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Abstract 

All organisms in an environment interact with that environment, including with both 
other organisms as well as the abiotic surroundings. Symbiosis is defined as a close, long-term 
association between organisms of different species that commonly results in novel structures 
and/or metabolism. Ascomycetes, also known as sac fungi, are the largest phylum of Fungi with 
over 64,000 currently known species. Within this diverse group, beneficial and detrimental 
associations with specific plant hosts are observed. I selected an antagonist, Cochliobolus 
kusanoi, and a mutualist, Penicillium pinophilum, for our analyses. These endophytes were 
isolated from Panicum virgatum. I conducted paired-end sequencing with an Illumina HiSeq 
4000 system to investigate the genetic underpinnings of such complex relationships. Genome 
assembly was completed with several programs for performance comparison, namely Velvet, 
MaSuRCA, and SOAPdenovo2. The de novo assemblies were assessed for completeness with 
BUSCO and QUAST. The final phase of the project is annotating the two genomes by following 
the standard DOE-JGI Fungal Genome Annotation Pipeline recommendations and incorporating 
our previously collected transcriptome data for these fungi to improve the annotation. Genes 
related to the fungal phenotypes will be predicted and functionally annotated, and comparative 
analysis will enable the visualization of specific gene structures and domain compositions. I 
successfully created a unique and accurate workflow for future fungal genomics research 
beginning with DNA extraction through genome annotation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Introduction 

Background 

In an era with increasingly affordable genome sequencing technologies, genome 
assembly and annotation have become projects for individuals, not research groups or large 
collaborations. Thus, there are numerous computational tools available to assemble, assess, and 
annotate a genome of interest. With an estimated 5.1 million species, fungi represent one of the 
largest branches of the Tree of Life. Fungal genomics provides insight into both genetics and 
applied genetics, including mechanisms of fungal genome evolution, fungi-specific gene family 
innovations, genomic potential for sexual cycles, functional genomics, structural and functional 
characterization of protein-coding and non-coding genes, and other genomic features. As 
genome annotation has become more popular among individuals, it has also become more 
challenging. Shorter read lengths from second-generation sequencing platforms make assembly 
more difficult by decreasing the contiguity1. Novel genes in recently sequenced genomes can be 
difficult to identify, and the annotation data sets still need to be updated and merged. I aimed to 
use two fungal genomes to identify fungal genetic traits associated with mutualist or antagonist 
phenotypes; to this end, I first determined the best approach for fungal genome assembly.  
 All terrestrial plants measured to date form symbiotic relationships with fungi. I focused 
on foliar fungal endophytes, one group of fungal symbionts that live within plant leaves for at 
least part of the fungal life cycle without evoking symptoms of harm from the plant hosts2. These 
widespread fungal-plant associations can influence host fitness, plant community composition, 
soil nutrient availability, and more. Foliar fungal endophytes are particularly well known for 
moderating plant stress responses3. These endophytes can confer plant drought resistance by 
strategically avoiding drought via increased water uptake or decreased transpiration rate or by 
tolerating drought through osmotic adjustment4,5,6,7,8. Previous grasslands research demonstrated 
that fungal symbionts differentially interact with grass hosts based on both biotic and abiotic 
conditions, and endophytes sort by environment across a local precipitation gradient9,10. 
However, endophyte symbioses are not predictable from local environmental conditions, and 
endophyte community composition is not explained by plant host traits, spatial factors, or 
vegetation structure10,11.  Endophytes differentially confer plant trait plasticity in a taxon-
dependent manner10. While plant-fungal symbioses affect plant drought response, predictive 
frameworks endophyte effects cannot be derived from community composition data alone. 
Individual fungal taxa must be understood from a genotypic level to inform functional models. 
 I sequenced the genomes of two endophytes in the Ascomycota, Cochliobolus kusanoi 
and Penicillium pinophilum. The genus Cochliobolus contains 55 known species, many of which 
are destructive plant pathogens that affect agricultural yields. This genus forms a complex with 
Bipolaris and Curvularia, which commonly contain grass pathogens with a worldwide 
distribution12. Cochliobolus kusanoi is an antagonist to Panicum virgatum, the plant host studied 
here. C. kusanoi produces secondary metabolites with antimicrobial, antioxidant, and cytotoxic 
activities4.            
 Penicillium species are common fungi living in a diverse range of environments and are 
most known for the penicillin-producing taxa. Penicillium species, commonly pathogenic, 
generally decompose organic materials and cause rotting in food products by producing 
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mycotoxins. The genus contains 354 species, and these fungi can be recognized by their dense, 
brush-like spore-bearing structures called penicilli. Penicillum pinophilum acts as a mutualist 
within P. virgatum. 
 
