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Supervisor: Zong-Liang Yang 

Abstract 

Our ability to understand how global vegetation uptakes atmospheric CO2 is crucial for 

closing the Earth’s carbon budget and predicting feedbacks under a changing climate, but this 

understanding has been poor primarily due to limited observations and analyses. Recently, satellite 

retrievals of solar-induced chlorophyll fluorescence (SIF) have provided a highly credible 

opportunity to estimate gross primary production (GPP) and for monitoring droughts. Despite this 

exciting progress, there are limited studies on how SIF is related to precipitation, soil moisture and 

GPP. Ultimately, it remains unknown how SIF is emitted from vegetation canopies before it can 

be detected by satellites from space.  

This dissertation aims to address the following questions: (1) How can SIF in conjunction 

with other environmental variables be used to estimate plant production?   

(2) What are possible implications of SIF-based GPP for drought detecting and monitoring? How 

effective is SIF in capturing the onset and demise of a drought event? 

 (3) How can simulations of solar-induced chlorophyll fluorescence radiative transfer be improved 

with the use of Monte Carlo ray tracing approach and what are the advantages and limitations of 
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this method? Is it feasible to employ this approach in addressing issues with satellite-based SIF 

related to the configuration of satellites? 

The main scientific findings are as follows: (1) Multiple linear regression estimates of GPP 

using SIF, precipitation and soil moisture and accounting for the lead–lag relationship between 

SIF, precipitation and soil moisture, are produced and agree well with FLUXNET flux tower data; 

(2) SIF is unlikely to be useful as an early meteorological drought indicator; in addition, SIF 

apparently does not respond to the stress conditions faster than common remotely-sensed 

vegetation indices (VIs); (3) The Monte Carlo ray tracing model can successfully simulate 

fluorescence emitted from the top of a canopy and provides useful insights into how global scale 

SIF satellite retrievals can be clarified. 
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Chapter 1: Introduction 

 
1.1 CHLOROPHYLL FLUORESCENCE MECHANISM 

 
Solar energy that is re-emitted at longer wavelengths after being absorbed by chlorophyll 

molecules in plants is commonly referred to as solar-induced chlorophyll fluorescence. 

Chlorophyll a molecules, which are very efficient in absorbing visible light, have two absorption 

peaks around 430 nm (blue region of spectrum) and 662 nm (red), while chlorophyll b peaks are 

slightly shifted to the green region (453 and 642 nm respectively). Upon absorption of a blue light 

photon one of the electrons in chlorophyll molecules is 

excited from its ground state (S0) to the second 

molecular orbital (S2). From S2 energy is rapidly 

dissipated as heat by internal conversion and the 

electron relaxes to the first molecular orbital (S1). In 

case of a photon of red light, the electron is brought to 

the S1 state directly.  

It is S1 from which the excitation energy can 

take different paths. Intrinsically, there are three main 

de-excitation pathways: (1) the energy can be used to 

drive photochemical reactions (photosynthesis), (2) 

can be lost via non-photochemical quenching or 

undergo radiationless decay, and (3) can be reemitted as fluorescence (Fig. 1.1) (Baker 2008). 

Typically, only a small fraction (1-2%) of absorbed photons is reemitted as fluorescence. However, 

as chlorophyll fluorescence emission is linked to the other two processes, it is an exceptionally 

Figure 1.1 Idealized Jablonski diagram 
illustrating the electronic states of a 
chlorophyll a molecule and the transitions 
between them (Porcar-Castell et al. 2014) 
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useful indicator of the actual state of the plant photosynthetic machinery and plant physiological 

state in general at the leaf scale. 

 
1.2  SATELLITE SIF RETRIEVALS 

 
In the past few decades, chlorophyll fluorescence has been used in laboratory studies of 

photosynthesis (Krause and Weis 1991; Maxwell and Johnson 2000) . It has also been used in 

studies of the effect of nutrient stress on marine productivity (Behrenfeld and Milligan 2013). 

However, variable reflectance of terrestrial vegetation in the band where chlorophyll is registered 

has previously hindered use of this method for land photosynthesis. 

 Recently, with the introduction of new methods of spectroscopy, satellite-based SIF 

monitoring has become available. In particular, it was found out that chlorophyll fluorescence may 

be retrieved from high resolution spectra (≈ 0.025 nm) around 757 nm from Greenhouse gases 

Observing SATellite (GOSAT) (Frankenberg et al. 2011). In addition to GOSAT mission, other 

satellite instruments such as the Global Ozone Monitoring Experiment 2 (GOME-2) (Joiner et al. 

2013), the Orbiting Carbon Observatory 2 (OCO-2) (Frankenberg et al. 2014; Sun et al. 2017a; 

Sun et al. 2017b), and the SCanning Imaging Absorption spectroMeter for Atmospheric 

CHartographY (SCIAMACHY) (Joiner et al. 2012), have been used to measure solar-induced 

chlorophyll fluorescence on the global scale. 

Satellite-based SIF measurements are possible with the use of several retrieval strategies 

employing absorption features within the Earth’s reflected spectrum. Such approaches are based 

on the use of strong absorption lines caused by telluric atmosphere absorption (Meroni et al. 2009) 

and the Fraunhofer lines of solar spectrum (Joiner et al. 2011; Plascyk and Gabriel 1975). Due to 

the existence of these features, retrieval of SIF from remotely-based hyperspectral measurements 

was enabled (Meroni et al. 2009).  Kohler et al. (2015) presented a linear approach to SIF retrieval 
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on the example of GOME-2 and SCIAMACHY data: the details of the solution for the number of 

principal components were changed, while methodology comparable to those of Guanter et al. 

(2013) and Joiner et al. (2013) is being employed. It is also to be noted that although currently 

space-based SIF retrievals are based on capturing the far-red fluorescence signal, combined usage 

of far-red and red fluorescence might provide a further insight into water stress effect on vegetation 

and canopy structure importance for far-red fluorescence signal, among other applications (Joiner 

et al. 2016). 

  

1.3  SIF-GPP CONNECTION 

In order to better close the Earth’s carbon budget we need to know when, where and how 

carbon dioxide is exchanged between the atmosphere and land.  Thus, gross primary production 

(GPP), which is defined as rate of carbon fixation through the process of vegetation 

photosynthesis, is an important parameter for carbon budget and climate change research. Several 

studies have demonstrated that GPP constitutes the largest global land carbon flux (Beer et al. 

2010; Zhao and Running 2010).  

GOSAT measurements have confirmed that the intensity of chlorophyll fluorescence 

exhibits a strong linear correlation with gross primary production (Guanter et al. 2014). Hence, 

satellite-based SIF retrievals may provide the most directly measurable signal of ecosystem GPP. 

Such a strong relationship with photosynthesis and GPP is not necessarily obvious for the 

remotely-sensed vegetation indices (e.g., NDVI or EVI) or even more complex carbon models 

(Guanter et al. 2014). It was also discovered that during drought episodes (i.e. water-stressed 

conditions) fluorescence decreases indicating change in plant machinery efficiency while 

vegetation indices (NDVI, EVI) often fail to capture transition from normal to stressed state 
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(Daumard et al. 2010; Lee et al. 2013). Hence, changes in SIF may serve as an indicator of changes 

in GPP associated with episodes of stress and SIF may detect the development of stress before 

traditional vegetation indices become capable of capturing it. 

Until recently, existing methods of quantifying GPP did not rely on fluorescence data, with 

the main groups of approaches being (1) meteorologically-driven land surface carbon cycle models 

(Friedlingstein et al. 2006; Sitch et al. 2008); and (2) remote sensing data-driven models focusing 

on GPP or NPP (Beer et al. 2010; Jung et al. 2011). However, GPP estimates produced by such 

models are prone to large uncertainties (Wagle et al. 2016). As solar-induced chlorophyll 

fluorescence and GPP are related by the chlorophyll a absorption in the plant photosynthetic 

apparatus (MacBean et al. 2018) and can be conceptualized in a similar way (Monteith 1972), 

incorporation of SIF data in calculations shows promise in providing us with more accurate GPP 

values. However, since GPP is influenced by a range of atmospheric, hydrological and 

biogeochemical factors, statistically justified inclusion of these variables along with SIF in 

calculations may further improve GPP estimates. 

 

1.4  RESEARCH OBJECTIVES AND OUTLINE OF THE DISSERTATION 
 

This dissertation includes three main chapters, followed by a conclusion chapter.  

In Chapter 2, we explore the relationship of SIF, precipitation and soil moisture on one side 

with the gross primary production (GPP) on the other.  While there is a link between SIF and GPP 

as previously highlighted, additional studies are required to ascertain potential of SIF in estimating 

GPP. We use a suite of remotely-sensed data to establish and statistically assess the connection 

between SIF, precipitation, soil moisture, and GPP. In Chapter 2 we evaluate the performance of 
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the proposed approach linking the above mentioned variables and compare the outputs against the 

available ground-based observations.  

Chapter 3 aims to investigate applicability of satellite-based chlorophyll fluorescence for 

drought detection and characterization. With the use of available satellite datasets for SIF and 

NDVI (Normalized Difference Vegetation Index) we explore the suitability of use of both of them 

for the drought identification with the special attention to the drought onset, demise, and duration. 

We employ statistical methods to show whether changes demonstrated by SIF and NDVI in 

response to drought conditions are significant enough. We have also looked at how newly derived 

GPP values from Chapter 2 can be helpful in capturing drought effects and providing an estimate 

for the drought onset, end and, therefore, duration. 

Chapter 4 introduces a Monte Carlo (MC) ray tracing approach for the purposes of SIF 

modeling on the canopy level. The presented method is based on a sequence of scattering and 

absorption events incurred by a photon on its path from the light source. In addition, the new model 

features a weighing mechanism whose implementation is aimed at preventing ‘all-or-nothing’ type 

of interaction between a photon packet and a canopy element, thus creating a realistic 

representation of photon interaction within and outside a canopy. The MC model is then used to 

investigate how the satellite scan angle and, correspondingly, field of view impact satellite 

efficiency in registering chlorophyll fluorescence. 

Chapter 5 summarizes the conclusions and findings from this dissertation. This chapter 

ends with directions for future work.
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CHAPTER 2:  Estimating crop and grass productivity over the United States 
using solar-induced chlorophyll fluorescence, precipitation and soil moisture 

data from space 

2.1 ABSTRACT 

This study investigates how gross primary production (GPP) estimates can be improved 

with the use of solar-induced chlorophyll fluorescence (SIF) based on the interdependence 

between SIF, precipitation, soil moisture and GPP. We have used multi-year (2007–2012) datasets 

from Global Ozone Monitoring Experiment-2 (GOME-2), Tropical Rainfall Measuring Mission 

(TRMM), European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM), and 

FLUXNET observations from ten stations in the continental United States. Over the Great Plains 

and Texas, fluorescence levels lag precipitation events from about two weeks for grasses to four 

weeks for crops. Using these lead–lag relationships, we estimate GPP using SIF, precipitation and 

soil moisture data for grasses and crops over the US by applying multiple linear regression 

technique. GPP values estimated from our lead–lag based SIF in a CLM gridbox surrounding US-

ARM, US-AR1 and US-AR2 FLUXNET stations have shown the closest possible match with the 

respect to the observational data from the corresponding FLUXNET crop and grass stations. Our 

GPP estimates also capture the drought impact over the US better than those from MODIS. During 

the drought year of 2011 over Texas, our GPP values show a decrease by 50-75 gC/m2/month as 

opposed to the normal yielding year of 2007. In 2012, a drought year over the Great Plains, we 

observe a significant reduction in GPP, especially in the areas of high production (with 

GPP>400 gC/m2/month), as opposed to 2007. Hence, estimating GPP using specific SIF-GPP 

relationships, and different plant functional types and their interactions with precipitation and soil 

moisture over the Great Plains and Texas regions can help produce more reasonable GPP 

estimates.  
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2.2 INTRODUCTION 

Knowledge of how global vegetation uptakes the atmospheric carbon dioxide is crucial for 

understanding the Earth’s carbon cycle processes. Gross primary production (GPP), which is 

equivalent to ecosystem gross photosynthesis, constitutes the largest global land carbon flux that 

maintains ecosystem functions such as growth and respiration (Al-Kaisi et al. 2009; Beer et al. 

2010; Running et al. 2004). GPP is also closely related to crop yield and hence it can be considered 

the basis for food production supporting human welfare. Despite the model simulations to provide 

GPP estimates (Friedlingstein et al. 2006; Sitch et al. 2008; Sitch et al. 2003; Xu and Hoffman 

2015), the lack of observational datasets and analyses limit our capability to validate these model 

outputs.  

As drought events are projected to increase over both the US and other regions (Cook et 

al. 2015; Dai 2013; Sheffield and Wood 2008; Wang 2005) in future, it is important to quantify 

their effects on the reduction of plant productivity (Ciais et al. 2005; Zhao and Running 2010). 

Challenges remain due to the complexity of plant biophysical and physiological processes 

associated with droughts (Liao and Zhuang 2015). 

Many researchers have tried to use solar-induced chlorophyll fluorescence (SIF) in studies 

of plant photosynthesis. As a fraction of solar energy that is re-emitted at longer wavelengths after 

being absorbed by chlorophyll molecules, SIF can provide information on plant functional state. 

As a result, SIF measurements have been used to assess changes in plant physiology associated 

from the stress events, both in lab- and field-scale studies (Krause and Weis 1991; Maxwell and 

Johnson 2000).  

Over the past decade, satellite SIF retrievals have demonstrated that chlorophyll 

fluorescence intensity exhibits a strong correlation with GPP (Guanter et al. 2014). This high 
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correlation was found to hold for both natural vegetation (Frankenberg et al. 2011) and croplands 

(Guanter et al. 2014); in addition, it was also shown to be valid from an individual leaf level 

(Meroni et al. 2008) to the ecosystem level (Guanter et al. 2012). It is recognized that the 

relationship between SIF and GPP is mainly driven by the absorbed photosynthetically active 

radiation (APAR) as both SIF and GPP depend on it. In addition, the light use efficiencies for 

photochemistry and fluorescence are expected to co-vary in absence of other protective 

mechanisms’ effects (Damm et al. 2010; Guanter et al. 2014). Thus, SIF might be regarded as the 

most direct physiology-based measure of terrestrial photosynthetic activity which can be expressed 

as plant production, thus, GPP.  

Guanter et al. (2014) and Guan et al. (2016) have shown that the linear regression method 

using SIF and GPP as independent and dependent variables respectively produces reasonably good 

GPP estimates for croplands and grasslands over the US and Europe. These estimates  are shown 

to produce good agreement with GPP at flux tower sites, as well as NPP based on the agricultural 

yield statistics provided by the US Department of Agriculture (USDA)(Wagner et al. 2012). 

Guanter et al. (2014) used GPP observations from FLUXNET stations over Europe and the US to 

derive the global crop and grass GPP estimates using a linear SIF-based equation, and it was 

demonstrated that data- and process-based biogeochemistry models, unlike the above mentioned 

SIF-based approach, tend to underestimate crop GPP by 50-75%. Given this level of success, a 

question remains as to whether such a linear relationship can be further improved?   

Currently the mechanistic link between SIF and GPP remains unclear (Porcar-Castell et al. 

