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Abstract 

 

Anisotropic Analysis and Fracture Characterization of the  

Haynesville Shale, Panola County, Texas 

 

Anthony William Barone, M.S.Geo.Sci. 

The University of Texas at Austin, 2015 

 

Supervisor:  Mrinal K. Sen 

 

In unconventional resources such as the Haynesville Shale, a proper 

understanding of natural fracture patterns is essential to enhancing the economic success 

of petroleum extraction. The spatial density of naturally occurring fracture sets affects 

drainage area and optimal drilling location(s), and the azimuth of the strike of the 

predominant fracture set affects the ideal orientation of wells. In the absence of data to 

directly determine these fracture characteristics, such as Formation Microimaging (FMI) 

logs, these natural fracture patterns can be analyzed by examining the seismic anisotropy 

present in the reservoir. Anisotropy introduced from aligned fracture sets creates 

predictable azimuthal variations in the seismic wavefield. This allows the reservoir 

anisotropy, and thus the fracturing present in the reservoir, to be studied indirectly 

through the azimuthal analysis of industry standard 3D seismic data. 

The work presented here outlines three distinct methodologies, which utilize 

azimuthal amplitude variations (AVAZ) present in 3D seismic data, to infer fracture 

characteristics without the need for substantial well log information. Two of these   
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methods have been previously established and assume the reservoir to be characteristic of 

Horizontally Transverse Isotropic (HTI). The last method is novel and assumes 

orthorhombic anisotropy when inverting for fracture density and is able to 

unambiguously invert for fracture azimuth.  

All methodologies used in this work produced similar results, increasing 

confidence in the accuracy of these results through statistical repeatability. Fracture 

density inversion results indicate spatially varying fracture density throughout the area, 

with a distinct area of higher fracture density present in the Northwestern corner of the 

area analyzed. Spatially varying fracture density and localized pockets of fracturing is 

consistent with expectation from analyzing production data and FMI logs from other 

areas of the Haynesville. Fracture azimuth inversion results showed some variability; 

however, the novel method presented in this thesis indicates that the azimuth of the 

predominant fracture set is oriented at a compass bearing of approximately 82 degrees – 

rotated slightly counterclockwise from an east-west orientation. Fracture azimuth results 

agree well with expectations from a regional stress analysis and from examining 

comparable formations with known fracture patterns in the surrounding area. 
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new Fourier coefficient decomposition method. 2-D lateral smoothing 

has been applied. The bottom image depicts fracture orientation as 

calculated by the HTI Fourier coefficient decomposition method using 

the phase of the r2 Fourier coefficient. Values corresponding to the top 

of the Haynesville are shown. Colorbars range from -90 degrees to 90 

degrees. The black arrows indicate the direction of north. .............138 

Figure 5.21: Comparison of fracture orientation as calculated by the proposed new 

method and the HTI Fourier coefficient decomposition based method. 

The top image depicts fracture orientation as calculated by the proposed 

new Fourier coefficient decomposition method. 2-D lateral smoothing 

has been applied. The bottom image depicts fracture orientation as 

calculated by the HTI Fourier coefficient decomposition method using 

the phase of the r2 Fourier coefficient. Values corresponding to 

approximately 15 m from the top of the Haynesville are shown. 

Colorbars range from -90 degrees to 90 degrees. The black arrows 

indicate the direction of north. ........................................................139 
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Figure 5.22: Comparison of fracture orientation as calculated by the proposed new 

method and the HTI Fourier coefficient decomposition based method. 

The top image depicts fracture orientation as calculated by the proposed 

new Fourier coefficient decomposition method. 2-D lateral smoothing 

has been applied. The bottom image depicts fracture orientation as 

calculated by the HTI Fourier coefficient decomposition method using 

the phase of the r2 Fourier coefficient. Values corresponding to 

approximately 30 m from the top of the Haynesville are shown. 

Colorbars range from -90 degrees to 90 degrees. The black arrows 

indicate the direction of north. ........................................................140 

Figure 5.23: Comparison of fracture orientation as calculated by the proposed new 

method and the HTI Fourier coefficient decomposition based method. 

The top image depicts fracture orientation as calculated by the proposed 

new Fourier coefficient decomposition method. 2-D lateral smoothing 

has been applied. The bottom image depicts fracture orientation as 

calculated by the HTI Fourier coefficient decomposition method using 

the phase of the r2 Fourier coefficient. Values corresponding to 

approximately 45 m from the top of the Haynesville are shown. 

Colorbars range from -90 degrees to 90 degrees. The black arrows 

indicate the direction of north. ........................................................141 
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Figure 5.24: R2*, a proxy for fracture density, as calculated by the Orthorhombic 

Fourier coefficient decomposition method. R2
*  is a measure of combined 

evergy in w12 and w22, corresponding to 2nd order sine and cosine terms 

in the Fourier series. 2-D lateral smoothing has not been applied. Values 

have been vertically averaged throughout the Haynesville using a simple 

arithmetic mean. Warmer colors indicate denser fracturing. The black 

arrow indicates the direction of north. ............................................145 

Figure 5.25: R2
* , a proxy for fracture density, as calculated by the Orthorhombic 

Fourier coefficient decomposition method. R2
*  is a measure of combined 

evergy in w12 and w22, corresponding to 2nd order sine and cosine terms 

in the Fourier series. 2-D lateral smoothing has been applied. Values 

have been vertically averaged throughout the Haynesville using a simple 

arithmetic mean. Warmer colors indicate denser fracturing. The black 

arrow indicates the direction of north. ............................................146 

Figure 5.26: Comparison of proxies for fracture density from the Orthorhombic and 

HTI Fourier coefficient decomposition based methods. The top image 

depicts R2
* , a proxy for fracture density, as calculated by the 

Orthorhombic Fourier coefficient decomposition method. 2-D lateral 

smoothing has not been applied. The bottom image depicts r2 as 

calculated by the HTI Fourier coefficient decomposition method. The 

black arrows indicate the direction of north. ..................................147 
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Figure 5.27: Comparison of proxies for fracture density from the Orthorhombic and 

HTI Fourier coefficient decomposition based methods. The top image 

depicts R2
* , a proxy for fracture density, as calculated by the 

Orthorhombic Fourier coefficient decomposition method. 2-D lateral 

smoothing has been applied. The bottom image depicts r2 as calculated 

by the HTI Fourier coefficient decomposition method. Values have been 

vertically averaged throughout the Haynesville using a simple arithmetic 

mean. Warmer colors indicate denser fracturing. The black arrows 

indicate the direction of north. ........................................................148 

Figure 5.28: R2
* , a proxy for fracture density, as calculated by the Orthorhombic 

Fourier coefficient decomposition method. R2
*  is a measure of combined 

evergy in w12 and w22, corresponding to 2nd order sine and cosine terms 

in the Fourier series. 2-D lateral smoothing has not been applied. Values 

corresponding to a constant time of 2060 ms are shown. Warmer colors 

indicate denser fracturing. The black arrow indicates the direction of 

north. ...............................................................................................149 

Figure 5.29: R2
* , a proxy for fracture density, as calculated by the Orthorhombic 

Fourier coefficient decomposition method. R2
*  is a measure of combined 

evergy in w12 and w22, corresponding to 2nd order sine and cosine terms 

in the Fourier series. 2-D lateral smoothing has been applied. Values 

corresponding to a constant time of 2060 ms are shown. Warmer colors 

indicate denser fracturing. The black arrow indicates the direction of 

north. ...............................................................................................150 
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Figure 5.30: Comparison of proxies for fracture density from the Orthorhombic and 

HTI Fourier coefficient decomposition based methods. The top image 

depicts R2
* , a proxy for fracture density, as calculated by the 

Orthorhombic Fourier coefficient decomposition method. 2-D lateral 

smoothing has not been applied. The bottom image depicts r2 as 

calculated by the HTI Fourier coefficient decomposition method. Values 

corresponding to a constant time of 2060 ms are shown. Warmer colors 

indicate denser fracturing. The black arrows indicate the direction of 

north. ...............................................................................................151 

Figure 5.31: Comparison of proxies for fracture density from the Orthorhombic and 

HTI Fourier coefficient decomposition based methods. The top image 

depicts R2
* , a proxy for fracture density, as calculated by the 

Orthorhombic Fourier coefficient decomposition method. 2-D lateral 

smoothing has been applied. The bottom image depicts r2 as calculated 

by the HTI Fourier coefficient decomposition method. Values 

corresponding to a constant time of 2060 ms are shown. Warmer colors 

indicate denser fracturing. The black arrows indicate the direction of 

north. ...............................................................................................152 

Figure 5.32: R2
* , a proxy for fracture density, as calculated by the Orthorhombic 

Fourier coefficient decomposition method. R2
*  is a measure of combined 

evergy in w12 and w22, corresponding to 2nd order sine and cosine terms 

in the Fourier series. 2-D lateral smoothing has been applied. Values 

corresponding to the top of the Haynesville are shown. Warmer colors 

indicate denser fracturing. The black arrow indicates the direction of 

north. ...............................................................................................154 
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Figure 5.33: R2
* , a proxy for fracture density, as calculated by the Orthorhombic 

Fourier coefficient decomposition method. R2
*  is a measure of combined 

evergy in w12 and w22, corresponding to 2nd order sine and cosine terms 

in the Fourier series. 2-D lateral smoothing has been applied. Values 

corresponding to approximately 15 m from the top of the Haynesville 

are shown. Warmer colors indicate denser fracturing. The black arrow 

indicates the direction of north. ......................................................155 

Figure 5.34: R2
* , a proxy for fracture density, as calculated by the Orthorhombic 

Fourier coefficient decomposition method. R2
*  is a measure of combined 

evergy in w12 and w22, corresponding to 2nd order sine and cosine terms 

in the Fourier series. 2-D lateral smoothing has been applied. Values 

corresponding to approximately 30 m from the top of the Haynesville 

are shown. Warmer colors indicate denser fracturing. The black arrow 

indicates the direction of north. ......................................................156 

Figure 5.35: R2
* , a proxy for fracture density, as calculated by the Orthorhombic 

Fourier coefficient decomposition method. R2
*  is a measure of combined 

evergy in w12 and w22, corresponding to 2nd order sine and cosine terms 

in the Fourier series. 2-D lateral smoothing has been applied. Values 

corresponding to approximately 45 m from the top of the Haynesville 

are shown. Warmer colors indicate denser fracturing. The black arrow 

indicates the direction of north. ......................................................157 
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Figure 5.36: Comparison of proxies for fracture density from the Orthorhombic and 

HTI Fourier coefficient decomposition based methods. The top image 

depicts R2
* , a proxy for fracture density, as calculated by the 

Orthorhombic Fourier coefficient decomposition method. 2-D lateral 

smoothing has been applied. The bottom image depicts r2 as calculated 

by the HTI Fourier coefficient decomposition method. Values 

corresponding to the top of the Haynesville are shown. Warmer colors 

indicate denser fracturing. The black arrows indicate the direction of 
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Figure 5.37: Comparison of proxies for fracture density from the Orthorhombic and 

HTI Fourier coefficient decomposition based methods. The top image 

depicts R2
* , a proxy for fracture density, as calculated by the 

Orthorhombic Fourier coefficient decomposition method. 2-D lateral 

smoothing has been applied. The bottom image depicts r2 as calculated 

by the HTI Fourier coefficient decomposition method. Values 

corresponding to approximately 15 m from the top of the Haynesville 

are shown. Warmer colors indicate denser fracturing. The black arrows 

indicate the direction of north. ........................................................159 
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Figure 5.38: Comparison of proxies for fracture density from the Orthorhombic and 

HTI Fourier coefficient decomposition based methods. The top image 

depicts R2
* , a proxy for fracture density, as calculated by the 

Orthorhombic Fourier coefficient decomposition method. 2-D lateral 

smoothing has been applied. The bottom image depicts r2 as calculated 

by the HTI Fourier coefficient decomposition method. Values 

corresponding to approximately 30 m from the top of the Haynesville 

are shown. Warmer colors indicate denser fracturing. The black arrows 

indicate the direction of north. ........................................................160 

Figure 5.39: Comparison of proxies for fracture density from the Orthorhombic and 

HTI Fourier coefficient decomposition based methods. The top image 

depicts R2
* , a proxy for fracture density, as calculated by the 

Orthorhombic Fourier coefficient decomposition method. 2-D lateral 

smoothing has been applied. The bottom image depicts r2 as calculated 

by the HTI Fourier coefficient decomposition method. Values 

corresponding to approximately 45 m from the top of the Haynesville 

are shown. Warmer colors indicate denser fracturing. The black arrows 

indicate the direction of north. ........................................................161 

Figure 5.40: Comparison of data slices from the synthetic datasets. The left image 

shows a slice from the orthorhombic synthetic dataset with gas filled 

fractures, and the right image shows a slice from the HTI (a) dataset 
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Figure 5.41: Comparison of proxies for fracture density from the Orthorhombic and 

HTI Fourier coefficient decomposition based methods. The top image 

depicts R2
* , a proxy for fracture density, as calculated by the 

Orthorhombic Fourier coefficient decomposition method. 2-D lateral 

smoothing has been applied. The bottom image depicts  r2 as calculated 

by the HTI Fourier coefficient decomposition method. Values have been 

vertically averaged throughout the Haynesville using a simple arithmetic 

mean. Warmer colors indicate denser fracturing. The black circle 

indicates an area of anomalously high fracture density identified in the 

orthorhombic method. The black arrows indicate the direction of north.
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Chapter 1: Introduction 

1.1 MOTIVATION 

Characterizing natural fracture networks in unconventional reservoirs is essential 

both in optimizing current production in existing plays and to find new areas in 

unconventional plays that are economic to produce. Maximizing the use of existing 

unconventional resources and ensuring new unconventional discoveries are economically 

feasible is especially important in today’s age of declining conventional field discoveries. 

Improper understanding of the natural fracture systems present in a reservoir could lead 

to incorrect well placement and/or incorrect well orientation, significantly reducing the 

productive potential of the field. Additionally, natural fracturing plays an important role 

in planning induced hydraulic fracturing for enhanced hydrocarbon recovery.  Enhanced 

recovery projects might aim to avoid fractures that have the ability to consume large 

amounts of fracturing fluid, reducing fluid pressure and fracturing potential. Alternately, 

enhanced recovery projects might attempt to connect natural fracture sets, allowing 

hydrocarbons over a substantial area to be funneled to a single well location (Orangi et 

al., 2011). 

Fracture characteristics can be directly inferred via well logs which aim to directly 

detect fractures, such as Formation Microimaging (FMI) logs and by examining outcrops 

of the formation in question (Becker, 2014). Both of these direct methods, however, have 

limited applicability. In an analogous outcrop analysis there is no guarantee that the 

reservoir has similar fracture characteristics to the exposed part of the formation, which 

could be hundreds of miles from the reservoir in question and have undergone uplift, 

deformation, and weathering. FMI logs, when available, directly indicate fracture 

characteristics of the reservoir in question and provide high resolution information; 
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however, they only portray 1D information and are often sparse, leaving the vast majority 

of the reservoir that is away from well control without information on fracturing. Three 

dimensional (3D) seismic data, being laterally extensive and sampling the reservoir in 

question rather than an analog, is not plagued by the downfalls of FMI logs and 

analogous outcrop examination. Despite having lower resolution and indirectly detecting 

fracturing, seismic data provides an optimal data type for understanding the fracture 

characteristics of the entire reservoir and is ideal for 3D reservoir characterization. Figure 

1.1 shows a simplified comparison of these different fracture characterization techniques. 

Ideally, all of the above methods should be used in combination with each other, taking 

care to correct for issues of scale, resolution, frequency-dependent responses, and lateral 

variability. This work, however, will focus exclusively on the analysis of 3D seismic data 

for the purpose of inferring large-scale 3D fracturing characteristics of the reservoir. 
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Figure 1.1: A simplified comparison of different fracture characterization techniques 
currently in use. Formation Microimaging (FMI), shown in the leftmost 
figure, produces an electrical-image of the rock formation surrounding the 
borehole, allowing for direct determination of fracturing characteristics 
immediately surrounding the borehole. The center figure depicts an 
analogous outcrop that has been interpreted with large fractures depicted 
with thick black lines and smaller fractures depicted with thin gray lines. 
The rightmost figure depicts a synthetic seismic wavefield associated with 
anisotropic media, where azimuthal variations in both seismic amplitude and 
seismic traveltime can be easily identified. Figure from Becker (2014). 
Leftmost figure originally from Xiao and Li (2011). Central figure originally 
from Strijker et al. (2012). 

In today’s era of computerized data analysis and remarkable computer processing 

power, routine analysis of 3D seismic data to infer fracture characteristics has become 

common in industry. The ability to do so is implemented in many major commercial 

software packages that perform seismic data analysis. Most, if not all, of these software 

packages, however, suffer from two substantial limitations:  

1. An assumption of Horizontally Transverse Isotropic (HTI) medium. 

2. An inability to unambiguously determine fracture azimuth. 

Effective medium theory indicates that an effective HTI medium is the result of the 

underlying assumption that fractures are closely spaced (relative to a seismic 
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wavelength), vertically aligned, rotationally invariant, and embedded in an otherwise 

homogeneous isotropic rock. Although any of these underlying assumptions could prove 

to be false, the assumption of an isotropic background rock is certainly incorrect to some 

degree in the case of a Vertically Transverse Isotropic (VTI) background rock, such as a 

finely layered medium or a shale. Effective medium theory indicates that a single closely 

spaced, vertically aligned, rotationally invariant fracture set embedded in a VTI 

background rock results in orthorhombic anisotropy; however, this VTI component is 

largely ignored in industry seismic data analysis. Refer to Chapter 3 of this thesis for an 

overview of effective medium theory. In addition to a potentially incorrect assumption of 

the anisotropy type of the rock in question, existing fracture characterization methods are 

plagued by an inability to determine fracture azimuth without a 90-degree ambiguity. 

This 90-degree ambiguity in fracture azimuth will be further discussed in Chapters 4 and 

5. The work presented in this thesis attempts to address both these limitations associated 

with common industry fracture characterization techniques. In part, this work aims to 

provide an easy-to-follow orthorhombic fracture characterization procedure that is 

computationally feasible to apply to large-scale industry seismic datasets. Additionally, 

this work aims to unambiguously determine fracture azimuth without the aforementioned 

90-degree ambiguity in orientation. Furthermore, this work provides a comparison 

between existing HTI methods and the proposed method to help determine if the extra 

complexity present in this new proposed method is necessary for accurate fracture 

characterization.  

Although the main objective of developing an orthorhombic fracture 

characterization procedure in this work is aimed at better characterization of 

unconventional resources, this work can also be applied to other situations. Beyond 

fractured shale, the assumption of orthorhombic anisotropy is also applicable in 
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conventional plays where fracturing has occurred and layer thickness is small compared 

to a seismic wavelength. In particular, fracturing plays an important role in fluid storage 

and migration pathways in carbonate reservoirs (Alhussain, 2013). Despite the focus on 

fractured shale in this work, the methods presented are applicable in any fractured 

reservoir setting with appropriate seismic data available. The methods proposed in this 

thesis can be thought of as generalized fracture characterization methods rather than 

specifically unconventional resource specific or shale characterization methods. 

For the sake of completeness, alternate fracture characterization methods utilizing 

3D seismic data will be briefly summarized. Other methods that utilize 3D seismic data 

to determine fracture density and orientation include velocity variation with azimuth 

analysis (VVAZ) (Grechka and Tsvankin, 1998 and Sun et al., 2013), amplitude analysis 

in the ray parameter domain (Alhussain, 2013), and post-stack attributes such as 

curvature and coherence (Alhussain, 2013). VVAZ relies on the analysis of slight travel 

time differences corresponding to different azimuths. The direction corresponding to 

minimal travel time corresponds to the “fast direction” and thus the direction parallel to 

fracture strike. Conversely, the maximum travel time direction corresponds to the “slow 

direction” and thus the direction perpendicular to fracture strike. The magnitude of the 

travel time difference between the fast and slow direction provides an indication of 

fracture density. Amplitude analysis in the ray parameter domain, as proposed by 

Alhussain (2013), examines the ratio of the reflection amplitude from the top and the 

bottom of the reservoir for a specific ray parameter. Looking at a specific ray parameter 

rather than a constant incident angle allows for the same section of the wavefield is 

compared directly. Examining the ratio of reflected energy of a constant wavefield 

segment in the reservoir zone allows for any anisotropic overburden as well as any 

transmission effects to be accounted. Lastly, certain post-stack seismic attributes have 
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been shown to indicate high fracture density, as demonstrated by Alhussain (2013). In 

particular, high curvature and low coherence can both be indicative of high fracture 

density. Examples of this relationship can be seen throughout the literature, including 

Chopra and Marfurt (2010), Gersztenkorn and Marfurt (1999), and Yenugu and Marfurt 

(2011). These methods are not utilized in this study, but they do present alternate and 

independent ways to determine fracture orientation and fracture density from 3D seismic 

data, and could be considered in future work. 

1.2 OBJECTIVES 

The objective of this study is to analyze and apply several robust fracture 

characterization techniques that utilize the azimuthal amplitude analysis of 3D seismic 

data. This thesis includes the theoretical framework for the analyses used, a step-by-step 

workflow for performing said analyses, and presents the results from performing said 

analyses on real data from the Haynesville Shale in Panola County, Texas. In addition to 

applying existing methods that assume HTI anisotropic media using commercial software 

(Hampson-Russell ©), this work develops a new method for fracture characterization 

based on Fourier decomposition of seismic data. This novel method partially assumes 

orthorhombic anisotropy. Specifically, orthorhombic anisotropy is assumed when 

inverting for fracture density, although the inversion for fracture azimuth maintains the 

standard HTI assumption. This method is, however, capable of unambiguously 

determining fracture azimuth, and it incorporates several advanced inversion techniques. 

Lastly, this study aims to compare results from this novel method to those from existing 

HTI methodologies to either confirm or negate the need to implement to the more 

complex, but more computationally expensive, proposed method. 
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1.3 THESIS ORGANIZATION 

This thesis is divided into six chapters. Chapter 1 provides a brief overview of the 

motivation behind the work performed in this project, outlines the objectives 

accomplished by this project, and presents the organization of this thesis. Chapter 2 

presents a brief geologic background of the Haynesville Shale, overviews the data used in 

this study, and summarizes the initial processing steps performed on the data. Chapter 3 

provides the theoretical framework for the fundamentals of seismic wave propagation, 

solving for seismic reflectivity, tensor notation and analysis, linear slip deformation 

theory, effective anisotropy, and least squares based inversion techniques. Chapter 4 

overviews the existing fracture characterization methods used in this work, which assume 

HTI anisotropy. Included are an overview of the theory behind each method, a step-by-

step implementation summary, presentation of results, and a discussion of results from 

both the Rüger and Fourier decomposition based HTI methods. Chapter 5 overviews the 

new Fourier decomposition based fracture characterization method. Included are an 

overview of the theory behind the method, a step-by-step implementation summary, an 

overview of the generation of a synthetic data presentation of synthetic and real data 

results, a discussion of results, and a comparison between this novel method and an 

analogous HTI method. Lastly, Chapter 6 covers conclusions derived from this work and 

discusses possible future work. 
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Chapter 2: Background 

2.1 GEOLOGIC BACKGROUND OF THE HAYNESVILLE 

The Haynesville Shale is a generally organic- and carbonate-rich and clay-poor 

mudstone spanning areas of Eastern Texas and Northern Louisiana, with mudstone 

lithofacies laterally varying in carbonate and siliciclastic composition. Upper Jurassic in 

age, the Haynesville Shale is one of many Kimmeridgian-Tithonian black shales 

deposited worldwide during a global second-order transgression. These Upper Jurassic 

black shales have proven to be important source rocks worldwide, and the Haynesville is 

no exception. The entire Haynesville Shale is estimated to contain natural gas reserves on 

the order of several hundred trillion cubic feet (tcf), with individual wells often being 

able to recover as much as 7.5 billion cubic feet (bcf) of natural gas (Hammes et al., 

2011). These production rates make the Haynesville one of the most productive shale gas 

plays in the continental United States. Many Haynesville gas wells experience high initial 

production (> 30 mmcf/day) and quick decline (~80% in the 1st year). This production 

trend supports the idea that fracturing plays a crucial role in Haynesville Shale gas 

production, despite the lack of fracturing seen in FMI log core images gathered 

throughout the Haynesville (Hammes et al., 2011).  

The Haynesville Shale was deposited over the Sabine uplift, one of many large 

provinces exhibiting structural highs and lows around the Gulf of Mexico Basin. 

Underlying the Sabine uplift is a region of pseudo-continental crust. This pseudo-

continental crust is in many ways indistinguishable from North American continental 

crust, but is distinct due to being separated from the North American crust by a narrow 

belt of ocean-like crust. There is extensive speculation and debate regarding the exact 

nature of the Sabine basement, but it is generally considered a “microcontinent arc”. The 

organic rich shale, including the part of the Haynesville Shale examined in this work, is 
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primarily present over the eastern flank of the Sabine uplift. The lateral extent of the 

Haynesville Shale and a number of additional lithofacies surrounding the Haynesville 

Shale can be seen in Figure 2.1. Underlying the Haynesville Shale is the Louard Group 

carbonates, including the Smackover, Buckner, Haynesville and Glimer Limestones. 

Together, this group is colloquially known as the Cotton Valley Limestone. During the 

Transgressive rise in sea level associated with Haynesville deposition, carbonate buildup 

occurred, which formed the Cotton Valley Limestone. Eventually, carbonate buildup was 

overtaken by deeper-water shale deposition, forming the Haynesville Shale, as sea-level 

continued to rise. The top of the Haynesville represents a maximum flooding surface 

(MFS), marking the sequence boundary between the transgressive and highstand system 

tracks of the 2nd order Jurassic supersequence. This MFS represents the turnaround from 

Haynesville retrogradation to Bossier progradation. The MFS additionally marks the end 

of Jurrasic carbonate production – during the highstand following Haynesville deposition, 

deltaic and barrier bar systems spread across the basin, covering the Haynesville Shale in 

thick layers of siliciclastic sedimentation (Hammes et al., 2011). These siliciclastic 

sediments are known as the Cotton Valley Group and include the clay-rich Bossier shale, 

the Cotton Valley Sands, and the Knowles formation. 
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Figure 2.1: Paleogeography associated with Haynesville deposition North of the Gulf of 
Mexico in present day Eastern Texas and Northwestern Louisiana. The 
organic rich Haynesville Shale, which is the focus of this work, and 
surrounding lithofacies can be seen. Panola County is outlined by the red 
box. Figure from Hammes et al. (2011). 

Geographically, the Haynesville is bounded by the Sabine Island Complex to the 

South, the North Louisiana Salt Basin to the East, and the East Texas Salt Basin and 

Brazos Basin to the West. The Haynesville generally ranges in depth from 9,000 – 14,000 

ft, though it extends to below 18,000 ft depth in areas that extend southward into the Gulf 

of Mexico. The Haynesville varies in thickness, with a maximum thickness exceeding 

350 ft. See Figure 2.2 for an isopach thickness map of the Haynesville Shale. 

Geographically, the Haynesville Shale-gas play extends over 16 counties in Northwest 

Louisiana and Eastern Texas, but all work presented here is based on data collected on 

the Haynesville in Panola County, Texas. In this area, the Haynesville Shale lies 

approximately 11,000 ft deep and is approximately 200 ft thick. 
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Figure 2.2: Isopach thickness map of the Haynesville Shale. Warmer colors indicate 
areas of thicker Haynesville Shale deposits. Blue areas correspond to 
carbonate shelves lacking any shale deposition. Panola County is outlined 
by the red box. Figure from Hammes et al. (2011). 

2.2 DATA OVERVIEW 

Data available for this study included both unmigrated and migrated 3D seismic 

sections and a suite of well logs from two wells located within the bounds of the seismic 

survey. Both seismic datasets include pre-stack gathers, a post-stack section, a RMS 

velocity model, and a number of picked horizons. The pre-stack gathers include offsets 

ranging from 225m to 6025m, allowing for a wide angle range when transformed into the 

incident angle domain. This results in seismic incident angles spanning from about 5 
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degrees to about 45 degrees in the vicinity of the Haynesville. Unfortunately, in the high 

and low extremes of that angle range much azimuthal information is missing, and data 

are represented by very limited azimuths. At these extreme high and low incident angles, 

most data tend to reside in the approximate inline direction. Both wells are present within 

the migrated 3D seismic dataset although only one well is present within the bounds of 

the unmigrated dataset. The exact geographic location of the survey is confidential and 

cannot be provided in this thesis; however, all seismic and well data are from within 

Panola County, Texas. All data were provided by Chevron. In addition to the data 

provided by Chevron, I generated a number of synthetic seismic datasets. These synthetic 

data will be further discussed in Chapter 5. 

In the work presented in this thesis, only the unmigrated seismic dataset was used. 

This was done for a number of reasons. The primary reason was that the Kirchhoff pre-

stack time migration performed to produce the migrated seismic dataset did not maintain 

azimuthal information in the dataset headers. The lack of the azimuthal information in the 

migrated data made the azimuthal analysis performed in this work impossible to perform. 

However, even if azimuthal information in headers had been maintained, the unmigrated 

dataset would be preferable for a number of reasons. Seismic imaging (i.e., migration) 

distorts true seismic amplitudes, making any sort of azimuthal amplitude analysis on a 

migrated dataset inherently flawed. Additionally, high-frequency information has been 

lost in the migration, as can be seen in Figure 2.3, which shows a comparison of the 

spectral compositions of the unmigrated and migrated datasets. The inclusion of higher 

frequency information indicates that an analysis performed with the unmigrated data will 

yield higher resolution results. Lastly, due to the relatively simple geology and nearly flat 

layering present in the survey area, migration is not an absolute necessity. Generally, the 

unmigrated data does not deviate significantly from the migrated image. For these 
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reasons, the unmigrated 3D seismic dataset was the obvious choice to be used in this 

work. 

 

 

Figure 2.3: Comparison of amplitude spectrum of the unmigrated 3D seismic dataset 
(upper) and the migrated 3D seismic dataset (lower). The X axis 
corresponds to frequency, and ranges from 0 Hz to 80 Hz. The Y axis 
represents normalized amplitude. Spectra calculated using Hampson-Russell 
©. 

