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The Delaunay triangulation is one of the fundamental problems in computational

geometry, dual to the well-known Voronoi diagram. It has numerous applications

in various disciplines such as computer graphics, computer vision, and robotics.

This thesis deals with a number of interrelated questions arising in modeling shapes

by computing Delaunay triangulations. We give algorithms for surface reconstruc-

tion, computing Delaunay triangulations given surfaces, and computing Delaunay

triangulations in general.

Given a set of samples from a surface, the surface reconstruction problem is

to construct a piecewise linear approximation of the original surface. We give two

surface reconstruction algorithms with guarantees of both geometric and topological

correctness using the 3D Delaunay triangulation of the input samples. The first

algorithm selects a set of Delaunay triangles using a simple geometric test and

extracts a manifold from it. It is the first surface reconstruction algorithm with

topological guarantee of correctness. The second algorithm improves the robustness

using the weighted Voronoi diagrams called power diagram.
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When the surface on which the samples lie are known, we can use the connec-

tivity of the surface to speed up the Delaunay triangulation. We give an O(n log∗ n)

expected time algorithm to compute the 3D Delaunay triangulation given the sur-

face on which the samples lie, under some realistic assumptions. It improves upon

O(n log n) expected time usual randomized incremental algorithm in this case. The

algorithm can be useful for mesh generation and medial axis construction.

The randomized incremental algorithm for Delaunay triangulation is theo-

retically optimal in expected time but suffers from serious thrashing because of its

random memory access pattern when the data structure gets too large to fit in

memory. We propose a new insertion order called biased randomized insertion order

(BRIO) which removes enough randomness to significantly improve performance,

but leaves enough randomness so that the algorithm remains theoretically optimal.

We show by experiments that the size of input data we can compute in a given

machine increases dramatically using BRIO instead of the total random order.
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Chapter 1

Introduction

The Delaunay triangulation is one of the fundamental problems in computational

geometry, dual to the well-known Voronoi diagram. See Figure 1.1. They are ubiq-

uitous structures in nature and science and have various applications in computer

vision, computer graphics, mesh generation and many other fields. Fortune [43] gives

a nice survey about the properties and the algorithms for the Delaunay triangulation

and Voronoi diagram.

The Delaunay triangulation and Voronoi diagram are defined in any dimen-

sion, but in this dissertation, we study the three dimensional case, the Delaunay

triangulation of points in IR3, also called the Delaunay tetrahedralization. This par-

ticular case claimed our attention because of our work on the surface reconstruction

problem.

Given a set of samples from the surface of an object, the goal of the surface

reconstruction problem is to construct an approximation to the original surface. This

problem has various practical applications in reverse engineering, computer graphics

and animation, medical engineering and computer aided design. In Chapter 3, we

present two algorithms using the 3D Delaunay triangulation.

The first algorithm selects a set of triangles from the 3D Delaunay triangula-
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Figure 1.1: The Voronoi diagram and its dual Delaunay triangulation

tion using a simple geometric test. It is the first algorithm with both topological and

geometric guarantees of correctness. From the set of triangles selected it extracts

a triangulated manifold. Extracting a manifold is easy in theory but not trivial in

practice. In case of sharp corners and boundaries, the algorithm is not particularly

robust. The algorithm can fail to select some triangles and the output may have

holes. The second algorithm fixes this problem by using the weighted Voronoi di-

agram called power diagram. It guarantees that the output is always a watertight

boundary of a solid even with undersampling, and it does not require a manifold

extraction step. It gives much more robust results in practice. With some heuristics,

we can even correctly reconstruct sharp corners produce approximate offset surfaces

and surfaces with boundaries.

Our surface reconstruction work revealed interesting connections to the me-

dial axis. The medial axis is a compact representation of the shape of the surface and

is a well-studied, important problem in computer vision and geometry. It has many

applications in computer graphics, computer animation, mesh generation, compu-

tational biology, shape representation. Our second surface reconstruction algorithm

also gives one of the best algorithms for the 3D medial axis construction. It has been

used even when the surface is known, to construct the medial axis. Clearly in this

2



latter case, the surface should be useful for constructing the Delaunay triangulation.

The usual algorithm for the 3D Delaunay triangulation is the randomized

incremental algorithm. It constructs the Delaunay triangulation by adding input

points one by one in random order and updating the Delaunay triangulation after

each insertion. The running time of the algorithm can be divided into two parts,

the time required to find where each new point should be inserted into the Delaunay

triangulation (point location time) and the time required to delete old tetrahedra

and create new tetrahedra so as to actually perform the insertion (update time).

We use the connectivity of the surface to speed up the point location time

of the 3D Delaunay triangulation computation. We present the algorithm in Chap-

ter 4. Given some realistic assumptions about the input data, the algorithm takes an

O(n log∗ n) expected time improving upon the O(n log n) expected time usual ran-

domized incremental algorithm in that case. It has applications in mesh generation

and medial axis construction.

We turned our attention to the 3D Delaunay triangulation because it is the

bottleneck of our surface reconstruction algorithms. We present the results from

our experimental study for 3D Delaunay triangulation of samples from surfaces in

Section 4.4. Though the worst case complexity of the 3D Delaunay triangulation

is quadratic, our experiment shows that the size of the Delaunay triangulation is

linear. In this case, the theoretical bottleneck of the algorithm is point location

time. (This is the problem addressed by the speed-up presented in Chapter 4.) But,

in practice, point location does not dominate the total running time. Instead, the

main performance problem of the 3D Delaunay triangulation programs is thrashing.

The expected running time of the randomized incremental algorithm is op-

timal and it depends on the random permutation of insertion order. But, when the

data structure gets too big to fit in memory, because of the inherent random access

pattern the program thrashes very badly. This limits the size of the problem we can

3



compute on a given machine.

In Chapter 5, we propose a new insertion order called biased randomized

insertion order (BRIO). We prove that using BRIO instead of random order, the

algorithm still remains optimal both in the worst case and in the “realistic” case

when the expected size of the Delaunay triangulation of r points is O(r). Using a

BRIO we could compute the Delaunay triangulation of much larger data sets than

were possible with the completely randomized insertion order. Though we analyze

BRIO in the context of the 3D Delaunay triangulation, the analysis holds for other

randomized incremental construction such as convex hull, Delaunay triangulation

in any dimension and the trapezoidation of line segments.
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Chapter 2

Background

In this chapter, we introduce some of the important definitions and theorems that

will be used in the thesis.

2.1 Voronoi diagram and Delaunay triangulation

In this section, we define the Voronoi diagram and its dual Delaunay triangulation.

Though these definitions are given for general dimension d, in this thesis, we are

only interested in the three dimensional case.

Let S be a finite set of points in Rd which we call the samples or sites. Let

dist(x, y) for two points x, y denote the Euclidean distance between them. For each

site p ∈ S, the Voronoi cell Vp is defined as follows.

Vp = {x ∈ Rd : dist(x, p) ≤ dist(x, q), ∀q ∈ S}

In other words, the Voronoi cell Vp is a set of points in Rd whose closest site is p. It

follows from the definition that each Voronoi cell is a (possibly unbounded) convex

polyhedron. The Voronoi diagram V or(S) of S is defined as a union of Voronoi cells

5



Figure 2.1: The Voronoi diagram of six sites

Figure 2.2: The Delaunay triangulation

Vp for p ∈ S :

V or(S) =
⋃

p∈S

Vp

It is a decomposition of Rd into Voronoi cells.

The Delaunay triangulation is the dual of the Voronoi diagram. If two

Voronoi cells Vs and Vt are adjacent in the Voronoi diagram then there is a dual

Delaunay edge connecting s and t in the Delaunay triangulation. Given a Delaunay

triangulation, one can compute the dual Voronoi diagram in linear time and vice

versa.
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Figure 2.3: The Delaunay triangulation and an empty circumcircle of a Delaunay
triangle

Another way to define the Delaunay triangulation is its empty sphere prop-

erty. An empty circle (or sphere) is a circle (or sphere) which does not contain any

site in its interior. The Delaunay triangulation D(S) of S is a graph where S is its

vertex set and there is a straight edge pq if there is an empty circle containing p and

q in its boundary.

When d = 3, if no three points lie on a line and no four points lie on a

circle, we say that the points are in general position. When S is in general position,

the Delaunay triangulation of S is a tetrahedralization of the convex hull of S and

each Delaunay tetrahedron pqrs in D(S) has an empty circumsphere (a sphere

containing p, q, r, s on its boundary). The center of the empty circumsphere is the

Voronoi vertex dual to the Delaunay tetrahedron pqrs. We assume for the rest of

the thesis that S is in general position.

Among the important applications of the 3D Delaunay triangulation are

surface reconstruction, medial axis approximation, and mesh generation. We will

review some of the related works on surface reconstruction using the 3D Delaunay

triangulation in Chapter 3. We define the medial axis in Section 2.5 and explain its

relationship to the Delaunay triangulation and Voronoi diagram. We will not deal
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with mesh generation in this thesis except to note here that Delaunay refinement is

a popular way to generate high-quality tetrahedral meshes [65, 22].

2.2 Power diagram and regular triangulation

The power diagram and its dual regular triangulation are generalizations of the

Voronoi diagram and Delaunay triangulation for the case of weighted points. We

consider a (Euclidean) ball Bc,r with center c and radius r as a weighted point c

with weight r2.

We define a new distance function called power distance pow(B1, B2) between

two weighted points (or balls) B1 = Bc1,r1 and B2 = Bc2,r2 as follows:

pow(B1, B2) = dist(c1, c2)2 − r12 − r22

We consider an unweighted point as a ball with radius zero. So the power

distance between a point x and a ball Bc,r is :

pow(x,B) = dist(x, c)2 − r2

Using the power distance instead of the Euclidean distance, we define the

power diagram as a weighted Voronoi diagram. The power diagram of a set W of

balls is the union of power cells Vp for all p ∈ W . A power cell Vp of a ball p is

defined as follows:

Vp = {x ∈ Rd : pow(x, p) ≤ pow(x, q),∀q ∈ W}

A nice thing about the power diagram is that each cell is a (possibly un-

bounded) polyhedron, like the Voronoi diagram. But, in the power diagram we

can have empty power cells for some balls, unlike the Voronoi diagram which has a

nonempty cell for every site.
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Figure 2.4: The power diagram of six balls

Figure 2.5: The power diagram and its regular triangulation
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Figure 2.6: Regular triangulation

The dual of the power diagram is called the regular triangulation. It is

obtained by connecting centers of balls with adjacent power cells with straight edges.

Since some balls may have empty power cells, they may not appear in the regular

triangulation.

2.3 Randomized incremental algorithm

The most widely used algorithm for the 3D Delaunay triangulation is the randomized

incremental algorithm [24, 25, 26]. It constructs the Delaunay triangulation D(S)

by inserting samples of S in random order. When we insert a sample p into D(R)

for R ⊂ S, we first locate p in D(R). Then, we remove all Delaunay tetrahedra in

D(R) whose circumsphere contains p and create new tetrahedra adjacent to p to

construct D(R ∪ {p}).
The running time of the algorithm can be divided into two parts - the location

time which is the time to locate a new point to add in D(R), and the update time

which is the time to update the Delaunay triangulation.

There are many ways to locate a new point in the current Delaunay trian-

gulation. One of the theoretically optimal methods is using the history DAG [26].

10



When we add a new point, instead of deleting Delaunay tetrahedra that are no

longer Delaunay, we make them parents of the new Delaunay tetrahedra created

by the insertion. To search for a new point, we follow a path of tetrahedra in the

history DAG that all contain the new point.

2.4 Homeomorphism

We will show in Chapter 3 that the output of our surface reconstruction algorithm

is topologically correct (i.e. topologically equivalent to the original surface.) So here

we introduce a formal definition of topological equivalence called homeomorphism.

Let X and Y denote two topological spaces. A homeomorphism, µ : X → Y ,

is a continuous bijection whose inverse is also continuous. X and Y are topologically

equivalent or homeomorphic if there is a homeomorphism between them. Intuitively,

when two topological spaces are homeomorphic, we can continuously move either

space into and onto the other space.

2.5 Medial axis transform

Let F be a bounded two-dimensional surface in IR3. A ball is empty if it does not

contain any point of F in the interior. A medial ball is a maximal empty ball; that

is, it is not contained in any other empty ball. Then the medial axis transform of F

is the set of medial balls, each represented by its center and radius. The set of the

centers of the medial balls is called the medial axis. Equivalently, the medial axis of

a surface F is defined as the closure of points that have more than one closest point

on F .

The medial axis has various applications in mesh generation, animation, and

computer vision. But, it is hard to compute the medial axis exactly. So there

has been a lot of work on approximating the medial axis. A popular method is to

11



Figure 2.7: Medial axis transform

discretize the surface with samples and to use the Voronoi diagram of the samples

as an approximation. But, even when the sampling density goes to infinity, it is not

true that the 3D Voronoi diagram converges to the medial axis. In Section 2.8, we

introduce the definition of the pole which is shown to approximate the medial axis.

2.6 Sampling condition

Here we define the sampling condition under which we can prove the correct recon-

struction. This definition was proposed by Amenta et al [3, 2, 4]. Unlike uniform

sampling where the sampling density is fixed throughout the surface, our sampling

condition varies according to the surface complexity; we need more samples in the

complex area and less samples in the simple, featureless area.

We first need the definition of local feature size(LFS) function : for a point

x ∈ IR3, LFS(x) is the Euclidean distance from x to the nearest point on the medial

axis of F . Note that in flat, featureless areas, the medial axis is far away from the

surface, so LFS value is big, while in complicated areas where the curvature is big,

the medial axis is close to the surface, so LFS value is small.

We now define our sampling requirement : A sample set S ⊂ F is an r-sample

12



if the distance from any point x ∈ F to the nearest sample point s ∈ S is at most

r LFS(x). We will see later that S is dense enough for our purposes when r ≤ .08.

Note that at sharp corners, the medial axis meets the surface, so the definition of

the r-sample implies that we need infinite number of samples at sharp corners.

The following lemma says that the LFS function is Lipschitz.

Lemma 1 (Amenta and Bern [2]) For any two points p and q on W , |LFS (p)−
LFS (q)| ≤ d(p, q).

Observation 2 If d(u,s)= O(r)LFS(u) then d(u,s)=O(r)LFS(s) as well, for r < 1.

The following lemma is a Lipschitz condition on the surface normal with

respect to LFS.

Lemma 3 (Amenta and Bern [2]) For any two points p and q on F with d(p, q) ≤
ρmin{LFS (p), LFS (q)}, for any ρ < 1/3, the angle between the normals to F at p

and q is at most ρ/(1− 3ρ).

2.7 Restricted Voronoi diagram and restricted Delau-

nay triangulation

Let S be a set of samples on a surface F . Consider the three-dimensional Voronoi

diagram V (S) of S, and its intersection with F . The Voronoi diagram V (S) forms

a partition of F into regions; this decomposition is the restricted Voronoi diagram

V (S, F ) of S in F . Then the restricted Delaunay triangulation D(S, F ) of S in

F is the set Delaunay triangles dual to the restricted Voronoi diagram. We call

the triangles in the restricted Delaunay triangulation, restricted Delaunay triangles.

Equivalently, a restricted Delaunay triangle is a Delaunay triangle of S dual to an

edge of the Voronoi diagram of S intersecting F .

13



Figure 2.8: Restricted Voronoi diagram

Figure 2.9: Restricted Voronoi diagram and Delaunay triangulation
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Edelsbrunner and Shah [40] showed that the restricted Delaunay triangula-

tion D(S, F ) is homeomorphic to the surface F if S has the following closed-ball

property : the closure of each k-dimensional face, 1 ≤ k ≤ 3, of the Voronoi dia-

gram of S intersects F in either the empty set or in a closed (k − 1)-dimensional

topological ball.

Using the above theorem, Amenta and Bern showed that given a dense

enough sample the restricted Delaunay triangulation is homeomorphic to the sur-

face.

Theorem 4 (Amenta and Bern [2]) If S is an r-sample of F for r ≤ .1, then

the restricted Delaunay triangulation D(S, F ) forms a polyhedron homeomorphic to

F .

2.8 Poles

The definition of the pole was introduced by Amenta et al [2, 4]. When S is a dense

enough sample of a surface F , the Voronoi cell of every sample s is long and skinny

and perpendicular to the surface F . This happens because in directions tangent to

the surface the Voronoi cell is bounded by the proximity of other samples on the

same local patch of surface. The following lemma makes this precisely.

Lemma 5 (Amenta and Bern [2]) Let s be a sample point from an r-sample

S. Let v be any point in Vs such that d(v, s) ≥ ρLFS(s) for ρ > r
1−r . Let 6 nv be

the angle at s between the vector ~v from s to v and the surface normal ~n at s. Then

6 nv ≤ arcsin r
ρ(1−r) + arcsin r

1−r .

This lemma also shows that if we can find a point v in the Voronoi region

which is sufficiently far away from s, ~v will be a good approximation of ~n.

The poles of a sample s ∈ S are the farthest vertices of its Voronoi cell in

either side of the surface F .

15
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P

Figure 2.10: The pole of a sample s, the vector from s to its pole is a good approx-
imation of the surface normal at s.

The distance to either pole of a sample s is at least LFS(s) ( [8], page 16).