2014) and such SIF–GPP relationship might vary from region to region due to local differences 

such as prevalent crop types and meteorological conditions. Leff et al. (2004) have demonstrated 

that wheat and corn are the most common crop plant over the US, while rice is a major crop in 
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South and Southeast Asia, mainly India and China; barley and rye are most extensively cultivated 

in European Russia. Moreover, temperature and rainfall conditions, which also vary over different 

locations, affect crop growth and development. Precipitation and its distribution are an important 

factor influencing plant production.  For instance, over South Asia temporal distribution of 

precipitation is different from that over North America, with the major proportion of annual rainfall 

(as much as 75%) received during the summer monsoon season (Dhar and Nandargi 2003; Kumar 

et al. 1999). As a result, crop production will necessarily be influenced by these factors and the 

relationship between SIF and GPP might be different over different regions owing to these 

variations in meteorological conditions and crop types.  

As it was shown previously, GPP is influenced by a range of atmospheric, hydrological and 

biogeochemical factors such as precipitation amount and soil moisture. The relationship between 

SIF and GPP would also reflect impacts of all other parameters that influence SIF. For example, 

one of the major physiological limits controlling plant functioning is water availability (Churkina 

and Running 1998; Nemani et al. 2003; Running et al. 2004) which translates to soil moisture 

availability as plants do not ingest water from the atmosphere directly. The drought-induced deficit 

in soil moisture causes stomatal closure and reduction in photosynthesis and transpiration which 

affect fluorescence yield (Baker 2008). Therefore, precipitation and soil moisture can exert 

significant influence on SIF and be highly correlated with it.  

While it is assumed that effects of precipitation and soil moisture are implicitly included 

in the SIF signal, it might be needed to explore whether soil moisture and precipitation can also 

have an independent impact, which is not through SIF, on GPP. In such a case, it might be found 

out that using only SIF to estimate GPP takes into account only a fraction of the impacts that come 

from precipitation and soil moisture. In this study we intend to explore and investigate influence 
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of soil moisture and precipitation along with SIF on GPP prediction. Accordingly, we need a 

statistical tool to establish such dependent–independent parameters relationships. Owing to the 

inclusion of multiple factors as predictors, this study aims to use multiple linear regression analysis 

(MLR) by statistically justified inclusion of SIF, precipitation and soil moisture along with SIF. In 

this study, we propose to use SIF-based GPP equations constrained by local conditions; therefore, 

we develop equations that are pertinent to the crop and grass plant production, respectively, over 

the US. We focus on high crop producing areas over the Great Plains and Texas where crops, as 

well as grasses, are abundant.  

It is also to be noted that plant water need varies with the stage of crop development. 

According to FAO (Brouwer and Heibloem 1986), a typical crop has four development stages, 

namely, initial stage, crop development, mid-season, and late season. At planting and during the 

initial stage crop water need is estimated at 50 percent of the crop water need during the mid-

season stage (Brouwer and Heibloem 1986). During the crop development stage water need 

gradually increases and reaches its peak by the end of the crop development stage (Brouwer and 

Heibloem 1986). For grain producing crops, which are allowed to dry out or sometimes even die 

at the end of their life cycle, the water need in late season, when ripening and harvesting occur, 

drops to 25%, lower than that needed during the initial stage. The importance of water availability 

for a plant is such that if a water stress event occurs in a critical growth development period, the 

resulting crop GPP and quality later in the season will be reduced (Al-Kaisi et al. 2009). In this 

connection, it would be necessary to factor in precipitation and soil moisture from earlier in the 

season to be able to produce meaningful estimates of plant productivity at the end of the season. 

Therefore, in order to investigate the possibility of using SIF in conjunction with other parameters 

for GPP quantification, it is necessary to look into the link between the timing of a precipitation 
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event in the crop development season and response from the plant machinery in the late season as 

reflected in photosynthesis and fluorescence levels.  Thus, we have tested the relationship between 

the GPP and precipitation and soil moisture with the inclusion of a lead–lag effect.  

In this study, we propose to use datasets from FLUXNET stations for GPP, GOME-2 

satellite data for SIF, TRMM 3B42 and 3B43 products for precipitation, and ESA CCI soil moisture 

data product for soil moisture over the period of 2007 to 2012, primarily due to the availability of 

GOME-2 SIF data for this period. We apply the MLR method to derive equations and estimate 

GPP using SIF. We also look at the lead–lag relationships between SIF and other parameters 

controlling SIF, namely, precipitation and soil moisture. We estimate such GPP values using SIF, 

precipitation and soil moisture for the crop and grass separately as the drought appeared over Texas 

in 2011 and the Great Plains in 2012. We did not estimate GPP for other vegetation types such as 

mixed forests along the East Coast or shrublands over the Southwestern US and other US regions 

(Dyer 2006; Mao et al. 2012).  

2.3 DATA and METHODOLOGY 
 
2.3.1 Observational and Model Data 

GOME-2 (Global Ozone Monitoring Experiment-2) terrestrial chlorophyll fluorescence 

data product is the primary dataset being used in this study. GOME-2 provides retrievals of solar-

induced chlorophyll fluorescence peaking at 740 nm which is based on the measurements from a 

broader spectral range of 734–758 nm (Joiner et al. 2013; Joiner et al. 2014). GOME-2 SIF data 

have been successfully used to obtain the plant functional states related to gross primary 

production (Guanter et al. 2014; Joiner et al. 2014; Sun et al. 2015; Walther et al. 2016; Yang et 

al. 2015). GOME-2 v25 level 3 dataset we use in this study covers time period from 2007 to 2012 

and has a spatial resolution of 0.5×0.5°. 
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 TRMM (Tropical Rainfall Measuring Mission) 3B42 rainfall data will be further used to 

quantify the relationship between SIF, precipitation, soil moisture, and GPP. TRMM 3B42 and 

3B43 gridded estimates are on a spatial resolution of 0.25×0.25° in the belt extending from 50°N 

to 50°S. We will also use TRMM 3B43 monthly precipitation based on 3-hourly rainfall estimates 

summed for the calendar month with rain gauge data applied for large-scale bias adjustment. In 

this study TRMM 3B43 product is used to produce SIF predictions based on dependence between 

SIF and precipitation.  

In order to provide information on soil moisture impact on SIF and GPP, we have used the 

ESA CCI SM combined daily dataset (1978–2014) at 0.25×0.25° spatial resolution. This dataset 

represents the most comprehensive global time series of satellite based soil moisture applicable at 

up to top 5 cm of the soil. The CCI Soil Moisture product combines passive Level 2 radiometer-

based products from Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor 

Microwave Imager (SSM/I), TMI, and Advanced Microwave Scanning Radiometer for EOS 

(AMSR-E) with active scatterometer-based products from European Remote Sensing satellite 

(ERS-1/2) and Advanced Scatterometer (ASCAT). As shown in several studies (Dorigo et al. 

2012; Hirschi et al. 2014; Nicolai-Shaw et al. 2015; Pratola et al. 2015; Pratola et al. 2014), ESA 

CCI SM data have been successfully used for a variety of applications.  

We relate GPP from FLUXNET measurements at five crop (US-Ne3, US-ARM, US-Twt, 

US-Tw2, US-Tw3) and five grass stations (US-KFS, US-AR1, US-AR2, US-Cop, US-Wkg) to 

SIF, precipitation and soil moisture (Table 2.1). Data available from FLUXNET have been 

extensively used in various studies investigating processes related to the exchange of CO2 between 

the land surface and atmosphere (Falge et al. 2002a; Falge et al. 2002b; Jung et al. 2011; Schwalm 

et al. 2010; Zhou et al. 2016). It was previously demonstrated that ecosystem-level GPP can be  
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accurately estimated from measurements of CO2 fluxes at eddy covariance towers (Baldocchi 

2003). FLUXNET GPP values, which are calculated as a difference between total ecosystem 

respiration and net ecosystem exchange, are obtained at a half-hourly step and expressed in 

umol/m2/s; therefore, we have converted GPP measurements to gC/m2/day and gC/m2/month that 

are the units used throughout this study. 

GPP data are also available from MODIS, a key instrument onboard Terra (originally EOS 

AM-1) satellite which started providing global GPP products in 2000 (Zhao et al. 2005). We use 

monthly MOD17A2 data product available at 1×1 km spatial resolution. The primary purpose of 

including these data into analysis is using them as a reference to evaluate the performance of SIF-

, precipitation- and soil moisture-based GPP estimates.  

MODIS GPP algorithm is based on the light use efficiency (LUE) concept (Monteith 

1972) , according to which:  

𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐺𝐺𝑃𝑃𝑃𝑃 × 𝐹𝐹𝐺𝐺𝑃𝑃𝑃𝑃 × 𝐿𝐿𝐿𝐿𝐿𝐿,     (2.1)   

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑓𝑓(𝑉𝑉𝐺𝐺𝑉𝑉) × 𝑔𝑔(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚),   (2.2) 

𝐹𝐹𝐺𝐺𝑃𝑃𝑃𝑃 = 1 − 𝑒𝑒−𝑘𝑘×𝐿𝐿𝐿𝐿𝐿𝐿 ,   (2.3) 

where PAR is photosynthetically active radiation, FPAR is fractional absorption of PAR, LUE is 

the efficiency with which absorbed radiation is converted to fixed carbon, f(VPD) is the scalar of 

daily vapor pressure deficit (VPD) and g(Tmin) is the scalar of daily minimum air temperature (Tmin). 

Biome physiological parameters are specified with the use of a biome property look-up table 

(BPLUT) which was modified to agree with GPP derived from flux towers and synthesized net 

primary production (NPP) (Zhao and Running 2010).  
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Table 2.1. Basic information regarding the FLUXNET sites used in this study. 

Site name and code State Latitude 
(°N) 

Longitude 
(°E) 

Land 
cover 

Available 
period 

1 

 
ARM Southern Great 
Plains site‐ 
Lamont (US‐ARM) 
 
 
 

OK     36.61     ‐97.49 

 
 
CRO 
 

2003–2012 

2 
ARM USDA UNL OSU 
Woodward Switchgrass 
1 (US‐AR1) 

OK     36.42   ‐99.42 
 
GRA   
 

2009–2012 

3 
ARM USDA UNL OSU 
Woodward Switchgrass 
2 (US‐AR2) 

OK     36.64     ‐99.60 GRA 2009–2012 

4 Corral Pocket (US‐Cop) UT     38.09   ‐109.39 GRA 2001–2007 

5 Kansas Field Station 
(US‐KFS) KS     39.06   ‐95.19 GRA 2007–2012 

6 

Mead ‐ rainfed 
maize‐soybean 
rotation site (US‐
Ne3) 

NE     41.18   ‐96.44 CRO  2001–2013 

7 
Twitchell Corn (US‐
Tw2) CA     38.10  ‐121.64 CRO 2012–2013 

8 
Twitchell Alfalfa 
(US‐Tw3) CA     38.12  ‐121.65 CRO 2012–2013 

9 
Twitchell Island 
(US‐Twt) CA     38.11  ‐121.65 CRO 2009–2014 

10 Walnut Gulch Kendall 
Grasslands (US‐WKG) AZ     31.74    ‐109.94 GRA 2004–2014 

 

While MODIS algorithm provides spatial patterns of GPP reasonably well and captures its 

temporal variability across various biome types (Gitelson et al. 2012), accurate GPP estimates over 

certain biomes are still difficult to achieve (Heinsch et al. 2006; Turner et al. 2005; Turner et al. 
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2006). Recently, it was demonstrated that standard MOD17 GPP product substantially 

underestimates GPP over croplands (Wagle et al. 2015; Wagle et al. 2016; Zhu et al. 2016), 

especially in summer, which is likely due to the prescribed LUE being too low (Heinsch et al. 

2006; Wagle et al. 2014).  

One limitation of MOD17 product is related to the fact that it does not take into account 

the influence exerted on the photosynthetic capacity and consequently GPP estimation by leaf 

quality expressed as photosynthetic rate of an individual leaf (Zhang et al. 2017).  

Newly available GPP products such as Vegetation Photosynthesis Model (VPM) (Zhang 

et al. 2017) and FLUXCOM (Jung et al. 2017) can potentially serve as better benchmarks for 

comparison of GPP estimates and might be used for future research. 

2.3.2 Framework for quantifying GPP, SIF, precipitation and soil moisture relationships 

As stated in the introduction section, precipitation and soil moisture influence both SIF and 

GPP. Therefore, in order to avoid the replication of soil moisture and precipitation effects in SIF 

and GPP, we have turned to the multiple linear regression (MLR) analysis. 

We have used the multiple linear regression method to estimate relative importance of 

fluorescence, precipitation and soil moisture for GPP.  Multiple linear regression is a technique 

widely applied in the atmospheric sciences (Fourty and Baret 1997; Soukharev and Hood 2006). 

Multiple regression is an extension of linear regression with two or more predictor variables. It is 

also known to take into account interdependence between independent parameters by regulating 

the weights assigned to them. Coefficients of independent parameters can be high but negative 

depending on the relationships between them (Chakraborty et al. 2015). This is due to the fact that 

the parameters can have a strong correlation with GPP while being not totally independent. MLR 
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accounts for this interdependence so that the impacts from precipitation and soil moisture are not 

replicated in SIF and GPP.  

The multiple linear regression equation is as follows: 

𝑌𝑌 = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2 + ⋯+ 𝑏𝑏𝑝𝑝𝑥𝑥𝑝𝑝,  (2.4) 

where Y is the predicted or expected value of the dependent variable, x1 through xp are p distinct 

independent or predictor variables, b0 is the value of Y when all of the independent variables 

(x1 through xp) are equal to zero, and b1 through bp are the estimated regression coefficients 

(Garofalo et al. 2016). To derive the equations, we use weekly averaged values of precipitation, 

SIF, soil moisture, and FLUXNET GPP in order to have a larger number of data points to achieve 

a better statistical significance. A predictor contributing the most to the equation is automatically 

chosen at first (here, fluorescence) and then other predictors are added automatically until and 

unless a predictor is statistically insignificant. To validate the equations based on the regressed 

coefficients and y-intercept, we again used GPP data from the FLUXNET stations.  

The relationship between SIF and GPP is deemed a biome-dependent one (Damm et al. 

2015; Porcar-Castell et al. 2014). Therefore, we have calculated the equations separately for both 

grass and crop vegetation types using remotely-sensed SIF, precipitation and soil moisture data 

along with station-based GPP measurements. Our goal was to derive an equation that explains the 

relationships between the predicting parameters (SIF, precipitation, and soil moisture) and the 

predictant (GPP) the best in terms of standard error analysis and explained variance. Starting from 

a subset of one predictor (here, SIF), we have extended our analysis using a combination of two 

and three different predictors (for example, SIF and precipitation) to identify the subset of 

independent variables that maximizes the variance of GPP explained. We also tested our model 
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using temperature as a predictor; however, we didn’t observe the model to make any significant 

improvement in the explained variance of GPP.  

