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We describe a procedure for classifying 4D N = 2 superconformal the-

ories of the type introduced by Davide Gaiotto. Any punctured curve, C,

on which the 6D (2, 0) SCFT is compactified, may be decomposed into 3-

punctured spheres, connected by cylinders. The 4D theories, which arise, can

be characterized by listing the “matter” theories corresponding to 3-punctured

spheres, the simple gauge group factors, corresponding to cylinders, and the

rules for connecting these ingredients together. Different pants decomposi-

tions of C correspond to different S-duality frames for the same underlying

family of 4D N = 2 SCFTs. We developed such a classification for the AN−1

and the DN series of 6D (2, 0) theories. We outline the procedure for general

AN−1 and DN , and construct, in detail, the classification through A4 and D4,

respectively.
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Chapter 1

Introduction

Gaiotto duality [1–10] identifies a large class of 4D N = 2 SCFTs with

compactifications of the 6D N = (2, 0) SCFT on a punctured Riemann sur-

face, C. The moduli space, Mg,n, parametrizes the family of exactly-marginal

deformations of the SCFT. For every pants-decomposition of C, there is an

N = (2, 0) gauge-theoretic interpetation, in which each cylinder represents the

N = 2 vector multiplets for some (simple) gauge group, and the 3-punctured

spheres represent some sort of “matter”, charged under the gauge groups of the

attached cylinders. In particular, this construction identifies the boundaries

of the moduli space, Mg,n, with limits in which some, or all, of the gauge cou-

plings become weak. Different degenerations correspond to different, S-dual,

realizations of the same family of SCFTs.

Classifying the theories that arise, in this way, comes down to specifying

(for a given 6D (2,0) theory) what all of the 3-punctured spheres are, what

gauge groups are associated with the cylinders that connect them, and what

are the the rules for gluing these ingredients together. Arbitrarily complicated

4D N = 2 SCFTs can be constructed, in “tinkertoy” fashion, by connecting

together these basic ingredients.
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For a given (2,0) theory, this is a finite task. In [6], we carried out this

program for theories that are obtained from a compactification of the (2,0) the-

ories of type AN−1. In so-doing, we identified a multitude of new interacting,

non-Lagrangian SCFTs (generalizing [11]), corresponding to compactifications

of the AN−1 theory on certain 3-punctured spheres. Their appearance, in the

context of Gaiotto duality, is a vast generalization of the classic examples of

non-Lagrangian SCFTs appearing in the S-dual description of more-familiar

N = 2 gauge theories, discovered by Argyres and Seiberg [12].

While Gaiotto’s original arguments relied on the realization of the 6D

theory as the low-energy theory of N M5-branes, which necessarily implied

working with a 6D theory of AN−1 type, the idea can be straightforwardly

generalized to the case of N M5 branes in the presence of an orientifold,

whose low-energy limit is the 6D theory of type DN . (There is, by contrast,

no realization of the 6D theories of type E as a low-energy theory of M5

branes.) The class of 4D SCFTs arising from the compactification of the DN

6D theories on Riemann surfaces has been considerably less studied [7–9] than

its AN−1 analogue.

As for the AN−1 theories, the Seiberg-Witten curve of 4D theories aris-

ing from the DN theories can be written in Gaiotto’s form, as a polynomial

equation in the Seiberg-Witten differential (a 1-form on T ∗C), whose coeffi-

cients are (the pullbacks of) differentials on C. The differentials descend from

protected operators of the 6D theory, and so their degrees are equal to the

exponents of Spin(2N).
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Just as Gaiotto used the well-known SU(n) linear quivers to test his ar-

guments for the AN−1 theory, Tachikawa [7, 8] studied the SO-Sp linear quivers

[13, 14] to find the pole structure and flavour symmetry group for punctures in

the DN theory, and discovered a few examples of S-duality. Unfortunately, the

SO-Sp linear quivers linear quivers, that arise from the orientifold construction,

live in a theory slightly larger than the one we are interested in. The AN−1,

DN and E6 theories have a Z2 outer-automorphism (which gets enhanced to S3

in the case of D4), and we can consider compactifications of the (2,0) theory,

where going around a homologically-nontrivial cycle on C (circumnavigating

a handle, or circling a puncture) is accompanied by an outer-automorphism

twist.

A proper discussion of the incorporation of outer-automorphism twists

should treat the AN−1, DN and E6 (2,0) theories in tandem, as all of these

Dynkin diagrams have a Z2 outer automorphism. Instead, in [10] we studied

the compactifications of the DN theory, without outer-automorphism twists,

and developed a classification precisely analogous to the one we developed for

the AN−1 theory (also without outer automorphism twists). Nonetheless, at a

crucial point, we had recourse to Tachikawa’s linear quiver tail analysis which,

strictly speaking, embeds the DN theories without outer automorphism twists

in the larger class of DN theories which do include outer automorphism twists.

The analysis in the DN case introduces several new complications, not

seen in the AN−1 case. In the AN−1 theory, each puncture corresponded to a

choice of partition of N (equivalently, to an N -box Young diagram, or a nilpo-
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tent orbit in the complexified Lie algebra, sl(N)). The chosen partition deter-

mined the “flavour symmetry” group (essentially, the isometry group of the

Higgs branch) associated to a given puncture. At the same time, it (or, more

accurately, its transpose) determined the singular behaviour of the Hitchin

system at the puncture which, in turn, gave the geometry of the Coulomb

branch.

In the present case, that relationship is more complicated. As in the

AN−1 case, the flavour symmetry group (geometry of the Higgs branch) is

determined by a “D-partition” of 2N. Such partitions also label nilpotent orbits

in so(2N). However, only for a subset of these, the “special” D-partitions

[15], is the behaviour of the Hitchin system at the puncture given by (the

Spaltenstein dual) nilpotent orbit.

The Coulomb branch of the theory comprises the degrees of freedom as-

sociated to a set of meromorphic k-differentials on the Riemann surface which

are allowed to have poles of certain orders (determined by the choice of parti-

tion) at the punctures. A new feature, of the DN case, is that the coefficients

of the leading poles of these differentials obey certain polynomial constraints.

The “true” Coulomb branch is obtained, after imposing the constraints.

These constraints were derived by Tachikawa [7], by considerations in-

volving linear quiver tails. We will present a slightly different, more intrinsic,

viewpoint on the origin of these constraints. For the special partitions, we

will see that the constraints pop out naturally from requiring that the Higgs

field have a simple pole with residue lying in the Spaltenstein-dual nilpotent
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orbit. For the non-special partitions, our results are less satisfactory. We can

determine (using the linear quiver tail analysis) the pole structure of the k-

differentials at the puncture, and the associated constraints. But we do not,

currently, know how to express this as a boundary condition of the Hitchin

system.

A further peculiar feature of the non-special punctures is that the global

symmetry group of the puncture contains Sp(l)k factors, with k odd. This

level for the current algebra is that which would be induced by an odd number

of half-hypermultiplets in the fundamental 2l-dimensional representation. In

other words, this symmetry is subject to Witten’s global anomaly [16] and (in

the absence of additional matter) could not be consistently gauged.

Even after having dealt with these new complexities, simply enumerat-

ing the results in the DN case is considerably more tedious than it was in the

AN−1 case. The number of fixtures (3-punctured spheres), and the number of

cylinders that connect them, proliferate much more rapidly with N .

We will restrict ourselves to presenting a complete catalogue only for

D4. As a measure of the complexity, there are 99 3-punctured spheres for D4;

we will list all of those. There are 785 4-punctured spheres — theories with a

single gauge group factor — it would be prohibitive to list all of those.

Nevertheless D4 is an interesting case to study. As already mentioned,

the outer automorphism group is enhanced to S3. This group is a symmetry

of the D4 (2,0) theory, and so acts on the set of punctures/fixtures/cylinder,
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which are naturally organized into multiplets, permuted by the outer auto-

morphisms. As already mentioned, we will not consider the inclusion of outer-

automorphism twists.

For the D5 and D6 theories, we will present tables of the regular punc-

tures and their properties, but will refrain from presenting a complete cata-

logue of fixtures and cylinders.

As in the AN−1 series, we discover several new interacting SCFTs —

non-Lagrangian fixed points of the renormalization group — and we realize a

number of S-dualities predicted by Argyres and Wittig [17]. We also provide

formulæ for the conformal-anomaly central charges a, c, and explain how to

compute the flavour current-algebra charges k, for interacting SCFTs.
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Chapter 2

The (2, 0) theories

2.1 Basics

The N = (2, 0) theories [18–24] are maximally superconformal, intrinsi-

cally interacting, non-gravitational theories in six dimensions. These theories

were initially constructed by Witten in [18] as low-energy limits of IIB string

theory compactified on a K3 surface, where the K3 is at a singular point in its

moduli space. The resolution of these singularities requires the introduction

of exotic massless degrees of freedom, namely tensionless strings. Thus, the

(2,0) theories are theories of non-gravitational tensionless strings. Since the

K3 moduli-space singularities obey an A-D-E classification, there exist (2,0)

theories corresponding to each of the simply-laced Dynkin diagrams: the AN−1

series, the DN series, and the exceptional E6, E7, and E8. There exist no (2,0)

theories associated to the non-simply-laced Dynkin diagrams. As we will re-

view shortly, in addition to the interacting A-D-E (2,0) theories, there exist

also a free (2,0) theory. The most general (2,0) theory is a tensor product of

copies of A-D-E and free (2,0) theories.

The maximal superconformal symmetry in six dimensions has 16 super-

charges [25], with superconformal group OSp(2, 6|2) in Lorentzian signature.
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The bosonic part of the superconformal group is Spin(5, 1)× Sp(2)R. The 6D

N = (2, 0) supersymmetry is chiral, and 6D spinors are symplectic-Majorana-

Weyl. The supercharges Qa
α transform as a 4× 4 of Spin(5, 1)× Sp(2)R, and

the 6D (2,0) supersymmetry algebra is [26]

{Qa
α, Q

b
β} = 2ωabγµαβPµ + γµαβZ

ab
µ (2.1)

where ωab is the Sp(2)-invariant tensor, Zab
µ is a central charge of the super-

symmetry algebra, transforming in the 6× 5 of Spin(5, 1)× Sp(2)R. Since Z

is a vector of Spin(5, 1), the corresponding gauge field is a 2-form Bµν , which

couples to the tensionless strings.

The (2,0) supersymmetry algebra has two massless representations: a

tensor multiplet, and a gravity multiplet. Since the (2,0) theories are non-

gravitational, we will only be interested in the tensor multiplet. The little

group of Spin(5, 1) is Spin(4) ' SU(2) × SU(2). The degrees of freedom of

the tensor multiplet transform as the

(1, 3; 1)⊕ (1, 1; 5)⊕ (1, 2; 4) (2.2)

of SU(2) × SU(2) × Sp(2)R. The three terms in this expression represent a

self-dual 2-form Bµν , 5 scalars, and 4 Weyl spinors, respectively.
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2.2 M-theory picture and Coulomb branch

In addition to its IIB construction 1, the AN−1 series also allows for a

definition as the low-energy worldvolume theory on N coincident M5- branes

[19] in M-theory on R10. Separating the M5 branes corresponds to giving non-

zero VEVs to the 5 scalars in the N tensor multiplets. One of these tensor

multiplets corresponds to the center-of-mass mode of the N M5-branes, and

can be decoupled.

The space parametrized by the scalars is the Coulomb branch of the

(2,0) theory, which, as we will see, naturally descends to the more familiar

Coulomb branch of 4D N = 2 super Yang-Mills theory after compactification

on a torus. For the AN−1 series, the Coulomb branch is

B = (R5)N−1/SN . (2.3)

Taking the low-energy limit, one gets N independent copies of the free (2,0)

theory, or tensor multiplets. We see that the free (2,0) theory also has an

M-theory interpretation, as the low-energy theory of a single M5 brane on

R10.

Similarly, the DN series can be defined as the low energy theory of 2N

M5-branes on the singularity of an M-theory orientifold, R5 × R5/Z2; here

1In IIB theory, before we decouple the 6D theory from gravity, there is a gravitational
anomaly that vanishes only if there are 21 tensor multiplets present. However, the (2,0)
theory that we are interested in is obtained after decoupling gravity, so there is no restriction
on the number of tensor multiplets, and we are indeed allowed to consider, say, the AN−1
and DN theories for arbitrary N .
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the Z2 reflects the five coordinates transverse to the M5 branes. On the other

hand, no M5-brane construction for the E-type (2,0) theories is known to exist.

More generally, the Coulomb branch B of a (2,0) theory associated to

a simply-laced Lie algebra g is [27]

B = (R5)rank(g)/Wg, (2.4)

where Wg is the Weyl group of g.

Now, a more natural way to parametrize the Coulomb branch, instead

of giving VEVs to the tensor-multiplet scalars, is to give non-zero VEVs to

chiral primary operators of the (2,0) theory. These are operators whose scaling

dimensions are protected by supersymmetry. Chiral primary operators are

associated to the Casimirs of g, and so they have mass dimensions equal to

the exponents of the Lie group associated to the Lie algebra g. For AN−1, the

exponents are 2, 3, 4, . . . , N . For the DN series, they are 2, 4, 6, . . . , 2N −2;N .

The last chiral operator of the DN series is called the Pfaffian.

2.3 S-duality of 4D super Yang-Mills theory

It will be useful to review how the 6D (2,0) theory is the natural setting

to describe S-duality of N = 4 super Yang-Mills theory [18], as some aspects

of Gaiotto duality will mimic this well-known example. Specifically, N = 4

super Yang-Mills with simply-laced gauge group G is the low energy theory of

a 6D (2,0) theory of type G compactified on a torus. Since the torus is flat,

the low energy theory automatically preserves the original 16 supersymmetries
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of the (2,0) theory. Furthermore, the OSp(2, 6|2) superconformal group in 6D

becomes the PSU(2, 2|4) superconformal group of 4D N = 4 super Yang-Mills.

The modular parameter τ of the torus becomes the gauge coupling of the 4D

theory,

τ =
θ

π
+

8πi

g2
, (2.5)

which has zero beta function, and is thus tunable.

The S-duality group of 4D N = 4 super Yang-Mills is generated by the

following discrete symmetries

T : τ → τ + 1

S : τ → −1/τ

The first transformation corresponds to a shift in the theta angle, and the

second to trading the theory with gauge group G and gauge coupling τ by

the theory with gauge group LG and coupling τ ′ = −1/τ , where LG is the

Langlands dual group. Thus, the S transformation exchanges weak and strong

coupling . In the case of 4D theories obtained from 6D (2,0) theories by

compactification on a torus, the gauge group G is simply laced, so, ignoring

relatively inocuous Z2 quotients, we have LG ≡ G. (See the last paragraph of

this section for comments on the non-simply-laced case.)

The Coulomb branch of the 6D theory descends to the more familiar

Coulomb branch of 4D N = 4 super Yang-Mills. The superconformal point

sits at the origin of the Coulomb branch, and at a generic point, accessed by

giving non-zero VEVs to the scalars in the vector multiplets, the gauge group
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gets broken to U(1)rank(G), while some photons acquire non-zero masses and

become W-bosons.

In fact, the way in which the 6D point of view makes S-duality clear

is most easily seen at a generic point on the Coulomb branch. In this case

W-bosons and monopoles have finite masses. Specifically, as we compactify

on a torus S1×S1, whose radii are R and R′ respectively, the limit R/R′ → 0

corresponds to pinching one of the cycles of the torus, and equivalently, to the

weakly coupled limit of the theory. Here the W-bosons acquire masses α·〈Φ〉R,

where α is a root of G, and 〈Φ〉 are the scalar VEVs, while monopoles have

masses α · 〈Φ〉R′. The invariance under electric-magnetic duality, τ → −1/τ ,

is equivalent to exchanging the cycles of the torus, R↔ R′.

We stressed above that we only get N = 4 super Yang-Mills with

simply-laced gauge group G by this procedure. How about non-simply-laced

groups? To get these, one can introduce a twist line [28] wrapped around one

of the cycles of the torus. This basically means that one sets an odd bound-

ary condition for the fields as we loop around one of the torus cycles. The

twist line has the effect of collapsing the Dynkin diagram of the Lie algebra

for the gauge group, and we thus obtain a quotient of the gauge group by one

of its outer automorphisms. Thus, we can get N = 4 super Yang-Mills with

non-simply laced gauge groups, i.e., Lie groups of the type BN , CN , G2 and

F4. On the other hand, S-duality exchanges the cycle on which the twist line

is wrapped. At the same time, Hence, 6D engineering allows us to get N = 4

super Yang-Mills for both simply-laced and non-simply laced gauge groups.
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2.4 Compactifications and defect operators

In this section we want to take a first look at the compactifications that

will occupy us in the following chapters. See Figure 2.1. Compactifications on

circles or tori, which are flat, always preserve all the supersymmetry, but com-

pactifying on arbitrary manifolds, even if they are Riemann surfaces (again,

the torus is the exception), will generically not preserve any supersymmetry at

all. Thus, since we want to preserve some of the supersymmetry (usually half)

after compactifying, we will compactify on a Riemann surfaces and impose

a twist. The twist relevant to us will be reviewed later. So, in the diagram

above, to go from the 6D (2,0) theory to 4D super Yang-Mills theory we do

not need any twist, since the torus is flat. However, to go to a 2D N=(2,2)

theory, we do need a twist. Also, a twist is crucial to go from the 6D (2,0)

theory to the 4D N = 2 SCFT, and to compactify 5D N = 2 super Yang-Mills

theory on a circle to obtain a 3D N = 4 sigma model.

Generically, a twist corresponds to replacing the embedding of a sub-

group of the bosonic symmetry group of the theory by a different one. Thus,

there may exist more than one way of twisting. For instance, there are 3 ways

to twist N = 4 super Yang-Mills [29]. In our case we are interested in the

so-called GL twist [30], relevant to geometric Langlands. In the more recent

context of Gaiotto duality, i.e, 4D N = 2 theories obtained from compacti-

fication of 6D N = (2, 0) theories, the appropriate twist has been written in

[1, 2, 31]. We will explain the twist relevant to us in Section 5.1.1.

On the other hand, one of the most important ingredients in obtaining
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6D N=(2,0) SCFT

4D N=4 SYM
4D N=2 SCFT

3D N=4 sigma model

S1xS1
S1

S1

S1

C

C

C
+twist

5D N=2 SYM

2D N=(4,4) sigma model

+twist

+twist

Figure 2.1: A roadmap of compactifications. While we are mainly interested
in the 4D N = 2 theories in the middle of the diagram, we will find the
other compactifications to be very useful. Surface operators of 4D N = 4
super Yang-Mills, which we will review in Chapter 3, are close relatives of the
punctures on Riemann surfaces that appear in the 4D N = 2 context. 5D
N = 2 super Yang-Mills will provide BPS equations, from which we will derive
Hitchin’s equations to describe the punctures. Finally, the 3D N = 4 sigma
model and the 2D N = (4, 4) sigma model share the same target space, which
is furthermore equal to the Seiberg-Witten fibration for the 4D N = 2 theory.

14



a large family of 4D N = 2 theories will be to compactify the 6D N = (2, 0)

theory in the presence of a number of codimension-two defect operators [1, 32–

34]. In fact, it will later become clear that if we compactified the 6D theory

without any defect operators on a Riemann surface, we would obtain a much

smaller class of 4D N = 22, which are furthermore intrinsically interacting. The

presence of the defect operators is what actually allows Gaiotto’s procedure

to yield standard 4D Lagrangian N = 2 gauge theories.

Thus, in compactifying the 6D (2,0) theory on the torus to get 4D

super Yang-Mills theory, the codimension-two (four-dimensional) defects of

the 6D theory are wrapping the torus, so they descend to codimension-two

(2-dimensional) defects of 4D super Yang-Mills. These are called surface op-

erators, and we review them in Chapter 3. They can be defined by imposing

a singular behavior of the fields on the support of the surface (as we will do

in Chapter 3), or one can construct a 2D sigma model living on the defect,

coupled to 4D N = 4 super Yang-Mills.

Similarly, when we compactify the 6D (2,0) theory on a Riemann sur-

face to obtain a 4D N = 2 theory, the codimension-two defects of the 6D

theory are wrapping the four-dimensional spacetime of the 4D theory, so they

appear as a puncture on the Riemann surface.

Finally, when compactifying the 6D (2,0) theory to get 5D N = 2 super

Yang-Mills, we are wrapping the codimension-two defect on the S1, so we are

2Namely, the so-called TN theories, and surfaces constructed from them. In the language
of the following Chapters, this is the same as Riemann surfaces with only maximal punctures.
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left with codimension-two (three-dimensional) defects of 5D super Yang-Mills.

One expects a 3D N = 4 sigma model living on the defect, coupled to 5D

super Yang-Mills3.

3The first attempts to describe aspects of the 6D (2,0) theory in terms of 5D N = 2 super
Yang-Mills can be found in [35, 36].
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Chapter 3

Surface operators

As we reviewed in Section 2.4, the compactification of a 6D (2, 0) the-

ory on a torus in the presence of a codimension-two (four-dimensional) defect

operator, itself also wrapping the torus, leads to 4D N = 4 super Yang-Mills

theory in the presence of a surface operator [32–34, 37]. While we are actually

interested in 4D N = 2 theories, which are reached by a different compacti-

fication of the 6D (2,0) theories (namely, on an arbitrary Riemann surface),

one of the main ingredients in the 4D N = 2 story will be the punctures on

the Riemann surface, which descend from the codimension-two defects of the

6D theory. We have no way to study the defects directly in the (2,0) setting,

so surface operators are, for now, our only handle on them. Furthermore, we

will see that these defects can be understood as singular boundary conditions

for a Hitchin system in both contexts: 4D N = 4 super Yang-Mills, and 4D

N = 2 theories. Thus, Hitchin’s equations govern the defects in both pictures.

Finally, statements about S-duality of surface operators, thoroughly studied

by Gukov and Witten in [32, 33], may provide clues about certain not-well-

understood N = 2 punctures, namely the non-special punctures (which we

will introduce in Chapter 5) and the sectors of punctures that are odd under

outer automorphisms.
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3.1 Definition

Surface operators [32–34, 37] are defined by specifying a singularity on

a codimension-two submanifold of spacetime. In this sense, they are defined in

a way analogous to ’t Hooft line operators, rather than Wilson line operators.

Also, the presence of a surface operator modifies the Hilbert space of the quan-

tum theory, i.e., it restricts the evaluation of the path integral to fields that

have the prescribed singularity. By contrast, a Wilson line operator modifies

the integrand, by introducing the holonomy operator in it, instead of altering

the Hilbert space.

Let us consider N = 4 super Yang-Mills theory on D × C ' R4, where

D and C are both planes, isomorphic to R2. D will be the support of our

surface operator. From the point of view of C, the surface operator will be

located at the origin. We introduce the following coordinates on D and C:

D : x0, x1, C : x2, x3

A half-BPS surface operator preserves 2D (4,4) supersymmetry. A 4D N =

4 vector supermultiplet decomposes into a (4,4) vector and hyper-multiplet.

The hypermultiplet lives on the plane C. The surface operator is defined by

demanding a singular behavior for the (4,4) hypermultiplet along D, i.e., at

the origin of C. We choose the (4,4) hypermultiplet fields to be (A, φ), with

A = A2dx
2 + A3dx

3, φ = φ2dx
2 + φ3dx

3, (3.1)

and where A2, A3, φ2, φ3 are, respectively, gauge field and scalar components

of an N = 4 vector multiplet.
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Thus, dimensionally reducing the N = 4 super Yang-Mills BPS equa-

tions on C, we arrive at Hitchin’s equations on C,

FA − φ ∧ φ = 0,

dAφ = 0, dA ∗ φ = 0, (3.2)

where dA = d+ A is the covariant derivative, and F is the curvature of A.

It is reasonable to require solutions to also be rotation invariant on C.

The most general ansatz compatible with rotation invariance is

A = a(r)dθ + f(r)
dr

r
, φ = b(r)

dr

r
− c(r)dθ, (3.3)

where we have introduced a complex coordinate in C, x2 + ix3 = reiθ. We

eliminate the parameter f(r) by a gauge transformation. Replacing this ansatz

in Hitchin’s equations, we get Nahm’s equations :

da

ds
= [b, c],

db

ds
= [c, a],

dc

ds
= [a, b] (3.4)

where s = − ln r.

We want to find solutions to (3.4) that preserve conformal symmetry.

These should simply be independent of s. To satisfy the equations [a, b] =

[b, c] = [c, a] = 0 one can take a = α, b = β, c = γ, for any constant elements

α, β, γ ∈ t, where t is a Cartan subalgebra of g. The solution is then

A = αdθ, φ = β
dr

r
− γdθ. (3.5)

Actually, in the path integral, the fields (A, φ) need only have this form

near the singularity. Generically, these fields are allowed to have additional
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terms less singular than 1/r. In Section 3.4 we will actually compute a limit

α, β, γ → 0 to expose these less-singular terms, and define new surface opera-

tors associated to them.

One can also turn on another t-valued parameter, η, which is roughly

a two-dimensional theta angle.

Also, in quantizing, one should divide by gauge transformations that,

along D, take values in the subgroup L of G that commutes with α, β, γ, η.

The subgroup L, called Levi subgroup, always contains the maximal torus T ;

moreover, if we take generic α, β, γ, η, we have L ' T .

So, instead of defining a conformal surface operator by α, β, γ, η, we can

also define it by a choice of Levi subgroup L, and then choose α, β, γ, η such

that the subgroup of G that commutes with them is exactly L. This point of

view has the convenience that it allows us to vary α, β, γ, η in a space of sets

of matrices whose commutant in G is L.

For simplicity, we will set the theta angle η to be zero in what follows,

and work only with α, β, γ.

3.2 Complex structures

The moduli space of smooth solutions of Hitchin’s equations are well-

known to have a hyper-Kahler structure. Similarly, the moduli space of sin-

gular solutions of Hitchin’s equations with the singular behavior discussed

above, also possesses a hyper-Kahler structure.
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A hyper-Kahler structure means that there is a 2-sphere worth of possi-

ble complex structures for the moduli space of solutions of Hitchin’s equations

with our prescribed singularity. Different choices of complex structures pro-

vide a different point of view on Hitchin’s equations. Let us see what this

means more precisely.

First, we will describe the complex structure most important to us.

In a certain, distinguished complex structure, which we call I, a solution of

Hitchin’s equations on a Riemann surface C describes a Higgs bundle. (A

Higgs bundle is a pair (E,ϕ), where E is a holomorphic G-bundle and ϕ,

called the Higgs field, is a holomorphic section of KC ⊗ ad(E), where KC is

the canonical bundle of C. Basically, the Higgs field ϕ is a global holomorphic

function of C that takes values in the adjoint representation. In particular, ϕ

is not gauge invariant.) In our case, this Higgs bundle is constructed from the

fields (A, φ) of Hitchin’s equations. We define an operator ∂̄A as the (0,1) part

of the covariant exterior derivative dA = d+A. We use ∂̄A to give the bundle

E a holomorphic structure. On the other hand, the Higgs field ϕ is defined as

the (1,0) part of φ. (Since φ is a 1-form, it decomposes as φ = ϕ+ ϕ̄, where ϕ

is of type (1,0) and ϕ̄ is of type (0,1). Hitchin’s equations then mean that ϕ is

holomorphic, that the pair (E,ϕ) is a Higgs bundle, and that ϕ has a simple

pole,

ϕ =
1

2
(β + iγ)

dz

z
(3.6)

In a different complex structure, which we call J , the natural variable

is instead the connection A = A+ iφ = (α− iγ)dθ, which takes values in the
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complexified gauge group GC. In this complex structure, Hitchin’s equations

mean that A is a flat connection, whose monodromy around the singularity is

U = exp(−2π(α− iγ)) (3.7)

Finally, the complex structure K = IJ is qualitatively similar to J ,

and also describes a flat GC-connection.

