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Quick evaluation of reservoir performance is a main concern in decision making. 

Time-consuming input data preparation and computing, along with data uncertainty tend 

to inhibit the use of numerical reservoir simulators. New analytical solutions are 

developed for capacitance-resistive models (CRMs) as fast predictive techniques, and 

their application in history-matching, optimization, and evaluating reservoir uncertainty 

for water/CO2 floods are demonstrated. Because the CRM circumvents reservoir geologic 

modeling and saturation-matching issues, and only uses injection/production rate and 

bottomhole pressure data, it lends itself to rapid and frequent reservoir performance 

evaluation. 

This study presents analytical solutions for the continuity equation using 

superposition in time and space for three different reservoir-control volumes: 1) entire 

field volume, 2) volume drained by each producer, and 3) drainage volume between an 

injector/producer pair. These analytical solutions allow rapid estimation of the CRM 

unknown parameters: the interwell connectivity and production response time constant. 

The calibrated model is then combined with oil fractional-flow models for water/CO2 
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floods to match the oil production history. Thereafter, the CRM is used for prediction, 

optimization, flood performance evaluation, and reservoir uncertainty quantification. 

Reservoir uncertainty quantification is directly obtained from several equiprobable 

history-matched solutions (EPHMS) of the CRM. We validated CRM's capabilities with 

numerical flow-simulation results and tested its applicability in several field case studies 

involving water/CO2 floods. 

Development and application of fast, simple and yet powerful analytic tools, like 

CRMs that only rely on injection and production data, enable rapid reservoir performance 

evaluation with an acceptable accuracy. Field engineers can quickly obtain significant 

insights about flood efficiency by estimating interwell connectivities and use the CRM to 

manage and optimize real time reservoir performance. Frequent usage of the CRM 

enables evaluation of numerous sets of the EPHMS and consequently quantification of 

reservoir uncertainty. The EPHMS sets provide good sampling domains and reasonable 

guidelines for selecting appropriate input data for full-field numerical modeling by 

evaluating the range and proper combination of uncertain reservoir parameters. 

Significant engineering and computing time can be saved by limiting numerical 

simulation input data to the EPHMS sets obtained from the CRMs. 
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Chapter 1: INTRODUCTION  

 

Evaluating reservoir characteristics and predicting future production efficiently 

and economically have always been among the most challenging tasks for petroleum 

engineers. The engineer must choose the method for predicting performance, a predictive 

model (PM), while considering the availability of time and resources, the reliability, 

quality and uncertainty of the basic data available, and the ultimate application of his/her 

prediction.  

All the predictive models available to reservoir engineers range in complexity 

from those that provide an estimate only of ultimate recovery to those that use 

comprehensive reservoir simulation models that are capable of predicting both reservoir 

and individual well performances. However, the time requirements and costs for 

simulation are directly proportional to the complexity of the technique used. In some 

instances, a simple estimate of ultimate recovery may be sufficient and, in fact, it may be 

the only reliable estimate possible because of data limitations. However, in most cases, 

more detailed projections will be required to evaluate the economic potential of the 

proposed project, and a method must be used that will allow the estimation of future 

production rate and oil recovery as functions of time. 

 

1.1- PROBLEM STATEMENT 

Comprehensive numerical reservoir simulation is a regular practice in all major 

reservoir management development decisions. Although numerical simulations are 

widely used, there are still major limitations and restrictions in their application 

especially for decision making under uncertainty. Limited time and available resources, 
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inevitable uncertainty of input data and time-consuming preparation, computing and 

analyzing of the results for all different possible scenarios, even with today’s fast 

computers, still restrict use of full-scale comprehensive reservoir simulation. 

Numerical reservoir simulators need a large amount of reservoir data, engineering 

time and operating costs; thus, in many situations running full-scale numerical 

simulations does not meet the economical requirement and the time limit restrictions of 

the project. On the other hand, because of the intrinsic uncertainty of input data and non-

uniqueness of parameters combination, different scenarios that satisfy the reservoir model 

(production history) should be considered to confidently and accurately evaluate the 

impacts of uncertainty in the input data on the objective function. To make an ideal 

decision in ideal petroleum engineering uncertainty analysis, numerous realizations of 

reservoir properties and consequently numerous numerical reservoir simulation runs are 

required to evaluate the stochastic nature of the outcomes; nevertheless, in real practice, 

this objective can rarely be fulfilled. Therefore, in real petroleum engineering uncertainty 

analysis the optimal number of realizations of reservoir properties and consequently the 

optimal number of reservoir simulation runs should be selected to capture the stochastic 

nature of outcome reasonably.  

Achieving high accuracy for a reservoir model is generally in a direct relation to 

the amount of time, data, and resources that are available in the project. The more the 

amount of the resources and time, the higher will be the accuracy. For example, in an 

ideal numerical reservoir simulation the relationship between the level of accuracy and 

effort, and the number of grid blocks can be schematically presented as in Fig. 1-1.  
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Figure 1-1: Hypothetical curves for accuracy, effort and accuracy to effort ratio 
as objective function in a simple homogeneous reservoir as a function of number 
of grid blocks. 

In this example, we define effort as the required simulation cost and accuracy as a 

measure to compare the similarity of simulation prediction and the observation, and the 

objective function as the accuracy divided by the effort. Maximum value for objective 

function shows the optimal approach that is the optimal number of the grid blocks. It is 

possible that either the optimum point does not fulfill the desired accuracy of the project, 

or time and resources limitation of the project prevent us from reaching the optimum 

number of numerical simulation runs.  

The desired accuracy of modeling can be increased if, before performing the 

numerical simulations, classical or fundamental reservoir engineering methods such as 

tank models are used. Classical reservoir engineering techniques can assist in obtaining a 

good estimate and understanding of different scenarios and reasonable ranges of reservoir 
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parameters that satisfy past, present and future reservoir performance. Unfortunately, 

numerical reservoir simulations have often been used without conducting such simple 

assessments of simple predictive models that can provide significant information in a 

short period of time with minimum effort. Information gained from predictive methods 

can decrease the range of input uncertainty and guide comprehensive numerical 

simulations. Therefore, a combination of preliminary-analytical tools as simple 

simulators and full-scale numerical simulators can optimize the number of runs and 

simulating time in a project. 

 

1.2- RESEARCH OBJECTIVES  

The capability of evaluating reservoir performance accurately in a short period of 

time is the main concern in decision making. Among known traditional reservoir 

engineering methods, predictive models normally use material or energy balance 

equations on a simple geometry to evaluate reservoir performance and characteristics. 

Due to their simple approach, these models are very fast and inexpensive. Thus, with a 

minimum of reservoir data, e. g. only injection and production data, and a small 

investment in computing and engineering time, it will be possible to have a preliminary 

evaluation, prediction of reservoir characteristics and future production before running 

numerical simulators. In this study, based on continuity equation we develop capacitance 

resistive models (CRM) as our predictive models to rapidly history-match and estimate 

future reservoir performance.  

Even in PMs, considering all scenarios for the input data might not be feasible. 

Stochastic response surface method (SRSM) can be used to reduce the number of 

simulations in the PMs. Therefore, a combination of improved predictive models, 

sampling techniques and numerical simulators can be used to optimize the accuracy that 
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can be achieved with available reservoir data, computing, engineering time and operating 

costs. On the other hand, the accuracy of a reservoir model is related to the simplified 

assumptions that are made for reservoir properties. For example, considering an 

incompressible reservoir is a common assumption to simplify the PMs; hence, the 

accuracy can be improved if compressibility is considered in predictive models. 

In this work, we develop and conduct quick, cost-effective and reliable predictive 

techniques and introduce an algorithm to narrow down the wide range of uncertainty of 

major reservoir properties while losing only a small fraction of the stochastic outcome 

accuracy. The CRM is a predictive technique that is developed and used in this work. 

Since the CRM only requires injection-production rate data, it can be used widely in 

many field application. 

Insights gained from performing CRM are used to evaluate reservoir operating 

conditions and flood efficiency during production history. Then the CRMs are used to 

predict and optimize future reservoir performance. Furthermore, the CRMs' results are 

used to narrow down the range of some of the parameters that are involved in predictive 

model from a wide to a narrow discontinuous range. This is achieved by performing 

many runs of the predictive model that provide the best production history-match. 

Therefore, we can limit and minimize the number of full-scale numerical runs by 

restricting selection of reservoir properties for comprehensive reservoir simulation to 

those that satisfy production history in CRMs. Consequently, we shorten the overall 

number of comprehensive numerical simulation, simulating time and analysis by mixing 

comprehensive numerical simulation runs with the CRM. 

The CRMs are capable of matching production history for an entire field, a group 

of wells or individual well, and can predict and optimize a field, a group of wells, or 

individual well production. We match production history by the CRM and back calculate 
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some of major reservoir parameters, such as original oil in place, N, original water in 

place, W and residual saturations, within an acceptable range for error calculation. By 

history-matching, we find several likely sets of reservoir parameters that are equiprobable 

history-matched solutions (EPHMS). The none-uniqueness of possible matches generate 

discrete sets of internally linked reservoir parameters. By internally linked we mean that 

for a given value of any back calculated parameter such as water in place ,W, other 

parameters such as original oil in place, N, and residual saturations can not freely change 

and are known. These vectors or sets of reservoir properties form a sampling domain that 

not only satisfy the production history but also provide probability distribution functions 

for major reservoir properties. 

The internally linked sets of reservoir parameters create a sampling domain, 

which relates certain values of parameters together and does not allow random selection 

of all the variables. This biased sampling strategy is superior to any random sampling 

technique by inhibiting sampling of unreasonable combination of reservoir parameters. 

We used and developed predictive techniques prior to or during full field numerical 

simulations to reduce the overall simulation, analysis and project time. We maintain or 

even improve the accuracy in the prediction by screening and confining common input 

between predictive models and numerical simulations.  

 

In general, the following steps are taken in this work to evaluate reservoir 

performance and confine reservoir uncertainty in a short time accurately:  

 
1. Develop a set of quick, cost-effective and reliable predictive models (PM), the 

capacitance resistive models (CRM). CRMs use the minimum amount of reservoir 
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data, injection and production data, to predict and optimize reservoir performance 

for two major hydrocarbon recovery processes of water and CO2 floods. 

2. Optimize the number of runs of numerical reservoir simulators. This is achieved 

by generating probability distribution functions for the main reservoir parameters, 

such as residual saturations and initial water and hydrocarbons in place, and 

mobility ratio through predictive models. Then we use these to narrow down the 

range of parameters and their reasonable and possible combination as inputs for 

numerical reservoir simulators.  

Chapter two presents a literature survey and our approach in confining reservoir 

uncertainty by the CRM. First, some of common techniques for efficiently handling 

reservoir uncertainty in numerical reservoir simulations are presented. Then, existing 

predictive techniques for different flooding agents such as water, polymer, carbon 

dioxide (CO2), and chemical are reviewed and applications of predictive models as fast 

simulators in enhancing reservoir uncertainty management are discussed. Lastly, an 

effective guided sampling technique based on application of developed CRMs is 

introduced. 

In chapter three, we present a background of the CRMs and then the details and 

developments of CRM's analytical solutions by superposition in time and space. 

Analytical solutions by superposition in time are developed based on two different 

projections of injection rate: 1) step wise and 2) linear injection rate variation, for three 

different reservoir control volumes: 1) entire filed, 2) a single producer and 3) control 

volume between each injector-producer pair. Furthermore, by considering series of tanks 
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between each injector-producer pair CRMs are modified and CRM-Block analytical 

solutions solution based on superposition in space are presented. 

Since CRMs predict total liquid production we must have an estimate of oil 

fractional-flow as a function of time. Therefore, chapter four reviews and presents some 

of the oil fractional-flow models for immiscible waterflood and miscible CO2 floods. 

Based on these fractional-flow models we will be able to estimate oil production for a 

producer, a group of producers or the entire field. Oil fractional-flow models for 

waterflood are either based on Buckley and Leverett fractional-flow theory or empirical 

models. For a CO2 flood, we have developed oil fractional-flow models based on logistic 

equation, which can be applied to any tertiary recovery.  

Chapter five demonstrates CRMs and oil fractional-flow models validation and 

application in history-matching, prediction and optimization of reservoir performance. 

Numerical simulation of synthetic case studies and field case studies are used to validate 

CRMs and demonstrate their application in history-matching and relating CRM model 

parameters to the reservoir characteristics and optimization. Optimization is performed 

by reallocating the injected water to maximize oil production rate. 

In chapter six the CRM applications for field cases are presented. The CRMs have 

been used to match the production history for several  field cases such as: 1) Reinecke, 2) 

Malongo 3) South Wasson Clear Fork, (SWCF), 4) UP-Ford 5) Rosneft 6) Lobito, 7) 

Seminole 8) McElroy. Four of these case studies are presented in chapter six: Reinecke, 

SWCF, UP-Ford and McElroy. Except for McElroy, which is a CO2 pilot flood, the other 

case studies are waterfloods.  
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Chapter seven demonstrates the use of the CRM in evaluating and confining 

reservoir uncertainty to both synthetic and field examples by creating an internally linked 

sampling domain for uncertain reservoir parameters. The CRMs as fast, simple and yet 

powerful and independent predictive techniques are repetitively used to match the 

production history. As a result, numerous sets of independent equiprobable history-

matched solutions (EPHMS) are obtained by the CRM. These EPHMS provide 

probability distribution functions for major reservoir properties, such as the original oil 

and water in place, and residual oil and water saturations. Internally linked sets of 

reservoir parameters create a good sampling domain in which groups of uncertain 

reservoir parameters are selected dependently. Significant engineering and computing 

time can be saved by limiting numerical simulation input data to the EPHMS sets. 

Lastly, chapter eight summarizes, concludes and presents recommendations for 

future work.  
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Chapter 2: LITERATURE SURVEY 

 

Uncertainty and sensitivity analysis are commonly performed by using statistical 

sampling and stochastic modeling approaches to investigate the impact of uncertain 

reservoir parameters on reservoir model prediction. Ideally, numerous sets of equally 

viable samples of different uncertain parameters are selected, and then reservoir flow 

simulation is performed for these equally probable scenarios to capture the uncertainty of 

an objective function such as oil recovery or cumulative oil production. In reality, time 

and resources are limited to evaluate reservoir performance for all possible scenarios. 

Therefore, reservoir engineers have used different techniques, such as improved sampling 

techniques and rapid reservoir model estimators, that we call predictive models (PM), to 

avoid intensive computational effort in capturing the uncertainty range of their reservoir 

performance prediction.  

In this chapter, first, some of common techniques for efficiently handling 

reservoir uncertainty in numerical reservoir simulations are presented. Then, existing 

predictive techniques for different flooding agents such as water, polymer, carbon 

dioxide, and chemical are reviewed. Next, applications of predictive models as fast 

simulators in enhancing reservoir uncertainty management are discussed. Finally, an 

effective guided sampling technique based on application of a developed predictive 

technique, the capacitance-resistive model (CRM), is introduced. In our approach, we 

first find equally probable sets of CRM parameters that satisfy the production history and 

use these equally viable sets of reservoir parameters to quantify the uncertain range of 

reservoir parameters and desired objective function uncertainty. This approach limits 
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selection of uncertain reservoir parameters to those values gained from the CRM 

equiprobable history-matched solutions (EPHMS). 

 

2.1- MANAGING RESERVOIR UNCERTAINTY 

In general, we can categorize techniques that manage reservoir uncertainty 

efficiently into two major categories: 1) techniques that focus either on improving 

sampling methodology to take representative samples, or on reducing the number of 

samples to minimize the number of submitted runs for reservoir simulation, and 2) 

techniques to speed up the reservoir simulation models. In this work, both of these 

techniques are implemented. We use the CRM to evaluate reservoir performance quickly 

and, based on numerous sets of the EPHMS obtained from CRM, we use effective 

sampling techniques to efficiently mange reservoir uncertainty. 

 

2.1.1- Uncertainty Management by Sampling Technique  

Techniques focused on sampling methods of uncertain variables are mainly based 

on reducing the number of samples or using a method to select representative samples 

that can still map the impact of data uncertainty on the reservoir model prediction. In this 

category, fall Monte Carlo (MC) and Latin Hypercube (LHC) sampling techniques as 

direct method to map the uncertainty of input data to output results. Sensitivity analysis 

based on the applications of response surface and experimental design as well as the use 

of scaling groups are other techniques in this category that indirectly reduce the effort to 

quantify uncertainty in prediction. 
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Normally, a reservoir simulation model deals with several uncertain variables 

simultaneously. If we have NUV uncertain variables and within each uncertain variable, 

NPS possible selections exist, the total number of equally probable scenarios, NEPS, is 

 

,
1

UVN

EPS PS i
i

N N
=

= ∏          (2-1) 

 

As a simple example, for only five uncertain variables each of which can freely 

have 10 values, 105 statistically probable scenarios exist. Unless we are dealing with a 

very simple calculation or rapid estimation, it is impossible to quantify the sensitivity of 

the output completely and accurately.  

Traditionally, MC sampling has been used extensively in the reservoir 

engineering literature to capture the impact of uncertain parameters on simple objective 

functions (Evers and Jennings, 1973; James, 1997; Liu and Oliver, 2005). Since samples 

are independently selected in the MC method, it is possible to reselect a selected sample, 

or values that are very close to previously selected ones. For a fixed number of samples, 

the LHC sampling method covers the range of each uncertain variable better than MC 

sampling and we avoid taking multiple samples. Thus the LHC sampling provides more 

representative samples of an uncertain variable compared to the MC sampling. Figure 2-1 

shows two realization of 10 and 50 randomly selected samples of normalized reservoir 

area and thickness based on the MC and LHC sampling methods. As shown in these 

figures LHC samples are distributed better and cover a wider range of values for some of 

the uncertain variables, while some of the MC samples for both realizations are identical 

and do not add much variation in prediction of reservoir volume.  
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Figure 2-1: Comparison between spatial distribution of 10 and 50 
randomly selected samples of normalized area and pay thickness 
between MC and LHC sampling techniques.  

Experimental design (ED) and response surface (RS) methods are other 

techniques that significantly enhance the quantification of output uncertainty and improve  

the optimization for sophisticated reservoir models. In general, in ED and RS based on a 

few values of uncertain model parameters, especially the extreme values, a polynomial 
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correlation between input data and reservoir model output is generated. Then, a time-

consuming reservoir model is replaced by the polynomial response surface. This 

polynomial response surface is used as a fast evaluator of reservoir model response to the 

variation of uncertain variables. An optimized design can easily be identified by locating 

the maximum or the minimum of the response surface. 

Experimental design has been used in many reservoir engineering analysis from 

estimation of reserves (Cheong and Gupta, 2004) to performance prediction (Chu, 1990; 

Aanonsen, 1995), and uncertainty modeling and sensitivity analysis (Peake et al., 2005). 

Normally in experimental design, the values of an uncertain variable are limited to its 

base or lower/upper bound values. However, the number of samples within an uncertain 

variable and the number of uncertain variables, Nuv might be small but the number of 

equally probable combinations of uncertain variables can quickly become very large. For 

example, for two- and three-level full factorial design there are 2Nuv and 3Nuv equally 

probable combinations of uncertain variables to be considered, respectively. In general, 

the number of equally probable scenarios and consequently the quality of response 

surface varies based on the type of design (Yeten et al., 2005). For further reduction of 

the number of samples and consequently number of reservoir simulation runs, full 

factorial design are normally replaced by fractional factorial design such as Plackett-

Burman design, central composite design, D-optimal design and space filling design, 

Yeten et al., (2005).  

Besides techniques that focus on reducing the number of samples, application of 

dimensionless groups directly decreases the number of variables involved; therefore, 

instead of perturbing uncertain variables independently one can focus on dimensionless 

group variations. Chewaroungroaj et al. (2000) applied a combination of scaling groups 

experimental design and response surface to reduce the effort in estimating uncertainty in 
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hydrocarbon recovery. Different scaling groups might depend on and share one or more 

uncertain variables, consequently selecting a value for one of the scaling groups can limit 

the range of the other scaling groups. Therefore, selecting proper design that allows 

flexible selection within the range of scaling group is a key to combining scaling groups 

and experimental design. In general, reducing the number of uncertain variables by 

grouping uncertain variables into dimensionless groups and using experimental design 

reduces the number of required simulation runs significantly.  

 

2.1.2- Reservoir Model Speed up Techniques  

Rapid prediction of future recovery and reservoir performance under uncertainty 

provides the basis for efficient economic evaluation of the profitability of a proposed 

project. In these techniques, application of a fast reservoir model is the focal point of a 

rapid projection of input uncertainty to objective function for different scenarios. The 

most common approaches are either to use a coarse grid numerical simulation of the 

reservoir model as a fast simulation (Ballin, 1992, 1993) or to use predictive models to 

enhance uncertainty management (Guevara, 1997). Application of any rapid reservoir 

simulation model such as streamline simulation or material balance models can enhance 

uncertainty management and decision making. Fast simulations, referred to as predictive 

models (PM), can be performed in combination with comprehensive numerical 

simulations. Predictive models can capture the impact of some of the uncertain variables 

quickly and therefore reduce the time and effort needed to investigate the impact of 

uncertain variables on hydrocarbon recovery.  

Many methods such as empirical correlations, screening guides, predictive 

models, and numerical simulations are used for estimating the future performance of a 

reservoir. These methods are important for flooding procedure decision making, 
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especially at the end of primary recovery. During flooding, a flooding agent such as water 

or CO2 is injected into a reservoir to obtain additional hydrocarbons recovery after the 

reservoir has approached its economically productive limit by primary recovery. Among 

these methods, predictive models with a minimum of reservoir data and small investment 

in computing and engineering time are appropriate for preliminary economic analysis and 

screening especially after primary recovery. 

 

2.2- PREDICTIVE MODELS 

Predictive models consider most of the phenomena that affect flood performance 

such as cross flow, heterogeneity, aerial sweep and injectivity. These are their advantages 

over screening guides, empirical correlations and analytical methods. The advantages 

over numerical simulators are that they remain simple, fast and inexpensive. Simplifying 

procedures are commonly used in PM's to keep these models fast and capable for 

analyzing three dimensional problems. For instance, by considering vertical equilibrium 

(VE) in PMs one can generate pseudo functions for relative permeability that reflects 

vertical heterogeneity in reservoirs and simplifies the flow equation by reducing the 

vertical dimension.  

Based on different types of flooding agent, PMs can be categorized as water, 

miscible and immiscible gas, and chemical flooding predictive models. A series of PMs 

were developed for U.S. Department of Energy and National Petroleum Council (NPC) in 

1984 for investigating the potential for enhanced oil recovery: PM for polymer flooding 

(Jones, 1984), PM for micellar-polymer flooding (Paul et al., 1982), PM for CO2 miscible 

flooding (Paul et al., 1984), PM for srteamdrive performance (Aydelotte and Pope, 1983), 

and in-situ Combustion PM (Ray and Munoz, 1986). 
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2.2.1- Water Flooding Predictive Models 

Water flood prediction methods can be categorized into empirical correlations, 

simple analytical methods, and numerical models. There are several fundamental 

techniques for calculating the performance of a waterflood. The Buckley and Leverett 

(1942) frontal advance theory and a subsequent extension of it by Welge (1952) are 

simple methods for calculating fractional-flow and recovery performance after water 

breakthrough in a linear reservoir segment with homogenous properties. An example of 

the Welge technique was presented by Craig (1993). Stiles (1949) and Dykstra-Parsons 

(1950) developed simple methods for application in stratified homogenous reservoirs. 

The Stiles method is based on the assumption of a piston-like displacement in a linear 

bed with a specific permeability, and that the rate of advance of flood front is 

proportional to the permeability of the bed. The Dykstra-Parsons’ method includes 

changing fluid mobilities rather than an assumption of equal mobility for displacing and 

displaced fluids.  

Craig described and compared the classic prediction methods that were presented 

before 1971, and included recommendations for selecting the appropriate waterflood 

prediction technique to obtain the desired results. The methods that were considered were 

categorized into five groups, which may be summarized as follows: (1) reservoir 

heterogeneity, (2) areal sweep methods, (3) displacement mechanism, (4) numerical 

methods, and (5) empirical approaches (Thomas et al., 1992). Craig compared the 

capabilities of each method to the capabilities of the “perfect method,” in which the 

calculation procedures would allow consideration of all relevant fluid-flow, well-pattern, 

and heterogeneity effects. In practice, portions of reservoir are never contacted by 

injected water, therefore, a truly linear displacement is never used in water flood 

operation and it is necessary to consider the areal sweep efficiency to make better 
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estimates of reservoir performance. Muskat (1949) presents a comprehensive review of 

his early discussions of the steady-state flow capacity of various pattern that should be 

considered in predicting flooding performance.  

Waterflooding has been recognized as an accepted operation for increasing oil 

recovery since 1950. The fields do not always perform as predicted regardless of the 

method that is used to estimate future performance. This is true for many reasons, 

including (1) an incorrect or inadequate description of the reservoir rock, fluid, and 

water/oil flow properties, (2) a prediction technique that does not have the capability to 

consider all the factors that affect waterflood performance, and (3) the fact that there is 

always a question of the reliability of the estimates of the interwell character of the 

reservoir rock and the vertical and horizontal variations that exist in reservoir rock and 

fluid properties. 