We used a fraction of our data to derive MLR equations and the rest to validate the 

proposed equations – namely, we chose a combination of six FLUXNET stations with the longest 

record to derive the model and the remaining stations to validate.  This approach was selected due 

to the fact that not all the FLUXNET stations in this study have a record over the entire period of 

interest, i.e. 2007 – 2012; e.g. Twitchell corn (US-Tw2) station has available data for the period 

of 2 years only. Using the explained variance, analysis of the error values, and the coefficient of 

correlation between predicted GPP and actual GPP, the equations were derived from the 

FLUXNET stations with C3 crop, C3 non-arctic and C4 grasses.  

 While estimating GPP within each gridcell, we have multiplied GPP for grass and crop by 

corresponding PFT fractions from CLM to avoid an overestimation of predicted GPP. This is 

because the rainfall inside the grid cell is shared by different PFTs and recorded SIF is a 

combination of SIF emitted from different plant types. Therefore, we have multiplied the GPP 

equations with the grass and crop PFT fractions since grass and crop responses to SIF and 

precipitation are different and have been already accounted for by different coefficients obtained 

in the equations based on 100% grass or crop stations as stated above.  

It has long been recognized that water stress produces a large effect on chlorophyll 

fluorescence parameters, indicating plant structural and functional damage (Mena-Petite et al. 

2000). In this analysis we focused on temporal dependence between SIF, precipitation and soil 

moisture. As stated earlier, such relationships appear not to be simultaneous, presumably due to 

the fact that the water need by the plants reaches its maximum at the end of the development stage 

of their life cycle, whereas SIF and GPP maximize at the later stages, i.e. ripening and harvesting 
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during the late season. Thus, production from crops received at the late season, when ripening and 

harvesting take place, may not be related to the soil moisture availability during the same period. 

Hence, we performed lead–lag correlation analysis using the above independent variables of SIF, 

precipitation and soil moisture to ascertain the temporal relationship between them. 

 We then introduced a new method of GPP quantification, which is based on the knowledge 

of the lead–lag between precipitation and SIF.  MLR equations quantifying GPP were formulated 

for crop and grass vegetation types separately and produced GPP estimates for JJA in 2007, 2011 

and 2012.   

Since all the equations linking GPP, SIF, precipitation and soil moisture were generated 

for C3 non-arctic grasses, C4 grasses and crops only, we expect the estimates based on them to be 

the most robust in the areas with high percentage of these vegetation types, such as the Great Plains 

and Texas (Fig. 2.1).  

Over regions where crop and grass PFT percentage is low (such as East Coast or 

Southwest), our GPP estimation approach may not be accurate since we have not formulated 

equations for other PFTs.  Therefore, we primarily investigate and evaluate the performance of 

MLR equations over the Great Plains. We principally focus on finding the relationships between 

SIF and GPP that are hypothesized to be vary for different plant types and be pertinent to similar 

meteorological conditions over a specific region.   

2.4 RESULTS 

To better understand the relationship between GPP and other parameters, we have 

developed an approach to estimate grass and crop GPP as the predictant and SIF, precipitation and 

soil moisture as the predictors using multiple linear regression analysis. We have provided GPP 

estimates based on the MLR equations derived for different combinations of predictors. Thus, we 
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have estimated correlation and root-mean-square error (RMSE) for the following cases: SIF-based 

GPP, SIF- and precipitation-based GPP, SIF-, precipitation- and soil moisture based GPP (MLR-

based GPP). In addition to the three above cases we have looked into how SIF itself correlates 

with GPP.  

For the final case we have explored SIF-precipitation-soil moisture relationship using the 

lead–lag correlation analysis. Figure 2.2 demonstrates the lead–lag relationship between 

precipitation and SIF, soil moisture and precipitation, and SIF and soil moisture for US-Ne3 and 

US-KFS stations respectively. It can be inferred from Figure 2.2 that for US-Ne3 station with the 

dominant crop vegetation the lag between precipitation and corresponding SIF is on the scale of 4 

weeks (Fig. 2.2a), while over US-KFS station, where grass is prevalent, this lag is about 2 weeks 

(Fig. 2.2b). There is no significant lag between precipitation and soil moisture values for both US-

Ne3 and US-KFS stations (Figs. 2.2c–2d). Similar temporal relationships between SIF, 

precipitation and soil moisture have also been found for the remaining FLUXNET stations used in 

this research. 

We have obtained GPP-predicting equations separately for crop and grass because of the 

differences in the response of crops and grass to soil moisture and precipitation as well as the 

difference in plant functional types as per CLM PFT dataset. The equations for crop and grass are 

as follows (hereinafter, predicted GPP, or MLR-based GPP with lead–lag): 

𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝 = 𝐺𝐺𝐹𝐹𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝 × (6.21𝑆𝑆𝑆𝑆𝐹𝐹 − 2.26𝐺𝐺𝐺𝐺𝑇𝑇 + 14.81𝑆𝑆𝑆𝑆 − 1.01),    (2.5) 

 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶3𝑔𝑔𝑐𝑐𝑚𝑚𝑔𝑔𝑔𝑔 = 𝐺𝐺𝐹𝐹𝑇𝑇𝐶𝐶3𝑔𝑔𝑐𝑐𝑚𝑚𝑔𝑔𝑔𝑔 × (2.01𝑆𝑆𝑆𝑆𝐹𝐹 + 5.09𝐺𝐺𝐺𝐺𝑇𝑇 + 1.03𝑆𝑆𝑆𝑆 − 0.02)   (2.6) 

𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶4𝑔𝑔𝑐𝑐𝑚𝑚𝑔𝑔𝑔𝑔 = 𝐺𝐺𝐹𝐹𝑇𝑇𝐶𝐶4𝑔𝑔𝑐𝑐𝑚𝑚𝑔𝑔𝑔𝑔 × (1.04𝑆𝑆𝑆𝑆𝐹𝐹 + 0.57𝐺𝐺𝐺𝐺𝑇𝑇 + 1.99𝑆𝑆𝑆𝑆 − 0.02)   (2.7) 

𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑚𝑚𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑔𝑔𝑐𝑐𝑚𝑚𝑝𝑝−𝑔𝑔𝑐𝑐𝑚𝑚𝑠𝑠𝑝𝑝 = 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝 + 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶3𝑔𝑔𝑐𝑐𝑚𝑚𝑔𝑔𝑔𝑔 + 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶4𝑔𝑔𝑐𝑐𝑚𝑚𝑔𝑔𝑔𝑔,    (2.8) 
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It is necessary to emphasize that plant functional type classification from CLM 

(Community Land Model), their percentage and spatial patterns have been used to estimate GPP 

over the continental US. Since crop PFT in CLM is treated as C3 vegetation and therefore total 

crop GPP is calculated as that of C3 vegetation, we have not performed the analysis for C4 crops.  

Thereupon, we use SIF, precipitation, and soil moisture data to produce predicted GPP 

estimates over the Great Plains and Texas using the approach described above. Calculation of 

predicted GPP is only performed if and when SIF, as an indicator of the activity of plant 

photosynthetic machinery, is greater or equal to zero.  In case of a negative SIF value it is 

considered equal to zero and in the process of GPP calculation and mapping GPP is regarded to be 

equal to zero in the areas where SIF amounts to zero. 

Figure 2.3 demonstrates correlation between GPP measured at the FLUXNET stations with 

C3 crop vegetation and GPP calculated with the use of the above mentioned five combinations of 

predictors. Such correlations are based on GPP values derived and estimated over the entire 

vegetation period of a year for 2007–2012. It can be noted that correlation coefficient R increases 

with the addition of predictor parameters while RMSE shows an opposite tendency, which is 

expected. While correlation coefficient seems to be increasing rather monotonically as more 

predictors are added, the most significant rise in R is noted when MLR equation is enhanced by 

the introduction of lead–lag (Fig. 2.3d, 2.3e) – R grows from 0.82 to 0.98 

Figure 2.4 illustrates changes in the tightness of correlation between FLUXNET GPP and 

C3 grass GPP calculated with the use of the same methods as in Figure 2.3. Similarly to Figure 

2.3,  calculated GPP estimates and FLUXNET GPP become more significantly correlated as the 

independent variables are introduced; it is also shown that initially correlation between SIF and 

FLUXNET GPP without any ancillary data is relatively high (R = 0.77, Fig.2.4a) while that for 
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the case of C3 crops was only 0.65. Similar pattern of increasing correlation and decreasing RMSE 

is also characteristic for C4 grasses (Figure 2.5).  

Overall, GPP estimates derived with the use of MLR along with taking the lead–lag 

relationship into consideration are close to those from FLUXNET network: at the crop stations 

peak mean monthly GPP can be up to 20 gC/m2/day while for the grass sites mean monthly GPP 

does not exceed 10 gC/m2/day. These findings agree well with those reported by Guanter et al. 

(2014). 

We have also explored how inclusion of lead–lag into relationship between predictors 

influences GPP estimates for individual plant species. Alfalfa and rice, both C3 crop species grown 

at the non-rotational US-Tw3 and US-Twt stations, have been selected for this purpose. Figures 

2.6a and 2.7a reveal that correlation between SIF and flux tower GPP estimates demonstrate 

moderate strength of relationship (0.57 and 0.41 for alfalfa and rice, respectively). It can be seen 

that for the rice station addition of precipitation into the equations has a substantial role in the 

improvement of the correlation between MLR GPP estimates and respective FLUXNET GPP 

values (Figs. 2.7b and 2.7c), while such change in R is not noted for alfalfa vegetation. Overall, as 

in the previous cases, individual plant GPP estimates demonstrate an analogous response to the 

introduction of more predictor variables used in MLR-based plant production quantification.  

In order to provide more support for the proposed framework aimed at better MLR GPP 

estimation, we have calculated mean values and errors for the predicted GPP (MLR equation with 

lead–lag), and the reference datasets MOD17A2 GPP data product and FLUXNET GPP, within 

the CLM gridbox surrounding US-ARM, US-AR1 and US-AR2 stations. Figure 2.8 shows that 

our mean monthly (for JJA of all the years) value of predicted GPP for crop and grass within the 

gridbox (315 gC/m2/month) is consistent with FLUXNET stations observations 
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(394 gC/m2/month). Although MODIS captures the drought trend, the observed values of GPP 

within the gridbox surrounding the stations are only 123 gC/m2/month.  This shows that our 

predicted (MLR-based with lead–lag) GPP estimates are the closer to plant production as inferred 

from FLUXNET flux tower observations.  

Figures 2.9 and 2.10 show total (grass and crops combined) predicted GPP over Texas and 

the contiguous US respectively. Similarly, in Figure 2.11 we show GPP estimated from MODIS 

satellite retrievals. Figure 2.9 shows that predicted GPP over Texas (within 30–36°N/95–105°W 

gridbox) in the year 2011 is significantly lower than that of 2007. The area with GPP values higher 

than 75 gC/m2/month have decreased significantly both from 2007 to 2011 and from June 2011 to 

August 2011 which is not typical for a normal yielding year over both Texas and the Great Plains. 

Figures 2.9d–9f demonstrate that in 2011 drought conditions were limited to Texas as there was 

no significant change in GPP over the Great Plains (Figs. 2.10d–10f). 

Figure 2.10 shows that maximum GPP values found over the Great Plains (Figs. 2.10a–

10c) in the normal yielding year amount to about 500 gC/m2/month which agrees well with 

FLUXNET data (Guanter et al. 2014). Predicted GPP indicates that 2012 was a severe drought 

year over the Great Plains as compared to 2007. The impact of the drought is clearly seen in 2012 

as GPP decreased significantly compared to 2007 and 2011 (Figs. 2.10g–10h). The area with GPP 

values greater than 400 gC/m2/month shrank to a smaller domain in 2012 over the Great Plains.  

Figure 2.11 shows that MODIS GPP values are about 50% lower than those of predicted 

gross primary production. GPP values provided by MODIS range between 200–300 gC/m2/month 

over the Great Plains. However, as seen from Figures 2.11d–11f, MODIS is able to detect a drought 

signal over Texas in 2011 and that over the Great Plains in 2012 (Figs. 2.11g–11i). MODIS 

observations also provide evidence of no reduction in GPP over the Great Plains in 2011. 
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Moreover, MODIS GPP over the Great Plains in August 2011 was higher than that in August 2007 

and is consistent with our trend in predicted GPP (Figs. 2.10c and 2.10f). Thus, our predicted GPP 

agrees well with MODIS produced values in terms of capturing the drought conditions effect on 

plant production. 

2.5 CONCLUSIONS AND DISCUSSION 

To our knowledge, this is the first study that quantitatively assesses the lead–lag 

relationship between SIF, precipitation and soil moisture. In this study, we have also derived 

separate equations quantifying relationships between SIF and GPP based on the differences in 

grass and crop plant functional types and taking into account precipitation and soil moisture 

conditions over the contiguous US. Our results demonstrate that GPP values based on various 

combinations of predictors tend to have lower correlation coefficient and higher RMSE until and 

unless lead–lag relationship between the mentioned predictors is considered. We believe this is 

primarily due to the discrepancy between crop water need timing and the period of maximum 

productivity. Since a plant is most vulnerable to water stress in the development period and water 

demand is the highest at this stage, we expect that plant production at the end of the season would 

depend on precipitation and soil moisture during development rather than at ripening and 

harvesting stages when water demand reaches its minimum. Thus, we expect a lead–lag 

relationship between precipitation and soil moisture on one side and GPP and SIF on the other.  

 Our results indicate that SIF lags rainfall and soil moisture by about 4 weeks for the crops 

and 2 weeks for grasses. We calculated GPP using the lead–lag relationship between SIF, 

precipitation, soil moisture and GPP (Equations 2.5, 2.6, 2.7, and 2.8). Mean monthly GPP value 

calculated for JJA in 2007–2012 with the use of predicted SIF is 315 gC/m2/month, which is 

comparable to the FLUXNET measurement of 394 gC/m2/month. At the same time, reference 
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MODIS dataset demonstrates a tendency to underestimate GPP: mean monthly GPP value is only 

123 gC/m2/month which is approximately 50% lower than GPP estimates produced by the MLR 

approach and those provided by the flux tower station in FLUXNET network.  

It is viable that consideration of plant water uptake properties ahead of the late season is 

instrumental in providing meaningful estimates of plant production. Thus, our study significantly 

advances understanding of satellite retrieved SIF and its relationship with precipitation and soil 

moisture, all of which influence plant productivity. This study is the first to demonstrate that 

incorporation of plant physiological variations associated with water demand at different stages of 

its lifetime can play an important role in the relationships that we want to understand, such as that 

of SIF and GPP.  

Tendencies in GPP based on the predicted SIF and considering the lead–lag relationships 

also capture the drought trends successfully and are consistent with the observational trends from 

MODIS (Fig. 2.11). We found that in 2011 predicted GPP over Texas is typically approximately 

50–75 gC/m2/month lower than in a normal yielding year of 2007. Over the Great Plains such 

departure is comparable to this over Texas and the area with production greater than 

400 gC/m2/month is reduced significantly in July and August 2012.  

This study supports the claim that relationships between SIF and GPP are different for 

crops and grasses; using the statistically justified inclusion of regional precipitation and soil 

moisture, such relationships can be derived and used to improve GPP estimates and drought trend 

detection. Our results indicate that GPP values based on multiple linear regression using SIF, 

precipitation and soil moisture as predictors are of plausible magnitude as compared to other 

sources represented in this study.  
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This study can be extended to estimate GPP for different biomes; however, the lead–lag 

relationship can be different for various biomes represented by different PFTs as shown in our 

analysis.  For example, deciduous trees might exhibit more resistance to drought conditions 

compared to crops due to their trunk water storage, which may result in a longer delay between 

precipitation and fluorescence levels. Hence, there might be a different lead–lag relationship 

between tree growth and precipitation, which, however, warrants further analysis.  