Assembly Approaches 

The Human Genome Project, completed in 2003, utilized the hierarchical shotgun 
approach to sequence the genome. Following the draft assembly, genomes were assembled with 
Sanger sequencing, which produces read lengths of over 800 base pairs (bp). Second-generation 
sequencing technologies like those offered by Illumina are short read methods, ranging from 50 
– 400 bp. Short-read sequencing is significantly less expensive, and new assembly methods have 
been developed to accommodate the shorter sequence lengths. However, higher coverage, or 
read repetition, is required to produce long enough sets of overlapping sequences to form 
consensus regions. These regions, known as contigs, can be accurately assembled into larger 
scaffolds that incorporate gaps into the sequence. Most assemblies based on short reads are only 
draft quality, containing significant gap regions and errors. Thus, the selection of a genome 
assembly program is critical to maximizing the information obtained from a sequencing method 
and to optimizing the sequencer-to-assembler match to produce the best possible assembly.  
 Assembly programs generally use one of two approaches: the overlap-layout-consensus 
(OLC) assembly or the de Bruijn graph assembly. The OLC assembly method begins by 
attempting to compute all pairwise overlaps between reads using sequence similarity. Then, the 
algorithm produces an alignment, or layout, of all overlapping reads. From this layout, a 
consensus sequence is chosen by scanning the multiread alignment column by column13. Most 
assemblers for Sanger sequencing are based on the OLC approach. OLC assemblers are flexible 
with read lengths and robust with sequencing errors. However, second-generation sequencing 
technologies produce short reads and nonuniform coverage, which presents a challenge for this 
type of approach. To use an OLC assembler with short reads, sequence coverage must be high to 
produce even a draft assembly.         
 The de Bruijn graph method eliminates pairwise overlap computation, making it ideal for 
sequencing platforms like Illumina. Pevzner et al. designed this method for the assembly of 
Sanger reads using the Euler assembler14. However, the approach has been widely applied to 
second-generation sequencing techniques. The foundation of the technique lies with the 
generation of the de Bruijn graph. This is an efficient way to represent a sequence in terms of its 
k-mer components. First, a graph of length k is split into its k-mer components, and these 
substrings are then assigned to a directed edge in a graph connecting nodes A and B. These 
nodes connect pairs of k-mers with overlaps between the first k-1 nucleotides and last k- 
nucleotides. Any direction, or Eulerian path, through the graph that visits every edge (first or last 
k-1 nucleotides) exactly once forms a draft assembly of reads. These graphs become very 
complex with many possible Eulerian paths and intersecting cycles. Thus, to deduce an accurate 
assembly, mate-pair or reference sequence information should be interpreted alongside the 
graph. Additionally, reads should be retained to help disentangle the possible graphs since k-
mers provide less information than raw reads.  

 
       

Christine V. Hawkes
Great section!

Christine V. Hawkes
Be sure to define both abbreviations and jargon when first used.