Let p be the pole of a sample s. Using Lemma 5, we can observe that the vector ~p

from s to p is a good approximation of the surface normal ~n at s.

Lemma 6 (Amenta and Bern [2]) Let 6 np be the angle between ~n and ~p. Since

d(s, p) ≥ LFS(s), Then, 6 np ≤ 2 arcsin r
1−r .
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Chapter 3

Surface Reconstruction

In this chapter, we review our work on surface reconstruction.

Given a set of points S obtained from the surface F of an object, the sur-

face reconstruction problem is to obtain a piecewise linear approximation of the

original surface F (See Figure 3.1.) There are various ways to acquire the input

point sets, such as laser range scanner, hand-held digitizers, 3D cameras, CT, MRI,

etc. Continuing advancement of the acquiring devices has made this problem more

important. Industrial applications include reverse engineering, product design and

the construction of personalized medical appliances.

We have proposed two surface reconstruction algorithms with provable guar-

antees. The first algorithm called the co-cone algorithm simplifies the crust algo-

rithm by Amenta et al. [2, 4] and the second - the power crust - gives more robust

results in practice. The theoretical guarantees are of the following form : Given

a good sampling defined with respect to the original surface, our reconstruction is

topologically correct (homeomorphic to the original surface) and geometrically close

to the original surface.

The bottleneck of these algorithms is the Delaunay triangulation compu-

tation. In Chapter 5, we propose a method to improve the performance of the
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Figure 3.1: Surface reconstruction : Left is input samples, and right is the recon-
structed surface using power crust with samples.

Delaunay triangulation computation.

3.1 Related work

The surface reconstruction problem has drawn much attention from researchers in

computer graphics, solid modeling, computer vision and computational geometry.

There are different variants of the problem. We can classify them into two groups

- algorithms which only use the coordinates of the samples (unorganized points)

and algorithms which use additional information. Some algorithms are specialized

to a particular kind of input such as range data from laser range scanner which

come with the surface normal, or data from computer vision technique. The re-

construction algorithms can also be categorized by the types of their output. The

reconstructed surface may interpolate or approximate the samples. Some construct

watertight models and others output surfaces with boundary. Some algorithms con-

struct piecewise linear surfaces while others construct implicit functions which may

be smooth or piecewise smooth. There are various and large amount of work in this

problem. We only discuss some of the related work in this section.

Hoppe et al. [48] popularized the problem in computer graphics community.
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The input is unorganized points. The algorithm constructs a signed distance func-

tion by estimating a tangent plane at each sample using the k nearest neighbors.

Then a zero-set is extracted as a piecewise linear surface using a marching cubes

algorithm [52].

Curless and Levoy [27] construct surfaces from range data. They use the

additional information such as surface normal and reliability estimates available in

the range data to construct a signed distance function. They introduced a hole-

filling step. Their algorithm is remarkably efficient and works well in practice, and

had been used in the Digital Michelangelo project [51] where they built huge models

of the statues of Michelangelo. However, there are no theoretical guarantees that

they output a “correct” reconstruction. Also, since they put a voxel grid and extract

an iso-surface from it, they have a fixed output resolution over the whole model.

Zhao et al. [67] formulate the surface reconstruction problem using differential

geometry and partial differential equations. They construct implicit surfaces using

the level set method on fixed rectangular grids. The input data set may consist of

points, curves, and/or surface patches. They handle noisy or highly non-uniform

data sets easily but their algorithm is slow and the resolution is again dependent on

the voxel grid.

Dinh et al. [35] generate smooth and seamless models by constructing a

3D implicit function from sparse, noisy, non-uniform, and low-resolution range data

which come from computer vision techniques. The 3D implicit function is formulated

as a sum of weighted radial basis functions. The surface is insensitive to noise

because it can approximate, rather than interpolate, the data. But, they generate

blurry and blobby models losing details.

In computational geometry, many surface reconstruction algorithms have

been proposed which use the Delaunay triangulation of the samples. Boissonnat [15]

proposed heuristics to reconstruct the surface by removing Delaunay tetrahedra one
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by one from the Delaunay triangulation of samples. It only applies to objects with

genus zero. Moreover, it has no theoretical guarantee, and in fact can fail on some

reasonable inputs.

The α-shape by Edelsbrunner and Mücke [39] is also a subset of the Delaunay

triangulation. Though α-shape works well for uniform samples, in case of non-

uniform sampling, it is difficult to choose an appropriate parameter α to balance

the hole-filling and the loss of detail.

The crust by Amenta et al. [2, 4] is the most closely related to our work.

They introduced the non-uniform sampling condition called ε-sampling defined in

Section 2.6, under which they prove that the reconstruction is geometrically close

to the original surface. It is the first algorithm that had any theoretical guarantee

of correctness. Many subsequent works including both of our algorithms used their

sampling condition to prove the correctness of the reconstruction.

Boissonnat and Cazals [16] construct a smooth implicit surface by the natural

neighbor interpolation using the Voronoi diagram given a set of samples with their

normals. The surface interpolates all the sample points and the surface normal at

a sample point corresponds to the normal the point is equipped with. The surface

is represented as the zero-set of a signed pseudo-distance function. Computing the

natural neighbor interpolation is time consuming.

Bernardini et al. [12] proposed the ball-pivoting algorithm for range data.

The algorithm requires a uniform sampling and normals of sample points given in

the range data. Since they avoid the Delaunay triangulation computation, they

can process large data efficiently. They also give an out-of-core version of their

algorithm.

There are several important advantages in using the Delaunay triangulation

for surface reconstruction. First, since they do not require additional information

except the coordinates of the samples, they can be applied to various kinds of in-
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put data. Second, currently they are the only algorithms with some theoretical

guarantees. Third, the resolution of reconstructed surfaces varies with the sampling

density. Drawbacks are noise sensitivity and speed. Since the Delaunay triangula-

tion based algorithm interpolates the samples, it does not handle noise very well.

We find that the Delaunay triangulation computation is usually the bottleneck of

these algorithms. By improving the performance of the Delaunay triangulation,

these Delaunay triangulation based surface reconstruction algorithms can be more

widely used. In Chapter 5, we propose one such method.

3.2 The co-cone algorithm

3.2.1 Introduction

Here we present our first surface reconstruction algorithm which we call the co-cone

algorithm. This work simplifies the crust algorithm by Amenta et al. [2, 4], both

in the computation and in the proof that the reconstructed surface is geometrically

close to the original surface. In addition, it is the first algorithm that proved the

topological correctness - the reconstruction is homeomorphic to the original surface.

Here we give a brief overview of the algorithm. The details of the algorithm and the

proofs are included in Appendix A.

3.2.2 Algorithm

The algorithm constructs a piecewise linear surface T from the set S of samples

from a surface F . Like many previous algorithms, we select T as a subset of the

Delaunay triangulation of S.

In Section 2.7, we saw that the restricted Delaunay triangulation D(S, F )

is in some sense the “correct” subset of the Delaunay triangulation to represent

the surface F . But the restricted Delaunay triangulation is impossible to compute
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Figure 3.2: The candidate triangle normal agrees with surface normal.

without knowing the surface. Instead, we derive some properties of the restricted

Delaunay triangulation that we can infer using the set of samples S and its Voronoi

diagram.

We give a condition called the co-cone test for a Delaunay triangle to meet

in order to be in the set of candidate triangles. This is simply done by considering

the dual Voronoi edge and the poles of each vertices of a triangle. We then proved

that given a dense enough sampling, the set of the candidate triangles includes

the restricted Delaunay triangulation. Furthermore, the normal of every candidate

triangle is similar to the normal at each of its vertices with respect to the original

surface F (see Figure 3.2), and candidate triangles are small with respect to the

distance to the medial axis. Using these facts, we could show that any manifold

extracted from the set of candidate triangles would be homeomorphic to the original

surface F . We give the proofs in Appendix A of this thesis.

We implemented the algorithm using the Delaunay triangulation function of

Clarkson’s hull program. The result is comparable to that of the crust algorithm

although the algorithm runs faster. Our theoretical guarantee only applies under the

assumption that the original surface is smooth closed manifold. For sharp corners

and boundaries, the output may have gaps and holes. See Figure 3.3.

We did not implement the manifold extraction step which selects a piecewise-

linear manifold from the set of the candidate triangles T . A theoretical algorithm

for manifold extraction is given in the crust papers by Amenta et al [4, 2]. But, it

does not work robustly in case of real data. In [5], a heuristic is given which works
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Figure 3.3: A set of candidate triangles. There are some holes in undersampled
areas such as ears and nose and the boundary around the neck.

quite well in practice.

In case of sharp corners and boundaries, the output generated by the co-

cone algorithm may have holes. Dey and Giesen [31] detect undersampling using

the shape of the Voronoi diagram. Undersampling usually takes place in sharp

corners, boundaries, regions of high curvature where LFS value is small. Dey and

Goswami [32] give a tight co-cone algorithm which fills small holes by stitching

triangles to obtain water-tight models. Dey, Giesen, and Hudson [33] extend the

co-cone algorithm to handle large data in the range of million points by avoiding the

computation of the Delaunay triangulation of the entire input data. They divide the

input data into manageable chunks using octree subdivision and apply the co-cone

algorithm on each chunk. Then the reconstructed surfaces are matched together.

Their software is publicly available.
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3.3 Power crust

3.3.1 Introduction

We present another algorithm called the power crust for surface reconstruction. Its

construction is based on approximating the medial axis transform (MAT) and then

extracting a polygonal surface from the power diagram. It also outputs a piecewise

linear approximation to the medial axis called the power shape.

One of the limitations of the co-cone algorithm is that if the sampling con-

dition is not met - which is often the case in practice especially with sharp corners

and boundaries - the output may contain holes. The power crust is guaranteed to

be a watertight boundary surface of the three-dimensional solid on any input. No

manifold extraction or clean-up postprocessing is required. Furthermore the power

crust also has the same correctness guarantee as the co-cone algorithm : given a

good sampling the power crust is homeomorphic and geometrically close to the orig-

inal surface. The algorithm is also very simple and gives a much more robust results

in practice. Our software to generate the power crust is publicly available.

The medial axis transform(MAT) is a representation of a shape with an

infinite set of balls. We approximate MAT with a discrete set of balls called polar

balls. Given a set of polar balls, we construct the power diagram and label each

polar ball either inside or outside. The power crust is the faces of the power diagram

separating the inside polar balls and the outside polar balls. By connecting adjacent

poles with the same label we get the power shape - our approximation of the medial

axis. A two-dimensional version of the algorithm is shown in Figure 3.4. Figure 3.5

shows the samples collected by a laser range scanner, its power crust and power

shape. We give an overview of the power crust algorithm in this section; more

details and theorems appear in Appendix B.
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Figure 3.4: Two-dimensional example of power crust construction. a) An object
with its medial axis; one maximal interior ball is shown. b) the Voronoi diagram of
S, with the polar ball surrounding one pole shown. In 2D, we can select all Voronoi
vertices as poles, but not in 3D. c) The inner and outer polar balls. Outer polar
balls with centers at infinity degenerate to halfspaces on the convex hull. d) The
power diagram cells of the poles, labeled inner and outer. e) The power crust and
the power shape of its interior solid.
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Figure 3.5: Samples from laser range scanner, the power crust, and the power shape

3.3.2 Algorithm

To approximate the MAT, we use the poles defined in Section 2.8. Each pole v is

the center of a Voronoi ball, which we shall call its polar ball. The set of polar balls

for all v ∈ V gives our approximation of the medial axis transform: the MAT is an

infinite set of balls, and the approximation is the similar finite set of polar balls.

The polar balls corresponding to poles inside of F are inner polar balls; outer

polar balls are defined analogously. The union of the inner polar balls forms a good

approximation of the object bounded by F , and similarly the union of outer polar

balls forms a good approximation of the complement of the object (This is proved

in Appendix B).

Now we consider the power diagram of the polar balls, which subdivides IR3

into a set of cells. The power crust is the boundary between the power diagram cells

belonging to inner poles and power diagram cells belonging to outer poles.

Since most points of the interior solid bounded by F are inside the union of
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the inner polar balls, and outside of the union of outer polar balls, they belong to

cells of the power diagram corresponding to inner poles. Similarly most points in

the exterior solid belong to cells corresponding to outer poles.

A two-dimensional face of the power crust separates cells corresponding to

an inner and an outer pole. The two polar balls should intersect shallowly, if at

all, since the inner polar ball is mostly inside the object and the outer polar ball is

mostly outside. So the power crust face lies near the boundaries of both unions of

balls, and hence near the boundary F of the object. Figure 3.6 shows an example

of the union of inner polar balls and the power crust approximating the original

object. The power crust actually interpolates the input samples in S, which lie on

the surface of the union of the inner, and of the outer, polar balls.

Figure 3.6: A set of inner polar balls and the resulting three-dimensional power
crust. The opening at the top of the foot was detected because large inner polar
balls protrude out of the model, and intentionally left as a hole; see Section 3.3.4.

The definition of the power crust implies a way to connect the poles to form a

topologically correct approximation of the medial axis (homeomorphic to the medial

axis of the original object) which we call the power shape. The vertices of the power

shape are the poles themselves. Inner poles whose cells are adjacent in the power

diagram are connected. The power shape is a subset of the regular triangulation

dual to the power diagram. We summarize the basic algorithm in Figure 3.7, and

elaborate on Step 4 in the next section.
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1. Compute the Voronoi diagram of the sample points S.

2. For each sample point, compute its poles.

3. Compute the power diagram of poles.

4. Label each pole either inside or outside.

5. Output the power diagram faces separating the cells of inside and outside
poles as the power crust.

6. Output the regular triangulation faces connecting inside poles as the
power shape.

Figure 3.7: Power crust algorithm

3.3.3 Labeling algorithm

We label the poles as inner or outer by examining the power diagram. We define

a natural graph on the power diagram cells: two cells are connected in the graph

if they share a two-dimensional face. In addition, two cells are connected if they

belong to the two poles of the same sample s. We traverse this graph, labeling poles

inner or outer as we go. When S is well-sampled the simple algorithm below can

be proved correct, using two facts. The first is that an inner polar ball and an outer

polar ball can only intersect shallowly. The second is that one of the two poles of

every sample is an inner pole and the other is an outer pole.

The naive traversal algorithm begins by labeling poles adjacent to points

forming the bounding box Z as outer and then propagating labels as follows. For

any pole p labeled outer, if it has an unlabeled neighbor q such that the polar balls

of p and q intersect deeply, we give q label outer as well. And for each sample

s for which p is a pole (there might be more than one), we give the other pole

of s the label inner. We propagate the labels of inner poles similarly: deeply

intersecting neighbors get labeled inner, and the opposite pole of the same sample

gets labeled outer. The proof of termination and correctness of this algorithm is
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given in Appendix B.

But because the sampling assumption is not met everywhere, a naive imple-

mentation of this graph-traversal algorithm could fail dramatically - once an error is

made, it propagates. Instead, we choose which labels to propagate using the follow-

ing greedy heuristic. We keep track of the “belief” that an unlabeled ball is inner or

outer, based on the labels already assigned, and we label and propagate the labels

of the poles for which we are most confident first.

Specifically, each ball keeps track of two values, in and out, which lie between

0 (“unknown”) and 1 (“certain”). We start by giving all poles far away from the

bounding box of the original samples an out value of 1 and an in value of zero, and

initialize all other balls’ in/out values to zero.

We put all the unlabeled poles in a priority queue, with the priority deter-

mined by the in and out values. If only one of the in or out values is non-zero, we

use the non-zero value as the priority. If both in and out values are non-zero, it

means that the pole is “confused”; we would like to label such poles as late in the

process as possible, so we give them the priority |in − out| − 1, which is between

zero and −1.

The algorithm is then to repeatedly remove the top element of the queue and

label it in or out, whichever has the bigger value. We then propagate the newly

assigned label to the in and out values of the remaining unlabeled poles, changing

their priority in the queue.

We use the local geometry to weight the effect of a newly labeled pole on

its neighbors. For a sample s of which p is the pole, let β denote the angle formed

by p,s and the other pole q of s, so that we have π/2 ≤ β ≤ π. If the surface

is sampled densely enough, the vectors to the two poles should point in nearly

opposite directions. So the denser the sampling, the larger β should be. So the

bigger β is, the more “likely” is it that q should get the opposite label from p. We
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Label Poles() {
For all poles p,

initialize in(p) = out(p) = 0.
insert p in the queue.

For each pole p adjacent to points of Z,
out(p) = 1.
Update Priority(p)

while (queue is not empty) {
Remove the top element p of the priority queue
If in(p) > out(p), label(p) = in, tmp(p) = in(p)
Otherwise, label(p) = out, tmp(p) = out(p)
For each sample s of which p is the pole,

let q be the other pole of s,
opp(label(p))(q) = max(tmp(p) ∗ wpq, opp(label(p))(q))

/* opp(in) = out, opp(out) = in, wpq = − cos(6 psq)*/
Update Priority(q)

For each deeply intersecting neighboring poles q,
(label(p))(q) = max(tmp(p) ∗ wpq, (label(p))(q))

/* wpq = − cos(α), α is angle between balls p and q*/
Update Priority(q)

}
}

Update Priority(pole p) {
If in(p) > 0 and out(p) > 0, pri(p) = |in(p)− out(p)| − 1.
Otherwise, pri(p) = max(in(p), out(p)).