 

2.2.2- Chemical Flooding (Polymer Flooding) 

In general, chemical flooding refers to isothermal EOR process to recover oil by 

reducing the mobility of the displacing agent and/or lowering the oil/water interfacial 

tension (Lake, 1989). The displacement by water soluble polymers is referred to as 

polymer flooding. In polymer flooding, a small amount of polymer is added to thicken 

brine. The volumetric and displacement efficiency increases with the reduction of the 

mobility ratio, which results in additional oil recovery. The classical solution by Buckley 

and Leverett (1942) can be used to describe the effect of mobility lowering on 

displacement efficiency.  

Jones (1984) in his stratified water/polymer PM, considers vertical heterogeneity 

through the vertical equilibrium theory, and areal sweep through a well pattern. In his 

model for polymer flooding, he includes permeability reduction, adsorption, viscous 
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fingering of drive water into polymer slug, and viscosity, all as a function of polymer 

concentration. The resulting output consists of cumulative produced volumes and 

producing rates as a function of time for oil water and gas. Jones’ predictive technique is 

based on incompressible oil-water flow in a stratified model for only a five-spot pattern. 

Due to the VE assumption, his model does not have the ability to account for non-

communicating layers, but it includes initial gas saturation and different layers of 

permeability by using Dykstra-Parsons permeability variation. 

 

2.2.3- Miscible and Immiscible Gas Flooding (CO2) 

In 1888, the importance of gas injection in increasing the oil recovery was 

recognized by Dinsmoor (Smith, 1975). Generally, gas is a compatible fluid with both 

reservoir rock and reservoir oil, and normally up to 30% additional recovery is obtained 

after gas displacement. Based on the displacement mechanism the gas displacement will 

be miscible or immiscible. Normally the efficiency of miscible displacement is higher 

than that of immiscible displacement. The reservoir engineer has to recognize which 

method is most suitable for the reservoir type, the fluid properties, the quantity and the 

quality of the displacing agent and economic environment. The greatest disadvantage of 

every gas miscibility method is the low viscosity of the displacing agent that can result in 

fingering and early breakthrough. Therefore, same form of mobility control is a basic 

requirement.  

There are several calculation methods, which deal with miscible gas flooding for 

oil recovery, depending on 1) whether the displacement is a vertical or horizontal, 2) 

whether the solvent injection takes place continuously or in the form of a slug, 3) whether 

the realization of the EOR technology process is a secondary or tertiary process. These 

displacement calculations can be categorized as empirical/analytical methods, streamtube 
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and streamline modeling, and numerical modeling. Horizontal and vertical displacements 

are two major categories of empirical/analytical methods. The CO2 flooding 

characteristic applications were summarized by Brock and Brayan (1989) depending on 

whether the process is miscible or immiscible, the whole reservoir or only a part of it is 

flooded and the same well is used for injection and production.  

 

2.3- ENHANCING UNCERTAINTY MANAGEMENT BY PREDICTIVE MODELS   

Matching the production history is one of the major tasks of reservoir engineer 

must perform prior to any prediction of reservoir performance. Uncertainty in reservoir 

data makes history-matching a tedious task and the non unique nature of the match 

creates uncertainty and mismatch in the future predictions. Based on different equally 

viable matches of production history, the uncertainty in future performance projection 

can be captured. As mentioned before, running numerical reservoir simulations for a 

large number of realizations of uncertain variables is expensive and time consuming. 

Many predictive models have been developed for predicting reservoir performance. 

Combining predictive models with comprehensive reservoir simulators has the potential 

to optimize the prediction process efficiently and economically.  

Ballin et al. (1993) treated a coarse grid representation of their reservoir model as 

fast simulator (FS) or predictive model. Next, they used MC sensitivity analysis of the FS 

to screen the input data for a field scale fine grid representation, comprehensive 

simulation (CS). Then, correlated performance of coarse and fine grid simulations were 

used to obtain the performance projections of all the realizations. 

Guevara (1997) presents a screening technique to reduce the many sets of 

stochastic parameters to find the approximate net present value (NPV) cumulative 

distributions function. In his study, he used Johns' polymer flood predictive model, 
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UTSTREAM, and Vertical Implicit Program (VIP) simulator. Guevara categorized 

reservoir parameters into two major groups: primary and secondary variables. Primary 

variables are those that exist in both the PM and numerical simulation and their impact on 

objective function can be captured by either PM or numerical simulation. Secondary 

variables are other uncertain variables whose impact on an objective function can only be 

quantified by numerical simulation. A combination of full MC sensitivity analysis of 

primary variables by fast PM and secondary variables by comprehensive numerical 

simulation was used by Guevara to capture the impact of uncertain reservoir parameters 

on net present value estimation. 

We have developed the CRM as our PM and used it to match production history. 

Based on the matches obtained by the CRMs, one can generate probability distribution 

functions (PDF) or cumulative distribution functions (CDF) of major reservoir 

parameters such as water/oil in place or water/oil residual saturation. Since these 

equiprobable history-matched solutions (EPHMS) are related, randomly selected sets of 

these solutions should be used to define numerical simulation input data. We use 

numerous sets of EPHMS obtained from the CRM to determine reservoir uncertainty and 

narrow down the continuous range of uncertain parameters to discrete sampling domains.  

In the following chapters, details of the CRM developments and its application in 

optimizing reservoir performance are presented. In addition, we demonstrate the use of 

the CRM in evaluating and confining reservoir uncertainty to both synthetic and field 

examples by creating an internally linked sampling domain for uncertain reservoir 

parameters. 
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Chapter 3: CAPACITANCE RESISTIVE MODEL (CRM)  

In general, the capacitance resistive model (CRM) relies upon signal-processing 

techniques in which injection rates are treated as input signals and total production rates 

are the reservoir response or output signals. The name CRM is selected for this model 

because of its analogy to a resistor-capacitor (RC) circuit (Thompson, 2006). A 

production rate response to a step-change in injection rate is analogous to voltage 

measurement of a capacitor in a parallel RC circuit where the battery potential is 

equivalent to the injection signal.  

The interwell connectivity and response delay constitute the CRM unknown 

parameters. Therefore, for a multiwell system, CRM’s parameters represent the 

connectivity between each injector-producer pair based on the historical injection and 

production data.  
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Figure 3-1: Schematic representation of the impact of an injection rate signal on 
total production response for an arbitrary reservoir control volume in capacitance 
resistive model.  
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The CRM is developed as a spreadsheet-based predictive model. This enhances 

CRM's application for a reservoir engineer in his/her real-time field performance analysis 

and optimization. The main motivation behind developing the CRM is its speed and 

capability to match production history and predict production rate based on injection and 

production rate and, if available, bottomhole pressure (BHP) data. 

In this chapter, we first present a background of the CRM and then the details of 

the CRMs development and analytical solutions for three different reservoir control 

volumes: 1) the entire field, 2) a single producer and 3) the volume between an injector-

producer pair. Analytical solutions for each CRM are developed based on superposition 

in time and space. Compared to the previous numerical solution of the CRM developed 

by Yousef et al. (2006) and Liang et al. (2007), the analytical solutions developed in this 

work enhance the CRMs setup and application especially for large field studies. 

Since the CRMs only provide an estimation of the total production rates, in 

chapter four we present several oil fractional-flow models for secondary and tertiary 

recovery to combine with the CRMs total production estimation to evaluate oil 

production rate as a function of time.  

 

3.1- CRM BACKGROUND AND DEVELOPMENT 

The CRM's parameters, connectivities and time constants are evaluated based on 

injection and production history. Once the model parameters are estimated, performance 

predictions can be made with the fitted model parameters. In this regard, CRM may also 

be viewed as a nonlinear multivariate regression analysis tool which accounts for 

compressibility and fluid flow in the reservoir based on time constant (Yousef et al. 

2006). Unlike a grid-based numerical-simulation approach, the CRM models the 
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reservoir flow behavior in accord with interactions (connectivities) between well-pairs, 

which is a measure of the reservoir permeability.  

In some respects, the CRM may be construed as analogous to a streamline 

approach. The connectivity between each injector-producer pair is analogous to the 

relative number of streamlines of an injector that support a producer. Streamline 

simulations (Gupta, 2007) have gained considerable popularity because of their fast 

computational speed. We think the CRM can further speed up the overall study time by 

providing clues about the integrity of rate data, injector-producer connectivity, and fluid 

influx. 

From injection/production data, Albertoni and Lake (2003) used a linear 

multivariate regression technique with diffusivity filters to predict the total fluid 

production of a well based on injection rates. In a continuation of Albertoni's work 

(2002), Gentil (2005) explained the physical meaning of multivariate-regression-analysis 

constants by expressing the connectivity constant solely as a function of transmissibility. 

Yousef et al. (2006) showed the improved capability of extracting reservoir properties 

from injection and production data by introducing the capacitance model in which the 

diffusivity filter is replaced by a time constant. The capacitance model considers the 

effects of compressibility, pore volume, and productivity index in nonlinear multivariate 

regression by introducing a time constant to characterize the time delay of the injection 

signal at the producers. Therefore, connectivity indices and time constants can represent 

reservoir and fluid properties between injectors and producers.  

This work introduces analytical solutions for the continuity equation, which is the 

fundamental differential equation of the CRMs. There are solutions based on two 

different projections of stepwise variation of injection rate (SVIR) and linear variation of 
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the injection rate (LVIR), as a result of discrete nature of injection rate measurements, 

and three different reservoir control volumes. The three different control volumes are 

1) Drainage volume of the entire field, or a tank representation of the field, 

CRMT, 

2) Drainage volume of each producer, or a tank representation of each producer, 

CRMP,  

3) Drainage volume between each injector/producer pair, or a tank representation 

of the volume between each injector and producer pair, CRMIP. 

 

In the analytical solutions for CRMs, SVIR or LVIR are considered with the 

effects of linear variation of bottomhole pressure (LVBHP) at the producers between 

consecutive data points. Furthermore, by considering a series of tanks between each 

injector/producer pair, CRM solutions are modified and CRM-Block analytical solutions 

based on superposition in time and space are developed. 

 

3.2- CRMT, SINGLE TANK REPRESENTATION OF A FIELD BY THE CRM 

A reservoir may be represented as a single tank if one pseudo producer and one 

pseudo injector, respectively, represent all producers and injectors in the field, as shown 

in Fig. 3-2. Therefore, in a tank representation of a field by the CRM denoted as CRMT, 

or in a field with only one producer and one injector, the material balance leads to the 

following equation for production rate of q(t) and injection rate of i(t)  (details presented in 

Appendix A): 

 
d ( ) ( )
dt p
pc V i t q t
t

= −          (3-1) 
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where ct is the total compressibility, Vp is the reservoir pore volume and p  is the average 

reservoir pressure. Based on the definition of productivity index J (Walsh and Lake 2003) 

the total production rate in reservoir volumes, q(t), is 

 
( ) ( )wfq t J p p= −          (3-2) 

 

Elimination of the average reservoir pressure from Eqs. 3-1 and 3-2, as presented by 

Yousef (2006), leads to the fundamental first-order ordinary differential equation for the 

CRM as 

 

t
p

Jtitq
t
tq wf

d
d

)(1)(1
d

)(d
−=+

ττ
        (3-3) 

 

where J is assumed to be constant and the time constant, τ, is defined as 
 

t pc V
J

τ =             (3-4) 

 
and has units of time.  
 

( )Fi t ( )Fq t

Fτ

 

Figure 3-2: Schematic representation of a field with one injector and one 
producer, the CRMT. 

To represent a field or a group of wells with CRMT, all the injection and 

production rates should be added and represented as iF(t) and qF(t). Consequently, the 
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time constant, τ, will be field-time constant, τF, which yields field-average properties. 

The general solution for Eq. 3-3 is as follows: 

 
0
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q t Ce e e i J

ξ ξ
τ τ τ

ξ

ξ ξ
τ ξ

=− −
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⎡ ⎤
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⎣ ⎦∫        (3-5) 

 

By applying an initial condition at time t0, the constant C can be evaluated as  

 
0

0( )
t

C q t e τ=           (3-6) 
 

Therefore, the particular solution for Eq. 3-3, as was presented by Yousef et al. (2006),  

can be written as 

 
0

0 0

( )

0 0

d1( ) ( ) ( )d d ;
d

t tt t t t
wf

t t

p
q t q t e e e i e Je t t

ξ ξξ ξ
τ τ τ τ τ

ξ ξ

ξ ξ ξ
τ ξ

= =− − −
−

= =

= + − >∫ ∫    (3-7) 

 

The output signal, q(t), is composed of three elements on the right of Eq. 3-7. Changes in 

rate at the producer are comprised of primary depletion, the injection input signal, and the 

changing of the BHP at the producer. Yousef et al. (2006) expands upon this point in 

detail. For a better understanding of the impact of primary and secondary production on 

the CRM refer to Appendix B. If the injection rate is zero and producer's BHP is kept 

constant this solution simplifies to an exponential decline solution (see Walsh and Lake, 

2003) where time constant will be the decay rate.  

By integrating by parts, Eq.3-7 can be written as 
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Assuming a constant productivity index, J, and time constant, τ, gives: 
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Yousef (2006) discretized the integrals in Eq. 3-9 over the entire production history to 

find the model parameters by considering m equal discretizations of interval Δn as 
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Integrals in Eq. 3-9 can be evaluated analytically for any consecutive injection and BHP 

data points; an analytical solution at the end of each time interval can be used as initial 

condition for the next time interval. Therefore, by superposition in time we can 

analytically evaluate production rate at any time.  

 

3.2.1- CRMT Superposition in Time Solution 

Instead of numerically integrating Eq. 3-9, we use superposition in time to find an 

analytical solution. We start with Eq. 3-7, the particular solution of Eq. 3-3. Based on an 

assumed variation of injection rates between two consecutive injection data points, two 
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forms of solutions are discussed: 1) SLVR, a step change of injection rate from I(tk-1) to 

I(tk), and 2) LVIR, a linear change of injection rate between two measurements i(tk-1) to 

i(tk). In these cases, the fixed injection rate is shown as I(t) and the variable injection rate 

is i(t). For both injection scenarios, for CRMT in this section and for CRMP and CRMIP 

in other sections, we present the final analytical solution by superposition in time. 

To enhance the discretization based on possibly varying time intervals between 

the data points and for the purpose of setting up the Microsoft Excel spreadsheet, we start 

with Eq. 3-7 and, by integrating the second term by parts, rewrite it as 
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or  
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We use this form of solution and, based on the discrete nature of the injection rate and 

producer's BHP data, integrate last two terms of Eq 3-12 for each time interval between 

two consecutive injection rate and producer's BHP data points. Derivative of injection 

rate and producer's BHP with respect to time are directly calculated for any two 

consecutive data points.  

A simplified form of the solution can be obtained if the injection rate and 

producer's BHP are kept constant between two consecutive data points, last two terms in 

Eq 3-12 will be zero and results in the following solution: 
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where I represent a fixed injection rate from time t0 to t. For q(t0)=0, the relative 

production response to a step change of injection rate based on dimensionless time is as 

in Fig. 3-3. As shown in this figure the production reaches 50% of its ultimate rate after 

tD=t0D+0.69. In an RC circuit, the time that takes for capacitor voltage or resistor current 

to rise from 10% to 90% of final value is defined as the risetime (Thompson, 2006) as 

 

2.2Rτ τ=           (3-14) 
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Figure 3-3: Production response to a step change of injection rate vs. 
dimensionless time in CRM. 

Therefore, an injection signal can be detected at a producer if the injection signal 

has enough magnitude and duration, and its impact on the production rate response is 

considerably greater than production rate measurement error. Note that at tD=t0D+3 the 

production rate reaches to 95% of its final value if the injection rate is the only support 

for the production.  
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The time constant, τ, is based on reservoir characteristics. A small τ  means either a 

small pore volume and compressibility or a large productivity index. A large τ can be 

either a large reservoir with small compressibility or a small reservoir with high 

compressibility, or a very low permeability. 

 

3.2.1.1- CRMT Solution for Series of SVIR 

For series of SVIR, i(∆tk)= ( )kI , and LVBHP, as shown in Figs. 3-4 and 3-5, if 

we assume constant productivity index during the time interval ∆tk, Eq. 3-12 can be 

integrated from time tk-1 to tk, and written as 
 

( )
( ) ( ) ( )

1( ) ( ) 1
k k

wf

kt t
k

k k
i

p
q t q t e e I J

t
τ τ τ

Δ Δ
− −

−
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= + − −⎢ ⎥⎜ ⎟

Δ⎢ ⎥⎝ ⎠ ⎣ ⎦
     (3-15) 

 

Eq. 3-15 is derived for one time interval of constant injection rate of I(k). 

Therefore, for time series of SVIR, as shown in Fig. 3-4 and LVBHP, Fig. 3-5, we can 

estimate the total production rate at the end of each time interval, ∆tk-1, and use this 

production rate as the initial production rate for the next time interval, ∆tk.  
 

 

Figure 3-4: Stepwise change of injection rate schedule from time t0 to tn.  
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Figure 3-5: Piecewise linear producer bottom hole pressure change schedule 
from time t0 to tn. 

 
Therefore, from Eq. 3-15 we can write at the end of time interval ∆tn: 
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Replacing q(tn-1) from the previous time interval solution and repeating this process for 

all time intervals from t0 to tn gives the superposition in time solution, as shown in 

Appendix C: 
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Eq. 3-17 is the general solution for one injector and one producer model in which 

the injection rate variations are stepwise and the producer's BHP variations are linear 

between each consecutive data points, as are shown in Figs. 3-4 and 3-5, respectively. Δtk 

in Eq. 3-17 is the difference between tk and tk-1, and q(t0) is the total production rate at the 
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end of primary recovery. Figure 3-6 shows the CRMT production response, based on Eq. 

3-17, to six intervals of SVIR for three different time constants of 10, 20 and 50 days 

while the producer's BHP is kept constant. 
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Figure 3-6: CRM production rate estimate for a synthetic case of one 
injector and one producer with six stepwise injection rate changes for 
time constants of 10, 20 and 50 days. 
 

3.2.1.1- CRMT Solutions for Series of LVIR  

If we assume a LVIR, as well as LVBHP, between two consecutive data points as 

shown in Figs. 3-7 and 3-5, and assume a constant productivity index during the time 

interval ∆tk =tk-tk-1, Eq. 3-13 can be integrated from time tk-1 to tk as 
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  (3-18) 

 

By rearranging Eq. 3-18, the production rate at time tk can be written as 
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where αk and α'k are known and equal to the slope between two consecutive injection rate 

and producer's BHP data points for any time interval of ∆tk respectively.  
 

 
Figure 3-7: Linear variation of injection rate between data points from time t0 to tn. 

 

Equation 3-19 is developed for only one time interval, ∆tk, of LVIR and LVBHP. 

For a series of LVIR and LVBHP as shown in Figs. 3-7 and 3-5 and a constant τ, Eq. 

3-19 estimates the total production rate at the end of any time interval, ∆tk. This 

production rate is the initial value for the next time interval, ∆tk+1. Therefore, from Eq. 

3-19 we can write at the end of time interval ∆tn: 
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     (3-21) 

 
where ( )kiΔ and ( )

wf

kpΔ  represent a change in the injection rate and bottom hole pressure 

for any time interval of 1−kt  to kt . 

Eq. 3-21 is the general solution for a case of one injector and one producer in which both 

the injection rate variations and producer's BHP variations are assumed to be linear 

between each consecutive data points, as shown in Figs. 3-7 and 3-5.  

Figure 3-8 shows the CRMT production response to six intervals of LVIR for 

three different time constants of 10, 20 and 50 days.  
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Figure 3-8: CRM production rate estimate for a synthetic case of one 
injector and one producer with six piecewise linear injection rate 
changes for time constants of 10, 20 and 50 days. 

 

As Figs. 3-6 and 3-8 show, a large value of the time constant diminishes the 

injection signal and, for a very large value of τ, the injection can not affect the 

production rate. On the other hand, the  smaller the time constant, the higher the 
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sensitivity of the production response to the injection signals, and the closer the CRM to 

the multivariate linear regression response.  

 

3.2.2- CRMT Field Application  

In a tank representation for a group of wells or the entire field, CRMT, Eqs. 3-17 

and 3-21 can be used with some modifications. If more than one producer exists, the 

variation of BHP of individual wells can not be accounted for in estimating CRMT 

parameters. Consequently in Eqs. 3-17 and 3-21 BHP variation terms must be eliminated. 

On the other hand, if a portion of the field injection is maintained in the reservoir one 

must modify the field injection rate by a factor of fF. Therefore, the CRMT equations for 

any time interval of ∆tk for step changes of injection rates and considering that only part 

of the field injection is maintained in the reservoir can be written as 
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where subscript F is used to represent field parameters and fF represents the fraction of 

the field injection that is directed toward the producers at steady-state ( tΔ → ∞ ); fF can 

vary from zero, an indication of no contribution, to one, an indication of full contribution 

from injectors in the field production.  

If there is any other source of support beside injectors, such as an aquifer influx, 

ew, Eq. 3-22 should be modified to preserve material balance as 
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where ew indicates the flux into the reservoir from any other source beside the known 

injectors. Even if there is no estimate of the amount of support from other sources, a new 

fitting parameter can be added to account for the unknown sources of support. Eq. 3-17 

can be modified as 
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All the model unknowns can change as a function of time especially if any major change 

occurs in the reservoir, but as a simplifying assumption we can assume fi and ew are the 

same for all time intervals.  

The field time constant, τF, can be modified as a function of time based on the 

number of active producers in a reservoir. Changes in the number of active producers 

translates as increase or decrease in the reservoir productivity index in CRMT. As a 

result, if new producers are added within the same reservoir compartment, the field 

production rate increases, but the field time constant decreases by the ratio of currently 

active producers to previously active producers in the field. On the other hand, if some of 

the field producers are shut down, the field production rate will decrease but the field 

time constant will increase, which results in a longer depletion period. 

For two intervals of production with a different number of active producers, the 

field time constant as well as the production rate at the beginning of second time interval 

should be modified based on the number of active producers as 
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m η
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 38

where, m and n are the number of active producers in the first and second time interval, 

respectively. ηmn is the modification factor for the time constant if the number of active 

producers is changed from m to n. The production rate only at the beginning of the 

second interval is multiplied by 1/ηmn to account for an increase or decrease of the 

production rate.  

Figure 3-9 shows a simple example of three intervals of one, two and four active 

producers in a reservoir with a constant pore volume and the impact of the number of 

active producers, on the field total production rate. Field production rate is doubled while 

the field time constant is cut in half, faster decline, after third and sixth month of 

production as the number of active producers are doubled. 
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Figure 3-9: CRMT production rate estimate for a synthetic case of 
three intervals of one, two and four active producers in a reservoir. 

 

For a very large number of active producers the time constant goes to zero and the 

field production immediately reaches to its final value. The final value of the production 

rate is controlled either by the total reservoir volume expansion, because of reservoir 

depletion, or by the field total injection rate. 
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As a simple hypothetical example Fig. 3-10 shows six intervals of constant 

injection rate, observed production data points as well as estimated production rates from 

the CRM in a system of one injector and one producer. To generate the data in this 

example, we imposed a series of six different fixed injection rates, a fixed time constant 

of three days, and a Gaussian random error with a range of 100 RB/D to the observed 

production rates. Using Eq. 3-17 we evaluated a value of 3.15 days for the time constant 

by minimizing the relative error between production data points and the CRM 

estimations. 
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Figure 3-10: CRM production rate estimate for a synthetic case of one 
injector and one producer with 50 RB/D production rate measurement 
absolute errors.  

 

CRMT solutions are developed for a system of one injector and one producer, but 

for field application solutions of multiwall systems must be developed. For a multiwell 

system of Ninj injectors and Npro producers, Ninj×Npro communications between injectors 

and producers exist, which we refer to as connectivities, fij's. Figure 3-11 shows a 

schematic of communications between injector i with all the producers, and producer j 
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with all the injectors in a field. The size of the circles and triangles represent the relative 

average production and injection rates of the wells, and the thickness of the arrows is a 

measure of relative connectivities between injector-producer pair. 

 

 

Figure 3-11: Schematic representation of Ninj injectors supporting producer j 
and Npro producers supported by injector i. 

 

For any arbitrary reservoir control volume, the CRM production response can be 

evaluated by replacing the injection and production rates in the Eq. 3-1 by those of the 

arbitrary control volume. In the following, the CRM is developed for multiwell systems 

by considering two other control volumes: a) a capacitance-resistive model for a producer 

drainage control volume, CRMP, and b) a capacitance resistive model for injector-

producer pair control volumes, CRMIP. Compared to the CRMT, in which the entire 

reservoir volume is represented as a single tank with only one time constant, the number 
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of tanks, and thus the number of time constants, increases in CRMP to the number of 

producers, and in CRMIP to the number of injector-producer pairs. 

 

3.3- CRMP: PRODUCER BASE REPRESENTATION OF THE CRM 

For a control volume around a producer, Fig. 3-12, from the continuity equation 

we can develop CRMP governing differential equation that represents in-situ volumetric 

balance over the effective pore volume of a producer. Liang et al. (2007) presented the 

governing differential equation for this capacitance model by 
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where τj is producer j’s time constant, 
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j
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τ
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          (3-28) 

 

and pore volume, Vp, total compressibility, ct, and productivity index, J, are producer j 

parameters in its effective area; the fij term, connectivity, represent the steady-state 

fraction of the rate of injector i flowing toward producer j.  
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i

q t
f

i t
=           (3-29) 

Note that the sum of connectivities for any injector is less than or equal to one and fij are 

positive values. These limiting constraint should be satisfied when the CRMP parameters 

are evaluated. 
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fij ≥ 0 and  
1

1
injN

ij
i

f
=

≤∑           (3-30) 

 

Figure 3-12: Schematic representation of the control volume 
of producer j, CRMP. 