Christine V. Hawkes
More common to see hyphenation (e.g., “sequencer-to-assembler”). Or rephrase to avoid that issue.
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Assembly Programs Selected for Testing 

Based on my Illumina 2x150 HiSeq 4000 paired-end sequencing data, the de Bruijn 
graph approach was selected for assembly. Multiple programs use this approach, including 
Velvet, ALLPATHS-LG, EULER-SR, and ABySS. Three de Bruijn assembly programs were 
chosen for comparison in this study, namely Velvet, SOAPdenovo2, and MaSuRCA.  
 Velvet is a short-read assembler designed to manipulate de Bruijn graphs to eliminate 
errors and resolve repeats in a two-step process after construction and simplification15. Velvet 
possesses an error correction algorithm that merges sequences that belong together. Then, the 
repeat-solving algorithm separates paths sharing local overlaps. Velvet’s performance was 
originally tested on four different reference genomes: Escherichia coli, Saccharomyces 
cerevisiae, Caenorhabditis elegans, and Homo sapiens15. When tested on a bacterial species, 
Velvet demonstrated a higher N50 values and a lower average error rate compared to two other 
short read assemblers, SSAKE and VCAKE. Velvet required slightly more memory but 
significantly less run time. Velvet had higher sequence coverage that SSAKE but lower coverage 
than VCAKE. The Velvet developers recommend resolving small repeats with additional paired 
read information beyond simply using Velvet.     
 SOAPdenovo2 builds on SOAPdenovo, which is designed to assemble genomes de novo 
(i.e., without a reference genome) using next-generation sequencing short reads16. SOAPdenovo2 
boasts a new algorithm design that reduces memory consumption in de Bruijn graph 
construction. Compared to its predecessor, SOAPdenovo2 also resolves more repeat regions, 
increases coverage and scaffold length, improves gap closing, and optimizes for large genomes. 
Like SOAPdenovo, SOAPdenovo2 possesses six modules for read error correction, de Bruijn 
graph construction, contig assembly, paired-end reads mapping, scaffold construction, and gap 
closure. SOAPdenovo2 was tested on the Assemblathon1 benchmark dataset, the YH Asian 
Genome, two bacterial species, and the common eastern bumblebee.  SOAPdenovo2 showed 
marginal declines compared to ALLPATHS-LG in most quality metrics except for the YH Asian 
Genome assembly, but the memory and run time required were significantly reduced in all tests. 
Thus, SOAPdenovo2 is recommended for de novo genome assembly for eukaryotic genomes. 
 MaSuRCA, Maryland Super-Read Celera Assembler, uses a hybrid approach to short-
read assembly13. MaSuRCA has the computational efficiency of de Bruijn graph methods and the 
flexibility of overlap-based assembly strategies, allowing for variable read lengths and tolerating 
sequencing error. MaSuRCA generates “super-reads” by transforming large numbers of paired-
end reads into smaller, longer reads. Consequently, combinations of Illumina reads with different 
lengths can be assembled together with longer reads from other sequencing platforms like 454 
and Pacbio. MaSuRCA was originally tested against ALLPATHS-LG and SOAPdenovo2 using 
a bacterial species and chromosome 16 of the mouse genome13. For the best assembly, the 
developers of MaSuRCA recommend supplementing the original data with long reads. Without 
long read data, MaSuRCA performed on par with ALLPATHS-LG and significantly better than 
SOAPdenovo2 on the bacterial species, and MaSuRCA significantly outperformed the others 
when long reads were incorporated. Similar results were obtained using the mouse chromosome. 
MaSuRCA has subsequently been used to assembly tree, cow, macaque, buffalo, cat, tarsier, ant, 
and fly genomes13.        
 Scaffold_Builder is designed to improve genome assemblies by merging de novo genome 

Christine V. Hawkes
Another very well written section!
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assembly with a reference genome23. Scaffold_Builder generates scaffolds based on similarity to 
a closely related reference sequence, independent of mate-pair information. Thus, the program is 
designed to complement de novo assemblies generated with other programs. Scaffold_Builder 
was tested on several bacterial species and was shown to decrease the number of contig 
sequences by 53% while doubling their average length. The primary limitation of this program is 
the availability of a quality, closely related reference genome. Scaffold_Builder can be used to 
increase the completeness of assembled genomes. For example, if SOAPdenovo2 was used to 
assemble a genome for annotation, Scaffold_Builder would likely be necessary to enhance the 
genome quality for downstream analyses.  

