
Copyright

by

Avijit Dutta

2007

The Dissertation Committee for Avijit Dutta Certifies that this is the approved

version of the following dissertation:

Synthesis for Circuit Reliability

Committee:

Nur Touba, Supervisor

Tony Ambler

Margarida Jacome

Zhigang Pan

Abhijit Jas

Synthesis for Circuit Reliability

by

Avijit Dutta, B.E.; M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May, 2007

Dedication

My thanks go, as always, to my maternal grandparents, to whom this dissertation is

dedicated. I am indebted to my maternal grandparents for standing beside me all these

years and constantly motivating me in my efforts. I wouldn’t have been what I am,

without their help.

And

My thanks go to my supervising professor, Nur A. Touba.

v

Acknowledgements

I wish to thank my advisor, Professor Nur A. Touba for his continued

guidance and encouragement. His research philosophy of maintaining a

balance between pure theoretical and practical aspects of research has

influenced me a lot.

Finally, my thanks go to the other committee members, Prof.

Margarida Jacome, Prof. Tony Ambler, Prof. David Z. Pan and Dr. Abhijit

Jas for their input and support.

vi

Synthesis for Circuit Reliability

Publication No._____________

Avijit Dutta, Ph.D.

The University of Texas at Austin, 2007

Supervisor: Nur A. Touba

For modern logic circuits, circuit reliability is an important design

consideration. Ionizing radiation from high-energy neutrons and alpha

particles can cause a single-event upset (SEU) that may cause a bit flip in

some latch or memory element thereby altering the state of the system

resulting in a soft error. As process technology scales well below 100

nanometers, the higher operating frequencies, lower voltage levels, and

smaller noise margins make integrated circuits increasingly susceptible to

SEUs resulting in a dramatic increase in soft errors. In this dissertation, a

non-intrusive technique is presented to detect soft errors in multilevel

combinational logic circuit with minimal overhead. Another low cost error

correcting code based technique is presented to detect and correct the most

likely soft errors in memory. This technique is then extended to design a

low cost unequal error protection code which can protect data residing in a

router buffer effectively. The dissertation also contains a fast algorithm to

accurately estimate signal probabilities of circuit lines. This algorithm can

be used to estimate soft error rates in a logic circuit. Finally, the

vii

dissertation also includes a low cost test data compression technique to

reduce the deterministic test data to be stored on tester during off-line

testing of a circuit.

viii

Table of Contents

List of Tables .. x

List of Figures .. xi

Chapter 1 Introduction ..1

1.1 Concurrent error detection ..2

1.2 Low cost error correction code for memories...3

1.3 Accurate signal probability estimation ...5

1.4 Test data compression...6

Chapter 2 Synthesis of non-intrusive concurrent error detection using an even error
detecting function..8

2.1 Related work ...8

2.2 Overview and proposed scheme ...14

2.3 Forming even edf function..15

2.4 Coverage versus area tradeoffs ...19

2.5 Experimental results..20

2.6 Conclusion ..24

Chapter 3 Multiple bit upset tolerant memory using a selective cycle avoidance
based SEC-DED-DAEC code...25

3.1 Introduction...25

3.2 Related work ...26

3.3 Binary linear block codes..29

3.4 Proposed code ...30

3.5 Code design procedure..33

3.6 Encoding/Decoding algorithm..38

3.7 Conclusions...39

Chapter 4 Multiple bit upset tolerant router memory using a low cost unequal error
protection code..41

4.1 Introduction...41

ix

4.2 NoC router architecture...45

4.3 Store-and-forward routing ..46

4.4 Unequal error protection code ..47

4.5 Proposed code ...48

4.6 Code design procedure..54

4.7 Encoding/decoding algorithm...62

4.8 Conclusion ..64

Chapter 5 Iterative OPDD based signal probability calculation.........................66

5.1 Related work ...66

5.2 Combining information across OPDDs ..69

5.3 Unknown solution space exploration..75

5.4 Runtime complexity analysis..78

5.5 Experimental results..80

5.6 Conclusion ..84

Chapter 6 Using limited depth sequential expansion for decompressing test vectors

...85

6.1 Introduction...85

6.2 Combinational encoding flexibility ..90

6.3 Sequential encoding flexibility ...94

6.4 Selecting decompressor design ...87

6.5 Synthesis procedure for decompressor ...99

6.6 Experimental results..100

6.7 Conclusions...106

Chapter 7 Conclusion and future work ...107

7.1 Conclusion ..107

7.2 Future work...108

Bibliography ..110

Vita ...119

x

List of Tables

Table 2.1: Comparison of proposed method with duplication...........................22

Table 3.1: Comparison of proposed SEC-DED-DEAC code with other codes.36

Table 4.1: Check bit requirements ...51

Table 4.2: Comparison of proposed SEC-DAED-SDAEC code with other codes

...59

Table 5.1: U-effect for OPDD in Fig 5.2 ...76

Table 5.2: Cumulative U-effects of OPDDs in Figs 5.2-5.4..............................76

Table 5.3: Cutting algorithm..81

Table 5.4: [Kodavarti 93]...82

Table 5.5: Proposed..83

Table 6.1: Design details..101

Table 6.2: Results for s38584...102

Table 6.3: Results for Design A...103

Table 6.4: Results for Design B ...105

xi

List of Figures

Figure 2.1: Non-intrusive CED ...12

Figure 2.2: Basic approach for structured implementation of non-intrusive

CED...12

Figure 2.3: Block diagram of proposed scheme..14

Figure 2.4: Coverage vs. overhead for dc2..23

Figure 2.5: Coverage vs. overhead for misex1..23

Figure 2.6: Coverage vs. Overhead for br1 ...23

Figure 3.1: H-matrix for proposed (22, 16) code ..34

Figure 3.2: H-matrix for proposed (39,32) code ...34

Figure 3.3: Pseudo greedy search algorithm ...36

Figure 3.4: H-matrix for proposed (72,64) code ...36

Figure 3.5: Error detection and correction block diagram39

Figure 4.1: Basic router architecture ...46

Figure 4.2: ECC scheme for NoC router ...47

Figure 4.3: Packet structure for store-and-forward routing.................................50

Figure 4.4: Error profiles...53

Figure 4.5: Algorithm to construct H2 matrix ...56

Figure 4.6: Algorithm to construct H1 matrix ...57

Figure 4.7: H-matrix for proposed (8,24,6) code ..58

Figure 4.8: H-matrix for proposed (16,48,7) code ..58

Figure 4.9: Constructing H2-matrix for (16,48,7) code60

Figure 4.10: XOR gate overhead vs header size ...62

Figure 4.11: Error detection and correction block diagram63

xii

Figure 5.1: Binary decision diagram and karnaugh map.....................................73

Figure 5.2: OPDD with variable ordering <a,b,c> ..73

Figure 5.3: OPDD with variable ordering <b,a,c> ..74

Figure 5.4: OPDD with variable ordering <a,c,b> ..74

Figure 5.5: OPDD using USSE generated ordering ..78

Figure 5.6: #iterations vs total ambiguity (normalized) (c880)...........................83

Figure 6.1: Block diagram of test vector decompression86

Figure 6.2: Example of including decompressor constraints at pseudo-PI’s for

ATPG Backtrace ...92

Figure 6.3: Probability of encoding scan slice for 16 tester channels expanding to fill

160 scan chains ...93

Figure 6.4: Example of limited dependence sequential decompressor with two

registers

...95

Figure 6.5: Probability of encoding test cubes for 8 tester channels expanding to fill

80 scan chains ...97

1

Chapter 1: Introduction

Circuit reliability has become an important design consideration. When ionizing

radiation from high-energy neutrons and alpha particles strike a sensitive region in a

semiconductor device, they generate a dense track of electron-hole pairs that may be

collected by a p-n junction resulting in a very short duration pulse of current causing a

single-event upset (SEU) in the signal value. An SEU may cause a bit flip in some latch

or memory element thereby altering the state of the system resulting in a soft error. As

process technology scales well below 100 nanometers, the higher operating frequencies,

lower voltage levels, and smaller noise margins make integrated circuits increasingly

susceptible to SEUs resulting in a dramatic increase in soft errors. Studies indicate that

the soft error failure rate will become unacceptable even in mainstream commercial

applications. It is projected that soft errors in logic circuits will be the limiting factor for

system reliability as technology continues to scale. The problem of soft error is even

more prominent in memories. Constant technology process improvement has resulted in

very dense memory cells that store information with less capacitance and lower voltage.

Consequently, less charge is required to produce one or more soft errors in memories.

While off-line tests can detect manufacturing defects, on-line error detecting and

correcting schemes are required to detect soft-errors and recover from soft-errors.

Based on the current technological trends, there is a great need for concurrent error

detection and correction techniques to increase reliability of both combinational logic

circuits and memories.

This dissertation primarily addresses the threat to reliability arising from

increasing soft error rates and proposes several concurrent error detection and correction

methodologies. For off-line testing, the dissertation presents a very low cost solution to

2

effectively reduce the deterministic test data to be stored for manufacturing test of a

circuit.

This chapter provides background on the issues related to soft errors in logic

circuit as well as in memories. It also presents the problem of test data compression and

its necessity in the context of off-line manufacturing test. Section 1.1 describes the

reliability concerns in combinational logic due to soft errors and describes the need for

efficient concurrent error detection techniques. Section 1.2 describes the problems in

memories caused by single event induced multiple bit upsets and present a low cost error

correcting code to design multiple bit upset tolerant memories. Section 1.2 also describes

a low cost unequal protection code that can protect data residing in router memories by

providing more protection to the more important part of the data packet. Section 1.3

presents a memory efficient algorithm with low runtime complexity to accurately

estimate signal probability bounds of the circuit lines. This algorithm can be used for

accurate estimation of soft error rates in combinational logic circuits. Accurate estimate

of soft error rate can help in insertion of appropriate protection hardware in logic circuits.

In section 1.4 the problem of test data compression in offline testing is described. In this

section a limited depth sequential expansion based test data compression technique is

presented to reduce both test data and testing time.

1.1 CONCURRENT ERROR DETECTION

One way to detect soft errors is to use concurrent error detection (CED) circuitry

that monitors the outputs of a circuit for the occurrence of an error. If an error is detected,

then the system can recover thereby preventing a failure. Detecting errors in logic

circuits is much more expensive than in memories. While CED can be efficiently

incorporated in memories due to their regular structure, logic circuits with their irregular

structure present a much greater challenge. It is projected that in systems where

3

memory CED is employed, soft errors in logic circuits will be the limiting factor for

system reliability as technology continues to scale. In this dissertation we focus on the

problem of providing CED in logic circuits. The simplest CED scheme for logic circuits

is to use duplication where the circuit is duplicated and the outputs are compared with an

equality checker. While this is very simple to implement and provides very high error

coverage, it requires over 100% overhead. So there is a need for CED schemes that

provide high coverage of soft-errors and at the same time have low overhead. A new

method for synthesizing non-intrusive concurrent error detection (CED) circuitry is

presented. The idea is to use single-bit parity to detect all errors affecting an odd number

of bits and then synthesize a circuit to detect the even errors. A novel statistical sampling

and expanding methodology is proposed for constructing the even error detection

circuitry. A major feature of the proposed methodology is that it allows very efficient

tradeoffs between error coverage and overhead. While CED schemes that use a fixed

checker based on a particular error detecting code are not amenable to simplification

without a major impact on coverage, the proposed scheme can easily facilitate significant

reductions in overhead with only a small loss in coverage. Experimental results show that

the proposed scheme can provide very high levels of soft error protection at a fraction of

the cost of duplication. In chapter 2, detailed description of the proposed non-intrusive

concurrent error detection scheme for combinational logic circuit is provided.

1.2 LOW COST ERROR CORRECTING CODES FOR MEMORIES

Conventional error correcting code (ECC) schemes used in memories and caches

cannot correct double bit errors caused by a single event upset (SEU). As memory

density increases, multiple bit upsets in nearby cells become more frequent. In this

dissertation, we propose a methodology for deriving an error correcting code through

heuristic search that can detect and correct the most likely double bit errors in a memory

4

while minimizing the miscorrection probability of the unlikely double bit errors. A key

feature of the proposed ECC is that it uses the same number of check bits as the

conventional single error correcting/double error detecting (SEC-DED) codes commonly

used, and has nearly identical syndrome generator/encoder area and timing overhead.

Hence, there is very little additional cost to using the proposed ECC. The proposed

ECC scheme can be very useful for small memories e.g., content addressable memory

(CAM), register files where interleaving is not possible. The proposed ECC can be used

instead of or in addition to bit interleaving to provide greater flexibility for optimizing a

memory layout and/or provide better protection from multiple bit upsets. The proposed

code designs the parity check matrix of the linear block code while avoiding certain types

of linear dependencies involving the columns of the parity check matrix. This selective

linear dependency avoidance based algorithm is further extended to design a low cost

unequal error protection code. This kind of code can be used to protect router memories

from single event induced multiple bit upsets. The network-on-chip (NoC) paradigm is

seen as a way of facilitating the integration of a large number of computational and

storage blocks on a chip to meet several performance and power constraints. However

due to continued scaling of process technologies, the devices and interconnects have

become more sensitive to new types of reliability hazards such as, single event upsets and

crosstalk. This dissertation presents a low cost error correcting code based techniques to

protect the NoC routers against the single event upset induced soft errors and also against

crosstalk. An unequal protection error correcting code based methodology is provided for

the most commonly used store-and-forward routing strategy. The proposed code has the

same check bit overhead as the conventional single error correcting (SEC) code. The

encoding/decoding overhead and latency are also similar to the conventional low cost

SEC code. The proposed codes belong to the class of unequal error protection codes as

5

they provide different levels of error correction capability for different portions of the

same packet. The proposed code provides more protection for the important parts of the

data. Chapter 3 and 4 describes the proposed codes in detail and also provides detailed

comparison with the existing codes.

1.3 ACCURATE SIGNAL PROBABILITY ESTIMATION

Estimating the reliability of circuits is essential in synthesis of reliable circuits.

Accurate estimation of circuit reliability requires accurate estimation of soft-error rates.

The effects of single event upsets (SEU) on digital circuit can be categorized in three

ways: 1) SEUs can cause a transient error in combinational logic part which can be

propagated and captured in flip-flops. 2) SEUs can directly change the contents of

memory elements. 3) SEUs can cause permanent damage on SRAM based combinational

circuits e.g., FPGAs. In our research so far, we have looked into the first category

involving combinational circuits and their effect on circuit reliability. An SEU causes a

soft-error if and only if it propagates to the latch boundary and gets latched making a bit-

flip error. Most SEUs on combinational logic are masked and they don’t reach the latch

boundary. Moreover even if the SEU effect reaches the latch boundary it still may not be

captured if it does not reach the latch at the appropriate latching-window. Accurate

estimation of signal probability is required to find out whether the effect of an SEU will

propagate to the flip-flop inputs through the combinational gates. The effect can only

propagate if for all the gates on the propagation path all the other inputs have non-

controlling logic values. To calculate actual soft-error probability accurate estimation of

signal probabilities on the propagation path of the SEU effect is required. In this

proposal, we present an efficient method to accurately compute tight bounds on the signal

probabilities for combinational circuits. This dissertation presents an improved method to

accurately estimate signal probabilities using ordered partial decision diagrams (OPDDs)

6

[Kodavarti 93] for partial representation of the functions at the circuit lines. OPDDs

which are limited to a certain maximum number of nodes are built iteratively with

different variable orderings to efficiently explore different regions of the function. Signal

probability bounds (upper and lower) are computed from the OPDDs. From each OPDD,

information is extracted to tighten the signal probability bound and guide the variable

ordering for the next OPDD. By restricting the size of each OPDD to a small number of

nodes, they can be constructed and processed quickly to obtain a fast and accurate

estimate of signal probabilities. Experimental results demonstrate the effectiveness of the

approach compared with existing methods. Chapter 5 describes in detail the proposed

approach.

1.4 TEST DATA COMPRESSION

In this dissertation till now we have focused on online methodologies to design

reliable circuits. The proposed concurrent error detection/correction methodologies

primarily focus on protecting circuits from single event induced soft errors. Another

threat to circuit reliability is the manufacturing defects. Offline testing typically screens

off the defective circuits. Offline testing techniques target the permanent faults and

deterministic test data targeting the permanent faults are typically stored on the tester. For

offline testing the test data volume and test time are the two major concerns. In this

dissertation we present a low overhead input data compression technique to reduce the

deterministic test data that needs to be stored on the tester. The proposed scheme can

reduce the test time significantly. The proposed technique uses a limited depth sequential

expansion based approach and incorporates the constraints directly into ATPG backtrace.

Existing techniques that incorporate decompressor constraints in the ATPG

search/backtrace (e.g., Illinois scan) are based on combinational expansion in which each

scan slice must be encoded using only the free-variables arriving form the tester in the

7

current clock cycle. Sequential expansion is more powerful as it allows free-variables

across multiple clock cycles to be used, however conventional approaches for sequential

expansion that are based on linear finite state machines (LFSRs) and ring generators are

not amenable to including the constraints in the ATPG backtrace because the constraints

are too complex. This dissertation investigates the use of limited dependence sequential

expansion to combine the benefits of sequential decompression with the benefits of

incorporating the decompressor constraints in the ATPG backtrace. Analytical and

experimental results are presented showing the benefits of the proposed approach.

Chapter 5 describes the proposed compression technique in detail.

8

Chapter 2: Synthesis of Non-Intrusive Concurrent Error Detection
Using an Even Error Detecting Function

A new method for synthesizing non-intrusive concurrent error detection (CED)

circuitry is presented. The idea is to use single-bit parity to detect all errors affecting an

odd number of bits and then synthesize a circuit to detect the even errors. A novel

statistical sampling and expanding methodology is proposed for constructing the even

error detection circuitry. A major feature of the proposed methodology is that it allows

very efficient tradeoffs between error coverage and overhead. While CED schemes that

use a fixed checker based on a particular error detecting code are not amenable to

simplification without a major impact on coverage, the proposed scheme can easily

facilitate significant reductions in overhead with only a small loss in coverage.

Experimental results show that the proposed scheme can provide very high levels of soft

error protection at a fraction of the cost of duplication.

2.1 RELATED WORK

When ionizing radiation from high-energy neutrons and alpha particles strike a

sensitive region in a semiconductor device, they generate a dense track of electron-hole

pairs that may be collected by a p-n junction resulting in a very short duration pulse of

current causing a single-event upset (SEU) in the signal value. An SEU may cause a bit

flip in some latch or memory element thereby altering the state of the system resulting in

a soft error. Additionally, an SEU may occur in an internal node of combinational logic

and subsequently propagate to and be captured in a latch. As process technology scales

well below 100 nanometers, the higher operating frequencies, lower voltage levels, and

smaller noise margins make integrated circuits increasingly susceptible to SEUs resulting

9

in a dramatic increase in soft errors. Studies indicate that the soft error failure rate will

become unacceptable even in mainstream commercial applications [Ziegler 96],

[Cohen 99]. One way to detect soft errors is to use concurrent error detection (CED)

circuitry that monitors the outputs of a circuit for the occurrence of an error [Gössel 93],

[Nicolaidis 98]. If an error is detected, then the system can recover thereby preventing a

failure. Detecting errors in logic circuits is much more expensive than in memories.

While CED can be efficiently incorporated in memories due to their regular structure,

logic circuits with their irregular structure present a much greater challenge. It is

projected that in systems where memory CED is employed, soft errors in logic circuits

will be the limiting factor for system reliability as technology continues to scale

[Shivakumar 02], [Bowman 03, 04]. This chapter focuses on the problem of providing

CED in logic circuits. The simplest CED scheme for logic circuits is to use duplication

where the circuit is duplicated and the outputs are compared with an equality checker.

While this is very simple to implement and provides very high error coverage, it requires

over 100% overhead. A lot of research has been done on alternate schemes that are still

applicable to any logic circuit but require less hardware overhead than duplication. One

class of techniques uses time redundancy. Multiple sampling of the outputs has been

proposed in [Franco 94], [Metra 98], [Nicolaidis 99], [Favalli 02]. Self-dual functions

have been proposed in [Saposhnikov 96, 98a]. These approaches have low hardware

costs, but reduce performance. Another class of techniques involves re-synthesizing the

functional logic so that it has a more regular structure such that simple error detecting

codes can be used to provide high coverage. Techniques have been developed for parity

codes [De 94], [Touba 97], [Bolchini 97]; Berger codes [Jha 93], [Saposhnikov 98b]; and

Bose-Lin codes [Das 99]. In cases where it is not desirable to re-synthesize the

functional logic (e.g., cores, macrocells, handcrafted designs, legacy designs, etc.), these

10

techniques are not applicable. A third class of techniques uses non-intrusive CED where

the functional logic is not modified. As shown in [Gössel 93], this problem can be

formulated as follows (see illustration in Fig. 2.1). For a functional circuit with n

inputs, A=ai,…,an, and m outputs Z=zi,…,zm, let EDF(ai,…,an, zi,…,zm) be the error

detecting function which is a Boolean function that is equal to 0 if the output vector Z is

error-free, equal to 1 if the output vector Z has an error due to a fault in the specified fault

class, and equal to X (don’t care) in all other cases (i.e., for input vector A, no fault can

cause the output vector to be equal to Z). Any implementation of the Boolean function

EDF will detect all errors due to the specified fault class. As pointed out in

[Almukhaizim 04a], the EDF could be passed directly to a synthesis tool to produce the

CED circuitry and if the synthesis algorithm could search exhaustively, it could find the

optimal non-intrusive CED circuit. However, synthesis tools use heuristics to search the

large space of solutions and consequently may obtain a sub-optimal solution. In fact the

nature of the EDF function makes it particularly hard for synthesis tools to handle as it

has a very large don’t care space and many exclusive-or (XOR) factors which most

synthesis tools are not good at finding. Thus, passing the EDF directly to a synthesis tool

generally does not produce good results as shown in [Almukhaizim 04a]. Rather than

trying to directly synthesize the EDF, researchers have explored structured

implementations for the EDF. The basic approach for this is to place a compaction circuit

at the outputs of the function logic to reduce them from m down to k and then synthesize

a prediction circuit that independently predicts the k outputs. This is illustrated in Figure

2.2. One approach for compacting the outputs is to use a parity code which XORs

together different subsets of the outputs [Sogomonyan 74], [Fujiwara 87]. If the parity

code is selected so that no errors are masked, then 100% coverage can be maintained. In

[Almukhaizim 04b], it was observed that the overhead for using a parity code is

11

dominated by the prediction logic and a method based on entropy was proposed to guide

the selection of the parity code to minimize the prediction logic. A technique for selecting

the parity code with bounded error masking was described in [Tarnick 94]. In

[Almukhaizim 04a], a more general design methodology that is not limited to parity was

described for synthesizing the compaction circuit to ensure no error masking. In

[Mohanram 03], CED based on a parity code is selectively disabled for some input

vectors to tradeoff less coverage for less overhead in the prediction logic. In [Morozov

00], a technique for using a Berger code was described.