The unmigrated dataset consists of 671 inlines and 301 crosslines, with inline and 

crossline spacings of 125 ft and 250 ft, respectively. Data is orientated such that inlines 

are oriented approximately north-south and crosslines are oriented approximately east-

west. Data orientation is rotated ~2.5 degrees clockwise from an exact N-S / E-W 

alignment, but results depicted later in this thesis commonly assume the inline direction 

to correspond to approximately north-south. This data is a subset of a larger dataset 
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consisting of 4000 inlines and 1851 crosslines that extends outside of Panola County, and 

which is proprietary information belonging to a number of companies. In order to reduce 

computational time associated with the analyses performed in this work, a reduced 

section of 137 inlines by 137 crosslines was used, corresponding to an area slightly larger 

than 6 miles by 3 miles. The one well within the bounds of the unmigrated dataset is 

located at the center of this 137 inline by 137 crossline rectangle. See Figure 2.4 for a 

graphical description of the location of the reduced dataset used in this work relative to 

the complete dataset, as well as the relative location of the single available well within 

each volume. The eastern and southern edges of the reduced dataset border the edges of 

the complete dataset, allowing for “edge-effects” to be investigated. 
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Figure 2.4: (Upper): Map view of the entire unmigrated 3D seismic dataset, spanning 
670 inlines and 300 crosslines. (Lower): Map view of the reduced seismic 
dataset, spanning 137 inlines and 137 crosslines, and its relative location 
within the full dataset. The ∗ indicates the well location. The black arrows 
indicate the direction of north. 

N 
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Due to the absence of FMI logs and the motivation to characterize fractures 

exclusively through the analysis of 3D seismic data, the use of well logs in this work is 

very limited. Well log information was, however, used to determine the ratio of the 

compressional wave velocity (𝑉𝑉𝑝𝑝) to that of the shear wave velocity (𝑉𝑉𝑠𝑠). Some of the 

analyses presented in this work are sensitive to a parameter denoted “𝑔𝑔”, which is defined 

as 𝑉𝑉𝑠𝑠2 𝑉𝑉𝑝𝑝2� , and well information was used to approximate this parameter. In the spirit of 

performing an analysis exclusively on 3D seismic data, however, I note that an 

approximate value of 𝑔𝑔 could be determined by some general relationship. For example, 

a value of 𝑔𝑔 determined by Gardner’s relation and calibrated to the area in question will 

generally suffice. Small errors in the chosen value of 𝑔𝑔 normally will not substantially 

alter results of the analysis. 

2.3 SEISMIC PROCESSING 

Prior to the commencement of the work described in this thesis, the seismic data 

were processed by CGG Veritas in June 2011. A full list of processing steps performed 

by CGG Veritas can be seen in Table 2.1. Initially, data were demultiplexed (i.e., sorted 

by trace rather than by time), and then reformatted to .SEGY format. Manual trace edits 

were performed to remove bad, noisy, or mono-frequency traces and to correct traces 

with incorrect polarity. System-dependent gain correction and spreading gain recovery 

were applied to correct for geometric spreading of the seismic wavefield. High amplitude 

noise burst attenuation and high amplitude de-spiking were both applied in the shot 

domain. Source- and system-phase matching was applied. This dataset was shot using a 

variety of sources, including dynamite, vibroseis, mini-vibe and airgun sources, each with 

a unique source signature. Thus, matching and normalizing source signatures was a 

crucial processing step in order to preserve data continuity. Surface consistent spike 
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deconvolution with 0.1% prewhitening and a 160ms operator window was applied in 

order to increase temporal resolution and remove any echoes present in the data. A 

preliminary velocity analysis was performed. Surface consistent residual statics and 

surface consistent gain correction were applied to correct for near-surface velocity 

variation and to redatum the data to a consistent elevation. A number of noise attenuation 

techniques were applied, including noise burst attenuation, adaptive linear noise 

attenuation, and radon linear noise attenuation. A second pass velocity analysis was 

performed. Lastly, Gabor spectral whitening and FX cross-spread random noise 

attenuation were performed. An example inline from the pre-stack data with the above 

processing steps implemented can be seen in Figure 2.5. Note that data are reverse 

polarity compared to the American standard, such that an increase in impedance with 

depth corresponds to a trough rather than a peak in the wiggle trace. 
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Processing Steps 

Demultiplex / reformat 
Manual trace edits                      
System dependent gain correction 
Spreading gain recovery type              
High amplitude noise burst attenuation - shot domain                         
High amplitude de-spiking - shot domain 
Source and system phase matching   
Surface consistent spike deconvolution: operator 160ms  
Prewhitening 0.1 %    
Preliminary velocity analysis 
Surface consistent residual statics        
Surface consistent gain corrections             
Noise burst attenuation 
Adaptive linear noise attenuation                  
Radon linear noise attenuation 
FX random noise attenuation    
Second pass velocity analysis  
Gabor spectral whitening 
FX cross-spread random noise attenuation     

Table 2.1: A comprehensive list of all processing steps implemented by CGG: Veritas 
in June 2011. Steps are shown in the approximate order they were 
implemented. All processing steps shown here were completed prior to the 
onset of the work presented in this thesis. Refer to the text for explanations 
regarding each processing step and additional processing performed by the 
author. 

Prior to beginning any AVAZ analysis, several additional data processing steps 

beyond those shown in Table 2.1 were required. All additional processing described here 

was performed using Hampson-Russell ©, a software suite which includes several 

seismic data processing and reservoir characterization tools. Initially, the coordinate 

system of the data was adjusted to coincide with the coordinate system of the available 

well log. I performed a normal moveout (NMO) correction using the provided RMS 
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velocity model in order to flatten reflections and applied an early time far offset mute to 

remove residual effects from the NMO correction. I applied a very broadband frequency 

filter to remove erroneous low- and high-frequency information, with low cut of 2 Hz, 

low pass of 6 Hz, high pass of 90 Hz, and high cut of 110 Hz. I applied a trim statics 

correction to further flatten horizons and remove small residual errors from the NMO 

correction. Note that adjusting for residual NMO correction errors is essential for any 

AVAZ analysis. Azimuthal variations in amplitudes at a constant time sample were 

analyzed, and thus the analysis would not work well if data from all azimuths and 

offsets/incident-angles were not perfectly aligned at that time. In the final processing 

step, I applied parabolic radon filters to remove both noise and multiples from the data. 

See Figure 2.6 for an example slice of the final processed data. Lastly, I reconfigured the 

data into an azimuthal super-gather, with 3x3 trace blending. In this azimuthal gather, the 

primary sort is azimuth and secondary sort is offset or incident angle. Various azimuthal 

super-gathers were generated with varied azimuthal and offset/incident-angle bin sizes. 

The HTI analyses performed, as described in Chapter 4, used an azimuthal super-gather 

consisting of 9 azimuth bins, each 20 degrees wide, and 30 offset bins, with ~210m 

spacing. The novel Fourier coefficient decomposition analysis performed, as described in 

Chapter 5, used an azimuthal super-gather consisting of 12 azimuth bins, each 15 degrees 

wide, and 10 incident angle bins, each 4 degrees wide and ranging from 5 to 45 degrees. 

More azimuthal bins were used in this analysis in order to allow additional azimuthal data 

points to be used in the robust curve-fitting function utilized. However, fewer incident 

angle bins were required in order to reduce computation time to a reasonable duration. 

Had a more powerful computer been available, more incident angle bins would have been 

used in the analysis. A repeat of the existing HTI Fourier decomposition analysis was 

performed using the modified binning scheme in order to allow for a direct comparison 
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between the proposed new Fourier coefficient decomposition method and its analogous 

HTI method. An example inline slice with all additional processing steps performed 

except for azimuthal sorting can be seen in Figure 2.6. An example inline slice with all 

additional processing steps performed and data azimuthally sorted can be seen in Figure 

2.7. Figures 2.5 – 2.7 all depict data from the same CDP location. 

 

 

Figure 2.5: An example inline section of the seismic data with only processing steps 
shown in Table 2.1 implemented. This slice resides near the center of the 
area analyzed in this work. A well can be seen at the intersection of inline 
3622 and crossline 1274. Data shows time ranges from roughly 1500 ms – 
2400 ms. Offsets at each CDP range from 225m to 6025m. The Haynesville 
Shale is located from about 2040 ms – 2080 ms, between the blue and red 
horizons shown. 
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Figure 2.6: An example inline section of the seismic data with processing steps shown 
in Table 2.1 and all additional processing described in the text except 
azimuthal sorting implemented. Additional processing steps include NMO 
correction, a 2-6-90-110 bandpass filter, trim statics correction, and 
parabolic Radon filters for noise and multiple reduction. This slice resides 
near the center of the area analyzed in this work. A well can be seen at the 
intersection of inline 3622 and crossline 1274. Data show time ranges from 
roughly 1500 ms – 2400 ms. Offsets at each CDP range from 225m to 
6025m. The Haynesville Shale is located from about 2040 ms – 2080 ms, 
between the blue and red horizons shown. 
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Figure 2.7: An example azimuthal section of the seismic data at the CDP associated 
with inline 3622 and crossline 1274, with processing steps shown in Table 
2.1 and all additional processing described in the text applied. Additional 
processing steps include NMO correction, a 2-6-90-110 bandpass filter,  
trim statics correction, and parabolic Radon filters for noise and multiple 
reduction, and azimuthal sorting. This section resides near the center of the 
area analyzed in this work. The HTI binning scheme is shown, with 9 
azimuthal bins and 30 offset bins. Primary trace sorting is by azimuth, and 
secondary sorting is by offset. Data show time ranges from roughly 1600 ms 
– 2400 ms. The Haynesville Shale is located from about 2040 ms – 2080 
ms, between the blue and red horizons shown. 
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Chapter 3: Theory 

3.1 WAVE EQUATION FOR ELASTIC ANISOTROPIC HOMOGENEOUS MEDIA 

Elastic seismic wave propagation is physically governed by an equation known as 

the “Wave Equation”, a differential equation that relates displacement and elastic 

properties to a time derivative of displacement (Sen, Seismology III, class notes). The 

solution to this differential equation governs how particle displacement from seismic 

waves change both spatially and temporally. Analysis of solutions to the wave equation 

give rise to the different wave types known to exist. In the absence of boundary 

conditions, compressional and shear waves arise, commonly referred to as P and S waves 

(Aki and Richards, 1980). If a free surface boundary condition is implemented, solutions 

corresponding to surface waves arise, specifically Rayleigh and Love waves (Aki and 

Richards, 1980). Note that Love waves require one or more layers below the surface, 

with velocity increasing with respect to depth, in order to exist, and that layering causes 

Rayleigh waves to be dispersive (i.e., to have a velocity which is dependent on 

frequency).  

By analyzing the solutions to the wave equation above and below a boundary 

between two mediums that have different elastic properties, and imposing boundary 

conditions, the properties of reflected and transmitted waves can be determined. This is 

how one can derive the famous “Zoeppritz equations” (Zoeppritz, 1919), which provide 

analytical solutions for reflected, refracted and transmitted waves in isotropic media. 

Linear approximations to Zoeppritz equations form the basis for amplitude-vs-offset 

(AVO) analysis of seismic data, an industry standard practice. The same methodology 

used to calculate Zeoppritz equations can be applied to anisotropic media to calculate 

explicit analytical expressions for reflectivity in an anisotropic setting. An approach for 

solving a more general form of the Zoeppritz equations valid in anisotropic media is 
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described in detail in Section 3.2 of this chapter. Note that for more complex anisotropic 

cases, analytic solutions might not exist, and numerical solutions instead must be used. 

Linearized approximations to anisotropic reflectivity form the theoretical framework 

behind the work presented in this thesis. In a broader sense, the idea that downgoing 

seismic waves will be partly reflected and partly transmitted at a boundary between 

media with different elastic properties is fundamentally why industry standard reflection 

seismic surveys are informative. This is also the physical justification explaining why 

companies spend enormous sums of money collecting seismic data for analysis. 

The elastic wave equation can be derived from two relatively simple assumptions. 

The first assumption is that Newton’s second law of motion (i.e. the law of inertia) 

remains valid. Newton’s second law can be seen in Equation 3.1. 

𝐹𝐹 =  𝑚𝑚𝑚𝑚  ,         (3.1) 

where 𝐹𝐹 represents force, 𝑚𝑚 represents mass, and 𝑎𝑎 represents acceleration, which is the 

2nd time derivative of displacement (𝑈𝑈). When normalized over a volume, mass reduces 

to density, and force reduces to the divergence of stress (𝝉𝝉). Rewritten, Equation 3.1 

transforms to: 

𝜌𝜌 𝜕𝜕𝑡𝑡2𝑈𝑈 = 𝛻𝛻 ∙ 𝝉𝝉 +  𝑓𝑓  ,        (3.2) 

where 𝑓𝑓 represents some external force per unit volume. The second assumption needed 

in the derivation of the seismic wave equation is that of linear elasticity. In the simplified 

case of an ideal spring attached to a dashpot, shown in Figure 3.1, Hooke’s law is stated: 

𝐹𝐹 = 𝐸𝐸 𝛥𝛥𝛥𝛥 +  𝜂𝜂 𝛥𝛥𝛥𝛥 
𝛥𝛥𝛥𝛥

 ,        (3.3) 

where 𝐸𝐸 represents the stiffness of the spring, 𝜂𝜂 represents the viscosity of the dashpot, 

and 𝛥𝛥𝛥𝛥 represents displacement. When transformed into a tensor context and normalized 

over some volume, Equation 3.3 transforms to: 

𝝉𝝉 = 𝑪𝑪: 𝜺𝜺 + 𝜼𝜼: 𝜕𝜕𝜺𝜺
𝜕𝜕𝜕𝜕

  ,        (3.4) 
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where 𝑪𝑪 and 𝜼𝜼 represent stiffness and attenuation tensors, respectively, 𝜺𝜺 represents 

strain, : represents a double dot product, and 𝜕𝜕 represents a partial derivative. Note that 

strain (𝜺𝜺) is equal to the gradient of displacement (𝛻𝛻𝑈𝑈). The work presented here does not 

consider attenuation, and thus Equation 3.4 reduces to a simple stress-strain relationship: 

𝝉𝝉 = 𝑪𝑪: 𝜺𝜺 = 𝑪𝑪:𝛻𝛻𝑈𝑈  .        (3.5) 

When substituting Equation 3.5 into Equation 3.2 and relating strain in terms of 

displacement, one obtains the wave equation valid for anisotropic elastic homogeneous 

media, shown in Equation 3.6 (Sen, Seismology III, class notes). 

𝜌𝜌 𝜕𝜕𝑡𝑡2𝑈𝑈 = 𝛻𝛻 ∙ (𝑪𝑪:𝛻𝛻𝑈𝑈) + 𝑓𝑓  .       (3.6) 

Analysis of the wave equation indicates that solutions in homogeneous media will have 

the general form shown in Equation 3.7. 

𝑓𝑓(𝑎𝑎𝑎𝑎 ± 𝑡𝑡)  ,         (3.7) 

where 𝑓𝑓 indicates a function, 𝑎𝑎 is some constant, 𝑡𝑡 represents time, and 𝑥𝑥 is a vector 

representing direction in three dimensional space. In analyzing seismic waves, it is 

convenient to use the plane wave solution to the wave equation in homogeneous media, 

shown in Equation 3.8. 

𝑈𝑈 = (𝑙𝑙 𝑚𝑚 𝑛𝑛) 𝑈𝑈𝑜𝑜𝑒𝑒𝑖𝑖𝑖𝑖(𝑝𝑝𝑝𝑝∗𝑥𝑥 + 𝑝𝑝𝑝𝑝∗𝑦𝑦 + 𝑞𝑞∗𝑧𝑧 – 𝑡𝑡)  ,     (3.8) 

where (𝑙𝑙 𝑚𝑚 𝑛𝑛) is a directional basis vector and 𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝 and 𝑞𝑞 are directional 

slowness’s (inverse of velocity) in the x, y and z direction, respectively. Equation 3.8 is 

valid for downgoing P waves, but (𝑙𝑙 𝑚𝑚 𝑛𝑛) and 𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝 and 𝑞𝑞 vary between different 

wave types. Generally, (𝑙𝑙 𝑚𝑚 𝑛𝑛) will have a distinct form, and 𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝 and 𝑞𝑞 will have 

unique values for upgoing and downgoing compressional waves (P waves), vertically 

polarized shear waves (SV waves), and horizontally polarized shear waves (SH waves). 

How Equation 3.8 changes for certain wave types is further discussed in Section 3.2. 

Analysis of Equation 3.8 indicates that: 
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𝜕𝜕𝑡𝑡2𝑈𝑈 = 𝜔𝜔2𝑈𝑈  ,         (3.9) 

and thus Equation 3.2 reduces to: 

𝜌𝜌𝜔𝜔2 𝑈𝑈 = 𝛻𝛻 ∙ 𝝉𝝉 + 𝑓𝑓  .        (3.10) 

Equation 3.10 is commonly known as the Equation of Motion or the Momentum 

Equation, and is one of the fundamental equations in seismology. 

 

 

Figure 3.1: A simplified spring and dashpot system. E represents the stiffness of the 
spring, and η represents the viscosity of the dashpot. Note that in seismology 
the analog to spring stiffness (E) is the stiffness tensor (𝑪𝑪). 

3.2 SOLVING FOR REFLECTIVITY 

Exact solutions for seismic wave reflection, refraction, transmission and 

conversion at a layer boundary can be found by analyzing the plane wave solutions to the 

wave equation, as shown in Equation 3.8, above and below a layer boundary for all 

incident, reflected and transmitted waves. In the most general case, any incident wave 

(compressional or shear) intersecting a layer boundary will result in three reflected waves 

and three transmitted waves. In each set of these three resulting waves, one will be 

compressional (denoted quasi-P) and two will be shear waves of varying polarization 

(denoted quasi-SV and quasi-SH). In the case that impedance increases across the layer 

boundary, refracted waves will arise at high incident angles, identifiable by the 

introduction of a complex exponential in the transmitted wave solutions for post-critical 

ray parameters. It is worth noting that in simple cases involving only isotropic or VTI 

anisotropy, there is a decoupling between P-SV waves and SH waves. This decoupling 
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reduces the number of possible resultant waves to two reflected and two transmitted 

waves in the case of an incident P or SV wave, and one reflected and one transmitted 

wave in the case of an incident SH wave. The process for solving reflectivity in the more 

general case, however, will be examined here. 

Many methods exist to determine exact properties of reflected and transmitted 

waves at a layer boundary, but only one will be examined in this thesis. This method is a 

generalization of work by Graebner (1992), which solves for reflectivity generated from a 

boundary between VTI media. Initially, in order to solve for reflected and transmitted 

wave characteristics, a matrix known as the Christoffel Matrix needs to be constructed 

(Greabner, 1992; Sen, Seismology III, class notes). This is accomplished by considering 

the equation of motion, shown in Equation 3.10, where the external force term (𝑓𝑓) is 

assumed to be zero. Rearranging equation 3.10 under the assumption of no external force 

provides: 

𝛻𝛻 ∙ 𝝉𝝉 − 𝜌𝜌𝜔𝜔2𝑈𝑈 = 0 .        (3.11) 

By using the relation 

𝛻𝛻 ∙ 𝝉𝝉 = 𝛻𝛻 ∙ (𝑪𝑪:𝛻𝛻𝑈𝑈)  ,        (3.12) 

one can construct the Christoffel matrix 𝜯𝜯, which satisfies  

𝜯𝜯 𝑈𝑈 − 𝜌𝜌𝑰𝑰 = 0  ,        (3.13) 

where 𝑰𝑰 represents the identity matrix and components of 𝜯𝜯 are functions of elastic 

coefficients and slownesses. Equation 3.13 forms a system of three equations. The three 

eigenvalues of the matrix 𝜯𝜯 represent the three slownesses 𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝 and 𝑞𝑞. By performing 

an Eigen-decomposition of matrix 𝜯𝜯, one is able to solve for vertical slowness 𝑞𝑞 in terms 

of horizontal slownesses 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝 and the elastic coefficients in 𝑪𝑪. Elastic coefficients 

from 𝑪𝑪 are presumed to be known. In some simple cases analytical solutions for 𝑞𝑞 can be 

found, but in more complex cases 𝑞𝑞 must be determined numerically. In practice, 𝑞𝑞 can 
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be numerically determined by creating a grid of possible 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝 values and solving 

for 𝑞𝑞 at each realistic 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝 combination. Unrealistic combinations of 𝑝𝑝𝑥𝑥 and 𝑝𝑝𝑝𝑝 

will result in vertical slowness 𝑞𝑞 being purely imaginary. Note that the different wave 

types (qP, qSV and qSH) each have unique functions describing vertical slowness  . 

Once eigenvalue 𝑞𝑞 has been found, its corresponding eigenvectors can be 

determined. Eigenvectors should be normalized to unity. These eigenvectors represent the 

direction of particle displacement, otherwise known as the particle polarization. The 

vector (𝑙𝑙 𝑚𝑚 𝑛𝑛) shown in Equation 3.8 is a polarization vector. Different wave types 

have different polarization vectors, indicating unique relationships between the direction 

of wave propagation and the direction of particle motion for these wave types. These take 

the form: 

• (𝑙𝑙 𝑚𝑚 𝑛𝑛) for downgoing qP waves. This also represents the direction of wave 

propagation for downgoing waves. 

• (𝑙𝑙 𝑚𝑚 −𝑛𝑛) for upgoing qP waves. This also represents the direction of wave 

propagation for upgoing waves. 

• (−𝑛𝑛 𝑚𝑚 𝑙𝑙) for downgoing qSV waves. This is perpendicular to the direction of 

propagation (90 degrees rotated in the X-Z plane). 

• (𝑛𝑛 𝑚𝑚 𝑙𝑙) for upgoing qSV waves. This is perpendicular to the direction of 

propagation (90 degrees rotated in the X-Z plane). 

• (𝑚𝑚 −𝑙𝑙 𝑛𝑛) for downgoing qSH waves. This is perpendicular to the direction of 

propagation (90 degrees rotated in the X-Y plane). 

• (𝑚𝑚 −𝑙𝑙 −𝑛𝑛) for downgoing qSH waves. This is perpendicular to the direction of 

propagation (90 degrees rotated in the X-Y plane). 

Rotating a vector is further discussed in Section 3.3. For each of these polarization 

vectors, values 𝑙𝑙, 𝑚𝑚 and 𝑛𝑛 can each be determined in terms horizontal slownesses 𝑝𝑝𝑝𝑝 and 
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𝑝𝑝𝑝𝑝 and elastic coefficients using standard eigenvector solving techniques. Thus, the 

displacement equation for the seismic wave, as shown in Equation 3.8, has been entirely 

parameterized in terms of two variables, 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝, and the elastic coefficients present in 

the stiffness tensor 𝑪𝑪.  This is repeated for all wave types, so displacement equations for 

upgoing and downgoing qP, qSV and qSH waves are known in terms of slownesses 𝑝𝑝𝑝𝑝 

and 𝑝𝑝𝑝𝑝 and relevant elastic coefficients. In some simple cases, 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝 can further be 

parameterized in terms of incident angle of the seismic wave at the layer boundary. 

Once expressions for displacement parameterized in terms of a horizontal 

slownesses are known, boundary conditions can be applied in order to solve for reflected 

and transmitted wave amplitudes. In the case of a solid-solid interface, boundary 

conditions are as follows: 

𝑈𝑈𝑥𝑥
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑈𝑈𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  ,        (3.14) 

𝑈𝑈𝑦𝑦
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑈𝑈𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  ,        (3.15) 

𝑈𝑈𝑧𝑧
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑈𝑈𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  ,        (3.16) 

𝜏𝜏𝑥𝑥𝑥𝑥
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝜏𝜏𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  ,        (3.17) 

𝜏𝜏𝑦𝑦𝑦𝑦
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝜏𝜏𝑦𝑦𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  ,        (3.18) 

𝜏𝜏𝑧𝑧𝑧𝑧
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝜏𝜏𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙𝑤𝑤𝑒𝑒𝑒𝑒  .        (3.19) 

Equations 3.17 – 3.19 can be parameterized in terms of 𝑈𝑈𝑖𝑖
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝑈𝑈𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 using 

Equation 3.12. In Equations 3.14 – 3.19, 𝑈𝑈𝑖𝑖
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝑈𝑈𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 indicate the sum of the 

displacements of all waves in the upper and lower layer, respectively. Subscript 𝑖𝑖 

indicates if the x, y or z component of displacement is being considered. Assuming a 

downgoing incident wave, 𝑈𝑈𝑖𝑖
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝑈𝑈𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 can be denoted as: 

𝑈𝑈𝑖𝑖
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑃𝑃 𝑈𝑈𝑖𝑖

𝑞𝑞𝑞𝑞 + 𝑅𝑅𝑆𝑆𝑆𝑆  𝑈𝑈𝑖𝑖
𝑞𝑞𝑞𝑞𝑞𝑞 + 𝑅𝑅𝑆𝑆𝑆𝑆  𝑈𝑈𝑖𝑖

𝑞𝑞𝑞𝑞𝑞𝑞  ,   (3.20) 

𝑈𝑈𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑇𝑇𝑃𝑃 𝑈𝑈𝑖𝑖
𝑞𝑞𝑞𝑞 + 𝑇𝑇𝑆𝑆𝑆𝑆  𝑈𝑈𝑖𝑖

𝑞𝑞𝑞𝑞𝑞𝑞 + 𝑇𝑇𝑆𝑆𝑆𝑆  𝑈𝑈𝑖𝑖
𝑞𝑞𝑞𝑞𝑞𝑞  .     (3.21) 

Assuming an upgoing incident wave, 𝑈𝑈𝑖𝑖
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝑈𝑈𝑖𝑖𝑙𝑙𝑙𝑙𝑤𝑤𝑒𝑒𝑒𝑒 can be denoted as: 
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𝑈𝑈𝑖𝑖
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑇𝑇𝑃𝑃 𝑈𝑈𝑖𝑖

𝑞𝑞𝑞𝑞 + 𝑇𝑇𝑆𝑆𝑆𝑆  𝑈𝑈𝑖𝑖
𝑞𝑞𝑞𝑞𝑞𝑞 + 𝑇𝑇𝑆𝑆𝑆𝑆 𝑈𝑈𝑖𝑖

𝑞𝑞𝑞𝑞𝑞𝑞   ,     (3.22) 

𝑈𝑈𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑃𝑃 𝑈𝑈𝑖𝑖
𝑞𝑞𝑞𝑞 + 𝑅𝑅𝑆𝑆𝑆𝑆  𝑈𝑈𝑖𝑖

𝑞𝑞𝑞𝑞𝑞𝑞 + 𝑅𝑅𝑆𝑆𝑆𝑆  𝑈𝑈𝑖𝑖
𝑞𝑞𝑞𝑞𝑞𝑞  .   (3.23) 

In Equations 3.20 – 3.23, displacement is defined as in Equation 3.8 with an appropriate 

polarization vector for the wave type in question. In either the downgoing or upgoing 

incident wave case, the six desired parameters 𝑅𝑅𝑃𝑃, 𝑅𝑅𝑆𝑆𝑆𝑆, 𝑅𝑅𝑆𝑆𝑆𝑆, 𝑇𝑇𝑃𝑃, 𝑇𝑇𝑆𝑆𝑆𝑆 and 𝑇𝑇𝑆𝑆𝑆𝑆 can be 

determined in terms of 𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝, and elastic coefficients by examining Equations 3.14 – 

3.19, which form a system of six equations and six unknowns. This methodology can 

determine reflectivity at layer boundaries between anisotropic media. However, in the 

limit of isotropy in both the upper and lower layers, the solution will reduce to the well-

known Zoeppritz equations. Note that in the Zoeppritz equations, 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝 have been 

parameterized in terms of incident angle at the layer boundary, and P-SV waves have 

been decoupled from SH waves. In exploration, the 𝑅𝑅𝑃𝑃 coefficient associated with a 

downgoing incident P wave is the primary parameter of interest, here forth denoted as 

𝑅𝑅𝑃𝑃𝑃𝑃. Unfortunately, exact expressions for 𝑅𝑅𝑃𝑃𝑃𝑃 are cumbersome in the simplest isotropic-

isotropic case, and generally infeasible to use when anisotropy is present. Additionally, 

for more complex anisotropic cases, analytical solutions are not often possible to derive 

and can only be calculated using numerical methods. Numerical calculation of exact 

reflection coefficients are computationally expensive and generally infeasible to use in 

large scale data analysis. For this reason, several simplified linear approximations that are 

valid at incident angle ranges common in industry seismic surveys (generally less than 

~40 degrees) have been created. Linear approximations of the simplest isotropic-isotropic 

case form the basis for conventional amplitude-vs-offset (AVO) analysis. They usually 

have a form similar to the one shown in Equation 3.24. 

𝑅𝑅(𝜃𝜃) ≈ 𝐴𝐴 + 𝐵𝐵  sin2 𝜃𝜃 +  𝐶𝐶  sin2 𝜃𝜃  tan2 𝜃𝜃  ,     (3.24) 
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where 𝜃𝜃 represents the incident angle of the seismic wave and 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶 are constants. 

Often the third term is ignored, resulting in a two term AVO expression. When azimuthal 

anisotropy is present, Equation 3.24 can be expanded to include an azimuthal term. 

Linear approximations to reflectivity in anisotropic media in terms of incident angle (𝜃𝜃) 

and azimuth (𝜑𝜑) form the basis for the AVAZ methods performed in this work, which 

will be examined in detail later in this thesis.  

Note that the method outlined above utilizing the Christoffel matrix method is not 

the only possible way to determine analytical expressions for reflectivity in arbitrarily 

anisotropic media. However, all methods for calculating reflectivity are fundamentally 

based on solving the boundary conditions stated in Equations 3.14 – 3.19. Other methods, 

however, will not be explained in this thesis. 