}

Figure 3.8: The labeling algorithm we implemented. This is a special case of the
naive labeling algorithm, which is provably correct when S and F meet the sampling
assumptions.
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use 0 ≤ − cos(β) ≤ 1 as the weight of the connection between p and q.

Since two balls with different labels should intersect shallowly, the deeper

the intersection, the more “likely” q will have the same label as p. Let α denote

the angle of intersection between two balls. We set the weight of the connection

between p and q to 0 ≤ − cos(α) ≤ 1.

We summarize the labeling algorithm with the pseudo-code in Figure 3.8.

Note that once a label is assigned, it is never changed. An algorithm which toggles

labels to find a locally optimal labeling might be better, but we have not found it

necessary.

3.3.4 Outputs

We tested the power crust using both well-known models and data we collected

using a Cyberware M15 (tabletop) scanner. Almost all of the inputs immediately

produced perfect surface reconstructions, requiring no tweaking.

In general, power crust faces are not triangles, and although the power crust

interpolates the input samples, not all input samples are power crust vertices and

not all power crust vertices are input samples. Though, power crusts have more faces

than comparable triangulated surfaces, the shapes of the faces seem to conform to

the shape of the object more nicely than polygonal models which are constrained to

have triangular faces with the samples as vertices.

With some heuristics, we can even correctly reconstruct the sharp corners

which was not possible with the previous Delaunay triangulation based algorithms.

Discarding both poles of the badly-shaped Voronoi cells allows the power crust faces

formed in nearby well-sampled regions to extend into the region of uncertainty and

meet at a sharp corner. Figure 3.10 shows an example. Notice that a sharp edge can

be reconstructed nicely even though there are no sample points on the edge itself.

Sharp cornered models of mechanical parts can be produced from fairly sparse
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Figure 3.9: A reconstruction from four different scans, 37,073 samples total. The
area in the interior, where there are no samples, is detected and intentionally left as
a hole. A silhouette-based hole filling algorithm would have trouble filling this hole
properly, but our method does not (it is filled in the solid model under the samples
on the left).

samples, such as the Renault steering knuckle data shown in Figure 3.11, which was

reconstructed from only 6002 points.

An ε-offset surface from F is a surface F ′, formed by the points x such that

the distance from x to the nearest point on F is exactly ε. In terms of the MAT, the

inside offset surface is formed by adding ε to the radius of every ball in the exterior

MAT, and subtracting ε from every ball in the interior MAT; the outer offset surface

can be defined analogously.

Computing an exact offset surface is difficult, in part because it can differ

topologically from F . When F is represented by an approximate MAT, we can

construct an approximate inside offset surface of P by increasing the radius of every

outer polar ball by ε and decreasing the radius of every inner polar ball by ε, and

then computing the power crust as usual. Since the power crust is always the water-

tight boundary of a solid, the output cannot suffer from cracks or self-intersections.

Figure 3.13 shows an example.
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Figure 3.10: Sharp corners with no nearby features can be reconstructed without
any samples on the edge itself. The corner between the cylinder and the top of the
cube is not resolved as well because the polar balls on both sides of the surface are
not very large compared to the sampling density.

Holes in the data seem to be filled in an appropriate and predictable way, for

example the hard-to-scan spaces between the fingers, and the end of the wrist, in

Figure 3.5. A ‘watertight’ surface representation is desirable in some contexts, for

instance as input to a layered manufacturing system or for CSG. But we would also

like the flexibility to produce surfaces which are not closed manifolds. In general, we

would like to be able to fill in small holes in the data, but not cover over large ones:

for instance, we might want to leave a hole at the bottom of the hand in Figure 3.5,

while still filling in the hard-to-scan gaps between the fingers. Big holes in the data

need not lie on the convex hull or even on any silhouette of the object; for instance

the hole inside the shell in Figure 3.9 where the scanner could not reach the visible

surface.

On well-sampled regions of the surface, inner and outer polar balls cannot
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Figure 3.11: All the holes, and even the small notch at the end of the arm, are
correct. This data was an example of something beyond the capabilities of the
algorithm of [2]

intersect deeply. At a hole, inner polar balls can bulge out of the object, as in

Figure 3.6, and outer polar balls can bulge into the interior. A power crust face

formed by a deeply intersecting pair of polar balls, one inner and one outer, fills in

the hole in the surface. When the intersecting pair of balls is large, we can choose

to omit the face from the power crust. Examples are the sea shell in Figure 3.9 and

the foot in Figure 3.6.
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Figure 3.12: A rubber stamp model, and the imperfect laser range data (9755
points) used to produce it. Six scans were combined, with the top sampled at a
higher resolution than the sides and bottom. Note the sharp corners on the sides,
and the fill-in where scans fail to overlap.

Figure 3.13: An approximate inner offset surface. The transparent surface is the
original. Like the power crust, the offset surface is always the watertight boundary
of a solid.
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Chapter 4

The Delaunay triangulation of

surface data

The power crust algorithm in Section 3.3 produces an approximate medial axis of

the surface called the power shape. Even when the surface is known, the power

crust algorithm has been used to obtain only the approximate medial axis. We

notice that if the surface is given, we can use the additional information of the

surface connectivity to speed up the Delaunay triangulation. Then the Delaunay

triangulation can be used for medial axis approximation and mesh generation of

surface.

In this chapter, we consider the problem of computing the 3D Delaunay

triangulation given the surface mesh. It can be thought of as an inverse problem to

the surface reconstruction algorithms which select surfaces from the 3D Delaunay

triangulation of samples.

We solve this problem in two steps. First, we present an algorithm which

constructs the Delaunay tetrahedralization of S given a bounded degree spanning

subgraph T of F . It accelerates the incremental Delaunay triangulation construction

by exploiting the connectivity of the points on the surface. If the expected size of
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the Delaunay triangulation is linear, we prove that our algorithm runs in O(n log∗ n)

expected time, speeding up the standard randomized incremental Delaunay trian-

gulation algorithm, which is O(n log n) expected time in this case.

Second, we discuss how to find a bounded degree spanning subgraph T from

surface mesh F and give a linear time algorithm which takes any triangulated surface

with genus g and obtains a spanning subgraph with maximum degree at most 12g

for g > 0 or three for g = 0.

We also report the results from our experiments with several Delaunay tri-

angulation programs on surface data. We find that the size of the Delaunay trian-

gulation grows linearly during incremental construction, and the main performance

problem of these programs in solving large data is thrashing due to random ordering

of input data. We address this problem in Chapter 5.

4.1 Introduction

Given a surface mesh F with a vertex set S and consisting of Delaunay triangles,

we consider the problem of computing the Delaunay tetrahedralization of S. The

problem has important applications including mesh generation and medial axis con-

struction.

For arbitrary point sets in 3D, the randomized incremental algorithm has

been the most popular solution for the 3D Delaunay triangulation. It incrementally

constructs the Delaunay triangulation by adding points one by one in random order.

The cost of insertion is dependent on the cost of locating the new point to be added in

the Delaunay triangulation of the already inserted points. The standard randomized

incremental algorithm which uses an optimal point location scheme (e.g., the history

DAG [26]) is theoretically optimal in expected time: it takes O(n log n) expected

time if the expected size of the Delaunay triangulation of n points is O(n), and

O(n1+k) if the expected size is O(n1+k) for 0 < k ≤ 1. Thus, for a Delaunay
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triangulation of size O(n2) the randomized incremental algorithm is already optimal;

the interesting case is the one in which the size is O(n).

Though the complexity of the 3D Delaunay triangulation can be quadratic

for the worst case, it appears to be linear, in practice. Some theoretical results

support this. Dwyer showed that if points are generated uniformly at random from

the unit ball the expected size of the Delaunay triangulation is linear [37]. Recently,

many researchers have studied the complexity of the 3D Delaunay triangulation for

the special case of the points on a surface. Golin and Na showed that if the points

are drawn from a 2-dimensional Poisson distribution with rate n from the surface

of a fixed convex polytope the probabilistic complexity of the Voronoi diagram is

O(n) [45]. Erickson showed, in contrast, that there exist smooth surfaces that have

a uniform sample whose Delaunay triangulation has quadratic size [41]. But, he also

proved that for any fixed smooth surface, the Delaunay triangulation of any uniform

ε-sample has complexity O(n3/2) as n goes to infinity [42]. Finally, in [10] Attali

and Boissonnat proved a linear bound on the complexity of Delaunay triangulation

of a “well-sampled” polyhedral surface.

We assume for the theoretical analysis of our algorithm that the expected

size of the three-dimensional Delaunay triangulation is linear. In Section 4.4, we

show the results of our experiments with samples from surfaces which suggest that

this assumption is usually correct.

We accelerate the point location by exploiting the connectivity of the bound-

ary surface on which the input points lie. This idea is inspired by Seidel’s randomized

incremental trapezoidation algorithm of polygons [63]. By periodically tracing the

boundary of the polygon and locating its segments in advance, he obtains an ex-

pected O(n log∗ n) time algorithm for trapezoidation of simple polygons (log∗ n is

the largest integer l so that log(l) n ≥ 1). Devillers applied the idea to the problem

of 2D Delaunay triangulation given the Euclidean minimum spanning tree [28]. Our
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algorithm similarly traces the surface to speed up the location of unadded points

later.

The improved running time of our algorithm is only proved in the case where

the surface mesh is composed of Delaunay triangles. This case is important since

many surface reconstruction algorithms produce surfaces that are subsets of the

Delaunay triangulation. Though many such algorithms require the 3D Delaunay

triangulation as a preprocessing step, there are some that avoid it. Attali and

Lachaud [11] give a modified marching cubes algorithm [52] to construct an iso-

surface all of whose triangles satisfy the Delaunay constraint in linear time. This

is important because there are very efficient surface reconstruction algorithms by

Hoppe et al. [48] and Curless and Levoy [27]. They extract a zero-set of a signed

distance function defined on voxel grids as the reconstructed surface. By using Attali

and Lachaud’s method we can make those surfaces consist of Delaunay triangles.

The algorithms by Bernardini et al. [12] or by Funke and Ramos [44] construct

surfaces consisting of Delaunay triangles in near-linear time without computing the

3D Delaunay triangulation of all samples. Also there are other ways to obtain

Delaunay triangulated surfaces without the 3D Delaunay triangulation. Cheng et

al. [19] triangulate skin surfaces using Delaunay triangles. Constructing the 3D

Delaunay triangulation given any of these surfaces can be useful, for instance, in

generating a 3D mesh or medial axis.

We present and analyze an algorithm which constructs the Delaunay tetra-

hedralization given a bounded degree spanning subgraph T consisting of Delaunay

edges in Section 4.2. We show that the algorithm runs in O(n log∗ n) expected time,

if the expected size of the Delaunay triangulation is linear. In section 4.3, we discuss

how to obtain a bounded degree spanning subgraph T from a surface F consisting

of Delaunay triangles. We give a linear time algorithm to find a spanning subgraph

with maximum degree at most 12g for g > 0 or three for g = 0 in any triangulated
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surface with genus g.

4.2 Algorithm

For a point set P , we denote the Delaunay triangulation of P as D(P ). For the

analysis, we restrict the boundary surface F to be a subset of the Delaunay tri-

angulation D(S) of S and assume that we are given a spanning subgraph T of F

with bounded degree d. In section 4.3, we discuss how to obtain such a spanning

subgraph T given F . We assume that the points of S are in general position. Let

s1, s2, ..., sn be a random ordering of the vertices of S and let Si = {s1, ..., si} for

0 ≤ i ≤ n.

To efficiently locate si in D(Si−1) to construct D(Si), randomized incremen-

tal Delaunay triangulation algorithms maintain a location query structure Q(Si−1).

For our analysis, we use the theoretically optimal history DAG by Clarkson et al. [26]

which uses all the intermediate Delaunay tetrahedra created to construct our point

location query structure. A newly created Delaunay tetrahedron becomes a child

of the Delaunay tetrahedra that are destroyed by it. To locate si in D(Si−1), using

the history DAG, we start at the root and traverse all the intermediate Delaunay

tetrahedra whose circumspheres contain si until we find the one in D(Si−1) that

contains si. After locating si in D(Si−1) using Q(Si−1), we update both the Delau-

nay triangulation D(Si−1) and the query structure Q(Si−1) to produce D(Si) and

Q(Si).

In the worst case when the size of D(Si) is O(i2), locating si in D(Si−1) using

Q(Si−1) takes O(i) expected time and updating D(Si) and Q(Si) takes O(i) expected

time. Thus the 3D Delaunay triangulation of n points takes O(n2) expected time.

But, if the expected size of D(Si) is O(i), the location takes O(log i) expected time

and the update takes O(1) expected time. For the remainder of the analysis, we

assume that the expected size of D(Si) is O(i), for all i.
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Tracing DT() {
1. Let h = 1.

2. For 1 ≤ i ≤ n do

(a) If i = Nh, trace T through D(SNh
) to determine dNh

(sk) for all
k > Nh. Let h = h + 1.

(b) Locate si in D(Si−1) using Q(Si−1) starting from dNh−1
(si).

(c) Insert si and update D(Si) and Q(Si).

}

Figure 4.1: Tracing Delaunay Triangulation (TracingDT) algorithm

Our algorithm, given in Figure 4.1, is inspired by Seidel’s trapezoidation

algorithm for simple polygons [63]. Let Nh = dn/ log(h) ne. We denote di(v) of a

point v to be the Delaunay tetrahedron of D(Si) which contains v. Periodically, we

execute a tracing step, in which we traverse the spanning subgraph T and locate all

the uninserted points in the intermediate Delaunay triangulation in advance. Later,

when we actually add a new point, we start from the Delaunay tetrahedron located

in the last tracing step instead of at the root of the history DAG.

4.2.1 Analysis

We first analyze the cost of each tracing step 2a. Since Nlog∗ n+1 > n, step 2a is done

only log∗ n times. Each tracing step Nh for 1 ≤ h ≤ log∗ n is done by traversing the

bounded degree spanning subgraph T and recording dNh
(sk) for all k > Nh. Thus

the cost is determined by the number of intersections between T and D(SNh
). Here

we need the restriction that T is a subset of D(S). To count the expected number

of intersections, we make some definitions and prove the following lemma about the

intersection of a triangle of D(R) for R ⊆ S and a Delaunay edge of D(S).

A sphere is empty of S if its interior contains no point s ∈ S. The region

of Delaunay triangle abc is the union of the two empty circumspheres of the two
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Figure 4.2: Proof of Lemma 7

Delaunay tetrahedra containing abc.

Lemma 7 Let abc be a triangle in D(R) for any R ⊆ S. If edge vw in D(S)

intersects abc, at least one of {v, w} lies in the region determined by abc in D(R).

Proof: Suppose for the purpose of contradiction that the edge vw intersects abc but

both v and w lie outside the region determined by abc in R. Let abcd, abce be the

two Delaunay tetrahedra adjacent to abc in D(R). Consider K = {a, b, c, d, e, v, w}
Then, the tetrahedra abcd, abce and the edge vw are all in D(K) because they are

in D(R) and K ⊂ R. Let B be the circumsphere of abcd, and C be the circum-

sphere of a Delaunay tetrahedron vwxy (x, y may be any pair of {a, b, c, d, e}) that

contains vw in D(K). Let E be the plane supporting the circle of the intersection

of C and B. Both B and C are empty of K, because abcd and vwxy are in D(K).

So, {a, b, c, d} and {v, w, x, y} lie on the opposite sides of E as in Figure 4.2. Thus,

vw cannot intersect abc. This is a contradiction. Therefore at least one of {v, w}
lies in the region determined by abc.

2

Lemma 7 may also be phrased and proved using the standard lifting trans-
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formation which maps the Delaunay triangulation in IR3 to a lower convex hull in

R4.

Lemma 8 The expected number of intersections of D(Si) and T is O(n).

Proof: By Lemma 7, if an edge vw in T intersects a triangle t in D(Si), at least

one of {v, w} lies in the region determined by t in D(Si). So we count each edge of

T adjacent to v as something that might intersect the triangle t, so each vertex v in

the region of a triangle t can contribute to the number of intersections at most the

degree d(v) of v in T .

Let I denote the number of intersections of D(Si) and T . We bound I by

summing over each triangle t of D(Si) the degrees d(v) of vertices v of T that lie in

the region of t. This is equivalent to summing over each of the vertices v of T the

degree d(v) of v times the number of regions containing v, which is bounded by the

maximum degree d times the number of regions containing v. Since each Delaunay

tetrahedron contains four Delaunay triangles, a vertex in a Delaunay circumsphere

is counted as belonging to the four regions of the Delaunay triangles. Thus :

I <
∑

triangles
t∈D(Si)

(
∑

vertices v∈T
in region of t

d(v))

=
∑

vertices
v∈T

((# of regions containing v) ∗ d(v))

≤ d×
∑

vertices
v∈T

(# of regions containing v)

= 4d×
∑

vertices
v∈T

(# of Del. circumspheres containing v)

We obtain the expected number of the Delaunay circumspheres of D(Si) that

contain v using backwards analysis. If we insert vertex v in D(Si), the number of

the Delaunay circumspheres of D(Si) which contains v is the number of Delaunay

tetrahedra in D(Si) destroyed by the insertion of v. Since we are assuming that
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the expected size of D(Si) is O(i), the expected number of the Delaunay tetrahedra

destroyed by the insertion of v is O(1). Hence, the expected number of intersections

is 4nd×O(1) = O(n).