12

Figure 2.1: Non-intrusive CED

n

Functional
Logic

Error
Indication

Prediction
Circuit

k

Inputs

Outputs

m

Compaction

Comparison

k

Figure 2.2: Basic approach for structured implementation of non-intrusive CED

n

Functional
Logic

Error
Indication

Error
Detecting
Function
(EDF)

m

Inputs

Outputs

n

Functional
Logic

Error
Indication

Error
Detecting
Function
(EDF)

m

Inputs

Outputs

13

In this chapter, a new method for synthesizing non-intrusive CED circuitry is

presented. The idea is to use single-bit parity to detect all errors affecting an odd number

of bits and then synthesize a circuit to detect the even errors. The key concept behind this

approach is that most of the errors in the EDF function are single-bit errors. By using

single-bit parity, all of the odd errors in the EDF function (which includes the single-bit

errors) become don’t cares leaving only the even errors. The smaller number of even

errors in the EDF function can be efficiently synthesized with most synthesis tools. In

effect, the proposed method forces a decomposition of the EDF function in which the odd

errors are covered with a single parity function and the even errors are covered via

conventional logic synthesis with don’t cares. Forming the EDF function for even errors

by exhaustive simulation of all input vectors and all faults can be done only for small

circuits. In order to handle larger circuits, a novel statistical sampling and expanding

methodology is proposed. While most CED schemes use a fixed checker structure based

on an error detecting code that it not amenable to simplification without a significant

impact on error coverage. One of the nice features of the proposed scheme is that it

provides very easy and efficient tradeoffs between coverage and overhead. A systematic

approach is described for simplifying the even error detecting function that results in

large reductions in overhead with only a minor loss in error coverage. The chapter is

organized as follows: Sec. 2.2 provides an overview of the proposed scheme and its

architecture. Sec. 2.3 describes the procedure for forming the even error detecting

function. Sec. 2.4 explains how the proposed scheme allows for very efficient tradeoffs in

coverage versus overhead. Experimental results are presented in Sec. 2.5. Section 2.6

concludes the chapter.

14

2.2 OVERVIEW OF PROPOSED SCHEME

The proposed scheme involves combining single-bit parity with an even error

detecting circuit. A block diagram for the proposed approach is shown in Fig. 2.3. The

even error detecting circuit generates a two-bit error indication signal which normally has

opposite values in the fault-free case and indicates an error by having equal values. An

XOR-tree is used to compute the parity of the outputs of the functional logic. The parity

predictor circuit predicts the complement of the parity of the outputs such that its output

together with the XOR-tree output forms a two-bit error indication. The two pairs of error

indication signals are then merged using a two-rail checker.

n

Functional
Logic

Error
Indication

Parity
Prediction

Inputs

Outputs
m

XOR-Tree

Two-Rail Checker

Even Error
Detection
(EEDF)

Figure 2.3: Block diagram of proposed scheme

To simplify things, the even error detection function (EVEN_EDF) will be described in

the rest of the chapter as a single output function. The process of converting it so that it

15

produces a two-bit error indication signal is trivial. It can be done by simply extracting

one XOR factor, inverting it, and making it a separate output (i.e., extract any factor E2

such that EVEN_EDF=E1 E2 and use E1 and E2’ as outputs with the XOR gate

removed). Thus, anytime EVEN_EDF is a 1, E1 and E2’ will have equal values

indicating an error, and anytime EVEN_EDF is a 0, E1 and E2’ will have opposite values

which is the normal error-free case. Synthesizing the parity predictor circuit is exactly the

same as for previously proposed methods. Synthesizing the even error detecting circuit is

done by forming the EVEN_EDF function and giving it to a synthesis tool to synthesize.

The challenge is how to form the EVEN_EDF function and that is the subject of the next

section.

2.3 FORMING EVEN_EDF FUNCTION

Given a functional logic circuit F with n inputs and m outputs, the simplest way to

get the complete EVEN_EDF function that provides 100% coverage of all errors would

be to exhaustively simulate F for all input vectors and faults. For each input vector, each

fault is injected and the corresponding faulty output vector is obtained. If the faulty

output vector has an even number of errors, then the minterm corresponding to the input

vector and faulty output vector pair would be added to the ON-set of the EVEN_EDF

function. This would continue until the complete ON-set for EVEN_EDF is formed. The

OFF-set for EVEN_EDF is described by the functional logic circuit F itself. The DC-set

includes anything that is not in the ON-set or OFF-set.

Forming the exact EVEN_EDF function through exhaustive simulation is

intractable for all but the smallest circuits. Thus a less computationally complex

procedure needs to be used for forming the EVEN_EDF function which will not

necessarily obtain the exact ON-set. The proposed method involves using statistical

methods to approximate the ON-set. Fortunately, good results can still be obtained even

16

if the exact ON-set is not known. If some extra minterms from the DC-set are included in

the ON-set, there is no loss of coverage, but possibly the synthesis tool may not obtain as

optimal of a result. If some minterms are missing from the ON-set, there may be some

loss of coverage. If the approximate ON-set is reasonably close to the exact ON-set, the

impact in terms of either the optimality of the synthesis or the coverage can be kept very

small. Moreover, if one is interested in trading off less coverage for less overhead, this

can be nicely facilitated by approximating the ON-set in a way that the missing minterms

simplify the logic implementation.

The proposed method for approximating the ON-set of the EVEN_EDF function

involves random sampling of the input space for each fault combined with a bit-stripping

operation. The procedure is described as follows:

Input: Functional logic circuit F, fault list, and number of simulations to do per

fault (L).

Output: Approximate ON-set for EVEN_EDF function.

Step 1: Prune fault list – All faults that have a structural path to only one output

are pruned from the fault list as they will never cause even errors.

Step 2: Randomly simulate L input vectors for each fault in fault list – The value

of L is a parameter for this procedure that allows tradeoffs between runtime versus

accuracy.

Step 3: For any vector that causes an even error, perform bit-stripping – Select a

bit in the input vector and flip its value to the opposite of its current value and fault

simulate. If the error is no longer even, then the input bit is flipped back to its original

value. Otherwise, the input bit is changed to an X since an even error occurs regardless of

the value of that input bit. This process is repeated for all the bits in the input vector one

by one. The order in which the bits are processed is selected randomly each time a new

17

vector is processed so that no particular order is repeated. The purpose of bit-stripping is

to convert the input vector into an input cube that covers a large set of minterms.

Step 4: Add to the ON-set each input cube obtained in step 3 along with its

corresponding output cube – Each input cube found in step 3 is fault simulated to obtain

its corresponding 3-valued output cube. Together they specify a cube of minterms that are

added to the ON-set of the EVEN_EDF function.

The procedure above produces an approximation of the ON-set for the

EVEN_EDF function. Rather than simulating all of the input vectors for each fault (which

would be exponential), only L vectors are simulated per fault where L is a user-specified

value based on the desired level of accuracy in approximating the ON-set. Each input

vector that causes an even error is expanded into a cube using bit-stripping. The resulting

cube after bit-stripping contains many input vectors that also cause an even error. Some

input vectors that cause an even error may not be found using this procedure because they

may not be contained in any of the input cubes generated through bit-stripping. The

larger the value of L, the more input cubes that are generated per fault and hence the less

chance of missing an input vector that causes an even error for the fault. Missing input

vectors that cause even errors means the ON-set for the EVEN_EDF function will be

missing minterms which may result in some loss of coverage. However, on the good side,

the minterms that are included in the EVEN_EDF function are contained in cubes (due to

the way they were generated) and thus may simplify the logic implementation of the

approximate EVEN_EDF function compared to the exact EVEN_EDF function that gives

100% coverage. The other source of approximation in the procedure is that one output

cube is associated with all the input vectors contained in an input cube. In reality, of

course, each input vector corresponds to only a single output vector and not a whole cube

of output vectors. While the output cube is guaranteed to contain the correct output

18

vector, it also contains many other output vectors thereby resulting in extra minterms

being placed in the ON-set which should actually be in the DC-set. There is no risk of

any minterms from the OFF-set ending up in the ON-set since the output cube always

contains an even error (this is ensured by the way the bit-stripping is done) and thus it can

never contain a fault-free output vector. The fact that the approximate ON-set contains

some minterms from the DC-set does not impact the coverage at all. Potentially it could

make the logic implementation of the approximate EVEN_EDF function more complex

compared with the exact EVEN_EDF, but the fact that the additional minterms in the

ON-set are contained in cubes (due to the way they were generated) the impact generally

will not be significant.

Even though the experiments are performed with single stuck-at fault model, the

proposed algorithm behaves in a conservative way for transient faults. If a transient fault

is such that it causes an odd number of errors at the output when the corresponding stuck-

at fault causes an even number of errors, the fault will still be detected by the odd error

detection circuit. This scenario may arise when the transient fault propagates to the

outputs only through some of the possible paths (shorter paths) due to the transient nature

of the fault. On the other hand if an even number of errors are caused at the output when

the corresponding stuck-at fault causes an odd number of errors, by the transient fault,

then there could be some loss of coverage because the corresponding input vector and

faulty output pair was not included in the ON-set of the EVEN_EDF function. However

not all even errors are possible for each odd error. It will depend on the distribution of the

long paths and short paths and probability of transient errors. Therefore there can only be

minimal loss in coverage. Extensive path length analysis and transient error probabilities

will be required to analyze the actual probability of transient errors causing an odd error

to degenerate into even error. The faults in the CED circuitry will also be detected

19

because the CED circuitry is an irredundant part of the final synthesized circuit and we

are considering only single fault at a time. Some patterns will eventually uncover the

fault in the CED part. False alarms i.e. flagging error when there is no error are also not

possible since the bit-stripping procedure ensures that none of the fault-free response

vector and input vector combinations is part of the ON-set of the EVEN_EDF function.

Since the procedure is based on pure random sampling, no special ATPG is required to

construct the EVEN_EDF function. The proposed algorithm provides a very easy and

efficient trade-off between simulation time and fault coverage by controlling the

parameter L, while constructing the EVEN_EDF function.

2.4 COVERAGE VERSUS AREA OVERHEAD TRADEOFFS

If the coverage is not high enough, the procedure described in Sec. 2.3 can be

repeated with a larger value of L to obtain a more accurate approximation of the

EVEN_EDF function and then the even error detecting circuit can re-synthesized.

If lower overhead is desired for the CED circuitry, a strategy for achieving this

while minimizing the loss of coverage is as follows. When the input cubes are generated

via bit-stripping in Step 3 of the procedure described in Sec. 2.3, a threshold can be set on

the size of the cubes. If the size of the input cube is not larger than the threshold, then the

input cube is simply discarded and not added to the ON-set. The reasoning behind this

strategy is that small input cubes contain only a small number of input vectors while

requiring a potentially large amount of logic to implement (depending on the extent to

which they can be merged or factored with other cubes). By discarding these cubes, the

impact on the overall coverage is minimal while the benefit in reducing overhead is

substantial. This strategy can be very effective in trading off a small loss in coverage for

a large reduction in overhead. This is one of the key advantages of the proposed schemes

and will be highlighted in the experimental results.

20

2.5 EXPERIMENTAL RESULTS

Experiments were performed on some MCNC benchmark circuits [Yang 91]. The

area results for the circuits were obtained using Synopsis Design Analyzer. The area

reported is the cell area.

Table 2.1 compares the area overhead for the self-checking circuits implemented

using the duplication method and the proposed scheme. Both are non-intrusive and hence

do not require re-synthesis of the functional logic. The circuit information and the

optimized area for the MCNC benchmark circuits with no CED can be found under the

first major heading. Under the second and third major headings the results corresponding

to the duplication method and the proposed scheme are given, namely the area for the

circuit with CED and the percentage area overhead compared with the optimized

functional logic without CED. For the proposed scheme different tradeoffs between area

overhead and coverage are shown. The last coverage/overhead entry for each circuit

shows the case where no even error detecting circuit is used (i.e., where only single-bit

parity is used). To increase coverage, the even errors have to be detected.

With a sufficiently large value of L, 100% coverage was obtained for most

circuits to give a reference point. Note that the percentage area overhead was computed

as follows:

% overhead = (area with CED – optimized area without CED) (optimized area

without CED) 100

The coverage was computed in the manner described in Sec. 2.4 where faults

were randomly injected in the functional logic and random patterns were simulated. The

coverage is defined as the number of output vectors that contained errors that were

detected by the CED. Of course, duplication always provides 100% coverage.

21

As can be seen from the results, significant reductions in area overhead can be

achieved with relatively small reductions in coverage. It is interesting to note that in most

cases, getting the last 1-2% of coverage is very expensive. By going from 100% down to

99-98% coverage, a significant reduction in the CED overhead can be achieved. The

likely reason for this is that there are a number of hard to sensitize paths that lead to even

errors. Since few patterns sensitize these paths, the probability of soft errors occurring

along these paths is very small. However, detecting these soft errors requires a lot of

hardware. This phenomenon is illustrated in Figs. 2.4-2.6 which are graphs of coverage

versus overhead. As can be seen in these graphs, the CED hardware required to increase

the coverage rises somewhat linearly until the coverage reaches the high 90’s at which

point a lot of hardware is required to detect the last few percent of soft errors. The

proposed method provides a very efficient way to take advantage of this phenomenon by

allowing the designer the option of reducing the CED overhead significantly with only

small loss in coverage.

22

Table 2.1: Comparison of Proposed Method with Duplication

Circuit Duplication Proposed
Name Num.

PI
Num.
PO

Area Area Overhead
(%)

Area Overhead
(%)

Coverage
(%)

8252 54.3 100
7487 40.3 99.2
6417 20.5 88

apla 10 12 5348 12298 130.2

6150 11.5 72.4
3756 30.6 100
3402 18.3 99.8
3258 13.3 91.2

br1 12 8 2876 6614 129.5

3169 10.2 76.4
16516 103.4 99.8
15687 93.2 98.7
15509 91.4 96.7

chkn 29 7 8120 18940 133.5

15395 89.6 90
4894 62.1 100
3697 22.4 99.4
3359 11.2 90.3

dc2 8 7 3021 7046 133.2

3217 6.5 84.6
5846 40.4 100
5203 24.6 97.4
5094 22.2 80

exp 8 18 4176 9396 131.3

4927 18.4 70.2
2224 80.2 100
2007 62.4 98.9
1928 56.3 80.2

wim 4 7 1236 3414 176.2

1903 54.0 74.2
4461 92.3 100
4245 83.6 98
4129 78.4 88

5xp1 7 10 2320 5220 125.0

4036 74.0 81
2356 110.2 100
2391 98.4 97.3
2379 97.6 78.4

b12 15 9 1208 3020 150.1

2343 94.2 72.2
2950 150.1 100
2430 106.4 98.2
2289 94.3 72

cu 14 11 1180 3068 160.2

2230 89.7 64.2
3557 67.5 100
3241 52.6 97.8
3160 48.8 82

sao2 10 4 2124 4885 129.9

3107 46.3 71.3
1867 120.2 99.8

1793.1 112.1 99.2
1528.4 80.2 84

misex1 8 7 849 1970 132.0

1446.2 70.4 76

23

75

80

85

90

95

100

6.5 11.2 22.4 62.1

Overhead (%)

C
ov

er
ag

e
(%

)

Figure 2.4: Coverage vs. Overhead for dc2

75

80

85

90

95

100

70.4 80.2 112.1 120.2
Overhead (%)

C
ov
er
ag
e
(%
)

Figure 2.5: Coverage vs. Overhead for misex1

75

80

85

90

95

100

10.2 13.3 18.3 30.6
Overhead (%)

C
ov
er
ag
e
(%
)

24

Figure 2.6: Coverage vs. Overhead for br1

2.6 CONCLUSION

The proposed method provides an efficient way to achieve high levels of soft

error protection with reduced overhead. It is non-intrusive and thus does not require any

modification to the functional logic itself.

25

Chapter 3: Multiple Bit Upset Tolerant Memory Using a Selective
Cycle Avoidance Based SEC-DED-DAEC Code

3.1 INTRODUCTION

Ionizing radiation from high-energy neutrons and alpha particles can cause a

single-event upset (SEU) that may alter the state of the system resulting in a soft error.

Memories, which occupy a large percentage of the area of a chip, are especially sensitive

to SEUs. Constant technology process improvement has resulted in very dense memory

cells that store information with less capacitance and lower voltage. Consequently, less

charge is required to produce one or more soft errors in memories. Recent studies

characterizing different bit errors arising from an SEU suggest that 1–5% of the SEUs

can cause multiple bit upsets (MBUs) [Maiz 03]. Depending on the underlying

technology and the incident particle, several types of multiple-bit errors are possible

[Satoh 00], [Makihara 00], [Kawakami 04]. It has been shown that incident neutron

particles can react with the die contaminants and generate secondary particles with

enough energy to create multiple errors. The distance between the bits in error depends

on the initial angle of incidence, die contaminant types, and the scattering angle for the

secondary particles. Based on this, the probability of adjacent double bit errors is much

higher than other multiple bit errors.

A SEC-DED code [Hamming 50] is capable of correcting one error and detecting

all possible double errors. It is commonly used in memories and caches, but cannot

correct more than a 1-bit error in a word. In order to correct the most commonly

occurring MBUs, this chapter proposes a low cost ECC methodology to correct double

adjacent bit errors. It involves constructing a single-error-correcting, double-error-

detecting, double-adjacent-error-correcting (SEC-DED-DAEC) code by selectively

26

avoiding certain types of linear dependencies in the parity check matrix. A key feature of

the proposed SEC-DED-DAEC code is that it uses the same number of check bits and has

nearly identical syndrome generator/encoder area and timing overhead as the

conventional SEC-DED codes. Consequently, there is very little additional cost to using

it. Specific H-matrices for 16, 32 and 64-bit data words are given in the chapter, and their

properties are directly compared with commonly used SEC-DED codes published

elsewhere.

While the focus in the chapter is on SEC-DED-DAEC codes, the proposed

methodology is flexible and can be used to construct codes for correcting any subset of

double errors.

3.2 RELATED WORK

A number of approaches for extending the basic SEC-DED Hamming code

[Hamming 50] have been previously proposed. A special class of SEC-DED codes

known as Hsiao codes [Hsiao 70] was proposed to improve the speed, cost, and reliability

of the decoding logic. The codes constructed in the proposed methodology can be thought

of as a special class of Hsiao codes. Another class of SEC-DED codes [Reddy 78], [Chen

83] was proposed to detect any number of errors affecting a single byte. These codes are

known as single-error-correcting double-error-detecting single-byte-error-detecting

(SEC-DED-SBD) codes. For protecting byte-organized memories, SEC-DED-SBD codes

are more suitable than the conventional SEC-DED code.

To provide byte error correction capability, single-byte-error-correcting, double-

byte-error-detecting (SBC-DBD) codes [Berlekamp 68], [Reed 60], [Wolf 69], [Bossen

70] [Chen 96] were proposed. These codes perform at a higher order Galois field and

consequently the encoding and decoding are more complex. Moreover, they require more

check bits thereby increasing the size of the memory.

27

To provide complete double error correction capability, a double-error-correcting

triple-error-detecting (DEC-TED) code may be used at the cost of much larger overhead

in terms of both the check bits and more complex hardware to implement the error

correction and detection [Lin 83], [Berlekamp 68], [Lala 78].

The Reed-Solomon (RS) code and Bose-Chaudhuri-Hocquenghem (BCH) codes

are able to detect and correct multiple bytes of errors with very low overhead in terms of

additional check bits required. However, these codes typically work at the block level and

are applied to multiple words at a time. Other similar codes include the extended

Hamming code [Bossen 70] which performs at a higher order Galois field GF (2K) and

can correct up to k-bit burst errors. Other multiple error correcting codes include the

optimal rectangular code (ORC), adaptive cross-parity code (APX) code, and others. The

general drawbacks with these methods are latency and speed. Most of these codes require

several cycles to correct the first error. Moreover, the encoding and decoding are much

more complex and require several table lookups for multiplication in higher order fields.

Another class of multiple error-correcting approaches combines coding with

circuit level techniques to sense multiple errors in a memory. In [Vargas 94] and [Calin

95], an asynchronous built in current sensor (BICS) on the vertical power lines of a

memory along with a parity bit per memory word is used. A conventional SEC-DED

code and the BICS approach are combined in [Gill 05] to detect multiple bit upsets

affecting the same memory word.