It is also important to investigate possible differences in GPP quantification related to the 

fact that most plants follow C3 or C4 photosynthetic pathways. For instance, as C3 plants are 

expected to be more sensitive to precipitation than C4 vegetation (Bi and Xie 2015), such 

differential plant response might need to be accounted for in further research focused on plant 

production. 

We have performed GPP estimation and prediction and employed precipitation and soil 

moisture datasets pertinent to the contiguous US.  Similarly, as seen from this study, FLUXNET 

measurements from other regions such as Europe, East and Southeast Asia, South America can be 

used depending on prevalent biome types, precipitation, and soil moisture content to establish such 

SIF–GPP relationships.  
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Figure 2.1 Percentage of C3 non-arctic grasses (PFT 13 in CLM) (a), crops (PFT 15) (b), and 
their combination (c) over the contiguous US. PFT maps were derived from the 1-km IGBP 
(International Geosphere-Biosphere Program) DISCover dataset and the 1-km University of 
Maryland tree cover dataset (Bonan et al. 2002). This PFT product is modified by re-labeling the 
IGBP classes of MODIS Land Cover Type 1 product. Red dots indicate FLUXNET station 
locations. 
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Figure 2.2 Lead–lag correlation between SIF and precipitation (top row), precipitation and soil 
moisture (middle row) and SIF and soil moisture (bottom row) for US-Ne3 (left column) and 
US-KFS (right column) stations respectively. Dashed lines denote 95% confidence level. 
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 Figure 2.3 Relationship of mean monthly GPP (gC/m2/day) measured at  FLUXNET stations 

with C3 crop vegetation (Table 2.1) used in this study and (a) GOME-2 SIF; (b) SIF-based GPP; 
(c) SIF- and precipitation-based GPP; (d) MLR-based GPP (SIF, precipitation, soil moisture as 
predictors); (e) MLR-based GPP with lead-lag. The Pearson’s correlation coefficient R and root-
mean-square error RMSE are shown. 

 



30  

 

Figure 2.4 Relationship of mean monthly GPP (gC/m2/day) measured at FLUXNET stations with    
C3 non-arctic grass vegetation (Table 2.1) used in this study and (a) GOME-2 SIF; (b) SIF-based 
GPP; (c) SIF- and precipitation-based GPP; (d) MLR-based GPP (SIF, precipitation, soil 
moisture as predictors); (e) MLR-based GPP with lead-lag. The Pearson’s correlation coefficient 
R and root-mean-square error RMSE are shown. 
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Figure 2.5 Relationship of mean monthly GPP (gC/m2/day) measured at  FLUXNET stations  
with C4 grass vegetation (Table 2.1) used in this study and (a) GOME-2 SIF; (b) SIF-based GPP; 
(c) SIF- and precipitation-based GPP; (d) MLR-based GPP (SIF, precipitation, soil moisture as 
predictors); (e) MLR-based GPP with lead-lag. The Pearson’s correlation coefficient R and root-
mean-square error RMSE are shown. 
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Figure 2.6 Relationship of mean monthly GPP (gC/m2/day) measured at US-Tw3 FLUXNET 
station characterized by alfalfa vegetation (Table 2.1) and (a) GOME-2 SIF; (b) SIF-based GPP; 
(c) SIF- and precipitation-based GPP; (d) MLR-based GPP (SIF, precipitation, soil moisture as 
predictors); (e) MLR-based GPP with lead-lag. The Pearson’s correlation coefficient R and root-
mean-square error RMSE are shown. 
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Figure 2.7 Relationship of mean monthly GPP (gC/m2/day) measured at  US-Twt FLUXNET 
station with rice as a characteristic plant species (Table 2.1) and (a) GOME-2 SIF; (b) SIF-based 
GPP; (c) SIF- and precipitation-based GPP; (d) MLR-based GPP (SIF, precipitation, soil 
moisture as predictors); (e) MLR-based GPP with lead-lag. The Pearson’s correlation coefficient 
R and root-mean-square error RMSE are shown. 



34  

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Mean total GPP (gC/m2/month) within a CLM grid box surrounding US-ARM, US-
AR1 and US-AR2 stations in 2007–2012. Total GPP is calculated as a sum of C3 non-arctic grass 
GPP, C4 grass GPP and crop GPP. 
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Figure 2.9 Spatial patterns of monthly total (C3/C4 grass plus crop) predicted  GPP based on SIF, 
precipitation and soil moisture (Equation 2.8) over Texas in summer 2007, chosen as reference 
year (a–c), and summer 2011 – drought year in Texas) (d–f). 
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Figure 2.10 Spatial patterns of monthly total (C3/C4 grass plus crop) predicted GPP (Equation 
2.8) based on SIF, precipitation and soil moisture for summer 2007, chosen as reference year (a–
c); summer 2011 – drought year in Texas (d–f); and summer 2012 – the Great Plains drought 
(g–i). 
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Figure 2.11 Gross primary production (gC/m2/month) from MOD17A2 data product in summer 
2007 (a–c), summer 2011 (d–f), and summer 2012 (g–i). 
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CHAPTER 3: Using SIF as an indicator of drought onset and demise 

3.1 ABSTRACT 

Using multiple gridded datasets from Moderate Resolution Imaging Spectroradiometer 

(MODIS), Global Ozone Monitoring Experiment 2 (GOME-2), and NOAA Climate Prediction 

Center (CPC), we investigate the suitability of using solar-induced chlorophyll fluorescence (SIF) 

and Normalized Difference Vegetation Index (NDVI) in identification of drought event onset, 

demise, and duration in the Great Plains and Texas, two regions prone to recurring droughts. Our 

results show that neither SIF nor NDVI is a good proxy for early meteorological drought detection. 

SIF lags precipitation by about a month, while NDVI shows a comparable lag. Changes in SIF 

during dry years show a delayed drought onset or demise as compared to the actual drought onset 

or demise inferred from rainfall. During the Great Plains drought in 2012 and Texas drought in 

2011, precipitation is significantly lower than its climatological mean starting from day of year 135 

and 140, respectively. In comparison, SIF shows that drought conditions start from day 181 over 

the Great Plains in 2012 and day 189 in Texas in 2011. NDVI demonstrates drought start time 

around day 192 and 176 for the 2012 Great Plains and 2011 Texas droughts respectively. On the 

other hand, soil moisture over Texas appears to be a good  proxy for drought conditions as during 

both wet (dry) years soil moisture is shown to be higher (lower) than the climatological mean 

calculated on the basis of ESA soil moisture dataset. Hovmueller plots indicate that changes in SIF 

are more expressed over the Great Plains than Texas and lag rainfall by about one month. Our GPP 

estimates based on the method presented in Chapter 2 are shown to capture drought better than SIF. 
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3.2 INTRODUCTION 

Drought is one of the most damaging climate phenomena that has profound natural, 

economical and societal impacts. Drought occurrence is linked to agricultural losses, water 

resource shortage, and other economic impacts (Livneh and Hoerling 2016).  The Great Plains, a 

region of national agricultural importance, experienced severe drought in 2012 as per US Drought 

Monitor classification (Hoerling et al. 2014) that led to losses of over $30 billion dollars and 

significant reduction of crop production.  Texas 2011 drought, the most severe one-year drought 

since 1895, caused record losses of $7.6 billion dollars accompanied by wildfires that burned 

almost 3.6 million acres of land (Combs, 2012). 

 Recently, there has been a growing concern that droughts might increase in duration, 

severity and frequency under changing climate conditions (Sivakumar et al. 2014; Wilhite et al. 

2014). According to several studies (Cook et al. 2015; Dai 2013; Sheffield and Wood 2008), 

drought events are projected to increase over both the US, and Texas in particular (Banner et al. 

2010), as well as the other regions.  Yet, despite a long record of droughts over the US and Great 

Plains specifically, identification and prediction of drought development including onset, duration, 

demise, magnitude and spatial extent still pose a serious challenge (Hoerling et al. 2014; Seager et 

al. 2014). This difficulty in drought identification and forecasting might explain extensive damages 

and losses linked to modern-era drought events (Livneh and Hoerling 2016). One aspect to the 

identification problem is the absence of a clear and universally accepted definition of a drought 

that might add to the confusion about drought existence and its degree of severity (Wilhite et al. 

2014).  Drought is broadly understood as a condition of deficient moisture in the land surface and 

meteorological conditions associated with a drought event are known and include high temperature 

and substantial precipitation deficits; however, it is suggested that definitions of drought might 
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need to be more region and application-specific (Wilhite et al. 2014). Secondly, due to droughts 

being a ‘creeping phenomenon’ whose effect is accumulated over a period of time, it is often 

challenging to define criteria that must be met in order to identify beginning or end of drought and, 

therefore, precisely determine the onset, duration and end of a drought event. 

A few methods have been used to quantify drought parameters and impacts, including 

drought indices such as Standardized Precipitation Evapotranspiration Index (SPEI), which is an 

extension of the widely used Standardized Precipitation Index (SPI), and Palmer Drought Severity 

Index (PDSI). The drought indices have proven to be a useful tool in studying droughts and their 

effects; however, there exist certain drawbacks related primarily to the methodology of index 

calculation. For example, in order to ensure comparison across climates, both SPEI and SPI rely 

on the selection of a univariate probability distribution (Stagge et al. 2015; Vicente-Serrano et al. 

2012).  In this case, selection of a proper parametric probability distribution is central to calculation 

of meaningful index values; otherwise, if a probability distribution is chosen improperly, 

significant biases might be introduced to the index values leading to minimization or exaggeration 

of drought effects. One more limitation of SPEI is associated with its sensitivity to the method 

used for calculation of potential evapotranspiration: in case of limited data availability a simple 

Thornthwaite method can be used while more complicated calculations including additional 

variables such as wind speed and solar radiation are performed if data record is long enough. The 

latter, more sophisticated, method is preferred; however, introduction of additional variables might 

impart large uncertainties. In addition, SPEI, SPI and PDSI require a long enough base period (30–

50+ years) in order to adequately sample natural variability. 

As agriculture is often the first and most affected sector that plays a critical role in the 

entire life of a given economy (Wilhite et al. 2014), it is important to evaluate and quantify drought 
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impact on plant health and production (Ciais et al. 2005; Zhao and Running 2010). This task 

remains challenging due to the complexity of plant biophysical and physiological processes 

associated with droughts (Liao and Zhuang 2015).  

For the past couple of decades, vegetation indices (VIs), which are based on reflectance 

measurements in visible and near-infrared regions of spectrum, have been used in monitoring 

vegetation on global scale (Myneni et al. 1997). Such indices are instrumental in exploring 

temporal and spatial variability in vegetation state during large-scale drought events and are also 

useful for estimation of GPP (Running et al. 2004; Zhao and Running 2010). As VIs are indicators 

of the amount of green biomass within a satellite pixel, they measure potential photosynthesis or 

photosynthetic capacity (Yoshida et al. 2015),  which makes them only an indirect marker of 

vegetation functioning.  

In this regard, use of solar-induced chlorophyll fluorescence (SIF) might present us with 

an alternative method of tracking and quantifying drought effects on vegetation as well as timing 

of drought onset and demise. Due to its link to the photosynthetic efficiency SIF can be regarded 

as the one of direct indicators of the state of vegetation. SIF measurements are based on the fact 

that a small fraction of the solar radiation absorbed by vegetation (about 1-2%) is reemitted as 

fluorescence. SIF variations can provide us with useful insights into plant physiological and 

biochemical functions under stress conditions since in such conditions an increase in heat 

dissipation causes a reduction of fluorescence yield which is inevitably reflected in SIF levels. As 

such, fluorescence has long been used in studies of water stress influence on plant functioning. 

Flexas et al. (2002)  have shown that under water stress conditions, a decrease in fluorescence 

yield was noted in C3 plants. It was also claimed that during drought episodes (i.e. water-stressed 

conditions) fluorescence decreased while vegetation indices, such as Normalized Difference 
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Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), remained unchanged (Daumard 

et al. 2010) , which suggests that SIF might detect the development of stress before traditional 

reflectance-based vegetation indices become capable of capturing it. In addition, while vegetation 

indices clearly tend to saturate at high gross primary production levels (Yang et al. 2015), such 

saturation is not characteristic for SIF. However, it is still not clear whether SIF can act as a useful 

indicator of drought occurrences with regard to precise timing of drought onset and demise.  

In this study we focus on several scientific questions; firstly, how effective is SIF in terms 

of delineating drought timing and effects? How useful is SIF in terms of being an early drought 

predictor? What kind of insight into drought-related vegetation changes can be gained from using 

MLR-based gross primary production as calculated according to the method presented in Chapter 

2? How is the effectiveness of SIF as an indicator of plant stress compared to that of NDVI? 

In order to address the above listed questions we have used Global Ozone Monitoring 

Experiment 2 (GOME-2) satellite data for SIF, MOD13A2 dataset for NDVI from Moderate 

Resolution Imaging Spectroradiometer (MODIS), NOAA Climate Prediction Center (CPC) 

product for precipitation, and European Space Agency Climate Change Initiative (ESA CCI) soil 

moisture data over the continental US. We have studied drought propagation patterns and other 

characteristics with the use of Hovmueller diagrams. Also, we have tracked changes in 

precipitation, soil moisture, SIF and NDVI, and statistically tested the significance of such 

changes.  

3.3 DATA AND METHODOLOGY 

3.3.1 Observational Data 

GOME-2 SIF, a primary dataset in this study, is retrieved by a medium-resolution nadir-

viewing UV-VIS cross-track scanning spectrometer which is a part of the European 
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Meteorological Satellite (EUMETSAT) Polar System (EPS) MetOp mission series. The sun-

synchronous orbital time at an altitude of approximately 820 km with an overpass time around 

09:30 local solar time is about 100 min. The instrument was designed and launched by the 

European Space Agency to measure atmospheric ozone, trace gases and ultraviolet radiation; in 

addition, it provides retrievals of solar-induced chlorophyll fluorescence starting from 2007. 

GOME-2 SIF data used in this study span from 2007–2016 and have a spatial resolution of 

0.5×0.5°. 

CPC Unified Gauge-Based Analysis of Global Daily Precipitation (hereinafter, CPC 

precipitation) is the first product of the CPC Unified Precipitation Project that is underway at 

NOAA Climate Prediction Center (CPC). In this study, it has been used as a source of precipitation 

data over the continental US. The quality of the data is improved by combining all information 

sources available at CPC and by taking advantage of the optimal interpolation objective analysis 

technique (Melnichenko et al. 2014). For the purposes of this study we have used 0.5×0.5° CPC 

precipitation data covering a time period from 1979 to 2016.  

European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) dataset 

is a valuable tool in providing information on soil moisture variations under drought conditions. 

