.

In the Command design pattern, a command has both its execute and

undo code implementation embedded within one command instance. However,

in the context of running tests, it is more flexible and easier for a developer to

define the undo operations at the method level execution. Thus, the user de-

fines the undo operations in separation of the original code which might have
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// An i n t e r f a c e f o r undo o p e r a t i o n s
public interface UndoOperation {

public void undo ( ) ;
}

// A templa te c l a s s d e f i n i t i o n f o r implementing the
// UndoOperation i n t e r f a c e .
class className MethodName UNDO implements UndoOperation {

// s t o r e the data r e q u i r e d to undo the ope ra t i on
private type data ;

// A c o n s t r u c t o r f o r the undo op era t ion
// The f i r s t parameter i s the r e c e i v e r o b j e c t o f the
// o r i g i n a l method c a l l , f o l l o w e d by the l i s t o f
// parameters which the o r i g i n a l method has been c a l l e d .
public className MethodName UNDO ( className recev i e rOb j ec t

, o r i g i n a l method parameters . . . ) {
// s t o r e r e q u i r e d data in the p r i v a t e f i e l d s
this . data = . . . ;

}

// The undo method g e t s c a l l e d to r e v e r s e the e f f e c t s
// o f e x e c u t i n g the o r i g i n a l method
public void undo ( ) {

// undo the o p e r a t i o n s
. . .

}
}

Figure 5.6: The UndoOperation interface includes the main undo method
that needs to be defined, followed by a template class definition for a general
implementation of the interface.

been previously implemented. Figure 5.6 shows the general UndoOperation

interface. It includes the undo method that needs to be defined in any class

implementing the interface. Figure 5.6 shows as well a general definition of
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a class implementing the UndoOperation interface. The class name consti-

tutes of the original method’s class name followed by the method’s name and

the UNDO word. The constructor of a class implementing the interface includes

the original receiver object which calls the original method, followed by a list

of the parameters which the original method is called with. Required informa-

tion to reverse the effect of executing the original method is stored in private

fields which are later used when calling the undo method.

In addition to undo operations specified by the user at the method levels

in the tests, we automatically generate undo operations for object field accesses

within the test code. The undo operation would be specific to the field of the

receiver object and it stores the field’s value just before being updated. To

illustrate consider the example in Figure 5.7. Figure 5.7(a) shows how the undo

operation for updating the score field in the Player class is inserted before

the field update. The code generated for backtracking is explained further in

Section 5.3.3. In order to backtrack to a state prior to updating the value of

the field, its value is temporary stored in the Player score UNDO instance

as shown in Figure 5.7(b). Calling Player score UNDO.undo() restores the

value of the score field.

5.3.2 Code Analysis

Our approach for clustering tests together is based on source code anal-

ysis. Starting with the root of every test we examine matching statements in

other tests. This is done similar to building a prefix tree structure, also called
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// Backtrack ing f i e l d a c c e s s e s
@Test public void t e s t ( ) {

Player b i l l = new Player ( ) ;
b i l l . s c o r e = 100 ;
. . .
// Store the v a l u e o f score f o r b a c k t r a c k i n g
addUndoOperation (

new Player score UNDO ( b i l l , b i l l . s c o r e ) ;
// update the score f i e l d
b i l l . s c o r e = 85 ;
. . .

}

( a ) Automatic f i e l d a c c e s s undo ope ra t i on s

// The undo op era t ion f o r f i e l d a c c e s s e s
public class Player score UNDO implements UndoOperation {

Player p laye r ;
int s co r e ;

// s t o r e the p l a y e r r e c e i v e r o b j e c t and o l d f i e l d v a l u e
public Player score UNDO ( Player player , int s co r e ) {

this . p l aye r = p layer ;
this . s c o r e = sco r e ;

}

// undo f i e l d update by r e s t o r i n g the o l d f i e l d v a l u e
public void undo ( ) {

p layer . s c o r e = sco r e ;
}

}

(b) UndoOperation d e f i n i t i o n o f ob j e c t f i e l d

Figure 5.7: Auto generated undo operations for field accesses within the test
code.
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trie structure. Tries are often used for storing strings or other sequences and

allows a fast search. It is often used to suggest words that begin with a given

prefix fast. Figure 5.8 shows an example of a prefix tree. Each node stores a

character. Words are formed by traversing paths from the root to leaf nodes.

Similar to storing characters at nodes, we store common code execution state-

ments at each node. Once two or more tests have different code a branching

into another trie layer is created. The branching points are the choice points.

In addition to comparing method calls and field accesses, we check for pure

methods. Those methods do not change the program state. Such methods

can be declared by the user using @Pure annotation. Static analysis of the

code can check field accesses and updates, and we can conclude if a program

mutates the state of the heap. However, such techniques cannot detect, for in-

stance, if a SQL statement updates the state of the database or simply queries

it without any change without the guidance of the user. Thus, we do not

consider pure methods as choice points for building the tests trie, instead we

merge different tests with different pure methods together, and they are run

once in the node they belong to.