Even though several powerful error correcting codes exist, the SEC-DED code

has remained an attractive choice mainly because of its fast and simple encoding/

decoding and low hardware overhead. One of the most commonly used techniques to

minimize the probability of multiple bit upsets in a single word is bit interleaving [Maiz

04] which is a memory layout architecture in which physically adjacent bits are assigned

28

to different logical words. For k-way interleaving, k adjacent failing bits appear as k

different single-bit errors in k different logical words rather than as a k-bit error in a

single logical word. A simple SEC-DED code can be used along with bit interleaving to

help protect from multiple bit upsets. However, there can be some limitations/drawbacks

for bit interleaving. In some cases, it may negatively impact floorplanning, access time,

and/or power consumption. The proposed SEC-DED-DAEC code requires very little

overhead and can be used instead of or in addition to bit interleaving to provide greater

flexibility for optimizing a memory design. For a fixed depth of interleaving, a larger

physical distance between cells in error can be tolerated using the proposed code, or to

tolerate a fixed physical distance of cells in error, the required depth of interleaving can

be reduced. The proposed methodology places an additional tool in the hands of a

memory designer for optimizing a memory layout. Moreover, for small memories, e.g.,

content addressable memory or register files, interleaving may not be feasible. The

proposed coding methodology is particularly useful in this case to provide protection

from MBUs.

A class of systematic SEC-DED-DAEC codes was proposed much earlier in

[Abramson 59]. However, it was not targeted for memories. Its encoding and decoding

are not as efficient as conventional SEC-DEC codes. One check bit is dedicated to

differentiate between single and double bit errors. This check bit computes the parity of

the entire message and hence incurs a lot of decoding delay and large decoder overhead.

Moreover, the encoding and decoding involve the use of a linear finite state machine

(LFSM) and hence the latency is increased. Some extensions of the basic code in

[Abramson 59] have been suggested. In [Elspas 60], the SEC-DED-DAEC code was

extended to higher order fields GF (2K), and in [Bernstein 63], the code was modified for

arithmetic operations.

29

The ECC methodology proposed in this chapter constructs a different SEC-DED-

DAEC code from the ones described in [Abramson 59], [Elspas 60], and [Bernstein 63].

The proposed SEC-DED-DAEC codes are targeted for memories and have the same

number of check bits and nearly identical encoding and decoding latency as conventional

SEC-DED codes. The proposed codes are constructed by selectively avoiding certain

type of cycles in the parity check matrix. Moreover it tries to minimize the miscorrection

(non-adjacent double error mistaken as an adjacent double error) probability.

3.3 BINARY LINEAR BLOCK CODES

The proposed SEC-DED-DAEC code falls into the category of systematic binary

linear block codes. A binary (n, k) linear block code is a k-dimensional subspace of a

binary n-dimensional vector space. An n-bit codeword of the code contains r=(n-k) check

bits and k data bits. The (rn) parity-check matrix (H-matrix) completely defines the

code. C is a codeword of the code if and only if

 H.CT = 0 (1)

where CT is the transpose of the codeword C. The H-matrix corresponds to a

systematic code if it can be represented as

 H=[Prk,Irr] (2)

where I is the rr identity matrix. For a systematic code, the first k-bits of the

codeword can be designated as the data bits and the last r bits can be designated as the

check bits. For the targeted application, only systematic codes are useful. For a

systematic code with a parity check matrix of the form given by Eqn. 2, the generator

matrix can be simply obtained as

 G=[IKK,PT] (3)

The H-matrix represents a set of linear equations involving the bits of the

message. The syndrome is defined as the r-bit vector obtained upon multiplying the

30

received n-bit message with the H-matrix in GF (2). In the error free case, the syndrome

is the all-zero vector. An error vector is defined as an r-bit vector where the bits that are

in error have the value 1 and all the other bits are 0. An erroneous message Ve can be

represented as

 Ve = V + E (4)

where E is the error vector and V is the error free message (i.e., codeword).

 S = H.Ve = H.(V+E) =H.V + H.E = H.E (5)

where S is the syndrome for the particular message Ve. In the next section, we will

discuss the proposed linear systematic block code.

3.4 PROPOSED CODE

The proposed SEC-DED-DAEC code has the following properties:

1. All single-bit errors can be corrected

2. All double bit errors can be detected

3. All adjacent double bit errors can be corrected

The miscorrection probability for non-adjacent double errors is reduced

The characteristics of a linear block code are completely determined by its H-

matrix. To detect all single-bit errors, the corresponding error syndromes should be

unique. Note that the syndrome for a single-bit error at the bit position p is the same as

the p-th column of the H-matrix. To uniquely identify all the single-bit errors, all the

columns of the H-matrix must be unique.

To detect all the double bit errors, the corresponding syndromes should be

different from all the single-bit error syndromes. The syndrome for a double bit error is

given by the exclusive-or (XOR) of the corresponding columns of the H-matrix. So there

cannot be any 3-cycle in the H-matrix. A k-cycle refers to a set of k linearly dependent

31

columns of the parity check matrix, i.e., when XORed together, the output is an all-zero

column. To be able to correct all the adjacent double bit errors, the syndromes for the

adjacent double bit errors should be different from each other and also different from all

the single-error syndromes. Next we define the conditions that must be satisfied by the H-

matrix for the proposed code:

1. No all 0 columns.

2. All columns are distinct

3. No linear dependency involving 3 or less columns i.e., no 2-cycle and 3-

cycle are allowed.

4. No linear dependency involving columns Ci,Cj,Ck,Cm where m>k>j>i,

such that j=i+1 and m=k+l.

Moreover the code tries to minimize the number of 4-cycles involving Ci,Cj,Ck,Cm

where m>k>j>i, such that j=i+1 or k=j+l or m=k+1.

Condition 1 ensures that no single-bit error case match the error free case.

Condition 2 ensures that all the single error syndromes are unique. Every single

error syndrome matches one of the columns of the H-matrix. Since all the columns of the

H-matrix are distinct, the single-bit errors are uniquely identifiable and hence correctable.

Additionally this condition ensures that there are no pairs of double errors of the form

(i,j) and (j,k) such that the corresponding syndromes are the same. Assume that such

double errors exist, then (CiCj)(CjCk)=0, i.e., (CiCk)=0 but that contradicts the

fact that all the columns of the H-matrix are distinct. This ensures that syndromes for

adjacent errors of the form (i,i+1) and (i+1,i+2) are different.

Condition 3 ensures that the syndromes for all double bit errors are different from

that of the single-bit errors. The syndrome for a double bit error is determined by the

XOR of the columns corresponding to the erroneous bit positions. If the H-matrix is free

32

of 3-cycles then the XOR of any two columns of the H-matrix is not identical to any of

the columns of the H-matrix. This ensures that the syndromes of all the double bit errors

are different from the single-bit error syndromes, and condition 2 ensures that the double

bit error syndromes are non-zero. Hence all the double bit errors are detectable.

Condition 4 along with condition 2, ensures that a syndrome for an adjacent

double bit error is different from all other adjacent double bit error syndromes. If we

assume that the only errors are single-bit errors or adjacent double bit errors, then with an

H-matrix satisfying conditions 1 through 4, we can uniquely identify the syndromes for

all single-bit errors and adjacent double bit errors and hence can correct all single-bit

errors and all double adjacent bit errors and detect all double bit errors.

However the syndromes for the adjacent bit errors are shared with some non-

adjacent double bit error syndromes. This is because some 4-cycles are allowed in order

to reduce the check-bit overhead. So there is a possibility that a non-adjacent double bit

error will be mistaken as an adjacent double bit error and hence will be incorrectly

corrected (although the probability of non-adjacent double errors is much less than that of

the adjacent double errors). Condition 5 tries to minimize the probability of such an event

happening. We call the 4-cycles of the type given by condition 4, forbidden 4-cycles

(4FC). We call the 4-cycles of the type Ci,Cj,Ck,Cm where m>k>j>i, such that j=i+1 or

k=j+l or m=k+1, bad cycles (4BC), since their presence have a detrimental effect on the

capacity of the code. The number of non-adjacent double bit errors is n
2C − (n − 1). For

the double errors that are caused by independent SEUs, all the double errors are equally

likely. In that case, the miscorrection probability is given by:

Pr (miscorrection) =
)1n(C

BC4#
n
2

 (6)

While constructing the H-matrix, an effort is made to reduce the miscorrection

probability by keeping the number of 4BCs small. While designing the H-matrix,

33

additional constraints can be imposed to reduce the encoding and decoding overhead.

This can be achieved by limiting the number of 1’s in any row of the H-matrix.

3.5 CODE DESIGN PROCEDURE

The design of the H-matrix is essentially a systematic search process to satisfy all

the conditions mentioned in the previous section. For an (rn) matrix, there are 2(rn)

possible choices, so an exhaustive search approach is ruled out for reasonably large

values of r and n. Figure 3.1 shows a H-matrix for a (22,16) code. Even for this code, an

exhaustive search is not practical even if the domain of columns considered is restricted.

The weight of a column of the H-matrix is defined as the number of 1’s in the column. If

we limit the H-matrix to only weight-3 and weight-1 columns, then there are 6
3C = 20

choices out of which 16 columns can be chosen in 20
16C = 4845 ways. For each choice

there are (16! > 2 × 1013) column permutations which should be searched for the best

code. So an exhaustive search will have to search (4845 × 16!) > (2 × 1013) matrices for

the best code. The search space increases further if arbitrary weighted columns are

allowed. Note that For the H-matrix in Fig. 3.1, no column of weight two is allowed

because any weight-2 column will create a 3-cycle with two weight-1 columns.

Constructing the best H-matrix for a SEC-DED-DAEC code that satisfies all of

the conditions discussed in Sec. 3.4 is NP-complete. A pseudo-greedy search procedure

can be used as shown in Fig. 3.3. The outer while loop stops once a valid code is found or

the maximum backtrack limit is exceeded. The inner while loop finds a set of valid

columns (that does not introduce any forbidden cycles) for the current column position. If

no valid column is found for the current column position, then the last choice for a

column has to be undone. This corresponds to a backtrack. If multiple valid columns are

found for the current column position then the one that minimizes the number of bad 4-

cycles in the currently constructed code space is chosen. Once an initial H-matrix is

34

found, a limited number of column permutations are tried to avoid a local optimum and

search for a better H-matrix in terms of reduced miscorrection probability.

1100110001110100100000

0001010011011001010000

1010100111100011001000

1001001110010110000100

0110101100001101000010

0111011000101010000001

Figure 3.1: H-matrix for proposed (22,16) code

 101110010101100001001010011100001000000

 010101001011000100011100011000010100000

 101010100110001010110000110000110010000

 010100011100010101100001100001110001000

 001001100000101101001011000011100000100

 100001001001011010010110100111000000010

 010010110010110010100101001110000000001

Figure 3.2: H-matrix for proposed (39,32) code

Input: n, maxIter, maxBacktrack, maxPermute

Output: H-matrix

avail_col = All 1-weight columns, followed by 3-weight columns, followed
by 5-weight columns, and so forth up to the largest weight columns being
considered

currentCol = 0; backtrack = 0

while (currentCol < n) {

 Iter = 0

35

 validColPool[currentCol] = {}

 while (iter < maxIter) {

 Iter++

 C = Untried least-weighted column from avail_col

 Check for existence of forbidden 4-cycles

 if (! 4FCfound) {

 validColPool[currentCol] =

 validColPool[currentCol] C } }

 if (empty(validColPool[currentCol])) {

 backtrack++

 if (backtrack > maxBacktrack) {

 return // no code found

 } else {

 currentCol--

 if (currentCol < 0) currentCol = 0;

 continue;

 } } else {

 sCol = selectMin4BC(validColPool[currentCol]))

 add sCol to H-matrix

 currentCol++

 backtrack=0; }}

permuteC = 0; orig4BC=count4BC(H-matrix);

while (permuteC < maxPermute) {

 permuteC++

 permuteColumns()

 Check for existence of forbidden 4-cycles

 if ((!4FC)&&(count4BC(H-matrix)<orig4BC)) {

36

 H-matrix current H-matrix; }}

Figure 3.3: Pseudo-greedy search algorithm

100101011101011001010010010000101100010011001000110100001110000010000000

101110011000001010100100100001011000100110010001101000011100000101000000

011010101011101011001001000010110001001100100011010000111000001100100000

111101100101100110010010100101100010011001000110100001100000011100010000

100101100011110110100101001011000100110010001100000011010000111000001000

111011001111110111001010010110001001100000011001000110100001110000000100

011010110110111100010100101100000011000100110010001101000011100000000010

010111101110011100101001011000010110001001100100011010000111000000000001

Figure 3.4: H-matrix for proposed (72,64) code

Table 3.1: Comparison of proposed SEC-DED-DEAC code with other codes

(n,k) Codes 2-
Input
XOR
Gates

Max
Logic
Depth

Forbidden
4-Cycles

(4FC)

Total 4-
Cycles

Bad 4-
Cycles
(4BC)

SEC-DED (IBM system/3) 48 4 13 252 122
Hsiao Code [Hsiao 70] 48 4 8 252 120

SEC-DED-DAEC in [Abramson 59] 70 5 0 252 128
(22,16) Proposed SEC-DEC-DAEC (Fig.

3.1)
48 4 0 251 118

SEC-DED (IBM 8130)(40,32) 96 4 82 776 254
Hsiao Code [Hsiao 70] 96 4 23 1363 425

SEC-DED-DAEC in [Abramson 59] 132 6 0 1343 386
(39,32) Proposed SEC-DED-DAEC (Fig.

3.2)
96 4 0 1363 379

SEC-DED (IBM 3081) 256 6 230 8912 1292
Hsiao Code [Hsiao 70] 208 5 122 8392 1399

SEC-DED-DAEC in [Abramson 59] 296 7 0 8194 1335
(72,64) Proposed SEC-DED-DAEC (Fig.

3.4)
224 5 0 8289 1316

37

The number of the 2-input XOR gates required for the encoding/decoding can be

computed from the H-matrix. It is equal to #rows (row weight − 1). The encoding and

decoding delays are determined by the maximum logic-depth of the encoder and the

decoder circuit which is equal to log2 (max. 1’s in any row). Figure 3.2 shows an

H-matrix for the (39,32) code constructed using the search process as discussed above

using only weight-1 and weight-3 columns. Another H-matrix is shown for a (72,64)

code in Fig. 3.4. In this case, weight-1, weight-3, and weight-5 columns are used.

Table 3.1 shows the number of XOR gates and maximum logic depth for the

syndrome generator, number of forbidden 4-cycles, total number of 4-cycles, and the

number of bad cycles (4BCs) for the (22, 16), (39, 32) and (72,64) codes for both the

proposed code and the SEC-DED-DAEC code described in [Abramson 59] as well as

some Hsiao codes and SEC-DED codes commonly used in industry. Note that the SEC-

DED code and the Hsiao code cannot correct adjacent double bit errors because of the

existence of forbidden cycles (4FCs). The check-bit overhead for a random double error

correcting code (DEC) is unacceptably high. For example to protect a 32-bit word, a DEC

needs at least 11 check bits. To protect a 64-bit word, a DEC code needs 14 check bits.

Using a DEC code can increase the memory size considerably and hence is not an

attractive choice for memory ECC. The XOR gate overhead for the proposed code is

similar to that of the Hsiao code. The proposed code also has minimal logic depth among

the codes and also minimum check bit overhead. The total number of bad 4-cycles is

lower for the proposed code than for [Abramson 59], and consequently it has a lower

miscorrection probability.

38

3.6 ECODING /DECODING ALGORITHM

The proposed code is systematic. During encoding, the data bits can be directly

copied and the check bits are generated using an XOR network corresponding to the G-

matrix. The decoding algorithm is as follows:

1. Generate the syndrome using an XOR network corresponding to the H-matrix.

2. If the syndrome is the all zero vector, then no error is detected, otherwise one

or more errors occurred.

3. If the syndrome matches any of the H-matrix columns, then a single error is

detected and the error position is the corresponding column position. The

corresponding bit should be flipped to correct the error.

4. Else if the syndrome matches any of the n-1 adjacent double error syndromes,

then a double adjacent error is detected and the corresponding bit positions are

generated using the error correction logic.

5. Else an uncorrectable error (UE) (i.e., a double non-adjacent error or more

than two errors) has occurred.

The only additional overhead with respect to a conventional SEC-DED code

comes from step 4 of the decoding step. Figure 3.5 shows the basic error detection and

correction block diagram. If a non-zero syndrome is encountered, then the OR gate flags

an error indication. If the syndrome matches any of the single error syndromes then the

syndrome decoder generates a 1 in the erroneous bit position. Otherwise, if the syndrome

matches any of the adjacent double error syndromes, then the decoder generates 1’s at the

erroneous adjacent bit positions. Otherwise the output of the syndrome decoder is the all

zero output. The syndrome decoder consists of 3-input OR gates whose inputs are driven

by outputs of r-input AND gates. The i-th output of the decoder is 1 if and only if a single

39

error occurred at the i-th bit or a double-adjacent error occurred at <i,i+1> bits or <i-1,i>

bits. The outputs of the decoder are used to generate the corrected word, by using n 2-

input XOR gates. If the syndrome is non-zero and does not match any of the single or

double-adjacent error syndromes, then an uncorrectable error (UE) is encounter and the

UE signal is flagged.

Figure 3.5: Error detection and correction block diagram

3.7 CONCLUSIONS

The ECC methodology described in this chapter adds the ability to correct

adjacent errors at very little cost over conventional SEC-DED codes. The only drawback

is the possibility of miscorrection for a small subset of multiple errors, however MBUs

caused by a single SEU have a much higher probability of occurring than having multiple

 r-bit Syndrome

 1 2 ..….. r

 Syndrome
 Decoder

OR

N
O
R

A
N
D

 Word Corrected
 Read Word

(n 2-input xor gates)

Error
Detected

UE

 1 2 ….. n

 <i-1,i> i <i,i+1>

 i-th
output

& & &

+

40

independent SEUs accumulating in the same word (this is especially the case if memory

scrubbing is used). While bit interleaving is commonly relied upon to protect memories

from MBUs, the proposed methodology provides another tool for a memory designer to

use. In some instances, it may be an attractive alternative to bit interleaving to allow for a

more optimized memory layout, or it can be used in addition to bit interleaving to provide

an additional layer of protection from MBUs.

41

Chapter 4: Multiple Bit Upset Tolerant Router Memory Using a Low
Cost Unequal Error Protection Code

The network-on-chip (NoC) paradigm is seen as a way of facilitating the

integration of a large number of computational and storage blocks on a chip to meet

several performance and power constraints. However due to continued scaling of process

technologies, the devices and interconnects have become more sensitive to reliability

threats such as, single event upsets and crosstalk. This chapter presents a low cost error

correcting code based technique to protect the NoC routers against single event upset

induced soft errors and also against crosstalk. An unequal protection error correcting

code based methodology is provided for the most commonly used store-and-forward

routing strategy. The proposed code has the same check bit overhead as the conventional

single error correcting (SEC) code. The encoding/decoding overhead and latency are also

similar to the conventional low cost SEC code. The proposed codes belong to the class of

unequal error protection codes as they provide different levels of error correction

capability for different portions of the same packet with more protection for the important

parts of the data.

4.1 INTRODUCTION

The advent of nanometer technologies has facilitated huge amount of transistors

in a single die. Reduced feature sizes along with increasing transistor densities have

transformed the on-chip interconnect into the deciding factor in meeting the performance

and power consumption budgets of a design. Several interconnection schemes are

currently in use, including crossbars, rings, buses, and network-on-chip (NoC’s) [Krewell

05]. The bus and NoC based architectures are the most prominent and have been widely

42

studied in the research community. However, buses suffer from poor scalability. As the

number of cores increases, the performance of bus based architectures degrades

dramatically. This has led to increased adoption of packet based interconnection networks

known as network-on-chip. The NoC architectures offer a variety of advantages. A well

designed NoC uses wires more efficiently and uses the same wires for multiple purposes.

The reduced requirement of global wires improves power dissipation, signal integrity,

less silicon area and better physical routability. The NoC topology can be tuned to the

application leading to little arbitration, less wait states, and lower power utilization than a

bus. The packet based architecture provides better scalability.

For NoC, the underlying network must meet quality of service requirements (such

as reliability, guaranteed bandwidth/latency), and deliver energy efficiency [Pande 06].

And all these should be achieved under the limitation of intrinsically unreliable signal

transmission media. These limitations are caused by the increased likelihood of timing

and data errors [Rossi 05], the variability of process parameters, crosstalk and

environmental factors e.g., electro-magnetic interference (EMI) and soft errors. The

increased sensitivity to soft errors is caused by the reduction in transistor dimensions and

the reduction of supply voltage. Ionizing radiation from high-energy neutrons and alpha

particles can cause a single-event upset (SEU) [Nicolaidis 05] that may alter the state of

the system resulting in a soft error. Radiation induced single event upsets can cause bit-

flips in the sequential logic elements such as the router buffers, memories, registers

[Kastensmidt 05].

Some work has been done to protect on-chip interconnects against crosstalk

[Rossi 05], [Nieuwland 05-2], [Bertozzi 02]. In [Nicolaidis 05], [Kastensmidt 05],

[Bertozzi 02], and [Lajolo 01], several techniques were proposed to protect the on-chip

43

sequential elements against SEUs under the assumption that the links are not affected by

soft errors. For NoC architectures both the links as well as the router buffers can be

affected by soft errors. In [Frantz 06], a new technique was proposed that can

simultaneously deal with SEU and crosstalk effects in the NoC routers. A combination of

error correcting codes (ECC) and hardware and time redundancy were used for this

purpose. In [Park 06], another method was proposed to address simultaneously the

problem of link errors due to crosstalk, capacitive loading, and SEUs in router buffers. A

flit-based hop-by-hop retransmission scheme and corresponding retransmission

architecture were proposed.

The routing mode influences the buffer size needed in the routers and the

performance of the system, e.g., packet latency. In packet switching networks data items

have to be buffered at each router before they are sent over. There are two basic types of

routing modes commonly used in NoC architectures: store-and-forward routing and

wormhole routing.