3.3 TENSOR ANALYSIS 

In the derivations shown above, various 2nd rank and 4th rank tensors are used. In 

those derivations, τ𝑖𝑖𝑖𝑖 represents a 2nd rank tensor of stress, in which both the i and j 

subscripts range between one and three, representing the x, y and z directions of three 

dimensional space. ε𝑘𝑘𝑘𝑘 is similarly a 2nd rank tensor of strain, in which both the k and l 

subscripts can range between one and three. Physically, these can been interpreted as 

stress and strain on faces of a cube, as depicted in Figure 3.2. In this physical analogy, the 

first subscript specifies the face of the cube that stress / strain is occurring on, and the 

second subscript indicates the direction which the stress / strain is acting along the 

surface indicated by the first subscript. In the limit of the cube volume reducing to zero, 

the opposite sides of the cube coincide, resulting in three surfaces experiencing three 

unique stresses or strains. This indicates that 𝝉𝝉 and 𝜺𝜺 are each composed of nine values in 

three dimensional space; however, due to symmetry, namely τ𝑖𝑖𝑖𝑖 = τ𝑗𝑗𝑗𝑗  and ε𝑘𝑘𝑘𝑘 = ε𝑙𝑙𝑙𝑙, the 
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number of independent components in each of these tensors is reduced to 6. In order to 

make computations using these tensors viable, 𝝉𝝉 and 𝜺𝜺 can be represented as either a 

symmetric 3x3 matrix, or as a 1x6 vector, each of which has 6 independent components. 

Matrix forms of these tensors can be seen in Equations 3.25 and 3.26, and vector forms of 

these tensors can be seen in Equations 3.27 and 3.28. Voigt notation expressions of 𝝉𝝉 and 

𝜺𝜺 are also included in Equations 3.27 and 3.28. In Voigt notation, the six unique 

dimension combinations that make up elements in 𝝉𝝉 and 𝜺𝜺 are renumbered from 1 to 6, 

helping to reduce notational clutter (Sen, Seismology III, class notes). 

 

 

Figure 3.2: A graphical representation of stresses τ𝑖𝑖𝑖𝑖. Stress τ𝑖𝑖𝑖𝑖  represents force on the 
cube face normal to direction 𝚤𝚤̂ and acting in direction 𝚥𝚥̂. Stresses on adjacent 
faces of the cube are identical. Strain ε𝑘𝑘𝑘𝑘 can be interpreted in a similar way. 
Note that normal stresses τ𝑖𝑖𝑖𝑖 have been replaced with 𝜎𝜎𝑖𝑖. 
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𝝉𝝉 = �
τ𝑥𝑥𝑥𝑥 τ𝑥𝑥𝑥𝑥 τ𝑥𝑥𝑥𝑥
τ𝑥𝑥𝑥𝑥 τ𝑦𝑦𝑦𝑦 τ𝑦𝑦𝑦𝑦
τ𝑥𝑥𝑥𝑥 τ𝑦𝑦𝑦𝑦 τ𝑧𝑧𝑧𝑧

�  ,       (3.25)  

 

𝜺𝜺 = �
ε𝑥𝑥𝑥𝑥 ε𝑥𝑥𝑥𝑥 ε𝑥𝑥𝑥𝑥
ε𝑥𝑥𝑥𝑥 ε𝑦𝑦𝑦𝑦 ε𝑦𝑦𝑦𝑦
ε𝑥𝑥𝑥𝑥 ε𝑦𝑦𝑦𝑦 ϵ𝑧𝑧𝑧𝑧

�  ,       (3.26)  

 

𝝉𝝉 =

⎝

⎜⎜
⎛

τ𝑥𝑥𝑥𝑥
τ𝑦𝑦𝑦𝑦
τ𝑧𝑧𝑧𝑧
τ𝑦𝑦𝑦𝑦
τ𝑥𝑥𝑥𝑥
τ𝑥𝑥𝑥𝑥⎠

⎟⎟
⎞

=

⎝

⎜⎜
⎛

τ1
τ2
τ3
τ4
τ5
τ6⎠

⎟⎟
⎞

  ,       (3.27) 

 

𝜺𝜺 =

⎝

⎜
⎜
⎛

ε𝑥𝑥𝑥𝑥
ε𝑦𝑦𝑦𝑦
ε𝑧𝑧𝑧𝑧

2 ε𝑦𝑦𝑦𝑦
2 ε𝑥𝑥𝑥𝑥
2 ε𝑥𝑥𝑥𝑥⎠

⎟
⎟
⎞

=

⎝

⎜⎜
⎛

ε1
ε2
ε3

2 ε4
2 ε5
2 ε6⎠

⎟⎟
⎞

  .       (3.28) 

 

Unlike the stress and strain tensors 𝝉𝝉 and 𝜺𝜺, the stiffness tensor 𝑪𝑪 is a fourth rank 

tensor. In C𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, subscripts i, j, k and l all range from one to three, again representing the 

x, y and z directions of three dimensional space. As can be seen in Equation 3.5, each 

value in C𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 has the physical significance of relating how an individual strain 

component ε𝑘𝑘𝑘𝑘  affects an individual stress component τ𝑖𝑖𝑖𝑖. 𝑪𝑪 describes how each of the 

nine strain components in the strain tensor 𝜺𝜺 affects each of the nine stress components in 

the stress tensor 𝝉𝝉, indicating that there should to be a total of 81 values in stiffness tensor 

𝑪𝑪 to fully relate strain to stress. The number of independent components in 𝑪𝑪, however, is 

fewer than 81. Due to the symmetries in 𝝉𝝉 and 𝜺𝜺 stated above, namely τ𝑖𝑖𝑖𝑖 = τ𝑗𝑗𝑗𝑗  and ε𝑘𝑘𝑘𝑘 =

ε𝑙𝑙𝑙𝑙, the number of independent components in 𝑪𝑪 is reduced to 36. Because it is 
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inconvenient to display 𝑪𝑪 as a four dimensional object, the 4th rank tensor 𝑪𝑪 is often 

displayed as a 6x6 matrix, shown in Equation 3.29. In this formulation Voigt notation is 

used, where the subscripts 1 through 6 indicate the six unique two-dimension 

combinations shown in Equations 3.27 and 3.28. Lastly, an additional symmetry imposed 

by conservation of energy indicates that the 6x6 matrix representation of 𝑪𝑪 must be 

symmetric, further reducing the number of independent components of stiffness tensor 𝑪𝑪 

to 21 (Sen, Seismology III, class notes). This symmetric stiffness tensor can be seen in 

Equation 3.30. Equation 3.5 rewritten in matrix form using Voigt notation can be seen in 

Equation 3.31. Note that factors of two are introduced into Equations 3.28 and 3.31 in 

order to account for the duplicity of ε𝑘𝑘𝑘𝑘 and ε𝑙𝑙𝑙𝑙 when 𝑘𝑘 ≠ 𝑙𝑙. 

 

𝑪𝑪 =

⎝

⎜
⎜
⎛

C11 C21 C31 C41 C51 C61
C12 C22 C32 C42 C52 C62
C13 C23 C33 C43 C53 C63
C14 C24 C34 C44 C54 C64
C15 C25 C35 C45 C55 C65
C16 C26 C36 C46 C56 C66⎠

⎟
⎟
⎞

  ,     (3.29) 

 

𝑪𝑪 =

⎝

⎜
⎜
⎛

C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66⎠

⎟
⎟
⎞

  ,     (3.30) 

 

⎝

⎜⎜
⎛

τ1
τ2
τ3
τ4
τ5
τ6⎠

⎟⎟
⎞

=

⎝

⎜
⎜
⎛

C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66⎠

⎟
⎟
⎞

⎝

⎜⎜
⎛

ε1
ε2
ε3

2 ε4
2 ε5
2 ε6⎠

⎟⎟
⎞

  .   (3.31) 
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A proper understanding of the stiffness tensor associated with a particular 

medium is crucial to understand seismic anisotropy. Despite the generalized meaning that 

anisotropy means that properties are directionally dependent, seismic anisotropy 

explicitly indicates the existence, or lack there-of, of rotational symmetry in the stiffness 

tensor 𝑪𝑪. Rotational symmetry can be proved by applying a rotational operator, known as 

a Born transform, to a stiffness tensor and showing that the rotated tensor is identical to 

the un-rotated tensor when specific rotations have been applied. To derive the rotational 

operator for a stiffness tensor, let us first consider rotating a vector in 2 dimensional 

space. An example of this can be seen in Figure 3.3. 

 

 

Figure 3.3: A graphical representation of vectors x1 and x2 in 2 dimensions, which 
correspond to the X and Y axis, being rotated by θ degrees counter 
clockwise. The resulting rotated vectors are notated x1’ and x2’. Figure 
originally from Sen, Seismology III, class notes. 

Figure 3.3 illustrates how the x component of a vector (represented by 𝑥𝑥1) and the 

y component of a vector (represented by 𝑥𝑥2) change under rotation. Simple trigonometry 

indicates that: 

𝑥𝑥1′ = |𝑥𝑥1| (cos𝜃𝜃 𝑥𝑥� + sin𝜃𝜃 𝑦𝑦�) ,      (3.32) 

𝑥𝑥2′ = |𝑥𝑥2| (−sin𝜃𝜃 𝑥𝑥� + cos 𝜃𝜃 𝑦𝑦�) .      (3.33) 
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Thus, some arbitrary vector 𝑥𝑥 made up of parts 𝑥𝑥1 and 𝑥𝑥2 can be rotated counter-

clockwise by 𝜃𝜃: 
𝑥𝑥 =  �

𝑥𝑥1
𝑥𝑥2� ,         (3.34) 

𝑥𝑥′ = � cos 𝜃𝜃 sin 𝜃𝜃
−sin𝜃𝜃 cos 𝜃𝜃� 𝑥𝑥 = 𝑨𝑨𝑥𝑥 ,      (3.35) 

where 𝑨𝑨 represents the rotational matrix. This rotational matrix can be expanded to 3 

dimensional space. In 3D space, any arbitrary rotation can be constructed from three 

orthogonal rotations, known as Euler rotations, around the x, y and z axes. A rotation 

about the z axis indicated change in the x-y plane, and thus the rotational matrix 

becomes: 

 

𝑨𝑨𝑧𝑧 = �
cos𝜙𝜙 sin𝜙𝜙 0
− sin𝜙𝜙 cos𝜙𝜙 0

0 0 1
� .       (3.36) 

 

Rotations about the x and y axis follow a similar pattern, resulting in: 

 

𝑨𝑨𝑥𝑥 = �
1 0 0
0 cos𝜃𝜃 sin𝜃𝜃
0 − sin𝜃𝜃 cos 𝜃𝜃

� ,       (3.37) 

 

𝑨𝑨𝑦𝑦 = �
cos𝜑𝜑 0 − sin𝜑𝜑

0 1 0
sin𝜑𝜑 0 cos𝜑𝜑

� .      (3.38) 

A cascaded matrix multiplication of 𝑨𝑨𝑥𝑥, 𝑨𝑨𝑦𝑦 and 𝑨𝑨𝑧𝑧 will allow for any possible rotation of 

a vector in 3 dimensional space. 

 Now that it is understood how to rotate a vector, these rotational matrices can be 

applied to second order stress and strain tensors. A rotation about a single axis can be 

performed using the following equations: 

 
 36 



𝜏𝜏𝑖𝑖𝑖𝑖′ =  𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝑗𝑗𝑗𝑗𝜏𝜏𝑘𝑘𝑘𝑘 ,        (3.39) 

𝜀𝜀𝑖𝑖𝑖𝑖′ =  𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝑗𝑗𝑗𝑗𝜀𝜀𝑘𝑘𝑘𝑘 ,        (3.40) 

for 𝑨𝑨 = 𝑨𝑨𝑥𝑥, 𝑨𝑨𝑦𝑦 or 𝑨𝑨𝑧𝑧 as described by equations 3.36 – 3.38. This results in 

 

⎝

⎜
⎜
⎜
⎛

τ𝑥𝑥𝑥𝑥′
τ𝑦𝑦𝑦𝑦′

τ𝑧𝑧𝑧𝑧′
τ𝑦𝑦𝑦𝑦′

τ𝑥𝑥𝑥𝑥′
τ𝑥𝑥𝑥𝑥′ ⎠

⎟
⎟
⎟
⎞

= 𝑴𝑴

⎝

⎜⎜
⎛

τ𝑥𝑥𝑥𝑥
τ𝑦𝑦𝑦𝑦
τ𝑧𝑧𝑧𝑧
τ𝑦𝑦𝑦𝑦
τ𝑥𝑥𝑥𝑥
τ𝑥𝑥𝑥𝑥⎠

⎟⎟
⎞

  ,       (3.41) 

 

⎝

⎜
⎜
⎜
⎛

𝜀𝜀𝑥𝑥𝑥𝑥′
𝜀𝜀𝑦𝑦𝑦𝑦′

𝜀𝜀𝑧𝑧𝑧𝑧′
2 𝜀𝜀𝑦𝑦𝑦𝑦′

2 𝜀𝜀𝑥𝑥𝑥𝑥′
2 𝜀𝜀𝑥𝑥𝑥𝑥′ ⎠

⎟
⎟
⎟
⎞

= 𝑵𝑵

⎝

⎜
⎜
⎛

ε𝑥𝑥𝑥𝑥
ε𝑦𝑦𝑦𝑦
ε𝑧𝑧𝑧𝑧

2 ε𝑦𝑦𝑦𝑦
2 ε𝑥𝑥𝑥𝑥
2 ε𝑥𝑥𝑥𝑥⎠

⎟
⎟
⎞

  ,       (3.42) 

 

𝑴𝑴 =

 

⎝

⎜⎜
⎜
⎛

A11
2 A12

2 A13
2 2 A12 A13 2 A13 A11 2 A11 A12

A21
2 A22

2 A23
2 2 A22 A23 2 A23 A21 2 A21 A22

A31
2 A32

2 A33
2 2 A32 A33 2 A33 A31 2 A31 A32

A21 A31 A22 A32 A23 A33 A22 A33 + A23 A32 A21 A33 +  A23 A31 A22 A31 +  A21 A32
A31 A11 A32 A12 A33 A13 A12 A33 + A13 A32 A13 A31 +  A11 A33 A11 A32 +  A12 A31
A11 A12 A12 A22 A13 A23 A12 A23 + A13 A22 A13 A21 +  A11 A23 A11 A22 +  A12 A21⎠

⎟⎟
⎟
⎞

 , 

           (3.43) 

𝑵𝑵 =

 

⎝

⎜⎜
⎜
⎛

A11
2 A12

2 A13
2 A12 A13 A13 A11 A11 A12

A21
2 A22

2 A23
2 A22 A23 A23 A21 A21 A22

A31
2 A32

2 A33
2 A32 A33 A33 A31 A31 A32

2 A21 A31 2 A22 A32 2 A23 A33 A22 A33 +  A23 A32 A21 A33 + A23 A31 A22 A31 +  A21 A32
2 A31 A11 2 A32 A12 2 A33 A13 A12 A33 +  A13 A32 A13 A31 + A11 A33 A11 A32 +  A12 A31
2 A11 A12 2 A12 A22 2 A13 A23 A12 A23 +  A13 A22 A13 A21 + A11 A23 A11 A22 +  A12 A21⎠

⎟⎟
⎟
⎞

 . 

           (3.44) 
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It is important to note that 𝑴𝑴 and 𝑵𝑵 share a special relationship (Sen, Seismology III, 

class notes), such that: 

𝑴𝑴−1 = 𝑵𝑵𝑻𝑻 .         (3.45) 

We can now apply the stress strain relationship shown in Equations 3.5 and 3.46 to 

determine the rotated stiffness tensor 𝑪𝑪′, using the equations shown below. 

𝝉𝝉 = 𝑪𝑪 𝜺𝜺 ,         (3.46)  

𝝉𝝉′ = 𝑴𝑴𝑴𝑴 = 𝑴𝑴𝑴𝑴𝑴𝑴 ,        (3.47) 

𝜺𝜺 =  𝑵𝑵−1 𝜺𝜺′ ,         (3.48) 

𝝉𝝉′ = 𝑴𝑴𝑴𝑴𝑴𝑴 = 𝑴𝑴𝑴𝑴𝑵𝑵−1 𝜺𝜺′ = 𝑴𝑴𝑴𝑴𝑴𝑴𝑇𝑇  𝜺𝜺′ = 𝑪𝑪′ 𝜺𝜺′ ,    (3.49) 

𝑪𝑪′ = 𝑴𝑴𝑴𝑴𝑴𝑴𝑇𝑇 .         (3.50) 

Equation 3.50 describes a single rotation of a stiffness tensor, and can be extended to any 

arbitrary rotation in 3 dimensions by cascading up to 3 orthogonal rotations. This results 

in 

𝑪𝑪′ = (𝑴𝑴𝑥𝑥𝑴𝑴𝑦𝑦𝑴𝑴𝒛𝒛) 𝑪𝑪 (𝑴𝑴𝑥𝑥𝑴𝑴𝑦𝑦𝑴𝑴𝒛𝒛)𝑇𝑇 ,      (3.51) 

where 𝑴𝑴𝑥𝑥, 𝑴𝑴𝑦𝑦 and 𝑴𝑴𝑧𝑧 are determined using Equation 3.43 and rotational matrices 𝑨𝑨𝑥𝑥, 

𝑨𝑨𝑦𝑦 and 𝑨𝑨𝑧𝑧 from Equations 3.36 – 3.38 for rotations around the x, y and z axes, 

respectively. As an example, matrix 𝑴𝑴𝑧𝑧, which applies a counterclockwise rotation (𝜃𝜃) in 

the x-z plane, has the form: 

 

 𝑴𝑴𝑥𝑥 =

⎝

⎜⎜
⎜
⎛

cos2 𝜃𝜃 sin2 𝜃𝜃 0 0 0 −sin 2𝜃𝜃
sin2 𝜃𝜃 cos2 𝜃𝜃 0 0 0 sin 2𝜃𝜃

0 0 1 0 0 0
0 0 0 cos 𝜃𝜃 sin 𝜃𝜃 0
0 0 0 − sin 𝜃𝜃 cos𝜃𝜃 0

1
2

sin 2𝜃𝜃 − 1
2

sin 2𝜃𝜃 0 0 0 cos 2𝜃𝜃 ⎠

⎟⎟
⎟
⎞

 .  (3.52) 
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Rotational symmetry of a stiffness tensor can be proved by applying the Born 

transformation rotation shown in Equation 3.51 and showing the input stiffness tensor is 

identical to the rotated tensor for each symmetry type (𝑪𝑪 = 𝑪𝑪′). However, explicit proof 

will not be provided in this thesis. Different combinations of rotational symmetries in the 

stiffness tensor result in the various types of seismic anisotropy that exist. These 

rotational symmetries dictate the form of the stiffness tensor associated with a particular 

anisotropy type and thus determine the number of independent elastic parameters needed 

to describe that anisotropy type. These symmetry types physically represent the various 

levels of symmetry in a crystal system. In the most general case, known as triclinic 

anisotropy, no rotational symmetry exists in the stiffness tensor, and all 21 independent 

elastic coefficients are needed to describe the medium. This corresponds to the stiffness 

tensor shown previously in Equation 3.30. In the case of monoclinic symmetry, minimal 

symmetry is imposed requiring either one mirror plane of symmetry or 180 degree 

rotational symmetry in a single plane. This leads the stiffness tensor to have the form 

shown in Equation 3.53, which requires 13 independent elastic constants to fully 

describe. In the case of orthorhombic symmetry, either 180 degree rotational symmetry 

around 3 separate planes or 180 degree rotational symmetry around a single plane and 

two mirror planes are required, resulting in the stiffness tensor shown in Equation 3.54. 

An orthorhombic stiffness tensor requires 9 independent elastic constants to fully 

describe. In the case of transversely isotropic media, the stiffness tensor is preserved 

when rotated by any amount around a single axis of symmetry – a more general form of 

hexagonal crystal symmetry. This results in two end cases, generally referred to as 

Vertically Transverse Isotropic (VTI) and Horizontally Transverse Isotropic (HTI). In the 

VTI case, the plane of symmetry is in the X-Y (i.e., horizontal) plane, while in the HTI 

case the plane of symmetry is in the X-Z or Y-Z (i.e., vertical) plane. If the plane of 
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symmetry does not match with those of HTI or VTI, the medium is often said to be 

characteristic of Tilted Transverse Isotropy (TTI). The stiffness tensor corresponding to 

the VTI case can be seen in Equation 3.55, and the stiffness tensor corresponding to the 

HTI case can be seen in Equation 3.56. Both the VTI and HTI stiffness tensors require 5 

independent elastic constants to fully describe. Lastly, in the case that the stiffness tensor 

is rotationally symmetric for all possible rotations, indicating no directional dependence 

of any kind, the medium is known as isotropic. The stiffness tensor corresponding to the 

isotropic case can be seen in Equation 3.57, and only requires two independent elastic 

constants to describe (Sen, Seismology III class notes). 

 

𝑪𝑪 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) =

⎝

⎜
⎜
⎛

C11 C12 C13 0 0 C16
C12 C22 C23 0 0 C26
C13 C23 C33 0 0 C36
0 0 0 C44 C45 0
0 0 0 C45 C55 0

C16 C26 C36 0 0 C66⎠

⎟
⎟
⎞

  ,   (3.53) 

 

𝑪𝑪 (𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) =

⎝

⎜
⎜
⎛

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66⎠

⎟
⎟
⎞

  ,  (3.54) 

 

𝑪𝑪 (𝑉𝑉𝑉𝑉𝑉𝑉) =

⎝

⎜
⎜
⎛

C11 C11 − 2 C66 C13 0 0 0
C11 − 2 C66 C11 C13 0 0 0

C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66⎠

⎟
⎟
⎞

  , (3.55) 
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𝑪𝑪 (𝐻𝐻𝐻𝐻𝐻𝐻) =

⎝

⎜
⎜
⎛

C11 C13 C13 0 0 0
C13 C33 C33 − 2 C44 0 0 0
C13 C33 − 2 C44 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C55⎠

⎟
⎟
⎞

  , (3.56) 

 

𝑪𝑪 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =

⎝

⎜
⎜
⎛

λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ⎠

⎟
⎟
⎞

  .  (3.57) 

 

3.4 LINEAR SLIP THEORY AND EFFECTIVE ANISOTROPY 

Effective medium modeling indicates that certain features, for example bedding 

and fracturing, which are small compared to a seismic wavelength, will be averaged in 

such a way that the medium has an identical seismic response to one that is homogeneous 

and anisotropic. The work presented in this thesis aims to characterize fractures in two 

assumed situations:  

1. Fractures are closely spaced, vertically aligned, rotationally invariant, and 

embedded an otherwise isotropic background rock. 

2. Fractures are closely spaced, vertically aligned, rotationally invariant, and 

embedded an otherwise VTI anisotropic background rock. 

Linear slip deformation theory (Schoenberg 1980; Schoenberg and Sayers, 1995; Bakulin 

et al., 2000, Part I and Part II) will be used to determine and verify the anisotropy type 

resulting from these two assumed situations. The linear slip model indicates that 

fractures, which introduce compliance into the rock, linearly add to the compliance of the 

background rock, such that 
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𝑺𝑺 =  𝑺𝑺𝒃𝒃 + 𝑺𝑺𝒇𝒇  ,        (3.58) 

where 𝑺𝑺𝒃𝒃 is the compliance tensor of the background rock and 𝑺𝑺𝒇𝒇 is the excess 

compliance introduced by the fractures. The effective compliance tensor 𝑺𝑺 is the inverse 

of the effective stiffness tensor 𝑪𝑪, such that: 

𝑺𝑺 = 𝑪𝑪−𝟏𝟏 and 𝑪𝑪 = 𝑺𝑺−𝟏𝟏  .       (3.59) 

Note that inverting stiffness and compliance tensors in Voigt notation is rather peculiar 

due to the factors of 2 in the 𝛆𝛆 vector, and in order for a standard matrix inversion to be 

applicable Equation 3.31 must first be transformed to: 

 

⎝

⎜
⎜
⎜
⎛

τ1
τ2
τ3

√2 ∗ τ4
√2 ∗ τ5
√2 ∗ τ6⎠

⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎛

C11 C12 C13 √2 ∗C14 √2 ∗ C15 √2 ∗ C16
C12 C22 C23 √2 ∗C24 √2 ∗ C25 √2 ∗ C26
C13 C23 C33 √2 ∗C34 √2 ∗ C35 √2 ∗ C36

√2 ∗ C14 √2 ∗ C24 √2 ∗ C34 2 ∗ C44 2 ∗ C45 2 ∗ C46
√2 ∗ C15 √2 ∗ C25 √2 ∗ C35 2 ∗ C45 2 ∗ C55 2 ∗ C56
√2 ∗ C16 √2 ∗ C26 √2 ∗ C36 2 ∗ C46 2 ∗ C56 2 ∗ C66 ⎠

⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛

ε1
ε2
ε3

√2 ∗ ε4
√2 ∗ ε5
√2 ∗ ε6⎠

⎟
⎟
⎟
⎞

  . 

(3.60) 

In the case of a single closely spaced vertically aligned fracture set, the fracture 

induced compliance tensor 𝑺𝑺𝒇𝒇 takes the form (Bakulin et al., 2000, Part I): 

 

𝑺𝑺𝒇𝒇 =  

⎝

⎜
⎜
⎛

K𝑁𝑁 0 0 0 K𝑁𝑁𝑁𝑁 K𝑁𝑁𝑁𝑁
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

K𝑁𝑁𝑁𝑁 0 0 0 K𝑉𝑉 K𝑉𝑉𝑉𝑉
K𝑁𝑁𝑁𝑁 0 0 0 K𝑉𝑉𝑉𝑉 K𝐻𝐻 ⎠

⎟
⎟
⎞

   .     (3.61) 

 

In equation 3.61, K𝑁𝑁 physically represents the introduced compliance in the direction 

normal to the fracture set, K𝑉𝑉 and K𝐻𝐻 physically represent the introduced compliance in 

the direction tangential to the fracture set in the vertical (K𝑉𝑉) and horizontal (K𝐻𝐻) 
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direction, and off-diagonal terms represent coupling associated with K𝑁𝑁, K𝑉𝑉 and K𝐻𝐻 

elements. Off-diagonal terms are a measure of micro corrugation of fracture facies, also 

known as “fracture roughness”, and are assumed to be zero in this work. In the case that 

fractures are rotationally invariant and imbedded in an isotropic medium, vertical (K𝑉𝑉) 

and horizontal (K𝐻𝐻) compliances are identical, and are denoted simply as K𝑇𝑇. The 

resulting excess compliance tensor resulting from this simplified situation is shown in 

Equation 3.62. In the case that fractures are embedded in a VTI background rock, 

rotational symmetry is broken and thus K𝑉𝑉 and K𝐻𝐻 are not necessarily identical. It is 

often convenient to normalize these excess compliance terms to range between 0 and 1. 

These normalized compliance terms are denoted as “fracture weaknesses”. When 

fractures are imbedded in an otherwise isotropic background rock, this normalization is 

performed using Equations 3.63 and 3.64 (Bakulin et al., 2000, Part I). 

 

𝑺𝑺𝒇𝒇 =  

⎝

⎜
⎜
⎛

K𝑁𝑁 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 K𝑇𝑇 0
0 0 0 0 0 K𝑇𝑇⎠

⎟
⎟
⎞

   .     (3.62) 

 
𝛥𝛥𝛥𝛥 =  (𝜆𝜆 + 2𝜇𝜇) 𝐾𝐾𝐾𝐾

1+(𝜆𝜆 + 2𝜇𝜇) 𝐾𝐾𝐾𝐾
  ,        (3.63) 

 
𝛥𝛥𝛥𝛥 =  𝜇𝜇 𝐾𝐾𝐾𝐾

1+𝜇𝜇 𝐾𝐾𝐾𝐾
  ,        (3.64) 

where 𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥 represent normal and tangential fracture weakness, respectively. 𝛥𝛥𝛥𝛥 

and 𝛥𝛥𝛥𝛥 both increase with denser fracturing, and can provide useful information 

regarding if fractures are dry / gas filled or fluid filled (Shaw and Sen, 2006).  
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In the case of dry or gas filled fractures, compliances are introduced in both the 

normal and tangential directions. However, in the case of fluid filled fractures, 

compliance will be primarily introduced in the tangential direction, and thus 𝛥𝛥𝛥𝛥 will be 

small compared to 𝛥𝛥𝛥𝛥. This phenomenon occurs because liquids are approximately as 

compressible as rocks, and thus normal compliance (which is related to the inverse of 

compressibility) is roughly unchanged when fluid in inserted into the rock. However, 

even at reservoir conditions, gas is significantly less compressible than rock, and thus dry 

or gas filled fractures introduce significant compliance into the rock. Both fluids and 

gasses have a shear modulus of zero, and thus tangential compliance (which is related to 

the inverse of the shear modulus) increases dramatically when dry, gas filled or fluid 

filled fractures are introduced into a rock. Using this information, one can use the ratio of 

𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥 as a fluid indication attribute. The fluid indicator attribute suggested by Shaw 

and Sen (2006) is shown in Equation 3.65, which trends towards zero in the case of fluid 

filled cracks and trends towards unity in the case of dry or gas filled fractures. 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑔𝑔 𝛥𝛥𝛥𝛥 
𝛥𝛥𝛥𝛥

  ,       (3.65) 

𝑔𝑔 = 𝑉𝑉𝑠𝑠2

𝑉𝑉𝑝𝑝2
  ,         (3.66) 

where 𝑉𝑉𝑝𝑝 and 𝑉𝑉𝑠𝑠 represent the velocity of compressional and shear waves, respectively. 