Trimming and K-mer Correction 

 The de Bruijn graph assembly method cuts reads into substrings of length k, called k-
mers17. De Bruijn nodes are known as (k – 1)-mers, and edges are the k-mers from the reads. The 
choice of k-mer length is critical for assembly. Repeats longer than k nucleotides can cause short 
contigs by tangling the graph. However, a large value of k increases the chance of error in each 
k-mer. Another consideration is read overlap. If two reads overlap by less than k nucleotides, 
they do not share a vertex in the graph. This issue creates a coverage graph and decreases contig 
length. Consequently, the choice of k-mer length must be properly balanced for proper assembly. 
Musket was used to trim the raw sequence data and to optimize k-mer size18 Musket is a 
multistage k-mer-based corrector for Illumina short read data. It utilizes the k-mer spectrum 
approach and introduces three different correction techniques in a multistage workflow, 
including two-sided conservative correction, one-sided aggressive correction, and voting-based 
refinement. Musket is multi-threaded using a master-slave model, so its parallel scalability 
outcompetes rival correctors. For many de novo assemblers, pre-assembly data filtering and 
cleaning is required, and Musket has successfully enhanced the assemblies of Escherichia 
coli, Caenorhabditis elegans, and Chr14 from the GAGE dataset18. However, some assembly 
programs like MaSuRCA recommend not cleaning the data before use. 

Quality Assessment Programs 

 Sequence data must be assessed for quality before assembly. Poor sequence quality will 
result in inaccurate genome assembly and annotation, since the probability that each given base 
call is erroneous is high. Thus, any downstream analysis of incorrect input is less informative. 
Fundamentally, the quality of the raw sequence depends on the interaction of the sequencer with 
the specific genome of interest. Illumina next-generation sequencing includes Phred quality 
scores along with the sequence output19. This score indicates the probability that a given base 
was called incorrectly by the sequencer. While Phred scores are derived statistically from 
experimental sequencing tests, sequence quality and thus Phred scores are based on the 
sequencer’s interpretation of the actual DNA. For example, high GC content in a nucleotide 
sequence is difficult for most sequencing platforms to interpret. Thus, the reported Phred score is 
low for that stretch of bases is low. However, the underlying cause, high GC content, is not 
reported. This information is contained in the sequencer’s output, though, because the sequence 
is provided along with each base’s Phred score.       
 FastQC provides an assessment of the quality of the raw sequencing data by 

Christine V. Hawkes
Perhaps move to the assembler program section, since this is part of the assembly.
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simultaneously analyzing the provided Phred score and sequence20. FastQC is designed to spot 
issues either arising from the sequencer or the starting library material. FastQC first provides 
basic statistics like the total number of sequences, filtered sequences, and sequence length. 
FastQC primarily creates interactive graphs that reflect per base quality like the per base 
sequence quality, per base sequence content, per base GC content, and per base N content. 
FastQC also evaluates the per sequence quality scores, per sequence GC content, sequence 
length distribution, sequence duplication levels, overrepresented sequences, and K-mer content. 
FastQC is a simple way to quickly conduct quality control on raw sequence data from high 
throughput sequencing pipelines.        
 Once the sequence quality is ascertained, genome assembly can begin. Once a genome is 
assembled, it should be assessed for completeness and accuracy. As previously discussed, 
different genome assembly algorithms are optimized for different types of genomes. Codon 
usage bias and genomic GC content are species-specific, so genome assembly algorithms must 
be optimized for the species of interest to properly account for these nuances. Incorrect or low 
accuracy genome assembly causes poor gene identification and genome annotation. Thus, in a 
streamlined pipeline from genome sequencing to annotation, one step needs to be genome 
assembly assessment. BUSCO and QUAST were used to comparatively assess the qualities of 
the two assembled genomes.         
 BUSCO, Benchmarking Universal Single-Copy Orthologs, provides a quantitative 
assessment of genome assembly and annotation completeness based on evolutionarily informed 
expectations of gene content21. BUSCO provides major lineages with genes from orthologous 
groups present as single-copy orthologs in at least 90% of the species. This approach allows for 
rare duplications and losses while establishing an evolutionary informed expectation that the 
genes should be single-copy orthologs in the newly-sequenced species. BUSCO datasets 
currently represent 3023 genes for vertebrates, 2675 genes for arthropods, 843 genes for 
metazoans, 1438 genes for fungi, and 429 genes for eukaryotes. BUSCO has also adopted 40 
universal marker genes for prokaryotic genomes. BUSCO utilizes HMMER, Blast+, and 
Augustus for its evolutionary insights. BUSCO assesses genome completeness by quantitating 
the numbers of complete BUSCO matches. BUSCO can also assess transcriptomes by 
incorporating EMBOSS transeq into the pipeline.     
 QUAST, Quality Assessment Tool for genome assemblies, is a popular genome 
assessment program22. It aggregates methods and quality metrics from existing software, and 
then it extends these programs with new metrics. QUAST utilizes E-MEM (an improvement over 
MUMmer), GeneMarkS, GeneMark-ES, GlimmerHMM, GAGE, and Gnuplot to define quality 
metrics for an assembly. QUAST can also find structural variants by utilizing a reference 
genome. However, a reference genome is not required to use QUAST. Bedtools is used to 
calculate raw and physical read coverage, which can be shown in Icarus contig alignment viewer. 
QUAST generates interactive plots for most of the measurements. QUAST can run on multi-core 
processors, thus increasing its efficiency and reducing its run time via parallelization. 
 