In wormhole routing, messages are sent as worms. The packet is split into flits

and the flits are sent in contiguous fashion. The first flit contains the destination address

and it reserves the channel through which the subsequent flits are sent. This routing

architecture facilitates smaller router buffers but this routing strategy may lead to high

data contention and consequently lead to higher message latency. The rest of the chapter

focuses only on store-and-forward type of routing.

In store-and-forward routing, the entire packet is stored in the router buffer before

it can be forwarded to the next router or destination core. In this chapter, we propose an

unequal error protection code to protect data packets from SEUs and crosstalk induced

link errors. Recent studies characterizing different bit errors arising from an SEU suggest

44

that 1–5% of the SEUs can cause multiple bit upsets (MBUs) [Maiz 03]. Recent studies

show that the most likely multiple-bit-upsets (MBUs) are adjacent double bit errors

[Satoh 00], [Makihara 00], [Kawakami 04]. Moreover crosstalk induced link errors also

tend to be either single-bit error or double adjacent bit error. Since the life span of a

packet in the buffer is small likelihood of the same packet being affected by multiple

SEUs is negligible. This eliminates the concern of a packet having random double-bit

upsets. The conventionally used SEC codes can detect and correct only single-bit errors

and hence can result in data loss in the presence of single event induced adjacent double-

bit errors. A single error correcting, double error detecting (SEC-DED) code can be used

to provide additional double-bit error detection capability but at the cost of increased

check bit overhead, additional encoding and decoding overhead, and latency. However

even an SEC-DED code can only correct single-bit errors. If an adjacent double-bit error

occurs in the header portion of a packet then even if the error is detected it cannot be

corrected and hence the source or the destination address cannot be decoded. This leads

to data loss.

In this chapter we propose a single error correcting, double adjacent error

detecting, selective double adjacent error correcting (SEC-DAED-SDAEC) code which

corrects all single-bit errors and detects all double adjacent bit errors in the whole packet.

Additionally it provides adjacent double-bit error correction capability in the header

portion. This helps in recovering the header portion of the packet in the presence of

adjacent double errors in the header and hence a retransmission request can be sent. This

will prevent data loss due to single event induced or crosstalk induced adjacent double-bit

errors. An attractive feature of the proposed code is that it has the same check bit

45

overhead, encoding overhead, and latency, as an SEC code. The decoding is slightly

more complex because of the additional error detection and correction capability.

The rest of the chapter is organized as follows. In Sec. 4.2, the basic architecture

of a NoC router is described. Sections 4.3, 4.4, and 4.5 discuss the proposed coding

scheme for the store-and-forward type of routing and also describe the code design

procedure. Comparison of the proposed code with all the relevant existing codes is also

provided. In section 4.6, the encoding and decoding algorithms for the proposed code are

described. Section 4.7 concludes the chapter.

4.2 NOC ROUTER ARCHITECTURE

The most active component of the network is the router and hence is key to

achieving reliability and performance standards. Figure 4.1 shows the basic outline of a

NoC router. The core of a router basically consists of 1) input ports to receive packets

and store them in buffers and in some architectures can also send acknowledgement

signals, 2) output ports which receive packets from an input port of the same router and

send them to input ports of another router or destination core and can also receive

acknowledgement signals, 3) routing arbitration logic that decides the destination of

packet 4) switch architecture which links the input and output buffers. The router can also

be equipped with logic to send and receive retransmission requests upon detection of

unrecoverable errors. The packet while residing in the router buffer can be affected by

single event upsets. The packet can also be affected by link errors resulting from

crosstalk, coupling noise, and transient faults during transmission.

46

Figure 4.1: Basic router architecture

4.3 STORE-AND-FORWARD ROUTING

In store-and-forward routing the entire packet is stored in the router buffer. The

time spent by a packet inside the router primarily depends on three operations: packet

buffering, negotiation of an output port, and the transmission to the output. The time

spent in negotiation and transmission depends on the contention of the selected output

port and on the availability of the outside link. During the lifetime of the packet inside the

router buffer, the data can be corrupted due to an SEU which can cause either a single-bit

flip or double adjacent bit flips. The data can also be corrupted during transmission from

one link to the next. This could be due to crosstalk, coupling noise, or transient faults.

The proposed error correcting code encodes the data before it is stored in the router

buffer. Next it is decoded to enable router arbitration logic to fetch the destination

address and port-id for the packet. Next the data is again encoded before it is transmitted

Input
port 1

Output
port 2

Output
port 1

Input
port 2

Input
port k

Output
port n

Routing
Arbitration

Unit

Switching
Logic

47

to the next link. This allows protection against link failures. The basic ECC scheme is

shown in Fig. 4.2. In Fig. 2, the “D + E” block refers to the decoding and encoding of the

incoming packet. This stage addresses link error induced data corruption. The encoded

data resides in the router buffer, and it is decoded before being sent to the router

arbitration unit. Finally the data is again encoded before being transmitted to the next

link.

Figure 4.2: ECC scheme for NoC router

Note that conventional SEC or SEC-DED codes are not sufficient to protect data

packets against SEU induced adjacent double-bit errors. This is because an uncorrectable

error in the header of the packet will lead to packet loss. In [Bodnar 03], a single-error-

correcting, double-adjacent-error detecting within a byte, code was proposed which can

correct all single-bit errors in the entire word and also detects all double adjacent errors

within 8-bit nibbles. But this code is not sufficient in the NoC environment as it cannot

correct adjacent double errors in the header part and also cannot detect double adjacent

bit errors in the nibble boundaries within a word.

4.4 UNEQUAL ERROR PROTECTION CODE

Unequal error protection codes (also known as unequal protection codes) were

first proposed by Masnick and Wolf [Masnick 67]. Later several variants of this type of

D+E Router
Buffer

D ERouter
Unit

48

code were proposed [Morelos-Zaragoza 94], [Hayashi 00]. These codes provide different

levels of protection to different bits of the same word. This is achieved by conditioning

the linear dependencies in the parity check matrix (H-matrix) of the code. In general,

these codes have the property that some of the digits in a codeword will be decoded

correctly only if J2 or fewer errors occur and others will be decoded correctly only if J1 or

fewer errors occur where J1 >J2.. In [Fujiwara 98], several two-level UEP codes were

proposed. These codes were designed as to provide b-bit burst error correction capability

in one b-bit portion of the codeword and either SEC or SEC-DED capability in the

remaining portion of the codeword. Another construction of these types of codes was

proposed in [Namba 03].

However these codes incur a lot of check bit overhead as well as

encoding/decoding overhead and latency. Hence these codes are not suitable for

protecting data packets residing in the router buffer in NoC designs. Next we describe the

proposed low cost unequal error protection code to protect data packets against SEUs in

the router buffer as well as a link error during transmission.

4.5 PROPOSED CODE

The coding schemes proposed in this chapter fall into the category of systematic

binary linear block codes. A binary (n, k) linear block code is a k-dimensional subspace

of a binary n-dimensional vector space. An n-bit codeword of the code contains r=(n-k)

check bits and k data bits. The (rn) parity-check matrix (H-matrix) completely defines

the code. C is a codeword of the code if and only if

 H.CT = 0 (1)

where CT is the transpose of the codeword C. The H-matrix corresponds to a

systematic code if it can be represented as

49

 H=[Prk,Irr] (2)

where I is the r r identity matrix. For a systematic code, the first k-bits of the

codeword can be designated as the data bits and the last r bits can be designated as the

check bits. For the targeted application, only systematic codes are useful. For a

systematic code with a parity check matrix of the form given by Eqn. 2, the generator

matrix can be simply obtained as

 G=[IKK,PT] (3)

The H-matrix represents a set of linear equations involving the bits of the

message. The syndrome is defined as the r-bit vector obtained upon multiplying the

received n-bit message with the H-matrix in GF (2). In the error free case, the syndrome

is the all-zero vector. An error vector is defined as an r-bit vector where the bits that are

in error have the value 1 and all the other bits are 0. An erroneous message Ve can be

represented as

 Ve = V + E (4)

where E is the error vector and V is the error free message (i.e., codeword).

 S = H.Ve = H.(V+E) =H.V + H.E = H.E (5)

where S is the syndrome for the particular message Ve. Next we will discuss the

proposed unequal error protection linear systematic block codes. The proposed single-

error-correcting, double-adjacent-error-detecting, selective-double-adjacent-error-

correcting (SEC-DAED-SDAEC) code has the following properties:

 All single-bit errors can be corrected

 All double adjacent bit errors can be detected

 All adjacent double-bit errors in the header of the packet and the one at the

intersection of the header and data part can be corrected

50

In a store-and-forward routing scheme, a data packet typically has a header

portion followed by a data section which contains both the data and the check bits. Some

architectures assume an additional trailer portion at the end of the packet. In our

discussion we are assuming that the header itself contains the information contained in

the trailer as well. From a coding perspective it does not make any difference whether the

header and the trailer are separated or together as long as they have the same level of

error protection. Figure 4.3 shows the basic layout of a packet in the context of the store-

and-forward routing.

Figure 4.3: Packet structure for store-and-forward routing

For a (p+q,k) SEC-DAED-SDAEC code, the codeword length n = p+q and

message length is k, and the number of check bits r = p+q-k. An upper bound on the

maximum possible codeword length can be obtained for the proposed code as follows:

 2r − 1 ≥ 2p + q

 2r − 1 ≥ p + n

 n ≤ 2r − 1 − p (1)

)1(
2

log pnr (2)

Equation 1 is derived from the fact that the least number of unique syndromes

required for the proposed code is (n+p), n for the single-bit errors and p for the double

adjacent errors in the header. Note that this is a lower bound on the number of unique

syndromes required for the proposed code. If the number of check bits is r then the

Header Data + Check Bits

p q

51

maximum number of unique syndromes is 2r − 1. This number should be more than or

equal to the maximum number of unique syndromes required for the code. The

characteristics of a linear block code are completely determined by its H-matrix. Table

4.1 shows the check bit requirement for different header and data size. The proposed

codes are optimal in the sense that the number of check bits used are minimum possible.

Table 4.1: Check bit requirements

Header, data, check bit Bound on r Min r

8,24,r)932(log2 rr 6

8,56,r)964(log2 rr 7

16,56,r)1764(log2 rr 7

For the proposed systematic binary linear unequal error protection block code, the

H-matrix can be viewed as follows:

H = [H1 | H2 | I] (3)

Where H1 is a r×p sub-matrix, H2 is a r×(q-r) sub-matrix, and I is a r×r identity

matrix.

To detect and correct all single-bit errors, the corresponding error syndromes

should be unique. Note that the syndrome for a single-bit error at the i-th bit position is

the same as the i-th column of the H-matrix. To uniquely identify all the single-bit errors,

all the columns of the H-matrix must be unique.

To detect all the adjacent double-bit errors, the corresponding syndromes should

be different from all the single-bit error syndromes. The syndrome for a double-bit error

is given by the exclusive-or (XOR) of the corresponding columns of the H-matrix. So

there cannot be any 3-cycle involving adjacent columns in the H-matrix. A k-cycle refers

52

to a set of k linearly dependent columns of the parity check matrix, i.e., when XOR-ed

together, the output is an all-zero column. To be able to correct all the adjacent double-bit

errors in the header portion (H1 sub-matrix), the syndromes for the adjacent double-bit

errors should be different from each other and also different from all the single-error

syndromes as well as from all the double adjacent error syndromes in the H2 part. Next

we define the conditions that must be satisfied by the H-matrix for the proposed code:

1. No all 0 columns.

2. All columns are distinct.

3. No linear dependency involving columns Ci,Cj,Ck where k>j>i, such that j=i+1

or k=j+l or both.

4. No linear dependency involving columns Ci,Cj,Ck,Cm where m>k>j>i and j≤p+1,

such that j=i+1 and m=k+l. This condition implies that the double adjacent error

syndromes in the header portion are unique.

Condition 1 ensures that no single-bit error case matches the error-free case.

Condition 2 ensures that all the single error syndromes are unique. Every single

error syndrome matches one of the columns of the H-matrix. Since all the columns of the

H-matrix are distinct, the single-bit errors are uniquely identifiable and hence correctable.

Additionally, this condition ensures that there are no pairs of double errors of the form

(i,j) and (j,k) such that the corresponding syndromes are the same. Assume that such

double errors exist, then (CiCj)(CjCk)=0, i.e., (CiCk)=0 but that contradicts the

fact that all the columns of the H-matrix are distinct. This ensures that syndromes for

adjacent errors of the form (i,i+1) and (i+1,i+2) are different.

53

Condition 3 ensures that the syndromes for all adjacent double-bit errors are

different from that of the single-bit errors. Hence all the adjacent double-bit errors can be

detected.

Condition 4 along with condition 2, ensures that a syndrome for an adjacent

double-bit error in the header portion is different from all other adjacent double-bit error

syndromes. If we assume that the only errors are single-bit errors or adjacent double-bit

errors then with an H-matrix satisfying conditions 1 through 4, we can uniquely identify

the syndromes for all single-bit errors and adjacent double-bit errors in the header

portion. Hence we can correct all single-bit errors and detect all adjacent double errors in

the whole codeword. Additionally all double adjacent bit errors in the header can be

corrected.

Figure 4.4 shows different possible errors in a codeword and also shows the error

detection/correction capability of the proposed code with respect to those errors. Note

that the non-adjacent errors may not always be detectable as they might alias with single-

bit error or double adjacent bit error and hence may lead to miscorrection. However the

probability of non-adjacent error is negligible.

×

 p q

X corrected

 X corrected

X X corrected
corrected

 X X detected

 X X corrected

X X UE

54

Figure 4.4: Error profiles

Note that in our discussion we are considering only SEU induced soft errors and

hence the only possible errors are either a single-bit error or an adjacent double-bit error.

This ensures correct decoding of the header portion in the presence of such an error.

Since the adjacent error syndromes in the header portion may be shared with some non-

adjacent error syndromes, there is a non-zero miscorrection probability. However this

probability is negligible because likelihood of the same data packet being affected by

non-adjacent double error is negligible.

We call the 3-cycles of the type given by condition 3, forbidden 3-cycles (3FC).

We call the 4-cycles of the type given by condition 4, forbidden 4-cycles (4FC). While

designing the H-matrix, additional constraints can be imposed to reduce the encoding and

decoding overhead. This can be achieved by limiting the number of 1’s in any row and

column of the H-matrix.

4.6 CODE DESIGN PROCEDURE

The H-matrix consists of three parts H1, H2, I as shown in Eq. 3. The I submatrix

is the diagonal identity matrix consisting of all weight-1 columns.

Figure 4.5 shows the outline of the algorithm used to construct the H2 submatrix.

All the columns of the H2 matrix should be unique. While adding any new column

forbidden 3-cycles (3FC) cannot be allowed as that will lead to an aliasing of a single

error with a double adjacent error in the data part. At the same time, the algorithm tries to

maximize the sharing of double adjacent error syndromes. This allows in reducing the

number of used up syndromes and leaves more flexibility while designing the H1 matrix.

55

The algorithm maintains a list of syndromes for the single and the double adjacent errors

in the constructed code space. A column is a candidate for the next position as long as it

does not introduce a 3FC. From a list of candidates, the one is chosen that minimizes the

number of double adjacent error syndromes in the constructed code space.

Input: n(codeword length), maxIter, maxBacktrack, r(number of check bits),
p(header size)

Output: H-matrix

avail_col = Set of all non-zero columns of weight > 1

usedSyndromePool = {}

currentCol = r(starts after identity matrix I); backtrack = 0

while (currentCol < n-p) {

 Iter = 0

 validColPool[currentCol] = {}

 while (iter < maxIter) {

 Iter++

 C = An untried column from avail_col

 Check for existence of forbidden 3-cycles

 if (! 3FCfound) {

 validColPool[currentCol] = validColPool[currentCol] C

 }

 }

 if (empty(validColPool[currentCol])) {

 backtrack++

 if (backtrack > maxBacktrack) {

 return // no code found

 } else {

56

 currentCol--

 if (currentCol < 0) currentCol = 0;

 continue;

 }

 } else {

sCol = selectMinimizeSyndromeUsage(ColPool[currentCol]))

 add sCol to H-matrix

 add sCol and adjacent double error syndrome corresponding to sCol to
usedSyndromePool.

 currentCol++

 backtrack=0;

 }

}

Figure 4.5: Algorithm to construct H2

Input: n(codeword length), maxIter, maxBacktrack, r(number of check bits),
p(header size)

Output: H-matrix

avail_col = Set of all non-zero columns not present in I, H2,
usedSyndromePool;

currentCol = n-p;

backtrack = 0

while (currentCol < n) {

 Iter = 0

 validColPool[currentCol] = {}

 while (iter < maxIter) {

 Iter++

 C = An untried column from avail_col

57

 Check for existence of forbidden 3-cycles and forbidden 4-cycles

 if ((! 3FCfound)&&(! 4FCfound)) {

 validColPool[currentCol] = validColPool[currentCol] C

 }

 }

 if (empty(validColPool[currentCol])) {

 backtrack++

 if (backtrack > maxBacktrack) {

 return // no code found

 } else {

 currentCol--

 if (currentCol < 0) currentCol = 0;

 continue;

 }

 } else {

sCol = selectRandomColumn(validColPool[currentCol]))

 add sCol to H-matrix

 add sCol and adjacent double error syndrome corresponding to sCol to
usedSyndromePool.

 currentCol++

backtrack=0;

 } }

Figure 4.6: Algorithm to construct H1

Figure 4.6 shows the algorithm used to construct submatrix H1. Here whenever a

column is added, a check is made that it does not introduce any forbidden 3-cycle (3FC)

58

and forbidden 4-cycles (4FC). It ensures that every single error and double adjacent

errors in the header portion have unique syndrome and hence correctable.

Figure 4.7 shows a H-matrix for a (8, 24, 6) header, data, check-bit) code. Here

the only double adjacent error syndromes used for I and H2 are (110000) and all its

circular shifts, (100111), (011101), (101100), (001111) i.e.,10 distinct syndromes out of

29 (worst case) possibilities. This is achieved by minimizing the number of unique

double adjacent error syndromes in the H2 portion. This leaves more flexibility while

searching for the H1 matrix. After designing I and H2, the number of available columns

for the columns of H1 and its adjacent error syndromes is (63-30-10) = 23 out of which 8

columns and 8 adjacent error syndromes have to be chosen while avoiding 3FCs and

4FCs.

Figure 4.7: H-matrix for proposed (8,24,6) code

Figure 4.8: H-matrix for proposed (16,48,7) code

 H1 H2 I

 CI

0111100101000101 10100011000110110001111 1 010100011000110110001111 0000001
1010110010101110 00111111000010010010001 0 100111111000010010010001 0000010
1001110101111001 11111111101011100100010 1 111111111101011100100010 0000100
1110011000010110 01111000010111111000100 1 001111000010111111000100 0001000
0010011101101000 10001001001111111111000 0 110001001001111111111000 0010000
1010001110110111 01101101110000111111111 1 110010010001111000000000 0100000
0010101001011011 00000000000000000000000 1 111111111111111111111111 1000000

 H1 H2 I

01010111 010100010000110110001111 000001
10111010 100111111000010010010001 000010
01110011 111111110101011100100010 000100
00110110 001111001010111111000100 001000
01101010 110001000001111111111000 010000
11000010 001101100110000111111111 100000

59

Table 4.2: Comparison of proposed SEC-DAED-SDEAC code with other codes

Header +

Data

Codes 2-
Input
XOR
Gates

Max
Logic
Depth

Forbidden
3-cycles
(3FC)

Forbidden
4-cycles
(4FC)

#Check
bits

SEC-DBED [Bodnar 03] 100 5 3 40 6
SEC 114 5 30 143 6

(B2EC)8-(SEC)24 [Namba 01] (non-
systematic)

98 5 15 0 6

DEC - - 0 0 11

DAEC [Abramson 59] 132 6 0 0 7

8+24

Proposed SEC-DAED-SDAEC
Code

104 5 0 0 6

SEC-DBED (extended) 231 6 0 263 7
SEC 204 6 68 316 7

(B2EC)8-(SEC)24 [Namba 01] (non-
systematic)

222 6 27 0 7

DEC - - 0 0 14
DAEC [Abramson 59] 296 7 0 0 8

16+48

Proposed SEC-DAED-SDAEC
Code

240 6 0 0 7

Figure 4.8 shows the H-matrix for the (16,48,7) code. Note that the H2 matrix of a

higher dimensional code can be constructed from the H2 matrix of a lower dimensional

code. This can save considerable amount of search time. We illustrate this with the

example of the H2 matrix for the (16,48,7) code which can be obtained from the H2

matrix of the (8,24,6) code. The H2 matrix of the (8,24,6) code is a 6×24 matrix which is

free of 3FC. In fig. 4.8, 32H2 denotes the H2 matrix for the (8,24,6) code where each Ri

denotes each row of the matrix. The 32Hc
2 denotes the same matrix as 32H2 except that the

last row is complemented. An all zero row is added to 32H2 and an all one row is added to

32Hc
2. A column vector CI is introduced at the boundary of 32H2 and 32Hc

2 to avoid any

3FC at the boundary. The resultant H2 matrix is free of 3FC by construction. Note that the

submatrix constructed this way has one extra column. Any column can be removed as

60

long as no 3FC is introduced. The easiest choice for removal is the leftmost column. This

method can be generalized to construct the H2 matrix of any higher dimensional code

from a lower dimensional code. The number of the 2-input XOR gates required for the

encoding/decoding can be computed from the H-matrix. It is equal to #rows (row

weight − 1). The encoding and decoding delays are determined by the maximum logic-

depth of the encoder and the decoder circuit which is equal to log2 (max. 1’s in any row).

Figure 4.9: Constructing H2-matrix for proposed (16,48,7) code

Table 4.1 shows the number of XOR gates and maximum logic depth for the

syndrome generator, number of forbidden 3-cycles and forbidden 4-cycles, and the

number of check bits for a set of different relevant codes.