3.3 Relation to 2D (4,4) sigma models

We can understand our derivation of Hitchin’s equations in a different

way [2]. Let C be now a Riemann surface instead of a plane, and let D ×

C, with D ' R2 be 4D spacetime. To preserve supersymmetry after the

compactification on a Riemann surface we need to perform the GL twist [30].

So, compactifying GL-twisted N = 4 super Yang-Mills theory on C will yield

a 2D (4,4) sigma model on D. The target space of the 2D sigma model is a

hyper-Kahler manifold M. Being a space of vacua, M can be identified with

the space of solutions of the 4D BPS equations that are furthermore Poincaré

invariant on the plane D. But we have seen in Section 3.1 that this procedure

yields precisely Hitchin’s equations. Thus, the target space M of the 2D (4,4)

sigma model can be identified with the moduli space of solutions to Hitchin’s

equations. As we saw in Section 3.2, in the complex structure I, a solution

to Hitchin’s equations is a Higgs bundle, so we also say that M is the Hitchin

moduli space of Higgs bundles.

When we deal with the 4D N = 2 theories, we will arrive at M by a
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different path. Namely, we will compactify (twisted) 5D N = 2 super Yang-

Mills on a Riemann surface, to obtain a 3D N = 4 sigma model with target

space M. The compactification of the 3D sigma model on S1 yields the same

2D sigma model with target space M that we just found above. Notice that

the 3D and 2D sigma models share the same hyper-Kahler target space M.

3.4 α, β, γ → 0 limit

In the limit α, β, γ → 0, the solution to Nahm’s equations does not

become regular, but, rather, becomes less singular than 1/r. Specifically, the

Nahm solution becomes

a = − t1
s+ 1

f

, b = − t2
s+ 1

f

, c = − t3
s+ 1

f

, (3.8)

where t1, t2, t3 are the generators of a certain su(2) embedding into the Lie

algebra g. What su(2) embedding appears depends on the values of α, β, γ.

The generators ti satisfy [t1, t2] = t3, etc. Also, f is a non-negative constant,

which we allow to fluctuate, as opposed to assigning a specific value to it,

and we integrate it later in the path integral. With this caveat, this surface

operator is conformally invariant.

So, a surface operator with parameters α, β, γ tends in the limit α, β, γ →

0 to a surface operator characterized by the Nahm solution above, for some f .

Specifically, near r = 0, the fields behave as

A =
t1

ln r
dθ + . . . (3.9)

φ =
t2

r ln r
dr − t3

ln r
dθ + . . . (3.10)
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where the ellipses represent terms less singular than 1/ ln r.

3.5 Monodromy

The flat connection A = A+iφ, which is valued in tC (the complexifica-

tion of the Lie algebra t of the maximal torus T of G), is invariant under part

of the supersymmetry preserved by the surface operator. Thus, the conjugacy

class of the monodromy

U = P exp

(
−
∫
l

A

)
∈ GC (3.11)

is a supersymmetric observable. Here GC is the complexification of G, and l

is a contour surrounding the singularity. Hitchin’s equations imply that A is

flat. Thus, the conjugacy class of U is invariant under deformations of l.

For a surface operator with parameters α, β, γ, we have A = ξdθ, where

ξ = α− iγ ∈ tC, and

U = exp(−2πξ) ∈ GC (3.12)

The conjugacy class Cξ of U above tends, in the limit ξ → 0 to the union of

two unipotent conjugacy classes,

Cξ → C′ ∪ C0 (3.13)

Here C′ is the unipotent class of matrices(
1 0
w 1

)
(3.14)

for non-zero w. On the other hand, C0 consists only of the unit matrix.
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Instead of unipotent conjugacy classes of GC, we can express the above

in terms of the Lie algebra gC. (We refer to [15] and references therein for an

introduction to nilpotent orbits.) Specifically, the result above says that the

boundary of a semisimple orbit contains two nilpotent orbits, one of which is

the trivial nilpotent orbit, which consists just of the zero element. The other

nilpotent orbit has actually the same dimension as the semisimple orbit. This

is generic. Given a nilpotent orbit in gC, we may always compute its boundary

to find a disjoint union of nilpotent orbits. The largest nilpotent orbit in this

union has the same dimension as the original semisimple orbit. This nilpotent

orbit is the correct α, β, γ → 0 limit of the semisimple orbit. In terms of

Hitchin’s equations, the Higgs field

ϕ(z) =
X

z
+ . . . , (3.15)

should have X be in a semisimple or nilpotent orbit of gC.

3.6 S-duality

We are interested in understanding the action of S-duality on surface

operators. Our working assumption will be that S-duality maps surface opera-

tors to surface operators. When S-duality exchanges weak and strong coupling,

a surface operator in N = 4 super Yang-Mills theory with gauge group G is

expected to be mapped to a surface operator in N = 4 super Yang-Mills the-

ory with gauge group LG. For a general S-duality transformation, if a surface

operator is parametrized by (α, β, γ, η), we want to be able to compute the

parameters (Lα, Lβ, Lγ, Lη) of the dual surface operator.
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The S-duality group is generated by two transformations: 1) the electric-

magnetic duality S : τ → −1/ngτ (where ng is 1 for simply-laced G, and is oth-

erwise 2 or 3), which exchanges strong and weak coupling, and 2) T : τ → τ+1,

which shifts the theta angle of the theory. Our plan will be to write down the

actions of S and T separately, and then, at least for simply-laced G, write

down the map for a general element of the S-duality group.

First, let us see how β and γ transform under S. Since the combination

β+ iγ appears in the residue of the Higgs field ϕ, it is convenient to think first

about how the scalar field φ in the 2D hypermultiplet transforms under S.

Under this transformation, fields in the original theory do not map to fields

in the dual theory; rather, gauge invariant quantities are mapped to gauge

invariant quantities.

However, we can do the computation at a generic point of the Coulomb

branch, where the gauge group G gets broken to an Abelian torus T, and things

simplify considerably. In this vacuum, the (remaining) scalar fields φ take

values in t, while Lφ of the dual theory takes values in Lt. We take advantage

of the fact that the Lie algebras t and Lt are dual as vector spaces, so choosing a

Weyl-invariant metric directly provides a Weyl-invariant identification between

them. We choose the metric in t to be 〈x, y〉 = Tr xy, for x, y ∈ t. The S

transformation then acts linearly on φ, which means that Lφ is a multiple of φ∗,

where ∗ stands for duality in the vector-space sense. Imposing that the kinetic

energy of the scalars be preserved, we are able to find this map explicitly,

S : φ→ |τ |φ∗. (3.16)
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From this expression, one can deduce that β and γ, both of which are in t,

transform under S into their duals in Lt,

S : (β, γ)→ |τ |(β∗, γ∗), (3.17)

This last relation should be independent of the vacuum, so it should be true

also at the superconformal point of the Coulomb branch, where the gauge

group does not get broken to an Abelian group.

On the other hand, β and γ are not changed by the shift T : τ → τ +1.

Thus, for β and γ, it is only the action of S that matters.

The effect of a general S-duality transformation, generated by S and T ,

on β and γ is easiest to write for a simply-laced gauge group G. In this case

one can identify (β, γ) with their duals (β∗, γ∗), and so for a general SL(2,Z)

transformation

(
a b
c d

)
, we have

(β, γ)→ |cτ + d|(β, γ). (3.18)

Let us now see how α and η transform under S. Recall that α ∈ T

and η ∈ LT. Since S exchanges T and LT, one can guess that α and η will

get exchanged by S. More precisely, since the transformation S2 is a central

element of the duality group Γ, one must have, up to sign,

S : (α, η)→ (η,−α). (3.19)

It is harder to argue what the transformation rule is for a T . We direct the

reader to Gukov-Witten [32, 33] for more details. Here we will simply write
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the answer:

T : (α, η)→ (α, η − α). (3.20)

The effect of a general S-duality transformation, again more simply written

for simply-laced G, is

(α, η)→ (α, η)M−1, (3.21)

where M is an element of SL(2,Z).
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Chapter 4

Gaiotto duality

In this Chapter we review relevant aspects of 4D N = 2 SCFTs, which

we will need to be familiar with to describe the intrinsic Hitchin picture in

Chapter 5. In particular, we want to understand one of two pioneering ex-

amples of S-duality of N = 2 SCFTs, which are known as Argyres-Seiberg

dualities [12], and constitute our first examples of the more general Gaiotto

duality. Our example involves a 4D N = 2 SCFT with SU(3) gauge group and

Nf = 6 fundamental hypermultiplets. The fundamental region of the marginal

gauge-coupling moduli space exhibits an infinitely strongly-coupled point. At

this strongly-coupled point, a new weakly-coupled, S-dual picture emerges. In

this example, the weakly-coupled S-dual theory involves an interacting SCFT,

i.e., an isolated fixed point of the renormalization group, which has no con-

ventional Lagrangian description and no gauge couplings, but which possesses

a Coulomb branch and a conventional low-energy description in terms of a

Seiberg-Witten curve. For the SU(3) Nf = 6 theory, this weakly coupled S-

dual frame is an SU(2) gauging of the interacting E6 SCFT [11], coupled to one

fundamental hypermultiplet. In this chapter we also familiarize ourselves with

S-duality invariant quantities needed to identify our candidate S-dual pairs,

which will be crucial tools to verify our predictions for S-duality.
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4.1 Argyres-Seiberg duality

4.1.1 Strongly-coupled cusps of SU(N) Nf = 2N

The 4D N = 2 SCFTs with gauge group SU(N) and Nf = 2N fun-

damental hypermultiplets provide good examples of superconformal theories

that can be described in Gaiotto’s picture, as we will see in Chapter A-series.

The case N = 3 is also the first of the two examples of Argyres-Seiberg duality

[12], now understood to be a particular case of Gaiotto duality. Thus, it will

be quite useful for us to study S-duality related aspects of this series of SCFTs

and develop some intuition.

The 4D N = 2 SU(N) Nf = 2N theories enjoy superconformal sym-

metry with a single marginal deformation, i.e., one gauge coupling

τ =
θ

π
+

8πi

g2
(4.1)

whose beta function is exactly zero. Thus, the gauge coupling τ is tunable.

Just like N = 4 super Yang-Mills theory, the SU(N) Nf = 2N theories have

a discrete S-duality group, generated by the S and T transformations,

T : τ → τ ′ = τ + 1 (4.2)

S : τ → τ ′ =

{
− 1
τ

(N = 2),
− 1

4τ
(N ≥ 3)

(4.3)

The S transformation takes us to a SU(N) Nf = 2N theory with gauge group

LG = SU(N) (ignoring an inocuous quotient by a discrete group) and marginal

gauge coupling τ ′.
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The S-duality groups for N = 2 and for N ≥ 3 are thus different. For

N = 2, the S-duality group is SL(2,Z), whereas for N ≥ 3 the S-duality group

Γ0 is strictly smaller,

Γ0 =

{(
a 2k
c d

)
, a, k, c, d ∈ Z; ad− 2ck = 1

}
⊂ SL(2,Z)

The existence of the S-duality group implies that the parameter τ actually

lives in the fundamental region H/Γ, where H is the upper-half complex plane

(since g2 > 0), and Γ is the S-duality group, i.e., either SL(2,Z) or Γ0.

The fundamental region for SU(2) Nf = 4 has only one cusp, at

τ → i∞, which corresponds to the point where the theory is weakly cou-

pled. Hence, we never really have to deal with an infinitely coupled theory:

S-duality transformations always allow us to go to finite τ .

The case N ≥ 3 is what we are really after. In this case the fundamental

region has two cusps: one is the weakly-coupled point similar to the one just

discussed, and the other is an infinitely strongly-coupled cusp. The existence

of the latter means that, at this point, we cannot appeal to S-duality to get a

version of the theory with finite coupling.

For the specific case N = 3, i.e., the SU(3) Nf = 6 SCFT, Argyres

and Seiberg [12] proposed that this strongly-coupled cusp in gauge-coupling

moduli space can be described in terms of a different, weakly-coupled theory,

namely, an SU(2) gauging of the interacting E6 N = 2 SCFT, coupled to one

fundamental hypermultiplet. (See Section 4.1.2 for a quick review of interact-

ing SCFTs.) And conversely, at the cusp where the SU(2) theory becomes
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infinitely strongly coupled, the SU(3) theory becomes weakly coupled, and so

it is the more natural description of the underlying theory at this cusp. None

of the two descriptions is more fundamental than the other; simply, there ex-

ists a different weakly-coupled description of the underlying theory at each

cusp. We call each of these two weakly-coupled descriptions, corresponding to

the two cusps in this example, S-dual frames of the underlying theory.

4.1.2 A first look at interacting SCFTs

Having stumbled upon an interacting theory, the E6 SCFT, let us

pause to recall a few facts about these theories [11]. By interacting or non-

Lagrangian N = 2 SCFTs we refer to superconformal theories that are isolated

fixed points of the renormalization group, i.e., they do not possess a moduli

space of marginal deformations, and so they are not our familiar supercon-

formal gauge theories. In particular, they do not have a gauge group, gauge

couplings, or known Lagrangian description. Still, interacting N = 2 SCFTs

enjoy many of the properties of Lagrangian SCFTs:

• Interacting SCFTs have a Coulomb branch parametrized by a set of (di-

mensionful) VEVs of relevant operators. The dimension of the Coulomb

branch is also known as the rank of the interacting SCFT, by analogy

with the rank of the gauge group in a Lagrangian SCFT. The super-

conformal point sits at the origin of the Coulomb branch, whereas, at a

generic point, where the VEVs are not zero, the theory becomes asymp-

totically free. In particular, the low-energy theory at such a generic point
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of the Coulomb branch can be described by a Seiberg-Witten curve, just

as in a Lagrangian theory.

• Interacting SCFTs have a global symmetry group, which is furthermore

customarily used to label the theories. For instance, the E6 SCFT in the

previous paragraph has global symmetry E6. In a Lagrangian theory,

the global symmetry group rotates flavors of matter hypermultiplets that

transform under the same representation of the gauge group. See also

Section 4.5.1.

• Interacting SCFTs allow also for relevant deformations corresponding

to mass-deformation parameters that break the global symmetry group

to its maximal torus. In a Lagrangian theory, these mass deformations

would give masses to the matter hypermultiplets.

• As we will see in Section 4.5.2, each non-abelian subgroup of the global

symmetry group of a 4D N = 2 SCFT, including interacting SCFTs,

has a central charge k, which is related to OPEs of flavor currents corre-

sponding to this subgroup. In practice, if we gauge a subgroup G of the

global symmetry group of the SCFT, k is related to the contribution of

the SCFT to the beta function of the gauge coupling associated to G.

By analogy with the contribution of matter hypermultiplets in a certain

gauge-group representation to the beta function, we can use an inter-

acting SCFT as “matter”, and couple it to hypermultiplets or to other

interacting SCFTs via a gauge group.
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• Also in Section 4.5.2, we will see that interacting SCFTs, like any other

4D N = 2 SCFT, have anomaly coefficients a and c, which are obtained

from the VEV of the energy-momentum tensor of the theory, when put

in a gravitational background.

Thus, in the introduced nomenclature, theE6 theory has a one-dimensional

Coulomb branch (i.e., it is rank-one theory) parametrized by a VEV of dimen-

sion 3; a central charge k = 6 for the E6 global symmetry group; and anomaly

coefficients a = 41/24 and c = 13/6. It is also conventional to specify the

central charge k of each non-abelian factor G of the global symmetry group,

in the form (G)k, to label an interacting theory; in this case, we refer to this

theory as the (E6)6 interacting SCFT. We will see how to compute all the

quantities mentioned in this paragraph in Gaiotto’s picture in Section 4.5 and

Chapters 6 and 7.

Similarly, Minahan and Nemeschansky [11] found (E7)8 and (E8)12 in-

teracting SCFTs. All these theories have rank one. See Table 4.1.

(Gglobal)k Coulomb branch dimensions (a, c)
(E6)6 3 (41/24, 13/6)
(E7)8 4 (59/24, 19/6)
(E8)12 6 (95/24, 31/6)

Table 4.1: Properties of the Minahan-Nemeschansky interacting SCFTs.

The (E7)8 theory figures in the second example of Argyres-Seiberg du-

ality, which involves an Sp(2) gauge theory with Nf = 6. In this case, the

fundamental region of gauge-coupling space has again two cusps, one corre-
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sponding to a Lagrangian Sp(2) gauge theory with Nf = 6, and the other

corresponding to an SU(2) gauging of the (E7)8 interacting SCFT coupled to

no matter. We refer to Argyres and Seiberg [12] for more details.

4.1.3 Checks of Argyres-Seiberg duality

Let us review some of the checks provided in [12] to prove the claims

of S-duality. First, the SU(3) gauge theory has rank 2; the SU(2) gauging of

the (E6)6 theory also has rank 2 because the SU(2) gauge group has rank 1

and the (E6)6 theory has rank 1 as well. Furthermore, the Coulomb branch of

the SU(3) gauge theory is parametrized by VEVs that are Casimirs of SU(3),

and so their mass dimensions are equal to the exponents of SU(3), i.e., 2 and

3. On the other hand, the Coulomb branch for the SU(2) gauge group is

parametrized by a VEV of dimension 2, while the (E6)6 SCFT has a Coulomb

branch parametrized by a VEV of dimension 3.

Similarly, the global symmetry group of the SU(3) gauge theory is a

U(6) that rotates the six fundamental hypermultiplets. On the S-dual side,

we have a SU(6), which is the commutant of the gauged SU(2) in the original

global symmetry group E6 of the (E6)6 SCFT, and we have an additional U(1)

that rotates the fundamental hyper coupled to the (E6)6 theory.

Also, the gauge coupling of the SU(3) gauge theory is marginal. To

see that the SU(2) theory also has a marginal coupling, one must compute

the contribution of the (E6)6 SCFT to the beta function. This contribution is

given by the central charge k, which we will discuss in Section 4.5.2. Here we
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just need to know that k can be computed using group theory, and that the

result is that, indeed, the coupling of the SU(2) theory is marginal.

Next, the two S-dual theories can be compared by studying the low-

energy theories at generic points on the moduli space. First, one can go to a

generic point on the Coulomb branch. The low-energy theory is described by

a Seiberg-Witten curve. First, the Seiberg-Witten curve for the SU(3) Nf = 6

theory at any point in the gauge-coupling moduli space is known. One can

evaluate this expression at the point where the SU(3) theory becomes very

strongly coupled. At this point, the SU(2) theory should become very weakly

coupled. And indeed, at this point one finds the Seiberg-Witten curve for the

(E6)6 SCFT.

This check of the Seiberg-Witten curves on both sides of the duality

can be done again considering mass deformations. This involves breaking the

global symmetry group of the theory to its maximal torus. At the level of the

Seiberg-Witten curves, one typically finds mass deformations in the form of

Casimirs of the global symmetry group. The mass-deformed Seiberg-Witten

curves for both the SU(3) Nf = 6 and the (E6)6 SCFT are known. So, in

[12], one indeed checks that the (E6)6 Seiberg-Witten curve arises in the very-

strongly coupled limit of the Seiberg-Witten curve for the SU(3) gauge theory.

Two mutually-related S-duality invariants not discussed in [12] are the

anomaly charges (a, c), which we review in Section 4.5.2. Again, agreement

on both sides of the duality is found.
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We will see how all the quantities, including Seiberg-Witten curves, in

this Section can be constructed using Gaiotto’s picture.

4.2 Comparison with the moduli space of punctured
spheres

One of Gaiotto’s key observations is that the one-dimensional moduli

space of marginal deformations of the SU(3) Nf = 6 theory can be identified

with the moduli space of complex structures of a sphere with four marked

punctures; two punctures being of a certain type, and the other two of a

second type. We will see later how the two types of punctures in this example

extend to a larger, but finite, class of punctures, which in turn descend from

a class of codimension-two defects of the (2,0) theory of type A2, after being

compactified on the 4-punctured sphere, yields the S-duality frames of the

SU(3) Nf = 6 theory.

Since the SU(N) Nf = 2N theory is not too different from the special

case N = 3, we might hope to identify the one-dimensional marginal-coupling

moduli space of this gauge theory with the moduli space of complex structures

of a certain punctured sphere. First, we saw that in the case of of SU(2)

Nf = 4 there is only one S-dual frame. The moduli space of this theory is the

same as the moduli space of complex structures of a sphere with four identical

punctures.

For SU(N) Nf = 2N , the picture is different, the picture is similar to

the case N = 3. The marginal-coupling moduli space is isomorphic to the

37



moduli space of complex structures of a sphere with four punctures, that are

not identical. Instead, two of them should be identical to each other, and we

call them “minimal”; the other two punctures are similarly identical to each

other, and we call them “maximal”.

Actually, for N = 3, the two types of punctures in this example are all

the kinds of punctures one can introduce to construct 4D theories from the

compactification of a (2,0) theory of type A2
1. For the AN−1 theory, punctures

correspond to partitions of N , and so there are P (N) punctures. (Actually,

one of these punctures will be trivial, so there are really P (N)− 1 punctures.)

So, the two punctures here are just two members of a bigger, but finite class

of punctures of the theory.

4.3 Seiberg-Witten curves and k-differentials

The Seiberg-Witten curves of linear quivers, both in the massless and

mass-deformed versions, is well known [38]. All these will correspond to com-

pactifications of the (2,0) theory on punctured spheres. The SU(3) Nf = 6

theory is an example of a linear quiver. Following Gaiotto, the Seiberg-Witten

curve (without mass deformations) for this theory can be written in the form

x3 − φ2(z)x− φ3(z) = 0 (4.4)

1We want to understand the irregular puncture of the A2 theory in Chapter 6 as a
constrained version of the maximal puncture.
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and

φ2(z) =
u2

(z − a)(z − b)(z − c)(z − d)
(dz)2 (4.5)

φ3(z) =
u3

(z − a)(z − b)(z − c)2(z − d)2
(dz)3, (4.6)

where a, b, c, d are complex numbers representing the positions of the punc-

tures. The maps φ2 and φ3 are a meromorphic 2-differential and a holomorphic

3-differential, respectively, on a sphere, where z is a patch covering the sphere

but one point. (The point at infinity in the complex plane represents the single

point not covered by the patch.) Also, x can be locally interpreted as a coor-

dinate along the fiber of the cotangent bundle. Since (4.4) is a polynomial of

degree 3, the Seiberg-Witten curve is a triple cover of the sphere. Intuitively,

we cannot find global roots for (4.4), but instead, the three branches are really

a single one that wraps the sphere three times. Still, locally, if we restrict

to a small enough chart of the sphere, we can see the three roots as three

disjoint sheets. Thus, in this case the Seiberg-Witten is a 3-sheet cover Σ of

the sphere. The complex parameters u2, u3 should be interpreted as Coulomb

branch parameters. The Seiberg-Witten differential is the one-form λ = x dz

on Σ (not C), where x is a root of the Seiberg-Witten equation (4.4). Naively,

in terms of the parameter z on C, we would seem to have 3 different one-forms

on C (for each of the three roots xi, i = 1, 2, 3 of (4.4)), but this is not so; it

is really a single one-form on the triple cover Σ2.

2The “three” Seiberg Witten-differentials here can be interpreted as the eigenvalues of
the Higgs field, in the language of Chapter 5. We will see that the Higgs field is a one-form
on C, rather than Σ, but taking values in the adjoint representation of the simply-laced Lie
algebra g.
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We mentioned in Section 4.2 that we expected two types of punctures

for this theory. Here it’s clear that one way to differentiate between them is

the order of the poles in φ2, φ3. For minimal punctures, the poles orders of

the punctures for φ2, φ3 are {1, 1}. For a maximal puncture, these pole orders

are {1, 2}. We call this list of pole orders the pole structure of the puncture.

In one degeneration of the sphere, a minimal puncture collides with a

maximal puncture. This cusp of moduli space should correspond to the SU(3)

Nf = 6 theory. The parameters u2, u3 should be understood as VEVs that

break the SU(3) gauge group to its maximal torus U(1)2. Upon complete

degeneration, the sphere breaks into two identical 3-punctured spheres. Each

of these two spheres has one minimal and two maximal punctures, and should

represent 9 hypers, or 3 hypers in the fundamental of the SU(3). If we see the

procedure in reverse, we are connecting these two spheres by weakly gauging

an SU(3) flavor subgroup in both.

It is then natural to assume that the maximal puncture provides an

SU(3) global symmetry, and that the minimal puncture provides a U(1).

In the second degeneration, the two minimal punctures collide (or,

equivalently, the two maximal punctures collide). This cusp corresponds to

the SU(2) gauging of the E6 SCFT coupled to one fundamental hyper. The

parameter u2 should be a Coulomb branch parameter corresponding to the

SU(2) gauge group. Again, the original sphere breaks into two 3-punctured

spheres. These two spheres are not equal to each other, and, in fact, they

are both different from the 3-punctured spheres found in the previous degen-
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eration. Indeed, one sphere has 3 maximal punctures, and corresponds to

the E6 SCFT. The other 3-punctured sphere has 2 minimal punctures, and

one new type of puncture, which later we will call an irregular puncture.

Roughly, the irregular puncture is a Higgsed version of a maximal puncture.

This 3-punctured sphere should correspond to 2 free hypermultiplets, or 1 hy-

permultiplet in the fundamental of the weakly-gauged SU(2). At any rate, we

can revert the procedure by connecting the irregular puncture with a maximal

puncture in the E6 3-punctured sphere.

We will call 3-punctured spheres fixtures in what follows.

On the other hand, mass-deforming the theory means allowing the poles

of all types of punctures to be pk = k, where pk is the leading pole order for

φk at the puncture. Thus, in our A2 example, both minimal and maximal

punctures have pole structure {2, 3} for φ2, φ3. We have

φ2(z) =
P4(z)

(z − a)2(z − b)2(z − c)2(z − d)2
(dz)2 (4.7)

φ3(z) =
P6(z)

(z − a)3(z − b)3(z − c)3(z − d)3
(dz)3, (4.8)

where P4(z) and P6(z) are polynomials in z of degree 4 and 6, respectively.

We determine the degree of these polynomials by the condition that all our

punctures are at a, b, c, d, and we do not have any puncture at z = ∞. This

means that, as z → ∞, φk(z) should go as 1/z2k(dz)k. For a k-differential

on a sphere, this means that the degree of the polynomial in the numerator

should be −2k +
∑
−i = 1np

(i)
k , where {p(i)

k } is the pole structure for the i-th

puncture, and there are n punctures labeled by i.
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Now, since the pole orders at the punctures are higher in the mass-

deformed case than in the massless case, we need more parameters to parametrize

the k-differentials. These additional parameters are precisely the mass defor-

mations. But the minimal puncture should introduce fewer mass deformation

parameters than the maximal puncture. This is so, because the A2 minimal

puncture corresponds to a U(1) flavor group, which has rank 1, whereas the

A2 maximal puncture has SU(3) flavor group, which has rank 2. Thus, we

expect one mass deformation parameter for the minimal puncture, and two

mass deformation parameters for the maximal puncture.

