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Delaunay triangulation (DT) is a useful geometric structure for net-

working applications. We define a distributed DT and present a necessary and

sufficient condition for a distributed DT to be correct. This condition is used

as a guide for protocol design.

We investigate the design of join, leave, failure, and maintenance pro-

tocols for a set of nodes in d-dimension (d > 1) to construct and maintain a

distributed DT in a dynamic environment. The join, leave, and failure proto-

cols in the suite are proved to be correct for a single join, leave, and failure,

respectively. For a system under churn, it is impossible to maintain a correct

distributed DT continually. We define an accuracy metric such that accuracy

is 100% if and only if the distributed DT is correct. The suite also includes

a maintenance protocol designed to recover from incorrect system states and

to improve accuracy. In designing the protocols, we make use of two novel
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observations to substantially improve protocol efficiency. First, in the neigh-

bor discovery process of a node, many replies to the node’s queries contain

redundant information. Second, the use of a new failure protocol that em-

ploys a proactive approach to recovery is better than the reactive approaches

used in prior work. Experimental results show that our new suite of protocols

maintains high accuracy for systems under churn and each system converges

to 100% accuracy after churning stopped. They are much more efficient than

protocols in prior work.

To illustrate the usefulness of distributed DT for networking applica-

tions, we also present several application protocols including greedy routing,

finding a closest existing node, clustering, broadcast, and geocast. Bose and

Morin proved in 2004 that greedy routing always succeeds to find the des-

tination node on a DT. We prove that greedy routing always finds a closest

existing node to a given point, and our broadcast and geocast protocols always

deliver a message to every target node. Our broadcast and geocast protocols

are also efficient in the sense that very few target nodes receive duplicate mes-

sages, and non-target nodes receive no message. Performance characteristics

of greedy routing, broadcast, and geocast are investigated using simulation

experiments. We also investigate the impact of inaccurate coordinates on the

performance of greedy routing, broadcast, and geocast.
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Chapter 1

Introduction

Delaunay triangulation [6] and Voronoi diagram [40] have a long history

and many applications in different fields of science and engineering including

networking applications, such as greedy routing, finding a closest node to a

given point, broadcast, geocast, etc.[1, 20, 23, 27]. A triangulation for a given

set S of nodes in a 2D space is a subdivision of the convex hull of nodes in S

into non-overlapping triangles such that the vertexes of each triangle are nodes

in S. A Delaunay triangulation in 2D is usually defined as a triangulation such

that the circumcircle of each triangle does not include any other node inside

the circumcircle. Delaunay triangulation can be similarly generalized to a d-

dimensional space1 (d > 1) using simplexes instead of triangles [11]. We will

use DT as abbreviation for “Delaunay triangulation.”

An important property of DT in the networking context is that greedy

routing always succeeds on a DT [1]. In greedy routing, a node forwards a

message to one of its neighbors that is closest to a given destination node.

Note that greedy routing on an arbitrary graph is prone to the risk of being

trapped at a local optimum, i.e., routing stops at a non-destination node that

1Delaunay triangulation is defined in a Euclidean space. When we say a d-dimensional
space in this dissertation, we mean a d-dimensional Euclidean space.
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is closer to the destination than any of its neighbors. However, on a DT it is

guaranteed that greedy routing always succeeds to find the destination node.

Note that greedy routing does not always find a shortest route. However, the

quality of the greedy route is often very good, as is shown by experimental

results in Section 3.7, since the length of an optimal route between a pair of

nodes on a DT is within a constant time of the direct distance [3, 7, 13].

Another property of DT is that it connects a node to other nodes that

surround the node. This property may be useful in simulation-type appli-

cations, including distributed virtual reality systems and multiplayer on-line

games, since an entity in a simulation usually interacts with other entities

around it. For example, a molecule interacts with other molecules around it,

and a character in on-line games mostly interacts with other characters around

it. Furthermore, we also design a protocol to multicast a message within a

given radius from a source node, which will be useful for many simulation-

type applications such as multiplayer on-line games.

To demonstrate usefulness of a distributed DT for networking, we

present several application protocols, including greedy routing, clustering,

broadcast, and geocast. As we discussed earlier, it is known that greedy rout-

ing from a node to another node on a DT always succeeds. Then we prove

that greedy routing can also be used to locate an existing node that is closest

to a given point (or a node that is not in the system yet). As an application

of the protocol to find a closest existing node, we present a node clustering

protocol. Given a set of nodes and an upper bound on the radius of a cluster,

2



the clustering protocol partitions nodes into clusters of radii within the given

upper bound. In the protocol, each cluster has a center node and the center

nodes form a distributed DT. Similar approaches to clustering are found in

prior work, based on a random graph of clusters [46] or a complete graph of

clusters [45]. Note that greedy routing on a random graph is not guaranteed

to succeed and a complete graph may result in limited scalability.

Our broadcast protocol is based on the reverse path of greedy routing,

and is named GRPB (greedy reverse path broadcast). Since greedy routing

always succeeds on a DT, there exists a greedy-routing path from every node

u to s. Therefore if GRPB forwards a message from s to all the reverse-paths

of greedy-routing paths to s, the message will be delivered to every node u.

GRPB does not require any knowledge of global triangulation or per-session

state. A node determines its next-hop nodes to forward a broadcast message

solely using local information, namely the coordinates of its neighbor nodes

and the source node of the message.

We observe that the distance from a source node to each hop in GRPB

monotonically increases, since the distance to a destination node decreases in

greedy routing. Therefore our protocol to multicast within a given radius easily

follows. Multicast to nodes within a target region is called geocast in the wire-

less networks literature [30]. RadGRPM (radius greedy reverse path multicast)

is basically the same as GRPB, except that it additionally checks whether the

next-hop nodes are within the radius from the source node. RadGRPM also

keeps the advantage of GRPB that it does not require any global information
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or per-session state. RadGRPM is simple and is useful for simulation-type

applications. For example, an explosion of a bomb in a battlefield simulation

will affect entities within some range and will be observed within a longer

range. RadGRPM provides a special kind of geocast, which we call radius

geocast, because the target nodes are all within a spherical region centered at

the source. For distributed virtual environments, since an event usually affects

nodes within a circle or sphere centered at an entity, RadGRPM is well suited

for propagating events. For other potential applications, such as wireless net-

works and sensor networks, we will show that RadGRPM can be combined

with unicast greedy routing from the source node to the center of a spherical

region to provide a general geocast service.

We define a distributed DT and correctness for a distributed DT, and

present a necessary and sufficient condition for a distributed DT to be correct.

In our system model, each node maintains a set of nearby nodes, which is called

its candidate set, and determines its set of neighbor nodes, which is called its

neighbor set, based on its candidate set. We say that a distributed DT is correct

when the neighbor set of each node is the same as the set of its neighbors on

the global DT. Note that a candidate set is local information at a node. Our

correctness condition identifies how much local information is required at each

node to achieve a correct distributed DT.

This condition is used as a guide for designing a new suite of protocols

for a set of nodes in a d-dimensional space (d > 1) to construct and maintain

a distributed DT. In designing these protocols, we allow the set of nodes to
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change with time. New nodes join the set (system) and existing nodes leave

(gracefully) or fail2 over time. The system is said to be under churn and the

rate at which changes occur said to be the churn rate. In Chapter 4, we present

a suite of four protocols for join, leave, failure, and maintenance.

In a distributed DT, each node maintains a set of its neighbors. By

definition, a distributed DT of a set of nodes S is correct if and only if, for

every node u ∈ S on the distributed DT, u’s neighbor set is the same as the

set of u’s neighbors on the (centralized) DT of S. For convenience, we will

sometimes say “the system state is correct” to mean “the distributed DT is

correct.”

In designing the suite of protocols in this dissertation, we aim to achieve

three properties: accuracy, correctness, and efficiency. The protocol suite is

named ACE.

• Correctness – We prove the join, leave, and failure protocols to be correct

for a single join, leave, and failure, respectively. For the join protocol,

we prove that if the system state is correct before a new node joins, and

no other node joins, leaves, or fails during the join protocol execution,

then the system state is correct after join protocol execution. A similar

correctness property is proved for the leave and failure protocols. Note

that these three protocols are adequate for a system whose churn rate

is so low that joins, leaves, and failures occur serially, i.e., protocol

2When a node fails, it becomes silent. We do not consider Byzantine failures.
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execution finishes for each event (join, leave, or failure) before another

event occurs. In general, for systems with a higher churn rate, we also

provide a maintenance protocol, which is run periodically by each node.

• Accuracy – It is impossible to maintain a correct distributed DT continu-

ally for a system under churn. Note that correctness of a distributed DT

is broken as soon as a join/leave/failure occurs and is recovered only af-

ter the join/leave/failure protocol finishes execution. Fortunately, some

applications, such as greedy routing, can work well on a reasonably “ac-

curate” distributed DT. We define an accuracy metric such that accuracy

is 1 if and only if the distributed DT is correct. The maintenance proto-

col is designed to recover from incorrect system states due to concurrent

protocol processing and to improve accuracy. We found that in all of

our experiments conducted to date with the maintenance protocol, each

system that had been under churn would converge to 100% accuracy

some time after churning stopped.

• Efficiency – We use the total number of messages sent during protocol

execution as the measure of efficiency. Protocols are said to be more

efficient when their execution requires the use of fewer messages.

We previously presented three DT protocols in [23]: join and leave

protocols that were proved correct and a maintenance protocol that was shown

to converge to 100% accuracy after system churn. However, these protocols
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(to be referred to as our old protocols) were designed with correctness as the

main goal and their execution requires the use of a large number of messages.

To make the join and maintenance protocols in ACE much more effi-

cient than our old ones, we have two novel observations. First, the objective

of any join protocol is for a new node n to identify its neighbors (on the global

DT), and for n’s neighbors to detect n’s join. In our old join protocol, n sends

a request to an existing node u for n’s neighbors in u’s local information.

When n receives a reply, it learns new neighbors and sends requests to those

newly-learned neighbors. This process is recursively repeated until n does not

find any more new neighbor. Whereas it is necessary to send messages to all

neighbors, since the neighbors need to be notified that n has joined, we dis-

covered that to ensure correctness it is sufficient for n to hear back from just

one neighbor in each simplex that includes3 n rather than from all neighbors.

Furthermore, queries as well as replies for some simplexes can be combined so

that just one query-reply between n and one neighbor is enough for multiple

simplexes. Based on this observation, we designed a new join protocol for

ACE. We found that the ACE join protocol is much more efficient than our

old join protocol. We have proved the ACE join protocol to be correct for a

single join.

We also apply the above observation to substantially reduce the number

3When we say a simplex includes a node, we mean that the set of vertexes of the simplex
includes the node. Also, when we say a node is in a simplex, we mean that the node is a
vertex of the simplex.
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of messages used by the ACE maintenance protocol. Furthermore, we make a

second observation (described below) to greatly reduce the total number of all

protocol messages per unit time by reducing the frequency at which the ACE

maintenance protocol runs.

In the old suite of protocols, it is the old maintenance protocol’s job

to detect node failures and repair the resulting distributed DT. To detect a

node failure, the node was probed by all of its neighbors. Furthermore, the

distributed DT was repaired in a reactive fashion. The process of reactively

repairing a distributed DT after a failure is inevitably costly, because the

information needed for the repair was at the failed node and lost after failure.

To improve overall efficiency, we added a new failure protocol to ACE

specifically to handle node failures. The ACE failure protocol employs a proac-

tive approach. Each node designates one of its neighbors as its monitor node.

In the ACE failure protocol, a node is probed only by its monitor node, elim-

inating duplicate probes. In addition, each node prepares a contingency plan

and gives the contingency plan to its monitor node. The contingency plan in-

cludes all information to correctly update the distributed DT after its failure.

Once the failure of a node is detected by its monitor node, the monitor node

initiates failure recovery. That is, each neighbor of the failed node is notified of

the failure as well as any new neighbor(s) that it should have after the failure.

In this way, node failures are handled almost as efficiently as graceful node

leaves in the ACE leave protocol (which is the same as our old leave protocol).

We have proved the ACE failure protocol to be correct for a single failure.
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Each node runs the maintenance protocol (ACE or old) periodically.

The communication cost of the maintenance protocol increases as the period

decreases (or frequency increases). Generally, as the churn rate increases, the

maintenance protocol needs to be run more frequently. In the old protocol

suite, moreover, the old maintenance protocol needs to be run at the probing

frequency because one of its functions is to recover from node failures. With

the inclusion of an efficient failure protocol in the ACE protocol suite to handle

failures separately, the ACE maintenance protocol can be run less often. We

found that the overall efficiency of the ACE protocols is greatly improved as

a result.

To the best of our knowledge, the only other previous work for a dy-

namic distributed DT in a d-dimensional space is by Simon et al. [36]. They

proposed two sets of distributed algorithms: basic generalized algorithms and

improved generalized algorithms. Each set consists of an entity insertion (node

join) algorithm and an entity deletion (node failure) algorithm. Their basic

entity insertion algorithm is similar to our old join protocol. Their improved

entity insertion algorithm is based on a centralized flip algorithm [42] whereas

our join protocols are based on a “candidate-set approach” and our correctness

condition for a distributed DT. The two approaches are fundamentally differ-

ent. Their entity deletion algorithm and our ACE failure protocols are also

different. Our ACE failure protocol is substantially more efficient than their

improved entity deletion algorithm, which uses a reactive approach and allows

duplicate probes. The centralized flip algorithm is known to be correct [8].
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Table 1.1: A comparison of our old and ACE protocols with Simon et al.’s
basic and improved algorithms.

efficiency convergence to 100%
accuracy after system
churn

Simon et al.’s basic
algorithms

medium No

Simon et al.’s im-
proved algorithms

high No

Our old protocols low Yes

ACE protocols very high Yes

However, correctness of their distributed algorithms is not explicitly proved.

Lastly, they do not have any algorithm, like our maintenance protocols, for

recovery from concurrent processing of joins and failures due to system churn.

As a result, their algorithms consistently failed to converge to 100% accuracy

after system churn in simulation experiments.