2

Theorem 9 Tracing T in D(Si) takes O(n) expected time.

Proof: Tracing time is determined by the number of intersections of D(Si) with T .

By Lemma 8, the expected number of the intersections of D(Si) and T is O(n).

2

So each tracing takes O(n) expected time and since we trace log∗ n times,

all the tracing steps take O(n log∗ n) expected time. Then the rest of the analysis

is to determine the cost of locating and inserting a new point given the informa-

tion from the tracing. This is basically the same as the proofs for the corresponding

theorems of Seidel’s trapezoidation algorithm [63] and Devillers’ 2D Delaunay trian-

gulation algorithm [28]. Nevertheless, we include the following lemma and theorem

for completeness.

Lemma 10 If dk(si) is known, the expected cost of locating si in D(Si−1) is O(log(i/k)).

Proof: The cost of locating a point si in D(Si−1) given dk(si) is proportional to the

number of Delaunay tetrahedra in D(Sj) for k < j < i whose circumsphere contains

si, which is O(log i)−O(log k) = O(log(i/k)).

2

Theorem 11 The algorithm Tracing DT runs in O(n log∗ n) expected time.
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Proof: By Theorem 9, step 2a takes O(n) expected time for fixed h and is executed

O(log∗ n) times, thus the total cost of for step 2a is O(n log∗ n) expected time.

For Nh−1 < i ≤ Nh, locating si takes O(log(i/Nh−1)) expected time by

Lemma 10. Since i ≤ n, O(log(i/Nh−1) = O(log(n/Nh−1) = O(log(h) n). For fixed

h, step 2b is executed at most Nh times. Thus locating si for all Nh−1 < i ≤ Nh

takes O(log(h) n) × Nh = O(n) expected time. Since h ≤ log∗ n, locating si for

all i ≤ Nlog∗ n takes log∗ n × O(n) expected time. For Nlog∗ n < i ≤ n, since

Nlog∗ n ≥ n/e, locating si takes O(log(i/Nlog∗ n)) = O(1). Thus, the total cost of

step 2b is O(n log∗ n) expected time.

By the linear size assumption of the Delaunay triangulation, step 2c takes

O(1) expected time for each i, so the total cost is O(n) expected time.

2

4.3 Input to the algorithm

Even if the surface F is a subset of the Delaunay triangulation, it can have an

arbitrarily large maximum degree (e.g., a point can have an arbitrary number of

nearest neighbors). The analysis in the previous section is based on the assumption

that we are given a spanning graph T of surface mesh F which is a subset of the

Delaunay triangulation D(S) and whose maximum degree d is bounded. Here we

discuss how to obtain such input spanning graph T from F .

4.3.1 Special cases

One such spanning graph is the Euclidean minimum spanning tree of S. The Eu-

clidean minimum spanning tree EMST (S) of a point set S is the spanning tree of S

that minimizes the sum of the lengths of the edges in the tree. Since it has bounded
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degree 6 in 2D and 12 in 3D [61], and is a subset of its Delaunay triangulation, the

proofs of the previous section hold if we are given EMST (S). Though EMST (S)

is usually constructed by computing D(S) and running a minimum spanning tree

algorithm on the edges of D(S), it can also be computed without Delaunay tri-

angulation in O(n4/3 log4/3 n) expected time. using the algorithm by Agarwal et

al [1]. It is not of course guaranteed that a given surface triangulation F contains

EMST (S), but if F contains EMST (S), we can find EMST (S) from F in O(n)

expected time [49].

Some surface meshes already have bounded degree and we can just use any

spanning tree of F as T . For instance, the iso-surfaces constructed from voxel

data using the marching cubes algorithm [52] have a bounded degree. Though

in general, the output of the marching cubes algorithm is not guaranteed to be

Delaunay triangles, Attali and Lachaud’s [11] modified marching cubes algorithm

constructs iso-surfaces composed of Delaunay triangles.

Lemma 12 Let F be the output of the marching cubes algorithm on a rectangular

voxel grid. Then the degree of vertices in F is bounded.

Proof: By definition, the vertices of F are always on the voxel edges. A voxel

edge is adjacent to at most 4 voxels. So for each vertex of F , the iso-surface edges

adjacent to the vertex always lie in the 4 adjacent voxels. Each vertex lies in a loop

in a voxel. Each loop is a n− gon in IR3 where 3 ≤ n ≤ 7 so after triangulation the

maximum degree of a vertex inside a loop is at most 6. Hence the maximum degree

of a vertex of the surface is 6× 4 = 24.

2

Similarly, in case of the locally uniform samples defined by Funke and Ramos [44],

it is shown that the surface Delaunay triangulation has a bounded degree. They
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bsg(G,C) {
1. If |V (G)| = 3, output H = G, and we’re done.

2. If C is a triangle, we choose a cycle vertex v with degree greater than two
as z.
Otherwise, we choose z from a list of cycle vertices with no chord.

3. Let z1, z2, ..., zm be the neighbors of z in the clockwise order such that
z1, zm ∈ V (C).
Let G′ = G− z and C ′ be the outer cycle of G′.
Update chord information for new cycle C ′.
H ′ = bsg(G′, C ′)
If m > 2, output H = H ′ − z1z2 − zmzm−1 + z1z + z2z + zmz.
If m = 2, H = H ′ − z1z2 + z1z + z2z.

}

Figure 4.3: Bounded degree spanning subgraph(bsg) algorithm: G is the trian-
gulation homeomorphic to a disk and C is its boundary cycle.

also give a decimation algorithm which decimates dense samples into locally uniform

samples in O(n log n) time.

4.3.2 Bounded degree spanning subgraph algorithm

If the surface F is composed of Delaunay triangles but not guaranteed to have

bounded degree, we need to find a bounded degree spanning tree T from F . We

give a linear time algorithm to construct a spanning subgraph with maximum degree

at most three if g = 0 and 12g otherwise from any triangulation of a surface with

genus g.

If the surface has genus greater than zero, Thomassen [66] showed that any

triangulation of orientable surface Sg with a fixed genus g contains a spanning tree

of maximum degree at most 5× 2g − 2. We obtain an improved bound 12g on the

maximum degree using the algorithm by Lazarus et al [50]. They find in O(gn) time

a set of 2g cycles on triangulated surfaces such that cutting the surface along them

47



yields a topological disk called a polygonal schema. So we can convert triangulated

surfaces with genus greater than zero into a topological disk in linear time. Since

a vertex can appear in a cycle only once and there are 2g cycles, after cutting the

surface along 2g cycles, a vertex may appear at most 4g times. Below we give a

linear time algorithm to construct a spanning subgraph with maximum degree three

given a triangulation homeomorphic to a disk. By identifying the vertices belonging

to the cycles, we can obtain a spanning subgraph with maximum degree at most

4g × 3 = 12g.

Our algorithm for finding a spanning subgraph in a triangulation homeo-

morphic to a disk is described in Figure 4.3. It is inspired by the proof of Theorem

3.1 in [66] but gives a different, constructive, and somewhat simpler proof for the

existence of a spanning subgraph with maximum degree three. We denote the set

of the vertices of a graph G as V (G). A chord of a vertex v in a cycle is a non-

cycle edge between v and a vertex in the cycle. The algorithm is recursive. Each call

bsg(G, C) for the surface triangulation G and its outer cycle C outputs the spanning

subgraph H with maximum degree at most three containing C. Initially, we start

from the surface triangulation G. If |V (G)| = 3, G is the spanning subgraph H and

we’re done. Otherwise, we choose a cycle vertex z to remove from G to construct

G′ and its outer cycle C ′, and call bsg(G′, C ′) to obtain a spanning subgraph H ′

of G′. Then, we construct H from H ′ as in Figure 4.4; that is, we remove z1z2

and zmzm−1 and add z1z, z2z and zmz where z1, ..., zm are the neighbors of z in a

clockwise order.

Lemma 13 Given a triangulation G of S0, we let any triangle of G be our initial

cycle C. The algorithm bsg(G,C) outputs a spanning connected subgraph of H with

the maximum degree at most three.

Proof: First, to guarantee the termination of the algorithm, we need to show that

during every recursive call to bsg(G′, C ′) we can find a vertex z ∈ V (C ′) to remove.
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Figure 4.4: Constructing H from H ′

If C ′ is a triangle, there is a vertex in V (C ′) that has degree greater than two,

because otherwise |V (C ′)| = 3 and we’re done. So assume that C ′ has n vertices

(with n > 3). Since any triangulation of an n-gon has only n − 3 diagonals, there

is a vertex with no chord. Therefore, there is always a vertex v ∈ V (C ′) to remove

during every recursive call bsg(G′, C ′).

Second, we show that for each recursive call to bsg(G′, C ′), the outer cycle C ′

is homeomorphic to a circle. Whenever we remove a vertex z from C, its neighbors

z1, .., zm as defined in Figure 4.3 become the new vertices in the cycle. Since z has

no chord, z2, ...zm−1 are not in C. C ′ is homeomorphic to a circle since it is obtained

from C by removing zz1, zzm and adding z1z2, z2z3, ..., zm−1zm.

Finally, we prove that H is a spanning connected subgraph of F with maxi-

mum degree at most three. We first show that every recursive subcall to bsg(G,C)

returns a spanning subgraph H of G with maximum degree at most three such that

C ′ ⊂ H ′. We prove it by induction on |V (G)|. If |V (G)| = 3, H = G. So assume

that |V (G)| ≥ 4. Let z be any vertex with no chord and apply the induction hy-

pothesis on G−z to obtain H ′. If the degree of vertex z is greater than two (m > 2,

in Figure 4.3), z2, ..., zm−1 ∈ V (C). Then, H is obtained from H ′ by deleting the

edges z1z2, zmzm−1 and adding the edges z1z, z2z and zmz. If the degree of vertex

z is two (m = 2), then H is obtained from H ′ by deleting the edge z1z2 and adding

the edges z1z and z2z. Either case, the degree of z in H is at most three, and the
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degrees of the rest of the vertices are the same as or less than in H ′. Therefore, H

is a spanning subgraph of G with maximum degree at most three.

2

Lemma 14 The algorithm bsg(G,C) terminates in linear time.

Proof: For the analysis of the time complexity of the algorithm, we assume that

for every vertex we are given a list of its neighbors in clockwise order. We maintain

the cycle C as a doubly linked list and each vertex has markers for whether it is a

cycle vertex and whether it has a chord. We also maintain a no-chord list - a list of

cycle vertices that have no chord. At every step, we just choose the first vertex in

no-chord list as z.

Removing a vertex z from G and modifying C to be the new outer cycle C ′

of G′ = G− z takes time proportional to the degree of z.

Also we need to update chord records for the new cycle C ′. For each new

cycle vertex v ∈ V (C ′) \ V (C), we look at all its neighbors and if a neighbor w of v

is a cycle vertex, we mark v as a chord vertex, and if w was in the no-chord list, we

remove it from no-chord list. If v does not have a chord, we add v to the no-chord

list. This takes
∑

v∈V (C′)\V (C) d(v).

Since every vertex becomes a vertex in C just once and is removed just once,

the total execution time is proportional to
∑

v∈V (G) d(v) = O(2|E(G)|) = O(|V (G)|).
2

4.4 Experiment

In this section, we present results from our experiments with Delaunay triangulation

programs on sets of points which lie on or near two-dimensional surfaces in IR3. Our
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surface reconstruction algorithms in Chapter 3 use the 3D Delaunay triangulation of

samples as a preprocessing step, and we find that the Delaunay triangulation is the

bottleneck. The motivation of the experiment is to figure out the main problem of

the 3D Delaunay triangulation computation in this case to improve the performance.

The Delaunay triangulation based surface reconstruction algorithm is con-

sidered slow because of the quadratic worst-case complexity of the 3D Delaunay

triangulation. Our first goal is to verify that for the case of samples from surfaces,

the Delaunay triangulation is almost always linear, in practice. The second goal is

to identify the bottlenecks of the Delaunay triangulation computation.

4.4.1 Experiment Set-up

We use three robust Delaunay triangulation programs. Clarkson’s hull is an older

program for general dimension convex hull and Delaunay triangulation. Delaunay

function of Shewchuk’s pyramid and Delaunay hierarchy function of the CGAL

library [17], represent a new standard of quality.

The three programs all use the randomized incremental algorithm but differ-

ent point location scheme. If we assume that the Delaunay triangulation is always

of linear size, then point location is the only operation that is not O(1) expected

time per insertion. Hull uses a theoretically optimal O(lg n) history DAG [26],

which is memory intensive. Pyramid uses a simple O(n1/4) jump-and-walk strat-

egy [59]. CGAL Delaunay hierarchy uses a few levels of intermediate Delaunay

triangulations [29] as a search structure, something like a skip list, known to be

optimal.

We use data from laser range scanner and samples from iso-surfaces. The

dragon data (1.7 million points) from the Stanford 3D Scanning Repository. It

comes from a Cyberware range scanner; it contains noise and is very non-uniform.

MTD (185,000 points) is from a protein electron density iso-surface, selected via
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Figure 4.5: The number of Delaunay tetrahedra per number of input points added.

marching cubes. B-1 (525,000 points) and B-2 (2 million points) were obtained

by applying butterfly subdivision to such an iso-surface, once and twice, respec-

tively, to get a smooth and dense point set. Timing does not include file I/O and

all experiments are done in Linux on an Intel Pentium III (864 MHz) with 511M

RAM.

4.4.2 Results

All of our datasets produced linear-sized Delaunay triangulations and the size of all

intermediate Delaunay triangulations was linear. The number of Delaunay tetrahe-

dra created/destroyed per insertion averaged about 27/20 and the average ratio of

the number of Delaunay tetrahedra to the number of input points is about 6-7. See

Figure 4.5.

The shape of the overall performance profile of all the programs was similar:

near-linear running time until memory is exceeded, at which point thrashing occurs.

See Figure 4.6. It took about 400 seconds for CGAL Delaunay hierarchy and about

350 seconds for pyramid to compute the Delaunay triangulation for a million points.

Contrary to our expectation that the point location dominates the running
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time, it forms a significant, but not overwhelming fraction of the overall running

time. See Figure 4.7.

4.5 Discussion

Our algorithm speeds up the location of a new point in randomized incremental

Delaunay triangulation algorithms. But, the actual insertion cost of the new point

and update of the Delaunay triangulation is not affected. Contrary to our expecta-

tion that the location time dominates the whole running time, our experiments in

Section 4.4 show that the location time and update time are pretty well balanced for

several real Delaunay triangulation programs. Hence, this algorithm is not expected

to improve the performance of the Delaunay triangulation programs by more than

a factor of two.

54



Chapter 5

Incremental construction con

BRIO

In Section 4.4, we have seen that the main performance problem of the randomized

incremental algorithm for computing the Delaunay triangulation of large data is

thrashing due to the inherently bad random memory access pattern. The random

ordering is required to guarantee the optimality of the algorithm. Here we define a

new insertion order which we call the biased randomized incremental order (BRIO)

that removes enough randomness to significantly improve performance in practice,

but leaves enough randomness so that the algorithms remain theoretically optimal.

5.1 Introduction

The randomized incremental algorithm is the most popular choice for 3D Delaunay

triangulation of a set of input points, because it is worst-case optimal and (com-

pared to the alternatives) easy to implement robustly. But as we have seen in the

experiments in Section 4.4, it performs badly when the input data gets too big.

Randomized incremental algorithms access the geometric data structures randomly,
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and random access to large data structures works very poorly with modern memory

hierarchies.

Virtual memory systems cache recently used data in memory, on the as-

sumption of locality of reference, that is, that recently used data is likely to be used

again soon. Randomized incremental programs violate this assumption, and soon

after the data structure exceeds the size of physical memory, thrashing occurs and

the program grinds (audibly!) to a halt [21]. This limits the size of the Delaunay

triangulations that can be computed in practice.

A simple fix is to insert points in an order which improves the locality of

reference, while preserving enough randomness to retain the optimality of the algo-

rithm. In Section 5.3 we present such a scheme, which we call a biased randomized

insertion order (BRIO). We prove in Sections 5.5, 5.6, 5.7 that this order is no worse

than a completely randomized insertion order in terms of asymptotic complexity: it

gives an optimal algorithm for Delaunay triangulation in the worst case, and also

under less pessimistic but more realistic assumptions about the output complex-

ity. Our evidence that it indeed reduces or eliminates thrashing is experimental:

in Section 5.8 we use a BRIO with hull, CGAL Delaunay hierarchy function, and

pyramid, and can solve much larger problems than were possible with a completely

randomized insertion order.

5.2 Related work

The development of randomized incremental algorithms and their analysis was a

major project of computational geometry in the late eighties and early nineties, as

described in textbooks [13, 57] and surveys [58, 62]. We touch on a few relevant

highlights. A classic paper by Clarkson and Shor [25] showed that the random-

ized incremental paradigm could be applied to many problems, and gave a general

analysis. Mulmuley [54, 55] and Clarkson, Mehlhorn and Seidel [26], among oth-
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ers, extended this theory. Seidel [64], harking back to an idea in an early paper of

Chew [20], popularized a simplifying idea called backwards analysis which became

the standard tool for analyzing randomized incremental algorithms. It requires that

after inserting r points, every inserted point has the same probability to be the last

one in the random permutation of the set of r points. This is not true with a BRIO,

so we cannot see how to apply backwards analysis. Instead we build on results from

the earlier work, in particular the bounds on (≤ k)-sets from Clarkson and Shor and

from Mulmuley.