The point is that if we solve the Seiberg-Witten equation (4.4) for x

locally around an A2 maximal puncture, we find three roots x1,2,3 of the form

x1 =
m

z
+ . . . , x2 =

n

z
+ . . . , x3 =

−m− n
z

+ . . . (4.9)

Instead, at an A2 minimal puncture, we should find

x1 =
p

z
+ . . . , x2 =

p

z
+ . . . , x3 =

−2p

z
+ . . . (4.10)

So, locally, we have two roots that are equal up to next-to-leading order3. This

should be detected by the discriminant,

∆(z) = 4φ2(z)3 − 27φ3(z)2, (4.11)

which, if expanded around an A2 maximal puncture would give

∆(z) =
c

z6
, (4.12)

3In fact, in the language of Chapter 5, since the local roots of the Seiberg-Witten equation
are the eigenvalues of the Higgs field, the expressions (4.9) and (4.10) give us directly the
mass-deformed (semisimple) orbits for these punctures.
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whereas if expanded around the A2 minimal puncture, it would give

∆(z) =
c

z4
. (4.13)

To deduce this we have used the expression for the determinant in terms of

the roots, ∆(z) = (x1 − x2)2(x2 − x3)2(x3 − x1)2.

This condition that we should have a smaller pole order for ∆(z) around

a minimal puncture compared to that for a maximal puncture is what makes us

have fewer mass deformations, and so, although the pole structures of the mass-

deformed punctures are the same, we are still able to differentiate between

them through ∆(z).

We should note that we have been able to write global expressions for

the φk because we have chosen C to be a sphere. Had we chosen a higher genus

Riemann surface, we could only write local expansions around a puncture.

Still, while in general we do not have a polynomial, there is a definite number

of parameters needed to parametrize k-differentials on a Riemann surface C

of genus g; this number is (1− 2k)(1− g) +
∑n

i=1 p
(i)
k , where {p(i)

k } is the pole

structure of the i-th puncture, and there are n punctures on C.

4.4 Gaiotto duality

Here we summarize the observations of Argyres-Seiberg duality, and

gather the examples of linear quivers studied by Gaiotto, to state Gaiotto’s

proposal for S-duality. A more intrinsic understanding of Gaiotto duality, from

the point of view of Hitchin’s equations, will be explained in Chapter 5.
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Gaiotto’s proposal refers to 4D N = 2 SCFTs that arise from the

(twisted) compactification of a 6D (2,0) theory on a (possibly punctured) Rie-

mann surface C. Apparently, not every 4D N = 2 SCFT can be derived from

the compactification of a 6D (2,0) theory. Finally, Gaiotto’s proposal can be

extended to 4D N = 2 theories that are asymptotically free [39, 40].

The twisting necessary to preserve half of the supersymmetry will be

discussed in Section 5.1.1.

The punctures correspond to codimension-two defect operators of the

(2,0) theory, wrapped on 4D spacetime (and which thus are located at points

on the Riemann surface). In this sense, the punctures in Gaiotto’s picture

are closely related to the surface operators in 4D N = 4 super Yang-Mills

theory studied in Chapter 3, since both descend from the (2,0) defects through

different paths of compactification.

The gauge-coupling moduli space of the 4D N = 2 SCFT is identified

with the complex-structure moduli space of a possibly-punctured Riemann

surface C. Each cusp in gauge-coupling moduli space corresponds to a degen-

eration limit of C. In a degeneration limit of C, a long cylinder is produced,

which corresponds to a weakly-coupled gauge group. Thus, each degenera-

tion limit corresponds to a weakly-coupled theory, which we refer to as S-dual

frame.

The S-duality group is the mapping-class group of the family of curves

on which the (2,0) theory is compactified.
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Furthermore, we have holomorphic k-differentials φk on C, which de-

scend from chiral operators in the (2,0) theory. Here, k takes on values on

the exponents of the Lie algebra g that defines the (2,0) theory. For the AN−1

series, these exponents are 2, 3, 4, . . . , N . For the DN series, the exponents are

2, 4, 6, 8, 2N − 2;N . The last exponent corresponds to a the Pfaffian φ̃, which

is an N -differential.

The φk have singularities at each puncture. The set of leading poles of

the φk at a fixed puncture is the pole structure of such puncture.

The SW curves for the AN−1 and DN theries are, respectively,

xN − φ2x
N−2 − φ3x

N−3 − · · · − φN−1x− φN = 0 (4.14)

x2N − φ2x
N−2 − φ4x

N−4 − · · · − φ2N−2x
2 − φ̃2 = 0 (4.15)

Now we discuss what kinds of punctures there exist. For AN−1, punctures cor-

respond to partitions of N . Sometimes we refer to partitions as A-partitions,

for clarity. On the other hand, for DN , punctures correspond to D-partitions

of 2N . D-partitions are defined in Chapter 7. Moreover, in Chapter 5, we

will identify punctures with nilpotent orbits of the AN−1 and DN Lie algebras.

AN−1 and DN nilpotent orbits are classified precisely by A- and D-partitions.

We will also see in Chapter 5 that Hitchin’s equations govern all local

properties of the punctures, and at least some global properties of Gaiotto’s

picture. The punctures, both massless and mass-deformed, correspond to vari-

ous boundary conditions for Hitchin’s equations, and the Seiberg-Witten curve
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is associated with the Hitchin fibration. Furthermore, the k-differentials φk

correspond to invariant polynomials of the Higgs field in Hitchin’s equations.

4.5 S-duality invariants

4.5.1 Global symmetry groups

Given a punctured curve, with punctures labelled by i = 1, . . . , n, we

have a rule that associates a global symmetry group Gi to the i-th puncture.

The global symmetry group Gglobal associated to the theory on the punctured

curve is a Lie group

Gglobal ⊃
n∏
i=1

Gi (4.16)

such that

rank(Gglobal) =
n∑
i=1

rank(Gi) (4.17)

In other words, only a maximal subgroup
∏n

i=1Gi of Gglobal is made manifest

by the punctures. When
∏n

i=1Gi is a proper subgroup of Gglobal, we say that

we have “enhanced” global symmetry.

The group Gglobal is independent of the S-dual frame in which it is

computed, which means it can be used to check our proposed S-dualities. The

independence of Gglobal of the S-dual frame is also clear from (4.16) and (4.17).

Typically, in studying specific examples, one discovers that the global

symmetry group Gglobal has to be strictly bigger than the naive
∏n

i=1Gi when

one glues curves with the property that each curve contributes hypers in a

certain representation of the gauge group that connects the curves. Thus,
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there exists a bigger symmetry group rotating these hypers bigger than the

product of the groups that rotate hypers in the individual curves before glu-

ing. Sometimes the enhanced global symmetry group of a Lagrangian theory

implies that an interacting SCFT, which appears in an S-dual frame of the

theory, must itself have an enhanced symmetry.

One way to compute/check Gglobal for a fixture is to compactify the

theory on a circle to obtain a low-energy 3D sigma model, and then compute

the mirror 3D theory. A 3D theory that descends from a 4D N = 2 theory in

Gaiotto’s class has been shown to be mirror dual to a 3D linear quiver in the

shape of an extended Dynkin diagram [9, 40, 41]. This extended Dynkin dia-

gram immediately reveals the Lie algebra of Gglobal for the original 4D theory.

We will see examples of the use of 3D mirrors to check global symmetries in

Section 6.5.

4.5.2 Central charges

Each nonabelian factor Gi of the global symmetry group Gglobal has a

central charge kGi
, defined via the current algebra

Jaµ(x)J bν(0) =
3kG
4π4

δab
gµνx

2 − 2xµxν
(x2)4

+
2

π2
fabc

xµxνx · J c

(x2)3
(4.18)

The conformal anomaly coefficients a and c appear in the conformal

anomaly of the trace of the energy-momentum tensor that arises when we put

the 4D N = 2 theory in a gravitational background [42],

〈T µµ 〉 =
c

16π2
(Weyl)2 − a

16π2
(Euler), (4.19)
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where

(Weyl)2 = R2
µνρσ − 2R2

µν +
1

3
R2

Euler = R2
µνρσ − 4R2

µν +R2

The central charges kG, a and c are straightforwardly calculable in an N = 2

gauge theory with a Lagrangian description, and are constant over the whole

family of SCFTs parametrized by Mg,n [43].

The trace anomaly coefficients, a and c, of the SCFT, can be com-

puted [3, 6, 10] from two auxiliary integer quantities: the effective number of

hypermultiplets, nh, and the effective number of vector multiplets, nv,

a = 5nv+nh

24

c = 2nv+nh

12
.

(4.20)

The integers nh and nv are the actual number of hypermultiplets and vector

multiplets in a Lagrangian S-duality frame of the theory, provided such frame

exists. As a consequence, the nh of a free-field fixture (for which nv = 0) is

equal to the number of free hypermultiplets in this fixture. For an interacting

SCFT, these should be simply regarded as auxiliary quantities used to compute

a and c, which do have a sensible meaning in all cases. For a mixed fixture,

i.e., one that represents an interacting SCFT together with free hypers, the

difference between nh for the mixed fixture and nh for the SCFT alone is equal

to the number of free hypers in the mixed fixture.

We will give formulæ to compute nh and nv for regular and irregular

punctures in the AN−1 and DN series in the following chapters. These formulas

are heavily dependent on properties of the nilpotent orbits of each Lie algebra.
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Chapter 5

The Hitchin system

In this chapter we show how the Hitchin equation provides an intrinsic

understanding of the Coulomb branch properties of the punctures discussed

in Chapter 4. In Section 5.1, we argue that the Hitchin system is the BPS

equation for the 4D N = 2 theories that arise from compactification of a

(2,0) theory on a Riemann surface C. The Hitchin fibration is then identified

with the Seiberg-Witten fibration of the 4D theory. We thus realize that

the k-differentials φk of Chapter 4 as well as the Seiberg-Witten curve can

easily be constructed from the Higgs field. In Section 5.2.1, we discuss the

punctures, which, in the present context, are identified with codimension-one

defect operators of the Hitchin system on C. The Hitchin system and a class of

codimension-one defect operators of Hitchin’s equations were already discussed

in Chapter 3 in the context of surface operators of 4D N = 4 super Yang-Mills.

In this dissertation we focus on defects that respect superconformal symmetry,

which are the relevant defects to study 4D N = 2 SCFTs.

We saw in Chapter 3, in the context of surface operators, that super-

conformal codimension-one defects of Hitchin’s equations with Lie algebra gC

obey Nahm’s equations, and correspond essentially to semisimple and nilpo-
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tent orbits of gC. In the context of 4D N = 2 SCFTs, semisimple orbits

correspond to mass-deformed punctures, whereas nilpotent orbits correspond

to massless ones. The α, β, γ → 0 limit of Section 3.4 corresponds to a zero-

mass limit for a family of semisimple orbit, which yields a nilpotent orbit, i.e.,

the massless version of the puncture. Nonetheless, not all massless punctures

arise as zero-mass limits of mass-deformed punctures. Punctures with trivial

flavor group exist only in their massless version, which corresponds to a rigid

nilpotent orbit.

However, it is not clear that all the superconformal codimension-one

defect operators of Hitchin’s equations studied in Chapter 3 are relevant to

4D N = 2 SCFTs. At least, we are sure that certain defects, corresponding to

special nilpotent orbits, are relevant. Special nilpotent orbits are defined as

those lying in the range of a certain map, called the Spaltenstein map, which

takes nilpotent orbits in gC to nilpotent orbits in gC. The interpretation of non-

special orbits for 4D N = 2 SCFTs is not currently understood. Fortunately,

the methods of Chapter 4 can be used to find the properties of non-special

punctures, which allows us to perform our classification of the AN−1 and DN

4D theories in Chapters 6 and 7. In what comes to our intrinsic understanding

via Hitchin’s equations, we will have to content ourselves with understanding

only the special punctures.

In Section 5.2.2 we give the complete picture for special punctures.

The local form of the Higgs field near the special puncture yields the Coulomb

branch information for the puncture, in particular, the pole structure and the
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constraints. On the other hand, the Higgs branch properties of the puncture, in

particular the global symmetry group, are naturally given by the Spaltenstein

dual nilpotent orbit.

5.1 Hitchin’s equations and Seiberg-Witten theory

5.1.1 Topological twist

As we mentioned in Section 2.4, compactifying the 6D (2,0) theory on

an arbitrary two-dimensional surface, even a generic Riemann surface, will

not preserve any supersymmetry. However, when we compactify on a generic

Riemann surface C, one can perform a topological twist, in addition to the

compactification, to preserve half of the supersymmetry. Hence, this twist

allows us to obtain 4D N = 2 theories. As we will see in Section 5.2.1, we can

also incorporate defects, and if these defects respect superconformal symmetry,

the resulting 4D N = 2 theory will be a SCFT. Otherwise, we will get a 4D

N = 2 asymptotically-free theory.

To define the twist, we need to recall how the supersymmetry charges

transform under the bosonic symmetry of the 6D (2,0) theory, which includes

the Lorentz symmetry and the R-symmetry. Specifically, this bosonic symme-

try is SO(5, 1) × SO(5)R. The (2,0) supersymmetry charges Q transform as

the 4 × 4 representation, and obey a symplectic-Majorana reality condition.

When we compactify on a Riemann surface C, the new bosonic symmetry is

SO(3, 1)× SO(2)C × SO(3)R × SO(2)R (5.1)
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and so Q now transforms as

Q : (21/2 + 2′−1/2)× (21/2 + 2−1/2) (5.2)

and the previous symplectic Majorana condition reduces to a relation between

the 2 and 2’ of SO(3, 1).

Now, to preserve 4D N = 2 supersymmetry, we twist [1, 2, 31] the spin

connection SO(2)C by SO(2)C → SO(2)C − SO(2)R. The supercharges now

transform as

20 × 21/2 + 21 × 2−1/2 + 2′−1 × 21/2 + 2′0 × 2−1/2 (5.3)

The preserved supercharges must be covariantly constant on C, so they are

20 × 21/2. These generate an N = 2 superalgebra.

5.1.2 The Hitchin system

Consider for a moment a generic 4D N = 2 theory; that is, one not

necessarily obtained from the compactification of a (2,0) theory on C. If we

compactify this 4D theory on a circle, the low-energy theory is a 3D N = 4

sigma model with target space M. The target space M has the structure of

a hyper-Kahler manifold, which means that we have a sphere worth of com-

plex structures for M. What is interesting is that in a distinguished complex

structure, M is equivalent to a torus fibration, which moreover has a physical

interpretation for the 4D theory [44]. Specifically, M can be identified, in this

complex structure, with the Seiberg-Witten fibration of the 4D theory, i.e., the
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fibration over the Coulomb branch B of the 4D N = 2 theory whose generic

fiber is a compact torus U(1)r, with r the rank of the gauge group. Thus, the

Seiberg-Witten curve of the 4D theory is encoded in the target space M of the

3D theory.

Now, let us go back strictly to 4D N = 2 theories obtained from the

compactification of a (2,0) theory on C. In this case, the target space M of

the 3D N = 4 theory has an additional interpretation [2]; namely, M can be

identified with the moduli space of solutions to a Hitchin system. Let us see

why this is true.

We previously compactified the 6D (2,0) theory on a Riemann surface

C and performed a twist to get a 4D N = 2 theory, and then compactified it

on a circle to get the 3D N = 4 theory. From Fig. 2.1, we can reverse the

order of the compactifications [2]; namely, we compactify the (2,0) theory on

a circle to get 5D N = 2 super Yang-Mills, and then compactify on C, with a

twist, to arrive at the same 3D theory as before.

Let us now try to understand what M means in terms of the 5D theory

compactified on C × R3. The target space M is the space of vacua of the 3D

N = 4 theory. These vacua are constant over the R3 of the 3D theory, and

preserve half of the supersymmetry of the 5D theory. Thus, every solution of

the half-BPS equations of the 5D theory which is furthermore independent of

the R3 of the 3D theory should yield a 3D vacuum.
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Thus, we start with the 5D half-BPS equations,

(Fµνγ
µν +DµYIγ

µI + [YI , YJ ]γIJ)ε = 0 (5.4)

where the Y I (I = 1, . . . , 5) are the adjoint scalars of 5D super Yang-Mills,

perform a twist, and declare the solutions to be independent of the R3 of the

3D theory. Thus, we are left with equations on the Riemann surface C, every

solution of which represents a vacuum of the 3D theory. Furthermore, because

of the twist, we have a choice of complex structure, and so our equations

are given in terms of complex fields on C. The resulting system is Hitchin’s

equations on C,

F + [ϕ, ϕ̄] = 0

dz̄(∂̄ϕ+ [Ā(z̄), ϕ]) = 0, dz(∂ϕ̄+ [A(z), ϕ̄]) = 0 (5.5)

and the moduli space of solutions to Hitchin’s equations is precisely the target

space M. In (5.5), we have

ϕ =
1

2
(Y 1 + iY 2)dz (5.6)

is a holomorphic adjoint-representation-valued 1-form on the Riemann surface

C, and A = A(z)dz + Ā(z̄)dz̄ is the gauge field cotangent to C.

In retrospect, we see why it was convenient to reverse the order of the

compactifications. We obtained Hitchin’s equations (5.5) from the half-BPS

equations (5.4) of 5D N = 2 super Yang-Mills, which is a Lagrangian field

theory, and so these equations are easy to compute. On the other hand, it is
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not always easy to compute the BPS equations for a 4D N = 2 SCFT because

it is not necessarily a Lagrangian theory.

Therefore, the target space M of the 3D theory can be identified both

with the Seiberg-Witten fibration M → B for the 4D theory and with the

moduli space of solutions to Hitchin’s equations on C. From the point of

view of the Hitchin system, the projection M→ B can be seen as follows. B is

parametrized by the gauge-invariant VEVs 〈Ok〉. In 5D super Yang-Mills, 〈Ok〉

are identified with the Casimirs of ϕ. Thus, if (A,ϕ) is a solution to Hitchin’s

equations (5.5), the projection M→ B is given by (A,ϕ) 7→ {Casimirs of ϕ}.

Hence, the Seiberg-Witten curve is given by the characteristic equation

for the Higgs field, which for the AN−1 series has the expansion

det(ϕ− λx1) = xN − φ2x
N−2 − · · · − φN−1x− φN = 0, (5.7)

where the φk are k-differentials on C, and, from these equations, are equal to

the Casimirs of ϕ. The analog of (5.7) for the DN series is (4.15).

Now, the punctures represent singular boundary conditions for Hitchin’s

equations at specific points. We can now recycle our work on surface operators

in Chapter 3, where we arrived at the same Hitchin system on C with singular-

ities. To produce 4D N = 2 superconformal theories, which is the main object

of study of this dissertation, we are interested in solutions that are singular at

the punctures, but such that they respect superconformal symmetry and are

invariant under the U(1) isometry group of the Riemann surface. The latter

condition just means that the nature of the punctures should be independent
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of the choice of complex structure on the Riemann surface. This is because,

following Gaiotto, we want to identify the moduli space of complex structures

of C with the moduli space of marginal gauge couplings of the 4D N = 2

theory. Physically, we want the defects to be independent of how we tune the

gauge couplings.

5.2 Punctures and Hitchin’s equations

5.2.1 Superconformal punctures

In Section 5.1 we have seen that Hitchin’s equations on C are the BPS

equations for 4D N = 2 theories derived from the compactification of a (2,0)

theory on C. We anticipated that punctures should provide singular boundary

conditions for the Hitchin system on C. Another way to say this is that

punctures are complex codimension-one (i.e., zero-dimensional) defects of the

Hitchin system on C.

We emphasize that, in the derivation above, our Hitchin system is de-

fined for fields in a representation of the same gauge group G of 5D super

Yang-Mills, which in turn corresponds to the simply-laced Lie algebra g as-

sociated to the original 6D (2,0) theory. Thus, in the context of 4D N = 2

theories, we are only interested in Hitchin systems with simply-laced gauge

group GC.

Now, if we restrict to punctures, or boundary conditions, that respect
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superconformal symmetry, which is the main topic of this dissertation1, then,

borrowing from Chapter 3, we reach the conclusion that punctures correspond

to simple poles for the Higgs field, and whose residue lies in a semisimple or

nilpotent orbit in gC. Locally, we have for the Higgs field,

ϕ(z) =
X

z
+ . . . (5.8)

where the puncture we are studying at is located at z = 0, the ellipsis de-

notes a generic matrix in gC (in the fundamental representation), and X is a

representative of a nilpotent/semisimple orbit in gC.

If we choose a semisimple orbit, then computing the k-differentials φk,

we obtain

φk(z) =
mk

zk
+ . . . , (5.9)

where k are the exponents of our simply-laced Lie group G. Thus, semisimple

orbits are always associated to mass-deformed punctures.

On the other hand, if we choose a nilpotent orbit, we obtain

φk(z) =
uk
zpk

+ . . . , (5.10)

where 1 ≤ pk ≤ k − 1. Thus, nilpotent orbits are associated to massless

punctures. For the minimal nilpotent orbit, we get pk = 1 for every k, whereas

for the maximal nilpotent orbit we get pk = k − 1 for every k.

1Punctures that do not respect superconformal symmetry have been studied in [2, 39, 40].
Including these punctures on C yields 4D N = 2 theories that are not SCFTs, but rather
asymptotically free. From the Hitchin point of view, the Higgs field for these punctures
is allowed to have a pole of order greater than one. In the geometric Langlands language,
this corresponds to the problem of wild ramification, whereas the superconformal case cor-
responds to tame ramification.
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How should we interpret the α, β, γ → 0 limit of Section 3.4 in the

present context? This limit corresponds to a zero-mass limit, in the sense

that if the mass deformations of a mass-deformed puncture are taken to zero,

one should be left with the massless version of the puncture, so one should

be able to go from an expansion of the form (5.9) to one of the form (5.10)

by a limiting procedure. An element of a chosen semisimple orbit can always

be diagonalized; the eigenvalues are precisely the mass deformations of the

puncture. But naively taking these eigenvalues directly to zero leads us not

to a nilpotent orbit, but to the zero element of gC. A more careful limiting

procedure leads us actually to a nilpotent orbit whose dimension as a manifold

is equal to the dimension of the semisimple orbit. This nilpotent orbit is

the biggest contained in the semisimple orbit. So, there are various ways

to take the limit where the mass deformations go to zero, and generically we

obtain various nilpotent orbits, but the nilpotent orbit that should be identified

with the massless puncture is the biggest of all these, and we can identify it

because its dimension should be equal to that of the semisimple orbit. The

correct limiting procedure that yields the biggest nilpotent orbit is precisely

the α, β, γ → 0 limit.

Nonetheless, it is possible to find nilpotent orbits that cannot possi-

bly arise as a zero-mass limit of any semisimple orbit. There is simply no

semisimple orbit with the same dimension as these nilpotent orbits. These

orbits are rigid. We will see that rigid nilpotent orbits can be of two types:

special and non-special. Special nilpotent orbits that are rigid (and different
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from the zero orbit) correspond to punctures with trivial flavor group. There

are no examples of this kind of nilpotent orbit in the AN−1 series, but there are

in the DN . So, punctures with trivial flavor group (different from the trivial

puncture) are associated to a special rigid nilpotent orbit, and they do not

have a mass-deformed version.

On the other hand, non-special nilpotent orbits are currently not well

understood. Again, there exist no examples of non-special nilpotent orbits in

the AN−1 series, but we have several in the DN series. Requiring the residue

of the Higgs field ϕ on a non-special orbit seems to be a consistent boundary

condition for Hitchin’s equations, and one indeed produces a pole structure,

but it is not clear if this orbit should correspond to a puncture. Specifically,

the pole structure, or, more generally, the Coulomb branch properties, are

not everything it takes to make a puncture. A puncture should also have

Higgs branch properties, in particular a Higgs branch. Getting a little ahead

of ourselves, when we discuss the Spaltenstein map in more detail in Section

5.2.2, we will see that one can also take a non-special orbit to correspond to

the “Higgs branch” of a puncture, but then we do not understand what orbit

should give the Coulomb branch information. But this time, by indirect meth-

ods, we are sure that this Higgs-branch non-special orbit must correspond to

a puncture. We cannot somehow forbid the existence of this non-special punc-

ture, because, as we will see in Chapter 7, this non-special puncture naturally

appears in degenerations of surfaces exclusively involving special punctures.

We can even compute the pole structure (as well as the other Coulomb branch
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properties) of these non-special punctures by indirect techniques (i.e., not us-

ing the Hitchin system), and it does not correspond to the pole structure of

any Coulomb branch non-special orbit. Thus, we currently do not understand

what boundary condition corresponds to these non-special punctures. We

cannot simply match Coulomb branch non-special nilpotent orbits and Higgs

branch non-special orbits, as one would naively think. The resolution to this

puzzle is currently being investigated [45].

There are also non-special semisimple orbits of the gauge group GC, in

contrast to orbits of the Lie algebra gC, which is what we have been discussing

so far. Orbits of the Lie algebra can be mapped to orbits of the Lie group,

but the converse is not true. These non-special semisimple orbits of GC, which

turn out to be rigid, have been discussed in [33]. We presently do not know

if there should or should not be an intepretation as punctures for non-special

semisimple orbits of GC.

Finally, we should note that, in the context of surface operators, one is

led to study the Hitchin system on any semisimple Lie algebra gC, whereas in

the context of 4D N = 2 we are restricted to Hitchin systems on simply-laced

Lie groups. If we recall our discussion in Section 2.3, we were able to get 4D

N = 4 super Yang-Mills with non-simply-laced gauge group when we wrapped

a twist line on one of the non-trivial cycles of the torus on which the (2,0)

theory is compactified. These twist loops are associated with a (sub)group of

outer automorphisms of a simply-laced Lie algebra g. So, one may wonder

what happens if we wrap twist loops on non-trivial cycles of C, in the context
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of 4D N = 2 theories. Actually, since we are allowing for the possibility of

punctured Riemann surfaces, we may also have twist lines, as opposed to twist

loops, connecting two punctures. More explicitly said, these twist lines do not

have to wrap a non-trivial cycle of the Riemann surface. However, the punc-

tures are not the punctures we have been discussing so far. They should belong

to a different sector, which should be odd under the outer automorphism group

of g that we are discussing. However, unlike N = 4 super Yang-Mills, we are

still studying the Hitchin system with the original simply-laced Lie algebra gC,

not on the quotient Lie algebra by the outer automorphism. Instead, the new

punctures in the odd sector have a particular pole structure, where certain

poles have half-integer values. So, we have another problem to investigate.

We do not know the Hitchin boundary conditions for the punctures in odd

sectors under outer automorphisms of a simply-laced Lie algebra, and we do

not know if there is a puncture interpretation for the Hitchin boundary condi-

tions for the Hitchin system for a non-simply-laced Lie algebra. It should be

quite interesting to resolve these issues.