A quick comparison of the four sets of protocols/algorithms is shown

in Table 1.1. More detailed experimental results, presented in Section 7, show

that ACE protocols are an order of magnitude more efficient than our old

protocols. There is a tradeoff, however. During a churn period, the average

accuracy of ACE protocols is slightly (a fraction of 1%) lower than the average

accuracy of our old protocols.

DT is defined in a Euclidean space. That is, each node has its coordi-

nates in the Euclidean space. Thus in our system model, we assume that each

10



node is located in a Euclidean space and knows its coordinates. Given such

assumptions, DT has desirable properties such that application protocols run

correctly and efficiently on a DT. For example, greedy routing always succeeds

and has a short routing path. GRPB and RadGRPM deliver a message to all

target nodes using minimal number of messages. However, the assumptions

may not always be satisfied in practice. For example, a node may not ac-

curately determine its coordinates. Then overall performance of applications

may be affected by the inaccuracy of coordinates. We investigate impact of

coordinate inaccuracy on quality of greedy routing, which is the basis of our

application protocols, and correctness and efficiency of RadGRPM.

The organization of this dissertation is as follows. In Chapter 2, we

introduce the concepts and definitions of a distributed DT, present our system

model, and a correctness condition for a distributed DT. We present exam-

ples of application protocols and performance of the application protocols in

Chapter 3. In Chapter 4, design of ACE protocol suite and its performance

are presented. We also define the accuracy metric of a distributed DT in the

same chapter. The impact of inaccurate coordinates on application protocols

is investigated in Chapter 5. We conclude in Chapter 6.
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Chapter 2

Distributed Delaunay triangulation

Consider a set of nodes. Conceptually, nodes are points in a Euclidean

space. The results and protocols in this dissertation are for d-dimensional

spaces, where d > 1. We first define Voronoi diagram of a set of given nodes

and then define DT as the dual of the Voronoi diagram. Note that there is

another way of directly defining DT using circumcircles of triangles (or circum-

hyperspheres of simplexes in higher dimensions), as we introduced DT at the

beginning of the previous chapter. Since the DT properties of interest to us

come from Voronoi diagrams, we believe that our approach is appropriate in

the context of this dissertation. Then we define distributed DT and correctness

for a distributed DT.

In our system model, the set of nodes that a node knows is referred to

as its candidate set. Each node determines its neighbors based on its candidate

set. Then we identify a necessary and sufficient condition of candidate sets for

a distributed DT to be correct. This correctness condition is used as a guide

to design our protocols.
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2.1 Concepts and definitions

Definition 1. Consider a set of nodes S in a Euclidean space. The Voronoi

diagram of S is a partitioning of the space into cells such that a node u ∈ S

is the closest node to all points within its Voronoi cell V CS(u).

That is, V CS(u) = {p | D(p, u) ≤ D(p, w), for any w ∈ S} where

D(x, y) denotes the distance between x and y. Note that a Voronoi cell in a

d-dimensional space is a convex d-dimensional polytope enclosed by (d − 1)-

dimensional facets.

Definition 2. Consider a set of nodes S in a Euclidean space. V CS(u) and

V CS(v) are neighboring Voronoi cells, or neighbors of each other, if and only

if V CS(u) and V CS(v) share a facet, which is denoted by V FS(u, v).

Definition 3. Consider a set of nodes S in a Euclidean space. The Delaunay

triangulation of S is a graph on S where two nodes u and v in S have an

edge between them if and only if V CS(u) and V CS(v) are neighbors of each

other.

Figure 2.1 shows a Voronoi diagram (dashed lines) for a set of nodes

in a 2D space and a DT (solid lines) for the same set of nodes. V CS(u) and

V CS(v) are neighbors of each other. We also say that u and v are neighbors of

each other when V CS(u) and V CS(v) are neighbors of each other. Note that

facets of a Voronoi cell perpendicularly bisect edges of a DT. Therefore, a DT

13
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v

Figure 2.1: A Voronoi diagram (dashed lines) and the corresponding DT (solid
lines) in a 2-dimensional space.

is the dual of a Voronoi diagram.1 Let us denote the DT of S as DT (S).

Definition 4. A distributed Delaunay triangulation of a set of nodes S

is specified by {< u, Nu >| u ∈ S}, where Nu represents the set of u’s neighbor

nodes, which is locally determined by u.

Definition 5. A distributed Delaunay triangulation of a set of nodes S is

correct if and only if both of the following conditions hold for every pair of

nodes u, v ∈ S: i) if there exists an edge between u and v on the global DT of

S, then v ∈ Nu and u ∈ Nv, and ii) if there does not exist an edge between u

and v on the global DT of S, then v 6∈ Nu and u 6∈ Nv.

That is, a distributed DT is correct when for every node u, Nu is the

same as the neighbors of u on DT (S). Since u does not have global knowledge,

1In geometry, polyhedra are associated into pairs called duals, where the vertices of one
correspond to the faces of the other.
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it is not straightforward to achieve correctness.

2.2 System model

Our approach to construct a distributed DT is as follows. We assume

that each node is associated with its coordinates in a d-dimensional Euclidean

space. Each node has prior knowledge of its own coordinates, as is assumed in

previous work [27, 32, 36, 37]. The mechanism to obtain coordinates is beyond

the scope of this dissertation. Coordinates may be given by an application, a

GPS device, or topology-aware virtual coordinates [31].2 Also when we say a

node u knows another node v, we assume that u knows v’s coordinates as well.

We also assume that nodes are in general position, namely: no d+1 nodes are

on the same hyperplane and no d + 2 nodes are on the same hypersphere [11].

Let S be a set of nodes to construct a distributed DT from. We will

present protocols to enable each node u ∈ S to get to know a set of its nearby

nodes including u itself, denoted as Cu, to be referred to as u’s candidate set.

Then u determines the set of its neighbor nodes Nu by calculating a local DT

of Cu, denoted by DT (Cu). That is, v ∈ Nu if and only if there exists an edge

between u and v on DT (Cu).

To simplify protocol descriptions, we assume that message delivery is

reliable. In a real implementation, additional mechanisms such as ARQ may

be used to ensure reliable message delivery.

2Application performance on a DT may be affected by the accuracy of virtual coordinates.

15



2.3 Correctness condition for a distributed Delaunay
triangulation

Recall that a distributed DT is correct when for every node u, Nu is the

same as the neighbors of u on DT (S). Since Nu is the set of u’s neighbor nodes

on DT (Cu) in our model, to achieve a correct distributed DT, the neighbors of

u on DT (Cu) must be the same as the neighbors of u on DT (S). Note that Cu

is local information of u while S is global knowledge. Therefore in designing our

protocols, we need to ensure that Cu has enough information for u to correctly

identify its global neighbors. If Cu is too limited, u cannot identify its global

neighbors. For the extreme case of Cu = S, u can identify its neighbors on the

global DT since DT (Cu) = DT (S); however, the communication overhead for

each node to acquire global knowledge would be extremely high.

Theorem 1 (Correctness Condition). Let S be a set of nodes and for each

node u ∈ S, u knows Cu, such that u ∈ Cu ⊂ S. The distributed DT of S is

correct if and only if, for every u ∈ S, Cu includes all neighbor nodes of u on

DT (S).

Theorem 1, previously presented in [21, 23], identifies a necessary and

sufficient condition for a distributed DT to be correct, namely: the candidate

set of each node contains all of its global neighbors. We use the above cor-

rectness condition as a guide to design our protocols. A proof of Theorem 1

is presented below.

To prove Theorem 1, we first prove Lemmas 1 – 4.
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Lemma 1. Let S be a set of nodes. Let v ∈ S be a neighbor node of u ∈ S on

DT (S). Then there exists a point p in V CS(u) such that D(p, u) < D(p, v) <

D(p, w) for all w ∈ S, w 6= u,w 6= v.

Proof. (1) Consider a point p′ on the shared facet of V CS(u) and V CS(v).

(2) D(p′, u) = D(p′, v) < D(p′, w) for all w ∈ S,w 6= u,w 6= v.

(3) Let w1 be the third closest node from p′ in S and let ∆ = D(p′, w1) −
D(p′, v). Let p be the point that is ∆

4
away from p′ toward u.

(4) D(p, u) < D(p, v) < D(p, w) for all w ∈ S, w 6= u,w 6= v.

Lemma 2. Let S be a set of nodes. If there exists a point p in V CS(u) such

that D(p, u) < D(p, v) ≤ D(p, w) for all w ∈ S, w 6= u,w 6= v, then u, v ∈ S

are neighbors of each other on DT (S).

Proof. (1) Consider a point p′ that moves from p toward v.

(2) D(p′, v) decreases faster than, or as fast as, D(p′, w) for all w ∈ S,w 6=
u, w 6= v.

(3) In case D(p′, v) decreases faster than D(p′, w), D(p′, v) < D(p′, w) after

p′ moves from p toward v.

(4) In the other case where D(p′, w) decreases as fast as D(p′, v), w must be

in the same direction as v from p. In that case, D(p, v) < D(p, w). (For
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p, v, and w that are on the same line, D(p, v) = D(p, w) implies v = w.)

Subsequently, D(p′, v) < D(p′, w) holds as p′ moves toward v.

(5) From (3) and (4), D(p′, v) < D(p′, w) after p′ moves from p toward v.

(6) As p′ moves from p toward v, D(p′, v) will decrease toward 0 while

D(p′, u) ≥ 0.

(7) There must be a point where D(p′, u) = D(p′, v).

(8) From (5) and (7), D(p′, u) = D(p′, v) < D(p′, w) for all w ∈ S, w 6=
u, w 6= v.

(9) Let w1 be the third closest node from p′ in S and let ∆ = D(p′, w1) −
D(p′, v). Consider the hyperplane F that includes p′ and is perpendicular

to the edge uv. For all p′′ that is on F and D(p′, p′′) < ∆
4
, D(p′′, u) =

D(p′′, v) < D(p′′, w) for all w ∈ S, w 6= u, w 6= v.

(10) V CS(u) and V CS(v) share a facet that includes p′ in (8) and p′′ in (9).

(11) From (10), u and v are neighbors on DT (S).

Lemma 3. Let S be a set of nodes. Let C ⊂ S, u ∈ C, and v ∈ C. If v is a

neighbor of u on DT (S), v is also a neighbor of u on DT (C).

Proof. (1) Since v is a neighbor of u on DT (S), by Lemma 1, there exists a

point p where D(p, u) < D(p, v) < D(p, w) for all w ∈ S, w 6= u,w 6= v.
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(2) Since C ⊂ S, D(p, u) < D(p, v) < D(p, w) for all w ∈ C, w 6= u,w 6= v.

(3) By Lemma 2, v is a neighbor of u on DT (C).

Lemma 4. Let S be a set of nodes, u ∈ S and u ∈ Cu ⊂ S. Assume that Cu

includes all neighbor nodes of u on DT (S). If v ∈ Cu is a neighbor of u on

DT (Cu), then v is also a neighbor of u on DT (S).

Proof. Our proof is by contradiction.

(1) v ∈ Cu is a neighbor of u on DT (Cu).

(2) Suppose that v is not a neighbor of u on DT (S).

(3) From (1) and Lemma 1, there exists a point p in V CCu(u) such that

D(p, u) < D(p, v) < D(p, w) for all w ∈ Cu, w 6= u,w 6= v.

(4) From (2), (3), and Lemma 2, there exists at least one node x ∈ S, x 6∈
Cu, x 6= u, x 6= v that satisfies D(p, x) < D(p, v).

(5) Let x1, ..., xk, k ≥ 1 be the nodes each of which satisfies the condition in

(4). Without loss of generality, let D(p, x1) ≤ D(p, x2) ≤ ... ≤ D(p, xk).

(6) From (3) – (5), we have D(p, x1) ≤ D(p, x2) ≤ ... ≤ D(p, xk) < D(p, v) ≤
D(p, w) for all w ∈ S, w 6= u,w 6= v, w 6= xi, 1 ≤ i ≤ k.
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(7) Consider a node w ∈ S, w 6= u,w 6= v, w 6= xi, 1 ≤ i ≤ k. From

(6), D(p, v) ≤ D(p, w). From (3), D(p, u) < D(p, v). Thus, for all

w ∈ S, w 6= u,w 6= xi, 1 ≤ i ≤ k, D(p, u) < D(p, w).

(8) We show below that in all possible cases, there exists a node xi, 1 ≤ i ≤ k

that is a neighbor of u on DT (S).

(9) Since xi 6∈ Cu, it is contradictory to the assumption that Cu includes all

neighbor nodes of u on DT (S). Therefore v is a neighbor of u on DT (S).

Justification of step (8) in above proof: Recall that, from (6) and

(7), for all w ∈ S,w 6= u,w 6= xi, 1 ≤ i ≤ k, D(p, u) < D(p, w), and D(p, xi) <

D(p, w) for 1 ≤ i ≤ k.

Comparing D(p, u) and D(p, x1), there can be three cases: D(p, u) <

D(p, x1) (case A), D(p, u) = D(p, x1) (case B), and D(p, x1) < D(p, u) (case

C).

Case A. D(p, u) < D(p, x1).

From (6) above, we have D(p, u) < D(p, x1) ≤ D(p, w) for all w ∈
S, w 6= u,w 6= x1. By Lemma 2, x1 is a neighbor of u on DT (S).

Case B. D(p, u) = D(p, x1).

Let h be the largest integer such that D(p, x1) = D(p, xi), 1 ≤ i ≤
h ≤ k. Let w1 be a node such that w1 ∈ S,w1 6= u,w1 6= xi, 1 ≤ i ≤ h,

D(p, w1) ≤ D(p, w) for all w ∈ S, w 6= u,w 6= w1, w 6= xi, 1 ≤ i ≤ h.
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From (6), we have D(p, u) = D(p, x1) = ... = D(p, xh) < D(p, w1) ≤
D(p, w) for all w ∈ S,w 6= u,w 6= w1, w 6= xi, 1 ≤ i ≤ h.

(1) Let ∆ = D(p, w1)−D(p, x1). Consider a point p′ that is ∆
4

away from p

toward u.

(2) Then D(p′, u) < D(p′, xi) < D(p′, w), 1 ≤ i ≤ h, for all w ∈ S,w 6=
u, w 6= xi, 1 ≤ i ≤ h.