In this study we have used the ESA CCI SM combined dataset which is based on blending active 

and passive products created by fusing scatterometer and radiometer retrievals respectively. For 

this research study, selected ESA soil moisture data product spans over 30 years (1984–2014) and 

provides daily global coverage of soil moisture observations at 2.5×2.5° spatial resolution. 

NDVI is provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) 

which is a key instrument onboard the Terra (originally EOS AM-1) satellite.  In this study we 

have used 16-day composite MOD13A2 data product which has 1×1 km spatial resolution.  
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NDVI is calculated from the visible and near-infrared light reflected by vegetation as 

follows:  

𝑁𝑁𝑉𝑉𝑉𝑉𝑆𝑆 = 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁+𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟

 ,              (3.1) 

where RNIR is the reflectance in the near-infrared (NIR) region of the spectrum, and Rred is 

reflectance in the red part of the spectrum.  NDVI values are typically contained in an interval 

from 0 to 1 with the common range for green vegetation being from 0.2 to 0.8.  

As a vegetation monitoring tool, NDVI is useful in depicting seasonal and phenologic 

activity, and quantifying such parameters as length of the growing season, onset of greenness, peak 

greenness, and leaf turnover or 'dry-down' period (Huete et al. 1994). Myneni et al. (1997) 

demonstrated that NDVI can be utilized for the growing season change detection and monitoring 

on the decadal scale. The time integral of NDVI over the growing season exhibited correlation 

with net primary production (NPP) (Justice et al. 1991; Running and Nemani 1988; Tucker and 

Sellers 1986).  

 

3.3.2 Methodology 

Our study domains include Texas region (24–36° N, 90–110° W) region and the Great 

Plains region (36–46°N, 90–110° W). Precipitation and soil moisture data are available on daily 

time scale, whereas SIF and NDVI data sets are on weekly and 16-day scales, respectively. We 

have first converted the precipitation data into 5-day averages (hereinafter, pentads) with the 

further aim of detecting the onset and demise of a dry period and calculating its length. Then, we 

have plotted the obtained pentad rainfall for a period of 1979–2016 to identify eight driest and 

wettest years. In doing so, we have estimated the May–August rainfall over two domains as stated 

above. Dry (wet) years are defined as years having the lowest (highest) mean summer time 
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precipitation (May–August). We have estimated the average rainfall of each of the pentads for the 

wet and dry years and compare with that computed by averaging all the years. For example, rainfall 

for each pentad for eight dry years is estimated as follows: 

𝐺𝐺𝑥𝑥 = ∑ 𝐺𝐺𝑥𝑥𝑃𝑃8
𝑚𝑚=1 ,        (3.2) 

where i is the number of dry years, x is the pentad number from 1-72, and Pxi is the rainfall of 

pentad number x in a year  i.  

Similarly, we compute the pentads of soil moisture values and compare with that of the 

rainfall pentads to test whether soil moisture is capable of providing an early indication of drought 

before rainfall. We also compute the weekly mean SIF values for the dry, wet, and all years using 

the same approach. For MODIS NDVI, we have used the 16-day (half-month) composites and 

obtained 23 half-month values each year.  

We have also used the Hovmueller plots for this analysis. We have plotted rainfall, SIF, 

and NDVI as a function of time (either week or month) with latitude. We have averaged the 

parameters in the longitudinal direction in order to visualize the propagation of the dry/rainy event 

over the study areas. We have added composites (2007–2016) of SIF and precipitation data sets to 

ascertain the relationship between SIF and precipitation and use of SIF as an early drought 

indicator. We have performed similar calculations for the predicted GPP which was introduced 

previously (Section 2.4 in Chapter 2) to find out whether our produced GPP values capture any 

early drought signal over the Great Plains region. 

 

3.4    RESULTS 

Firstly, we have looked at the temporal characteristics of rainfall, soil moisture, SIF and 

NDVI. Figure 3.1 shows that the range of mean pentad rainfall values is approximately the same 
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for both the Great Plains and Texas, varying from about 0.5 to 4 mm/day. Figure 3.1b shows that 

rainfall decreases over the Great Plains region during the drought years with the strongest decrease 

in the year 2012. Similarly to the Great Plains, Texas shows a stronger reduction in mean rainfall 

over the entire domain in 2011 and 2012. Figures 3.1a and 3.1c show the mean and standard errors 

of pentad rainfall over all (black line), wet years (blue line), and dry years (red line). As it can be 

inferred from the standard error values demonstrated in Figures 3.1a and 3.1c, the departure of 

mean pentad rainfall from the climatological mean becomes significant around day 100 of a year, 

which is April 9–10 over the Great Plains, during a dry year.  Over both regions, a small but 

significant reduction is rainfall occurs during the 20th pentad followed by a longer and strong 

reduction in rainfall that begins around 25th pentad (or the month of May). 

Likewise, soil moisture values also show a similar trend during dry and wet years (Figs. 

3.2b and 3.2d). As it can be seen in Figure 3.2, over the Great Plains there is an increase in soil 

moisture around the end of summer (weeks 50–65). This could be due to the excessive application 

of irrigated water for agricultural purposes over this region earlier in the season, especially when 

the rainfall during the drought is not significantly different from the all year mean (black line) 

during that period. Over Texas, soil moisture is significantly different during the wet years and is 

way above the mean value calculated for the period of 1987–2014 (black line). On the other hand, 

soil moisture over the Texas domain is consistently below the mean soil moisture of all the years.  

This suggests that soil moisture can be considered an indicator of drought occurrences over Texas. 

However, soil moisture variations are not particularly useful for the accurate detection of onset or 

demise of drought over Texas as soil moisture tends to be either consistently low or high as inferred 

from the ESA CCI SM data.  
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We have also investigated weekly SIF values over these regions. Unlike soil moisture and 

precipitation, SIF generally follows a seasonal patterns without substantial intraseasonal variations 

(Fig. 3.3). Figure 3.3b shows that SIF decreases during 2012 over the Great Plains and remains at 

low values in 2013. Over Texas, a strong reduction in SIF occurs in 2011 owing to the severe 

drought and SIF gradually increased after that. This could be due to the differences in the response 

of different vegetation types and species to the drought impacts. Figure 3.3a shows that SIF during 

the dry years become significantly different than the SIF during all years in the 24th week (or in 

the month of June). This shows that SIF lags the rainfall by about one month and its response to 

drought (as expressed by decrease in rainfall) is delayed. This could potentially be due to many 

factors. Firstly, soil moisture depletion does not happen instantaneously after the rainfall decreases 

(Figs. 3.1a and 3.2a). Secondly, air temperature in June (when SIF decreases) is much higher than 

that of May (when rainfall shows a reduction).  According to SIF, drought begins on week 24 and 

ends on week 37. Both the onset and demise lag actual drought onset and demise as per rainfall. 

Thus, SIF might not be a suitable parameter to declare onset of a meteorological drought and 

calculate the duration of such a drought event over the Great Plains and Texas. Interestingly, SIF 

during both wet years and dry years are below SIF estimated during all the years (2007–2016), 

potentially in part due to the inability of vegetation to peak up after the drought ended (Fig.  3.3d). 

One possible explanation might lie in the fact that the categorization of dry and wet years in this 

study is based on the rainfall values while sensitivity of satellite-based SIF to environmental 

variables is complicated (Sun et al. 2015) and is indirectly related to both biotic (photosynthetic 

capacity, vegetation type, etc) and abiotic (CO2 concentration, nutrient availability)  parameters.  

Figure 3.4 demonstrates mean 16-day composite NDVI. NDVI values over the Great Plains 

and Texas are not significantly different as seen in Figures 3.4b and 3.4d. 16-day NDVI during 
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dry, wet, and all years shows no significant difference over the Great Plains. The NDVI peak is 

not significantly delayed over both the Great Plains and Texas regions (Figs. 3.4a and 3.4c) as 

compared to SIF (Figs. 3.3a and 3.3c). Over the Great Plains NDVI demonstrates a statistically 

significant decrease from the multi-year mean between day 192 and day 240, while in Texas such 

a decrease is notable between day 176 and 224. Thus, NDVI is not a suitable parameter either to 

detect the onset and demise, and infer duration of a meteorological drought.  

As it can be inferred from the first four figures, both SIF and NDVI are lagging behind 

precipitation and soil moisture in terms of indicating the start of a drought period. The delay 

between SIF and precipitation has been previously quantified in Chapter 2 and comprises 2 to 4 

weeks depending on presence of grasses or crops, respectively. 

To further understand the SIF and rainfall connection to the drought characteristics, we 

show Hovmueller diagrams of composite (2007–2016) SIF over the Great Plains and Texas regions 

in Figure 3.5. As it can be seen, seasonal increase in SIF tends to start around April and SIF reaches 

its maximum in late June or early July. This pattern is characteristic of the Great Plains area, 

possibly corresponding to the different stages of crop growth and development, e.g. as crop 

vegetation undergoes developmental changes and reaches the harvesting stage, it is characterized 

by higher photosynthesizing activity leading to higher SIF values as SIF exhibits a strong linear 

relationship with plant production under most conditions. The following changes are not that much 

pronounced for Texas which might be a result of grass being a prevalent type of vegetation in this 

region. Figure 3.5 also shows that changes in precipitation start occurring a month before that of 

SIF. Over the Great Plains region, rainfall is 2 mm/day during mid-March and 2.5 mm/day in 

April, whereas SIF values during the same are around 0.4 mW/m2/nm/sr and reach the peak values 

around 1.5 mW/m2/nm/sr in June. 
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We have also looked into applicability of GPP predicted on the basis of MLR relationship 

(Equations 2.5, 2.6, 2.7 and 2.8) developed in Chapter 2 for drought signal detection (Fig. 3.6). 

The Hovmueller diagrams demonstrating propagation of SIF and GPP changes are indicative of a 

strong negative anomaly in both SIF and predicted GPP in summer 2012 over the Great Plains 

region. Over Texas in 2011 there exists a small negative anomaly in SIF and GPP, which is 

significantly less prominent as compared to that over the Great Plains region in 2012. Both SIF 

and GPP are below their respective mean values of ten years (2007–2016); however, GPP shows 

a stronger negative change during the winter months than that indicated by SIF. It is known that 

dry winter anomalies might continue through the spring time and intensify as a summer drought 

event over Texas region (Fernando et al. 2016). Overall, changes in GPP calculated based on the 

MLR relationship established in the previous chapter are more expressed than those of SIF and 

show highly negative values during dry years.  

With the use of all the parameters employed in this study, i.e. rainfall, soil moisture, SIF 

and NDVI, we have calculated the timing of the onset and end of drought events as inferred from 

the multi-year climatology (Table 3.1). These calculations were performed for “dry” and “wet” 

years that were defined on the basis of statistically significant departure of precipitation from a 

corresponding multi-year mean for each 5-day period. As seen from the table, both SIF and NDVI 

cannot serve as early indicators of a meteorological drought as interpreted in terms of the 

magnitude of precipitation shortage and duration of such shortage. Both variables demonstrate a 

significant lag compared to precipitation, on the scale of about one month for both SIF and NDVI. 

It is also demonstrated that SIF does not show significantly higher skill in detecting drought signal 

as compared to NDVI. For example, over Texas region as calculated from SIF from 2007–2016 

and NDVI from 2002–2018 the difference in SIF and NDVI indicating the drought onset is only 
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one week. As expected, it is to be noted that the demise of a drought is not clearly captured either 

by any of the variables, which might be related to the severity of drought events in both 2011 and 

2012:  it might not be possible for the vegetation to recover and respond to further changes in 

meteorological conditions. At the same time, Sun et al. (2015) have demonstrated that under less 

severe drought conditions that do not lead to an irreversible vegetation damage, as precipitation 

and soil moisture recover, departure of the SIF signal from a multi-year mean decreases and, 

therefore, SIF can be seen responding to the meteorological conditions change and might be useful 

in characterizing drought temporal dynamics. 

 

Table 3.1. Days of drought onset and demise as inferred from rainfall, SIF and NDVI. 

Study domain Parameter Onset (day of 
year) 

Demise (day of 
year) 

Length(days) 

TX CPC rainfall 140 185 45 
 GOME‐2 SIF 189 235 46 
 MODIS NDVI 176  224  48 

 
Great Plains CPC rainfall 135 215 80 
 GOME‐2 SIF 181 273 92 
 MODIS NDVI 192 240 48 

 

3.5 CONCLUSIONS AND DISCUSSION 

In this study we aimed to take a quantitative approach in using SIF and NDVI for the 

purpose of drought detection. We have looked at the significance of mean pentad, weekly and 16-

day composite data rainfall, soil moisture, SIF and NDVI respectively. In case a departure of mean 

pentad values of each variable was significant as indicated by the error bars, we have investigated 

how dates of drought onset and demise and, therefore, the drought duration, changed depending 
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on which parameter was used. It was found out that neither SIF nor NDVI responds to the drought-

related changes in vegetation quickly enough to be useful as early meteorological drought 

indicators. The difference in timing of drought onset over Texas in 2011 and the Great Plains in 

2012 as indicated by SIF and NDVI is not significant and is comparable to the temporal resolution 

of NDVI data product. 

 The lag between precipitation levels reaching a significant departure from multi-year 

climatology and that of SIF and NDVI is on the scale of up to 4–5 weeks. This finding agrees to a 

certain extent with the conclusions of Chapter 2 which claims that there exists a lead–lag 

relationship between a precipitation event and corresponding fluorescence levels on the scale of 2 

to 4 weeks for crops and grasses respectively. It turns out that SIF reaches its highest values fairly 

earlier than NDVI, while SIF is peaking in late June through early July and the maximum of NDVI 

is found in mid-July.  

GPP based on the MLR equations introduced in Chapter 2, however, proves to demonstrate 

a higher departure from climatology than that of SIF over the Great Plains in 2012. This potentially 

stems from the MLR formulation of GPP as it includes effects related to both precipitation and 

soil moisture in addition to SIF, when calculating plant production values. 

Certain limitations exist in terms of the application of the statistical calculations; a higher 

number of data points would be beneficial for the purpose of getting more robust conclusions. It 

is important to note that years are classified as ‘dry’ or ‘wet’ on the basis of rainfall departure from 

its climatological mean which is calculated from record covering a period of 1979 to 2016. While 

statistical methods have provided us with useful insights into the timing of SIF and NDVI response 

to dry conditions, it is necessary to investigate the underlying physiological mechanisms of such 

response. 
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Datasets with variable temporal resolution might introduce an error to the accurate 

estimation of the drought onset and end dates. For example, NDVI data with a better resolution 

than 16 days temporal resolution can improve calculation of onset and demise dates by a couple 

of weeks; however, our results show that NDVI often lags rainfall by more than one month.  

One more limitation of the presented research might be related to the usage of the ESA SSI 

soil moisture dataset. In future it is recommended to use complementary sources of soil moisture 

data such as Global Modelling and Assimilation Office (GMAO) soil moisture product and other 

soil moisture products simulated from land surface models. 
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Figure 3.1 Mean pentad rainfall (a,c) and mean rainfall (b,d) over the Great Plains and Texas as 
per CPC precipitation data from 1979–2016. Rainfall is in mm/day. Dry and wet years are 
identified on the basis of the departure of rainfall values from multi-year mean for each 
individual week. The eight driest years over the Great Plains region in 1979-2016 are as follows: 
1980, 1985, 1988, 1989, 2002, 2003, 2006, 2012; over Texas region: 1980, 1988, 1998, 2001, 
2005, 2006, 2011, 2012. The eight wettest years over the Great Plains region are 1981, 1982, 
1990, 1995, 1999, 2008, 2010, 2015; over Texas region: 1979, 1981, 1987, 1989, 1991, 1992, 
2004, 2015. 