 

Earlier, Liang et al. (2007) presented the particular solution of Eq. 3-27 by 

neglecting the effect of producer's BHP variation. However, solution for Eq. 3-27 with 

BHP variations can be written as 
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Liang et al. (2007) used numerical integration to evaluate the integrals of the 

injection rates in Eq. 3-31 while they neglected the variation of producer BHP. We 

develop two analytical forms of Eq. 3-31 by analytical integration with superposition in 

time to enhance CRMP application based on the discrete nature of both injection rate and 

BHP data.  
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3.3.1- CRMP Superposition in Time Solutions 

As CRMT, two analytical forms of solution for Eq. 3-31 can be derived for 1) a 

linear variation of BHP, but stepwise changes in injection rate, and 2) a linear variation of 

both injection rate and BHP during consecutive time intervals. Integrating Eq. 3-31 by 

parts leads to the following: 
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     (3-32) 

 

Note that Eq. 3-32 for a case of fixed injection rate, Ii, and constant BHP for producer j 

from t0 to t simplifies to 
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3.3.1.1- CRMP solution for series of SVIR 

By assuming a constant productivity index, fixed injection rates for all injectors, 

ii(t) = Ii, and a linear bottom hole pressure drop for producer j, from time t0 to t, we can 

integrate Eq. 3-32 as 
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For a case of series of SVIR during time interval ∆tk, ( )( ) k
i k ii t IΔ = , for all the injectors, 

Fig. 3-4, and a constant productivity index, and series of LVBHP for producer j, Fig. 3-5, 

from Eq. 3-34 we can write at the end of time interval ∆tn: 
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Assuming fij's and τj are constant in all time intervals of ∆tk, and replacing 1( )nq t −  

in Eq. 3-35 from the previous time step solution and repeating this process for all time 

intervals from t0,to tn we obyain: 
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Eq. 3-36 is the general form of solution for SVIR, Fig. 3-4, and LVBHP, Fig. 3-5, for the 

CRMP. This equation simplifies to CRMT solution, Eq. 3-17, if only one injector exists. 

 

3.3.1.2- CRMP solution for series of LVIR 

For a LVIR, a constant productivity index, and a LVBHP during time interval t0 

to t, we can integrate and write Eq. 3-32 as 
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Equation 3-37 is developed for one time interval of linear injection rate and BHP 

changes. Therefore, for a series of linear injection rate and BHP changes, shown in Fig. 

3-7 and Fig. 3-5, we can use Eq. 3-37 to estimate the total production rate at the end of 

each time interval of ∆tk and use this production rate as the initial value for next time 

interval, ∆tk+1. Therefore, at the end of time interval ∆tn we obtain: 
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Assuming that fij's and τj remain constant in all time intervals of ∆tk, and replacing 

1( )nq t −  in Eq. 3-38 from the previous time step solution and repeating this process for all 

the time intervals from t0,to tn we get: 
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Equation 3-39 is the general form of the solution in CRMP for calculating the total 

production rate of producer j, for LVIR and LVBHP shown in Fig. 3-7 and Fig. 3-5.  

 

3.4- CRMIP, INJECTOR-PRODUCER BASE REPRESENTATION OF THE CRM 

In the CRMIP we consider the affected pore volume of any pair of 

injector/producer, ij, shown in Fig. 3-13. We can modify Eq. 3-3 to develop the CRMIP 
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governing differential equation that represents in-situ volumetric balance over the 

effective pore volume of any pair of injector/producer. The CRMIP governing differential 

equation was stated implicitly by Yousef et al. (2006) as 
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where time constant, τij, is defined as 
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          (3-41) 

 

and pore volume, Vp, total compressibility, ct, and productivity index, J, are associated 

with the control volume between injector i and producer j pair. As for the CRMP, fij is the 

steady-state fraction of injection rate of injector i directed to producer j. Compared to the 

CRMT and the CRMP, in which we have only one time constants, one initial production, 

and productivity index, in the CRMIP there are Ninj×Npro time constants, τij's, and qij(0)'s 

and Jij's. 

 

Figure 3-13: Schematic representation of control volume between each 
injector/producer pair. 
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The solution of Eq. 3-40 results in the portion of the rate of producer j from the 

control volume between injector i and producer j. The particular solution of Eq. 3-40 has 

the same form as a system of one injector and one producer, as Eq. 3-12, in which q(t), τ, 

and i(t) are replaced by qij(t), τij, and fiji(t) correspondingly. Therefore, for the control 

volume between injector i and producer j we can write: 
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The production rate for producer j is simply calculated by summing the contribution from 

all the injectors; therefore, 
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Yousef et al. (2006) initially summed Eq. 3-40 over all the injectors and presented 

the following equation for the production rate of producer j in a multiwell system: 
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Eq. 3-44 shows that the solution has three distinct parts: the first term shows the effect of 

primary production, the second is the impact of the injection rate of different injectors 

and the third term is the effect of producer BHP variation. To simplify Eq. 3-44, Yousef 
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et al. (2006) assumed equal τij for both the primary production and the BHP terms. This 

assumption weakens the impact of different control volume and productivity index 

between injector-producer pairs on the total production.  

A solution equivalent to that of Yousef et al. (2006) can be obtained if we replace 

the first term in Eq. 3-44 by an exponential decline. Then modify the second term by a 

filter to enforce a shift in the injection signal as it was proposed initially by Albertoni 

(2002) and replace the last term by producer pore volume by using τij definition: 
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In the following, we introduce a straightforward approach to find the solution for 

CRMIP production rate by superposition in time and space. 

 

3.4.1- CRMIP Superposition in Time and Space Solution  

To find the producer j rate, we first solve for the flow rate associated with each 

injector/producer pair, qij through superposition in time for all time intervals of different 

injection rates and BHP variations; then apply superposition in space to find the flow rate 

associated with each producer qj, by summing up contributions from each injector, Eq. 

3-43. As with the CRMT and the CRMP, SVIR and LVIR approaches are presented to 

obtain analytical solutions for the CRMIP. 

 



 49

3.4.1.1- CRMIP Solution for series of SVIR 

For fixed injection rate i(∆tk) = ( )k
iI , and a linear BHP variation during time 

interval ∆tk , Figs 3-4 and 3-5, a simpler form of solution can be obtained from Eq. 3-42 

by replacing ii(t) and ii(t0) by ( )k
iI or directly from Eq. 3-15 we can obtain: 
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where ( )k

iI and 
,
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wf j

kpΔ  represent the rate of injector i and changes in BHP of producer j 

during time interval tk-1 to tk, respectively. We apply superposition in time for a time 

series, from t0 to tn, by assuming a constant productivity index during any time interval of 

∆tk. to find qij at the end of time tn as 
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Thereafter, qj(tn) can be calculated by considering each injector’s contribution as 
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Eq. 3-48 is the general solution for CRMIP by considering SVIR and LVBHP of 

producer j between each consecutive production data point as shown in Figs. 3-4 and 3-5. 
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3.4.1.2- CRMIP Solution for Series of LVIR 

If we assume a linear change between two consecutive injection rate and 

producer's BHP during time interval ∆tk (tk-1 to tk), as shown in Figs. 3-7 and 3-5, by 

using Eq. 3-42 we can write: 
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where ( )k

iiΔ and 
,

( )

wf j

kpΔ  represent change in the rate of injector i and BHP of producer j, 

during time interval tk-1 to tk, respectively. For a time series of data points, by 

superposition in time and assuming a constant productivity index during any time interval 

of ∆tk, at the end of time interval ∆tn, qij can be calculated by: 
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Therefore, qj(tn) can be calculated by considering each injector’s contribution as 
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Equation 3-51 is the general form of solution for CRMIP by considering LVIR and 

LVBHP between any consecutive production data point as shown in Figs. 3-7 and 3-5. 

 

3.5- CRM-BLOCK, BLOCK REFINEMENT REPRESENTATION OF CRMS  

The CRMIP considers only one control volume, one tank, with one time constant 

of τij, between injector i and producer j. This configuration enforces the assumption of an 

immediate response of the pressure signal generated from injector i at producer j. If we 

consider a series of Mij tanks connecting injector i to producer j as shown in Fig. 3-14, the 

CRM solution at any time will account for the pressure delay and can estimate the flow 

rate in/out of any grid block between injector-producer pairs.  

We derive the CRM-Block solution at the producer by applying superposition in 

space to capture the impact of the injection rate at the last grid block which is equal to the 

production rate of producer j. 

 

 

τij,1 τij,2 τij,3 τij,l τij,M 

Figure 3-14: Block refinement representation between injector i 
and producer j, CRM-Block.  

 

The total production rate in CRMT for a system of one injector and one producer 

without producer's bottomhole pressure variation is: 
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For simplicity, first we assume that the flow rate at time t0 to be zero, for all the blocks 

between injector and producer. From Eq. 3-52, the flow rate out of the first block after 

time t can be written as 
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where τ1 is the time constant of the first block between injector i and producer j. For the 

second block: 
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The flow rate out of block l can be written as 
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The production rate at the producer is equal to the flow rate out of last block; 
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If all the blocks between injector and producer have equal time-constants, τb, then Eq. 

3-56 is simplified to 
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This solution returns the CRM tank model solution, CRMT, if only one block is 

considered between injector and producer, M = 1. Modification of Eq. 3-56 for multiwell 
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system CRMIP-Block without the effect of primary recovery can be written by replacing 

the injection rate, i(t), by a fraction of the injection rate of injector i which is contributing 

in the production rate of producer j, fijii(t) as 
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where Mij is the number of blocks between injector i and producer j. Thus, the production 

rate at producer j can be calculated by 

 
0

,

0

,

( )

, , 1
1 1 1

( )

1 1

( ) ( ) ( ) ( )(1 )

( ) (1 )

inj inj inj
ij Mij

ij

ijinj

ij b

t tN N N

j ij ij M ij M
i i i

t tMN

ij i
i b

q t q t q t q t e

f i t e

τ

τ

− −

−
= = =

− −

= =

= = = −

⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑ ∏
    (3-59) 

 

For equal block time constants, τij*, between injectors and producers Eqs. 3-58 and 3-59 

simplify to: 
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The number of blocks between injector i and producer j, Mij, which can be a 

fitting parameter also, can be different for each injector-producer pair. The CRMIP-Block 

solution simplifies to the CRMIP solution if we consider only one block between any 
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injector-producer pair, Mij = 1. At time t0 all production rates, primary production rate, for 

all the blocks are assumed to be zero to simplify the derivation of Eqs. 3-58 and 3-59. In 

the following we include the primary production term in CRM-Block development. 

 

3.5.1- Primary Production Term in the CRM-Block 

The primary production flow rate, the first term in Eq. 3-52, out of block l in Fig. 

3-14, after time t is: 
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Therefore, the production rate at the producer is equal to the flow rate out of block M as 
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We can modify Eq. 3-63 for a multiwell version to get the CRMIP-Block solution 

with the effect of primary recovery by replacing the injection rate, i(t), with a fraction of 

the injection rate of injector i that is contributing in the production rate of producer j, 

fijii(t). We can write the following equation for CRMIP-Block without considering the 

variation of producer bottomhole pressure. 
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Total production of producer j can be calculated by summing up qij to account for all the 

injectors' contribution as 
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Eqs. 3-64 and 3-65 simplify to the following for equal block time constants, τij*, between 

injectors i and producers j: 
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And 
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The major difference between the CRMs with and without block refinement 

consideration between injector-producer pairs is reflected in the shape of the production 

response. Since in the CRMIP only one cell with uniform characteristic exists between 

injector i and producer j, the production response as a result of the pressure wave 

breakthrough is immediately observed at the producer and the slope of the production 

response decreases monotonically in respect to time. On the contrary, in the CRMIP-

Block, the delay of the production response is captured as a result of block modification 

which leads to the exact superposition in space solution for CRMIP. The slope of the 
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production response for CRMIP-Block first increases, before the pressure wave reaches 

the producing well, and then follows the same projection as CRMIP without block 

refinement.  

We recommend application of CRMIP-Block especially for cases for which there 

is a lag between production response to an injection signal such as 

a. Distant injector-producer pairs 

b. Low permeability reservoirs for which the impact of the injection signal is 

not instantaneously captured at the producers. 

c. For field case studies with a high frequency of injection production data. 

d. Treating the injectors and producers wellbore as two tanks with small time 

constant in series with the reservoir with a large time constant. 

 

Figure 3-15 compares the shape of the CRM production response, with and 

without block refinement, between an injector and a producer for a fixed injection rate. In 

this figure, the CRM-10Block with ten blocks of equal time constant of three days is 

considered as observed production response and the equivalent time constants for other 

CRM-Blocks are evaluated to minimize their difference with CRM-10Blocks. Any block 

refinement with more than 10 blocks can completely match the CRM-10Blocks, while 

the fewer the number of the blocks the larger is the mismatch. Figure 3-16 shows a log-

log linear relationship between the equivalent block time constant and the number of 

blocks for cases that production response has the minimum difference with CRM-

10Blocks model with time constant of three days.  
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Figure 3-15: Comparison between CRM with and without block 
refinement between an injector and producer. 
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Figure 3-16: Equivalent time constant as a function of the number 
of block with equal time constant between injector-producer pair. 
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3.6- CRM PARAMETER EVALUATION 

During the course of history-matching the CRMs' parameters should be evaluated. 

For each CRM model, the number of parameters varies. The number of model parameters 

increases from CRMT to CRMP, and from CRMP to CRMIP. Based upon the nonlinear 

form of the CRM response, as presented in Fig. 3-3, to evaluate τ  accurately few 

production measurements from t0D to tD ≤ t0D+3 should be available. However, sufficient 

data points ensure proper estimation of model parameters.  

To match the total production history for a pattern of Ninj injectors and Npro 

producers by the CRMT as shown in Eq. 3-22, one needs to evaluate only three 

parameters: the field production rate at time t0, q(t0), a field-time constant, τField, and the 

fraction of field injection which is confined in the field finj. In contrast, the CRMP has 

Ninj+3 model parameters for each producer: f1j, f2j,…, fNinj,j, τj, qj(t0) and Jj. Therefore, to 

use the CRMP in a field one must evaluate Npro(Ninj+3) model unknowns. In CRMIP, for 

each injector-producer pair, four model parameters exist: qij(t0), τij, fij, and Jij. Therefore, 

in CRMIP there are 4×Ninj×Npro model parameters. In other words, 4×Ninj×Npro is the 

minimum number of data points required for this model. If the BHP at the producers is 

kept constant, the model parameters decreases to Npro(Ninj+2) for CRMP, and to 

3×Ninj×Npro  for CRMIP. Table 3-1 summarize the list and the number of the unknown 

parameters  in different CRMs. 

Based upon the nonlinear form of the CRM and considering measurement error in 

production data, we recommend that the number of production data points be at least four 

times the number of CRM unknowns. This rule of thumb roughly ensures solution 

quality. 

In all the CRMs unknowns are evaluated by minimizing the difference between 

CRMs' estimation and the field rate measurements. For CRMT, the objective is to 
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minimize the absolute error for total field production prediction. In CRMP and CRMIP, 

the average absolute error for each of the producers can be evaluated and the sum of these 

errors becomes the objective function. In a balanced waterflood, we recommend 

matching production history simultaneously for all producers. Therefore, instead of 

minimizing the production estimation error for one producer at a time, one should 

minimize the error over the entire field production. In this exercise, the sum of the 

fractions of injection rate of any injector that is going toward producers should be less 

than or equal to one. It should be mentioned that all the model parameters are positive 

and real values. 
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Table 3-1: Comparison between number of unknowns in the CRMs. 

 CRMT CRMP CRMIP 
Unknowns qF(t0), fF, τF qj(t0)'s, fij's, τj 's, and Jj's qij(t0)'s, fij's, τij's and Jij's 

No. of Unknowns 

without BHP data 
3 Npro×(Ninj+2) 3×Ninj×Npro 

No. of Unknowns 

with BHP data 
3 Npro×(Nijn+3) 4×Ninj×Npro 

 

3.7- COMPARISON BETWEEN CRM AND MULTIVARIATE LINEAR REGRESSION 

The CRMs are general forms of nonlinear regression of the production rate based 

on changing injection rate. For an incompressible fluid the injection signal reaches the 

producers simultaneously, therefore, we can replace in CRM τ = 0. As a result, the CRM 
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solution simplifies to a multivariate linear regression (MLR) form; for example, the rate 

of producer j in CRMP has the following form:  
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which simplifies, if the producer's BHP is constant, to: 
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This equation has the same form of the production response at steady-state, which can be 

evaluated as time approaches infinity in Eq. 3-69. For a balanced system, the sum of fij 's 

should be one for MLR model as well as CRMs. 

Enforcing the MLR to a slightly compressible or compressible reservoir can result 

in negative fij 's. Figure 3-8 shows that it is possible to encounter negative correlation 

between injection and production rate for fields with a large time constant. This negative 

correlation causes multivariate linear regression to have unrealistic negative 

connectivities. 

 

3.8- SUMMARY 

Analytical solutions for the continuity equation based on superposition in time 

and space were developed for three different reservoir control volumes: 1) CRMT, the 

entire field volume, 2) CRMP, the drainage volume of a producer and 3) CRMIP, the 

control volume between injector-producer pairs. These solutions are obtained based on 

stepwise or linear variation of injection rate and linear variation of the producers’ 
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bottomhole pressures projections. Furthermore, by considering a series of tanks between 

each injector/producer pair, CRM solutions were modified and CRM-Block analytical 

solutions based on superposition in time and space were developed. 

Analytical solutions facilitate CRMs' application for rapid assessment at different 

levels of a field study, from a single well, to a group of wells, and to an entire field. The 

CRM’s analytical solutions in conjunction with the physical meaning of its parameters,  

capability to discern reservoir connectivities, flexibility in taking variable timesteps,  

simplicity, and speed are major advantages over those presented previously, Table 3-2.  

A summary of the solution of different CRMs for step variation of injection rates are 

presented in Table 3-3. To facilitate the application of the developed CRMs a spreadsheet 

based tool was created in Microsoft Excel and automated using Visual Basic macros 

(CRM-Generator). The user interface for this tool is shown in Appendix D. 
 

Table 3-2: Comparison between previously developed CRMs. 

Compared Criteria Yousef et al. (2005) Liang et al. (2007) This Work 
Analytical solution for only 
one change of injection rate 
and bottomhole pressure for 
total liquid production  

CRMIP CRMP All CRM’s 

CRMIP solution approach 

Summation of CRM 
differential equations 

of each injector-
producer pair is 

solved 

n/a 

qij  are evaluated 
individually and then 

their summation 
generates stable qj’s 

Solution for injection rate 
fluctuations for total liquid 
solution 

Numerical solution Numerical solution Analytical solution with 
superposition in time 

Analytical solution for both 
injection rate and BHP 
fluctuations for total liquid 
production 

n/a n/a 
Analytical solution with 
superposition in time for 

all CRM’s 

Oil production optimization   n/a Based on maximizing 
net present value 

Based on reallocation of 
fixed field-injection rate 

Model validation examples Variable injection 
rates and fixed BHP 

Variable injection 
rates and fixed BHP 

Variable injection rates 
and variable BHP 

Timestep increments fixed fixed variable 
Block refinement n/a n/a CRMT and CRMIP 
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Table 3-3: A brief summary of different capacitance resistive model differential equations and solutions. 

 

Model Differential equation. One time interval solution for a 
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Chapter 4: OIL FRACTIONAL-FLOW MODELS 

 

Application of the developed capacitance resistive models (CRM) in the previous 

chapter led to an estimation of the total liquid production; thus one must evaluate the 

fraction of oil production as a function of time to predict the oil production rate. Our 

focus in this chapter is to develop fractional-flow models to evaluate oil fractional-flow 

as a function of time for continuous immiscible water and miscible CO2 floods.  

Throughout the production history of a field, the oil cut varies over time due to 

changes in recovery processes, as shown in Fig. 4-1. During primary recovery, the field 

production rate, which mainly consists of oil, decreases and the oil fractional-flow is 

nominally equal to one. During secondary recovery, such as waterflooding, the reservoir 

oil saturation decreases with time. Ideally before the breakthrough of the flooding agent, 

only oil is produced and the oil fractional-flow is at its maximum value. However, as 

soon as the flooding agent breaks through at the producers the oil cut decreases 

monotonically and the reservoir oil saturation can ultimately reduce to the residual oil 

saturation of secondary recovery, Sorw. Unless the secondary recovery process is followed 

by a tertiary recovery process eventually the oil cut will go to zero. During tertiary 

recovery, such as CO2 flooding, the residual oil saturation partially or totally is mobilized 

and normally the cut increases to a peak and then declines to zero. If the field residual oil 

saturation reduces to zero after tertiary recovery, the cumulative oil production, NP, at the 

end of tertiary recovery should be equal to the original oil in place. 

Total production rate during secondary or tertiary recoveries are obtained easily 

by CRMs. Then, combining total production estimation with an oil fractional-flow model 

enables us to match the oil production history and estimate the oil production rate for 
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secondary and tertiary recoveries for a producer, a group of producers, or the entire field. 

We use historical oil production rate or oil cut to find oil fractional-flow model 

parameters, and then use these models to predict future reservoir performance.  
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Figure 4-1: Schematic oil cut as a function of time during 
primary, secondary and tertiary recoveries. 

4.1- IMMISCIBLE OIL FRACTIONAL-FLOW MODEL 

During an immiscible flood such as water flooding, the flooding agent replaces 

recoverable reservoir oil by contacting and displacing it. In general, the oil cut decreases 

monotonically from one to zero during secondary recovery. Immiscible oil fractional-

flow models are either based on saturation front propagation or empirical fractional-flow 

models as it is discussed here.  

  

4.1.1- Buckley-Leverett Based Fractional Flow Models, (BLBFFM) 

Based on Buckley-Leverett fractional-flow model we predict the waterflood oil 

fractional-flow as a function of saturation. Leverett (1941) introduced a fractional-flow 

model in an immiscible two phase of water and oil system: 

Secondary 
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Eq. 4-1 implicitly contains time as variation of saturations in relative permeability 

terms. Based on different form of relative permeability curves, and considering the effect 

of other controlling parameters such as gravity and capillary pressures we can determine 

oil fractional-flow models as a function of normalized water saturation. Normalized water 

saturation is defined as 
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where Sw(t) is the reservoir water saturation and is a function of time. By determining 

values of the initial and residual water and oil saturations, we can use water injection and 

oil/water production data to determine the normalized average water saturation in the 

reservoir over time. The average water saturation in the reservoir changes by the rate of 

water accumulation in the reservoir for each production interval: 
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The last step to evaluate the oil/water fractional-flow is to determine the relative 

permeability of oil and water as a function of saturation. Several empirical relationship 

based on laboratory measurements are obtained for relative permeability as a function of 
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saturation. Therefore to estimate oil/water fractional-flow, the following parameters must 

be known: 

a) Residual water saturation, Swr,  

b) Residual oil saturation, Sor, 

c) Pore volume, VP,  

d) Relative permeability parameters.  

These parameters can be determined by history-matching.  

By neglecting capillary pressure for horizontal reservoirs and using power-law 

model for relative permeability curves (Brooks and Corey, 1964) Eq. 4-1 can be modified 

to present the oil fractional-flow as 
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    (4-4) 

 

where m and n are relative-permeability exponents, and Mo is the endpoint mobility ratio:  
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End-point mobility ratio, Mo, and the relative-permeability curve exponents, m and n, are 

the unknowns in the Buckley-Leverett based fractional-flow model (BLBFFM), Eq. 4-4, 

designated by BLBFFM(Mo, m, n). Note that VP, Swr and Sor are also Eq. 4-4 model 

parameters and can be evaluated during history-matching which makes the total number 

of unknowns to be evaluated in a BLBFFM to be six unknowns: VP, Swr, Sor, Mo, m and n. 

We consider two major forms of the BLBFFM by considering linear (m = n = 1) 

or nonlinear relative permeability curves (m ≠ 1, n ≠ 1). In the BLBFFMs, there are limits 

on some of the unknown parameters that facilitate the fitting. For instance, S should be 
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between zero and one. Note that the buoyancy term or the effect of the capillary pressure 

can also be added to the BLBFFM if needed.  

As mentioned before we find sets of equiprobable history-match solutions 

(EPHMSs) that satisfy oil and total production history. These sets of reservoir parameters 

can be evaluated efficiently by BLBFFMs and used to confine the uncertainty associated 

with reservoir parameters. Probability/cumulative distribution functions (PDF/CDF) can 

be determined for model parameters and related reservoir characteristics can be evaluated 

by sets of EPHMS.  

 

4.1.2- Empirical Models 

Estimation of saturations as a function of time can be hard to evaluate for 

multiwell system; therefore, we use an empirical oil fractional-flow model especially 

when the objective is reservoir performance estimation and optimization rather than 

reservoir characteristics evaluation. Different empirical fractional-flow models that have 

less calculation effort, can replace the traditional BLBFFM. Some of these fractional-

flow models are presented in Table 4-1; a, b, c, α, and β are model constants.  