The traditional approach to thrashing is to develop explicit out-of-core algo-

rithms, usually using divide-and-conquer. Though there are out-of-core algorithms

for 2D Delaunay triangulation [9, 47, 68], extending it to 3D in a practical way

seems to be challenging.

Clarkson and Shor’s random sampling paradigm [25] provides a way to split

geometric problems into subproblems each guaranteed to be small. This gives a

simple and near-optimal divide-and-conquer algorithm. But each input point is

assigned to multiple subproblems so that the total size of the subproblems are much

bigger than the original input size. Moreover, it requires numerical predicates of a

high degree, which are expensive to compute reliably.

We can avoid this problem by computing the part to be merged first and

dividing the subproblems subsequently, thus eliminating the overlap of the output.

This scheme has been called the “marriage-before-conquest” paradigm. Edelsbrun-

ner and Shi [38] gave a divide-and-conquer algorithm for 3D convex hull which first

solves the part where the subproblems merge using projection and 2D convex hull be-

fore computing each subproblem. Blelloch et al. [14] applied Edelsbrunner and Shi’s

idea to the problem of 2D Delaunay triangulation to give a projection-based paral-

lel algorithm which does O(n log n) work and has O(log3 n) depth (parallel time).

However there are several challenges in extending their algorithm to compute the 3D
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Delaunay triangulation. To compute the boundary where the subproblems merge,

we need the 3D convex hull computation on the input points which would itself

requires an out-of-core or distributed implementation. A second problem is that in

the base cases they call a special subroutine which does not generalize directly to

the 3D case.

Chan et al. [18] gave an output-sensitive algorithm based on a divide-and-

conquer approach similar to Edelsbrunner and Shi’s. Though the algorithm is

asymptotically near-optimal, the implementation is not straightforward and does

not seem to be practical at all.

Cignoni et al. [23] proposed a parallel 3D Delaunay triangulation algorithm.

They split the input points using a splitting plane and construct the Delaunay

tetrahedra intersected by the plane first, and then recurse on each subproblems.

But there is no theoretical guarantees for their algorithm.

In conclusion, though there are several theoretical works on a divide-and-

conquer or parallel Delaunay triangulation, there seems to be no satisfactory solution

for practical 3D Delaunay triangulation of large data. Instead, we stick to the

randomized incremental paradigm but define an insertion order that, heuristically,

helps the memory hierarchy work effectively.

Devillers and Guigue [30] considered a different kind of partially randomized

insertion order, for handling constructions for which the data is provided sequentially

rather than all at once. Arriving data can be stored and reshuffled (randomly) in

a buffer of limited size before it has to be inserted into the data structure. They

showed that the expected running time degrades as a smaller shuffling buffer is used

and the randomness is more limited. For an analysis similar to ours to work, it

seems important to have at least a random sample of all of the points available at

the beginning of the construction.
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5.3 Insertion order

We define a biased randomized insertion order for a set P of n input objects, which

we shall call points. The points are inserted in rounds, from round 0 through round

lg n. For simplicity, we assume that n is a power of 2.

To allocate points to rounds, we choose each point independently with prob-

ability 1/2 to be inserted in the final round. We choose each of the remaining points

independently with probability 1/2 to be inserted in the next-to-last round, and so

on. When we get to round zero, we choose any remaining points with probability

one. Thus the probability that a point is chosen in round i > 0 is 2i−1/n, and the

remaining probability 1/n goes to the event that the point is chosen in round zero.

As far as our proof of asymptotic optimality is concerned, the points can be inserted

in an arbitrary order within each round.

Our procedure could be viewed alternatively as a sort of randomized divide-

and-conquer procedure. We first select half of the points randomly and recursively

build the data structure for them. Then we insert the remaining half of the points

incrementally.

This restricted requirement of randomness allows us to bias the insertion

order to favor locality. The approach we take here is to organize the points into

blocks which respect locality within three-dimensional space; in our experiments we

use the cells of an octree or a kd-tree (e.g., [13, Chapter 5]). Within each round, we

group the points by block, and we order the blocks within a round to favor locality

in IR3 by taking them in depth-first order. Within each block we order the points

randomly.

The intuition is that in the early rounds the insertions tend to be sprinkled

nearly randomly across all the data, producing a nicely balanced data structure,

while in the later rounds they are clustered within blocks, accessing local regions of

the data structure mostly independently.
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Our algorithm makes an effort to choose an ordering that respects locality

in IR3. This only indirectly attacks the question of locality in the layout of the data

structure in virtual memory, which is what we really need to address. The hope

is that out algorithm would also lead to a stronger coherence between closeness in

space and in memory than the purely randomized approach. However, this depends

on the implementation of the storage management scheme and may be hard to

predict.

5.4 Analysis Setup

We analyze the use of a BRIO in the context of the incremental construction of

a three-dimensional Delaunay triangulation. First, we review the analysis of the

usual randomized incremental algorithm for three-dimensional Delaunay triangula-

tion [25, 26] (see also [13, 57]). The running time can be divided into two parts,

the time required to find where each new point should be inserted into the Delau-

nay triangulation (location time) and the time required to delete old tetrahedra and

create new tetrahedra so as to actually perform the insertion (update time). Point

location can be done in various ways; the theoretically optimal methods have been

shown to take Θ(X(n)) time, where X(n) is a quantity known as the total conflict

size.

The total update time is Θ(C(n)), where C(n) the total number of tetrahedra

which appear over the course of the construction.

In the worst case, the size of a Delaunay triangulation of n points in IR3 is

O(n2), and it turns out this is also the bound on the total conflict size and hence

the running time. But in practice the size of the Delaunay triangulation is often

O(n).

60



The “realistic” case. We define a “realistic” instance to be a point set P for

which the Delaunay triangulation of a random subset of r points has expected size

O(r), for every r. (This definition is with respect to some fixed constant in the O-

notation.) Experiments with data from various sources [21] corroborate the claim

that practical instances have this property. In this realistic case, there is a better

bound of O(n log n) on the total conflict size and the running time.

More generally, we can consider a probability distribution of “practical” in-

stances P , and the O(r) size requirement should hold for a random (uniform) r-

subset of a random problem instance (according to the given distribution). Our

results about expected running time are then average-case results (in addition to

the expectation with respect to the random choices of the algorithm).

We show that our new algorithm remains optimal using a biased randomized

insertion order both in the worst case and in the “realistic” case.

The general framework. We will use some terminology of Mulmuley. The four

vertices of a tetrahedron are known as its triggers, and the other points of P con-

tained in its circumsphere, are called its stoppers. Every choice of four points of P

as triggers determines a possible tetrahedron, but in a particular run of the ran-

domized incremental construction not every possible tetrahedron appears as part of

one of the intermediate triangulations, or in the final triangulation. A tetrahedron

appears in some Delaunay triangulation if and only if all of its triggers are selected

for insertion before any of its stoppers. The probability that a tetrahedron appears

during the construction thus depends in part on its number s of stoppers; if s = 0,

for instance, the tetrahedron belongs to the final Delaunay triangulation and the

probability that it appears is one.

The structure of the analysis follows the scheme in the early papers [25,

55, 56]. Let ps be the probability that a tetrahedron with s stoppers appears in

some triangulation of the construction, and let ks be the number of tetrahedra
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with s stoppers for point set P . Then we can write the expected total number of

tetrahedra that appear as

E[C(n)] =
n∑

s=0

ksps

The total conflict size is the sum, over all tetrahedra τ which ever appear in the

construction, of the number of stoppers of τ . Thus, the expected total conflict size

is

E[X(n)] =
n∑

s=0

kspss.

Now all we need are upper bounds on ks and ps.

5.5 One Tetrahedron

Let us consider a tetrahedron τ with s stoppers. If s is zero, τ has to appear in

the Delaunay triangulation. If s is non-zero and τ appears in some intermediate

triangulation, inevitably in some later insertion one of τ ’s stoppers will be chosen

and τ will be popped (it will no longer be part of the triangulation). In other words,

the probability that τ appears is the same as the probability that τ is eventually

popped.

We bound the probability ps that τ appears by considering each round i of

the BRIO, building on the following.

Observation 15 The probability that a point x ∈ P is chosen in round i is 2i−1/n

for i ≥ 1 and 1/n for i = 0, independently of x. Different points are assigned to

rounds independently.

2

Lemma 16 A tetrahedron τ with s stoppers appears with probability ps = O(1/s4).
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Proof: If τ is popped in round i, it must be case that all triggers of τ were chosen in

or before round i and that the first stopper is chosen in round i. So the probability

that τ appears is at most

ps =
lg n∑

i=0

P [ first stopper in round i ] · P [ all triggers in round i or earlier ] (∗)

Let ai be the probability that a particular point has been chosen at the

beginning of round i, so that

a0 = 0, a1 = 1/n, a2 = 2/n, a3 = 4/n, . . . , alg n+1 = 1,

and in general ai = 2i−1/n. Then we have

ai+1 = 2ai (∗∗)

for i > 0. The probability that all of the triggers are chosen in or before round i is

a4
i+1 since the events are independent.

The probability that the first stopper is selected in round i is denoted by

Gi = (1− ai)s − (1− ai+1)s. By (∗), the probability that τ appears is

ps =
lg n∑

i=0

Gi · a4
i+1.

We split off the first term, and for the remaining terms we use (∗∗).

ps ≤ 1/n4 +
lg n∑

i=1

Gi · 16a4
i

To bound the latter sum, note that Gi · a4
i can be interpreted as the probability of

another event: the first stopper is chosen in round i, and at the beginning of the

i-th round, all of the triggers have been chosen. Thus
∑

i≥1 Gi ·a4
i is the probability

that the round in which all of the triggers are chosen is smaller than the first round

where any stopper is chosen. This is the probability that among s + 4 independent

63



identically distributed random variables (namely the rounds of the 4 triggers and

the s stoppers), the first 4 are (strictly) smaller than the others. By symmetry, we

get
∑

i

Gi · a4
i ≤

1(s+4
4

) .

(This is the same argument that applies to the “usual” (fully) randomized insertion

order.) This gives us

ps ≤ 1/n4 +
16(s+4
4

) = O(1/s4).

2

5.6 Counting Tetrahedra

Now we need to bound ks, the number of tetrahedra with s stoppers. Let Ks be the

number of tetrahedra with at most s stoppers. Clarkson and Shor gave an upper

bound on (≤ k)-sets that implies that Ks is at most O(n2s2) in the worst case, and

O(ns3) in the “realistic” case. Their proof holds as n/s → ∞. The bound was

proved for all 1 < s ≤ n in excruciating generality by Mulmuley [56]. In this section

we give proofs using Mulmuley’s basic idea (see also [25, Section 3]) but with much

simpler arithmetic; this is possible because we deal only with the special cases of

Ks that we need.

Consider the following thought experiment. From the set P of n points, we

select each point with probability 1/s to form a random sample R. Let r = |R|
be the random variable for the size of R. Let TR be the random variable for the

number of tetrahedra in the Delaunay triangulation of R.
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Lemma 17 For every point set P , we have

Ks = O(s4E[TR]).

In the “realistic” case, we assume that E[TR] = O(r) so that by the linearity

of expectation E[TR] = O(E[r]) = O(n/s), and E[Ks] = O(ns3).

In the quadratic worst case, we have TR = O(|R|2), and hence E[TR] =

E[O(r2)] = O(E[r2]).

E[r2] = Var[r] + E2[r]

= n

(
1
s

) (
1− 1

s

)
+ (n/s)2 = O((n/s)2)

So, Ks ≤ O(s4(n/s)2) = O(n2s2).

For completeness, we indicate the easy proof of the lemma. We assume with-

out loss of generality that s ≥ 2. Let p̃j denote the probability that a tetrahedron

with j stoppers appears in the Delaunay triangulation of R. For j ≤ s,

p̃j =
(

1
s

)4 (
1− 1

s

)j

≥
(

1
s

)4 (
1− 1

s

)s

= Θ
(

1
s4

)

and therefore p̃j = Θ(1/s4). We can express E[TR] in another way:

E[TR] =
n∑

j=0

p̃jkj ≥ Θ
(

1
s4

) s∑

j=0

kj = Θ
(

1
s4

)
Ks

From this, the lemma follows.

2

5.7 Running time

Theorem 18 With incremental construction using a BRIO, the expected total num-

ber of tetrahedra that are created during the construction of the Delaunay triangu-

lation of n points in three dimensions is O(n2) in the worst case and O(n) in the
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realistic case. The expected total size of the conflict graph (and hence the expected

running time) is O(n2) in the worst case and O(n log n) in the realistic case.

Proof: Recall that our expression for the expected total number of tetrahedra is

E[C(n)] =
n∑

s=0

ksps

and that ps = O(1/s4), and note that p0 = 1. We choose a constant c such that

ps ≤ c/s4, for s ≥ 1. So

E[C(n)] ≤ K0 +
n∑

s=1

(Ks −Ks−1)
c

s4

= (1− c)K0 + c ·
n−1∑

s=1

Ks

(
1
s4
− 1

(s + 1)4

)
+

Kn

n4

= O(K0) +
n−1∑

s=0

O

(
Ks

s5

)
+ O

(
Kn

n4

)

In the “realistic” case, Ks = O(ns3) so E[C(n)] = O(n). In the worst case Ks =

O(n2s2) and we find that E[C(n)] = O(n2).

We can use a similar argument to bound the total conflict size and hence the

point location time.

E[X(n)] =
n∑

s=1

ks
c

s4
· s = O(K0) +

n−1∑

s=1

O

(
Ks

s4

)
+ O

(
Kn

n3

)

This gives E[X(n)] = O(n log n) in the “realistic” case and E[X(n)] = O(n2) in the

worst case.

2

5.8 Experiments

We used three Delaunay triangulation programs, Clarkson’s hull, Delaunay hier-

archy function of CGAL, and Shewchuk’s pyramid, to test the effect of our biased
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randomized insertion order. These programs differ in their point location schemes

and memory management strategies. Nonetheless, with all the programs, using the

BRIO produced a near-linear performance profile, allowing us to handle much larger

inputs than we could with a completely randomized insertion order.

While we of course had hoped that the effect of increased locality in IR3 on

the performance would be beneficial, it is not easy to predict. A fundamental prob-

lem with trying to optimize memory access by increasing the locality of insertions in

IR3 is that a point might well share Delaunay edges with other points that are quite

far away. In particular, for sets of input points which lie on or close to surfaces (im-

portant to applications such as surface reconstruction and mesh generation) every

point usually has at least one edge to some vertex on a different “opposite” part of

the surface. Our experiments use this kind of input data.

Moreover, since the Delaunay triangulation is represented by a pointer struc-

ture, there is no guarantee that adjacent tetrahedra in the triangulation are stored

together in virtual memory; this is implementation dependent. All three of the pro-

grams do their own memory management for the tetrahedra, to avoid making too

many calls to the memory allocation procedure of the operating system. Records for

tetrahedra are stored in a list in virtual memory. In the basic randomized incremen-

tal construction implemented by hull, tetrahedra are never deleted, but in pyramid

and CGAL they are. Records are freed as tetrahedra are destroyed and reused as new

tetrahedra are created, so that a tetrahedron might end up being stored with others

created much earlier, further reducing locality.1

The idea of using a BRIO is to avoid having to explicitly manipulate disk

access and letting the (hopefully very efficient) virtual memory system do the work.

In all of our experiments we used a large (4 GB) virtual memory, which on our

systems required some reconfiguration. This is important for duplicating our results;
1We thank Jonathan Shewchuk for pointing out this issue.
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the programs fail if they run out of virtual memory.

Data sets

We used two data sets in the experiments, both of them are on or near a 2D surface

in IR3.

To make the B1 data set (525,296 points), we extracted a molecular electron

density iso-surface using marching cubes and then made it larger by applying one

level of butterfly subdivision. This gives a nicely distributed point set which lies on

a smooth surface.

The happy buddha data set (2,643,633 points) is taken from the Stanford 3D

scanning repository2. We use the raw scanner data as an example of typical input to

a surface reconstruction computation. The data is noisy and unevenly distributed

near the surface of the object.

We concentrated on experimenting with different insertion orders and dif-

ferent programs rather than many data sets; it would be interesting to try similar

experiments with other data, especially data from different kinds of distributions.

Hull

To test exactly the situation considered in our analysis, we used a BRIO with

the standard randomized incremental construction as implemented in hull. This

program uses a theoretically optimal point location data structure, the history DAG,

so that the expected point location time is proportional to the total conflict size.

Also, since no tetrahedra are ever deleted, the layout of tetrahedra in virtual memory

should correspond well to the order in which they are created. The history DAG

takes a lot of memory, however, so hull thrashes relatively early.
2Stanford 3D scanning repository,

http://www-graphics.stanford.edu/data/3Dscanrep
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Figure 5.1: The running time of hull on B1 data using a completely randomized
insertion order and a BRIO (512 MB RAM).

We ran hull on a Linux machine with an Intel Pentium III (864 MHz) and

512 MB RAM, using the smaller B1 data.

In Figure 5.1, the running time for hull using the completely random inser-

tion order and the BRIO are shown; the random insertion order led to thrashing

before the triangulation could be completed. Though the slope for the biased ran-

domized insertion order becomes steeper around 120K points—just where the seri-

ous thrashing began for the random order—the BRIO maintains a roughly constant

slope and shows a near-linear running time.