54  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 Mean pentad soil moisture (a,c) and mean soil moisture (b,d) over the Great Plains 
and Texas as inferred from ESA CCI data over the period of 1984–2014. Soil moisture is in 
m3/m3

.  
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Figure 3.3 Mean weekly SIF (a,c) and SIF anomalies (b,d) over the Great Plains and Texas as 
inferred from GOME-2 data over the period of 2007–2016.  
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Figure 3.4 Mean 16-day composite NDVI (a,c) and NDVI anomalies (b,d) over the Great 
Plains and Texas as inferred from MODIS data over the period of 2002–2018. 
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Figure 3.5 Hovmueller diagram showing propagation of drought-related SIF and GPP anomaly. 
GPP is calculated according to Equations 2.5, 2.6, 2.7, and 2.8 from Chapter 2. Rainfall is 
represented by contour lines with an interval of 0.5 mm/day. 



58  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6 Hovmueller diagram of SIF composite (2007–2016) over the Great Pains region (a) 
and Texas (b). Rainfall is represented by the black contour lines with 0.5 mm/day interval. 
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CHAPTER 4:  A Monte Carlo ray tracing model for simulating canopy-level 
emissions of solar-induced chlorophyll fluorescence 

 

4.1 ABSTRACT 

Efficiency of solar-induced chlorophyll fluorescence satellite observation is evaluated with 

the use of a model of light transport in a three-dimensional vegetation canopy.  Designed and 

evaluated model employs a Monte Carlo ray tracing technique that offers simple yet rigorous 

approach of quantifying the photon transport in a plant canopy. This method involves simulation 

of a chain of scattering and absorption events incurred by a photon on its path from the light source. 

Implementation of weighting mechanism helps avoid ‘all-or-nothing’ type of interaction between 

a photon packet and a canopy element, i.e. at each interaction a photon packet is split into three 

parts, namely, reflected, transmitted and absorbed, instead of assuming complete absorption, 

reflection or transmission. Canopy scenes in the model are represented by a number of geometric 

primitives with specified sets of reflectance and transmittance. Our results demonstrate that 

emitted fluorescence decreases with increasing solar zenith angle (SZA) and leaf angle. However, 

under extremely high SZA when the sun is near the horizon, an increase in the leaf angle leads to 

increase in fluorescence. Our results show that satellite observes a fraction of total fluorescence 

emitted from a canopy; a hypothetical satellite with a scan angle of 32° is capable of “seeing” a 

maximum of ~50% of total emitted fluorescence. Increasing scan angle to 55°, similar to Moderate 

Resolution Imaging Spectroradiometer (MODIS) and Global Ozone Monitoring Experiment 2 

(GOME-2) scan geometry, leads to the efficiency of up to ~80%. Satellite efficiency in registering 

fluorescence signal does not change with varying SZA, presumably due to the fact that direction 

of fluorescent photons emitted from a leaf does not exhibit dependency on the number of photons 

incident on a leaf. However, such efficiency varies with leaf angle as leaf angles might play a role 
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in determining directional cosines of the emitted fluorescent photons. The total amount of emitted 

fluorescence in all directions from a canopy ranges between 1–3 mW/m2/sr/nm, whereas that 

observed by a hypothetical satellite with a scan angle of 32° is 0–1.5 mW/m2/sr/nm. 

 

4.2  INTRODUCTION 

 Solar-induced chlorophyll fluorescence is characterized by a broad band emission 

spectrum with two peaks: the left one in the red area of spectrum around 685 nm and the right one 

in the far-red region around 740 nm. For the past decades, SIF has been used in the laboratory and 

field scale studies, providing a non-invasive method for studying plant photosynthesis and plant 

physiological state in general. 

SIF is physiologically related to photosynthesis and has been also shown to track gross 

primary production (GPP) better than fAPAR in deciduous broadleaf and mixed forests, and in 

croplands as well (Joiner et al. 2014). It has also been suggested that SIF can provide better 

estimates of GPP than reflectance-based vegetation indices (Frankenberg et al. 2011; Walther et 

al. 2016). Thus, SIF might be of importance in quantifying and modeling GPP which is a 

significant part of the terrestrial carbon cycle and is the largest global land carbon flux (Beer et al. 

2010). 

SIF was first associated with photosynthesis in 1931 through the illumination of dark-

adapted leaves and its correlation with CO2 assimilation (Kautsky and Hirsch 1931). The 

discovered effect was named after Kautsky and can be explained as follows: when a dark-adapted 

plant is exposed to the continuous light, chlorophyll fluorescence demonstrates characteristic 

changes in intensity, namely, a fast increase on a time scale of micro- to milliseconds, followed by 

a relatively slow decreasing phase until reaching a steady-state level. This phenomenon has 
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allowed for introduction of different types of fluorometers which have been actively used for 

ground-based kinetic fluorescence studies. 

With the advent of satellite missions, the global scale observations of SIF have become 

available over the past two decades. Due to the strong absorption lines caused by telluric 

atmosphere absorption and the Fraunhofer lines in the solar spectrum, SIF can be retrieved from 

remotely sensed hyperspectral measurements (Meroni et al. 2009; Zhao et al. 2016). Another 

means of measuring fluorescence signal from satellite instrumentation is based on utilization of 

oxygen A and B bands which absorb at wavelengths where chlorophyll fluorescence is emitted 

(Joiner et al. 2013). 

While satellite SIF retrievals proved to be useful for evaluating plant physiological 

conditions and estimating GPP, there exist certain limitations associated with satellite-based SIF 

data, presumably due to instrumental and algorithmic effects. For example, GOME-2 retrieval 

approach, employed to derive the primary dataset used in Chapter 2 and 3, relies on several 

simplifying assumptions such as negligible atmospheric scattering in the modeling of water vapor 

absorption in 710-745 nm region and modeling of fluorescence spectral signatures with the use of 

only a few parameters (Joiner et al. 2013). In addition, GOME-2 dataset is inherently noisy owing 

to low signal levels. This leads to the appearance of negative SIF values which are biologically 

unreasonable and should be accounted for in data processing. Also, in high latitudes in winter 

slightly positive or negative SIF values have been noted (while zero fluorescence is expected) 

which indicates an issue with SIF data at high solar zenith angles. GOSAT SIF data, that are 

produced with the use of a simpler approach that is also less prone to systematic error (Joiner et 

al. 2013; Joiner et al. 2011), are well characterized due to higher spatial resolution but cannot 

provide the spatial coverage of GOME-2 (Frankenberg et al. 2014). SIF retrievals from GOME-2 
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have been compared to those of GOSAT and showed an excellent spatial agreement. However, it 

is important to note that there exist drawbacks to such type of evaluations since GOME-2 SIF data 

have undergone only a limited amount of validation (Yang et al. 2015) and GOSAT retrievals were 

evaluated using indirect methods only such as simulations experiments and plausibility checks 

(Joiner et al. 2013). A possible solution to this problem might include validation using aircraft- , 

ground-based, and modeled SIF data.  

Another issue that might be associated with the observational SIF data is the influence of 

satellite scan geometry and, namely, scan angles. Satellites observe the earth at certain scan angle, 

e.g.  scan angle of GOME-2 sensor is up to ±54° (He et al. 2017). MODIS instrument, whose fPAR 

measurements together with ancillary data are used to provide GPP, has a scan angle of ±55°.  

However, photons emitted from a leaf can propagate in any direction between -90 to 90° from the 

sides, top and bottom of a canopy. Thus, a satellite due to its configuration is only capable of 

capturing a part of SIF determined by the scan angle. This can severely impact the estimation of 

other parameters related to SIF, such as GPP.  

Many studies have tried to estimate SIF using empirical and process-based models. 

Complementary to satellite SIF retrievals are vegetation fluorescence models developed for both 

leaf and canopy levels. The Scattering by Arbitrarily Inclined Leaves (SAIL) was a four-stream 

radiative transfer canopy model developed by Verhoef (1984) and further extended by Rosema et 

al. (1991)  to include the fluorescence component modeled via doubling method. The FluorMOD 

project, launched in 2002 by ESA, focuses on addressing the need for an integrated canopy model 

that would capitalize on recent advances in leaf-level fluorescence modeling in conjunction with 

laboratory and field measurements. In the FluorMOD framework, canopy FluorSAIL model based 

on SAIL was developed to simulate chlorophyll fluorescence effects on the canopy reflectance 
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using inputs from FluorMODleaf. The Soil Canopy Observation of Photochemistry and Energy 

fluxes (SCOPE) model has integrated radiative transfer (RT), energy balance and photosynthesis 

calculations based on RT modules adapted from SAIL and FluorSAIL (van der Tol et al. 2009). 

All the above mentioned models represent canopies as structurally homogeneous entities for which 

a four stream model would be a reasonable approximation (Zhao et al. 2016). However, that poses 

a question as to how accurately these models estimate the effects of vegetation structure on SIF 

retrievals (Porcar-Castell et al. 2014) and specifically, how adequate the common “one-leaf” 

canopy approximation is in terms of modeling of vegetation-related parameters including SIF.  

Thus, the purpose of this study is twofold: while developing a SIF RT model with an 

explicit three-dimensional canopy we would also use the model outputs to introduce corrections 

to the satellite data. Therefore, it would be possible to alleviate the drawbacks in satellite retrievals 

related to the instrumental configuration, in particular limited field of view. We have employed a 

Monte Carlo ray tracing approach to describe the processes of fluorescence absorption, 

transmission and reflection in a physically meaningful way. As such, Monte Carlo methods have 

been widely used to model light transport in different types of media and for various purposes, 

such as biomedical imaging (North 1996; Wang et al. 1995), radiation therapy and others. 

Recently, Monte Carlo techniques have been recognized as a valid and rigorous method of 

simulating the light interaction within vegetated surfaces (Govaerts and Verstraete 1998; North 

1996; Zhao et al. 2015). It was shown that three-dimensional radiation transfer models are virtually 

the only ones capable of describing the heterogeneity of the media and its effect on the propagation 

of photons (Govaerts et al. 1996). As ray tracing techniques require a detailed description of 

canopy geometric properties, we have generated a vegetated scene represented by three-

dimensional spherical canopies which would be further discussed in the following sections. 
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Sections 4.3 provides description of the model and its methodology. Section 4.4 presents 

and evaluates the model simulation results; section 4.5 summarizes the findings of the study and 

ends with the directions for the future research. 

 

4.3 MODEL DESCRIPTION 

This section discusses a method of SIF estimation with the Monte Carlo solution of a 

radiative transfer model.   

Traditionally two methods of photon tracing are used: forward and backward. The forward 

method sends photon from the light source and traces its path until the photon is absorbed or 

scattered out of the scene. Respectively, the backward method generates photons from the sensor 

to the scene and traces them to the light source. In order to improve the efficiency of photon 

sampling we have used a combined ray tracing approach which employs both forward and 

backward ray tracing methods. 

Prior to tracking the photons a canopy scene is generated. Forest structure is represented by 

a set of geometric primitives that are positioned in three dimensions over a horizontal plane (North 

1996). The primitives define the shape and size of canopies within the scene. Within each canopy, 

foliage is defined by leaf size and angular distribution and optical properties of reflectance, 

transmittance and absorbance. These parameters are identical and homogeneous for all the canopies 

within the scene. For any leaf size the number of photons incident per square cm surface is 2.9*1015 

based on a solar irradiance of 1300 W/m2. 

The model operates as follows (Fig. 4.1): the photon packet is initialized and direction of 

the emitted photon is determined by position of the light source described by x,y,z coordinates and 

directional cosines μx, μy, μz depending on solar zenith angle. We assume that the light source 
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emits photons in a spectral range spanning 400–750 nm. Therefore, we start the model simulation 

with the non-fluorescent photon flux from the sun which can be further scattered or absorbed by 

the canopy elements.  

Having entered the canopy scene generated prior to the start of the radiative transfer part of 

the model, photons are tested for intersection with the leaves within the canopy.  Upon the photon 

packet interaction with the first leaf on its path, the packet splits into three parts, namely, absorbed 

(Nabs), reflected (Nref), and transmitted (Ntran).  The number of photons of each new packet depends 

on the spectral properties of the canopy and the original energy of the photon packet: 

𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 = 𝑵𝑵𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 × 𝝆𝝆𝒍𝒍                                                                                                     (4.1) 

𝑵𝑵𝒊𝒊𝒓𝒓𝒕𝒕𝒊𝒊 = 𝑵𝑵𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 × 𝝉𝝉𝒍𝒍                                                                                                     (4.2) 

𝑵𝑵𝒕𝒕𝒂𝒂𝒂𝒂 = 𝑵𝑵𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 × (𝟏𝟏 − 𝝆𝝆𝒍𝒍 − 𝝉𝝉𝒍𝒍),                                                                                 (4.3) 

where Ninit is the initial number of the photons sent from the light source, ρl and τl are leaf reflectance 

and transmittance respectively. 

 The direction of a newly generated packet is determined by the position of the leaf where 

the interaction happened and the new directional cosines that are a function of the scattering angle 

ϴ and azimuth angle φ. The relationships are as follows: 

𝐜𝐜𝐜𝐜𝐜𝐜 𝜽𝜽 = 𝟏𝟏 − 𝟐𝟐𝟐𝟐          (4.4) 

𝝋𝝋 =  𝟐𝟐𝟐𝟐𝟐𝟐                     (4.5) 

𝝁𝝁𝝁𝝁 = 𝐜𝐜𝐬𝐬𝐬𝐬𝜽𝜽 ×((𝝁𝝁𝝁𝝁×𝝁𝝁𝝁𝝁×𝐜𝐜𝐜𝐜𝐜𝐜𝝋𝝋)−(𝝁𝝁𝝁𝝁×𝐜𝐜𝐬𝐬𝐬𝐬𝝋𝝋))
√(𝟏𝟏−𝝁𝝁𝝁𝝁𝟐𝟐)

+ 𝝁𝝁𝝁𝝁 × 𝐜𝐜𝐜𝐜𝐜𝐜 𝜽𝜽         (4.6) 

𝝁𝝁𝝁𝝁 = 𝐜𝐜𝐬𝐬𝐬𝐬𝜽𝜽 ×((𝝁𝝁𝝁𝝁×𝝁𝝁𝝁𝝁×𝐜𝐜𝐜𝐜𝐜𝐜𝝋𝝋)+(𝝁𝝁𝝁𝝁×𝐜𝐜𝐬𝐬𝐬𝐬𝝋𝝋))
√(𝟏𝟏−𝝁𝝁𝝁𝝁𝟐𝟐)

+ 𝝁𝝁𝝁𝝁 × 𝐜𝐜𝐜𝐜𝐜𝐜 𝜽𝜽          (4.7) 

𝝁𝝁𝝁𝝁 = −𝟏𝟏 × �√𝟏𝟏 − 𝝁𝝁𝝁𝝁𝟐𝟐� × 𝐜𝐜𝐬𝐬𝐬𝐬 𝜽𝜽 × 𝐜𝐜𝐜𝐜𝐜𝐜𝝋𝝋 + 𝝁𝝁𝝁𝝁 × 𝐜𝐜𝐜𝐜𝐜𝐜 𝜽𝜽 ,      (4.8) 

where k is a random number between 0 and 1. 
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As the incident photon packet hits the leaf it excites fluorescence from both upper (adaxial) 

and lower (abaxial) sides of a leaf (represented by red lines in Fig. 4.1). We assume a bi-Lambertian 

emission in the model, i.e. leaf emits isotropic fluorescent radiance, and therefore, the number of 

photons and correspondingly fluorescence emitted from adaxial and abaxial side of a leaf is the 

same.  