(3) Let x′ be xi with smallest D(p′, xi), 1 ≤ i ≤ h. Then we have D(p′, u) <

D(p′, x′) ≤ D(p′, w) for all w ∈ S, w 6= u,w 6= x′. This is case A with p′

replacing p and x′ replacing x1, which has been proved.

Case C. D(p, u) < D(p, x1).

Let h be the largest integer such that D(p, xi) < D(p, u), 1 ≤ i ≤ h ≤ k.

From (6), we have D(p, xi) < D(p, u) ≤ D(p, w) for all w ∈ S, w 6= u, w 6=
xi, 1 ≤ i ≤ h.

(1) Consider a point p′ that moves from p toward u.

(2) D(p′, u) decreases toward 0 faster than or as fast as D(p′, w) for all

w ∈ S, w 6= u.

(3) We still have D(p′, u) ≤ D(p′, w) for all w ∈ S,w 6= u,w 6= xi, 1 ≤ i ≤ h.

(4) D(p′, xi) > 0 for all xi, 1 ≤ i ≤ h.
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(5) There must be a point where for some x′ = xi, 1 ≤ i ≤ h, D(p′, u) =

D(p′, x′) ≤ D(p′, w) for all w ∈ S, w 6= u,w 6= x′. This is case B with p′

replacing p and x′ replacing x1, which has been proved.

Theorem 1 (Correctness Condition). Let S be a set of nodes and for each

node u ∈ S, u knows Cu, such that u ∈ Cu ⊂ S. The distributed DT of S is

correct if and only if, for every u ∈ S, Cu includes all neighbor nodes of u on

DT (S).

Proof. Let Nu, u ∈ S be the set of u’s neighbor nodes on DT (Cu).

(only if) Suppose that Cu does not include a node v that is a neighbor

node of u on DT (S). Clearly, Nu cannot include v and the distributed DT is

not correct.

(if) Suppose that for every u ∈ S, Cu includes all neighbor nodes of u

on DT (S). We show that v ∈ S is a neighbor of u on DT (Cu) if and only if v

is a neighbor of u on DT (S).

(1) (if) Consider a neighbor v of u on DT (S). Since Cu ⊂ S, by Lemma 3,

v is a neighbor of u on DT (Cu).

(2) (only if) Consider a neighbor v of u on DT (Cu). By Lemma 4, v is a

neighbor of u on DT (S).
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Chapter 3

Applications of distributed Delaunay

triangulation

In this chapter we present several protocols to illustrate the usefulness

of distributed DT for networking applications. We assume for now that a set of

nodes S form a correct distributed DT. Our protocols to construct and main-

tain a distributed DT are deferred to Chapter 4. We also assume that nodes

are associated with their coordinates. When a node “knows” other nodes, it

also knows their coordinates. That is, a node knows its own coordinates, coor-

dinates of its neighbors, and the coordinates of any other node that it knows

such as the destination node in routing and the source node in broadcasting.

The distance between any two nodes can be calculated from their coordinates.

An important and well-known property of DT is that a simple greedy

routing algorithm is guaranteed to succeed on a DT, without being stuck at

a local optimum [1]. We prove a similar property that greedy routing can

also find a closest node to a given point. Clustering of network nodes is an

example for which this property can be utilized. We also present protocols for

broadcast and for geocast, and prove correctness for the protocols.
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3.1 Greedy routing

A well-known property of DT is that greedy routing always succeeds

on a DT [1]. In greedy routing, a node forwards a message to a neighbor that

is closest to the destination. As with many greedy approaches, the greedy

routing algorithm is prone to risk of being stuck at a local optimum. That

is, on an arbitrary graph, a non-destination node may be closer than any of

its neighbors to the destination, thus stopping greedy routing at the node.

However, on a DT, it is guaranteed that greedy routing succeeds to deliver a

message to the destination node. Furthermore, the quality of the greedy route

is often very good, since the length of an optimal route between a pair of nodes

on a DT is within a constant time of the direct distance [3, 7, 13].

3.2 Finding a closest existing node

Similar to the previous application of greedy routing, a DT may be

utilized in finding a closest existing node to a given point. (Note that the

given point may not be a node in the DT.) Finding a closest existing node is

a common operation in many Internet applications, including server selection,

node clustering, and peer-to-peer overlay networks.1

Consider the problem of finding a closest existing node (destination)

d ∈ S to a given point n 6∈ S, starting from a given node s ∈ S. If there are

more than one closest nodes to n, the destination may be any one of them.

1If topology-aware virtual coordinates (e.g. [31]) are used for Internet applications,
application performance would be affected by accuracy of the virtual coordinates.
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Let v0 be s. At vi, the greedy routing algorithm selects the next-hop node vi+1

that is closest to n among the neighbor nodes of vi. If vi+1 is closer to n than

vi, greedy routing is repeated at vi+1. Otherwise, routing stops at vi, which is

denoted as vk. If vk is the closest node or one of the closest nodes to n, we

say the routing succeeds; otherwise we say it fails. In other words, the routing

succeeds if n ∈ V CS(vk).

The following theorem shows that the greedy routing algorithm always

succeeds to find a closest existing node to a given point as long as it is run on

a DT. Bose and Morin [1] proved a similar theorem that greedy routing always

succeeds to arrive at a given destination node on a DT. We use an approach

similar to theirs to prove the following theorem.

Theorem 2. Finding a closest node d ∈ S to a given point n 6∈ S using greedy

routing always succeeds on DT (S).

Proof. We first show that every node v 6= d on DT (S) has a next-hop node in

greedy routing toward n. (See Figure 3.1.)

(1) Suppose that v 6= d.

(2) Draw a straight line L from v to n, and let P be the hyperplane that

includes the first Voronoi facet that L crosses.

(3) Let u be the node in the adjacent Voronoi cell that shares P with v.

(4) u and v are neighbors of each other on DT(S).
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Figure 3.1: Figure for Theorem 2 proof.

(5) P divides the entire space into two regions Sp
u and Sp

v such that points

in Sp
u are closer to u than to v.

(6) Since n belongs to Sp
u, n is closer to u than v.

(7) When v 6= d, v has a neighbor that is closer to n.

(8) On the other hand, if v = d, the routing stops at v.

(9) Since there are a finite number of nodes, eventually a closest node d is

found in a finite number of steps.
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3.3 Clustering of network nodes

To illustrate an application of finding a closest existing node to a given

point, we present a simple clustering protocol of network nodes. The protocol

is a distributed version of a centralized clustering algorithm adopted from [15].2

The upper bound R of the radius of a cluster is given as a parameter. In the

centralized algorithm, nodes are considered sequentially in deciding whether

they should join an existing cluster or create a new cluster. The first node

considered creates a new cluster and becomes the center of it, since there is

no existing cluster. From the second node on, the considered node is tested

to see if its distance to the center of the closest existing cluster is within R or

not. If so, the considered node joins the cluster; otherwise it creates its own

cluster and becomes the center of it. The algorithm stops when all nodes are

considered. Note that the result of clustering may be different depending on

the order in which nodes are considered [15].

Our clustering protocol is a distributed version of this centralized al-

gorithm. The main challenge in converting it into a distributed version is

to find the closest existing cluster without global knowledge. We solve this

problem by utilizing greedy routing on a DT. Recall that each cluster has a

center node. In our protocol, existing center nodes form a distributed DT. A

non-center node does not participate in the distributed DT. When a node u

2There are different measures of goodness in clustering algorithms. The main objective of
this algorithm is to get clusters whose radii are within a given upper bound. For clusterings
that satisfy the upper bound, a secondary measure may be the number of clusters. This
algorithm does not optimize the number of clusters.
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joins the system, it first finds the closest existing center node by using greedy

routing on the distributed DT of the center nodes. Suppose that the center

node su is found. If the distance from u to su is within the upper bound R, u

becomes a member of the cluster centered at su; otherwise u creates its own

cluster, becomes the center node of the new cluster, and joins the distributed

DT.

Other distributed approaches to clustering are found in prior work. In

[46], clusters form a random graph and a joining node may fail to find the clos-

est existing cluster. In [45], every node maintains links to every other cluster,

limiting scalability. (The scalability issue is addressed in [45] by introducing a

hierarchy of clusters.) Our protocol finds the closest cluster for a joining node

and is scalable.

3.4 Broadcast using reverse greedy paths

As was discussed earlier, the greedy routing algorithm finds a path from

a source node to a destination. Consider such paths from all nodes in S to

a node s ∈ S. The union of the paths is a tree rooted at s. Therefore by

reversing the direction of each path, we get a broadcast tree from a source

node s to every other node in S. Figure 3.2 illustrates an example of a reverse

path. In forward greedy routing, v selects u as the next hop, since u is its

closest neighbor to the destination s. Thus in a reverse-path broadcast from

the source node s, u should forward a message to v, if u knows that u is the

next hop of v in the forward route. Note that s is the destination in the forward
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Figure 3.2: Forward path and reverse path.

greedy routing and the source in the reverse-path broadcast. We introduce a

simple broadcast protocol which utilizes the reverse-path tree. Note that our

protocol does not require knowledge of the global triangulation over S. Each

node u is assumed only to know its set of neighbor nodes, and determines

to which node(s) it should forward a message based on its local knowledge.

Specifically, node u in the previous example may not know all the neighbors

of v. u only knows the neighbors of u, but still has to determine whether u is

the closest node to s among v’s neighbor nodes.

The idea of using reverse path for broadcast goes back to as early as

1978 [5]. In the context of DT, HyperCast [26] is the first system to introduce

the idea. Our protocol is different in that it is based on greedy routing in

an arbitrary dimension while HyperCast is based on compass routing in a 2D

space. The major advantage of both approaches is that a broadcast tree does

not need to be explicitly maintained. A node can determine next-hop nodes

based on the coordinates of its neighbors, itself, and the source node.
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We name our broadcast protocol as GRPB (greedy reverse-path broad-

cast). In GRPB, a node u maintains a local DT of u and u’s neighbors. For

each neighbor v, u forwards a message from a source node s to v if both of the

following two conditions hold:

C1 u is closer to s than v is.

C2 In the local DT of u and u’s neighbor nodes, there does not exist a

node w 6= u such that: C2.1 w is closer to s than u is, and C2.2 u, v and w

are included in the same triangle (or simplex in a d-dimensional space).

Condition C1 is easy to understand. Suppose C1 is true. Then u does

not forward to v if u is sure that another node, say w, is the next hop of v in

the forward greedy routing. The necessary and sufficient conditions for such

w are: C2.1 w is closer to s than u, and C2.3 w is a neighbor of v on the

global DT. However, u does not have global information and cannot check

C2.3. Hence we specify condition C2.2 which includes C2.3. C2.1 and C2.2

are necessary but not sufficient.

Note that in case of a tie between w and u in C2.1, u must forward

to v at the cost of possible duplication, since v may or may not choose u as

the next hop in the forward greedy routing. Note also that even if node w

appears to be v’s neighbor in u’s local DT, w may not actually be v’s neighbor

in the global DT. Figure 3.3 illustrates an example in a 2D space. The left

graph shows u’s local DT, in which v and w are neighbors. However, as shown

in the right graph, there may exist a node x outside u’s local knowledge and
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Figure 3.3: An ambiguous situation due to limited knowledge in GRPB.

thus w may not actually be a neighbor of v. Without including C2.2 in C2,

u might erroneously conclude that it does not need to forward to v, since w

appears to be the closest node to s among v’s neighbors. C2.2 detects such

ambiguous situations and requires that u forwards to v at the cost of possible

duplication. We performed experiments to broadcast a message using GRPB

on a distributed DT of 200 randomly-placed nodes in various dimensions. In

the experiments, the number of duplicate messages was from 3% to 10% of

the number of nodes. For further experiments on message duplication, refer

to Section 5.2. The protocol pseudocode is presented in Figure 3.4.

The following theorem guarantees the correctness of GRPB, namely it

delivers a message to all nodes in the system.

Theorem 3. Let a set S of nodes form a correct distributed DT. The GRPB

protocol delivers a message from a source node s ∈ S to all the other nodes in

S.
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Start broadcast(msg) of node u
; u is a source node, loc is location of u
for all v ∈ Nu do

send BROADCAST(msg, loc) to v
end for

On u’s receiving BROADCAST(msg, loc)
; u is a recipient of a BROADCAST message
deliver(msg)
for all v ∈ Nu do

if v satisfies conditions C1 and C2 from loc then
send BROADCAST(msg, loc) to v

end if
end for

Figure 3.4: GRPB protocol at a node u.

Proof. We prove the theorem by showing that if there exists an edge from u to

v in the global reverse-path tree, the GRPB protocol also forwards a message

from u to v.

Our proof is by contradiction.

(1) Assume that the theorem is not true. Suppose a node u fails to forward

to its neighbor v, while there exists an edge from u to v in the global

reverse-path tree.

(2) v is a neighbor of u on the local DT of u, since the distributed DT is

correct. [From Definition 5.]

(3) u is closer to s than v is, since there is an edge from u to v in the global

reverse-path tree.

(4) On the local DT of u, there exists a node w that is a mutual neighbor of
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u and v, and the distance between w and s is shorter than the distance

between u and s. [From (1), (2), (3), and conditions C1 and C2.]

(5) w is not a neighbor of v on the global DT. [If w were a neighbor of v,

the next hop of v in the forward path should not be u since, from (4) ,

w is closer than u to s.]

(6) On the local DT of u, there exists a simplex that includes u, v and w.

Let the simplex be denoted by p. [From condition C2.2.]

(7) p does not exist on the global DT, since w is not a neighbor of v. [From

(5).]

(8) On the global DT, the space of p is occupied by other simplexes.

(9) Let x be one such simplex that includes u and v. Let x1, ..., xk be the

other nodes of x other than u or v.

(10) x1, ..., xk are neighbors of u on the global DT.

(11) x1, ..., xk are neighbors of u on the local DT of u, since the distributed

DT is correct. [From Definition 5.]

(12) There exists the same simplex x on the local DT of u, since v and

x1, ..., xk are neighbors of u. [From (2) and (11).]

(13) It is impossible that x and p co-exist on the local DT of u, since they

overlap.
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3.5 Radius geocast

Geocast is a special case of multicast in which a message is delivered

to all nodes in a given region. Our radius geocast protocol, RadGRPM, is

designed to deliver a message to all nodes within a given radius from a source

node.

