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In this thesis a careful study of the equilibrium and transport properties of ν = 1

quantum Hall bilayers is presented. Our approach is based on the pseudospin anal-

ogy in which the layer degree of freedom for the electrons is treated as a spin degree

of freedom. This treatment reveals the many analogies between these systems and

spin systems. After briefly reviewing the basic physics of the quantum Hall effect in

chapter 2, in chapter 3 we introduce the quantum Hall bilayer systems and define the

pseuduspin model used in the following chapters to study their properties. In chap-

ter 4 we present our results on the equilibrium properties of quantum Hall bilayers in

presence of strong disorder. In particular we calculate the critical disorder strength

above which the interlayer phase coherence is lost, and the Kosterlitz-Thouless tem-
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perature goes to zero. In chapter 5 we develop a theory for the tunneling transport

in these systems. In contrast to most previous theoretical work our theory predicts

that the zero bias conductance is finite even in a perfect disorder free bilayer at

zero temperature and accounts, within an order of magnitude, for the width of the

anomaly observed in experiments. Also the theory correctly predicts the suppres-

sion of the tunneling conductance in presence of a magnetic field in the plane of the

2DEG. Using the results of chapter 4 the theory can also quantify the suppression

of the tunneling conductance due to disorder.

In chapter 6 we study the dynamics of the magnetization when coupled to

a thermal bath of elastic modes. We derive explicit expressions for the memory

friction kernel and the spectral density of the fluctuations starting from a realistic

form of the coupling of the magnetization to the elastic modes.

Finally in chapter 7 we study the dynamics of a particularly interesting class

of collective modes in magnetized plasmas: tearing modes. We develop a rigorous

approach to describe the evolution of these modes beyond the linear approximation.

Using this approach we then consider nonlinear effects due to the coupling of the

fundamental mode to higher harmonics and external perturbations.
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Chapter 1

Introduction

One of the most general idea of condensed matter physics is the concept of con-

densate. Using this concept new remarkable phenomena have been discovered and

theoretically explained in strongly interacting systems. In these systems the strong

interactions may cause the interacting single particles to condense in new states that

spontaneously break the symmetries of the quantum Hamiltonian. When this hap-

pens the quantum behavior becomes manifest on macroscopic scales and extremely

interesting effects can be observed. This is the case for example for magnetism

in which the ground state spontaneously breaks the rotational symmetry. Another

example is superconductivity in which the gauge symmetry is spontaneously broken.

The fractional quantum Hall effect is the most striking recent example of

another phenomenon due to the condensation of strongly interacting electrons. It

was discovered in 1982 by Tsui, Störmer and Gossard [3] only two years after the

discovery by von Klitzing of the integer quantum Hall effect [4]. The quantum Hall

effect is only one of the remarkable effects that can be observed in two dimensional

gases (2DEG) in the quantum Hall regime. In this regime the energy levels are

macroscopically degenerate and their mixing due to disorder or interactions may be

considered a weak perturbation. It quickly became clear that the two effects were
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just a small part of a vast new subfield of condensed matter physics [5], [6],[7].

Quantum Hall bilayers are systems in the quantum Hall regime that in recent

years have attracted a lot of attention [8]. In a quantum Hall bilayer two 2DEG

separated by a distance d are created. When the distance d is small enough that

the interlayer Coulomb interactions are comparable to the intralayer ones we have

a broken symmetry ground state characterized by interlayer coherence. What is

notable is that in this situation the coherence may be spontaneous, i.e. it may be

present even in the limit of zero tunneling between the layers. Of all the quantum

Hall bilayer systems, bilayers with total filling factor ν = 1 have been the most

studied. The filling factor is the ratio between the number of particles in the 2DEG

and the number of degenerate states per energy level. In these systems the number

of particles in each layer is then equal to 1/2 the total number of degenerate states

in the lowest energy band. A very effective way to describe these systems is to treat

the layer degree of freedom as a spin degree of freedom: pseudospin. This approach

makes evident the many analogies between quantum Hall bilayers and spin systems.

The broken symmetry state of a ν = 1 quantum Hall bilayers is equivalent to an

easy-plane ferromagnetic state.

One of the main motivations for this thesis was to try to better understand

in general the interplay between a condensate and external degrees of freedom,

in particular non equilibrium transport quasiparticles. This is a very interesting

problem because in most of the experiments the probing and or manipulations of the

condensate can be achieved by driving a current of quasiparticles through the system.

A recent remarkable example is the spin-transfer effect in which the magnetization

of a ferromagnet is manipulated via a spin current. Spin-transfer is one of the effects

studied by the growing field of spintronics in which the goal is to use the electron spin

degree of freedom to carry and store information. Quantum Hall bilayers with ν = 1

in many respects are ideal systems to test theoretical models for such phenomena.
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In this thesis a careful study of the transport properties of ν = 1 quantum

Hall bilayers is presented. The first step in this effort was to better characterize the

broken symmetry ground state taking into account the presence of disorder. The

effect of disorder had been considered in previous work but almost always in a per-

turbative way. Our effort focused on including disorder effects non perturbatively

(Chapter 4). We then developed a theory for the tunneling transport experiments

(Chapter 5). In contrast to most previous theoretical work our theory predicts that

the zero bias conductance is finite even in a perfect disorder free bilayer at zero tem-

perature and accounts, within an order of magnitude, for the width of the anomaly

observed in experiments. Also, the theory correctly predicts the suppression of the

tunneling conductance in presence of a magnetic field in the plane of the 2DEG.

Using the results of Chapter 4 the theory can also quantify the suppression of the

tunneling conductance due to disorder.

A very important element in the dynamics of quantum Hall bilayers is damp-

ing. Previous work, [9], carefully calculated the damping of collective modes in ν = 1

quantum Hall bilayers. As mentioned before these systems are very analogous to

easy-plane ferromagnets and, it turns out, Josephson junctions. One aspect in which

these three systems differ is in the form of the damping. The damping terms used

in the dynamical equation for ferromagnets and Josephson junctions are not fully

justified from microscopic models and often rely on phenomenological approaches.

To try to improve our understanding of the damping in these systems, we derived

the damping terms in the equation of motion of the magnetization for the case when

the main source of dissipation is the coupling of the magnetization to elastic modes

(Chapter 6). Previous studies of this problem used the Fermi golden rule to derive

a relaxation constant and were limited to infinite systems. In our analysis we use a

Caldeira-Leggett approach [10] that allows us to overcome some of the limitations

of relaxation theories based on the Fermi golden rule, and we do not impose any

3



restriction on the size or shape of the system.

Finally in Chapter 7 we study the dynamics of a particularly interesting class

of collective modes in magnetized plasmas: tearing modes. These modes have the

remarkable effect of changing the topology of the magnetic flux surfaces through

the phenomenon of magnetic reconnection. We develop a rigorous approach to de-

scribe the evolution of these modes beyond the linear approximation. Our approach

in particular allows us to to consider nonlinear effects due to the coupling of the

fundamental mode to higher harmonics and external perturbations.

4



Chapter 2

Quantum Hall effect

2.1 Introduction

In the classical Hall effect [11] when a current flows in the plane of a thin conducting

material a voltage drop develops between the sides of the Hall bar, Fig. 2.1, parallel

to the direction of the current when a magnetic field perpendicular to the conducting

sheet is applied. The classical effect can be explained using the Drude theory [12] of

magnetotransport in two dimensions. In Drude’s theory the external force F acting

A B

D

C

J B

Figure 2.1: Hall bar geometry. A current I flows between the terminals A and B of
thin conducting sample. A magnetic field along the perpendicular to the plane of
the conducting sheet (direction out of the page in the picture) is applied. Once the
stationary state is reached a potential difference is measured between the terminals
C and D.
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on the electrons in a conductor is compensated, in stationary state, by scattering

processes until a constant drift velocity, vD, is reached:

vD =
Fτ

m∗

where τ is the average time between scattering events and m∗ is the effective mass

of the carriers. For the Hall bar geometry the force will be given by:

F = eE+
e

c
BvD × ẑ.

so that

vD =
eτ

m∗

[

E+
1

c
BvD × ẑ

]

. (2.1)

According to Drude’s theory the current density is simply given by j = nevD. Using

this expression for the current and (2.1) can write:

E =
m∗

ne2τ
j+

B

nec
ẑ× j. (2.2)

By definition the components of the resistivity tensor are given by the ratio of the

components of E over the components of j. From (2.2) we then find:

ρ =





m∗

ne2τ
− B
nec

B
nec

m∗

ne2τ



 . (2.3)

The off diagonal part of ρ is called the Hall resistivity and the corresponding resis-

tance, Hall resistance. From (2.3) we see that the Hall resistivity grows linearly with

the intensity of the applied magnetic field and inversely with the carrier density.

In 1980 Klaus Von Klitzing and collaborators [4] while measuring the trans-

port properties of a two dimensional electron gas, 2DEG, in presence of a strong

perpendicular magnetic field discovered something quite unusual. For certain car-
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rier concentrations the Hall resistance had fixed values depending only on the fine-

structure constant and the speed of light, independent of the geometry of the sample.

What’s more, for the same concentration values, the longitudinal resistance was al-

most zero. Von Klitizing and collaborators had discovered the quantum Hall effect,

one of the most remarkable condensed matter phenomena discovered in the 20th

century.
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Figure 2.2: Typical transport data for a quantum Hall sample: The Hall resistivity
has plateaus at ρxy = h/νe2, accompanied by deep minima in the transverse resis-
tivity ρxx. The inset shows Shubnikov-de Haas oscillations in ρxx and linear Hall
resistivity at small magnetic fields. The areal density is ne = 6.3 × 1010 cm−2 and
the mobility is µ = 5× 105 cm2/Vs (courtesy: Dr. Edmond Chow).

What is remarkable about the quantum Hall effect is that, as in supercon-

ductivity, the quantum mechanical laws that govern the microscopic world become

manifest on a macroscopic scale. What Von Klitzing and collaborators discovered

is what is now called the integer quantum Hall effect. Two years later, in 1982,

Tsui, Stormer and Gossard, [3] discovered the fractional quatnum Hall effect. For a
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general introduction to the quantum Hall effect, see [13], [7], [6].

Von Klitzing and collaborators did their experiments on a silicon metal-

oxide-semiconductor field effect transistor (MOSFET) whereas Tsui, Stormer and

Gossard did their experiment on a 2DEG formed at the interface of a GaAs −
AlGaAs heterojunction for which the mobility is much higher. GaAs − AlGaAs
heterojunctions have since become the standard system on which quantum Hall

effects experiments are performed.

Al x GaAsGa1−xAs

conduction band

valance band

1.5 eV

2.2 eV

conduction band bottom

valance band top

0.4 eV

0.3 eV

100 A

Figure 2.3: Schematic profile of the band structure at the interface of a GaAs −
AlGaAs heterojunction.

In GaAs the band gap is 1.5eV , AlxGa1−xAs has a larger gap that de-

pends on the concentration, x, of aluminum. In a modulation-doped heterojunction
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AlxGa1−xAs is n−doped with silicon away from the interface to minimize the dis-

order potential caused by the donor ions. Because of the band mismatch electrons

move from the AlxGa1−xAs to GaAs. Once in GaAs the electrons feel the Coulomb

attraction due to the positive ions left behind and as a consequence we have bending

of the bands near the interface as shown in Fig.2.3. Once equilibrium is reached

the electron at the interface will occupy the narrow quantum well created by the

bent bands. Here they are free to move in the direction parallel to the junction but

see a random potential that has contributions from the remote ionized donors and

imperfections in the interface. If the subband spacing due to the confinement in

the direction perpendicular at the interface is much bigger than all relevant energy

scales the electron gas in the quantum well is, for all practical purposes, a 2DEG.

For hypercube systems of lateral size L the resistance and the resistivity are

related by

R = ρL(2−d)

where d is the number of dimensions of the hypercube. We then see that d = 2 is

special because in this case R = ρ, i.e. the resistance of the sample is scale invariant.

This is crucial for the universality of the quantum Hall effect, its independence on

the specific geometry of the sample, and the incredibly high accuracy with which

the quantized Hall resistance can be measured.

2.2 2D free electron gas in a perpendicular magnetic

field

Let us consider a gas of free electrons confined in the XY plane in presence of a per-

pendicular magnetic field B. Neglecting the spin degree of freedom the Hamiltonian

9



for every electron, of charge −e and mass m, is

H =
1

2m

(

p+
e

c
A
)2

(2.4)

In our case a convenient gauge for the vector potential is the Landau gauge for which

we have:

A = xBŷ.

In this gauge the Hamiltonian (2.4) takes the form:

H =
1

2m

[

p2x +

(

py +
eB

c
x

)2
]

.

The Hamiltonian is invariant with respect to translations along the y direction.

Without loss of generality we can then assume the eigenstates ψk(x, y) to have the

form:

ψk(x, y) = eikyuk(x).

Using this expression we find the effective Schrödienger equation for uk(x):

1

2m

[

p2x +

(

~k +
eB

c
x

)2
]

uk(x) = εkuk(x). (2.5)

Let’s define the cyclotron frequency

ωc ≡
eB

mc
;

and the magnetic length

l ≡
√

~c
eB

.
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Using these definitions we can rewrite (2.5) in the form:

1

2m
p2x +

1

2
mω2c (x+ kl2)2 = εkuk(x). (2.6)

Equation (2.5)/(2.6) is simply the Schrödienger equation for a harmonic oscillator

whose center is displaced by kl2 from the origin. The eigenvalues of (2.6) are then:

εk = ~ωc

(

n+
1

2

)

; n = 0, 1, 2, ... (2.7)

independent of k, the value of the momentum along the y direction. We then see

that for any integer n we have a macroscopic degeneracy given by all the values

allowed for k by the boundary conditions along y. The degenerate energy levels

given by (2.7) are called Landau levels. Let’s now assume for definiteness that the

2DEG is confined in a rectangular region of size Lx × Ly. Then the minimum and

maximum position for the center of the harmonic oscillator along x will be 0 and Lx

respectively, so that we must have k ∈ [0;Lx/l
2]. The total number of states, Nφ,

in each Landau level will then be

Nφ =
Ly
2π

∫ Lx/l2

0
dk

=
LxLy
2πl2

=
BLxLy
Φ0

(2.8)

where Φ0 ≡ hc/e is the quantum of magnetic flux. The last line of (2.8) is particu-

larly intuitive: it tells us that the number of degenerate states in each Landau level

is simply given by the total number of magnetic quantum fluxes piercing the sys-

tem. The higher the magnetic field the higher the degeneracy. It is this macroscopic

degeneracy that creates the opportunity for unique physical phenomena. We define

the filling factor ν as the ratio between the number of electrons N in the 2DEG and

11



the number of degenerate states

ν ≡ N

Nφ
(2.9)

When ν is an integer we have the integer quantum Hall effect.

When the perpendicular magnetic field is strong enough to make the degen-

eracy of the Landau levels macroscopic (of the same order of the number of particles

in the system) and their spacing, ~ωc, high enough so that their mixing due to dis-

order or interactions can be seen as a small perturbation we are in the so called

quantum Hall regime. Notice that for a gas of electrons all in the same Landau level

there is no energy scale associated with a one-body term in the Hamiltonian that

can be used as basis for a perturbative approach. As a consequence neither the

interactions or the disorder can be treated perturbatively. When the interactions

can be considered as a small perturbation with respect to the disorder terms we are

in the integer quantum Hall regime , in the opposite case we are in the fractional

quantum Hall regime.

2.3 Quantum Hall effect

The quantum Hall effect can be explained qualitatively using a very general thermo-

dynamic argument based on the concept that at particular filling factors the 2DEG

becomes incompressible, [14], [13].

For a two dimensional system withN particles the compressibility κ is defined

as the relative change of the area A due to a change of the pressure P :

κ ≡ − 1

A

∂A

∂P

∣

∣

∣

∣

N

.

In terms of the energy of the system we can write:

1

κ
= −A ∂P

∂A

∣

∣

∣

∣

N

= A
∂2E

∂A2

∣

∣

∣

∣

N

.
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On the other hand E is an extensive quantity and then we can always write E =

Nε(n), where n = N/A is the particle density. Using this fact and the expression

for 1/κ in terms of E we find:

1

κ
= n2

[

2
dε

dn
+
d2ε

dn2

]

. (2.10)

By definition the chemical potential µ is:

µ =
∂E

∂N

∣

∣

∣

∣

A

=
d(nε(n))

dn
.

From the definition of µ and (2.10) we find:

1

κ
= n2

dµ

dn
(2.11)

Equation (2.11) tells us that when the system is incompressible, κ = 0, the chemical

potential as a function of the density n must be discontinuous. This means that it

takes different energies to add or remove a particle from the system. In particular

for an electron gas it takes a finite amount of energy to create unbound particle-hole

pairs which are able to carry current: an incompressible 2DEG has a charge gap.

We have so far shown that incompressibility implies a charge gap. Let’s

now see what are the consequences of this connection for quantum Hall systems.

To do this let’s calculate the change δI of the equilibrium currents, always present

because the time reversal symmetry is broken by the magnetic field, when we make

an infinitesimal change δµ of the chemical potential for an incompressible 2DEG.

Assuming that there is no disorder, because κ = 0 the change in the orbital current

can only happen at the edge of the system; only at the edge can there be states

close to the chemical potential, Fig.2.4. By continuity the edge current must be a

circulating current. We can then relate δI to a change of the total orbital magnetic
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µ

µ

µ

Chemical potential in a gap

Chemical potential in a mobility gap

Figure 2.4: Illustration of the situation when the chemical potential of a 2DEG is
in a charge gap and mobility gap.

moment of the 2DEG:

δI =
c

A
δM. (2.12)

On the other hand:

δM =

(

∂M

∂µ

)

B

δµ

From the identity:
[

∂

∂µ

(

∂F

∂B

)

µ

]

B

=

[

∂

∂B

(

∂F

∂µ

)

B

]

µ

.

we have the Maxwell relation

(

∂M

∂µ

)

B

=

(

∂N

∂B

)

µ

so that we can write:

δM =

(

∂N

∂B

)

µ

δµ.
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Using this expression of δM from (2.12) we find:

δI

δµ
= c

(

∂n

∂B

)

µ

(2.13)

In the quantum Hall regime we know that, because of the quantization of the orbital

motion of the electrons, the 2DEG has a gap whenever the filling factor is equal to

an integer. Therefore whenever ν is an integer we have edge currents for which

(2.13) applies. Considering that

n = ν
B

Φ0

from (2.13) we find:
δI

δµ
= ν

e

h
; for ν = 1, 2, ...

If we have a chemical potential difference, eVH , between the two edges a net current

can be carried given by:

I = ν
e2

h
VH for ν = 1, 2, ...

We then recover the experimentally observed quantization of the Hall conductivity

σH = νe2/h. The result is still valid also in presence of disorder. In this case

a change of chemical potential creates orbital currents also in the bulk along the

internal closed shorelines created by the disorder. However as long as these currents

are localized away from the edges, they will not give any contribution to the net

current. On the other hand the disorder is instrumental to make the range of values

of B, (n) over which the Hall conductance is quantized, finite. For example as we

increase n to values slightly bigger than the value for which we have ν = 1 we will

only fill localized states in the bulk that don’t affect the edge current. Only when n

is big enough that the we have percolation between opposite edges the quantization

of the Hall conductance will be lost and the longitudinal resistivity be different from
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zero.

The argument used here, based on the incompressibility of the state for

which we have the quantization of the Hall resistivity is quite general and can be

used also to explain the fractional quantum Hall effect. In the fractional quantum

Hall effect the incompressibility is due to the strong electron-electron interactions

that can produce a charge gap even when the noninteracting system would otherwise

be compressible.
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Chapter 3

Quantum Hall bilayers

3.1 Introduction

A quantum Hall bilayer consists of two 2DEG layers separated by a distance d in

a strong perpendicular magnetic field so that the system is in the quantum Hall

regime. Using modern molecular beam epitaxy techniques, a double quantum well

structure (Fig. 3.1) is realized by sandwiching a thin layer of AlxGa1−xAs between

GaAs. In a quantum Hall bilayer in presence of strong perpendicular magnetic field

the electrons in a Landau level besides the orbital degree of freedom (and the spin)

have one additional degree of freedom, the one that specifies in which of the two

layers, top (T), or bottom (B), they are localized. In the remainder of this thesis we

will assume the spin degree of freedom to be frozen out on account of the Zeeman

energy due to the strong perpendicular magnetic field. In reality, because of the

very small effective mass and strong spin-orbit interaction of electrons in GaAs the

Zeeman energy is much smaller (about 60 times) than the cyclotron energy. However

for the typical experimental conditions we are interested in (with magnetic fields of

the order 5 Tesla) the Zeeman energy is of the order of 1 K, much bigger than the

other energy scales that characterize the system and the normal temperature (50
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T B

d

Figure 3.1: Schematic band edge diagram for a double quantum well. The electrons
are free to move in the plane parallel to the interfaces (direction perpendicular to
the page) but confined in the perpendicular direction. d is the interlayer separation,
for quantum Hall bilayers is d ≈ 100Å

mK) at which the experiments are performed. For a treatment that includes also

the spin degree of freedom see [15].

In a quantum Hall bilayer the electron can exploit the additional degree

of freedom to minimize the total energy. New interesting physics arises when the

interaction energy between electrons in different layers is of the same order as the

interaction between electrons in the same layer. A measure of the distance between

electrons in the same layer is given by the magnetic length. When the distance d

between the layer is of the same order of l then the interlayer and intralayer Coulomb

interactions become comparable and new broken symmetry states may arise that

have peculiar properties.

Definitely the most studied quantum Hall bilayer system is the one with total

filling factor ν = 1. For this system the two layers both have ν = 1/2. When dÀ l

the two layers behave essentially as two decoupled ν = 1/2 quantum Hall systems
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well described by the composite-fermion Fermi liquid theory [16]. In this case then

we don’t expect the system to have any broken symmetry and in particular we

don’t expect any quantum Hall effect. For d . l the system has a broken symmetry

ground state and we expect that in this state it will exhibit the quantum Hall effect.