The fractional-flow models presented in Table 4-1 are either a function of 

cumulative oil production, Np, or the average reservoir water saturation, wS , which are 

unknowns during a forward estimation. Therefore, one must estimate either of these two 

variables prior to any estimation of field performance. The average reservoir saturation 

can be written as a function of cumulative oil production as 
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where Swi is the initial water saturation and N is the original oil in place. 
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Table 4-1: Some of empirical oil fractional-flow models (for details see Papay 2003)  

 Developed by Oil Fractional-flow Model 
Equation 

Number 

1 Timmermann (1971) ( ) 1( )1 10 Pa bN
of

−− += +
 Eq. (4-7) 

2 Makszimov (1959) ( ) 1
1 lnPN

of ba a
−

= +
 Eq. (4-8) 

3 
Craft-Hawkins (1959); 

Ershagi-Omoregie (1978) 
( ) 1
1 wbS

of ae
−

= +
 Eq. (4-9) 

4 Kazakov (1976) 
2(1 )

( 2 )(1 ) ( )
P

o
P P P P

bNf
a bN bN bN a bN

−
=

− − + −  
Eq. (4-10) 

5 
Gunkel 

Marsal-Philip (1968) 
( )1 (1 ) PcN

o Pf a cN be= + + +
 Eq. (4-11) 

6 Gentil (2005) 
1 1( )

1 1o
wo i

f t
F W βα

= =
+ +

 
Eq. (4-12) 

 

Gentil (2005) introduced an empirical power-law fractional-flow model 

(EPLFFM) to estimate the water-oil ratio and, consequently, the oil fractional-flow as a 

function of cumulative water injection, Eq. 4-12. Liang et al. (2007) used this approach to 

predict the oil production rate, which considers a power-law relationship between the 

instantaneous water-oil ratio, Fwo, and cumulative water injected, Wi. In Eq. 4-12, the 

constants α and β can be evaluated from the oil production history for any producer, 

group of producers, or the entire field. After evaluating these constants, Eq. 4-12 is used 

for oil-production estimation. For a system of one injector and one producer or as in the 

CRMT, Eq. 4-12 can be applied directly. Therefore, we can match the field oil-

production history by combining Eq. 4-12 with Eq. 3-17, which gives 
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For the CRMT, the oil production for the field can be written as 
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Applying modifications to the cumulative water injection term in Eq. 4-12, we can extend 

its application to other CRMs. For instance, the fractional-oil flow for producer j for 

CRMP can be written as 
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and for CRMIP as 
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Note that Eq. 4-15 has only two fitting parameters for each producer, αj and βj, 

but Eq. 4-16 has two fitting parameters, αij and βij, for each injector included in the 

model. We can match the oil production history by combining any of the fractional-flow 

calculations with the total production of each producer or entire field production. After 
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evaluating the constants, the prediction of future performance of the field for any 

injection rate as inputs and oil production rates as outputs becomes feasible. The 

cumulative water injected, Wi, for any producer in the field can be evaluated by 

cumulative total production of CRM to account for response delay in the injection signal.  

Therefore, Eqs.  4-15 and 4-16 can be written as 
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For CRMP, and for CRMIP as 
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4.2- CO2  MISCIBLE OIL FRACTIONAL-FLOW MODEL 

During a miscible flood as a tertiary recovery mechanism, additional oil recovery 

is obtained mainly by mobilizing the residual or trapped oil in the reservoir. The more 

contacted oil by the miscible flood agent, the higher the ultimate recovery. Ideally, all the 

remaining oil should be recovered after miscible front breakthrough at the producers, and 

the residual oil saturation should decrease to zero. The oil production rate normally 

increases as a function of time as more trapped/residual oil is mobilized and the oil bank 

breaks through. Finally, the oil production reaches its maximum and then decline begins 

and eventually the oil rate reaches zero as either miscibility is lost or the residual/trapped 

oil supply vanishes, Fig. 4-1. 
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Immiscible floods need a fractional-flow model for CO2-oil miscible flood as a 

function of time to split the share of oil production rate from the CRM’s total production 

rate estimation. We use two approaches, 1) K-factor method or Koval Model and 2) an 

empirical model based on the logistic equation.  

 

4.2.1- Koval Method/ K-factor 

The Koval model or the K-factor method is one of the earliest approaches in 

modeling oil/solvent fractional-flow by modifying the Buckley and Leverett method for 

immiscible displacement for a miscible flood. In his approach Koval (1963) modified the 

ratio of oil to solvent viscosities, μo/μs, in the Leverett (1941) fractional-flow equation by 

effective viscosity, E, for oil-solvent mixing zone based on Blackwell et al., (1959) data 

using the following correlation, Eq. 4-19. 
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By neglecting the effect of gravity, and capillary pressure in the Leverett fractional-flow 

model, Eq. 4-1, the Koval modified solvent fractional-flow model as 
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where Ss is the solvent saturation and K=EH. The heterogeneity factor, H is a measure of 

media heterogeneity. If a rock is homogenous then H=1; if the media is heterogeneous 

then H>1. Koval (1963) presented solvent fractional-flow model at/after the breakthrough 
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as a function of pore volume injected, VPi, for K=1.5 to K=10 based on the following 

expression: 
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The pore volume injected at the time of solvent breakthrough is 1/K, and solvent 

fractional-flow will be one when the pore volume injected is equal to K. Based on the 

Koval Model, the cumulative oil production, as a function of injected pore volume and 

Koval factor is 
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4.2.2- Logistic Equation Based Fractional-flow Model (LEBFFMs) 

Production of any exhaustible resource as a function of time can be modeled by a 

bell shaped function. Hubbert (1956, 1962), based on rates of increasing oil exploration 

and production, and decreasing of oil reserves, estimated that United State oil production 

would peak around 1972; the actual peak year was 1970. Hubbert used the logistic 

equation (LE) to capture the bell shape behavior of oil production in his analysis. The LE 

that Hubbert used was originally introduced by Verhulst in 1838. 
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where NP is the amount of discovered/produced oil and N is the total amount of oil 

(discovered and not discovered) in place, and r is the intrinsic growth or decline rate. 

Analytical solution for this equation has the following exponential form: 
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        (4-24) 

 

which represents the amount of oil produced from the reserve. At peak time, half of the 

reserve is produced. Oil rate as a function of time can be calculated simply from Eq, 4-23 

by replacing NP(t) from Eq. 4-24. 
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Later on Deffeyes (2001) added production of Alaska and offshore oil fields to 

U.S. oil production and showed that a Gaussian equation provides a better fit to U.S. oil 

production compared to the logistic curve model. A Gaussian model for oil production 

rate can be defined with three parameters: 
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where qo(tpeak) is the maximum production peak value, tpeak is the time of maximum 

production, and σ is the standard deviation of the production curve. Integration Eq. 4-26 

over the productivity period provides the cumulative oil production as a function of time:  
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where VP is the reservoir pore volume, and Soi is the initial reservoir oil saturation and 

So(t) is the average reservoir saturation at time t.  
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Equation 4-26 is symmetric, but oil production rate during tertiary recovery is 

normally asymmetric. Therefore, an asymmetric Hubbert form of Eq. 4-26 can be defined 

by modifying the standard deviation as a function of time: 
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where σinc and σdec represent the standard deviation of increase and decay of the oil 

production rate, respectively, as was presented by Brandt (2007).  

The logistic equation provides a reasonable and fundamental approach for 

estimating the oil rate as a function of time for a known reservoir with finite recoverable 

oil in place. We use the logistic equation to develop an oil fractional-flow model for CO2 

flooding. In general, the LE approach can be applied in predicting the oil production for 

any type of enhanced oil recovery (EOR) processes.  
 

4.2.2.1- Generalized Logistic Equation 

The logistic equation was introduced by Verhulst in 1838 to model the population 

growth and has been used extensively in biology (Bertalanffy 1938, Richards 1959).  

Tsoularis and Wallace (2002) proposed a general form for logistic growth equation that 

incorporates all previously reported of logistic curves as special cases. They adopted the 

term generalized logistic equation (GLE) from Nelder (1961) for the following equation: 
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where α, β, and γ are positive real numbers; r is the intrinsic growth or decline rate and K 

is the carrying capacity and N is the population size at time t. The population will 

ultimately reach its carrying capacity, K, when time, t, goes to infinity.  
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The LE(α, β, γ) does not in general admit an analytic solution, but special cases of 

analytical solutions are reported in the literature, Table 4-2. See Tsoularis and Wallace 

(2002) for more details and analytic form of time and rate of growth at the inflection 

point and the maximum growth rate. For instance exponential growth (r > 0) or decline (r 

< 0) are achieved if α = 1 and  β = γ = 0,  represented by LE(1, 0, 0): 
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which has the following analytical solution: 
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Analytical solutions for special cases of the LE, presented in Table 4-2, can be 

adapted to determine the oil rate as a function of time. Ultimate recovery of an oil 

reservoir can be simply modeled by LE if we replace the population size, N(t), with 

cumulative oil production, NP(t) and replace carrying capacity, K, with the recoverable oil 

in place, ROIP. As a result, the generalized form of the LE for the cumulative oil 

production from an exhaustible source can be written as 
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Different forms of Eq. 4-32 can be implemented to model the oil rate as a function 

of time for any recovery processes. For those LE with analytic solutions, the oil rate can 

be simply expressed as a function of time by replacing cumulative oil production, NP(t), 

in Eq. 4-32. 
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Table 4-2: A summary of special forms of the logistic equations and their analytic solutions suitable for oil production rate estimation.  

 Logistic equation Equation form Analytic solution Introduced by 

1 LE (1,0,0) 
d
d
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d 1
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Note: To adapt these solutions for oil rate estimation, replace N with Np and K with Recoverable Oil in Place (ROIP).
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4.3- SUMMARY 

In this chapter, different forms of the fractional-flow model for miscible and 

immiscible flood were presented. We use the empirical power-law fractional-flow model 

(EPLFFM) as our preferred fractional-flow model in the course of history-matching and 

optimization of waterfloods, presented in Chapters 5 and 6. The Leverett based 

fractional-flow models (BLBFFM) are suitable for uncertainty evaluation. Chapter 7 

presents application of these fractional-flow models. The logistic equation based 

fractional-flow models (LEBFFM) have the flexibility to be applied for any flooding 

processes. We use LEBFFM for miscible floods. 
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Chapter 5: SYNTHETIC CASE STUDIES, HISTORY-
MATCHING AND OPTIMIZATION 

In this chapter validation and application of capacitance resistive models (CRMs) 

for history-matching and their application for oil production optimization are 

demonstrated based on numerical simulation results. Production and injection data from 

numerical simulators such as Eclipse and CMG are treated as field data and the CRMs 

and oil fractional-flow models are used to match historical total as well as oil production 

rates. Then based on an optimization objective the injection rates are adjusted to optimize 

reservoir performance. Figure 5-1 shows the workflow for history-matching and 

optimization/prediction by the CRMs. 

 

Injection and 
Production History

Total Production Match Fractional Flow Match

Current Injection Rate

Oil Production Match

CRM Parameters 
Evaluation: Connectivites 

and Time Constants

Buckly-Leverrett or 
Empirical Model Parameters

Oil Production 
Forecast/Optimization

Total Production Forecast Oil Cut Forecast

History

Prediction

 

Figure 5-1: Workflow for the CRM application in history-matching 
and optimization. 
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We demonstrate the capability of the CRMs in capturing interwell connectivities 

and history-matching of the total and oil production rates for five case studies, and 

perform oil production optimization for two of these. We present applications of the 

CRM by combining its results with an empirical power law oil-fractional-flow model 

(EPLFFM) for water and with the logistic equation fractional-flow model (LEFFM) for 

carbon dioxide (CO2) floods. The EPLFFM, introduced by Gentil (2005) and developed 

by Liang et al. (2007) for the CRMs, allows the maximization of oil production rates by 

reallocating water amongst the injectors.  

Since fields are normally operated at maximum injection capacity, the most 

practical and best injection signal to be introduced in a reservoir is to shut in different 

injectors at different time intervals. This strategy introduces a unique injection pulse in 

the reservoir, which ensures the reliability of the CRM parameters evaluation. Therefore, 

for most of the following simulated case studies, unique injection shut in pulses (UISPs) 

are introduced deliberately for calibrating the CRMs in the numerical simulation models.  

 

5.1- CRM INITIALIZATION, HISTORY-MATCH, AND OPTIMIZATION  

Initializing the CRM parameters correctly lowers the work load of history-

matching. For case studies in the chapter, first the tank model representations of the 

CRM, CRMT, are performed to obtain general field information. The CRMT are used to 

identify the existence of other sources of supports, such as an aquifer or out of pattern 

injectors. The time constant obtained from the CRMT is used to initialize the time 

constants for the producer control volume base CRM, CRMP or injector-producer control 

volume base CRM, CRMIP. The connectivities, fij’s, can also be initialized based on the 

inverse of the distance between different producers and the injector,  
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where dij is the distance between injector i and producer j. For very close well-pair, dij  is 

very small, which causes *
ijf to approach unity; for very far producers dij  is very large and 

gives an estimation of zero for *
ijf . 

Minimizing the difference between the CRMs’ response and the simulated 

production rate is the objective function during the course of history-matching. History-

matching for both total and oil production rates are performed by minimizing either the 

percentage of average relative error (ARE) or the mean of square errors (MSE) between 

historical numerical simulation data and the CRMs’ estimations. The ARE is 
 

1ARE = 100

dataN
obs est

n obs

data

q q
q

N
=

−

×
∑

        (5-2) 

 

and the MSE is 
 

( )2

1MSE =

dataN

obs est
n

data

q q

N
=

−∑
        (5-3) 

 

where qobs and qest  represent the observed and estimated flow rates and Ndata is the 

number of rate data points.  

The CRMs’ production responses have an exponential form; therefore, the 

nonlinear gradient base solvers in Microsoft Excel (GRG solver) or the general algebraic 

modeling system (GAMS) software are used to minimize these errors during history-

matching. Solver in Excel 2003 can handle up to 200 unknowns for a nonlinear problem 

which makes it suitable for case studies with a few wells, which results in few fitting 
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parameters. Problems with more than 200 unknowns can be solved with the premium 

solver platform (see www.solver.com for details) in Excel. Compared to the solver in 

Excel, GAMS is designed for handling large scale modeling problems and applications 

(see www.gams.com for details).  

Different objective functions can be specified for optimizing future reservoir 

performances. Some of objective functions: 

1- Maximizing cumulative field oil production for a fixed time interval, such 

as a year, by reallocating field injection while maintaining the same total 

injection rate in the field (applied in the work). 

2- Minimizing cumulative field water production over a specific time domain 

by reallocating field injection while maintaining the same total injection 

rate in the field. 

3- Maximizing future net present value by considering the cost of injection 

and water disposal (Liang et al., 2007). 

4- Maintaining a specific field oil production rate while minimizing field 

cumulative non-hydrocarbon phase production. 

5- Maximizing fluid storage in a reservoir e.g., CO2 sequestration. 

 

As indicated in this work, we use the first optimization objective function for two 

of the simulated case studies.  

 

5.2- SIMULATED CASE STUDIES 

Each of the simulated case studies or synfields has different characteristics and is 

selected to test the CRMs capabilities in different aspects of its applications. These case 

studies are: 1) a sector model of peripheral water injection, Synfield-1, 2) an 18 acre 
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seven-spot pattern, Synfield-2, 3) a 40 acre five-spot pattern, Synfield-3, 4) the streak 

case, and 5) the MESL case. For the first three examples the UISPs are used to calibrate 

the CRM. And for the last two cases, rich injection signals with frequent fluctuations are 

used to calibrate the CRMs. 

 

5.2.1- Synfield-1: Sector Model of a Peripheral Water Injection 

In the peripheral case study, UISPs are applied to calibrate the CRMs’ parameters 

and correlation between injector-producer well-pair distances and connectivities are 

obtained. These correlations can be used to evaluate new producer connectivities based 

on its relative location to field injectors.   

 

5.2.1.1- General Information 

This example is a sector model of peripheral water injection, which consists of 16 

injectors and 32 producers, all vertical wells. The model has 35 × 57 × 5 gridblocks in the 

x, y, and z directions. Average reservoir properties are given in Table 5-1. Injectors are 

located in the eastern and western sides of a homogenous reservoir with porosity of 0.18 

and horizontal and vertical permeabilities of 40 and 4 md, respectively. All of the wells 

are vertical and perforated in all of the layers. Producers are on a constant bottomhole 

pressure constraint. To account for injection losses and supports out of the pattern, other 

injectors and producers are considered in the numerical simulation model in the northern 

and southern regions of the sector model but are excluded from the CRM history-match. 

Figure 5-2 shows the well location map and the region considered in the CRM evaluation 

for this case study. 
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Table 5-1: Reservoir and fluid properties for Synfield-1. 

Parameter Value 
Number of gridblocks Nx=35, Ny=57, Nz=5 
Gridblock size, ft Δx = 80, Δy = 40, Δz = 12 
Oil viscosity, cp 2.0 
Water viscosity, cp 0.5 

 

Except for the time that an injector is deliberately shut in to introduce a UISP into 

the field to calibrate the CRM, all the injectors contribute equally with an injection rate of 

1000 RB/D. Shut in periods for the injectors are 10 days and no two injectors are shut in 

at the same time. Figure 5-3 shows the total injection and production rates, as well as the 

UISP associated with each injector considered in the sector model. Out of sector injectors 

cause the total production to fluctuate at late time and also reduces the total injection rate. 
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Figure 5-2: Well location map for 16 injectors, I1 to I16 and 32 producers, P1 
to P32 in the sector model of a peripheral waterflood, Synfield-1.  
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Figure 5-3: Injection and total production rates in the sector model, 
USIPs from different injectors are indicated.  

5.2.1.2- History-matching 

The CRMT and CRMP total and oil production rate matches are presented in 

Figs. 5-4 and 5-5. The production history up to 600 days of production is considered to 

calibrate both CRMT and CRMP to avoid the impact of out of pattern injectors. Both the 

CRMT and CRMP match the total and oil production rates satisfactorily. The time 

constant obtained from the CRMT is 2.27 days and the relative errors for both the CRMT 

and the CRMP total production rate history-match are less than 1%. The obtained time 

constant for the CRMT along with the initial estimation of the fij in Eq. 5-1, are used as 

the initial value for the CRMP history-match.  

The oil production estimation has about 9% of relative error. The oil rate matches 

are obtained by using empirical power-law fractional-flow model, EPLFFM(α,β) as 

described in Chapter 4:  
 

( )EPLFFM(α,β):   ( )
1o

i

q tq t
W βα

=
+

         (4-19) 
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The reliability of this oil fractional-flow model depends on the linearity of the 

logarithm of the water-oil ratio, Fwo, and logarithm of cumulative water injected, Wi.  
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Figure 5-4: The CRMT and CRMP total production matches for 
the sector model, Synfield-1.  
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Figure 5-5: The CRMT and CRMP oil production matches for the 
sector model, Synfield-1.  

For the CRMT, only one set of α and β are needed. In the CRMP there are two 

options for matching the field oil production rate. One can match the field oil production 
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by matching all individual well oil rates by the EPLFFM, which gives each producer a set 

of α and β, and then sum all the individual oil rates to calculate field oil production. Or 

the total production from the CRMP can replace the total production of the CRMT in Eq. 

4-19 and only one α and β are evaluated for the field. 

Individual producers’ total and oil production matches are obtained by the CRMP. 

Since the producers BHP are kept constant, for 16 injectors and 32 producers, 576 

unknowns shall be evaluated for the CRMP: 512 connectivities, fij; 32 time constants, τj; 

and 32 initial production rates, qj(t0). Figure 5-6 shows the steady-state connectivity map 

for the sector model. The time constants range from 2 to 4 days. Connectivities associated 

with corner injectors and producers are the largest. As expected, larger connectivities are 

encountered for close injector-producer well-pairs and connectivities for the middle 

injectors, I4 to I6 and I12-I14, are symmetric.  
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 Figure 5-6: Interwell steady-state connectivities obtained from the 
CRMP evaluation. Well locations for the sector model of peripheral 
water injection, Synfield-1.  
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The flood efficiency can be evaluated easily based on the connectivities and time 

constants for a single injector/producer or a group of injectors/producers. In this case 

study, the CRMP connectivities show that 46% of the steady-state injection rate of 

injector I1 is directed toward producers P1, P2 and P3. Either producers or injectors can 

be grouped and the contribution of a single injector or a group of injectors can be 

evaluated on the production rate of a single producer or groups of producers. The relative 

contribution of injector I1 for producers P1-P8, P8-P16, and P17-P24 are 67%, 16% and 

5%, respectively. If injectors I1-I8, I9-I16, as well as producers P1-P8, P9-P16, P17-P24 

and P25-P32 are grouped as one injector or producer, as shown in Fig. 5-7, this case 

study can be treated as a field with two injectors: IWest and IEast and four producers: L1, L2, 

L3 and L4. The CRMP evaluation for this simplified case study shows that 73% and 17% 

of the injection rate of the injectors in Iwest are directed toward L1 and L2, respectively.  
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Figure 5-7: Group contribution of injectors and producers connectivities, 
Synfield-1.  
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Figure 5-8 shows the CRMP total production match for producers P1, P2, P9 and 

P10. The impacts of different injector’s UISPs are indicated on these graphs. Injectors I1 

to I8 mainly impact the production rates of producers P1 through P8 and then P9 through 

P18. Because other producers filter the UISPs of injectors I1 through I8, these pulses 

have minor impact on the production rate of producers P19 through P27 and do not affect 

the production rate of producers P25 through P32 at all. For the same reason, injectors I9 

to I18 UISPs do not impact the production rate of the producer P1 through P8. Small 

contributions of injectors I9 through I18 can be seen on producers P9 through P18.  

The EPLFFM(αj,βj) are used to match the oil production of each individual 

producer by the CRMP. Figure 5-9 shows the oil production match for Producers P1, P2, 

P9 and P10. The relative error encountered in the CRMP oil rate match is about 5%. 
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Figure 5-8: Total production match for producers P1, P2, P9 and P10 by 
CRMP demonstrating the impact of injector UISPs on individual 
producer’s production rate, Synfield-1.  
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Figure 5-9: Oil production match for producers P1, P2, P9 and P10 by CRMP 
based on the EPLFFM, Synfield-1.  

5.2.1.3- Connectivities as a Function of Well-pair Distances 

Connectivities for new producers can be initialized based on the injector-

producers distance-connectivities correlation. In homogenous reservoirs, as the distance 

between injector-producer pair increases connectivities decrease. Some insights about the 

new producer’s connectivities, fij’s, and the well-pair distances, dij can be obtained based 

on established historical connectivities.  

It is possible to have a reasonable estimation of a new producer’s connectivities 

based on adjacent producers’ connectivities. As an example, in Fig. 5-10 the 

connectivities between injector I1 and I4 and producers in L1 and L2 groups are plotted as 

a function of well-pair distances. Strong correlation between connectivities and well-pair 

distances is apparent for injector I1 and I4 with producers in L1 and L2. Therefore, new 

producer connectivities can be estimated by indicating the group of producers to which it 
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belongs and using the connectivity-distance correlations associated with the group of 

producers.  

Producers between an injector-producer pair act as barrier to injection pulses and 

weaken or completely filter the UISPs. For example, producers P1 through P8 filter the 

UISPs of I1 and I4 for producers P9 through P16, which causes the connectivities 

between these two injectors and producers P9 through P16 to be smaller than any of the 

connectivities of producers P1 through P8, even for the closer producers. Major 

discontinuities occur in connectivity-distance relationship when other producers exist 

between an injector-producer pair. 

AS strong correlation exists between the CRMP connectivities, fij’s, and initial 

connectivities, fij
*’s, evaluated by Eq. 5-1. Despite the strong correlation, the slope of 

linear correlation is not unity and varies for different injector as shown on Fig. 5-11.  
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Figure 5-10: Connectivities as a function of distance for injector I1 and I4 with 
producers P1 through P8, L1, and P9 through P16, L2, Synfield-1.  
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Figure 5-11: Strong linear correlation between the CRMP connectivities 
and initial connectivities evaluated based on well-pair distances for 
injectors I1 and I4 with producers P1 to P8, L1, Synfield-1.  

This case study demonstrated: 1) the application of the UISPs in evaluating the 

CRM parameters, 2) the capabilities of the calibrated CRMT and CRMP in matching 

historical total and oil production rate by combining it with the EPLFFMs, 3) flood 

efficiency evaluation for a single/group of injector(s)/producer(s) by grouping them, and 

4) the correlation between interwell connectivities and the well-pair distances. 
 

5.2.2- Synfield-2: Seven-Spot Pattern 

This case study tests the CRM capabilities in history-matching of total and oil 

production rates in a heterogeneous reservoir that has errors in the rate measurements. In 

this case study, the UISPs are used to satisfactorily calibrate the CRM while random rate 

measurement errors from 5 to 20% are added to the oil and total production simulated 

rates. The impact of oil rate measurement errors on the EPLFFMs is also examined.  
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5.2.2.1- General Information 

This example is an 18 acre seven-spot pattern of a heterogeneous reservoir model 

with 17 wells, 10 injectors and 7 producers, as shown in Fig. 5-12. Table 5-2 provides the 

average reservoir and fluid properties and Table 5-3 shows the statistics for porosity, and 

permeabilities. The reservoir model is adapted from a field case study in Minas, 

Indonesia. 

All of the wells are identical and completed in the entire 37 ft thickness of the 

reservoir in all the 17 layers. Except for the 10-day intervals when the UISPs are 

introduced in the injectors, injection rates are kept constant at 300 RB/D for injectors I1, 

I3, I8 and I10, and at 600 RB/D for the other injectors. All of the producers are operating 

at constant bottomhole pressure of 300 psi. Figure 5-13 shows the field injection signal 

and the production response of different producers to the UISPs. The magnitude of the 

impacts of the UISPs on the production responses of different producers are proportional 

to the connectivities between injector-producer well-pairs. 
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Figure 5-12: Well location map for 10 injectors, I1 to I10 and 7 
producers, P1 to P7 in the seven-spot pattern, Synfield-2.  
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Table 5-2: Reservoir and fluid properties for Synfield-2 

Parameter Value 
 

Number of gridblocks 35 × 57 × 5 
Gridblock size, ft Δx = 75, Δy = 75, variable Δz  
Oil viscosity, cp 8.0 
Water viscosity, cp 1 

Table 5-3: Porosity and permeabilities statistics for seven-spot pattern. 