The first set codes are for packets with 8 bit header and 24 bit data. The SEC-

DBED code proposed in [Bodnar 03] can correct all single-bit errors in the packet and

can detect all the double adjacent errors in the 8-bit nibbles but cannot detect the double

adjacent errors at the nibble boundaries. The 3FCs corresponds to these cases. This code

cannot correct double adjacent errors in the header portion. It has a very large number of

 R1
 R2
32H2 = R3
 R4
 R5
 R6

 R1
 R2

32HC
2 = R3

 R4
 R5
 R6C

 CI
 32H2 32Hc

2
64H2 =

 00…0 11…1

61

4FCs. The SEC code can only correct single-bit errors. It has a large number of 3FCs and

4FCs. The (B2EC)8-(SEC)24 code derived using the method proposed in [Namba 01] can

correct all single-bit errors and additionally can correct adjacent double-bit errors in the

header part. But it cannot detect all the double adjacent bit errors in the data part because

it has some 3FCs. Also it is not clear how to derive a systematic code using the method

described in [Namba 01]. The hardware overhead is also larger than the proposed code.

The proposed code, along with the DEC and DAEC codes are the only ones which meet

all the requirements for the targeted application and it does not have any 3FC or 4FC.

However the check bit overhead for the DEC and the DAEC codes are larger than the

proposed code and hence they are less suitable for the router memories where memory

area is a major performance constraint.

For a 64 bit packet with 16-bit header a minimum of 7 check bits are required.

The SEC-DBED code proposed in [Bodnar 03] was extended for 64 bit and the derived

code has a large number of 4FCs. The code cannot correct the double adjacent errors in

the header portion. The SEC code also has a large number of 3FCs and 4FCs. The

(B2EC)16-(SEC)48 code derived from [Namba 01] has some 3FCs. The proposed code is

free of all 3FC and 4FCs and hence meets all the requirements for the targeted

application. Figure 4.9 shows how the XOR gate overhead varies with respect to the

header size given a particular packet size for the proposed code. One nice feature for the

proposed code is that the overhead varies almost linearly with the header size.

62

64-bit packet

205

210

215

220

225

230

235

240

245

16 12 8 4

Header size (in bits)
#2

-in
pu

t X
O

R
 g

at
es

Figure 4.10: XOR gate overhead vs header size

Next we discuss the encoding and decoding strategy for the proposed code.

4.7 ENCODING/DECODING ALGORITHM

The proposed code is systematic. During encoding, the data bits can be directly

copied and the check bits are generated using an XOR network corresponding to the G-

matrix. The decoding algorithm is as follows:

1. Generate the syndrome using an XOR network corresponding to the H-matrix.

2. If the syndrome is the all zero vector, then no error is detected, otherwise one or

more errors occurred.

3. If the syndrome matches any of the H-matrix columns then a single error is

detected and the error position is the corresponding column position. The

corresponding bit should be flipped to correct the error.

63

4. Else if the syndrome matches any of the (header-size-1) adjacent double error

syndromes or the double error syndrome for the error at the boundary of the

header and the data parts, then a double adjacent error is detected and the

corresponding bit positions are generated using the error correction logic.

5. Else an uncorrectable error (UE) (i.e., a double non-adjacent error or more than

two errors) has occurred.

Figure 4.11: Error detection and correction block diagram

If an uncorrectable error is encountered then it is assumed that the error occurred

in the data part of the packet since the header errors are always correctable. When the UE

 r-bit Syndrome

 1 2 …..
r

 Syndrome
Decoder

OR

N
O
R

A
N
D

 Word Corrected
 Read Word

(n 2-input xor gates)

Error
Detected
syndrome

UE

 1 2 ….... n

 i –th
 syndrome

i-th (i<=header)
output

& & &

+

 <i-1,i> i <i,i+1>

i-th (i> header)
output

 &

64

signal is high a retransmission is requested. The header provides the address of the source

and destination.

The only additional overhead with respect to a conventional SEC code comes

from step 4 of the decoding step. Figure 4.10 shows the basic error detection and

correction block diagram. If a non-zero syndrome is encountered, then the OR gate flags

an error indication. If the syndrome matches any of the single error syndromes then the

syndrome decoder generates a 1 in the erroneous bit position. Otherwise, if the syndrome

matches any of the adjacent double error syndromes in the header portion, then the

decoder generates 1’s at the erroneous adjacent bit positions. Otherwise the output of the

syndrome decoder is the all zero output. The syndrome decoder output (for the header

part) consists of 3-input OR gates whose inputs are driven by outputs of r-input AND

gates. The i-th output of the decoder is 1 if and only if a single error occurred at the i-th

bit or a double-adjacent error occurred at <i,i+1> bits or <i-1,i> bits. For the remaining

part, only an r-input AND gate is required to generate the i-th signal. The outputs of the

decoder are used to generate the corrected word, by using n 2-input XOR gates. If the

syndrome is non-zero and does not match any of the single or double-adjacent error

syndromes, then an uncorrectable error (UE) is encounter and the UE signal is flagged.

4.8 CONCLUSIONS

The ECC methodology described in this chapter provides the ability to correct all

single-bit errors and detect all double adjacent errors in a packet while correcting all

adjacent errors in the header portion of the packet at very little cost. The proposed code

has the same check bit overhead as an SEC code. The encoding/decoding overhead and

latency is also similar to the SEC code. The only drawback is the possibility of

65

miscorrection for a small subset of multiple errors, however MBUs caused by a single

SEU have a much higher probability of occurring than having multiple independent SEUs

accumulating in the same word residing in the router buffer. The same holds for the link

errors during transmission. The presented code provides a very low cost option to protect

the packets against the most likely errors in the NoC environment by allowing different

levels of protection to different parts of the packet.

66

Chapter 5: Iterative OPDD Based Signal Probability Calculation

There are a number of important applications where estimating signal

probabilities in a circuit is necessary including determining soft error susceptibility and

random pattern testability. This chapter presents an improved method to accurately

estimate signal probabilities using ordered partial decision diagrams (OPDDs) [Kodavarti

93] for partial representation of the functions at the circuit lines. OPDDs which are

limited to a certain maximum number of nodes are built iteratively with different variable

orderings to efficiently explore different regions of the function. Signal probability

bounds (upper and lower) are computed from the OPDDs. From each OPDD, information

is extracted to tighten the signal probability bound and guide the variable ordering for the

next OPDD. By restricting the size of each OPDD to a small number of nodes, they can

be constructed and processed quickly to obtain a fast and accurate estimate of signal

probabilities. Experimental results demonstrate the effectiveness of the approach

compared with existing methods.

5.1 RELATED WORK

The signal probability of a net in a combinational circuit is the probability that a

randomly generated input vector will produce a logic value of 1 on this net. There are a

number of important applications where calculating signal probabilities in a circuit are

necessary. Originally signal probability was studied in the context of pseudorandom

testing to determine detection probabilities for faults. Given the detection probabilities for

faults in a circuit, it is possible to compute the expected fault coverage for a particular

pseudo-random pattern test length and to identify random pattern resistant faults

67

[McCluskey 88]. More recently, as soft errors in logic circuits have become an important

issue, signal probability is also needed in this context for determining the probability of a

single event upset (SEU) propagating to a latch. Knowing the soft error susceptibility of

nodes in a circuit allows better insertion of soft error protection schemes and better

selection of error detecting codes. For circuits that do not have reconvergent fanout,

signal probabilities can be computed exactly in linear time. However, in the general case

where reconvergent fanout exists, computing signal probabilities is NP-hard [Parker 75].

A wide variety of techniques have been developed for estimating signal probabilities

which provide various degrees of accuracy and runtime. A fast and simple approach, used

in COP [Brglez 84], is to assume all signals in the circuit are independent, however, this

can lead to large inaccuracies due to correlations between signals from reconvergent

fanout. COP can be improved by estimating the impact of correlations using cofactors

[Al-Kalahi 97] and first order Taylor expansion [Uchino 97]. Partitioning the circuit into

“supergates” which totally enclose reconvergent fanout can be used to speedup signal

probability calculations [Seth 85, 89], [Chakravarty 90]. Another approach for estimating

signal probabilities is to use sampling simulation [Jain 85], [Wunderlich 85], [Reijimon

05]. One class of techniques computes signal probability bounds (upper and lower) which

has the nice property of not only estimating signal probability, but also bounding the

maximum error in the estimate. One such technique is the “cutting algorithm” [Savir 80]

which cuts fanout lines in the circuit to make it fanout-free and then assigns a probability

bound of [0,1] to the cut-lines. Techniques for tightening the bounds obtained with the

cutting algorithm include [Markowsky 87] which uses a blocking heuristic to reduce the

number of cuts, [Savir 90] which combines it with the Parker-McCluskey method [Parker

75], and [Kapur 92] which uses conditional probabilities to tighten the initial bounds on

68

the cut lines. Another technique for computing signal probability bounds is to use ordered

partial decision diagrams (OPDDs) as described in [Kodavarti 93]. If the full BDD

[Bryant 86] was known, then exact signal probabilities could be computed by simply

counting the paths that go to the terminal 1 node. However, constructing a full BDD can

be exponential in the number of inputs and thus is not practical in many cases. The idea

in [Kodavarti 93] is to construct an OPDD which is limited to a certain maximum number

of nodes (thereby limiting both time and memory). A bound on the signal probability is

then obtained from the OPDD which contains the efficiently obtainable implicants

(which typically includes the largest ones). By using a few different variable orderings

and saving the best upper and lower bound seen for any ordering, it was shown in

[Kodavarti 93] that the signal probability could be computed quite accurately in very

short time. This chapter presents a new method for using OPDDs to estimate signal

probability that gives significantly tighter bounds than the method in [Kodavarti 93].

There are two key ideas in the proposed method. The first is to constructively combine

information obtained in one OPDD with the next. In [Kodavarti 93], the probability

bounds are computed independently for each OPDD and then the best upper bound across

all OPDDs is combined with the best lower bound across all OPDDs to form the final

bound. In the proposed method, the implicants from each OPDD are extracted and

combined together when computing the final upper and lower bound. Double counting is

avoided by making the implicants disjoint. The second key idea is to use the information

from previous OPDDs to guide the selection of the variable ordering for the next OPDD.

Here a heuristic algorithm for selecting the variable orderings to efficiently explore the

unknown space is presented. The proposed variable ordering algorithm uses information

about the implicants found so far to help in finding new implicants to tighten the bounds

69

further. Experimental results are shown which demonstrate the effectiveness of the

proposed method. Note that there has been some work in the domain of model-checking

that uses over-approximating and underapproximating of BDDs [Ravi 98]. However, this

is fundamentally different than what is done here because it involves first building the

full BDD and then compressing it by discarding nodes in a deterministic manner. What is

done here is to avoid building a full BDD, but rather iteratively build small limited-size

partial BDDs that can be processed very quickly with no risk of “blowing up.”

5.2 COMBINING INFORMATION ACROSS OPDDS

OPDDs are a variant of ordered binary decision diagrams (OBDD) introduced in

[Brayant 86]. Partial information is obtained by restricting the number of nodes when

building the graph to a constant k. The missing information is represented by an

UNKNOWN (U) terminal node. Figure 3.1 shows the full OBDD representing the

function: ab’+ac’+b’c. The 0-arcs are represented with dashed lines and the 1-arcs are

represented with solid lines. Figure 3.2 through 3.4 shows corresponding OPDDs for

various variable orderings. An OPDD can have 3 terminal nodes namely the 0-node, 1-

node, and U-node. Variable ordering plays an important role in the amount of

information that can be gathered from an OPDD. OPDDs can be built with different

variable orderings to explore different regions of the function. From an OPDD, the 0-

probability, 1-probability, or U-probability can be computed as described in [Kodavarti

93]:

1) Initialize the sum Sr of the root node nr to Sr = 1.

2) Initialize the sum Si of all nodes ni, for all i r, to Si = 0.

3) Associate a line probability (pi) for each circuit input xi, for all i.

70

4) At every non-terminal node ni, representing input variable xi, perform two

operations (during breadth first traversal of the OPDD):

Add (1-pi)*Si into the sum of the 0-arc child

Add pi*Si into sum of the 1-arc child

5) Calculate the lower bound of the signal probability from the final value of the

sum, S1, at the ONE terminus, and the upper bound including the sum, SU, at the

UNKNOWN terminus.

Lower bound = S1

Upper bound = S1+SU

One limitation of the approach in [Kodavarti 93] is that the information is not

retained across the OPDDs. The proposed algorithm maintains a global disjoint cube

cover across different OPDDs to obtain tighter bounds on the signal probability. Note that

for the rest of the chapter 1-path, 0-path, and U-path will denote paths terminating at 1-

terminus, 0-terminus, and U-terminus, respectively. The corresponding cubes will be

denoted as 1-cube, 0-cube, and U-cube, respectively. The 1-paths in the OPDD encode

cubes covering some part of the ON-set of the function represented at the root node. The

0-paths do the same for the OFF-set. By construction of the OPDD these cubes are

disjoint. By constructing OPDDs with different variable orderings, different regions of

the function can be explored. From each OPDD, disjoint cubes are collected and a global

list of such cubes is maintained both for the OFF-set (g0-cov) and the ON-set (g1-cov).

The cube list is maintained as a sorted list in decreasing order of the cube sizes. The

larger the number of don’t cares (X’s), the larger is the cube and the larger is its

contribution to the signal probability of the line. While adding a new cube to the current

global cube cover, three things are checked:

71

1) If it is contained in one of the existing cubes then it is not added. This is

checked by iterating over all the bits of the cubes. If the smaller cube matches with the

larger cube at all the specified bit positions then it is contained in the larger cube.

2) If it is mutually disjoint with each of the existing cubes, then it is simply added

to the list and the sorted order is maintained. This can be easily checked by looking for a

conflict in any of the specified bit position of the cube to be added with each of the

existing cubes in the cover.

3) If the cube to be added overlaps with one or more of the existing cubes in the

cover then the cube is made disjoint and added to the list. This is done the following way.

If two cubes have overlap then the cubes are traversed bit by bit and for the first bit

position where one of the cubes has a specified bit and the other cube is unspecified, the

unspecified bit is specified with the opposite value of the specified bit value of the other

cube.

At the end of all the iterations, the final lower bound on the 1-probability is

computed directly from the global disjoint cube cover (g1-cov) by simply adding the

probabilities of the individual disjoint cubes. Since they are disjoint, the probabilities are

independent and can simply be summed together. The ambiguity u is computed as [u=1

− (g0+g1)] where g0 and g1 are the probabilities computed from the g0-cov and g1-cov

respectively. The final upper bound is equal to the lower bound plus the ambiguity u.

Accuracy versus runtime can easily be traded off in selecting the OPDD size limit as well

as the number of OPDDs that are built. The proposed approach can be used with any set

of OPDDs derived with any variable ordering. However, in the next section, a heuristic

approach for guiding the selection of the variable ordering to find better cubes for the

global cover is described. The example in Figs. 3.2-3.4 illustrates the proposed approach

72

on a very small example. Figure 3.1 shows the OBDD representation of the function ab’

+ac’ +b’c. The complete ON-set and OFF-set of the function are shown on a Karnaugh

map. Figure 3.2 shows the OPDD with variable ordering <a,b,c> where the bound on the

maximum number of non-terminal nodes is 3. After the first OPDD, g0-cov contains

{01x} and g1-cov contains {10x}. The bound on signal probability computed from the

OPDD in Fig. 3.2 using the method in [Kodavarti 93] is [.25,.75]. The OPDD in Fig. 3.3

uses the variable ordering <b,a,c>. No new cubes are added to either g0-cov or g1-cov as

the cubes found are already present in the respective sets. The third iteration uses the

variable ordering <a,c,b>. After the third iteration, one new 1-cube (1x0) is found. This is

made disjoint with the existing cube in g1-cov and is added to g1-cov. The contents of

g1-cov after this iteration is {10x,110}. The probability computed from this set is

(.25+.125) = .375. Similarly the contents of the g0-cov after the 3rd iteration is

{01x,000}. The probability computed from g0-cov is (.25+.125) = .375. The ambiguity

after 3rd iteration is computed as [1 – (.375+.375)] = .250. So finally the estimated signal

probability bound after 3rd iteration would be [g1,g1+u] = [.375,.625]. The actual signal

probability in this case is .5. Note that if we don’ t use the global cube covers to learn

across multiple OPDDs then the best bound that can be obtained after 3rd iteration under

the same variable orderings is [.25,.75].

73

Figure 5.1: Binary decision diagram and Karnaugh map

Figure 5.2: OPDD with variable ordering <a,b,c>

a

bb

U 1

1-low.25
1-high.75
g1-cov
10x
g1 .25
g0-cov
01x
g0.25

0

0

a

bb

c c

1

0 1 0 0

1 1 0 1

a
 0

 1

 bc
 00 01 11 10

74

Figure 5.3: OPDD with variable ordering <b,a,c>

Figure 5.4: OPDD with variable ordering <a,c,b>

b

aa

U 01

1-low.25
1-high.75
g1-cov
10x
g1 .25
g0-cov
01x
g0.25

a

cc

U 1

0 1 0 0

1 1 0 1

 a
0

 1

0

bc
 00 01 11 10

1-low.25
1-high.75
g1-cov
10x
1x0110
g1 .25+.125=.375
g0-cov
01x
0x0000
g0.25+.125=.375
u=(1 – (g0+g1))=.250
bound =
[g1,g1+u]=[.375,.625]

75

5.3 UNKNOWN SPACE EXPLORATION

While building an OPDD, whenever the number of nodes exceeds the predefined

bound on the number of the nodes, the unknown U terminus is created and all paths are

directed to it. The number of paths and the length of paths ending at the U terminus

determine the size of the unknown space and hence the ambiguity in the signal

probability. The variable ordering used when building an OPDD has a big impact on the

resulting composition of the unknown space. The proposed method involves iteratively

building multiple OPDDs and extracting collective information, and thus the goal in

selecting the variable ordering for each additional OPDD is to try to explore the unknown

space from the previous set of OPDDs. One common approach for variable ordering is to

perform a depth first search (DFS) of the circuit from primary outputs (POs) to primary

inputs (PIs) and append a PI to the ordering as soon as it is traversed. When performing a

DFS, a decision has to be made at each gate as to in what order its inputs should be

traversed. A number of different heuristics have been developed for making this decision

(e.g., [Malik 88] and [Fujita 93]). The conventional heuristics for guiding the DFS are

targeting the problem of minimizing the overall size of a full BDD. These conventional

heuristics are very useful in forming the first couple OPDDs as they are likely to result in

identifying the largest implicants. However, after information has been extracted from the

first couple OPDDs using the proposed methodology, the usefulness of the conventional

heuristics for variable ordering when building subsequent OPDDs diminishes because

they are more likely to explore the space of the function that has already been explored in

the previous OPDDs. Here we propose a new heuristic to guide the DFS so that it will

lead to a variable ordering that more effectively explores the unknown space. The idea

behind the proposed heuristic to try to measure how much of the unknown space has been

76

explored with respect to each variable across all the OPDDs built so far, and then direct

the DFS towards the variables for which the unknown space has been least explored. The

U-effect of a variable is defined as the sum of all the U-paths in which the variable

appears in either complemented or uncomplemented form weighted by the size of the

corresponding U-cube for the U-path. Thus, the U-effect of a variable is computed as (2n-

ki) for each U-path i in which the variable appears, where ki is the number of nodes along

the path and n is the number of primary inputs of the circuit. The U-effect of the variables

for the OPDD in Fig. 5.2 is shown in Table 5.1. There are two U-paths each of which

include variables a and b. The size of the U-cube corresponding to each path is 2, and

thus the U-effect for a and b is 4. Since variable c does not appear on any U-paths, its U-

effect is 0.

Table 5.1: U-effect for OPDD in Fig 5.2

Table 5.2: Cumulative U-effects of OPDDs in Figs 5.2-5.4

As each new OPDD is constructed, the U-effect for each variable is computed and

added to the U-effect of the previous OPDDs. Thus, a running total of the Ueffect over all

the OPDDs is maintained for each variable. The running total of the U-effect over the

three OPDDs in Figs. 5.2-5.4 is shown in Table 5.2. The cumulative U-effect for a set of

Variable Effect
a 2+2=4
b 2+2=4
c 0

Variable Effect
a 12
b 8
c 4

77

OPDDs gives a rough measure of how well the unknown space has been explored with

respect to each variable. This is then used as a heuristic to direct the DFS towards the

variables that have the lowest U-effect. This helps to explore the least explored region of

the function and hopefully construct an OPDD in which new implicants can be obtained

to further reduce ambiguity in the signal probability calculations. This is illustrated in the

small example in Fig. 5.5 where using the U-effects from Table 5.2 result in a new

ordering <c,b,a> for which the OPDD built as shown in Fig. 5.5. For the OPDD in Fig.

5.5, the U-space vanishes and the exact probabilities can be obtained. When searching the

unknown space using the U-effect heuristic, the DFS is modified so that the decision as to

which order in which to traverse the inputs of a gate are made based on the support set for

each input. The support set for an input is the set of PIs (variables) that it depends on. The

U-effect of each variable in the support set is summed together, and the inputs of the gate

are traversed in reverse order of their total U-effect. So the overall strategy for iteratively

building the OPDDs is the following. Conventional heuristics for variable ordering are

used to build the first couple OPDDs to identify large implicants, and then the proposed

heuristic of using the U-effect is used when building subsequent OPDDs to more

effectively search the unknown space.