Clustering tests into a trie divides the execution code of each test into

the nodes of the trie. Each unique full test is the augmentation of the code

execution from the root to a leaf node. Clearly, not all tests have code in

common, thus analysis could result in multiple clustered tries.
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Figure 5.8: Prefix-tree, each path in the tree represents a word.

5.3.3 Code Instrumentation

The trie structure generated from combining common sections of tests

together is the backbone of instrumenting the final clustered tests. At this

level, we traverse the prefix trees and generate tests corresponding to the

same choice and terminating points in the tree. The idea is to do a pre-order

traversal of the tree, i.e. recursively traverse the root, left sub-tree, and then

the right sub-tree. We perform two main operations while traversing the tree:

(1) store the execution steps, i.e. keep a list of operations executed while going

from a parent node to a child node, and (2) backtrack the operations, i.e. run

the undo operations stored in the first step while going from a child back to a

root node.

Figure 5.9 shows the algorithm for instrumenting the test code out of

a prefix tree of clustered tests. The initial parameters are the prefix tree root

reference and a StateManager object. The traversePrefixTree method

traverses the tree in a depth-first-search way and generates the instrumented

code using a global codeManager object. The key idea is that for each node we
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// Instrument the p r e f i x t r e e i n t o a s t o r a g e / r e t r i e v a l
// c l u s t e r e d e x e c u t i o n t e s t .
// The parameters are the roo t o f the p r e f i x t r e e and
// the StateManager o b j e c t r e s p o n s i b l e f o r s t o r i n g
// and b a c k t r a c k i n g the program s t a t e .
t r a v e r s e P r e f i x T r e e (Node root , StateManager sm) {

// Create a new s t a t e f o r each cho ice p o i n t
State s t a t e = sm . addNewState ( ) ;
// Add the instrumented code f o r t h i s node to the t e s t
Code stmts = instrumentCode ( root . getCode ( ) , s t a t e ) ;
codeManager . append ( stmts ) ;
// Base case f o r r e c u r s i v e c a l l
i f ( root . i s L e a f ( ) ) {

// Backtrack s i n c e we reached end o f path
State l a s t S t a t e = sm . backtrackLastState ( ) ;
codeManager . append ( l a s t S t a t e . getBackTrackCode ( ) ) ;
return ;

}
// Depth f i r s t t r a v e r s a l o f nodes to v i s i t a l l t e s t s
for (Node c h i l d : root . ge tChi ldren ( ) ) {

t r a v e r s e P r e f i x T r e e ( ch i ld , sm) ;
}
// Backtrack to a p r e v i o u s c ho i ce p o i n t
State l a s t S t a t e = sm . backtrackLastState ( ) ;
codeManager . append ( l a s t S t a t e . getBackTrackCode ( ) ) ;

}
// Create and add undo o p e r a t i o n s b e f o r e each non−pure
// s ta tement . Store the o p e r a t i o n s in the s t a t e o b j e c t .
Code instrumentCode ( Code stmts , State s t a t e ) {

Code nodeCode = new Code ( ) ;
for ( Statement stmt : stmts ) {

i f ( ! stmt . i sPure ( ) ) {
UndoOperation undo = stmt . initUndoOperat ion ( ) ;
s t a t e . push ( undo ) ;
nodeCode . append ( stmt . getUndoOperationCode ( ) ) ;

}
nodeCode . append ( stmt ) ;

}
return nodeCode ;

}

Figure 5.9: Algorithm for instrumenting the clustered tests out of the prefix
tree.
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// Manage the program s t a t e s across the e x e c u t i o n
// paths o f the t e s t s .
class StateManager {

Stack<State> programStates = new Stack<State >() ;
State cu r r en tS ta t e = new State ( ) ;

State addNewState ( ) {
programStates . push ( cu r r en tS ta t e ) ;
cu r r en tS ta t e = new State ( ) ;
return cu r r en tS ta t e ;

}

State backtrackLastState ( ) {
State temp = cur r en tS ta t e ;
cu r r en tS ta t e = programStates . pop ( ) ;
return temp ;

}
}

class State {
Stack<UndoOperation> undoStack =

new Stack<UndoOperation >() ;

void push ( UndoOperation op ) {
undoStack . push ( op ) ;

}
// Generate the b a c k t r a c k i n g code out o f the undo
// o p e r a t i o n s in the s t a t e s t a c k
Code getBackTrackCode ( ) {

Code backTrackCode = new Code ( ) ;
while ( ! undoStack . isEmpty ( ) ) {

Statement undoStmt = undoStack . pop ( ) . getUndoStmt ( )
backTrackCode . append ( undoStmt ) ;

}
return backTrackCode ;

}
}

Figure 5.10: StateManager responsible for maintaining a local state for each
node in the prefix tree.
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maintain a local state. This state is backtracked once all the subsequent state-

ments, in the children’s nodes, have been backtracked. The instrumentCode

method is responsible for injecting code that maintains the state by initiat-

ing UndoOperations prior to every non-pure statement. References to those

undo operations created are stored in a state object which in turn injects the

code to backtrack the state by calling the undo methods of each operation.

Figure 5.10 shows the StateManager class responsible for instrument-

ing the code for maintaining the local states for each node in the prefix tree.