We observe that in the GRPB protocol the distance of next hop from

the source monotonically increases, since the distance to the destination mono-

tonically decreases in forward greedy routing. We utilize this observation in

designing RadGRPM.

In RadGRPM from a source node s to all the other nodes within a

given radius r, s first sends the message to all its neighbors within r. Then,

for each neighbor node v, a node u forwards a message to v if the following

condition holds as well as C1 and C2 in GRPB:

C3 The distance from s to v does not exceed the radius r.

Essentially the protocol is the same as the original GRPB protocol, ex-

cept that forwarding stops when the distance from the source exceeds the given

radius (condition C3). Note that no node outside the given radius receives any

message, which is one reason that RadGRPM is efficient. Pseudocode of the

protocol is presented in Figure 3.5. Theorem 4 guarantees that RadGRPM

delivers the message to all nodes within a given radius.

Theorem 4. Let a set S of nodes form a correct distributed DT. The Rad-

GRPM protocol delivers a message from a source node s ∈ S to all nodes
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Start radius geocast(msg, rad) of node u
; u is a source node, loc is location of u
for all v ∈ Nu within rad from loc do

send GEOCAST(msg, rad, loc) to v
end for

On u’s receiving GEOCAST(msg, rad, loc)
; u is a recipient of a GEOCAST message
deliver(msg)
for all v ∈ Nu do

if v satisfies conditions C1, C2, and C3 from loc then
send GEOCAST(msg, rad, loc) to v

end if
end for

Figure 3.5: RadGRPM protocol at a node u.

within a radius r from s.

Proof. By Theorem 3, the GRPB protocol delivers a message to all other nodes

in S. Since the distance from s monotonically increases whenever a message

is forwarded and the forwarding stops when the distance from s exceeds r,

all nodes along the reverse greedy paths after stopping have distances from s

longer than r. Therefore the RadGRPM protocol delivers the message to all

nodes within the radius r.

3.6 General geocast

Note that RadGRPM by itself is a special kind of geocast in the sense

that a source node is at the center of a spherical target region. RadGRPM

can be combined with unicast greedy routing to provide general geocast. That
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is, in case a source node is not at the center of a spherical target region, the

source sends a unicast message to the center location using greedy routing;

the message is then propagated within the target region using RadGRPM, as

described below.

If no node exists at the center of a spherical target region, greedy rout-

ing towards the center (specified by its coordinates) will succeed to forward the

unicast message to a node closest to the center (see Theorem 2 and its proof).

For clarity of explanation, let us assume for now that there is only one node

that is closest to the center point. The case where there are two or more clos-

est nodes is addressed below. Let c denote the center point and c′ the closest

node to c. As soon as c′ receives a unicast message by greedy routing towards

c, c′ determines that it is a closest node to c among its neighbors and starts

RadGRPM. More specifically, it executes the Start radius geocast() function

in Figure 3.5 using the center’s location for parameter loc instead of its own

location. Starting RadGRPM from c′ does not affect correct execution of Rad-

GRPM. Correctness of GRPB and RadGRPM is based on the fact that greedy

routing to a node always succeeds on a DT. Since greedy routing towards c

always succeeds to reach the closest node c′, c′ is the root of the reverse-path

tree of greedy routing from every node towards c. Note that the same greedy

routing towards c is used, whether a node exists at c or not. Therefore the

same reverse-path conditions (C1 and C2) can be used even if RadGRPM

is started from c′. Also, the distance from c monotonically increases in the

reverse greedy paths, allowing use of the same stopping condition (C3).
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It is possible that there are two or more nodes closest to the center.

(These nodes are equidistant from the center.) Greedy routing towards the

center will forward the unicast message to one of the closest nodes. Let c′1

denote the closest node that receives the unicast message. Let c′2, ..., c
′
k denote

the other closest nodes, where k > 1. Note that the greedy paths from all

nodes form a forest of trees, the root nodes of which are the closest nodes,

c′i, 1 ≤ i ≤ k. When the unicast message arrives at c′1 by greedy routing, c′1

determines that none of its neighbors is closer to the center than itself, which

means c′1 is one of the closest nodes, and it executes the Start radius geocast()

function in Figure 3.5 using the center’s location for paramter loc instead of its

own. In the function, c′1 sends a geocast message to each of its neighbors within

the radius of the center. Therefore if another closest node is a neighbor of c′1,

it will receive the geocast message; it also determines that it is a closest node

to the center and it executes the Start radius geocast() function in Figure 3.5

using the center’s location for parameter loc instead of its own. Thus, if the set

of closest nodes to the center and DT edges between them form a connected

graph, then all of the other closest nodes are guaranteed to receive the geocast

message. Subsequently, the geocast message will be propagated in all reverse-

path trees of the forest and it will be delivered to all nodes within the radius

of the center location. Pseudocode of the protocol is presented in Figure 3.6.

In the following lemma, we prove that the set of nodes closest to the

center and DT edges between them form a connected graph, which is sufficient

to prove correctness of our general geocast protocol described above.
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Start geocast(msg, c, rad) of node u
; u is a source node
Route geocast(msg, c, rad)

Route geocast(msg, c, rad) of node u
let v ∈ Nu be the closest node to c
if D(u, c) ≤ D(v, c) and D(u, c) ≤ rad then

; u is the closest node to c
Deliver(msg)
for all v ∈ Nu within rad from c do

send GEOCAST(msg, rad, c) to v
end for

else
send GEOCAST(msg, rad, c) to v

end if

On u’s receiving GEOCAST(msg, rad, c) from w
if D(u, c) > D(w, c) then

; RadGRPM phase
Deliver(msg)
for all v ∈ Nu do

if v satisfies conditions C1, C2, and C3 from c then
send GEOCAST(msg, rad, c) to v

end if
end for

else
; unicast phase
Route geocast(msg, c, rad)

end if

Figure 3.6: General geocast protocol at a node u.

Lemma 5. Let a set S of nodes form a correct distributed DT. Let p denote a

point in the space. Let c′1, c
′
2, ..., c

′
k denote the closest nodes to p in S, , k > 1.

Then the subgraph of DT that includes c′1, c
′
2, ..., c

′
k and edges between them is
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a connected graph.

Proof. Our proof is by contradiction.

(1) Suppose the subgraph of DT is not a connected graph. Without loss of

generality, suppose that c′1, c
′
2, ..., c

′
h are connected, h < k, but they are

not connected to c′k.

(2) Let Nc = Nc′1 ∪Nc′2 ∪ ...∪Nc′h −{c′1, c′2, ..., c′h}. Let nc be the closest node

in Nc to p. Let ∆ = D(nc, p)−D(c′1, p).

(3) Let p′ be a point that is ∆
4

away from p towards c′k.

(4) D(c′k, p
′) = D(c′k, p)− ∆

4
.

(5) D(c′i, p
′) > D(c′i, p) − ∆

4
= D(c′k, p

′), i 6= k. [c′i, i 6= k cannot be in the

same direction as c′k from p.]

(6) c′k is the only closest node to p′.

(7) D(c′i, p
′) ≤ D(c′1, p) + ∆

4
, 1 ≤ i ≤ h. [From (3) and the assumption that

D(c′1, p) = D(c′i, p), 1 ≤ i ≤ k.]

(8) D(c′1, p) + ∆
4
≤ D(n′c, p)−∆ + ∆

4
, n′c ∈ Nc. [From (2).]

(9) D(n′c, p)−∆ + ∆
4

< D(n′c, p)− ∆
4
, n′c ∈ Nc.

(10) D(n′c, p)− ∆
4
≤ D(n′c, p

′), n′c ∈ Nc. [From (3).]

(11) D(c′i, p
′) < D(n′c, p

′), 1 ≤ i ≤ h, n′c ∈ Nc. [From (7) – (10).]

(12) Greedy routing from c′1 towards p′ will be stuck at one of the nodes

c′1, ..., c
′
h, and cannot reach c′k.

(13) Greedy routing from any node in S towards p′ always succeeds to reach

the closest node to p′, which is c′k. [From (6) and Theorem 2.]
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(14) (12) and (13) are contradictory to each other.

3.7 Performance of application protocols

In this section, we evaluate performance of application protocols assum-

ing that coordinates are accurate and the underlying distributed DT is correct.

Impact of inaccurate coordinates on application performance is investigated

in Chapter 5.

3.7.1 Performance of greedy routing

We first evaluate the performance of greedy routing, which is the basis

of our application protocols. We use relative path length as the perfor-

mance metric, which is defined as the ratio of the overall length of a greedy

routing path to the direct distance between a source and a destination node

(see Figure 3.7).

a

b

c

d

Figure 3.7: An illustration of relative path length. The dotted line represents
the greedy routing path from a to d via b and c. Relative path length of this
greedy routing path is the ratio of the overall length of the dotted line to the
length of the solid line (direct distance between a and d).

Figure 3.8 shows the relative path length of greedy routing on a dis-
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tributed DT using accurate coordinates. In an experiment, greedy routing

paths between 1000 random pairs of nodes on a distributed DT of 1000 ran-

domly placed nodes are evaluated and the average of the relative path lengths

is calculated. The curve represents the average result of 100 such experiments

for different dimensionalities. Each vertical bar indicates the range of results

from 10th percentile to 90th percentile. It is known that the shortest path

on a DT is within a constant time of direct distance [3, 7, 13]. Though greedy

routing does not always find the shortest path, Figure 3.8 shows that it per-

forms very well in practice. The average path length is around 1.2 times of

direct distance.
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Figure 3.8: Ratio of greedy-routing path length to direct distance on a dis-
tributed DT using accurate coordinates.
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3.7.2 Performance of broadcast and geocast protocols

Using simulation experiments, we evaluate our broadcast and geocast

protocols in terms of correctness and efficiency. Then we investigate charac-

teristics of our protocols in terms of node outdegree and hop count. In our

experiments, 1000 nodes are randomly placed in a 2D (or 3D) space, each axis

of which has a range of 0 to 9999. We run our protocols from each of the 1000

nodes and the average of the 1000 experiments is shown.

3.7.2.1 Correctness

We say that a broadcast or geocast protocol is correct if it delivers a

message to every target node. That is, GRPB should deliver a message to

all nodes in the system and RadGRPM should deliver a message to all nodes

within the given radius. Recall that both GRPB and RadGRPM are proved

to be correct by Theorem 3 and Theorem 4, respectively. In every one of

many thousands of experiments we conducted, GRPB and RadGRPM always

worked correctly, namely, delivered a message to every target node.

3.7.2.2 Efficiency

We define efficiency of a broadcast or geocast protocol as the ratio of the

number of target nodes to the number of message transmissions. For example,

if a protocol uses 100 messages to deliver to 50 target nodes, its efficiency is

50%. Ideally each target node needs to receive exactly one message and non-

target nodes should not receive any messages, in which case efficiency is 100%.
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There are two sources of inefficiency: (a) a non-target node receives a message

and (b) a target node receives a message more than once. Our protocols are

carefully designed such that non-target nodes do not receive any message and

very few target nodes receive duplicate messages. A small number of duplicate

messages are sent due to limitation of local knowledge at some nodes.

Figure 3.9 shows the distribution of number of messages delivered at

a node in GRPB. The solid line represents the result in 2D and the dashed

line represents the result in 3D. In both results, most of nodes receive the

broadcast message exactly once. Most of the other nodes receive the message

twice. The efficiency is 96.1% in 2D and 88.3% in 3D.
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Figure 3.9: Distribution of number of messages delivered at a node (GRPB).

Figure 3.10 shows the distribution of number of messages delivered at

a node in RadGRPM. The results of radius 1000 in 2D, radius 3000 in 2D,

radius 2000 in 3D, and radius 5000 in 3D are shown. The average number
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Figure 3.10: Distribution of number of messages delivered at a node (Rad-
GRPM).

of target nodes in each case is 28.2, 215.4, 26.3, and 280.2, respectively. The

efficiency in each case is 99.4%, 98.0%, 99.3%, and 94.6%, respectively.

Figures 3.11 and 3.11 shows a trend that efficiency decreases as the

number of target nodes increases. However, the efficiency is still very high for

hundreds of target nodes.

3.7.2.3 Node outdegree and hop count

Node outdegree and hop count are important characteristics of a broad-

cast/multicast tree.3 The outdegree of a node is the number of other nodes to

which the node sends a message in a broadcast/multicast. A low node outde-

3Even though our protocols do not explicitly maintain a broadcast/multicast tree, the
graph consisting of all message-forwarding paths is called a tree. Note that, to be strict, the
graph may not be a tree due to duplicate messages delivered to a node.
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Figure 3.11: Efficiency and number of target nodes (2D).
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Figure 3.12: Efficiency and number of target nodes (3D).

gree is preferred since a node has limited resources, especially in a peer-to-peer

environment. A low hop count is also preferred to reduce delay. There is a

trade-off between node outdegree and hop count. That is, a tree cannot have

a low node outdegree and a low hop count at the same time.
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Figure 3.13 shows the distribution of node outdegree in GRPB. The

solid line represents the result in 2D and the dashed line represents the result

in 3D. The average node outdegree is higher in 3D than 2D, which is expected

since a node has more neighbors in a higher-dimension DT. Both in 2D and

3D, very few nodes have outdegree of four or higher.
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Figure 3.13: Distribution of node outdegree (GRPB).

Figure 3.14 shows the distribution of node outdegree in RadGRPM.

The results of radius 1000 in 2D, radius 3000 in 2D, radius 2000 in 3D, and

radius 5000 in 3D are shown. In all cases, very few nodes have outdegree of

four or higher.

Figure 3.15 shows the distribution of hop count in GRPB. The solid

line represents the result in 2D and the dashed line represents the result in

3D. The average hop count is 14.8 in 2D and 5.6 in 3D, which is smaller in 3D

since the average node outdegree is higher in 3D.
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Figure 3.14: Distribution of node outdegree (RadGRPM).
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Figure 3.15: Distribution of hop count in GRPB.

Figure 3.16 shows the distribution of hop count in RadGRPM. The

results of radius 1000 in 2D, radius 3000 in 2D, radius 2000 in 3D, and radius

5000 in 3D are shown. The average hop count in each case is 2.3, 5.8, 1.5, and

3.2, respectively.
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Figure 3.16: Distribution of hop count in RadGRPM.