78

Figure 5.5: OPDD using USSE generated ordering

5.4 RUNTIME COMPLEXITY ANALYSIS

In this section, the runtime complexity for the proposed method is analyzed and

compared with [Kodavarti 93]. The complexity is described below in terms of the

following: number of gates in the circuit (G), number of primary inputs in the circuit (N),

limit on the maximum number of nodes in the OPDD (B), and number of iterations used

(I) where one OPDD is built in each iteration. Note that B and I are actually constants that

do not scale with circuit size. They are shown in the equations below just for

completeness and to aid the reader’s understanding.

Compute Variable Ordering – Initially this is done with conventional heuristics

which is the same as for [Kodavarti 93]. The complexity depends on which heuristics are

used, but good results for DFS based methods can be obtained in linear time in the

number of gates. Thus the overall complexity is O(GI) since it needs to be done for each

OPDD iteration. In the proposed method, after the first couple OPDDs, then the U-effect

heuristic described in Sec. 5.3 is used. The U-effect for each variable can be computed by

c

ba

01

Order <c,a,b>
1-low.5
1-high.5
g1-cov
10x
110
001
g1 .5
g0-cov
01x
000
111
g0.5

79

traversing each OPDD which is O(BI) and then it needs to be sorted which is

O(Nlog(N)I). The support set for each line in the circuit can be obtained in O(G) and

needs to be computed only once and stored. So the overall complexity for DFS with the

U-effect heuristic is O(BI+Nlog(N)I +G).

 Build OPDDs – The complexity for building the OPDDs is O(GB2I) which

is the same as for [Kodavarti93].

 Construct Global Disjoint Cover – This is unique to the proposed method.

Note that the number of cubes cannot be larger than the number of nodes

in the OPDDs. Hence this can be done in O(NGB2I2). Note that these are

very fast bitwise comparison operations.

 Calculate Signal Probability Range – This is just a matter of adding the

size of all the disjoint cubes. For both [Kodavarti 93] and the proposed

method, this is O(GBI). As mentioned before, B which is the node limit for

the OPDDs and I which is the number of iterations are constants that do

not scale with circuit size. So if we only consider the factors that scale

with circuit size, then the overall complexity for the proposed method is

O(NG) compared with O(G) for [Kodavarti 93]. For realistic industrial

circuits, the extra N factor is not very significant for two reasons. One is

that while in the worst case the number of inputs in the largest cone of

logic could theoretically be equal to N, typically it is relatively small and

doesn’t scale up much for larger designs (it depends mostly on the

function being implemented and not on the integration density), and the

other reason is that the extra complexity is coming from the bitwise

comparison operations for the cubes which can be done very quickly.

80

Consequently, the actual runtimes for the two methods is very similar and

on the order of a minute for the ISCAS circuits which have thousands of

gates. If we scale up to millions of gates (1000 times larger than the

ISCAS circuits), the runtime would still be less than one day in the worst

case assuming only a single processor was used. In practice, a hierarchical

design could be easily partitioned and spread over multiple processors, not

to mention there is likely to be economies of scale.

5.5 EXPERIMENTAL RESULTS

The proposed approach is specifically useful for large circuits where building the

full BDD is not possible. However, for comparison with other methods, experiments

were performed on the ISCAS 85 benchmark circuits even though it is practical to build a

full BDD for most of those circuits with 4000 nodes. In [Kodavarti 93], results were

reported for using a limit of 500 nodes in the OPDDs with 4 iterations (i.e., building 4

OPDDs with different variable orderings). These results from [Kodavarti 93] are shown

in Table 5.4 along with the results reported in [Kodavarti 93] for the cutting algorithm

which are shown in Table 5.3. Experiments were performed using the proposed method

with the same parameters, namely a 500 node limit for each OPDD and 4 iterations. The

results for the proposed method are shown in Table 5.4. In each of these tables, the

number of lines with different ranges of ambiguity between 0% and 100% are shown. As

can be seen from the results, the proposed method is able to reduce the amount of

ambiguity in the signal probability ranges considerably in all the circuits compared with

[Kodavarti 93]. Further experiments were performed to see how the results varied with

the number of iterations. Fig. 5.6 shows results for C880 where the total ambiguity

81

normalized with respect to the first iteration is shown on the y-axis and the number of

iterations is shown on the x-axis. A 200 node limit was used for the OPDDs. As the

number of iterations increases, the ambiguity decreases. There tends to be a diminishing

marginal return, however, and the amount of improvement from one iteration to the next

can vary due to the fact that heuristics are used.

Table 5.3: Cutting Algorithm

Ambiguity ranges (in %)Ckt

Name #line 0 >0

<=30

>30<=50 >50<=80 >80<=90 >90<100 100

c432 160 27 27 27 0 0 6 73

c499 202 13 0 7 20 5 18 139

c880 383 19 9 45 23 0 0 287

c1355 546 9 1 30 8 0 0 498

c1908 880 52 0 37 4 0 0 787

c2670 1269 154 6 136 38 5 55 878

c3540 1669 53 0 53 14 1 0 1548

c5315 2307 137 5 154 28 0 0 1893

c6288 2416 3 0 58 1 0 0 2354

c7552 3513 120 5 190 91 0 0 3107

82

Table 5.4: [Kodavarti 93]

Ambiguity ranges (in %) : Max node limit = 500Ckt

Name #line 0 >0

<=30

>30<=50 >50<=80 >80<=90 >90<100 100

c432 160 94 31 14 16 5 0 0

c499 202 137 33 32 0 0 0 0

c880 383 354 29 0 0 0 0 0

c1355 546 338 143 64 0 1 0 0

c1908 880 731 149 0 0 0 0 0

c2670 1269 1237 24 2 6 0 0 0

c3540 1669 1261 119 80 179 28 2 0

c5315 2307 2227 66 6 6 0 0 0

c6288 2416 1281 394 36 231 100 310 64

c7552 3513 3387 112 8 6 0 0 0

83

Table 5.5: Proposed

Ambiguity ranges (in %) : Max node limit = 500Ckt

Name #line 0 >0

<=30

>30<=50 >50<=80 >80<=90 >90<100 100

c432 160 158 2 0 0 0 0 0

c499 202 193 7 2 0 0 0 0

c880 383 360 23 0 0 0 0 0

c1355 546 436 102 8 0 0 0 0

c1908 880 816 64 0 0 0 0 0

c2670 1269 1240 21 8 0 0 0 0

c3540 1669 1484 87 98 0 0 0 0

c5315 2307 2307 0 0 0 0 0 0

c6288 2416 1292 383 68 222 114 272 63

c7552 3513 3408 99 2 4 0 0 0

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

#iterations

to
ta

l
am

b
ig

u
it

y

Figure 5.6: #iterations vs total ambiguity (normalized) (c880) [max #nodes = 200]

84

5.6 CONCLUSIONS

In this chapter we proposed an iterative technique to compute signal probabilities

using disjoint cube cover obtained from OPDDs. We also proposed a variable ordering

algorithm to reduce ambiguity in the computed signal probabilities by efficiently

exploring the unknown solution space obtained from explored OPDDs.

85

Chapter 6: Using Limited Depth Sequential Expansion for
Decompressing Test Vectors

6.1 INTRODUCTION

Test vector compression involves storing a deterministic test set on the tester in a

compressed form and using on-chip hardware to decompress it. The test data bandwidth

between the tester and chip is generally a bottleneck, so compressing the amount of data

that needs to be transferred reduces test time. Test vectors are highly compressible

because typically only 1-5% of the bits are specified (care) bits while the rest are don’t

cares. A number of commercial tools have been introduced in recent years for

implementing test vector compression.

One class of test vector compression schemes that is used in a number of

commercial tools is based on using a linear decompressor to expand the compressed data

coming from the tester to fill the scan chains. Any decompressor that consists of only

XORs and flip-flops is a linear decompressor and has the property that its output space

(i.e., the space of all possible vectors that it can generate) is a linear subspace.

Determining whether a particular test cube (i.e., test vector in which the unassigned

inputs are left as don’t cares) can be encoded by a linear decompressor can be done by

solving a system of linear equations for the specified (care) bits. Combinational linear

decompressors [Bayraktaroglu 03], [Mitra 06], use only XOR networks with no flip-

flops. If there are b tester channels expanding to fill n scan chains (as illustrated in Fig.

6.1), then each n-bit “scan slice” is encoded with the b free-variables coming from the

tester in the corresponding clock cycle (each bit stored on the tester can be considered a

“free-variable” that can be assigned 0 or 1). One drawback is that the worst-case most

86

highly specified scan slices tend to limit the amount of compression that can be achieved

because the number of channels from the tester needs to be sufficiently large to encode

them. Sequential linear decompressors [Krishna 01, 04], [Konemann 01], [Rajski 04] use

linear finite state machines such as linear feedback shift registers (LFSRs) or ring

generators [Mrugalski 04] which retain free-variables received from the tester in earlier

clock cycles thereby allowing a scan slice to be encoded using free-variables across

multiple clock cycles. This allows greater flexibility to handle heavily specified scan

slices that may occasionally occur. Consequently, for a fixed number of tester channels,

sequential linear decompressors have a higher probability of being able to encode a given

test cube.

Scan Chain 1

Scan Chain 2

Scan Chain n

“scan slice”
(n-bits)

Decompressor

Tester
Channels

b-bits

Figure 6.1: Block diagram of test vector decompression

Another class of test vector compression schemes that is used in commercial tools

is based on broadcasting the same value to multiple scan chains. This concept was first

proposed in [Lee 98] for scan chains driving independent circuits, and then was adapted

for scan chains driving dependent circuits in [Hamzaoglu 99] by adding a serial mode for

applying test cubes that cannot be applied in broadcast mode (this has come to be known

as Illinois scan). Illinois scan is essentially a special degenerate case of linear

decompression in which the decompressor consists of only fanout wires (no XOR gates).

87

The encoding flexibility for the broadcast mode of Illinois scan is less than linear

decompressors that use XOR gates. Given a particular test cube, the probability of

encoding it with a linear decompressor that uses XORs is higher than with Illinois scan

because it has a more diverse output space with fewer linear dependencies than a fanout

network does. However, the fact that faults can be detected by many different test cubes

provides an additional degree of freedom. The advantage of Illinois scan is that it is very

easy to incorporate the constraints imposed by the decompressor during the ATPG to

exploit this degree of freedom in choosing a test cube. This can be done by simply tying

dependent inputs together in the circuit description given to the ATPG so that the ATPG

algorithm will search only for encodable test cubes. For linear decompressors that use

XORs, the conventional approach is to first generate a test cube and then solve the linear

equations to see if it is encodable and if it is not then try to find a different test cube with

possibly less aggressive dynamic compaction. This is a two step process that does not

incorporate the constraints in the ATPG search/backtrace procedure as is done with

Illinois scan. So each approach has its advantages. Linear decompressors that use XORs

can encode a wider range of test cubes than Illinois scan, but Illinois scan can harness the

ATPG to search for encodable test cubes more efficiently.

Ideally, it would be nice to combine the advantages of both approaches. In other

words, have greater encoding flexibility than Illinois scan, but retain the ability to include

the constraints in the ATPG search/backtrace so the ATPG can efficiently find encodable

test cubes. Some work has been done in this direction. One approach is to provide the

ability to reconfigure the broadcast mode in Illinois scan to change the constraints. This

can be done statically (on a per scan basis) by either reconfiguring the scan chains

[Pandey 02] or reconfiguring the fanout network [Samaranayake 03], [Tang 03], [Mitra

88

06]. Or, it can be done dynamically (on a per shift basis) [Sitchinava 04] where MUXes

are placed in front of each scan chain and the control signals for the MUXes are driven

by tester channels. In [Wang 04], a combinational network that includes XOR gates is

also used and included in the ATPG backtrace.

All of the previous schemes that include the decompressor constraints in the

ATPG backtrace are based on combinational decompression where each scan slice must

be encoded using only the b free-variables arriving from the tester in a single clock cycle.

In this chapter, we investigate how to use sequential decompression in a way that the

constraints are included in the ATPG search/backtrace. The advantage of sequential

decompression is that free-variables across multiple clock cycles can be used to encode

each scan slice thereby providing greater flexibility and alleviating the problem of the

worst-case most heavily specified scan slice limiting the encodability of a test cube.

Conventional sequential linear decompressors based on LFSRs or ring generators are not

amenable to including the constraints in the ATPG backtrace. The reason is that typically

the value of each scan cell depends on the XOR of a large number of free-variables.

Including these types of constraints in the ATPG backtrace would greatly increase the

search complexity for the ATPG resulting in a large number of backtracks and aborts

thereby rendering the ATPG ineffective. To get around this problem, this chapter

proposes the use of limited dependence sequential expansion which keeps the constraints

to a minimum to allow effective ATPG backtrace while still retaining the advantages of

sequential expansion in terms of using free-variables across multiple clock cycles.

The contributions of this chapter include the following:

 A systematic study of different ways of increasing the flexibility of

decompressors for a fixed number of tester channels.

89

 A new decompressor design that uses limited dependence sequential

expansion is proposed, and a synthesis procedure is presented.

 The probability of encoding a test cube with different decompressor

designs is analyzed, and the advantages of sequential decompression are

quantified.

 Experimental results for benchmarks are shown comparing different

compression schemes in terms of the ATPG runtime and the amount of

compression achieved.

The chapter is organized as follows: Sec. 6.2 analyzes the encoding flexibility

provided by different combinational decompressor designs. Sec. 6.3 investigates the use

of sequential decompressors and shows the advantages compared with combinational

decompressors. Sec. 6.4 discusses some of the issues involved in selecting a

decompressor design. Sec. 6.5 presents a synthesis procedure for synthesizing limited

dependence sequential linear decompressors. Sec. 6.6 shows the experimental results.

Sec. 6.7 is a conclusion.

90

6.2 COMBINATIONAL ENCODING FLEXIBILITY

Illinois scan, where a fanout network from the tester channels is used, provides

the simplest constraints for ATPG since it involves simply tying inputs together.

However, it has limited encoding flexibility because if two specified bits in a scan slice

have opposite value and are fed by the same tester channel, they cannot be encoded. If the

number of tester channels is c, and the expansion ratio (i.e., the ratio of scan chains to

tester channels) is k, then the probability of not being able to encode two specified bits in

a scan slice is:

)1(2

1

ck

k

Increasing the encoding flexibility requires adding some gates to the

decompressor. Consider adding one 2-input gate to drive each scan chain. To maximize

the output space of the decompressor (and hence its encoding flexibility), the logic

driving each scan chain should have an output space that is equally balanced between 0’s

and 1’s. This rules out using an AND or OR gate. The only 2-input gate whose output

space is equally balanced is a 2-input XOR/XNOR gate. Note that the presence or

absence of inversion does not change the probability of encoding an arbitrary test cube,

so without loss of generality, only XOR will be considered. If each scan chain is driven

by a 2-input XOR of a unique combination of tester channels, then if there are exactly ck

= cC2
 scan chains, all scan slices with 2 specified bits can be encoded and the probability

of not being able to encode 3 specified bits will be less than:

)1(2

1

ck

91

So it is more likely to be able to encode 3 specified bits with 2-input XOR gates

than it is to encode 2 specified bits with Illinois scan which is a considerable

improvement. The cost is that the constraints during ATPG now require adding 2-input

XOR gates into the ATPG backtrace for each pseudo-primary input (pseudo-PI)

corresponding to a scan cell. This is illustrated in Fig. 6.2 with a small example where 2-

input XOR gates are used to drive each scan chain, and the constraints for the

decompressor are expanded into the circuit given to the ATPG (note that Ai, Bi, and Ci

are the free-variables arriving from the tester during clock cycle i). To justify a 0 on a

pseudo-PI, there are now 2 different ways to do it (assign 00 to the inputs of the XOR

gate driving it or assign 11). This increases the search space for the ATPG thereby

slowing it down a little. However, in comparison to Illinois scan, the ATPG has more

flexibility when targeting a fault which can lead to better dynamic compaction and less

need for resorting to serial mode to detect faults.

To achieve even greater flexibility, 3-input gates could be used to drive each scan

chain. In this case there are two options for a balanced output space, a 3-input XOR or a

2-to-1 MUX (other balanced functions are equivalent to those two with inversion). In

[Mitra 06], it was shown that using 3-input XORs can guarantee that any 3 specified bits

in a scan slice can be encoded. For a MUX, one approach would be to partition the tester

channels into control and data where the control channels drive the select signal for the

MUXs and the data channels drive the data inputs to the MUXs. This is effectively what

is done in [Sitchinava 04]. The other option would be to simply connect any combination

of 3 tester channels to each MUX with no distinction between control and data.

92

S7

S8

S9

S4

S5

S6

S1

S2

S3

A3 A2 A1

B3 B2 B1

C3 C2 C1

S9 S8 S1S2S3S4S5S6S7

Combinational Circuit

A1A2A3 B1B2B3 C1C3 C2

Figure 6.2: Example of including decompressor constraints at pseudo-PI’s for ATPG

The graph in Fig. 6.3 shows the probability of encoding different numbers of

specified bits in a single scan slice for different decompression networks when expanding

from 16 tester channels to 160 scan chains (i.e., an expansion ratio of 10). The x-axis is

the number of specified bits in the scan slice, and the y-axis is the percentage of all

possible combinations of that number of specified bits that can be encoded. As can be

seen from the graph, all the decompression networks can always encode 1 specified bit.

However, as the number of specified bits is increased, the probability of being able to

encode the scan slice drops. Since Illinois has the least encoding flexibility, it has the

lowest probability of being able to encode a scan slice. The results for using MUXs are

shown for two cases. One is where the control and data lines are separated, i.e., one of the

tester channels is dedicated to driving the select line and the other 15 tester channels are

used to drive the data lines. The other is where combinations of all 16 tester channels are

used to drive either the select or data lines of the MUXs. The results indicate that greater

93

encoding flexibility can be obtained by not having a separate control line. Another

interesting result is that using 2-input XOR gates is not as good as using MUXs for low

numbers of specified bits, but becomes better than MUXs when the number of specified

bits is equal to 10 or more. Using 3-input XORs provides considerably better encoding

flexibility although it comes with the tradeoff of adding more complexity to the ATPG

than the others.

0.0

20.0

40.0

60.0

80.0

100.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Illino is

M U X -S epara te

M U X -C om bined

2-inpu t X O R

3-inpu t X O R

S p ecified B its

P
e

rc
en

t
E

n
c

o
d

ab
le

Figure 6.3: Probability of encoding scan slice for 16 tester channels expanding to fill 160 scan
chains

94

6.3 SEQUENTIAL ENCODING FLEXIBILITY

Previously proposed schemes that include the decompressor constraints in the

ATPG backtrace are limited to combinational decompression where each scan slice is

encoded using only the free-variables arriving from the tester in a single clock cycle. To

achieve greater flexibility to handle the heavily specified scan slices, the use of sequential

decompression is investigated here since it allows free-variables across multiple clock

cycles to be used in encoding each scan slice. The constraints for conventional

approaches for sequential linear decompression that use LFSRs or ring generators are

very complex because each scan cell can depend on the XOR of a large number of free-

variables. Incorporating such complex constraints in the ATPG backtrace can greatly

increase the search complexity of the ATPG. Consider a pseudo-PI whose value depends

on the XOR of q free-variables. In order to justify a logic value at the pseudo-PI, q inputs

need to be assigned, and the number of possible ways to assign them to get either a 0 or 1

would be 2q-1. As q increases, this search space grows exponentially. For this reason,

conventional approaches that use LFSRs or ring generators do not attempt to include the

constraints in the ATPG backtrace. Instead they do ATPG and then check the constraints

afterwards. The drawback of this approach is that if an encodable test cube for a fault

exists, there is no guarantee that it will be found, and dynamic compaction may need to

be done less aggressively in order for the linear equations to remain solvable.

In order to efficiently include the decompressor constraints in the ATPG

backtrace, the constraints need to be limited to a dependence on only 2 or 3 free-variables

to keep the search space manageable. If the b bits coming from the tester in each clock

cycle are defined as a “tester slice”, then one way to perform sequential decompression is

to store the last one or two tester slices in a register and use either 2 or 3 input XOR gates

95

to drive each scan chain. The inputs to these XOR gates can come from the domain of the

current tester slice and any previous tester slice stored in a register (this is illustrated for

two registers in Fig. 6.4). This provides two benefits. One is that free-variables across 2

or 3 tester slices are used to encode each scan slice which gives more flexibility by

providing access to a larger pool of free-variables to handle an occasional heavily

specified bit slice, and the second benefit is that a larger number of unique free-variable

combinations can be used to drive the scan chains each clock cycle. For example, if there

are only 8 tester channels and 2-input XORs are used, then for a combinational

decompressor there are only 8
2C = 28 unique free-variable combinations in each clock

cycle which must be broadcast to multiple scan chains if there are more than 28 scan

chains. However, if one register is used to store the previous tester slice, then there are

16
2C = 120 unique free-variable combinations in each clock cycle, or if two registers are

used there are 24
2C = 276 unique free-variable combinations. This allows more scan

chains to be driven with unique combinations of free-variables which provides greater

diversity in the output space and gives more encoding flexibility.

R
E
G

R
E
G

From
Tester

Figure 6.4: Example of limited dependence sequential decompressor with two registers

96

The benefit of using sequential decompression versus combinational

decompression is shown in Fig. 6.5. A scan architecture consisting of 80 scan chains each

100 bits long was driven using 8 tester channels. The probability of encoding test cubes

with different percentages of specified bits using different decompressor designs is

shown. The x-axis is the percent of the bits in the test cube that are specified, and the y-

axis is the probability of encoding the test cube expressed as a percentage. As expected,

Illinois scan has the lowest probability of encoding and using an LFSR has the highest

probability of encoding (a 64-bit LFSR was used with dynamic reseeding). Using 2-input

XORs is shown for the case where only combinational expansion is used and then when 1

and 2 registers are used. As can be seen, the probability of encoding a test cube goes up

considerably by adding the registers to perform sequential decompression. Using 2-input

XORs with one register is better than using a combinational decoder with 3-input XORs.