CGAL hierarchy

The Delaunay hierarchy function in the CGAL library also implements an optimal

algorithm, due to Devillers [29], using a data structure for point location which

requires much less memory than the history DAG. Deviller’s analysis depends on

the randomized insertion order to bound the expected point location time, but does

not explicitly relate the running time to the total conflict size.

To exaggerate the memory behavior of the program, we ran it on a very small

PC: a Sun UltraSPARC 360 MHz CPU with just 128M of physical memory. With
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Figure 5.2: The running time of CGAL using a completely randomized insertion order
and a BRIO (128 MB RAM).

so little memory, the CGAL Delaunay hierarchy program begins to thrash at about

250K points when using a completely randomized insertion order. Using a BRIO

(Figure 5.2) we can in contrast compute the Delaunay triangulation of the happy

buddha data set containing more than 2.5 million points.

Pyramid

Shewchuk’s pyramid is designed to be very memory efficient. It uses a theoretically

non-optimal point location scheme but needs no additional storage beyond the De-

launay triangulation itself. Our analysis shows that when using a BRIO the total

number of tetrahedra created is asymptotically optimal, but other than that the

relationship to the theory is tenuous in the case of this program. The fact, however,

that we can compute huge 3D Delaunay triangulations, very quickly, using very

little physical memory, is exciting.

We again use the small PC and the happy buddha data. We were able to

complete the Delaunay triangulation using the BRIO, which was not possible with

the completely randomized insertion order. But we found that as the size of the

data structure grew, pyramid’s point location strategy slowed down significantly
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with pyramid’s original point location scheme (128 MB RAM).

(Figure 5.3).

The point location strategy used in pyramid is known as jump-and-walk. At

the insertion of the ith point p, it selects O(i1/4) already-inserted points at random,

and finds the closest of these to p. It then selects either this point, or the last point

inserted, whichever is closer to p, and begins “walking” in the Delaunay triangulation

on a straight line from there to find the place at which to insert p. With the BRIO,

the last point inserted was almost always the closest to p, and the expensive search

for a closer point was generally wasted.

Eliminating the O(i1/4) search and always starting from the last point in-

serted gave us an essentially linear running time (Figure 5.4). To see how far we

could push the results, we duplicated and translated the buddha data, making in-

puts that were the union of two and of four buddhas. We found that we could

complete the Delaunay triangulation of four buddhas, over 10 million points (Fig-

ure 5.5). This represents an increase by a factor of 20 in the size of the Delaunay

triangulations computable on this machine with this program.

Using this small machine is useful for studying memory performance, but it

makes Delaunay triangulation look slower than it really is. On the machine we used
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Figure 5.4: The running time of pyramid with the simplified point location strategy,
on the happy buddha data set using a BRIO and a completely randomized insertion
order for comparison (128 MB RAM).
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Figure 5.6: The running time of pyramid on a more typical workstation (864 MHz,
512 MB RAM). We computed the Delaunay triangulation of 10 million points (four
translates of the happy buddha scan data) in about half an hour, using a BRIO
with the simplified point location scheme.

for the experiments with hull, we can compute the Delaunay triangulation of 10

million points in about half an hour (Figure 5.6).

Of course, with this point location strategy there are no theoretical bounds

on the expected running time besides the pessimistic worst case of O(i), for a total

running time of O(n2). However, for reasonable point sets, and for good insertion

orders within each round, it seems reasonable to expect good performance. For

uniformly distributed point sets, a simple algorithm with linear expected running

time has been proposed by Dwyer [37]. It is conceivable that our approach might

lead to an alternate algorithm for uniformly distributed point sets which degrades

gracefully as the uniform distribution assumption is violated.

Pure locality

The locality of the BRIO certainly seems to improve the memory performance. To

see if the randomness in the BRIO provides any practical benefit, we compared the

three programs using a BRIO and an order which visits each octree cell in turn and
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inserts all of its points in random order. We found that both orders worked well,

but which is better varied.

Figures 5.7, 5.8 show an example using hull. The BRIO creates a slightly

smaller history DAG. Before physical memory is exceeded, the BRIO makes the

program run faster, but once it begins paging the better locality of the octree order

dominates.

Running the larger data set with CGAL, we found that the BRIO gave a

slightly better running time (Figure 5.9); here again possibly the point location

data structure is better with the BRIO.

Using pyramid, on the other hand, we found that the purely local order was

better (Figure 5.10).

It is hard to draw conclusions from these examples, other than to note that

factors like the specific memory hierarchy, layout in virtual memory, number of

tetrahedra created and destroyed, balance in the point location data structure, etc.,

interact in complicated ways.
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Figure 5.10: The purely local octree order runs faster than the BRIO for the happy
budda data with pyramid, and the simplified point location scheme (128 MB RAM).

Computing a BRIO

Using a BRIO to improve the performance of Delaunay triangulation programs

would not be sensible if computing the BRIO itself was time consuming compared

with the time required to shuffle points for the randomized incremental construction.

Fortunately, BRIOs can be computed very efficiently3.

We tried both kd-trees and octrees for decomposing the input point sets into

blocks for creating BRIOs. The kd-tree construction is appealing since it has loga-

rithmic depth, and we can guarantee that every block has roughly the same number

of points. However, neither of these properties are actually required, and construct-

ing a kd-tree requires sorting while constructing an octree does not. Interestingly,

the standard UNIX sort we used thrashed on our smallest (128 MB) machine. Since

the performance of the two kinds of BRIOs were essentially the same, we prefer the

octree.

For all the BRIOs, we used an upper limit of 2000 points per block. Our

experience has been that block size should be a few thousand, but the exact number
3We thank Yong Kil (UC Davis) for his contribution to this section, including his implementation

of the octree BRIO computation and his ideas for optimizing it.
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does not seem to make much difference.

After computing the octree, the points are randomly shuffled within each

block. In round i, we visit each block in turn. Within each block, we visit each

uninserted point and insert it with the appropriate probability for the round. The

overhead for visiting each point in each round is small compared to the time required

to compute the octree.

The entire computation is extremely fast. We can compute the BRIO on 10

million points in about 2 minutes, including the computation of the octree (on a 1.7

GHz Pentium IV with 512 MB RAM).
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Chapter 6

Discussion and future work

In this thesis, we have presented surface reconstruction algorithms and new methods

to speed up the 3D Delaunay triangulation. We discuss here some possible directions

for future research.

Among the challenges of the Delaunay triangulation based surface recon-

struction algorithms are the sharp corners and noise. Though we address the prob-

lems in the power crust algorithm with heuristics, it would be nice to have some

kinds of theoretical guarantees for these difficult cases. Though there are some work

done for correctly reconstructing sharp corners in 2D curve reconstruction [34], but

it seems much more challenging in 3D.

Another interesting topic is efficient computation of the approximate medial

axis. The power shape is shown to be a good approximation of the medial axis,

but it requires the power diagram computation. It would be nice to have a theo-

retically correct medial axis approximation without the expensive power diagram

computation.

The analysis of the BRIO given in Chapter 5 also applies to other simi-

lar randomized incremental constructions such as the optimal construction of the

trapezoidation of a set of non-intersecting segments in the plane [25, 54, 55], and
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the similar construction for intersecting segments. The analysis must be modified

for situations in which the objects have different numbers of triggers. As long as the

number of triggers is bounded by some constant, we can simply analyze the objects

separately for each possible number of triggers.

We would like to apply BRIOs to other elated randomized incremental algo-

rithms which use tracing, such as Seidel’s practical O(n lg∗ n) algorithm for trape-

zoidation of a simple polygon [63]. BRIOs might also work with the LP-type (also

known as GLP, “generalized linear programs”) randomized incremental algorithms,

which optimize an objective function over a set of input constraints. We would also

like to explore other ways to implement BRIOs so that we can give some kinds of

theoretical analysis about their effects in thrashing.
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Appendix A

Proofs for the co-cone algorithm

In this section, we present the theoretical analysis of the co-cone algorithm1.

For completeness, we review the manifold extraction step of the crust algo-

rithm [2]. First, we delete all triangles incident to sharp edges. An edge is called

sharp if the angle between any two consecutive triangles around the edge is more

than 3π/2. An edge with a single incident triangle is also sharp. Next, we extract

the outer boundary N of the set of triangles by a depth-first walk along the outer

boundary of each of its connected components.

Here we prove the following main theorem of the co-cone algorithm.

Theorem 19 Let S be an r-sample for a smooth surface F , with r ≤ 0.08. The

co-cone algorithm computes a piecewise-linear 2-manifold N homeomorphic to F ,

such that any point on N is at most 1.3rLFS(x)
1−r from some point x ∈ F .

First we prove that the following three conditions for the set T of candidate

triangles.

I. Restricted Delaunay condition. The set T includes all restricted Delaunay
1Most of the result here is reprinted from [6] with permission from the publisher.
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triangles.

II. Small triangle condition. The circumcircle of each triangle t ∈ T is small,

that is, its radius is O(r)LFS(s), where s is a vertex of t.

III. Flat triangle condition. The normal to each t ∈ T makes a small, O(r),

angle with the surface normal at the vertex p, where p is the vertex with the largest

interior angle in t.

Since the restricted Delaunay triangulation is homeomorphic to the original

surface F given a dense enough sampling (Theorem 4), the first condition ensures

that the set of candidate triangles contains a manifold homeomorphic to the original

surface F . Then, we use the second and the third conditions to show that any

manifold extracted from T is homeomorphic to F .

A.1 Restricted Delaunay condition

Here we show that the set of candidate triangles includes all restricted Delaunay

triangles.

We begin with a technical observation, which says that the line segment

connecting two points close together on F must be nearly parallel to the surface.

Observation 20 A line segment connecting two points x, x′ ∈ F , such that the

distance |x, x′| ≤ crLFS(x), with c ≤ √
2, makes an acute angle with the surface

normal nx at x of at least π/2− sin cr
2 .

This follows from the fact that x′ must lie outside the two tangent balls of radius

LFS(x) at x.

Let ~y denote any ray from p to a point y ∈ Vp.
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Lemma 21 Let y be any point in the restricted Voronoi cell Vp,F . The acute angle

between np and ~y is larger than π/2− r, for r < 0.1.

Proof: The distance |yp| ≤ rLFS(y), since y ∈ Vp,F and S is an r-sample. By the

Lipschitz condition LFS(y) ≤ LFS(p) + |py| giving LFS(y) ≤ LFS(p)
1−r , and hence

|py| ≤ rLFS(y) ≤ r
1−rLFS(p). We can therefore apply Observation 20.

2

We can now prove that T satisfies Condition I.

Theorem 22 All restricted Delaunay triangles are in T , for r ≤ 0.1 and θ ≤ π/8.

Proof: Let e be the dual edge of a restricted Delaunay triangle. Consider the point

y = e ∩ F . We have y ∈ Vp,S for each of the three points p ∈ S determining e. For

each such p, the acute angle between np and ~y is larger than π/2− r by Lemma 21.

Therefore 6 ~y~v ∈ [π/2− r − α, π/2 + r + α], where α is the acute angle between the

vector to the pole ~v and np. Plugging in the upper bound on α from Lemma 6 we

find that α + r < π/8, so 6 ~y~v ∈ I.

2

A.2 Small triangle condition

We now show that T meets Condition II. Looking at the contrapositive of Lemma

5 and plugging in a value of ρ = 1.3r
1−r we obtain the following.

Corollary 23 Let x be any point in Vp so that the acute angle between ~x and np is

at least π/2− θ − 2 sin−1 r
1−r . Then |px| < 1.3r

1−rLFS(p), for θ = π/8 and r ≤ 0.08.
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Proof: If the acute angle between ~x and np is at least α = arcsin r
ρ(1−r) +arcsin r

1−r ,

then |px| < ρLFS(p) according to Lemma 5. With ρ = 1.3r
1−r we have

α = arcsin
1

1.3
+ arcsin

r

1− r

which is less than π/2− θ − 2 arcsin r
1−r for θ = π/8 and r ≤ 0.08.

2

Lemma 24 Let p be a vertex of any triangle t ∈ T . The radius of the smallest

Delaunay ball of t is at most 1.3r
1−rLFS(p) for r ≤ 0.08 and θ = π/8.

Proof: Let e be the dual edge of t and p any vertex of t. By our choice of e,

there is a point x ∈ e so that ~x makes an angle in the range I = [π/2− θ, π/2 + θ]

with ~v. Taking into account the angle between ~v and np we conclude that this ray

makes an acute angle more than π/2− θ− 2 arcsin r
1−r with np. From Corollary 23,

|px| < 1.3r
1−rLFS(p).

2

Theorem 25 Let r denote the radius of the circumcircle of any triangle t ∈ T .

Then, for each vertex p of t, r ≤ 1.3r
1−rLFS(p) for r ≤ 0.08 and θ = π/8.

Proof: The radius of the smallest Delaunay ball, bounded in Lemma 24,

is an upper bound on the radius of the circumcircle of t, which is centered at the

intersection of the line containing e with the plane containing t.

2
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A.3 Flat triangle condition

Here we show that T meets Condition III.

Theorem 26 The normal to any triangle t ∈ T makes an acute angle of no more

than α + arcsin( 2√
3
sin 2α) with np where p is the vertex at the largest interior angle

of t, and α ≤ arcsin1.3r
1−r , r ≤ 0.08.

Proof: Consider the medial balls M1 and M2 touching F at p with the centers on

the medial axis. Let D be the ball with the circumcircle of t as a diameter; refer to

Figure A.1. The radius r of D is equal to the radius of the circumcircle of t. Denote

the circles of intersection of D with M1 and M2 as C1 and C2 respectively. The

normal to F at p passes through m, the center of M1. This normal makes an angle

less than α with the normals to the planes of C1 and C2, where

α ≤ arcsin r/|pm|

≤ arcsin
1.3r

1− r

since |pm| ≥ LFS(p) by the definition of f and r ≤ 1.3r
1−rLFS(p) by Theorem 25.

This angle bound also applies to the plane of C2, which implies that the planes of

C1 and C2 make a wedge, say W , with an acute dihedral angle no more than 2α.

The vertices other two vertices q, s of t cannot lie inside M1 or M2. This

implies that t lies completely in the wedge W . Consider a cone at p inside the

wedge W formed by the three planes; πt, the plane of t, π1, the plane of C1 and π2,

the plane of C2. A unit sphere centered around p intersects the cone in a spherical

triangle uvw, where u, v and w are the points of intersections of the lines π1 ∩ π2,

πt ∩ π1 and πt ∩ π2 respectively with the unit sphere. See the picture on right in

Figure A.1. Without the loss of generality, assume that the angle 6 uvw ≤ 6 uwv.

We have the following facts. The arc length of wv, denoted |wv|, is at least π/3

since p subtends the largest angle in t and t lies completely in the wedge W . The

spherical angle 6 vuw is less than or equal to 2α.
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Figure A.1: Normal to a small triangle and the normal to S at the vertex with the
largest face angle.

We are interested in the spherical angle β = 6 uvw which is also the acute

dihedral angle between the planes of t and C1. By standard sine laws in spherical

geometry, we have sinβ = sin |uw| sin 6 vuw
sin |wv| ≤ sin |uw| sin 2α

sin |wv| . If π/3 ≤ |wv| ≤ 2π/3,

we have β ≤ arcsin 2√
3
sin 2α. For the range 2π/3 < |wv| < π, we use the fact that

|uw| + |wv| ≤ π since 6 vuw ≤ 2α < π/2 for sufficiently small r. So, in this case
sin |uw|
sin |wv| < 1. Thus, β ≤ arcsin 2√

3
sin 2α.

The normals to t and F at p make an acute angle at most α + β proving the

theorem.

2

The upper bound on the angle between the normal to t and np provided by

this theorem is 23◦; and the angle is O(r).

85



A.4 Geometric consequences

Triangle interiors

Conditions II and III relate properties of each triangle t ∈ T to the value of LFS(·)
and the surface normal direction, respectively, at its vertices. But since the triangles

are small, we can use the Lipschitz properties to show that similar properties hold at

any point q in the interior of t. To define these properties, we map q to the nearest

surface point. Let µ : IR3 → F map each point q ∈ IR3 to the closest point of F .

The restriction of µ to T is a well-defined function µ : T → F , since if some point

q had more than one closest point on the surface, q would be a point of the medial

axis; but by Lemma 27 every point q ∈ T is within 1.3r
1−rLFS(p) of a triangle vertex

p ∈ F .

Lemma 27 Let q be any point on a triangle t ∈ T . The distance between q and the

point x = µ(t) is at most 0.165LFS(x), for r ≤ 0.08.

Proof: The circumcircle of t is small; the distance from q to the vertex p of t with

largest angle is at most 2δ LFS(p), with δ = 1.3r
1−r ≤ .12, by Theorem 25. Since there

is a sample, namely, a vertex of t within δLFS(p) from q, we have |qx| ≤ δLFS(p).

We are interested in expressing this as a function of LFS(x), so we need an upper

bound on |px|.
The triangle vertex p has to lie outside the tangent ball at x, while, since x is

the nearest surface point to q, q must lie on the segment between x and the center of

this tangent ball. For any fixed |pq|, these facts imply that |px| is maximized when

the angle pqx is a right angle. Thus, |px| ≤ √
5δLFS(p) ≤ 0.27LFS(p) for r ≤ 0.08.