Figures 3.17 and 3.18 show that the average hop count increases as

the number of target nodes increases. Since the average node outdegree is

higher in 3D than 2D, the average hop count increases faster in 2D. This is

due to the planar nature of a DT. That is, a DT does not have a shortcut that

connects a node to a faraway node. If necessary, the average hop count may be

reduced by introducing additional shortcut edges to a DT. Correctness GRPB

and RadGRPM is not affected by forwarding additional messages over shortcut

edges. Efficiency decreases in exchange for a decreased average hop count, since

the additional messages are redundant. Tsuboi et al. [38] recently proposed

Skip Delaunay Network (SDN), which is a hierarchy of DTs and enables a

unicast and a geocast protocol with log(N) hop counts. Their geocast protocol

(GeoMulticast) delivers a message to a rectangular region. A hierarchy of DTs

is also mentioned in [26].
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Figure 3.17: Average hop count and number of target nodes in 2D.
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Figure 3.18: Average hop count and number of target nodes in 3D.
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Chapter 4

ACE protocol suite

In this chapter we present a new suite of protocols to construct and

maintain a distributed DT. In designing the protocols, we aim to achieve three

properties: accuracy, correctness, and efficiency. The protocol suite is named

ACE [24].

We previously presented three DT protocols in [23]: join and leave

protocols that were proved correct and a maintenance protocol that was shown

to converge to 100% accuracy after system churn. However, these protocols

(to be referred to as our old protocols) were designed with correctness as the

main goal and their execution requires the use of a large number of messages.

Inspired by the flip algorithm [42], we substantially reduce the number

of messages in the ACE join and maintenance protocols. We also introduce

a failure protocol in the ACE protocol suite, which uses a proactive approach

to efficiently recover from a node failure and a designated monitor node to

greatly reduce the number of probe messages. The old leave protocol is very

efficient and remains in the ACE protocol suite.

The ACE join, leave, and failure protocols are proved to be correct for a

single join, leave, and failure, respectively. We define an accuracy metric such
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that accuracy is 100% if and only if the distributed DT is correct. In all of our

experiments for systems under churn, the ACE maintenance protocol recovered

100% accuracy after churning stopped. Furthermore, our experimental results

show that ACE protocols are an order of magnitude more efficient than our

old protocols.

4.1 Join protocols

4.1.1 Flip algorithm in a d-dimensional space

Flipping is a well-known and often-used technique to incrementally con-

struct DT in 2D and 3D spaces. A centralized flip algorithm was also proposed

to be used for a d-dimensional space [42] and was proved to be correct [8].

Note that two triangles in a 2D space are flipped into two other trian-

gles, and two tetrahedra in a 3D space are flipped into three tetrahedra. In

general, two simplexes in a d-dimensional space are flipped into d simplexes.

This transformation is called 2-d flipping.

Incremental construction of DT based on flipping is as follows. When

a new node is inserted, the simplex that encloses the new node is divided into

(d+1) new simplexes. Recall that the circum-hypersphere of a simplex on a DT

should not include any other node except for the vertexes of the simplex. Each

new simplex is checked whether its circum-hypersphere includes any other

node. In case a simplex does include another node, it is flipped to generate

new simplexes. The new simplexes are checked, and flipped if necessary. This

process continues recursively. The flip algorithm requires a general position
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Figure 4.1: An example of flipping in 2D.

assumption, namely: no d + 1 nodes are on the same hyperplane and no d + 2

nodes are on the same hypersphere [11].

Figure 4.1 shows an example of flipping in a 2D space. A node n is

inserted to a distributed DT. First, the simplex 4uvw that encloses n is di-

vided into three new simplexes (left figure). Then each new simplex is checked

whether its circum-hypersphere includes any other node. In this example, the

circum-hypersphere of 4unv includes another node e. Therefore 4unv and

4uev are flipped into 4une and 4vne (right figure).

Distributed flip algorithms for joining were proposed for 2D[27], 3D[37],

and a d-dimensional space [36]. The centralized flip algorithm is known to be

correct (for a single join or serial joins). Since a simplex in d-dimension has

d + 1 nodes, operations at the d + 1 nodes must be consistent in a distributed

algorithm. Correctness has not been explicitly proved for any of the distributed

algorithms.
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4.1.2 Candidate-set approach

In a previous paper [23], we proposed a join protocol based on the

distributed system model using candidate sets and the correctness condition

for a distributed DT introduced in Section 2. When a new node n joins a

distributed DT, it is first led to the closest existing node z.1 Then n sends a

request to z for mutual neighbors of n and z on DT (Cz). When n receives the

reply, n puts the mutual neighbors in its candidate set (Cn) and re-calculates

its neighbor set (Nn). If n finds any new neighbors, n sends requests to the

new neighbors. This process is repeated recursively. We proved correctness of

this protocol for a single join [21].

4.1.3 Novel observation

The flip algorithm and candidate-set approach are fundamentally differ-

ent. However, it is interesting to note that there is a correspondence between

the two. Table 4.1 shows how steps of the two different approaches correspond

to each other.

Whereas the two approaches have corresponding steps, the steps are

not exactly the same. For example, in step (b), n initially learns (d + 1)

neighbors in the flip algorithm. In step (b) of the candidate-set approach, n

may be informed of any nodes that z knows. In step (c) of the candidate-set

approach, multiple neighbors may send duplicate messages to n to inform n

1This can be done using the protocol for finding a closest existing node in [23].
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Table 4.1: Correspondence between join protocol in the candidate-set approach
and flip algorithm.

Candidate-set approach Flip algorithm

(a) A joining node n is led to a
closest existing node z.

A joining node n is led to a
closest existing node.

(b) z calculates local DT using Cz

and n, and sends n’s neighbors
on DT (Cz) to n.

The simplex that encloses n is
divided into (d + 1) simplexes.

(c) n contacts each of its new
neighbors to see whether there
are other potential neighbors.

The new simplexes are checked
and flipped if necessary.

(d) n recursively contacts new
neighbors.

New (flipped) simplexes are re-
cursively checked.

of the same new neighbor. In step (c) of the flip algorithm, only one node

may reply that a simplex is flipped. This last observation gave us an idea to

substantially improve the efficiency of the ACE join protocol.

4.1.4 ACE join protocol

Using the observation described above, we designed the ACE join pro-

tocol that is substantially more efficient than our old one. In addition to Cn

and Nn, a joining node n maintains a set N queried
n , which includes the neighbors

that are already queried during its join process. Instead of querying all new

neighbors, n queries only one neighbor for each simplex on DT (Cn) that does

not include any node in N queried
n . Note that only one neighbor in each sim-

plex needs to be queried. If a simplex includes a node v ∈ N queried
n , it means
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that the simplex has already been checked by v. Furthermore, queries as well

as replies for multiple simplexes may be combined. The ACE join protocol

requires the general position assumption, which was not required for the old

join protocol.

The ACE join protocol is still based on the candidate-set model and

its correctness for a single join is proved using the correctness condition in

Theorem 1.

Pseudocode of the ACE join protocol at a node is given in Figures 4.2

and 4.3. The protocol execution loop at a joining node, say n, and the response

actions at an existing node, say v, are presented below.2

Protocol execution loop at a joining node n

At a joining node n, the ACE join protocol runs as follows with a loop

over steps 3-6:

(1) A joining node n is first led to a closest existing node z.

(2) n sends a NEIGHBOR SET REQUEST message to z. Cn is set to {n, z}
and N queried

n is set to {z}.

Repeat steps 3-6 below until a reply has been received for every NEIGH-

BOR SET REQUEST message sent:

2In our current implementation, the joining node processes one NEIGH-
BOR SET REPLY message at a time. We note that if the joining node can process
multiple reply messages in step 3 of the loop, the number of query messages may be
reduced; this change does not affect the correctness proof for the join protocol.
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(3) n receives a NEIGHBOR SET REPLY message from a node, say v. The

message includes mutual neighbors of n and v on DT (Cv).

(4) n adds the newly learned neighbors (if any) to Cn, and calculates DT (Cn).

(5) Among simplexes that include n on DT (Cn), simplexes that do not in-

clude any node in N queried
n are identified as unchecked simplexes. n selects

some of its neighbors such that each unchecked simplex includes at least

one selected neighbor.

(6) n sends NEIGHBOR SET REQUEST messages to the selected neigh-

bors. N queried
n is updated to include the selected neighbors. For the non-

selected new neighbors, NEIGHBOR NOTIFICATION messages are sent.

Response actions at an existing node v

• When v receives NEIGHBOR SET REQUEST from n, v puts n into Cv

and re-calculates DT (Cv). Then v sends to n NEIGHBOR SET REPLY

that includes a set of all nodes e such that e, v, and n are in the same

simplex on DT (Cv).

• When v receives NEIGHBOR NOTIFICATION from n, v includes n

into Cv and re-calculates DT (Cv). But v does not reply to n.
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Join(z) of node u
; Input: u is the joining node, if u is the only node in the system,
z = NULL; otherwise z is the closest existing node to u.
if z 6= NULL then

Send(z, NEIGHBOR SET REQUEST)
Cu ← {u, z}, Nu ← ∅, N queried

u ← {z}
else

Cu ← {u}, Nu ← ∅, N queried
u ← ∅

end if

On u’s receiving NEIGHBOR SET REQUEST from w
if w 6∈ Cu then

Cu ← Cu ∪ {w}
Nu ← neighbor nodes of u on DT (Cu)

end if
Nu

w ← {e | e, w, and u are in the same simplex on DT (Cu)}
Send(w, NEIGHBOR SET REPLY(Nu

w))

On u’s receiving NEIGHBOR SET REPLY(Nw
u ) from w

Cu ← Cu ∪Nw
u

Update Neighbors(Cu, Nu)

On u’s receiving NEIGHBOR NOTIFICATION from w
if w 6∈ Cu then

Cu ← Cu ∪ {w}
Nu ← neighbor nodes of u on DT (Cu)

end if

Figure 4.2: ACE join protocol at a node u (to be continued).

4.1.5 Correctness of the ACE join protocol

The following theorem states that the ACE join protocol is correct for

a single join. Our proof of Theorem 5 is presented below.

Theorem 5. Let n denote a new joining node, S be a set of existing nodes,
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Update Neighbors(Cu, Nu) of node u

N old
u ← Nu

Nu ← neighbor nodes of u on DT (Cu)
Nnew

u ← Nu −N old
u

T new
u ← set of simplexes that include u on DT (Cu) and

do not include any node in N queried
u

N check
u ← Get Neighbors To Check(T new

u )
for all v ∈ N check

u do
Send(v, NEIGHBOR SET REQUEST)

end for
N queried

u ← N queried
u ∪N check

u

Nnotify
u ← Nnew

u −N check
u

for all v ∈ Nnotify
u do

Send(v, NEIGHBOR NOTIFICATION)
end for

Get Neighbors To Check(T new
u ) of node u

N ′
u ← ∅

while T new
u 6= ∅ do

n ← a vertex of a simplex in T new
u

N ′
u ← N ′

u ∪ n
remove all simplexes that include n from T new

u

end while
Return N ′u

Figure 4.3: ACE join protocol at a node u (continued).

and S ′ = S
⋃{n}. Suppose that the existing distributed DT of S is correct,

no other node joins, leaves, or fails, and n joins using the ACE join protocol.

Then the ACE join protocol finishes, and the updated distributed DT is correct.

To prove Theorem 5, we first prove Lemmas 6 – 9.

Lemma 6. Let S ′ = S
⋃{n} and u be a closest node to n in S. Then u is a

neighbor of n on DT (S ′).
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Proof. (1) n is in V CS(u), since u is a closest node to n (by Definition 1).

(2) D(n, n) = 0 < D(n, u) ≤ D(n,w), for all w ∈ S ′, w 6= n, w 6= u.

(3) By Lemma 2, u is a neighbor of n on DT (S ′).

Lemma 7. Let n denote a new joining node, S be a set of existing nodes,

and S ′ = S
⋃{n}. Suppose that the existing distributed DT of S is correct

and no other node joins, leaves, or fails. Let x be a node to which n sends a

NEIGHBOR SET REQUEST. Then x is a neighbor of n on DT (S ′).

Proof. (1) In the ACE join protocol, x can be either a node in S that is

closest to n (in step 1 of join protocol execution loop) or a neighbor of

n on DT (Cn) (in step 6 of the loop).

(2) In the former case, by Lemma 6, x is a neighbor of n on DT (S ′).

(3) In the latter case, a node in DT (Cn) may be n, a closest node to n, or

a node received in a NEIGHBOR SET REPLY from an existing node.

Since n does not send a NEIGHBOR SET REQUEST to itself and given

Lemma 6, we only need to consider the last case where node x is received

in a NEIGHBOR SET REPLY from an existing node, say w.

(4) At the beginning of the join process, since the existing distributed DT

of S is correct, Cw includes all neighbors of w on DT (S).
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(5) After w receives a NEIGHBOR SET REQUEST from n, Cw will include

n, and thus Cw will include all neighbors of w on DT (S ′).

(6) w includes x in a NEIGHBOR SET REPLY only when x, n, and w are

in the same simplex, denoted by T , on DT (Cw).

(7) We next show that T exists on DT (S ′). Our proof is by contradiction.

Suppose T does not exist on DT (S ′).

(8) Then the space of T on DT (S ′) is occupied by different simplexes. Let

T ∗ be such a simplex that includes w. Let y1, ..., yd be the other nodes

in T ∗, where d denotes dimensionality of the space. That is, w, y1, ..., yd

are neighbors of one another on DT (S ′).

(9) From (5), Cw includes y1, ..., yd. From (8) and Lemma 3, w, y1, ..., yd are

neighbors of one another on DT (Cw). Thus T ∗ also exists on DT (Cw),

which contradicts (6) because T and T ∗ overlap and cannot co-exist on

DT (Cw).

(10) From (9), T exists on DT (S ′), which means that x is a neighbor of n on

DT (S ′).

(11) From (2) and (10), x is a neighbor of n on DT (S ′) in all cases.