5.2.2 The Spaltenstein map

Since nilpotent orbits will enter the scene soon, there is a result we need

to discuss. It is a map that takes nilpotent orbits of gC to nilpotent orbits of

gC, called the Spaltenstein map [15]. We will find it important to concentrate

on nilpotent orbits that lie in the range of the Spaltenstein map; these are

called special nilpotent orbits. For punctures corresponding to special nilpo-
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tent orbits, the Spaltenstein map roughly relates Higgs branch information

and Coulomb branch information of a puncture. The correct picture for non-

special punctures, which do not lie in the range of the Spaltenstein map, is

not well understood yet [45]. This will not be a problem when we deal with

the (2,0) theories of type AN−1, since in that case all punctures are special,

but we will run into non-special punctures when we study the DN (2,0) the-

ories. We should emphasize that we do know how to compute the properties

of non-special punctures by other methods, but we do not have an intrinsic

understanding from the point of view of the Hitchin equation.

Another noteworthy property of the Spaltenstein map is that, if re-

stricted to the set of special nilpotent orbits, is an order-reversing involution.

To understand in what sense the Spaltenstein map is order-reversing, we need

to recall the notion of partial ordering on the set of nilpotent orbits.

Nilpotent orbits are manifolds, and they admit a hyper-Kahler struc-

ture. They generically have different dimensions as manifolds. The nilpotent

orbit with the greatest dimension is called maximal ; the trivial nilpotent or-

bit, which consists only of the zero element, has dimension zero. The smallest

non-trivial nilpotent orbit is called minimal.

While nilpotent orbits must be by definition disjoint, it is possible that

a nilpotent orbit O1 be contained in the closure of another, O2 . If that is

the case, we denote this by O1 ≤ O2. The maximal nilpotent orbit is strictly

bigger than any other, and the minimal nilpotent orbit is strictly smaller than

any other non-trivial nilpotent orbit. A diagram showing the partial ordering
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in the set of nilpotent orbits for a given Lie algebra gC is called Hasse diagram.

Now, the statement that the Spaltenstein map s, when restricted to special

orbits, is an order-reversing involution means that s2|special = id and that

s(O1) ≥ s(O2) for nilpotent orbits O1, O2 such that O1 ≤ O2.

For AN−1, the Spaltenstein map is a bijection (equal to the transpose

of the partition), so every nilpotent orbit is special. On the other hand, the

Spaltenstein map for the other Lie algebras is generically not a bijection. The

Spaltenstein map for the DN theories will be explicitly defined in Chapter 7.

5.2.3 Puncture properties and nilpotent orbits

Let g be a simply-laced Lie algebra. Massless punctures for the 4D

theories that arise from the compactification of a (2,0) theory of type g on a

Riemann surface are classified by nilpotent orbits OHiggs in gC. We call these

Higgs branch nilpotent orbits.

Let us see how OHiggs encodes Higgs-branch properties of a puncture.

Let p be a puncture, whose Higgs branch nilpotent orbit is OHiggs. The nilpo-

tent orbit OHiggs determines an embedding ρ : sl(2) → gC. The centralizer

of ρ in gC provides a dim(g)-dimensional representation of the Lie algebra

(gflavor)C of the complexified global symmetry group (Gflavor)C for the punc-

ture. The Cartan subalgebra of (gflavor)C in this representation is precisely the

mass-deformed (semisimple) orbit for the puncture.

Also, the difference between the effective numbers of hypermultiplets

and vector multiplets, δnh− δnv, that the puncture provides can be computed
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from OHiggs,

δnh − δnv =
1

2
(dim(g)− rank(g)− dim(OHiggs)) (5.11)

Now we discuss Coulomb branch properties of the puncture p. If OHiggs

is non-special, we already mentioned that we do not understand how to com-

pute Coulomb branch properties from the Hitchin point of view2. Thus, let

us restrict to the case where OHiggs is special. Let OCoulomb = s(OHiggs), where

s is the Spaltenstein map. To find the pole structure of p, we put the residue

of the Higgs field ϕ at p on the nilpotent orbit OCoulomb, and compute the

k-differentials φk near p. Looking at the relations between the expansions of

the various φk, we can deduce the constraints. After determining exactly how

many independent parameters there are and what their dimensions are, we

can also compute nv. The explicit formulas for the AN−1 and DN series are

given in Chapters 6 and 7.

2However, we can always resort to the linear quiver associated to the non-special puncture
to compute its Coulomb branch properties. Thus, one can compute, e.g., the pole structure
and the constraints for non-special punctures in Chapter 7.
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Chapter 6

The AN−1 series

6.1 Setup

We study the AN−1 (2,0) 6d theory compactified on a Riemann surface

C of genus g with n punctures [1, 4, 6] located at points yi ∈ C, i = 1, . . . , n.

We closely follow [6].

The Seiberg-Witten curve, Σ ⊂ T ∗C of the 4d low-energy AN−1 theory

is given by

0 = λN + (−1)N
N∑
k=2

λN−kφk(y), (6.1)

where λ is the Seiberg-Witten differential, and the φk(y) are k-differentials on

C (pulled back to T ∗C). The φk are allowed to have poles of various orders at

the yi.

The theory possesses a set of relevant operators, whose vacuum expec-

tation values parametrize the Coulomb branch of the theory. At a generic

point on the Coulomb branch, the theory is infrared-free; at the origin, it is

superconformal. The tangent space at the origin of the Coulomb branch is a
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graded vector space1,

V =
N⊕
k=2

Vk. (6.2)

where Vk = H0
(
C,Kk

(∑n
i=1 p

(i)
k yi

))
is the vector space of meromorphic of

k-differentials, φk, with poles of order at most pik at the punctures yi. The

graded dimension of Vk is given by

dk = dim(Vk) = (2k − 1)(g − 1) +
n∑
i=1

p
(i)
k .

As we vary the gauge couplings, the graded vector spaces, V , fit together to

form the fibers of a graded vector bundle over the moduli space, Mg,n, of

marginal-deformations. Our main guiding principle is that this vector bundle

should extend to the boundary of Mg,n. What naturally extends, over Mg,n,

are the virtual bundles whose fibers are 2

H0
(
C,Kk

( n∑
i=1

p
(i)
k yi

))
	H1

(
C,Kk

( n∑
i=1

p
(i)
k yi

))
.

We will arrange for the H1s to vanish, so that the virtual bundle is an hon-

est bundle, which extends to the boundary of the moduli space Mg,n. At

the boundary of Mg,n, the Coulomb branch has components associated to the

1We will see in Chapter 7 that in the DN case the Coulomb branch is actually a complex
variety, determined as the zero-locus of certain polynomial equations, and that the vector-
space structure appears only at the tangent space at the origin, where the Coulomb branch
is smooth. This more general picture of the Coulomb branch as a variety is the one that
should apply, say, to the exceptional (2,0) theories.

2This picture does not take mass-deformed punctures into account. These are relevant
because upon degeneration of a surface, even if all punctures in the original surface are
massless, the new punctures that appear when the cylinder becomes infinitely long will
necessarily be mass deformed [1]. Thus, the actual picture for the bundles is probably
slightly more complicated than the one discussed here.
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irreducible components of C (i.e., 3-punctured spheres) and components asso-

ciated to the gauge groups on the degenerating cylinders.

The 3-punctured spheres that appear at the boundary of Mg,n will

be called fixtures. To each cylinder connecting these fixtures we associate a

plumbing parameter3 , s ∼ 16q1/2 + . . . , with q = e2πiτ , which controls the

strength of the gauge coupling for that factor of the gauge group,

τ =
θ

π
+

8πi

g2
.

Since there are various different degeneration limits of C, there are various

different gauge theory presentations of the same underlying SCFT. These are

related by S-duality.

What we would like to do is understand the taxonomy of gauge theory

presentations which arise in this way from compactifying a given (2,0) SCFT.

To do this, we need a catalogue of what the allowed fixtures (3-punctured

spheres) are, and what cylinders (gauge groups) connect them. We can then

build up the surface C, in a degeneration limit, as a “tinkertoy”, by connecting

fixtures together with cylinders, according to the allowed rules.

In what follows, for the most part, we will restrict ourselves to the case

of the sphere, g = 0, so that the only degenerations come from the collisions

of (multiple) punctures.

3In the limit that the other gauge couplings are turned off,

s =
θ410(τ)

θ400(τ)
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6.1.1 Regular Punctures

In the AN−1 series, punctures are labeled by partitions of N . To each

such partition, [h1, h2, . . . , hp], with

h1 ≥ h2 ≥ · · · ≥ hp,
p∑
i=1

hi = N,

we associate a Young diagram, whose ith column has height hi. The corre-

sponding flavour symmetry group is

G = S

(∏
h

U(n(h))

)
(6.3)

where n(h) is the number of columns of height h. Of course, a Young diagram

with N boxes determines a second partition of N , given by the row-lengths,

[r1, r2, . . . , rq]. The two partitions are said to be transposes of each other, as

the map between them consists of taking the transpose of the Young diagram.

This second partition determines a nilpotent orbit [15], o[r1,r2,...,rq ] ⊂

sl(N), which determines the pole structure of the φk(y) at the puncture.

Specifically, the Higgs field of the Hitchin system (obtained upon further com-

pactifying the theory on a circle) has a simple pole, with residue X ∈ o[r1,r2,...,rq ]

at the puncture [2, 5, 32]. There’s a fairly simple algorithm for choosing such

a representative, X:

• Let X be a block-diagonal matrix, where the ith block is ri × ri.

• Within each block, let X be strictly upper-triangular.
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The characteristic equation

det(ϕ(y)− q1) = (−q)N +
N∑
k=2

qN−kφk(y) (6.4)

(for generic finite part of ϕ) determines the allowed pole orders of the φk. The

result is easily-expressed in terms of the corresponding Young diagram:

• Starting with 0 in the first box, number the boxes in the first row with

successive positive integers.

• When you get to the end of a row, repeat that integer as the number

assigned to the first box of the succeeding row. Continue numbering the

boxes of that row with successive integers.

• The integers inscribed in boxes 2, . . . , N are, respectively, the pole orders

of φ2, . . . , φN at the puncture.

For example, for N = 6, the Young diagram with two columns of height 3

corresponds to the pole structure {1, 1, 2, 2, 3} and global symmetry group

SU(2). In general, for even N , the Young diagram with two columns of the

same height will correspond to the pole structure {1, 1, 2, 2, 3, 3, . . . , N−1, N−

1, N} and global symmetry group SU(2).

By construction, partitions of N (or Young diagrams) and pole struc-

tures in the AN−1 theory are in 1:1 correspondence. So, for the AN−1 series,

we are allowed to use the pole structures to label punctures. This will not be
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true for the punctures of the other (2,0) theories4.

There are two regular punctures that deserve special names. The reg-

ular puncture with pk = k − 1, for k = 2, . . . , N , will be called a “maximal

puncture”. It corresponds to the situation with N different residues of the

mass-deformed Seiberg-Witten differential, so its associated Young diagram

consists of one row with N boxes, and its associated global symmetry group

is SU(N). On the other hand, the regular puncture with pk = 1, ∀k, will

be called “minimal”; it corresponds to having (N − 1) equal residues of the

mass-deformed Seiberg-Witten differential, its Young Diagram consists of one

row with two boxes, and N − 2 rows with one box, and its associated global

symmetry group is U(1).

Also, there is always a trivial AN−1 nilpotent orbit, of zero-dimension,

“pole structure” {0, 0, . . . , 0, 0} and trivial global symmetry. It corresponds to

the “absence” of a puncture. Thus, we will simply ignore it.

Thus, for the AN−1 theory, ignoring the trivial orbit, we will have

P (N) − 1 punctures. A colliding pair of regular punctures will give rise to

a fixture connected by a cylinder to the rest of the surface. Our job will be to

characterize the fixtures that arise as well as the cylinders that connect them.

4For the other simply-laced Lie algebras, there exist different punctures with the same
pole structures (but with other physical properties, such as global symmetry group, or
constraints, that are different). Also, the exceptional nilpotent orbits are not classified by
partitions. In general, we should use the nilpotent orbits, rather than pole structures or
partitions, of our simply-laced Lie algebra to classify punctures.
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6.1.2 Irregular punctures

As we will see below, when two regular punctures collide, the resulting

fixture will correspond to one of three possibilities:

1. a number of free hypermultiplets,

2. an interacting SCFT,

3. an interacting SCFT accompanied by a number of free hypermultiplets.

The first case corresponds to a fixture with no Coulomb branch, while the

other two cases correspond to a fixture with a positive-dimensional Coulomb

branch.

As we mentioned in the Section 6.1, we want the graded dimension

of the Coulomb branch of the degenerate surface (defined as the sum of the

graded dimensions of the Coulomb branch of the fixture, the Coulomb branch

of gauge theory on the attaching cylinder and the Coulomb branch of the rest of

the surface) to agree with the graded dimension of the Coulomb branch of the

original surface, C. To achieve this, we would like — as a bookkeeping device

— for the graded virtual dimension and the actual graded dimension of the

Coulomb branch of the fixture to agree. This determines, uniquely, the pole

structure at the attaching puncture (the third puncture of the 3-punctured

sphere).

For a fixture corresponding to free hypermultiplets, the Coulomb branch

is zero-dimensional. To achieve this, we are forced in most cases (the exception
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being the collision of a minimal and a maximal puncture) to introduce punc-

tures with pole structures that are not regular, i.e., that do not arise from the

construction detailed in §6.1.1. We call punctures with such pole structures

“irregular”5.

Irregular punctures will also appear in some fixtures associated to in-

teracting SCFTs. There, too, they will be determined by requiring that, when

certain dk are supposed to vanish, the actual and virtual value of dk agree (and

are zero).

We do not have an algorithm to generate the possible irregular punc-

tures in the AN−1 series. Instead, we will have to find them by experimenting

with degenerations. There turns out to be a finite set of them for every N .

They satisfy the following properties:

• From the pole structure {pk}, of the irregular puncture, we should be

able to construct a regular pole structure {p(reg)
k }, which corresponds to

a puncture with global symmetry group Greg, and such that

5This point of view ignores the complication of mass-deformed punctures. In a more
complete picture, an irregular puncture will be a constrained versions of the mass-deformed
version of a certain regular puncture, and should probably not have the “higher poles”
described in this section. This picture of an irregular puncture should also clarify what
the Hitchin boundary condition for an “irregular puncture” should be: the semisimple
version of the regular puncture, some of whose eigenvalues are functions of mass parameters
of other punctures present in the surface. In particular, our “irregular” punctures are not
related to the “irregular singularities” of the Hitchin-system literature (as in, e.g, [2, 39, 46]).
Along with the issue of the correct picture for the bundles on C, which we mentioned in a
previous footnote, this is still a point currently under investigation. In any case, an improved
picture will not change our results about S-duality, but should merely make the local Hitchin
boundary condition more precise.
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– p
(reg)
k = pk = k − 1 if k is an exponent of a simple Lie subgroup

G ⊂ Greg.

– p
(reg)
k + pk = 2k − 1 otherwise.

• We declare the group G to be the global symmetry group of the puncture.

• We denote the irregular puncture, thus constructed, by the Young di-

agram of the associated regular puncture, with one or more “∗”s ap-

pended.

Thus, every irregular puncture is associated to a specific regular punc-

ture. However, this is not a 1:1 relation. A single regular puncture may have

several irregular punctures associated to it.

6.1.3 Fixtures

From (6.1), the dimension dk of the Coulomb branch subspace Vk for a

sphere with n punctures is

dk = 1− 2k +

(
n∑
i=1

p
(i)
k

)
, (6.5)

where p
(i)
k (k = 2, . . . , N) represents the pole structure of the i-th puncture,

i = 1, . . . , n. Moreover, we require that the RHS of (6.5) be non-negative,

for each k, i.e. that the virtual dimension and the actual dimension agree.

Having done this, our bookkeeping rules will ensure that, when C degenerates,

the same is true of the dk of the Coulomb branches associated to each of the

component pieces.
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For a 3-punctured sphere (a “fixture”), we will require, for each k, that

• if dk > 0, then pik ≤ k − 1, for i = 1, 2, 3.

As a simple consequence any fixture has at most one irregular puncture.

If dk = 0 for all k, we have a free-field fixture. If the three punctures

are regular, then necessarily one of them is minimal and the other two are

maximal. On the other hand, an interacting SCFT fixture (which could also

have free hypermultiplets) consists of three punctures such that dk > 0 for at

least one k.

6.1.4 Cylinders

When two or more punctures on a Riemann surface collide, the surface

degenerates, and a long cylinder connecting the two pieces appears (which

could still be attached somewhere else). When the cylinder becomes infinitely

long and thin, a new puncture appears at each of the two pieces of the Rie-

mann surface where the ends of the cylinder were. The long, thin cylinder

corresponds to a weakly-coupled gauge group. When the gauge coupling is

infinitely weak, we are left with flavor symmetries at each end of the cylin-

der, corresponding to the two new punctures. Similarly, two punctures on

a Riemann surface (or on two initially disconnected Riemann surfaces) can

sometimes be glued to each other by a cylinder. In both cases the gauge group

corresponding to the cylinder is a subgroup of the flavor groups associated

to the punctures. Given two (regular or irregular) punctures, we want to see
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when they can be connected to each other, and what the arising gauge group

is.

We will denote a cylinder connecting a puncture of pole structure {pk}

with a puncture of pole structure {p′k} by

{pk}
G←−−−−−−→ {p′k},

where G denotes a gauged subgroup of the flavor symmetry groups of the two

theories connected by the cylinder.

Let qk = min(pk, p
′
k). For the cylinder to be valid, G, {pk} and {p′k}

must satisfy the following requirements:

• qk is a regular pole structure.

• G is a subgroup of the global symmetry group, Gq, where Gq is the

symmetry group associated to {qk}, following the Young diagram pre-

scription.

• rank(G) = N2 − 1−
∑N

k=2(pk + p′k).

• For each k, we have either

{
pk = p′k = k − 1

pk + p′k = 2k − 1
.

• The exponents of G are the set of k such that pk = p′k = k − 1. (Notice

there cannot be repeated exponents.)

In particular, for the AN−1 theories, G = SU(n) or Sp([n/2]), for some n ≤ N .
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Since we must have 1 ≤ rank(G) ≤ N − 1, two regular punctures can

be connected by a cylinder if and only if they are maximal, in which case the

gauge group is G = SU(N). The vast majority of cylinders will connect a

regular and an irregular puncture.

Occasionally, though, cylinders connecting two irregular punctures will

appear (see the case A3 below). These are rare, as the tension between the

rank condition and the condition on the exponents is quite restrictive.

We can now explain how the irregular punctures serve as a useful book-

keeping device. Consider the collision of two punctures {pk} and {p′k} on a

Riemann surface C. They bubble off a sphere S, which is attached by a cylin-

der T to the rest of C. Let the pole structure of the new puncture to which S

is attached by T be {p′′k}. Before the collision, the contribution of {pk}, {p′k}

to the total dimension of the Coulomb branch of the theory on C was

N∑
k=2

pk + p′k. (6.6)

After the collision, such contribution becomes

dS + rank(GT ) +
N∑
k=2

p′′k, (6.7)

where dS ≥ 0 is the dimension of the Coulomb branch associated to the fixture

S, and GT is the gauge group associated to the cylinder T . The requirements

on the cylinder that we listed above ensure that (6.6) and (6.7) agree.

The rules above actually guarantee that the agreement is finer than

that. Recall that the Coulomb branch (6.2) is not just a vector space, but a
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graded vector space (with grading given by k). We want to ensure that the

graded dimensions, dk = dim(Vk), agree. In the degeneration limit, certain

of the φk (precisely the ones satisfying the pk = p′k = k − 1 condition) are

allowed to have a k-th order pole at the node, with the residues agreeing on

the two sides. The residue is the Coulomb-branch parameter for the gauge

theory on the cylinder. The degrees of these Coulomb-branch parameters

are precisely the exponents of G. In other words, when pk = p′k = k − 1,

the dimension of that graded component of the Coulomb branch of G is 1.

When pk + p′k = 2k− 1, the dimension (and virtual dimension) of that graded

component of the Coulomb branch of G vanishes.

6.2 Symmetries and Central Charges

We already wrote down the formula for the effective number of vector

multiplets,

nv =
N∑
k=2

(2k − 1)dk, (6.8)

which is true for a Lagrangian theory. As will be clear from our analysis, (6.8)

will provide the correct definition for the effective nv, even in cases where there

is no weakly-coupled Lagrangian dual.

It will be convenient for us to have an expression for the contribution

δnv of each puncture to nv. Using the expression for dk, we get

nv =
4N3 − 4N + 3

3
× (g − 1) +

∑
i

δn(i)
v , (6.9)
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where i runs over the punctures, and

δnv =
N∑
k=2

(2k − 1)pk, (6.10)

is the contribution of a single puncture with poles {pk}. We take this expres-

sion for δnv to be correct for both regular and irregular punctures.

For the effective number of hypermultiplets, we combine the above with

a result of Nanopoulos and Xie [4], to obtain

nh = −(1− g)
4N(N2 − 1)

3
+

n∑
i=1

δn
(i)
h , (6.11)

where δn
(i)
h is the contribution of the ith puncture. For a regular puncture,

δn
(reg)
h = 1

2

(
−N +

∑
r

l2r

)
+ δn(reg)

v , (6.12)

where lr is the length of the rth row of the Young diagram, and δn
(reg)
v is the

contribution of this puncture to nv.

For an irregular puncture, define the pole structure {p(reg)
k }, as in (6.1.2).

{p(reg)
k } is, by definition, a regular pole structure, corresponding to a puncture

with Young diagram rows {lr}, and whose contribution to nh is δn
(reg)
h . The

contribution of an irregular puncture, then, is 6

δn
(irreg)
h =

4(N2 − 1)N

3
− δn(reg)

h . (6.13)

6The origin of this formula is clear. The irregular puncture, {pk}, can be attached to the

rest of the surface via a cylinder {pk} ←−−−−−−→ {p(reg)k }. Cylinders do not contribute any
hypermultiplets, and (6.13) is simply the embodiment of the requirement that nh should be
the same, before and after sewing.
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Notice that, because of this equation, all irregular punctures associated

to a single regular puncture share the same value of δn
(irreg)
h .

Applying this to the case of a sphere with three maximal punctures,

one recovers the result for the TN theories [3, 47],

k = 2N,

a =
N3

6
− 5N2

16
− N

16
+

5

24
,

c =
N3

6
− N2

4
− N

12
+

1

6
.

We will check these results for the TN theories explicitly for the cases up to

N = 5, as well as identify a host of new theories.

6.3 Identifying fixtures

In this section, for convenience, we will denote punctures by their pole

structures instead of their Young diagrams. We already mentioned in Section

6.1.1 that doing this is allowed for the AN−1 series.

We take as our starting point that

1. The AN−1 fixture arising from the collision of a minimal puncture and

a maximal puncture corresponds to N2 free hypermultiplets. (The third

puncture in this fixture is then also maximal.)

2. The AN−1 fixture arising from the collision of two minimal punctures

corresponds to 2 free hypermultiplets. (The third puncture in this fixture

is then irregular, of the form {1, 3, . . . , 2k − 3, . . . , 2N − 3}.)
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3. Fixtures corresponding to nh free hypermultiplets (with nh given by

(6.11)) will have nv = 0, according to (6.8) and have zero-dimensional

Coulomb branches.

By studying collisions of more regular punctures, we can bootstrap the prop-

erties above to identify further fixtures. Consider, for instance, the collision of

several minimal punctures. When two of them collide, the fixture

{1,1, …,1, …,1}

{1,1, …,1, …,1}

{1,3, …,2k − 3, …,2N − 3}

is attached to the rest of the surface with the cylinder

{1, 3, . . . , 2k − 3, . . . , 2N − 3} SU(2)←−−−−−−−−−→ {1, 2, . . . , 2, . . . , 2}.

Colliding the {1, 2, . . . , 2, . . . , 2} puncture with another minimal puncture pro-
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duces a free-field fixture

{1,1, …,1, …,1}

{1,2, …,2, …,2}

{1,2,4, …,2k − 4, …,2N − 4}

By conformality of the SU(2), this consists of 6 hypermultiplets (transforming

as 3 copies of the 2). This fixture, in turn, is attached to the rest of the surface

by the cylinder

{1, 2, 4, . . . , 2k − 4, . . . , 2N − 4} SU(3)←−−−−−−−−−→ {1, 2, 3, . . . , 3, . . . , 3}.

Colliding the {1, 2, 3, . . . , 3} puncture with another minimal puncture produces

a fixture which (by conformality of the SU(3)) consists of 12 hypermultiplets,

transforming as 4 copies of the 3.

Repeating the process, we deduce a series of fixtures consisting of l(l+1)
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hypermultiplets, transforming as the bifundamental of SU(l)× SU(l + 1),

{1,1, …,1,1,1, …,1, …,1}

{1,2, …, l − 1, l, l, …, l, …, l}

{1,2, …, l − 1, l, l + 2, …,2k − l − 2, …,2N − l − 2}

The next simplest puncture has pole structure, {1, 1, 2, . . . , 2, . . . , 2}, corre-

sponding to the Young diagram with two rows of length 2, and the rest of

length 1.
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Colliding this with a minimal puncture, we produce the fixture

{1,1, …,1, …,1}

{1,1,2, …,2, …,2}

{1,3,4, …,2k − 4, …,2N − 4}

This attaches to the rest of the surface via the cylinder

{1, 3, 4, . . . , 2k − 4, . . . , 2N − 4} SU(2)←−−−−−−−−−→ {1, 2, 3, . . . , 3, . . . , 3}.

If we collide that puncture with another minimal puncture, we obtain a fixture

we have seen before,

{1,1,1, …,1, …,1}

{1,2,3, …,3, …,3}

{1,2,3,5, …,2k − 5, …,2N − 5}
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which consisted of 12 hypermultiplets, transforming as the (3, 4) of SU(3) ×

SU(4). Here, we are gauging an SU(2) ⊂ SU(3). This fixture, by itself,

provides enough matter to make the SU(2) conformal. Thus, the fixture in

(6.3) consists of zero hypermultiplets.

In similar fashion, we can proceed to identify the free-field fixtures cor-

responding to the collision of any regular puncture with a minimal puncture.

We can then go on to identify other fixtures, which arise as collisions of

punctures we have studied already. For instance, colliding two {1, 1, 2, 2, . . . , 2, . . . , 2}

punctures, we obtain the fixture

{1,1,2,2, …,2, …,2}

{1,1,2,2, …,2, …,2}

{1,3,3,5, …,2k − 5, …,2N − 5}

This attaches to the rest of the surface via the cylinder

{1, 3, 3, 5, , . . . , 2k − 5, . . . , 2N − 5} Sp(2)←−−−−−−−−→ {1, 2, 3, 4, 4, . . . , 4, . . . , 4}.

If we collide that puncture with another minimal puncture, we again obtain a

fixture we have seen before: this time, 20 hypermultiplets transforming as the
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(4, 5) of SU(4)×SU(5). Here we are gauging Sp(2) ⊂ SU(4), so conformality

of the Sp(2) requires that the fixture in (6.3) consists of 4 hypermultiplets,

transforming as the fundamental of Sp(2).