In the case of a single rotationally invariant fracture set embedded in either an 

isotropic or VTI background rock, Bakulin et al. (2000, Part II) show that the effective 

compliance tensor, calculated by determining the inverse of the effective compliance 

tensor found using linear slip theory, has the following form: 
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𝑪𝑪 (𝑒𝑒𝑒𝑒𝑒𝑒) =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

C11𝑏𝑏(1 − 𝛥𝛥𝛥𝛥) C12𝑏𝑏(1 − 𝛥𝛥𝛥𝛥) 𝐶𝐶13𝑏𝑏(1 − 𝛥𝛥𝛥𝛥) 0 0 0

C12𝑏𝑏(1 − 𝛥𝛥𝛥𝛥) C22𝑏𝑏 − 𝛥𝛥𝛥𝛥 �𝐶𝐶12𝑏𝑏
2

C11𝑏𝑏
� C23𝑏𝑏 �1 − 𝛥𝛥𝛥𝛥 �C12𝑏𝑏

C11𝑏𝑏
�� 0 0 0

C13𝑏𝑏(1 − 𝛥𝛥𝛥𝛥) C23𝑏𝑏 �1 − 𝛥𝛥𝛥𝛥 �C12𝑏𝑏
C11𝑏𝑏

�� C33𝑏𝑏 − 𝛥𝛥𝛥𝛥 �𝐶𝐶13𝑏𝑏
2

C11𝑏𝑏
� 0 0 0

0 0 0 C44𝑏𝑏 0 0
0 0 0 0 C55𝑏𝑏(1 − 𝛥𝛥𝛥𝛥) 0
0 0 0 0 0 C66𝑏𝑏(1 − 𝛥𝛥𝛥𝛥)⎠

⎟
⎟
⎟
⎟
⎟
⎞

  ,

           (3.67) 

where C𝑖𝑖𝑖𝑖𝑖𝑖 represents compliance tensor elements of the background rock. Note that in 

the isotropic background rock case 𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥 are identical, and are denoted 𝛥𝛥𝛥𝛥.  

The compliance tensor elements for the VTI and isotropic background rock cases 

are shown in Equations 3.55 and 3.57, respectively. By substituting these into the 

generalized effective stiffness tensor shown in Equation 3.67, one can determine the 

exact form of the effective stiffness tensor in the two cases of interest. The effective 

stiffness tensor for the case where fractures are embedded in an isotropic background 

rock is shown in Equation 3.47. 

𝑪𝑪 (𝑒𝑒𝑒𝑒𝑒𝑒) =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

(λ + 2µ) (1 − ΔN) λ (1 − ΔN) λ (1 − ΔN) 0 0 0

λ (1 − ΔN) (λ + 2µ) − ΔN � λ2

λ+2µ
� λ �1 − ΔN � λ

λ+2µ
�� 0 0 0

λ (1 − ΔN) λ �1 − ΔN � λ
λ+2µ

�� (λ + 2µ) − ΔN � λ2

λ+2µ
� 0 0 0

0 0 0 µ 0 0
0 0 0 0 µ (1 − ΔT) 0
0 0 0 0 0 µ (1 − ΔT)⎠

⎟
⎟
⎟
⎟
⎟
⎞

 .   

           (3.68) 

Analysis of Equation 3.68 shows that this stiffness tensor has a form identical to that of a 

HTI medium, shown in Equation 3.56, proving that treating the medium as effective HTI 

anisotropic is valid in the case of a single rotationally invariant fracture set embedded in 

an isotropic background rock, here forth dubbed the “HTI Case”. The effective stiffness 
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tensor for the case where fractures are embedded in a VTI anisotropic background rock is 

shown in Equation 3.69. 

𝑪𝑪 (𝑒𝑒𝑒𝑒𝑒𝑒) =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

C11𝑏𝑏(1− 𝛥𝛥𝛥𝛥) (C11𝑏𝑏 − 2 C66𝑏𝑏)(1− 𝛥𝛥𝛥𝛥) C13𝑏𝑏(1− 𝛥𝛥𝛥𝛥) 0 0 0

(C11𝑏𝑏 − 2 C66𝑏𝑏)(1− 𝛥𝛥𝛥𝛥) C11𝑏𝑏 − 𝛥𝛥𝛥𝛥 �(C11𝑏𝑏−2 C66𝑏𝑏)2

C11𝑏𝑏
� C13𝑏𝑏 �1 − 𝛥𝛥𝛥𝛥 �C11𝑏𝑏−2 C66𝑏𝑏

C11𝑏𝑏
�� 0 0 0

C13𝑏𝑏(1− 𝛥𝛥𝛥𝛥) C13𝑏𝑏 �1 − 𝛥𝛥𝛥𝛥 �C11𝑏𝑏−2 C66𝑏𝑏
C11𝑏𝑏

�� C33𝑏𝑏 − 𝛥𝛥𝛥𝛥 �𝐶𝐶13𝑏𝑏
2

C11𝑏𝑏
� 0 0 0

0 0 0 C44𝑏𝑏 0 0
0 0 0 0 C44𝑏𝑏(1− 𝛥𝛥𝛥𝛥) 0
0 0 0 0 0 C66𝑏𝑏(1− 𝛥𝛥𝛥𝛥)⎠

⎟
⎟
⎟
⎟
⎟
⎞

  , 

           (3.69) 

where C𝑖𝑖𝑖𝑖𝑖𝑖 represents compliance tensor elements of the VTI background rock described 

by Equation 3.55. Analysis of Equation 3.69 shows that this stiffness tensor has a form 

identical to that of an orthorhombic medium, shown in Equation 3.54, proving that 

treating the medium as effective orthorhombic anisotropic is valid in the case of a single 

rotationally invariant fracture set embedded in a VTI anisotropic background rock, here 

forth dubbed the “Orthorhombic Case”. Bakulin et al. (2000, Part I) note that similar 

results are obtained by assuming aligned penny shaped cracks (Hudson, 1981), but that 

derivation will not be included in this thesis. It is interesting to note that in both the HTI 

case and the Orthorhombic case the stiffness tensor contains one fewer independent value 

than in the archetypal anisotropic case. In the HTI case this corresponds to a special HTI 

medium, which can be parameterized by four parameters instead of the usual five 

parameters – two elastic parameters from the isotropic background rock and two fracture 

weakness parameters. In the orthorhombic case this corresponds to a special 

orthorhombic medium, which can be parameterized by eight parameters instead of the 

usual nine parameters – five elastic parameters from the VTI background rock and three 

fracture weakness parameters. In the orthorhombic case this leads to an additional 

constraint on the effective stiffness tensor, shown in Equation 3.70. 
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C13 (C22 + C12) = C23 (C11 + C12)  .      (3.70) 

While these special properties are not utilized in this work, they could prove useful in 

future work that aims to invert directly for elastic properties in HTI or orthorhombic 

media by reducing the number of unknown elastic parameters.  

3.5 INVERSION 

In the most general sense, inversion aims to determine the characteristics of 

causal features by analyzing the effects these features produce. In geophysics, inverse 

problems generally aim to characterize some subsurface property, for example seismic 

wave velocity or density, by analyzing a set of observations where the desired 

parameter(s) induce some causal effect, for example a set of features present in seismic 

data. In this work, parameters that characterize fractures, namely fracture density and 

fracture orientation, are the desired earth parameters for which are being inverted. A 3D 

seismic dataset constitutes the set of observations that are to be analyzed to invert for 

these fracture characteristics. In any inverse problem, a proper understanding of the 

forward problem is crucial. The forward problem specifies how changes in the desired 

model parameters alter certain observations. Generally speaking, the forward problem 

allows one to generate synthetic data based on a certain set of parameters. The synthetic 

data is then compared to the real data. The parameters associated with the synthetic 

dataset that most closely matches the real data are considered to be the most likely 

parameters, i.e., the “answer” to the inverse problem. Depending on the problem, finding 

this set of “best-fit” parameters might be an iterative process. The forward problems 

associated with the methods used in this work will be examined in detail in Chapters 4 

and 5; however in the interest of providing the theoretical framework for inversion, the 

following assumptions are necessairy. 
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1. The forward problem exists, indicating that fracture density and orientation do 

causally effect 3D seismic data, and 

2. The forward problem is linear in nature. 

 A linear forward problem can be posed in the general form shown in Equation 

3.71. 

𝒅𝒅 = 𝑮𝑮𝑮𝑮  ,         (3.71) 

where 𝒅𝒅 is a 1xn column vector representing n data points or observations, 𝒎𝒎 is a 1xm 

column vector representing m distinct model parameters, and 𝑮𝑮 is a mxn matrix, known 

as the linear operator or the kernel matrix, which is determined by the (often simplified) 

physics associated with the forward problem. 𝑮𝑮 is the mathematical operator that governs 

how model parameters 𝒎𝒎 affect data points 𝒅𝒅. As an example, let us pose the two term 

AVO equation, shown in Equation 3.72, in the format depicted in Equation 3.71.  

𝑅𝑅(𝜃𝜃) ≈ 𝐴𝐴 + 𝐵𝐵 sin2 𝜃𝜃  .       (3.72) 

In this case the desired model parameters are the two AVO weights 𝐴𝐴 and 𝐵𝐵, and 

observations are seismic reflectivity data collected at unique incident angles 𝜃𝜃1, 𝜃𝜃2, … , 

𝜃𝜃𝑁𝑁. Converted to the matrix form shown in Equation 3.71, the two term AVO equation 

transforms to: 

 

�

𝑅𝑅(𝜃𝜃1)
𝑅𝑅(𝜃𝜃2)
⋮

𝑅𝑅(𝜃𝜃𝑁𝑁)

� = �

1 sin2(𝜃𝜃1)
1 sin2(𝜃𝜃2)
⋮ ⋮
1 sin2(𝜃𝜃𝑁𝑁)

��𝐴𝐴𝐵𝐵�  .      (3.73) 

After a linear problem has been posed in the general form depicted by Equation 

3.71, matrix manipulation using standard linear algebra rules can be applied in order to 

find a solution for 𝒎𝒎. This is generally accomplished by left-multiplying each side of 

Equation 3.71 by the inverse of matrix 𝑮𝑮; however, 𝑮𝑮 is not always a square matrix. To 
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resolve this, both sides of Equation 3.71 are first left-multiplied by the transpose of 𝑮𝑮, 

denoted 𝑮𝑮𝑇𝑇, resulting in: 

𝑮𝑮𝑇𝑇𝒅𝒅 = [𝑮𝑮𝑇𝑇𝑮𝑮]𝒎𝒎  .        (3.74) 

In Equation 3.74, the term [𝑮𝑮𝑇𝑇𝑮𝑮] is by definition a square matrix, and thus a candidate to 

be inverted using standard matrix inversion techniques. In some problems, [𝑮𝑮𝑇𝑇𝑮𝑮] will be 

singular or near-singular, making matrix inversion difficult. In these cases a 

pseudoinverse may be used, for example the Moore-Penrose pseudoinverse found by 

singular value decomposition (SVD). After the (pseudo)inverse of matrix [𝑮𝑮𝑇𝑇𝑮𝑮] has been 

calculated, it is left-multiplied to each side of Equation 3.74, resulting in the solution for 

𝒎𝒎 shown in Equation 3.75. 

𝒎𝒎 = [𝑮𝑮𝑇𝑇𝑮𝑮]−1𝑮𝑮𝑇𝑇𝒅𝒅  .        (3.75) 

The solution for 𝒎𝒎 shown in equation 3.75 is the least-squares solution for model 

parameters in an overdetermined system, i.e., a system where the number of data points is 

greater than the number of desired model parameters. A least-squares solution minimizes 

the square of the data residual, i.e., the square of the difference between the collected data 

and the synthetic data generated by the forward problem. Proof that Equation 3.75 

corresponds to a least squares solution can be found by analyzing an objective function 

𝐸𝐸, which is associated with least-squares problems. In a least-squares problem, 𝐸𝐸 

generally consists of the sum of the square of data residual at all data points, as shown in 

Equation 3.76. 

𝐸𝐸 = (𝒅𝒅 − 𝑮𝑮𝑮𝑮)𝑇𝑇 (𝒅𝒅 − 𝑮𝑮𝑮𝑮) =  ∑[(𝑑𝑑𝑖𝑖 − ∑ 𝐺𝐺𝑖𝑖𝑖𝑖𝑚𝑚𝑗𝑗𝑗𝑗 ) (𝑑𝑑𝑖𝑖 − ∑ 𝐺𝐺𝑖𝑖𝑖𝑖𝑚𝑚𝑘𝑘𝑘𝑘 )]  .   (3.76) 

The objective function 𝐸𝐸, also known as the error function, is intended to be minimized 

in an inversion. The point where 𝐸𝐸 achieves its minimum value is considered the “best-

fit” solution, and the model parameters associated with the minimum value of 𝐸𝐸 are the 

solution to the inverse problem. Note that 𝐸𝐸 may be defined in more complex ways than 
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shown in Equation 3.76. However, Equation 3.76 represents the standard objective 

function for a least squares inversion approach, and it is commonly used in many inverse 

problems (Sen, Inverse Theory, class notes). The minimum value of 𝐸𝐸 can be found by 

taking the derivative of 𝐸𝐸 with respect to 𝒎𝒎 and setting the said derivative equal to zero. 

This is shown in Equation 3.77. 
𝜕𝜕𝜕𝜕
𝜕𝜕𝒎𝒎

= 2 ∑ 𝑚𝑚𝑘𝑘  ∑ 𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝑖𝑖 − 2 ∑ 𝐺𝐺𝑖𝑖𝑞𝑞𝑑𝑑𝑖𝑖 = 0𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑘𝑘=1   .   (3.77) 

Transformed into matrix form, Equation 3.77 becomes: 

[𝑮𝑮𝑇𝑇𝑮𝑮]𝒎𝒎−𝑮𝑮𝑇𝑇𝒅𝒅 = 0  .       (3.78) 

Note that Equation 3.78 is identical to Equation 3.74, and it can be solved in the same 

fashion, leading to the least squares solution for 𝒎𝒎 shown in Equation 3.75. Least squares 

solutions to inverse problems are ideal for linear systems with Gaussian errors in data, as 

they provide solutions with errors that have a mean of zero, are uncorrelated, and have 

equal variance. Proof of error characteristics resulting from a least squares inversion is 

provided by the Gauss-Markov theorem (Plackett, 1950). Additionally, least squares 

solutions provide the simplest (i.e., minimal length) solutions for underdetermined 

problems, although in this case the solution has a form different than the one shown in 

Equation 3.75 (Sen, Inverse Theory, class notes). 

In order to perform a more robust least squares regression analysis, one may wish 

to transform the standard least squares regression into a weighted least squares 

regression. This is accomplished by altering the objective function shown to the form 

shown in Equation 3.79 (Sen, Inverse Theory, class notes). 

𝐸𝐸 = (𝒅𝒅 − 𝑮𝑮𝑮𝑮)𝑇𝑇 𝑾𝑾𝑑𝑑 (𝒅𝒅 − 𝑮𝑮𝑮𝑮)  ,      (3.79) 

where 𝑾𝑾𝑑𝑑 represents a weighting matrix. By following the same procedure used in the 

standard least squares case, we arrive at the weighted least squares solution shown in 

Equation 3.80. 
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𝒎𝒎 = [𝑮𝑮𝑇𝑇 𝑾𝑾𝑑𝑑  𝑮𝑮]−1 𝑮𝑮𝑇𝑇 𝑾𝑾𝑑𝑑  𝒅𝒅  .      (3.80) 

𝑾𝑾𝑑𝑑 can be represented in various ways that measure uncertainty, but is often calculated 

as a diagonal matrix with its nth diagonal element corresponding to the inverse of data 

variance at the nth data point. This results in data points with higher variance (i.e., worse 

fit) being given less weight in the inversion. If true data variance is already known, the 

weighted least squares can be accomplished in a single iteration. However, this 

formulation of least squares is often used in an iterative fashion, with 𝑾𝑾𝑑𝑑 being updated 

on every iteration and calculated using data variance results from the previous iteration. 

In this case, the solution converges as 𝑾𝑾𝑑𝑑 approaches an identity matrix. This iterative 

formulation of weighted least squares is called Iteratively Reweighted Least Squares 

(IRLS).  Generally, IRLS will continue either until convergence has been achieved, 

indicating that change in model parameters and/or the objective function between 

iterations is less than some defined threshold, or until a pre-defined computational time 

limit has been reached. IRLS can also be used to solve non-linear inversion problems if 

the problem can be approximated as linear at every iteration. Seismic tomography is an 

example of a non-linear inverse problem that can be solved using IRLS. Non-linearity is 

introduced in seismic tomography because altering the subsurface velocity model affects 

the ray paths of the waves used in the inversion. However, if one makes the assumption 

that ray paths do not change within a single iteration (and are instead revised between 

iterations), each individual iteration becomes linearized and IRLS can be applied. 

Eventually, as the solution converges, velocity changes and thus changes in ray paths will 

approach zero between iterations, and the ideal solution will be found. 

In the work described in the following chapters, standard, weighted and iteratively 

reweighted least squares inversions will be extensively used.  
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Chapter 4: Existing Fracture Characterization Methods 

4.1 INTRODUCTION 

Most fracture characterization methods currently in practice fundamentally 

assume that fractures are closely spaced, vertically aligned, rotationally invariant, and 

embedded in an otherwise isotropic background rock. Following the methodology 

outlined in Chapter 3, these assumptions lead to the fractured medium being 

characteristic of HTI anisotropic. Several linearized expressions for reflectivity in HTI 

media have been developed. In the most general sense, these linearized approximations 

pose reflectivity in terms of two variables: seismic wave incident angle (𝜃𝜃) and azimuth 

(𝜑𝜑). These equations can be related to fracture properties, and thus manipulating these 

equations allows one to determine relations for describing fracture characteristics, 

specifically fracture orientation and fracture density. By examining the equation(s) 

approximating reflectivity for local minima and maxima, one can find the strike of 

fracture azimuth. Constants of the equation(s) describing azimuthal variation can be used 

to determine the magnitude of the azimuthal difference in amplitudes, which is related to 

fracture density. In some cases, additional useful parameters can also be determined, for 

example normal and tangential fracture weaknesses. 

The work presented in this chapter describes two common HTI fracture 

characterization techniques that utilize azimuthal variations in seismic amplitude 

(AVAZ). The first method is based on the Rüger AVO equation, and the second method 

is based on Fourier decomposition of the seismic data into a modified 4th order Fourier 

series. Theory, implementation and results from both methods are presented. These 

methods rely on various least squares inversion techniques, as discussed in Chapter 3. 

The input for each analysis is a 3D seismic data set consisting of 137 inlines by 137 

crosslines with offsets ranging from 225m to 6025m, and a RMS velocity model. Prior to 
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the onset of the following AVAZ analyses, data was processed as described in Chapter 2. 

To reiterate, azimuthal super-gathers consisting of 9 azimuth bins, each 20 degrees wide, 

and 30 offset bins with ~210m spacing is the input to the following analyses. Hampson-

Russell © was primarily used to carry out the methods presented in this chapter, but some 

additional work was implemented using MATLAB ©. 

4.2 RÜGER METHOD 

The Rüger method is based on the Rüger AVO approximation to reflectivity in 

HTI media (Rüger, 1997; Rüger and Tsvankin, 1997), shown in Equation 4.1.  

𝑅𝑅(𝜃𝜃,𝜑𝜑) = 𝐴𝐴 + [𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎  sin2(𝜑𝜑 − 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖)] sin2 𝜃𝜃  ,   (4.1) 

where 𝜃𝜃 represents incident angle, 𝜑𝜑 represents azimuth, and 𝑅𝑅 represents seismic 

reflectivity. Equation 4.1 is a modification of the two term conventional AVO equation, 

shown in Equation 3.72, with the addition of an azimuthally varying gradient term (𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎). 

Variables 𝐴𝐴, 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 can be postulated in terms of elastic properties of the effective 

media generating the reflectivity (see Rüger, 1997); however, doing so is not necessary in 

this analysis. Rüger and Tsvankin (1997) conducted a thorough analysis showing that 

Equation 4.1 is an acceptable approximation to exact reflectivity in HTI media at 

relatively small incident angles (i.e., less than ~30 degrees) under the assumption of small 

jumps in reflectivity across the layer interface, arbitrarily weak anisotropy, and sub-

critical incident angles. See Figure 4.1 for an evaluation of how Equation 4.1 compares to 

exact expressions for reflectivity in isotropic, fluid filled fracture, and dry fracture end-

cases. 
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Figure 4.1: Comparison of exact and approximate reflectivity, calculated using the 
Rüger AVO equation shown in Equation 4.1. In all images the solid line 
represents exact reflectivity, and the dashed line represents approximated 
reflectivity. The leftmost image depicts the isotropic case. The middle image 
depicts the HTI case associated with fluid filled fractures. The rightmost 
image depicts the HTI case associated with dry fractures. The X axis 
represents incident angle, and the Y axis represents reflectivity. In the center 
and rightmost images reflectivity for azimuths corresponding to 0 degrees, 
30 degrees, 60 degrees and 90 degrees from the symmetry axis are shown. 
Figure from Rüger and Tsvankin (1997). 

Linearization of Equation 4.1 is performed using the method proposed by Xu and 

Li (2002), which utilizes trigonometric identities. This results in: 

𝑅𝑅(𝜃𝜃,𝜑𝜑) = 𝐴𝐴 + [𝐵𝐵 − 𝐶𝐶 cos(2𝜑𝜑) − 𝐷𝐷 sin(2𝜑𝜑)] sin2 𝜃𝜃  ,   (4.2) 

where: 

𝐵𝐵 =  𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 + 1
2
𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎  ,         (4.3) 

𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎2 = 4 (𝐶𝐶2 + 𝐷𝐷2)  ,        (4.4) 

tan(2 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖) = 𝐷𝐷
𝐶𝐶

  .        (4.5) 

In the context of inversion, Equation 4.2 acts as a linear forward operator, and thus can be 

rewritten in the form shown in Equation 3.71. This results in: 
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⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑅𝑅(𝜃𝜃1,φ1)
𝑅𝑅(𝜃𝜃2,φ1)

⋮
𝑅𝑅(𝜃𝜃𝑁𝑁,φ1)
𝑅𝑅(𝜃𝜃1,φ2)
𝑅𝑅(𝜃𝜃2,φ2)

⋮
𝑅𝑅(𝜃𝜃𝑁𝑁,φ2)

⋮
𝑅𝑅(𝜃𝜃𝑁𝑁,φ𝑛𝑛)⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1 sin2( 𝜃𝜃1) − cos(2φ1) sin2(𝜃𝜃1) − sin(2φ1) sin2(𝜃𝜃1)
1 sin2( 𝜃𝜃2) − cos(2φ1) sin2(𝜃𝜃2) − sin(2φ1) sin2(𝜃𝜃2)
⋮ ⋮ ⋮ ⋮
1 sin2(𝜃𝜃𝑁𝑁) − cos(2φ1) sin2( 𝜃𝜃𝑁𝑁) − sin(2φ1) sin2( 𝜃𝜃𝑁𝑁)
1 sin2( 𝜃𝜃1) − cos(2φ2) sin2(𝜃𝜃1) − sin(2φ2) sin2(𝜃𝜃1)
1 sin2( 𝜃𝜃2) − cos(2φ2) sin2(𝜃𝜃2) − sin(2φ2) sin2(𝜃𝜃2)
⋮ ⋮ ⋮ ⋮
1 sin2(𝜃𝜃𝑁𝑁) − cos(2φ2) sin2( 𝜃𝜃𝑁𝑁) − sin(2φ2) sin2( 𝜃𝜃𝑁𝑁)
⋮ ⋮ ⋮ ⋮
1 sin2(𝜃𝜃𝑁𝑁) − cos(2φ𝑛𝑛) sin2(𝜃𝜃𝑁𝑁) − sin(2φ𝑛𝑛) sin2( 𝜃𝜃𝑁𝑁)⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

�

𝐴𝐴
𝐵𝐵
𝐶𝐶
𝐷𝐷

�  ,   

           (4.6) 

where there exists 𝑁𝑁 incident angle bins, 𝑛𝑛 azimuthal bins and 𝑁𝑁 ∗ 𝑛𝑛 data points at each 

location. Note that matrix 𝑮𝑮 and data vector 𝒅𝒅 in Equation 4.6 could be primarily sorted 

by incident angle rather than azimuth without altering results. Conversion from offset 

domain to incident angle domain was done automatically by Hampson-Russell © using a 

RMS velocity section.  

After matrices in Equation 4.6 have been populated with specific values 

corresponding to the azimuthal and incident angle binning scheme used in the analysis, 

data vector 𝒎𝒎 can be solved using the standard least squares approach shown in Equation 

3.75. This is repeated at every Common Depth Point (CDP) location and every time 

sample. After linearized coefficients 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 and 𝐷𝐷 are found, Equations 4.3 – 4.5 are 

used to calculate the coefficients shown in Equation 4.1, namely 𝐴𝐴, 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖, 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 and 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖. 

𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖  represents the azimuthal isotropy plane, and it is an indicator of fracture strike. 

Analysis of Equation 4.1 shows that at azimuth 𝜑𝜑 = 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖, reflectivity is at a local 

minimum with respect to azimuth. 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 represents the magnitude of the azimuthal 

variation, and it is a direct indicator of fracture density. This agrees well with the intuitive 

notion that denser fracture spacing will result in a larger difference in seismic waves 

when comparing waves traveling parallel to those traveling perpendicular to fracture 

strike. Note that seismic trace amplitude data was used in lieu of reflectivity because true 
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impedances of the section are unknown. Trace amplitude is roughly proportional to 

reflectivity, but this substitution limits inverted fracture density to be relative, rather than 

absolute. In practice, the number of fractures per unit length cannot be found, but areas of 

relatively high and relatively low fracture density can be identified. Unfortunately, 

substituting seismic amplitude for reflectivity is unavoidable in the analysis of real data. 

Regrettably, the Rüger method presented above is fundamentally flawed. This 

comes largely from the linearization process used in order to make solving the problem 

computationally feasible. Analysis of Equation 4.4 shows that 𝐶𝐶 and 𝐷𝐷 are used to solve 

for 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎2  rather than 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎. This leads to an inherent sign ambiguity in 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 and thus an 

inherent inability to differentiate between the “fast” direction (parallel to 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖) and the 

“slow” direction (perpendicular to 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖). The sign ambiguity in 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 also indicates that 

azimuth 𝜑𝜑 = 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖 could correspond to either a local maximum or a local minimum in 

seismic data with respect to azimuth. In practice, this sign ambiguity leads to an inherent 

90 degree ambiguity in 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖, and thus an inherent 90 degree ambiguity in determining 

fracture azimuth. This 90 degree ambiguity can also be seen by examining Equation 4.5, 

noting that tan(2 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖) is 180 degree periodic and thus will not be affected by any 90 

degree change in 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖. This 90 degree ambiguity in fracture azimuth poses serious 

problems for well orientation planning and in effect makes the Rüger method unusable 

for determining fracture azimuth without further modification. Partially for this reason, 

an alternate HTI method was implemented which utilizes Fourier decomposition of the 

seismic data. 

4.3 FOURIER COEFFICIENT DECOMPOSITION METHOD 

This AVAZ method is fundamentally based on decomposing azimuthal variations 

of seismic amplitudes into a Fourier series, and relating the coefficients of the calculated 
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Fourier series to fracturing characteristics (Downton, 2011 and Downton et al., 2011). A 

Fourier series takes the general form of: 

𝑅𝑅(𝜃𝜃,𝜑𝜑) = ∑[𝑈𝑈𝑛𝑛(𝜃𝜃) cos(𝑛𝑛𝑛𝑛) + 𝑉𝑉𝑛𝑛(𝜃𝜃) sin(𝑛𝑛𝑛𝑛)]  ,    (4.7) 

where 𝜃𝜃 represents incident angle, 𝜑𝜑 represents azimuth, and 𝑅𝑅 represents seismic 

reflectivity. Note that, as in the Rüger method, seismic trace amplitude must be used in 

lieu of reflectivity. Downton et al. (2011) show that for P-P reflection data all odd Fourier 

coefficients are zero, and minimal to no energy is present in the 6th order and higher order 

Fourier coefficients. Thus, Equation 4.7 reduces to a 4th order Fourier series composed 

only of even Fourier terms. Downton et al. (2011) show that in the case of HTI 

anisotropy, Equation 4.7 reduces to: 

𝑅𝑅𝑝𝑝𝑝𝑝(𝜃𝜃,𝜑𝜑) = 𝑟𝑟0 + 𝑟𝑟2  cos �2 �𝜑𝜑 − 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠�� + 𝑟𝑟4  cos �4 �𝜑𝜑 − 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠��  ,  (4.8) 

where 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 represents the azimuthal symmetry plane and 𝑟𝑟0, 𝑟𝑟2 and 𝑟𝑟4 represent the 0th, 

2nd and 4th order Fourier coefficients, respectively. Azimuthal symmetry plane 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 is 

orthogonal to azimuthal isotropy plane 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖 and is thus perpendicular to fracture 

orientation. It is worth noting that the phase (𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠) associated with the 𝑟𝑟2 coefficient 

wraps every 90 degrees, and the phase (𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠) associated with the 𝑟𝑟4 coefficient wraps 

every 45 degrees. Refer to Chapter 5, Equations 5.25 and 5.26, for proof of phase 

wrapping. Downton et al. (2011) relate the Fourier coefficients 𝑟𝑟0, 𝑟𝑟2 and 𝑟𝑟4 to fracture 

parameters using Equations 4.9 – 4.16. 

𝑟𝑟0 = 𝐴𝐴0 + 𝐵𝐵0  sin2 𝜃𝜃 + 𝐶𝐶0  sin2 𝜃𝜃  tan2 𝜃𝜃  ,     (4.9) 

𝑟𝑟2 = 𝛥𝛥𝛥𝛥 𝑔𝑔 sin
2 𝜃𝜃
2

− 𝛥𝛥𝛥𝛥 𝑔𝑔 𝜒𝜒
2

 �1 + 1+𝜒𝜒
2
� sin2 𝜃𝜃  tan2 𝜃𝜃  ,     (4.10) 

𝑟𝑟4 = 1
8

 |𝜅𝜅| sin2 𝜃𝜃  tan2 𝜃𝜃  ,       (4.11) 

𝜅𝜅 = 𝑔𝑔 (𝛥𝛥𝛥𝛥 − 𝑔𝑔 𝛥𝛥𝛥𝛥)  ,         (4.12) 

𝜒𝜒 = 1 − 2𝑔𝑔  ,         (4.13) 
𝑔𝑔 =  𝑉𝑉𝑠𝑠2

𝑉𝑉𝑝𝑝2
  ,         (4.14) 
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𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 ≈ 𝑔𝑔 (𝛥𝛥𝛥𝛥 − 𝜒𝜒𝜒𝜒𝜒𝜒)  ,       (4.15) 

𝑟𝑟2(𝜃𝜃) ≈ 1
2
𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 sin2 𝜃𝜃  ,       (4.16) 

where 𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥 represent normal and tangential fracture weaknesses, respectively, and 

𝑉𝑉𝑝𝑝 and 𝑉𝑉𝑠𝑠 represent compressional and shear seismic wave velocities, respectively. 