Lemma 8. Let n denote a new joining node, S be a set of existing nodes, and

S ′ = S
⋃{n}. Suppose that the existing distributed DT of S is correct and
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no other node joins, leaves, or fails. Let T be a simplex that includes n on

DT (Cn) at some time during the ACE join protocol execution and does not

exists on DT (S ′). Let x 6= n be a node in T . Suppose that n sends a NEIGH-

BOR SET REQUEST to x. After n receives a NEIGHBOR SET REPLY

from x, T is removed from DT (Cn).

Proof. (1) Since the existing distributed DT of S is correct, Cx includes all

neighbors of x on DT (S).

(2) After x receives a NEIGHBOR SET REQUEST from n, Cx will include

n, and thus Cx will include all neighbors of x on DT (S ′).

(3) Consider the space that T occupies on DT (Cn).

(4) Since T does not exist on DT (S ′), the space is occupied by two or more

different simplexes on DT (S ′). Let T ∗ be one of these simplexes that

includes both n and x. Such T ∗ exists because, from Lemma 7, n and x

are neighbors on DT (S ′).

(5) Let d denote dimensionality of the space. There are d− 1 other nodes in

T ∗, which are mutual neighbors of n and x on DT (S ′), and, by Lemma 3,

on DT (Cx) as well.

(6) These d−1 nodes are included in the NEIGHBOR SET REPLY message

from x to n.
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(7) When n receives the NEIGHBOR SET REPLY message, the d−1 nodes

are included in Cn and, by (5) and Lemma 3, become neighbors of n on

DT (Cn).

(8) As a result, T ∗ is created on DT (Cn). This means T , which overlaps

with T ∗, is removed from DT (Cn).

Lemma 9. Let n denote a new joining node, S be a set of existing nodes,

and S ′ = S
⋃{n}. Suppose that the existing distributed DT of S is correct,

no other node joins, leaves, or fails, and n joins using the ACE join protocol.

Then the ACE join protocol finishes, and Cn includes all neighbor nodes of n

on DT (S ′).

Proof. (1) Consider a neighbor v of n on DT (S ′). We show that v will be

included in Cn when the ACE join protocol finishes.

(2) At step 4 of the protocol execution loop, n has some nodes in Cn and

calculates DT (Cn).

(3) Suppose that at this time of protocol execution, v is not yet included in

Cn. Consider the straight line l from n to v.

(4) Let T be the first simplex on DT (Cn) that l crosses. Such a simplex

exists because v is not yet a neighbor of n on DT (Cn). Note that T

includes n.
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(5) Let the other nodes of T be x1, x2, ..., xd, where d denotes dimensionality

of the space.

(6) By Lemma 8, the existence of T at this time implies that n has not yet

received a NEIGHBOR SET REPLY message from any node in T .

(7) Either T includes a node xi, 1 ≤ i ≤ d in N queried
n or T does not in-

clude any node in N queried
n . In the former case, n has sent a NEIGH-

BOR SET REQUEST to xi and will receive a NEIGHBOR SET REPLY

message from xi. In the latter case, at step 5 of the protocol execution

loop, n will send a NEIGHBOR SET REQUEST to a node xj, 1 ≤ j ≤ d

in T and will receive a NEIGHBOR SET REPLY message from xj. In

each case, when n receives the NEIGHBOR SET REPLY message, by

Lemma 8, T is removed from DT (Cn) in step 4 of the protocol execution

loop.

(8) Afterwards, if v is still not a neighbor of n on DT (Cn) and l crosses

another simplex on DT (Cn), protocol execution continues and the above

process described in (3) – (7) repeats.

(9) This process finishes in a finite number of iterations since the number of

nodes in S is finite and the number of simplexes in S is also finite.

(10) When there is no simplex that l crosses on DT (Cn), l is an edge on

DT (Cn), and v is included in Cn.
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Theorem 5. Let n denote a new joining node, S be a set of existing nodes,

and S ′ = S
⋃{n}. Suppose that the existing distributed DT of S is correct,

no other node joins, leaves, or fails, and n joins using the ACE join protocol.

Then the ACE join protocol finishes, and the updated distributed DT is correct.

Proof. By Lemma 9, the join process finishes, and Cn will include all of its

neighbor nodes on DT (S ′). In addition, whenever n discovers a neighbor

node v during the process, n sends either NEIGHBOR SET REQUEST or

NEIGHBOR NOTIFICATION message to v so that v adds n to Cv. Since the

candidate sets of all existing nodes as well as the joining node are correctly

updated, the updated distributed DT is correct by Theorem 1.

4.2 Leave and failure protocols

4.2.1 ACE leave protocol

Consider a node u that leaves gracefully. It notifies a neighbor node v

which then removes u from Cv and updates Nv. Such notifications and actions

for all neighbors of u are not enough to maintain a distributed DT. This is

because after u’s leave, v may have a new neighbor w that was not a neighbor

of v before u’s leave and w may not be in Cv. To design a correct leave

protocol, we prove that such w is always a neighbor of u prior to u’s leave.

Therefore it is possible for u to notify v that u is leaving and also introduce w

to v, resulting in a correct distributed DT. More specifically, when a node u

leaves, u calculates a local DT of its neighbor set Nu (which does not include

u). Then u notifies each of its neighbors, say v, that u is leaving as well as a list
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of the neighbors of v on DT (Nu). Upon receiving such notification, v updates

its candidate set and neighbor set. In addition, a DELETE(u) message is

propagated using the GRPB (greedy reverse-path broadcast) protocol [23].

Note that even if u is not a neighbor node of another node x, x may have u

in Cx. The DELETE message ensures that u is removed from such Cx, if any.

The protocol pseudocode is presented in Figure 4.4. It is essentially the same

as our old leave protocol [23], which is very efficient.

4.2.2 ACE failure protocol

We propose a proactive approach to address node failures instead of

the reactive approaches used in previous work. The ACE failure protocol is

almost as efficient as the ACE leave protocol. It is proved to be correct for

a single failure. The main idea is that every node u prepares a contingency

plan in case it fails. That is, u calculates a local DT of u’s neighbor set Nu.

The contingency plan includes, for each neighbor v of u, new neighbor nodes

of v after deleting u. Node u selects one of its neighbors, say m, and sends

the contingency plan to m, which is called the monitor node of u. Then m

periodically probes u to check whether u is alive. When m detects failure of

u, m sends to each of u’s former neighbors its portion of the contingency plan.

The protocol pseudocode is given in Figures 4.5 and 4.6. The pseudocode

for receiving a DELETE message and pseudocode for GRPB are given in

Figure 4.4.

The ACE failure protocol takes over one of the functions of the old
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Leave() of node u
Calculate DT (Nu) ; Note: u 6∈ Nu

for all v ∈ Nu do
Nu

v ← {w | w is a neighbor of v on DT (Nu)}
Send(v, LEAVE(Nu

v ))
end for

On u’s receiving LEAVE(N v
u) from v

Cu ← (Cu ∪N v
u)− {v}

Nu ← neighbor nodes of u on DT (Cu)
GRPB(DELETE(v), v)

On u’s receiving DELETE(w) from v
; w is a deleted node
Cu ← Cu − {w}
GRPB(DELETE(w), w)

GRPB(m, s) of node u
; m is a message, s is the source node of broadcast
for all x ∈ Nu, D(x, s) > D(u, s) do

Nux ← {z ∈ Nu | z, u, x are in the same simplex
on DT (Cu)}

if D(u, s) ≤ D(z, s) for all z ∈ Nux then
Send(x, m)

end if
end for

Figure 4.4: ACE leave protocol at a node u

maintenance protocol. As a result, the ACE maintenance protocol may be

run much less frequently, reducing overall cost of the system. As will be

demonstrated by experiments for a system of nodes under churn, the ACE

maintenance protocol is still necessary to recover from incorrect system states

resulting from concurrent event occurrences.
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On change in Nu

mu ← the neighbor in Nu with the least ID
; mu is the monitor node of u
Calculate DT (Nu) ; Note: u 6∈ Nu

for all v ∈ Nu do
Nu

v ← {w | w is a neighbor of v on DT (Nu)}
end for
Send(mu, CONTINGENCY PLAN({<v, Nu

v >| v ∈ Nu})

On u’s receiving CONTINGENCY PLAN(CPv) from v
Set FAILURE TIMERv to T + F
; T is current time, F is the period of failure probe.

On u’s expiration of FAILURE TIMERv

Send(v, PING)
Set PING TIMEOUT TIMERv to T + TO
; T is current time, TO is the timeout value.

On u’s receiving PING from v
if v = mu then

Send(v, PONG(true))
else

Send(v, PONG(false))
end if

Figure 4.5: ACE failure protocol at a node u (to be continued).

Unlike the old maintenance protocol, probes are not duplicated in the

ACE failure protocol, since u is probed only by its monitor node. Furthermore,

each former neighbor of u receives exactly 1 message upon u’s failure. On

the other hand, the ACE failure protocol has the overhead of updating a

contingency plan whenever a neighbor is added or deleted.
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On u’s receiving PONG(flag) from v
Cancel PING TIMEOUT TIMERv

if flag = true then
Set FAILURE TIMERv to T + F
; T is current time, F is the period of failure probe.

else
Cancel FAILURE TIMERv

end if

On u’s expiration of PING TIMEOUT TIMERv

Cancel FAILURE TIMERv

for all w that CPv contains < w, N v
w > do

Send(w, FAILURE(v, N v
w))

end for
Cu ← (Cu ∪N v

u)− {v}
Nu ← neighbor nodes of u on DT (Cu)
GRPB(DELETE(v), v)

On u’s receiving FAILURE(v, N v
u) from w

Cu ← (Cu ∪N v
u)− {v}

Nu ← neighbor nodes of u on DT (Cu)
GRPB(DELETE(v), v)

Figure 4.6: ACE failure protocol at a node u (continued).

4.2.3 Correctness of the ACE leave and failure protocols

Theorem 6 and Theorem 7 below state that the ACE leave and failure

protocols are correct for a single leave and a single failure, respectively. Our

proof of Theorem 7 is presented below. A proof of Theorem 6 is provided in

[21]. Proof of Theorem 6 is omitted herein because it is very similar to that

of Theorem 7.

Theorem 6. Let S be a set of nodes with a correct distributed DT. Suppose
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that a node u ∈ S leaves using the ACE leave protocol. Assume that there is

no other join, leave, or failure. Then the ACE leave protocol finishes, and the

updated distributed DT is correct.

Theorem 7. Let S be a set of nodes with a correct distributed DT. Suppose

that a node u ∈ S fails and its failure is detected by its monitor node mu ∈ S,

which then executes the ACE failure protocol. Assume that there is no other

join, leave, or failure. Then the ACE failure protocol finishes, and the updated

distributed DT is correct.

Lemma 10 below is an important step to prove Theorem 6 and Theo-

rem 7.

Lemma 10. Let S be a set of nodes and S ′ = S − {u}. Let v be a neighbor

node of u on DT (S). If w is a neighbor node of v on DT (S ′), then w is a

neighbor node of v on DT (S) or w is a neighbor node of u on DT (S).

Proof. Since w is a neighbor of v on DT (S ′), by Lemma 1, there exists a point

p such that D(p, v) < D(p, w) < D(p, x), for all x ∈ S ′, x 6= v, x 6= w.

Case A) D(p, w) < D(p, u).

(1) Since S = S ′ ∪ {u}, we have D(p, v) < D(p, w) < D(p, x) for all x ∈
S, x 6= v, x 6= w.

(2) By Lemma 2, v and w are neighbors on DT (S).

Case B) D(p, u) ≤ D(p, w).
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(1) Consider a point p′ that moves from p toward w.

(2) D(p′, w) decreases toward 0 faster than or as fast as D(p′, x), for all

x ∈ S, x 6= w, as p′ moves toward w.

(3) D(p′, u) ≥ 0 and D(p′, v) ≥ 0.

(4) There must be a point where D(p′, w) becomes smaller than either D(p′, u)

or D(p′, v). That is, D(p′, v) < D(p′, w) < D(p′, u) < D(p′, x) or

D(p′, u) < D(p′, w) < D(p′, v) < D(p′, x), for all x ∈ S, x 6= u, x 6=
v, x 6= w.

(5) From (4) and Lemma 2, v and w are neighbors on DT (S) or u and w

are neighbors on DT (S).

Theorem 7. Let S be a set of nodes with a correct distributed DT. Suppose

that a node u ∈ S fails and its failure is detected by its monitor node mu ∈ S,

which then executes the ACE failure protocol. Assume that there is no other

join, leave, or failure. Then the ACE failure protocol finishes, and the updated

distributed DT is correct.

Proof. The ACE failure protocol finishes since it does not contain any loop af-

ter detection of a failure. In the monitor node, PING TIMEOUT TIMERu

has expired and FAILURE TIMERu is canceled. The monitor node sends

out a FAILURE message only once to each node in the contingency plan of
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u. The DELETE(u) message is forwarded by a node x to another node y

only if distance D(y, u) is larger than distance D(x, u). Thus the DELETE(u)

message is not forwarded in a cycle, and its propagation finishes.

We next show that the updated distributed DT is correct. Let S ′ =

S − {u}. Consider a node v ∈ S ′ and its candidate set Cv. The following case

A shows that if v is not a neighbor of u on DT (S), then v is not affected by

the failure of u. Case B shows that if v is a neighbor of u on DT (S), v will

receive enough information from mu to correctly update its candidate set.

Case A) v is not a neighbor of u on DT (S). Consider a node w ∈
S ′, w 6= v. Since S ′ = S − {u} and u is not a neighbor of v, S ′ includes all

neighbors of v on DT (S). If w is a neighbor of v on DT (S ′), w is also a

neighbor of v on DT (S) by Lemma 4. If w is a neighbor of v on DT (S), w is

also a neighbor of v on DT (S ′) by Lemma 3. Therefore the neighbors of v on

DT (S) are the same as the neighbors of v on DT (S ′). Since only u is removed

from Cv by the ACE failure protocol, Cv has all neighbors of v on DT (S ′),

and v is not affected by failure of u.

Case B) v is a neighbor of u on DT (S). Consider a node w ∈ S ′, w 6= v.

If w is a neighbor of v on DT (S ′), by Lemma 10, either w is already in Cv

or w was a neighbor of u on DT(S). In the latter case, u’s monitor node will

notify v that w is its neighbor. In each case, Cv will include w. Therefore Cv

will include all neighbor nodes of v on DT (S ′).