 Mean, X
Standard 

Deviation, S X S−  X S+  
Coefficient of 
Variation, Cv 

Porosity, fraction 0.285 0.029 0.256 0.541 0.101 
Log ( kx ) 1.823 0.526 1.297 2.349 0.289 

kx, md 66 NA 20 223 0.702 
Log ( ky ) 1.825 0.527 1.298 2.351 0.289 

ky, md 67 NA 19.876 225 0.703 
Log ( kz ) 1.524 0.578 0.946 2.103 0.379 

kz, md 33 NA 9 127 0.736 
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Figure 5-13: Total injection rate of 10 injectors, I1 to I10 and total and oil 
production rate of 7 producers, P1 to P7 in the seven-spot pattern, 
Synfield-2. Total rates are in RB/D and oil rate is reported in STB/D.  
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5.2.2.2- History-matching 

During the course of total production history-matching by the CRMP 70 

connectivities, 7 time constants and 7 initial production rates are evaluated 

simultaneously. Since there is no loss of injection out of the pattern and there is no other 

source of support beside the indicated injectors, we constrain the sum of the 

connectivities for each injector to unity. History-matching of the individual producers’ oil 

production rates are obtained by using EPLFFMs.  

Figs. 5-14 and 5-15 show producers P1, P2, P4 and P7 total and oil production 

match obtained by the CRMP. The relative errors for oil and total production history-

match for individual producers are less than 3% between the time interval of 180 to 720 

days. Table 5-4 provides the CRMP parameters and the αj and βj associated with each 

producers for oil production estimation. 
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Figure 5-14: Total production rate match by the CRMP for producers 
P1, P2, P5 and P7, Synfield-2. 
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Figure 5-15: Oil production rate match by the CRMP for producers 
P1, P2, P4 and P7 using EPLFFM, Synfield-2. 

The connectivity map is in Fig. 5-16. Considering the permeability distribution in 

the reservoir, small connectivities are obtained in the regions with very low permeability 

around producers 7, causing the production rate of this producer to be less than any other 

producer in the field. On the contrary, high permeability around producer P1 causes 

strong connectivities between this producer and neighboring injectors which makes this 

producer the biggest producer of the field.  
 

 Table 5-4: CRMP parameters evaluated by history-matching using UISPs, Synfield-2. 

τ j, days f 1j f 2j f 3j f 4j f 5j f 6j f 7j f 8j f 9j f 10j q j ( 0), RB/D α j β j

P1 ( j =1 ) 5.8 0.31 0.19 0.06 0.26 0.11 0.14 0.10 0.13 0.11 0.11 267 6.6E-06 1.015
P2 ( j =2 ) 5.6 0.13 0.24 0.33 0.14 0.28 0.11 0.17 0.10 0.13 0.17 340 3.1E-06 1.058
P3 ( j =3 ) 6.6 0.14 0.07 0.03 0.11 0.04 0.11 0.04 0.15 0.06 0.03 163 6.8E-07 1.214
P4 ( j =4 ) 6.2 0.19 0.25 0.18 0.25 0.21 0.22 0.21 0.17 0.21 0.16 382 2.0E-06 1.065
P5( j =5 ) 5.3 0.13 0.14 0.29 0.10 0.23 0.10 0.25 0.07 0.14 0.29 282 4.7E-06 1.041
P6 ( j =6 ) 5.6 0.09 0.08 0.06 0.10 0.07 0.26 0.12 0.32 0.24 0.10 236 3.2E-06 1.062
P7 ( j =7 ) 6.0 0.02 0.04 0.04 0.04 0.05 0.07 0.11 0.06 0.11 0.15 156 5.3E-08 1.413
Sum f ij  = 1 1 1 1 1 1 1 1 1 1  

 



 96

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 ▼I1 ●P3 ▼I8
2
3
4
5
6
7 ●P1 ▼I4 ▼I6 P6 ●
8
9

10
11
12
13 ▼I2 ●P4 ▼I9
14
15
16
17
18
19 ●P2 ▼I5 ▼I7 P7 ●
20
21
22
23
24
25 ▼I3 ●P5 ▼I10

▼ Injector
● Producers

1650 ft

18
50

 ft

0.20
 

Figure 5-16: Steady-state connectivity map for seven-spot pattern shows 
good connectivities in high permeability regions of the field. Low 
permeability regions are indicated on the map, Synfield-2.  

The quality of the oil production matches is controlled by both the total 

production match and the reliability of the EPLFFMs. Equation 4-21 has a linear form in 

the logarithmic scale. Therefore, a log-log plot of the water oil ratio (WOR), against 

cumulative water injected (CWI) for each producer can determine the applicability of the 

EPLFFMs. Figure 5-17 shows strong linearity on these plots for all the producers in the 

seven-spot pattern. Therefore, the EPLFFM can provide a good estimation of all the 

producers oil rate.  
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Figure 5-17: Log-log plot of water-oil ratio (WOR) against 
cumulative water injected (CWI) for each producer, Pj, used to 
determine αj and βj in EPLFFM, Synfield-2 (X-axis values are shifted 
to avoid overlapping of the curves). 

The total and oil production rates for the seven-spot pattern are obtained by 

encountering relative errors of only 1%, as presented in Fig. 5-18 based on the CRMP.  

As in the first case study, few UISPs have allowed us to obtain a quality match by the 

CRM for this case study.  
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Figure 5-18: Total and oil production rate match by the CRMP and 
EPLFFM for the seven-spot pattern, Synfield-2. 

 

5.2.2.3- Effect of Rate Measurement Error 

Rate measurement errors are an inseparable part of all field practices which hinder 

history-matching and consequently reduce the reliability of future performance 

estimations. In this case study, random rate measurement errors are added to the total and 

oil production rate obtained from an Eclipse simulation run to check the reliability of the 

CRM under rate measurement errors. Increments of 5% relative errors are introduced to 

the total and oil production rates of each producer. The CRMP along with EPLFFM are 

used to match the total and oil production history accounting for 5, 10, 15, and 20 percent 

rate measurement errors, as shown in Fig. 5-19. As long as the UISP’s impact on the total 

production rates are larger than the random error encountered, the CRM can reliably 

match the production history and establish connectivities between well-pairs.  
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Figure 5-19: Total and oil production rate match by the CRMP and EPLFFM 
for the seven-spot pattern considering 5, 10, 15 and 20 percent oil and total rate 
measurement errors, Synfield-2.  
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Figure 5-20 shows that despite a 20% total and oil rate measurement errors, a 

straight line can still be constructed for large CWI for each producer, which enables 

reliable application of the EPLFFM. Connectivities and time constant obtained in 

different cases with relative rate measurement errors have strong correlation that 

indicates the CRM stability for all the cases with rate measurement errors in this 

example.  

Correlation ratio between CRMP connectivities between base case, without 

random error, and cases with 5, 10, 15, and 20 percent error are 0.99, 0.95, 0.93, and 

0.89, respectively. Figure 5-21 shows a cross plot of the connectivities obtained in the 

CRMP without error compared with case studies with relative errors. The time constants 

are slightly affected with the random errors and stay very close to the original values of 

the time constant evaluated by the CRMP base case, Table 5-5. 
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Figure 5-20: Log-log plot of water-oil ratio (WOR) against cumulative 
water injected (CWI) for each producer, Pj, shows applicability of the 
EPLFFM for oil rate match under 20% random error, Synfield-2. 



 101

 

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
f ij  CRMP Without Error, fraction

f ij
 C

R
M

P 
w

ith
 E

rr
or

, f
ra

ct
io

n

5% Error
10% Error
15% Error
20% Error

 

Figure 5-21: Cross plot of connectivities obtained in the CRMP with/without 
random errors, Synfield-2. 

Table 5-5: The CRMP time constants for cases with different 
percentage of total production relative errors. 

Time costants Base 5% Error 10% Error 15% Error 20% Error

τ 1 5.82 6.17 6.30 5.50 5.82
τ 2 5.56 5.50 4.75 5.97 6.74
τ 3 6.62 6.44 6.61 6.69 7.11
τ 4 6.22 5.89 5.93 6.28 5.99
τ 5 5.31 5.10 5.90 5.42 4.83
τ 6 5.56 5.52 5.16 5.54 6.66
τ 7 6.17 6.42 6.11 5.60 6.96  

 

As shown in this case study, the CRM can consistently perform history-matching 

under rate measurement uncertainty. As long as the impacts of the injectors’ signals on 
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the production rate of producers are larger than the range of the rate measurement error, 

CRMs can reliably capture reservoir connectivities. This makes the CRM suitable for 

field case applications where rate measurement errors are inevitable.  

 

5.2.3- Synfield-3: Five-Spot Pattern 

This case study is set up by using CMG outputs to demonstrate the CRM capability in 

history-matching of all oil recovery phases: primary, secondary and tertiary recoveries. A 

five-spot pattern is selected in which waterflooding, as secondary recovery process, is 

followed with carbon dioxide (CO2) flooding, as tertiary recovery process. Two slugs of 

CO2, each lasting for a year are injected during years 7 and 9 when the oil cut during 

secondary recovery has fallen below 1%. The CRMP is used to match the total 

production rates and oil matches that are obtained for water flood by EPLFFM and for 

the CO2 flood by the logistic equation based fractional-flow model (LEBFFM) presented 

in Chapter 4. 
  

5.2.3.1- General Information 

This case study is a 40-acre inverted five-spot pattern consisting of 10 layers with 

different porosity and permeabilities with four producers at the corners and one central 

injector, Fig. 5-22. Table 5-6 provides the average reservoir and fluid properties and 

Table 5-7 shows the statistics for porosity and permeabilities in this case study. 
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Figure 5-22: Five-spot pattern well location map, Synfield-3. 

Table 5-6: Reservoir and fluid properties for Synfield-3 

Parameter Value 
 

Number of gridblocks 31 × 31 × 10 
Gridblock size, ft Δx = 42.6, Δy = 42.6, Δz = 10 
Oil viscosity, cp  8 
Water viscosity, cp 0.35 

Table 5-7: Layer  porosities and permeabilities for Synfield-3 

Layer Porosity Permeabilities, md 
kx, ky, kz 

1 0.12 12.6, 8.5, 4.0 
2 0.23 13.3, 13.5, 2.5 
3 0.15 15.9, 15.5, 3.74 
4 0.28 15.5, 15.7, 3.2 
5 0.19 19.7, 13.1, 1.9 
6 0.29 14.9, 14.8, 3.5 
7 0.16 12.9, 21.3, 1.8  
8 0.21 16.3, 16.8, 2.4 
9 0.19 13.5, 18.0, 2.7 
10 0.24 14.6, 13.3, 3.8 
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All of the wells are vertical and completed in all layers. Except for a 300 day 

interval in the 6th year when an injection pulse is introduced by reducing the field 

injection rate to 2500 RB/D, the injection rates are kept constant at 5000 RB/D. 

Reduction of the field total injection rate from 5,000 to 2,500 RB/D is to generate a pulse 

in the reservoir that facilitated the CRM calibration. Producers were operated at a 

constant bottomhole pressure of 2800 psia to obtain miscibility for the CO2 flood. Figure 

5-23 shows the field total injection signal and production response, as well as the two 

CO2 slugs and the oil production of the field. The oil production encounters two increases 

because of the two slugs of CO2 injection during years 9 and 12.  

The total production shows a reduction around year 3 because of the breakthrough 

of the minimum mobility saturation. 
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Figure 5-23: Field total and carbon dioxide, CO2, injection rates and field 
total and oil production rates, five-spot pattern, Synfield-3. 
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5.2.3.2- History-matching 

The field and producer one, P1, the total and oil production history-matches based 

on the CRMP and using the EPLFFM for waterflood and LEBFFM for CO2 flood, are 

presented in Figs. 5-24 and 5-25. The field production is simply the sum of all the 

producers’ production. The CRMP results show the symmetry of the pattern in which the 

connectivities, fij, for all the producers are equal to 0.25 and the time constants, τj, are 

equal to 122 days. The empirical power law fractional-flow model, EPLFFM (2.63E-07, 

6.05), perfectly matches the oil-cut during waterflooding and the two logistic equation 

curves, LE (1, 1, 1), based on Eq. 4-25 provide the oil rates during the CO2 flooding 

intervals.  

For each CO2 slug injection, the Hubbert curves fitting parameters must be 

determined. The Hubbert model for oil production rate can be defined by 

 

( )2

exp[ ( )]d( )
d 1 exp[ ( )]

peakP
o

peak

rN r t tNq t
t r t t

−
= =

+ −
       (4-25) 

 

where r, the growth/decline rate, N the ultimate recoverable oil and tpeak are unknowns of 

the logistic equation and they are determined by history matching for each CO2 event slug 

injection. Besides the symmetric Hubbert curves fitting parameters two additional values, 

tdelay, which account for the delays of oil production response to the CO2 injections, must 

be evaluated during history matching. These values cause the Hubbert curves to shift 

along the time axis. 

The Hubbert equation parameters are in Table 5-8. The tdelay’s are measured from 

the initiation of the CO2 slugs injections and the tpeak’s are measured from the tdelay’s. N is 

the amount of oil ultimately recoverable for each CO2 slug. CO2 remaining in the 
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reservoir from the first slug causes the delay time of the second slug to be shorter and the 

N to be slightly larger than the N of the first slug.  

 

Table 5-8: Hubbert logistic equation parameters for individual 
producers during CO2 flooding.  

 
Oil response 

delay 
tdelay, years 

Growth or 
decline 
rate, r, 
1/years 

Ultimate 
recoverable 

oil, N, 
 365 × RB

Oil peak 
time, 

tpeak, years 

Slug 1 1.05 2.34 1798 1.61 
Slug 2 0.86 1.60 1997 1.45 
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Figure 5-24: History-match of producer P1 total and oil production rates, 
identical to other producers, by CRMP, EPLFFM for water flood and 
LEBFFM for CO2 flood, Synfield-3. 
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Figure 5-25: History-match of field oil production rates by EPLFFM for 
water flood and LEBFFM for CO2 flood, five-spot pattern, Synfield-3. 

If this approach were to be applied to continuous CO2 injection flooding, the 

cumulative oil production, the area under the Hubbert curve, will represent the residual 

oil after waterflooding. This example showed the flexibility of the CRM and EPLFFM 

and LEBFFM in history-matching of the oil production during secondary and tertiary 

recoveries.  
 

5.2.4- Synfield-4: Streak Case 

This case study presents applications of the CRMs: CRMT, CRMP and CRMIP in 

history-matching of oil and total production, and optimization for a very heterogeneous 

case study. The streak case was chosen in a continuation of previous studies of Albertoni 

et al. (2003), Yousef et al. (2006), and Liang et al. (2007). Different aspects of the CRM's 

capabilities to capture the variation of the injection rate and bottomhole pressure (BHP) 

of producers are demonstrated. Furthermore, a cumulative oil production rate 

optimization is attained with the CRMP by reallocating injected water. Thereafter, the 
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optimized injection rates were fed into an Eclipse numerical flow-simulation model to 

quantify their impact on cumulative field oil production compared to a base case.  

 

5.2.4.1- General Information 

The streak case is a synthetic field consisting of five vertical injectors and four 

vertical producers. Figure 5-26 displays the well locations and the two high-permeability 

streaks. The permeability is 5 md everywhere except, where the two streaks occur, and a 

constant porosity of 0.18 is assigned globally. The total mobility ( o wλ λ+ ) is 0.45 and 

independent of saturation. Oil, water, and rock compressibility are 5×10-6, 1×10-6 and 

1×10-6 psi-1, respectively.  
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Figure 5-26: Streak case well location map of five injectors, I1 to I5 and 
four producers, P1 t0 P4, and the permeability field consist of two high-
permeability streaks of 500 and 1,000 md. (same example as in Yousef, 
2006 and Liang, 2007) 
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Figure 5-27 shows the plots of monthly injection rates for all the injectors for 100 

months. The average injection rate for all the injectors is about 1,000 RB/D. Nonetheless, 

average total production rates for P1 and P4 are dominating the total production, as 

presented in Fig. 5-28. The BHPs at the producers are kept constant at 250 psia. 
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Figure 5-27: Individual well injection rate for streak case. 
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Figure 5-28: Individual well total production rates for streak case. 

 

5.2.4.2- History-matching and Optimization 

Instead of using UISPs in this case study, rich injection signals generated based 

on injection rates of an Argentinean field case study (as presented in Yousef, 2005) are 

used to calibrate the CRMs. The CRMs are used to match total production based on 100 

months of production history. There are just two model parameters for the CRMT, while 

the number of parameters increases to 28 for CRMP and 60 for CRMIP. In the CRMT, 

the field time constant, τF, is 14 days. Tables 5-9 and 5-10 show fitted parameters for 

CRMP and CRMIP models based on 100 months of production history, respectively.  

Values of fij's are powerful quantifiers of connectivity between wells; the time 

constants represent the delay of production response of a producer to the associated 

injection rate(s). As expected, because of the heterogeneous permeability field in this 

reservoir, the highest value of fij's for producer P1 and P4 are associated with the two 

high permeability streaks. In contrast, small time constants associated with producers P1 

and P4 for CRMP and associated with the high-perm streaks in the CRMIP represent the 

quick response of production rates of these two producers to injectors I1 and I3. The 
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water injected in injector I1 (or I3) almost totally flows along the streak and instantly 

increases the production rate of producer P1 (or P4).  

 

Table 5-9: Streak case CRMP parameters, based on injection rate variations. 

P1 (j =1) P2 (j =2) P3 (j =3) P4 (j =4)

f 1j (i =1) 0.96 0.01 0.00 0.03
f 2j (i= 2) 0.47 0.02 0.19 0.32
f 3j (i= 3) 0.10 0.02 0.02 0.86
f 4j (i= 4) 0.18 0.15 0.00 0.67
f 5j (i= 5) 0.16 0.02 0.19 0.63

τ j , Days 1 34 48 1

q j (t 0 ), RB/D 5996 159 151 6666  

 

Table 5-10: Streak case CRMIP parameters, based on injection rate variations. 

P1 (j =1) P2 (j =2) P3 (j =3) P4 (j =4)

f 1j (i =1) 0.94 0.01 0.01 0.04
f 2j (i =2) 0.51 0.01 0.19 0.30
f 3j  (i =3) 0.09 0.02 0.03 0.86
f 4j (i =4) 0.20 0.15 0.00 0.65
f 5j (i =5) 0.13 0.02 0.18 0.67

τ 1j , Days 1 19 10 10
τ 2j , Days 34 4 41 49
τ 3j , Days 9 23 16 1
τ 4 j , Days 81 37 3 38
τ 5j  , Days 67 68 46 40

q 1j (0), RB/D 5073 107 4 730
q 2j (0), RB/D 0 68 2 0
q 3 j(0), RB/D 1295 0 3 3118
q 4j (0), RB/D 146 31 102 453
q 5j (0), RB/D 0 0 104 0  
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Figure 5-29 shows the total production match for each of the CRMs with the 

simulated results of the numerical model. Using CRMP and CRMIP, one can match the 

total production for any of the producers. For example, Fig. 5-30 shows the total 

production match for producer P4 from both CRMP and CRMIP.  
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Figure 5-29: Streak case CRMs match of total field production. 
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Figure 5-30: CRMP and CRMIP match of total production for Producer 
P4, streak case. 

After obtaining the weights and time constants for the CRMs, EPLFFMs are used 

to model oil-production. The parameters αj and βj for each producer for CRMP are in 
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Table 5-11. These values are associated with the linear section of WOR against 

cumulative-water injection on a log-log graph for each of the producers. As an example, 

Fig. 5-31 shows the log-log graph of WOR and cumulative-water injected toward 

producer P4. The linear section of Fig. 5-31, after 50 percent watercut, resembles the 

same criterion of applicability of waterflood frontal advance, as discussed by Ershaghi 

and Abdassah (1984).  

 

Table 5-11: Streak case oil fractional-flow parameters for CRMP. 

P1 (j =1) P2 (j =2) P3 (j =3) P4 (j =4)

α j 1.0E-05 3.7E-19 8.0E-15 1.1E-14
β j 0.9112 3.3859 2.4541 2.2252  
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Figure 5-31: WOR and cumulative-water injected for producer P4. 

 

Figures 5-32 and 5-33 show the oil-rate match for the entire field and producer 

P4, respectively. The mismatch at early time for oil production matches is caused as a 

result of nonlinearity of the log-log plot of CWI and WOR. 
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Figure 5-32: Streak case CRMP match of field oil production rate. 
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Figure 5-33: Streak case CRMP match of P4 oil production rate. 

Based on the calibrated CRM and EPLFFMs, as shown in Fig. 5-1, one can match 

not only the production history, but also optimize the future field performance for a 

desired injection schedule. In this example, the first 100 months of the production history 

are used for model calibrations. Then the cumulative oil production rate for a 16-month 

period by reallocating water injection is maximized.  
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Optimization results suggested that the maximum oil production would occur if 

injectors I2, I3, and I5 are shut-in and injector I1 and I4 remain active by injecting 3,862 

and 4,000 RB/D, respectively. We provided the optimized injection rates into Eclipse and 

compared the associated oil production of the field with a base case. The base case is the 

simulated oil production rate for 16 months, if we kept the same injection rate as of the 

last month of history. Counterintuitive activation of injector I1, associated with the high-

permeability streak, is explained by the existence of the majority of the remaining oil 

around I1 after 100 months of production, as shown in Fig. 5-34. Figure 5-35 shows a 35 

percent increase of oil production during the optimized period compared to the base case 

scenario. 
 

 

Figure 5-34: Oil saturation map after 100 months of production, streak case. 



 116

Base 

Optimized

200

350

500

3,000 3,200 3,400 3,600
Time, Days

O
il 

ra
te

, S
TB

/D

+ 35 % 
increase

 

Figure 5-35: 35% oil production increase by optimized injection 
rate for CRMP, streak case. 

5.2.4.3- BHP Variation and Data Frequency Effect 

Considering the producers’ BHP variation in the CRM makes it possible to attain 

productivity indices and capture high frequency fluctuation of the production rates. 

Productivity index and time constant multiplication provides a direct measure of the pore 

volume affected with the injection associated with the corresponding  time constant: 

effective control volume of a producer for CRMP or an injector-producer pair in CRMIP. 

This example shows simultaneous variation of injection rates and BHP of the 

producers on the total production for the streak case. In this scenario, the same injection 

rates as shown in Fig. 5-27 are applied while all the producers BHPs are randomly fixed 

to a new value with an average of 250 psia every 30 days. Figure 5-36 presents the total 

production rate match of the CRMP model with simulated data. Spikes in total production 

correspond to the variation of producers' bottom hole pressure, they are captured by 

CRMP. For clarity, Fig. 5-36 displays only a 300-day window. Fitting parameters for the 

CRMP model are presented in Table 5-12.   
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As before, fij's are representative of reservoir heterogeneity. The smaller time 

constant and larger productivity indices are intuitively associated with wells connected to 

high-permeability streaks. Since the BHP data are available, in addition to the 

connectivities and time constant, a measure of each producers’ productivity indices can 

be calculated in the CRM. Back calculated productivity indices associated with producer 

P1 and P4 are also a reflection of larger effective permeability associated with these 

producers. Productivity index of the producer P1 which is associated with streak with 

1,000 md permeability is almost twice of that of producers P4 which is connected to the 

streak with 500 md permeability.  On the other hand, multiplication of the time constants 

and productivity indices is a direct measure of the control volume for each of the 

producers.  In this case study producer P1 and P4 have the minimum τjJj, meaning that 

either they have the smallest affected control volumes, or the compressibility of the fluid 

within their control volumes is negligible. On contrary, producer P2 and P3 show an 

estimate of control volumes of at least four times of producers P1 and P4.  Based on this 

simple calculations for a constant compressibility we can conclude: VP1<VP4 < VP2< VP3. 

This estimation of the control volume is possible because of including the producers BHP 

variation in the CRM and availability of the BHP measurements.  

The quality of the production matches can be affected considerably by the 

frequency of the producers rate and BHP measurement, especially for cases that the 

producers’ BHP are changing. To demonstrate this point, Figs. 5-37 and 5-38 show the 

CRM history-match by daily and monthly production rate measurements, respectively.  
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Figure 5-36: Field total production and variation of BHP. 

Table 5-12: Streak case CRMP parameters, based on injection 
rates and producer' BHP variations. 