Hampson-Russell © was used to invert for 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠, 𝑟𝑟0, 𝑟𝑟2 and 𝑟𝑟4 using an Iteratively 

Reweighted Least Squares (IRLS) algorithm using incident angles ranging from 5 to 45 

degrees in 5 degree increments at each of the nine azimuthal bins. Being proprietary 

information of Hampson-Russell ©, the specifics associated with this IRLS algorithm are 

unknown. This algorithm inverts for two distinct 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 values – one calculated from the 

𝑟𝑟2 coefficient and the other calculated from the 𝑟𝑟4 coefficient. In theory these two values 

should be identical, but in practice differences exist between the two due to imperfections 

in the seismic data as well as the phase wrapping phenomenon. Downton et al. (2011) 

show that fracture orientation determined from 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 calculated from the 2nd order 

Fourier coefficient phase should be used, due to less frequent phase wrapping and there 

being inherently higher confidence in the 𝑟𝑟2 coefficient than in the 𝑟𝑟4 coefficient. Refer to 

the Results section of this chapter for figures depicting both calculated values of 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠. 

Using the Fourier coefficients and azimuthal symmetry planes inverted for using 

Hampson-Russell ©, one can estimate both fracture density and fracture orientation. 

Fracture azimuth is perpendicular to the azimuthal isotropy plane, and the 𝑟𝑟2 Fourier 

coefficient is roughly proportional to 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎, which is directly related to fracture density. 

However, in order to extract more information from the data, data were transferred to 

MATLAB © and a least squares inversion designed to determine fracture weaknesses 

was performed. In this inversion, Equations 4.10 and 4.11 act as the forward operator and 

the 2nd and 4th order Fourier coefficients 𝑟𝑟2 and 𝑟𝑟4 act as the data. Posed in the format 
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shown in Equation 3.71, Equations 4.10 and 4.11 transform to: 

 

⎝

⎜
⎜
⎜
⎛

𝑟𝑟2
𝑟𝑟4
𝑟𝑟2
𝑟𝑟4
⋮
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⎟
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2
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�ΔN
ΔT�  ,  (4.17) 

 

for 𝜃𝜃1 = 5 degrees, 𝜃𝜃2 = 10 degrees, … , 𝜃𝜃𝑁𝑁 = 45 degrees. These incident angles were 

chosen to coincide with the incident angles used in the original IRLS inversion to 

determine Fourier coefficients 𝑟𝑟2 and 𝑟𝑟4. Based on well data, 𝑔𝑔 was assumed to be 

0.4444, corresponding to 𝑉𝑉𝑝𝑝 𝑉𝑉𝑠𝑠⁄ = 1.5. Note that in Equation 4.17 Fourier coefficients 𝑟𝑟2 

and 𝑟𝑟4 do not change with incident angle. Matrices in Equation 4.17 are generated at 

every time and CDP location in the Haynesville, and a standard least squares inversion, 

as shown in Equation 3.75, is performed to solve for 𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥. After 𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥 have 

been determined, Equation 4.15 is used to calculate 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎, which is proportional to 

fracture density, and Equation 3.65 is used to calculate the fluid indicator attribute 

proposed by Shaw and Sen (2006). 

The method based on Fourier coefficient decomposition is preferred over the 

Rüger method for a number of reasons. The most significant reason is that the Fourier 

coefficient decomposition method is potentially capable of determining fracture azimuth 

without a 90 degree ambiguity by utilizing second and fourth order Fourier terms at 

multiple incident angles (Downton, 2011 and Downton et al., 2011). However, resolving 
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this 90 degree ambiguity is still not trivial due to the 90 degree phase wrapping 

associated with the 𝑟𝑟2 coefficient. Unfortunately, despite numerous attempts to contact 

Hampson-Russell ©, it is unclear whether Hampson-Russell’s © software actively 

determines the correct symmetry axis. Thus, the Fourier coefficient results shown in this 

chapter may still contain a 90 degree ambiguity in fracture azimuth. This potential 90 

degree ambiguity will be further discussed later in this Thesis; however, comparing the 

Fourier coefficient based inversion results presented in this Chapter to those presented in 

Chapter 5 seems to confirm this 90 degree ambiguity.   

Despite having an ambiguity in determining fracture azimuth, the Fourier 

coefficient method is still preferred to the Rüger method because the Fourier coefficient 

method utilizes a higher order approximation. The Rüger method in effect only utilizes a 

2nd order approximation, whereas the use of 4th order terms in the Fourier decomposition 

based approach results in the approximation being more physically exact and allows it to 

be valid over a wider range of incident angles than the Rüger method. The inclusion of 

higher incident angles is ideal because AVAZ effects from fractures are generally more 

pronounced at larger offsets / higher incident angles, thus increasing the signal-to-noise 

ratio of any azimuthal variations. The ability to properly utilize this large offset 

information increases confidence in inversion results. For these reasons I recommend the 

Fourier decomposition based approach over the Rüger based approach, and will place 

more weight on the results from the Fourier coefficient based method. The results from 

implementing both methods are presented and compared in the following section. 

4.4 RESULTS 

Results from implementing the Rüger method can be seen in Figures 4.2 and 4.3. 

Values have been vertically averaged throughout the Haynesville, and lateral smoothing 
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has been automatically applied by Hampson-Russell ©. In these figures, the background 

color represents fracture density (from 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎), and the small superimposed planar features 

are oriented in the direction of fracture azimuth (from 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖). Planar features are not 

included in Figure 4.2 to allow for unobstructed viewing of fracture density. Values for 

𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 should be treated as relative, and thus do not include bounds on the colorbar. 

Warmer background colors indicate higher fracture density. Planar features, which depict 

fracture azimuth, are only displayed in areas where fracture density is higher than some 

user-defined threshold, allowing for better visualization of fracturing in more densely 

fractured areas. The red arrows indicate the direction of north. All images share the same 

orientation. 

 

 

Figure 4.2: Anisotropic Gradient, a proxy for fracture density, calculated using the 
Rüger method and vertically averaged within the Haynesville Shale. 
Warmer colors represent denser fracture spacing. The red arrow indicates 
the direction of north. 
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Figure 4.3: Fracture orientation and Anisotropic Gradient, a proxy for fracture density, 
calculated using the Rüger method and vertically averaged within the 
Haynesville Shale. Fracture orientation is represented by planar features 
superimposed on the image which are oriented in the plane of fracture strike. 
Warmer background colors represent denser fracture spacing. The red arrow 
indicates the direction of north. 

Results from implementing the Fourier coefficient Decomposition method can be 

seen in Figures 4.4 – 4.6. Values have been vertically averaged throughout the 

Haynesville, and lateral smoothing has been automatically applied by Hampson-Russell 

©. In these figures, the background color represents fracture density (from 𝑟𝑟2), and the 

small superimposed planar features are oriented in the direction of fracture azimuth (from 

𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠). Planar features are not included in Figure 4.4 to allow for unobstructed viewing of 

fracture density. Values for 𝑟𝑟2 should be treated as relative, and thus do not include 

bounds on the colorbar. Warmer background colors indicate higher fracture density. 

Planar features which depict fracture azimuth are only displayed in areas where fracture 

density is higher than some user-defined threshold, allowing for better visualization of 

fracturing in more densely fractured areas. The red arrows indicate the direction of north. 

All images share the same orientation. 
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Figure 4.4: 𝑟𝑟2 Fourier coefficient, a proxy for fracture density, calculated using the 
Fourier coefficient decomposition method and vertically averaged within the 
Haynesville Shale. Warmer colors represent denser fracture spacing. The red 
arrow indicates the direction of north. 

 

 

Figure 4.5: Fracture orientation, from 2nd order Fourier coefficient phase 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠, and 𝑟𝑟2 
Fourier coefficient, a proxy for fracture density, calculated using the Fourier 
coefficient decomposition method and vertically averaged within the 
Haynesville Shale. Fracture orientation is represented by planar features 
superimposed on the image which are oriented in the plane of fracture strike. 
Warmer background colors represent denser fracture spacing. The red arrow 
indicates the direction of north. 
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Figure 4.6: Fracture orientation, from 4th order Fourier coefficient phase 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠, and 𝑟𝑟2 
Fourier coefficient, a proxy for fracture density, calculated using the Fourier 
coefficient decomposition method and vertically averaged within the 
Haynesville Shale. Fracture orientation is represented by planar features 
superimposed on the image which are oriented in the plane of fracture strike. 
Warmer background colors represent denser fracture spacing. The red arrow 
indicates the direction of north. 

Figures 4.7 and 4.8 depict results for normal and tangential fracture weaknesses, 

as determined by a least squares inversion of Equation 4.17. Figures 4.9 and 4.10 depict 

𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎  and fluid indicator attribute as determined from normal and tangential fracture 

weaknesses using Equations 4.15 and 3.44. Values for fracture weaknesses and 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 

should be treated as relative, and thus do not include bounds on the colorbar. Warmer 

colors indicate high values. Values for the Fluid Indicator attribute range from 0.7 to 1.2. 

The black arrows indicate the direction of north. All images share the same orientation. 
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Figure 4.7: Normal fracture weakness (𝛥𝛥𝛥𝛥), as calculated from a least squares inversion 
of 𝑟𝑟2 and 𝑟𝑟4 Fourier coefficients. Warmer colors indicate higher values. The 
black arrow indicates the direction of north. 
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Figure 4.8: Tangential fracture weakness (𝛥𝛥𝛥𝛥), as calculated from a least squares 
inversion of 𝑟𝑟2 and 𝑟𝑟4 Fourier coefficients. Warmer colors indicate higher 
values. The black arrow indicates the direction of north. 
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Figure 4.9: Anisotropic gradient (𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎), as calculated from the values of normal and 
tangential fracture weakness (𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥) found via a least squares 
inversion of 𝑟𝑟2 and 𝑟𝑟4 Fourier coefficients. Anisotropic gradient is a proxy 
for fracture density. Warmer colors indicate denser fracture spacing. The 
black arrow indicates the direction of north. 
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Figure 4.10: Fluid indicator attribute, as calculated from the values of normal and 
tangential fracture weakness (𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥) found via a least squares 
inversion of 𝑟𝑟2 and 𝑟𝑟4 Fourier coefficients. Warmer colors indicate higher 
values. The colorbar ranges from approximately 0.7 to 1.2. Because the fluid 
indicator attribute is based on the ratios of velocities and fracture 
weaknesses, it is unitless. The black arrow indicates the direction of north. 

A direct comparison of fracture density results between the Rüger (𝐵𝐵𝑎𝑎𝑎𝑎𝑖𝑖) and 

Fourier decomposition (𝑟𝑟2) methods can be seen in Figures 4.11 – 4.15. Figure 4.11 

compares these properties as vertically averaged throughout the Haynesville, and Figures 

4.12 – 4.15 compare these properties at certain depths from the top of the Haynesville, 

specifically at depths of 0m, 15m, 30m and 45m. Figure 4.16 compares vertically 

averaged 𝑟𝑟2 and 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 (calculated from inverted 𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥 values) as proxies for fracture 

density in the Fourier coefficient decomposition method.  

A direct comparison of fracture orientation results between the Rüger and Fourier 

decomposition methods can be seen in Figures 4.17 – 4.21. Figure 4.17 compares these 
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properties as vertically averaged throughout the Haynesville, and Figures 4.18 – 4.21 

compare these properties at certain depths from the top of the Haynesville, specifically at 

depths of 0m, 15m, 30m and 45m. Note that 2nd order Fourier coefficient phase is more 

appropriate to determine fracture orientation than the 4th order Fourier coefficient phase, 

but both are shown.  

“Constant depth” images are generated by rearranging data such that it is sorted a 

constant number of time samples from the horizon representing the top of the 

Haynesville. Assuming a constant P-wave velocity of ~3 km/s, each time sample (2 ms) 

corresponds to approximately 3 meters of depth. Note that time represents two-way travel 

time (TWT). These constant depth figures allow one to see if and how properties change 

vertically by examining the upper, middle and lower Haynesville units, as well as how 

the different HTI methods used in this work compare. Note that values of fracture density 

proxies are relative, and cannot be explicitly related to crack density in terms of fractures 

per unit length, nor can crack density be directly compared between the two methods. For 

this reason, images depicting fracture density do not include labels on color bars, and 

coloring bounds are chosen to produce an image that is visually appealing, informative, 

and able to distinguish areas of high fracturing from areas of low fracturing. Comparison 

of the methods should be based on their ability to delineate areas of relatively high and 

low fracture density as well as on their ability to produce consistent and geologically 

reasonable fracture azimuth predictions. 
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Figure 4.11: Comparison of proxies for fracture density from the Rüger and Fourier 
coefficient decomposition methods. 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 from the Ruger method is shown 
above, and 𝑟𝑟2 from the Fourier coefficient decomposition method is shown 
below. Values have been vertically averaged throughout the Haynesville 
using a simple arithmetic mean. Warmer colors indicate denser fracture 
spacing. The black arrows indicate the direction of north. 
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Figure 4.12: Comparison of proxies for fracture density from the Rüger and Fourier 
coefficient decomposition methods. 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 from the Ruger method is shown 
above, and 𝑟𝑟2 from the Fourier coefficient decomposition method is shown 
below. Values corresponding to the top of the Haynesville are shown. 
Warmer colors indicate denser fracture spacing. The black arrows indicate 
the direction of north. 
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Figure 4.13: Comparison of proxies for fracture density from the Rüger and Fourier 
coefficient decomposition methods. 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 from the Ruger method is shown 
above, and 𝑟𝑟2 from the Fourier coefficient decomposition method is shown 
below. Values corresponding to approximately 15 m from the top of the 
Haynesville are shown. Warmer colors indicate denser fracture spacing. The 
black arrows indicate the direction of north. 
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Figure 4.14: Comparison of proxies for fracture density from the Rüger and Fourier 
coefficient decomposition methods. 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 from the Ruger method is shown 
above, and 𝑟𝑟2 from the Fourier coefficient decomposition method is shown 
below. Values corresponding to approximately 30 m from the top of the 
Haynesville are shown. Warmer colors indicate denser fracture spacing. The 
black arrows indicate the direction of north. 
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Figure 4.15: Comparison of proxies for fracture density from the Rüger and Fourier 
coefficient decomposition methods. 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 from the Ruger method is shown 
above, and 𝑟𝑟2 from the Fourier coefficient decomposition method is shown 
below. Values corresponding to approximately 45 m from the top of the 
Haynesville are shown. Warmer colors indicate denser fracture spacing. The 
black arrows indicate the direction of north. 
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Figure 4.16: Comparison of proxies for fracture density from the Fourier coefficient 
decomposition method. 𝑟𝑟2 coefficient is shown above, and 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 calculated 
from inverted normal and tangential fracture weaknesses is shown below. 
Values have been vertically averaged throughout the Haynesville using a 
simple arithmetic mean. Warmer colors indicate denser fracture spacing. 
The black arrows indicate the direction of north. 
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Figure 4.17: Comparison of fracture azimuth as determined from the Rüger and Fourier  
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 coefficient decomposition methods. The top image depicts azimuth from the 
Rüger method, the middle image depicts azimuth from the 2nd Fourier 
coefficient phase 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 of the Fourier decomposition method, and the 
bottom image depicts azimuth from the 4th Fourier coefficient phase 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 of 
the Fourier decomposition method. Values have been vertically averaged 
throughout the Haynesville using the Yamartino method (described in 
Chapter 5 – see Equation 5.38). Colorbars on the top and middle image 
range from -90 degrees to 90 degrees. The colorbar on the bottom image 
ranges from -30 to 30 degrees. The black arrows indicate the direction of 
north. 
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Figure 4.18: Comparison of fracture azimuth as determined from the Rüger and Fourier  
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 coefficient decomposition methods. The top image depicts azimuth from the 
Rüger method, the middle image depicts azimuth from the 2nd Fourier 
coefficient phase 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 of the Fourier decomposition method, and the 
bottom image depicts azimuth from the 4th Fourier coefficient phase 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 of 
the Fourier decomposition method. Values corresponding to the top of the 
Haynesville are shown. Colorbars range from -90 degrees to 90 degrees. The 
black arrows indicate the direction of north. 
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Figure 4.19: Comparison of fracture azimuth as determined from the Rüger and Fourier  
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 coefficient decomposition methods. The top image depicts azimuth from the 
Rüger method, the middle image depicts azimuth from the 2nd Fourier 
coefficient phase 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 of the Fourier decomposition method, and the 
bottom image depicts azimuth from the 4th Fourier coefficient phase 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 of 
the Fourier decomposition method. Values corresponding to 15 meters from 
the top of the Haynesville are shown. Colorbars range from -90 degrees to 
90 degrees. The black arrows indicate the direction of north. 
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Figure 4.20: Comparison of fracture azimuth as determined from the Rüger and Fourier  
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 coefficient decomposition methods. The top image depicts azimuth from the 
Rüger method, the middle image depicts azimuth from the 2nd Fourier 
coefficient phase 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 of the Fourier decomposition method, and the 
bottom image depicts azimuth from the 4th Fourier coefficient phase 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 of 
the Fourier decomposition method. Values corresponding to 30 meters from 
the top of the Haynesville are shown. Colorbars range from -90 degrees to 
90 degrees. The black arrows indicate the direction of north. 

 

 

 83 



 

Figure 4.21: Comparison of fracture azimuth as determined from the Rüger and Fourier  
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 coefficient decomposition methods. The top image depicts azimuth from the 
Rüger method, the middle image depicts azimuth from the 2nd Fourier 
coefficient phase 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 of the Fourier decomposition method, and the 
bottom image depicts azimuth from the 4th Fourier coefficient phase 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 of 
the Fourier decomposition method. Values corresponding to 45 meters from 
the top of the Haynesville are shown. Colorbars range from -90 degrees to 
90 degrees. The black arrows indicate the direction of north. 
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4.5 DISCUSSION 

Examining the results from both methodologies leads to an expected conclusion: 

both methods are capable of determining fracture density; however, neither method is 

capable of predicting a consistent fracture azimuth. Fracture azimuth results from the 

Rüger method contain sharp 90 degree changes in fracture azimuth, as seen in Figure 4.3, 

which are not geologically reasonable. These sharp 90 degree changes are characteristic 

of the 90 degree ambiguity inherent in determining 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖 associated with the Rüger 

method, which was discussed earlier in this chapter. Figure 4.5 seemingly indicates that 

the fracture azimuth results from the Fourier decomposition method do not contain the 

sharp 90 degree ambiguities that plague the Rüger based method, which initially led me 

to have significantly higher confidence in fracture azimuth results from the Fourier 

coefficient decomposition method. However, other figures that depict inverted fracture 

azimuth from the Fourier coefficient decomposition method indicate significant 

variability in fracture azimuth. In many cases, the results seem to indicate that fractures 

are oriented approximately north-south in one area and approximately east-west in 

another area. For example, in Figure 4.17, middle image, the northern (leftmost) part of 

the image seems to indicate a north-south fracture orientation, whereas the southern 

(rightmost) part of the image seems to indicate an east-west fracture orientation. This 

lateral switching of orientation leads me to believe that the algorithm used by Hampson-

Russell © does not rectify the correct symmetry axis, either by not attempting to do so or 

by implementing an unsuccessful method of doing so. It is interesting to note that the 

azimuth associated with the 𝑟𝑟4 coefficient tends to range from about –22.5 to 22.5 

degrees, indicating that phase wrapping associated with the 𝑟𝑟4 coefficient is not corrected. 

While it is possible that significant lateral variation in fracture azimuth is a real feature, I 

believe it more likely that it is a result of a 90 degree error in determining the correct 
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azimuth. I believe that it is more geologically reasonable for fracture azimuth to be 

mostly consistent throughout the entire area rather than for it to switch orientation by 90 

degrees several times within a few miles. This leads me to believe the true fracture 

azimuth is either approximately north-south or approximately east-west, although using 

these methods alone does provide the confidence needed determine which of these 

possible orientations correct. In Chapter 5, I present a novel Fourier coefficient based 

approach for calculating fracture azimuth which resolves this aforementioned 90 degree 

ambiguity in fracture azimuth. 

Fracture density results between the two methods are similar. Both methods show 

spatially variable fracture density, with generally higher fracture density in the northern 

area of the section. Unfortunately, neither method seems capable of identifying specific 

large pockets of dense fracturing. It is unclear if this is due to some flaw in the data, due 

to some flaw in the methodology, or because these pockets of dense fracturing simply do 

not exist in this area. In the Fourier decomposition approach, fracture density results 

using the 𝑟𝑟2 coefficient and 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 (calculated from inverted fracture weaknesses) as 

proxies are effectively identical, indicating that the 𝑟𝑟2 coefficient is an acceptable proxy 

for fracture density. This can be seen in Figure 4.16. All methods produce results that 

indicate anomalously high fracturing on the eastern and southern edges of the area. I 

believe these to be caused by “edge effects” which do not indicate real features. In the 

area analyzed, seismic data continues on in the Northern and Western directions, but no 

additional data exists in the eastern or southern directions (refer to Figure 2.4). Data near 

the “edge” generally has less dense azimuthal coverage, and usually has denser coverage 

in the inline direction than in the crossline direction. An example of this uneven 

azimuthal coverage can be seen in Figure 4.22. As the inversion algorithms used in these 

methods are proprietary information of Hampson-Russell ©, it is unclear how exactly this 
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reduced azimuthal coverage effects inversion results. However, the analysis conducted in 

Chapter 5 of this thesis clearly demonstrates that significant gaps in azimuthal data 

coverage can lead curve-fitting algorithms to falsely predict extreme azimuthal variation 

in order to better fit available data. This can incorrectly result in an anomalously high 

fracture density results in these areas. Refer to Chapter 5 and Figure 5.52 for more 

information regarding this phenomenon.  

 

 

Figure 4.22: An example CDP from the azimuthal super gather depicting uneven 
azimuthal coverage. Primary trace sorting is by azimuth, and secondary 
sorting is by offset. Note that azimuthal coverage is dense in azimuths 
between 120 degrees – 40 degrees, corresponding to the inline direction; and 
dilute in azimuths between 40 degrees – 120 degrees, corresponding to the 
crossline direction. Data shows time ranges from roughly 1500 ms – 2400 
ms. The Haynesville Shale is located from about 2040 ms – 2080 ms, 
between the blue and red horizons shown. 
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Due to the lack of available FMI logs and the general unavailability of published 

fracture characterization results in this area of the Haynesville, direct verification of 

fracture characteristics is impossible. Despite this, a number of comparisons can be made 

to increase confidence in the results presented in this thesis. Regarding fracture density, 

both methods producing similar results increases confidence in these results by means of 

statistical repeatability. Results from the method described in Chapter 5 additionally 

correspond well to the results presented in this chapter, further increasing confidence in 

results. As discussed in Chapter 2, production data trends from the Haynesville, 

specifically its characteristic high initial production rate and quick decline, indicate 

fracturing is present, despite a general lack of fracturing seen in FMI logs (Hammes et al., 

2011). This suggests that laterally varied fracturing should be expected, with possible 

isolated areas of anomalously high fracturing, yet with sparse enough fracturing that 

fractures will not be seen in FMI logs from several wells. This expectation corresponds 

very well with the results for fracture density presented here. Some information on 

fracture orientation can be gained by performing a regional stress analysis of the area. A 

regional stress analysis with the explicit purpose of fracture azimuth prediction was 

conducted by Hunt et al. (2009), and results can be seen in Figure 4.23. These results 

predict fractures to be oriented in the approximate ENE-WSW direction. Unfortunately, 

due to post-fracturing rotation and changes in stress orientations through time, a regional 

stress analysis is not a reliable indicator of fracture orientation. However, the regional 

stress analysis would tend to support a fracture orientation of east-west more than an 

orientation of north-south. Hammes et al. (2011) additionally note that in formations 

surrounding the Haynesville, fracturing is generally seen parallel to the Gulf of Mexico 

Margin. Depending on which part of the Gulf of Mexico Margin you examine will find 

an orientation ranging from Northeast-Southwest to east-west. This again seems to 
 89 



support the true fracture orientation being approximately east-west rather than 

approximately north-south. 

Inverted results for normal and tangential fracture weaknesses are incorrect by a 

scaling factor, due to using seismic trace amplitude rather than true seismic reflectivity in 

the analysis performed. However, when used as a ratio, as is the case when calculating 

the Fluid Indicator attribute described by Equation 3.65, this scaling factor disappears and 

the fracture weaknesses become informative. Fluid indicator results indicate a value of 

approximately 1 throughout the area (values range from 0.7 to 1.2), which indicated that 

fractures are either dry or gas filled. This is consistent with a priori knowledge of the 

area, as several nearby wells are currently producing natural gas with little to no fluids 

present. Additionally, this fluid indicator attribute showed extreme sensitivity to the 

choice of 𝑔𝑔, also consistent with fractures being dry or gas filled (Shaw and Sen, 2006). 
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Figure 4.23: Predicted fracture orientation map, determined from analysis of in-situ 
geologic stress, in the United States. The red box indicates the approximate 
location of the Haynesville Shale analyzed in this paper. Figure from Hunt 
et al. (2009). 

4.6 SUMMARY 

Two methods for determining fracture orientation and fracture density have been 

presented. The first method is based on the Rüger AVO equation, and the second method 

is based on Fourier decomposition of the data. Both methods indicate laterally variable 

fracture density, with generally higher fracturing in the northern part of the area. 

Anomalously high fracture density on the eastern and southern edges of the survey area 

are not believed to be real features. Fracture orientation results from the Rüger method 

proved to be unreliable for well understood reasons, and regrettably the Fourier 

decomposition method results seem to also contain this 90 degree ambiguity in fracture 

azimuth. Analysis of the results indicates that there are two possible fracture orientations 
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– one which is approximately north-south, and another which is approximately east-west. 

Unfortunately, direct verification of results is not possible; however, a roughly east-west 

fracture orientation seems to agree better with expectations from a regional stress analysis 

and analogs from nearby formations. Laterally variable fracture density, which may 

indicate isolated fracture pockets throughout the area, agree well with the analysis of 

production data, which indicates fractures play a significant role in production, as well as 

FMI logs from other areas of the Haynesville, which indicate fractures are sparse. 

Unfortunately, a large coherent area of dense fracturing was not identified using these 

analyses. The Fourier decomposition method additionally inverted for normal and 

tangential fracture weaknesses, and used these values to calculate a fluid indicator 

attribute. Fracture weaknesses proved to be incorrect by a scaling factor, but this scaling 

factor is removed by using the ratio of normal and tangential fracture weaknesses in the 

calculated fluid indicator attribute. The fluid indicator attribute indicated that fractures 

are likely gas filled, which is consistent with a priori information of the area.  
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Chapter 5: Modified Fourier Coefficient Fracture Characterization 
Method 

5.1 INTRODUCTION 

Most fracture characterization methods currently in use assume that fractures are 

embedded in an otherwise isotropic rock, resulting in effective HTI anisotropy. This 

assumption is violated in the case of fractured shale, because shale is inherently VTI 

anisotropic rather than isotropic. If one considers a situation where closely spaced 

vertically aligned rotationally invariant fractures are embedded in an otherwise VTI 

anisotropic background rock, the result is an effective orthorhombic medium (see Chapter 

3 for verification of this). Thus, in order to properly characterize fractured shale, an 

orthorhombic based fracture characterization method must be developed. Additionally, as 

seen in Chapter 4, an inability to determine the azimuth of fractures without a possible 90 

degree ambiguity has plagued previous fracture characterization approaches. The work 

presented in this section describes a novel method which is based on an extension of the 

Fourier coefficient method presented in Chapter 4. This proposed method has two goals: 

1. Correctly determine fracture density under the assumption of orthorhombic 

anisotropy. 

2. Correctly determine the azimuth of the predominant fracture set without a 90 

degree ambiguity. 

This method is based on equations derived by Downton et al. (2011). This functionality is 

not available in any commercial software package, and thus I developed a custom 

algorithm using the MATLAB © language to execute this method.  

The work presented in this chapter will cover the theory, implementation, and 

results utilizing the modified Fourier decomposition fracture characterization technique. 

This technique has been applied to data from the Haynesville as well as on several 
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synthetically generated datasets. This technique is valid in orthorhombic media when 

inverting for fracture density. However, when determining the azimuth of fractures, this 

method regresses to using equations describing HTI media. I believe the assumption of 

HTI anisotropy to still be mostly valid when only considering fracture azimuth, as 

fracture azimuth is determined by identifying azimuths corresponding to local maxima or 

minima in the seismic data. Even if the AVAZ component of seismic data is affected by 

the VTI anisotropy of the background rock, it should not affect the phase of the AVAZ 

signal. In this context, constant phase indicates that the azimuths associated with local 

minimum and local maximum reflectivity are unchanging. The phase of the AVAZ 

signal, which is used in determining fracture azimuth, is almost entirely controlled by the 

fracture characteristics. I verified this experimentally, as is shown in Figure 5.1. Figure 

5.1 compares the AVAZ signal in four synthetically generated datasets – an isotropic 

dataset, a VTI dataset, a HTI dataset, and an orthorhombic dataset. All datasets were 

constructed using an identical isotropic background stiffness tensor and anisotropy was 

introduced using excess compliance theory and tensor rotations, as described in Chapter 

3. Fractures are gas filled and oriented at a 0 / 180 degree azimuth. Details of how 

synthetic data were generated can be found in Section 5.4. Figure 5.1 clearly shows that 

in both the HTI and orthorhombic cases the azimuth of maximum reflectivity is 90 

degrees and the azimuth of minimum reflectivity is 0 / 180 degrees, indicating that phase 

is identical in these cases. Determining fracture density using this method, however, 

depends on both the AVAZ and AVO components of the seismic signal. This can also be 

seen in Figure 5.1, where the AVAZ curves in the HTI and orthorhombic cases differ 

slightly in shape, magnitude and background reflectivity even though these cases have an 

identical fracture set. Thus, when analyzing a shale, the VTI component of the seismic 

signal needs to be considered in the inversion for fracture density, requiring a technique 
 94 



that is valid for orthorhombic media. Advanced inversion methods are additionally 

integrated into the methodology to increase confidence in its results. 