The state manager maintains a stack of state objects which are pushed into

the stack as the tree is traversed from the root to the leaf nodes. At each node

a new State object is created. Each State object maintains a stack of UndoOp-

erations which are pushed as the statements of the tree node are instrumented.

To instrument the backtracking code, the state pops each UndoOperation from

the stack and instruments a call to its undo() method.

5.3.4 Running Clustered Tests

As a final step of the framework, we run the clustered tests as unit

tests itself. We report all passes and failures in the tests. Since the tester is

interested in the original unit tests used, we map the failures and their specific

lines of code to the original test’s lines of code which result in the failure.

This is achieved by creating a map between the original test code and the

instrumented code in Section 5.3.3. The map is a one-to-one correspondence

and thus a failure in the clustered test is mapped directly to the failure in
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the original test. If the failure happens at the level of clustered code, i.e. in

non-leaf nodes of the prefix tree, we use the state manager to keep track of

which test was running at the time of the failure. Usually we report all tests

that share this code to fail. This gives the user a better understanding of the

failure and a list of all tests that need to be updated in case the problem is in

the tests themselves. However, in case of a badly implemented undo operation,

subsequent tests following the bad backtrack might fail which gives the use a

hint that the problem is in the undo operations.

5.4 Case Studies

In this section, we demonstrate the potential benefits of our approach.

We consider the following research questions:

1. RQ1: How does common execution path locations in the test code affect

clusters execution time?

2. RQ2: How does the complexity of the code and its location relative to

the test affect the clusters execution time?

3. RQ3: How does the number of checkpoints in the tests affect clusters

execution time?

To answer these questions, we performed three case studies. The ex-

periments were run on an Intel Core i7 CPU (Quad Core) 2.8GHz with total

8GB RAM.
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5.4.1 RQ1: Database Case Study

In this study, we show the effectiveness of our approach on running

database unit tests. In common black-box database engine tests, each test ini-

tially populates the database schema with test data then runs SQL commands

on top of the data and verifies the results. Those commands can change the

state of the database by adding, updating, or removing data from the database.

Thus each test must clear the database from any data and populate it again

to run. Our approach clusters the tests using abstract undo operations that

store and retrieve the state of the program and the database.

We use two approaches for defining the Undo operations for database

statements. The first approach is similar to the example is Section 5.2, where

each INSERT statement, wrapped within addToStudent() method, is asso-

ciated with an undo operation, addToStudentUndo() method. Figure 5.2

shows the definition of the undo operation. This approach is valid since we

can reverse the effect of adding a student with a unique s id by deleting the

student with that s id. However, in the case where the attributes of the ta-

ble are not unique or where multiple rows of the table are affected by one

operation on the database, such techniques might fail and we would need to

store a big set of data to reverse the operation. So, our second approach is to

use the database built-in save-point and roll-back operations. Once a data set

is inserted into the database, a save-point is created, later on we can reload

the state of the database at that point by calling the database roll-back func-

tion. Figure 5.11 shows an implementation of the undo operation using this
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approach. A save-point is created before the database is altered and thus we

can undo the operations by rolling back to that exact point.

class addDataSetUNDO extends UndoOperation {
Savepoint sp ;

public addDataSetUNDO( StudentDBManager db , . . . ) {
sp = db . getConnect ion ( ) . s e tSavepo int ( ) ;

}

public void undo ( ) {
// check database i s s t i l l a c c e s s i b l e . . .
i f (db == null ) {

db = getDBManager ( ) ;
}
db . getConnect ion ( ) . r o l l b a c k ( sp ) ;

}
}

Figure 5.11: A class definition implementing database undo operation using a
save-point/roll-back approach.

To control this experiment, we generate tests that are clustered into

a full tree structure, as described in Section 5.3.2, of three levels. That is,

each test execution is divided into exactly 3 nodes containing different SQL

statements that alter the state of the database and some assertions on SE-

LECT queries on the data. To answer our first research question, we generate

database tests which have common execution paths at different levels of the

tree. We run the tests on Oracle 11g database [88]. Figure 5.12 shows the case

where the different execution paths are varied at the end of the tests. That is,

we fix the common test executions to the initial parts of the tests and we vary
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Figure 5.12: Clustering DB tests by increasing the difference in execution
paths at the end of the tests. Each cluster is represented by the product of the
root’s number of children and each child’s number of children. For example,
10x7 is a cluster with a root of 10 children, each of which has 7 other children
as leaf nodes.

the operations at the end of the test. On the other hand, Figure 5.13 shows

the case where the different execution paths at the beginning of the tests are

varied. That is, we add more tests that have different execution codes at the

beginning of tests rather than the end.

For both tests, in Figure 5.12 and 5.13, a cluster tree is represented by

a product or the branch factor of its nodes. For example, a 10x7 cluster tree

has a root of 10 children and each child has 7 other children as leaf nodes, to

give a total of 70 tests. Figure 5.12 shows that as the number of tests with

differences at the end of the tests increases, the speed-ups increase. This is

the expected result since we are adding more tests that need less backtracking
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Figure 5.13: Clustering DB tests by increasing the difference in execution
paths at the beginning of the tests.

operations to run. The tests showed a speed-up increase from 1.59X to 2.5X

for clustered execution using roll-back operations as the second level branching

factor increased from 2 to 10, and an increase from 1.36X to 1.95X for clustered

execution with undo operation for each database statement.