After the fluorescence has been excited in a leaf, the same processes happen to the newly 

generated fluorescent flux as in the case of the non-fluorescent flux: reflection, transmission and 

absorption, from both sides of the leaf. Thus, we can calculate the number of reflected, transmitted 

and absorbed fluorescent photons similarly to the non-fluorescent ones, except the leaf spectral 

properties ρ and τ should be replaced with those for fluorescent flux. In general, for every leaf 

except for the first one there are four types of processes taking place: absorption, transmission and 

reflection of both fluorescent and non-fluorescent photon packets and emission of fluorescence 

from both backward and forward sides of a leaf. These processes are repeated for each leaf until 

and unless number of photon hitting a leaf is less than one.  

It is important to note that for convenience ‘photon’ and ‘photon packet’ are used 

interchangeably in the study. A photon packet refers to many photons traveling simultaneously 

along the same path (Zhao et al. 2016). As mentioned before, after having interacted with a canopy 

element, in our case a leaf, a photon packet can be divided into new packets characterized with new 

energies. However, for the purposes of ray tracing having a photon with direction would suffice. 

Therefore, we have used the concepts of ‘photon’ and ‘photon packet’ interchangeably. 

After all the fluorescent photons escaping the canopy have been registered, we have 

calculated the total fluorescence in W/m2/nm/sr. In order to obtain fluorescence values at 740 nm, 

we followed approach formulated by Lee et al. (2015) and applied a coefficient k to account for the 
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conversion of SIF integrated over all the fluorescence emission spectrum and SIF at 740 nm 

retrieved by GOME-2.  

In addition, we explore the opportunity of quantifying satellite efficiency in terms of 

fluorescence registered by a satellite of interest. We use the common knowledge stating that photons 

emitted from all the leaves can travel in any random direction after an interaction with canopy 

elements which in this study are represented by circular leaves.  

As photons are emitted, they are also associated with a certain angle at which they are 

emitted. Photons that are directed within the scan angle of a satellite can be viewed, others will 

escape the satellite even if the satellite is a nadir pointing one. We estimate satellite efficiency in 

capturing fluorescence as the fraction of the photons registered within the scan angle of a satellite 

out of the total number of photons emitted by a tree canopy in all possible directions from -90 to 

90° (Fig. 4.2). The equations for satellite efficiency is as follows: 

ηsat= 100 × ∑ 𝑁𝑁𝑃𝑃𝑔𝑔𝑐𝑐𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑔𝑔𝑠𝑠𝑝𝑝 𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝
𝑔𝑔𝑐𝑐𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑔𝑔𝑠𝑠𝑝𝑝 𝑠𝑠𝑐𝑐𝑙𝑙𝑝𝑝𝑐𝑐 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝 /∑ 𝑁𝑁−90

90 𝑃𝑃,      (4.9) 

where ηsat is the efficiency of a given satellite in capturing fluorescence emission, N is a number of 

photon and i is the scan angle. 

 

4.4 RESULTS 

We started the model run with initializing a number of photons sent from a light source 

whose position is determined by SZA and SAA. Firstly, it is important to recognize the influence 

of the solar zenith angle of the light source on the distribution of SIF photons emitted by the canopy 

leaves. For this purpose we have run simulations with the constant leaf angle and other parameters 

on one side and varying SZA on the other. Figure 4.3 demonstrates that as solar zenith angle 

increases, which translates to the sun being lower over the horizon, fluorescence emitted by the 
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canopy decreases. Maximum florescence is emitted when the sun is at the top (SZA = 0°) and 

gradually decreases as SZA increases.  

As the SZA reaches 75°, almost no fluorescence can be registered escaping the canopy 

which looks valid, especially in the light of the fact that GOME-2 SIF data with SZA greater than 

70° are eliminated in the process of quality control (Joiner et al. 2013). These results are expected 

because at higher SZA, density of incident photons per square unit area of leaf surface decreases.  

Leaf angle distribution (LAD) is an essential factor influencing reflection and absorption of 

solar radiation within the canopy which in its turn has significant impact on the growth and 

development processes and, thus, plant productivity. In addition, plant canopies can exhibit a range 

of LADs – from planophile with leaves maintaining relatively horizontal position to erectophile 

with mostly vertical leaves. At different stages of plant development LAD might undergo changes, 

e.g., in the process of wilting LAD tends to acquire more erectophile traits. Therefore, introduction 

of LAD into fluorescence calculations is absolutely necessary. We have modeled SIF for several 

cases of different leaf angles while keeping all the other model parameters, including SZA, constant. 

As it can be seen from Figures 4.4a–4c, with the increase of leaf angle from 0 to 45° which 

corresponds to the leaf position change from horizontal to inclined, the average values of 

fluorescence decreases from about 2 mW/m2/nm to less than 1. With higher SZA of 30°, such 

decrease in fluorescence emission is even more prominent, e.g., at SZA = 30° and leaf angle = 45° 

there is practically no registered fluorescence. This is presumably because of the fact that leaves 

oriented in a direction perpendicular to the sunlight receive more photons. Increasing leaf angle 
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makes the leaves to receive photons at an inclined angle (Fig. 4.6). Figure 4.6 shows the photon 

intensity of a solar beam with SZA equals to alpha on a leaf surface with inclination of beta. 

However, high SZA combined with high leaf angle does not necessarily lead to extremely 

low SIF emission. As shown in Figure 4.5, SIF values are higher in the case of leaf angle equal to 

45 rather than 0° when SZA equal to 75°.  This is related to the fact that number of fluorescent 

photons emitted by the canopy depends on the cosine of the sum of solar zenith and leaf angle 

(Fig. 4.6). Since in the second case (Fig. 4.5b), the value of cosine of 120° is higher than that of 

75°, the emitted fluorescence tends to be less significant than in the first case. Thus, under high 

SZA conditions the leaf angle distribution plays an especially important role in determining 

fluorescence emission from the top of the canopy. 

We have also investigated the influence of canopy size on the emitted fluorescence. While 

regardless of the size and structural peculiarities of various canopies the underlying physical 

processes related to radiative transfer remain the same, canopy size might affect the amount of 

emitted fluorescence. We have compared the outputs of two model runs with three-dimensional 

canopies of two different sizes: with 30 and 100 leaves in x, y and z-direction, respectively, 

assuming same number of photons incident on the leaves of both trees. Figure 4.7 shows the top-

canopy view of the canopies and indicates that regardless of the canopy size spatial distribution of 

fluorescence emitted from the top of the canopy remains relatively unchanged as well as the 

absolute SIF values. These results show that the general response to SZA and leaf angle is the 

same for both types of trees - fluorescence emitted from the top of the canopy decreases as SZA 

and leaf angle increase. Highest fluorescence is emitted from both trees at SZA = 0° and leaf angle 

= 0°. At higher SZA (SZA = 60°) with leaf angle of 15°, fluorescence is very low. Fluorescence 

values (see color bar) are consistent as well for both trees.   
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After exploring the effects of SZA and leaf angle on canopy level fluorescence, we have 

looked into the role of satellite configuration in quantifying SIF emission. It is well known that 

satellite tool parameters can be considered a limiting factor on how much information about a 

particular phenomenon under study can be retrieved. In this paper we focus on evaluating the 

effects of satellite scan angle on the modeled fluorescence emission.  

Photons emitted from the top of the canopy propagate to different directions. These photons 

are traveling in the upward direction (to the sky) and directions of these photons can be random 

between 0 to 180° (or first two quadrants). To estimate the fraction of photons that are captured 

by the satellites compared to all the total number of photons emitted from the canopy, we have 

selected two values for the scan angle: 32 and 55°. These particular values were chosen based on 

the configuration of GOME-2 and MODIS missions since both of these two missions are 

indispensable sources of information on vegetation state parameters. According to He et al. 2017, 

in the nadir viewing mode the maximum across-track scan angle is ±54° for GOME-2 

spectrometer; for MODIS mission whose info is used to provide global-scale GPP estimates, the 

scan angle is ±55°.  A hypothetical satellite with a lower scan angle of 32° was introduced in order 

to investigate the details of how satellite scan angle affects efficiency of registering photons 

escaping from a canopy. We have performed a model run for this hypothetical satellite with a 

smaller scan angle of 32° and a model run configured to account for MODIS scan angle. Figures 

4.8 and 4.9 display percentage of modeled top-of-canopy fluorescence that is registered by a 

satellite depending on its scan angle. 

 The results are indicative of the importance of scan angle: as it increases from 32 to 55°, 

the model outputs demonstrate similar increase is noted in the percentage of fluorescence that is 

“seen” by the satellite instrumentation. The spatial pattern of SIF from the top of the canopy 
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remains relatively unchanged, with SIF being emitted rather uniformly from the canopy with the 

highest emission zones closer to the center of the canopy top. With increasing SZA, fraction of 

photons observed by satellites does not show a notable change. As seen in Figures 4.9a and 4.9b, 

fractions of photons seen by the satellite with scan angle of 32° are relatively same or can be 

insignificantly different. Similar patterns are observed in case of the satellite with scan angle of 

55° (Fig. 4.8); however, as it was noted, in general, higher scan angle enables a greater fraction of 

photons to be registered as seen in Figures 4.8 and 4.9. A satellite with a higher scan angle of about 

55° effectively sweeps out a 110° Earth field of view in each scan while a satellite with a scan 

angle of 32° is able to scan a 64° FOV.  

We have also plotted the modeled SIF values across the top of the canopy (Fig. 4.10). 

Figure 4.10 shows the mean fluorescence emitted from a canopy in all directions (black line), 

fluorescence observed by satellite (blue line) and the ratio of fluorescence registered by satellite 

to the actual or total fluorescence emitted (red line). Leaf numbers 0 and 100 represent position of 

the leaves at the edge of canopy and 50 represents the center leaf at the top along the X direction.  

As demonstrated in Figures 4.8 and 4.9, the absolute values of fluorescence emission 

registered by the satellite and satellite efficiency increase as the satellite scan angle becomes 

higher. Such increase is not characteristic for the total TOC fluorescence as its formulation is 

independent from satellite configuration variables. With the increase in SZA, the number of 

photons emitted and that of photons registered by satellite decreases; however, efficiency of the 

satellites does not display notable variations. This finding indicates that directions of photons 

emitted from a leaf do not change or depend on the number of photons entering the tree.  

As we investigated the effect of solar zenith, leaf, tree size, and satellite scan angle on 

fluorescence emission modeling, we have discovered a curious feature of the relationship between 
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SIF captured by a satellite and the above mentioned parameters (Fig. 4.11). It can be inferred that 

with the increase in SZA, fluorescence tend to exhibit lower values in both cases – that of total 

TOC modeled fluorescence and fluorescence registered by the satellite. However, it is apparently 

the leaf angle that plays a more significant role in determining the satellite efficiency in capturing 

fluorescence and the absolute values of fluorescence captured by the satellite instrumentation. As 

it can be seen from Figures 4.9a and 4.9c, under the same SZA = 0° and satellite scan angle = 32° 

increase in leaf angle leads to a more pronounced reduction in fluorescence measured by satellite 

and satellite efficiency. It can be thus inferred that changes in leaf angle are more essential to the 

quantification of SIF retrieval by satellites than solar zenith angle.  This is presumably because of 

the fact that inclined leaves tend to redirect the photons in a way that the photons have a higher 

probability to enter the inside of the trees and then be absorbed and reemitted as fluorescence. This 

finding might have important implications as leaf angle distribution is known to vary for various 

tree species and that potentially may exert influence on how SIF retrievals should be approached. 

 

4.5 CONCLUSIONS AND DISCUSSION 

This study represents an effort to quantify the top-of-canopy fluorescence as viewed by the 

satellite instrumentation using the Monte Carlo ray tracing approach. It was discovered that canopy 

size is not a significant parameter for SIF emission quantification, while SZA and leaf angle 

distribution proved to exert more influence on the total TOC fluorescence modeling results. Our 

results show that fluorescence emitted from a canopy decreases with increasing SZA and leaf 

angle; however, higher leaf angle might be more beneficial than horizontal leaves when SZA is 

very high (>70°). At the same time, the combined SZA and leaf angle are of great importance as 

the number of photons from the light source (in our case, the sun) that can be further absorbed and 
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reemitted as fluorescence from the canopy, depends on the cosine of the sum of solar zenith and 

leaf angle.  

Exploring the influence of satellite configuration parameters, namely the scan angle, has 

provided us with some valuable insights: as expected, the total modeled SIF registered by a satellite 

increases with the rise in the scan angle; however, it was found that under the same scan angle 

conditions, a change in leaf angle is more likely to substantially influence the satellite viewed total 

fluorescence and satellite efficiency as well. Our results conclude that satellite efficiency of 

registering fluorescence tends to depend on leaf angle rather than SZA.  

This study can be extended by the use of the input sunlight and skylight density provided 

as TOC measurements or the atmospheric radiative transfer simulation software such as 

MODTRAN.   Future work on the model improvement includes (but is not limited to) adjustments 

in the representation of the canopy itself such as addition of clumping/clustering of leaves. 

Currently, the model simulates photon transport in the canopy only, therefore, future work will be 

also aimed at modeling photon interactions within the other parts of a tree and its surroundings, 

e.g.  interaction with trunk, soil surface and between adjacent canopies. In addition, in reality while 

leaves remain the main source of emitted fluorescence, other canopy elements such as stems and 

stalks might contribute to fluorescence emission as well. For the purposes of this study we haven’t 

included into consideration any canopy elements except for leaves; however, further research 

might be required to quantify potential contribution of various canopy sources to the emitted 

fluorescence.  

This study calculates a fraction of total TOC fluorescence that is actually registered by a 

satellite and shows that under a scan angle approaching 60° a higher fraction of emitted 

fluorescence can be captured as compared to that retrieved by the current day satellites with lower 
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scan angle values. Thus, incorporation of the findings of this paper in future satellite designs or 

application of a correction factor can help improving the calculation of SIF and parameters related 

to it.  