This is indeed what is observed in experiments, Fig. 3.2. What is remarkable in

Fig. 3.2 is that when d . l the quantum Hall effect survives even in the limit of zero

tunneling. This tells us that the effect in a ν = 1 quantum Hall bilayer is solely due

the collective behavior of interacting electrons in different layers. In the absence

of tunneling spontaneous phase coherence between electrons in different layers is

necessary for the existence of the quantum Hall effect.

To understand the character of the phase coherent ground state we can per-

form a particle-hole transformation for the electrons in the bottom layer. In this

way we can think of having a system of excitons formed by the electrons in the

top layer bound to holes in the bottom layer. In this picture the broken symmetry

ground state is equivalent to a an excitonic condensate [17]. Such a state can be

described by the following wave function:

|Ψ[ϕ]〉 =
∏

i

1√
2

(

c†iT + eiϕc†iB

)

|0〉. (3.1)

where c†iT (c†iB) is the creation operator for an electron in the i − th orbital in the

lowest Landau Level, LLL, in the top (bottom) layer. In the state (3.1) we have an

electron in each LLL orbital and hence this state has ν = 1 and every electron is in

a superposition of a state, ψiT , localized in the top layer and one, ψiB, localized in

the bottom layer. The phase between ψiT and ψiT is ϕ and is the same for every i,

i.e. for every electron in the system: the electrons are in a phase coherent state. In

this state the number of electrons in each layer is indefinite, a situation analogous

to the BCS state for a superconductor for which the total number of electrons is

indefinite. On the other hand in absence of tunneling the number operator for each
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Figure 3.2: Experimental phase diagram for ν = 1 quantum Hall bilayer [1].As d/lB,
lB being the magnetic length, crosses a critical value, of the order of 1, we go from
a state that exhibits Quantum Hall effect (QHE) to one that does not (NO QHE).
The critical value, dc, of d decreases with the tunneling amplitude ∆SAS . What is
remarkable is that dc remains finite even in the limit of ∆SAS → 0. In this condition
the quantum Hall effect can only be explained in terms of a broken symmetry ground
state characterized by interlayer phase coherence.

layer commutes with the Hamiltonian: in the interlayer phase coherent state (3.1)

we have a spontaneously broken symmetry.

An equivalent description of the spontaneous coherent state in a quantum

Hall bilayer can be done using the pseudospin analogy. In this description the two-

component layer degree of freedom is treated as a spin degree of freedom: pseudospin

up describes an electron state localized in the top layer, pseudospin down a state

localized in the bottom layer. In this language we can rewrite the state (3.1) in the
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form:

|Ψ[ϕ]〉 =
∏

i

1√
2

(

c†i↑ + eiϕc†i↓

)

|0〉. (3.2)

We can define the pseudospin operators:

Si ≡
1

2

∑

σ,σ′

c†iστ σσ′ciσ′ ,

for each LLL orbital i, where τ σσ′ is the Pauli matrix vector and σ =↑; ↓. The state
(3.2) is characterized by the complex order parameter:

〈S+(r)〉 = 〈Ψ†↑(r)Ψ↓(r)〉 =
n

2
eiϕ

where Ψ†σ(r) (Ψσ(r)) is the operator that creates (annihilates) an electron with

pseudospin σ at position r, n = 1/2πl2 and S+ = Sx + iSy is the ladder pseudospin

operator. This order parameter is equivalent to the order parameter

m(r) = 〈mx(r) + imy(r)〉

of an XY ferromagnetic state.

Using the pseudospin analogy we map the original problem of itinerant in-

teracting electrons to a problem of interacting pseudospins. The advantage is that

normally spin problems are easier to treat and many theoretical techniques have

been developed to study them. Even more important, the pseudospin mapping, by

revealing the very close analogy between ν = 1 quantum Hall bilayers and ferromag-

netic systems, allows us to borrow ideas and techniques from one class of systems and

apply them to the other. For example in the following chapter we will extensively

use ideas and techniques developed for ferromagnetic systems to study quantum Hall

bilayers. The analogy turns out to be very powerful especially to describe transport

experiments. In Chapter 5 we will study the tunneling transport properties of ν = 1

21



quantum Hall bilayers in which an electron is injected in the top layer at one end

of the sample and extracted from the bottom layer at the other end of the sample.

In the pseudospin language this is equivalent to injecting a spin up on one side and

removing a spin down on the other side creating a spin current through the system.

The interplay between the transport spin current and the order parameter gives rise

to very unusual and interesting physical effects. The pseudospin mapping makes

explicit the deep analogy between these experiments in ν = 1 quantum Hall bilay-

ers and experiments in the growing field of spintronics where the coupling between

transport spins and magnetization is exploited to control the current polarization

and/or the state of the ferromagnet. Using the pseudospin language we can recast

some of the ideas and results valid for quantum Hall bilayers to spintronic systems.

A beautiful example of this is the prediction of spin supercurrents in easy-plane fer-

romagnets [18]. In certain respects a quantum Hall bilayer is a perfect spintronics

device. For example, by being able to selectively inject quasiparticles only on the

top or bottom layer, in quantum Hall bilayers we have the analogous of being able

to inject a perfectly spin polarized current in a ferromagnet, without having to deal

for example with the problem of spin scattering at the interface. Also because the

pseudospin degree of freedom is associated with the localization of electrons in the

top or bottom layer we can expect that in principle it could be easier experimentally

to study pseudospin currents that real spin currents. By using the pseudospin map-

ping ν = 1 quantum Hall bilayers are ideal systems on which to test experimentally

and theoretically novel ideas for spintronic devices.

3.2 Magnetic Wannier functions

In this section we introduce the basis of single particle wavefunctions that we will

use to express the microscopic Hamiltonian. For a ν = 1 quantum Hall bilayer only

the LLL orbitals are occupied and we have N = Nφ i.e. one electron per each flux
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quantum. If on the sample we define a square lattice with lattice constant a =
√
2πl2

so that each cell has area 2πl2 (the area per flux quantum), a natural basis choice

would be the one formed by Wannier functions centered on the lattice sites. However

a strong magnetic field imposes restrictions on the localization properties of magnetic

orbitals and it’s known that a set of linearly independent and exponentially localized

single-particle orbitals in the LLL does not exist. Nevertheless it is still possible,

[19],[20] to construct a set of independent Wannier-like functions that although not

exponentially localized, in the region r .
√
2πl2 that contributes ≈ 95% of the

normalization integral, are very close to a Gaussian. These orbitals fall off as r−2

for r >
√
2πl2.

To build the magnetic Wannier functions we start from the minimum uncer-

tainty wavepacket localized at the origin of the lattice:

c00 =
1√
2πl2

exp

(

− r
2

4l2

)

.

In order to construct wavepackets, cmn, localized at the other lattice sites we trans-

late c00 using the magnetic translation operator:

TR ≡ e−
1
~R·(p−

e
c
A)

that commutes with the Hamiltonian and that if acted on eigenstates, returns eigen-

states. Let

Rmn ≡ mx̂+ nŷ; m,n ∈ N

then:

cmn = TRmnc00 =
(−1)mn√

2π`2
exp

[

−(r−Rmn)
2

4`2
+

i

2`2
ẑ(r×Rmn)

]

. (3.3)

The functions cmn are not orthogonal and are overcomplete by exactly one function
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due to the Perelomov identity [21]:

∞
∑

mn=−∞

(−1)m+ncmn(r) = 0.

This is the reason why it is not possible to find magnetic Wannier functions that

are exponentially localized. This impossibility is strictly related to the fact that the

Hall conductivity in the gap is not zero. As a matter of fact Thouless [22] has shown

that in systems supporting a Hall current the orbitals cannot fall off with distance

faster than the inverse-square law.

To orthogonalize the functions cmn we can follow the standard procedure

of transforming them in the Bloch representation and then go back to the site

representation. The only difference being that in our case the Bloch wave-vector k

will be an eigenvalue of the operator Tmax̂Tnaŷ instead of the standard translation

operator. Transforming cmn to the momentum representation we find the Bloch

functions:

Ψk(r) =
1

√

Nφν(k)

∞
∑

mn=−∞

cmn(r) exp(ik ·Rmn)

where ν(k) is a normalization factor. We have:

ν(k) =
√
2π

∞
∑

mn=−∞

cmn(0) cos(k ·Rmn). (3.4)

The overcompleteness of the functions cmn makes it impossible to find Ψk for k at

the corner of the Brillouin zone using equation (3.4). By exploiting the Perelomov

identity is possible to show, [20], that for k = k0, where k0 is a corner of the Brillouin

zone is

Ψk0
(r) =

i

a
√

2Nφγ

∞
∑

mn=−∞

(−1)m+n(ma− ina)cmn(r) (3.5)
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with

γ = −1

a

∞
∑

mn=−∞

(−1)m+n.

Taking the inverse Fourier transform of Ψk we finally find the magnetic Wannier

functions:

Wmn =
1

√

Nφ

∑

k

Ψke
−ik·Rmn (3.6)

where the functions Ψk are defined for any k in the Brillouin zone by equations (3.4),

(3.5). The functionsWmn by construction are orthonormal and form a complete set.

3.3 Pseudospin model

In this section we derive the pseudospin model [15] that we will use, with different

approximations, in the following chapters. As a basis to represent the matrix ele-

ments of the microscopic Hamiltonian we will use the one formed by the magnetic

Wannier functions introduced in the previous section. The only assumption of the

model is that every Wannier orbital i is occupied by exactly one electron, i.e. we

assume that there are no charge fluctuations.

We assume that the bilayer is described by the Hamiltonian

H =− ∆t

2

∑

σσ′i

c†iστ
x
σσ′ciσ′+

1

2

∑

σσ′

∑

i1i2i3i4

c†i1σc
†
i2σ′

ci4σ′ci3σ [〈i1i2|V+|i3i4〉+ τ zσστ
z
σ′σ′〈i1i2|V−|i3i4〉] . (3.7)

where c†iσ (ciσ) is the creation (annihilation) operator for an electron in the LLL

orbital state i and pseudospin σ;

V± =
1

2
(VS ± VD)
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and VS , VD are the 2D Coulomb interactions between electrons in the same and

different layers respectively. Because we assume that each orbital is occupied by one

electron (ν = 1) the charge degree of freedom in (3.7) is irrelevant and we would like

to rewrite the Hamiltonian only in terms of the pseudospin degree of freedom. The

most convenient way to do this is through the path integral approach. Because we

neglect charge fluctuations we can assume that at each discrete imaginary time the

single particle Slater determinant states form a complete set. We find the imaginary

time action:

S[z̄, z] =

∫ β

0
dτ





∑

i

(〈zi|∂τ |zi〉 −
∆t

2
〈zi|τx|zi〉) +

1

2

∑

ij

Hij〈zi|τ z|zi〉〈zj |τ z|zj〉−

1

2

∑

ij

(F+
ij 〈zi|zj〉〈zj |zi〉+ F−ij 〈zi|τ z|zj〉〈zj |τ z|zi〉)





(3.8)

where β = 1/KBT . In this equation zi are complex fields,

Hij = 〈ij|V−|ij〉

is the Coulomb interaction direct two-particle matrix element and

F+
ij = 〈ij|V+|ji〉

F−ij = 〈ij|V−|ji〉

the Coulomb interaction exchange matrix elements.

The complex fields zi can be associated with bosonic coherent states and

then we can rewrite (3.8) in terms of bosonic operators a†iσ, aiσ. Because we assume

that every orbital i is occupied exactly by one electron, for the bosonic operators

26



we have the constraint:
∑

σ

a†iσaiσ = 1.

The bosonic operators a, a† can the be thought as the Schwinger boson operators

representing the pseudospin operators [23]:

Si =
1

2

∑

σ,σ′

a†iστσσ′aiσ′

It is readily shown that the action (3.8) is the same action that we would obtain by

expressing the partition function of a system of bosons with Hamiltonian:

H = −1

2
∆t

∑

iσσ′

a†iστ
x
σσ′aiσ′ +

1

2

∑

ij

∑

σσ′

[

Hija
†
iσa

†
jσ′aiσajσ′τ

z
σστ

z
σ′σ′−

F+
ij a

†
iσa

†
jσ′ajσ′aiσ − F−ij a

†
iσa

†
jσ′ajσ′aiστ

z
σστ

z
σ′σ′

]

. (3.9)

in a coherent state path integral representation. In terms of the spin operators Si

the Hamiltonian (3.9) can be rewritten in the form:

H = −1

2
∆t

∑

i

Sxi +
∑

ij

[

(2Hij − FSij )Szi Szj − FDij (Sxi Sxj + Syi S
y
j )
]

. (3.10)

where F S = F++F−, FD = F+−F− are the exchange interactions for electrons in

the same and different layer respectively. The Hamiltonian (3.10) recasts the original

problem of itinerant interacting electrons as a problem of interacting pseudospins for

which we can exploit the variety of techniques developed to study spin Hamiltonians.

In the absence of charge fluctuations the Hamiltonian (3.10) is exact.
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3.4 Semiclassical model

Starting from the microscopic Hamiltonian (3.10) we can derive a continuum semi-

classical approximation. The most convenient way to do this is by expressing the

partition function Z using a path integral representation

Z =

∫

Dme(−S[m]) (3.11)

in term of the spin coherent states |m〉, [24]. The spin coherent state |m〉 is defined
as the eigenstate of the projection of the spin operator on the unit vector m:

(S ·m)|m〉 = S|m〉

The action that appears in (3.11) is given by

S[m] = −iS
∑

i

ω[mi] +

∫ 1/T

0
dτE[m(τ)],

where

E[m] ≡ 〈m|H|m〉

is the classical energy functional and

ω[m] =

∫ 1/T

0
dτA[m] · ṁ

is the so called Berry phase and the vector potential A is defined by the equation:

∇m ×A =m.
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By means of a Wick rotation we then find the semiclassical pseudospin Lagrangian

in real time:

L =
∑

i

A[mi] · ṁi − E[m] (3.12)

From (3.10) for the semiclassical energy functional E[m] we find:

E[m] = −1

2
∆t

∑

i

mx +
1

4

∑

ij

[

(2Hij − FSij )mz
im

z
j − FDij (mx

im
x
j +my

im
y
j )
]

. (3.13)

Starting from the microscopic model, assuming that there are no charge fluctuations,

we have derived a semiclassical energy functional in terms of the unit vectors mi

that give us the direction of the pseudospin at every lattice site. In the semiclassical

approximation the absence of charge fluctuations is guaranteed by the constraint

mi ·mi = 1.

For wavelengths bigger than the magnetic length we can treat {mi} as a

continuous vector field, {mi} → m(r), and replace the sums in (3.12), (3.13) by

integrals:
∑

i

→
∫

d2rn(r)F (r).

We find in this way the continuum approximation:

L =~
∫

A
d2rnṁ · A[m]− 1

2
∆t

∫

A
d2rnmx −

∫

A
d2rnmx(r)

∫

A
d2r′FD(r− r′)n(r′)mx(r

′)

−
∫

A
d2rnmy(r)

∫

A
d2r′FD(r− r′)n(r′)my(r

′)

+

∫

A
d2rnmz(r)

∫

A
d2r′[2H(r− r′)− FS(r− r′)]n(r′)mz(r

′). (3.14)

Where n(r) is the particle occupation number. To be consistent with the assumption

of no charge fluctuations nmust be simply equal to 1/2πl2. From the Euler-Lagrange

equation:
d

dt

δL

δṁ
− δL

δm
= 0 (3.15)
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we find the following equation of motion for m:

∂m

∂t
=m× δE

δm
(3.16)

known in magnetism as the Landau-Lifshitz equation. The functions H(r − r′),

FS(r − r′), FD(r − r′) are the continuum equivalent of Hij , F
S
ij , F

D
ij . In reciprocal

space, the Coulomb interactions, VS , VD, between electrons in the same and different

layers are simply:

VS(q) =
2πe2

εq

VD(q) =
2πe2

εq
e−qd (3.17)

where ε is the GaAs dielectric constant and q =
√
q · q. From these expressions for

VS and VD we find that in reciprocal space the kernels H, FS , FD are given by:

H(q) =
e2

2εl

1− e−qd
q

e−
1
2
q2l2 ; (3.18)

FS(q) =
e2

2ε

∫ ∞

0
dpJ0(qpl

2))e−
1

2
p2l2 ; (3.19)

FD(q) =
e2

2ε

∫ ∞

0
dpJ0(qpl

2))e−
1

2
p2l2e−pd (3.20)

where J0 is the Bessel function.

For very long wavelengths we can simplify the Lagrangian (3.14) by keeping

only the leading terms in a gradient expansion of m(r − r′) around r. Let’s start

from the semiclassical energy functional (3.13). We observe that we can write:

2mz
im

z
j = (mz

i )
2 + (mz

j )
2 − (mz

i −mz
j )
2; (3.21)

30



and, using the fact that mi ·mi = 1:

2(mx
im

x
j +my

im
y
j ) =2− (mz

i )
2 − (mz

j )
2−

(mx
i −mx

j )
2 − (my

i −m
y
j )
2. (3.22)

Let’s now approximate the differences mα
i −mα

j (α = x, y, z) by means of continuous

derivatives:

mα
i −mα

j = ∂µm(r)α∆rµ +
1

2
∂µνm(r)α∆rµ∆rν + ... (3.23)

where the partial derivatives are with respect to r and ∆rµ ≡ r′µ − rµ. For pseu-

dospin configurations that vary very slowly in space we can neglect all the terms

with high derivatives in (3.23) and keep only the gradient term. In this approxi-

mation using equations (3.21), (3.22), we find for the long-wavelength limit of the

semiclassical energy functional (3.13)

Elw =

∫

d2r

{

− ∆t

4π`2
mx + β(mz)

2 +
1

2
ρs
[

(∇mx)
2 + (∇my)

2
]

}

, (3.24)

where

β =
1

8π`2NΦ

∑

j

(2Hij − FSij + FDij ) (3.25)

is the parameter describing the electrostatic cost of having an unbalanced bilayer

and

ρs =
1

16π`2NΦ

∑

j

FDij |ri − rj |2 (3.26)

is the pseudospin stiffness constant. Finally the Lagrangian in the long-wavelength

approximation, takes the form:

L = ~
∫

d2rnṁ · A[m] +
1

2

∫

d2r
[

ρs|∇m⊥|2 + 2βm2
z − n∆tmx

]

(3.27)
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The Lagrangian (3.27) is the same Lagrangian that describes the dynamics of the

magnetization in an easy-plane ferromagnet. In the long wavelength approximation

a ν = 1 quantum Hall bilayer then is very analogous to an easy plane ferromagnet.

3.5 Damping of collective modes in ν = 1 quantum Hall

bilayers

As mentioned in Chapter 2 in real quantum Hall systems there will always be dis-

order. One of the major sources of disorder is the donor ions used to dope the

semiconductors in order to create the 2DEG. This disorder is unavoidable and, as

seen in Chapter 2, also essential for the observation of the quantum Hall effect. In

this section we consider the effect of the disorder on the damping of the pseudospin

collective modes [9].

In a quantum Hall bilayer, to the random Coulomb potential there will be

a contribution, VT , from the ions placed above the top layer and a contribution,

VB, from the ions placed below the bottom layer. The disorder can be modeled by

adding to the microscopic Hamiltonian (3.7) the term

Vd =
∑

ij

[

〈i|VT |j〉c†i↑cj↑ + 〈i|VB|j〉c
†
i↓cj↓

]

. (3.28)

Implicit in (3.28) is the assumption that the disorder does not scatter electrons

between the layers. In the pseudospin language this is equivalent to assume that

the disorder commutes with the z component of m. We also assume:

VT = VB = 0

VTVT = VBVB

VTVB = VBVT = 0 (3.29)
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where the bar indicates disorder averaging. Equations (3.29) ensure that after aver-

aging over disorder configurations the term (3.28) preserves the reflection symmetry

of the bilayer. Finally we assume the disorder to be weak so that it can treated

perturbatively.

Using the self consistent Born approximation (SCBA) we can calculate the

correction due to disorder to the self energy of the mean-field quasiparticles. Once

we have the disorder corrected self energy we can find the spectral function A from

the retarded Green’s function G(ω + i0+):

A(ω) = −2ImG(ω + i0+).

The disorder broadens the quasiparticles spectral function around the mean-field

quasiparticle energies. For strong enough disorder the spectral function becomes

nonzero at the Fermi energy, [9].

When the disorder broadens the single-particle bands sufficiently to create

a nonzero density of states at the Fermi energy the collective pseudospin waves

can decay by creating particle hole excitations. Using the generalized random

phase approximation (GRPA), [9], is possible to find the broadening of the collec-

tive excitations calculating the imaginary part of the pseudospin response function

χµν ≡ 〈m̂µ(q, τ)m̂ν(0, 0)〉. In the low frequency long-wavelength limit we have, [9]:

lim
ω→0;q→0

Imχ⊥
ω

= αϕ ≈ 1; (3.30)

lim
ω→0;q→0

Imχzz
ω

= αz ≈ 0. (3.31)

We then find that in ν = 1 quantum Hall bilayers, given the nature of the disorder,

there is an anisotropy in the damping of the collective modes. In real systems there

will always be a component of the disorder that does not commute with m̂z making

αz not zero. It is however safe to assume that this part of the disorder will be much
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smaller than the part considered in this section and so we can conclude that in ν = 1

quantum Hall bilayer we expect αz ¿ αϕ.
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Chapter 4

Equilibrium properties of ν = 1

quantum Hall bilayers

4.1 Equations of motion

We saw in Chapter 3 that in the pseudospin language the Lagrangian for a Quantum

Hall bilayer is given by (3.14) and the equation of motion for m by the Landau-

Lifshitz equation. Starting from (3.14) we find the following equation of motion for

m:

∂m

∂t
=m×Heff (4.1)

with Heff ≡ δE/δm given by:

Heff,x =
2

hl2

∫

A
d2r′FD(r− r′)mx(r

′)− ∆t

2~
;

Heff,y =
2

hl2

∫

A
d2r′FD(r− r′)my(r

′);

Heff,z =
2

hl2

∫

A
d2r′[2H(r− r′)− FS(r− r′)]mz(r

′).
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where A is the area of the sample. The pseudomagnetization therefore will precess

around the field Heff .