 

 

Christine V. Hawkes
Again, start off with a sentence on the need for assessment of assembly quality, note that you tested this with BUSCO and QUAST, then follow with the descriptions of each.
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Methods 

 Endophyte cultures originally isolated from Panicum virgatum were grown on potato 
dextrose agar plates for two weeks10. DNA extraction was performed using the 1000 Fungal 
Genomes Project protocol24. DNA sequencing was completed at the University of Texas at 
Austin through the Genome Sequencing and Analysis Facility. Paired-end sequencing (2x150) 
was conducted using the Illumina HiSeq 4000 system. The raw fastq files were trimmed and k-
mer-corrected using Musket. Comparative genome assembly was completed using MaSuRCA, 
Velvet, and SOAPdenovo2. The recommendations given in each program’s manual were 
followed for these genomes. MaSuRCA takes raw reads, so Musket was not used in the 
MaSuRCA assembly pipeline. MaSuRCA automatically selects its own k-mer value. Musket was 
used prior to the Velvet assemblies and some of the SOAPdenovo2 assemblies to test the 
dependence of assembly quality on input. K-mer values for these two program were selected 
with KmerGenie and SOAPdenovo2’s recommendations. BUSCO and QUAST were separately 
utilized to assess the quality and completeness of the assembled genomes. Outputs from the 
genome assembly programs included Musket-corrected contigs and scaffold files as well as non-
Musket-corrected contigs and scaffold files, which were differentially examined using BUSCO 
and QUAST. Many programs were run on the supercomputer Stampede at TACC, or the Texas 
Advanced Computing Center25.         
 The annotation process is ongoing, so the results are not presented at this time. 
Annotation is based on the JGI Fungal Genome Annotation protocol recommendations26 and 
incorporates previously collected transcriptome data based on the Broad Institute’s 
recommendations27. 
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Results 

FastQC 

 The forward and reverse sequence reads for both Cochliobolus kusanoi and Penicillium 
pinophilum were high quality and required very little cleaning based on FastQC. 