This implies that LFS(p) ≤ 1.37LFS(x) by Lipschitz property of LFS(·), giving

|qx| ≤ 0.165LFS(x).

2
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With a little more work, we can also show that the triangle normal agrees

with the surface normal at the surface point closest to t.

Lemma 28 Let q be a point on triangle t ∈ T , and let nx be the surface normal

at x = µ(q). The acute angle between nx and the normal to t is at most 42◦ for

r ≤ 0.08. Also, the acute angle between nx and the surface normal np at the vertex

p of t with largest angle is at most 19◦.

Proof: Applying Lemma 3, and taking ρ = 0.165, shows that the angle between

nx and np is less than 19◦. The angle between the triangle normal of t and np is

less than 23◦ for r ≤ 0.08 (Theorem 26). Thus, the triangle normal and nx make an

angle of at most 42◦.

2

Sharp edges

The manifold extraction step selects a piecewise-linear manifold from T . It begins by

recursively removing any triangle in T adjacent to a sharp edge; recall that a sharp

edge is one for which the angle between two adjacent triangles, in the circular order

around the edge, is greater than 3π/2. Let T ′ be the remaining set of triangles. The

following lemma shows that none of the restricted Delaunay triangles are removed,

so that T ′ is guaranteed to contain a piecewise-linear manifold homeomorphic to F .

Lemma 29 No restricted Delaunay triangle has a sharp edge, for r ≤ 0.08.

Proof: Let t and t′ be adjacent triangles in the restricted Delaunay triangulation,

let e be their shared edge, and let p ∈ e be any of their shared vertices. Since t and

t′ belong to the restricted Delaunay triangulation, they have circumspheres B and

B′, respectively, centered at points v, v′ of F .
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The boundaries of the circumspheres B and B′ intersect in a circle C con-

tained in a plane H, with e ⊂ H. H separates t and t′, since the third vertex of

each triangle must lie on the boundary of its circumsphere, and B ⊆ B′ on one side

of H, while on the other B′ ⊆ B. The line through v, v′ is perpendicular to H, and

the distance |vv′| ≤ 2r/(1− r)LFS(v) (using the sampling condition). So segment

v, v′ forms an angle of at least π/2− sin r
1−r with nv (Observation 20). This normal

differs, in turn, from np by at most r
1−4r (Lemma 3), so H is nearly parallel to np, at

an angle of at most 7◦. The normals of both t and t′ differ from the surface normal

at p by at most 23◦ (Theorem 26).

Thus we have t on one side of H, t′ on the other, and the smaller angle

between H and either triangle is at least 60◦. Hence the smaller angle between t

and t′ is at least 120◦, and e is not sharp.

2

A.5 Homeomorphism

In this section, we will show a homeomorphism between F and any piecewise-linear

surface made up of candidate triangles from T with two additional properties. The

piecewise-linear manifold N selected by the manifold extraction step of our algorithm

does in fact have these properties, thus completing the proof of Theorem 19.

Additional properties

A pair of triangles t1, t2 ∈ N are adjacent if they share at least one common vertex

v. Since the normals to all triangles sharing v differ from the surface normal at v by

at most 42◦ (Lemma 28), and that normal in turn differs from the vector to the pole

at v by less than 5◦ (Lemma 6), we can orient the triangles sharing v, arbitrarily
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but consistently calling the normal facing the pole the inside normal and the normal

facing away from the pole the outside normal. Let α be the angle between the two

inside normals of t1, t2. We define the angle at which the two triangles meet at v to

be π − α.

Property I: Every two adjacent triangles in N meet at their common vertex at an

angle of greater than π/2.

Requiring this property excludes manifolds which contain sharp folds and, for in-

stance, flat tunnels. Since the triangles of T are all nearly perpendicular to the

surface normals at their vertices, and the manifold extraction step eliminates trian-

gles adjacent to sharp edges, N has this property.

Property II: Every sample in S is a vertex of N .

Lemma 29 ensures that T ′ contains the restricted Delaunay triangulation, which

contains a triangle adjacent to every sample in S. Lemma 31, below, ensures that

at least one triangle must be selected for each sample by the manifold extraction

step. This implies that N has the second property as well.

Homeomorphism proof

We define the homeomorphism explicitly, using the function µ : N → F , as de-

fined above. The function µ defines a homeomorphism between N and F if it is

continuous, one-to-one and onto. Our approach will be first to show that µ is well-

behaved on the samples themselves, and then show that this behavior continues in

the interior of each triangle of N .

Lemma 30 The restriction of µ to N is a continuous function µ : N → F .

Proof: By Theorem 25 every point q ∈ N is within 1.3r
1−rLFS(p) of a triangle vertex

p ∈ F . Function µ is continuous except at the medial axis of F , so that since N is

continuous and avoids the medial axis, µ is continuous on N .
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Lemma 31 Let p be a sample and let m be the center of a medial ball M tangent

to the surface at p. No candidate triangle intersects the interior of the segment pm.

Proof: In order to intersect segment pm, a candidate triangle t would have to

intersect M , and so would the smallest Delaunay ball D of t. Let H be the plane of

the circle where the boundaries of M and D intersect. We show that H separates

the interior of pm and t.

On one side of H, M is contained in D, and on the other, D is contained in

M . Since the vertices of t lie on F and hence not in the interior of M , t has to lie

in the open halfspace, call it H+, in which D is outside M . Since D is Delaunay, p

cannot lie in the interior of D; but since p lies on the boundary of M , it therefore

cannot lie in H+. We claim that m 6∈ H+ either. (see Figure A.2.) Since m ∈ M ,

if it lay in H+ then m would have to be contained in D. Since m is a point of the

medial axis, this would mean that the radius of D would be at least 1/2 LFS(p′)

for any vertex p′ of t, contradicting, by Lemma 24, the assertion that t is a candi-

date triangle. Therefore p,m and hence the segment pm cannot lie in H+, and H

separates t and pm.

2
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Since any point q such that µ(q) = p lies on such an open segment pm, we

have the following.

Corollary 32 The function µ is one-to-one from N to every sample p.

In what follows, we will show that µ is indeed one-to-one on all of N .

Our proof proceeds in three short steps. We show that µ induces a homeo-

morphism on each triangle, then on each pair of adjacent triangles, and finally on

N as a whole.

Lemma 33 Let U be a region contained within one triangle t ∈ N or in adjacent

triangles of N . The function µ defines a homeomorphism between U and µ(U) ⊂ F .

Proof: We know that µ is well-defined and continuous on U , so it only remains

to show that it is one-to-one. First, we prove that if U is in one triangle t, µ is

one-to-one. For a point q ∈ t, the vector ~nq from µ(q) to q is perpendicular to the

surface at µ(q); since F is smooth the direction of ~nq is unique and well defined. If

there was some y ∈ t with µ(y) = µ(q), then q, µ(q) and y would all be collinear

and t itself would have to contain the line segment between q and y, contradicting

Lemma 28, which says that the normal of t is nearly parallel to ~nq.

Now, we consider the case in which U is contained in more than one triangle.

Let q and y be two points in U such that µ(q) = µ(y) = x, and let v be a common

vertex of the triangles that contain U . Since µ is one-to-one in one triangle, q and

y must lie in the two distinct triangles tq and ty. Let nx be the surface normal at

x. The line l through x with direction nx pierces the patch U at least twice; if y

and q are not adjacent intersections along l, redefine q so that this is true (µ(q) = x

for any intersection q of l with U). Now consider the orientation of the patch U

according to the direction to the pole at v. Either l passes from inside to outside

and back to inside when crossing y and q, or from outside to inside and back to

outside.
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The acute angles between the triangle normals of tq, ty and nx are at most

42◦ (Lemma 28), that is, the triangles are stabbed nearly perpendicularly by nx.

But since the orientation of U is opposite at the two intersections, the angle between

the two oriented triangle normals is at least π − 84◦, meaning that tq and ty must

meet at v at an acute angle of at most 84◦. This would contradict Property I,

which is that tq and ty meet at v at an obtuse angle. Hence there are no two points

in y, q with µ(q) = µ(y).

2

We finish the theorem using a theorem from topology.

Theorem 34 The mapping µ defines a homeomorphism from the triangulation N

to the surface F for r ≤ 0.08.

Proof: Let F ′ ⊂ F be µ(N). We first show that (N, µ) is a covering space

of F ′. Informally, (N, µ) is a covering space for F ′ if function µ maps N smoothly

onto F ′, with no folds or other singularities; see Massey [53], Chapter 5. Showing

that (N, µ) is a covering space is weaker than showing that µ defines a homeomor-

phism, since, for instance, it does not preclude several connected components of N

mapping onto the same component of F ′, or more interesting behavior, such as a

torus wrapping twice around another torus to form a double covering.

Formally, the (N,µ) is a covering space of F ′ if, for every x ∈ S′, there is a

path-connected elementary neighborhood Vx around x such that each path-connected

component of µ−1(Vx) is mapped homeomorphically onto Vx by µ.

To construct such an elementary neighborhood, note that the set of points

|µ−1(x)| corresponding to a point x ∈ S′ is non-zero and finite, since µ is one-to-one

on each triangle of N and there are only a finite number of triangles. For each point

q ∈ µ−1(x), we choose an open neighborhood Uq of around q, homeomorphic to a

disk and small enough so that Uq is contained only in triangles that contain q.
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Figure A.3: Proof of Theorem 34.

We claim that µ maps each Uq homeomorphically onto µ(Uq). This is because

it is continuous, it is onto µ(Uq) by definition, and, since any two points x and y in

Uq are in adjacent triangles, it is one-to-one by Lemma 33.

Let U ′(x) = ∩q∈µ−1(x)µ(Uq), the intersection of the maps of each of the Uq.

U ′(x) is the intersection of a finite number of open neighborhoods, each containing x,

so we can find an open disk Vx around x. Vx is path connected, and each component

of µ−1(Vx) is a subset of some Uq and hence is mapped homeomorphically onto Vx

by µ. Thus (N, µ) is a covering space for F ′.

We now show that µ defines a homeomorphism between N and F ′. Since

N is onto F ′ by definition, we need only show that µ is one-to-one. Consider one

connected component G of F ′. A theorem of algebraic topology (see eg. Massey

[53], Chapter 5 Lemma 3.4) says that when (N,µ) is a covering space of F ′, the sets

µ−1(x) for all x ∈ G have the same cardinality. We now use Corollary 32, that µ

is one-to-one at every sample. Since each connected component of F contains some

samples, it must be the case that µ is everywhere one-to-one, and N and F ′ are

homeomorphic.

Finally, we show that F ′ = F . Since N is closed and compact, F ′ must be

as well. So F ′ cannot include part of a connected component of F , and hence F ′

must consist of a subset of the connected components of F . Since every connected

component of F contains a sample p (actually many samples), and µ(p) = p, all

components of F belong to F ′, F ′ = F , and N and F are homeomorphic.

2
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Appendix B

Proofs for the power crust

algorithm

Here we give the correctness proofs for the power crust algorithm that the power

crust is a good approximation of the original surface F , we need some theorems

about the union of polar balls first. 1

B.1 Unions of polar balls

Let P be the set of poles. The surface F divides the set of poles into the set PI of

inside poles and the set PO of outside poles. The corresponding sets of polar balls

are BI and BO.

Let UI =
⋃BI be the union of Voronoi balls centered at inside poles, and

mathcalUO =
⋃BO be the union of Voronoi balls centered at outside poles. Let

UI = δUI and UO = δUO be the boundaries of these unions. We will now show that,

under the sampling assumption, first, UI and UO are both close to F , second, their

surface normals agree with those of F , and third, each of them is homeomorphic to
1Most of the content here is reprinted from [8] with permission from Elsevier.
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F .

Shallow intersections

The main idea in the proof is that inside and outside balls cannot intersect each other

deeply. We say this in three different ways in the lemmata below. We measure the

depth of the intersection by the angle α at which the balls intersect, as in Figure B.1.

z

λ

x p

P

ρ

s

α

Figure B.1: An inside and outside ball can intersect only at a small angle α.

Figure B.2 illustrates the following observation.

Observation 35 Let BI and BO be two intersecting balls, and let x be a point on

the segment connecting them. Any ball centered at x and containing point outside

of bothBI and BO also completely contains BI ∩BO.

x

Figure B.2:
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The first version of the lemma deals with the special case in which the two

polar balls are the inner and outer polar balls of the same sample s, for which we

can get the best bound.

Lemma 36 The two polar balls of a sample s intersect at an angle of O(r)LFS(s)/ρ,

where ρ is the radius of the smaller polar ball.

Proof: Without loss of generality let the inner polar ball Bp,ρ be smaller than the

outer polar ball BO. The line segment between p and the center of BO intersects

the surface in at least one point x. Since Bp,ρ and BO cannot contain samples, s is

the nearest sample to x (Observation 35) and d(x, s) ≤ rLFS(x).

Let z be the center of the circle C in which the boundaries of BI and BO

intersect, and let λ be the radius of C, as in Figure B.1. We have λ ≤ d(x, s), and

so, using Observation 2, λ ≤ O(r)LFS(s). The angle between P and the tangent

plane to Bp,ρ at s is the same as 6 zps = arcsin(O(r)LFS(s)/ρ). Since LFS(s) ≤ ρ,

for small enough r this is O(r)LFS(s)/ρ. The angle between P and the tangent

plane to BO is no greater, so α = O(r)LFS(s)/ρ.

2

Now we show that in the general case, any pair consisting of an inner and an outer

polar ball must intersect shallowly. We need the following corollary of Theorem 5.

Corollary 37 Every polar ball contains a point of the medial axis, when r < 1/3.

For convenience, let r′ = r/(1− r) = O(r).

Lemma 38 Let BI be an inside polar ball and BO be an outside polar ball. BI and

BO intersect at an angle of at most 2 arcsin 3r = O(r).

Proof: Consider the line segment connecting cI and cO, the centers of BI

and BO. Since cI and cO lie on opposite sides of F , this segment crosses F in at

least one point x.
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Let Bc,ρ be the smaller of the two balls BI and BO. If x ∈ Bc,ρ, we have

LFS(x) ≤ 2ρ. Since, the polar ball , Bc,ρ contains a point of the medial axis

(Corollary 37).

Otherwise x is in the larger of the two balls, but not in the smaller, as in

Figure B.1. Let c be the center of the smaller ball, and again define z and λ as in

Figure B.1. By Corollary 37, we have LFS(x) ≤ d(x, c) + ρ = d(x, z) + d(z, c) + ρ.

But the distance from x to the nearest sample is at least
√

λ2 + d2(x, z) =
√

ρ2 − d2(z, c) + d2(x, z)

So the r-sampling requirement means that
√

ρ2 − d2(z, c) + d2(x, z) ≤ r[ρ + d(x, z) + d(z, c)]

Since d(z, c) ≤ ρ, we can simplify to

d(x, z) ≤ 2r′ρ

which, for r ≤ 1/3, means that x is very close to Bc,ρ, and LFS(x) ≤ 3ρ.

Since the distance from x to the nearest sample is at least λ and at most

3rρ, we know that λ ≤ 3rρ. The angle between the plane P containing C and a

tangent plane on Bc,ρ at C is thus at most arcsin 3r, the angle between P and the

tangent plane of the larger ball is smaller, and the two balls meet at an angle of at

most 2 arcsin 3r.

2

The third lemma shows that a similar fact holds when one of the balls is a

medial, rather than a polar, ball.

Lemma 39 Let Bp be an inside (outside) polar ball and let Bm be an outside (in-

side) medial ball. The angle at which Bp and Bm intersect is at most 2 arcsin 2r =

O(r).
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Proof: Again we consider the line segment connecting p and m, the centers of Bp

and Bm, which crosses W in at least one point x, which is in Bp but not Bm (since

the interior of any medial ball is empty of points of the surface).

We have LFS(x) ≤ 2ρp, since Bp contains a point of the medial axis. When

2ρp ≤ ρm, we use this bound to show that the balls intersect at an angle of at most

2 arcsin 2r, as in the proof of Lemma 38.

Otherwise, since m itself is a point of the medial axis, we have LFS(x) ≤
d(x,m) = d(x, z) + d(z, m). Again, the distance from x to the nearest sample is at

least

a =
√

λ2 + d2(x, z) =
√

ρ2
m − d2(z, m) + d2(x, z)

So the r-sampling requirement means that

√
ρ2

m − d2(z,m) + d2(x, z) ≤ r[d(x, z) + d(z,m)]

Since d(z, c) ≤ ρm, we can simplify to

(1− r)d(x, z) ≤ rρm

which, for r ≤ 1/2, means that LFS(x) ≤ 2ρm. We use this bound to show that

the angle between the two balls is most 2 arcsin 2r, again as in Lemma 38.

2

Proximity

We now turn to the proof that the union boundaries UI and UO approximate F .

We can immediately infer from Lemma 38 that the surface F cannot penetrate too

far into the interior of either union, as a function of the radii of the balls forming

the unions. We extend this to a stronger bound in terms of LFS, which could be

much smaller than the radius of either medial ball at a surface point x.
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Lemma 40 Let u be a point in the Voronoi cell of s but not in the interior of either

polar balls at s. The distance from u to s is O(r)LFS(s).