We now want to include also the damping due to the coupling of the collective

pseudospin modes to other degrees of freedom. As mentioned in Chapter 3 the

presence of disorder causes a finite density of states at the Fermi energy and then,

through the coupling of the quasiparticles to the pseudomagnetization, a damping

of the collective modes. We can define two damping coefficients, αϕ, αz and the

dissipation (or Rayleigh) functional:

F =
~
2

∫

A
d2rn[αϕ(ṁ

2
x + ṁ2

y) + αzṁ
2
x] (4.2)

so that we can derive the dissipative equation of motion from the generalized Euler-

Lagrange equations:
d

dt

δL

δṁ
− δL

δm
+
δF
δṁ

= 0 (4.3)

From this equation we find the following dynamical equations:

∂mx

∂t
= myHeff,z −mzHeff,y + αϕmyṁx − αzmzṁy

∂my

∂t
= mzHeff,x −mxHeff,z − αϕmxṁz + αzmzṁx

∂mz

∂t
= mxHeff,y −myHeff,x + αz(mxṁy −myṁx) (4.4)

From microscopic calculations [9] for our problem we have αϕ 6= 0, αz ≈ 0. When

αz = 0 we can have dynamical equilibrium solutions to equations (4.4). In real sys-

tems however αz will always be not zero, for example because of the non uniformity

of the tunneling amplitude ∆t. We will then assume αz 6= 0 and αz ¿ αϕ.

In the long wavelength approximation we found in Chapter 3 that the La-
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grangian can be simplified to:

L = ~
∫

d2rnṁ · A[m] +
1

2

∫

d2r
[

ρs|∇m⊥|2 + 2βm2
z − n∆tmx

]

(4.5)

The equations of motion will have the same form given by (4.4) with Heff given by:

Heff,x =
2πl2

~
ρs∇2mx −

∆t

2~

Heff,y =
2πl2

~
ρs∇2my

Heff,z =
4πl2

~
βmz (4.6)

In the limit of small oscillations of the pseudospin out of the plane, mz ¿ 1, we

can write m = (cosϕ, sinϕ,mz). In this case, assuming m uniform in space, the

damped equations of motion reduce to:

∂ϕ

∂t
= −4πl2β

~
mz − αϕṁz

∂mz

∂t
=

∆t

2~
sinϕ+ αzϕ̇. (4.7)

Let us now consider the equations of motion for the magnetization in an easy-plane

ferromagnet with external field along the x direction:

∂ϕ

∂t
= −Kmz − αϕṁz

∂mz

∂t
= γHx sinϕ+ αzϕ̇ (4.8)

where K is the anisotropy constant, and the equations that describe the dynamic
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of a Josephson’s junction:

∂ϕ

∂t
=

2eV

~
∂V

∂t
= − Ic

2eC
sinϕ− αzϕ̇ (4.9)

where ϕ here is the phase difference between the Ginzburg-Landau wavefunction in

the two electrodes, V the potential across the junction and Ic the critical current. We

see that equations (4.7)-(4.9) are the same when damping is not present. However if

we include the damping terms the equations for the three systems are different: for

a ferromagnet is usually assumed αz ≈ αϕ, for a Josephson junction αz 6= 0, αϕ ≈ 0

whereas we have seen in Chapter 3 that for a ν = 1 quantum Hall bilayer is αϕ 6= 0,

αz ≈ 0. This difference in the damping affects profoundly the dynamics. We believe

that in general both αϕ, αz in reals systems are always non zero even though their

relative magnitude is in general quite different. The microscopic explanation of the

observed values for αϕ, αz in all three systems is a very interesting problem that is

not fully understood. In Chapter 6 we address this problem for a ferromagnet for

the case when the damping is mostly due to the coupling of the magnetization to

elastic modes.

If we exclude the damping term, that in ν = 1 quantum Hall bilayers is in-

directly mostly due to the presence of disorder, the dynamical equations derived in

this section do not take into account disorder. In order to consider the effects of dis-

order in quantum Hall bilayers we first have to introduce the concept of topological

charge.

4.2 Topological Excitations

As seen in Chapter 2 in a quantum Hall system in any Landau Level the number of

degenerate states is equal to the number of magnetic quantum fluxes piercing the
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system. If we consider a filled Landau level and decrease the perpendicular magnetic

field so that we reduce by one the number of magnetic fluxes, Fig. 4.1, keeping the

total number of electrons, N , constant, we force one electron to jump to a higher

Landau level where it will be able to move freely: by reducing the magnetic flux we

have created a charge excitation. We see from this simple ideal experiment that in

quantum Hall system there is a direct relation between magnetic flux and charge

excitations. This relation can be justified more rigorously in the following way [6].

a degenerate state
Remove

EE

∆ ∆

Figure 4.1: Creation of a charge excitation in a Quantum Hall system by change of
the magnetic flux

Let’s consider a Quantum Hall system with N = νNφ, ν = 1, 2, ... and let’s suppose

of slowly changing the magnetic flux Φ pinning the system. Because the Landau

levels are perfectly filled if we change the magnetic flux on time scales bigger than

~/∆, where ∆ is the energy spacing between Landau levels, we have no dissipation:

ρxx = ρyy = σxx = σyy = 0.

From Faraday’s law we have that the change in magnetic flux will induce an electric

field such that:
∮

Γ
Ed2r = −1

c

∂Φ

∂t
(4.10)

Through the conductivity we can now relate the electric field to a current. What is
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Φ(t)

E(t)
J(t)

Figure 4.2: Radial current induced by a poloidal electric field in Quantum Hall
system

peculiar about the quantum Hall system at filled Landau levels is that the poloidal

electric field given by (4.10) will induce a radial current and not a poloidal one

because the longitudinal conductivity is zero but the Hall conductivity is not: σxy =

νe2/h, Fig. 4.2. We then have E = ρxyJ× z that combined with (4.10) gives us:

∮

Γ
J · (z× dr) = σxy

1

c

∂Φ

∂t
(4.11)

But the left hand side of (4.11) is the charge entering the area surrounded by the

contour Γ and we then finally find:

dQ

dt
=

1

c
σxy

∂Φ

∂t
=⇒ ∆Qφ = νe

∆Φ

Φ0
(4.12)

Equation (4.12) establishes the relation between charge and magnetic flux in a quan-

tum Hall system.

Let’s now consider a pseudospin quasiparticle traveling through a ν = 1

quantum Hall bilayer. The quasiparticle will have pseudospin, S, pointing up when
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m

x

S

Figure 4.3: Pseudospin moving through the pseudomagnetization field.

localized in the top layer and pointing down when localized in the bottom layer.

Let’s assume that S aligns instantaneously at every point to the local value of the

order parameter m as shown in Fig. 4.3. We can then write:

Ṡµ = Sẋν
∂mµ

∂xν
; µ, ν = x, y, z

For the Lagrangian density we then have:

L = ~ṠµCµ − e

c
ẋνAν + L0

= −e
c
ẋν
[

−Φ0

2π
S
∂mµ

∂xν
Cµ +Aν

]

+ L0;

where A is the vector potential, C[m] is definend through the equation ∇m×C =m

and L0 is the part of the Lagrangian that doesn’t depend on Ṡ and A. We see that

because of the nonuniformity of the pseudospin texture, in the Lagrangian density

we have an additional term akin to a vector potential,

cν ≡ −Φ0

2π
S
∂mµ

∂xν
Cµ.

The field cν is called Berry connection and to it we can associate a fictitious magnetic
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flux,

Φ = εαβ
∂cα

∂xβ

= −Φ0

2π
S
1

2
εαβ

∂mν

∂xβ
∂mγ

∂xα

[

∂Aν
∂mγ

− ∂Aγ
∂mν

]

From the definition of C we have that ∇m × C =m so that

∂Cν
∂mγ

− ∂Cγ
∂mν

= εaνγma

We can then write:

ΦT = −Φ0

[

S

4π
εαβεaνγma∂m

ν

∂xβ
∂mγ

∂xα

]

= −Φ0
S

4π
εijm · (∂im× ∂jm)

A quasiparticle traveling through the quantum Hall bilayer will see an effective

magnetic flux proportional to εijm · (∂im × ∂jm). This effective magnetic flux is

due to the Berry phase that the quasiparticle acquires while traveling through the

pseudomagnetization field while aligning its pseudospin to the local value of m.

We have shown before that to a magnetic flux in a Quantum Hall system

corresponds a charge density through the relation (4.12). We then arrive to the

important result that to the flux ΦT corresponds the charge density:

ρT ≡ νe
S

4π
εijm · (∂im× ∂jm). (4.13)

In our case is S = 1/2 and ν = 1. We have that certain excitations of the field m

from its equilibrium uniform configuration can have charge density. This remarkable

connection between charge and pseudospin excitations is peculiar to ν = 1 quantum

Hall bilayers [25], [26], [27], [28], [29], [30].
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An important characteristic of the charge density (4.13) is that twice the

total charge

2QT = 2
e

8π

∫

d2rεijm · (∂im× ∂jm)

is always an integer. As a matter of fact QT is a topological invariant.The fact that

QT is a topological invariant can be shown using the following general theorem [31].

Theorem 4.2.1. Let y = (y1, ...yn) be a n-dimensional C∞ vector field defined on

a d-dimensional space-time such that 〈y|y〉 ≡ y21 + ...+ y2n = 1. Then if n ≤ d,

εµ1..µn..µdεα1...αny
α1∂µ2

yα2 ...∂µny
αn (4.14)

is a non-dynamical conserved quantity (space-time current).

Proof. Because 〈y|y〉 = 1 we have that 〈y|∂µy〉 = 0. Thus if n ≤ d, the d×n matrix

[∂y] must have a rank smaller than n, i.e.:

εµ1..µn..µdεα1...αn∂µ1
yα1 ...∂µny

αn = 0

or

∂µ1
[εµ1..µn..µdεα1...αny

α1∂µ2
yα2 ...∂µny

αn ] = 0

q.e.d.

Notice that the fact that the quantity (4.14) is conserved does not depend

on the dynamics of the field y but is simply due to the fact that the vector field is

at every point in space and time constrained to have unit magnitude and be C∞.

For this reason the conserved quantities (4.14) are called topological invariants: any

smooth deformation of the vector field will not change them.

For our specific case we have n = d = 3 and µ = t, x, y, α = x, y, z. From
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the theorem 4.2.1 we can immediately find that the time-space current

J ≡ [ρ;JT ] ≡
e

8π
[m · (∂xm× ∂ym);m · (∂tm× ∂ym),m · (∂xm× ∂tm), 0]

is conserved, i.e.:
∂ρT
∂t

+∇ · JT = 0 (4.15)

From equation (4.15) we recover that QT is a topological invariant and we can define

the topological current JT

JT ≡
e

8π
[m · (∂tm× ∂ym),m · (∂xm× ∂tm), 0]

The current JT represents the contribution of the topological charges to the charge

current in ν = 1 quantum Hall bilayers.

In a ν = 1 quantum Hall bilayer the topological charges are called merons.

Merons are the equivalent of vortices in the XY nonlinear sigma model. A meron

has a charge e∗ = ±1/2e. Far away from the core of a meron the order parameter lies

in the XY plane forming a vortex configuration with positive or negative vorticity.

In the core of the vortex the order parameter m rotates either up or down out of

the XY plane. In a bilayer a meron is the pseudospin configuration with minimum

gradient energy given the constraint of vorticity. We then have four different types

of merons depending on the vorticity sign and the direction of mz in the vortex core

as shown in Fig. 4.4. The charge of the meron is determined by the product of the

vorticity winding number and the value of mz at the center of the core according to

the formula

Q = −1

2
nvmz(0)

where nv is the winding number and mz(0) the value of mz at the vortex core.

Let’s consider a single meron placed at the origin. Because of the high energy
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Figure 4.4: Schematic illustration of the order parameter configuration for different
types of merons.

cost of creating a charge imbalance between the two layers we have that at infinite

distances mz must be zero. On the other hand the configuration of m at infinite

distance must be continuously connected with the configuration at the center. This

implies that for r →∞m will have the form (cosϕ; sinϕ, 0) with ϕ the poloidal angle

in the XY plane. This configuration will have a big energy cost due to exchange as

can be seen for example from (3.24). In the thermodynamic limit therefore it costs

an infinite amount of energy to create a single meron. On the other hand to create

a meron pair, meron-antimeron, it takes a finite energy [25]

Em−am = 2Ecore +
e2

4R
+ 2π ln(R/Rcore)

where Ecore, Rcore are the core energy and radius respectively of an isolated meron,

and R the distance between the meron and the antimeron. What is really important

for us is that for a ν = 1 quantum Hall bilayer the energy, Em−am, to create a
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Figure 4.5: Schematic illustration of a meron-antimeron configuration

meron antimeron pair is lower, about half, the energy of a conventional quasiparticle

excitation. In particular to create a meron antimeron pair with total charge zero

requires less energy than to create a conventional particle-hole excitation.

4.3 Inclusion of disorder

In this section we investigate the effects of disorder on the equilibrium properties of

ν = 1 quantum Hall bilayers. As mentioned in Chapter 3 disorder is always present

in these systems and plays an important role.

We first have to generalize the Lagrangian (3.14) to include terms due to the

interaction of the order parameter with the disorder potential. The donor ions will

create a random Coulomb potential in the top layer, VT , and bottom layer VB. We

can decompose the total random potential seen by the condensate in a symmetric

and antisymmetric part

VS(r) ≡
1

2
(VT (r) + VB(r))

VA(r) ≡
1

2
(VT (r)− VB(r)).

As schematically illustrated in Fig. 4.6 the antisymmetric part of the disorder

will tend locally to create a charge imbalance between the two layers, i.e., in the

pseudospin language, to tilt m out of the plane. As a consequence in order to take
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Figure 4.6: Schematic illustration of the effect of disorder on the order parameter

into account the effect of VA we should add to the Lagrangian (3.14) the term

∫

A
nVA(r)mz(r)d

2r.

On the other hand the symmetric part of the disorder potential will tend to change

locally the charge density. If we assume the correlation length of the disorder po-

tential to be much bigger than the magnetic length l then we can assume that the

symmetric part of the disorder potential will be mostly screened by the topologi-

cal charges described in section 4.2, given that is energetically cheaper to create a

topological charge excitation than a conventional quasiparticle excitation. In order

to take into account the effect of the symmetric part of the disorder potential we

will then add to the Lagrangian (3.14) the term

∫

A
nVS(r)ρT (r)d

2r =
e

8π

∫

A
nVS(r)m · (∂xm× ∂ym)d2r.

This term is analogous to the one used to study dirty quantum Hall ferromagnets

[32], [33].

Similarly, if we want to consider quantum Hall bilayers with filling factor

ν = 1± ε, for ε¿ 1 we could assume the charge difference from the ν = 1 state to

be equal to the average topological charge: 〈ρT 〉 = ε.

Finally we will have to take into account the Coulomb interaction between
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the topological charges
∫

A
d2r

∫

A
d2r′

ρT (r)ρT (r
′)

|r− r′|

The final form of the Lagrangian will then be:

L =~
∫

A
d2rnṁ · A[m]− ∆t

2

∫

A
d2rnmx −

∫

A
d2rn

∫

A
d2r′mx(r)FD(r− r′)n(r′)mx(r

′)

−
∫

A
d2rn

∫

A
d2r′my(r)FD(r− r′)n(r′)my(r

′)

+

∫

A
d2rn

∫

A
d2r′mz(r)[2H(r− r′)− FS(r− r′)]n(r′)mz(r

′)

+

∫

A
nVA(r)mz(r)d

2r

+
e

8π

∫

A
nVS(r)m · (∂xm× ∂ym)d2r

+

∫

A
d2r

∫

A
d2r′

ρT (r)ρT (r
′)

|r− r′| . (4.16)

In the remainder we will neglect the effect of the Coulomb interaction between

topological charges.

4.4 Critical disorder

In this section we calculate the ground state and its properties for a ν = 1 quantum

Hall bilayer in presence of disorder. As shown in the previous section what is really

peculiar about the system under study is the fact that particular excitations of the

order parameter are characterized by non uniform charge density with the result

that an external Coulomb potential affects the pseudomagnetization configuration.

In order to find the ground state we start from a random configuration for

the order parameter field, m, and then evolve the damped equations of motion (4.4)

until the right hand side becomes smaller than a fixed threshold for which we can

assume that an equilibrium has been reached. Once the equilibrium is reached we

calculate the average properties. One of the most important average quantities is
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the site-averaged pseudomagnetization 〈m〉:

〈m〉 ≡ 1

A

∫

A
d2rm(r).

In particular we are interested in how the disorder affects the magnitude of the site-

averaged magnetization. For this purpose we repeat the simulations for different

disorder strengths. For the disorder potentials, VA, VS , we assume random Gaussian

distributions such that:

〈VA〉 = 0; 〈VS〉 = 0; (4.17)

〈VA(r)VA(r′)〉 = VA0 exp

[−(r− r′)2
2λ2A

]

; 〈VS(r)VS(r′)〉 = VS0 exp

[−(r− r′)2
2λ2S

]

;

(4.18)

where the angle brackets denote average over different random configurations, VA0,

VS0, are constants and λA, λS are the correlation lengths of the disorder. For our

approach to be consistent we must assume λA, λS À l. In the remainder we will

also assume λA = λS . To satisfy equations (4.17), (4.18) we choose [34]

〈Vi(q)Vi(q′)〉 = δ(q− q′)Gi(q)

where i = A,S and

Vi(q) =
1

2π

∫

Vi(r)e
−iq·rd2r

Gi(q) =
Vi0
2π

∫

exp

[−(r− r′)2
2λ2i

]

e−iq·rd2r = Vi0λi
√
2π exp

[

−2(πλiq)2
]

.

Fig. 4.7 shows a typical profile for the disorder potential for a correlation length

equal to 5 l.

In Fig. 4.8 the magnitude of the equilibrium site-averaged magnetization is

shown as a function of the disorder strength for three different cases. The green

curve shows the result when only the antisymmetric part of the disorder is present;
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Figure 4.7: Example of disorder configuration used in the simulations. In particular
in this figure the antisymmetric part of the disorder, VA, is shown.

the blue curve the case when only the symmetric part is present and the red curve

when both the symmetric and antisymmetric part of the disorder are present and

of the same order of magnitude.

We immediately see that the antisymmetric part of the disorder alone has

little effect in destroying the overall phase coherence of the order parameter: the

pseudomagnetization slightly tilts out of the plane to follow VA but this has little

effect on the magnitude of the site-averaged pseudomagnetization.

When the symmetric part of the disorder is present we have that, past a

critical value of the disorder strength, of the order of 0.25e2/εl, the site-averaged

pseudomagnetization becomes much smaller than one and the average coherence is

reduced. This is the effect of the formation of topological charges that are created

to screen out VS . What is really interesting is the difference between the blue and

the red curve. We see that when in addition to VS is present also the antisymmetric

part of the disorder the critical disorder is much lower. This is due to the fact that

in order to create a meron pair we have to pay the activation energy for the core.

This energy is in great part the anisotropy energy paid to tilt m out of the plane
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Figure 4.8: Magnitude of the site-averaged pseudomagnetization as a function of
the disorder strength for three different cases. For this simulation we assumed
∆t = 10−4e2/εl. Green curve: VA 6= 0, VS = 0. Blue curve: VA = 0, VS 6= 0. Red
curve: VA 6= 0, VS 6= 0.

at the center of the meron. When VA is different from zero there are regions of the

sample where this energy is lower and then the formation of the meron is favored.

When both VS and VA are not zero, merons will be formed in regions where the net

gain between the energy gained by screening VS and the energy paid by tilting m

out of the plane at the center of the merons is maximized. We see that when both

VS and are VA are present the value of the critical disorder is reduced to ≈ 0.1e2/εl

compared to 0.25e2/εl when only VS is present.

In our system the tunneling amplitude, ∆t, plays the same role of a mag-

netic field along the x direction in an easy plane ferromagnet. For our system the

equivalent of the magnetic susceptibility can be defined as:

χ ≡ ∂〈|m|〉
∂∆t

We calculate χ from the change in site-averaged pseudo-magnetization, δ〈|m|〉 as we
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change the tunneling amplitude by a little amount δ∆t:

χ ≈ δ〈|m|〉
δ∆t

.

In Fig. 4.9 we show the results for the susceptibility χ as a function of the disorder

strength calculated assuming ∆t = 10−4e2/εl and δ∆t = 5 × 10−5e2/εl for the

case when VS ≈ VA. We can identify the critical disorder, Vc, as the value for

0 0.05 0.1 0.15 0.2
Max|VD|  [e2/εl]

0

0.1

0.2

0.3

χ

1

2

3

Figure 4.9: Susceptibility χ as a function of the disorder strength.

which the susceptibility χ has a maximum. From Fig. 4.9 we see that χ peaks at

Vc = 0.12 e2/εl.

For values of the disorder strength below Vc the the ground state is charac-

terized by overall phase coherence: there are no vortices, or very few, the in plane

component of m points on average in the x direction because of the biasing effect

due to small but finite tunneling amplitude ∆t, and the z component almost per-

fectly follows the asymmetric part of the disorder potential VA. Fig. 4.10 shows

the in plane components of m for a disorder strength equal to VD = 0.1e2/εl, point

1 in Fig. 4.9, just below the critical disorder. We see that the texture for the in
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Figure 4.10: In-plane components of the pseudomagnetization m for a disorder
strength below the critical disorder, point 1 on Fig. 4.9
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Figure 4.11: z component of the pseudomagnetization m for a disorder strength
below the critical disorder, point 1 on Fig. 4.9. The profile of VA used for this
simulation is shown in Fig.4.7.
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plane components is deformed from the situation m(r) = (1; 0, 0) that we have for

no disorder, but still we don’t have any meron. Fig. 4.11 shows the z component

of m for the same simulation for which the profile of VA is the one shown in Fig.