This is an interesting result because the ATPG search complexity is less with 2-input

XORs than with 3-input XORs. Another significant result is the very large improvement

that is achieved for 3-input XORs when one or two registers are used to store the

previous tester slice. The results begin to approach what an LFSR can achieve, but in this

case each pseudo-PI depends on only 3 free-variables thereby making it practical to

include the constraints in the ATPG backtrace. To make the comparisons in Fig. 6.5 fair,

the same number of free-variables were used for each decompressor (i.e., a total of 100

tester slices were used for encoding each test cube). No extra shifts were used to pre-load

the sequential decompressors. Instead, the sequential decompressors were bypassed in the

first clock cycle for the designs with 1 register and the first two clock cycles for the

designs with 2 registers. The LFSR was bypassed for the first clock cycle. If one or two

extra shifts are used to pre-load the sequential decompressors, the results are slightly

better, but there is not much difference.

97

0

2 0

4 0

6 0

8 0

1 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 1 4

P erce n t S p e c if ie d B its

P
er

ce
n

t
E

n
co

d
ab

le

I llin o is

2 -X O R C o m b .

2 -X O R 1 -re g .

2 -X O R 2 -re g .

3 -X O R C o m b .

3 -X O R 1 -re g .

3 -X O R 2 -re g .

L F S R

Figure 6.5: Probability of encoding test cubes for 8 tester channels expanding to fill 80
scan chains

98

6.4 SELECTING DECOMPRESSOR DESIGN

As seen in Fig. 6.5, the addition of registers to store previous tester slices

significantly improves the encoding flexibility of the decompressor. This section

discusses some of the issues involved in selecting which decompressor design to use. The

first issue is whether to use Illinois scan, 2-input, or 3-input XORs. There is a tradeoff in

terms of the area and ATPG time versus the amount of compression achieved. The area

for all of the decompressor designs is fairly small and probably not a significant factor.

The ATPG runtime is a one time cost. If some additional ATPG runtime can be handled,

then the reduction in test time that can be achieved with greater compression may be very

worthwhile as that reduces test costs for every chip manufactured.

The results in Fig. 6.5 show that adding registers to enable sequential

decompression gives a significant boost which comes with little additional cost in ATPG

runtime. The ATPG runtime will mainly depend only on whether 2 or 3 input XORs are

used. Adding more registers provides a diminishing marginal improvement. Adding the

first register give a big improvement, and then adding the second register give much less

improvement. Using more than 2 registers will give some minor improvement, but

probably not worth the cost at that point.

Another issue is how to handle the first r scan slices if r registers are used. The

registers are reset between each test cube to decouple them so that each test cube is

encoded with its own independent set of free-variables. This means that in the first r

clock cycles for each test cube, some or all of the r registers will not yet be filled with

free-variables and thus will not be ready to drive the scan chains. The simple solution is

to just use r extra shifts when decompressing each test cube. The extra shifts fill the r

registers before the first scan slice is decompressed. If r is very small relative to scan

99

length, then this will not have much impact on the test time. The other alternative is to

use MUXes to bypass the sequential decompressor when decompressing the first r scan

slices. The scan chains can be driven during those clock cycles with a combinational

decompression network that depends only on the current tester slice. This second

approach does not require any extra shifts, and this is what was used for generating all the

results in this chapter to provide a fair comparison with combinational decompressors

(because in this case the same number of free-variables are used to encode each test

cube). However, from an implementation standpoint, the first approach of using extra

shifts is probably more attractive since it simplifies the hardware.

6.5 SYNTHESIS PROCEDURE FOR DECOMPRESSOR

The procedure for synthesizing a limited dependence sequential linear

decompressor for expanding b tester channels to fill n scan chains using r tester slice

registers and q-input gates driving each scan chain is as follows:

Generate all)1(rb
qC combinations of the current tester slice bits and the tester slice

registers’ bits.

For each scan chain, select an unused combination whose individual components

have collectively been used as inputs to the fewest gates. Mark that combination as used.

Create a gate to drive the scan chain using the selected combination as the inputs.

If there are more scan chains than combinations, then fan out the output of each

gate corresponding to a combination to multiple scan chains. Keep the number of fanouts

for each gate as balanced as possible.

The domain of possible inputs to the gates is the b-bits in the current tester slice

combined with the b-bits in each of the registers storing the previous r tester slices.

Combinations of these are selected to drive each scan chain in a way that balances the use

of each input evenly. This spreads the use of the free-variables evenly.

100

The design could be optimized if it is customized for a particular circuit-under-

test. If structural information is known about the circuit-under-test and the scan chain

ordering is known, then it is possible to choose the combinations of inputs that drive each

scan chain in a way that maximizes the probability of encoding a test cube. The synthesis

procedure here assumes no information about the circuit-under-test, and thus generates a

decompressor that is applicable for any circuit-under-test.

6.6 EXPERIMENTAL RESULTS

In this section, experimental results are presented for using different

decompessors. Table 6.1 shows details for the circuits that were used. Experiments were

performed on one ISCAS benchmark circuit (s38584) and two industrial circuits (Design

A and B). The number of scan cells, the total number of faults, and the number of ATPG

vectors required for 100% coverage of detectable faults are reported in Table 6.1.

Tables 6.2 through 6.4 report the results obtained for each of the designs listed in

Table 6.1. In each case, different decompressors were used to expand 8 tester channels to

fill the number of scan chains shown in the column header of the fourth, fifth, and sixth

columns. The decompressors are Illinois scan, combinational 2-input XOR gates driving

each scan chain, combinational 3-input XOR gates driving each scan chain, and the

proposed limited dependence sequential linear decompressors with one or two tester slice

registers using either 2-input XOR gates driving each scan chain or 3-input XOR gates

driving each scan chain. In generating the results, the constraints for each decompressor

were added to the circuit description given the ATPG tool. A commercial ATPG tool was

used to generate all the results reported here (although any ATPG tool can be used).

In each table, results are first shown in the upper part of the table for using a

single configuration. The results include the compression ratio that is achieved (i.e.,

101

normal uncompressed tester storage for a test set

generated with no constraints divided by compressed tester storage), the number of

parallel and serial vectors that are used, and the coverage that is obtained if only parallel

vectors are used. In the lower part of each table, results are shown for using 4

configurations with static reconfiguration where the configuration is changed only on a

per scan basis. These results were obtained by first detecting as many faults as possible

with the first configurations, and then using each subsequent configuration to detect any

faults that still remain undetected. The results that are reported for using 4 configurations

include the amount of compression, and the number of parallel and serial vectors that are

required. At the bottom of the table, the ATPG runtime is shown. This is the time that it

takes to run ATPG for the first configuration (subsequent configurations are much faster

since most of the faults are already detected).

In the results, it can be seen that Illinois scan has the shortest ATPG runtime as

expected, but it also provides the lowest amount of compression. The proposed limited

dependence sequential decompressors require longer ATPG runtimes, but achieve much

better compression. As can be seen, the addition of the tester slice registers to perform

sequential decompression significantly improves the results.

Table 6.1: Design Details

Design Scan cells Faults Fullscan ATPG vectors

s38584 1464 105298 135
Design A 7654 239902 796
Design B 856 53689 154

102

Table 6.2: Results for s38584

Num. Scan Chains
Decompressor 192 224 256
Illinois 3.4 3.2 2.0

Compression 2-xor comb 5.2 4.4 3.3
(1 config.) 3-xor comb 5.6 5.5 5.1

2-xor, 2 reg 6.0 6.3 5.3
3-xor, 2 reg 6.1 6.7 6.2
Illinois 286 280 293

Parallel 2-xor comb 332 330 385
Vectors 3-xor comb 437 454 499
(1 config.) 2-xor, 2 reg 339 425 442

3-xor, 2 reg 441 447 452
Illinois 27 31 56

Serial 2-xor comb 11 18 28
Vectors 3-xor comb 5 7 10
(1 config.) 2-xor, 2 reg 5 5 11

3-xor, 2 reg 3 3 7
Coverage Illinois 93.2 94.7 93.2
with parallel 2-xor comb 99.6 98.2 93.1
vectors only 3-xor comb 99.7 98.1 93.2
(1 config.) 2-xor, 2 reg 99.8 98.0 93.1

3-xor, 2 reg 99.8 99.6 95.6
Illinois 3.9 3.7 2.4

Compression 2-xor comb 6.5 4.8 4.0
(4 config.) 3-xor comb 6.5 6.3 5.3

2-xor, 2 reg 6.8 6.3 5.9
3-xor, 2 reg 6.7 7.5 6.3
Illinois 458 470 466

Parallel 2-xor comb 403 412 465
Vectors 3-xor comb 472 512 588
(4 config.) 2-xor, 2 reg 451 510 490

3-xor, 2 reg 465 472 590
Illinois 13 18 42

Serial 2-xor comb 3 12 18
Vectors 3-xor comb 0 2 6
(4 config.) 2-xor, 2 reg 0 2 7

3-xor, 2 reg 0 0 2
Illinois 3.14 3.26 3.44

ATPG 2-xor comb 5.40 3.20 5.24
Runtime 3-xor comb 6.65 7.20 7.24

2-xor, 2 reg 5.20 4.76 6.25
3-xor, 2 reg 7.10 7.14 7.24

103

Table 6.3: Results for Design A

Num. Scan Chains
Decompressor 64 128 192
Illinois 2.9 4.4 4.6

Compression 2-xor comb 3.7 4.7 4.7
With 3-xor comb 4.1 5.5 6.0
1 config. 2-xor, 1 reg 4.8 5.5 6.2

2-xor, 2 reg 4.8 5.9 7.2
3-xor, 1-reg 4.9 5.7 6.4
3-xor, 2-reg 4.9 5.7 7.6
Illinois 791 810 853

Parallel 2-xor comb 776 785 780
Vectors 3-xor comb 795 814 830
(1 config.) 2-xor, 1 reg 760 821 787

2-xor, 2 reg 795 797 883
3-xor, 1 reg 798 824 807
3-xor, 2 reg 775 793 804
Illinois 168 132 137

Serial 2-xor comb 118 120 138
Vectors 3-xor comb 95 93 98
(1 config.) 2-xor, 1 reg 75 92 96

2-xor, 2 reg 66 74 72
3-xor, 1 reg 64 88 90
3-xor, 2 reg 66 89 70

Coverage Illinois 92.1 92.5 90.2
with parallel 2-xor comb 93.4 93.5 93.2
vectors only 3-xor comb 93.2 93.1 92.9
(1 config.) 2-xor, 1 reg 92.2 92.8 93.4

2-xor, 2 reg 94.1 93.9 94.2
3-xor, 1 reg 94.3 94.0 94.6
3-xor, 2 reg 95.3 97.8 97.6
Illinois 3.6 4.5 4.8

Compression 2-xor comb 4.0 4.9 5.4
with 3-xor comb 4.8 6.1 6.0
4 configs. 2-xor, 1 reg 4.8 6.5 7.8

2-xor, 2 reg 4.8 6.2 7.9
3-xor, 1 reg 4.7 6.6 7.8
3-xor, 2 reg 5.5 6.6 8.0
Illinois 807 902 1102

Parallel 2-xor comb 798 822 878
Vectors 3-xor comb 885 920 995
(4 config.) 2-xor, 1 reg 1133 1512 1588

2-xor, 2 reg 1139 1556 1498
3-xor, 1 reg 1188 1590 1588
3-xor, 2 reg 1002 1603 1616

Serial Illinois 121 122 119
Vectors 2-xor comb 98 110 112

104

(4 config.) 3-xor comb 55 73 90
2-xor, 1 reg 24 27 36
2-xor, 2 reg 23 30 38
3-xor, 1 reg 22 21 36
3-xor, 2 reg 18 20 32
Illinois 152 148 149

ATPG 2-xor comb 155 149 155
Runtime 3-xor comb 162 166 164
(sec) 2-xor, 1 reg 160 158 150

2-xor, 2 reg 158 166 171
3-xor, 1 reg 162 162 159
3-xor, 2 reg 169 166 169

105

Table 6.4: Results for Design B

Num. Scan Chains
Decompressor 64 128 192
Illinois 1.2 1.3 1.2
2-xor comb 1.6 1.6 1.5

Compression 3-xor comb 1.5 1.8 1.5
(1 config.) 2-xor, 1 reg 1.8 1.8 1.7

2-xor, 2 reg 1.8 1.9 1.8
3-xor, 1 reg 1.9 2.0 2.0
3-xor, 2 reg 2.4 3.2 2.5
Illinois 106 88 108
2-xor comb 135 164 122

Parallel 3-xor comb 190 189 202
Vectors 2-xor, 1 reg 199 238 192
(1 config.) 2-xor, 2 reg 248 294 283

3-xor, 1 reg 243 287 347
3-xor, 2 reg 252 330 313
Illinois 99 105 118
2-xor comb 74 80 93

Serial 3-xor comb 74 72 93
Vectors 2-xor, 1 reg 50 66 80
(1 config.) 2-xor, 2 reg 54 64 72

3-xor, 1 reg 50 55 60
3-xor, 2 reg 36 45 48
Illinois 91.1 89.6 89.7

Coverage 2-xor comb 94.1 92.3 91.1
with parallel 3-xor comb 95.3 94.6 93.5
vectors only 2-xor, 1 reg 96.6 95.8 93.8
(1 config.) 2-xor, 2 reg 97.2 96.6 96.7

3-xor, 1 reg 97.8 97.2 96.8
3-xor, 2 reg 98.2 98.2 97.6
Illinois 1.4 1.5 1.3
2-xor comb 1.7 2.1 1.9

Compression 3-xor comb 1.9 2.3 1.8
(4 configs.) 2-xor, 1 reg 2.1 2.1 2.0

2-xor, 2 reg 2.1 2.6 2.5
3-xor, 1 reg 2.2 2.6 2.4
3-xor, 2 reg 2.5 3.3 3.1
Illinois 342 346 366
2-xor comb 270 351 362

Parallel 3-xor comb 270 380 356
Vectors 2-xor, 1 reg 309 386 344
(4 config.) 2-xor, 2 reg 301 387 361

3-xor, 1 reg 299 383 456
3-xor, 2 reg 269 371 427
Illinois 66 75 98
2-xor comb 54 50 63

106

Serial 3-xor comb 44 42 63
Vectors 2-xor, 1 reg 30 46 60
(4 config.) 2-xor, 2 reg 34 34 45

3-xor, 1 reg 30 35 42
3-xor, 2 reg 28 27 30
Illinois 0.97 0.96 0.98
2-xor comb 1.08 1.26 1.92

ATPG 3-xor comb 2.12 2.22 2.80
Runtime 2-xor, 1 reg 1.10 1.87 2.57
(sec) 2-xor, 2 reg 1.70 2.14 2.36

3-xor, 1 reg 2.62 2.81 3.26
3-xor, 2 reg 2.31 2.76 2.98

6.7 CONCLUSIONS

The results in this chapter show that by using limited depth sequential

decompression, a significant improvement in compression can be achieved. A number of

commercial test compression schemes are based on incorporating the decompressor

constraints in the ATPG search/backtrace. The proposed method provides a simple and

practical way to boost the effectiveness of such schemes by incorporating tester slice

registers to allow the use of free-variables across multiple clock cycles.

One area for future research would be to investigate how structural information

about the logic cones in the circuit-under-test could be used to improve the design of

limited depth sequential decompressors.

107

Chapter 7: Conclusion and Future Work

7.1 CONCLUSION

As mentioned in Chapter 1, circuit reliability has become an important design

consideration. This dissertation proposes several concurrent error detection/correction

methodologies to address the problems arising from the different threats to circuit

reliability. The proposed techniques primarily target soft errors that occur randomly and

depend on factors like alpha-particles or gamma-radiation. As process technology scales

well below 100 nanometers, the higher operating frequencies, lower voltage levels, and

smaller noise margins make integrated circuits increasingly susceptible to SEUs resulting

in a dramatic increase in soft errors. Due to their irregular structures, concurrent error

detection in combinational logic circuits is difficult. In chapter 2, a non-intrusive

concurrent error detection technique is presented. The advantage of the proposed scheme

is the easy trade-off between error coverage and area overhead. It has been shown that the

most likely errors can be detected using a fraction of the overhead compared to

duplication. The problem of soft error is even more prominent in memories. However it is

easier to employ error correction schemes in memories due to their regular structures. In

chapter 2, a low cost error correcting code is proposed to design multiple bit upset

tolerant memories. The code is designed by a heuristic search algorithm and codes for

different word sizes are provided. The proposed codes have the least overhead for the

targeted application amongst all the known codes. In chapter 4, the search algorithm was

extended to derive an unequal error protection code with even lesser overhead. These

codes are very useful to protect data in router memories. These codes provide different

levels of error protection for the different portions of the packet. In chapter 5, a runtime

108

and memory efficient algorithm was presented to accurately estimate signal probabilities

of the circuit lines. This algorithm can be used to estimate soft error susceptibility of

different nodes in the circuit. The estimation of soft error susceptibility helps in insertion

of proper error protection schemes in the circuit. Finally, some problems in the area of

off-line testing were looked at. In chapter 6, a technique was proposed to reduce the

deterministic test data volume and test time using a limited depth sequential expansion

strategy.

7.2 FUTURE WORK

This dissertation opens different alleys for future research. The search based code

design strategy can be used for designing codes targeting a specific application. A

different set of constraints have to be implemented during the search to achieve the

desired code. For example, the proposed code design strategy can be used to design codes

for multilevel memories. By accurately designing the constraints from the error

conditions accurately, a low cost code can be designed to protect data in multi-level

memories. The proposed codes can also be extended to higher order Galois fields. The

proposed scheme for deriving unequal protection code can be used to derive codes that

provide higher protection for certain bits (may not be contiguous). Another approach

could be to partition the code space into mutually exclusive groups of codewords. The

error correction capacity for each group could be varied as per the targeted application. A

possible application for these kinds of codes is in the wormhole routing used in network

on chip or in communication applications. Unlike the store and forward routing, in the

wormhole routing the packets are split into smaller sized packets called flits. This kind of

code can provide different levels of protection for the different flits. For example the

header and the trailer flits can be given more protection compared to the data flits. The

scheme used to derive the SEC-DED-DAEC code can be extended to correct any subset

109

of double-bit errors not necessarily adjacent. The test data compression technique can

further be improved by incorporating the circuit information while constructing the

decompressor. The proposed design of the decompressor does not take into account any

circuit information and hence can be designed independent of the circuit under test.

However the linear dependencies among the decompressor outputs can be reduced by

using the knowledge about the structure of the circuit. This dissertation primarily focuses

on the concurrent error detection / correction methodologies for memories and

combinational logic circuits. A natural extension of the work is to look into reliability

issues in the emerging nano-technology. The existing concurrent error

detection/correction methodologies may not be directly applicable for these emerging

technologies. Future work might involve adapting the existing CED schemes for the

emerging technologies.

110

Bibliography

[Abramson 59] Abramson N. M., ”A Class of Systematic Codes for Non-Independent
Errors”, Proc. IRE Trans. on Information Theory, Vol. IT-5, pp. 150-157, Dec.
1959.

[Agrawal 78] Agrawal, V. D., “When to Use Random Testing,” IEEE Transactions on
Computers, Vol C-27, No. 11, November 1978, pp. 1054-1055.

[Akers 78] Akers, S. B. “Binary Decision Diagrams,” IEEE Transactions on Computers.
Vol c-27, No. 5, May 1978, pp 509-516.

[Alexandrescu 02] Alexandrescu, D., L. Anghel, and M. Niholaidis, “New Methods for
Evaluating the Impact of Single Event Transients in VDSM ICs,” Prof. of Int.
Symp. on Defect and Fault Tolerance, pp. 99-107, 2002.

[Al-Kharji 97] Al-Kharji, Masaed., Sami A. Al-Arian,”Anew Heuristic Algorithm for
Estimating Signal and Detection Probabilities”, 7th Great Lake Symposium on
VLSI, p. 26, 1997.

[Almukhaizim 04a] S. Almukhaizim, P. Drineas, and Y. Makris, "Concurrent Error
Detection for Combinational and Sequential Logic via Output Compaction," Proc.
of Int. Symp. on Quality Electronic Design, pp. 319-324, 2004.

[Almukhaizim 04b] S. Almukhaizim, P. Drineas, and Y. Makris, "Cost-Driven Selection
of Parity Trees," Proc. of VLSI Test Symposium, pp. 319-324, 2004.

[Aloul 02] Aloul, Fadi A., Igor. L. Markov and Karem. A. Sakallah,”Improving the
Efficiency of Circuit-to-BDD Conversion by Gate and Input Ordering”, Int. Conf.
On Computer Design, 2002.

[Bayraktaroglu 03] I. Bayraktaroglu and A. Orailoglu, “Concurrent Application of
Compaction and Compression for Test Time and Data Volume Reduction in Scan
Designs,” IEEE Trans. on Computers, Vol. 52, No. 11, pp. 1480-1489, Nov.
2003.

[Berlekamp 68] Berlekamp, E. R., Algebraic Coding Theory, McGraw-Hill, New York,
1968.

[Bernstein 63] Bernstein, A., and W. Kim,”Single and Double Adjacent Error-correcting
codes for arithmetic Units”, IEEE Tran. on Information Theory, Vol. 9, pp. 209-
210, Mar. 1963.

111

[Bertozzi 02] Bertozzi, D. L. Benini, G. De Micheli, “Low power error resilient encoding
for on-chip data buses”, Proc. of Design, Automation and Test in Europe
Conference, pp. 102-109, 2002.

[Bodnar 03] Bodnar, L. and G. Chapelle,”A single error correctiondouble burst error
detection code”, Proc. of Asilomar Conference on Signals, Systems and
Computers, Vol. 1, pp. 1118-1121, Nov, 2003.