 

 

Figure 5.1: A set of figures depicting azimuthal variations with respect to azimuth in 
four cases – a HTI medium (upper left), an isotropic medium (lower left), an 
orthorhombic medium (upper right), and a VTI medium (lower right). The 
horizontal axis represents azimuth, and ranges from 0 to 180 degrees in all 
images. The vertical axis represents seismic amplitude, and has a total range 
of 0.01 in all images. Synthetic data were generated as described in Section 
5.4. In these cases, fractures are gas filled and have an azimuth of 0 degrees. 
Figures show data from the 30 – 35 degree incident angle range. All 
stiffness tensors used in data generation were calculated from an identical 
isotropic background stiffness tensor. In the anisotropic cases, anisotropy 
was introduced using excess compliance theory and tensor rotations, as 
described in Chapter 3. Phase remains identical in the HTI and 
Orthorhombic cases, though some variation in the magnitude and shape of 
these curves can be seen. The VTI and isotropic cases show minimal 
azimuthal variation. 
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In order to validate the novel technique presented in this chapter, it was first 

tested on several synthetic datasets where true fracture density and fracture orientation 

were known. Section 5.4 describes in detail how the synthetic datasets were generated. 

After successfully predicting fracture density and fracture orientation in the synthetic 

examples, the analysis was performed on real data from the Haynesville Shale. The 

Haynesville data consists of a 3D azimuthal super-gather seismic dataset consisting of 

137 inlines by 137 crosslines and converted to incident angle domain, with incident 

angles ranging from 5 to 45 degrees. Data was processed as described in Chapter 2. To 

reiterate, an azimuthal super-gather consisting of 12 azimuth bins, each 15 degrees wide, 

and 10 incident angle bins, each 4 degrees wide and ranging from 5 to 45 degrees, is used 

as the input to the following analysis. Hampson-Russell © was used to create the 

azimuthal super-gather described above, and all additional data analysis was done in 

MATLAB ©. Lastly, the HTI Fourier coefficient based method used in Chapter 4 will be 

repeated using the binning scheme presented above, and results from the old and new 

Fourier coefficient based methods will be compared. 

5.2 FOURIER COEFFICIENT DECOMPOSITION METHOD 

The Fourier coefficient decomposition method explained in Chapter 4 can be 

expanded to be valid in a more general anisotropic context. In the most general form, 

reflectivity can be expressed by a generalized Fourier series, such that: 

𝑅𝑅(𝜃𝜃,𝜑𝜑)  =  ∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖(𝜃𝜃)𝑔𝑔𝑗𝑗(𝜑𝜑4
𝑗𝑗=0 )2

𝑖𝑖=0   ,     (5.1) 

where AVO basis 𝑓𝑓𝑖𝑖(𝜃𝜃) can be described as 

𝑓𝑓𝑖𝑖(𝜃𝜃) = {1,  sin2 𝜃𝜃 , sin2 𝜃𝜃 tan2 𝜃𝜃}  ,      (5.2) 

AVAZ basis 𝑔𝑔𝑗𝑗(𝜑𝜑) can be described as 

𝑔𝑔𝑗𝑗(𝜑𝜑) = {1, 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜑𝜑), 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜑𝜑), 𝑐𝑐𝑐𝑐𝑐𝑐(4𝜑𝜑), 𝑠𝑠𝑠𝑠𝑠𝑠(4𝜑𝜑)}  ,   (5.3) 
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and 𝑤𝑤𝑖𝑖𝑖𝑖 represents various Fourier weights (Downton et al., 2011). When evaluated at a 

constant angle of incidence (𝜃𝜃), Equation 5.1 reduces to: 

𝑅𝑅(𝜃𝜃,𝜑𝜑) =  𝑈𝑈0 + 𝑉𝑉2 sin(2𝜑𝜑) + 𝑈𝑈2 cos(2𝜑𝜑) + 𝑉𝑉4 sin(4𝜑𝜑) + 𝑈𝑈4 cos(4𝜑𝜑)  , (5.4) 

where 𝑈𝑈0, 𝑈𝑈2, 𝑉𝑉2, 𝑈𝑈4 and 𝑉𝑉4 are functions of AVO basis 𝑓𝑓𝑖𝑖(𝜃𝜃) and weights 𝑤𝑤𝑖𝑖𝑖𝑖. Downton 

et al. (2011) note that of the fifteen possible weights 𝑤𝑤𝑖𝑖𝑖𝑖 only nine are nonzero. This 

leads to the expressions for 𝑈𝑈0, 𝑈𝑈2, 𝑉𝑉2, 𝑈𝑈4 and 𝑉𝑉4 as shown in Equations 5.5 – 5.9. 

𝑈𝑈0 = 𝑤𝑤00 + 𝑤𝑤01 sin2 𝜃𝜃 + 𝑤𝑤02 sin2 𝜃𝜃 tan2 𝜃𝜃  ,    (5.5) 

𝑉𝑉2 = 𝑤𝑤11 sin2 𝜃𝜃 + 𝑤𝑤12 sin2 𝜃𝜃 tan2 𝜃𝜃  ,     (5.6) 

𝑈𝑈2 = 𝑤𝑤21 sin2 𝜃𝜃 + 𝑤𝑤22 sin2 𝜃𝜃 tan2 𝜃𝜃  ,     (5.7) 

𝑉𝑉4 = 𝑤𝑤23 sin2 𝜃𝜃 tan2 𝜃𝜃  ,       (5.8) 

𝑈𝑈4 = 𝑤𝑤24 sin2 𝜃𝜃 tan2 𝜃𝜃  .       (5.9) 

Downton et al. (2011) additionally related all non-zero weights 𝑤𝑤𝑖𝑖𝑖𝑖 to various 

anisotropy parameters. This derivation will not be presented in this thesis, but resulting 

expressions relating 𝑤𝑤𝑖𝑖𝑖𝑖’s to anisotropic parameters can be seen in Equations 5.10 – 5.18. 

The following expressions vary slightly from those presented by Downton et al. (2011) 

due to the presence of small typos in the Downton et al. (2011) paper. 

𝑤𝑤00 =  𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 +  1
2𝛼𝛼2

𝛥𝛥(𝛼𝛼2𝜀𝜀𝑧𝑧)  ,       (5.10) 

𝑤𝑤01 = 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 + 1
4𝛼𝛼2

[𝛥𝛥(𝛼𝛼2𝛿𝛿𝑥𝑥) − 8∆(𝛽𝛽2𝛾𝛾𝑥𝑥) + 𝛥𝛥�𝛼𝛼2𝛿𝛿𝑦𝑦� − 8∆�𝛽𝛽2𝛾𝛾𝑦𝑦� −
1
2
𝛥𝛥(𝛼𝛼2𝜀𝜀𝑧𝑧)]  , 

           (5.11) 

𝑤𝑤02 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 + 1
16𝛼𝛼2

[3𝛥𝛥(𝛼𝛼2𝜀𝜀𝑥𝑥) + 3𝛥𝛥�𝛼𝛼2𝜀𝜀𝑦𝑦� + 𝛥𝛥(𝛼𝛼2𝛿𝛿𝑧𝑧)]  ,   (5.12) 

𝑤𝑤11 =  1
2𝛼𝛼2

[𝛥𝛥(𝛼𝛼2𝜒𝜒𝑧𝑧) − 4 𝛥𝛥(𝛽𝛽2𝜀𝜀45)]  ,     (5.13) 

𝑤𝑤12 = 1
4𝛼𝛼2

[𝛥𝛥(𝛼𝛼2𝛿𝛿𝑥𝑥) − 8∆(𝛽𝛽2𝛾𝛾𝑥𝑥) − 𝛥𝛥�𝛼𝛼2𝛿𝛿𝑦𝑦� + 8∆�𝛽𝛽2𝛾𝛾𝑦𝑦�]  ,  (5.14) 

𝑤𝑤21 =  1
4𝛼𝛼2

[𝛥𝛥(𝛼𝛼2𝜀𝜀16) + 𝛥𝛥(𝛼𝛼2𝜀𝜀26)]  ,      (5.15) 

𝑤𝑤22 =  1
4𝛼𝛼2

[𝛥𝛥(𝛼𝛼2𝜀𝜀𝑥𝑥) − 𝛥𝛥�𝛼𝛼2𝜀𝜀𝑦𝑦�]  ,      (5.16) 

𝑤𝑤23 =  1
8𝛼𝛼2

[𝛥𝛥(𝛼𝛼2𝜀𝜀16) − 𝛥𝛥(𝛼𝛼2𝜀𝜀26)]  ,      (5.17) 
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𝑤𝑤24 =  1
16𝛼𝛼2

[𝛥𝛥(𝛼𝛼2𝜀𝜀𝑥𝑥) − 𝛥𝛥�𝛼𝛼2𝜀𝜀𝑦𝑦� − 𝛥𝛥(𝛼𝛼2𝛿𝛿𝑧𝑧)]  ,    (5.18) 

where 𝛼𝛼 represents compressional wave velocity (𝑉𝑉𝑝𝑝); 𝛽𝛽 represents shear wave velocity 

(𝑉𝑉𝑠𝑠); 𝜀𝜀, 𝛿𝛿, 𝛾𝛾 and 𝜒𝜒 represent anisotropy parameters as defined by Pšenc̆ik and Gajewski 

(1998); and 𝛥𝛥(… ) represents the difference in parameters between the layers generating 

the reflectivity. If the assumption is made that the upper layer is isotropic, these 

“difference in parameters” simply reduce to the anisotropic properties of the lower layer. 

For 𝛼𝛼 and 𝛽𝛽 which are not velocity differences (i.e. not present in 𝛥𝛥(… ) expressions), it 

is convenient to choose the average compressional or shear wave velocity of the layers 

generating reflectivity. 

Equations 5.10 – 5.18 hold true for general anisotropic (triclinic) media. In a 

reduced anisotropic setting, specifically in the assumption of reflectivity generated in 

orthorhombic media, Equations 5.10 – 5.18 can be further reduced in some situations. In 

particular, examining the stiffness tensor characteristic of orthorhombic media, as shown 

in Equation 3.54, 𝜒𝜒𝑧𝑧, 𝜀𝜀16, 𝜀𝜀26, and 𝜀𝜀45 are seemingly nonexistent. However, the 

generalized tensor shown in Equation 3.54 is only valid if fractures are aligned in the 

inline or crossline direction (i.e., fracture azimuth is 0, 90 or 180 degrees). In this special 

case, 𝑤𝑤11, 𝑤𝑤21 and 𝑤𝑤23 reduce to zero, and the nine possible non-zeros weights 𝑤𝑤𝑖𝑖𝑖𝑖 are 

further reduced to 6 non-zero 𝑤𝑤𝑖𝑖𝑖𝑖. This leads Equations 5.5 – 5.9 to be reduced to: 

𝑈𝑈0 = 𝑤𝑤00 + 𝑤𝑤01 sin2 𝜃𝜃 + 𝑤𝑤02 sin2 𝜃𝜃 tan2 𝜃𝜃  ,    (5.19) 

𝑉𝑉2 = 𝑤𝑤12 sin2 𝜃𝜃 tan2 𝜃𝜃  ,       (5.20) 

𝑈𝑈2 = 𝑤𝑤22 sin2 𝜃𝜃 tan2 𝜃𝜃  ,       (5.21) 

𝑉𝑉4 = 0  ,         (5.22) 

𝑈𝑈4 = 𝑤𝑤24 sin2 𝜃𝜃 tan2 𝜃𝜃  .       (5.23) 

Furthermore, Equation 5.4 reduces to 

𝑅𝑅(𝜃𝜃,𝜑𝜑) =  𝑈𝑈0 + 𝑉𝑉2 sin(2𝜑𝜑) + 𝑈𝑈2 cos(2𝜑𝜑) + 𝑈𝑈4 cos(4𝜑𝜑)  .  (5.24) 
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More generally, however, if you apply an arbitrary rotation about the z axis to an 

orthorhombic stiffness tensor, the result is a tensor form similar to a monoclinic stiffness 

tensor (as shown in Equation 3.53), though with fewer independent values. This can be 

proven using the methodology for rotating tensors described in Section 3.3. When 

applying this rotation fractures remain vertically aligned, however, they are no longer 

forced to be aligned with the x or y axes. The case where fractures are at a 45 or 135 

degree azimuth represent another special case: in this rotated tensor C16 = −C26, 

resulting in 𝑤𝑤23 and thus 𝑉𝑉4 being zero; however, 𝑤𝑤11 and 𝑤𝑤21 are still nonzero. Thus, the 

first step of the analysis is to determine azimuth assuming the most general case as 

described by Equations 5.4 – 5.9, and then reduce to a specialized case if fracture azimuth 

is approximately equal to 0, 45, 90, 135 or 180 degrees. Ideally, applying the generalized 

method to one of these special cases would produce the same results as applying a 

specialized method. In practice, however, due to noise and the imperfection of data, this 

is not always the case. Being able to force these specialized solutions to arise can thus 

increase confidence in the inverted results by reducing the number of unknown 

parameters associated with the inversion. 

 To determine the azimuth of fractures, the phase of the 2nd order Fourier 

coefficients are considered. Phase can also be determined from the 4th order coefficients, 

but these coefficients have higher uncertainty (Downton et al., 2011) and more frequent 

phase wrapping. Thus, the 2nd order coefficients are better candidates for determining 

fracture azimuth. The trigonometric identity shown in Equation 5.25 can be used to 

combine the 2nd and 4th order Fourier coefficients into composite coefficients. 

 𝑎𝑎 sin 𝑡𝑡 + 𝑏𝑏 cos 𝑡𝑡 = √𝑎𝑎2 + 𝑏𝑏2  cos(𝑡𝑡 − tan−1 𝑎𝑎
𝑏𝑏

) .    (5.25) 

Applying Equation 5.25 to Equation 5.4 transforms Equation 5.4 into: 
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𝑅𝑅(𝜃𝜃,𝜑𝜑) =  𝑈𝑈0 + �𝑉𝑉22 + 𝑈𝑈22 cos �2(𝜑𝜑 − 1
2

tan−1 𝑉𝑉2
𝑈𝑈2

)�+

                               �𝑉𝑉42 + 𝑈𝑈42 cos �4(𝜑𝜑 − 1
4

tan−1 𝑉𝑉4
𝑈𝑈4

)� .   (5.26) 

In Equation 5.26, the term 1
2

tan−1 𝑉𝑉2
𝑈𝑈2

 , here forth denoted 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠, represents the phase of 

the second order coefficient and one possible symmetry plane azimuth. Note that the 

function used in determining the 2nd order Fourier coefficient phase has a range between 

negative 45 and 45 degrees, and thus the phase “wraps” every 90 degrees. Note that the 

symmetry plane azimuth is perpendicular to fracture azimuth. The 4th order Fourier 

coefficients provide the same phase, though has higher uncertainty and more frequent 

phase wrapping (every 45 degrees rather than every 90 degrees). When 𝜑𝜑 = 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠, 

Equation 5.26 reduces to: 

𝑅𝑅(𝜃𝜃,𝜑𝜑) =  𝑈𝑈0 + �𝑉𝑉22 + 𝑈𝑈22 + �𝑉𝑉42 + 𝑈𝑈42 ,     (5.27) 

because cos 0 = 1. Unfortunately, because we do not know if positive or negative roots 

are taken in Equations 5.25 and 5.26, a second possible symmetry plane azimuth is 

𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 ± 90 degrees. A 90 degree phase shift in effect changes the sign of the square root 

associated with the 2nd order Fourier coefficient. Note that since the 2nd order Fourier 

coefficient phase is 180 degree periodic, 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 +90 degrees is identical to 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 −90 

degrees. Because the possible range of symmetry plane azimuths spans 180 degrees, 

these two possible solutions (𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 and 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠 ±90 degrees) span the entire possible range 

of symmetry plane azimuths. 

 We can determine which of these possible azimuths represents the actual 

symmetry plane by determining if the symmetry plane should correspond to a maximum 

amplitude reflection or a minimum amplitude reflection. To accomplish this, I fall back 

to an HTI assumption. By analyzing Equations 4.8 – 4.14, which describe how Fourier 

coefficients relate to fracture weakness in HTI media, I can predict the seismic response 

 100 



at the azimuth corresponding to the symmetry plane in terms of normal and tangential 

fracture weakness. After some algebra, I find: 

 𝑅𝑅𝑝𝑝𝑝𝑝�𝜑𝜑 = 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠� = 𝑟𝑟0 + 𝑟𝑟2 + 𝑟𝑟4 

= 𝑟𝑟0 + ∆𝑇𝑇 �1
2
𝑔𝑔 sin2 𝜃𝜃� �1 − 1

4
tan2 𝜃𝜃� − ∆𝑁𝑁 (2 sin2 𝜃𝜃 tan2 𝜃𝜃)(1 − 𝑔𝑔) . (5.28) 

Equation 5.28 can be further simplified by relating ∆𝑁𝑁 and ∆𝑇𝑇 to fracture density. 

Bakulin et al. (2000, Part I) has described this relationship, and their results are shown in 

Equations 5.29 – 5.31. 

∆𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤 = 0 ,         (5.29)  
∆𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 = 4𝑒𝑒

3𝑔𝑔(1−𝑔𝑔)
 ,        (5.30) 

∆𝑇𝑇 =  16𝑒𝑒
9−6𝑔𝑔

 ,         (5.31) 

where 𝑒𝑒 represents fracture density. Note that ∆𝑇𝑇 is the same when fractures are dry, gas 

or fluid filled, however ∆𝑁𝑁 is zero when fractures are fluid filled. Equation 5.28 can be 

further simplified by dividing by ∆𝑇𝑇, resulting in: 
𝑅𝑅𝑝𝑝𝑝𝑝
∆𝑇𝑇

= 𝑟𝑟0
∆𝑇𝑇

+ �1
2
𝑔𝑔 sin2 𝜃𝜃� �1 − 1

4
tan2 𝜃𝜃� − ∆𝑁𝑁

∆𝑇𝑇
(2 sin2 𝜃𝜃 tan2 𝜃𝜃)(1− 𝑔𝑔) . (5.32) 

Using Equations 5.29 – 5.31, I find 
∆𝑁𝑁
∆𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤

= 0 ,         (5.33)  
∆𝑁𝑁
∆𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑

= 1−2𝑔𝑔
4𝑔𝑔(1−𝑔𝑔)

 .        (5.34) 

Equation 5.34 also holds true for gas filled fractures. By plugging Equations 5.33 and 

5.34 into Equation 5.32, one can determine the sign of the combined 2nd and 3rd terms in 

Equations 5.32 as a function of 𝜃𝜃 and 𝑔𝑔. Thus, one can determine if the reflection 

coefficient at the azimuth representing the symmetry axis will be a maximum or 

minimum amplitude event based on the sign of 𝑟𝑟0. In the case of dry or gas filled 

fractures, this will be based on incident angle (𝜃𝜃) and the square of the 𝑉𝑉𝑠𝑠 to 𝑉𝑉𝑝𝑝 ratio (𝑔𝑔). 

If the combined second and third terms have the same sign as the first term, the symmetry 

axis will correspond to a maximum amplitude, whereas if the signs are opposing it will 
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correspond to a minimum amplitude. Note that dividing 𝑟𝑟0 and 𝑅𝑅𝑝𝑝𝑝𝑝 by ∆𝑇𝑇 does not 

change their signs, and the change in magnitude can be ignored because only the sign 

matters in this analysis. The sign of the combined 2nd and 3rd terms of Equation 5.32 

under the assumption of dry or gas filled fractures as a function of 𝑔𝑔 and 𝜃𝜃 can be seen in 

Figure 5.2. Under the assumption of fluid filled fractures, the combined 2nd and 3rd terms 

of Equation 5.32 will always have a positive value for incident angles encountered in 

seismic surveys. To summarize, this indicates that: 

1.  If fractures are fluid filled, the symmetry plane azimuth will correspond to a 

maximum amplitude for positive 𝑟𝑟0 and a minimum amplitude for negative 𝑟𝑟0. 

2. If fractures are dry or gas filled, the symmetry plane azimuth will always 

correspond to a minimum amplitude for positive 𝑟𝑟0 and a maximum amplitude 

for negative 𝑟𝑟0 at far offsets (𝜃𝜃 > 30 degrees). Figure 5.2 can be used to 

determine if the symmetry plane azimuth will correspond to a maximum or 

minimum for smaller incident angles at certain values of 𝑔𝑔. 
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Figure 5.2: A plot indicating the sign of the 2nd and 3rd terms in Equation 5.32 as a 
function of incident angle and 𝑔𝑔 for the case of either dry or gas filled 
fractures. Red indicates the combined terms have positive value, while blue 
indicates the combined terms have a negative value. The x axis represents 
incident angle and ranges from 0 to 50 degrees. The y axis represents 𝑔𝑔 and 
ranges from 0.1 to 0.7.  

Based on production data from the Haynesville, in which natural gas is being produced 

with minimal fluids, it is assumed that in this area fractures are nearly entirely gas filled. 

It is also assumed that 𝑟𝑟0 is generally positive, which is supported by available seismic 

and well data. Note that the relative drop in impedance between the Haynesville and its 

upper bounding layer would generally dictate that 𝑟𝑟0 is negative. However, the reversal in 

seismic data polarity results in a positive 𝑟𝑟0. Lastly, the same value of 𝑔𝑔 used in Chapter 
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4 (𝑔𝑔 = 0.444) is assumed. Based on these assumptions, I determined that the symmetry 

axis will correspond to a minimum reflection amplitude for incident angles larger than 

~18 degrees and a maximum reflection amplitude for incident angles less than ~18 

degrees, as can be seen in Figure 5.2. Thus, by comparing the values of the two possible 

azimuths determined by the phase of the 2nd order Fourier coefficients, one can determine 

the proper symmetry plane azimuth (and therefore the proper fracture azimuth). Note that 

maximum absolute value of the seismic data needs to be used in practice because the data 

being used is seismic trace amplitude rather than the true reflectivity series. This is best 

understood by considering the standard isotropic convolution model for seismic 

reflectivity. In this model, a larger reflection coefficient results in a more positive seismic 

amplitude corresponding to the peak(s) of the wavelet and a more negative seismic 

amplitude corresponding to the trough(s) of the wavelet. Although the convolution model 

is not entirely valid in an anisotropic setting, the idea that a larger reflection coefficient 

will create a larger magnitude event, regardless of sign, is still valid. 

5.3 ALGORITHM 

Initially, data from the azimuthal super-gather described in Chapter 2 and the 

Introduction to this chapter were loaded into MATLAB © as a 5-D array. In order to save 

memory space, the data were limited in time to only include times between 2020 ms and 

2120 ms, which encompasses the entirety of the Haynesville Shale at all CDP locations. 

The data were cropped a second time to zero out all values between 2020 and 2120 ms 

which are not in the Haynesville. Seismic amplitude values of exactly zero do not exist 

anywhere within the Haynesville where data exists, allowing for quick and easy 

determination regarding whether a data point is in the Haynesville (and thus needs to be 

analyzed) or is outside of the Haynesville through the use of logical sorting. Certain 
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incident angles and azimuths associated with the azimuthal super-gather generated by 

Hampson-Russell © additionally do not have data, and are also assigned a seismic 

amplitude of exactly zero. This again allows for quick and easy determination that data is 

not present in these areas. 

Data were imported into MATLAB © and stored as a 5D array, where the 5 

dimensions represent time, azimuth, incident angle, inline, and crossline. After data were 

loaded into MATLAB ©, a built-in IRLS curve fitting function fit was used to fit a 

Fourier series to azimuthal variations in the data using the archetypal fitting function 

shown in Equation 5.4. Logical expressions were implemented to automatically skip 

fitting at incident angles and locations where a user-defined minimum number of data 

points were not present. An absolute minimum of five data points are needed to perform 

the curve fitting; however, I decided to disregard areas where at least eight azimuthal data 

points were present in order to increase confidence in the fitted curve. Note that at each 

unique time / incident angle / CDP a maximum of twelve azimuthal data points are 

present. The algorithm is looped over all incident angles, times, inlines and crosslines, 

and the Fourier coefficients 𝑈𝑈0, 𝑈𝑈2, 𝑉𝑉2, 𝑈𝑈4 and 𝑉𝑉4 are recorded. In addition to calculating 

these five unique Fourier coefficients, the fit function automatically generates 95% 

confidence interval ranges for each calculated Fourier coefficient, which are additionally 

recorded. The number of data points used in the fitting as well as the data residual, 

calculated by taking the difference between observed and synthetic data, are also 

recorded. In order to increase the speed of the algorithm, all appropriate matrices are pre-

allocated in the code, and parallelization is implemented. Current parallelization works 

on the time index, such that the fitting is applied simultaneously to multiple times for 

some constant incident angle, inline and crossline combination. Note that fitting is 

independent at each time / incident angle / inline / crossline combination, potentially 
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allowing this problem to be massively parallelized if modified to run on CPU or GPU 

clusters. The code is designed to be extremely user friendly – the only parameters which 

need defining are the ranges of times, azimuths, incident angles, inlines and crosslines 

present in the data. 

After fitting a Fourier series to every unique time, incident angle, inline and 

crossline, the second order Fourier coefficients are used to determine the two possible 

symmetry plane azimuths. These are determined for every unique time, incident angle, 

and CDP, using Equations 5.25 and 5.26. I additionally attempted to find a “best-fit” 

Fourier series which fit a Fourier series to all incident angles simultaneously, but the 

significant AVO effects proved to cause unacceptable results and thus this method was 

abandoned. As described in Section 5.2, each set of two possible azimuths were 

compared to find a maximum amplitude for smaller incident angles (less than ~18 

degrees) and a minimum amplitude for larger incident angles (greater than ~18 degrees). 

Maximum / minimum amplitude was defined as maximum / minimum absolute value of 

amplitude. By comparing the reflection magnitude at both possible azimuths, the correct 

symmetry plane azimuth was determined at each time, incident angle, and CDP. Due to 

the lower AVAZ signal to noise ratio at smaller incident angles, more weight was put on 

data corresponding to larger incident angles. In practice, only azimuthal information 

corresponding to incident angles greater than or equal to 25 degrees was used. These 

results will be examined in depth in the Results and Discussion sections of this chapter; 

however, in order to proceed in describing the algorithm used, I will divulge that fracture 

azimuth proved to be approximately 90 degrees, corresponding to an approximate east-

west fracture orientation. 

Being that the fracture azimuth corresponded to a special case, as described in 

Section 5.2, the Fourier curve fitting procedure was repeated using Equation 5.24 as the 
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archetypal fitting function. I again decided to disregard data where fewer than eight 

azimuthal data points were present in order to increase confidence in the fitted Fourier 

series. After fitting a Fourier series to every unique time, incident angle, inline and 

crossline using the modified curve fitting equation, a weighted least squares inversion is 

performed to calculate weights 𝑤𝑤𝑖𝑖𝑖𝑖. Note that weights 𝑤𝑤𝑖𝑖𝑖𝑖 do not vary with incident 

angle, but rather contain information describing data from all incident angles 

simultaneously. Equation 3.80 described the weighted least squares regression equation 

used. Initially, weighting matrix 𝑾𝑾𝒅𝒅 was calculated for each time / inline / crossline 

location. Diagonal values of 𝑾𝑾𝒅𝒅 are calculated by averaging 3 parameters:  

1. The number of data points used in the fitting 

2. The inverse of the data variance 

3. The inverse of the 95% confidence range in Fourier coefficients 

All parameters are straightforward to calculate for every time / incident angle / inline / 

crossline / Fourier coefficient using the arrays generated in the curve fitting part of the 

algorithm. Prior to being averaged, each of these values are normalized to range between 

zero and one. All three of these parameters measure uncertainty, with zero corresponding 

to no confidence and one representing extreme certainty. Thus, an average of these three 

normalized parameters introduces robustness into the inversion. Note that because matrix 

𝑾𝑾𝒅𝒅 is a diagonal matrix, it is preferable to store 𝑾𝑾𝒅𝒅 as a line vector rather than a matrix, 

and use the diag function to diagonalize 𝑾𝑾𝒅𝒅 at each time / inline / crossline location 

separately. If this is not done, matrix 𝑾𝑾𝒅𝒅 can easily exceed the memory limitations of the 

computer the analysis is being run on. For example, in this work the uncompressed 𝑾𝑾𝒅𝒅 

array spans 40x40x51x137x137, which in double precision format requires slightly over 

12 Gb of memory to store.  
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After generating weighting matrix 𝑾𝑾𝒅𝒅, a weighted least squares inversion is 

performed using Equation 3.80. In this inversion, data is represented by Fourier 

coefficients 𝑈𝑈0, 𝑈𝑈2, 𝑉𝑉2 and 𝑈𝑈4 calculated at each of the 10 unique incident angles, and 

model parameters are the six non-zero weights 𝑤𝑤𝑖𝑖𝑖𝑖 which do not vary with incident angle. 