4.7. We see that mz simply follows VA. For disorder strengths of the order of Vc or
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Figure 4.12: In-plane components of the pseudomagnetization m superimposed to
the color-plot of VS for a disorder strength equal to the critical disorder, point 2 on
Fig. 4.9

bigger merons will be formed. This can be seen in Fig. 4.12 in which the in-plane

components of m are plotted for a disorder strength equal to Vc, point 2 on Fig.4.9.

The over-imposed color-plot shows the profile of the symmetric part of the potential.

We can see that the merons are formed close to maxima and minima of VS in order

to screen it out. This can perhaps seen more clearly in in Fig. 4.13 where the profile

of the topological charge density ρT (r) is shown as a color-plot over-imposed to the

level curves of VS . We see that the maxima and minima of ρT (r) are close to the
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Figure 4.13: Color plot of the topological charge density ρT (r) for point 2 on Fig.
4.9. The black curves are the level curves of the symmetric part of the disorder VS .

ones of VS but don’t overlap completely. The reason is that, as mentioned above,

the system has to find the best compromise between screening VS and the energy

cost of the vortex cores, cost that is minimized by placing the cores in regions where

VA is big. The z component of the magnetization still simply follows the profile of

VA as can be seen in Fig. 4.14.

Above the critical disorder Vc many vortices are present and the ground

state almost completely loses any coherence. Fig. 4.15 4.16 4.17 show the in-

plane magnetization,, the topological charge density ρT , and the z component of m

respectively, for a disorder strength bigger than Vc, point 3 on Fig. 4.9.

If in (4.16) we replace the part that does not depend on the disorder with

its equivalent long-wavelength approximation, (3.27), we find similar results but

underestimate the value of the critical disorder. In Fig. 4.18 the site-averaged pseu-
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Figure 4.14: z component of the pseudomagnetization m for a disorder strength
equal to the critical disorder, point 2 on Fig. 4.9. The profile of VA used for this
simulation is shown in Fig.4.7.

domagnetization calculated for the ground state obtained using the long wavelength

approximation is plotted as a function of the disorder strength. We find that in the

long-wavelength approximation the critical disorder is Vc ≈ 30ρs ≈ 3 × 10−2e2/εl2,

about four times smaller than the value found using (4.16).

4.5 On the Kosterlitz-Thouless phase transition

Until now we have considered the equilibrium properties of the ν = 1 quantum Hall

bilayer at zero temperature. In this section we want to briefly study what is the

effect of a finite temperature on the equilibrium state of our system.

Consider the semiclassical energy functional (3.24); in the limit of βl2 À ρs

the fluctuations of mz out of the XY plane will be very small. If we then integrate

out the finite frequency fluctuations of mz in a Gaussian approximation we recover
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Figure 4.15: In plane components of the pseudomagnetization m superimposed to
the color-plot of VS for a disorder strength bigger than the critical disorder, point 3
on Fig. 4.9

an effective XY model [25] with effective action:

SEeff =
1ρs
2kBT

∫

A
d2r|∇ϕ|2.

which is the effective euclidean action for anXY ferromagnet. We know that theXY

model undergoes a Kosterlitz-Thouless phase transition [35], [36] at a temperature

TKT :

TKT =
π

2
ρs. (4.19)

The transition separates a state characterized by superfluidity, at low temperature,

from the normal state at high temperature. The supercurrent Js is formally equal

to ρs∇ϕ. In our case the pseudospin supercurrent is the difference of the number
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Figure 4.16: Color plot of the topological charge density ρT (r) for a disorder strength
above the critical disorder, point 3 on Fig. 4.9. The black curves are the level curves
of the symmetric part of the disorder VS .

current in the two layers. Js is a neutral current, using the exciton analogy [17] Js

is the current of the excitonic condensate. Vortex-antivortex polarization renormal-

izations of the pseudospin stiffness ρs cause corrections to the expression (4.19) for

TKT . Thermal and quantum fluctuations also renormalize ρs [37]. The magnitude

of the corrections to (4.19) depends on the details of the short-range physics. For

the 2D nearest-neighbor-coupling XY model on a square lattice we have:

TKT ≈ 0.9ρs. (4.20)

In our case the value of TKT will be further reduced by fluctuations of the pseudospin

order parameter out of the XY plane. However numerical studies [25, 38] show that

these corrections are important only for very weak anisotropy: β`2 < 0.1ρs. Such
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Figure 4.17: z component of the pseudomagnetization m for a disorder strength
above the critical disorder, point 3 on Fig. 4.9. The profile of VA used for this
simulation is shown in Fig.4.7.

weak anisotropies occur in ν = 1 quantum Hall bilayers only for d < 0.3` [25], a

regime which is not experimentally accessible.

In analogy to what happens in XY models we should then expect to be able

to observe a Kosterlitz-Thouless phase transition in ν = 1 quantum Hall bilayers

connected with the unbinding of meron-antimeron pairs. However in experiments no

sign of a Kosterlitz-Thouless phase transition has been observed so far. The most

likely reason for lack of experimental observation of a Kosterlitz-Thouless phase

transition in ν = 1 quantum Hall bilayers is disorder. In presence of strong disorder

the phase coherence is lost and therefore the vortex pairs appear to be separated

by the disorder. For enough strong disorder then the system doesn’t undergo a

Kosterlitz-Thouless phase transition at any finite temperature.

One possible way to find TKT would be to look for the temperature for which

the supercurrent goes to zero. This however is a quite challenging task given that we

want to study the case of strong disorder. We then follow a different approach [39].

We first calculate the order parameter configuration assuming periodic boundary
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Figure 4.18: Site-averaged pseudomagnetization as a function of the disorder
strength for the ground state calculated using the long-wavelength approximation
for the energy functional, Eq. (3.24).

conditions. Starting from this equilibrium configuration we take the values of m

at one edge of the system and rotate them by an angle θ. We then find the new

equilibrium keeping the values of m at the edge where we rotated them by θ, and

at the opposite edge, fixed. We define the helicity modulus η [39] as:

η(T ) ≡ F (θ)− F (0)
2θ2

. (4.21)

where F (θ) is the free energy of the twisted configuration and F (0) the free energy

of the equilibrium obtained using periodic boundary conditions. At the Kosterlitz-

Thouless phase transition, in the thermodynamic limit, the helicity modulus has a

finite jump, Fig. 4.19. We can then use use the dependence of η on the temperature

to locate TKT . However this is also not an easy task, given that in order to calculate

the free energy we have to calculate the entropy. Starting from the definition (4.21)
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Figure 4.19: Helicity modulus (η) as a function of temperature for theXY model. At
the Kosterlitz-Thouless temperature TKT η has a finite jump in the thermodynamic
limit.

it’s easy to show that:
d(βη)

dβ
=
E(θ)− E(0)

2θ2

where E(θ) is the energy of the twisted configuration and E(0) the internal energy

of the equilibrium with periodic boundary conditions. At the transition tempera-

ture TKT the derivative d(βη)/dβ has a peak, Fig. 4.20. We will then locate the

temperature TKT by the position of the peak of d(βη)/dβ.

d

dβ
ηβ[ ]

T T
KT
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Figure 4.20: Typical profile of d(βη)/dβ as a function of temperature for an XY
ferromagnet. d(βη)/dβ has a peak at T = TKT .
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We start from the energy functional valid in the long wavelength limit (3.24)

and then we find the ground state via Monte Carlo simulations. For the interactions

we use the first neighbor approximation. For the Monte Carlo simulations we use

the Metropolis algorithm with simulated annealing starting from a temperature

much bigger than βl2/kB and slowly reducing it to the desired value. We first

find the ground sate for periodic boundary condition in x and y and then find the

ground sate for anti-periodic boundary conditions along x, i.e. we set θ = π. We

then calculate the difference between the average energies 〈E(π)〉 and 〈E(0)〉 so
obtaining d(βη)/dβ. The results are shown in Fig. 4.21 for different values of the

disorder strength assuming VS0 ≈ VA0. We see that as the disorder strength increases
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Figure 4.21: d(βη)/dβ as a function of temperature for a ν = 1 quantum Hall bilayer
with disorder.

the peak denoting the Kosterlitz-Thouless phase transition becomes smaller and

shifts to lower temperatures. We find that for disorder strengths bigger than the

critical disorder Vc the peak disappears indicating that there will not be a Kosterlitz-

Thouless phase transition.
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Chapter 5

Transport properties of ν = 1

quantum Hall bilayers

5.1 Introduction

In recent years remarkable anomalous transport properties have been discovered in

quantum Hall bilayers in particular in quantum Hall bilayers with total filling factor

ν = 1 [2],[40], [41], [42]. We will focus on the tunneling geometry in which a current

J

J

V

−L/2 L/2

Figure 5.1: Schematic representation of the tunneling configuration studied in [2].

is injected in the top layer and extracted from the bottom one as schematically shown

in Fig. 5.1. In Fig. 5.2 the measured differential tunneling conductance is shown
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Figure 5.2: Differential tunneling conductance measurements by Spielman et al. [2]
for a ν = 1 quantum Hall bilayer for different values of the total density NT in units
of 1010 cm−2

as a function of the interlayer voltage for different values of the total density NT in

units of 1010 cm−2. For each trace the total Landau level filling factor ν was kept

equal to 1 by tuning the perpendicular magnetic field. In this condition to decrease

NT is equivalent to increase the magnetic length l. The remarkable result shown in

Fig. 5.2 is that when d . l a huge peak in the tunneling conductance is observed.

We know that when d . l a ν = 1 quantum Hall bilayer has a broken symmetry

ground state characterized by interlayer phase coherence. This state is the analogous

of the ground state in a XY magnet. We can then associate the appearance of the

peak for d . l in the tunneling conductance to a collective behavior. In Fig. 5.3 the

tunneling current as a function of the interlayer voltage for the case of high tunneling

conductance is shown. The presence of a peak in the low bias conductance when

the system is supposed to be in the broken symmetry ground state is reminiscent of
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Figure 5.3: Tunneling current and differential tunneling conductance measurements
by Spielman et al. [2] for a ν = 1 quantum Hall bilayers for d . l.

the d.c. Josephson effect [43], [44]. Notice however that in all the experiments even

when d ¿ l the low bias interlayer tunneling conductance is never infinite, i.e. we

never have a finite current for exactly zero interlayer voltage bias [9] as we have in

the d.c. Josephson effect.

Another remarkable discovery of the experiments performed by the group of

Dr. Eisenstein is the behavior of the interlayer tunneling conductance when an in

plane magnetic field is applied. Experimentally a parallel component of the magnetic

field is generated by simply tilting the sample relative to the orientation of B. In

Fig. 5.4 the measured interlayer tunneling conductance is shown for different values
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Figure 5.4: Differential tunneling conductance measurements by Spielman et al. [2]
for a ν = 1 quantum Hall bilayers for different values of the in plane magnetic field
B‖

of an applied in plane magnetic field B‖ for a ν = 1 quantum Hall bilayer with d . l.

We see that a small in plane magnetic field causes a big reduction of the low bias

peak of the tunneling conductance.

To summarize from our perspective the main results of the interlayer tunnel-

ing experiments are:

• Huge increase of the low bias interlayer conductance when d becomes of the

order or smaller than l;

• The interlayer tunneling conductance remains finite even when d¿ l and for

the lowest temperature so far reached in the experiments;
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• When an in-plane magnetic field is applied both the tunneling current and the

tunneling conductance are highly suppressed.

Motivated by these results we developed a model to describe the transport

properties of ν = 1 quantum Hall bilayers. In this chapter we present the model

and compare its predictions to the experimental results.

5.2 Dynamical equations for condensate coupled to quasi-

particle currents

Let’s start from the Lagrangian (3.27) valid in the long-wavelength regime. We want

to describe low energy collective excitations. The biggest energy scale in (3.27) is

βl2. We can then assume that for the low energy excitations is mz ¿ 1. In this case

we can write m = (cosϕ; sinϕ;mz) and the Lagrangian (3.27) reduces to:

L =

∫

A
nṁ · A[m]d2r +

1

2
ρs

∫

A
|∇ϕ|2d2r + β

∫

A
m2
zd

2r − ∆t

2

∫

n cosϕd2r (5.1)

We now want to generalize this Lagrangian to include also the effect of an in-plane

component of the magnetic field. Let’s assume for definiteness B‖ = ∇ ×A with

A = B‖(0, 0, x). In this gauge A points in the direction perpendicular to the plane

and as a consequence an electron will acquire an Aharanov-Bohm phase only when it

tunnels between layers. Therefore only the tunneling will be affected by the presence

of an in-plane field. The tunneling functional in (5.1) is

Et = −
∆t

2

∫

n cosϕ d2r.

This is the semiclassical approximation to the tunneling Hamiltonian:

Ht = −
∆t

2

∫

d2r
[

Ψ†T (r)ΨB(r) + Ψ†B(r)ΨT (r)
]

.
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As it is shown in Fig. 5.5 when an electron tunnels between layers the tunneling

matrix element will acquire the phase eiQ‖x with

Q‖ ≡
2πB‖d

φ0
=

B‖d

B⊥l2
.

Going back to the semiclassical approximation we have that the tunneling part of

Φ = Β x dd

x

1

2 3

4

Figure 5.5: Process in which an electron tunnels from the top layer to the bottom
layer and back to the top layer keeping its phase coherence. A possible interpretation
of this process is that after the electron tunnels from the top to the bottom layer,
1 → 2, the resulting particle-hole travels coherently for the distance x, 2 → 3, and
then is annihilated by an opposite tunneling event 3→ 4.

the Lagrangian (5.1) in presence of in-plane magnetic field becomes:

ET =
∆t

2

∫

n cos(ϕ−Q‖x)d2r. (5.2)

For the remainder of this section it is convenient to define the phase

ϕ̃(r) ≡ ϕ(r)−Q‖x.

From (5.1), with the form of the tunneling term given by (5.2) to allow
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B‖ 6= 0 we find the following Euler-Lagrange equations:

∂ϕ̃

∂t
= −4πl2β

~
mz (5.3)

∂mz

∂t
=

∆t

2~
sin ϕ̃− 2πl2ρs

~
∇2ϕ̃ (5.4)

The right hand side of (5.3) describes precession of the the collective pseudospin

order parameter field around the z direction. The two terms on the right hand side of

(5.4) can be identified as representing the collective interlayer tunneling and the two-

dimensional supercurrent contributions to ∂mz/∂t. Notice that in equations (5.3),

(5.4) the in-plane field doesn’t appear explicitly because it just adds a constant and

a total derivative term to the energy functional. However B‖ influences the energy

indirectly through the tunneling term favoring solutions with winding. To include

damping terms we can follow the same recipe used in Chapter 4 to derive equations

(4.4). In this way we find the following equations of motion:

∂ϕ̃

∂t
= −4πl2β

~
mz − αϕṁz (5.5)

∂mz

∂t
=

∆t

2~
sin ϕ̃− 2πl2ρs

~
∇2ϕ̃+ αz ˙̃ϕ (5.6)

Finally we include a term to take into account the presence of interlayer quasiparticle

currents jqp. We assume the current jqp to be proportional to the gradient of the

chemical potential difference ∆µ between the two layers. On the other hand we

have e∆µ = 4πl2βmz and so we can write:

jqp = σz
4πl2β

e
∇mz

where σz is the quasiparticle conductivity. An estimate of σz can been obtained [45]

in the same way as done for the damping coefficients αϕ, αz. The only difference is

that to estimate σz we have to keep also terms quadratic in the wavevector when
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calculating the response function. We have σz ≈ e2/h, [45]. With the inclusion of

the contribution due to the quasiparticle currents to ∂mz/∂t we find the equations:

∂ϕ̃

∂t
= −4πl2β

~
mz −

αϕ
~

[

∆t

2
sin ϕ̃− 2πl2ρs∇2ϕ̃

]

(5.7)

∂mz

∂t
=

1

~

[

∆t

2
sin ϕ̃− 2πl2ρs∇2ϕ̃

]

− 4πl2βαz
~

mz +
8π2l4βσz
e2M0

∇2mz (5.8)

where M0 is the site-averaged magnitude of the order parameter.

5.3 Results

We now want to use equations (5.7), (5.8) to derive the I−V curve for the bilayer in

the tunneling configuration. The condensed matter theory community has struggled

for more than five years to try to explain these experiments. In some pictures, [44],

[43] at low bias the system is seen as a d.c. Josephson junction in which quantum

or thermal fluctuations in presence of disorder cause the resistivity to be non zero.

The model encoded by equations (5.7) and (5.8) is able to capture some of the

aspects of the tunneling experiment in ν = 1 quantum Hall bilayers. In particular

using this model we are able to describe the transition from stationary solutions

to time dependent solutions for the order parameter at a critical value, Vmax, of

the interlayer voltage. This model however overestimates the value of the low bias

tunneling conductance. To explain quantitatively the low bias I−V curve we have to

consider in detail the edge character of the quasiparticle currents in ν = 1 quantum

Hall bilayers as we do in section 5.4.

To fully define our model we need to set the boundary conditions. In the

remainder of this section we restrict ourselves to the one dimensional case assuming

ϕ̃, mz to depend only on x and time. Because of the symmetry of the configuration,

Fig. 5.1, we can set

µz|−L/2 =
eV

2
; µz|L/2 =

eV

2
;
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and then for mz we have the boundary conditions:

mz|−L/2 =
eV

2β
; mz|L/2 =

eV

2β
. (5.9)

We obtain the boundary conditions for ϕ requiring that no supercurrent flows in or

out of the sample:

∂ϕ

∂x

∣

∣

∣

∣

−L/2

= 0 =⇒ ∂ϕ̃

∂x

∣

∣

∣

∣

−L/2

= −Q‖;
∂ϕ

∂x

∣

∣

∣

∣

L/2

= 0 =⇒ ∂ϕ̃

∂x

∣

∣

∣

∣

L/2

= −Q‖; (5.10)

To find the I − V curve we solve equations (5.7), (5.8) with different values of the

applied bias potential V . We then calculate the current density as the time average

of jqp:

j =
4πl2βσz

e
lim
T→∞

1

T

∫ T

0

∂mz

∂x

∣

∣

∣

∣

±L/2

dt (5.11)

In this section we assume αz = 0 so that the damping of mz can only occur when

the microscopic pseudospin-polarized quasiparticle currents have finite divergence.

Let’s first look for stationary solutions. Setting the time derivatives to zero

in equations (5.7), (5.8), we find:

d2Ωz
dx2

− 1

L2z
Ωz = 0 (5.12)

d2ϕ̃

dx2
− 1

λ2j
sin ϕ̃ =

2β

αϕρs
Ωz (5.13)

where:

Lz ≡ l
√

2π~σzαϕ
e2M0 (1 + αzαϕ)

;

λj ≡ l
√

4πρs
∆t

.

λj is the equivalent in our case of the Josephson length in an extended Josephson’s
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junction. Using the boundary conditions (5.9) we can easily solve (5.12) to find:

Ωz =
eV

8πl2β cosh
(

L
2Lz

) cosh

(

x

Lz

)

(5.14)

If we now insert this solution in equation (5.7) we find:

d2ϕ̃

dx2
− 1

λ2j
sin ϕ̃ =

eV

4παϕρsl2 cosh
(

L
2Lz

) cosh

(

x

Lz

)

(5.15)

Equation (5.15), with the boundary conditions (5.10), admits solutions only up to

a maximum value, Vmax, of the applied bias potential. We find Vmax ≈ 10−4e2/εl =

10−6eV . For V < Vmax using the solution (5.14), from the expression for the current

density (5.11) we find the following linear relation:

j =
σz
2Lz

tanh

(

L

2Lz

)

V. (5.16)

In the limit of very low bias we then find the tunneling conductance

σtunnel = σz
Lc
2Lz

tanh

(

L

2Lz

)

where Lc is the length of the contact of the bilayer to the external current sources.

Assuming l = 10nm, ρs = 10−3e2/εl, β = 10−2e2/εl3, [25], ∆t = 10−6e2/εl, αϕ = 1,

σz = 1 we have

Lz ≈ l¿ L.

We then find, in the limit V < Vmax

σtunnel = σz
Lc
2Lz

.

In experiments the length Lc of the contact is much bigger than Lz ≈ l. In this
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situation we find a value for the conductance σtunnel and the maximum tunneling

current orders of magnitude bigger than the one observed experimentally. Also all

the other theories so far proposed are affected by the same problem. The explanation

of this discrepancy is the focus of the following sections in this chapter.

For values of V bigger than Vmax we must solve the time dependent equations

(5.7), (5.8). As shown in Fig. 5.6, Fig. 5.7 as we increase V past Vmax the current

density starts oscillating in time more and more so that the time average (5.11)

becomes smaller and smaller. The result is a non-monotonic I − V curve as shown

in Fig. 5.8.
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Figure 5.6: (a)Current density versus time for V slightly above Vmax. (b)Power
spectrum of j(t).

The effect of an in-plane magnetic field is to make Q‖ 6= 0. The current

voltage characteristics for Q‖ 6= 2 × 10−2 and Q‖ 6= 3 × 10−2 are shown in Fig.

5.9. We see how a small in plane field greatly suppress the maximum current and

therefore the tunneling conductivity (notice the difference in scale for the current

between Fig. 5.8 and Fig. 5.9).