This photon transport model can potentially be coupled to a leaf level solar-induced 

chlorophyll fluorescence model with the aim of further advancing of accuracy of the modeled SIF, 

which, in its turn, has a potential of improving our predictive capability of terrestrial carbon uptake. 
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Figure 4.1 Schematic diagram showing the layout of the Monte Carlo ray tracing model 
presented in this study. 
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Figure 4.2 Schematic diagram of calculations for satellite efficiency for fluorescence. 
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Figure 4.3 Top view of canopy emitting fluorescent photons under different solar zenith angle 
conditions. 
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Figure 4.4 Modeled top canopy fluorescence dependence on leaf angle distribution.  
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Figure 4.5 Fluorescence emitted from the top of the canopy a) leaf angle = 0°, SZA = 75°; 

b) leaf angle =45°, SZA =75°. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6 Schematic of photon intensity dependence of SZA and leaf angle cosines. 
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Figure 4.7 Fluorescence emitted from the top of the spherical canopy of different size. 
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Figure 4.8 Percentage of modeled top-of-
canopy SIF as registered by satellites, 
assuming scan angle of 55°. 

 

Figure 4.9 Percentage of modeled top-of-canopy 
SIF as registered by satellites, assuming scan 
angle of 32°. 
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Figure 4.1  Top-of-canopy fluorescence at z-direction cross section with leaf and solar zenith angle 
changing from 0 to 45°: black color indicates total modeled fluorescence (in mW/m2/nm/sr); blue 
color – fluorescence registered by a satellite (mW/m2/nm/sr), red color – satellite efficiency equal 
to the percentage of total TOC fluorescence registered by satellite. 
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Figure 4.11 Top-of-canopy fluorescence at z-direction cross section with leaf and solar 
zenith angle changing from 0 to 45°: black color indicates total modeled fluorescence (in 
mW/m2/nm/sr); blue color - fluorescence registered by a satellite (mW/m2/nm/sr), red color – 
satellite efficiency calculated as percentage of total TOC fluorescence registered by satellite. 
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CHAPTER 5: Conclusions and future research 
 

5.1 SUMMARY 
 

The scientific findings presented in this research are mainly based on the multi-year 

satellite data analysis and aim at establishing and clarifying the relationships between SIF, GPP 

and other parameters, as well as exploring the potential of SIF in detailed drought characterization, 

with the focus on the drought onset and demise, from which duration of a drought event can be 

inferred. In addition, this dissertation presents a modeling effort in SIF simulation with the use of 

a combination of Monte Carlo backward and forward ray tracing. 

This dissertation consists of four parts. Chapter 1 introduces the subject matter and 

establishes the importance of SIF in the context of plant functioning and connection to plant 

production.  

Chapter 2 focuses on the estimation of gross plant production with the use of SIF, 

precipitation and soil moisture data over the continental US. In this chapter we have introduced 

a new method of GPP quantification that is based on the usage of multiple linear regression 

technique. While previously it has been claimed that information provided by SIF is sufficient 

to estimate plant productivity even without ancillary data, we have shown that introduction of 

additional parameters that might have independent impact on GPP (not through SIF) has a 

potential to improve GPP estimates and bring them close to the ground-based values taken as 

ground truth. 

 When deriving the equations for crop and grass GPP estimation we have taken into 

account the differences in grass and crop plant functional types (as their response to precipitating 

and soil moisture variations might differ) and precipitation and soil moisture conditions over the 

continental US.  Our analysis based on several MLR cases revealed a curious tendency: when 
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GPP estimates are produced on the basis of SIF only, they tend to be underestimated; however, 

when SIF, precipitation and soil moisture retrieved simultaneously are used to derive the MLR 

equation, GPP values are significantly higher as compared to the ground-based observations. Our 

analysis indicates that using a discovered lead–lag relationship between SIF on one side and 

precipitation and soil moisture helps provide GPP estimates that are more consistent with the 

ground-based flux tower observations. We have estimated the lead–lag between SIF and 

precipitation at 2 to 4 weeks for crop and grass vegetation respectively. We presume that such 

difference in the timing of SIF response to a precipitation event might stem from how plant water 

need varies according to the stage of plant development: plants are typically most sensitive to 

water deficit in the development period. Therefore, their productivity around the end of the 

lifecycle, i.e. at the ripening and harvesting stages, would demonstrate a dependence on the 

precipitation they received in earlier life stages. Apparently, the life cycle of crops and grasses 

are different enough to cause a difference in lead–lag relationship between SIF and precipitation 

for these two vegetation types. Based on the findings of Chapter 2, for future applications it is 

necessary to consider plant water uptake fluctuations within the plant lifecycle stage in order to 

obtain valid plant production estimates. To our knowledge, this is the first study to demonstrate 

both importance of inclusion of other parameters influencing plant productivity (along with SIF) 

and that of accounting for the plant physiological variations linked to plant water need at different 

stages of its lifecycle. It is to be noted that GPP estimates produced by the MLR equations agree 

well with the drought trends over Texas in 2011 and the Great Plains in 2012. 

Chapter 3 aims at investigating the usefulness of SIF and another vegetation-related 

indicator – NDVI – in delineating drought timing characteristics such as onset, demise and 

duration. Our analysis indicates that while SIF tends to demonstrate an earlier response to 
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drought conditions (as inferred by significant departure of rainfall from climatological values 

based on the precipitation record spanning from 1979–2016) as compared to that of NDVI, 

neither SIF nor NDVI can serve as a reliable early drought indicator as there is a significant lag 

between changes in rainfall and respective changes in these two variables. The findings from 

Chapter 3 show that a typical lag between precipitation decrease and corresponding SIF level 

change is on scale of about one month which is consistent with the findings regarding lead–lag 

from Chapter 2. In addition, our results demonstrate than even though drought conditions are 

present in both 2012 (over the Great Plains region) and 2011 (Texas region) negative SIF 

anomalies are more prominent over the Great Plains region. It was also found that GPP values 

produced according to the MLR approach with lead–lag consideration tend to be more sensitive 

to drought conditions than SIF itself. This is likely due to how MLR-based GPP was formulated 

– by definition it takes into account precipitation, soil moisture and SIF relationship with GPP 

while also taking care of the interdependence between all these variables. 

Chapter 4 introduces a Monte Carlo ray tracing model to provide estimates of top-of-

canopy fluorescence and its variations with changes in solar zenith angle and leaf angle. It also 

aims at quantifying the effect of satellite configuration, namely scan angle, on the efficiency of 

fluorescence registering by a given satellite. Our modeled SIF values are of plausible magnitude; 

they also demonstrate an expected inverse relationship with solar zenith angle while the link 

between modeled fluorescence emission and leaf angle distribution is not trivial. As we have 

looked at the impact of satellite scan angle on registration of fluorescence at the top of the canopy, 

our findings showed that importance of leaf angle distribution compared to that of solar zenith 

angle is higher in terms of how much of emitted fluorescence is captured by a satellite with a 
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certain scan angle. Potentially, research finding presented in Chapter 4 can help us in validating 

satellite SIF retrievals or introducing corrections to them. 

 

5.2  FUTURE WORK 

Some of the remaining scientific questions are discussed at the end of each chapter. In 

general, to address the uncertainties and limitations of this research, future work is to be done. 

 Firstly, as recommended in Chapter 2, in order to create more realistic estimates of GPP 

according to the presented method, it is necessary to include other vegetation types into 

consideration as currently only crop and grass vegetation are analyzed. As it is known that SIF-

GPP relationship is a biome-dependent one, MLR formulations for crops and grasses might not be 

suitable for other vegetation types – therefore, equations need to be formulated separately for the 

remaining types. If to go to a greater level of detail, inclusion of specific crops might be beneficial 

as well.  

As evident from Chapter 3, there is a need for SIF and NDVI retrievals of higher temporal 

resolution. Better tracking of SIF variations might be enabled if sub-daily retrievals are available. 

In addition to employing statistically-based method for investigating drought parameters such as 

drought initiation and cessation, it is necessary to look into the underlying mechanisms of 

vegetation-based SIF and NDVI response to the drought conditions.  

Further research is warranted on the Monte Carlo model presented in this dissertation. 

While it has successfully captured the impact of certain parameters on emitted fluorescence, it is 

necessary to provide more realistic representation of the environment. For instance, while canopies 

are present in the generated three-dimensional scene, there is no interaction with the trunk or soil 

surface due to the absence of the latter. As remotely-sensed SIF is likely to be significantly 
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influenced by three-dimensional structure of the canopy, it would be needed to create a more 

realistic rendering of canopies as well as finer details such as clumping and clustering of leaves. 

Stems and stalks are considered negligible fluorescence sources for the purpose of this study. 

Further validation of the Monte Carlo model is necessary in order to identify areas (e.g. model 

parameterization, necessary input data) that need improvement. 
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	This section discusses a method of SIF estimation with the Monte Carlo solution of a radiative transfer model.
	Traditionally two methods of photon tracing are used: forward and backward. The forward method sends photon from the light source and traces its path until the photon is absorbed or scattered out of the scene. Respectively, the backward method generat...
	Prior to tracking the photons a canopy scene is generated. Forest structure is represented by a set of geometric primitives that are positioned in three dimensions over a horizontal plane (North 1996). The primitives define the shape and size of canop...
	The model operates as follows (Fig. 4.1): the photon packet is initialized and direction of the emitted photon is determined by position of the light source described by x,y,z coordinates and directional cosines μx, μy, μz depending on solar zenith an...
	Having entered the canopy scene generated prior to the start of the radiative transfer part of the model, photons are tested for intersection with the leaves within the canopy.  Upon the photon packet interaction with the first leaf on its path, the p...
	,𝑵-𝒓𝒆𝒇.=,𝑵-𝒊𝒏𝒊𝒕.×,𝝆-𝒍.                                                                                                     (4.1)
	,𝑵-𝒕𝒓𝒂𝒏.=,𝑵-𝒊𝒏𝒊𝒕.×,𝝉-𝒍.                                                                                                     (4.2)
	,𝑵-𝒂𝒃𝒔.=,𝑵-𝒊𝒏𝒊𝒕.×(𝟏−,𝝆-𝒍.−,𝝉-𝒍.),                                                                                 (4.3)
	where Ninit is the initial number of the photons sent from the light source, ρl and τl are leaf reflectance and transmittance respectively.
	The direction of a newly generated packet is determined by the position of the leaf where the interaction happened and the new directional cosines that are a function of the scattering angle ϴ and azimuth angle φ. The relationships are as follows:
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	𝝁𝒙=,,𝐬𝐢𝐧-𝜽 ×((𝝁𝒙×𝝁𝒛×,𝐜𝐨𝐬-𝝋).−(𝝁𝒚×,𝐬𝐢𝐧-𝝋))..-√(𝟏−,𝝁𝒛-𝟐.).+𝝁𝒙×,𝐜𝐨𝐬-𝜽.         (4.6)
	𝝁𝒚=,,𝐬𝐢𝐧-𝜽 ×((𝝁𝒚×𝝁𝒛×,𝐜𝐨𝐬-𝝋).+(𝝁𝒙×,𝐬𝐢𝐧-𝝋))..-√(𝟏−,𝝁𝒛-𝟐.).+𝝁𝒚×,𝐜𝐨𝐬-𝜽.          (4.7)
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	where k is a random number between 0 and 1.
	As the incident photon packet hits the leaf it excites fluorescence from both upper (adaxial) and lower (abaxial) sides of a leaf (represented by red lines in Fig. 4.1). We assume a bi-Lambertian emission in the model, i.e. leaf emits isotropic fluore...
	After the fluorescence has been excited in a leaf, the same processes happen to the newly generated fluorescent flux as in the case of the non-fluorescent flux: reflection, transmission and absorption, from both sides of the leaf. Thus, we can calcula...
	It is important to note that for convenience ‘photon’ and ‘photon packet’ are used interchangeably in the study. A photon packet refers to many photons traveling simultaneously along the same path (Zhao et al. 2016). As mentioned before, after having ...
	After all the fluorescent photons escaping the canopy have been registered, we have calculated the total fluorescence in W/m2/nm/sr. In order to obtain fluorescence values at 740 nm, we followed approach formulated by Lee et al. (2015) and applied a c...
	In addition, we explore the opportunity of quantifying satellite efficiency in terms of fluorescence registered by a satellite of interest. We use the common knowledge stating that photons emitted from all the leaves can travel in any random direction...
	As photons are emitted, they are also associated with a certain angle at which they are emitted. Photons that are directed within the scan angle of a satellite can be viewed, others will escape the satellite even if the satellite is a nadir pointing o...
	ηsat= 100 × ,𝑠𝑐𝑎𝑛 𝑎𝑛𝑔𝑙𝑒 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡-𝑠𝑐𝑎𝑛 𝑎𝑛𝑔𝑙𝑒 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡-𝑁𝑖./,90-−90-𝑁.𝑖,      (4.9)
	where ηsat is the efficiency of a given satellite in capturing fluorescence emission, N is a number of photon and i is the scan angle.
	We started the model run with initializing a number of photons sent from a light source whose position is determined by SZA and SAA. Firstly, it is important to recognize the influence of the solar zenith angle of the light source on the distribution ...
	As the SZA reaches 75 , almost no fluorescence can be registered escaping the canopy which looks valid, especially in the light of the fact that GOME-2 SIF data with SZA greater than 70  are eliminated in the process of quality control (Joiner et al. ...
	Leaf angle distribution (LAD) is an essential factor influencing reflection and absorption of solar radiation within the canopy which in its turn has significant impact on the growth and development processes and, thus, plant productivity. In addition...
	As we investigated the effect of solar zenith, leaf, tree size, and satellite scan angle on fluorescence emission modeling, we have discovered a curious feature of the relationship between SIF captured by a satellite and the above mentioned parameters...
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	CHAPTER 5: Conclusions and future research
	5.1 SUMMARY
	The scientific findings presented in this research are mainly based on the multi-year satellite data analysis and aim at establishing and clarifying the relationships between SIF, GPP and other parameters, as well as exploring the potential of SIF in ...
	This dissertation consists of four parts. Chapter 1 introduces the subject matter and establishes the importance of SIF in the context of plant functioning and connection to plant production.
	Chapter 2 focuses on the estimation of gross plant production with the use of SIF, precipitation and soil moisture data over the continental US. In this chapter we have introduced a new method of GPP quantification that is based on the usage of multip...
	When deriving the equations for crop and grass GPP estimation we have taken into account the differences in grass and crop plant functional types (as their response to precipitating and soil moisture variations might differ) and precipitation and soi...
	Chapter 3 aims at investigating the usefulness of SIF and another vegetation-related indicator – NDVI – in delineating drought timing characteristics such as onset, demise and duration. Our analysis indicates that while SIF tends to demonstrate an ear...
	Chapter 4 introduces a Monte Carlo ray tracing model to provide estimates of top-of-canopy fluorescence and its variations with changes in solar zenith angle and leaf angle. It also aims at quantifying the effect of satellite configuration, namely sca...
	5.2  FUTURE WORK
	Some of the remaining scientific questions are discussed at the end of each chapter. In general, to address the uncertainties and limitations of this research, future work is to be done.
	Firstly, as recommended in Chapter 2, in order to create more realistic estimates of GPP according to the presented method, it is necessary to include other vegetation types into consideration as currently only crop and grass vegetation are analyzed....
	As evident from Chapter 3, there is a need for SIF and NDVI retrievals of higher temporal resolution. Better tracking of SIF variations might be enabled if sub-daily retrievals are available. In addition to employing statistically-based method for inv...
	Further research is warranted on the Monte Carlo model presented in this dissertation. While it has successfully captured the impact of certain parameters on emitted fluorescence, it is necessary to provide more realistic representation of the environ...
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