P1 (j =1) P2 (j =2) P3 (j =3) P4 (j =4)
f 1j (i =1) 0.83 0.05 0.00 0.12
f 2j (i= 2) 0.24 0.02 0.37 0.37
f 3j (i= 3) 0.08 0.05 0.00 0.86
f 4j (i= 4) 0.58 0.01 0.00 0.41
f 5j (i= 5) 0.42 0.00 0.00 0.58

τ j , Days 0.01 24.88 83.80 0.10

q j (t 0 ), RB/D 0 0 0 0

J j  (RB/D)/psi 20.98 0.18 0.05 9.18  
 

In this example, production rate variations are caused only by producers BHP 

variations. Figure 5-37 shows that if rate and BHP measurements at the time of the 

producers BHP changes are recorded, the real fluctuation of the production rates can be 

captured in history-matching model satisfactorily. On the contrary, Fig. 5-38 shows that 

if rate and BHP variations measurements are not available, especially at the point when 

the BHP is changed, the history-matching models can poorly mimic the shape of the field 
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production variations. The shape of the CRM match is mainly affected by the availability 

of the BHP data point. Therefore, high frequency rate and BHP measurements are the key 

to a reliable history-match by CRM or any other model, especially when the production 

rate is mainly affected with the BHP variations. 
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Figure 5-37: Total production variation caused by the producer’s BHP 
variations and the CRM match by using daily measurements of rate and BHP.  
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Figure 5-38: Total production variation caused by the producer’s BHP variations 
and the CRM match by using monthly measurements of rates and BHP. 
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The streak case example showed the capability of the CRMs to history-match and 

optimize the reservoir performance in an extremely heterogeneous reservoir. The impacts 

of the producer’s BHP variation as well as the importance of the frequency of the rate and 

BHP measurements were demonstrated. 

  

5.2.5- MESL Case Study 

This example shows application of the CRMs in history-matching and 

optimization of the performance of a reservoir in Angola based on its numerical model. 

Optimization is performed by reallocating the field water injection to maximize field 

cumulative oil production in a year. 

 

5.2.5.1- General Information 

This field is located 50 miles offshore at a water depth of 1,300 ft. The oil API 

gravity is 24 with a viscosity of about 3 cp at the bubblepoint. The average horizontal 

permeability is approximately 1,400 md, vertical permeability of 166 md, and average 

porosity of 15%. The model has 159,654 (= 41×59×66) cells with 40,432 of them being 

active. Each gridblock has a dimension of 100 m × 100 m. The oil relative permeability 

of 0.6 occurs at 8% water saturation and the water relative permeability of 0.19 

corresponds to a water saturation of 76%.  

Peripheral water injection commences at the start of production. The actual 

number of wells needed is to be guided by the performance of initial wells; however, four 

injectors and six producers are envisioned at the start, as shown in Fig. 5-39 . Two of the 

producers, P2 and P6, are horizontal. This initial development scenario became the focal 
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point of our modeling, wherein variable-injection rate and constant-BHP at the producers 

are assigned. 

Imposing a rich injection signal for a period of six years paved the way for 

estimating model parameters for CRMs and the oil-fractional-flow model. By rich signal 

we mean high-rate injection with variable rates. For instance, injectors I1, I2, and I3 are 

injecting at an average of 15,000 RB/D, while 4,000 RB/D is the average injection rate 

for injector I4. Among the producers, the average rate at P3 is 14,700 RB/D and that at 

P6 is 2,500 RB/D. These rates translate into 30% and 5% of the total field production at 

P3 and P6, respectively. Figure 5-40 selectively shows the total production rate for some 

of the producers and Fig. 5-41 presents the total field water-injection rate and the 

corresponding total production rate. 

 

 

Figure 5-39: MESL field reservoir boundary and well locations. 



 122

P1

P3

P5

P6

0

6

12

18

0 1,000 2,000 3,000
Time, Days

To
ta

l r
at

e,
 1

03  x
 R

B
/D

 

Figure 5-40: Production rate of some producers in the MESL field . 
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Figure 5-41: Total injection and production rate of the MESL field. 
The fluctuation in injection rate provides a rich signal in the reservoir. 

5.2.5.2- History-matching and Optimization 

In this example, there are two unknowns for the CRMT, 36 unknowns for the 

CRMP, and 72 unknowns for the CRMIP. Based on the CRMT, the field time constant, 

τF, of 140 days was estimated by minimizing the average-absolute error. Figures 5-42 and 
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5-43 show total production match of the field and producers P5, respectively. Tables 5-13 

and 5-14 present the corresponding parameters for CRMP and CRMIP.  
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Figure 5-42: CRMs total production match for MESL field. 
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Figure 5-43: CRMs total production match for producer P5. 
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Table 5-13: CRMP parameters, based on injection rate 
variations. 

P1 (j =1) P2 (j =2) P3 (j =3) P4 (j =4) P5 (j =5) P6 (j =6)

f 1j (i= 1) 0.322 0.492 0.073 0.000 0.114 0.000
f 2j  (i= 2) 0.018 0.055 0.421 0.208 0.291 0.008
f 3j (i= 3) 0.011 0.091 0.346 0.274 0.179 0.099
f 4j (i= 4) 0.015 0.000 0.339 0.427 0.000 0.219

τ j , Days 53 79 278 283 81 320

q j (t 0 ), RB/D 4464 5977 7596 4285 5688 3872  

 

Table 5-14: CRMIP parameters, based on injection rate 
variations. 

P1 (j =1) P2 (j =2) P3 (j =3) P4 (j =4) P5 (j =5) P6 (j =6)

f 1j (i= 1) 0.307 0.407 0.180 0.000 0.106 0.000

f 2j  (i= 2) 0.028 0.105 0.339 0.156 0.302 0.069

f 3j (i= 3) 0.016 0.123 0.346 0.267 0.192 0.057

f 4j (i= 4) 0.003 0.000 0.336 0.649 0.011 0.000

τ 1j , Days 51 58 412 142 398 70

τ 2j , Days 68 125 61 125 54 175

τ 3j , Days 164 218 87 145 103 124

τ 4j ,  Days 28 30 500 496 18 500

q 1j (0), RB/D 0 167 0 4792 0 0

q 2j (0), RB/D 0 0 5179 290 0 0

q 3j (0), RB/D 0 0 23 0 0 0

q 4j (0), RB/D 12691 14728 0 0 23421 9980  

 

After obtaining the weights and time constants, the EPLFFMs are used to match 

the oil production rates. The EPLFFM’s parameters, αj and βj values, are estimated for 

each producer by minimizing the field wide oil production estimation error, as presented 

in Table 5-15 for CRMP. Figures 5-44 and 5-45 show oil production rate and its match 

for entire field and producer P5, respectively.  
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  Table 5-15: MESL field oil fractional-flow parameters for the CRMP. 

P1 (j =1) P2 (j =2) P3 (j =3) P4 (j =4) P5 (j =5) P6 (j =6)

α j 6.5E-14 3.2E-15 2.0E-12 5.6E-13 8.9E-13 2.3E-14

β j 1.9276 2.0288 1.6650 1.7742 1.7630 2.0275  
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Figure 5-44: CRMP oil production match for the MESL field. 
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Figure 5-45: CRMP oil production match for producer P5. 

As presented for the streak model, we used the CRMP to maximize field wide oil 

production by reallocating injected water while keeping the total field-injection rate 

constant at the end of year eight. Optimization results suggested shutting in injector I1 
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while injectors I2 and I3 get their maximum injection rate of 24,000 RB/D and injector I3 

stays active with 10,900 RB/D. These optimized injection rates were used in an Eclipse 

model to compare their impact on field oil production with a base case. Results showed a 

6% increase in field oil production compared to the base case in which we kept the total 

injection rates constant from year 8 to 9, as shown in Figs. 5-46 and 5-47.  
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Figure 5-46: Relative changes in individual production rates after 
imposing optimized injection rate for the MESL field. 
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Figure 5-47: A 6% annual cummulative oil  production increase by 
imposing an optimized injection rate for MESL field. 

6% increase
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The MESL case study showed the capability of all the CRMs in evaluating field 

performance with complex geologic models. History-matching and optimization were 

performed in a short period of time by using a spreadsheet application of the CRM and 

only based on injection and production rate data.  

 

5.3- SUMMARY 

In this chapter, the CRMs’ reliability was tested by using numerical simulation. 

Five case studies of simulated data to mimic field conditions for different CRMs were 

presented. History-matching of total and oil productions, flood efficiency evaluation and 

optimization of reservoir performance were performed by the CRMs and EPLFFM in a 

spreadsheet application. Generating rich signal to allow system characterization was the 

main driver behind creating the UISPs, or large perturbations in g rates and pressures. 

Predictably, field injection and production data contain measurement errors. Therefore, 

random error was introduced in the simulated rates to demonstrate its impact on 

estimation of CRM parameters. Optimization of the reservoir performance was 

demonstrated for two case studies by reallocation of the field injection rates. The CRM 

optimized results were validated with the numerical simulation models.  

As in grid-based history-matching, CRM solutions may be nonunique. That is, 

multiple solutions may exist for the match of similar quality. Several approaches may be 

taken to obviate this issue. We found domain analysis, in terms of both time and space, to 

be very useful. For instance, for a reservoir of long production/injection history coupled 

with complex well-drilling sequence, segmenting the problem into multiple time domains 

become very useful. Similarly, segmenting the reservoir in spatial domain, commensurate 

with drilling history, makes the problem tractable. 
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Chapter 6:  FIELD APPLICATIONS  

To predict or optimize a reservoir performance, one must build a reservoir model 

that can reliably match the production history. Constructing a reservoir model and 

matching the production history are time-consuming processes that can take months. 

During reservoir simulation, the general field performance, despite its importance, might 

be overlooked if we do not start assessments with a simplified field model such as 

general material balance and/or if we only focus on numerical simulation model and their 

detail tunings. The capacitance resistive model (CRM) has the capability to quickly 

evaluate general reservoir performance, based on injection and production rates history, 

while history-matching based on numerical simulation models might take long time to 

complete. 

In this chapter, first steps to apply the CRM in field applications are presented and 

then four field case studies are selected and CRMs capabilities in history-matching and 

flood efficiency evaluation as well as connectivity maps are presented. Information on 

the field examples are only given to the limit that has been requested from the data 

providers. Presented case studies are selected in a way to demonstrate CRMs capabilities 

in different settings: a tank representation of a field, its ability to determine connectivity 

between the producers and injectors, and understanding flood efficiencies for the entire or 

a portion of a field. This chapter demonstrates the application of the CRMs to multiple 

field examples of waterfloods and a pilot of CO2 flood, each having a wide range of 

production/injection history and complex well-drilling schedule.  
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6.1- FIELD CASE REALITY AND LIMITATIONS 

History-matching reservoir performance is a difficult inverse problem. Ordinarily, 

history-matching entails minimizing the difference between the observed and computed 

response in terms of gas/oil ratio, water/oil ratio, and reservoir drainage-area pressures. 

Systematic approaches have emerged to simplify history-matching because manual 

matching by adjusting global and/or local geological and flow properties is tedious and 

time-consuming. 

Previous studies (Albertoni and Lake 2003; Yousef et al. 2006; Sayarpour et al. 

2007) have shown the usefulness of the CRM in establishing connectivity between the 

producers and injectors, en route to matching historical performance. In most cases, the 

proof of concept was demonstrated with synthetic examples. Rooted in signal analysis 

and material-balance, CRM can rapidly attain a performance match without having to 

build an independent geologic model. Unlike conventional methods, one can also 

perform history-matching over any time segment of a field’s producing life. Moreover, 

any arbitrary control volume consisting of any number of wells may be assigned because 

neither saturation nor pressure match is sought. 

Field application of the CRMs might encounter any of the following which can 

complicate their application. 

i. Poor injection signal or flat fixed injection rate which prevents reliable CRM 

parameters evaluation.  

ii. Less injection than production or under injection. 

iii. Long shut-in period for a producer causes change of flood patterns. 

iv. Conversion of producers to injectors 

v. Data limitations and lack of high quality rate and bottomhole pressure (BHP) 

measurements. 
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6.2- SUGGESTED STEPS TO APPLY CRMS IN FIELD STUDIES  

The following are recommendations to be considered in a field application of 

CRMs: 

1- Construct a cross plot of total field or group of wells of interest total production 

rates against total injection rates. This plot shows how well correlated injection 

and production rates are.  

2- Initiate field evaluation with tank representation of the field, the CRMT, and then 

follow with producer control volume base CRM, CRMP and then injector-

producer control volume base CRM, CRMIP.  

3- Represent the field or group of wells as a single injector and single producer 

using tank representation of the CRM. Grouping injectors and/or producers as 

one pseudo injector and/or one pseudo producer, facilitates the evaluation of the 

general field performance by reducing the number of unknowns in the CRM, and 

provides a general understanding of how well maintained is the field injection, or 

if other sources of pressure support exist. 

4- Apply correction of the CRMT parameters based on the number of active 

producers in the field. Most of the field production rates during the early time 

field development are due to new producers, rather than field injection.  

5- Initialize the time constants in CRMP or CRMIP based on the CRMT or grouped 

well assessment.  

6- Initialize the connectivities, fij, for the CRMP based on the normalized inverse 

distance weighting for each injector.  

7- Use large fluctuations of rates, such as injector’s shut-in intervals to calibrate the 

CRMs for major field injectors. 
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6.3- FIELD CASE STUDIES  

In this section we discuss four case studies, each depicting various facets of the 

CRM in complex reservoirs. For instance, in the Reinecke field we used the tank model 

(CRMT) but with different fractional-flow models to examine the relative fractions of oil 

and water production at the field level. In the South Wasson Clear Fork (SWCF) field, we 

explored both the total fluid match and individual well matches with CRMP, involving 

one time constant for each producer. The benefits of grouping producers and injectors in 

an analysis are demonstrated in the UP-Ford field study. Further analysis of pattern 

floods, such as in a CO2 pilot, is examined in the McElroy field study. Mature 

waterfloods are the common thread in all cases. 

 

6.3.1- Reinecke Field 

In this case study we demonstrate the capability of the CRM tank application, 

CRMT, in matching the field total liquid and oil production rate for the Reinecke field. 

Then, we use five different fractional-flow models to match the oil production rate of the 

field.  

 

6.3.1.1- General Information 

The Reinecke field is an upper Pennsylvanian to lowest Permian carbonate 

buildup in the southern part of the Horseshoe Atoll in the Midland Basin of West Texas. 

The field was discovered in 1950 at depths of approximately 6,700 ft. The original oil 

was 42 °API with a gas-oil ratio of 1,266 scf/STB. Between 1950 and 1970, the reservoir 

pressure declined from 3,162 to 1,984 psia, just below the oil bubble point pressure of 

2,000 psia. Water injection into the underlying aquifer began in the late 1960’s as part of 
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a pressure-maintenance program. Approximately 60% of the 83 MMSTB of the Reinecke 

field oil production is produced from the south dome, which covers one square mile. It is 

mainly limestone (70%) with an average porosity of 11%, a horizontal permeability of 

166 md and a vertical permeability of 11 md. More than 50% of the original oil-in-place 

in south dome is recovered by bottom-water drive and crestal CO2 injection (Saller et al. 

2004). Figure 6-1 displays the field structure map based on a 3D seismic travel time and 

the location of the south dome.  

 

 

Figure 6-1: Reinecke field structure map based on a 3D seismic time 
and the location of the south dome (after Saller et al., 2004).  

6.3.1.2- Total Production Rate Match 

Figure 6-2 shows both the production and water-injection history from 1972 to 

1993 for the Reinecke field. Water breakthrough occurred in 1977 and the field’s oil 

production declined even after drilling 20-acre infill wells in the mid to late 1980s. For 

this case study, we apply the tank representation for the field, CRMT, in which the field 
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liquid production rate, qF(t), is evaluated as a function of time and the kth time interval 
field injection rate, ( )

F

kI , after n time interval of Δt: 
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where τF is field-time constant given by: 
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          (6-2) 

 

Equation 6-1 has four unknowns: 1) the total liquid production rate at the 

beginning of the production history, qF(t0), 2) the  fraction of the total field injection rate 

maintained in the reservoir control volume, fF, 3) the field-time constant, τF, and 4) an 

unknown source of pressure support, ew. Note that ew has the same units as ( )
F

kI  and is 

constant.  

Minimizing the relative error between the CRMT estimate and the field 

measurements of the total liquid production rate from 1972 to 1993 yields the desired 

model parameters. Figure 6-3 presents the CRMT total production match, with a relative 

error of 8%, and the CRMT fitting parameters for the Reinecke field.  
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Figure 6-2: Injection-production history of the Reinecke reservoir. 
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Figure 6-3: CRMT match of the total liquid production rate, Reinecke 
reservoir. 
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Because of the strong correlation between the injection and production rates in the 

Reinecke field, the correlation ratio R being 0.95, CRMT yields a very good fit of the 

total liquid production rate, as exemplified by a low relative error of 8.8%. 

 

6.3.1.3- Oil Production Rate Match  

The Reinecke field the oil fractional-flow is predicted as a function of time based 

on several models. In these fractional-flow models, time is implicitly embedded in the 

cumulative water injected, Wi; and normalized-water saturation, S, respectively. First, 

consider an empirical power-law fractional-flow model (EPLFFM), introduced by Gentil 

(2005) and used by Liang et al. (2007), presented in Chapter 4 and given by  
 

1EPLFFM( , ):     ( )
1o

i

f t
W βα β

α
=

+
       (4-12)  

 

where α and β are the fitting parameters for the empirical power-law fractional-flow 

model, which is represented as EPLFFM(α,β). Here α has units of bbl-β. A second model 

is based on Leverett’s (1941) fractional-flow model by neglecting capillary pressure for 

horizontal reservoirs, presented in Chapter 4 and given by 
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     (4-4) 

 

We consider two major forms of the BLBFFM in the Reinecke field by 

considering linear (m = n = 1) and nonlinear relative permeability curves (m ≠ 1, n ≠ 1). 

Figure 6-4 shows the match and fitted parameters for the oil cut, based on EPLFFM and 

BLBFFMs. 
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Fig. 6-5 exhibits the total and oil production matches based on the CRMT and 

different fractional-flow models applied to the Reinecke field. Perhaps the improved 

match of BLBFFMs owe to their superior modeling capability and more fitting 

parameters than the EPLFFM. The relative errors encountered for oil production rate 

estimation by BLBFFMs are 12 and 10% for linear and nonlinear forms of relative 

permeability, respectively. The EPLFFM shows a 24% relative error in matching the 

historical oil production.  
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Figure 6-4: Fractional-flow simulation of oil rate with different models, 
Reinecke reservoir. 
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 Figure 6-5: Overall performance match with different fractional-flow 
models, Reinecke reservoir.  

6.3.2- South Wasson Clear Fork (SWCF) Reservoir 

In this example, the CRM’s capability is tested in history-matching and evaluating 

the flood efficiency for an entire field compared to an arbitrary section of the reservoir. 

 

6.3.2.1- General Information 

The SWCF reservoir contains about 1,500 ft of dolomitized shallow-water 

carbonates at a burial depth of 6,900 ft in west Texas. Heterogeneity manifests by layer 

stratification with high-permeability layers causing early water breakthrough, bypassing 

the oil in low-permeability layers (Jennings et al., 2002). The average porosity is 

approximately 6% and the corresponding average permeability is about 3 md. Oil 

recovery is reported to be about 30% of OOIP after 55 years development with various 

waterflood patterns. Waterflood was initiated in 1980 with a nine-spot pattern, which was 

later converted into a five-spot pattern in 1987. Figure 6-6 shows a partial well location 

map containing 63 producers and 32 injectors as well as the location of an arbitrarily 



 138

selected section of the reservoir having six injectors and three producers. These are 

selected for evaluating the flood efficiency.  

 

Figure 6-6: Well location map and selected reservoir section for flood 
efficiency evaluation of the SWCF reservoir.  

Figure 6-7 shows the SWCF reservoir’s monthly water injection, total production, 

and oil production from 1988 to mid 1999. Considerable fluctuation of the injection rate 

in this reservoir provides the desired signal quality, which makes this reservoir an ideal 

candidate for CRM treatment. As Fig. 6-7 shows, the first 44 months of the injection did 

not directly affect the total production rate, signifying the reservoir fill-up period. 

Consequently, we used data after the first four years of production. 

 

I1 I2 I3

I5I4 I6
P1

P2 P3
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Figure 6-7: Variable injection rates enrich signal quality, SWCF 
reservoir.  

6.3.2.2- History-matching 

Figure 6-8 exhibits the CRMT total production match and fitting parameters after 

the 44th month of production. The CRMT results reveal the existence of other source of 

support besides the injectors in the SWCF reservoir. Despite a very small correlation ratio 

of 0.07 between the injection and production rates, the CRMT matched the production 

rates with a relative error of only 9%. The correlation ratio between observed field total 

production rate and the CRMT estimation is 0.87. 

The flood efficiency of any arbitrary section of the reservoir can be evaluated 

with CRMT by estimating the fF. The sum of the injection rates of the six injectors and 

the production rates of the three producers for 14 years are treated as the injection and 

production rates of the pattern marked in Fig. 6-6. Figure 6-9 presents the production 

rates and the CRMT and CRMP matches for this pattern with estimation relative errors of 

24% and 22%, respectively. These errors may appear a bit high at first glance, but they 

may be reduced easily by enlarging the control volume, thereby including more injectors. 
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An issue with an arbitrary control volume is that it may not account for the entire 

injection signal. In contrast, CRMT evaluation shows that 53% of injection, emanating 

from the six injectors, moves toward the three producers in the pattern, with a production-

response-time constant τF of 12 months. 
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Figure 6-8: CRMT total production rate match for the SWCF case study. 
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Figure 6-9: Total liquid production match over a small region (6 
injectors/3 producers). 

f F = 1.00 fraction
τ F = 37.09 months

q(t 0 =44) = 39316 RB/m
e w  = 43320 RB/m

Rel. Error = 8.91 %

f P = 0.53 fraction
t P = 11.97 months

q(t 0 =55) = 0.00 STB/m
e w = 0.00 STB/m

Rel. Error = 24.69 %
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The CRMP provides an estimation of the total production rate of producer j based 

on the injection rates, ii , of Ninj injectors. In the SWCF, the CRMP parameters obtained 

for the arbitrary pattern show that the middle producer has the smallest time constant of 

7.1 months, while producers P1 and P3 time constants are 13.0 and 11.9 months, 

respectively, Table 6-1. Injector 3, or I3, provides the least support for the pattern in that 

only P3 receives 17% of its total injection rate. In contrast, I1 and I6 provides complete 

support, with P2 gaining more than 60% of their injection rates. These allocation factors 

can be obtained for any pattern or section of the reservoir and can be used to guide 

numerical-simulation modeling. The CRMP also allows evaluation of either a few 

individual producers or an entire field’s production. Figure 6-10 shows the total and oil 

production match for producers P1 and P3 in the selected pattern. These oil production 

matches are obtained with the EPLFFMs. 
 

Table 6-1: Selected pattern CRMP parameters in the SWCF. 

τ f 1j f 2j f 3 j f 4j f 5j f 6j

P1 (j =1) 13.0 0.67 0.00 0.00 0.28 0.22 0.34
P2 (j =2) 7.1 0.33 0.29 0.00 0.08 0.41 0.66
P3 (j =3) 11.9 0.00 0.09 0.18 0.13 0.13 0.00  
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Figure 6-10: The CRMP total and oil production match for producers 
P1 and P3 in the selected reservoir section, SWCF reservoir 
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6.3.3- UP-Ford Zone, East Wilmington Field Case Study 

In this example, we demonstrate the capability of the CRMP to match the field’s 

and individual producers’ total liquid and oil production rates by grouping injectors and 

producers and predicting reservoir performance based on a given historical production 

domain. 

 

6.3.3.1- General Information 

This horizon is a low-permeability turbidite that has undergone waterflooding 

since 1965 (Jenkins et al., 2004). The UP-Ford zone is about 900 ft thick comprising six 

subunits. Porosity averages about 20% and permeability ranges from 2 to 50 md. 

Peripheral water injection commenced in the 1970’s, but crestal producers received 

minimal pressure support, leading to the drilling of pattern injectors in the 1990’s. The 

change in flood pattern, hydraulic-fracture stimulation of the producers, and sand control 

all contributed to improved reservoir performance. For this reservoir unit, Al-Sharif and 

Rael (2003) used a combined decline-curve analysis and fractional-flow relationship to 

obtain reliable predictions for oil and water rates, respectively.  

 

6.3.3.2- History-matching by Well-Grouping 

We used the CRMT in history-matching and predicting reservoir performance by 

grouping an uneven number of active producers. This well-grouping scheme ensured the 

reliability of history-matching by reducing the number of unknown parameters. 

Corrections for the number of active producers in the CRMT enabled matching the 

production rate when the field injection rate was less than the total field production rate. 

In the following we explain this correction scheme. 
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In CRMT, the field time constant, τF, must be modified as a function of time 

based on the number of active producers in a reservoir. Changes in the number of active 

producers cause an increase or decrease in the reservoir productivity index in the CRMT. 

As a result, if new producers are added to the same reservoir, the field production rate 

increases; however, the field-time constant decreases by the ratio of currently active 

producers to previously active producers in the field, η, which is defined as 

 
number of currently active producers

number of previously active producers
η =       (6-3) 

 

The production rate only at the beginning of the second interval is multiplied by η 

to account for an increase or decrease of the production rate.  

History-matching in UP-Ford unit entailed handling 191 producers and 71 

injectors over 475 months. To manage these wells effectively we represented half of the 

field’s injection and production by a single injector and a single producer. To do so, we 

ranked the producers and injectors based on their cumulative oil production and water 

injection, respectively. Then, we assigned the first 23 producers and 10 injectors to 

account for half of the field’s oil production and water injection, while grouping the 

remaining of the producers as the 24th producer and the rest of the injectors as the 11th 

injector. Because of this well grouping scheme, the total number of unknowns to be 

evaluated were reduced from Ninj×(Npro+ 3) = 13,493 to 312 for the CRMP total 

production match. Figure 6-11 presents the UP-Ford total production and injection rates 

and the number of active wells for 475 months of production.  