We see how the I − V characteristics that we obtain reproduce qualitatively
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Figure 5.7: (a)Current density j(t) versus time for V much bigger than Vmax.
(b)Power spectrum of j(t).

the I − V characteristics obtained experimentally, lower panel of Fig. 5.3. In

particular in agreement with experiments we find:

• Non zero tunneling resistivity for V → 0;

• Non monotonic current voltage characteristics;

• Big suppression of both the tunneling current and tunneling conductivity in

presence of an in-plane magnetic field;

• Value of the voltage for which we have the maximum current of the right order

of magnitude.

The results presented in this section describe a situation in which a quasiparticle

current injected at one end in the top layer causes a non zero divergence of the

supercurrent ρs∇ϕ that is counterbalanced in the bulk of the bilayer by coherent

tunneling. At the other end of the sample the divergence of the supercurrent returns

to zero being converted back to a quasiparticle current that is then extracted from
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Figure 5.8: Current voltage characteristic for the case when no in plane field is
present.

the bottom layer. In our model the finite tunneling resistivity is due to the edge

resistance encountered by the quasiparticles. Because the charge current in and out

of the system has to be necessarily carried by quasiparticles the tunneling resistance

is always non zero even when d < l and the bilayer is in the broken symmetry

ground state. The maximum voltage Vmax is set by the maximum V for which we

have stationary solutions and the corresponding maximum current density is equal

to σzVmax/2Lz. The non-monotonic character of the I − V curves is connected to

the fact that for V > Vmax we have non-stationary solutions and as a consequence

the time averaged current is always smaller than for V = Vmax. The big suppression

of the tunneling current in presence of an in-plane magnetic field can be understood

considering that because of the boundary conditions (5.10) Q‖ 6= 0 decreases the

maximum quasiparticle current for which we have a stationary solution. However

the results presented in this section also show the limits of the model described in

section 5.2: we find a tunneling current density and conductivity that are both much

bigger than the ones observed in experiments. In the following sections we address

75



0.000 0.001 0.002 0.003 0.004
eV [e

2
/εl]

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

j [
A

/m
]

I−V characteristic

Q||=2.*10
−2

Q||=3.*10
−2

Figure 5.9: Current voltage characteristic for in plane field different from zero.

this discrepancy.

5.4 Edge state interlayer transport

Since a quantum Hall effect occurs in parallel transport when the interlayer transport

conductivity is very high (d . l) — which we believe means that we have interlayer

phase coherence — then we know that the system is incompressible. We have seen in

Chapter (2) that in an incompressible system only at the edge there are empty states

crossing the Fermi energy and as a consequence any current will be also localized

at the edges. In the previous section we assumed that the whole condensate was

taking part in the dynamics driven by the quasiparticle currents. In reality the

quasiparticles can only live at the edges of the incompressible regions and then only

these edges will be driven by the coupling to quasiparticles currents. In this section

we refine our theory to take into account that in a ν = 1 quantum Hall bilayer only

the edges of the incompressible regions can give a contribution to charge transport

properties.
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In the ordered state, the quasiparticles in the bulk of the quantum Hall bilayer

experience an interlayer tunneling amplitude that includes a self-energy contribution

which can be represented by an in-plane pseudospin effective magnetic field:

∆x(X) = ∆t +
1

L

∑

X

nX′FD(X −X ′) cos(ϕX′)

∆y(X) =
1

L

∑

X′

nX′FD(X −X ′) sin(ϕX′) (5.17)

where X = `2k labels a guiding center state which is delocalized along the edge of

the system, FD, defined in Chapter 3, is the interlayer exchange integral between

guiding centers X and X ′ and nX′ is the guiding center occupation number. The

field ∆ ≡ (∆x,∆y, 0) is the analogous of the magnetic field that real spins would

experience in an easy plane ferromagnet. In the absence of a transport current, the

quasiparticle pseudospin will align with the effective magnetic field for each guiding

center:
cos(ϕX)

sin(ϕX)
=

∆x(X)

∆y(X)
. (5.18)

It is easy to verify that in this case the only solution to Eq.( 5.18) is sin(ϕX) ≡ 0;

the small single-particle tunneling amplitude selects the phase difference between

the two layers and the effective tunneling amplitude is enormously enhanced by

interactions.

When the system carries a current, the quasiparticle Schröedinger equation

must be solved with scattering boundary conditions, incident from the high chemical

potential contact. Under these circumstances, the pseudospin orientation need not

match that of the effective magnetic field experienced by the quasiparticles. For a

given orbital the pseudospin polarization will vary along the edge and depend on

the random potential along the edge of the system. Alternately on a ν = 1 chiral

edge, the Schröedinger equation can be mapped to that of a zero-dimensional spin
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Figure 5.10: Schematic illustration of pseudospin transfer torques in quantum Hall
bilayers. Each orbital makes a contribution to the pseudospin exchange field that is
in the direction of its pseudospin orientation. Unlike equilibrium orbitals, transport
orbitals do not align with their pseudospin fields, giving rise to a pseudospin transfer
torque. Large interlayer conductance occurs when the pseudospin transfer torque
can be canceled by a pseudospin torque due to the bare interlayer tunneling term
in the Hamiltonian.

in a time-dependent field, since the transport electrons move in one direction along

the edge at the edge magnetoplasmon velocity vemp ∼ 2×106ms−1. femp = vemp/P

where P is the sample perimeter is the fundamental edge magnetoplasmon frequency.

Averaging along the edge, the rate of spin precession from up (top layer) to down

(bottom layer) is proportional to the mean torque that acts on the planar spin. The

necessity of this torque implies that the in-plane pseudospin orientation can not be

equal to the quasiparticle effective magnetic field.
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For the interlayer current density jtr of the transport electrons we have:

jtr = g
1

ttransit
= g

vemp
L

. (5.19)

whereg is the probability that an electron injected in the top layer will make its way

to the bottom layer, and ttransit = L/vemp is the time required for an edge electron

to travel along the sample, L being the distance between the contacts. On the other

hand we have:

jtr =
∂Str
∂t

=
1

~
Str ×

δE

δm

∣

∣

∣

∣

Xe

(5.20)

where Str is the pseudospin of the transport quasiparticles and Xe is the guiding

center at the edge. Assuming mz ¿ 1 and neglecting the contribution due to the

bare tunneling to δE/δm from (5.20) we find:

jtr =
∆E
QP

~
sin(ϕtr − ϕc). (5.21)

In Eq. (5.21) ϕc ≡ tan−1(∆y/∆x) is the orientation of the pseudospin effective field

at the edge, ∆E
QP is the magnitude of the exchange effective magnetic field at the

edge of the system:

∆E
QP ≡

1

L

∑

X′<X

FD(X −X ′).

Since g < 1, ∆E
QP ∼ 10−4eV [46], [47] and L ∼ 10−2cm in typical samples, from

equations (5.19), (5.21) it follows that δϕ ≡ ϕtr−ϕc is small and that sin(δϕ) ≈ δϕ.
In the presence of current induced pseudospin-torques the pseudospin effec-

tive magnetic field seen by the quasiparticles in the bilayer at the edge Xe of the
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incompressible region becomes:

∆x(Xe) = ∆t +
1

L

∑

X<Xe

FD(X −X ′) cosϕX′ +
Ntr

L
FD(0) cos[ϕc + δϕ] (5.22)

∆y(Xe) =
1

L

∑

X<Xe

FD(X −X ′) sinϕX′ +
Ntr

L
FD(0) sin[ϕc + δϕ] (5.23)

where Ntr = LeV/(hvemp) is the number of edge states in the narrow transport

window with energy width eV and V is the applied interlayer bias voltage. The

bias voltage is assumed to be small enough that the guiding center width of the

transport window is much smaller than the range ` [46], [47] of the FD(X − X ′)
exchange integral. Neglecting the variation of ϕ from its maximally deflected value

at the edge to its value deep in the bulk (ϕ = 0) since this occurs on a length scale

(`
√

∆E
QP /∆t ) we can rewrite equations (5.22), (5.23) in the form

∆x(Xe) = ∆t +∆E
QP cos(ϕc) +

FD(0)Ntr

L
cos(ϕc + δϕ)

∆y(Xe) = ∆E
QP sin(ϕc) +

FD(0)Ntr

L
sin(ϕc + δϕ). (5.24)

The terms proportional to ∆E
QP in Eq.( 5.24) are edge self-energies in the absence of

transport currents and the terms proportional to FD(0) are the pseudospin torque

contributions.

We propose that the tunneling anomaly in quantum Hall bilayers occurs

when it is possible to achieve a self-consistent solution of the mean-field equations

in the presence of current induced pseudospin-torques i.e. when the pseudospin of

the quasiparticles inside the bilayer aligns with the effective pseudospin field ∆:

S(Xe) ‖∆. (5.25)

In the limit mz ¿ 1 we have S(X) = (cosϕX , sinϕX , 0) and then from the condition
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(5.25) and equations (5.24) we find:

∆t sin(ϕc) =
FD(0)Ntr

L
δϕ (5.26)

and hence that the maximum value of the bias voltage for which a time-independent

solution of the mean-field equations exists is

Vmax =
∆tvemph

eFD(0)δϕ
=

2π∆t∆
E
QPL

egFD(0)
. (5.27)

Since [46], [47] FD(0) ∼ e2/(ε) ∼ 10−2eV`, it follows that the width of the

low-bias tunneling anomaly at the lowest temperatures when the quantum Hall effect

is most strongly developed should be ∼ 10−6eV. This results is similar to the one

found in the previous section and is consistent with experiments. For V > Vmax we

have time dependent solutions and then, as we saw in the previous section, the time

averaged current will be smaller than the current corresponding to V = Vmax.

When a time independent solution of the mean-field equations is possible, the

conductance is given simply by the Landauer-Buttiker [48], [49],[50],[51] scattering

theory picture of transport:

σtunnel = g
e2

h
.

In this picture then assuming that an electron injected in the top layer has a max-

imum 50% chance of being found in either layer at later times we have that the

maximum interlayer conductance is:

σtunnel =
e2

2h
.

With this value of the conductance we find

Imax =
e2

2h
Vmax =

∆E
QP∆tL

~FD(0)
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Both these values are very close to the values measured in the tunneling experiments

performed on the highest quality samples and at the lowest temperatures.

We can conclude that the theory presented in this section is able to quan-

titatively describe the low-bias anomaly of the tunneling conductance for ν = 1

quantum Hall bilayers. It also gives the right order of magnitude for maximum

tunneling current and Vmax. It greatly improves the model presented in section 5.2

by taking into account that only the edges of the incompressible regions partici-

pate in the dynamics and then in the transport of charges between the layers when

quasiparticle currents are injected in the system.

5.5 Inclusion of disorder

In the absence of disorder g should approach 0.5 when the pseudospin precession

length Lpr ≡ vemp ~/∆E
QP is less than L, i.e. when ∆E

QP is larger than ∼ 10−5eV ,

a condition that we expect to be satisfied quickly once the ordered state is en-

tered. Instead g is almost always substantially smaller than 1 in experiment. We

ascribe this behavior to disorder, which is assisted in suppressing interlayer tunnel-

ing by the large edge magnetoplasmon velocity. Even in bilayer samples for which

large purely single-particle interlayer tunneling occurs, the interlayer conductance

in the quantum Hall regime ends up being much smaller [52, 53] than naively ex-

pected. Electrons traveling rapidly (at velocity vemp) along the edge see differences

in the random disorder potential in the two layers as a rapidly varying ẑ direction

pseudospin field. The typical rate at which the pseudospin random field varies is

vempVdis/Ldis where Vdis and Ldis are the typical size and correlation length of the

potential difference between the layers. In the bulk of the two-dimensional electron

system these random pseudospin field fluctuations can be screened out [54, 55, 25]

by tilting the pseudospin slightly out of the easy plane as we saw in chapter 4. Lev-

els cross and electrons following the adiabatic path will cross between layers when
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the disorder potential changes sign as illustrated in Fig.( 5.11). We can estimate

g as the product of the number of attempts —L/Ldis — and the probability P of

crossing between layers in a given attempt [56, 57]:

P = 1− exp

(

−
∣

∣

∣

∣

∣

2(∆E
QP )

2

~vempVdis/Ldis

∣

∣

∣

∣

∣

)

.

so that we find:

g =
L

Ldis

[

1− exp

(

−2(∆E
QP )

2Ldis

~vempVdis

)]

∼
2(∆E

QP )
2L

~vempVdis
. (5.28)

The small argument expansion for the Landau-Zener tunneling formula is justified

by experiment which tells us that the tunneling probability per attempt is always

small. Combining Eq.( 5.28) and Eq.( 5.27) we find that

Vmax =
∆t

∆E
QP

hVdisvemp
eFD(0)

. (5.29)

In our theory, the temperature dependence of the transport anomaly follows from

thermal fluctuations in the condensate phase which reduce the order parameter and

∆E
QP [37, 9]. The increase [2, 40] of Vmax by a factor of approximately 40 between 20

mK and 0.3 K is consistent with the size of suppression that is expected, although the

detailed behavior is certainly disorder-dependent and sample specific. The decrease

[2, 40] in zero-bias conductance by a factor of 2000 over the same temperature is then

consistent with the predictions of Eq.( 5.28). Our theory also accounts qualitatively

for in-plane field dependence of the anomaly which is marked [2, 40] by a strong

decrease in conductance and with little change in voltage width. This behavior

is predicted by our theory since ∆E
QP and ∆t have similar field dependence, both

dropping [46, 9, 58] by a factor ∼ 1 when B‖/B⊥ ∼ d/`.
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Figure 5.11: Schematic illustration of the suppression of the interlayer tunneling
by disorder. Differences in the random potential in the two layer gives rise to
substantial pseudospin fields in the ẑ direction Vdis which cannot be screened at the
edge of the system. Along much of the edge, Vdis is larger than the in-plane coherence
induced exchange field ∆E

QP . When the disorder potential difference changes sign,
quasiparticles will cross between layers if they follow the adiabatic path. Because of
the high velocity of edge particles, quasiparticles are likely to Landau-Zener tunnel
to the higher energy state and remain in the same layer.

Finally we explore the possibility that the thermal fluctuations of the pseu-

dospin order parameter can themselves add a source of dissipation because of ther-

mally induced phase slips. For this purpose we assume the external interlayer current

to be present across the all phase coherent region of area A. With this assumption

we are able to estimate only grossly the ratio KBT/nA at which the thermally in-

duced phase slips are relevant for the low bias conductance. As a matter of fact

this assumption is an oversimplification because as we have seen in the previous

section the quasiparticle current is only present at the edges of the incompressible

regions. By doing an analysis assuming the interlayer current to be present only at

the edges of the sample we would find a much higher value of the ratio KBT/nA for

the thermally induced phase slips to give an important contribution to the interlayer

resistance.

Let’s consider a single region with phase coherence. Assuming the pseudospin
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order parameter to be uniform inside this region we can reduce the dynamical equa-

tion form inside this region to simple ordinary differential equations. Starting from

equations (5.5), (5.6), valid in the limit mz ¿ 1, for a uniform m we find:

∂ϕ

∂t
= −4πl2β

~
mz − αϕṁz

∂mz

∂t
=

∆t

2~
sinϕ (5.30)

where we have assumed αz = 0. If we include an external interlayer current J and

thermal fluctuations equations (5.30) become:

∂ϕ

∂t
= −4πl2β

~
mz − αϕṁz + yϕ

∂mz

∂t
=

∆t

2~
sinϕ− J (5.31)

where yϕ is a random term that describes thermal fluctuations. From the fluctuation

dissipation theorem we know that yϕ must have the following Gaussian Statistical

properties:

〈yϕ〉 = 0;

〈yϕ(t)yϕ(t′)〉 =
2KBT

nA
αϕδ(t− t′).

By setting the value of J and then calculating the potential

V =
4πβl2

e
lim
t→∞

1

t

∫ t

0
mz(t

′)dt′ (5.32)

we can find the I − V characteristics. Equations (5.31) can be combined in a single

equation for ϕ:

∂2ϕ

∂t2
= −4πl2β∆t

2~2
sinϕ+

4πl2β

~
J − αϕ

(

∆t

2~
sinϕ− J

)

+ yϕ. (5.33)
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Equation (5.33) is a Langevin equation. Apart from the damping term proportional

to αϕ and the random force yϕ, equation (5.33) is the same equation describing the

dynamics of a particle in a dashboard potential

U = −4πl2β∆t

2~2
cosϕ− 4πl2β

~
Jϕ,

subject to the random force yϕ. Because of the tilting of the potential U due to

J , if the random force yϕ is big enough ϕ on average will keep growing jumping to

lower minima of U . The exact magnitude of the random force for this to happen

depends on J , for small values of J we can see from equation (5.33) that is of the

order of 2πl2β∆t/~2. This phase slipping process gives rise to a non zero average

for the time derivative of ϕ. But, as we can see from (5.31) a non zero average of

∂ϕ/∂t implies a non zero average of mz and then, through (5.32) a non zero voltage.

In analogy to what happens in a small Josephson junction [59], [60] the thermally

induced phase slips cause an increase of the interlayer potential. We find that for

a temperature of 50 mK the thermally induced phase slips could give an important

contribution to the interlayer voltage if the linear size of the phase coherent region

is of the order or smaller than the Josephson length λj .

5.6 Conclusions

Our theory sees interlayer tunneling phenomena as partially analogous to both tun-

neling across a Josephson junction and spin-transfer phenomena in ferromagnetic

metals [61, 62, 63, 64, 65]. The key difference between these two examples of current-

biased order parameter manipulation is that the bias is applied by the supercon-

ducting condensate in the former case and by dissipative quasiparticles in the latter.

Tunneling in quantum Hall bilayers is an example of (pseudospin) transfer, with the

additional feature that the transport quasiparticles are localized at the edge of the
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system when order is strong and the quantum Hall effect firmly established.

The dc Josephson effect occurs because the quasiparticles are in equilibrium

with the condensate when Ic sin(ϕ) = Ibias; the current bias influences microscopic

self-energy of the quasiparticles so that the phase change across the junction is no

longer zero when the quasiparticles density matrix is at equilibrium. Current then

flows across the junction without dissipation.

In ν = 1 quantum Hall bilayer tunneling experiments the situation is very

similar to the one of spin-transfer phenomena in ferromagnetic metals. The spin-

transfer torque term in the equation of motion for the magnetization in presence of

nonequilbrium transport spins, like the bias term in the Josephson junction case,

arises[66] microscopically from a change in the self-energy experienced by the quasi-

particles. In the presence of the transport current the magnetic nanoparticle quasi-

particles are in equilibrium not when the in-plane magnetization is aligned with

the external field, but when its orientation in the easy-plane direction is displaced

from the field direction by an angle proportional to the current. The key difference

between a current-biased Josephson junction and a current-biased nanomagnet, is

that the bias field experienced by the quasiparticles is applied in one case by the

condensate, and in the other case by transport quasiparticles that are held out of

equilibrium by a bias voltage. The current in spin-transport devices and tunneling

experiment in ν = 1 quantum Hall bilayers is always dissipative.
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Chapter 6

Dynamics of magnetization

coupled to a thermal bath of

elastic modes

6.1 Introduction

In the previous chapter we have studied the dynamics of the order parameter that

characterizes the broken symmetry ground state of ν = 1 quantum Hall bilayers

taking into account its coupling to quasiparticle currents. Using the pseudospin

mapping we saw the deep analogy between the order parameter in a ν = 1 quantum

Hall bilayer and the magnetization, M, in an easy plane ferromagnet. We saw

however, in section 4.1, that if we include damping the equation of motion for the

order parameter of a quantum Hall bilayer and the magnetization in a ferromagnet

are different: in the quantum Hall bilayer the damping is anisotropic whereas the

phenomenological damping usually adopted to describe the damped dynamics of the

magnetization is isotropic. We also saw how both cases differ from the case of a

damped Josephson junction. It is natural to wonder about the microscopic reason
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of these differences.

At the end of chapter 3 we saw that the damping of the collective modes

in a quantum Hall bilayer is ultimately due to the presence of disorder that to a

good approximation commutes with the z component of the pseudospin. This is

the microscopic reason of the anisotropy of the damping in quantum Hall bilayers:

αϕ 6= 0, αz ≈ 0. The problem of the damping of the magnetization is a long

standing one [67],[68], [69], [70] whose details are still not completely understood.

The problem arises from the fact that different mechanisms for the damping of the

magnetization are possible and in some cases a detailed description can be achieved

only by taking all of them into account. In this chapter we consider the case when

the coupling of the magnetizationM to elastic modes is the main source of damping

for M. One of the main results of this chapter is that we show, starting from the

physical coupling of the magnetization to the elastic modes, that in general also for

the order parameter in a ferromagnet the damping can be non isotropic. This fact

can be of notable importance when we try to control the magnetization, either using

spin currents as in spintronic devices or by more conventional means.

Through the fluctuation-dissipation theorem we have that in thermal equilib-

rium there is a very simple connection between damping and thermal fluctuations.

A knowledge of the details of the damping properties will then also allow us to char-

acterize in detail the thermal fluctuations. The standard approach toward modeling

magnetization fluctuations is to start from the Landau-Lifshitz-Gilbert-Brown equa-

tion [71]
∂Ω

∂t
=

γ

Ms
Ω×

[

δE

δΩ
+ h

]

+ αΩ× ∂Ω

∂t
, (6.1)

where γ is the gyromagnetic ratio, Ω =M/Ms is the magnetization direction, M is

the magnetization, MS the magnitude of the saturation magnetization, E the free

energy and h a random magnetic field. This equation assumes that the character-

istic time scale of the magnetization dynamics is longer than the typical time scale
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of the environment that is responsible for the dissipative term proportional to α. In

practice the use of this equation is partially inconsistent, resulting in some practical

limitations to its application [72, 73]. The source of the problem is that the dissipa-

tion is local in time. Because of the fluctuations dissipation theorem, this implicitly

requires the random field to have white noise properties i.e. to have zero auto-

correlation time. Since the contribution of the random field to the magnetization

dynamics γΩ× h depends on Ω, equation (6.1) exhibits white multiplicative noise

[74]. It follows that in order to integrate equation(6.1) reliably we need to track the

evolution of Ω on very short time scales for which the white noise approximation

for h is likely to be unphysical.