From cases A and B, for each node v ∈ S ′, Cv includes all neighbor

71



nodes of v on DT (S ′). In addition, Cv ⊂ S ′ since u is removed from Cv by

propagation of FAILURE and DELETE messages. Therefore by Theorem 1,

the updated distributed DT is correct.

4.3 ACE maintenance protocol

The last member of our protocol suite is the ACE maintenance protocol.

Even though the other protocols in the suite – the ACE join protocol, the

ACE leave protocol, the ACE failure protocol – are proved to be correct for

a single join, leave, and failure, respectively, nodes may join, leave, and fail

concurrently for a system under churn. As to be shown by experimental results

in Figure 4.11, neither our protocols without a maintenance protocol nor Simon

et al.’s algorithms can recover a correct distributed DT after system churn. In

that sense, our protocol suite is incomplete without a maintenance protocol,

and so is Simon et al.’s set of insertion and deletion algorithms.

By Theorem 1, for a distributed DT to be correct, each node u must

include in its neighbor set Cu all of its neighbor nodes on the global DT. This

was one goal that our old maintenance protocol was designed to achieve. To

that end, each node u periodically queries each of its neighbors to find any

new neighbor of u that u is not aware of.

We found that running the maintenance protocol frequently requires a

large communication cost. Note that the goal of a maintenance protocol is

similar to that of a join protocol, namely, finding new neighbors. Therefore,

we use the same technique as in the design of our ACE join protocol. That
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is, we reduce communication cost of the maintenance protocol by eliminating

messages with redundant information. Instead of querying all neighbors, a

node u queries only one node for each simplex that includes u. Since a neighbor

node may be included in multiple simplexes, the number of queried neighbors

is much less than the number of all neighbors.

Another goal of the old maintenance protocol was failure detection and

recovery. In the old maintenance protocol, probing a node u was carried out

by all neighbors of u. In the ACE suite, the ACE failure protocol takes over

the task of failure detection and recovery, where a node is probed by only

one of its neighbor nodes. Thus the overall cost of the ACE maintenance and

failure protocols is much less than the cost of the old maintenance protocol.

Although failure recovery is not a primary goal of the ACE main-

tenance protocol, if a failure is detected by a message timeout, this infor-

mation is propagated via REMOVE messages. This may be necessary in

case of concurrent failures. REMOVE messages are propagated using the

GRPB (greedy reverse-path broadcast) protocol [23]. The ACE maintenance

protocol pseudocode is given in Figure 4.7. The pseudocode for GRPB is

given in Figure 4.4. Actions for receiving NEIGHBOR SET REQUEST and

NEIGHBOR SET REPLY messages and the functions, Update Neighbors and

Get Neighbors To Check, are the same as given in Figures 4.2 and 4.3, with

the addition of one line of code to set NS TIMEOUT TIMERv when node

u sends a NEIGHBOR SET REQUEST message to node v and one line of code

to cancel NS TIMEOUT TIMERv when u receives a NEIGHBOR SET REPLY
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message from v.

Note that NEIGHBOR SET REQUEST and NEIGHBOR SET REPLY

messages are used in both ACE join and maintenance protocols. The timeout

mechanism to detect node failures may also be utilized in the ACE join proto-

col, but we did not enable it in the join protocol when we ran the experiments

presented in the next section.

In our current implementation of the ACE leave and failure protocols,

we have one modification to their pseudocode in Figure 4.4 that greatly reduces

communication cost. More specifically, when a node u receives a DELETE(v),

u forwards it by GRPB only if v is in Cu. We found that if v is not in Cu,

it is very rare for v to be present in the candidate sets of nodes one or more

hops further away from the source node than u. For a system under churn

and running the maintenance protocol, these rare cases can be repaired by the

maintenance protocol.

4.4 Accuracy metric for a system under churn

We define an accuracy metric as in [23], which we will use to evaluate

experiments for a system of nodes under churn. We consider a node to be in-

system from when it finishes joining to when it starts leaving. Let DDTS be a

distributed DT of a set of in-system nodes S. (Note that some nodes may be

in the process of joining or leaving and not included.) Let Ncorrect(DDTS) be

the total number of correct neighbor entries of all nodes and Nwrong(DDTS) be

the total number of wrong neighbor entries of all nodes on DDTS. A neighbor
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On u’s expiration of PERIOD TIMER

N queried
u ← ∅

Tu ← set of simplexes that include u on DT (Nu ∪ {u})
N check

u ← Get Neighbors To Check(Tu)
for all v ∈ N check

u do
Send(v, NEIGHBOR SET REQUEST)
Set NS TIMEOUT TIMERv to T + TO
; T is current time, TO is the timeout value.

end for
Set PERIOD TIMER to T + P
; P is the period of maintenance protocol.

On u’s expiration of NS TIMEOUT TIMERv

Cu ← Cu − {v}
Update Neighbors(Cu, Nu)
for all w ∈ Nu do

Send(w, REMOVE(v, u))
end for

On u’s receiving REMOVE(v, s) from x
; v is a removed node, s is the source node of broadcast
if v ∈ Cu then

Cu ← Cu − {v}
Update Neighbors(Cu, Nu)
GRPB(REMOVE(v, s), s)
; s in the REMOVE message is passed to next-hop nodes
; s is also given to GRPB function to be used at this hop

end if

Figure 4.7: ACE maintenance protocol at u.

entry v of a node u is correct when v is a neighbor of u on the global DT

(namely, DT (S)), and wrong when u and v are not neighbors on the global

DT. Let N(DT (S)) be the number of edges on DT (S). Note that edges on

a global DT are undirected and are thus counted twice when compared to
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neighbor entries. The accuracy of DDTS is defined as follows:

accuracy(DDTS) =
Ncorrect(DDTS)−Nwrong(DDTS)

2×N(DT (S))
.

Observation 1. The accuracy of a distributed DT is 1 if and only if the

distributed DT is correct.

Proof. (if) If the distributed DT is correct, Ncorrect(DDTS) = 2×N(DT (S))

and Nwrong(DDTS) = 0, resulting in accuracy of 1.

(only if) When accuracy is 1, we have Ncorrect(DDTS)−Nwrong(DDTS) =

2×N(DT (S)). Since Nwrong(DDTS) ≥ 0, we get Ncorrect(DDTS) ≥ 2×N(DT (S)).

Also, Ncorrect(DDTS) ≤ 2×N(DT (S)). It then follows that Ncorrect(DDTS) =

2×N(DT (S)) and Nwrong(DDTS) = 0. That means the distributed DT is

correct.

4.5 Performance of ACE protocol suite

In all experiments presented in this chapter, each node has randomly

generated coordinates. First, to demonstrate effectiveness of the ACE main-

tenance protocol, we designed an experiment for a system with an initial uni-

directional ring configuration. The system begins with a barely connected

graph of 100 nodes, in which each node initially knows only one other node.

That is, node pi, 1 ≤ i ≤ 99, initially has only pi−1 in its candidate set and

its neighbor set; node p0 knows p99. Figure 4.8 shows change in accuracy of
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the distributed DT as the ACE maintenance protocol runs. Each curve rep-

resents the average accuracy from 100 runs of simulation. Each vertical bar

represents the range of accuracy values from 10th percentile to 90th percentile.

Note that the ACE maintenance protocol achieved a correct distributed DT

within a few rounds of protocol execution except in 2D.3 In 2D, eight out of

100 runs of simulation resulted in network partitioning, decreasing the average

accuracy value. To see why network partitioning occurs, consider an initial

configuration where the 100 nodes exist as two clusters on the left and right

sides of a space. Suppose that nodes a and b are the leftmost nodes, nodes x

and y are the rightmost nodes, and the left and right clusters are connected by

only two directed edges; namely, initially a knows x and y knows b. After the

maintenance protocol runs and a knows some nearby nodes, x is no longer a

neighbor of a on DT (Ca). Similarly, b is no longer a neighbor of y on DT (Cy).

Although x is still in Ca and b still in Cy, x and b are not used any longer.

Thus the network is partitioned into the left and right clusters. Network par-

titioning did not occur in 3D or higher dimensions, in which nodes are more

densely connected after the first round than in 2D.

Figure 4.9 shows communication costs of join protocols. Each curve

shows the number of messages for 100 serial joins, increasing the system size

from 200 nodes to 300 nodes, for different dimensionalities. The ACE join

protocol has much less cost than our old join protocol, and is slightly better

3Each round corresponds to a 10-second period during which each node executes the
maintenance protocol once.
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Figure 4.8: Accuracy of the ACE maintenance protocol for a system with an
initial unidirectional ring configuration.
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Figure 4.9: Costs of join protocols for 100 serial joins.

than Simon et al.’s improved entity insertion algorithm.

Figure 4.10 compares communication costs of the ACE failure protocol

and Simon et al.’s improved entity deletion algorithm. The number of messages
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Figure 4.10: Costs of failure protocols for 100 serial failures.

used to recover from 100 serial failures from 300 initial nodes is measured. Both

the ACE failure protocol and Simon et al.’s deletion algorithm use the same

probing period of 10 seconds. The ACE failure protocol is much more efficient

than Simon et al.’s improved entity deletion algorithm.

Figure 4.11 shows accuracy of ACE protocols without a maintenance

protocol and Simon et al.’s improved algorithms under system churn. (Our

old protocol suite is not shown because it does not have a failure protocol

and is not usable without a maintenance protocol.) Each curve represents the

average accuracy from 100 runs of simulation. Each vertical bar represents

the range of accuracy values from 10th percentile to 90th percentile. From a

correct distributed DT of 400 initial nodes in 3D, 100 concurrent joins and 100

concurrent failures occur from time 10 to 110 seconds, with an average inter-
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Figure 4.11: Accuracy without a maintenance protocol under system churn
(join and fail).

arrival time of 1 second for both joins and failures.4 In the ACE failure protocol

as well as Simon et al.’s entity deletion algorithm, nodes are probed every 10

seconds. The accuracy of the distributed DT is measured every 10 seconds.

Both the ACE join and failure protocols and Simon et al.’s entity insertion

and deletion algorithms cannot fully recover after system churn, resulting in

an incorrect distributed DT. The results in Figure 4.11 demonstrate that a

maintenance protocol is really needed for a system under churn.

Figure 4.12 compares the accuracy of our old and ACE protocol suites

including a maintenance protocol under system churn, where nodes join, leave,

and fail concurrently. (Simon et al.’s algorithms are not shown because they

4By Little’s Law, for a system size of 400 nodes, the average lifetime of a node is 400
seconds. For P2P file sharing systems, for example, this is considered a very high churn rate
[35].
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Figure 4.13: Costs of the old and ACE protocol suites under system churn
(join, leave, and fail).

do not have a maintenance protocol to recover from incorrect system states

during churn.) Each curve represents the average accuracy from 100 runs of

simulation. Each vertical bar represents the range of accuracy values from 10th
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percentile to 90th percentile. The scenario is similar to that of the previous

experiments except that nodes either gracefully leave or fail instead of all

failing.5 From a correct distributed DT of 400 initial nodes in 3D, 100 joins,

50 leaves, and 50 failures occur from time 10 to 110. The average inter-arrival

time is 1 second for joins, 2 seconds for leaves, and 2 seconds for failures.

The old maintenance protocol is run every 10 seconds. The ACE maintenance

protocol is run every 30 seconds. The ACE failure protocol uses a probing

period of 10 seconds. After system churn stops at time 110 seconds, accuracy

converges to 100% in every experiment for both protocol suites. The average

accuracy of the ACE protocols is slightly lower than the average accuracy of

our old protocols. The ACE protocols also take a longer time to converge to

a correct distributed DT, in part due to the use of a longer period for the

maintenance protocol (30 seconds instead of 10 seconds).

Figure 4.13 shows the communication costs of our old and ACE protocol

suites in the same churn experiments. Each curve represents the average cost

from 10 runs of simulation. Each vertical bar represents the range of all values

from the 10 runs; the variance of these simulation results is small. The vertical

scale for number of messages is logarithmic. Note that the ACE protocol suite

provides an order of magnitude improvement in efficiency compared to the old

protocol suite. Furthermore, the two curves diverge slightly indicating that

efficiency improvement increases as the dimensionality increases (from 2 to 5).

5We have experimental results for the same scenario as the previous experiments showing
accuracy and cost performance of our old and ACE protocol suites under system churn. The
results are similar to those presented in Figure 4.12 and Figure 4.13.
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Chapter 5

Impact of inaccurate coordinates

DT is defined in a Euclidean space. That is, each node has its coor-

dinates in the Euclidean space. Thus in our system model, we have assumed

that each node is located in a Euclidean space and knows its coordinates. In

the model space, DT has desirable properties such that application protocols

run correctly and efficiently on a DT. For example, greedy routing always suc-

ceeds and has a short routing path. GRPB and RadGRPM deliver a message

to all target nodes using minimal number of messages. However, the model

does not always fit reality in practice. And overall performance of applications

may be affected by discrepancy between the model and the reality.

We consider the following three categories of relationship between the

model and the reality.

The reality does not exist. In this category, the reality does not exist and

the model exists by itself. For example, a distributed virtual environment

such as multiplayer on-line games may be a Euclidean space by itself,

and each entity has coordinates in the virtual space. Therefore exact

coordinates can be used to construct a distributed DT.
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The reality is a Euclidean space. Examples of this category are wireless

ad-hoc networks and sensor networks, where coordinates are defined as

the geographic location of nodes or sensors. A node estimates its ge-

ographic location and uses it as its coordinates. Error in the location

estimation is the source of discrepancy between the model and the re-

ality. We refer to the distance between the model coordinates and the

actual coordinates as coordinate error. Accuracy of location estima-

tion varies depending on technology. For example, a typical GPS device

has several meters of error range.

The reality is not a Euclidean space. An example of this category is us-

ing virtual coordinates such as those obtained by GNP [31] and Vivaldi

[4] as coordinates of nodes in Internet. Internet itself may not be a Eu-

clidean space, and true coordinates of a node are not defined. Instead,

quality of virtual coordinates can be measured by how accurately a dis-

tance in the virtual coordinate space predicts network delay between

nodes.