 

 
Figure 1: FastQC per base sequence quality results. The y-axis shows the quality scores encoded by the original 
Illumina raw fastq file. The higher the score, the better the base call. The y-axis is divided into very good quality 
(green), reasonable quality (orange), and poor quality (red). On most platforms, the quality degrades as the run 

progresses, so the falling quality at the tail end of the reads is not problematic. For each position, a box whisker plot 
is drawn. The central red line represents the median value. The blue line is the mean quality. The yellow box is the 
inter-quartile range. The upper and lower whiskers represent the 10% and 90% points. 1a: Forward read quality for 

C. kusanoi 1b: Reverse read quality for C. kusanoi 1c: Forward read quality for P. pinophilum 1d: Reverse read 
quality for P. pinophilum 

 

 

 

 

 

 

 

1a 1b 

1c 1d 
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The only significant failed module assessed by FastQC was for k-mer content. The error is issued 
when any k-mer is enriched more than 10-fold at any individual base position. Because no 
trimming was conducted before FastQC assessment, this was anticipated, as the adapters had not 
been removed from the raw sequencing data. Based on this quality reading, Musket was chosen 
to trim k-mers out of the raw sequence files.  

 

 

  

 

 
 
 
Figure 2: K-mer enrichment is counted for every 7-
mer within the sequence library. FastQC calculates an 
expected level of the k-mer based on the base content 
of the library as a whole. Then the program uses the 
actual count to calculate an observed/expected ratio 
for the k-mer. A pattern of bias was observed for k-
mer content at different points over the read length. 
2a: K-mer content for C. kusanoi 2b: K-mer content 
for P. pinophilum 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

2a 

2b 
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Comparison of Genome Assemblies 
 
 Using QUAST, the cumulative length of each genome was determined. A reference 
genome of the same genus was selected from JGI for each fungus for comparison. The reference 
Cochliobolus genome for C. kusanoi differed more than the reference Penicillium genome for P. 
pinophilum. This is likely based on poor reference quality or a more phylogenetically distant 
reference for Cochliobolus compared to Penicillium. 

 

Figure 3: The cumulative length 
plots show the growth of contig 
lengths. On the x-axis, contigs are 
ordered the largest (contig #1) to the 
smallest. The y-axis gives the size of 
the x largest contigs in the assembly. 
The assembly type is color-coded. 
The MaSuRCA contigs genome 
assembly is red, the MaSuRCA 
scaffold genome assembly is blue, the 
SOAPdenovo2 contigs assembly is 
green, the SOAPdenovo2 Musket-
corrected contigs assembly is purple, 
and the SOAPdenovo2 Musket-
corrected scaffold assembly is orange. 
The reference sequence is the dotted 
black line. 3a: While the reference 
Cochliobolus sequence was roughly 
31 Mbp, most of the assemblies of C. 
kusanoi were larger. Most 
importantly, the MaSuRCA 
assemblies estimate the genome size 
to be about 57.5 Mbp. 3b: The 
reference sequence based on a 
different Penicillium species was 
about 37 Mbp. Most of the P. 
pinophilum assemblies placed the 
genome to be about 32 Mbp. 

  

QUAST was also used to determine the contig N length. N50 values are commonly used 
as an assessment of an assembled genome. N50 is the length for which the collection of all 
contigs of that length or longer covers at least half an assembly. N50 is thus partially dependent 
on the length of the genome. High N50 values relative to the size of the genome are desired. 
When a reference genome was provided to QUAST, the N50 value for C. kusanoi tripled while 
the N50 value for P. pinophilum decreased slightly. 

3a 

3b 



14 
 

 

 

Figure 4: The Nx plots for C. 
kusanoi and P. pinophilum based the 
various genome assemblies. 4a: The 
Nx values are presented for C. 
kusanoi. No reference genome was 
provided. The MaSuRCA assembly 
using contigs provided the best N50 
value where N50 = 53,577 bp. 4b: 
Here, the Nx values for P. 
pinophilum are plotted. No reference 
genome was used. The best N50 was 
produced by the MaSuRCA scaffold 
assembly with N50 = 1,708,132 bp. 
   

 

 

 

 

 

Using BUSCO, the completeness of each genome assembly was assessed. BUSCO 
divides completeness metrics into complete and single copy, complete and duplicate copy, 
fragmented, and missing assessments. 