The problem of the dynamics of the magnetization when coupled to elastic

modes has been studied before, see for example the book by Sparks [69] and refer-

ences therein. In most of the previous works a damping coefficient was calculated

by means of the Fermi golden rule and for the case of an infinite ferromagnet. As

we show in the next section the Fermi golden rule has some limitations. Also with

the increasing advances of nanotechnology smaller and smaller magnetic devices

are being realized for which the bulk approximation is of limited applicability. In

this chapter based on a Caldeira-Leggett [10] approach, we present a theory that

overcomes some of the limitations of the Fermi golden rule and that is applicable

to magnetic systems of any size (and shape) for which a semiclassical approach is

valid.

6.2 Limits of applicability of the Fermi golden rule

In this section we present the limits of the Fermi golden rule to describe damped

dynamics. We consider a simple system formed by a central harmonic oscillator cou-

pled to a bath of harmonic oscillators. We first derive the equation of motion of the

central oscillator integrating out the reservoir harmonic oscillators in the Caldeira-
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Legget approach. We then use the Fermi golden rule to do find the expression for

the relaxation rate for the central oscillator. At the end, by comparing the results

obtained with the two approaches we find the limits of applicability of the Fermi

golden rule to describe dissipation.

Let (q, p) be the canonical coordinates of a central harmonic oscillator cou-

pled to a reservoir of harmonic oscillator with coordinates (qα, pα). The total Hamil-

tonian will be:

H = Hs(q, p) +HR(qα, pα) +HI(q, qα)

where

Hs =
p2

2m
+
ω2m

2
q2

is the Hamiltonian for the isolated central oscillator

HR =
∑

α

(

p2α
2mα

+
ω2αmα

2
q2α

)

is the Hamiltonian for the isolated reservoir and

HI = −
∑

α

cαqαq

is the interaction Hamiltonian that couples the central oscillator to the reservoir

degrees of freedom.

For the reservoir degrees of freedom we then find the following dynamical:

equations:

q̇α =
pα
mα

ṗα = −ω2αmαqα + cαq
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Integrating these equations:

qα = qα(0) cos(ωαt) +
pα(0)

mαωα
sin(ωαt) +

cα
mαωα

∫ t

0
dt′ sin[ωα(t− t′)]q(t′) (6.2)

For the the central, (q, p), oscillator we have:

q̇ =
p

m

ṗ = −ω2mq +
∑

α

cαqα

From which we find:

q̈ = −ω2q + 1

m

∑

α

cαqα (6.3)

If we now use equation (6.2) from (6.3) we find:

q̈ = −ω2q + 1

m

∑

α

cα

[

qα(0) cos(ωαt) +
pα(0)

mαωα
sin(ωαt)

]

(6.4)

+
1

m

∑

α

c2α
mαωα

∫ t

0
dt′ sin[ωα(t− t′)]q(t′)

Integrating by part the last term we find:

q̈ = −ω2q + 1

m

∑

α

cα

[

qα(0) cos(ωαt) +
pα(0)

mαωα
sin(ωαt)

]

(6.5)

− 1

m

∑

α

c2α
mαω2α

∫ t

0
dt′ cos[ωα(t− t′)]q̇(t′)

+
1

m

∑

α

c2α
mαω2α

[q(t)− cos(ωαt)q(0)]

The last term is the sum of a frequency renormalizing term and of a term that

depends on the initial condition. Because we don’t want the coupling to the reservoir

to cause renormalization of the central oscillator frequency we should neglect the

renormalizing term. Also, without loss of generality, we can neglect the term that
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depends on the initial state. We then finally find:

q̈ = −ω2q + 1

m

∑

α

cα

[

qα(0) cos(ωαt) +
pα(0)

mαωα
sin(ωαt)

]

(6.6)

− 1

m

∑

α

c2α
mαω2α

∫ t

0
dt′ cos[ωα(t− t′)]q̇(t′)

Let

γ(t− t′) = Θ(t− t′) 1
m

∑

α

c2α
mαω2α

cos[ωα(t− t′)]

and

y =
1

m

∑

α

cα

[

qα(0) cos(ωαt) +
pα(0)

mαωα
sin(ωαt)

]

Now if we take the average with respect to the initial states, qα(0), pα(0), using the

reservoir classical equilibrium density we find:

〈y(t)t(t′)〉 = 2KBT

m
γ(t− t′)

and in Fourier space:

〈y2(ω)〉 = 2KBT

m
γ(ω) (6.7)

This is the classical form of the Fluctuation Dissipation Theorem. In terms

of γ and y the dynamical equations for q will be:

q = −ω2q −
∫ t

0
dt′γ(t− t′)q(t′) + y (6.8)

For this model is quite simple to do a quantum mechanical treatment in terms

of path integrals and effectively integrate out the reservoir degrees of freedom, [10],

[75]. Even in the quantum mechanical treatment the average expectation value for

q satisfies equation (6.8). In the semiclassical limit in which only the Gaussian

fluctuations are taken into account the only difference from the classical treatment
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and the quantum mechanical one appears in the modification of equation (6.7) that

becomes:

〈y2(ω)〉 = ~ω
m
γ(ω) coth

(

~ω
KBT

)

(6.9)

It’s easy to see that (6.9) reduces to (6.7) in the limit ~→ 0

The point that we want to make here is that the damping kernel γ doesn’t

depend on the temperature and also doesn’t depend on the frequency difference

|ωα − ω|. In particular we find that if the main harmonic oscillator is not in the

ground state it will be damped to lower energy states even at 0 temperature and

independent of the difference |ωα−ω|, as long as it’s coupled to the reservoir degrees

of freedom. The only thing that depends on the temperature is the amplitude of

the thermal fluctuations.

Let’s now briefly review, for the same system, the Fermi golden rule approach.

Using the standard canonical transformation:

a ≡
√

mω

2~

(

q +
ip

mω

)

; a† ≡
√

mω

2~

(

q − ip

mω

)

;

we can rewrite the Hamiltonian in the form:

H = ~ω

(

a†a+
1

2

)

+
∑

α

~ωα

(

a†αaα +
1

2

)

+HI

with

HI =
~
2
(mω)−1/2

∑

α

(mαωα)
−1/2cα

[

aαa+ aαa
† + a†αa+ a†αa

†
]

Let’s now use the Fermi golden rule to estimate the transition probability per unit
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time, w−, from the state |n;nα〉 to the state |n− 1;nα + 1〉. We have:

w− =
2π

~

∑

α

|〈n− 1;nα + 1|HI |n;nα〉|2δ(~ω − ~ωα) (6.10)

=
π~
2

∑

α

c2α
mmαωωα

n(nα + 1)δ(~ω − ~ωα) (6.11)

Similarly for the transition probability per unit time, w+, from the state |n;nα〉 to
the state |n+ 1;nα − 1〉 we find:

w+ =
π~
2

∑

α

c2α
mmαωωα

(n+ 1)nαδ(~ω − ~ωα)

Therefore the net change of the central oscillator occupation number will be given

by:
dn

dt
= w+ − w− = −

∑

α

π~c2α
2mmαωαω

(n− nα)δ(~ω − ~ωα) (6.12)

In order to estimate the relaxation rate Γ we then assume:

dn

dt
= −Γ(n− n) (6.13)

where n is the thermal equilibrium distribution function. In order to proceed further

we now assume nα = nα. Because of the energy delta function in (6.12) we can then

assume nα = n. Comparing (6.12) with (6.13) we then find:

Γ =
∑

α

π~c2α
2mmαωαω

δ(~ω − ~ωα) (6.14)

We can compare this result to the expression for γ(t− t′), found previously, in the

limit t→ t′, ω → ωα.

We then see that according to (6.14) the relaxation rate depends on the

difference |ω − ωα|. As a consequence, for example, if we have discrete modes and
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for any α is ωα 6= ω equation (6.14) tells us that there won’t be any damping of

the central oscillator excited state. But this is obviously wrong because for example

the state |n > 0; 0〉 is obviously not an eigenstate of the total Hamiltonian and as

a consequence it cannot be a stationary state. The contradiction is resolved if we

recall that in the derivation of the Fermi golden rule it is assumed that the transition

probability (w−, w+ in our notation) is time independent. But this is true only if

the energy difference between the initial state and the final state is infinitesimally

small. Therefore if we have discrete energy levels we cannot use the Fermi golden

rule. Also note that in deriving (6.14) we had to assume the reservoir to be in

thermal equilibrium (nα = nα). In the derivation of γ given at the beginning we

didn’t have to make this assumption and we used the fact that the reservoir was in

thermal equilibrium only to find the correlation of the random force. The fact that

in order to find Γ we had to assume nα = nα implies that we can only use the Fermi

golden rule when the relaxation times are bigger than the thermalization time of the

reservoir, ~/KBT . This fact in particular makes the Fermi golden rule inapplicable

in the zero temperature limit. Summarizing the limits of applicability of the Fermi

golden rule are:

• We must have a continuous distribution of initial and final states;

• The relaxation time must be bigger than the thermalization time ~/KBT ;

• We must be in a situation in which we can use the Born approximation;

• We can only use it in the limit of applicability of the Markow approximation.

The last point tells us that we can us the Fermi golden rule only for situation for

which we can assume the damping kernel γ(t, t′) to be a Dirac’s delta : γ(t, t′) ∝
δ(t− t′). The use of the Fermi golden rule doesn’t allow us to find a damping kernel

nonlocal in time and then doesn’t allow a correct description of colored noise.
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The fact that the damping kernel doesn’t depend on the temperature can

be understood considering that in our toy model the coupling between the central

harmonic oscillator and the reservoir degrees of freedom is always present, at any

temperature. Using the method shown in the first part of these notes we can assume

the expression of γ to be valid all the way to 0 temperature. If the reservoir in the

initial state is at 0 T and the central oscillator is in an excited state, because of

the coupling, the motion of the central oscillator will excite the reservoir degrees of

freedom with the final result of: damping of the central oscillator motion, increase

of the temperature of the reservoir.

6.3 Equation of motion of the magnetization when cou-

pled to a thermal bath of elastic modes

Calling qn the degrees of freedom of the reservoir, we consider the following form

for the total Lagrangian:

L = LS [Ω(x), Ω̇(x)] + LR[qn, q̇n] + LI [Ω(x), qn]−∆L[Ω(x)], (6.15)

where LS [Ω(x), Ω̇(x)] is the Lagrangian that describes the dynamics of the magneti-

zation when not coupled to external degrees of freedom, LR[qn, q̇n] is the Lagrangian
for the the reservoir and LI [Ω(x), qn] is the interaction Lagrangian that couples the

magnetization to the reservoir degrees of freedom. The term ∆L[Ω(x)] is a counter

term that depends on Ω and the parameters of the reservoir but not on the dy-

namic variables of the reservoir [10, 75]. This term is introduced to compensate a

renormalization of the energy of the system caused by its coupling to the reservoir

[10].

The Landau-Liftshitz equations for the decoupled system magnetization fol-
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low from the magnetic Lagrangian,

LS =

∫

VM

[

Ms

γ
A[Ω] · Ω̇− Es[Ω]

]

dx, (6.16)

where A is a vector field defined by the equation: ∇Ω × A[Ω] = Ω, ES [Ω] is

the magnetic free energy functional, VM the volume of the ferromagnet and γ the

gyromagnetic ratio. We model the reservoir as a set of classical degrees of freedom:

LR =
1

2

∑

n

mnq̇
2
n − ER(qn). (6.17)

The Euler-Lagrange equations for the total Lagrangian (6.15) yield the following

coupled dynamical equations:

mnq̈n =
∂

∂qn
[LR(qn, q̇n) + LI [Ω, qn]] (6.18)

∂Ω

∂t
=Ω× γ

Ms

δ

δΩ
[ES [Ω, Ω̇]− LI [Ω, qn] + ∆L[Ω]]. (6.19)

When LI is linear in the coordinates of the bath, we can formally integrate (6.18)

to get q(n)(t) as a function only of the initial conditions and Ω and then insert the

result in (6.19) to eliminate the reservoir coordinates from the dynamical equations

for Ω, integrating out the reservoir degrees of freedom. An example of the applica-

tion of this procedure for a quantum mechanical model of the interaction between

magnetization and reservoir degrees of freedom can be found in Ref. [76].

If we consider only long wavelength vibrations we can treat the lattice as a

continuous medium and use results from elasticity theory. The free energy, ER, of

the elastic medium can then be expressed in terms of the strain tensor ui,j ,

uij ≡
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)
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where u is the displacement vector field.

We will be interested in applying our results to polycrystalline elastic media

which can be treated as isotropic to a good approximation. (It’s quite straightfor-

ward, albeit quite tedious, to extend our results to the case of non-isotropic media

with specific lattice symmetries). For isotropic elastic media it follows from general

symmetry considerations that, to lowest order, we can express the magnetoelastic

energy in the form, [77]

EI = B1

3
∑

i,j=1

∫

VM

ΩiΩjuijdx (6.20)

where B1 is the magnetoelastic coupling constant. For the case of soft ferromagnet

thin films, the main contribution to the magnetoelastic energy will be given by the

magnetostatic energy dependence on strain. This contribution to EI is normally

referred as the the form effect [78]. The constant B1 can be extracted from magne-

tostriction data. For an isotropic elastic medium with isotropic magnetostriction,

λ, we have [77] that

B1 =
3

2
λ

E

2− σ , (6.21)

where E is the Young’s modulus and σ the Poisson’s ratio.

The Lagrangian for the reservoir LR is,

LR =
1

2

∫

V
ρ u̇2dx− ER, (6.22)

where ρ is the mass density, V the total volume of the elastic medium (magnetic

film plus substrate) and ER is given by [79]:

ER =

∫

V





E

2(1 + σ)

3
∑

i,j=1

u2ij +
σE

2(1 + σ)(1− 2σ)

3
∑

i=1

u2ii.



 dx (6.23)
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The equation of motion for the displacement will then be,

ρ
∂2u

∂t2
= − δ

δu(x)
(ER[u] + EI [Ω,u]). (6.24)

It will prove useful to expand u in terms of the elastic normal modes f (n):

u =
∑

n

q(n)(t)f (n)(x) (6.25)

where the functions f (n) satisfy the boundary conditions appropriate for u and

satisfy:

δER[f
(n)]

δf (n)(x)
= ω2nρf

(n)(x); n ∈ N (6.26)

1

M

∫

V
ρf (n)(x) · f (m)(x)dx = δnm (6.27)

where M is the total mass, M ≡
∫

V ρdx.

In terms of the degrees of freedom, q(n), we have:

LI = −EI = −B1

∑

n

q(n)
∑

i,j

∫

VM

ΩiΩjf
(n)
ij dx (6.28)

with

f
(n)
ij ≡

1

2

(

∂f
(n)
i

∂xj
+
∂f

(n)
j

∂xi

)

.

We then see that the interaction Lagrangian is linear in the coordinates q(n), with

coupling constants:

c(n)[Ω] ≡
∑

i,j

∫

VM

ΩiΩjf
(n)
ij dx (6.29)

This property will allow us to integrate out the reservoir degrees of freedom to obtain

an equation for the dynamics of the magnetization in term of Ω alone.

Let’s first discuss the dynamics of the reservoir degrees of freedom q(n). Using
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equations (6.24)-(6.27) we find the dynamical equations:

q̈(n) = −ω2nq(n) −
B1

M
c(n)[Ω] (6.30)

Integrating (6.30) we find

q(n)(t) =q(n)|0 cos(ωnt) +
q̇(n)|0
ωn

sin(ωnt)

− B1

Mωn

∫ t

0
sin(ωn(t− t′))c(n)[Ω(t′)]dt′, (6.31)

where q(n)|0 and q̇(n)|0 are the initial values of q(n) and q̇(n) respectively. The

coupling of the magnetization to the reservoir will cause damping and frequency

renormalization. In order to be able to separate the two effects is useful to integrate

the last term on the right hand side of (6.31) by parts obtaining:

q(n)(t) =q(n)|0 cos(ωnt) +
q̇(n)|0
ωn

sin(ωnt)

− B1

Mω2n
c(n)[Ω(t)] +

B1

Mω2n
c(n)[Ω(0)] cos(ωnt)

+
B1

Mω2n

∫ t

0
dt′



cos(ωn(t− t′))
∫

VM

δc(n)

δΩ

∣

∣

∣

∣

∣

x′,t′

· ∂Ω
∂t′

∣

∣

∣

∣

x′
dx′



 . (6.32)

Using the expression of the interaction Lagrangian given by (6.28) and the definition

of the coupling constants c(n) we have:

δLI
δΩ

= −B1

∑

n

q(n)
δc(n)

δΩ
. (6.33)

Combining equations (6.19), (6.32) and (6.33) for the dynamics of the magnetization
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we find:

∂Ω

∂t
=Ω× γ

Ms

δES
δΩ

+Ω× γ

Ms

δ∆L(Ω)

δΩ

+Ω× γ

Ms

∑

n



B1
δc(n)

δΩ

∣

∣

∣

∣

∣

x,t

(

q(n)|0 cos(ωnt) +
q̇(n)|0
ωn

sin(ωnt)

)

− B2
1

Mω2n
c(n)[Ω(t)]

δc(n)

δΩ

∣

∣

∣

∣

∣

x,t

+
B2
1

Mω2n
c(n)[Ω(0)] cos(ωnt)

δc(n)

δΩ

∣

∣

∣

∣

∣

x,t

+
B2
1

Mω2n

∫ t

0
dt′
∫

VM

dx′ cos(ωn(t− t′))
δc(n)

δΩ

∣

∣

∣

∣

∣

x′,t′

· ∂Ω
∂t′

∣

∣

∣

∣

x′

δc(n)

δΩ

∣

∣

∣

∣

∣

x,t



 . (6.34)

The counter term ∆L of the total Lagrangian is defined to cancel the frequency

renormalizing term:

Ω× γ

Ms

∑

i,n

B2
1

Mω2n
c(n)[Ω(t)]

δc(n)

δΩ

∣

∣

∣

∣

∣

x,t

(6.35)

It follows from Eq. (6.29) that

δc(n)

δΩl
=
∑

i

Ωi

[

∂f
(n)
l

∂xi
+
∂f

(n)
i

∂xl

]

(6.36)

To simplify and extract the physical content from these cumbersome equa-

tions, we identify the memory friction kernel tensor γjm:

γjm(t, t
′,x,x′) ≡ Θ(t− t′)

∑

n

γ

Ms

B2
1

Mω2n
cos(ωn(t− t′))

δc(n)

δΩm

∣

∣

∣

∣

∣

x′,t′

δc(n)

δΩj

∣

∣

∣

∣

∣

x,t

(6.37)

where Θ(t− t′) is the Heaviside function. We also recognize the random field h:

h(x, t) ≡ B1

Ms

∑

n

[

q(n)|0 cos(ωnt) +
q̇(n)|0
ωn

sin(ωnt)

]

δc(n)

δΩ
. (6.38)
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Assuming that the distribution of initial positions of the environment degrees of free-

dom follows the canonical classical equilibrium density for the unperturbed reservoir

we find that

〈h(x, t)〉 = 0, (6.39)

〈hj(x, t)hm(x′, t′)〉 =
2KBT

γMs
γjm(t, t

′,x,x′). (6.40)

In terms of γjm and h the dynamical equation for Ω takes the form:

∂Ωl
∂t

=εijlΩi
γ

Ms

δES
δΩj

+ γεijlΩihj

+ εijlΩi

∫ t

0
dt′
∫

VM

dx′
∑

m

γjm(t, t
′,x,x′)

∂Ωm
∂t′

∣

∣

∣

∣

x′

+ εijlΩi
γ

Ms

∑

i,n

B2
1

Mω2n
c(n)[Ω(0)] cos(ωnt)

δc(n)

δΩj

The final term is an artifact of the assumption that in the initial state the reser-

voir was decoupled from the system [75, 80]. Dropping this term, the dynamical

equations for magnetization coupled to a thermal bath of elastic modes is:

∂Ωl
∂t

= εijlΩi
γ

Ms

δES
δΩj

+ γεijlΩihj + εijlΩi

∫ t

0
dt′
∫

VM

dx′
∑

m

γjm(t, t
′,x,x′)

∂Ωm
∂t′

∣

∣

∣

∣

x′

(6.41)

with γjm defined by (6.37) and h a random field with statistical properties given

by (6.39) and (6.40). Equation (6.41) is quite general. In particular notice that to

obtain (6.41) we didn’t perform any expansion in Ω. As a consequence, as long as we

keep the exact form for ES(Ω), equations (6.41) includes also the effects of spin wave

interactions. In principle we could also include in ES a term to take into account the

scattering of spin waves due to disorder. Equation (6.41) does not, however, take

into account the coupling between the magnetization and particle-hole excitations.
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As we discuss in Section 6.6, this coupling appears to be of critical importance in

many metallic ferromagnets.

Equation (6.41) is very different from the standard stochastic Landau-Lifshitz-

Gilbert (s-LLG) equation, Eq. (6.1). Because the magnetoelastic energy, EI , (6.20),

is nonlinear in the magnetization, in (6.41) both the damping kernel and the ran-

dom field depend on the magnetization and therefore are state dependent. This is

in contrast with the s-LLG equation for which both the damping kernel, αδ(t− t′),
and the random field are independent of Ω.

Another difference between Eq. (6.41) and the s-LLG equation is that the

damping kernel, γjm, is in general a tensor. The tensor character of the damping

has been suggested previously on phenomenological grounds [73]. Starting from

the physical coupling (6.20), in our approach the tensor character of γjm appears

naturally as a consequence of: (a) the nonlinearity in Ω of the magnetoelastic cou-

pling (6.20), (b) the anisotropy of the elastic modes due to the boundary conditions

and/or anisotropy of the elastic properties. For small oscillations of Ω around its

equilibrium (up to quadratic order), the kernel γjm can be assumed to be indepen-

dent of Ω. Even in this linearized case, the damping kernel that appears in (6.41)

will still have a tensor form due to the anisotropy of the elastic modes.