Colliding a {1, 1, 2, 2, . . . , 2, . . . , 2} puncture with a {1, 2, 2, 2, . . . , 2, . . . , 2}

puncture, we obtain the free-field fixture

{1,1,2,2, …,2, …,2}

{1,2,2,2, …,2, …,2}

{1,2,3,5, …,2k − 5, …,2N − 5}

On the one hand, we can gauge this fixture by attaching a

{1, 3, 5, . . . , 2k − 3, . . . , 2N − 3} SU(2)←−−−−−−−−−→ {1, 2, 2, . . . , 2, . . . , 2}

cylinder. On the other, we can attach a

{1, 2, 3, 5, . . . , 2k − 5, . . . , 2N − 5} SU(4)←−−−−−−−−−→ {1, 2, 3, 4, . . . , 4, . . . , 4}.

To ensure conformality of both the SU(2) and the SU(4), we conclude that

this fixture consists of 10 hypermultiplets, transforming as the (1, 4) + 1
2
(2, 6)

of SU(2) × SU(4). (Note that the (2, 6) representation is pseudo-real, so we
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can have matter in a half-hypermultiplet, in that representation. Also, `6 = 2,

which ensures conformality of the SU(4).)

Having proceeded as far as we can, in this fashion, we can then use

these “known” fixtures, plus S-duality, to deduce the identity of other fixtures

(including the interacting SCFTs). To see how that works, it is perhaps best

to proceed by example.

6.4 Taxonomy

6.4.1 A1

For A1, there’s just one type of regular puncture, {1}, where the

quadratic differential, φ2 is allowed to have a simple pole, and there are no

irregular punctures. Correspondingly, there is one type of cylinder, which has

gauge group SU(2). Similarly, there is only one fixture, with three {1} punc-

tures, which is the free theory of four hypermultiplets, or, in a language more

appropriate for the A1 case, eight half-hypermultiplets, which transform as a

(2, 2, 2) representation of the SU(2)× SU(2)× SU(2) flavor subgroup of this

fixture. As before, half-hypermultiplets are allowed because the fundamental

representation of SU(2) is pseudo-real.

6.4.2 A2

There are now two regular punctures:

Nilpotent orbit Pole structure Flavour symmetry (δnh, δnv)
{1, 2} SU(3) (16, 13)

{1, 1} U(1) (9, 8)
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There is one type of irregular puncture:

Young diagram Pole structure Flavour symmetry (δnh, δnv)

* {1, 3} SU(2) (−4, 18)

and two cylinders:
SU(3)←−−−−−−−−−→
SU(2)←−−−−−−−−−→ *

There are three distinct types of collisions giving rise to three different fixtures:

the collision of two minimal punctures, a minimal and a maximal puncture,

and two maximal punctures. The first two cases yield free-field fixtures. The

third yields a fixture with a one-dimensional Coulomb branch, the interacting

E6 SCFT of Minahan and Nemeschansky [11].

The free-field fixtures are:

Fixture Number of Hypers Representation

*

2 2

9 (3, 3)

Here we have listed the matter representation of the (non-Abelian)

global symmetry group of each puncture (or, in the case of an irregular punc-

ture, of the gauge group of the attaching cylinder).
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The interacting fixture is

Fixture (d2, d3) (a, c) (Gglobal)k

(0, 1)
(

41
24
, 13

6

)
(E6)6

Here we have listed the graded dimensions dk of the Coulomb branch

(the total dimension is d =
∑

k dk), the central charges, (a, c), the global

symmetry group Gglobal of the SCFT, and the central charge k of the Gglobal

current algebra.

The basic S-duality of the A2 theory (discovered by Argyres and Seiberg

[12]), can be seen by studying the various degenerations of the 4-punctured
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sphere.

*

On one side we have an SU(3) gauge theory with 6 hypermultiplets in the

fundamental (3 from each fixture). On the other, we have an SU(2) gauge the-

ory coupled to one fundamental hypermultiplet, where the SU(2) is a gauged

subgroup of the original ⊂ E6 flavor symmetry of the interacting E6 SCFT.

The central charge of the E6 current algebra is such that the β-function of the

SU(2) vanishes. In both cases, the global symmetry group is SU(6)×U(1). In

the SU(2) gauge theory, the SU(6) global symmetry arises as the commutant

of SU(2) ⊂ E6.
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We can use this example of S-duality to compute the (a, c) central

charges of the E6 SCFT. The effective number of vector multiplets and hyper-

multiplets of the SU(3) Nf = 6 theory are nv = 8 and nh = 18, respectively.

In the S-dual theory, the SU(2) gauge group and the fundamental hypermulti-

plet contribute nv = 3 and nh = 2, so the difference gives nv = 5 and nh = 16

for the E6 theory. From these numbers we compute a = 41
24

and c = 13
6

. The

results, of course, agree with our explicit formulæ, (6.11) and (6.8).

6.4.3 A3

Now we turn to the A3 theory. There are four regular punctures:

Nilpotent orbit Pole Structure Global Symmetry (δnh, δnv)
{1, 2, 3} SU(4) (40, 34)

{1, 2, 2} SU(2)× U(1) (30, 27)

{1, 1, 2} SU(2) (24, 22)

{1, 1, 1} U(1) (16, 15)

and four irregular punctures:

Young diagram Pole Structure Global Symmetry (δnh, δnv)

* {1, 2, 4} SU(3) (40, 41)

** {1, 3, 3} Sp(2) (40, 39)

*** {1, 3, 4} SU(2) (40, 46)
* {1, 3, 5} SU(2) (50, 53)
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The cylinders are:

SU(4)←−−−−−−−−−→
SU(3)←−−−−−−−−−→ *

Sp(2)←−−−−−−−−→ **
SU(2)←−−−−−−−−−→ ***

*
SU(2)←−−−−−−−−−→ **
SU(2)←−−−−−−−−−→ *

To determine the fixtures, we need to consider all possible collisions

of pairs of regular punctures. There are ten such collisions; six lead to free-

field fixtures, and four to interacting SCFT fixtures. The ones which lead to

free-field fixtures are (we draw the pair of punctures that collide on the left):
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Fixture Number of Hypers Representation

*

2 2

***

0 −

*

6 (2, 3)

16 (4, 4)

**

8 1
2
(2, 2, 4)

14 (2, 1, 4) + 1
2
(1, 2, 6)

The interacting fixtures are:
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Fixture (d2, d3, d4) (a, c) (Gglobal)k Theory

(0, 0, 1)
(

59
24
, 19

6

)
(E7)8

The E7 SCFT of
Minahan-Nemeschansky

(0, 1, 0)
(

15
8
, 5

2

)
(E6)6

The E6 SCFT plus
4 free hypers

(0, 1, 1)
(

15
4
, 9

2

)
SU(2)6 × SU(8)8 New. “R0,4”.

(0, 1, 2)
(

45
8
, 13

2

)
SU(4)3

8 “New.” T4.

To understand the free-field fixtures, it is helpful to repeat the analysis

that Gaiotto did, of “the ends of linear quivers” [1]. In the present notation,

we have a set of punctures colliding, in hierarchical fashion, producing a chain

of fixtures, connected to the rest of C.
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Consider the following chain, obtained as the collision of four minimal

({1, 1, 1}) punctures on C.

SU(4) SU(3) SU(2)

a b c d

**

Representing the rest of C as four hypermultiplets in the fundamental of

SU(4), the matter content of this theory is

# hypers SU(4) SU(3) SU(2)
a 4 4 1 1
b 1 4 1 1

1 4 3 1
c 1 1 3 2
d 1 1 1 2

Each gauge group factor has vanishing β-function. We can obtain the

gauge theories correponding to other, related, collisions by lopping fixtures off

of the end of the picture. For instance, the gauge theory corresponding to

the collision of two minimal punctures and a {1, 2, 2} puncture is obtained by

omitting fixture “d” and the SU(2) gauge group factor.
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The collision of two minimal punctures and a {1, 1, 2} puncture gives

rise to

a b c

***

with matter content

# hypers SU(4) SU(2)
a 4 4 1
b 1 4 2

2 4 1
c − − −

This theory is S-dual to

SU(4) SU(2)

a b c

*

with matter content

# hypers SU(4) SU(2)
a 4 4 1
b 2 4 1

1
2

6 2
c 1 1 2
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The collision of one minimal puncture and two {1, 1, 2} punctures gives

SU(4) Sp(2)

a b c

**

with matter content

# hypers SU(4) Sp(2)
a 4 4 1
b 1 4 4
c 2 1 4

If we S-dualize this, we end up with an interacting SCFT fixture. To

study that, in its simplest context, let’s turn off the SU(4), and consider the

simpler theory

Sp(2)
**

which is an Sp(2) gauge theory with 6 hypers in the fundamental (4 from the

fixture on the left, and 2 from the fixture on the right). The global symmetry

group is SO(12). The Seiberg-Witten solution can be found in [48].
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S-dualizing, we obtain

SU(2)
***

The fixture on the right contains no matter, so the theory is an SU(2) gauging

of the interacting fixture on the left. The commutant of SU(2) ⊂ G must be

SO(12), and conformality implies that the central charge k = 8. Exactly these

considerations led Argyres and Seiberg [12] to identify the SCFT corresponding

to this fixture as the E7 SCFT of Minahan and Nemeschansky [11]. We can

use this example to find nv = 7 and nh = 24 for the E7 SCFT, from which we

compute a = 59
24

and c = 19
6

(which, again, agree with our explicit formulæ,

(6.8),(6.11)).

We can use our rules to find the E7 theory in a different example, as

the strong coupling point of a Lagrangian theory with SU(4) gauge group.

Consider

SU(4)

This is an SU(4) gauge theory with 6 fundamental hypermultiplets, and 1

hypermultiplet in the 6 of SU(4). The S-dual frame containing the E7 theory

97



is

SU(3)
*

This is an SU(2) gauging of the E7 theory, coupled to 2 fundamental hyper-

multiplets. One can also compute nv = 7 and nh = 24 for the E7 theory from

this example, which agrees with what we obtained previously.

Let us study the next in the list of interacting SCFT fixtures. Start

with

SU(3)
*

This is SU(3) with 6 fundamental hypers, and 4 free hypers. S-dualizing, we

obtain

SU(2)
*

But we have seen this S-duality before (without the 4 free hypers) when we

studied the A2 theory. The fixture on the right is two hypers (one fundamental

of SU(2)). So the fixture on the left must be the E6 SCFT plus 4 free hypers.

Indeed, one finds nv = 5 and nh = 20 (and so a = 15
8

and c = 5
2
) for this
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fixture, which is what we expected, given the values nv = 5 and nh = 16 for

the E6 SCFT alone.

As a further check on this identification, consider

SU(4)

This is an SU(4) gauge theory with 4 hypermultiplets in the fundamental, and

2 hypermultiplets in the 6. The global symmetry group is

Gglobal = SU(4)8 × Sp(2)6 × U(1). (6.14)

S-dualizing, we obtain

Sp(2)
**

This is an Sp(2) gauge theory. The fixture on the right supplies two hyper-

multiplets in the fundamental. According to our identification, the fixture on

the left provides one more fundamental hypermultiplet, making a total of 3

fundamental hypers. Gauging an Sp(2) ⊂ E6, with k = 6, ensures confor-

mality. The global symmetry group associated to the 3 fundamental hypers is

SO(6) ∼ SU(4). The commutant of Sp(2) ⊂ E6 is Sp(2) × U(1), giving an

overall global symmetry group which agrees with (6.14).
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Next we turn to

SU(4)

This is SU(4) with 8 fundamental hypers. It is conformal, and has an SU(8)8×

U(1) global symmetry. S-dualizing, we obtain

SU(2)
*

This is SU(2) with one fundamental hyper (from the fixture on the right),

coupled to an SU(2) subgroup of the global symmetry group of the interacting

SCFT fixture on the left. The commutant of SU(2) must be SU(8), and the

central charge of the SU(2) current algebra must be k = 6.

To gain more information, consider

SU(4)

This is an SU(4) gauge theory. The fixture on the left provides 4 hypermulti-

plets in the fundamental. The free hypers from the fixture on the right provide
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one more fundamental (making a total of 5 fundamental hypers). Gauging

an SU(4) ⊂ E6, at k = 6 makes the theory conformal. The commutant of

SU(4) ⊂ E6 is SU(2) × SU(2) × U(1), so the global symmetry group of this

gauge theory is

Gglobal = SU(5)8 × SU(2)2
6 × U(1)2.

S-dualizing, we obtain

SU(3)
*

The fixture on the right supplies 2 hypermultiplets in the fundamental. These

supply an SU(2)× U(1) subgroup of the global symmetry group.

If we gauge an SU(3) ⊂ SU(8) of the fixture on the right, we obtain

conformality for k = 8. Moreover, the commutant of SU(3) ⊂ SU(8) is

SU(5) × U(1). So we obtain conformality and the correct global symmetry

groups for our two examples if

GSCFT = SU(2)k=6 × SU(8)k=8.

From either of the above two gaugings of this SU(2)k=6×SU(8)k=8 SCFT we

can compute nv = 12 and nh = 30, and so its central charges are a = 15
4

and

c = 9
2
.
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This SCFT with global symmetry SU(2)k=6 × SU(8)k=8 belongs to a

series, R0,N , of AN−1 (N ≥ 3) interacting SCFTs with global symmetry

Gglobal = SU(2)k=6 × SU(2N)k=2N ,

which we will discuss in §6.6.

Finally, let us pass to the last of the interacting fixtures on our list.

Consider

SU(4)

The fixture on the left provides 4 hypermultiplets in fundamental. Gauging an

SU(4) ⊂ E7 at k = 8 achieves conformality. The commutant of SU(4) ⊂ E7

is SU(4)× SU(2). So, overall, the global symmetry group is

Gglobal = SU(4)2
8 × SU(2)8 × U(1). (6.15)

S-dualizing, we obtain

SU(2)
***

The fixture on the left supplies no matter. To achieve conformality, gauging

an SU(2) subgroup of GSCFT, we must have k = 8. For the global symmetries
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to agree with (6.15), the commutant of SU(2) must be SU(4)2×SU(2)×U(1),

which suggests that

GSCFT = SU(4)3
k=8.

As another check, consider

SU(4)

The fixture on the left supplies 4 hypermultiplets in the fundamental of SU(4),

which contribute an SU(4) × U(1) to Gglobal. On the right, we gauge an

SU(4) ⊂ SU(2)k=6 × SU(8)k=8. The commutant is SU(2) × SU(4) × U(1).

So, overall,

Gglobal = SU(4)2
8 × SU(2)6 × U(1)2 . (6.16)

S-dualizing, we obtain

SU(3)
*

The fixture on the left supplies 2 hypermultiplets in the fundamental of SU(3)

(contributing an SU(2)6 × U(1) factor to Gglobal). On the right, we gauge an

SU(3) ⊂ SU(4)3
k=8, which yields a conformal theory. And the commutant,

SU(4)2
8 × U(1), combines to give (6.16).
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Using any of these gaugings we find nv = 19 and nh = 40, and so

a = 45
8

and c = 13
2

, for the SU(4)3
k=8 SCFT. This SCFT is part of the TN series

[1, 3, 47], which for N ≥ 4 has SU(N)3
k=2N global symmetry.

Finally, let us note that the cylinder between the pair of irregular punc-

tures is crucial to understanding certain S-duality frames. For instance, con-

sider the 5-punctured sphere

SU(2) SU(2)

SU(2) SU(2)

SU(2) SU(2)
*

*

* **

*** ***

***

Note that, for each degeneration, we have an SU(2) × SU(2) gauge theory,

with matter in the (2, 2) + 2(2, 1) + 2(1, 2) + 4(1, 1), so that

Gglobal = SU(2)2 × U(1)3 + 4 free hypers.

But, to make sense of the last degeneration, we crucially need the cylinder

between two irregular punctures.
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6.4.4 A4

Now we turn to the A4 theory. There are six regular punctures:

Young Diagram Pole Structure Global Symmetry (nh, nv)
{1, 2, 3, 4} SU(5) (80, 70)

{1, 2, 3, 3} SU(3)× U(1) (67, 61)

{1, 2, 2, 3} SU(2)× U(1) (58, 54)

{1, 2, 2, 2} SU(2)× U(1) (48, 45)

{1, 1, 2, 2} U(1) (42, 40)

{1, 1, 1, 1} U(1) (25, 24)

and six irregular punctures:

Young Diagram Pole Structure Global Symmetry (nh, nv)

* {1, 2, 3, 5} SU(4) (80, 79)

** {1, 2, 4, 5} SU(3) (80, 86)

*** {1, 3, 3, 5} Sp(2) (80, 84)

* {1, 2, 4, 6} SU(3) (93, 95)

** {1, 3, 4, 6} SU(2) (93, 100)

*
{1, 3, 5, 7} SU(2) (112, 116)
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The cylinders are:

SU(5)←−−−−−−−−−→
SU(4)←−−−−−−−−−→ *
SU(3)←−−−−−−−−−→ **
Sp(2)←−−−−−−−−→ ***
SU(3)←−−−−−−−−−→ *

SU(2)←−−−−−−−−−→ **

SU(2)←−−−−−−−−−→ *

The free-field fixtures are

Fixture Number of Hypers Representation

*

2 2

**

0 −
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Fixture Number of Hypers Representation

*

6 (2, 3)

**

3 (1, 3)

*

12 (3, 4)

25 (5, 5)

***

4 4

*

10 (1, 4) + 1
2
(2, 6)
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Fixture Number of Hypers Representation

20 (2, 5) + (1, 10)

The interacting fixtures are:
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Fixture (d2, d3, d4, d5) (a, c) (Gglobal)k Theory

(0, 0, 1, 0)
(

8
3
, 43

12

)
(E7)8

The E7 SCFT
plus 5 hypers

(0, 0, 1, 1)
(

61
12
, 37

6

)
SU(10)10 New. “S5”.

*

(0, 1, 0, 0)
(

41
24
, 13

6

)
(E6)6 The E6 SCFT

(0, 1, 0, 0)
(

17
8
, 3
)

(E6)6

The E6 SCFT plus
10 hypers, in the
(1, 2, 5)
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Fixture (d2, d3, d4, d5) (a, c) (Gglobal)k Theory

(0, 1, 1, 0)
(

95
24 ,

59
12

)
SU(2)6 × SU(8)8

SU(2)6 × SU(8)8

SCFT + 5h

(0, 1, 1, 1)
(

51
8 ,

15
2

)
SU(2)6 × SU(10)10 New. “R0,5”.

(0, 1, 0, 0)
(
2, 11

4

)
(E6)6

The E6 SCFT
+ 7h in the
(2, 2, 1) + (1, 1, 3)

(0, 1, 0, 1)
(

53
12 ,

16
3

)
SO(14)10 × U(1) New. “R2,5”.

(0, 1, 1, 0)
(

23
6 ,

14
3

)
SU(2)6 × SU(8)8

The SU(2)6 × SU(8)8

SCFT +2h
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Fixture (d2, d3, d4, d5) (a, c) (Gglobal)k Theory

(0, 1, 1, 1)
(

25
4 ,

29
4

)
SU(3)8 × SU(7)10 × U(1) New. “R1,5”.

(0, 1, 1, 2)
(

26
3 ,

59
6

)
SU(5)2

10 × SU(2)10 × U(1) New. “VN”

(0, 1, 2, 0)
(

17
3 ,

79
12

)
SU(4)3

8

The SU(4)3
8

SCFT +1h

(0, 1, 2, 1)
(

97
12 ,

55
6

)
SU(6)10 × SU(3)2

8 × U(1) New

(0, 1, 2, 2)
(

53
6 ,

47
4

)
SU(5)2

10 × SU(3)8 × U(1) New. “U5”.

(0, 1, 2, 3)
(

155
12 ,

43
3

)
SU(5)3

10 New. “T5”.

Since our procedures should by now be more or less straightforward, let us
simply present the A4 interacting SCFTs as strong coupling points of linear
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quivers of special unitary groups.

For the SU(10) theory, we study the following theory

SU(5)

which is a SU(5) gauge theory with 7 fundamental hypermultiplets and one
hypermultiplet in the 10 of SU(5). The S-dual frame in which we are interested
is

SU(3)
**

which is a SU(3) gauging of the SU(10) theory coupled to one fundamental
hypermultiplet. The SU(10) theory is the first in a series of interacting SCFTs,
SN (N ≥ 5), which we discuss in §6.6.

For the SU(2)× SU(10) theory, consider the Lagrangian theory

SU(5)

which is the SU(5) Nf = 10 gauge theory. The S-dual theory, which we are
interested in, is

SU(2)
*
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which is a SU(2) gauging of the SU(2)× SU(10) theory, coupled to one fun-
damental hypermultiplet.

For the SO(14)× U(1) theory we consider the Lagrangian theory

SU(5)

which is a SU(5) gauge theory with 4 fundamental hypermultiplets and 2
hypermultiplets in the 10 representation. The S-dual frame in which we are
interested is

Sp(2)
***

which is an Sp(2) gauging of the SO(14) × U(1) theory with 1 fundamental
hypermultiplet. The SO(14) × U(1) theory is part of an infinite series of
interacting SCFTs we call R2,N , for N odd, with global symmetry group

Gglobal = SO(2N + 4)k=2N × U(1).

For N = 3, the SO(10)6×U(1) is enhanced to (E6)6, and we identify R2,3 ≡ T3.

For the SU(3)×SU(7)×U(1) theory, we consider the Lagrangian theory

SU(5)

which is a SU(5) gauge theory with 7 fundamental hypermultiplets and 1
hypermultiplet in the 10 of SU(5). The S-dual frame in which we are interested
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is

SU(2)
**

which is an SU(2) gauging of the SU(3)× SU(7)× U(1) SCFT.

As discussed in §6.6, this theory, too, is part of an infinite series of
interacting SCFTs, R1,N , for odd N , with global symmetry group

Gglobal = SU(3)k=8 × SU(N + 2)k=2N × U(1).

For the SU(5)2 × SU(2)× U(1) theory, consider the Lagrangian theory

SU(5) SU(5)

which is an SU(5)× SU(5) gauge theory with matter in the 5(5, 1) + (5, 5) +
2(1, 5) + (1, 10). The S-dual frame in which we are interested is

SU(4) SU(2)
* **

which is an SU(4) gauging of the SU(5)2 × SU(2)×U(1) SCFT coupled to a
SU(2) gauge theory with matter in the (4, 2) of SU(4)× SU(2).
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For the SU(6)×SU(3)2×U(1) theory, consider the following Lagrangian
theory

SU(5) SU(4)
*

which is an SU(5)× SU(4) gauge theory with matter in the 6(5, 1) + (5, 4) +
3(1, 4) representation of SU(5) × SU(4). The S-dual frame in which we are
interested is

SU(3) SU(2)
* *

which is an SU(3) gauging of the SU(6) × SU(3)2 × U(1) SCFT coupled
to a SU(2) gauge theory with matter in the (3, 2) + (1, 2) representation of
SU(3)× SU(2).

For the SU(5)2 × SU(3) × U(1) theory, we consider the following La-
grangian theory,

SU(5) SU(5)
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which is an SU(5)× SU(5) gauge theory with matter in the 5(5, 1) + (5, 5) +
5(1, 5) representation. The S-dual frame in which we are interested is

SU(3) SU(2)
* *

which is an SU(3) gauging of the SU(5)2 × SU(3) × U(1) SCFT coupled
to a SU(2) gauge theory with matter in the (3, 2) + (1, 2) representation of
SU(3)×SU(2). This interacting fixture is, again, the first of an infinite series
we call UN .

4-Punctured Spheres

As a concrete test that our enumeration of fixtures and cylinders, in
the A4 theory, didn’t miss anything, we decided to systematically study all
4-punctured spheres – that is, all theories with a single gauge group factor –
which arise from the A4 theory. There are 90 such spheres, consisting of 4
regular punctures and a positive (graded) dimensional Coulomb branch.

• Three are spheres with 4 identical punctures.

• Twenty-one are spheres with 3 identical punctures.

In each of these cases, the gauge theory is self-dual, and so does not yield much
of an interesting check on our predictions.

• Fifty-four are spheres with two identical punctures. These lead to pairs
of distinct gauge theories, which are related by S-duality.

• Twelve are spheres with four distinct punctures. These lead to triples of
distinct gauge theories, related by S-duality.

We have checked that our rules reproduce the correct global symmetry groups,
Coulomb branch dimension and conformal anomaly coefficients for all 66 the-
ories. Since each fixture, and each cylinder appears multiple times among the
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144 distinct degenerations, this provides a powerful check on our methods. We
give a brief summary of the results in the Appendix.

6.5 3D Mirrors

To bolster our identification of the global symmetry groups of the in-
teracting SCFTs that we have found, we will use an approach described by
Benini, Tachikawa and Xie [9].

They compactify from four down to three dimension, and construct
the mirror of the 3D SCFT. The 3D mirror of the AN−1 theory on an n-
punctured sphere (×S1) is a star-shaped quiver gauge theory, with n arms,
whose central node is U(N). We will be interested in the case n = 3. The
other U(k) gauge groups, in each arm of the quiver, are dictated by the Young
diagram associated to the puncture. Starting at the central node, we reduce
the rank of each successive U(k) gauge group by the height of each successive
column of the Young diagram. Since all of the matter is in bifundamental
hypermultiplets, the mirror gauge group is (

∏
i U(ki)) /U(1)diag.

Having constructed the quiver, Gaiotto and Witten [41] tell you how
to extract the global symmetry group (by construction, all of our quivers are
“good quivers”, in the sense of Gaiotto and Witten):

• Mark each “balanced” node of the quiver (one for which
∑
ki for the

adjacent nodes is equal to 2k).

• If all of the nodes of the quiver are balanced, remove one of the U(1)
nodes (since we are modding out by the diagonal U(1).

• The marked nodes form the Dynkin diagram of the semi-simple part of
Gglobal. The abelian part is U(1)p−1, where p is the number of unmarked
nodes.

For the A2 theory, there’s just one interacting SCFT, and the quiver corre-
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sponding to its 3D mirror has the shape of the E6 extended Dynkin diagram.

===⇒ 3
2

2 1

1

1
2

After modding out by the diagonal U(1), we reproduce the global symmetry
group, E6.

In the A3 theory, there are three “new” interacting SCFTs. The first
has a mirror quiver in the shape of the extended Dynkin diagram of E7.

===⇒
4 3

3
2

2 1

1

2

After modding out by the diagonal U(1), this yields the flavour symmetry E7.

In the 3D mirror of the second SCFT

===⇒ 4 3
3

2

2 1

1

1
2

not all the nodes of the quiver are superconformal. Modding out by the diag-
onal U(1) kills one of the non-superconformal nodes (in this case, there’s only
one), leaving SU(2)× SU(8) as the global symmetry group.
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Finally, the T4 theory has an SU(4)3 global symmetry group.

===⇒ 3
3

2

2 1

1

2
1

3
4

Turning to the A4 theory, there are 8 new interacting SCFTs which arise.
The 3D dual theories each have l > 0 nodes of the quiver which are non-
superconformal. Modding out by the diagonal U(1) yields a U(1)l−1 factor in
the global symmetry group.