 



 144

0

20

40

60

80

0 10 20 30 40
Time, Years

N
um

be
r o

f A
ct

iv
e 

W
el

ls

0

0.2

0.4

0.6

0.8

1

 N
or

m
al

iz
ed

 R
at

e

# of Producers
# of Injectors
Production Rate
Injection Rate

 

Figure 6-11: Field production and injection rate history along with 
number of active wells, UP-Ford unit, Wilmington field. 

Applying the CRMT to the UP-Ford reservoir, we found that 93% of the field 

injection conforms to the reservoir’s control volume. The field time constant is 

approximately 18 months and the initial production rate is 69,577 RB/month. The relative 

errors for the total and oil production history-match with CRMT are 11 and 19%, 

respectively. Correcting the CRMT model based on the number of active producers 

enabled us to match the total production rate at the early stages of the field development, 

where the injection rate was less than the field production rate, as shown in Fig. 6-12. 

The quality of the CRMP match is quite evident from both the total liquid rate and oil 

production stand points. The normalized rates are used for clarity so that the large values 

for the monthly production and injection rates do not clutter the axes. The individual 

producers’ total and oil production matches are presented in Appendix F. 
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Figure 6-12: Field total liquid and oil production match, UP-Ford unit. 

To demonstrate the CRMT’s ability to predict future performance, we used only 

the production history from 25 to 35 years to match the total production. Figure 6-13 

indicates both the calibration or history-matched interval and the prediction interval. The 

fact that the CRMT could predict the historical production after the 35th year with a 

relative error of only 4% is a testament to its reliability. Figure 6-14 shows the cross plot 

of the CRMP estimation against the field measurements obtained by summing the match 

of all individual producers. This plot simply confirms the quality of the fit with the 

CRMP, which allows treatment of individual wells, unlike the CRMT.  
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Figure 6-13: Field total liquid production match and prediction 
capability of CRMT, UP-Ford unit. 
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Figure 6-14: Strong correlation between actual field production and 
model, UP-Ford unit. 
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6.3.4- McElroy Field CO2 Pilot Study 

This case study is selected to demonstrate the CRM compatibility with water 

alternating gas (WAG) injection case studies.  

 

6.3.4.1- General Information 

The McElroy field produces from the Permian Grayburg-San Andres dolomites at 

an average depth of 3,000 ft (Goolsby and Anderson, 1964). The gross oil column varies 

considerably across the field, from 100 ft on the west to a maximum of 550 ft on the east. 

The original-oil-in place is about 2.2 BSTB. The average porosity and permeability are 

approximately 6.5% and 2 md, respectively. Pilot waterflooding, initiated with an 

inverted seven-spot pattern in 1947 and 20-acre five-spot in 1953, showed considerable 

promise. Pattern realignment occurred in one section of the field in 1988 after 26 years of 

flooding (Lemen et al. 1990). Thakur (1998) summarized some of the modeling results of 

the waterflood performance.  

A CO2 pilot injection lasting for 12 years was initiated in late 1988. Figure 6-15 

depicts the pilot area, where the water injectors shown in blue triangles were designed to 

contain the CO2 injection within the flood area. The purple diamonds designate the water-

alternating gas (WAG) injectors. Overall, 39 producers and 33 injectors make up this 

pilot. Our objective was to evaluate the success of this pilot. Figure 6-16 presents the 

pilot’s production and injection history. 

 

6.3.4.2- History-matching and Flood Efficiency Evaluation  

Perhaps a cursory analysis of the effectiveness of CO2 injection is in order before 

embarking upon further analysis. Figure 6-17 shows that the same volume of CO2 
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injection yielded larger oil response when compare to the same volume of water 

injection. The tank model CRMT yields a good match of both the total fluid and oil 

production data, as testified by Figs. 6-18 and 6-19, respectively.  
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Figure 6-15: Well location map of McElroy CO2 pilot area and Pattern-4 
location. 
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Figure 6-16: Field performance in the McElroy CO2 pilot area. 
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Figure 6-17: Oil production response to CO2 injection demonstrated. 

We performed the CRMT calibration only for six years after initiating the CO2 

injection to demonstrate the CRM’s ability to evaluate future performance. Relative 

errors for both the total and oil production rates for this arbitrary training interval were 

roughly 13%. The calibrated model could predict the total fluid and oil production rates 

for the entire history with 20 and 22% relative errors, respectively. The empirical power 

law fractional-flow model (EPLMFF) was used to predict the oil production trend. The 

CRMT results, Fig. 6-18, indicate that 63% of the injection fluids are effective with a 

time constant of 92 days.  
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Figure 6-18: Performance match of total fluids with CRMT model, 
McElroy CO2 pilot area. 

f F = 0.63 fraction
τ F = 94 days

q(t 0 =0) = 1094 RB/m
e w  = 0 RB/m

Rel. Error = 20.7 %
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To obtain the oil match, we invoked the EPLFFM to split the oil and water; the 

resultant coefficients of the fractional-flow model yield α = 3.40×10-4 and β = 0.616. 

Figure 6-20 showing the CRMP modeling suggests a good quality match. 
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Figure 6-19: Performance match of oil production with the CRMT 
model, McElroy CO2 pilot area. 
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Figure 6-20: Performance match of total fluids with the CRMP 
model, McElroy CO2 pilot area. 
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The overall history-match of the entire pilot appears quite good with both the 

CRMT and CRMP approaches. As indicated previously, the CRM allows selection of any 

arbitrary control volume over any span of history. We show one such example from 

Pattern-4 containing 11 injectors and 9 producers, as shown in Fig. 6-15. The CRMT 

evaluation for this pattern suggests that 64% of the injection fluids are effective with an 

average time constant of 189 days. Relative errors of 23 and 24% result for the total and 

oil rate estimation, respectively. On the other hand, the CRMP revealed that more than 

80% of the injection in the Pattern-4 injector, injector I11, is directed toward producers 

P9, P2, and P5, while injectors I4 and I9 contribute minimally, Table 6-2. Such insights 

into injectors’ contributions for any pattern or segment of the field can have direct usage 

in grid-based simulations. Figure 6-21 displays the Pattern-4 match of both the total fluid 

and oil rates, obtained with the CRMP, individual well producers match are presented in 

the Appendix F. 
 

Table 6-2: The CRMP parameters in the selected boundary in pattern-
4, McElroy pilot area. 

τ, Days f 1j f 2 f 3j f 4j f 5j f 6j f 7j f 8j f 9j f 10j f 11j

P1 (j =1) 78 0.21 0.58 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P2 (j =2) 51 0.00 0.00 0.11 0.04 0.04 0.00 0.00 0.00 0.12 0.00 0.29
P3 (j =3) 50 0.30 0.04 0.35 0.14 0.03 0.15 0.00 0.00 0.00 0.02 0.04
P4 (j =4) 200 0.00 0.01 0.00 0.00 0.05 0.00 0.57 0.00 0.10 0.10 0.00
P5 (j =5) 60 0.17 0.01 0.09 0.00 0.00 0.21 0.12 0.00 0.00 0.24 0.17
P6 (j =6) 60 0.00 0.04 0.00 0.00 0.59 0.15 0.00 0.00 0.08 0.17 0.07
P7 (j =7) 50 0.17 0.00 0.05 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00
P8 (j =8) 91 0.00 0.05 0.00 0.00 0.17 0.00 0.00 0.00 0.05 0.00 0.06
P9 (j =9) 91 0.16 0.00 0.00 0.26 0.04 0.15 0.10 1.00 0.00 0.03 0.38

sum f ij  = 1.00 0.73 0.65 0.44 0.91 0.67 0.80 1.00 0.36 0.56 1.00  
 

One of the key objectives of CRM analysis is to understand well connectivity so 

that appropriate measures, such as pattern realignment can follow for optimal-flood 

performance. Figure 6-22 presents steady-state well connectivity map, fij’s, of the entire 
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pilot area with arrows. The length of an arrow signifies the degree of communication 

intensity between an injector and a producer. Stronger connectivity between CO2 

injectors and the producers located in the southeast section of the pilot region explains the 

improvement in oil recovery, as indicated by Fig. 6-17.  
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Figure 6-21: Matching total liquid and oil production in Pattern 4, 
McElroy CO2 pilot area. 
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Figure 6-22: Steady state interwell connectivity map, McElroy CO2 
pilot area. 
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6.4- SUMMARY 

This chapter demonstrates applications of simple, yet powerful analytic tools for 

four field examples. We have successfully applied this tool to several field cases such as: 

1) Reinecke, 2) Malongo 3) South Wasson Clear Fork, (SWCF), 4) UP-Ford 5) Rosneft 

6) Lobitto, 7) Seminole 8) McElroy. Examples shown in this chapter are a subset of that 

effort. Two case studies involving daily rates and variation of bottomhole pressure (BHP) 

were also studied, but because of restriction on releasing the field information only two 

of the wells production matches are presented in the Appendix E to show the BHP effect 

on the CRM estimation. Individual producer matches based on the CRMP for selected 

wells of UP-Ford and McElroy are presented in the Appendix F. 

These reservoirs are complex in that they contain extreme heterogeneity in both 

lateral and vertical directions. The success of a simple CRM tool may appear a bit 

perplexing at first. However, when we examine the model’s underlying principle of 

connectivity based on signal and material-balance analyses, its ability to perform credible 

history-matching becomes transparent. In this context, the tortuosity of the flow path is 

unimportant from a signal transmission point of view. 
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Chapter 7: UNCERTAINTY QUANTIFICATION 

The key to a good reservoir performance forecast lies in the availability of a 

reliable history match. Several equally probable sets of reservoir parameters can normally 

match a production history, but time and resource limitations allow evaluation of only a 

few of these solutions, thereby reducing the reliability of reservoir models’ predictions.  

Numerous sets of equiprobable history-matched solutions (EPHMSs), if obtained, 

can estimate the uncertainty in hydrocarbon recovery predictions. This chapter 

demonstrates the use of capacitance-resistive models (CRM) in evaluating reservoir 

uncertainty based on a given production history. Unconstrained-continuous range of 

uncertain reservoir properties are narrowed down to constrained-discontinues range by 

EPHMSs and proper combinations of uncertain reservoir parameters that satisfy the 

production history are achieved before performing comprehensive numerical simulations.  

Because history-matching with a single geologic model does not assure attaining 

the ‘correct’ model, uncertainty in forecasting remains. Tavassoli et al. (2004) made this 

point very eloquently. The lack of forecasting certainty has prompted some to pursue 

history-matching and forecasting with an ensemble of models that carry geologic 

uncertainty. For instance, Landa et al. (2005), using clustered computing, showed how 

uncertainty in static modeling can be handled in both history-matching and forecasting. 

Similarly, Liu and Oliver (2005) explored applications of an ensemble Kalman filter in 

history-matching where continuous model updating with time is sought for an ensemble 

of initial reservoir models. In yet another approach, Sahni and Horne (2006) have used 

wavelets for generating multiple history-matched models using both geologic and 

production data uncertainty. Guevara (1996) and Ballin (1993) tried to minimize the load 

of uncertainty in predicting reservoir performance by combining the result of sensitivity 
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analysis of both simple and complex reservoir model. Although Guevara (1996) and 

Ballin (1993) used simple models, neither considered the use of the simple models in 

screening and in providing some of the data required in their complex reservoir models. 

In this chapter, first the impacts of uncertainty in a few reservoir properties, such 

as porosity and residual saturations, on the total and oil production response of a synfield 

to a fixed injection signal are evaluated. The Decision Management System (DMS) 

software is used to capture the sensitivity of the production responses. Then for a 

synthetic case study, numerous sets of EPHMSs are obtained from the CRM and 

Buckley-Leverett based fractional-flow model (BLBFFM). Independent sets of EPHMS 

provide probability distribution functions for major uncertain reservoir properties, such as 

the original oil and water in place, and residual oil and water saturations, before 

constructing comprehensive simulation models. Internally linked sets of reservoir 

parameters create a restricted sampling domain in which proper combination of  uncertain 

reservoir parameters are selected based on mutual dependence. This biased sampling 

strategy provides systematic guidelines in selecting the proper combination of uncertain 

reservoir properties for numerical simulations considering uncertainty. 

One can use the combination of the CRM and the BLBFFM, as independent 

predictive models, to evaluate probability distribution functions (PDF) for uncertain 

reservoir properties from the EPHMs. Internally dependent reservoir parameters, the 

EPHMS sets, provide a good restrictive sampling domain and reasonable guidelines for 

selecting appropriate input data for simulating large models with uncertainty. Significant 

engineering and computing time can be saved by limiting numerical simulation input data 

to the EPHMS sets of CRM/BLBFFM, which provide proper combination of uncertain 

parameters. 
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7.1- PRODUCTION RATE SENSITIVITY 

A simple synthetic case study, involving a quarter of a five-spot pattern with an 

injector and a producer is modeled with Eclipse simulator for evaluation of production 

sensitivity. Reservoir and fluid properties of the streak case, the example provided in 

Chapter 5, are used in this example and the permeability field is modified to be a 

homogenous horizontal permeability of 40 md and a vertical permeability of 4 md. The 

injector and producer are located at the corner of the pattern, as shown in Fig. 7-1.  
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Figure 7-1: Simple quarter of five-spot synthetic case study for 
evaluating production rate sensitivity. 

Three major uncertain reservoir properties are considered in this example: the 

porosity which has a normal distribution with an average of 0.18 and varies from 0.06 to 

0.30, the residual oil saturation which has a uniform distribution with an average of 0.2 

and ranges from zero to 0.4, and the residual water saturation which has a uniform 

distribution with an average of 0.35 and varies from 0.15 to 0.5. Collectively, these 

uncertain variables cause an uncertainty in the recoverable oil in a waterflood exercise.  
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Figure 7-2 shows 250 random realizations of these three uncertain variables 

generated by Latin Hypercube (LHC) sampling.  The base case is shown in green in this 

figure. Using these realizations, Eclipse and Decision Management System (DMS) 

softwares were used to generate and visualize the impacts of the uncertain variables on 

the total and oil production responses to a fixed injection signal over 100 months. The 

injection signal, the injector I1 rate in the streak case, and 250 responses of the total and 

oil production rates are shown in Fig. 7-3. The base case is highlighted in pink, and those 

production responses that are within an arbitrary acceptable range of rate measurement 

error are highlighted in blue. The total production rates variations are less affected by the 

variation of uncertain variables than the oil production responses. The total production 

responses are mainly affected by the injection-signal variations, but the oil production 

responses are significantly affected by the amount of original oil-in-place. Figure 7-4 

shows the cross plots of the average field oil saturation after 100 months of production 

for the 250 realizations against porosity, residual-oil and water saturations.  
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Figure 7-2: Distribution of 250 realizations of three uncertain input reservoir 
parameters: the porosity, and the residual water and oil saturations. Samples are 
generated by LHC sampling. The base case, indicated with a cross, has a porosity of 
0.18, a residual water saturation of 0.35 and a residual oil saturation of 0.2. 
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Figure 7-3: Total and oil production responses to 250 realizations of three 
uncertain reservoir parameters obtained by DMS. The oil production shows more 
variation than the total production responses. 
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Figure 7-4: Cross plots of the average field oil saturation and three uncertain 
reservoir parameters after 100 months of production for 250 realizations. The 
base case is indicated with a cross. 
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If the base case production is considered as the measured field production, within 

an accepted range of errors in the production rate measurements, shaded in blue in Fig. 

7-3, different combination of equally likely uncertain parameters can be selected that 

result in these total and oil production responses. In Fig. 7-5, the highlighted in blue dots 

show the groups of uncertain parameters that have generated similar production 

responses, highlighted in blue curves. These scenarios are the equiprobable history-

matched solutions (EPHMSs).  
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Figure 7-5: Highlighted curves and dots in blue are uncertain variables that generate 
similar total and oil production rates responses within a given range of rate 
measurement error of the base case. All the uncertain parameters can vary over their 
entire range. The blue dots are equiprobable history-matched solutions.  

Failure to capture the possible scenarios that create the same production response 

can lead to an unrealistic reservoir performance prediction. A reliable history match shall 
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provide different combinations of uncertain reservoir variables that satisfactorily match 

the production responses.  

Reservoir uncertainty can be quantified and confined by finding numerous sets of 

equiprobable history-matched solutions (EPHMSs). The EPHMSs are normally found by 

minimizing the differences between observed and estimated model values. Often many 

solutions have an acceptable range of error that results in different combinations of the 

reservoir properties that satisfy the production history. These combinations generate a 

discrete domain of internally linked reservoir properties that can reasonably satisfy the 

production history and quantify the range of uncertain variables. As an example, Fig. 7-6 

shows a schematic of iso-error contours between estimation and observation as a result of 

variation of parameters X1 and X2. Six local minimums, each having different values for 

X1 and X2 are the best candidate, EPHMS#1 to #6, for error minimization. Evaluation of 

these interrelated sets is the key for a reliable history match and provides a sampling 

domain that constrains the range of uncertain variables and restricts their combinations to 

those that satisfactorily match the production history.  
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Figure 7-6: A schematic representation of six equiprobable history-matched 
solutions (EPHMSs) that confine the continuous range of uncertain parameters X1 
and X2 to a discrete range. Estimation error of 10% is considered as threshold.  
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7.2- RESERVOIR UNCERTAINTY QUANTIFICATION BY THE EPHMS 

In this section, numerous sets of EPHMSs that satisfactorily match the base case 

production rates are evaluated and, based on these solutions, the range of major reservoir 

properties, such as residual oil and water saturations and recoverable oil in place, are 

evaluated by a combination of CRM and BLBFFM. The Buckley-Leverett based 

fractional-flow model (BLBFFM) has the following form: 
 

( )
1

1
BLBFFM( , , ):     ( ) 1 1

m

o o n
o

S
M m n f S

M S

−
⎡ ⎤−
⎢ ⎥= − +
⎢ ⎥
⎣ ⎦

     (4-4) 

The end-point mobility ratio, Mo, and relative-permeability curve exponents, m 

and n, are the unknowns in the Buckley-Leverett-based fractional-flow model, designated 

by BLBFFM(Mo, m, n). The normalized average water saturation S  is evaluated as a 

function of time based on material balance as presented in Chapters 4 and 6. 

Simulator generated production responses for the base case are used as production 

history and matched with the CRM. Figure 7-7 shows the injection signal and the total 

production and the match obtained by the CRM. The BLBFFM is used to match the oil 

production rates for 10 years of production history.  

In the fractional-flow model, the average residual oil and water saturations, orS  

and wrS , and the endpoint mobility ratio, Mo, explicitly, and the original-in-place oil and 

water, implicitly, are unknown parameters. These unknown parameters are evaluated by 

history matching the oil production rate. Numerous sets of the EPHMSs are evaluated by 

the CRM/BLBFFM. Figure 7-8 shows the cumulative distribution functions (CDF) of 

each parameter obtained from EPHMSs where 1st, 5th, 10th, 15th and 20th best solutions 

are marked. Fig. 7-9 shows the cross plots and Fig. 7-10 presents the CDF of the relative 

errors of the oil production history-match for 780 sets of EPHMSs. Best 20 EPHMSs are 
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provided in Table 7-1 and shown on Fig. 7-9. Each of the EPHMS provides a unique 

combination of uncertain reservoir variables, and can be selected as an input set for the 

numerical simulation model. The EPHMSs confine the continuous range of uncertain 

reservoir parameters and form a restricted sampling domain for numerical simulation.  
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Figure 7-7: Injection, total production and CRM total production match for the 
quarter of five-spot pattern shown in Fig. 7-1. 

Table 7-1: Best 20 equiprobable history-matched solutions (EPHSs). 

EPHMS
Residual water 
saturation, Swr

Residual oil 
saturation, Sor

Mobiliy ratio, 
M o 

Water in place, 
W (STB)

Oil in place, N  
(STB)

Pore volume,  VP 

(RB)
1 0.380 0.313 0.367 4.88E+05 6.90E+06 7.87E+06
2 0.380 0.315 0.375 4.64E+05 6.91E+06 7.87E+06
3 0.376 0.302 0.345 4.20E+05 6.74E+06 7.66E+06
4 0.382 0.309 0.366 4.86E+05 6.86E+06 7.82E+06
5 0.380 0.313 0.372 4.77E+05 6.90E+06 7.86E+06
6 0.389 0.290 0.363 4.82E+05 6.66E+06 7.60E+06
7 0.375 0.306 0.348 4.86E+05 6.82E+06 7.78E+06
8 0.389 0.300 0.378 4.54E+05 6.76E+06 7.70E+06
9 0.385 0.287 0.346 4.62E+05 6.62E+06 7.55E+06
10 0.390 0.297 0.369 4.63E+05 6.71E+06 7.66E+06
11 0.395 0.278 0.357 4.64E+05 6.54E+06 7.46E+06
12 0.382 0.307 0.371 4.93E+05 6.86E+06 7.83E+06
13 0.376 0.306 0.361 4.72E+05 6.83E+06 7.78E+06
14 0.378 0.313 0.355 4.79E+05 6.89E+06 7.85E+06
15 0.383 0.301 0.377 4.54E+05 6.78E+06 7.72E+06
16 0.369 0.322 0.354 5.00E+05 7.00E+06 7.98E+06
17 0.391 0.294 0.373 4.40E+05 6.70E+06 7.63E+06
18 0.381 0.320 0.372 5.07E+05 6.99E+06 7.98E+06
19 0.392 0.283 0.376 4.32E+05 6.60E+06 7.51E+06
20 0.376 0.320 0.378 5.05E+05 7.01E+06 8.00E+06  
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Figure 7-8: The CDF of the 780 sets of EPHMs for the quarter of five-spot 
obtained by the CRM and application of BLBFFM(Mo,1,1). The 1st, 5th, 10th, 
15th and 20th best history match solutions are marked on the CDFs. 
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Figure 7-9: Cross plot of the sets of EPHMSs for a quarter of five-spot, Fig. 7-1, 
obtained by the CRM and application of BLBFFM(Mo,1,1). The best 20 solutions 
are highlighted within the EPHMSs by purple. These internally related solutions 
can be used as input data for numerical simulations. 

The distributions and the range of the EPHMSs for this family of solutions 

overestimate the residual oil and water saturations of the base case but in general agree 

with the original input data in the numerical simulation input file. Obtained EPHMSs 

rarely have a relative error more than 8.5%, as presented in Fig. 7-11. Figure 7-12 shows 

Best 20 
solutions 

EPHMSs
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the quality of the oil production match for two values of the relative errors of 8.6 and 

9.7%, both larger than most of the EPHMSs. These errors indirectly ensure the quality of 

the oil-production match by the EPHMSs which have less the 8.5% of relative errors, 

especially for the best 20 solutions.  

 

0

0.25

0.5

0.75

1

8 8.5 9 9.5
Relative Error of EPHMSs, %

C
um

m
ul

at
iv

e 
P

ro
ba

bi
lit

y

Best 20 solutions

 

Figure 7-10: CDF of the oil production match relative error for EPHMSs. 
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Figure 7-11: Oil production relative errors against residual oil saturations for the 
EPHMSs. Note that the best 20 solutions (purple dots) cover almost the entire range 
of residual oil saturation of the EPHMSs.  
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Figure 7-12: Oil Production and the CRM/BLBFFM match for a quarter of five-
spot pattern of Fig. 7-1. Two of the largest oil production history-match errors are 
shown to illustrate the quality of the EPHMSs that their relative errors are rarely 
above 8.5%.  

7.3- SUMMARY 

In this chapter, first the impacts of the uncertainty of some major reservoir 

properties, such as porosity, residual oil and water saturation, on the total and oil 

production responses were demonstrated by using DMS. Then, the equiprobable history-

matched solutions (EPHMSs) were obtained both by the CRM and DMS applications. 

The CRM was used to match a simple case study and numerous sets of EPHMSs were 

obtained. These EPHMSs were used to quantify the CDF of average reservoir parameters, 

such as original oil and water in place, residual oil and water saturations, and the 

endpoint mobility ratio. The obtained range and combination satisfactorily cover the 

numerical simulation model that was used to generate the production responses. Equally 

probable combinations of uncertain reservoir parameters, the EPHMS sets, created an 

internally-related combination of reservoir parameters that satisfy the production history.  
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Chapter 8: SUMMARY, CONCLUSIONS AND 
RECOMMENDATIONS FOR FUTURE WORK  

The main objectives of this work were evaluating reservoir performance 

accurately in a short period of time and also quantifying the reservoir uncertainty. 

Therefore, new analytical solutions for capacitance-resistive models (CRMs) as fast 

predictive techniques were developed and their application in history-matching, 

optimization, and evaluating reservoir uncertainty for water/CO2 floods were 

demonstrated.  

This work developed and tested the CRMs in synthetic and field case studies, and 

introduced an algorithm to narrow down the wide range of uncertainty of major reservoir 

properties based on numerous sets of the CRM history-matched solutions. Since the 

CRM only requires injection-production rate and if available bottomhole pressure data, it 

is used widely in many field applications. Insights gained from performing the CRM 

were used to evaluate reservoir operating conditions and flood efficiency during 

production history. Then the CRMs were used to predict and optimize future reservoir 

performance. Furthermore, the CRMs' results were used to narrow down the range of 

some of the parameters that are involved in predictive model from a wide-continuous to a 

narrow-discrete range.  