As mentioned above, the standard s-LLG damping kernel is simply αδ(t−t′),
i.e. the damping is frequency-independent. As a consequence, from the Fluctuation

Dissipation Theorem, we have that the spectrum of the random field that appears

in (6.1) is also frequency-independent. This differs from equation (6.41) for which

the damping kernel, and therefore the spectrum of the random field, is frequency-

dependent.

Given the geometry and the material properties of the system we can find

the elastic modes, f (n), and then integrate equation (6.41) using a micromagnetic

approach. The integration of equation (6.41) could give insight in particular on the
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damping of the uniform magnetization mode for different geometries and show the

range of validity of the classic picture [69] of a two stage damping process in which

the motion of the coherent magnetization induces non uniform magnetic modes on

short time scales that then decay to lattice vibrations.

We now study the dynamics of the uniform magnetic mode in the case when

we can neglect its interaction with spin waves and the only coupling to external

degrees of freedom is magnetoelastic. Projecting Eq. (6.41) on the uniform mode

we find that

dΩl
dt

=εijlΩi
γ

VMMs

∫

VM

δES
δΩj

dx+ εijlΩi
γ

VM

∫

VM

hjdx

+ εijlΩi
1

VM

∫ t

0
dt′
∫

VM

dx

∫

VM

dx′
∑

m

γjm(t, t
′,x,x′)

dΩm
dt′

(6.42)

Let’s define the space averaged error field

h̄(t) ≡ 1

VM

∫

VM

h(x, t)dx,

the damping kernel

γ̄jm(t, t
′) ≡ 1

VM

∫

VM

dx

∫

VM

dx′γjm(t, t
′,x,x′),

and the coefficients

c
(n)
l ≡

∫

VM

δc(n)

δΩl
dx.

Using the fact that Ω is uniform we obtain

c
(n)
l =

∑

i

Ωi

∫

VM

[

∂f
(n)
l

∂xi
+
∂f

(n)
i

∂xl

]

dx. (6.43)
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In terms of the coefficients c
(n)
l we can then write:

h̄l =
B1

MsVM

∑

n

c
(n)
l

(

q(n)|0 cos(ωnt) +
q̇(n)|0
ωn

sin(ωnt)

)

and

γ̄jm = Θ(t− t′) γB2
1

MsMVM

∑

n

1

ω2n
c
(n)
j (t)c(n)m (t′) cos(ωn(t− t′)). (6.44)

The uniform magnetization dynamics can then be expressed in terms of the spatially

averaged random field h̄ and memory friction kernel γ̄jl:

dΩl
dt

= εijlΩi
1

VM

γ

Ms

∫

VM

δES
δΩj

dx+ γεijlΩih̄j + εijlΩi

∫ t

0
dt′
∑

m

γ̄jm(t, t
′)
dΩm
dt′

(6.45)

with

〈h̄〉 = 0 (6.46)

and

〈h̄j(t)h̄m(t′)〉 =
2KBT

γVMMs
γ̄jm(t, t

′). (6.47)

6.4 Thin Film Uniform Magnetization: damping kernel

and random fields

We now apply equation (6.45) to study the dynamics of the uniform magnetization

in a thin ferromagnetic film placed on top of a non magnetic substrate and covered

by a non-magnetic capping layer, as illustrated in Fig. 6.1. We assume that all

media are polycrystalline and treat them as isotropic. We will assume the lateral

size, Ls, Fig. 6.1, to be much bigger than the film thickness h. Notice that if we
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take Ls bigger than the domain wall width our assumption that the non uniform

magnetic modes are quenched wouldn’t be valid anymore. We will consider only

oscillations of the magnetization around an equilibrium position parallel to the x3

axis so that we can calculate the damping kernel tensor γjm assuming the elastic

modes to depend only on x3. Otherwise, to find the correct damping kernel, we

would have to take into account the fact that the lateral size, Ls, is finite and solve

the full 3D elasticity problem for the elastic modes. To find the dynamics of the
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Figure 6.1: Geometry considered for the case of a thin ferromagnetic film on a
non-magnetic substrate.

magnetization using equation (6.45) we need to evaluate the memory friction kernel

γjm. The first step in this calculation is the determination of the elastic normal

modes f (n) which satisfy the following equation:

ω2nρf
(n) = − E

2(1 + σ)
∇2f (n) − E

2(1 + σ)(1− 2σ)
∇(∇ · f (n)). (6.48)

We allow the film, the substrate, and the capping layer to have different elastic

properties and solve equation (6.48) separately in the different subsystems using the

appropriate elastic constants. We assume for the sake of definiteness that the sub-

strate and capping layer material is identical. We then match solutions by imposing
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the continuity of displacement and stresses at the interfaces x3 = 0, and x3 = h. As

boundary conditions we assume the top surface of the capping layer to be free and

no displacement at the bottom of the substrate.

Because in our case the elastic modes only depend on x3, Eq. (6.43) simplifies

to

c
(n)
l = L2s

∑

i

∆f
(n)
i [δilΩ3 +Ωiδ3l]

with

∆f
(n)
i ≡ f (n)i (h)− f (n)i (0)

The spatially averaged damping coefficients have a simple expression in terms of the

∆f
(n)
i :

γ̄jl =Θ(t− t′)L
2
sB

2
1

Mh

∑

n

[∆f
(n)
i ]2

ω2n
cos(ωn(t− t′))

× [δijΩ3(t) + Ωi(t)δ3j ][δilΩ3(t
′) + Ωi(t

′)δ3l]. (6.49)

Eq. 6.49 follows from the completeness relation of the polarization vectors. Once

we know the coefficients ∆f
(n)
i , Eqs. (6.49), (6.46), and (6.47) completely specify

the dynamical equation (6.45) for the magnetization.

As an example we consider the case of a polycrystalline ferromagnetic thin

film, like YIG, placed on a substrate of a polycrystalline paramagnet like Tan-

talum, Ta. As typical values we take [81] the ones listed in Table 6.1. For the

magnetostriction we assume λ = 2 × 10−6. Using equation (6.21), we find that

B1 = 4× 106ergs/cm3. Given the elastic modes implied by these parameter values,

we can calculate the coefficients ∆f
(n)
i . Once we know the coefficients ∆f

(n)
i we

have all the elements to completely specify equation (6.45).

To integrate (6.45) we generate a stochastic field h̄ with the correct statistical
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Table 6.1: Elastic properties. ct, cl are the transverse and longitudinal speed of
sound respectively.

Magnetic Film Substrate/Capping Layer

E 200 Gpa 180 Gpa
σ 0.33 0.33
ρ 5.0 g/cm3 16.6 g/cm3

ct 4.0 km/s 2.0 km/s
cl 5.0 km/s 4.1 km/s

properties by using its Fourier representation. To obtain

〈y(t)y(t′)〉 = G(t− t′) (6.50)

we choose [34]

〈y(ω)y(ω′)〉 = δ(ω − ω′)G(ω) (6.51)

where

y(ω) =
1

2π

∫ ∞

−∞
y(t)e−iωtdt

and

G(ω) =
1

2π

∫ ∞

−∞
G(τ)e−iωτdτ.

In our case we have from Eq. (6.44), that the memory friction kernel γ̄jl

depends separately on t and t′. As a consequence, through (6.47), we have that

the average 〈h̄(t)h̄(t′)〉 doesn’t depend only on the time difference τ = t − t′. The

random field h̄(t) therefore doesn’t define an ergodic process and in particular we

cannot use equation (6.51). For this reason it is convenient to define the auxiliary

random variables:

xi ≡
∑

n

∆f
(n)
i

[

q(n)|0 cos(ωnt) +
q̇(n)|0
ωn

sin(ωnt)

]
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and the auxiliary kernels:

gi(t− t′) ≡ Θ(t− t′)
∑

n

[∆f
(n)
i ]2

ω2n
cos(ωn(t− t′))

so that we have:

〈xi(t)xj(t′)〉 =
2KBT

M
gi(t− t′)δij .

The random variables xi(t) therefore describe an ergodic process and we can use

equation (6.51) to generate them. In terms of xi and gi we have:

h̄l =
B1

Msh

∑

i

xi[δilΩ3(t
′) + Ωi(t

′)δ3l]

γ̄jm =
γL2sB

2
1

MsMh

∑

i

gi[δijΩ3(t) + Ωi(t)δ3j ]× [δimΩ3(t
′) + Ωi(t

′)δ3m] (6.52)

To generate the random field and calculate γ̄jl we then have to calculate the quan-

tities gi(τ) and their Fourier transforms gi(ω). Figures 6.2(a)-6.3(b) show some

typical profiles for gi(τ) and gi(ω) using for the mechanical properties the values

of table 6.1. We find that in general gi(τ) doesn’t depend on the thickness of the

capping layer L′.

In the limit in which we can linearize the magnetoelastic interaction with

respect to Ω, we have:

γ̄jm(τ) =
γB2

1L
2
s

MsMh
gj(τ)δjm (6.53)

The damping kernel is diagonal with components equal, apart from an overall con-

stant, to gj(τ), in contrast to the s-LLG equation for which we have γ̄jl(τ) =

αδ(τ)δjl. The power spectrum of the random field component, hj , is then pro-

portional to gj(ω), in contrast to the s-LLG equation for which the power spectrum

of each component hj is simply a constant. Notice that even in this limit γ̄jm pre-
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serves its tensor form due to the anisotropy of the elastic modes. In our specific case

we have g1 = g2 6= g3 due to the difference between the transverse and longitudinal

speeds of sound.

From figures 6.2(a), 6.2(b), we see that gi(τ) goes to zero for times longer

than τD ≈ 5 × 10−2τ0 = 5h/ct,M . For a film 20 nm thick we then find τD ≈ 10ps .

When the relevant frequencies of Ω are much lower than 1/τD, we can replace the

damping kernel given by (6.53) with the simple kernel

γjm = γjeffδ(τ)δjm

with γjeff given by:

γjeff =
γB2

1L
2
s

MsMh

∫ ∞

0
gj(τ)dτ

=
γB2

1

Msρc2

∫ ∞

0
ĝj(τ)dτ (6.54)

where

ĝj(τ) ≡
c2

h(L+ h+ L′)
gj(τ).

In this limit we recover a damping kernel of the same form as the one that appears

in the s-LLG equation. Here γjeff is the equivalent to α in (6.1). Integrating ĝj(τ),

shown in Fig. 6.2(a), 6.2(b), between 0 and ∞ we find

∫ ∞

0
ĝj(τ)dτ ≈

h

c

and then finally

γjeff ≈
γB2

1

Msρc2
h

c
. (6.55)

We then see that the effective damping kernel is proportional to the ratio h/c. This

ratio is a measure of the time that it takes to an elastic mode to travel through
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the ferromagnetic layer. We then find the intuitive result that the damping of the

magnetization is proportional to the time that the elastic modes spend in the ferro-

magnet. This result can be understood also by the following simple estimate. Let’s

start from the definition of γ̄jm (equation (6.44)). Assuming that at equilibrium is

Ω = (0, 0, 1) and keeping only the leading terms in Ω in the expression for c
(n)
l we

have:

c
(n)
l = L2s∆f

(n)
l

Let’s now expand the collective index n in its components k, s where s is the polar-

ization index of the elastic modes. Then, using the completeness of the polarization

vectors and the fact that the polarization directions are parallel to the axis x1, x2, x3

we have:

γ̄jm =Θ(t− t′) γB2
1

MsMVM

∑

n

1

ω2n
c
(n)
j (t)c(n)m (t′) cos(ωn(t− t′))

=Θ(t− t′) γB2
1

MsMVM
L4s
∑

k,s

1

ω2k,s
∆fk,sj ∆fk,sm cos(ωk,s(t− t′))

=Θ(t− t′) γB2
1

MsMVM
L4s
∑

k

1

ω2k,j
∆fkj ∆f

k
mδjm cos(ωk,j(t− t′))

Now note that:

M = ρL2sL(1 + ĥ+ L̂′); VM = L2sh;

where ĥ ≡ h/L,L̂′ ≡ L′/L. Then we can write:

γ̄jm = Θ(t− t′) γB2
1

MsρL(1 + ĥ+ L̂′)h

∑

k

[∆fkj ]
2

ω2k,j
δjm cos(ωk,j(t− t′)).

For small enough h/L we can assume ∆f
(k)
j ≈ kh with a cutoff for kD such that

kDh = 1.We can then define the cutoff frequency ωD ≡ ckD = c/h. With this
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approximation we have:

∑

k

[∆fkj ]
2

ω2k,j
cos(ωk,j(t− t′)) =

∑

k

1

ω2k,j + ω2D
cos(ωk,j(t− t′))

=
1

ω2D

∫ ∞

0
δ(ω − ωk,j)

ω2D
ω2 + ω2D

cos(ω(t− t′))dω

≈ 1

ω2D

1

ω0

∫ ∞

0

ω2D
ω2 + ω2D

cos(ω(t− t′))dω

=
1

ω2D

1

ω0
ωDe

−ωD(t−t
′)

where ω0 ≡ c/L. In this approximation we can then write:

γ̄jm(τ) ≈ Θ(t− t′) γB2
1

MsρL(1 + ĥ+ L̂′)h

1

ω2D

1

ω0
ωDe

−ωDτ .

Integrating this expression between τ = 0 and τ =∞ we find

γ̄eff =
γB2

1

MsρL(1 + ĥ+ L̂′)h

1

ω2D

1

ω0

=
γB2

1

MsρL(1 + ĥ+ L̂′)h

h2

c2
L

c

=
γB2

1

Msρ(1 + ĥ+ L̂′)c2
h

c
(6.56)

analogously to what we found before, (6.55).

Assuming the values given in Table 6.2 we find γ1eff = γ2eff ≈ 2× 10−4.

Table 6.2: Values of physical quantities
Quantity Value

γ 1.76× 107s−1G−1

B1 4× 106ergs/cm3;
Ms 150G
L 1µm
h 20nm
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Figure 6.2: Profiles of ĝ1 ≡ g1(τ)c2/[h(L+h+L′)], (a), and ĝ3 ≡ g3(τ)c2/[h(L+h+
L′)], (b), for the case of a thin magnetic film on a Tantalum substrate; τ0 ≡ L/ct,M .
For the standard s-LLG equation gi(τ) would simply be a Dirac’s delta centered at
τ = 0.
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Figure 6.3: Profiles of Re[ĝ1(ω)] ≡ Re[g1(ω)]c
2/[h(L+h+L′)], (a), and Re[ĝ3(ω)] ≡

Re[g3(ω)]c
2/[h(L + h + L′)], (b), for the case of a thin film ferromagnetic film on

a Tantalum substrate; ω0 ≡ ct,M/L. For the standard s-LLG equation gi(ω) would
simply be a constant.
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6.5 Thin Film Uniform Magnetization: stochastic dy-

namics

After generating the random field h̄ in the way described above we can proceed to in-

tegrate equation (6.45). We assume δES/δΩ = −VMMsHeff with Heff = (0, 0, Heff)

and Heff simply a constant. Let’s define the dimensionless quantities:

t̂ ≡ γHefft; Ĥeff ≡
Heff

Heff
; ĥ ≡ h

Heff
; γ̂jm ≡

γ̄jm
γHeff

; T̂ ≡ 2KBT

HeffMsVM
;

then in dimensionless form equation (6.45) takes the form,

dΩl

dt̂
= −εijlΩiĤeffj + εijlΩiĥj + εijlΩi

∫ t̂

0
dt̂′
∑

m

γ̂jm(t̂, t̂
′)
dΩm

dt̂′
(6.57)

with

〈ĥj(t̂)〉 = 0; 〈ĥj(t̂)ĥm(t̂′)〉 = T̂ γ̂jm(t̂, t̂
′) (6.58)

Similarly, for δES/δΩ = −VMMsHeff , the standard s-LLG equation, (6.1),

for the uniform mode, takes the dimensionless form:

dΩ

dt̂
= −Ω× Ĥeff +Ω× ĥ+ αΩ× dΩ

dt̂
(6.59)

with

〈ĥj(t̂)〉 = 0; 〈ĥj(t̂)ĥm(t̂′)〉 = αT̂ δ(t̂− t̂′). (6.60)

Using for γ̄jm the expression (6.52) and for gi(τ), gi(ω) the results shown

in figures 6.2(a)-6.3(b) and assuming T̂ = 10−2 and the values given in Table 6.2

we integrate equation (6.57). We used the stochastic Heun scheme that ensures

convergence to the Stratonovich solution even in the limit of zero autocorrelation

time for the random field [74]. The results of the integration are shown in figures

6.4(a),6.4(b),6.5(a). As initial condition we took Ω = (0.6, 0, 0.8), dΩ/dt̂ = 0.
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We then integrated equation (6.59) setting α = γ1eff with γ1eff calculated

using (6.54). The results of the integration are shown in figures 6.4(a),6.4(b),6.5(b).

From figures 6.4(a)-6.5(b) we see that on average equation (6.57) and (6.59)

give very similar results. This is expected because for the initial conditions chosen we

are in the limit of small oscillations around the equilibrium position and therefore the

dependence of γ̂jm on Ω is negligible. The main differences, for the case considered,

between the results obtained using (6.57) and (6.59) are in the random fluctuations

of Ω. This is a consequence of the different correlation in time of the random field

h used in (6.57) and (6.59). For example we notice that equation (6.57) seems to

give a less noisy dynamics than (6.59) even though for both simulation |ĥ|2 is of

the same order of magnitude. If we zoom on a short time interval, fig. 6.4(b), as a

matter of fact, we see that on very short time scales the amplitude of the random

fluctuations for the two simulations is very similar. However for (6.59) fluctuations

with the same sign are much more likely than for (6.57). This is due to the different

spectral density of the random field. For (6.59) we simply have |h̄j(ω)|2 = αT̄ ,

whereas for (6.57) |h̄j(ω)|2 is equal to gj(ω) (considering that for our simulation, to

a good approximation, we can neglect the dependence of the random field on Ω). In

particular for (6.57) |h̄j(ω)|2 has a low frequency cutoff at ω = ω0 ≡ ct,M/L where

ct,M is the transverse speed of sound in the ferromagnet. This implies that for (6.57)

we have a much lower probability than for (6.59) to have consecutive fluctuations

of the random field with the same sign with the result that the dynamics appears

less noisy.

6.6 Conclusions

In this chapter we derived the equation for the dynamics of the magnetization taking

into account its coupling to the lattice vibrations. The equation that we obtain,

(6.41), is quite general. Equation (6.41) will have the same form also if we include
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spin-spin and spin-disorder interactions. To take into account these phenomena it

is necessary only to add the appropriate terms to the energy functional ES [Ω].

From the general equation we derived the equation, (6.45), for the dynamics

of the uniform magnetic mode in a thin magnetic film when nonuniform magnetic

modes can be assumed frozen out. We find that in general the random field that

appears in the dynamical equation for the magnetization has a correlation time, τD,

of the order of the ratio between the film thickness, h, and the sound velocity c.

When the timescale for the dynamics of the magnetization is much longer that τD,

we recover the stochastic LLG equation. In this limit we calculated the value of

the effective Gilbert damping constant, α. For typical ferromagnetic insulators, like

YIG, we find α ≈ 10−4, in good agreement with the values measured in experiments

[69, 82]. We can then conclude that for magnetic insulators magnetoelastic coupling

is the main source of magnetization damping.

For ferromagnetic metals, like permalloy, we also find α ≈ 10−4. This value

is about two orders of magnitude smaller than the value observed experimentally

[83]. The reason is that in ferromagnetic metals the electronic degrees of freedom are

the main source of dissipation for the magnetization [68, 70].Starting from a model

of localized d spins exchange-coupled to s-band electron, the interaction Lagrangian

will be:

LI = Jsd

∫

dxΩ(x) · s(x)

where Jsd is the exchange coupling constant and s is the conduction electrons spin

density:

s(x) =
1

2

∑

a,b

Ψ†a(x)τ abΨb(x)

where Ψ are the s-band carrier field operators and τ ab the representation of the

spin operator in terms of Pauli matrices. By integrating out the s-band degrees of

freedom, in the linear response approximation Sinova et al. [84], for the damping of
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the uniform magnetic mode find:

α = lim
ω→0

gµBJ
2
sd

2Ms~ω

∫

d3k

(2π)3

∑

a,b

|〈ψa(k)|τ+|ψb(k)〉|2

×
∫

dε

2π
Aa,k(ε)Ab,k(ε+ ~ω)[f(ε)− f(ε+ ~ω)] (6.61)

where Aa,k(ε) and Ab,k(ε) are the spectral functions for s-band quasiparticles and

f(ε) is the Fermi-Dirac distribution. Equation (6.61) gives zero damping unless there

is a finite-measure Fermi surface area with spin degeneracy or there is a broaden-

ing of the spectral function due to disorder [85]. Characterizing the quasiparticle

broadening by a simple number Γ ≡ ~/τs, where τs is the quasiparticle lifetime, we

can assume:

Aa,k(ε) =
Γ

(ε− εa,k)2 + Γ2/4
. (6.62)

Inserting this expression for the spectral functions in (6.61) we find α as a function

of the phenomenological scattering rate Γ. Notice that (6.61) includes the contribu-

tion both of intra-band, and inter-band [86, 87, 88] quasiparticles scattering events.

The intra-band contribution is due to spin-flip scattering within a spin-split band

and is nonzero only when intrinsic spin-orbit coupling is present. From equation

(6.61), using the expression for Aa,k(ε) given in (6.62), we see that in the limit of

weak disorder, small Γ, the intra-band contribution to α is proportional to 1/Γ, in

agreement with experimental results for clean ferromagnetic metals with strong spin-

orbit coupling [89, 90, 91, 92] and previous theoretical work [87, 93, 94, 95, 96, 88].