[Bolchini 97] C. Bolchini, F. Salice, and D. Sciuto, “A Novel Methodology for Designing
TSC Networks based on the Parity Bit Code,” Proc. European Design and Test
Conference, pp. 440-444, 1997.

[Bossen 70] Bossen, D. C.,”b-Adjacent Error Correction”, IBM Journal of Research and
Development, Vol. 14, pp. 402-408, Jul. 1970.

[Bowman 03] Bowman, R.C., “Technology scaling trends and accelerated testing for soft
errors in commercial silicon devices”, Proc. IEEE International On-Line Testing
Symposium, pp. 4, 2003.

[Bowman 04] Bowman, R.C., “Soft errors in commercial integrated circuits”,
International Journal of High Speed Computing, Vol. 14, No.2, pp. 299-309,
2004.

[Brglez 85] Brglez, F., H. Fujiwara, “A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in FORTRAN,” Proc. IEEE Symp. on Circ. Syst.
(ISCAS), Kyoto, Japan, June 1985, pp. 695-698.

[Brglez 84] Brglez, F., “On Testability Analysis of Combinational Networks,” in Proc.
IEEE Symp on Circ. Syst., 1984, pp. 221-225.

[Bryant 86] Bryant, R. E. “Graph Based Algorithms for Boolean Function Manipulation,“
IEEE Transactions on Computers, Vol c-35, No. 8, August 1986, pp. 677-691.

[Butler 91] Butler, K. M., D. E. Ross, R. Kapur, and M. R. Mercer, “Heuristics to
Compute Variable Orderings for Efficient Manipulation of OBDDs,”
Proceeclings of the 28th ACR.I/lEEE Design Aritomation Conference, San
Francisco, California, June 17-19, 1991, pp. 417-420.

[Calin 95] Calin, Th., F. L. Vargas, and M. Nicolaidis,”Upset Tolerant CMOS Using
Current Monitoring: Prototype and Test Experiments”, Proc. Int. Test Conference,
pp. 45-53, 1995.

[Chakravarty 90] Chakravarty, S., and H. Hunt III, “On Computing Signal Probability
and Detection Probability of Stuck-at Faults,” IEEE Transactions on Computers,
Vol. 39. No. 11. Nov. 1990.

112

[Chen 68] Chen, C. L.,” Error Correcting Codes with Byte Error Detection Capability”,
IEEE Trans. On Computers, Vol. C-32, pp. 615-621, May 1983.

[Chen 96] Chen, C. L.,”Symbol Error Correcting Codes for Memory Applications”, Proc.
of Fault Tolerant Computing Systems, pp. 200-207, 1996.

[Cohen 99] N. Cohen, et al., “Soft Error Considerations for Deep-Submicron CMOS
Circuit Applications,” International Electron Devices Meeting, 1999.

[Costa 97] Costa, Jose., Jose C. Monteiro and Srinivas Devadas,”Switching Activity
Estimation Using Limited Depth Reconvergent Path Analysis,” in Proc. of
International Symposium on Low Power Electronics and Design, PP. 184-189,
1997.

[Das 99] D. Das and N. A. Touba, “Synthesis of Circuits with Low-Cost Concurrent
Error Detection Based on Bose-Lin Codes,” Journal of Electronic Testing: Theory
and Applications, Vol. 15, Nos. 1/2, pp. 145-155, Aug. 1999.

[De 94] K. De, et al., “RSYN: A System for Automated Synthesis of Reliable Multilevel
Circuits,” IEEE Trans. VLSI Systems, pp. 186-195, Jun. 1994.

[Elspas 60] Elspas, B.,”A Note on p-nary Adjacent-error-correcting Codes”, IEEE Trans.
on Information Theory, Vol. 6, Mar. 1960.

[Favalli 02] M. Favalli and C. Metra, “Online Testing Approach for Very Deep-
Submicron ICs,” IEEE Design and Test of Computers, Vol. 19, No. 2, pp. 16-23,
Mar. 2002.

[Franco 94] P. Franco and E. J. McCluskey, “On Line Delay Testing of Digital Circuits,”
Proc. VLSI Test Symposium, pp. 167-173, 1994.

[Frantz 06] Frantz, A. P., F.L. Kastensmidt, L. Carro, and E. Cota, “Exploiting ECC
redundancy to minimize crosstalk impact”, Procs. of annual symposium on
integrated circuits and systems design, pp. 202-207, 2006.

[Fujiwara 87] Fujiwara, E., and K. Matsuoka, “A Self-Checking Generalized Prediction
Checker and Its Use for Built-In Testing,” IEEE Trans. Computers, Vol. C-36,
No. 1, pp. 86-93, Jan. 1987.

[Fuziwara 98] Fujiwara, E., T. Ritthongpitak and M. Kitami,”Optimal Two-Level
Unequal Error Control Codes for Computer Systems”, IEEE Trans. on
Computers, Vol. 47, No. 12, pp. 1313- 1325, Dec. 1998.

[Gill 05] Gill, B., M. Nicolaidis, and C. Papachristou,” Radiation Induced Single-Word
Multiple-bit Upsets Correction in SRAM”, Proc. of Int. Online Test Symposium,
pp. 266-271, Jul. 2005.

113

[Gössel 93] M. Gössel and S. Graf, Error Detection Circuits, McGraw-Hill Book
Company, London, 1993.

[Hamming 50] Hamming, R.W., ”Error Correcting and Error Detecting Codes”, Bell Sys.
Tech. Journal, Vol. 29, pp. 147-160, Apr. 1950.

[Hamzaoglu 99] I.Hamzaoglu and J.H.Patel, “Reducing Test Application Time for Full
Scan Embedded Cores,” Proc. Int. Symp. on Fault-Tolerant Computing, pp. 260-
267, 1999.

[Hayashi 00] Hayashu, T., and E. Fujiwara,”Bit and Byte Error Protection Codes with
Two Protection Levels,” Trans. IEICE A, Vol. J83-A, No. 2, pp. 196-207, Feb.
2000.

[Hsiao 70] Hsiao, M. Y., ”A Class of Optimal Minimum Odd-weight-column SEC-DED
codes”, IBM Journal of Research and Development, Vol. 14, pp. 395-401, 1970.

[Jain 85] Jain S.K., and V.D. Agrawal, “Statistical Fault Analysis,” IEEE Design & Test
of Computers, pp. 38-45, 1985.

[Jha 93] N. K. Jha and S. Wang, “Design and Synthesis of Self-Checking VLSI Circuits,”
IEEE Trans. Computer-Aided Design, Vol. 12, No. 6, pp. 878-887, Jun. 1993.

[Kastensmidt 06] Kastensmidt, F., L. Carro, R. Reis, Fault-Tolerance Techniques for
SRAM-based FPGAs, Series: Frontiers in Electronic Testing, Springer, Vol. 32,
pp. 180-185, 2006.

[Kawakami 04] Kawakami, Y., et al., ”Investigation of Soft Error Rate Including Multi-
Bit Upsets in Advanced SRAM Using Neutron Irradiation Test and 3D Mixed-
mode Device Simulation”, Proc. of IEEE Int’l Electronic Device Meeting, pp.
945-948, Dec. 2004.

[Kodavarti 93] Kodavarti, R., and D. Ross,” Signal Probability Calculations Using Partial
Functional Manipulations,” in Proceedings of Eleventh Annual 1993 IEEE VLSI
Test Symposium, pp. 194-200,April 1993.

[Könemann 01] B. Koenemann, C. Barnhart, B. Keller, T. Snethen, O. Farnsworth, and
D. Wheater, “A SmartBIST Variant with Guaranteed Encoding,” Proc. Asian Test
Symp., pp. 325-330, 2001.

[Krewell 05] Krewell.,”Multicore Showdown”, Microprocessor Report, vol. 19, pp. 41-
45,2005.

[Krishna 01] C.V. Krishna, A. Jas, and N.A. Touba, “Test Vector Encoding Using Partial
LFSR Reseeding,” Proc. Int. Test Conf., pp. 885-893, 2001.

114

[Krishna 04] C.V. Krishna, N.A. Touba, “3-Stage Variable Length Continuous-Flow
Scan Vector Decompression Scheme,” Proc. of VLSI Test Conf., pp. 79-86,
2004.

[Lajolo 01] Lajolo, M.; “Bus guardians: an effective solution for online detection and
correction of faults affecting system-on-chip buses”, IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, Vol. 9, Iss. 6, pp. 974–982, 2001.

[Lala 78] Lala, P. K.,“ An Adaptive Double Error Correction Scheme for Semiconductor
Memory Systems,” Digital Processes, Vol. 4, pp. 237-243, 1978.

[Lee 59] Lee, Y.,“Representation of Switching Circuits in Binary-decision Programs,”
Bell Syst. Tech. J., Vol 38. July 1959, pp. 985-999.

[Lee 98] K.-J. Lee, J.J. Chen, and C.H. Huang, “Using a Single Input to Support Multiple
Scan Chains,” Proc. Int. Conf. on Computer-Aided Design, pp. 74-78, 1998.

[Lin 83] Lin, S., and D. J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, Prentice-Hall, 1983.

[Maiz 03] Maiz, J., S. Hareland, K. Zhang, and P. Armstrong, “Characterization of
Multibit Soft Error Events in Advanced SRAMs”, Proc. of IEEE Int’l Electronic
Device Meeting, pp. 519-522, Dec. 2003.

[Makihara 00] Makihara, A., et al., “Analysis of Single-Ion Multiple-Bit Upset in High-
Density DRAMS”, IEEE Trans. on Nuclear Science, Vol. 47, No. 6, Dec. 2000.

[Markowsky 87] Markowsky, G., “Bounding Signal probabilities in Combinational
Circuits,” IEEE Transactions on Computers, Vol c-36, No. 10, October 1987,
pp. 1247-1251.

[Masnick 67] Masnick, B., and J.K. Wolf, “On Linear Unequal Error Protection
Codes,” IEEE Trans. Inf. Theory, Vol. IT-13, No. 4, pp. 600-607, Oct. 1967.

[McCluskey 88] McCluskey, E.J., S. Makar, S. Mourad, and K. Wagner, “Probability
Models for Pseudorandom Test Sequences,” IEEE Trans. on Computer-Aided
Design, Vol. 7, No. 1, pp. 68-74, Jan. 1988.

[Mercer 92] Mercer, M. R., R. Kapur and D.E. Ross, “Functional Approaches to
Generate Orderings for Efficient Synibolic Representations,” Proc. ACMIEEE
29th Design Automation Conf., .June 1992.

[Metra 98] C. Metra, M. Favalli, and B. Ricco, “Online Detection of Logic Errors Due to
Crosstalk, Delay and Transient Faults,” Proc. International Test Conference,
pp. 524-533, 1998.

115

[Mitra 06] S. Mitra and K.S. Kim, “XPAND: An Efficient Test Stimulus Compression
Technique,” IEEE Trans. on Computers, Vol. 55, No. 2, pp. 163-173, Feb. 2006.

[Mohanram 03a] Mohanram, K., E.S. Sogomonyan, M. Gössel, and N.A. Touba,
“Synthesis of Low-Cost Parity-Based Partially Self-Checking Circuits,” Proc. of
International On-Line Test Symposium, pp. 35-40, 2003.

[Mohanram 03b] Mohanram, K., and N.A. Touba, “Cost-Effective Approach for
Reducing Soft Error Failure Rate in Logic Circuits,” Proc. of International Test
Conference, pp. 893-901, 2003.

[Morelos-Zaragoza 94] Morelos-Zaragoza, R.H., and S.Lin,” On a Class of Optimal
Nonbinary Linear Unequal-Error-Protection Codes for Two Sets of
Messages,”IEEE Trans. Inf. Theory, Vol. IT-40, No. 1, pp. 196-200, Jan. 1994.

[Morozov 00] Morozov, A., V.V. Saposhnikov, Vl.V. Saposhnikov, and M. Gössel,
“New Self-Checking Circuits by Use of Berger-Codes,” Proc. of On-Line Testing
Workshop, 2000, pp. 141-146, 2000.

[Mrugalski 04] G. Mruglaski, J. Rajski, and J. Tyszer, “Ring Generators – New Devices
for Embedded Test Applications,” IEEE Trans. on Computer-Aided Design, Vol.
23, No. 9, pp. 1306-1320, Sept. 2004.

[Namba 01] Namba, K., and E. Fujiwara,”Unequal Error Protection Codes with Two-
Level Burst and Bit Error Correcting Capabilitie”, IEEE International Symposium
on Defect and Fault Tolerances, Vol. 47, No. 12, pp. 1313- 1325, Dec. 1998.

[Nicolaidis 98] M. Nicolaidis and Y. Zorian, “Online Testing for VLSI – A Compendium
of Approaches,” Journal of Electronic Testing: Theory and Applications, Vol. 12,
Nos. 1/2, pp. 7-20, Feb. 1998.

[Nicolaidis 99] M. Nicolaidis, “Time Redundancy Based Soft-Error Tolerance to Rescue
Nanometer Technologies,” Proc. of VLSI Test Symposium, pp. 86-94, 1999.

[Nicolaidis 05] Nicolaidis, M, “Design for soft error mitigation”, IEEE Trans. on Device
and Materials Reliability, Vol. 5, Iss. 3, pp. 405-418, 2005.

[Nieuwland 05] Nieuwland, A.K.; A. Katoch, D. Rossi, C. Metra, “Coding techniques for
low switching noise in fault tolerant busses”, Proc. of International On-Line
Testing Symposium, pp. 183-189, 6-8 July 2005.

[Pandey 02b] A.R. Pandey and J.H. Patel, “Reconfiguration Technique for Reducing Test
Time and Test Volume in Illinois Scan Architecture Based Designs,” Proc. VLSI
Test Symposium, pp. 9-15, 2002.

116

[Parker 75] Parker, K. P., and E. J. McClusky, “Probabilistic Treatment of General
Combinational Networks,” Transactions on Computers, pp. 668-670, 1975.

[Park 06] Park, D., C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C.R. Das, “ Exploring
Fault-Tolerant Network-on-Chip Architectures”, Procs. of International
Conference on Dependable systems and Networks (DSN 06), pp. 93-104, 2006.

[Rajski 04] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherje, “Embedded Deterministic
Test,” IEEE Trans. on Computer-Aided Design, Vol. 23, No. 5, pp. 776-792, May
2004.

[Ravi 98] Ravi, Kavita., Kenneth L. McMillan, Thomas R. Shiple and Fabio Somenzi.,
”Approximation and Decomposition of Binary Decision Diagrams,” Proc of
Design Automation Conference, 1998.

[Reddy 78] Reddy, S.M., “A Class of Linear Codes for Error Control in Byte-per-
Package Organized Memory Systems”, IEEE Trans. On Computers, Vol. C-27,
pp. 455-458, May. 1978.

[Reed 60] Reed, I. S., and G. Solomon,”Polynomial Codes Over Certain Fields”,J. Soc.
Ind. Appl. Mat., Vol. 8, pp. 300-304, Jun. 1960.

[Rejimon 05] Rejimon, Thara., and Sanjukta Bhanja,”An Accurate Probabilistic Model
for Error Detection,” 18th International Conference on VLSI Design, pp717-722,
2005.

[Ross 90] Ross, D. E., “Functional Calculation Using Ordered Partial Multi Decision
Diagrams,” Ph. D. dissertation. University of Texas, Austin, August 1990.

[Ross 91] Ross, D. E., K. M. Butler, R. Kapur, and M. R. Mercer, “Fast Functional
Evaluation of Candidate OBDD Variable Orderings,” Proc. of The European
Conference on Design Automation, Amsterdam, ‘The Netherlands, February 25-
28, 1991, pp. 11-10.

[Rossi 05] Rossi, D., C. Metra, A.K. Nieuwland, and A. Katoch, “Exploiting ECC
redundancy to minimize crosstalk impact”, IEEE Design and Test of Computers,
Vol. 22, Iss. 1, pp. 59-70, Jan 2005.

[Samaranayake 03] S. Samaranayake, E. Gizdarski, N. Sitchinava, F. Neuveux, R. Kapur,
and T. W. Williams, “A Reconfigurable Shared Scan-In Architecture,” Proc.
VLSI Test Symposium, pp. 9-14, 2003.

[Saposhnikov 96] Saposhnikov, Vl.V., A. Dmitriev, M. Gössel, and V.V. Saposhnikov,
“Self-Dual Parity Checking – A New Method On-Line Testing,” Proc. of VLSI
Test Symposium, pp. 162-168, 1996.

117

[Saposhnikov 98a] Saposhnikov, Vl.V., V.V. Saposhnikov, A. Dmitriev, and M. Gössel,
“Self-Dual Duplication for Error Detection,” Proc. of Asian Test Symp., pp. 296-
300, 1998.

[Saposhnikov 98b] V. V. Saposhnikov, et al., “A New Design Methodology for Self-
Checking Unidirectional Combinational Circuits,” Journal on Electronic Testing:
Theory and Applications, Vol. 12, Nos. 1/2, pp. 41-53, Feb. 1998.

[Satoh 00] Satoh, S., Y. Tosaka, S.A. Wender, ”Geometric Effect of Multiple-bit Soft
Errors Induced by Cosmic-ray Neutrons on DRAMs”, Proc. of IEEE Int’l
Electronic Device Meeting, pp. 310-312, Jun. 2000.

[Savir 80] Savir, J., G. S. Ditlow, and P. H. Bardell, “Random Pattern Testability,” IEEE
Transactions on Computers,Vol c-33, No. 1, January 1984, pp. 79-90.

[Savir 90] Savir, J. “Improved Cutting Algorithm,” IBM Journal of Research and
Development, Vol 34, No. 2/3, March/May 1990, pp. 40-75.

[Seth 85] Seth, C., L. Pan and V. D. Agrawal, “PREDICT- Probabilistic Estimation of
Digital Circuit Testability,” Fault-Tolerant Computing Symposium, Ann-Arbor,
MI, pp.220-225, June 1985.

[Seth 89] Seth, C., V. D. Agrawal, “A New Model for Computation of Probabilistic
Observability,” Integration, the VLSI Journal, Volume 7, 1989 pp.49-75.

[Shivakumar 02] Shivakumar, P., M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi,
“Modeling the Effect of Technology Trends on the Soft Error Rate of
Combinational Logic,” Proc. International Conference on Dependable Systems
and Networks, pp. 389-398, 2002.

[Sitchinava 04] N. Sitchinava, S. Samaranayake, R. Kapur, E. Gizdarski, F. Neuveux, and
T.W. Williams, “Changing the Scan Enable During Shift,” Proc. VLSI Test
Symposium, pp. 73-78, 2004.

[Sogomonyan 74] Sogomonvan, E., “Design of Built-In Self-Checking Monitoring
Circuits for Combinational Devices,” Automation and Remote Control, Vol. 35,
No. 2, pp. 280-289, 1974.

[Tang 03] H. Tang, S.M. Reddy, and I. Pomeranz, “On Reducing Test Data Volume and
Test Application Time for Multiple Scan Designs,” Proc. Int. Test Conf., pp.
1079-1088, 2003.

[Tarnick 94] Tarnick, S., “Bounding Error Masking in Linear Output Space Compression
Schemes,” Proc. of Asian Test Symposium, pp. 27-32, 1994.

118

[Touba 97] N. A. Touba and E. J. McCluskey, “Logic Synthesis of Multilevel Circuits
with Concurrent Error Detection,” IEEE Trans. on Computer-Aided Design, Vol.
16, No. 7, pp. 783-789, Jul. 1997.

[Uchino 95] Uchino, Taku., Fumihiro Minami, Takashi Mitsuhashi and Nobuyuki Goto,”
Switching Activity Analysis using Boolean Approximation Method,”
International Conference on Computer-Aided Design,pp.20-25, 1995.

[Vargas 94] Vargas, F. L., and M. Nicolaidis,” SEU-Tolerant SRAM Design Based On
Current Monitoring”, Proc. Int. Symposium pn Fault Tolerant Computing, pp.
106-115, June 1994.

[Wang 04] L.-T. Wang, X. Wen, H. Furukawa, F.-S. Hsu, S.-H. Lin, S.-W. Tsai, K. S.
Abdel-Hafez, and S. Wu, “VirtualScan: A New Compressed Scan Technology for
Test Cost Reduction,” Proc. Int. Test Conf., pp. 916-925, 2004.

[Wolf 69] Wolf, J. K.,” Adding Two Information Symbols to Certain Non-Binary BCH
Codes and Some Applications”, Bell Systems Technical Journal, Vol. 48, pp.
2405-2424, 1969.

[Wunderlich 85] Wunderlich, J., “PROTEST: A Tool for Probabilistic Analysis,” in Proc.
22nd Design Automation Conf., Las Vegas, June 23-25, 1985. pp. 204-211.

[Yang 91] S. Yang, “Logic Synthesis and Optimization benchmarks,Version 3.0, Tech.
Report, Microelectronics Centre of North Carolina, 1991.

[Ziegler 96] J. F. Ziegler, et al., “IBM Experiments in Soft Fails in Computer Electronics
(1978-1994),” IBM Journal of Research and Development, Vol. 40, pp. 3-18,
1996.

119

Vita

Avijit Dutta was born and raised in West Bengal, India. He did his undergraduate

work from Jadavpur University, West Bengal, India, where he majored in Computer

Science and Engineering with Honors in the year 2000. He worked in Cadence Design

Systems from 2000 to 2003. He joined the University of Texas at Austin in 2003, where

he did his MS in Computer Engineering with a thesis on VLSI Testing in the year 2005.

He is currently doing his PhD in Computer Engineering with a focus on synthesis for

circuit reliability and test data compression. His primary areas of research interests

include synthesis for circuit reliability, fault tolerant computing, coding theory and test

data compression / decompression techniques.

Permanent Address : 58/26A, Prince Anwar Shah Road

 Lake Gardens, Calcutta 700045

 West Bengal, India

This dissertation was typed by Avijit Dutta.