In greedy routing, which is the basis of our application protocols, a

destination is designated by its known coordinates, not by a different type of

address, e.g. an IP address. Even if arbitrary coordinates are used to construct

a distributed DT, greedy routing always succeeds to deliver a message to the

destination node represented by the coordinates. However, the quality of the

routing path is affected by coordinate inaccuracy, as will be investigated later.
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RadGRPM is also correct in the sense that it delivers a message to all

nodes whose known (inaccurate) coordinates are within a target region. If the

requirement of an application is to deliver a message to all nodes whose actual

coordinates are within a target region, the radius of the target region should

be increased to account for the coordinate inaccuracy.

5.1 Impact of coordinate error on greedy routing per-
formance

We first investigate the impact of coordinate error on the performance

of greedy routing. We assume a situation where each node has some error

in determining its coordinates. Thus a distributed DT is constructed using

the known (inaccurate) coordinates, and greedy routing is performed using

the inaccurate coordinates. Note that greedy routing still succeeds even if

inaccurate coordinates are used. However, the path length may be affected

due to coordinate inaccuracy. Figure 5.1 illustrates an example. a, b, c, and

d represent accurate coordinates of four nodes, and a′, b′, c′, and d′ represent

represent inaccurate coordinates of the nodes, respectively. Considering greedy

routing from a to c. Using accurate coordinates, greedy routing would select

path abc (thick line). However, if inaccurate coordinates are used, path a′d′c′

(dotted line) would be selected rather than a′b′c′. Then the actual path would

be adc (thin line), which is longer than abc.

As a measure of the impact of coordinate error on the performance of

greedy routing, we use the ratio of length of greedy routing path using inaccu-
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Figure 5.1: An example of longer routing path due to inaccurate coordinates.
a, b, c, and d represent accurate coordinates, and a′, b′, c′, and d′ represent their
respective inaccurate coordinates. If accurate coordinates are used, greedy
routing would select path abc (thick line). However, greedy routing using
inaccurate coordinates would result in path adc (thin line), which is longer
than abc.

rate coordinates (such as adc in Figure 5.1) to length of greedy routing path

for the same source and destination nodes using accurate coordinates (such as

abc in Figure 5.1). Figure 5.2 shows the ratio for varying degree of coordinate

error. x axis represents average coordinate error, which is normalized by av-

erage inter-neighbor distance. Note that coordinate errors as large as average

inter-neighbor distance would result in a completely different DT. Each curve

represents the average result of 100 experiments for different dimensionalities.

Each vertical bar indicates the range of results from 10th percentile to 90th

percentile. For a reasonable range of coordinate error, the path length is not

much affected. When average coordinate error is a quarter of average inter-

neighbor distance, the path length is around 1.2 times of that using accurate

coordinates. For example, consider a scenario where 1000 nodes are randomly

placed in a 1km × 1km area. Then nodes are around 33m apart on the average

along each axis, and a few meters of error range of a typical GPS device would
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be around one-tenth of average inter-neighbor distance, in which case greedy

routing will perform almost as good as when accurate coordinates are used.
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Figure 5.2: Ratio of greedy-routing path length on a distributed DT using
inaccurate coordinates to that on a distributed DT using accurate coordinates.

5.2 Impact of coordinate error on greedy routing in In-
ternet

Figure 5.3 shows the performance of greedy routing in Internet when

GNP [31] virtual coordinates are used. GNP virtual coordinates are calculated

for 1000 nodes in MIT King dataset [10], using 10 landmark nodes that have

delay measurement data to all the other nodes. Note that accurate coordinates

are not defined in Internet, and neither is coordinate error. Thus the quality of

virtual coordinates is measured by the average relative distance error between

neighbors. Relative distance error for a pair of nodes a and b is defined

as follows. Let dab denote the actual measured distance between a and b. Let
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d′ab denote the calculated distance between a and b using their coordinates.

Then relative distance error between a and b is defined as
|d′ab−dab|

dab
. The lower

line in Figure 5.3 represents the average relative distance error between all

pairs of neighbor nodes. As expected from the results in [31], the quality

of virtual coordinates improves as the dimensionality increases. The upper

line in Figure 5.3 represents the ratio of greedy-routing path length to direct

distance, which shows that the performance of greedy routing on a distributed

DT using the virtual coordinates also improves as the dimensionality increases.

Note that, in Internet, once a destination node is reached using greedy routing,

the source and destination nodes can directly communicate with each other.

In such cases, a relatively high one-time cost of greedy routing to find the

destination may be amortized over a long session.
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Figure 5.3: Ratio of greedy-routing path length to direct distance on a dis-
tributed DT using GNP virtual coordinates.
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5.3 Impact of coordinate error on RadGRPM and gen-
eral geocast

Both of our broadcast and geocast protocols, GRPB and RadGRPM,

are based on greedy routing. Since they use the reverse-path of greedy routing,

inaccurate coordinates have the same impact on the performance of GRPB and

RadGRPM, namely on the path length from a source node to each destination

node.

Inaccurate coordinates have another kind of impact on RadGRPM.1 In

geocast applications, a message is often required to be delivered to nodes whose

actual coordinates are within a target region. For example, a warning message

may be sent to all users who are actually within a region. In a sensor database,

a query may need to be sent to all sensors that are actually within a region.

In such cases, the radius of a target region should be adjusted to account for

coordinate inaccuracy. Let r denote the original radius of a target region and

E denote the upper bound of coordinate error. Theorem 8 states that if such

an upper bound E of coordinate error exists, RadGRPM delivers a message

to all nodes that actually are in the target region by using an increased radius

of r + E. On the other hand, some nodes outside of the target region may

unnecessarily receive a message. Theorem 8 also applies to general geocast.

Theorem 8. Consider each node u ∈ S with inaccurate coordinates c′u. Let

u’s accurate coordinates be denoted by cu. Suppose that the distance between

1GRPB is not susceptible to this kind of impact.
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the accurate coordinates and the inaccurate coordinates is less than or equal to

an upper bound E. That is, for every node u ∈ S, D(c′u, cu) ≤ E. The nodes

in S form a distributed DT using their inaccurate coordinates. RadGRPM on

the distributed DT to all nodes within a range r + E from a point p delivers a

message to all nodes whose accurate coordinates are within r from p.

Proof. Consider a node u.

(1) By triangular inequality, D(p, c′u) ≤ D(p, cu) + D(c′u, cu).

(2) By assumption, D(c′u, cu) ≤ E.

(3) If D(p, cu) ≤ r, D(p, c′u) ≤ r + E. [From (1) and (2).]

(4) If D(p, c′u) ≤ r+E, RadGRPM on the distributed DT delivers a message

to u. [Correctness of RadGRPM.]

(5) If D(p, cu) ≤ r, RadGRPM on the distributed DT delivers a message to

u. [From (3) and (4).]

Figure 5.4 shows the impact of coordinate inaccuracy on RadGRPM.

In an experiment, 1000 nodes are randomly placed in a Euclidean space whose

range in each dimension is 10000. Then their coordinates are generated by

injecting random coordinate error, the upper bound E of which ranges from

0 to 1000. 1000 sessions of RadGRPM are performed using the inaccurate
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coordinates. The center of a target region is randomly selected. The radius

of the original target region is fixed as 3000. As is proved in Theorem 8, in

all of the experiments, RadGRPM delivered a message to all the target nodes

by increasing the radius by the maximum coordinate error E. Average ratio

of the number of non-target nodes that receive a message to the number of

target nodes is shown. Note that in the original RadGRPM using accurate co-

ordinates, no non-target node receives a message. As in previous figures, each

curve represents the average result of 100 experiments for different dimension-

alities. Each vertical bar indicates the range of results from 10th percentile

to 90th percentile. The results can be explained by the volume of the original

and increased target regions. For example, when E is 1000, in d dimension,

the expected ratio is 4d−3d

3d .
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Figure 5.4: Ratio of number of non-target receivers to number of target re-
ceivers in general geocast when radius of a target region is 3000.

Figure 5.5 shows message delivery accuracy of RadGRPM using GNP
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virtual coordinates. Two different target radii are used: two times and four

times of the average inter-neighbor distance. Since upper bound in coordi-

nate error is not defined, RadGRPM was performed without increasing radius.

Thus some target nodes did not receive a message. The ratio of false positive

delivery, namely the number of non-target nodes that received a message, and

false negative delivery, namely the number of target nodes that did not receive

a message, to the number of target nodes are shown. Larger radius resulted in

better message delivery accuracy. Also, higher dimension has better message

delivery accuracy due to improved quality of virtual coordinates.

Figure 5.6 shows message delivery accuracy of RadGRPM using GNP

virtual coordinates when target radius is increased by the average inter-neighbor

distance. At the cost of increased false positive ratio, false negative ratio was

greatly decreased but not completely eliminated, although the number of tar-

get nodes that did not receive a message is very small.

We have also attempted further increasing target radius by two times

and three times of the average inter-neighbor distance, which could not com-

pletely eliminate false negative, either.

5.4 Using geocast for unicast to actual coordinates

In Section 5.1, we have assumed that destination coordinates of greedy

routing is given as known coordinates of a node, namely its coordinates in a

model space. In that case, correctness of greedy routing is not affected by

inaccurate coordinates. Even if arbitrary coordinates are used, greedy routing
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always succeeds to deliver a message to the destination node represented by

its coordinates.

In some applications, destination coordinates may be given as actual

coordinates.2 In such applications, coordinate error should be taken into con-

sideration. That is, instead of unicast greedy routing, geocast may be used to

a region that centers at the destination coordinates with a radius large enough

to compensate for the coordinate error.

2If a node does not exist at the destination coordinates, greedy routing delivers the
message to the node whose known coordinates is the closest to the destination coordinates.
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Figure 5.5: Ratio (top) and number (bottom) of non-target nodes that receive
a message (false positive) and target nodes that do not receive a message (false
negative) in RadGRPM using GNP virtual coordinates.
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a message (false positive) and target nodes that do not receive a message (false
negative) in RadGRPM using GNP virtual coordinates and increased radius
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Chapter 6

Conclusions

We define a distributed system model for a set S of nodes, in which

each node u maintains a set Cu of nodes it knows. Node u determines its

neighbor set Nu by calculating DT (Cu). We prove the following basic result

(Theorem 1): The distributed DT of S is correct if and only if, for every

u ∈ S, Cu includes all neighbor nodes of u on DT (S). Note that Cu is local

information while S is global knowledge.

We use the above correctness condition as a guide to design a suite

of protocols, named ACE, for a dynamic set of nodes in d-dimension (d >

1) to construct and maintain a distributed DT. The join, leave, and failure

protocols in the suite are proved to be correct for a single join, leave, and

failure, respectively. We define an accuracy metric such that accuracy is 100%

if and only if the distributed DT is correct. The ACE suite also includes a

maintenance protocol designed to recover from incorrect system states due

to concurrent event processing and to improve accuracy. Experimental results

show that the ACE protocol suite is highly efficient, it maintains high accuracy

for systems under churn, and each system converges to 100% accuracy after

churning stopped.
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Our experimental results show that ACE protocols are an order of

magnitude more efficient than our old protocols in [23], which are the only

other protocols that have been demonstrated to converge to 100% accuracy

after churn. There is a tradeoff, however. During churn periods, the average

accuracy of ACE protocols is slightly (a fraction of 1%) lower than the average

accuracy of our old protocols. Also, ACE protocols provide slower convergence

due in part to the use of a longer period for running the maintenance protocol.

We also design several application protocols including greedy routing,

finding a closest existing node, clustering, broadcast, radius geocast, and gen-

eral geocast. Correctness of the application protocols is discussed and proved,

and their performance and characteristics are also investigated. Greedy rout-

ing always succeeds on a distributed DT, and the quality of the route is very

good. Our broadcast and geocast protocols deliver a message to every target

node using minimal number of messages.

In our system model, we have assumed that each node is located in

a Euclidean space and knows its coordinates. In practice, a node may not

accurately determine its coordinates, and inaccurate coordinates may affect

overall performance of applications. We investigate the impact of inaccurate

coordinates on performance of greedy routing, broadcast, and geocast proto-

cols. We also discuss how to maintain correct operation of greedy routing and

geocast protocols by accounting for coordinate errors.
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des formes quadratiques. J. Reine Angew. Math, 134:198–287, 1908.

[41] F. Wang, L. Qiu, and S. S. Lam. Probabilistic region-based localiza-

tion for wireless networks. ACM SIGMOBILE Mobile Computing and

103



Communications Review (MC2R), 11(1):3–14, 2007.

[42] D. F. Watson. Computing the n-dimensional Delaunay tessellation with

application to Voronoi polytopes. The Computer Journal, 24(2):167–172,

1981.

[43] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: a lightweight network

location service without virtual coordinates. In Proceedings of the 2005

conference on Applications, technologies, architectures, and protocols for

computer communications, pages 85–96. ACM Press New York, NY, USA,

2005.

[44] T. Yoo, H. Lee, J. Lee, S. Choi, and J. Song. Distributed kinetic Delaunay

triangulation. Technical Report CS/TR-2005-240, KAIST, Korea, 2005.

[45] X. B. Zhang, S. S. Lam, and H. Liu. Efficient group rekeying using

application-layer multicast. In Proceedings of the 25th IEEE Inter-

national Conference on Distributed Computing Systems, pages 303–313.

IEEE Computer Society Washington, DC, USA, 2005.

[46] X. Y. Zhang, Q. Zhang, Z. Zhang, G. Song, and W. Zhu. A construction

of locality-aware overlay network: mOverlay and its performance. IEEE

Journal on Selected Areas in Communications, 22(1):18–28, 2004.

[47] Xincheng Zhang. Protocol design for scalable and reliable group rekeying.

PhD thesis, Department of Computer Sciences, UT-Austin, June 2005.

104



Vita

Dong-Young Lee was born in Seoul, Korea on 16 May 1973, the son of

Prof. Hwi Gyo Lee and Prof. Jeom Sook Ryu. He received the Bachelor of Sci-

ence degree in Computer Science from Seoul National University in 1998, and

received the Master of Science in Computer Science from the same university

in 2000. He started Ph.D. program in Computer Sciences in the University of

Texas at Austin in August, 2000.

Permanent address: 16238 RR 620 F#124,
Austin, Texas 78717

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

105