Similarly from (6.61) we see that the inter-band contribution to α is proportional

to Γ. This result agrees with the experimental results for ferromagnetic metals with

strong disorder [97] and previous theoretical work [86, 87, 88]. Notice that equation

(6.61) implicitly also includes the contribution due to the so called spin-pumping

effect [62, 98, 99, 100, 101] in which spins are transferred from the ferromagnetic

film to adjacent normal metal layers as a consequence of the precession of the mag-
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netization. In order to calculate this effect in first approximation we simply have

to substitute in (6.61) the conduction band quasiparticle states, ψ, calculated tak-

ing into account the heterogeneity of the sample. Assuming for the scattering rate,

1/τs, typical values estimated by transport experiments, from equation (6.61) we

find values of α in good agreement with experiments.

In summary we have studied in detail the effect of the magnetoelastic cou-

pling to the dynamics of the magnetization. Starting from a realistic form for the

magnetoelastic coupling we have found the expression for the damping kernel, γjm.

We find that in general γjm is a nondiagonal tensor non-local in time and space. The

knowledge of the exact expression of γjm allows us to correctly take into account

the autocorrelation of the noise term overcoming the zero correlation approximation

of the stochastic Landau-Lifshitz-Gilbert equation. We find that for thin films for

which the single domain approximation is valid, both the damping and the fluctu-

ations correlation time are proportional to the film thickness. Our results apply to

systems for which the direct coupling of the magnetization to the lattice vibrations

is the main source of the magnetization relaxation. We have shown that this is the

case for ferromagnetic insulators whereas for ferromagnetic metals the magnetization

relaxation is mainly due to the s-d exchange coupling.
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Figure 6.4: Ω3 as a function of time obtained integrating the standard s-LLG equa-
tion, (6.59), and equation (6.57)
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Figure 6.5: Ω1 as a function of time obtained integrating equation (6.57), (a), and
integrating the standard s-LLG equation, (6.59), (b).
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Chapter 7

Nonlinear dynamics of tearing

modes

7.1 Introduction

In this chapter we will study the dynamics of a particular class of collective modes

in magnetically confined plasmas [102], [103]. A plasma is a ionized gas with almost

zero resistivity. The charge separation between the electrons and the ions gives

rise to electric fields and charged particle flows give rise to currents and magnetic

fields. Through these fields the different parts of a plasma interact on long range

scales, resulting in a very complex dynamics. In presence of a magnetic field a free

charged particle precesses around the magnetic field line at the cyclotron frequency

with a radius equal to the Larmor radius. In first approximation in a magnetically

confined plasma electrons and ions are free to move along the field lines but in the

perpendicular direction their motion is limited to the Larmor precession that, for B

big enough, is much smaller than the plasma size. In order to confine a plasma then

the magnetic field lines should lie on a close surface S: B should always be tangent

to S and never vanish. According to a famous Poincaré’s theorem this can only
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happen if S is a torus. In a magnetically confined plasma then the magnetic field

lines lie on nested toroidal surfaces. The topology of this surfaces cannot change

unless we allow for a finite resistivity of the plasma. In this case we can have the

remarkable phenomenon of magnetic reconnection.

Tearing modes are collective modes that are naturally unstable in magneti-

cally confined plasmas. They are driven by radial gradients in the plasma current

density [104] and plasma pressure [105]. In a tearing mode magnetic reconnection

takes place around particular magnetic surfaces that as a consequence tear and re-

connect forming helical chains of magnetic islands inside the plasma, Fig. 7.1. Such

B

m =2
Tearing  mode

Figure 7.1: On the left we show the magnetic surfaces before the instability. On
the right we have the flux surfaces after a tearing mode instability. In the poloidal
cross section magnetic islands are present. In this picture the width of the magnetic
islands is greatly exaggerated.

islands degrade the plasma confinement because both heat and particles are able

to travel radially from one side of an island chain to the other by flowing along

magnetic field lines. Is then very important for the purposes of plasma confinement

to be able either to prevent the formation of tearing modes or, at least, to control

their size.
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7.2 Resistive MHD equations

The Magnetohydrodynamics (MHD) model [102] is one of the earliest and simplest

model for fully ionized plasmas. Despite its simplicity it retains much of the impor-

tant physics. In the MHD model the plasma is treated as a quasi neutral non-viscous

single hydrodynamic fluid subject to the Lorentz force created by the external and

self consistent electromagnetic fields. The equations that define the MHD model

are:

dρm
dt

+ ρm∇ ·V = 0; (7.1)

ρm
dV

dt
= −∇p+ J×B; (7.2)

E+V ×B = ηJ; (7.3)

d

dt

(

pρ−Γm
)

= const; (7.4)

∇×B = µ0J; (7.5)

∂B

∂t
= −∇×E; (7.6)

∇ ·B = 0. (7.7)

where ρm is mass density, V is the plasma velocity, p the pressure, J the current,

E the electric field, η the plasma resistivity, µ0 the free space permeability and Γ

the exponent characterizing the plasma equation of state, (7.4). Equation (7.1) is

the mass continuity equation, equation (7.2) the single fluid equation of motion and

(7.3) is the so called generalized Ohm’s law. Equations (7.5), (7.6), (7.7) are simply

the Maxwell’s equations assuming the plasma to be quasi neutral.

If we assume the plasma to be incompressible the equation of state can

be replaced simply by ρm = const. As a consequence equation (7.1) reduces to

∇ ·V = 0. As we mentioned before the tearing modes can exist only if we allow the

plasma resistivity η to be different from zero. They will then grow on the resistive

125



time scale

τη ≡
L2µ0
η

where L is a length characterizing the size of the plasma. This time scale is much

bigger than the time scale that enters the equation of motion (7.2). For this reason

we can study the dynamics of a tearing mode as a succession of plasma equilibria:

adiabatic approximation. In this case we can neglect the inertial term in (7.2). We

will also assume force free configurations for which is ∇p = 0. After these consider-

ation we can simplify the resistive MHD model to the following set of equations:

∇ ·V = 0; (7.8)

J×B = 0; (7.9)

∂B

∂t
= ∇× (V × J) + η

µ0
∇2B; (7.10)

∇×B = µ0J; (7.11)

∇ ·B = 0. (7.12)

7.3 Tearing mode instability

Let R0 and a be the major and minor radii respectively of a toroidal plasma. In the

large aspect ratio, R0 À a, we can map the torus to a periodic cylinder of length

L = 2πR0. Let us define the parameter

β ≡ 2µ0
〈p〉
〈B2〉

where the angle brackets denote volume average. In the zero β, large aspect ratio

limit the plasma equilibrium is characterized by magnetic surfaces that map out

(almost) concentric circles in the poloidal plane. To describe this equilibrium and

perturbations around it we use the coordinates (r, θ, φ), where r and θ are the
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polar coordinates in the poloidal plane and φ ≡ z/R0 is the simulated toroidal

angle. In the limit of zero β large aspect ratio the plasma equilibrium will be

B0 = (0, Bθ(r), Bφ(r)) with:

∇×B0 = σ(r)B0.

We want to consider helical perturbations around the equilibrium. A (m,n) helical

mode has m ∈ N periods in the poloidal direction, and n ∈ N periods in the toroidal

direction. It will be convenient to use the poloidal angle ξ ≡ mθ − nφ. Then for a

poloidal mode all the quantities will depend only on ξ and r. Let’s define the unit

vectors (Fig. 7.2)

ξ̂ ≡ ∇ξ|∇ξ| ; n̂ ≡ r̂× ξ̂;

and the quantities

C(r) ≡ 1√
m2 + n2ε2

; ε ≡ r

R0
.

Because V and B are divergence free, without loss of generality we can write:

n̂

r̂
ξ̂

Figure 7.2: Orthonormal unit vectors used to describe a tearing mode instability.
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B = C(r)∇ψ × n̂+B‖n̂

V = C(r)∇χ× n̂+ V‖n̂

B‖

C = G(ψ)

J‖

C = H(ψ)

where G and H are functions, to be determined, only of the magnetic flux ψ.

After adding an (m,n) helical perturbation the total magnetic field will be

given by

B = B0 + bm,n(r)eiξ,

and the magnetic flux by

ψ = ψ0(r) + ψm,n1 (r, t)eiξ; ψm,n1 (r, t) = −irbm,nr .

Inserting these expressions in the resistive MHD equations (7.8)-(7.12) gives us the

equations governing the dynamics of the helical mode. As a first approximation

we can assume the resistivity of the plasma, η, to be zero. In this case in linear

approximation, the flux function ψm,n1 (r, t) satisfies the Newcomb’s equation

d

dr

[

fm,n
dψm,n1

dr

]

− gm,nψm,n1 = 0; (7.13)

where

fm,n(r) =
r

m2 + n2ε2

gm,n(r) =
1

r
+ fm,n(r)

[

nεBθ +mBϕ
B∗

dσ

dr
+

2mnσ

R
− σ2

r

]

and

B∗ ≡
1

N
B · ξ̂ = mBθ(r)− n

r

R
Bz(r).
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For B∗ = 0 the Newcomb’s equation becomes singular. The radius rs for which

B∗(r) = 0 is the radius that individuates the m/n rational surface at which the

helical perturbation is resonant with the equilibrium magnetic field. The singularity

at r = rs is resolved if we relax the condition of zero resistivity. As a matter of fact

terms proportional to η are negligible everywhere apart around the rational surface

where they cannot be neglected. If we consider η 6= 0 in the region around rs we

will have reconnection of the field lines and the singularity will be resolved by the

presence of a thin magnetic island centered around the rational surface. In order

to find the dynamics of this island we first solve the Newcomb’s equation away

from the radius rs requiring b
m,n
r to be continuous across the island. We then solve

the resistive MHD equations in a small region around rs and asymptotically match

the solution, inner solution, to the outer solution obtained from the Newcomb’s

equation.

Let us define the dimensionless quantities

ψ̂ ≡ ψ

ψ̂1
;

µ ≡ ψ̂1
rsB′∗

;

X ≡ 1

µ1/2
r − rs
rs

.

In terms of these dimensionless quantities the most general solution of the New-

comb’s equation in the vicinity of the rational surface is written as:

ψ̂ = −
{

X2

2
+ µ1/2[λ1(λ0 − λ2 + 1)− 1]

X3

6

}

+
{

1− µ1/2 lnµ−1/2λ0λ1X

+µ1/2
[

λ0λ1X ln |X|+A0X +
1

2
∆′|X|

]

− µ lnµ−1/2λ0λ1(λ0λ1 − λ2)
X2

2

}

cos ξ (7.14)
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Where:

λ0 ≡
(

rσ′

σ

)

rs

λ1 ≡
(

rσ

rσ − 2C2mnε

)

rs

λ2 ≡ [C2(m2 − n2ε2)]rs

For the inner region from the resistive MHD model we find the equations:

∂ψ

∂t
=

1

r
[χ, ψ]− η

[

J‖

C −
J‖0

C

]

(7.15)

J =
1

µ0
∇×B. (7.16)

where we use the notation

[χ, ψ] ≡ ∂χ

∂X

∂ψ

∂ξ
− ∂ψ

∂X

∂χ

∂ξ
.

Let

Ĵ‖ ≡
µ0

B′∗|rs
J‖

C ,

B̂‖ ≡
1

rsB′∗|rs
B‖

C ,

χ̂ ≡ −µ0
η
χ

t̂ ≡ η

µor2s
t =

t

τ
(rs)
η

.

and adopt the following expansions:

ψ̂ = ψ̂0 + µ1/2 lnµ−1/2ψ̂1 + µ1/2ψ̂2 + µ lnµ−1/2ψ̂3 +O(µ)

Ĵ‖ = Ĵ‖0 + µ1/2 lnµ−1/2Ĵ‖1 + µ1/2Ĵ‖2 + µ lnµ−1/2Ĵ‖3 +O(µ)
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If we assume

ψ̂(r, t) = ψ̂1(r, µ(t))

so that up to terms of order µ we have:

∂ψ

∂t
= ψ̂1

dµ

dt
.

in terms of dimensionless quantities the equations (7.15), (7.16) take the form:

ψ̂
dµ

dt
= −µ1/2[χ̂, ψ̂]− (Ĵ‖ − Ĵ‖eq) (7.17)

Ĵ‖ = −
∂2ψ̂

∂x2
+ λ3[1− (1− λ2)µ1/2X]B̂‖0 − λ2µ1/2

∂ψ̂

∂X
+O(µ) (7.18)

where

λ3 ≡
(

2mn

m2 + n2ε2

)

rs

.

The dimensionless equilibrium current in the vicinity of the rational surface is given

by:

Ĵ‖eq = λ1 + λ0λ1µ
1/2X +O(µ) (7.19)

For orders smaller than µ1/2 integrating the first equation across the island region

we find:
dµ

dt

∫ ∞

∞
(ψ̂1)<µ1/2dX = −

∫ ∞

∞
(Ĵ‖ − Ĵ‖eq)<µ1/2dX

and then using equation (7.18) and the expression for the equilibrium current (7.19)

we find that up to order µ1/2lnµ−1/2 is dµ/dt = 0. To consider terms of order µ1/2

and higher we have to deal with the term [χ, ψ]. To do this we introduce the flux
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surface average defined as:

〈Q〉 =



























1

2π

∮ Q(sgn(X), ψ̂, ξ)
∣

∣

∣

∂ψ̂
∂X

∣

∣

∣

ξ

dξ; ψ̂ ≤ −1

1

4π

∫ ξ0

−ξ0

Q(sgn(X), ψ̂, ξ) +Q(−sgn(X), ψ̂, ξ)
∣

∣

∣

∂ψ̂
∂X

∣

∣

∣

ξ

dξ; ψ̂ ≥ −1

It is easily demonstrated that

〈[χ̂, ψ̂]〉 = 0

irrespective of the form of χ. Using this fact and the fact that Ĵ‖ depends only on

ψ̂, after flux flux averaging equation (7.17) we find:

dµ

dt

〈ψ〉
〈1〉 = −Ĵ‖(ψ) +

〈J‖eq〉
〈1〉 . (7.20)

where Ĵ‖ is given in terms of ψ̂ by equation (7.18). Integrating this equation across

the island region and asymptotically matching ψ̂ with the outer solution (7.14) we

find the equation:
dµ

dt
=

∆′

Λ1
µ1/2 − λ20λ21µ lnµ−1/2 (7.21)

where

Λ1 ≡
1

π

∫ 2π

0
dξ

∫ ∞

−∞
dX
〈cos ξ〉
〈1〉 cos ξ = 1.645

The island width w by definition is equal to 4rsµ
1/2 and then in term of w equation

(7.21) becomes:

τ
(rs)
η

2rs

dw

dt
=

∆′

Λ1
− λ20λ21

w

4rs
ln

w

4rs
. (7.22)

If we neglect the second term on the right hand side we recover the Rutherford island

evolution equation [106]. The second term on the right hand side was first obtained

heuristically in [107] and more rigorously in [108].
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7.4 Tearing modes with overtones

We now want to consider the more general class of tearing modes for which is

ψ(r, ξ, t) = ψ0(r) +
∞
∑

l=1

1

l
ψlm,ln(r, t)eilξ.

For these modes besides the fundamental (m,n) mode, higher modes are present

that have the same helicity. To find the dynamics of the magnetic island the same

procedure that we have presented in the previous section can be used. Assuming

ψl ≈ µ1/2ψ1ψ̂l; ψ̂l ≈ O(1)

∆ψl ≈ ∆ψ1∆ψ̂l; ∆ψ̂l ≈ O(1)

for the overtone amplitudes we find:

ψl
ψ1

= −(−1)ll∆
′
1

∆′l

Λl
Λ1

; l ≥ 2. (7.23)

where

∆′l ≡
[

r
dψlm,ln(r)

dr

]rs+

rs−

measures the gradient discontinuity at the rational surface of the l− th component

of the outer solution and

Λl ≡
1

π

∫ 2π

0
dξ

∫ ∞

−∞
dX
〈cos lξ〉
〈1〉 cos ξ.

Typical values of ∆′l, Λl are given in table 7.1. Using equation (7.23) for the magnetic

flux inside the island we finally find the expression:

ψ̂(X, ξ) = −
(

X2

2
− cos ξ

)

− ∆′1
λ0λ1Λ1

X cos ξ −
∞
∑

l=2

(−1)l∆
′
1

∆′l

Λ′l
Λ1

cos lξ (7.24)
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l Λl ∆′l
1 +1.6454 +2.826
2 +1.7058e-1 -5.148
3 -3.3174e-2 -10.06
4 +1.2816e-2 -14.52

Table 7.1: Values of Λl, ∆
′
l for a m = 2, n = 1 tearing mode in the limit β → 0,

ε→ 0, for an equilibrium configuration characterized by σ = σ0[1− (r/a)2]2.768. For
this equilibrium is rs = 0.778a.

The second and third term on the right hand side are the nonlinear corrections to

the profile of ψ̂ in the island region. The second term skews the island chain and is

generated by the current gradient. The third term is instead generated by the over-

tone harmonics. We see how these two terms become more important as the island

become more unstable, i.e. ∆′1 becomes bigger. In the remainder of this chapter

we will treat ∆′1 as a variable while assuming that the other parameters; listed in

table 7.1 remain fixed. This treatment is justified because ∆′1 is far more sensitive

to slight local changes of the current profile than any of the other parameters. With

this approach inf Fig. 7.3 we plot the island profiles, calculated using (7.24), for

different values of ∆′l in order to show the effects of the nonlinear terms.

7.5 Tearing modes coupled to helical magnetic pertur-

bations

In this section we examine the effect of external helical perturbations, error fields,

on the dynamics of tearing modes. In the previous section we found that a (m,n)

tearing mode in general has overtone harmonics of relative amplitude

Cl ≡
∆′1
∆′l

Λ′l
Λ1
.
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∆ = 51
’ ∆ = 101

’∆ = 0’
1

Figure 7.3: In the first panel on the left the profiles of the island flux surfaces for
a saturated tearing mode characterized by ∆′1 = 0 are shown. The center panel
shows the profiles of the flux surfaces for ∆′1 = 5. In this case we see that the
nonlinear corrections skew the island chain. In the right panel the profiles of ψ
when ∆′1 = 10 are shown. In order to enhance the effect of the overtone harmonics
we have suppressed the skew term (second term on the right hand side of (7.24)).
It can be seen that the overtone harmonics act to elongate the island flux surfaces
along the ξ direction.

We expect then that a (m,n) tearing mode should also respond to an externally

generated (lm, ln) magnetic perturbation. In this section we investigate the dynam-

ics of an (m,n) magnetic island in the presence of a stationary external magnetic

field that is a superposition of l = 1 and l > 1 magnetic perturbations.

In presence of an external magnetic perturbation the island evolution equation(7.22)

gets modified into the following equation [109]:

τ
(rs)
η

2rs

dw

dt
=

∆′

Λ1
− λ20λ21

w

4rs
ln

w

4rs
+
(wc
w

)2
cosϕ (7.25)

where ϕ is the phase difference between the tearing mode fundamental harmonic
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and the (m,n) component of the external perturbation. w2
c is a measure of the

amplitude of the (m,n) component of the error field.

The external perturbation in addition will exert an electromagnetic torque

δTφ on the island given by the following expression [109]:

δTφ =
2π2R0

µ0

n

m2 + n2ε2s
A1

[

sinϕ+ al
∆′1Λl
∆′lΛ1

sin(lϕ− δl)
]

(7.26)

where A1 is a constant proportional to the amplitude of the (m,n) component of

the error field and al, δl are the relative amplitudes and phases of the overtone

harmonics of the external perturbation. The torque δTφ will try to lock the island

at a specific value of the phase difference ϕ. To study the dynamics of the phase ϕ

we can consider an island equation of motion that incorporates phenomenological

inertia, I, and damping terms ν. For example [110]:

I
d2ϕ

dt2
+ ν

dϕ

dt
+ δT̂φ = 0. (7.27)

where δT̂ is the normalized torque

δT̂ ≡ δTφ
[

2π2R0

µ0

n

m2 + n2ε2s
A1

]−1

Is then convenient to define the potential

dV

dϕ
= δT̂φ.

so that (7.27) can be rewritten in the form:

I
d2ϕ

dt2
+ ν

dϕ

dt
+
dV

dϕ
= 0. (7.28)
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From (7.26) we have:

V = − cosϕ−∆′1

∞
∑

l=2

ãl cos(lϕ− δl).

where ã ≡ alΛl/∆′lΛ1.

The island chain will lock at minima of the potential V . We see that in

absence of the l ≥ 2 component of V the island will be locked for ϕ = 0. From

equation (7.25) we see that in this situation the effect of the error fields is the most

destabilizing for the tearing mode. On the other hand if, by properly tuning the

overtone components of the error fields, we manage to lock the island at a phase for

which is cosϕ < 0 we obtain that the external perturbation will tend to reduce the

width of the island. This can be realized for example by a potential of the form:

V = − cosϕ−∆′1(−1.4612 cos 2ϕ+ 0.5 cos 3ϕ), (7.29)

shown in Fig. 7.4. For this potential at low amplitude, (small ∆′1) a resonant

island chain will lock in the most destabilizing phase: ϕ = 0. However, as the chain

grows to larger amplitude, the potential is modified by nonlinear effects in such a

way that the minimum slowly moves until it is located in a stabilizing phase. This

situation is illustrated in Fig. 7.5. We see that the island width w grows up to

t/τ ≈ 100, at which point the island amplitude is big enough that the minimum of

V has rotated to a stabilizing phase so that the error field term in (7.25) becomes

stabilizing reducing w.
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∆’
1

∆’
1

∆’
1

Figure 7.4: An example of potential V , Eq. (7.29), for which a large amplitude
island locks in a stabilizing phase.
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From R. Fitzpatrick

w
/w

0

Figure 7.5: Normalized width of a 2/1 magnetic island in presence of a magnetic
perturbation characterized by the potential V given by (7.29). w0 is the width of
the unperturbed island.
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