 

 
 
 
 
Figure 5: The MaSuRCA contigs and 
scaffold assemblies performed equally well 
and by far the best when assessed by BUSCO 
for C. kusanoi and P. pinophilum. 
SOAPdenovo2 assemblies improved 
significantly when Musket was used to trim 
the sequences before assembly. 
SOAPdenovo2 assessments were further 
improved when the output assemblies were 
scaffolds, not contigs. 
 
 
 
 

4a 

4b 
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Discussion 

Based on BUSCO and QUAST assessments, the de novo MaSuRCA genome assemblies 
for both Cochliobolus kusanoi and Penicillium pinophilum outperformed SOAPdenovo2 based 
on BUSCO and N50 metrics. BUSCO’s results showed that MaSuRCA generated a 98.3% 
complete genome assembly for C. kusanoi and a 99.7% complete genome assembly for P. 
pinophilum. For C. kusanoi, SOAPdenovo2 produced 27.6%, 38.2%, and 43.5% genome 
completeness using contigs, Musket-corrected contigs, and the Musket-corrected scaffold, 
respectively. The genome assembly for C. kusanoi from MaSuRCA is more than twice as 
complete as the best SOAPdenovo2 assembly based on BUSCO assessments. For P. pinophilum, 
MaSuRCA generated a 99.7% complete genome using either contigs or a scaffold. For 
comparison, SOAPdenovo2 produced 0.3%, 27.9%, and 79.3% genome completeness using 
contigs, Musket-corrected contigs, and the Musket-corrected scaffold, respectively. The genome 
assembly produced by MaSuRCA for P. pinophilum was over 20% more complete than the best 
SOAPdenovo2 assembly.          
 Using QUAST, the de novo assemblies were assessed using N50 values. For C. kusanoi, 
the contigs and scaffold from MaSuRCA produced N50 values of 53,577 and 50,815 bases, 
respectively. The contigs, Musket-corrected contigs, and Musket-corrected scaffold from 
SOAPdenovo2 has N50 values of 1125, 1089, and 1313 bases, respectively.  For P. pinophilum, 
the contigs and scaffold from MaSuRCA produced N50 values of 768,585 and 1,708,132 bases, 
respectively. The contigs, Musket-corrected contigs, and Musket-corrected scaffold from 
SOAPdenovo2 has N50 values of 563, 1141, and 571,787 bases, respectively.    
 N50 values are dependent upon the length of the genome. Because the presented 
assemblies are the first for each fungus, N50 value comparisons to other published fungal 
genomes are not particularly informative. However, BUSCO assessments were completed on 
three JGI Cochliobolus genome assemblies and three JGI Penicillium genome assemblies for 
quality reference28,29,30,31,32,33. On average, the published Cochliobolus genomes had a BUSCO 
completeness score of 98.3% with 0.3% fragments and 1.4% missing. This is on par with the C. 
kusanoi assemblies produced by MaSuRCA, which had 98.3% completeness, 1.0% fragments, 
and 0.7% missing. On average, the three tested Penicillium species had a completeness score of 
99.1% with 0.1% fragments and 0.8% missing. The completed P. pinophilum produced by 
MaSuRCA had a marginally improved completeness of 99.7% with 0.3% fragments and 0.0% 
missing. The quality of the MaSuRCA assembler for these genomes is comparable to the high-
quality genomes published by the JGI. 

Based on these assessments, MaSuRCA should be used for future fungal genome 
assemblies. These are the first genome assemblies for each fungus. Because these assemblies are 
accurate and compete, they are suitable for annotation and other downstream analyses.  

Sequence trimming and scaffolding differentially influenced the final genome assemblies 
depending on the assembly program, though MaSuRCA required unfiltered and untrimmed input 
sequences, and MaSuRCA performs approximately as well using either the contigs or scaffold 
files. Scaffolding algorithms vary depending on the assembly program. SOAPdenovo2 constructs 
scaffolds by utilizing paired-end reads beginning with short insert sizes followed iteratively to 
large insert sizes. Novel approaches to heterozygous contig pair detection, chimeric scaffold 
construction, and contig matching with insufficient paired-end information were implemented in 

Christine V. Hawkes
Flesh out here by discussing HOW MUCH better MaSuRCA is and put in the context of other assembler comparisons in the literature. Compare to quality of assembly for congeners using other programs to justify the choice of MaSuRCA in the future.