Proof: We assume without loss of generality that LFS(s) = 1. Let p1 be the pole

farther from s. If 6 usp1 ≤ π/2, we let p = p1, otherwise we consider p = p2, the pole

nearer to s. We let Bp,ρ be the polar ball centered at p. In either case d(u, s) ≤ ρ,

because of the way in which the poles were chosen. Let θ be the angle between

vectors ~su and ~sp. Since u is outside the polar ball, d(s, u) ≥ 2ρ cos θ.

Since d(s, u) ≤ ρ, we have θ ≥ π
3 > 3 arcsin r′. Let ~n represent the normal at

s. We find 6 ~n ~sp < 2 arcsin r′ by Lemma 5. So 6 ~n ~su > π/3− 2 arcsin r′ > arcsin r′.

It follows that, for any point u in the Voronoi cell of s,

d(u, s) ≤ r′

(sin(θ − 3 arcsin r′))

Since θ ≥ π
3 , the angle, (θ − 3 arcsin r′) ≥ π

6 . Thus d(u, s) ≤ 2r′. Since we assumed

LFS(s) = 1, the lemma follows.

2

Corollary 41 Any point u which does not lie in the interior of either UI or UO is

within distance O(r)LFS(s) of its closest sample s.

It remains to bound the distance from any point on the boundary of one union and

in the interior of the other to the surface.

Lemma 42 For a point u contained in both UI and UO, the distance to the closest

sample s is O(r)LFS(s).

Proof: Point u is contained in an inner ball BI and an outer ball BO. The line

joining the centers of BO and BI intersects the surface at some point x. Let sx be

the closest sample to x and let s be the closest sample to u; see Figure B.1. A ball
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centered at x, and with radius d(x, sx), must also contain u (Observation 35). This

and the r-sampling condition give a bound on d(x, u).

d(x, u) ≤ d(x, sx) = O(r)LFS(x)

Hence

d(u, s) ≤ d(u, sx) ≤ d(u, x) + d(x, sx) = O(r)LFS(x)

By Observation 2, d(u, s) = O(r)LFS(s).

2

x
u

s

sx

Figure B.3: The point u is closer to x than sx, which is outside both the polar balls.

We use the two lemmata above to show that the two union boundaries UI =

δUI and UO = δUO have to be close to the surface.

Theorem 43 The distance from a point u ∈ UI or u ∈ UO to its closest point on

the surface x ∈ F is O(r)LFS(x).

Proof: Let s be the closest sample to u. Assume without loss of generality that u is

on the boundary UI . The either u ∈ UI and u ∈ UO, so that d(u, s) = O(r)LFS(s) by

Lemma 42, or u is in the interior of neither UI or UO, so that d(u, s) = O(r)LFS(s)

by Corollary 41. The point x is at least as close to u as s is, and hence d(x, u) =
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O(r)LFS(s) and d(x, s) = O(r)LFS(s). The result follows from Observation 2.

2

Lemmata 40 and 42 imply that most of Q lies in either the union of inner balls

or the union of outer balls, while only points in a small part - the tubular region

within O(r) of the distance to the medial axis - might lie in both, or neither, as in

Figure B.4.

Figure B.4: The boundaries of the unions of balls UI and UO must lie close to the
surface F . Specifically, the boundaries are contained in the tubular region, defined
as the set u of points such that the distance from u to the closest point x ∈ F is at
most O(r) times the distance from x to the medial axis.

Normals

Now we show that the normals on the boundaries UI and UO are also close to the

normals of nearby points of F , approaching the correct normal as O(
√

r) as r → 0.

Observation 44 Let B = Bc,ρ be a polar ball, at distance at most k from a point

x ∈ F . Then ρ ≥ LFS(x)−k
2 .

This follows because B is a polar ball, so it contains a point of the medial axis, by

Corollary 37, while the nearest point of the medial axis to x is at distance LFS(x).

Lemma 45 Let u be a point such that the distance to the nearest surface point

x ∈ F is at most O(r)LFS(x). Let Bc,ρ be a polar ball containing u. Then the

angle, in radians, between the surface normal at x and the vector ~uc is O(
√

r).
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Figure B.5: Since B cannot intersect BM very deeply, and d(u, x) has to be small,
the indicated angle cannot be too large.

Proof: Let Bm,R be the medial ball at x on the opposite side of the surface from c.

Since x is the nearest surface point to u, the vector x, u is normal to the surface at

x. So we can write the angle we are interested in as α = 6 ucm + 6 umc. We begin

by bounding 6 umc. Without loss of generality, assume LFS(x) = 1.

Since Bc,ρ and Bm,R cannot intersect at x at an angle greater than 2 arcsin 2r

(Lemma 39), the thickness of the lune in which they intersect is at most a factor

of O(r2) times the smaller of the two radii. Let B′ be the ball centered at m and

touching this lune, as in Figure B.5.

Angle β = 6 umc will depend on the ratio of the two radii R and ρ. The worst

case is on the left in Figure B.5. Since β decreases as u moves towards the center

c, we assume u is on the boundary of Bc,ρ. For any fixed ρ, increasing R makes β

smaller, so we assume R = 1, its minimum value since Bm,R is a medial ball at x.

For any fixed R, increasing ρ makes β larger, so we assume that B is infinitely large.

Since Bm,R is the smaller ball, the radius of B′ is R(1−O(r2)). Let y be the point at

which segment c,m intersects B′. We get 6 umc =
√

d2(m, y)− d2(m,u) = O(
√

r).

We use a similar argument to bound γ = 6 ucm. Again we can assume that

u is on the boundary of Bc,ρ. For any fixed ρ, increasing R increases γ, and for any
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fixed R, increasing ρ decreases γ, so in contrast to the previous situation, we let ρ

take on its minimum value of (1 − d(u, x))/2 = θ(1) (Observation 44), and let R

become infinitely large. The worst case is shown on the right in Figure B.5, giving

6 ucm =
√

d2(c, u)− d2(c, z) = O(
√

r).

2

Theorem 46 Let u be a point on UI or UO, and let x ∈ F be the closest surface

point to u. The difference between the normal nu (where it is defined) to the union

boundary at u and the surface normal nx at x is O(
√

r).

Proof: Point u is contained in the tubular region, and the distance d(u, x) =

O(r)LFS(x) (Theorem 43). If nu is defined, then u is contained in the surface of

exactly one ball and nu is the vector pointing towards the ball center, so we can

apply Lemma 45.

2

Homeomorphism

We use these geometric theorems to show that the surface of either UI or UO is

homeomorphic to the actual surface F . We’ll do this using a natural map from U

to F .

Definition: Let µ : IR3 → F map each point q ∈ IR3 to the closest point of F .

Lemma 47 Let U be either UI or UO. The restriction of µ to U defines a homeo-

morphism from U to F .
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Proof: We consider UI ; the argument for UO is identical. Since UI and F are both

compact, it suffices to show that µ defines a continuous, one-to-one and onto func-

tion. The discontinuities of µ are the points of the medial axis. From Theorem 43,

every point of UI is within distance O(r)LFS(x) from some point x ∈ F , whereas

every point of the medial axis is at least LFS(x) from the nearest point x ∈ F .

Thus µ is continuous on UI .

Now we show that µ is one-to-one. For any u′ ∈ UI , let x = µ(u′) and let

n(x) be the normal to F at x. Orient the line l(x) through x with direction n(x)

according to the orientation of F at x. Any point on UI such that µ(u) = x must

lie on l(x); let u be the outer-most such point.

Let Bc,ρ be the ball in UI with u on its boundary. Let α be the angle

between ~uc and the surface normal n(x). By Theorem 46, α = O(
√

r). Meanwhile

ρ = Ω(LFS(x)), by Observation 44.

Point u′ is at most O(rLFS(x)) from u, while l(x) lies in the interior of Bc,ρ

for distance at least 2ρ cosα = O(LFS(x)). Since u′ must be on l(x) but outside of

Bc,ρ, and u is the outermost such point, it must be the case that u = u′.

Finally, we need to establish that µ(U) is onto F . Since µ maps U , a closed

and bounded surface, continuously onto F , µ(U) must consist of some subset of the

closed, bounded connected components of F . But since every connected component

of F contains samples of F , and µ(s) = s for s ∈ S, µ(U) must consist of all the

connected components of F .

2

B.2 The power crust

It seems natural that since UI and UO are accurate representations of F and its

complement, that the power crust that they induce is also an accurate representation

of F . We establish this formally in this section.
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Proximity

The fact that the power crust is close to F is actually immediate from our results so

far. Since any point on a face separating an inside from an outside cell is contained

in either both of their Voronoi balls or in no Voronoi ball at all, Theorem 43 implies

the following.

Corollary 48 Any point u on a face of the power crust lies within O(r)LFS(x) of

some point x ∈ F .

Notice that although a point u on the power crust might be nearest to inner (outer)

polar ball B, in Euclidean distance, it might belong to the power cell of some other

inner (outer) ball B′ which is nowhere near B. Our proof that the power crust is

homeomorphic to the original surface hinges on showing that B and B′ cannot, in

fact, be too far apart.

Observation 49 Let p be a point in the tubular neighborhood, and let s be the

sample nearest p. Then d(p, s) = O(r)LFS(s).

Let x ∈ F be the closest point on the surface to p. The Observation above follows

since the distance d(p, s) is at most distance d(p, x)+d(x, s′), where s′ is the sample

nearest x, using Observation 2.

s

u

a
Bp,

BΟ

y

ρ

Figure B.6:
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Lemma 50 Let u be a point in the tubular neighborhood outside of any polar ball,

let x ∈ F be the nearest surface point to u, and let s be the closest sample to x. Let

Bp,ρ be the smaller of the two polar balls at s. Then d(u, Bp,ρ) = O(r2)LFS2(s)/ρ.

Proof: Since u is in the tubular neighborhood, d(u, x) = O(r)LFS(x), and d(x, s) ≤
rLFS(x). So by Observation 49, d(u, s) = O(r)LFS(s), that is, u is contained in

a ball of radius O(r)LFS(s) centered at s, as in Figure B.6. The distance from u

to Bp,ρ will be maximized when a) the two polar balls intersect in as large an angle

as possible (which is O(r)LFS(s)/ρ, by Lemma 36) and b) the radius of BO is as

small as possible (which is ρ).

From Figure B.6, we have d(u,Bp,ρ) ≤ d(u, a). The length of the chord sa is

O(r)LFS(s), so the angle between the chord and the tangent plane to Bp,ρ at s is

arcsin[O(r)LFS(s)/2ρ] = O(r)LFS(s)/ρ. So the total angle 6 ysa = O(r)LFS(s)/ρ

as well.

This gives d(u, a) = O(r)LFS(s) sin[O(r)LFS(s)/ρ], and hence d(u,Bp,ρ) =

O(r2)LFS2(s)/ρ, for small enough r.

Lemma 51 Let u be a point in the tubular neighborhood, and let p be the inner

(outer) pole at minimum power distance to u, with polar ball Bp,ρ. Let x ∈ F be

the nearest surface point to u and let s be the nearest sample to x. Let Bc,µ be the

smaller of the two polar balls at s. If u 6∈ Bp,ρ, then d(u,Bp,ρ) = O(r)LFS(s), for

small enough r.

Proof: If u is inside Bc,µ, then it is inside Bp,ρ, and the lemma is trivial. Otherwise,

we claim that the radius λ of the ball Bu centered at u and orthogonal to Bc,µ is at

most O(r)LFS(s), for small enough r. Since this ball must also intersect Bp,ρ, the

Lemma follows.

To establish the claim, assume without loss of generality that LFS(s) = 1,

so that LFS(x) = 1 (Observation 2). By Lemma 50, d(u,Bp,ρ ≤ k(r2/µ), for some
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constant k. We have,

λ =
√

µ2 + 2(kr2/µ)µ + k2r4/µ2 − µ2

=
√

2kr2 + k2r4/µ2 = O(r)

2

Homeomorphism

From Lemma 45 and Lemma 51 we get the following observation, which we need to

establish the homeomorphism between the power crust and F .

Observation 52 Let u be a point in the tubular neighborhood, and let p be the inner

(outer) pole at minimum power distance to u, with polar ball Bp. Let x ∈ F be the

surface point closest to u with surface normal nx. The vector from ~u, c forms an

angle of at most α = π/6 with nx, for small enough r.

The set of points in the tubular neighborhood closest to a point x ∈ F forms a line

segment g, perpendicular to the surface at x. Note that when we take a point u in

the tubular neighborhood to its nearest point x ∈ F , it travels along the segment g

corresponding to x.

Lemma 53 The segment g normal to the surface at a point x ∈ F and passing

through the tubular neighborhood intersects the power crust exactly once.

Proof: Consider the function fI(u) which returns the minimum power distance to

any pole p ∈ PI . The restriction of fI to the segment g is a piecewise quadratic

function. We claim that this function is monotonically decreasing as u goes from

the outer end of g to the inner end, since, by Observation 52, the direction in which

fI is decreasing is always within π/6 of g, and any angle less than π/2 would suffice.
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Similarly, the function fO is monotonically increasing on g. So fI and fO are

equal at exactly one point, at a face of the power diagram separating the cells of an

inside and an outside pole.

2

Theorem 54 There is a space homeomorphism taking the power crust to F .

Proof: Let Y be the power crust. We define a deformation of all of the domain Q
which takes Y into F , and hence the interior of Y into the interior of F and the

exterior of Y into the exterior of F . Specifically, we define a continuous parame-

terized map ft : Q → Q, for t ∈ [0, 1], such that at any time t, ft is a continuous,

one-to-one and onto map, and such that at time t = 0, f0(Y ) = Y , and at time

t = 1, f1(Y ) = F .

The power crust is strictly contained in the tubular neighborhood around F

(Lemma 48). Outside of the tubular neighborhood, we define ft to be the identity, at

every time t. By Lemma 53, the segment g normal to F at a point x ∈ F and pass-

ing through the tubular neighborhood intersects the power crust exactly once, in a

point y ∈ Y . By the definition of the tubular neighborhood, g intersects F only in x.

Let gi and go be the inner and outer endpoints of g. We define ft(y) = tx+(1− t)y,

and we let ft linearly map the segments gi, y to gi, ft(y) and y, go to ft(y), go.

2

B.3 Theoretical algorithm

Here we present the theoretical algorithm and its correctness proof. The labeling

algorithm in Section 3.3 is a special case of the theoretical algorithm. We know
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that the polar balls of an inner and an outer pole can only intersect shallowly. In

addition, we use the following lemma to label poles correctly.

Lemma 55 Two inside (resp. outside) polar balls inducing a face within the tubular

neighborhood meet at an angle of at least π/2, for small enough r.

Proof: Let p be a point any point on the face inside the tubular neighborhood, and

let c1, c2 be the centers of the two inside (resp. outside) polar balls inducing the

face. The angle between the surface normal n(x) at the point x ∈ F closest to p

and either pc1 or pc2 is at most π/6, so 6 c1pc2 is at most π/3.

2

This leads to the following algorithm to label each pole as either outside (O′)

or inside (I ′).

Input: An r-sample S from a closed, bounded smooth surface F .

Output:The power crust of S.

Step 1: Construct the Delaunay triangulation of S, find the Voronoi vertices,

and select two poles for each sample. Let BP be the set of polar balls.

Step 2: Construct the power diagram Pow(BP ).

Step 3: Select a sample on the convex hull of S.

Label its infinite outer pole with O′ and the opposite inner pole I ′.

Insert both poles in a queue.

Step 4: While the queue is non-empty:
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Remove a labeled pole p from the queue, and examine

each unlabeled neighbor q of p in Pow(BP ).

If the Voronoi ball surrounding q intersects the Voronoi ball of p

at an angle of more than π/4:

Give q the same label as p and insert it in the queue.

For each sample s such that q is a pole of s,

if the pole q′ opposite q at s is unlabeled:

Give q′ the opposite label from

q and insert q′ into the queue.

Step 5: Output the faces of Pow(BP ) separating the cells of

one pole labeled I ′ and one pole labeled O′ as the power crust.

To prove that this algorithm is correct, we need to show that the sets I and

O, corresponding to the inside an outside of F , are identical to the sets I ′ and O′.

Lemma 56 No pole in I receives label O′ and no pole in O receives label I ′.

Proof: Let q be the first mislabeled pole, and let p be the pole from whose label

that of q was determined. Either p and q should have opposite labels but they meet

at an angle of more than π/2, or p and q should have the same label but they are

opposite poles of the same sample s. The first case is impossible by Lemma 38, and

the second is impossible because the two poles of any sample always should have

opposite labels.

2

Lemma 57 Every pole receives a label.

Proof: We consider a pole p ∈ I, Every ball in I has at least one point on the power

crust, since each sample s such that p is a pole of s appears on the power crust.
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By Lemma 55 we know that every power crust edge is contained in two balls

which intersect deeply (the meet at an angle of at most π/2). Therefore if any pole

q in the same connected component of UI receives label I ′, then p will eventually as

well.

Each connected component of either I or O eventually gets at least one

labeled pole. Assume not; consider some component that remains unlabled; we

claim that there must be a sample on this component. If this is true, we are done,

because a label will be propagated across this sample.

The claim must be true; otherwise, consider any point x on the boundary of

that component. The line segment connecting x to its nearest sample s must cross

the medial axis, so that the distance d(x, s) ≥ LFS(x), a contradiction.

2
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