Figure 5.13 shows that as the number of tests with differences at the

beginning of the tests increases, the speed-ups are not affected. However,

the speed-ups in this experiments were as much as the maximum speed-ups

achieved in the previous experiment. The speed-up for clustered execution

using roll-back operations was about 2.5X across all clusters and about 1.93X

for the clusters with undo operation for each database statement. The results

were expected since as we add more tests that share less code with previous

tests and thus we maintain the same speed-up.
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Table 5.1 shows the difference between the two backtracking approaches

we used. The first approach adds an undo operation for each database state-

ment. For a set of 100 unit tests, we ran a total of 110,000 database statements

including a total of 55,000 undo operations. The root level operations do not

need to be back-tracked. The speed-up was 1.97X compared to running the

tests without any clustering. The second approach of using save-points has

a roll-back operation for each 5,000 database statements and thus the undo

operations were mere 110 for all the tests. The speed-ups were 2.53X. Even

though we used one undo operation for every 5,000 database operations, the

database still does a complex internal work to roll-back the operation.

5.4.2 RQ2: Web-services Case Study

In this case study, we use web-service calls to reflect the complexity

of a test. A web-service call sends a request over the internet to a remote

server and waits for a response. We use Google Maps web-services [54] to

request driving directions between two cities. The request is made over https

connection protocol and the response is a string representation of an XML

document. We generate tests that do different web-service calls each and

perform different XML additions, deletions, and combinations of other XML

documents. We wrap the XML reader and writer with proper undo operations

based on the tag IDs and names.

To answer our second research question, we generate tests that do web-

service calls at different locations in the tests. A web-service call is usually
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an expensive operation since it requires a network connection. We generate

three clusters of 4 levels; the root is at level 0 and leaf nodes at level 3. Each

cluster tree is full and contains 20 tests, and each test calls a total of 10 web-

service calls. Table 5.2 shows the results of running the tests. The first cluster

contains tests that have web-service calls distributed across the 4 levels of the

cluster tree. The second cluster adds more complexity to the root instead of

the other nodes. The third cluster does 7 web-service calls at the root level

and one call at each of the other level, putting a major complexity on the

beginning of the cluster.

As expected, the higher the complexity is at lower levels of the cluster

tree, i.e. at levels closer to the root, the better the speed-up gains. Table 5.2

shows that as the complexity of the root increased from 10% of the total

web-service calls of a test to 70%, the speed-up increased from 1.8X to 6.7X.

5.4.3 RQ3: Data Structures Case Study

In this study, we answer our third research question. We do so by

generating full clustered trees of up to 7 levels. The tests manipulate data

structures, in specific, we use the Java LinkedList implementation and add

undo operations for the add method. Each test adds 10,000 random integers

to the data structure at random indices.

Table 5.3 shows the results of our experiment. We have three sets of

clusters with order of 3, 4, and 5, where the order is the number of children

for each node in the full cluster tree. The Tree Height is the height of the tree,

117



C
lu

st
er

#
#

N
o
d
es

#
T

es
ts

#
W

eb
-s

er
v
ic

e
C

al
ls

T
ot

al
#

W
eb

-s
er

v
ic

e
C

al
ls

A
v
g.

T
im

e
/

T
es

t
(s

ec
)

T
im

e
(s

ec
)

S
p

ee
d
-u

p
le

ve
l

0
le

ve
l

1
le

ve
l

2
le

ve
l

3

N
o

cl
u
st

er
–

20
10

0
0

0
20

0
0.

61
3

12
.2

7
0

1
37

20
1

3
3

3
10

6
0.

33
5

6.
69

1.
83

X

2
37

20
4

2
2

2
74

0.
24

6
4.

91
2.

5X

3
37

20
7

1
1

1
42

0.
14

0
2.

79
4.

39
X

T
ab

le
5.

2:
C

lu
st

er
in

g
te

st
s

w
it

h
10

w
eb

-s
er

v
ic

e
ca

ll
s

ea
ch

.
T

h
e

te
st

s
ar

e
cl

u
st

er
ed

in
to

a
tr

ie
w

it
h

4
le

ve
ls

;
th

e
ro

ot
is

at
le

ve
l

0
w

it
h

5
ch

il
d
re

n
.

L
ev

el
1

an
d

2
h
av

e
2

ch
il
d
re

n
an

d
le

af
n
o
d
es

ar
e

at
le

ve
l

3.
W

e
va

ry
th

e
cl

u
st

er
s

b
y

ad
d
in

g
th

e
co

m
m

on
co

m
p
le

x
it

y
to

th
e

ro
ot

in
st

ea
d

of
th

e
le

af
s.