 

8.1- TECHNICAL CONTRIBUTIONS 

The analytical solutions for the continuity equation based on superposition in time 

and space were developed for three different reservoir control volumes: 1) CRMT, the 

entire field volume, 2) CRMP, the drainage volume of a producer and 3) CRMIP, the 

control volume between injector-producer pairs. The analytical solutions enable rapid 



 168

estimation of the CRM unknown parameters: the interwell connectivity and production 

response time constant. These solutions are obtained based on stepwise or linear variation 

of injection rate and linear variation of the producers’ bottomhole pressures projections. 

Furthermore, by considering a series of tanks between each injector/producer pair, CRM 

solutions were modified and CRM-Block analytical solutions based on superposition in 

time and space were developed. 

Analytical solutions facilitated the CRMs' application for rapid assessment at 

different levels of a field study, from a single well, to a group of wells, and to an entire 

field. The CRM’s analytical solutions, in conjunction with the physical meaning of its 

parameters, its capability to discern reservoir connectivities, its flexibility in taking 

variable timesteps, simplicity, and speed are major advantages over those developed 

previously.  

The CRM provides an estimation of the total liquid production; therefore we 

evaluated and incorporated different forms of the fractional-flow model for miscible and 

immiscible floods to be able to estimate oil production. We mostly used the empirical 

power-law fractional-flow model (EPLFFM) as the preferred fractional-flow model in the 

course of history-matching and optimization of waterfloods. The Buckley-Leverett based 

fractional-flow models (BLBFFM) were suitable for uncertainty evaluation. The 

application of the logistic equation based fractional-flow models (LEBFFM) was 

demonstrated the flexibility to be applied to tertiary flooding processes. We used this 

model for miscible CO2 floods.  

The validation of the CRM was performed by testing its results against numerical 

simulation results. We presented several synthetic case studies in this work, including a 

peripheral water injection, a seven-spot pattern, a five-spot pattern, the streak case and 

the MESL case study. Each of these case studies were selected to test different aspect of 
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the CRM capabilities. Among these the optimization of reservoir performance was 

conducted for the streak and MESL cases by reallocating field water injection. The 

seven-spot case was used to analyze the impact of rate measurement errors on the CRM 

performance and the five-spot pattern was a CO2 flood case study. In the peripheral water 

injection case study, we introduced the concept of unique injector shut in pulses (UISPs) 

to enhance the CRM calibration. The advantage provided by the use of UISPs was further 

confirmed when applied to three of the synthetic case studies.  

The CRM ability to perform as a simple and reliable analytical tool was further 

verified using four field examples. We have successfully applied this tool to several cases 

such as: 1) Reinecke, 2) Malongo 3) South Wasson Clear Fork, (SWCF), 4) UP-Ford 5) 

Rosneft 6) Lobito, 7) Seminole 8) McElroy. We presented a subset of these evaluations in 

this work.  

The application of the CRM yields to history-matched solutions. As presented in 

this work, numerous sets of equiprobable history-matched solutions (EPHMS) were 

obtained by applying the CRM. Then, EPHMSs were used to quantify and confine the 

range of uncertain reservoir parameters and provide cumulative distribution functions 

(CDF) of uncertain reservoir parameters. This approach provides a restricted sampling 

domain in which sets of internally linked reservoir parameters are indicated and can be 

use to efficiently design a more comprehensive reservoir simulation study. 

 

8.2- CONCLUDING REMARKS 

1. Application of the CRM to several synthetic and field case studies showed its 

reliability and capability as a tool in history-matching and optimization of reservoir 

performance. Several case studies showed that the calibrated CRMs are capable of 
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generating solutions that are comparable to those obtained from 3D numerical flow-

simulation models and provide good quality history-match to the field case studies.  

2. The CRMs are very fast and inexpensive to use. Thus, with a minimum available 

reservoir data, only injection and production data, and a small investment in 

computing and engineering time, it will be possible to have a preliminary 

evaluation, prediction of reservoir characteristics and future production. 

3. The CRM should be a precursor to any history-matching exercise. The CRM’s 

predictive capability allows first-order investigation of future flood performance 

without large time investment. CRMs’ rapid history-matching capability in complex 

field environments serves as an excellent precursor to any grid-based modeling 

study.  

4. Significant insights about the flood performance over time can be gained for any 

arbitrary pattern by estimating fractions of injected water being directed from an 

injector to various producers, and the time taken for an injection signal to reach a 

producer. Injector-to-producer connectivity is inferred directly during the course of 

error minimization. CRMs provide significant insights about a waterflood’s overall 

performance and pattern-allocation factors.  

5. Field engineers can quickly manage and optimize real-time reservoir performance. 

Reallocation of injected water among the existing injectors can be investigated 

while maximizing cumulative oil production by the CRM.  

6. Because the CRM circumvents geologic modeling and saturation-matching issues, 

it lends itself to frequent usage without intervention of expert modelers, this enable 

evaluation of numerous sets of the EPHMS and consequently quantification of 

reservoir uncertainty. 
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7. The EPHMS sets provide good-restricted sampling domains and reasonable 

guidelines for selecting appropriate input data for full-field numerical modeling by 

evaluating the range of uncertain reservoir parameters. Therefore, we can minimize 

the number of full-scale numerical runs by restricting selection of reservoir 

properties for comprehensive reservoir simulation to those that satisfy the 

production history in the CRMs. Tremendous engineering and computing time may 

be saved by limiting numerical simulation input data to those EPHMS sets obtained 

from the CRMs.  

8. For case studies with flat injection signals, the UISPs showed to be a powerful way 

to calibrate the CRM. In most of the field production history the USIPs exist and 

can be used to evaluate the CRM parameters: the interwell connectivity and 

production response time constant. 

9. Errors in rate measurements can also be entertained during history-matching. As 

long as the impacts of the injectors’ signals on the production rate of producers are 

larger than the range of the rate measurement error, CRMs can capture reservoir 

connectivities reliably. This makes the CRM suitable for field case applications 

where rate measurement errors are inevitable. 

10. The analogy between a reservoir oil production and the population size of bacteria 

enables application of the rich literature on logistic equations (LEs) in predicting 

the oil production for EOR processes.  

 

8.3- RECOMMENDATIONS FOR FUTURE WORK 

1. Interwell connectivities, fij, and time constants, τj, are considered to be independent of 

injection rates. Modification of fij  and τj in the CRM over different time intervals 

shall be performed if major changes happen in the well schedules that causes major 
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changes of the streamlines. In this matter, a producer shut in for a long period of time 

is a good example.  

2. Although, well-pair connectivities compare relative contribution of an injector to 

different producers, but when the focus is on a producer, multiplication of average 

injection rate and associated fij should be considered as a measure to recognize 

importance of different injectors on the production rate of a producer. Constructing a 
map that shows either the absolute support of different injectors, ij if i , or the fraction 

of the production of each producer provided by different injectors, /ji ij i jf f i q′ = , is 

recommended.  

3. The correlation ratio between injection and production rates is a good measure to 

identify the injectors in the vicinity of a producer that should be included in the CRM 

application. However, the user shall consider the time lag that can exist between the 

production responses and the injection signals, which could disguise the connectivity 

between an injection-producer pair. 

4. The application of the CRMs was demonstrated in this work. However, real-time field 

optimization has not been tested neither with unique injector shut-in pulses (UISPs) 

nor with the CRM optimization algorithm. We recommend the application of these 

two concepts in a real field application and optimization.  

5. The CRM yields its best performance when obvious production and injection 

fluctuations exist throughout the production history of a field. No systematic study 

has been conducted to date to understand and quantify when a field historical 

production has enough character (rich production-injection signals) to successfully 

screen good reservoir candidates for CRM application. A study in this area is 

recommended.  
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6. Most of the case studies used in this work considered vertical wells. From the 

standpoint of the CRM development, this tool should be able to handle other types of 

well configurations. However, this should be verified in a systematic way. Testing the 

application of the CRM for horizontal or inclined well configuration is recommended. 

7. The CRM is very similar to a simplified streamline simulation concept. Compared to 

the streamline simulation, connectivities can be represented by the ratio of the 

number of streamlines connecting an injector to a producer to the total number of 

streamlines originated from the injector. The time constant is comparable to the time 

of flight concept. A comprehensive comparison of both approaches is recommended. 

8. Field production and injection data are often reported as cumulative monthly 

allocated rates. Reporting rate measurement as monthly cumulative and using 

allocation factor for assigning share of production of producers filter the injection 

signals and corresponding production responses. This can lead to an unrealistic 

evaluation of the field performance by the CRM. We recommend that the user be 

aware of this fact and spend the time mining and analyzing the field data before 

his/her evaluation. 

9. Pattern allocation, specially for pattern boundary injectors can be directly calculated 

in the CRM for each injector from the interwell connectivities estimates. We 

recommend the use of these allocation factors from the CRM in any comprehensive 

numerical simulation designed for an element of symmetry, a pattern, or a sector 

model to reasonably estimate the contribution of injectors. 

10. During the course of history-matching in this work, estimation error of, first, the total 

and then the oil production were minimized. Applying multi-objective optimization 

can facilitate the application of the CRM and oil fractional-flow model in history-

matching and optimization. It is worth mentioning that multi-objective optimization 
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can be used to simultaneously maximize the correlation ratio and minimize the 

relative errors between observed and estimated total and/or oil rates which provide a 

better objective function.  

11. The CRM as a simple and fast tool can provide many sets of history-matching 

solutions that can quantify the range of uncertain reservoir parameters. We 

recommend the application of CRM as a precursor of any comprehensive numerical 

simulation. The workflow in Fig. 8-1 shows an algorithm to be applied in this regard. 
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Figure 8-1: Workflow to apply EPHMSs obtained by the CRM in 
comprehensive numerical simulation modeling. 

12. Application of unique injection shut in pulses (UISPs) enable reliable CRM 

calibration. This is demonstrated in evaluating the CRM parameters for history-

matching of total and oil production in numerically simulated case studies presented 

in this work. It is strongly recommended to apply this in field case. In field operations 

there are times when injectors are shut, and their shut-in incidents can be used to 

investigate interwell connectivities and used for calibrating the CRMs. 
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13. CRM-Block can be applied to couple wellbores with reservoirs by considering three 

tanks in series: injector, reservoir and producer. Intuitively, two tanks with smaller 

time constants than the reservoir, which represent the wellbores, can be considered to 

model injector and producer wellbore effects, Fig. 8-2. 

 

 

Figure 8-2: Schematic representation of wellbore and reservoirs 
with three tanks in series with different time constant to capture 
the wellbore effect in the CRM. 

14. CRM can be combined with different fractional-flow model to provide oil production 

history match and estimation for different recovery processes. Development of 

compatible fractional-flow models for other enhanced oil recovery processes such as 

chemical flooding is recommended. 

15. Development and application of the CRM have been mainly for slightly compressible 

systems, mostly waterfloods. It is recommended to check for development and 

applicability of the CRM for compressible system.  

16. Out of pattern injections or supports such as aquifer influx are modeled as constant 

supports during production history. The CRM estimation can be improved if pseudo 

steady state aquifer models are used and combined with the CRMs.  

τinj 

τres 
τpro 

Injector Producer 

Reservoir

τpro and τinj < τres
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Appendices 

APPENDIX A: DERIVATION OF FUNDAMENTAL EQUATION OF THE CAPACITANCE- 
RESISTIVE MODEL (CRM) 

 

A macroscopic material balanced equation (MBE) over an arbitrary control 

volume (CV) for phase j can be written as 

 
Total Mass of   in Total Mass of  
 the CV at  in the CV at 

Mass of  entering Mass of   leaving
the  CV during the CV during 

j j
t t t

j j
t t

⎧ ⎫ ⎧ ⎫
−⎨ ⎬ ⎨ ⎬+ Δ⎩ ⎭ ⎩ ⎭

⎧ ⎫ ⎧ ⎫
= −⎨ ⎬ ⎨ ⎬Δ Δ⎩ ⎭ ⎩ ⎭

     (A-1) 

or 

 

, , , ,

d
d

j
j in j in j out j out

M
q q

t
ρ ρ= −         (A-2) 

 

where Mj is the mass of component j in the CV and  ρj is its density. Assuming an average 

constant density for component j in CV we obtain: 

 

( ) , , , ,
d d ( )
d dj j P j j P j in j in j out j outS V S V q q

t t
ρ ρ ρ ρ≈ = −      (A-3) 

 
where, jρ is the average density, jS is the average saturation of j, and PV  represents the 

pore volume in the CV. Applying the chain rule we can differentiate Eq. A-3: 

 

, , , ,

d d d
d d d

j j P
j P j P j j j in j in j out j out

S VV S V S q q
t t t

ρ
ρ ρ ρ ρ+ + = −     (A-4) 
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Dividing by j j PS Vρ : 

 

, , , ,

d d d1 1 1 1 ( )
d d d

j j P
j in j in j out j out

j j P j j P

S V q q
S t t V t S V

ρ
ρ ρ

ρ ρ
+ + = −     (A-5) 

 

, , , ,

d d d dd1 1 1 1 ( )
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j j j jP
j in j in j out j out

j j j P j j j P

S p pV q q
S t p t V p t S V

ρ
ρ ρ

ρ ρ
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By using the definitions of total compressibility, we get: 

  

, , , ,

d d d1 1 ( )
d d d

j j j
j f j in j in j out j out

j j j P

S p p
c c q q
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c c q q

S t t S V
ρ ρ

ρ
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Eq. A-8 can be written for any phase. For example, for an immiscible two phase of water 

and oil we can write: 
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, ,

d d1 1( ) ( )
d d

d d1 1( ) (0 )
d d

w w
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w w w P

o o
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o o o P
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ρ

ρ
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    (A-9) 

 

In Eq. A-9, the oil injection rate, io, is assumed to be zero. Neglecting the capillary 

pressure effect and assuming the same densities for injected, produced and reservoir 

water as well as produced and reservoir oil, Eq. A-9 simplifies to 
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d1 d 1( ) ( )
d d
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      (A-10) 

 

Summing the equations given in A-10, and eliminating the saturation derivative terms in 

by using d do wS S= − we obtain the continuity equation for CRM: 

 
d d
d d

w oS S
t t

⎛ ⎞
+⎜ ⎟

⎝ ⎠
( ) d 1( ) ( )

dw w o o f o w w w o
P

pc S c S c S S i q q
t V

+ + + + = − −    (A-11) 

 
d
dt p w w o
pc V i q q
t

= − −          (A-12) 

or  

 
d ( ) ( )
dt p
pc V i t q t
t

= −          (A-13) 

 

where i(t) and q(t) represent the injection rate and total production rates, respectively. 

Based on the definition of productivity index J, the total production rate in reservoir 

volumes, q(t), is 

 
( ) ( )wfq t J p p= −          (A-14) 

 

Elimination of the average reservoir pressure from A-13 leads to the fundamental first-

order ordinary differential equation for the CRM. 
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t
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)(d
−=+

ττ
        (A-15) 

 

where J  is assumed to be constant and the time constant, τ, is defined as 
 

t pc V
J

τ =             (A-16) 

 
and has units of time.  

 

Equation (A-15) is developed for a system based on the following assumptions: 

- Constant temperature 

- Instantaneous equilibrium in the control volume, tank assumption  

- Two immiscible phases coexist 

- Two components 

- Capillary pressure effect is neglected 

- Small fluid compressibility which causes equal density for injected, reservoir and 

produced fluids. 

- Darcy’s law applies  

- Productivity index is constant 
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 APPENDIX B: PRIMARY TERMS IN THE CAPACITANCE-RESISTIVE MODEL  

 

For case studies in which field injection is only implemented in a section of the 

reservoir, the CRM match and predictions will be more accurate if two different control 

volumes are used, one for primary recovery and one for secondary recovery. In-situ 

continuity equation during primary and secondary recoveries can be written in terms of 

the total production for a producer and a series of injectors as  

 

( )
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( ) ( )      
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      (B-1) 

 

where the subscript jp and js indicate the properties of producer j during primary and 

secondary recoveries, and ts is the starting time for secondary recovery. Eliminating the 

average pressure from Eq. B-1 by applying the productivity index definition leads to the 

following ordinary differential equations during primary and secondary recoveries: 
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The solutions of these differential equations are: 
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For the special case of constant bottomhole pressure this solution simplifies to: 
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Here the overall production is the contribution of primary and secondary production. In 

addition, the secondary production at the beginning of the secondary recovery, ts, is equal 

to zero; therefore, overall production can be written as the sum of primary and secondary 

recoveries: 
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Fig. B-1 presents a simple example in which the impacts of primary and secondary 

productions on the total production rate are shown.  
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Figure B-1: Primary and secondary production effect on overall production. 
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APPENDIX C: SUPERPOSITION IN TIME SOLUTION FOR CAPACITANCE-RESISTIVE 
MODEL  

 

Figure C-1 shows series of linear stepwise injection rates. The capacitance-

resistive model (CRM) total production rate for a fixed injection rate and constant 

bottomhole pressure is: 
 

0 0( ) ( )

0( ) ( ) 1
t t t t

q t q t e I eτ τ
− −

− −⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
       (C-1)  

 

Figure C-1: Stepwise change of injection rate schedule from time t0 to tn. 

 

Based on the superposition in time one can write the impact of each injection 

pulse on the total production at time tn as the following: 
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Therefore, at time tn the impact of series of stepwise injection rate variations is equal to 

the secondary production rate: 

 
( ) ( )

1
( ) = 1

k n kt t tn

s n k
k

q t I e eτ τ
Δ −

− −

=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑        (C-5) 

 

where subscripts s denotes the secondary production. Including the primary production 

effect provide the following solution for the CRM using superposition in time. 
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APPENDIX D: CAPACITANCE-RESISTIVE MODEL TOOL IN MICROSOFT EXCEL 

 

Figure D-1: Interface of the CRM tool in Excel. 
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APPENDIX E: FIELD EXAMPLE OF THE IMPACT OF THE BOTTOMHOLE PRESSURE 
DATA ON THE CAPACITANCE-RESISTIVE MODEL PRODUCTION RESPONSE  

In this section, the total production history-match by the CRMIP with and without 

producers’ bottomhole pressure (BHP) are compared in a field case. In this example, 

there are three injectors and four producers where injection rates and producers BHP are 

measured daily. As shown in Figs. E-1 and E-2 high frequency production fluctuation are 

not captured if the BHP data are unavailable or discarded. Cross plots of the observed-

estimated rates indicate the improvement of the estimation by including BHP data. 
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Figure E-1: The impact of the BHP data availability in 
improving the quality of the CRM prediction for producer 
two, without and with the BHP data, in a field study with daily 
rate and BHP measurements. 
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Figure E-2: The impact of the BHP data availability in 
improving the quality of the CRM prediction for producer 
four, without and with the BHP data, in a field study with 
daily rate and BHP measurements. 
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APPENDIX F: TOTAL AND OIL PRODUCTION MATCHES FOR INDIVIDUAL WELLS IN 
THE MCELROY AND UP-FORD CASE STUDIES 

McElroy Field Pattern 4 Individual Producers Total and Oil Rate Matches 
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Figure F-1: The total and oil production match and cross plots for 
producer 1 and 2 in the McElroy CO2 pilot. 
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Figure F-2: The total and oil production match and cross plots for 
producer 3 and 4 in the McElroy CO2 pilot area. 
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Figure F-3: The total and oil production match and cross plots for 
producer 5 and 6 in the McElroy CO2 pilot area. 
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Figure. F-4: The total and oil production match and cross plots for 
producer 7 and 8 in the McElroy CO2 pilot area. 
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Figure. F-5: The total and oil production match and cross plots for 
producer 9 in the McElroy CO2 pilot area. 
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Figure F-6: The total and oil production matches and cross plots of the 
CRMP estimation vs. field measurements for producer 1 and 2 in the in 
the UP-Ford field. 
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Figure F-7: The total and oil production matches and cross plots of the 
CRMP estimation vs. field measurements for producer 3 and 4 in the in 
the UP-Ford field. 
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Figure F-8: The total and oil production matches and cross plots of the 
CRMP estimation vs. field measurements for producer 5 and 6 in the in 
the UP-Ford field. 
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Figure F-9: The total and oil production matches and cross plots of the 
CRMP estimation vs. field measurements for producer 7 and 8 in the in 
the UP-Ford field. 



 197

0

0.5

1

0 100 200 300 400 500
Time, Months

No
rm

al
iz

ed
 T

ot
al

 R
at

e
qt 09

CRMP qt 09

0

0.5

1

0 100 200 300 400 500
Time, Months

No
rm

al
iz

ed
 O

il 
Ra

te q_oil 09
qo_CRMP 09

y = 0.8597x + 0.0112
R2 = 0.8718

0

1

0 0.5 1
Normalized Total Rate

No
rm

al
iz

ed
 C

RM
P

 T
ot

al
 

Ra
te

CRMP qt 09

y = 0.8673x + 0.0116
R2 = 0.8675

0

1

0 0.5 1
Normalized Oil Rate

No
rm

al
iz

ed
 C

RM
P

 O
il 

Ra
te

qo_CRMP 09

0

0.5

1

0 100 200 300 400 500
Time, Months

No
rm

al
iz

ed
 T

ot
al

 R
at

e

qt 10

CRMP qt 10

0

0.5

1

0 100 200 300 400 500
Time, Months

No
rm

al
iz

ed
 O

il 
Ra

te q_oil 10
qo_CRMP 10

y = 0.6765x + 0.0491
R2 = 0.6598

0

1

0 0.5 1
Normalized Total Rate

No
rm

al
iz

ed
 C

RM
P

 T
ot

al
 

Ra
te

CRMP qt 10

y = 0.6194x + 0.0349
R2 = 0.6326

0

1

0 0.5 1
Normalized Oil Rate

No
rm

al
iz

ed
 C

RM
P

 O
il 

Ra
te

qo_CRMP 10

 

Figure F-10: The total and oil production matches and cross plots of the 
CRMP estimation vs. field measurements for producer 9 and 10 in the in 
the UP-Ford field. 
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Figure F-11: The total and oil production matches and cross plots of the 
CRMP estimation vs. field measurements for producer 11 and 12 in the in 
the UP-Ford field. 
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Figure F-12: The total and oil production matches and cross plots of the 
CRMP estimation vs. field measurements for producer 13 and 14 in the in 
the UP-Ford field. 
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Figure F-13: The total and oil production matches and cross plots of the 
CRMP estimation vs. field measurements for producer 15 and 16 in the in 
the UP-Ford field. 
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Figure F-14: The total and oil production matches and cross plots of the 
CRMP estimation vs. field measurements for producer 17 and 18 in the in 
the UP-Ford field. 
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Figure F-15: The total and oil production matches and cross plots of the 
CRMP estimation vs. field measurements for producer 19 and 20 in the in 
the UP-Ford field. 
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Figure F-16: The total and oil production matches and cross plots of the 
CRMP estimation vs. field measurements for producer 21 and 22 in the in 
the UP-Ford field. 
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Figure F-17: The total and oil production matches and cross plots of the 
CRMP estimation vs. field measurements for producer 23 and 24 in the in 
the UP-Ford field. Producer 24 accounts for the other half of the field 
production. 
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Nomenclature 

 co = oil compressibility (L2/F) 

 ct = total reservoir compressibility (L2/F) 

 cw = water compressibility (L2/F) 

 CWI = cumulative water injected (L3) 

 ew = influx (L3/t) 

 fij = interwell connectivity between injector i and producer j, dimensionless 

 fo = oil-fractional-flow, dimensionless  

 H = heterogeneity factor 

 ii = variable injection rate (L3/t) 

 I = fixed injection rate (L3/t) 

 J = productivity index (L5/Ft) 

 k = permeability (md) 

 K = Koval factor 

 m = relative permeability exponent, dimensionless 

 Mij = number of block between injector i and producer j 

 Mo = endpoint mobility ratio, dimensionless 

 n = time-like variable, relative permeability exponent, dimensionless 

 N = oil in place, (L3) 

 Ninj = total number of injection wells, dimensionless 

 NP = cumulative oil production 

 Npro = total number of production wells, dimensionless 

 OOIP =  original oil in place (L3) 

 OWIP =  original water in place (L3) 
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 pwf = bottom-hole flowing pressure (F/L2) 

 p  = average reservoir pressure (F/L2) 

 q = fluid production rate (L3/t) 

 qo = oil production rate (L3/t) 

 qw = water production rate (L3/t) 

 r = growth or decline rate in logistic equation (1/t) 

 R = correlation coefficient, dimensionless 

 ROIP =  recoverable oil in place (L3) 

 S = saturation, dimensionless 

 Sor = residual oil saturation, dimensionless 

 So = oil saturation, dimensionless 

 Swr = residual water saturation, dimensionless 

 t = time (t) 

 VP = pore volume (L3) 

 Wi = cumulative water injected (L3) 

           WOR = water oil ratio 

 

Greek alphabets 

 α =  fractional-flow model or logistic equation coefficient 

 β = fractional-flow model or logistic equation coefficient 

 γ = logistic equation coefficient 

 ξ = integrating variable (t) 

 η = ratio of currently active producers to previously active producers  

 κ = asymmetric Hubbert curve standard deviation coefficient 

 σ = standard deviation 
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 λo = oil mobility ratio 

 λw = water mobility ratio 

 μ = viscosity (cp) 

 σ = standard deviation 

 τ = time constant (t) 

 τ* = equivalent blocks time constants (t) 

 

Subscripts and superscripts 

 b = block identifier 

 D = dimensionless time 

 F = field value indicator 

 i = injector index 

 ij = injector-producer pair index 

 j = producer index 

 k = timestep index 

 o = oil index 

 s = solvent index 

 p = pattern value indicator 

 r = residual indicator 

 w = water index 

 x = X direction indicator 

 y = Y direction indicator 

 z = Z direction indicator 
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