SCFT 3D Mirror Gk

5 4
4

3

3
2

2
2

1

1

SU(10)10

4
4

3

3
2

2 1

1

2
1

5
SU(2)6 × SU(10)10
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SCFT 3D Mirror Gk

5 4 3
3

2 1
3

1

1

SO(14)10 × U(1)

5 4 3

2

2 1

1

3

3
1

SU(3)8 × SU(7)10 × U(1)

4
4

3

3
2

2 1

1

3
1

5
SU(5)2

10 × SU(2)10 × U(1)

5 4
3

3

2

2 1

1

2
1

3
SU(6)10 × SU(3)2

8 × U(1)

4 3

3
2

2 1

1

2
1

5
3

4 SU(5)2
10 × SU(3)8 × U(1)
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SCFT 3D Mirror Gk

5 4
4

3

3
2

2 1

1

4
3

2
1

SU(5)3
10

6.6 Infinite Series

{1,2,3, …, N − 1}

{1,2,3, …, N − 1}

{1,2,3, …, N − 1}

We are already familiar with the TN series of in-
teracting SCFTs, introduced by Gaiotto, whose fixture consists of three max-
imal punctures. The global symmetry group is

Gglobal = SU(N)3
k=2N .

The graded dimension of the Coulomb branch is

(d2, d3, d4, . . . , dN) = (0, 1, 2, 3, . . . , N − 2),

and conformal anomaly coefficients are

a =
N3

6
− 5N2

16
− N

16
+

5

24
,

c =
N3

6
− N2

4
− N

12
+

1

6
.

For N = 3, Gglobal is enhanced to E6k=6.
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In our investigations, we have come across several new series of inter-
acting SCFTs. Below, we will discuss seven of them.

{1,2,2,2, …,2}

{1,2,3,4, …, N − 1}

{1,2,3,4, …, N − 1}

The R0,N series of interacting SCFTs has global
symmetry

Gglobal = SU(2)k=6 × SU(2N)k=2N ,

and has a Coulomb branch of graded dimension

(d2, d3, d4, . . . , dN) = (0, 1, 1, . . . , 1).

The strong coupling cusp of SU(N), Nf = 2N gauge theory [12, 49] is S-dual
to an SU(2) gauging of the SU(2)k=6 ⊂ Gglobal coupled to a fundamental
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hypermultiplet.

{1,1,1, …,1}

{1,2,3, …, N − 1}

{1,2,3, …, N − 1}

{1,1,1, …,1}

{1,2,3, …, N − 1}

{1,2,3, …, N − 1}

SU(N)

{1,1,1, …,1}

{1,3,5, …,2N − 3}

{1,2,3, …, N − 1}

{1,1,1, …,1}

{1,2,2, …,2}

{1,2,3, …, N − 1}

SU(2)

{1,2,3, …, N − 1}

For R0,3 (≡ T3), the SU(2)6 × SU(6)6 global symmetry is enhanced to (E6)6,
and we get back the classic example of Argyres-Seiberg duality.) The conformal
anomaly coefficients for the R0,N series are

a =
7N2 − 22

24
,

c =
2N2 − 5

6
.

{1,1,2,2,3,3, …}

{1,2,2,3,3,4, …}

{1,2,3,4,5,6, …}

The fixture for the R1,N (N ≥ 5) series has one maximal
puncture, and two other punctures, corresponding to Young diagrams of the
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form

, forN even, or , forN odd.

The Coulomb branch has graded dimension

(d2, d3, d4, . . . , dN) = (0, 1, 1, 1, . . . , 1),

and the conformal anomaly coefficients are

a =
13N2 + 3N − 40

48
,

c =
7N2 + 3N − 16

24
.

R1,N has global symmetry group

Gglobal = SU(2)k=8 × SU(N + 2)k=2N × U(1)2

(enhanced to SU(3)k=8 × SU(7)k=10 × U(1) for N = 5).

However, the realization differs slightly in the N even versus N odd
cases. This is easily seen by examining the 3D mirrors

N even :
N

N
2 + 1

N − 1 N − 2 1

2

1

1

N
2
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N odd :
N N − 1 N − 2 1

2

1

1

N + 1
2

N + 1
2

From the 3D mirrors, one also readily sees the enhancement in Gglobal for
N = 5.

(One of) the S-duals of SU(N) with matter in the (N + 2)( ) + is a

gauging of the SU(2)8 ⊂ Gglobal symmetry of R1,N .

{1,1,1,1,1,1, …}

{1,2,3,4,5,6, …}

{1,2,3,4,5,6, …} {1,2,3,4,5,6, …}

{1,1,2,2,3,3, …}

{1,2,2,3,3,4, …}

SU(N)

{1,2,3,3,4,4, …}{1,3,4,6,7,9, …}
SU(2)

{1,1,1,1,1,1, …}

{1,1,2,2,3,3, …}

{1,2,2,3,3,4, …}

{1,2,3,4,5,6, …}
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In the upper figure, the fixture on the left contributes N fundamentals; the

fixture on the right contributes 2 fundamental and one . In the lower figure,

the fixture on the left contributes nothing; the fixture on the right is R1,N .

Of course, the above 4-punctured sphere has another degeneration,
which leads us to our fourth series of interacting SCFTs

{1,1,2,2,3,3,4,4, …}

{1,2,3,4,4,5,5,6, …}

{1,2,3,4,5,6,7,8, …}

The SN series has global symmetry

Gglobal = SU(N + 2)k=2N × SU(3)k=10 × U(1)

(enhanced to SU(10)10, for N = 5). Its Coulomb branch has graded dimension

(d2, d3, d4, d5, . . . ) = (0, 0, 1, 1, 1, . . . , 1).

The conformal anomaly coefficients are

a =
13N2 + 3N − 96

48
,

c =
7N2 + 3N − 42

24
.

The third S-duality frame of the SU(N) gauge theory we have been discussing
is

{1,1,1,1,1,1,1, …}

{1,2,2,3,3,4,4, …}

{1,2,4,5,7,8,10, …}

{1,1,2,2,3,3,4, …}

{1,2,3,4,4,5,5, …}

{1,2,3,4,5,6,7, …}

SU(3)
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an SU(3) gauging of the SN theory, coupled to a single fundamental hyper-
multiplet.

{1,2,2,3,3, …, N − 1
2 , N + 1

2 }

{1,2,3,4,5, …, N − 1}

{1,2,2,3,3, …, N − 1
2 , N + 1

2 }

Next, we turn to the R2,N theory, which ap-
pears, for N odd, as a fixture in the (unique) S-dual of SU(N), with matter

in the 4( ) + 2
( )

.

The global symmetry group of R2,N is

Gglobal = SO(2N + 4)k=2N × U(1)

(enhanced to (E6)6 for N = 3, where there is no distinction between a funda-
mental hypermultiplet and an antisymmetric tensor). The graded dimension
of the Coulomb branch is

(d2, d3, d4, d5, d6, . . . , dN) = (0, 1, 0, 1, 0, . . . , 1).

The conformal anomaly coefficients for the R2,N series are

a =
7N2 + 9N − 8

48
,

c =
2N2 + 3N − 1

12
.

The strong coupling S-dual of SU(N) (N odd), with matter in the 4( )+2
( )

is an Sp
(
N−1

2

)
gauge theory coupled to one fundamental hypermultiplet and
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gauging an Sp
(
N−1

2

)
⊂ SO(2N + 4)2N of the R2,N theory7.

{1,1,2,2, …, N − 1
2 , N − 1

2 }

{1,1,2,2, …, N − 1
2 , N − 1

2 } {1,2,2,3,3, …, N − 1
2 , N + 1

2 }

{1,2,2,3,3, …, N − 1
2 , N + 1

2 }

{1,3,3,5, …, N − 2, N} {1,2,3,4, …, N − 2, N − 1}
Sp( N − 1

2 )

{1,1,2,2, …, N − 1
2 , N − 1

2 }{1,1,2,2, …, N − 1
2 , N − 1

2 }

{1,2,2,3,3, …, N − 1
2 , N + 1

2 } {1,2,2,3,3, …, N − 1
2 , N + 1

2 }

{1,2,3,4, …, N − 2, N − 1}
SU(N)

{1,2,3,4, …, N − 2, N − 1}

For N even, the S-duality of SU(N), with matter in the 4( ) + 2
( )

, looks

almost identical to the picture above. The S-dual gauge group is Sp(N/2).
The fixture on the left contributes 2N hypermultiplets, transforming as 2

7Here, and in several other S-dualities discussed in this paper, we use the embedding

SO(4lm+ 2n)k ⊃ Sp(l)km × Sp(m)kl × SO(2n)k

under which the fundamental of SO(4lm+ 2n) decomposes as (2l, 2m, 1) + (1, 1, 2n).
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fundamentals of Sp(N/2) (instead of N − 1 hypermultiplets, transforming as
one fundamental of Sp((N − 1)/2), as it did, for N odd). The fixture on the
right is R2,N−1 plus N hypermultiplets (which contribute another fundamental
of Sp(N/2)).

All together, the S-dual of SU(N) (N even), with matter in the 4( ) +

2
( )

, is Sp(N/2) with 3 hypermultiplets in the fundamental, gauging the

R2,N−1 theory.

The fixture

{1,2,2,3,3, …}

{1,2,2,3,3, …}

{1,2,3,4,5, …}

is R2,N , for N odd, and R2,N−1 plus N hypermultiplets, for N even.

{1,2,3,3, …,3}

{1,2,3,4, …, N − 1}

{1,2,3,4, …, N − 1}

The UN series has global symmetry

Gglobal = SU(N)2
k=2N × SU(3)k=8 × U(1)

(enhanced to SU(4)3
8 for S4 ≡ T4). The Coulomb branch has graded dimension

(d2, d3, d4, d5, . . . ) = (0, 1, 2, 2, 2, . . . , 2).

and the conformal anomaly coefficients are

a =
13N2 − 73

24
,

c =
7N2 − 34

12
.
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Consider an SU(N)2 gauge theory, with matter in the N(N, 1) + (N,N) +
N(1, N). One S-dual frame is, of course, an SU(2)×SU(N) gauge theory, with
matter in the (2, 1)+(1, N), gauging an SU(2)×SU(N) ⊂ SU(2)×SU(2N)2N

of the R0,N theory. The other S-dual frame is an SU(2)×SU(3) gauge theory,
with matter in the (2, 1)+(2, 3), where the SU(3) gauges the SU(3)8 ⊂ Gglobal

of UN .

So far, our infinite series have been fixtures which appear in S-dual
descriptions of Lagrangian field theories. In light of recent progress, this seems
like a quaint restriction.

Let us turn to a pair of infinite series of interacting SCFT fixtures, con-
sisting of a pair of maximal punctures plus a puncture whose Young diagram’s
first column has a height that grows like N .

VN =

{1,2,2,3,3,3, …}

{1,2,3,4,5,6, …}

{1,2,3,4,5,6, …}

, WN =

{1,2,3,4,4,4, …}

{1,2,3,4,5,6, …}

{1,2,3,4,5,6, …}

.

The Coulomb branch of VN has graded dimension

(d2, d3, d4, d5, d6, d7, . . . ) = (0, 1, 1, 2, 2, 2, . . . , 2).

From the 3D mirror, we find its global symmetry group to be

Gglobal = SU(N)2
k=2N × U(1)2

(enhanced to SU(5)2
10 × SU(2)10 × U(1) for N = 5). It has nv = 2N2 − 20,

and nh = 3N2 − 17, or

a =
13(N2 − 9)

24
,

c =
7N2 − 57

12
.

The Coulomb branch of WN has graded dimension

(d2, d3, d4, d5, d6, d7, . . . ) = (0, 1, 2, 3, 3, 3, . . . , 3).
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Its global symmetry group is

Gglobal = SU(N)2
k=2N × SU(4)10 × U(1)

(enhanced to SU(5)3
10 for N = 5). It has nv = 3N2 − 29, and nh = 4N2 − 20,

or

a =
19N2 − 174

24
,

c =
10N2 − 87

12
.

Using these interacting fixtures, we construct a family of S-dual theories

{1,1,1,1,1,1, …}

{1,2,3,4,5,6, …}

{1,2,3,4,5,6, …}

{1,2,3,4,5,6, …}

{1,2,2,3,3,3, …}

{1,2,3,4,5,6, …}

{1,1,1,1,1,1, …}

{1,2,3,4,5,6, …}

{1,2,3,4,5,6, …}

{1,2,3,4,5,6, …}

{1,2,2,3,3,3, …}

{1,2,3,4,5,6, …}

SU(N)

{1,1,1,1,1,1, …}

{1,2,3,4,5,6, …}

{1,2,3,4,5,6, …}

{1,2,3,4,5,6, …}

{1,2,2,3,3,3, …}

{1,2,3,4,5,6, …}

{1,1,1,1,1,1, …}

{1,2,4,5,7,9, …}

{1,2,2,3,3,3, …}

{1,2,3,4,4,4, …}

{1,2,3,4,5,6, …}

{1,2,3,4,5,6, …}

SU(3)

The upper theory is an SU(N) gauge theory, with N fundamentals, coupled
to VN . The lower theory is an SU(3) gauge theory, with one fundamental,
coupled to WN .

Of course, there are an infinite number of arbitrary-N families of Young
diagrams, that one can write down, and from there, an infinite number of
arbitrary-N families of interacting fixtures. The ones discussed here were
those which cropped up in the theories up through N = 5, and which gave
rise to interesting series of S-dualities.
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6.7 Theories with irregular punctures

Having introduced 3-punctured spheres with irregular punctures, we
should ask whether — according to our rules — it is possible to construct
connected curves, C, with g > 0 and/or n > 3, containing one or more irregular
punctures.

It would be most dangerous if we could construct connected surfaces
with two or more irregular puncture, as we would then have to specify what
happens when two irregular punctures collide, and that would take us outside
the set of configurations we have allowed.

It is easy to see, however, that this complication does not arise. At least
up through A4, we can exhaustively list all the connected surfaces, constructed
according to our rules, with one or more irregular punctures. These are a finite
in number, and contain just one irregular puncture. All have g = 0.

More generally, we can argue as follows. Assume there exists a con-
nected surface, C, with two irregular punctures.

• One of the implications of our rules for constructing surfaces is that, for
any k, if C had dk > 0, then, for that value of k, p

(i)
k ≤ k − 1, ∀i.

• On the other hand, an irregular puncture, by definition, has pk ≥ k −
1, ∀k and > k − 1 for at least some k. Pick one such value of k.

• We demand 0 ≡ dk = −(1− g)(2k − 1) +
∑n

i=1 p
(i)
k . The second term is

manifestly positive, and the two irregular punctures make a contribution
≥ 2k − 1. The only way to satisfy the equality is to set g = 0, with no
other punctures.

• But, for g = 0, we must have n ≥ 3 (otherwise, the virtual dimension d2

is negative).

Thus, we reach a contradiction: there can be no connected curves, C, with
two (or more) irregular punctures.

It remains to list the finite number of AN−1 (N ≤ 5) theories with
g = 0, a single irregular puncture and n > 3. In the A2 theory, there is only
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the 3-punctured sphere, listed above. Starting with A3, however, we find a
4-punctured sphere

*

This is the SU(2), Nf = 4 theory, as it arises in the A3 theory.

For A4, we find three 4-punctured spheres,

* * *

The first is, again, the A4 expression of the SU(2) Nf = 4 theory. The second
is the SU(2) Nf = 4 theory plus 4 free hypers. The third is the SU(3) Nf = 6
theory (or its S-dual).

From the latter, we can construct a 5-punctured sphere

*

which is an SU(2)× SU(3) gauge theory, with matter in the (2, 1) + (2, 3) +
4(1, 3).
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Chapter 7

The DN series

7.1 The DN Series

We consider a 6D DN (2,0) theory compactified on a Riemann surface C

of genus g with n punctures (complex codimension-1 defect operators) [7, 8, 10]

located at points yi ∈ C, i = 1, . . . , n. Here we follow [10]. Also, we use the

methods of Chapter 6 for the AN−1 theories as much as possible.

The Seiberg-Witten curve for the DN theories takes the form [7]

0 = λ2N +
N−1∑
k=1

λ2(N−k)φ2k(y) + φ̃2(y). (7.1)

Again, the φ2k and φ̃ are meromorphic differentials on C, with poles of up to the

prescribed orders at the punctures. (φ̃ is the Pfaffian, i.e., an N -differential.)

However, there are some crucial differences between the AN−1 and the

DN theories. While in the AN−1 case, the coefficients in the Seiberg-Witten

equation (6.1) were just linear functions of the Coulomb branch (6.2), in the

DN case, the coefficients in Seiberg-Witten equation (7.1) are, in general, poly-

nomial expressions when expressed in terms of the natural linear coordinates

at the origin of the Coulomb branch. We see that, already, in the fact that the

Seiberg-Witten equation depends quadratically on φ̃. But there are further
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polynomial constraints on the coefficients in the φ2k, which need to be solved

before one sees the natural linear structure [7].

While the constraints are polynomial, they are always linear in (at

least) one of the variables. Moreover, they are of homogeneous degree in the

aforementioned grading. So the space of solutions of the constraints is always

smooth at the origin of the Coulomb branch, and hence the tangent space at

the origin has the desired structure of a graded vector space.

The other complication in the DN theories is that, whereas the differ-

entials in the DN theory have degrees 2, 4, 6, . . . , 2(N − 1);N , the Coulomb

branch has components in other degrees. For instance, in D4, there is a com-

ponent of degree 3, in addition to the “expected” components of degrees 2, 4, 6.

In general, the Coulomb branch takes the form

E ⊂ V

where

V =
N−1⊕
k=1

H0

(
C,K2k

( n∑
i=1

p
(k)
i yi

))
⊕

N−1⊕
k=3

Wk ⊕ H0

(
C,KN

( n∑
i=1

p̃iyi
))

Here the Wk are vector spaces of degree k and E is the subvariety satifying

the collection of polynomial constraints (linear in at least one variable, and of

homogeneous degree).

If we denote the coefficient of lth-order pole of φk, at one of the punc-

tures, by c
(k)
l , the constraints can roughly be divided into

• polynomials (of homogeneous degree in both k and l) in the c
(k)
l
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• polynomials (again, of appropriately homogeneous degree) involving both

the c
(k)
l and a basis a(k) for the vector spaces, Wk

In the case of D4, there is just W3, and dim(W3) = no, the number of punc-

tures, on C, corresponding to a particular special D-partition. At each such

puncture, there is a constraint c
(6)
4 =

(
a(3)
)2

, which says that the coefficient

of the leading singularity of φ6 is a perfect square. As we will elaborate in

Section 7.1.1, there is a unique non-special nilpotent orbit of D4. The punc-

ture in question is the image, under the Spaltenstein map, of that non-special

nilpotent orbit.

7.1.1 Punctures and the Spaltenstein Map

For the DN series, punctures are labeled by certain partitions of 2N .

Not all partitions of 2N are allowed. The rules are as follows:

• Even integers must occur with even multiplicity.

• When all the integers in the partition are even, such a partition is called

very even, and we get two punctures associated to this partition. Such

partitions only occur for N even. These two punctures are exchanged

by the Z2 outer automorphism of DN which exchanges the two spinor

representations. We will colour the corresponding Young diagrams red

and blue, to distinguish them.

Such a partition is called a D-partition of 2N . As we shall see in this Section,

nilpotent orbits in so(2N) are in 1:1 ccorrespondence with D-partitions of 2N
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(with the caveat that there are two different nilpotent orbits associated to

each very-even partition1).

We will also have recourse to C-partitions of 2N (in 1:1 correspondence

with nilpotent orbits in sp(N)), which are defined as partitions of 2N such that

odd integers occur with even multiplicity.

From the Young diagram, corresponding to a D-partition, we recon-

struct the flavour symmetry group, associated to the puncture.

G =
∏
h odd

Spin
(
n(h)

)
×
∏
h even

Sp
(
n(h)

2

)
(7.2)

From this, the necessity of the the rule that n(h) be even, for even h, is obvious.

The origin of the additional rule (which arises for N even) — that “very even”

D-partitions occur twice — has a more subtle origin.

For N odd, the irreducible spinor representation of DN is complex, and

the right-handed spinor representation is the complex-conjugate of the left-

handed one. So a “hypermultiplet in the spinor” contains fields transforming

as spinors of both chiralities.

For N even, the irreducible spinor representation is real (N = 4l) or

pseudoreal (N = 4l+2), and the left- and right-handed spinor representations

are inequivalent. So a “hypermultiplet in the left-handed spinor representa-

tion” is different from a “hypermultiplet in the right-handed spinor representa-

1This phenomenon of having two nilpotent orbits associated to a single (very-even) par-
tition is characteristic of the DN Lie algebras with N even. The nilpotent orbits in the
other classical Lie algebras g are in 1:1 correspondence with their respective g-partitions.
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tion.” When we discuss fixtures, we will need to keep track of this distinction.

Exchanging “red” and “blue” punctures will exchange the roles of left- and

right-handed spinors.

Understanding the singularities of the φk at the puncture is somewhat

more involved than in the AN−1 case.

As in the AN−1 case, we might expect to associate a nilpotent orbit in

so(2N) to the rows of the Young diagram. Unfortunately, when the columns

of a 2N -box Young diagram form a D-partition, the rows typically do not. In

other words, the transpose does not map D-partitions to D-partitions. Never-

theless, there is a simple modification of the transpose map, called the “Spal-

tenstein map” which does map D-partitions to D-partitions.

This procedure may be described as (row) “D-collapse”:

• Given a Young diagram whose columns form a D-partition, take the

longest even row, which occurs with odd multiplicity (if the multiplicity

is greater than 1, take the last row of that length), and remove the last

box. Place the box at the end of the next available row, such that the

result is a Young diagram.

• Repeat the process with next longest even row, which occurs with odd

multiplicity.

• This process eventually terminates, and the result is a “corrected” Young

diagram, whose row-lengths form a D-partition.
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Conversely, starting with a Young diagram whose rows form a D-partition

(thus specifying a nilpotent orbit), we can define a process of column D-

collapse, which yields a Young diagram whose columns form a D-partition

(hence, a flavour symmetry group).

In the AN−1 case, the Spaltenstein map was given by transpose (alterna-

tively by reading the partition from the rows/columns instead of columns/rows

of the Young diagram). In the DN case, the Spaltenstein map is defined as the

composition of the transpose with the appropriate (row/column) D-collapse.

Unfortunately, unlike the transpose, the Spaltenstein map is not an involution

of the set of D-partitions; in general, it is neither 1-1 nor onto. The set of

partitions in the image of the Spaltenstein map are called “special”, and the

Spaltenstein map, restricted to the special partitions, is an involution.

More formally, let s be the Spaltenstein map, and let p be a D-partition.

p is called “special” if s2(p) = p. In the AN−1 case, all partitions were special

((pt)
t

= p). That’s not the case for DN . Instead, we have the theorem

Theorem ([15] Corollary 6.36 and Proposition 6.3.7)

1. For any D-partition, p, s(p) is a special D-partition.

2. A D-partition, p, is special, if and only if pt is a C-partition.

The boundary conditions for the punctures corresponding to special

D-partitions are determined as in the AN−1 case. Let f be the D-partition

which gives the flavour symmetry. Let o = s(f) be the image of f under the
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Spaltenstein map. If f is special (which was always the case for AN−1), then

the Higgs field ϕ(y) has a simple pole, with residue X ∈ o. Under the obvious

embedding so(2N) ↪→ sl(2N), the characteristic equation

det(ϕ(y)− q1) = q2N +
N−1∑
k=1

q2(N−k)φ2k(y) + (φ̃(y))
2

(7.3)

yields the pole orders of the k-differentials. These can be read off from the

Young diagram for o, just as if it were a Young diagram for A2N−1 (see the

rule above). Because ϕ(y) lies in the so(2N) subalgebra, the φk vanish for

odd k, and φ2N(y) = (φ̃(y))
2
. That, however, does not quite exhaust the con-

straints on the polar parts of the k-differentials, which follow from restricting

to so(2N) ⊂ sl(2N). There are additional polynomial constraints among the

coefficients of the leading-order poles of the various k-differentials.

These additional constraints were previously found by Tachikawa [7]

by applying the restrictions, imposed by M-theory orientifolds [50], to SO-

Sp linear quiver tails2. As already mentioned, the SO-Sp quivers naturally

live in the larger theory, with outer-automorphism twists. From our present

perspective it is better to think of the constraints as coming directly from

putting the polar part of ϕ(y) in a special nilpotent orbit of so(2N). (For our

explicit conventions on nilpotent orbits in so(2N), see Appendix A.)

2These constraints, also from the Hitchin-system perspective, have been found as well in
[33] in the context of surface operators of 4D N = 4 super Yang-Mills. Still, the constraints
have a much richer interpretation for 4D N = 2 theories, in terms of the parameters in the
Seiberg-Witten curve, than for surface operators of N = 4 super Yang-Mills.
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As a simple example, consider the minimal D3 puncture, . To find

its pole structure, we put the polar part of the Higgs field in the nilpotent

orbit of the Spaltenstein dual,

We write ϕ(y) = X
y

+ M , where X = X−1,2 is the canonical nilpotent element

in this orbit (see Appendix A for our conventions), and M is a generic matrix

in so(2N), of the form (A.1). The differentials are thus of the form

φ2 =
2a

y
+ . . . , φ4 =

a2

y2
+ . . . , φ̃ =

b

y
+ . . . (7.4)

Thus, the pole structure is {1, 2; 1}, with a constraint c
(4)
2 = 1

4
c

(2)
1 . This pole

structure and constraint was computed in [7] from the SO-Sp linear quiver tail

for this puncture.

That takes care of the punctures corresponding to special D-partitions.

What about the punctures corresponding to non-special D-partitions? Here

the situation is a bit more awkward. The Spaltenstein map is not an involution,

when applied to non-special partitions, and so the boundary conditions on

ϕ(y) are not currently known. (This is currently under investigation [45].)

The effect on the pole structure of the k-differentials, however, is easy to

find (say, from the linear quiver tail analysis), and amounts to the following.

Given a non-special D-partition, f , fs = s2(f) is a special D-partition. The

pole structure of the φk(y) is precisely that one would find for the puncture

fs. However, fs has a series of constraints of the form c
(2k)
2l =

(
a(k)
)2

on the
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leading pole coefficients. For the puncture, f , some (or all) of these constraints

are relaxed.

To see which constraint(s) are relaxed, notice that f is related to fs by

a process of (row) C-collapse. That is, we remove the last box from a row of

odd length (which occurred with odd multiplicity) and place it lower-down on

the Young diagram. The box we removed was an odd-numbered box (call it

2k+1). By removing it, an even-numbered box (box 2k) becomes the last box

in that row. The puncture, fs, had a constraint of the form c
(2k)
2l =

(
a(k)
)2

.

For each (2k)th box, thus exposed, we relax the corresponding constraint of

fs.

For D4, there is just one non-special puncture and, correspondingly,

just one constraint that gets relaxed. We will defer a complete discussion to

[45].

Finally, let us elaborate on our conventions for “very even” punctures.

When N is even, the Pfaffian, φ̃ has the same degree as φN . The outer-

automorphism of DN , which exchanges the roles of the two spinor representa-

tions, takes
φ̃ 7→ −φ̃

φ2k 7→ φ2k, k = 1, . . . , N − 1
(7.5)

For most punctures, the contraints are such that there is a unique Coulomb

branch parameter (the coefficient of the highest-order pole of one of the φ2k)

which appears linearly. We can take that to be the variable eliminated by

the constraint, so for the purpose of counting the graded dimension of the
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Coulomb branch, it is as if we simply reduced the allowed pole-order for that

differential by 1.