118



and it represents the number of nodes or checkpoints for each test from the

root till the leaf node of the test. The # Nodes is the total number of nodes in

the cluster tree. The table shows that as the number of checkpoints increases

the speed-up gain is higher. This is because the increase in the number of

checkpoints means tests share more execution path sections and thus benefits

from the relatively small backtrack to run. In contrast, if we have the same

tests with less checkpoints, it means that the branching factor of the nodes is

higher and each backtrack is more expensive than the previous scenario. The

table also shows that as the order increases, and thus increasing the number of

checkpoints however on the breadth level instead of the depth level, the speed

ups are slightly affected. This is also intuitive since adding a branch to a node

means that the test has execution path difference at higher positions in the

code. This is similar to the results in Section 5.4.1 (Figure 5.12), however in

this test the order increases the branching factor to all nodes of the tree rather

than just the root node.
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Chapter 6

Related Work

6.1 Mixed-Constraints

The JABAL framework provides a novel notation for mixed constraints

to facilitate writing constraints by supporting a combination of declarative and

imperative paradigms. It provides an analysis technique for solving mixed

constraints using a combination of solvers, where each solver is designed for

constraints written using one particular paradigm. To our knowledge, JABAL

is the first framework for writing and solving constraints in a mixed paradigm.

Narayanan’s Master’s thesis [85] presented an approach for mixing

declarative and imperative constraints within the Java language. However,

the work presented there lacks the use of def-use chain analysis, and doesn’t

support formulation of imperative style Alloy formulas. Our work also mixes

constraints at the Alloy level, keeping the Java source code intact and bene-

fiting from static analysis and systematic input generation without the need

of explicit field annotations to be added to the constraints.

A recent paper [49] presents annotations for Alloy models to guide

solving of Alloy constraints using a variety of dedicated solvers, including an

Integer constraint solver and a String constraint solver. However, the focus
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of that work is on constraints written purely in Alloy. In contrast, JABAL

supports mixed constraints, annotations for def-use, and incremental solving

using solvers designed for constraints in different programming paradigms.

Annotations in JML (Java modeling Language) [75] support writing

constraints, including quantifiers, on top of Java methods. However, they

do not support test input generation neither checking constraints using other

solvers.

Incremental solving for Alloy models, where a solution to one formula is

fed as a partial solution to efficiently solve another formula, was introduced in

Uzuncaova’s doctoral work [106,107], which also applied it in the context of test

input generation for product lines. Their work did not support annotations,

rather used a heuristic def-use analysis to prioritize constraints purely written

in Alloy. In their work, the structure of a product line was leveraged for

incremental solving.

Model checkers [38] have been used in analyzing software programs and

verifying concurrent and distributed systems [30]. Recently, Alloy has been

gaining popularity for modeling and analyzing software systems [1,67]. These

techniques involve modeling both the program inputs and as well as the com-

putations in Alloy. The TestEra framework [69] for specification based testing

generates test cases from Alloy specifications of data structures. JABAL uses

a similar approach used in TestEra for translating Alloy solutions into concrete

data structures. However, JABAL does not only translate abstract solutions

into concrete ones, but it maintains a partial solution and updates it based on
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the concretization.

The Java PathFinder model checker [108], has been used to find errors

in a number of complex systems [8]. In [109], Visser et al. show how JPF

can be used for test input generation as well. We use their technique in our

approach for solving constraints written in Java. However, JPF solver in

JABAL takes a partial solution as input and updates it as required. Another

efficient constraint-based testing framework for Java programs is Korat [81].

Korat uses Java predicates to generate test input. Based on the predicate

execution, it monitors fields accessed while generating candidate inputs. We

are investigating the use of Korat as a Java constraint solver in JABAL.

In [47], Frias et al. present DynAlloy which is an extension to Alloy to

describe dynamic properties of actions in software systems. This allows the

user to check for properties in execution traces. They also present the notion of

partial correctness assertions which are used to describe properties regarding

executions. JABAL, on the other hand, provides a similar notion for verifying

dynamic properties as well. We can write constraints in Alloy, execute Java

code, then check the properties of the output state. However, our purpose of

using JABAL has been focused on test input generation.

Significant research has been done in the field of cooperate constraint

solving [103]. For instance, the Satisfiability Modulo Theories (SMT) solvers [33,

37] combine solving logical formulas from different background theories. How-

ever, the techniques introduced are effective at the level of combining these

theories to help solve formulas. In our research, we propose mixing constraint
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solvers at the level of abstract representation using different paradigms. The

solvers that we use can benefit from the research in the field of cooperate

constraint solvers, thus helping solve Alloy or Java constraints faster. In this

context, El Ghazi and Taghdiri present in [50] an approach for solving Al-

loy models using SMT solvers. However, still their approach supports Alloy

language and does not support using different programming paradigms.

Combining an imperative language with a model checker has been in-

troduced in the SPIN [60] model checker. SPIN allows writing constraints in

Promela (Process Meta Language) and allows the insertion of C code into the

model. This integration is feasible since SPIN generates C-code for a problem-

specific model checker, however it does not support the use of different solvers

to solve separate constraints. In [24], the authors combine Alloy with tempo-

ral logic by combining the logic into one BDD representation. However, they

do not solve constraints written in Java imperatively and they only support

integer and Boolean primitive types.