The forward operator matrix 𝑮𝑮 consists of Equations 5.19 – 5.23 evaluated at each of the 

10 unique incident angles. Expressed in the form shown in Equation 3.71, these take the 

form: 

 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑈𝑈0(𝜃𝜃1)
𝑉𝑉2(𝜃𝜃1)
𝑈𝑈2(𝜃𝜃1)
𝑈𝑈4(𝜃𝜃1)
𝑈𝑈0(𝜃𝜃2)
𝑉𝑉2(𝜃𝜃2)
𝑈𝑈2(𝜃𝜃2)
𝑈𝑈4(𝜃𝜃2)

⋮
𝑈𝑈0(𝜃𝜃10)
𝑉𝑉2(𝜃𝜃10)
𝑈𝑈2(𝜃𝜃10)
𝑈𝑈4(𝜃𝜃10)⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

  =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1 sin2 𝜃𝜃1 sin2 𝜃𝜃1 tan2 𝜃𝜃1 0 0 0
0 0 0 sin2 𝜃𝜃1 tan2 𝜃𝜃1 0 0
0 0 0 0 sin2 𝜃𝜃1 tan2 𝜃𝜃1 0
0 0 0 0 0 sin2 𝜃𝜃1 tan2 𝜃𝜃1
1 sin2 𝜃𝜃2 sin2 𝜃𝜃2 tan2 𝜃𝜃2 0 0 0
0 0 0 sin2 𝜃𝜃2 tan2 𝜃𝜃2 0 0
0 0 0 0 sin2 𝜃𝜃2 tan2 𝜃𝜃2 0
0 0 0 0 0 sin2 𝜃𝜃2 tan2 𝜃𝜃2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 sin2 𝜃𝜃10 sin2 𝜃𝜃10 tan2 𝜃𝜃10 0 0 0
0 0 0 sin2 𝜃𝜃10 tan2 𝜃𝜃10 0 0
0 0 0 0 sin2 𝜃𝜃10 tan2 𝜃𝜃10 0
0 0 0 0 0 sin2 𝜃𝜃10 tan2 𝜃𝜃10⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜⎜
⎛

𝑤𝑤00
𝑤𝑤01
𝑤𝑤02
𝑤𝑤12
𝑤𝑤22
𝑤𝑤24⎠

⎟⎟
⎞

 , 

           (5.35) 

where 𝜃𝜃1 = 7 degrees, 𝜃𝜃2 = 11 degrees, …, 𝜃𝜃10 = 43 degrees. Arrays 𝒅𝒅, 𝑮𝑮 and 𝒎𝒎, as 

shown in Equation 5.35, are generated for every time / inline / crossline. A weighted least 

squares inversion using weight matrix 𝑾𝑾𝒅𝒅 is carried out to determine weights 𝑤𝑤00, 𝑤𝑤01, 

𝑤𝑤02, 𝑤𝑤12, 𝑤𝑤22 and 𝑤𝑤24 at every unique time, inline and crossline combination. In lieu of 

a conventional matrix inverse, the Moore-Penrose matrix pseudoinverse calculated from 

Singular Value Decomposition (SVD) was used, which was calculated using the built-in 

MATLAB © function pinv. The Moore-Penrose pseudoinverse is preferable to a 

conventional matrix inverse as it allows the analysis to be performed when matrix 

[𝑮𝑮𝑇𝑇 𝑾𝑾𝑑𝑑  𝑮𝑮] is near-singular or null. 
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I attempted to use the six nonzero weights 𝑤𝑤00, 𝑤𝑤01, 𝑤𝑤02, 𝑤𝑤12, 𝑤𝑤22 and 𝑤𝑤24 in an 

additional inversion to determine anisotropic parameters using Equations 5.10 – 5.18, 

though due to the highly underdetermined nature of the problem this was not possible. In 

its current state, this problem consists of six data points and eleven unknowns. I wish to 

note, however, that if some of the unknown anisotropic parameters could be constrained 

– for example by well control or by incorporating P-S reflection seismic data – an 

additional inversion could be performed to calculate the anisotropic parameters which 

cannot be constrained from other data sources. Unfortunately, this is not the case in this 

study. 

As anisotropic parameters are not possible to directly invert for, I propose a new 

attribute to be a measure of fracture density, shown in Equation 5.36. 

𝑅𝑅2∗  =  �𝑤𝑤122 + 𝑤𝑤222   .        (5.36) 

As Downton (2011) and Downton et al. (2011) note, the energy present in the 2nd order 

Fourier coefficient is approximately equal to anisotropic gradient, which is proportional 

to fracture density. The analysis conducted in Chapter 4 shows there to be almost zero 

difference between fracture density predictions using the 𝑟𝑟2 Fourier coefficient and using 

𝐵𝐵𝑎𝑎𝑛𝑛𝑖𝑖 calculated from normal and tangential fracture weaknesses (𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥). Equation 

5.36 is the most logical way to calculate the energy in the 2nd order Fourier coefficients, 

and produces results with desirable qualities – all values are positive, values near zero 

indicate minimal 2nd order coefficient energy, and high values indicate significant 2nd 

order coefficient energy. Additionally, Equation 5.36 benefits from capturing the energy 

present both in 2nd order sine and cosine terms as well as from the increased confidence 

introduced by the weighted least squares method of determining 𝑤𝑤12 and 𝑤𝑤22, which 

contain information from data points at all incident angles. 
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2-D lateral smoothing and time averaging operators were developed both for 

Fourier coefficient / fracture density data, and for azimuthal data. 3-D smoothing was not 

implemented. The time averaging operator averages data from all times at a particular 

CDP location. The smoothing operators average the central data point four times, 

laterally adjacent data points twice, and diagonally adjacent data points once, resulting in 

the 2d convolution smoothing kernel seen in Equation 5.37. 

 

⎣
⎢
⎢
⎡
1

16� 1
8�

1
16�

1
8�

1
4�

1
8�

1
16� 1

8�
1

16� ⎦
⎥
⎥
⎤
  .       (5.37) 

 

The kernel shown in Equation 5.37 was modified at the edges and corners of the data 

volume to ensure that the sum of all values in the kernel remained one in these situations. 

The 2D smoothing operator can be applied in a cascaded fashion to allow for various 

levels of data smoothing, although I feel that a single application of 2D smoothing is 

acceptable to make results presentable and informative. Smoothing and averaging of 

Fourier coefficients and the fracture density attribute is straightforward and was 

performed using an arithmetic mean and the smoothing kernel shown in Equation 5.37; 

however, separate operators were developed for averaging azimuths. Arithmetic mean 

averaging does not work on fracture azimuth data due to the problem of phase wrapping. 

The problem of phase wrapping can be easily understood by attempting to average 

compass directions. If one were to attempt to average a compass bearing of 1 degrees and 

359 degrees, the obvious answer would be the average compass direction is due North. 

However, the arithmetic mean of 1 and 359 would indicate an average bearing of 180 
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degrees, corresponding to due South. To resolve this issue, a methodology developed by 

Yamartino (1984) is used. 

The Yamartino method was initially developed for meteorological applications. It 

attempts to find the average direction and standard deviation of wind direction data. The 

average wind direction is determined by decomposing wind direction bearings from 

individual data points into their sine and cosine components, averaging the sine and 

cosine components for all wind directions, and taking the four-quadrant arctangent of the 

averaged sine and cosine components. This can be seen in Equation 5.38. 

𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(1
𝑛𝑛
∑ sin𝜃𝜃𝑖𝑖 , 1

𝑛𝑛
∑ cos 𝜃𝜃𝑖𝑖)  ,     (5.38) 

where 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 represents the four-quadrant arctangent operator and 𝜃𝜃𝑖𝑖 represents the 

compass bearing of the ith data point. Note that Equation 5.38 displays the proper input 

into the MATLAB © atan2 and atan2d functions, but depending on how the arctangent 

function is defined the sine and cosine arguments may need to be reversed. The 

Yamartino method was developed to average angles that are 360 degrees periodic, but 

azimuthal fracture orientation results are 180 degrees periodic. To resolve this, all angles 

were multiplied by 2 prior to averaging using Equation 5.38, and the resulting average 

angle was then divided by 2. This results in averaged angles ranging between -90 and 90 

degrees.  

Figures depicting fracture density and fracture azimuth are presented in map view, 

and were stretched in the inline direction by a factor of 2 to correctly display the 

geometry of the survey area. These figures were rotated to match the orientation of the 

results displayed in Chapter 4 of this thesis (i.e., north is to the left). Three different types 

of figures were generated. The first type of figure shows vertically averaged properties of 

interest, namely fracture azimuth and fracture density proxy 𝑅𝑅2∗. The second type of 

figure depicts these same parameters of interest in constant time slices. The last type of 
 111 



figure depicts these same parameters in “constant depth” slices. Here, constant depth does 

not refer to constant depth from the surface but, instead, constant depth from the top of 

the Haynesville. Constant depth slices were generated by grouping data in such a way 

that parameters that were a constant number of vertical time samples from the 

Haynesville top (identifiable by the first non-zero data point) were plotted together. 

Assuming a constant p-wave velocity of ~3 km/s, each time sample (2 ms) corresponds to 

approximately 3 meters of depth. Note that time represents two-way travel time (TWT). I 

favor constant depth slices over constant time slices, as they allow for a direct 

comparison between upper, middle and lower Haynesville properties. Constant depth 

slices also ensure that vertically changing properties do not falsely appear to be lateral 

changes in properties, as may be the case in the constant time slices. The Haynesville 

dips slightly, so a particular time slice can show upper, middle and lower Haynesville 

properties in different areas of the same slice, which could lead to incorrect 

interpretations and conclusions. Graphing functions were designed such that a user can 

easily choose graph type, amount of desired smoothing and parameter of interest, and 

graphs are automatically generated and appropriately labeled. 

5.4 GENERATING SYNTHETIC DATA 

Because the method described in this chapter is a never before used technique, 

analyzing synthetic data using this method is essential in proving its ability to correctly 

determine fracture density and to identify the appropriate fracture azimuth. When using a 

synthetic dataset, one knows the parameters used in its creation – in this case fracture 

orientation and fracture density are the parameters of interest – and thus one can compare 

the predicted values generated by the analysis to the real values used in generating the 

data. In this study, I used a program called ANIVEC to generate synthetic data.  
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ANIVEC is “A Reflectivity Program for Computing Synthetic Seismograms for 

Stratified Anisotropic Media” which uses propagator matrix theory to simulate ground 

motion at user-defined receiver locations. The model used in generating this synthetic 

data was a simple two-layer model, consisting of an isotropic upper layer and an 

anisotropic lower layer, as seen in Figure 5.3. Figure 5.3 indicates the properties of the 

upper (isotropic) layer used for all scenarios. Inputs to the program were the source type, 

receiver layout, and elastic stiffness tensor, density, thickness and attenuation coefficient 

for each layer. Quality factor (𝑄𝑄), which describes attenuation, was set to 500 for all 

cases. A 101x101 grid of receivers was used, spanning one kilometer in the positive and 

negative inline and crossline directions relative to the shot location. The source is located 

in the exact center of the receiver grid. An explosive source was used. The elastic 

stiffness tensor(s) of the lower anisotropic (fractured) layer were generated using Linear 

Slip Deformation theory as described in Section 3.4 and as shown in Equation 3.67. 

Fracture weaknesses were calculated in terms of fracture density (𝑒𝑒) using Equations 5.29 

– 5.31. 
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Figure 5.3: A diagram depicting the two layer model used in generating the synthetic 
data. P-wave velocity (𝑉𝑉𝑝𝑝), S-wave velocity (𝑉𝑉𝑠𝑠), density (𝜌𝜌) and thickness 
(ℎ) for the upper isotropic layer are shown. 

A variety of anisotropic lower layers were used to simulate situations that were 

roughly characteristic of the Haynesville Shale. In particular, four different parameters 

were considered:  background elastic properties (3 cases), fluid type (2 cases), degree of 

fracturing (2 cases), fracture azimuth (2 cases). Refer to Table 5.1 for more information 

regarding these properties. Recall that an isotropic background rock that has been 

fractured becomes effective HTI anisotropic, and a VTI background rock that has been 

fractured becomes effective orthorhombic anisotropic. In all cases where fracture azimuth 

is not 0 degrees, the method of rotating tensors described in Section 3.3 was applied. 

Combined, these amount to 24 different synthetic cases. These cases help to ensure that 

fracture density and fracture azimuth can be correctly determined under a wide range of 

possible scenarios. The elastic background properties used in synthetic data generation 

were loosely based on the work of Sone and Zoback (2013), who measured some of the 

𝑉𝑉𝑝𝑝 = 4.5 Km/s 
𝑉𝑉𝑠𝑠 = 2.8 Km/s 
𝜌𝜌 = 2.5 g/cc 
ℎ = 0.6 Km 

Isotropic 

Anisotropic 
Various 

Configurations 
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elastic properties of the Haynesville Shale. Additional synthetic data were generated for 

the orthorhombic case with high fracture density. In these additional cases, synthetic data 

were generated for all azimuths between 0 and 180 degrees in 10 degree increments, for 

both gas and fluid filled fractures, resulting in 38 additional synthetic cases and a total of 

62 synthetic cases. These additional cases serve to ensure that fracture azimuth can be 

determined correctly for any possible azimuth. These added cases additionally help to 

prove that fracture azimuth can be correctly determined in orthorhombic media using 

equations which are technically only valid in HTI media. 

 

 
 

Property 
 

 

Cases 
 

Background Elastic 
Tensor 

Isotropic (a) 
Isotropic (b) 

VTI 

Fluid Type Fluid Filled 
Gas Filled 

Degree of Fracturing Strong (𝑒𝑒 = 0.1) 
Weak (𝑒𝑒 = 0.02) 

Fracture Azimuth 0 Degrees 
135 Degrees 

Fracture Azimuth* 
0 to 180 Degrees in 10 Degree Increments 

(Orthorhombic / Strong Fracturing Cases Only) 

Table 5.1: A table showing the different properties associated with the 62 synthetic 
cases generated and used in this study. 𝑒𝑒 represents fracture density.  
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After data were generated, it was lightly processed prior to being analyzed for 

fracture characteristics. Initially, data were imported to MATLAB © and a quality control 

check was performed. After data were imported to MATLAB © and passed a quality 

control check, NMO and trim statics corrections were performed. The NMO correction 

was performed using the standard hyperbolic moveout equation, and the trim statics 

correction examined traces for a limited number of time shifts and looked for maximum 

cross correlation. Combined, these shift the data such that it results in almost perfectly 

flat horizons. Due to the simplicity of this example, circular shifting of traces were used 

in both the NMO correction and the trim statics correction. After the data had been 

flattened, they were grouped into an azimuthal gather based on incident angle and 

azimuth. Azimuths ranged from 0 to 180 degrees in 15 degree increments, and incident 

angles ranged from 5 to 40 degrees in 5 degree increments. After azimuthal sorting had 

been completed, the data were ready to be input into the fracture characterization 

algorithm described in Section 5.3 of this chapter. Note that the binning scheme had to be 

adjusted slightly from what was described in Section 5.3. I developed all MATLAB © 

codes relating to data input, NMO correction, trim statics correction and azimuthal 

binning. Example data slices from before and after applying these pre-processing steps 

can be seen in Figure 5.4. 
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Figure 5.4: A) An example data slice of a synthetic dataset without any processing  

A 

B 

C 

 117 



 performed. The horizontal axis represents position, the vertical axis 
represents time, and color represents seismic amplitude. The upper event 
represents the P-P reflection data which was used in this study. The lower 
event represents the P-S reflection which was not used. 
B) An example data slice of a synthetic dataset with NMO correction and 
trim statics corrections performed. The horizontal axis represents position, 
the vertical axis represents time, and color represents seismic amplitude. 
The black horizontal lines are plot guides to indicate how flat the data is, 
however are not data themselves. The upper event represents the P-P 
reflection data which was used in this study. The lower event represents the 
P-S reflection which was not used. 
C) An example section of an azimuthal gather at some time, incident angle 
and position. The horizontal axis represents azimuth and ranges from 0 to 
180 degrees. The vertical axis represents seismic amplitude. The blue dots 
are individual data points and the red line is the Fourier series that the 
fracture characterization algorithm generates. 
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5.5 RESULTS 

In this section I present the inversion results for fracture azimuth and fracture 

density. Inversion results from both the synthetic dataset and from real Haynesville data 

are presented. Results from fracture azimuth inversion will be presented first, followed by 

results from the fracture density inversion. For each set of results the synthetic example 

will be presented first, in order to demonstrate proof of concept. 

5.5.1 Synthetic Example – Fracture Azimuth 

Histograms of inverted fracture azimuth from the 24 initial synthetic cases can be 

seen in Figures 5.5 – 5.8. Figures 5.5 and 5.6 depict the combined results from all cases 

where true fracture azimuth is 0 degrees (which is identical to 180 degrees). Figures 5.7 

and 5.8 depict the combined results from all cases where true fracture azimuth is 135 

degrees. In these histograms the horizontal axis represents azimuth and ranges from 0 to 

180 degrees, and the vertical axis represents bin count. In these figures each bin 

represents 5 degrees of azimuth. Figures 5.5 and 5.7 show data from all incident angles, 

while Figures 5.6 and 5.8 show only large offset data (incident angle > 30 degrees) 

results.  
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Figure 5.5: A histogram showing the combined results of fracture azimuth inversion for 
the 12 synthetic cases where the true fracture azimuth is 0 degrees. Note that 
0 and 180 degrees represent the same azimuth. The horizontal axis 
represents azimuth and ranges from 0 to 180 degrees, and the vertical axis 
represents bin count. Each bin represents 5 degrees of azimuth. Data from 
all incident angles are shown. 
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Figure 5.6: A histogram showing the combined results of fracture azimuth inversion for 
the 12 synthetic cases where the true fracture azimuth is 0 degrees. Note that 
0 and 180 degrees represent the same azimuth. The horizontal axis 
represents azimuth and ranges from 0 to 180 degrees, and the vertical axis 
represents bin count. Each bin represents 5 degrees of azimuth. Only data 
corresponding to large offsets (incident angle > 30 degrees) is shown. 
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Figure 5.7: A histogram showing the combined results of fracture azimuth inversion for 
the 12 synthetic cases where the true fracture azimuth is 135 degrees. The 
horizontal axis represents azimuth and ranges from 0 to 180 degrees, and the 
vertical axis represents bin count. Each bin represents 5 degrees of azimuth. 
Data from all incident angles are shown. 
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Figure 5.8: A histogram showing the combined results of fracture azimuth inversion for 
the 12 synthetic cases where the true fracture azimuth is 135 degrees. The 
horizontal axis represents azimuth and ranges from 0 to 180 degrees, and the 
vertical axis represents bin count. Each bin represents 5 degrees of azimuth. 
Only data corresponding to large offsets (incident angle > 30 degrees) is 
shown. 

Inversion results from the 36 synthetic cases with azimuths ranging between 0 and 

180 degrees in 10 degree increments are displayed in Table 5.2. All 36 synthetic 

examples represent the orthorhombic case with high fracture density. Results for both gas 

and fluid filled fractures are presented. In these cases it was presumed that the calculated 

azimuth was correct if the inverted azimuth was within 5 degrees of the true azimuth. For 

example, if the true azimuth is 70 degrees any inverted azimuth results between 65 

degrees and 75 degrees would be considered correct, while all other result would be 

considered incorrect. Results are shown for all incident angles as well as for incident 
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angles greater than or equal to 30 degrees. Average results have been calculated, and the 

worst case scenario has been identified. 

Table 5.2 
True 

Azimuth Fluid Type Percent correct Percent Correct  
(far offset) 

0 Dry / Gas 70.8% 88.1% 
Wet 97.0% 95.2% 

10 Dry / Gas 35.1% 81.0% 
Wet 67.9% 92.9% 

20 Dry / Gas 32.7% 83.3% 
Wet 57.7% 92.9% 

30 Dry / Gas 29.8% 88.1% 
Wet 54.8% 92.9% 

40 Dry / Gas 29.8% 85.7% 
Wet 51.8% 92.9% 

50 Dry / Gas 31.0% 85.7% 
Wet 51.2% 92.9% 

60 Dry / Gas 31.0% 85.7% 
Wet 48.2% 90.5% 

70 Dry / Gas 33.9% 83.3% 
Wet 50.6% 92.9% 

80 Dry / Gas 35.1% 83.3% 
Wet 56.0% 92.9% 

90 Dry / Gas 48.8% 88.1% 
Wet 69.6% 95.2% 

100 Dry / Gas 35.1% 83.3% 
Wet 56.0% 92.9% 

110 Dry / Gas 33.9% 83.3% 
Wet 50.6% 92.9% 

120 Dry / Gas 31.0% 85.7% 
Wet 48.2% 90.5% 

130 Dry / Gas 31.0% 85.7% 
Wet 51.2% 92.9% 

140 Dry / Gas 29.8% 85.7% 
Wet 51.8% 92.9% 

150 Dry / Gas 29.8% 88.1% 
Wet 54.8% 92.9% 
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True 
Azimuth Fluid Type Percent correct Percent Correct  

(far offset) 

160 Dry / Gas 32.7% 83.3% 
Wet 57.7% 92.9% 

170 Dry / Gas 35.1% 81.0% 
Wet 67.9% 92.9% 

180 Dry / Gas 70.8% 88.1% 
Wet 97.0% 95.2% 

  

Average 
 

Dry / Gas 37.22% 85.09% 
Wet 59.99% 92.98% 

Overall 48.61% 89.04% 
  

Worst Case 
Scenario 

Dry / Gas 29.76% 80.95% 
Wet 48.21% 90.48% 

Overall 29.76% 80.95% 

Table 5.2: A table summarizing the results of the 38 synthetic cases with fracture 
azimuth ranging from 0 to 180 degrees in 10 degree increments. All cases 
represent the case of orthorhombic anisotropy and high fracture density. The 
inverted azimuth is considered correct if it lies within 5 degrees of the true 
azimuth. The column titled “Percent Correct” represents all data, and the 
column titled “Percent Correct (far offset)” represents data with an incident 
angle of greater than or equal to 30 degrees. 

The results presented in this section are discussed in Section 5.6 of this Chapter. 

To summarize, it appears clear that this method is able to distinguish the correct fracture 

azimuth in a variety of cases with sufficient confidence. This is especially true when 

considering the results associated only with large angles of incidence. There is some 

variability in results, but when plotting a histogram of the inverted azimuth results, the 

correct azimuth is easily identifiable due to having the highest bin count. Thus, I feel 

confident in moving forward and applying this method to data from the Haynesville 

Shale. 
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5.5.2 Haynesville Data – Fracture Azimuth 

Figures 5.9 – 5.11 display histograms of the inverted fracture azimuths calculated 

throughout the entire Haynesville dataset. Figure 5.9 shows a histogram of all available 

data. Figure 5.10 shows a histogram of data which corresponds to an incident angle of 25 

degrees or higher. Figure 5.11 shows a histogram of data which corresponds to an 

incident angle of 33 degrees or higher. In all histograms the horizontal axis represents 

azimuth and ranges from 0 to 180 degrees. 

 

 

Figure 5.9: A histogram showing the combined results of fracture azimuth inversion for 
the Haynesville dataset. The horizontal axis represents azimuth and ranges 
from 0 to 180 degrees, and the vertical axis represents bin count. Each bin 
represents 2.5 degrees of azimuth. Data corresponding to all incident angles 
are shown. 
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Figure 5.10: A histogram showing the combined results of fracture azimuth inversion for 
the Haynesville dataset. The horizontal axis represents azimuth and ranges 
from 0 to 180 degrees, and the vertical axis represents bin count. Each bin 
represents 2.5 degrees of azimuth. Data corresponding to incident angles 
greater than or equal to 25 degrees are shown. 
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Figure 5.11: A histogram showing the combined results of fracture azimuth inversion for 
the Haynesville dataset. The horizontal axis represents azimuth and ranges 
from 0 to 180 degrees, and the vertical axis represents bin count. Each bin 
represents 2.5 degrees of azimuth. Data corresponding to incident angles 
greater than or equal to 33 degrees are shown. 

All subsequent images of fracture azimuth calculated using the proposed method 

described in this chapter show averaged results from far incident angles (greater than or 

equal to 25 degrees). Averaging was performed using the Yamartino Method. Due to the 

fact that near incident angle information in not as reliable in determining fracture 

azimuth, inversion results from near incident angles will not be presented. Vertically 

averaged values for fracture orientation can be seen in Figure 5.12.  For comparison, 

vertically averaged results from the novel method described in this chapter and results 

from the Fourier coefficient based HTI method described in Chapter 4 using an identical 

binning scheme can be seen in Figure 5.13. Fracture Azimuth results range from -90 to 

90 degrees. Note that both -90 degrees (represented by dark blue) and 90 degrees 
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(represented by dark red) indicate an identical azimuth, corresponding to approximately 

east-west. The black arrows indicate the direction of north. All images share the same 

orientation. 

 

 

Figure 5.12: Fracture azimuth, as calculated by the proposed new Fourier coefficient 
decomposition method. 2-D lateral smoothing has been applied. Values have 
been vertically averaged throughout the Haynesville using the Yamartino 
method. The colorbar ranges from -90 degrees to 90 degrees. The black 
arrow indicates the direction of north.  

N 
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Figure 5.13: Comparison of fracture orientation as calculated by the proposed new 
method and the HTI Fourier coefficient decomposition based method.  The 
top image depicts fracture orientation as calculated by the proposed new 
Fourier coefficient decomposition method. Data from large incident angles 
have been averaged, and 2-D lateral smoothing has been applied. The 
bottom image depicts fracture orientation as calculated by the HTI Fourier 
coefficient decomposition method using the phase of the 𝑟𝑟2 Fourier 
coefficient. Values have been vertically averaged throughout the 
Haynesville using the Yamartino method. Colorbars range from -90 degrees 
to 90 degrees. The black arrows indicate the direction of north. 

N 
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Fracture orientation results from a constant time slice that encompasses the entire 

Haynesville can be seen in Figure 5.14. For comparison, fracture orientation results over 

the same time slice from the method described in this chapter and the Fourier coefficient 

based HTI method described in Chapter 4 using an identical binning scheme can be seen 

in Figure 5.15. Fracture azimuth results range from -90 to 90 degrees. Note that both -90 

degrees (represented by dark blue) and 90 degrees (represented by dark red) indicate an 

identical azimuth, corresponding to approximately east-west. The black arrows indicate 

the direction of north. All images share the same orientation.  

 

 

Figure 5.14: Fracture azimuth, as calculated by the proposed new Fourier coefficient 
decomposition method. Data from large incident angles have been averaged, 
and 2-D lateral smoothing has been applied. Values corresponding to a 
constant time of 2060 ms are shown. The colorbar ranges from -90 degrees 
to 90 degrees. The black arrow indicates the direction of north.  

N 
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Figure 5.15: Comparison of fracture orientation as calculated by the proposed new 
method and the HTI Fourier coefficient decomposition based method. The 
top image depicts fracture orientation as calculated by the proposed new 
Fourier coefficient decomposition method. Data from large incident angles 
have been averaged, and 2-D lateral smoothing has been applied. The 
bottom image depicts fracture orientation as calculated by the HTI Fourier 
coefficient decomposition method using the phase of the 𝑟𝑟2 Fourier 
coefficient. Values corresponding to a constant time of 2060 ms are shown. 
Colorbars range from -90 degrees to 90 degrees. The black arrows indicate 
the direction of north. 

N 
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Fracture orientation results from constant depth slices representing 0m, 15m, 30m 

and 45m from the Haynesville top can be seen in Figures 5.16 – 5.19.  “Constant depth” 

was determined by measuring a constant number of time samples from the top of the 

Haynesville. A comparison of results over the same depth slices from the novel method 

described in this chapter and the Fourier coefficient method described in Chapter 4 using 

an identical binning scheme can be seen in Figures 5.20 – 5.23. Fracture azimuth results 

range from -90 to 90 degrees. Note that both -90 degrees (represented by dark blue) and 

90 degrees (represented by dark red) indicate an identical azimuth, corresponding to 

approximately east-west. The black arrows indicate the direction of north. All images 

share the same orientation.  
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Figure 5.16: Fracture azimuth, as calculated by the proposed new Fourier coefficient 
decomposition method. 2-D lateral smoothing has been applied. Values 
corresponding to the top of the Haynesville are shown. The colorbar ranges 
from -90 degrees to 90 degrees. The black arrow indicates the direction of 
north. 

 

 

N 
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Figure 5.17: Fracture azimuth, as calculated by the proposed new Fourier coefficient 
decomposition method. 2-D lateral smoothing has been applied. Values 
corresponding to approximately 15 m from the top of the Haynesville are 
shown. The colorbar ranges from -90 degrees to 90 degrees. The black 
arrow indicates the direction of north. 
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Figure 5.18: Fracture azimuth, as calculated by the proposed new Fourier coefficient 
decomposition method. 2-D lateral smoothing has been applied. Values 
corresponding to approximately 30 m from the top of the Haynesville are 
shown. The colorbar ranges from -90 degrees to 90 degrees. The black 
arrow indicates the direction of north. 

 

 

N 

 136 



 

Figure 5.19: Fracture azimuth, as calculated by the proposed new Fourier coefficient 
decomposition method. 2-D lateral smoothing has been applied. Values 
corresponding to approximately 45 m from the top of the Haynesville are 
shown. The colorbar ranges from -90 degrees to 90 degrees. The black 
arrow indicates the direction of north. 
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Figure 5.20: Comparison of fracture orientation as calculated by the proposed new 
method and the HTI Fourier coefficient decomposition based method. The 
top image depicts fracture orientation as calculated by the proposed new 
Fourier coefficient decomposition method. 2-D lateral smoothing has been 
applied. The bottom image depicts fracture orientation as calculated by the 
HTI Fourier coefficient decomposition method using the phase of the 𝑟𝑟2 
Fourier coefficient. Values corresponding to the top of the Haynesville are 
shown. Colorbars range from -90 degrees to 90 degrees. The black arrows 
indicate the direction of north. 

N 
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Figure 5.21: Comparison of fracture orientation as calculated by the proposed new 
method and the HTI Fourier coefficient decomposition based method. The 
top image depicts fracture orientation as calculated by the proposed new 
Fourier coefficient decomposition method. 2-D lateral smoothing has been 
applied. The bottom image depicts fracture orientation as calculated by the 
HTI Fourier coefficient decomposition method using the phase of the 𝑟𝑟2 
Fourier coefficient. Values corresponding to approximately 15 m from the 
top of the Haynesville are shown. Colorbars range from -90 degrees to 90 
degrees. The black arrows indicate the direction of north. 

N 
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Figure 5.22: Comparison of fracture orientation as calculated by the proposed new 
method and the HTI Fourier coefficient decomposition based method. The 
top image depicts fracture orientation as calculated by the proposed new 
Fourier coefficient decomposition method. 2-D lateral smoothing has been 
applied. The bottom image depicts fracture orientation as calculated by the 
HTI Fourier coefficient decomposition method using the phase of the 𝑟𝑟2 
Fourier coefficient. Values corresponding to approximately 30 m from the 
top of the Haynesville are shown. Colorbars range from -90 degrees to 90 
degrees. The black arrows indicate the direction of north. 