The red/blue punctures are an exception. At a (a certain subset of)

red/blue punctures, both φ̃ and φN are allowed to have poles of some order

(say, l) but a linear combination of the coefficients, c
(N)
l ± 2c̃l, is the variable

that appears linearly in the associated constraints. Our convention3 will be

that, at a red regular puncture, the constraint is of the form

c
(N)
l + 2c̃l = . . . (7.6)

At the corresponding blue regular puncture, the constraint is

c
(N)
l − 2c̃l = . . . (7.7)

As an example, let us look at the punctures with flavour Young diagrams

and . Their nilpotent orbits correspond to these same Young diagrams,

and the canonical nilpotent elements (see Appendix A) are X(r) = X−1,2 +X−3,4

and X(b) = X−1,2 + X+
3,4, respectively. After writing ϕ(y) = X(r/b)

y
+ M for the

3At red/blue irregular punctures, the convention is reversed. At a red irregular puncture,
the constraint is of the form

c
(N)
l − 2c̃l = . . .

while, at the corresponding blue irrregular puncture, the constraint is

c
(N)
l + 2c̃l = . . .
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Higgs field, with M a generic so(2N) matrix, we find for the differentials,

φ2 =
2a

y
+ . . .

φ4 =
a2 ∓ 2b

y2
+ . . .

φ6 =
∓2ab

y3
+ . . .

φ̃ =
b

y2
+ . . .

(7.8)

with the top sign for the red and the lower sign for the blue puncture. So the

pole structure for these punctures is {1, 2, 3; 2}, with constraints c
(4)
2 ± 2c̃2 =

1
4
(c

(2)
1 )2 and c

(6)
3 = ∓c̃2c

(2)
1 . The Z2 outer automorphism acts as b 7→ −b, and

it exchanges the red and blue constraints.

In the presence of red/blue punctures, a little extra care must be taken

in computing the graded Coulomb branch dimensions. Too large an excess, of

one or the other, over-constrains the differentials and would lead to a differ-

ence between the virtual and actual dimension of the Coulomb branch. The

dimension of the degree-N component,

dim(VN) = dN + d̃− nr − nb (7.9)

where dN and d̃ are the dimensions we would obtain from applying Riemann-

Roch (suitably-adjusted for the other constraints) to φN and φ̃, and nr,b are

the number of constraints of the form (7.6), (7.7) respectively. In order that

the constraints not be over-determined, it suffices to ensure that either

dN − nr ≥ 0, d̃− nb ≥ 0 (7.10)
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or

dN − nb ≥ 0, d̃− nr ≥ 0 (7.11)

holds. Either condition is sufficient to ensure that dim(VN) ≥ 0, but is slightly

stronger.

For instance, there is no 3-punctured sphere with three punc-

tures. The constraints would overconstrain (imply a negative virtual dimension

for) the space of sections of the differential φ(4) + 2φ̃.

7.1.2 Irregular Punctures

In addition to regular punctures, we will, again, need to introduce a

class of “irregular” punctures, which admit higher-order poles. Ignoring, for

the moment, the question of constraints, the class of irregular punctures is the

one we introduced in [6] for the AN−1 series.

• Each irregular puncture is associated to a simple subgroupG ⊂ Spin(2N).

• From the pole structure {pk}, of the irregular puncture, we construct the

“conjugate pole structure,” {p′k}

– p′k = pk = k − 1 if k is an exponent of G.

– p′k + pk = 2k − 1 otherwise.

• We demand that the conjugate pole structure be that of a regular punc-

ture, and we denote the irregular puncture, thus constructed, by the
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Young diagram of the conjugate regular puncture, with one or more

“∗”s appended.

Incorporating the constraints simply amounts to “correcting” which values of

k correspond to exponents of G.

For example, theD4 puncture, * , has as its conjugate punc-

ture the maximal puncture, . Its pole structure, {1, 3, 5; 4}, allows

for a quartic, rather than merely a cubic pole for φ̃. Thus, the corresponding

symmetry group is a Spin(7) subgroup of Spin(8). There are three inequiva-

lent embeddings of Spin(7) ↪→ Spin(8) (depending on which eight-dimensional

representation decomposes as the 7 + 1). Thus, we also have *

and * , which are exchanged by the usual Z2 outer automorphism.

These latter have pole structure {1, 4, 5; 4}, and impose, respectively, a con-

straint c
(4)
4 ∓ 2c̃4 = 0. This constraint is consequence of using φ(4), φ̃ as our

basis of 4-differentials (rather than the linear combination that appears more

naturally at a red/blue puncture).

Similarly, the puncture ** corresponds to an SU(4) sub-

group of Spin(8), and has poles {1, 3, 6; 4}. There are again blue and red

versions of this puncture corresponding to the other two embeddings of SU(4)

related by triality to the green one. The exponent 3 in SU(4) (as opposed to

6) means that we need a constraint c
(6)
6 = −(a(3))2 that appropriately corrects
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the dimensions of the Coulomb branch. In a free-field fixture, e.g.,

**

the constraint c
(6)
6 = −(a(3))2 from ** offsets the constraint c

(6)
6 =

(a(3))2 from , so the virtual dimension of the Coulomb branch is indeed

equal to its actual dimension (zero).

The red and blue versions of this puncture, ** and **,

have poles {1, 4, 6; 4}, and have the same constraint as the green one, c
(6)
6 =

−(a(3))2, plus an additional constraint c
(4)
4 ∓ 2c̃4 = 0 as usual.

Finally, we can assign a level, k, to the G symmetry of the irregular

puncture. It is simply defined such that the G gauge group on the cylinder,

p
G←−−−→ p′ between p and its conjugate regular puncture p′, is conformal.

7.1.3 Central charges

Having explained the definition of the central charges previously in

Section 4.5.2, we simply mention facts specific to the DN case, as well as show

formulas for nh and nv.

The central charge, k, for each simple factor in the flavour symmetry

group associated to a regular puncture can be computed directly from the
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Young diagram. Denote the length of the ith row by ri. In the AN−1 case, the

flavour symmetry group was given by (6.3) and each SU(ri − ri+1) factor had

level

k = 2
i∑

j=1

rj (7.12)

For the DN case, the flavour symmetry group is given by (7.2), and

• For i odd, this gives a Spin(ri − ri+1)k factor in the flavour symmetry

group, where

k =

2
(∑i

j=1 rj

)
− 4 ri − ri+1 ≥ 4

4
(∑i

j=1 rj

)
− 8 ri − ri+1 = 3

(7.13a)

• For i even, this gives an Sp
( ri−ri+1

2

)
k

in the flavour symmetry group,

where

k =
i∑

j=1

rj (7.13b)

From Theorem 7.1.1, a non-special puncture corresponds to a 2N -box

Young diagram, whose columns form a D-partition, with at least one (in fact,

at least two) odd-length row(s) which appears with odd multiplicity. With

a little more work, one can show that at least one of these rows is an even-

numbered row. By (7.13b), this gives an Sp(l)k factor, in the flavour symmetry

group, with k odd. As mentioned in the introduction, this poses an obstruction

to gauging: without additional matter to cancel the anomaly, the Sp(l) gauge

theory would suffer from Witten’s global anomaly [16].
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The trace anomaly coefficients, a and c, of the SCFT, can be computed

(as we did [6], for the AN−1 series) from two auxiliary quantities: the effective

number of hypermultiplets, nh, and the effective number of vector multiplets,

nv,
a = 5nv+nh

24

c = 2nv+nh

12
.

(7.14)

In the previous chapter we gave formulæ to compute nh and nv for regular

and irregular punctures in the AN−1 series. As before, nh and nv are the

actual number of hypermultiplets and vector multiplets in a Lagrangian S-

duality frame of the theory, provided such frame exists. As a consequence,

the nh of a free-field fixture (for which nv = 0) is equal to the number of free

hypermultiplets in this fixture.

To compute nv for a DN theory on a curve of genus g, one should first

calculate the graded dimensions of the Coulomb branch. Then

nv =
∑
k

(2k − 1)dk

=
N−1∑
k=1

(4k − 1)d2k +

[
N−1

2
]∑

k=1

(4k + 1)d2k+1.

(7.15)

For example, in the D4 theory, the possible non-zero Coulomb branch dimen-

sions are d2, d3, d4, d6, while in the D5 theory, they are d2, d3, d4, d5, d6, d8. The

odd-degree components of the Coulomb branch of the DN theory appear only

up to degree 2[N−1
2

] + 1. We will discuss below how to compute the d2k and

d2k+1, but we will treat the case of dN separately, since it involves the pole

orders of the Pfaffian φ̃.
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As we saw before, the even-degree sectors of the Coulomb branch, with

dimensions d2k (2k 6= N), arise from 2k-differentials, and so

d2k = (1− 4k)(1− g) +
∑
α

(pα2k − sα2k + tα2k) (7.16)

where α runs over the punctures on the curve, pα2k is the pole order of φ2k at

the αth puncture, sα2k is the number of constraints of homogeneous degree 2k

(i.e., polynomial constraints of the form c
(2k)
l = . . . ), and tα2k is the number of

a(2k) parameters (i.e., parameters arising from constraints of the form c
(4k)
l =

(a(2k))2) that the αth puncture contributes.

On the other hand, since there are no φ2k+1 differentials (except for

the Pfaffian, when N is odd), these odd-degree sectors of the Coulomb branch

receive contributions only from the a(2k+1) parameters (i.e., parameters arising

from constraints of the form c
(4k+2)
l = (a(2k+1))2). We write

d2k+1 =
∑
α

tα2k+1, (7.17)

Notice that this expression is independent of the genus (in contrast to the

contributions, to the d2k, from the Riemann-Roch Theorem).

As for dN , if N is even, then dN gets a contribution from both φN and

from the Pfaffian φ̃. The formula for dN is almost the same as for the d2k case,

dN = 2(1− 2N)(1− g) +
∑
α

(pαN − sαN) + p̃α. (7.18)

Notice that there is no tαN term, since we do not have a 2N -differential.
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Similarly, if N is odd, only the Pfaffian (the unique odd-degree differ-

ential) contributes to dN , and so,

dN = (1− 2N)(1− g) +
∑
α

p̃α. (7.19)

Adding up the global, genus-dependent contribution from the 2k-differentials

and the Pfaffian, we obtain

nv = −1
3
(1− g)N(16N2 − 24N + 11) +

∑
α

δn(α)
v , (7.20)

where α runs over the punctures on the curve, and the contribution δn
(α)
v of

the αth puncture to nv is

δn(α)
v =

N−1∑
k=1

(4k− 1)(pα2k − sα2k + tα2k) +

[
N−1

2
]∑

k=1

(4k+ 1)tα2k+1 + (2N − 1)p̃α (7.21)

Let us see a few examples of how to compute δnv. First, consider the maximal

D3 puncture, which has poles {1, 3; 2}, and no constraints. One gets

δnv = 3(1) + 7(3) + 5(2) = 34. (7.22)

Next, consider the D4 puncture, . The poles are {1, 3, 4; 3} and there is

one constraint (c
(4)
3 + 2c̃3 = 0), so s4 = 1. We then have

δnv = 3(1) + 7(3− 1) + 11(4) + 7(3) = 82. (7.23)

Now consider the D4 puncture . The poles are {1, 2, 4; 2} and there is

one constraint (c
(6)
4 =

(
a(3)
)2

), so s6 = 1 and t3 = 1. Thus,

δnv = 3(1) + 7(2) + 11(4− 1) + 7(2) + 5(1) = 69. (7.24)
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Now look at the non-special D4 puncture . Its poles are {1, 2, 4; 2}, and

it has no constraints. This means that

δnv = 3(1) + 7(2) + 11(4) + 7(2) = 75. (7.25)

Finally, let us look at the D5 puncture

(7.26)

which has poles {1, 2, 4, 5; 3}. The two constraints (c
(6)
4 = (a(3))2 and c

(8)
5 =

2a(3)c̃3) imply that t6 = 1, t8 = 1, and s3 = 1. Hence,

δnv = 3(1) + 7(2) + 11(4− 1) + 15(5− 1) + 9(3) + 5(1) = 142. (7.27)

Let us now go on to discuss nh. Just like nv, nh is a sum of a global piece and

contributions from each puncture,

nh = −8
3
(1− g)N(N − 1)(2N − 1) +

∑
α

δn
(α)
h (7.28)

where α runs over the punctures, and

δn
(α)
h = δn(α)

v + f (α) (7.29)

is the contribution of the αth puncture to nh. We will see below how to compute

f (α) for regular and irregular punctures.

For a regular puncture, f (α) can be found from the row-lengths r1 ≥

r2 ≥ . . . of the flavour Young diagram,

f (reg) =
1

4

∑
r2
i −

1

2

∑
rodd, (7.30)
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where the first sum is over all rows, and the second is restricted to odd-

numbered rows (r1, r3, r5, r7, . . . ).

For example, the D4 puncture, , has f = 1
4
[42+32+12]− 1

2
[4+1] =

4. Since we previously computed nv = 75 for this puncture, we have nh = 79.

The f (irreg) for an irregular puncture, p, follows from consistency with

degeneration,

f (irreg) = −N + dimG− f (reg), (7.31)

where f (reg) is the contribution of the regular puncture, p′, conjugate to p. G

is the flavour symmetry group we ascribe to the irregular puncture, p (equiv-

alently, the gauge group on the cylinder p
G←−−−→ p′).

7.1.4 Regular Punctures (up through D6)

We list below the properties of regular punctures for D3, D4, D5, and

D6. In writing down the global symmetry groups, it will be convenient to use

the isomorphisms
Spin(2) ' U(1)

Spin(3) ' Sp(1) ' SU(2)

Spin(4) ' SU(2)2

Spin(5) ' Sp(2)

Spin(6) ' SU(4)

(7.32)

As in the AN−1 case, there’s a Young diagram (this time, with a column of

height 2N −1 and a column of height 1), which corresponds to a regular point

on the curve C, so we exclude it from our discussion.
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7.1.4.1 D3

Since D3 ' A3, the results for D3 were already reported in our previous

paper. However, as a warm-up, it will be convenient to repeat them here, recast

in the notation we will use for the higher entries in the DN series.

Young
Diagram

Nilpotent
Orbit

Pole
structure Constraints

A3 Young
Diagram

Flavour
Symmetry (δnh, δnv)

{1, 3; 2} − SU(4)8 (40, 34)

{1, 2; 2} − SU(2)6 × U(1) (30, 27)

{1, 2; 1} − SU(2)8 (24, 22)

{1, 2; 1} c
(4)
2 = 1

4

(
c

(2)
1

)2
U(1) (16, 15)

Note that, in the D3 description, the quartic differential is allowed to
have a double pole at the minimal puncture, instead of only a simple pole (as in
the A3 description). However, the coefficient of the double pole is constrained,
so that the Coulomb branch has the same graded dimension as before.

7.1.4.2 D4

For D4, the outer automorphism group is enhanced from Z2 to S3.
Hence, the pairs of punctures, which were related by exchanging 8s ↔ 8c, are
actually organized into triples, under permutations of 8s, 8c, 8v. We indicate
this by colouring the Young diagram, corresponding to the other puncture in
the triple, green.

The fact that the nilpotent orbits in a triple are related by triality
becomes particularly clear if one looks at their weighted Dynkin diagrams
([15]). More practical evidence comes from the fact that the punctures in a
triple exhibit the same flavour group and (δnh, δnv).

In this table, and in the D5, D6 tables below, we’ve shaded each non-
special flavour Young diagram and the (special) nilpotent orbit which is its
image under the Spaltenstein map.
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Young
Diagram

Nilpotent
orbit

Pole
structure Constraints

Flavour
Symmetry (δnh, δnv)

{1, 3, 5; 3} − Spin(8)12 (112, 100)

{1, 3, 4; 3} − SU(2)3
8 (96, 89)

{1, 3, 4; 2} − Sp(2)8 (88, 82)

, , {1, 3, 4; 3} c
(4)
3 ± 2c̃3 = 0 Sp(2)8 (88, 82)

{1, 2, 4; 2} c
(6)
4 =

(
a(3)
)2

U(1)2 (72, 69)

− {1, 2, 4; 2} − SU(2)7 (79, 75)

{1, 2, 2; 1} − SU(2)8 (48, 46)

, ,
{1, 2, 3; 2}

c
(4)
2 ± 2c̃2 = 1

4

(
c

(2)
1

)2

c
(6)
3 = ∓c̃2c

(2)
1

SU(2)8 (48, 46)

{1, 2, 2; 1} c
(4)
2 = 1

4

(
c

(2)
1

)2
none (40, 39)
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7.1.4.3 D5

Young
Diagram

Nilpotent
Orbit

Pole
structure Constraints

Flavour
Symmetry (δnh, δnv)

{1, 3, 5, 7; 4} − Spin(10)16 (240, 220)

{1, 3, 5, 6; 4} − SU(4)12 × SU(2)10 (218, 205)

{1, 3, 5, 6; 3} − Spin(7)12 (208, 196)

{1, 3, 4, 6; 4} − Sp(2)10 × U(1) (204, 194)

{1, 3, 4, 6; 3} c
(8)
6 =

(
a(4)

)2
SU(2)

2
8 × U(1) (184, 177)

− {1, 3, 4, 6; 3} − SU(2)16 × SU(2)9 (193, 185)

{1, 3, 4, 6; 3} c
(8)
6 = 1

4

(
c
(4)
3

)2
SU(2)8 × U(1) (176, 170)

{1, 2, 4, 5; 3} − SU(2)32 (168, 163)

{1, 3, 4, 4; 2} − Sp(2)8 (152, 146)

{1, 2, 4, 5; 3}
c
(6)
4 =

(
a(3)

)2
c
(8)
5 = 2a(3)c̃3

SU(2)10 × U(1) (146, 142)

{1, 2, 4, 4; 2} c
(6)
4 =

(
a(3)

)2
U(1) (136, 133)

− {1, 2, 4, 4; 2} − SU(2)7 (143, 139)

{1, 2, 3, 4; 2}

c
(6)
3 = 1

2
c
(2)
1

×
(
c
(4)
2 − 1

4

(
c
(2)
1

)2
)

c
(8)
4 =

1
4
×

(
c
(4)
2 − 1

4

(
c
(2)
1

)2
)2

U(1) (104, 102)

{1, 2, 2, 2; 1} − SU(2)8 (80, 78)

{1, 2, 2, 2; 1} c
(4)
2 = 1

4

(
c
(2)
1

)2
none (72, 71)
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7.1.4.4 D6

Again, in D6, we have very-even partitions, which correspond to two
distinct punctures, which we have coloured red and blue.

Young
Diagram

Nilpotent
orbit Pole structure Constraints Flavour Symmetry (δnh, δnv)

{1, 3, 5, 7, 9; 5} − Spin(12)20 (440, 410)

{1, 3, 5, 7, 8; 5} − Spin(8)16 × SU(2)12 (412, 391)

{1, 3, 5, 7, 8; 4} − Spin(9)16 (400, 380)

{1, 3, 5, 6, 8; 5} − Sp(2)12 × SU(2)
2
12 (392, 376)

, , {1, 3, 5, 6, 8; 5} c
(6)
5 ± 2c̃5 = 0 Sp(3)12 (380, 365)

{1, 3, 5, 6, 8; 4} c
(10)
8 = (a(5))

2
SU(4)12 × U(1) (368, 355)

− {1, 3, 5, 6, 8; 4} − Sp(2)12 × SU(2)11 (379, 365)

{1, 3, 4, 6, 8; 4} c
(10)
8 = (a(5))

2
SU(2)10 × U(1)2 (354, 344)

− {1, 3, 4, 6, 8; 4} − Sp(2)11 (366, 354)

{1, 3, 4, 6, 7; 4} − SU(2)40 × SU(2)16 (344, 335)

{1, 3, 4, 6, 7; 4} c
(8)
6 = 1

4 (c
(4)
3 )

2
SU(2)

2
20 (328, 320)

{1, 3, 5, 6, 6; 3} − Spin(7)12 (328, 316)

{1, 3, 4, 6, 7; 4}
c
(8)
6 =

(
a(4)

)2
c
(10)
7 = a(4)c̃4

SU(2)12 × SU(2)
2
8 (316, 308)

, ,
{1, 3, 4, 6, 7; 4} c

(8)
6 = 1

4 (c
(4)
3 )

2

c
(10)
7 = ±c̃4c(4)3

SU(2)12 × SU(2)8 (308, 301)

{1, 3, 4, 6, 6; 3} c
(8)
6 =

(
a(4)

)2
SU(2)

2
8 (304, 297)

− {1, 3, 4, 6, 6; 3} − SU(2)16 × SU(2)9 (313, 305)
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{1, 2, 4, 5, 6; 4} − SU(2)12 (300, 294)

{1, 3, 4, 6, 6; 3} c
(8)
6 = 1

4 (c
(4)
3 )

2
SU(2)8 (296, 290)

{1, 2, 4, 5, 6; 3} − U(1) (288, 283)

{1, 2, 4, 5, 6; 3}

c
(6)
4 =

(
a(3)

)2
c
(10)
6 =

(
a(5)

)2
c
(8)
4 = 2a(3)a(5)

U(1)2 (256, 252)

{1, 3, 4, 4, 4; 2} − Sp(2)8 (232, 226)

{1, 2, 4, 4, 4; 2} c
(6)
4 =

(
a(3)

)2
U(1) (216, 213)

− {1, 2, 4, 4, 4; 2} − SU(2)7 (223, 219)

, ,

{1, 2, 3, 4, 5; 3}

c
(6)
3 ± 2c̃3 = 1

2c
(2)
1

(
c
(4)
2 − 1

3

(
c
(2)
1

)2)
c
(8)
4 = 1

4

(
c
(4)
2 − 1

3

(
c
(2)
1

)2)2

∓ c̃3c(2)1

c
(10)
5 = ∓c̃3

(
c
(4)
2 − 1

3

(
c
(2)
1

)2)
SU(2)12 (196, 193)

{1, 2, 3, 4, 4; 2}
c
(6)
3 = 1

2c
(2)
1

(
c
(4)
2 − 1

3

(
c
(2)
1

)2)
c
(8)
4 = 1

4

(
c
(4)
2 − 1

3

(
c
(2)
1

)2)2 none (184, 182)

{1, 2, 2, 2, 2; 1} − SU(2)8 (120, 118)

{1, 2, 2, 2, 2; 1} c
(4)
2 = 1

4

(
c
(2)
1

)2
none (112, 111)

158



7.2 The D4 theory

7.2.1 Irregular punctures and cylinders

In this section, we will develop the complete “tinkertoy” catalogue for
the D4 theory. The regular punctures are listed in §7.1.4.2. In the D4 case,
we have the following list of irregular punctures.

Young Diagram Pole structure Constraints Flavour Symmetry (δnh, δnv)

* {1, 3, 5; 4} − Spin(7)8 (112, 107)

* ,
*

{1, 4, 5; 4} c
(4)
4 ∓ 2c̃4 = 0 Spin(7)8 (112, 107)

** {1, 3, 6; 4} c
(6)
6 = −(a(3))

2
SU(4)4 (112, 113)

** ,
**

{1, 4, 6; 4}
c

(4)
4 ∓ 2c̃4 = 0

c
(6)
6 = −(a(3))

2 SU(4)4 (112, 113)

*** {1, 4, 5; 4} − (G2)4 (112, 114)

**** {1, 4, 6; 4} c
(6)
6 = −(a(3))

2
SU(3)0 (112, 120)

* {1, 4, 7; 4} − SU(2)0 (128, 136)

* {1, 3, 7; 5} − Sp(2)4 (136, 136)

* ,

*
{1, 5, 7; 5}

c
(4)
5 ∓ c̃5 = 0

c
(4)
4 ∓ c̃4 = 0

Sp(2)4 (136, 136)

** {1, 4, 7; 5} − SU(2)0 (136, 143)

** ,

**
{1, 5, 7; 5} c

(4)
5 ∓ c̃5 = 0 SU(2)0 (136, 143)

* {1, 5, 7; 5} − SU(2)1 (145, 150)
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The cylinders in the D4 theory are

Spin(8)←−−−−−−−−−−→
Spin(7)←−−−−−−−−−−→ *
Spin(7)←−−−−−−−−−−→ *
Spin(7)←−−−−−−−−−−→ *
SU(4)←−−−−−−−−−→ **
SU(4)←−−−−−−−−−→ **
SU(4)←−−−−−−−−−→ **
G2←−−−−−−−→ ***

*
G2←−−−−−−−→ *

*
G2←−−−−−−−→ *

*
G2←−−−−−−−→ *

*
SU(3)←−−−−−−−−−→ **

*
SU(3)←−−−−−−−−−→ **

*
SU(3)←−−−−−−−−−→ **

*
SU(3)←−−−−−−−−−→ **

*
SU(3)←−−−−−−−−−→ **

*
SU(3)←−−−−−−−−−→ **

SU(3)←−−−−−−−−−→ ****
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Sp(2)←−−−−−−−−→ *

Sp(2)←−−−−−−−−→ *

Sp(2)←−−−−−−−−→ *

SU(2)←−−−−−−−−−→ **

SU(2)←−−−−−−−−−→ **

SU(2)←−−−−−−−−−→ **

SU(2)←−−−−−−−−−→ *

SU(2)←−−−−−−−−−→ *

Note that some of the irregular punctures have level k = 0. Appropriately,
these will appear, below, on “empty” fixtures, with zero hypermultiplets. Also,

note that each of the cylinders, p
G←−−−→ p′, satisfies

δnh + δnh
′ − 8N(N − 1)(2N − 1)/3 = 0

δnv + δnv
′ −N(16N2 − 24N + 11)/3 = dim(G)

k + k′ = kcritical

(7.33)

where kcritical = 2`adj is the value of k which gives vanishing β-function for G.
While this was true (by construction) when p′ is the conjugate regular punc-
ture to p, it’s not automatically-satisfied for cylinders between two irregular
punctures. In essence, these conditions determine which cylinders between
pairs of irregular punctures are allowed.

7.2.2 Fixtures

Here, we list all of the 3-punctured spheres. There are a lot of them,
but fortunately, the profusion is partially tamed by the fact that they are
organized into multiplets under the outer automorphism group.
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7.2.2.1 Free-field fixtures

Fixture
Number

of Hypers Representation

*
, * , * 8 1

2
(2, 2, 4)

* , * , * 0 none

, , ,

, ,

24

1
2(1, 4, 8u) + 1

2(2, 1, 8d),

where 8u/d = 8v, 8s, or 8c
depending on whether the

upper/lower left-hand
puncture is coloured
green, red, or blue.

24

1
2
(2, 1, 1, 8v)

+1
2
(1, 2, 1, 8s)

+1
2
(1, 1, 2, 8c)

* , * , * 16 1
2
(4, 8)
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* , * , * 15 1
2
(2, 1, 8) + 1

2
(1, 2, 7)

** , ** , ** 8 (2, 4)

** , ** , ** 0 none

*** 7 1
2
(2, 7)

*
1 1

2
(2)

**** 0 none

Note that, among the free field fixtures, are six which are empty (zero
hypermultiplets). It might, at first blush, seem peculiar to assign global sym-
metry groups (SU(2)2

8 and SU(2)8, respectively) to the regular punctures on
them. However, they are attached to the rest of the surface by an SU(2)
cylinder, which gauges an SU(2) subgroup of the global symmetry group of
the attaching puncture. The centralizer of that SU(2) is, respectively SU(2)2

8
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or SU(2)8. That centralizer is what is detected by the punctures on the osten-
sibly “empty” fixture. Similar remarks applied to the analogous fixtures that
we saw in the D3 and AN−1 cases, studied in [6].