Christine V. Hawkes
Can you speculate as to why this happened?
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SOAPdenovo2 compared to SOAPdenovo16. These added mechanisms to improve contig 
relationships and untangle chimeras likely improved the evolutionary completeness and contig 
length seen in the BUSCO and QUAST results. MaSuRCA is a modified version of the CABOG 
assembler13. For scaffolding, CABOG primarily uses mate-pair information 
(https://academic.oup.com/bioinformatics/article/24/24/2818/197033/Aggressive-assembly-of-
pyrosequencing-reads-with). However, in this project, mate-pairs were not generated. 
Consequently, the scaffold did not show improvement over the contigs in MaSuRCA output 
assessment. Reference genome incorporation improved the N50 value for C. kusanoi but not P. 
pinophilum. This is likely due to the relative phylogenetic distance between the fungus of interest 
and the available reference sequence. 

The quality of Velvet’s genome assemblies will be assessed. However, preliminary 
results suggest the assemblies by Velvet are better than SOAPdenovo2 but not as good as 
MaSuRCA. Thus, Velvet will not be investigated too much further for our annotation analysis, 
since the MaSuRCA assemblies are high quality. The ability of Scaffold_Builder to enhance 
genome completeness should be assessed, particularly if Velvet or SOAPdenovo2 are to be used 
for assembly and a reference sequence is available. Genome annotation work is still in its early 
stages and will provide deeper genomic insight once completed. Leveraging transcriptome data 
allows for better genome annotation. Differentially expressed genes between the two selected 
fungal species will indicate potential genes responsible for the mutualist or antagonist 
associations with the host plant. This pipeline, once finished, will be streamlined for fungal 
genomic analysis, enabling the quick assembly, assessment, and annotation of future genomes. 
This genetic analysis of fungal phenotypes is a new, unique approach to understanding fungi-
host interactions, particularly for endophytes.       
 Genetic understanding of C. kusanoi contrasted to P. pinophilum will grow as annotation 
is completed, so the intricacies of each fungus’s behavior can be uncovered and characterized. 
Fungal genome annotation provides insight into both genetics and applied genetics, including 
mechanisms of fungal genome evolution, fungi-specific gene family innovations, genomic 
potential for sexual cycles, functional genomics, structural and functional characterization of 
protein-coding and non-coding genes, and other genomic features. Aggressive pathogenic fungi 
tend to possess a set of pathogenicity genomic signatures34. Similar regions are expected to be 
differentially expressed in the antagonist versus the mutualist fungus. The potential regulatory 
patterns for gene clusters can also be evaluated during the annotation phase. Screening of the 
genome by the Antibiotics & Secondary Metabolite Analysis Shell (AntiSMASH) pipeline will 
indicate possible secondary metabolites produced by these fungi 
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489286/). The fungi likely produce many 
more metabolites than AntiSMASH will hypothesize since many metabolites have yet to be 
identified, particularly in fungi. However, this rudimentary metabolite assessment is a good 
starting point for any future experimental metabolic studies. This methodology can be applied to 
other disparate sets of fungi to relate genomic underpinnings to morphology and symbioses. 

This is the first comparison of genome assembly programs optimized for fungi. Other 
popular assemblers, such as ABySS, DISCOVAR, or SSAKE, can be tested in the future. 
However, given the limitations of our sequencing platform, only certain assembly programs 
could be tested. For example, ALLPATHS-LG, utilized by JGI, requires two paired-end 

Christine V. Hawkes
Perhaps add examples of what has been done from other studies of congeners or other endophytes. What can we look forward to?



17 
 

libraries, one short and one long35. This assembly method was not possible given the sequencing 
choice for this project. Sequencing platforms and coverage should be strategically selected based 
on the range of assembly options desired. 
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Figure 1b 
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Figure 1c 
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Figure 1d 
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Figure 2a 
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Figure 2b 
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Figure 5 

 