6.2 Systematic Database Testing

Our framework for systematic black-box testing of database engines

uses Alloy [64, 65] and the Alloy Analyzer [66] as means for test input and

oracle generation. However, the use of Alloy for modeling and analyzing soft-

ware systems is not new. Alloy has been previously used to analyze software

systems [67, 70]. These techniques involve modeling both the program inputs

as well as the computations in Alloy. Alloy has been also used for specification

124



based testing. TestEra [69,71] and Korat [18,81] are the first two frameworks to

provide systematic generation of structurally complex tests from constraints.

Our framework unifies the generation of (1) syntactically and seman-

tically correct SQL queries for testing, (2) meaningful input data to popu-

late test databases, and (3) expected results of executing the queries on the

DBMS. Previous work has addressed each of these three steps, but largely

in isolation of the other steps [90, 95]. While a brute-force combination of

existing approaches to automate DBMS testing is possible in principle, the

resulting framework is unlikely to be practical: it generates a prohibitively

large number of test cases, which have a high percentage of tests that are re-

dundant or invalid, and hence represent a significant amount of wasted effort.

Some approaches, such as [20], target generating queries with cardinality con-

straints. Integrating query generators with data generators, however, is still

either specialized [90], or sometimes not possible [20]. Several academic and

commercial tools target the problem of test database generation [19,32,61,96].

Nevertheless, they do not support query generation nor test oracle generation.

Recent work in query aware input generation [78] takes a parameterized SQL

query as input and produces input tables and parameter values, but does not

generate an oracle. Recent approaches introduced query-aware database gen-

eration [16, 17]. These approaches use information from queries as a basis to

constrain the data generator to generate databases that provide interesting re-

sults upon query executions. Query-aware generation is gaining popularity in

both DBMS and database application testing [42, 112] but requires providing

125



queries and test oracles manually.

Our framework uses a similar approach to that of TestEra in using Alloy

to specify the input and for checking the correctness of the output. However,

it differs from TestEra in two key ways. (1) TestEra is specialized for testing

programs that take linked data structures as inputs, whereas our framework

targets testing database management systems. (2) TestEra requires the pro-

grammer to learn a new specification language in order to specify the input.

On the other hand, we only require the input described in SQL (the language

of the application under test) and systematically the Alloy specifications are

generated.

The use of Alloy and the Alloy Analyzer enables the unification of the

three key approaches for database testing: generation of SQL queries, test

databases, and test oracles.

A popular framework for query generation is the Random Query Gener-

ator (RQG) [44], which uses the SQL grammar as a basis of query generation

- in the spirit of production grammars. Given a grammar RQG generates

random queries and tests databases by running the tests against two or more

databases and comparing their results. Since the query generation is purely

grammar-based, it generates a large number of invalid queries as well as redun-

dant ones. Moreover, validating that the queries generated are syntactically

correct is hard and sometimes impossible to ensure [44].

Test database generation is a well studied problem [16, 19, 32, 61, 96].
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Several approaches perform data generation by analyzing a given database

schema [31, 32]. Such approaches aim at generating large databases that are

used as benchmarks for performing various analysis on databases.

Our approach for data generation is query-aware and targets generating

a large set of small databases for exhaustively testing a DBMS system. Unlike

other approaches which use constraint solvers [17], or object modeling lan-

guage [96], our framework uses the Alloy Analyzer which in turn uses SAT to

generate its data. The use of Alloy enables specifying constraints on both the

query as well as the results which enables more precise test input generation.

Several database testing approaches target transaction testing, i.e.,

checking the effect of executing a sequence of related SQL queries on a database.

For example, a recent tool, AGENDA [34], uses state validation techniques to

verify the consistency of the database after executing a transaction. Our ap-

proach does not target transaction testing. The framework primarily considers

SQL selection statements which unlike transactions do no update the state of

the database.

6.3 Clustered Test Execution

Several approaches exist to optimize unit tests and regression testing,

such as identifying special and common unit tests for object-oriented programs

in [114] and incremental regression testing in [7]. However, there is no work,

to our knowledge, that clusters existing unit tests for efficient execution. Our

framework does not try to minimize the number of unit tests available nor
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tries to detect un-necessary or redundant tests. Instead, it analyzes similar

tests to optimize the time required to run them.

Narayanan’s Master’s thesis [84] presented an approach for clustering

unit tests using the Java PathFinder as a tool for state storage and back-

tracking. However, using JPF imposed a lot of overhead for running it’s own

JVM. In addition, their approach doesn’t support backtracking of external

resources state. On the other hand, our work uses user-defined undo opera-

tions that enables back-tracking of external resources and it does source code

instrumentation that runs on the default Java JVM.

Different approaches for state storage and retrieval has been used in

various contexts [108, 115]. The straight forward technique is to store the

full program state. Other techniques use state comparisons, example [76],

which incrementally updates a state by comparing it to previously stored one.

In [115], a check-pointing technique is based on static analysis of the program

to minimize the size of the state to save at each checkpoint. Those techniques

can be integrated with our approach, however, the main difference is in our

use of undo operations which give us the ability to retrieve the program state

that updates external resources.