7.2.2.2 Interacting fixtures

Fixture (d2, d3, d4, d5, d6) (a, c) (Gglobal)k Theory

* ,
*

,
*

, (0, 0, 1, 0, 0) (59
24
, 19

6
) (E7)8

The E7

SCFT

(0, 0, 0, 0, 1) (95
24
, 31

6
) (E8)12

The E8

SCFT

, , (0, 0, 1, 0, 1) (23
4
, 7)

Spin(8)2
12

×SU(2)8

(0, 0, 1, 0, 1) (65
12
, 19

3
) Sp(6)8

, , (0, 0, 1, 0, 2) (25
3
, 113

12
)

Spin(8)12

×Sp(2)8

×SU(2)7
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, , ,

, ,

(0, 0, 2, 0, 2) (61
6
, 34

3
) Spin(8)12 × Sp(2)2

8

, , (0, 1, 1, 0, 1) (163
24
, 47

6
)

Spin(8)12 × Sp(2)8

×U(1)2

, , (0, 0, 3, 0, 2) (287
24
, 79

6
)

Spin(8)12 × Sp(2)8

×SU(2)3
8

, , (0, 0, 3, 0, 3) (179
12
, 49

3
) Spin(8)2

12 × Sp(2)8

(0, 0, 0, 0, 2) (13
2
, 15

2
) Spin(8)12 × SU(2)2

7

(0, 1, 0, 0, 1) (119
24
, 71

12
)

Spin(8)12 × SU(2)7

×U(1)2
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(0, 0, 2, 0, 2) (81
8
, 45

4
) Spin(8)12 × SU(2)3

8 × SU(2)7

(0, 0, 2, 0, 3) (157
12
, 173

12
) Spin(8)2

12 × SU(2)7

(0, 2, 0, 0, 0) (41
12
, 13

3
) Spin(8)12 × U(1)4

(0, 1, 2, 0, 1) (103
12
, 29

3
) Spin(8)12 × SU(2)3

8 × U(1)2

(0, 1, 2, 0, 2) (277
24
, 77

6
) Spin(8)2

12 × U(1)2

(0, 0, 4, 0, 2) (55
4
, 15) Spin(8)12 × SU(2)6

8
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(0, 0, 4, 0, 3) (401
24
, 109

6
) Spin(8)2

12 × SU(2)3
8

(0, 0, 4, 0, 4) (59
3
, 64

3
) Spin(8)3

12

, , (0, 0, 2, 0, 1) (173
24
, 49

6
) Sp(3)2

8 × SU(2)8

, , (0, 0, 3, 0, 1) (9, 10) Sp(2)2
8 × SU(2)4

8

(0, 0, 2, 0, 1) (43
6
, 97

12
) Sp(2)3

8 × SU(2)7

(0, 1, 2, 0, 0) (45
8
, 13

2
) SU(4)3

8 T4

(0, 0, 4, 0, 1) (259
24
, 71

6
) SU(2)9

8
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7.2.2.3 Mixed fixtures

Fixture (d2, d3, d4, d5, d6) (a, c) SCFT # Free hypers

(0, 1, 0, 0, 0) (2, 114 ) (E6)6

7 hypers,
transforming as

1
2 (2; 1, 1, 1)

+(1; 2, 1, 1)

+(1; 1, 2, 1)

+(1; 1, 1, 2)

, , (0, 1, 0, 0, 0) ( 49
24 ,

17
6 ) (E6)6

8 hypers,
transforming as

(4; 1) + (1; 4)

, , (0, 0, 1, 0, 0) ( 67
24 ,

23
6 ) (E7)8

8 hypers,
transforming as

the (1; 1, 1, 1; 8u),
where 8u = 8v,s,c,

depending on the
colour of the
puncture on

the upper left

(0, 0, 0, 0, 1) ( 85
24 ,

13
3 ) Sp(5)7

3 hypers,
transforming as

1
2 (1; 1; 2, 1, 1)

+ 1
2 (1; 1; 1, 2, 1)

+ 1
2 (1; 1; 1, 1, 2)

, , (0, 0, 0, 0, 1) ( 43
12 ,

53
12 ) Sp(5)7

4 hypers,
transforming as

1
2 (1; 4; 1)

+ 1
2 (4; 1; 1)
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, , (0, 1, 1, 0, 0) ( 23
6 ,

14
3 )

SU(2)6

×SU(8)8

2 hypers,
transforming as

(1; 2, 1, 1)

, , ,

, ,

(0, 0, 1, 0, 1) ( 65
12 ,

19
3 )

Sp(4)8
×Sp(2)7

2 hypers,
transforming as

1
2 (1; 1; 4)

, , (0, 0, 1, 0, 1) ( 43
8 ,

25
4 )

Sp(4)8
×Sp(2)7

1 hyper,
transforming as
1
2 (1; 1; 2, 1, 1)

, , (0, 0, 2, 0, 1) ( 173
24 ,

49
6 )

Sp(2)
3
8

×SU(2)7

1 hyper,
transforming as
1
2 (1; 1; 2, 1, 1)

7.2.3 The Sp(4)8 × Sp(2)7 and Sp(5)7 SCFTs

A couple of SCFTs make a somewhat unusual appearance in the above
list of mixed fixtures. Usually, the mixed fixtures contain SCFTs which have
previously appeared elsewhere (without the additional hypermultiplets). In
the present case, we find two new ones, which do not appear to arise in the
absence of accompanying hypermultiplets.
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7.2.3.1 Sp(4)8 × Sp(2)7 SCFT

One is the Sp(4)8 × Sp(2)7 SCFT. It has (a, c) =
(

16
3
, 37

6

)
, and graded

Coulomb branch dimension (d2, d3, d4, d5, d6) = (0, 0, 1, 0, 1). Its global sym-
metry group is

GX = Sp(4)8 × Sp(2)7

It appears in our table, accompanied by either 1 hypermultiplet (3 fixtures)
or 2 hypermultiplets (6 fixtures).

Let’s look a couple of examples of its appearance.

Consider a Spin(7) gauge theory, with matter in the 3(8) + 2(7) + 1.

Spin(7)
*

This theory has two distinct strong-coupling points. One,

G2
* *

is a G2 gauge theory, with matter in the 2(7) + 1, coupled to the (E7)8 SCFT.
Aside from the addition of the free hypermultiplet, this was example 10 of
Argyres and Wittig [17].
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The other strong coupling point of this theory,

SU(2)
*

is an SU(2) gauge theory coupled to the Sp(4)8 × Sp(2)7 SCFT. The fixture
on the right is empty; the mixed-fixture on the left provides both the SCFT
and an additional free hypermultiplet.

As a second example, consider

Spin(7)
*

This is a Spin(7) gauge theory, with matter in the 4(8)+(7)+(1). The S-dual
theory

SU(2) *

is an SU(2) gauge theory. The fixture on the right contributes a half-hypermultiplet
in the fundamental. The fixture on the left is the Sp(4)8 × Sp(2)7 SCFT
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plus a single free hypermultiplet. We weakly gauge an SU(2) subgroup of
Sp(2)7 ⊂ GX . From both points of view, we reproduce

Gglobal = Sp(4)8 × SU(2)7 + 1 free hypermultiplet

A third example is provided by the S-dual of Spin(8) gauge theory with matter
in the 4(8s) + 2(8c). This is discussed in section §7.3.4.

7.2.3.2 Sp(5)7 SCFT

The other “new” SCFT is the Sp(5)7 SCFT. It has (a, c) =
(

41
12
, 49

12

)
and a Coulomb branch of graded dimension (d2, . . . , d6) = (0, 0, 0, 0, 1). The
global symmetry group is Sp(5)7.

The Sp(5)7 SCFT appears twice on our list, once accompanied accom-
panied by 3 hypermultiplets (transforming as the 1

2
(1; 1; 2, 1, 1)+1

2
(1; 1; 1, 2, 1)+

1
2
(1; 1; 1, 1, 2) of the manifest SU(2)×SU(2)×SU(2)3 associated to the punc-

tures), and once (3 fixtures) accompanied by 4 hypermultiplets (transforming
as the 1

2
(1; 4; 1) + 1

2
(4; 1; 1) of the manifest Sp(2)× Sp(2)× SU(2) associated

to the punctures).

Let’s look at some examples of the Sp(5)7 SCFT. Consider the 4-
punctured sphere

G2
* *

Both fixtures provide 2 hypers in the 7 of G2, plus 2 free hypers, so the 4-
punctured sphere represents the G2 theory with 4 hypers in the 7, plus 4 free
hypers.

Gglobal = Sp(4)7 + 4 free hypers

Aside from the 4 free hypers, this is example 4 of Argyres-Wittig [17].
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The S-dual theory is

SU(2) *

The fixture on the left is the Sp(5)7 SCFT, with 4 free hypers. The fixture
on the right contributes a half-hyper in the fundamental of SU(2). Gauging
an SU(2) ⊂ Sp(5)7, yields the expected Sp(4)7 global symmetry group of the
S-dual of G2 with 4 fundamentals.

As another example, consider the 4-punctured sphere

G2
***

Here the fixture on the left represents 3 hypers in the 7 of G2 plus 3 free hypers,
and the fixture on the right represents 1 hyper in the 7. Notice that the G2

cylinder in this example is different from the one in the previous example.

S-dualizing, we obtain

SU(2) *
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The fixture on the left is the Sp(5)7 SCFT, where we gauge an SU(2) ⊂
Sp(5), accompanied by 3 free hypers. The fixture on the right contributes 1
fundamental half-hyper.

A third example, also involving G2, is

G2
* *

This is G2 with 4 fundamentals and two free hypermultiplets.

The S-dual is

SU(2)
*

The fixture on the right is empty. The fixture on the left is, again the Sp(5)7

SCFT, with one hypermultiplet transforming as a half-hyper in the fundamen-
tal of SU(2) and two free hypermultiplets.

For a non-G2-related example, consider

Spin(7)
*
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The fixture on the left contributes hypermultiplets in the 2(7)+1. The fixture
on the right is an 8s + 2(8c), considered as a representation of Spin(8). Under
the chosen embedding of Spin(7), the 8s decomposes as 7 + 1, which the 8c
(and also the 8v) decomposes as the 8. So, all-in-all, this is a Spin(7) gauge
theory, with matter in the 3(7) + 2(8) + 2(1), so

Gglobal = Sp(3)7 × Sp(2)8 + 2 free hypers

The S-dual theory is

Sp(2)
*

The fixture on the right contribute 2 hypermultiplets in the fundamental of
Sp(2). The fixture on the left is the Sp(5)7 SCFT, accompanied by 4 hypermul-
tiplets, two of which form an additional half-hypermultiplet in the fundamental
of Sp(2) and two of which are free. Altogether, there are 5 half-hypermultiplets
in the fundamental, yielding the Spin(5) = Sp(2)8 factor in Gglobal. Gauging
the Sp(2) ⊂ Sp(5)7 yields the remaining Sp(3)7. This is example 5 of Argyres
and Wittig [17].

7.3 Spin(8) Gauge Theory

Spin(8) gauge theory — with ns hypermultiplets in the 8s, nc hypermul-
tiplets in the 8c and nv hypermultiplets in the 8v — has vanishing β-function
for ns + nc + nv = 6. The global symmetry group is

Gglobal = Sp(ns)8 × Sp(nc)8 × Sp(nv)8

In the D4 theory, all of the cases, with ns,c,v ≤ 4, are realized on the 4-
punctured sphere. Up to Spin(8) triality, this yields five different cases. We

175



will discuss each of them, in turn, and give the strong-coupling behaviour in
each case.

For the cases of (ns, nc, nv) = (3, 2, 1) and (3, 3, 0), Argyres and Wittig
[17] conjectured a strong-coupling dual. We find that each of these cases has
two distinct strong-coupling limits. In each case, the conjecture of Argyres
and Wittig corresponds to one of the two strong-coupling limits, that we find.

7.3.1 2(8s) + 2(8c) + 2(8v)

The dual of Spin(8), with matter in the 2(8s) + 2(8c) + 2(8v), is an
SU(2) gauge theory, coupled to a half-hypermultiplet in the fundamental, and
to the Sp(2)3

8 × SU(2)7 SCFT.

One realization is

Spin(8)

Each fixture contributes one (8v + 8s + 8c). The S-dual theory is

SU(2) *

where the fixture on the right is a half-hypermultiplet in the fundamental of
SU(2), and the fixture on the left is the Sp(2)3

8 × SU(2)7 SCFT.
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Another realization of the same theory is

Spin(8)

Here, the fixture on the left contributes 8s+ 2(8c), and the fixture on the right
contributes 8s + 2(8v). The S-dual is

SU(2)
*

The fixture on the right is empty; the fixture on the left is the Sp(2)3
8×SU(2)7

SCFT plus a half-hypermultiplet in the fundamental of SU(2).

7.3.2 3(8s) + 2(8c) + 8v

Spin(8) gauge theory, with matter in the 3(8s) + 2(8c) + 8v, has two
distinct strong-coupling limits. One is a Spin(7) gauge theory, with matter
in the 3(8), coupled to the (E7)8 SCFT. The other strong coupling limit is an
SU(2) gauging of the Sp(3)2

8 × SU(2)8.
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One realization is

Spin(8)

The fixture one the left contributes 2(8s) + 8v, and the fixture on the right
contributes 8s + 2(8c).

One of the corresponding strong-coupling points is given by

Spin(7)
*

The fixture on the right yields matter in 3 copies of the 8; the fixture on the
left is the (E7)8 SCFT.

The other strong coupling point is

SU(2)
*

The fixture on the right is empty, while the fixture on the left is the Sp(3)2
8 ×

SU(2)8 SCFT, where we gauge an SU(2) ⊂ Sp(3)8.
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Another realization of the same theory is

Spin(8)

One strong coupling point is given by

Spin(7)
*

The fixture on the right contribute 2 hypermultiplets in the 8 of Spin(7). The
fixture on the left is the (E7)8 SCFT plus an additional hypermultiplet in the
8.

The other strong coupling point is

SU(2)
**

The fixture on the right is empty; the fixture on the left is, again, the Sp(3)2
8×

SU(2)8 SCFT.

179



7.3.3 3(8s) + 3(8c)

Spin(8) gauge theory, with matter in the 3(8s) + 3(8c) also has two
distinct strong coupling points. One is G2 gauge theory, coupled to two copies
of the (E7)8 SCFT. The other is an SU(2) gauging of the Sp(3)2

8 × SU(2)8

SCFT.

This is realized via

Spin(8)

The fixture on the left yields 2(8s) + 8c, while the figure on the right yields
8S + 2(8c).

One strong-coupling point is given by

G2
* *

Here, each fixture is a copy of the (E7)8 SCFT.
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The other strong coupling point is

SU(2)
*

The fixture on the right is empty. The fixture on the left is the Sp(3)2
8×SU(2)8

SCFT where, this time, we gauge the SU(2)8.

7.3.4 4(8s) + 2(8c)

Spin(8), with matter in the 4(8s) + 2(8c) has, as its S-dual, an Sp(2)
gauge theory, with 5 half-hypermultiplets in the fundamental, coupled to the
Sp(4)8 × Sp(2)7 SCFT.

Spin(8)

yields a Spin(8) gauge theory, with matter in the 4(8s) + 2(8c).

The S-dual theory is

Sp(2)
*
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The fixture on the right contributes two hypermultiplets in the fundamen-
tal. The fixture on the left is the Sp(4)8 × Sp(2)7 with an additional half-
hypermultiplet in the fundamental of Sp(2). Since there are, in total, five
half-hypermultiplets in the fundamental, the flavour symmetry associated to
the matter is Spin(5) = Sp(2)8; the rest of Gglobal comes from the Sp(4)8 ⊂
Sp(4)8 × Sp(2)7.

7.3.5 4(8s) + 8c + 8v

Finally, Spin(8) gauge theory, with matter in the 4(8s)+8c+8v has, as
its S-dual, an Sp(2) gauge theory, with 2 hypermultiplets in the fundamental,
coupled to the Sp(6)8 SCFT.

The Spin(8) gauge theory can be realized as

Spin(8)

where the fixture on the left gives matter in the 2(8s) + 8c and the fixture on
the right gives matter in the 2(8s) + 8v.

The S-dual is

Sp(2)
*

The fixture on the right is 2 fundamental hypermultiplets of Sp(2), which
contribute the Spin(4) = SU(2)2

8 factor to the global symmetry group. The
fixture on the left is the Sp(6)8 SCFT.
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7.3.6 Seiberg-Witten curves

It is straightforward to compute the Seiberg-Witten curves, associated
to any of these theories, in the form (7.1)

0 = λ2N +
N−1∑
k=1

λ2(N−k)φ2k(y) + φ̃2(y)

For instance, for Spin(8) gauge theory, with hypermultiplets in the
3(8v) + 3(8s), imposing the constraints, at each of the punctures, yields

φ2(y) =
u2 (dy)2

(y − y1)(y − y2)(y − y3)(y − y4)

φ4(y) =
[u4 (y − y2)(y − y3)− 2ũ (y − y1)(y − y4) + u2

2 (y − y1)(y − y3)/4](dy)4

(y − y1)3(y − y2)2(y − y3)3(y − y4)2

φ6(y) =
[u6 (y − y2) + u2ũ (y1 − y2)](dy)6

(y − y1)4(y − y2)3(y − y3)4(y − y4)2

φ̃(y) =
ũ (dy)6

(y − y1)2(y − y2)2(y − y3)3(y − y4)
(7.34)

Here u2, u4, u6 and ũ are the Coulomb branch parameters. The obvious
SL(2,C) symmetry means that the physics depends only on the cross-ratio

e(τ) =
(y1 − y2)(y3 − y4)

(y1 − y3)(y2 − y4)

The e(τ) → 0 limit is the weakly-coupled Spin(8) gauge theory; e(τ) → ∞
is the weakly-coupled SU(2) gauge theory and e(τ) → 1 yields the weakly-
coupled G2 gauge theory.

The other cases are equally-easy to write down. It would be interesting
to compare these results with the Seiberg-Witten curves obtained in [51, 52].

7.4 Spin(7) Gauge Theory

Spin(7), with n hypermultiplets in the 8 and (5− n) in the 7, also has
vanishing β-function. Perhaps with the addition of some free hypermultiplets,
we can realize the cases n = 2, 3, 4, 5 in the D4 theory.
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7.4.1 2(8) + 3(7)

This theory (with the addition of two free hypermultiplets) was one of
the examples discussed in §7.2.3.2. The theory has two strong-coupling points.

• One is a G2 gauge theory, with two hypermultiplets in the 7, coupled to
the (E7)8 SCFT.

• The other is an SU(2) gauge theory coupled to the Sp(4)8 × Sp(2)7

SCFT.

7.4.2 3(8) + 2(7)

This theory (with the addition of two free hypermultiplets) was dis-
cussed in §7.2.3.1. The S-dual theory is an Sp(2) gauge theory with 5 half-
hypermultiplets in the 4, coupled to the Sp(5)7 SCFT.

7.4.3 4(8) + 1(7)

This theory (with the addition of one free hypermultiplet) was alos
discussed in §7.2.3.1. The S-dual theory is an SU(2) gauge theory with a
half-hypermultiplet in the 2, coupled to the Sp(4)8 × Sp(2)7 SCFT.
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7.4.4 5(8)

This theory has three degeneration limits, two of which

Spin(7)
*

Spin(7)
*

are Spin(7) gauge theories with matter in the 5(8). The fixture on the left
contributes 2(8); the fixture on the right contributes 3(8).

The other degeneration,

SU(2)
**

is an SU(2) gauge theory coupled to the Sp(6)8 SCFT (the fixture on the right
is empty).
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7.5 Other Interesting Examples

7.5.1 Fun with interacting SCFTs

Let’s take the Sp(2)3
8 × SU(2)7 SCFT and gauge an SU(2)8 subgroup

(the fixture on the right is empty):

SU(2)
*

The S-dual theory is

Spin(7)
*

The fixture on the right contributes hypermultiplets in the 7 + 8. The fixture
on the left is the (E7)8 SCFT with matter in the 8c of Spin(8). Under the
given embedding of Spin(7), this matter transforms as an additional 8. So the
matter contributes an Sp(2)8 × SU(2)7 to the global symmetry group of the
theory. The rest, Sp(2)8 × SU(2)8, is the centralizer of Spin(7) ⊂ E7.

As another example of our methods, let us consider various gaugings
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of the Sp(2)2
8 × SU(2)4

8 SCFT. We can gauge an Sp(2) subgroup,

Sp(2)
*

where the fixture on the right provides two hypermultiplets in the fundamental
of Sp(2). The S-dual theory,

Spin(8)

is a Spin(8) gauge theory, with matter in the 2(8s), coupled to two copies of
the (E7)8 SCFT.

Instead, we can gauge an SU(2) subgroup

SU(2)
**
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where the fixture on the right is empty. The S-dual

Spin(8)

is a Spin(8) gauge theory, with matter in the 2(8s) + 8c + 8v, coupled to one
copy of the (E7)8 SCFT.

A different SU(2) gauging of the Sp(2)2
8 × SU(2)4

8 SCFT

SU(2)
*

has two distinct strong-coupling points. One,

Spin(7)
*

is a Spin(7) gauge theory, with matter in the 8, coupled to two copies of the
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(E7)8 SCFT. The other,

Spin(8)

is a Spin(8) gauge theory, with matter in the 2(8s) + 2(8c), coupled to a single
copy of the (E7)8 SCFT.

7.5.2 D5 example: Spin(10) gauge theory

To further illustrate our methods, let us study one example from the
D5 theory, involving a Spin(10) gauge theory with matter in the 3(16)+2(10).

Start with the 4-punctured sphere

This is a Spin(10) Lagrangian field theory with matter in the 3(16) + 2(10)
representation. The left fixture provides 32 free hypermultiplets in the (16, 2)
of Spin(10) × SU(2), and the right fixture, 36 free hypermultiplets in the
(16, 1) + 1

2
(10, 4) of Spin(10)× Sp(2).

The global symmetry group of the theory is, thus,

Gglobal = SU(3)32 × Sp(2)10 × U(1),
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This theory has two distinct strong coupling cusp points. One appears in the
degeneration

**

Here the left fixture is empty. The ** irregular puncture has pole struc-

ture {1, 5, 7, 10; 6}, and imposes the constraint c
(8)
10 = (c

(4)
5 )

2
. The right fix-

ture is an interacting SCFT with graded Coulomb branch dimension d =
(0, 0, 1, 1, 1, 0, 1) and global symmetry group

GSCFT = Sp(2)10 × SU(3)32 × SU(2)8 × U(1),

and we gauge the SU(2)8 subgroup.

The second strong coupling point appears in the remaining degenera-
tion,

G2
**

Here the fixture on the left is an SCFT with graded Coulomb branch dimension
d = (0, 0, 1, 1, 0, 0, 1) and global symmetry group

GSCFT = (E6)16 × Sp(2)10 × U(1),
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and the fixture on the right is empty. The ** irregular puncture

has pole structure {1, 4, 5, 8; 5}. Under the decomposition (E6)k ⊃ (G2)k ×
SU(3)2k, we gauge a (G2)16 ⊂ (E6)16.
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Appendix A

Nilpotent orbits in so(2N)

Here we lay out our conventions for nilpotent orbits in so(2N). For

more details, see [15]. We take so(2N) to consist of block matrices of the form(
A B
C −At

)
(A.1)

where A,B,C are n×n matrices and Bt = −B, Ct = −C. Nilpotent orbits are

in 1-1 correspondence with embeddings ρ : sl(2) ↪→ so(2N), up to conjugation.

Here, sl(2) is generated by {H,X, Y } satisfying

[H,X] = 2X, [H,Y ] = −2Y, [X, Y ] = H (A.2)

and we take ρ(X) (which we will, henceforth, simply denote by X) as our

representative element of the nilpotent orbit.

As noted in Chapter 7, a nilpotent orbit, in so(2N), is specified by a

D-partition of 2N . Here, we will give our convention for assigning a triple of

matrices of the form (A.1), satisfying (A.2), to such a partition.

Let e1, e2, . . . en be the standard basis for CN . Let Ei,j be the 2N × 2N

matrix with a 1 in the (i, j)th position and zeroes everywhere else. To the root,

ei − ej, assign the matrix, of the form (A.1),
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X−i,j = Ei,j − Ej+N,i+N

To the root ei + ej (for i < j), assign

X+
i,j = Ei,j+N − Ej,i+N , i < j

Also, let

Hi = Ei,i − Ei+N,i+N

• Take the D-partition, [r1, r2, . . . ], and divide it into pairs of the form

[r, r] and [2s + 1, 2t + 1] (s > t). This is not quite unique: the D6

partition, [3, 3, 2, 2, 1, 1] can be divided into [3, 3], [2, 2], [1, 1] or into

[2, 2], [3, 1], [3, 1]. Different choices will result in different representatives

of the same nilpotent orbit.

• To each pair of the form [r, r], assign a block of r consecutive basis

vectors of CN . We’ll denote those by (e1, e2, . . . , er), but they might be,

say, (e17, e18, . . . , e16+r). To each pair of the form [2s+1, 2t+1], assign a

block of s+ t consecutive basis vectors of CN . The blocks, thus assigned,

must be non-overlapping, and will exhaust e1, . . . , eN .

• For each pair of the form [r, r], let
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H =
r∑

k=1

(r + 1− 2k)Hk

X =
r−1∑
k=1

√
k(r − k)X−k,k+1

Y = X t

• For pairs of the form [2s + 1, 2t + 1], the general formula can be found

in [15]. We’ll just need the first few, for small values of t.

– For pairs of the form [2s+ 1, 1], let

H =
s∑

k=1

2(s+ 1− k)Hk

X =
s−1∑
k=1

√
k(2s+ 1− k)X−k,k+1 +

√
s(s+ 1)/2

(
X−s,s+1 +X+

s,s+1

)
Y = X t

– For pairs of the form [2s+ 1, 3], let

H =
s∑

k=1

2(s+ 1− k)Hk + 2Hs+1

X =
s−2∑
k=1

√
k(2s+ 1− k)X−k,k+1 +

√
(s− 1)(s+ 2)X−s−1,s

+
√
s(s+ 1)/2

(
X−s,s+2 +X+

s,s+2

)
+
(
X−s+1,s+2 −X+

s+1,s+2

)
Y = X t

• Add up the contributions to H,X, Y from each pair. The resulting triple,

{H,X, Y }, will be our embedding of sl(2) and X will be our representa-

tive of the nilpotent orbit, corresponding to this partition.
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The one exception to this rule has to do with “very even” partitions and our

red/blue nilpotent orbits.

• For the red orbit, follow the prescription above.

• For the blue orbit, replace every instance of X∓i,N with X±i,N and replace

every instance of HN with −HN . This has the effect of exchanging the

roles of the two irreducible spinor representations and flips the sign of

the Pfaffian, φ̃(y)→ −φ̃(y).
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