N 
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Figure 5.23: Comparison of fracture orientation as calculated by the proposed new 
method and the HTI Fourier coefficient decomposition based method. The 
top image depicts fracture orientation as calculated by the proposed new 
Fourier coefficient decomposition method. 2-D lateral smoothing has been 
applied. The bottom image depicts fracture orientation as calculated by the 
HTI Fourier coefficient decomposition method using the phase of the 𝑟𝑟2 
Fourier coefficient. Values corresponding to approximately 45 m from the 
top of the Haynesville are shown. Colorbars range from -90 degrees to 90 
degrees. The black arrows indicate the direction of north. 

N 
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The results presented in this section are discussed in Section 5.6 of this Chapter. 

To summarize, it appears that the primary fracture azimuth in the Haynesville is 

approximately orientated at 85 degrees, as is evident in Figures 5.10 and 5.11. This is 

very close to the special case of fracture azimuth equaling 90 degrees. Thus, as discussed 

earlier in this chapter, the algorithm used to calculate fracture density was adjusted to 

assume a fracture azimuth of 90 degrees. 

5.5.3 Synthetic Example – Fracture Density 

The results of applying the fracture density inversion to 24 synthetic data cases 

can be seen in Table 5.3. In Table 5.3 primary sorting is by fracture azimuth, secondary 

sorting is by fracture fluid and tertiary sorting is by anisotropy type. Inverted absolute 

values for the fracture density attribute 𝑅𝑅2∗ for both high and low fracture density cases 

are shown. Note that values of 𝑅𝑅2∗ should be treated as relative – this attribute is designed 

to be a proxy for fracture density which can distinguish areas of relatively high fracture 

density, but it is not capable of determining the true fracture density (i.e. the number of 

fractures per unit length). In order to distinguish if the algorithm can correctly determine 

higher fracture density, a multiplier attribute is calculated. The multiplier attribute shows 

the relative increase in response from the high fracture density case versus the low 

fracture density case when all other parameters are constant. The multiplier is also 

included in Table 5.3. 
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Fracture 
Azimuth 

Fluid 
Type 

Anisotropy 
Type 

Strong 
Fracturing 

Weak 
Fracturing Multiplier 

0 Degrees 

Dry / 
Gas 

HTI (a) 0.0009 0.0005 1.7713 

HTI (b) 0.0063 0.0019 3.2676 

Orthorhombic 0.0050 0.0020 2.4430 

Wet 

HTI (a) 0.0115 0.0022 5.2543 

HTI (b) 0.0123 0.0026 4.7767 

Orthorhombic 0.0126 0.0028 4.5320 

45 Degrees 

Dry / 
Gas 

HTI (a) 0.0011 0.0006 1.9430 

HTI (b) 0.0067 0.0024 2.8181 

Orthorhombic 0.0051 0.0024 2.1336 

Wet 

HTI (a) 0.0114 0.0021 5.5407 

HTI (b) 0.0118 0.0022 5.3790 

Orthorhombic 0.0124 0.0024 5.1013 

Table 5.3: A table summarizing the results of fracture density inversion for 24 
synthetic cases with various properties. Inverted fracture density values for 
strong and weak fracturing are shown, as well as a multiplier which 
measures the relative difference in response between the strong and weak 
fracturing cases.  

The results presented in this section will be discussed in Section 5.6 of this 

Chapter. To summarize, it appears clear that this method is able to distinguish relatively 

high fracture density from relatively low fracture density. The inverted multiplier 

between dense and sparse fracturing is somewhat lower than the true multiplier (true 

multiplier = 5), but areas of higher fracturing are still easily identifiable. Thus, I feel 
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confident in moving forward and applying this method to data from the Haynesville 

Shale. 

5.5.4 Haynesville Data – Fracture Density 

Vertically averaged values for fracture density (from 𝑅𝑅2∗) can be seen in Figures 

5.24 and 5.25. For comparison, Figures 5.26 and 5.27 show vertically averaged fracture 

density results from the Orthorhombic method described in this chapter and from the 

Fourier coefficient based HTI method described in Chapter 4 using an identical binning 

scheme. Values for fracture density should be treated as relative, and thus do not include 

bounds on the colorbar. Warmer background colors indicate higher fracture density. The 

black arrows indicate the direction of north. All images share the same orientation. 
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Figure 5.24: 𝑅𝑅2∗, a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 𝑅𝑅2∗ is a measure of combined evergy in 
𝑤𝑤12 and 𝑤𝑤22, corresponding to 2nd order sine and cosine terms in the Fourier 
series. 2-D lateral smoothing has not been applied. Values have been 
vertically averaged throughout the Haynesville using a simple arithmetic 
mean. Warmer colors indicate denser fracturing. The black arrow indicates 
the direction of north. 
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Figure 5.25: 𝑅𝑅2∗, a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 𝑅𝑅2∗ is a measure of combined evergy in 
𝑤𝑤12 and 𝑤𝑤22, corresponding to 2nd order sine and cosine terms in the Fourier 
series. 2-D lateral smoothing has been applied. Values have been vertically 
averaged throughout the Haynesville using a simple arithmetic mean. 
Warmer colors indicate denser fracturing. The black arrow indicates the 
direction of north. 
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Figure 5.26: Comparison of proxies for fracture density from the Orthorhombic and HTI 
Fourier coefficient decomposition based methods. The top image depicts 𝑅𝑅2∗, 
a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 2-D lateral smoothing has not been 
applied. The bottom image depicts 𝑟𝑟2 as calculated by the HTI Fourier 
coefficient decomposition method. The black arrows indicate the direction 
of north. 
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Figure 5.27: Comparison of proxies for fracture density from the Orthorhombic and HTI 
Fourier coefficient decomposition based methods. The top image depicts 𝑅𝑅2∗, 
a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 2-D lateral smoothing has been applied. 
The bottom image depicts 𝑟𝑟2 as calculated by the HTI Fourier coefficient 
decomposition method. Values have been vertically averaged throughout the 
Haynesville using a simple arithmetic mean. Warmer colors indicate denser 
fracturing. The black arrows indicate the direction of north. 

N 
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Fracture density (from 𝑅𝑅2∗) results from a constant time slice that encompasses the 

entire Haynesville can be seen in Figures 5.28 and 5.29. For comparison, Figures 5.30 

and 5.31 depict fracture density results over the same time slice from the orthorhombic 

method described in this chapter and from the Fourier coefficient based HTI method 

described in Chapter 4 using an identical binning scheme. Values for fracture density 

should be treated as relative, and thus do not include bounds on the colorbar. Warmer 

background colors indicate higher fracture density. The black arrows indicate the 

direction of north. All images share the same orientation.  

 

 

Figure 5.28: 𝑅𝑅2∗, a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 𝑅𝑅2∗ is a measure of combined evergy in 
𝑤𝑤12 and 𝑤𝑤22, corresponding to 2nd order sine and cosine terms in the Fourier 
series. 2-D lateral smoothing has not been applied. Values corresponding to 
a constant time of 2060 ms are shown. Warmer colors indicate denser 
fracturing. The black arrow indicates the direction of north. 
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Figure 5.29: 𝑅𝑅2∗, a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 𝑅𝑅2∗ is a measure of combined evergy in 
𝑤𝑤12 and 𝑤𝑤22, corresponding to 2nd order sine and cosine terms in the Fourier 
series. 2-D lateral smoothing has been applied. Values corresponding to a 
constant time of 2060 ms are shown. Warmer colors indicate denser 
fracturing. The black arrow indicates the direction of north. 
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Figure 5.30: Comparison of proxies for fracture density from the Orthorhombic and HTI 
Fourier coefficient decomposition based methods. The top image depicts 𝑅𝑅2∗, 
a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 2-D lateral smoothing has not been 
applied. The bottom image depicts 𝑟𝑟2 as calculated by the HTI Fourier 
coefficient decomposition method. Values corresponding to a constant time 
of 2060 ms are shown. Warmer colors indicate denser fracturing. The black 
arrows indicate the direction of north. 
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Figure 5.31: Comparison of proxies for fracture density from the Orthorhombic and HTI 
Fourier coefficient decomposition based methods. The top image depicts 𝑅𝑅2∗, 
a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 2-D lateral smoothing has been applied. 
The bottom image depicts 𝑟𝑟2 as calculated by the HTI Fourier coefficient 
decomposition method. Values corresponding to a constant time of 2060 ms 
are shown. Warmer colors indicate denser fracturing. The black arrows 
indicate the direction of north. 
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Fracture density (from 𝑅𝑅2∗) results from constant depth slices representing 0m, 

15m, 30m and 45m from the Haynesville top can be seen in Figures 5.32 – 5.35. 

“Constant depth” was determined by measuring a constant number of time samples from 

the top of the Haynesville. Only laterally smoothed results will be included. A 

comparison of results over the same depth slices from the Orthorhombic method 

described in this chapter and the Fourier coefficient based HTI method described in 

Chapter 4 using an identical binning scheme can be seen in Figures 5.36 – 5.39. Values 

for fracture density should be treated as relative, and thus do not include bounds on the 

colorbar. Warmer background colors indicate higher fracture density. The black arrows 

indicate the direction of north. All images share the same orientation.  
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Figure 5.32: 𝑅𝑅2∗, a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 𝑅𝑅2∗ is a measure of combined evergy in 
𝑤𝑤12 and 𝑤𝑤22, corresponding to 2nd order sine and cosine terms in the Fourier 
series. 2-D lateral smoothing has been applied. Values corresponding to the 
top of the Haynesville are shown. Warmer colors indicate denser fracturing. 
The black arrow indicates the direction of north. 
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Figure 5.33: 𝑅𝑅2∗, a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 𝑅𝑅2∗ is a measure of combined evergy in 
𝑤𝑤12 and 𝑤𝑤22, corresponding to 2nd order sine and cosine terms in the Fourier 
series. 2-D lateral smoothing has been applied. Values corresponding to 
approximately 15 m from the top of the Haynesville are shown. Warmer 
colors indicate denser fracturing. The black arrow indicates the direction of 
north. 
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Figure 5.34: 𝑅𝑅2∗, a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 𝑅𝑅2∗ is a measure of combined evergy in 
𝑤𝑤12 and 𝑤𝑤22, corresponding to 2nd order sine and cosine terms in the Fourier 
series. 2-D lateral smoothing has been applied. Values corresponding to 
approximately 30 m from the top of the Haynesville are shown. Warmer 
colors indicate denser fracturing. The black arrow indicates the direction of 
north. 
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Figure 5.35: 𝑅𝑅2∗, a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 𝑅𝑅2∗ is a measure of combined evergy in 
𝑤𝑤12 and 𝑤𝑤22, corresponding to 2nd order sine and cosine terms in the Fourier 
series. 2-D lateral smoothing has been applied. Values corresponding to 
approximately 45 m from the top of the Haynesville are shown. Warmer 
colors indicate denser fracturing. The black arrow indicates the direction of 
north. 
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Figure 5.36: Comparison of proxies for fracture density from the Orthorhombic and HTI 
Fourier coefficient decomposition based methods. The top image depicts 𝑅𝑅2∗, 
a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 2-D lateral smoothing has been applied. 
The bottom image depicts 𝑟𝑟2 as calculated by the HTI Fourier coefficient 
decomposition method. Values corresponding to the top of the Haynesville 
are shown. Warmer colors indicate denser fracturing. The black arrows 
indicate the direction of north. 
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Figure 5.37: Comparison of proxies for fracture density from the Orthorhombic and HTI 
Fourier coefficient decomposition based methods. The top image depicts 𝑅𝑅2∗, 
a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 2-D lateral smoothing has been applied. 
The bottom image depicts 𝑟𝑟2 as calculated by the HTI Fourier coefficient 
decomposition method. Values corresponding to approximately 15 m from 
the top of the Haynesville are shown. Warmer colors indicate denser 
fracturing. The black arrows indicate the direction of north. 
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Figure 5.38: Comparison of proxies for fracture density from the Orthorhombic and HTI 
Fourier coefficient decomposition based methods. The top image depicts 𝑅𝑅2∗, 
a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 2-D lateral smoothing has been applied. 
The bottom image depicts 𝑟𝑟2 as calculated by the HTI Fourier coefficient 
decomposition method. Values corresponding to approximately 30 m from 
the top of the Haynesville are shown. Warmer colors indicate denser 
fracturing. The black arrows indicate the direction of north. 
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Figure 5.39: Comparison of proxies for fracture density from the Orthorhombic and HTI 
Fourier coefficient decomposition based methods. The top image depicts 𝑅𝑅2∗, 
a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 2-D lateral smoothing has been applied. 
The bottom image depicts 𝑟𝑟2 as calculated by the HTI Fourier coefficient 
decomposition method. Values corresponding to approximately 45 m from 
the top of the Haynesville are shown. Warmer colors indicate denser 
fracturing. The black arrows indicate the direction of north. 
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5.6 DISCUSSION 

Examining the fracture azimuth inversion results in the synthetic cases 

demonstrates that the proposed method works sufficiently well when only considering 

intermediate or relatively far offset data. Figures 5.5 – 5.8 demonstrate that it is possible 

to identify the correct azimuth on a histogram plot of data from all incident angles. 

However, it is extremely evident on a histogram plot of high incident angle data only. 

Unfortunately, this method does occasionally mis-assign azimuths in the perpendicular 

direction (i.e., 90 degrees shifted), but this only occurs in a minority of cases. In many of 

the misaligned cases, the reflection amplitude is very weak. Very weak reflection 

amplitudes can occur if a particular time sample corresponded to a zero crossing or if a 

particular synthetic dataset overall had very small amplitudes, as was the case in the HTI 

(a) data with gas filled fractures. Random noise was not explicitly added to the synthetic 

data, though some computational artifacts, which resemble noise, are present in the 

synthetic data. Thus, the signal-to-noise ratio is lower for data with weak reflection 

amplitudes, explaining in part why some of the azimuthal cases were misaligned.  

Table 5.2 indicates that, on average, the correct azimuth is assigned roughly 85% 

of the time in synthetic cases where fractures are gas filled. Here I define the inverted 

azimuth to be correct if it is with 5 degrees of the true azimuth. If cases with very weak 

data are ignored, the correct azimuth is assigned more frequently. The gas filled fracture 

case most resembles the Haynesville, and thus my discussion will focus primarily on the 

synthetic cases with gas filled fractures. Table 5.2 additionally shows that even in a worst 

case scenario, the correct azimuth is assigned roughly 81% of the time. It is interesting to 

note that this method works even better in the case of fluid filled fractures, indicating it 

has significant potential to be applied to unconventional wet and tight oil plays. 

 162 



Fracture azimuth inversion results from the Haynesville vary when comparing the 

Orthorhombic and HTI methods presented. It is interesting that in some instances these 

methods seem to be almost identical (for example in Figures 5.20, 5.21 and 5.23). In 

other instances, the results appear to be almost exactly 90 degree phase shifted from each 

other (for example in Figure 5.22). This supports the theory that the original Fourier 

coefficient method does not always determine the correct symmetry plane whereas the 

new proposed method does – resulting in a nearly exact overlap in some areas and other 

places to be phase shifted 90 degrees when comparing the two methods. However, the 

most compelling evidence that the proposed method determines the correct fracture 

azimuth comes from Figures 5.10 – 5.12. In Figure 5.12, which shows vertically averaged 

fracture azimuth, we see that an azimuth of roughly east-west (corresponding to ±90 

degrees in the figures) is extremely prevalent throughout the entire section. The 

histograms for far offset data, shown in Figures 5.10 and 5.11, again overwhelmingly 

suggest a primary fracture orientation of about 85 degrees, slightly counterclockwise 

rotated from an east-west orientation. Note that the inline and crossline directions of the 

seismic survey are rotated slightly counterclockwise of a true north-south / east-west 

orientation. Thus, an inverted fracture azimuth of roughly 85 degrees corresponds to a 

compass bearing of approximately 82 degrees. This fracture azimuth agrees very well 

with what is suggested by analyzing regional stress and studying fracture orientation in 

nearby formations, as discussed in Section 4.5. 

Being that fracture azimuth is very close to 90 degrees, the special case of a 90 

degree fracture azimuth was used when inverting for fracture density. I feel that the error 

associated with assuming a fracture azimuth which is 5 degrees incorrect is less than the 

increased error associated with having to invert for additional parameters. Specifically, 

the 5 Fourier coefficients per incident angle and 9 weights (𝑤𝑤𝑖𝑖𝑖𝑖’s) per time / CDP in the 
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general case is reduced to 4 Fourier coefficients per incident angle and 6 weights (𝑤𝑤𝑖𝑖𝑖𝑖’s) 

per time / CDP in the special case where fracture azimuth is equal to 90 degrees. This 

specialized case was assumed in both the synthetic example and when analyzing the 

Haynesville dataset. 

Inversion results for fracture density from the synthetic data indicate that for any 

given scenario, the algorithm assigned a higher fracture density to the high fracture 

density case than the low fracture density case. In the case of gas filled fractures, the 

algorithm tended to under-estimate the magnitude of fracturing in the high fracture 

density case relative to the low fracture density case, with multipliers generally falling in 

the 2x to 3x range rather than near the true value of 5x. It is again interesting to note that 

this method seems to perform better in the case of fluid filled fractures, which calculated 

a multiplier of very close to 5x, indicating again that this proposed method has significant 

potential to be applied to unconventional wet and tight oil plays. Results from the HTI (b) 

and the orthorhombic datasets seem to be very consistent, however, results from the HTI 

(a) dataset with gas filled fractures seems to underestimate both absolute values of 

fracture density and the multiplier between strong and weak fracturing. In the case of the 

HTI (a) synthetic data with gas filled fractures, this likely can be attributed to the 

unusually small seismic amplitudes present throughout the data. Figure 5.40 compares an 

example data slice from the HTI (a) dataset with gas filled fractures to a data slice from 

the orthorhombic dataset with gas filled fractures using the same amplitude color scale. 

As seen in Figure 5.40, the HTI (a) dataset with gas filled fractures has significantly 

smaller amplitudes than the orthorhombic dataset with gas filled fractures. This indicates 

that this method does not work as well when seismic amplitudes are extremely weak. 

Thus, if trying to analyze extremely weak seismic data, one should expect the inverted 

results for fracture density to be unusually low. 
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Figure 5.40: Comparison of data slices from the synthetic datasets. The left image shows 
a slice from the orthorhombic synthetic dataset with gas filled fractures, and 
the right image shows a slice from the HTI (a) dataset with gas filled 
fractures. The colorbar represents seismic amplitude. The same color scale 
is used in both images. The horizontal axis indicates position, and the 
vertical axis indicates time. No processing has been performed on the data.  

The underestimation of fracturing in cases with high fracture density and gas 

filled fractures may also be a result of the fracture density chosen when generating the 

data. In the high fracture density cases fracture density (e) was set to 0.1, which is outside 

the usual realm of applicability for Linear Slip Deformation (LSD) theory to be valid. 

This was done intentionally to observe how this method responds to extreme fracturing. 

Note that in the low fracture density case, where LSD is valid, fracture density results are 

similar for all cases (with the exception of the HTI (a) case with gas filled fractures). 

However, in the high fracture density cases, results tend to diverge, especially when 

comparing cases with fluid filled fractures to those with gas filled fracture. This indicates 

that extreme fracturing may hamper this method, resulting in the observed 

underestimation of fracture density in cases with gas filled fractures and high fracture 

density. Despite this, the method is still largely able to distinguish areas with high 
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fracture density from those with low fracture density, even if conditions change to some 

extent. Note that, again excluding the HTI (a) case with gas filled fractures, the weakest 

response to strong fracturing is still almost a factor of two greater than the strongest 

response to weak fracturing. This indicates that even if there are significant lateral 

changes in properties, the proposed method is still able to distinguish an area of high 

fracture density from one of low fracture density. However, the relative difference 

between high and low fracture density results may not adequately represent the actual 

relative change in fracture density. Lastly, it is interesting to note that fracture density 

results from the synthetic cases where fracture azimuth is 45 degrees were very consistent 

to results from cases with a fracture azimuth of 0 degree. This indicates that inversion 

results calculated using this method may be acceptable for fracture azimuths other than 0, 

90 and 180 degrees, even though the underlying equations are not technically valid for 

other fracture azimuths. This being said, I felt confident in moving forward to apply this 

proposed new method to real data from the Haynesville Shale. 

Fracture density inversion results of the Haynesville Shale from both methods 

produced somewhat similar results, however the orthorhombic method successfully 

delineated a localized area of anomalously high fracture density in the Northwest corner 

of the survey area. This area was not distinctly identifiable in any of the HTI methods 

performed. This area is indicated by the black circle in Figure 5.41, which shows 

vertically averaged 2nd order coefficient energy 𝑅𝑅2∗ from the Orthorhombic method 

compared to the 𝑟𝑟2 proxy from the HTI Fourier coefficient method. In Figure 5.41 we see 

that this area was somewhat identified in the HTI method, however, in the HTI method 

this area does not significantly stand out against the background noise. Referring back to 

the HTI analyses described in Chapter 4, this same area is hinted at having high fracture 

density, but it does not significantly stand out against the background signal in any 
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method (for example, see Figure 4.10). The orthorhombic method’s ability to 

successfully distinguish this area of higher fracture density could be attributed to two 

possible factors: 

1. The orthorhombic method explicitly accounts for the VTI component of shale by 

assuming orthorhombic anisotropy rather than HTI anisotropy. 

2. The orthorhombic method calculates Fourier coefficients at each incident angle 

independently. These coefficients are then used in a second weighted least squares 

inversion to find weights 𝑤𝑤𝑖𝑖𝑖𝑖 that describe Fourier information at all incident 

angles, and which are used as a proxy for fracture density. Using weights 𝑤𝑤𝑖𝑖𝑖𝑖, 

which contain information from all incident angles, results in the maximum use of 

data and treats the AVO component of the data as informative rather than as 

noise. 
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Figure 5.41: Comparison of proxies for fracture density from the Orthorhombic and HTI 
Fourier coefficient decomposition based methods. The top image depicts 𝑅𝑅2∗, 
a proxy for fracture density, as calculated by the Orthorhombic Fourier 
coefficient decomposition method. 2-D lateral smoothing has been applied. 
The bottom image depicts  𝑟𝑟2 as calculated by the HTI Fourier coefficient 
decomposition method. Values have been vertically averaged throughout the 
Haynesville using a simple arithmetic mean. Warmer colors indicate denser 
fracturing. The black circle indicates an area of anomalously high fracture 
density identified in the orthorhombic method. The black arrows indicate the 
direction of north. 
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While showing an increased ability to identify areas of anomalously high fracture 

density is an obvious triumph, the orthorhombic method employed does have some 

downfalls. The first shortcoming is how it deals with edge effects. While some edge 

effects corresponding to (falsely) anomalously high fracture density on the eastern and 

southern edges of the study area can be seen in the HTI results, these edge effects are 

very pronounced in the orthorhombic method results. This can be seen in several of the 

Figures presented in this chapter. In the areas exhibiting edge effects data is generally 

sparser, and azimuthal coverage is more limited. The increased sensitivity to edge effects 

may be due to the orthorhombic method considering each incident angle separately, 

whereas the HTI method considers all incident angles simultaneously. While considering 

each incident angle separately results in using AVO effects as information rather than as 

noise, it reduces the number of data points available for fitting at any given incident 

angle. When significant azimuthal data in one direction is missing, the curve fitting 

algorithm is inclined to fit a Fourier series with significant azimuthal variation, resulting 

in high fracture density inversion results, in order to better fit available data. This occurs 

despite the fact that the available data does not directly support this extreme azimuthal 

variation. An example of this phenomenon is shown in Figure 5.42. After trial and error, I 

decided that a minimum of eight data points would be necessary to attempt to fit a curve, 

believing this to be a decent tradeoff between including more data in the inversion and 

having sufficient confidence in fitted curves. Unfortunately, this may not have been 

sufficient in the areas depicting strong edge effects. Note that in Figure 5.42, the curve 

depicting improper fitting only contains seven data points, and thus would not be used in 

this analysis. 

The second downfall associated with the proposed method is a significant 

increase in required computation time when compared to existing HTI methods. This is to 
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some extent unavoidable, as the methodology inherently requires more computations to 

be made. Nevertheless, this method can still be executed in a reasonable amount of time. 

When run on a windows desktop with an Intel i7-4770 processor, each analysis took 

approximately 3 days to run. If this were run on the entire dataset rather than a reduced 

137 inline by 137 crossline portion, the relative increase in area would suggest an 

approximate 10 fold increase in run time, indicating that each analysis would take 

approximately 30 days. However, if implemented using CPU and/or GPU clusters, the 

run time of the analysis could be significantly reduced to acceptable levels, even when 

applied to very large datasets. Additional algorithm refinement could additionally reduce 

the required computational time. Despite taking longer to perform the analysis, the ability 

to successfully identify areas of higher fracture density and to correctly determine the 

azimuth of fracture orientation seems to justify the additional computational expense 

associated with the proposed method. 
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Figure 5.42: Examples of fitting a Fourier series at a specific time / location and constant 
incident angle with sufficient azimuthal coverage (upper) and insufficient 
azimuthal coverage (lower). When large chunks of azimuthal coverage are 
missing (lower) the curve fitting algorithm creates extreme and unrealistic 
features to better match available data. The X axis represents azimuth 
(ranging from 0 to 180 degrees), and the Y axis represents seismic 
amplitude. 
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5.7 SUMMARY 

A new fracture characterization method based on Fourier decomposition of the 

seismic data, which is partially valid in orthorhombic anisotropic media, has been 

presented. In this method, a modified 4th order Fourier series was fit to azimuthal 

variations in the seismic data. The proposed method was applied to a variety of synthetic 

datasets as well as to seismic data from the Haynesville Shale. Fracture azimuth was 

determined by analyzing the phase of the 2nd order coefficient and then determining if a 

90 degree phase shift was required. Azimuth inversion results from high incident angle 

data proved to be very accurate in the synthetic examples. Inversion results from the 

Haynesville Shale indicate that the azimuth of the predominant fracture set has a compass 

bearing of approximately 82 degrees, rotated slightly counterclockwise from an east-west 

orientation. Fracture density was determined using a proxy based on the total energy 

present in the 2nd order Fourier coefficients (𝑅𝑅2∗), found via a weighted least squares 

inversion of Fourier coefficient data from all incident angles. Results have been 

compared to an analogous HTI fracture characterization method also based on Fourier 

decomposition of the data. Comparing these results suggest that this novel method 

unambiguously determines fracture azimuth, whereas the existing HTI methods contains 

occasional 90 degree ambiguities. Fracture density results from the proposed 

orthorhombic method show an increased ability to find pockets of relatively high fracture 

density, although unfortunately this new method suffers from extended computation time 

and prominent edge effects. Future algorithm refinement and the use of CPU and/or GPU 

clusters to perform this analysis can resolve both these issues, making the new 

orthorhombic method a potentially valuable new fracture characterization tool. 
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Chapter 6: Conclusions and Future Work 

6.1 CONCLUSIONS 

The work presented in this thesis examines and implements three distinct fracture 

characterization methods based on analyzing azimuthal variations in seismic amplitude 

(AVAZ). All methods were applied to 3D seismic data of the Haynesville Shale from 

Panola County, Texas. 

Chapter 4 described two commonly used fracture characterization techniques 

based on the assumption of a single closely spaced rotationally invariant fracture set 

imbedded in an otherwise isotropic rock, resulting in HTI anisotropy. The first technique 

is based on the Rüger AVO equation, and the second technique is based on decomposing 

the seismic data into a modified 4th order Fourier series. Both methods indicate laterally 

variable fracture density, with generally higher fracturing in the northern part of the area. 

Anomalously high fracture density on the Eastern and Southern edges of the survey area 

are not believed to be real features. Fracture orientation results from both the Rüger 

method and the Fourier decomposition method had extreme variability, and ultimately 

proved to be unreliable due to unresolved 90 degree phase shifts present in the inverted 

results. The HTI Fourier decomposition method additionally inverted for normal and 

tangential fracture weaknesses, and used these values to calculate a fluid indicator 

attribute. Fracture weaknesses were incorrect by a scaling factor, however, this scaling 

factor is removed in the calculated fluid indicator attribute which utilizes the ratio of 

normal and tangential fracture weaknesses. The fluid indicator attribute indicates that 

fractures are likely dry or gas filled, which is consistent with a priori information of the 

area. 

Chapter 5 describes a novel fracture characterization method based on a more 

generalized Fourier decomposition of the data. In this method, a modified 4th order 
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Fourier series was fit to data at individual incident angles, and a new method to determine 

fracture azimuth from the 2nd order Fourier coefficient phase was implemented. This 

method, in synthetic examples, produced the correct azimuth about 85% of the time when 

considering only high incident angle information. When applied to the Haynesville 

dataset, inversion results indicate that the strike of the azimuth of the dominant fracture 

set has a compass bearing of approximately 82 degrees. Using this fracture azimuth 

information, a specialized version of the analysis, which is valid in orthorhombic 

anisotropy, was repeated to determine fracture density. After new Fourier coefficients 

were found at each incident angle, time, and CDP location, a weighted least squares 

inversion was used to invert for weights 𝑤𝑤𝑖𝑖𝑖𝑖 which describe both AVO and AVAZ 

aspects of the data. The weights 𝑤𝑤12 and 𝑤𝑤22, which correspond to the 2nd order Fourier 

coefficients, were combined and used as a proxy for fracture density. Results were 

compared to an analogous HTI fracture characterization techniques. Fracture azimuth 

results agreed decently well, though differed in some areas by 90 degrees due to an 

ambiguity in determining fracture orientation in the existing HTI methods. Fracture 

density results from the orthorhombic method also agreed well with results from an 

analogous HTI method, however proved much more capable of identifying localized 

areas of high fracture density than the analogous HTI method. 

6.2 FUTURE WORK 

Future work may include revising the novel method presented in Chapter 5 such 

that the equations used in resolving fracture azimuth are explicitly valid in orthorhombic 

media. Future work may additionally include developing and implementing other fracture 

characterization techniques that utilize azimuthal traveltime differences (VVAZ), and 

which integrate the use of P-S data and well log data into the analysis. The integration of 
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additional data can increase confidence in inversion results for fracture orientation and 

fracture density. 
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