The idea of using Undo operations has been explored in model check-

ers [91], however our use of undo operations serves a different purpose for

running clustered tests rather than exploring the search space. In addition,

rather than performing the undo operations at the concrete heap levels we

leverage abstract undo operations at higher levels of abstraction as the exam-
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ple shows in Section 5.2. Undo operations has been explored in the context

of structural constraint solving in [41]. They systematically explore genera-

tion of data structures using undo operations for back tracking. Nevertheless,

their application and implementation are different. We use this approach for

clustering unit tests and our code instrumentation does not require using TA-

BLESWITCH byte code commands.

In the context of running unit tests, Xie et al. in [113] propose an

approach for detecting redundant object oriented unit tests using different

comparison techniques. Even though two tests can have different executions

they might have the same object representation as a final result. Their tech-

niques can be useful, however it is focused on object oriented tests and we

can not apply it to check the equivalence of two tests that use external re-

sources. We believe that the statement sequences in the test define the test

itself and changing the sequence implies running a different test. Incorporat-

ing their approach in our framework is a possibility. We might want to check

for partial redundant tests and use it as a base for checkpointing the clustered

tests. However, we use code instrumentation to generate the clustered tests

whereas in [113] they require running the tests and comparing objects in the

tests dynamically at run time.
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Chapter 7

Conclusion

This chapter provides a summary of our main contributions on using

test-summaries for efficient and effective testing of relational applications, fol-

lowed by a discussion and future directions.

7.1 Summary

We presented novel approaches to improve the usability, effectiveness,

and efficiency of systematic constraint-based testing. We further applied those

techniques to the domain of relational applications.

To improve the usability of systematic constraint-based testing, we

presented our technique for mixed declarative and imperative formulation of

structural constraints. We introduced a notation that supports writing spec-

ifications describing input constraints using a combination of declarative and

imperative programming styles. In specific, our approach enables the user to

freely write and mix constraints using the expressive declarative Alloy lan-

guage and the imperative object oriented Java language. We presented a new

notation using a semi-colon and Java-style annotations in the Alloy grammar.

The semi-colon notation provided the means to sequential analysis of Alloy
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formulas. A Formula separated by semi-colons assumes that the previous for-

mula has been satisfied. In addition, annotations provided the tool necessary

for defining input generation steps, and the analysis of user defined combined

formulas.

To improve the effectiveness of systematic constraint-based testing, we

presented our technique for solving input constraints using a combination of

solvers that support different classes of input constraints written using different

programming paradigms. Using the notation we previously defined, we were

able to leverage the Alloy Analyzer to solve constraints written in Alloy and

the Java PathFinder to solve constraints written in Java. We use those solvers

in synergy for automated test input generation of complex data structures.

This technique gives the user the power of choosing the appropriate solver to

solve individual constraints. In addition, we can use the Java virtual machine

to execute and perform operations on the defined system as part of a partial

constraint solving.

To improve the efficiency of running systematically generated suites

of tests, such as those generated by bounded-exhaustive testing techniques,

we presented our approach of clustered execution by clustering common path

executions using abstract level undo operations. Our approach executes initial

common segments between tests once and shares its results among them, then

it executes user-defined abstract undo operations to undo the specific test

changes. This approach enables us to cluster tests that not only execute on

heap data structures, but also those which affect external resources. The basis
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of our approach is checkpoint backtracking as a means to retrieve program

state at choice points. However, we don’t store the program state at each

checkpoint, instead we only store undo-operations required to restore the state.

Undo operation are defined by the user to undo the effect of a state change.

This enables the user to define undo operations on external resources such as

database systems which is hard to achieve is previous typical checkpointing

techniques.

We presented experimental results that show the applicability and effec-

tiveness of our approaches on different sets of commonly used data structures.

We showed the potential use of combined declarative and imperative constraint

formulation and solving for test input generation. This approach not only pro-

vides an easier way of writing constraints, but it also provides potential speed

ups in test generation times. On the other hand, we also showed that clustering

tests that share initial common execution paths can provide great speed-ups

in execution time. It can also be used to minimize calls to expensive external

resources by storing output to be shared with different tests.

In addition, we presented our framework for systematic testing of database

engines using test summaries. Our database testing framework uses test sum-

maries to automate the generation of syntactically and semantically valid SQL

queries, data to populate the database, and test oracles to check the correctness

of executing the SQL queries on the populated data. We model SQL queries

and their execution semantics in Alloy. We were able to add constraints in

Alloy defining the constraints on SQL queries which are hard to define with

132



conventional grammar-based query generators. Thus, we were able to generate

syntactically and semantically correct SQL queries in a bounded-exhaustive

fashion. In addition, the natural map of Alloy relational logic to relational

database logic enabled us to define SQL query execution logic which provided

the means to generate test input and expected output as well. This frame-

work provided a full automated system of generating the three main artifacts

for testing database management systems. Our approach was able to repro-

duce and find new bugs in commercial and open source database management

systems.

7.2 Discussion

In this section, we discuss some characteristics and limitations of our

approaches.

7.2.1 Mixed-constraints

We presented a notation for mixed-constraint formulation and solving.

This technique gives the user the ability to mix between different programming

paradigms. Even though it provides flexibility in formulation constraints, it

can also yield worse constraint solving time. This is due to the fact that

constraint prioritization affects solving time. There is not an automatic way

to know what constraints are better solved using a specified solver. However,

with experience using different solvers, we can have an intuition of what solvers

suite certain constraints.
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We presented our approach for solving mixed constraints using the

Alloy Analyzer and JPF. This technique imposes limitations of both of the

solvers. Alloy Analyzer usually works well with small scope of variables, and

JPF uses exhaustive bounded algorithms to examine all possible valuations of

variables. Thus, the way user defines constraints both in Alloy and Java has

an impact on solving times.

7.2.2 Clustered Execution

Clustering suites of tests that share common initial segments can pro-

vide more efficient execution times. However, this technique works the best

with systematically generated tests since they usually have many common seg-

ments. On the other hand, for small tests it might not be as useful. For tests

that only have few execution statements, it might be faster to execute each

test separately. Nevertheless, our approach is also useful in minimizing expen-

sive external resource calls, such as web-services and database calls, and can

be necessary in real systems testing.

7.2.3 Database Testing

In the field of testing relational application, we presented several tech-

niques for SQL query generation and test input and oracle generation. Using

Alloy requires specifying a scope to the variables used in its formulas. This

scope is used to limit the number of elements of each data type declared in

a database schema. In our experiments, we notices that this scope works
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well with small numbers. However, for large values, i.e. to generate larger

databases, the Alloy Analyzer significantly performs poorly. While this lim-

itation prevents our framework from generating large databases, the query-

aware generation still enables generating a collection of databases that are

large enough to cover a range of interesting scenarios for testing SQL queries.

The case studies presented in our example illustrate how by covering the dif-

ferent combinations of tables with small number of records we were still able

to discover new bugs in database management systems.

On the other hand, the Alloy language provides a built-in notation

for the integer data-type which simplifies the analysis of SQL queries that

manipulate integers. Alloy types however are uninterpreted, and Alloy does

not provide a representation for complex types such as, varchar, date, and

time datatypes. Those data-types need a user-defined defined module.

7.3 Future Work

There are many directions for future work for each of our approaches.

7.3.1 Mixed-constraints

In mixed-constraint solving, we see the opportunity of using other con-

straint solvers such as Korat [81] for solving constraints written in Java. In

addition, we can integrate other solvers dedicated for different constraint types

such as dedicated integer constraint solvers. As a future work, we define an

interface for a constrained solver that can be used in our system. Having API’s
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for solvers that implement our interface makes it easy to plug-in solvers and

using multiple solvers in synergy.

In our experiments, we used JPF as a test generation tool. We can also

integrate the use of JPF in multi-threaded programs. For example, we can

use Alloy to model certain data structures constraints such that they would

impose a certain multi-threaded execution tree that can be verified by JPF.

We also see the opportunity of doing further analyzes to suggest to the

user a certain solving constraint prioritization solution. Using some heuristics

we can guess suitable solvers for certain data-types.

7.3.2 Clustered Execution

We see multiple directions for enhancing our clustered execution tech-

niques. Currently, the analysis of test code is based on the source code. This

direct source code comparison works well for systematic generation of tests.

However, we can use better analysis of equivalent code segments. Research in

source code comparison in code version systems might be useful.

We can also use object equivalence at runtime to determine common

execution code. For example, if executing different code segments result in the

same object heap structure, then we mark these code segments as equivalent.

A simple approach can use the equal method on objects to detect equivalence.

However, this approach might require run-time analysis of the heap memory.

Another future direction of clustered execution is to use the prefix-tree

generated for parallel execution of clustered tests. The prefix tree provides a
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natural forking tree that can be easily parallelized.

7.3.3 Database Testing

The main direction for future work in the our approach for automated

database testing is to extend the supported SQL grammar. Our approach

showed how to use Alloy and the Alloy Analyzer to model a subset of SQL

query grammar and its constraints to ensure the validity of the syntax and

semantics of queries generated. Having an extensible framework, we can sys-

tematically add support for a larger subset of SQL grammar. For example, we

showed how to integrate in our framework the types for table attributes; these

types can be used to add type checking constraints in the WHERE, GROUP

BY, and HAVING clauses. SQL transactional grammar can be extended

as well. DELETE statements can be introduced by modifying the gram-

mar as: DELETE FROM TABLE WHERE term in (SELECT term FROM

table WHERE condition). The constraint that the term to be deleted

is the same as the term to be selected is simple to write in Alloy. Nested

SELECT statements can be extended by ensuring that the inner SELECT

statements can have access to the outer SELECT terms but not vice-versa

using the same approach. Along with extending the grammar, we can also

extend the complex data types used in common SQL queries. Operations on

these data types can be defined by the user in a simple interface.

Another future direction for database testing is to automatically suggest

appropriate scope values for different data types in the database schema under
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test. This can be based on heuristics or empirical studies by reproducing bugs

in different database engines and analyzing the scope properties for which bugs

can be reproduced.
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